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Beginning of Computational Chemistry

In 1929, Dirac declared, “The underlying physical 
laws necessary for the mathematical theory of ...the 
whole of chemistry are thus completely know, and 
the difticulty is only that the exact application of
these laws leads to equations much too cornnlicated 
to be soluble.” : ظ 

آ م م ا ه ء



Ab initio molecular orbital methods 
Semiempirical molecular orbital methods 
Density functional method



SchrGdinger Equation

Wavê nction

(h2/2me؛^؛^)2
Z«e2/ria اة ةء

Hamiltonian
H =Za(-h2/2ma)Va2

+ميمبمبجة■
+ ة؛ة؛ e2/r؛؛

Contents
1. Variation Method
2. Hartree-Fock Self-Consistent Field Method



The Variation Method
The variation theorem

Consider a system whose Hamiltonian operator 
H is time independent and whose lowest-energy 
eigenvalue is E . If م is any normalized, well- 
behaved Unction that satis^es the boundary 
conditions of the problem, then

،d  ̂ > E م H*



Proof:
Expand ٠ in the basis set { ٩ }

٠ = 2k a k^k

{ak} are coef^cients
H Vk = Ek'Vk

where

^k ا a k|2 = E
ة - k ٩ a k ٩ Ej k̂j
2k ا a k|2 Ek > E 1

ا ٠ * H dt م
then

2Since is normalized, م * ا م  d? = 2kا a k



i. ٠ : trial Unction is used to evaluate the upper limit 
of ground state energy Ej

ii. ٠ = ground state wave Unction, ا ٠  H §  d^ = E

iii. optimize paramemters in ٠ by minimizing
H i  d^ / ا ٠* ٠  d^



Application to a particle in a box of infinite depth

Requirements for the trial wave function:
i. zero at boundary;
ii. smoothness ع  a maximum in the center. 

Trial wave function: ٠ = x (l- x)



/ dx = -(h2/8^2m ٠ H *م )/ ذ2)  ) d2(lx-x2)/dx2 dx
= h2/(4^2m) /  (x2 - Jx) dx 
= h2//(24rc2m)

ا م*م  dx = ا x2 (J-x)2 dx = J5/30

E  = 5h2/(4^2/m )  > h2/(8 m /)  = E



Variational Method

(1) Construct a wave Unction 9(c1,c2,»»»,cm)

(2) Calculate the energy of ٠:

ظ2>لءمممم م ٩ - م
i=1,2,***,m) so that E  is) }3 }*؟) Choose)

minimum



Example: one-dimensional harmonic oscillator

(1/2) m©2x2 = 2^2mv2x2Potential: V(x) = (1/2)

Trial wave Unction for the grهund state:
<̂ (x) = exp(-cx2)

j ٠* H ب dx = -(h2/8rc2m) ز exp(-cx2) d2[exp(-cx2)]/dx2 dx
+ 2^2mv2 j x2 exp(-2cx2) dx 

= (h2/4rc2m) (^c/8)1/2 + ^2mv2 (^/8c3)1/2 
j dx = ز exp(-2cx2) dx = (1/2(2/ع c-1/2

E  = W = (h2/8^2m)c + (^2/2)mv2/c



h2/87i2m  - (7T2/2)m v2 

= 27i2vm /h



To minimize w,
0 = dW/dc =

W = ( l / 2) hv



Extension of Variation Method

E2-----------------------  ٧
For a wave function ٠ which is orthogonal to 
the ground state wave function ٧ , i.e.

the r̂st excited state energy



آل<ا<ا>رءبمم

ا م ب م م ب ةا 2ت



٠ The trial wave function

a 1 ٧١؛ kبم ج = =

JdT(|)*\|/1 = |a1|2 = 0

= Jdx <بمم>ا / Jdx < ا>م<ا >
>

E



/بم2ءا2بمت2 / I + 2Cj c2 ا



Application to H2+

(j» =  c ٧ + c VJ/

w  = l(j)*#(j) dx/J(j)*(j) dx 
=  (C j2 //2 را ا  c1 c2 م2 ا ب  c 

/ (C |2 + 2cx c2 s + ر

w  (02 إ2 +  c1 c2 s + c22) = 02إ



Partial derivative with respect to c (5W/5c, = 0)

c2H12 + ؛ ^W (c  + S  c2) = c

Partial derivative with respect to c (5W/5c2 = 0)

W (S c i + c2) = c H 2 + C2H22

- W) c  + (H i - S  W) c2 = 0
S - ؛2  W) c, + ( H  - W) c, = 0



To have nontrivial solution:

0
م2 ب  - S  W

ج م2ب ب
Hn - W 
H12 - SW

For H2+, H11 H22; H12 < 0*112

11+H12) / (1+S)
bonding orbital

Ground State: E  = W, =
1)2^ / ( ٠ = (م+م +S)1/2

Anti-bonding orbital
1Excited State: Eاا-ءبم  = We



. 16eV,RQ= \ 3 2 A

J 9 e V , R e = \ . 0 6 A



Results: ه = ل . 

Exact: DQ = 2

1 eV = 23.0605 kcal / mol



Further Improvements
Optimization of 1s orbitals

Trial wave function: k3/2 TC'1/2 exp(-kr)
Eg = Wj(kR)

at each R, ch©©se k so that 5Wj/5k= 0 
Results: Dp = 2.36 eV, R = 1.06 A
Inclusi©n of other at©mic ©rbitals

Resutls: D = 2.73 eV, R = 1.06 A
V /  V /



2
b
b

aiixi + ai2X2 
a2ixi + a22x2

bia22-b2ai2iia22"ai2a2i) ^i 
iia22"ai2a2i) x2 = b2aii ia2i



Introducing determinant.

aiia22-ai2a21
ail ai2

a21 a22

a11 ai2
x  =

bi ai2

a21 a22 b2 a22

ai1 ai2
*2 =

ai1 bi

a21 a22 a21 b2



Our case: b̂  = b2 = 0, homogeneous
02x1. trivial solution: x  =

2. nontrivial solution:
a11 a12

0
a21 a22

n linear equations for n unknown variables

a11*1 + a12*2 + ... + a1n̂ n= 
b1
1 ه2م  + a22*2 + •.• + ب -= 
b2



>اوأهم

،3J3q/V\



لا لأ

uzv
Ulv

لا ... وألم+أ £٩ ■؛٢٧؟ لا و

£ةاا ... و+آ*جة ؟٩ و-آ'جة
ه1و ... 1+آت،ل£ !٩ آت-آ،1̂



11 21a ثمص1 ط1 1+1a a1n
21 22a a2,k-l b2 a2,k+1 ••• a2n

n1 an2 ••• ,بمد
 

.

an b? na k 1 anna

(J؛det(a



(a) travial case: x  = 0, k  = 1, 2, . . . ,  n

0 = (j؛b) nontravial case: det(a)

For a n-th order determinant.
n

det(aij) = ة  aik c lk

where, c  is called cofactor



Trial wave function ٠ is a variation function 
which is a combination of n linear independent 
Unctions { f ,  f ,  ... f} ,



Linear variationai theorem

{1.)W are nroots of Eq ك. .  (i) W ك W ك .
are energies ... 1 ك+En كE ك. . (ii) E ك E ك .

