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In this we will go over some of the techniques of integration, and when to apply them.

1 Simple Rules

So, remember that integration is the inverse operation to differentation. Thuse we get a few rules for free:

Sum/Difference
∫

(f(x)± g(x)) dx =
∫
f(x)dx±

∫
g(x) dx

Scalar Multiplication
∫
cf(x) dx = c ·

∫
f(x) dx for c ∈ R

Product Rule
∫
xn dx =

xn+1

n + 1
+ C for n 6= −1

The above allows us to integrate any polynomials and roots. The only think we don’t yet know how to
integrate is

∫
1
x dx. Luckily, we know d

dx ln(x) = 1
x . From this, and other knowledge we know about

derivatives, we know:

Trig∫
sin(x) dx = − cos(x) + C∫
cos(x) dx = sin(x) + C∫
sec2(x) dx = tan(x) + C∫
sec(x) tan(x) dx = sec(x) + C

Exponentials∫
ex dx = ex + C∫
1
x dx = ln |x|+ C.

!!EXAMPLES!!

2 u-substitution

Notice, if f(x) and g(x) are functions, then the chain rule says

d

dx
(f(g(x))) = f ′(g(x)) · g′(x)

So, we know: ∫
f ′(g(x)) · g′(x) dx = f(g(x))

Writing this out in a better way, we get let u = g(x). Then du = g′(x) dx, meaning we can trade a
g′(x) dx for a du and substitute u for g(x) in the integral. The goal is to eliminate all occurrences of x in
the integral, and then your entire integral is in terms of u, and is simplier.
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Example 1. Let us solve the integral ∫
sin(2x) dx

We do this by doing the substitution u = 2x. Then du = 2 dx. Thus we can trade a 2 dx for a du. So we
write the integral in the following way:∫

sin(2x) dx =
1

2

∫
sin(2x)(2 dx)

Then:
1

2

∫
sin(2x)(2 dx) =

1

2

∫
sin(u) du

Doing the integration:
1

2

∫
sin(u) du =

1

2
(− cos(u)) + C

As the problem was given in terms of x, we want the answer in terms of x. So we substitute 2x for u.

1

2
(− cos(u)) + C = −cos(2x)

2
+ C

We do the following integrals with less exposition:

Example 2. ∫
x cos(x2) dx

Set u = x2. Then du = 2x dx. ∫
x cos(x2) dx =

1

2

∫
cos(x2)2x dx

=
1

2

∫
cos(u) du

=
1

2
(sin(u)) + C

=
sin(x2)

2
+ C

Example 3. ∫
cos(ln(x))

x
dx

Set u = ln(x). Then du = 1
x dx. ∫

cos(ln(x))

x
dx =

∫
cos(ln(x))

1

x
dx

=

∫
cos(u) du

= sin(u) + C

= sin(ln(x)) + C

Example 4. ∫
3 cos(x)esin(x) dx

Let u = sin(x). Then du = cos(x) dx.∫
3 cos(x)esin(x) dx = 3 ·

∫
cos(x)esin(x) dx

= 3 ·
∫

eu du

= 3 · eu + C

= 3esin(x) + C
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Example 5. ∫
x(x + 5)10 dx

Here, we can solve the integral by expanding. But, expanding the 10th power is rather annoying. So instead:
Let u = x + 5. Then we get x = u− 5, and du = dx. All we have done is a linear transformation. Note,

in general we can not solve for x when we do a substitution. When the substitution is linear we can.

∫
x(x + 5)10 dx =

∫
(u− 5)(u)10 du

=

∫
(u11 − 5u10) du

=
u12

12
− 5u11

11
+ C

=
(x + 5)12

12
− 5(x + 5)11

11
+ C

3 Integration by Parts

Recall the product rule:
d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x)

Moving things around, we see

f ′(x)g(x) =
d

dx
[f(x)g(x)]− f(x)g′(x)

Integrating both sides, we see ∫
f ′(x)g(x) dx = f(x)g(x)−

∫
f(x)g′(x)dx

Renaming v = f(x) and u = g(x) we have dv = f ′(x) dx and du = g′(x) dx and our formula becomes∫
u dv = uv −

∫
v du

Here, we seperate our integral into two parts: one part we differentiate, and the other we integrate. Then
we apply the formula, and get a new integral with these new parts (the derivative of the one part and the
integral of the other).

As a strategy, we tend to choose our u (the part we differentiate) so that the new integral is easier to
integrate. We also need to take care that the dv (the part we integrate) can actually be integrated by us.

Example 6. ∫
x · ex dx

Here, we see that when we take the derivate of x it vanishes completely making our next integral simplier.

∫
x · ex dx

u = x dv = ex dx
du = dx v = ex

= xex −
∫

ex dx

= xex − ex + C

As a heuristic (rule of thumb) we choose logarithms and inverse trigonometric functions to be our u before
any others since their integrals are hard to calculate and complicated. After those, we like polynomials (or
really anything algebraic) as those derivatives often get simplier. We rarely want to choose exponentials to
be our u since integrating an exponential is virtually the same as deriving it.

