Republic of Iraq Ministry of Higher Education &Scientific Research AL-Muthanna University College of Science Department of Chemistry

Hydrolysis of cellulose and glucose onto silica-pyridine sulfonic acid

A thesis submitted to the Council of College of Science / Al-Muthanna University as partial Fulfillment of the Requirement for the Degree of Master of Science in Chemistry

> By Hussein Abdel Bari Zuweid B. Sc. In Chemistry 2009

Supervised By Prof. Dr. Kasim Mohammed Hello

Abstract

In this study, silica was extracted from rice husk by washing rice husk many times with distilled water, and then treated with 1.0 M of Nitric acid; finally, it was burned in an oven at 800 °C. Using method Sol-gel the resulting silica was converted into sodium silicate after dissolving it with a solution (1.0M) of sodium hydroxide, then it was reacted with CPTES to produce a silica with the functional group CH₂-Cl and the symbol RHACCI.

Loading pyridine sulfonic acid on the surface of silica in two ways: the direct method, where pyridine sulfonic acid, CPTES, and sodium silicate were added to the aqueous solution, then the mixture was titrated against HNO₃ (3.0N), and the reflux method, where RHACCl and pyridine sulfonic acid were added to the toluene solvent and at a temperature of 120°C for 48 hours to form a heterogeneous catalyst symbol, RHAPSA@Dir and RHAPSA@Ref, respectively.

The prepared catalyst was identified by several techniques, including elemental analysis (CHNS), where the percentages of nitrogen and sulphur appeared, and thermal decomposition (TGA/DSC), where the thermal stability of both catalysts was proven up to 250 °C. According to the nitrogen adsorption analysis, the surface area of the catalyst was found to be 50,416 m²/gm for both the direct and reflux methods, respectively. FT-IR spectroscopy showed that the SO₂ and CH aromatics and aliphatic were clearly shown in FT-IR. As well as the scanning electron microscope (SEM) and the transmission electron microscope (TEM), which show the topography, size, and arrangement of the particles of the catalyst. The X-ray diffraction results for both catalysts showed the appearance of a wide band at an angle of 22° , which proves that the surface is amorphous.

Cellulose and glucose decomposition were carried out over the prepared catalyst. Pyridine sulfonic acid homogeneous catalyst needed only 6 h to decompose 98% of cellulose to glucose. RHAPSA@Dir needs 9 hours to decompose 55% of cellulose. About 86% of glucose was decomposed in 4 h over RHAPSA@Dir. RHAPSA@Ref needs 10 h to decompose 41% of cellulose and 4 h to decompose 80% of glucose. According to our results the catalytic activity of the catalysts used in the decomposition of cellulose and glucose was followed the sequence below:

Pyridine sulfonic acid > RHAPSA@Dir > RHAPSA@Ref