;ofeigenstates

then, W > E  W2 > E> ..., Wn > En



Molecular Orbital (MO):
c = م م   + c2 ٧2

(H n - W ) c  + (H 12-S W ) c2 = 0
S11=1

( H21 - SW ) c  + ( H22 - W ) c2 = 0
S22=1

Generally : ١٧؛ ٢  a set of atomic orbitals, basis set 
LCAO-MO م = ٩ ٧  + c2 ٧  + ...... + cn 9 n
linear combination of atomic orbitals

, n,2,
n

0'kZ ( Hik - SikW )c
k=

ikH k- d ا  ٧ *H Wk



The Born-Oppenheimer Approximation

Hamiitonian

H =  Z a(-h2/2ma)Va2 -  (h2/2me)EiVi2 
Si SaZae2/ri - م؛اةهة/لأ +

^e2/ri؛ i^ +؛

^r؛;r ^  = E  ^ ( r؛;H y (r



The Born-Oppenheimer Approximation:

(1) W i ; ra) = ¥el(ri;ra) ^N(r^

=ء2/2ممةدص- م(ن- (2)ب

^NN محة6 صمهإ(همء
Vei بم1سم = ^r i;r)؛e ̂بم1سم

ء Hn = 2 (3* + ج a (-h 2/2ma)Va)
N.n؛ + (U(ra) = ^ l (ra 

(HN(ra) VN(ra) = E  VN(ra



Assignment

Calculate the ground state energy and bond length of H2 
using the HyperChem with the 6-31G 
(Hint: Born-Oppenheimer Approximation)



e؛ecu؛Hydrogen Mo

The Pauli principle

two electrons cannot be in the same state.



Wave Unction:
<K1,2) = <Pa(1)<Pb(2) + ء] <Pa(2)<Pb(1) 

م(2,ل ) = <Pa(2>Pb(1) + اء <Pa(1)<Pb(2)
Since two wave functions that correspond to the same state 
can differ at most by a constant factor

ب(ل,2) = ء2 ب(2ل, )
j a ( 1 ) j b ( 2 )  +  2 ) ل ء1ه(2ج(1) =ء2ه(2ج(1) +ء2ء1ه(ج )

ء2ء1 =

ء1 = ء2

ء1 = ء2
 Therefore: ٩ = وء ±= 1

According to the Pauli principle؛



The Pauli principle (different version)

the wave function ofa system ofelectrons must 
be antisymmetric with respect to interchanging
ofany two electrons.

of H  : Slater Determinant م Wave function

«)1(،)2)ة(2) - (،2(«)2)ه(1)8(1]) v(1,2) = 1^/2! |ه(1(

<K1)a(1) <2)»(2)ب

2) ب(1)ء(1) (ه2)ء )
= 1/^2!



Energy: E

N1(1) (ئت+ملأ) ٠)!( + ؟ rم س م ب
dx1/ + <لآا |سقه(ا)ا e2/r،2قها(ت)ا

NN ١ + 2 f i + J = ل=ة,12
To minimize Ey under the costram ها2 tjd 'i

use Lagrange’s method:
L ■

= SL
E  -  2 £ [/dT, 1 - ما(1)ا  ]
=SEy -  4 £ /dTj 1) مب(1)بق )
= 4/dTi S^*(1)(Te+^eN)*(1)
+ ¥ 2 ) *بك1)مب رآكا ( ) e2/r12 1) ب(2)بة )
-  4 £ /d i j  1) مه(1)بم )

= 0



T +لمرآ2 (*مe2/r (2؛2 (م2) ] ٠٠) = ء ل(م) +  Vn ]

Average Hamiltonian

Hartree-Fock equation

( /+  j ) م = ء م 
1) ^ Vn(1) one electron operator +(بم1) = 
two electron Coulomb (م(e2/r12 2 (مب(Jdx2 2= (يم1

operator



 is the Hamiltonian of electron 1 in the absence (بم1
of electron 2;

 is the mean Coulomb repulsion exerted on (يمء1
electron 1 by 2;

8 is the energy of orbital م .

م  = ciVi + 2̂ :LCAO-MOء2

Multiple ٧  from the le f and then integrate
O jF  + c2F 2 = 8 (c  + S ٩)



Multiple ٧ from the le# and then integrate :



Secular Equation:

 م(=،ء+،،م،2)ا؛ئ+بم
٠, = (ءبم1+س / \2+/(مح)ل/2

bonding orbital:

antibonding orbital: £  = (Fn-F12) /
f 2 = (V1-y2)/V 2(/-S)1'2



Molecular Orbital Conf؟gurations of 
Homo nuclear Diatomic Molecules H2, Li2, O, He2, etc

Moecule Bond order De/eV
H2+ م 2.79
H2 1 4.75 The more the
He2+ م 1-08 Bond Order is
He2 0 0.0009 the stronger
Li2 1 1.07 the chemical
Be2 0 0.10 bond is.
C2 2 .36

N,+ م 8.85
N2 3 9 91
O2+ 2م 6.78
O, 2 521



خمتن؛زم

ص ■°أمو

٠٣
010.ه ي ره • 0 0 €rl متء0أءلآ0مآ



ءت؛م ررلإ؛م

ت ت;لمن-لآأ

ي/ءك م°“'ح ة تك- ت
ء5 ■* مءئا ا

م — ••- -

Bond Order: 
one-half the difference 
between the number of 
bonding and antibonding 
electrons



<ا>م)ه(1)

(2( » <ا>م(
صم©،هل(رل©® م)



هرل(,ب(رل

<|>(2 ) a ( 2)
/2 [لب(1) ه2(2) - \1 =

w(l,2)= 1/V2



E يء  = /d t j

٧ (T1+ V1N+T2+ V2N+ V12+ Vnn) *2ي^d^1d/ =
لأ(1>) ها )ت+ا | = <اب(1?
+تمالإإ(2>) ا^ آ + <إب(2)إ

|2)2* (1ا (ام1) ب2<2>) )V)ح> +
Vnn + (|1 | (اه1) >)مب Vi2ارم(2) (إب> -

ا+لأ (ابا1>) آ = ة؛ <ب(،1)ا
+ <اب(1) ب2(2)ا Vi2 | (اب1) (خ2>)

2>) + Vnn(|1)2 | (اب1) (خ Vi2اه(2) ب> -

12 — K12 + VNNا=إة,2 ق + ر =



-بم(1)
-بم(ت)

A ، z <Aj« 
( ب ء ءم12 ء؛  ( 
(2)6 2 مح)أ/ل-ا



Particle One: /(l) + J2{ 1) 
Particle Two: 1{2) + (2)رمم

= ص - (h 2/2m)Vj2-
ل(أد) ا(ة) - ل(م) /ءه2 ء*اب

م1ي 0(1> ء ب )  <j>,<l)/dr2 ت(*,ءم



]ء ب1(ل)
ء2 ه2

Hartree-Fock Equation:

م(1سم1(1) )ب [بم1+)ر2(1-
)ب2 م(2] )ب [أل2+)ع(2-

F(1) = 1بم)+ J (1 ) -  K (1) Fock operator for 1 
F(2) = 2بم)+ J (2 ) -  K (2) Fock operator for 2



1. Many-Body Wave Function is approximated 
by Slater Determinant

2. Hartree-Fock Equation

F  Fock operator
the ith إ)ا)  Hartree-Fock orbital
the energy of the i ؛8 th  Hartree-F©ck orbital



(3. Roothaan Method (introduction of Basis Unctions
LCAO-MO ٧ z k cki = ؛ج 

is a set of atomic orbitals (or basis Unctions){ ي }

4. Hartree-Fock-Roothaan equation
0=cji (م؛ر-إء^ر)رق

ر> > ي إ j>ري s <Vi| F ’ | Vj؟F

5. Solve the Hartree-Fock-Roothaan equation
self-consistently



',10.8,



Assignment one
8.40, ل0.5,ل0.6,ل0.7

11.37, 13.37



1. At the Hartree-Fock Level there are two possible
C©ulomb integrals c©ntributing the energy between 
two electrons i  and j  Coulomb integrals j .  and

ى

exchange integral K j;
ى

2. For two electrons with di^erent spins, there is only 
Coulomb integral j . ;

ى

3. For two electrons with the same spins, both 
Coulomb and exchange integrals exist.



4. Total Hartree-Fock energy consists of the 
contributions from one-electron integraلs f  and 
two-eلectron Coulomb integrals j  and exchange

ى

integrals K ;
ى

5. At the Hartree-Fock Level there are two possible 
Coulomb potentials (٠/* operators) between two 
electrons i and j: Coulomb operator and exchange 
operator; J(i) is the Coulomb potential (operator) 
that i feels from j, and ^  is the exchange (i)؛
potential (operator) that that ifeels from j.



average Hamiltonian) consists 6 (م/آ. Fock operator 
of one-electron operators ^i) and Coulomb

(i) and exchange operators ^ ( i،؟) operators



N  electrons spin up and N  electrons spin d©wn. 

Fock matrix for an electron 1a with spin up:

F(1a) = f(1a) + زة [ J a(1a) -  K “(1a) ل + رة  J،(1a)
j = 1a,Na ل = 1ج̂,ء

:Fock matrix for an electron 1 with spin down

J(1)؛| a م1م = (ءك1و) + رق [ (ءل1م - م1هم ] + زة )
j ' 1،.^، j=1a.̂ o



J U )^ - (h 2/2m،)V12- ^ Z N/r1N 
لا2 زب“(2) مdr2 j/̂  (1(2) ؟آ ) 

م رب (e2/r12 (2 بم2) بم“(1) (و1) ذ بم“(1) /ي

( ““K - م ) “زة“ ءرة+مبم (+مبم1ا2) ٤“ زة = Energy
Ji,“p ة“ ءرة + ( ءءر؛ع - JijPP ) (1/2) ٤١“ ءوة +

NN■■ V

=ل1بم =ز1بم



ءرق ر ء +<ja| f بم“>
جa|̂ (1(؛2>) م2ر| ( ب Jij = م = (
م2>) م2|) (مء1) |م ب ^ ء j ء (

م(2>) م1) |ب م(2|) ( م5 ء <ب Jij ء ا

Close subshell case: ( Na= N =  n/2 )

بم1) = ا(ق ) + £j=i,n/2 [ 2^(1) — ^ (1 )  ]

2/ /fjj + 2 ) 2 =ل1م ة=1م/2 =لة1م ĵ K j ) + *NNEnergy



The Condon-Slater Rules

< ,ا)م(،2)مم...)ضم) | بم1ر | (ءب1)بمص(3..)ضه م( )>
= < i (1 )  | <( ص | (ءه1>) < مه)صه..)ضه) | (بممه3...)شه
ب(.ل I ^1) I (= <ايمب )>

i f  b=f c=g, d=h; 0, otherwise

(<1(<*)2*)g(3)...*h(n^،) اh(1Wb(2)i(3)...Wn) I ٧٧» 
(<2)> < ^♦3♦••.)d(n) 1 ♦g(3)--.+h(n1 ♦ رم ♦م b(2) 1 V12♦ (مب> = 

(<2)i♦ (ا♦،) 1) *b(2) I ,̂2 I)ه> =
i f  c=g, d=h; 0, otherwise



L^MO
the lowest unoccupied molecular orbital ع

the highest occupied molecular orbital ع --ا

Koopman’s Theorem

The energy required to remove an electron from a 
closed-shell atom or molecules is well approximated 
by minus the orbital energy 8 of the AO or MO ^om 
which the electron is removed.



Title

Molecule Specification 
(in Cartesian coordinates



water energy

o  لم77 00.0 0.464- 
H -0.464 1.137 0.0 
H 0.441 -0.143 0.0



■٠ V لادااء|درا ٣ د  V/A اس،را^د را ٢

ه0) ه(مآل)♦ م = م ج
the orbital exponent
د س — ا د ١ _حم. . * .  A د س س آ .*% is used i^

Gaussian type Unctions 

(primitive Gaussian Unction)
م,،هبممح ب = ة

(contracted Gaussian-type Unction, CGTF) 
u = {^k} p = {nlm}



.م..مج ! ؟.-’ 4.-.3ل؟’ .31G’ 6-.31.G-6*.’ .6.-3؟ ؟ 3؟.! :3-S^O
accuracy ه tyلcomplex 

Minimal basis set: one STO for each atomic orbital (AO)

STO-3G: 3 GTFs for each atomic orbital
3-21G: 3 GTFs for each inner shell AO

2 CGTFs (w/ 2 & 1 GTFs) for each valence AO
6-31G: 6 GTFs for each inner shell AO

2 CGTFs (w/ 3 & 1 GTFs) for each valence AO
6-31G*: adds a set of d orbitals to atoms in 2nd & 3rd rows
6-31G**: adds a set of d orbitals to atoms in 2nd & 3rd rows 

Unctions to hydrogen Polarization؛ and a set of p
Function



Diffuse Basis Sets:
For excited states and in anions where electronic density 
is more spread out, additional basis functions are needed.

Diffuse functions to 6-31G basis set as follows:
6-31G* - adds a set of dif^se s & p orbitals to atoms

in 1st & 2nd rows (Li - Cl).
6-31G** - adds a set of diffuse s and p orbitals to atoms

in 1st & 2nd rows (Li- Cl) and a set of dif^se 
s Unctions to H

Diffuse functions + polarisation functions:
6-31+G*, 6-31++G*, 6-31+G** and 6-31++G** basis sets.