Unless we deviate from this heuristic, the u shall be chosen without exposition:
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Example 7. ∫
ln(x) dx

We do this by parts:∫
ln(x) dx

u = ln(x) dv = dx
du = 1

x dx v = x

= x ln(x)−
∫

1

x
x dx

= x ln(x)−
∫

dx

= x ln(x)− x + C

Example 8. ∫ 1

0

(x2 + 1)e−x dx

We do this by parts:∫ 1

0

(x2 + 1)e−x dx
u = x2 + 1 dv = e−x dx
du = 2x dx v = −e−x

= (x2 + 1)(−e−x)−
∫

(−e−x)(2x) dx

= −(x2 + 1)e−x + 2

∫
xe−x dx

u = x dv = e−x dx
du = dx v = −e−x

= −(x2 + 1)e−x + 2(−xe−x −
∫

(−e−x) dx)

= −(x2 + 1)e−x − 2xe−x + 2

∫
e−x dx

= −(x2 + 1)e−x − 2xe−x − 2e−x + C

Sometimes, we can do a nice subsitution before finishing the problem using parts:

Example 9. ∫
x3 · 3x

2

dx

First, we re-write it to have e as the exponential base. Note that in general ab = eb ln(a) So∫
x3 · 3x

2

dx =

∫
x3 · ex

2 ln(3) dx

Let u = x2. Then du = 2x dx. So 1
2 du = x dx.

∫
x3 · ex

2 ln(3) dx =

∫
(x2) · e(x

2) ln(3)(x dx)

=

∫
u · eu ln(3)du

Now, we do parts.
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4 Trig Functions

Let’s recall what we know about trig.
Type Formula How it is obtained

Simple sin2(x) + cos2(x) = 1 Unit circle + Pythagorean Theorem
tan2(x) + 1 = sec2(x) Divide by cos2(x) in previous
1 + cot2(x) = csc2(x) Divide by sin2(x) in previous

Double Angle sin(2x) = 2 sin(x) cos(x) Memorize/Geometry
cos(2x) = cos2(x)− sin2(x) Memorize/Geometry
cos(2x) = 2 cos2(x)− 1 Rewrite previous using sin2(x) = 1− cos2(x)
cos(2x) = 1− 2 sin2(x) Rewrite previous using cos2(x) = 1− sin2(x)

Half Angle sin2(x) = 1−cos(2x)
2 Use cosine double angle in terms of sine.

cos2(x) = 1+cos(2x)
2 Use cosine double angle in terms of cosine

Derivatives d
dx sin(x) = cos(x) Memorize/Limit definition of derivative
d
dx cos(x) = − sin(x) Memorize/Chain rule: cos(x) = sin(π2 + x)
d
dx sec(x) = sec(x) tan(x) Quotient Rule: sec(x) = 1

cos(x)
d
dx tan(x) = sec2(x) Quotient Rule: tan(x) = sin(x)

cos(x)

Integrals
∫

sin(x) dx = − cos(x) + C Fundamental Theorem of Calculus∫
cos(x) dx = sin(x) + C Fundamental Theorem∫
sec(x) dx = ln | sec(x) + tan(x)|+ C u-sub and cleverness∫
tan(x) dx = ln | sec(x)|+ C u-sub (u = cos(x))

Sometimes you have powers of sines and consines and you want to integrate them. Here is how:
You are doing the integral: ∫

sinm(x) cosn(x) dx

Then:

If n is odd then save a cosine, and change the rest of the cosine’s into sines using cos2(x) = 1 − sin2(x).
then you can do a u-substitution where u = sin(x).∫

cos(x)︸ ︷︷ ︸
save

cosn−1(x)︸ ︷︷ ︸
change to sine

sinm(x) dx

If m is odd then save a sine, and change the rest of the sine’s into cosines sin2(x) = 1− cos2(x). then you
can do a u-substitution where u = cos(x).∫

sin(x)︸ ︷︷ ︸
save

sinm−1(x)︸ ︷︷ ︸
change to cosine

cosn(x) dx

If both even then use half angle formulas to reduce problems

Example 10. See examples 1, 2 and 3 on page 310 and 311 of Stewart.

Sometimes you have to integrate powers of secant and tangents too. Here is how:
You are doing the integral: ∫

secn(x) tanm(x) dx

If n is even then save a sec2(x), and change the rest of the secands into tangents by sec2(x) = tan2(x) + 1
then do a u-sub where u = tan(x)∫

sec2(x)︸ ︷︷ ︸
save

secn−2(x)︸ ︷︷ ︸
change to tangents

tanm(x) dx
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If m is odd Then save a tan(x) and a sec(x), and change all the tangents into secants by tan2(x) =
sec2(x)− 1 then do a u-sub where u = sec(x).∫

sec(x) tan(x)︸ ︷︷ ︸
save

tanm−1(x)︸ ︷︷ ︸
change to secants

secn−1(x) dx

If n is odd and m is even try something else; usually these integrals generally ad hoc, and do come up
from time to time. Integration by parts can be helpful (like for

∫
sec3(x) dx).

Example 11. See examples 5, 6, 7, 8 in Stewart on p.312-314.

5 Partial Fractions
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