Double-zeta (DZ) basis set:
two STO for each AO



(10s4p) —> [3s2p]

,i=x,y) ة١١؛

1GTF

1CGTF 1CGTF 1CGTF
(s) (p) (p)



2sIs

6GTFs 3GTFs

1CGTF 1CGTF
(s) (s)



One STO for each inner-shell and
valence-shell AO of each atom

example: C2H2 (2S1P/1S)
C: 1S, 2S, 2Px,2Py,2Pz 
H: 1S

tota! 12 STOs as Basis set 

Double-Zeta (DZ) basis set:

two STOs for each and
valence-shell AO of each atom

example: C2H2 (4S2P/2S)
C: two 1S, two 2S,

two 2Px, two 2Py,two 2Pz 
H: two 1S (STOs) 

total 24 STOs as Basis set



Two STOs for each inner-shell and valence-shell AO
One STO for each inner-shell AO

Double-zeta plus polarization set(DZ+P, or DZP)

Additional STO w/l quantum number larger 
of the valence - shell إ than the د

* (2Px,2P^,2P،)toH

Five 3d Aos to Li - Ne , Na -Ar ٠

٠  C2Hs O Si H3 :

(6s4p1d/4s2p1d/2s1p)٧ ب ٧
Si C,O H



Assignment two: Calculate the structure, ground 
state energy, molecular orbital energies, and 
vibrational modes and frequencies of a water 
molecule using Hartree-Fock method with 
3-21G basis set.



Ab Initio Moiecuiar Orbitai Caicuiation: H O
(using HyperChem)

1. L-Click on (click on left button of Mouse) “Statup”, and seاect and 
L-Click on “Program/Hyperchem”.

2. Select “Build’’ and turn on “Explicit Hydrogens”.
3. Select “Display” and make sure that “Show Hydrogens” is on; L-Click 

on “Rendering” and double L-Click “Spheres”.
4. Double L-Click on “Draw” tool box and double L-Click on “O”.
5. Move the cursor to the workspace, and L-Click & release.
6. L-Click on “Magnî /Shrink” tool box, move the cursor to the 

workspace; L-press and move the cursor inward to reduce the size of 
oxygen atom.

7. Double L-Click on “Draw” tool box, and double L-Click on “H”; Move 
the cursor close to oxygen atom and L-Click & release. A hydrogen 
atom appears. Draw second hydrogen atom using the same procedure.



8. L-Click on “Setup” & select “Ab Initio”; double L-Click on 3-21G; 
then L-Click on “Option”, select “UHF”, and set “Charge” to 0 and 
“Multiplicity” to 1.

9. L-Click “Compute”, and select “Geometry Optimization”, and L-Click 
on “OK”; repeat the step till “Conv=YES” appears in the bottom bar. 
Record the energy.

10.L-Click “Compute” and L-Click “Orbitals”; select a energy level, 
record the energy of each molecular orbitals (MO), and L-Click “OK” 
to observe the contour plots of the orbitals.

11 .L-Click “Compute” and select “Vibrations”.
12.Make sure that “Rendering/Sphere” is on; L-Click “Compute” and 

select “Vibrational Spectrum”. Note that frequencies of different 
vibrational modes.

13.Turn on “Animate vibrations”, select one of the three modes, and 
L-Click “OK”. Water molecule begins to vibrate. To suspend the 
animation, L-Click on “Cancel”





 ؛Vi(l = 1) ي2(2)
f2 = ي1(2) ي2(1)

c2 f2 + م = ٩ ؛
0H1 2 -SWH1 1 -W

H  - SW H22 - W

H11 = H22 = <^1(1) ي2(2|)ج(1) ي2(2)ح  
#12 = #21 = < م(1) م(2|)ج(2) ي2(1)ح  
S = < ي1(1) ^2(2)يا1(2) ي2(1)ح  [ = S  ]

The Heitler-London ground-state wave Unction 

«Vi(1) ^ (2 ) + Vi(2) V2(1)W2(1+^1/2} [a(1)P(2)-a(2)P(1)]/V2



2LCAO-MO wave function for H

يVl(2) + [(2)2] [V2(1) + (ي!(1]
2 )2^  (1) 2 ا(1) ^1(2) + ي1(1) ^2(2) + ي2(1) ي1(2) + ما ¥ )

H + HH HH HH - H +

VB wave function for H2

ي1(1)^2(2) + ^2(1)^1(2)
H H H H



At لarge distance, the system becomes
H ............ H

MO: 50% H ............ H
50% H+............ H-

VB: 100% H ............ H

The VB is computationally expensive and requires 
chemical intuition in implementation.

The Generalized valence-bond (GVB) method is a 
variational method, and thus com putational feasible 
(Wiliam A. Goddard III)



*©'
ل+(م

R

R

ي)+ا

م©ا
— H 22 — 2 ) 2 ^ ( 1) ج ) | H \ ^ 1( 1) صآ2(2)ر

— H 21 — ( ( 1) 2 ج(1)يم(2)بما ^1(م

ج(1)مآ2(2)ا ^1(م2(1)ر  [— S  2 ]

The Heitler-London ground-state wave function

1)2 !ط(1)صأ2(2) + م(م2(1]) را  + S) مم(2)م(ا( ممإ(ا)م(2- )] /V2





Electron Correlation: avoiding each other

Two reasons of the instantaneous correlation:
(1) Pauli Exclusion Principle (HF includes the effect)
(2) Coulomb repulsion (not included in the HF)

Beyond the Hartree-Fock
Con^guration Interaction (CI)*
Perturbation theory*
Coupled Cluster Method 
Density functional theory
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H  = 0 بم0 + بم
^ (0)(1,2) = F](1) F2(2)
م F](1) = E] F](1) °ب

E n بمإم/مح2- =   = 1, 2, 3, ...
E = -2 م ص/مح2ب  n  = 1, 2, 3, ...
Ground state wave Unction
م(1,2) = (1 ا /nm)(2/a)3/2exp(-2r1/a) * (1A\}l2)(2/a() 3/2exp(-2rI/a) 

E0) = -  4e2/a0

E(1) = < م1,2|) ما|سم0)(1,2>) = بم/محمح )
E® E ^  + E(1) = -108.8 + 34.0 = -74.8 (eV) 
[compared with exp. -79.0 eV]



Nondegenerate Perturbation Theory 
(for Non-Degenerate Energy Levels)

H = H +  H
H0yn(0)=En(0) y n(0)
y n(0) is an eigenstate for unperturbed system 
H  is small compared with H



Intr©ducing a parameter X

H O  = H0 + XH’
H(X)^n(X)=^n(X)^n(X)
Vn(X) = v n(0) + X y n(1) + X2 y n(2) + ... + Xk y n(k) +

. + Xk E (k) + .
n n n n

0), مم(„ة) = بم > + X مبم> + X2 مبم> + ..

X = 1, the original Hamiltonian

٧™ = Vn(0) + Vn(1) + Vn(2) + ••• + v„(k) + •••
E  = Ef>  + E„(1) + E ,(2) + •.. + E  (k) + ...

Where, < y n(0) y n(j) > = 0, j=1,2,...,k,...



E„<°> v n>°< = ح>°< 
°<) ٧ °<,) ving for E؛^o

HV„(1> + H  v n<°> = En(°> y n<» + E,(1V„(>°
o،ving for E^ ٠١٠, >مءرم

°<)„H ’ v n(1> = E/°> v n<2> + E,(1V„(1> + E,(2V + )مو „ب
<2'ving for E  (2>,vn؛so ع



The ^rst order:

Multiplied v m(0) from the le# and integrate,
ي0) 1>  H 1 Vn(1) > + < 1 (0)صي H 1 n̂(0) > = < m̂(0)|̂ n(1) >En(0) + En(̂ ا 
1), صي(0)يا >)> [Em(0)-  0) بم(0)ل + < ظ ) I H'l 0)ه ) > = En(” ا
For m = n, En(1) = < ٧٠(0) ا H f0) ا ٧٠ ) > Eq.(1)
For m ص n, <vm(0)|%(1) > = < ح(0) ا  H'l vn(0)> / [Ê (0)-  Em(0)] 
If we expand v n(1) = ة  cnm ^ m(0),
cnm = < 0)ئا ) I H I رما0) > / [إبم(0)- ربم0)ل  for m ص n;

2 ه(1) =  m < خ(0) ا  H'l 0)ه ) > / En(0)-  Em(0)] 0)خ) Eq(2)



The second order:

<Vm(0)|H°IVn(2) > + < Vm(0)lH'IVn(1) > = < Vm(0)IVn<2) 
>En(0) + <V m<0)IVn(1)>En(1)+ En(1)Smn

Set m = n, we have



Discussion: (Text Book: page 522-527)
a. Eq.(2) shows that the effect of the perturbation 

on the wave Unction (0) is to mix in 
contributions from the other zero-th order states 
y m (0) m^n. Because of the factor 1/(En(0)-Em(0)), 
the most important contributions to the y n (1) 
come from the states nearest in energy to state n.

b. To evaluate the ^rst-order correction in energy, 
we need only to evaluate a single integral H ^ ;  
to evaluate the second-order energy correction, 
we must evalute the matrix elements ^betw een  
the n-th and all other states m.

c. The summation in Eq.(2), (3) is over all the states, 
not the energy levels.

nn



Moller-Plesset (MP) Perturbation Theory

The MP unperturbed Hamiltonian H0

ح) م = ة ص
where F(m) is the Fock operator for electron m. 
And thus, the perturbation H

H  = H - H

Therefore, the unperturbed wave function is 
simply the Hartree-Fock wave Unction . .

Ab initio methods: MP2, MP4



Example One:
Consider the one-particle, one-dimensional system 
with potential-energy function

V= b for L/4 < x  <3L/4,
V = 0 for 0 < x  <L/4 & 3L/4 < x  <L  
and V = oo elsewhere. Assume that the magnitude 
of b is small, and can be treated as a perturbation. 
Find the first-order energy correction for the ground 
and ^rst excited states. The unperturbed wave 
Unctions of the ground and ^rst excited states are 
Wj = (2/L)1'2 sin(nx/L) and W2 = (2/L)m sin(2nx/L), 
respectively.



Example Two:
As the tirst step of the Moller-Plesset perturbation 
theory, Hartree-Fock method gives the zeroth-order 
energy. Is the above statement correct?

Example Three:
Show that, for any perturbation H Ej(0) + 1)بم) > Ex 
where 0)بم) and 1)بم) are the zero-th order energy 
and the first order energy correction, and E  is the 
ground state energy of the full Hamiltonian H0 + H ’.

Example Four:
Calculate the bond orders of LL and Lî +.



Ground State Excited State ation Geometry؛CPU Time Corre

( * (CH3NH2,6-31G

Size Consistent

HFSCF V X 1 0 OK V

DFT V X ~1 V V

CTS X V <10 OK X

CTSD V V 17 80-90% 

(ectrons20؛ e)

V X

CTSDTQ V V arge؛ very 98-99% V X

MP2 V X 1.5 85-95%

(DZ+P)

V V

MP4 V X 5.8 >90% V V

CCD V X arge؛ >90% V V

CCSDT V X arge؛ very ~100% V V



Statistical Mechanics

Content:
Ensembles and Their Distributions 
Quantum Statistics 
Canonical Partition Function 
Non-Ideal Gas

References:
1. Grasser & Richards, “An Introduction to 

Statistical Thermodynamcis”
2. Atkins, “Physicai Chemistry”



Ensembles and Their Distributions

State Functions

The value of a state Unction depends only on the 
current state of the system. In other words, a state 
Unction is some Unction of the state of the system.



E, N, T, ٧, p

State Functions:
E, N  T, V, P, ......

When a system reaches its equilibrium, its state 
Unctions E, N, T, V, Pand othersno longer vary.



Ensemble

An ensemble is a collection of systems.

A Thought Experiment to construct an ensemble

To set up an ensemble, we take a closed system 
of speci^c volume, composition, and temperature, 
and then, replicate it A times. We have A such 
systems. The collection of these systems is an 
ensemble. The systems in an ensemble may or 
may not exchange energy, molecules or atoms.





Micro canonical Ensemble





Canonical Ensemble





Grant Canonical Ensemble



Microcanonical Ensemble: N  V E are common; 
Canonical Ensemble: N  V T are common; 
Grand Canonical Ensemble: U V آ are common.

Microcanonical System: N  E  are fixed; 
Canonical System: N is £xed, but Evaries;
Grand Canonical System: N  Evary.



Example

What kind of system is each of the following 
systems: (1) an isolated molecular system;
(2) an equilibrium system enclosed by a heat 
conducting wall; (3) a pond; (4) a system 
surrounded by a rigid and insulating material.



P rinc ip le  o f E q u a l A P rio ri P robab ilities

Probabilities of all accessible states of an isolated 
system are equal.

For instance, four molecules in a three-level system: 
the following two conformations have the same 
probability.



Configurations and Weights

Imagine that an ensemble contains total A  
systems
among which a  systems with energy E  and N  
molecules, a  systems with energy E and N  
molecules, a  systems with energy E  and N  
molecules, with energy a , and so on. The speci^c 
distribution of systems in the ensemble is called 
configuration of the system, denoted as



A configuration { a ,  a ,  a3, ......} can be achieved
in Wdifferent ways, where Wis called the weight 
of the contiguration. And Wcan be evaluated as 
follows,

W =A! /  (ax\ a ! a !  ...)

Distribution of a Microcanonicai Ensembie

State 1 2 3 ... k .
Energy E E E ... E
Occupation a  a  a  ••• a



Constraint أ  a  = A 

W= A! / a تج!ةمح 

To maximize ln Sunder the constraint, we 
construct a Lagrangian

L = ln W + a X i  a

Thus,
0 = dL/da{ = ^ln W/dai + a



Utilizing the Stirling’s approximation,
ln x! = x ln x - x
dln W/oai = - ln a/A = - a,

the probability of a system being found in state i

= constant

or, in another word, the probabilities ofall states 
with the same energy are equal.



Distribution of a Canonical Ensemble

State 1 2 3 س k
Energy E  E  E E س 
Occupation a  a  a ak س 

Constraints: زة a  = A
٤١ a؛ E ء = 

where, ء  is the total energy in the ensemble 
W= A! / ٩! a ! a س!



To maximize lnW  under the above constraints, 
construct a Lagrangian

L = lnW  + a آ   a - م ة  a  E
هوسم = 0  = ^ln Wdai + a  - /3E{ 

ln a/A = a  - pE{

the probability of a system being found in state i  
with the energy E  ,

Pj = a/A  = exp(a -pE)



The above formula is the canonical distribution 
of a system. Different from the Boltzmann 
distribution of independent molecules, the 
canonical distribution applies to an entire system 
as well as individual molecule. The molecules in 
this system can be independent of each other, or 
interact among themselves. Thus, the canonical 
distribution is more general than the Boltzmann 
distribution. (note, in the literature the canonical 
distribution and the Boltzmann distribution are 
sometimes interchangeable).



Distribution of a Grand
Canonical Ensemble

State 1 2 3 ... k
Energy E  E  E  •••
Mol. No. N  N  N  ... Nk
Occupation ax a  a  ••• a



Constraints: ٤؛  a  = A
ة  a  E ع = 

مة مب ب  = N
where, ع  and N are the total energy and total 
number of molecules in the ensemble, 
respectively.

w =  A !/ بم3 أ ب!



To maximize lnW  under the above constraints,
construct a Lagrangian

a  N ه - E ؛a م = L ٤؛ a؛ - ء lnW + a 
E{ - y Nم - dln Wdai + a = 0 = هوسم

E{ - y Nم - ln a/A = a

the probability of a system being found in state i 
with the energy E  and the number of particles N,

(p  = a-JA = exp(a -pEi -p, N



The above formula describes the distribution of a 
grand canonical system, and is called the grand 
canonical distribution. When N  is ^xed, the above 
distribution becomes the canonical distribution. 
Thus, the grand canonical distribution is most 
general.



Quantum Statistics
Quantum Particle:

Fermion (S = 1/2, 3/2, 5/2, ...)
e.g. electron, proton, neutron, 3He nuclei
Boson (S = 0, 1, 2, ...)
e.g. deuteron, photon, phonon, 4He nuclei

Pauli Exclusion Principle:
Two identical fermions can not occupy the same 
state at the same time.

Question: what is the average number p arties or 
occupation of a quantum state?



Fermi-Dirac Statistics

System: a fermion’s state with an 
energy s

n
s

exp[-P(e-^)]

n = 0 
0

exp(0)

occupation
energy
probability



There are only two states because of the Pauli 
exclusion principle.

Thus, the average occupation of the quantum 
state s,

me

r-H+)(٠لهج

X exp)[—t ( s  — م])ا
١[exp(0)+e: .-م(ك-ص]ا

s

-ء])} ؛p(0+)م
exp[— t(s ء —م])

xe+/
اءت d - t أ(ك—م])ا



Therefore, the average occupation number n(8) 
of a fermion state whose energy is 8,

n(8) = 1 / {exp[P(s-^)J + 1}

٣ is the chemical potential. When 8 = ٣, n = 1/2 
For instance, distribution of electrons



System: a boson’s state with an energy ج

Occupation of the system may be 0, 1, 2, 3, ..., 
and correspondingly, the energy may be 0, ج, 2ج , 
 Therefore, the average occupation of the .... ,ج3
boson’s state,



{0exp(0)+lex] - t o {8 - m). + 2exf>[- 2to xpe
٢٠٦+

ث

-  3 to(8 - m). +••ا•

1exp(o)+ex] - t o (8 - m). + exp[ 2ام ء-خ )]+expا- 8 -- m). +•"
n(8

exp[- to(8-m)]
{l-ex - to\ 8 - m)]}

Therefore, the average occupation number n(s) of 
a boson state whose energy is 8,

n(s) = 1 / {exp[P(s-M)j - 1}



the chemical potential U must less than or equal 
to the ground state energy of a boson, i.e. U < s0, 
where s0 is the ground state energy of a boson. 
This is because that otherwise there is a negative 
occupation which is not physical. When U = s0, 
n(s) >  o , i.e., the occupation number is a 
macroscopic number. This phenomena is called 
Bose-Einstein Condensation!

^He superluid: when T < Tc = 2.17K, ^He ^uid 
^ows with no viscosity.



When the temperature T is high enough or the 
density is very dilute, n(s) becomes very small, 
i.e. n(s) << 1. In another word, exp[P(s-^)] >> 1. 
Neglecting +1 or -1 in the denominators, both 
Fermi-Dirac and Bose-Einstein Statistics become

n(s) = exp[-p(s-^)j

The Boltzmann distribution!



Canonical Partition Function
the canonical distribution

p  = exp(■-a-/Ej)

Sum over all the states, p =  /. Thus,

p  = exp(-وم ) / Q

where, Q = exp(-/E) is called the canonical 
partition fmction.



An interpretation ofthe partition function

If we set the ground state energy E)to zero,

As T *  0, Q *  the number of ground state,
usually 1;

As T * ٠ , Q *  the total number of states,
usually ٠٠.



Total energy of a state io f  the system,

N)(؛ج1) + (؛ج2) + (؛ج3) + (؛ج4) +...+ 8(؛ = E

-... (4)i3؟) - p2(؛) - Pe؛)i(1) - Ps؟Q = z ,  exp[-P
1(N؛)£p -

H [{(1؛(2}]) ... i ®xp [-Ps)^£؛]-H i ®xp =
i(N}])]-^؟Zi ®xp}

= „N



Q = qN/N!

for distinguishable molecules: 

for indistinguishable molecules:



Fundamental Thermodynamic Relationships 

Relation between energy and partition function

The Relation between entropy S  andpartition  
function Q

The Helmholtz energy

A - A(0) = -kTln Q



The Pressure
p  = ~(dA/dV)T

p  = kT(d  
lnQ/dV)T 

The Enthalpy

H -H (0) = -(0lnQ/dP)v + kTV(dlnQ /dV)j

The Gibbs energy

G - G(0) = - kT ln  Q + kTV(d
lnQ/dV)T



Non-Ideal Gas

Now let’s derive the equation of state for real
gases.

Consider a real gas with ^m onatom ic molecules 
in a volume V Assuming the temperature is T 
and the mass of each molecule is m. So the 
canonical partition function Qcan be expressed
as

kT) / ؛exp(-E ؛ة = Q
where the sum is over all possible state i  and Ej

.is the energy of state i



In the classical limit, Q may be expressed as

exp(-H/ kT) d؛ س p  ... dpN d r 1>?=)) ل..ر/N!*3N 

p + زك V(r,؛r)؛ d ^here) رة 2 , H = (!/2m

Q =  (1/N!) (2*mkT / h2)3N/2 ZN

[ note: for ideal gas, Z N=  
Q = (1/N!) (2nm kT / h2)3N/2



UIN ٠٠٠ dr1 { 1) ' ) " 1 ا + [ exp("̂ i>j V(r i,Ij }
UrN .٠ dr1 1 ا - (VN + J...J [ exp(-^^j V(ri,rj) / kT

٦، X # ء ٢٢، 1 ،ه ٦ ■■ - م ٢

NZ

VN + (1/2) VN-2 N(N-1> JJ [ exp(-V(r„r2) / kT) - 1 ] dr. dr^ «
dr}̂ ؛» VN { 1 - (1/2V2) N2 JJ [ 1 - exp(- V(r^r^) / kT) ] dr

{ = VN { 1 - B N2 / V



p / kT = N / V + (N / V)2 B 
= n + B n2

Comparison to the Virial Equation of State

The equation of state for a real gas

P / kT = n + B2(T) n2 + B3(T) n3 + ...

This is the virial equation of state, and the 
quantities B2(T), B3(T ),... are called the 
second, third, ... viriai coef^cients.



drxdr2



Thus,



r ص 12 < a

0 r 12 > a
U(r 2̂) =

B2(T) = ( 2 ا/ ) f °  4^r2
= 2^a3/3



اآ م<إ
٠ < r j2 <

r., > ٨٠

ص
-ء

0

U(ri2
٨٠

= (1/2) £٠ 4مءل
ة- -ت )1( ،«r (2مح/3[ )ءمح -1]) )1



C. LENNARD-JONES POTENTIAL

U(r) = 4s [ (a/r)12 - (a/r)6 ]

}ا } 4مع  dr
12 a

r

a
r

[—4s 
kT

^2(T) = ( 1 } ي ٠ م  - exp{(

x = a/r, T* = kT / sWith

f ر0مم { 1 =   - exp[(-4/T*) ( x12 - x6 )] } x2 dx2B
2^ a



Maxwell’s Demon (1867)

م

F igu re  5



In his talk “Experimentally Verifiable Molecular Phenomena that 
Contradict Ordinary Thermodynamics”,... Smoluchowski showed 
That one could observe violations of almost all the usual statements 
Of the second law by dealing with sufficiently small systems. ... 
the increase of entropy... The one statement that could be upheld... 
was the impossibility of perpetual motion of the second kind. No 
device could be ever made that would use the existing fluctuations 
to convert heat completely into work on a macroscopic scale ... 
subject to the same chance Actuations....

H.S.ص & A.F. Rex, “Maxwell’s Demon”



To save the second law, a measure of where-about of the 
moاecule produces at least entropy > k ln2

ه
> ه



h ٧ >> k T

A Temporary Resolution !!!???



Thought experiment i l l u s t r a t i n g  P o p p e r ' s  r e f u 
tation of S z i l a r d ' s  a s s i g n m e n t  o f  an en tro py  
equivalent to physical i n f o ^ n a t i o n .

12

Countef-clockwise rotation always !!!
A Perpetual Machine of second kind ???



f=a

ء

٠٠ م

n̂zas geê

"I * h
Fig. ٧ . A one-molecule M axwell’s demon aplaratus.

Demon’s memory



To complete thermodynamic c؛>'cle. 
Demon has to erase its memory !!!

Memory eraser needs minimal 
Entropy production of ١٤ ln2 
(R. Landauer, 1961)



F eynm an’s L ecture N otes



Feynman’s Ratehet and 
(1961) Pawl System

rotation آ؛،آل T.=T2, no



A honeybee stinger

N
potential

coordinate-Hذ



A Simplest س م س ا ا > demon

door



Average over 200 trajectories
No temperature difference! أ أ
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Maxwell’s demon 

No. of particles: 60 

Threshold energy: 20



Our simple demon

No. of particles: 60

The door’s moment of inertia: 0.2

Force constant ofthe string: 10



F eynm an’s L ecture N otes 

rate ▲

ح
Mechanical Rcctlficr



Feynman’s Ratchet and 
Pawl System (1961)

Tj=T2, no net rotation
Tj > T2, counter-clockwise rotation
T. > T2, clockwise rotation



A two-chamber design: an analogy to 
Feynman’s Ratchet and Pawl





radian



Feynman’s ratchet-pawl system



Feynman’s Ratchet and Pawl
expectation value (averaged over 40 trajs) 
standard deviation

simulation time (arbitrary unit)

ra
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Micro-reversibility

Pawl © Pawl ©

a transition state



Determination of temperature at
equilibrium

•  Histogram for gas molecules 500 - • Histogram for the ratchet
Fitted to Boltzmann distribution Fitted to Boltzmann distribution
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Simulation result؟.

simulation time (arbitrary unit) simulation time (arbitrary unit)

The ratchet moves when the لeg is cooled down.
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di
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Angular velocity versus Tl - TB
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Density of distribution in the phase space

Sq1 ...SqfSpj ... Spf و(ء1...س..محي = SN 
qf,p̂)؛  ̂ p ̂؛where p(q1 ̂ qf,p]^pf) is fine-grained density at (q

0 = Liouville’s Theorem: dp/dt 

q{,p1̂ pf) :؛^Coarse-grained density over Sq1 ...Sqf §p1 ... Spf at (q

Spf ... ؛dqf dp1 ... dpf / Sq1 ...Sqf Sp... ؛P = J..J p(q1̂ qf,p1̂ pf) dq

Boltzmann’s H:
H = J..J P log P dq1 ...dqf dp1 ... dpf



Boltzmann’s H-Theorem

0 = d(j...j p log p dq .̂..dqf dp .̂..dpf)/dt 

0 < Q = p log p - p log P - p + P

At ti, pi = P1 
Hj= j..J p1 log p1 dq1 ...dq؛ dp1 ... dp؛

P2 ٠ At t2, p2
H2= j...j P2 log P2 dq1 ...dqf dp1 ... dpf

0 < H1-H2
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RevivalHibernationOscillation



D.J. Evans et al.: 
Prob(dS)/Prob(-dS) 

= Exp(dS)

Bath

Energy LeakageذReduced
System



, Translational Kinetic Energy

سسما
Rotational Kinetic Energy

) هع0 هه0 600 800 100ه
Time (ps)
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Inorganic Chemistry

Bonding and Coordination Chemistry

Books to follow 
I n o r g a n i c  C h e m i s t r y  b y  S h r i v e r  &  A t k i n s  

P h y s i c a l  C h e m i s t r y :  A t k i n s

C. R. Raj
C-110, Department of Chemistry



Bonding in s,p,d systems: Molecular orbitals of diatomics, 
d-orbital splitting in crystal field (Oh, Td).
Oxidation reduction: Metal Oxidation states, redox 
potential, diagrammatic presentation of potential data. 

Chemistry of Metals: Coordination compounds (Ligands & 

Chelate effect), Metal carbonyls -  preparation stability and 

application.

Wilkinson’s catalyst -  alkene hydrogenation 
Hemoglobin, myoglobin & oxygen transport



CHEMICAL BONDING: 
A QUANTUM LOOK



“These ك جلأ(يءموآءئاء ء ءأ  is higher.’



Failure of Classical Mechanics
• Total energy, E = V mv2 + V(x)
• p = mv ( p = momentum )
• E = p2/2m + V(x) ......... . . Eq.1



• Newton’s second law is a relation 
between the acceleration d2x/dt2 of a 
particle and the force F(x) it experiences.

• T herefo re , v = p/m
• O r, p• = F(x) 

“ H it the  ball h a rd , it w ill m ove fast 
H it it soft, it w ill m ove slow”

• Continuous variation of energy is 
possible.

Macroscopic World: “Classical Mechanics - the God”



• Certain experiments done in late 19*h century 
and early 20th century gave results, totally at 
variance with the predictions of classical 
physics. All however, could be explained on 
the basis that, classical physics is wrong in 
allowing systems to possess arbitrary amounts 
of energy.



Max Planck E = ١̂٧
1900 German physicist

A young Max Planck was to
give a lecture on radiant heat.
When he arrived he inquired
as to the room number for the
Planck lecture. He was told,
”You are much too young to be
attending the lecture of the
esteemed professor Planck.

“Each electromagnetic oscillator is limited to discrete 
values and cannot be varied arbitrarily”



Plank had applied energy quantization to the oscillators in the 
blackbody but had considered the electromagnetic radiation to 
be wave.



J J  Thomson
u

Hert
PHOTOELECTRIC EFFECT

When UV light is shone on a metal plate in a vacuum, it emits 
charged particles (Hertz 1887), which were later shown to be 
electrons by J.J. Thomson (1899).

C؛assica؛ expectations

As intensity of light increases, force 
increases, so KE of ejected electrons 
should increase.

Electrons should be emitted whatever 
the frequency V of the light.

Actua؛ results:

Maximum KE of ejected electrons is 
independent of intensity, but dependent on V

For V<V0 (i.e. for frequencies below a cut
off frequency) no electrons are emitted



Photoelectric Effect

حمه=ء



Photoelectric Effect.
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(i) No electrons are ejected, regardless of the intensi^ of the 
radiation, unless its frequency exceeds a threshold value 
characteristic of the metal.

(ii) The kinetic energy of the electron increases linearly with 
the frequency of the incident radiation but is independent 
of the intensity of the radiation.

(iii) Even at low intensities, electrons are ejected immediately 
if the frequency is above the threshold.



Major objections to the
RutherfordBohr model
• We a re  able to define the

position an d  velocity o f each 
electron  precisely.

• In  p rinc ip le  we can follow the 
m otion o f each ind iv idual 
electron  precisely  like p lanet.

• Neither is valid.



Werner Heisenberg
Heisenberg’s name will always be associated with 
his theory of quantum mechanics, published in 
1925, when he was only 23 years.

• It is impossible to specify the exact 
position and momentum of a particle 
simultaneously.

• Uncertainty Principle.
• A x A p >  h/4% where h is Plank’s 

Constant, a fundamental constant with 
the value 6.626x10-34 j  s.



1879 -  1955 

Nobel prize إ92ل



, 1946July 1

Einstein was the father of the bomb in two important ways: 1) it was 
his initiative which stated U.S. bomb research; 2) it was his equation 
(E = mc2) which made the atomic bomb theoretically possible.



Einstein could never accept some of the revolutionary
ideas of quantum mechanics. When reminded in 1927 
that he revolutionized science 20 years earlier, Einstein 
replied, ”A good ^ke should not be repeated too often.”



K  F, =  1/2 (mv2)Einstein
w v w v v w  ٦ 

E=h م

h ٧ = V mv2 +

• KE 1/2mv2 = hv- ه 
is the work function • ه
• hv is the energy of the incident light.
• Light can be thought of as a bunch of 

particles which have energy E = hv. The 
light particles are called photons.



Iflight can behave as 
particles,why notparticles 

behave as wave?

Louis de Broglie
The Nobel Prize in Physics 1929
French physicist (1892-1987)



Louis de Broglie

Particles can behave as wave.
Relation between wavelength ٨ and the 
mass and velocity of the particles.
E = hv and also E = mc2,
E is the energy
m is the mass of the particle
c is the velocity.



Wave « » Particle Duality

E = mc^ = ا™
mc^ = ا™
p = h IX { since ٧ = c/A}
٨ = h/p = h/mv
This is known as wave particle duality



Photoelectric effect

Heisenberg uncertainty principle limits 
simultaneous knowledge of conjugate variables

Light and matter exhibit wave-particle duality

Relation between wave and panicle properties 
given by the de Broglie relations

The state of a system in classical mechanics is denned by 
specifying all the forces acting and all the position and 
velocity of the panicles.



Wave equation? 
SchOdinger Equation.

Energy Levels
Most significant feature of the Quantum 
Mechanics: Limits the energies to 
discrete values.
Quantization.

IM - ة(ق*قء>)س —

and there was Light!
1887-1961



The wave function

For every dynamical system, there exists a wave function T 
that is a continuous, square-integrable, single-valued function 
of the coordinates of all the particles and of time, and from 
which all possible predictions about the physical properties of
the system can be obtained.

te؛n؛is f ؛ntegra؛ on؛zat؛؛Sguare-integrahie means that the norma

.e to know؛b؛s poss؛ t؛ ng؛on we know everyth؛If we know the wavefunct



Derivation of wave equation

*- tim̂
The amplitude A ؛ق  the 
maximum displacement 
from equilibrium, ٢١□( 
the total swing.

qui ibriurm؛t
line

Mass shown at
equilibrium
pMtion.

Time period = T, Velocity = v, v = A,/T, 
Frequency, v = 1/T, v = v ٨



Wave motion of a String: Amplitude vs. Position
A
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1. Maxjmum djsplacement A

2. In^al cond^on



Displacement of a particle in SHM
y(x) = A sin 2 .س/ح

A = maximum amplitude
y = amplitude at point x at t = 0
At x = 0 , A/2, ٨, 3^/2, 2A, the amplitude is 0
At x = A/4, 5^/4, 9^/4, the amplitude is maximum.



If the wave is moving to the right with velocity ‘v’ at time ‘t’ 
y(x,t) = A sin 2ft/^(x-vt)

X= v/
y = A sin 2uv(x/v - t)
Differentiating y W.R.T x, keeping t constant

A wave eqn 
is born

^2y/§x2 + (4م / X2) y = 0



• In three dimension the wave equation becomes:
• 82y/8x2 + 82y/8y2 + 82y/8z2 + (4n;2/A2)y  = 0
• It can be written as v 2y  + (4rc2/A2)y  = 0
• We have ٨ = h/mv
• v 2̂  + (4^2m2v2/h2) ٧ = 0
• E = T + V or T = (E-V) (E = total energy)
• V = Potential energy, T = Kinetic energy
• T = 1/2 mv2 = m2v2/2m
• m2v2 = 2m(E-V)



V2y  + (8*2m/ h2)(E - V) y  = 0
• This can be rearranged as

٠ {(- h2/8*2m) V2 + V}y  = E y

• H y  = E y

٠ H =  [ ( -  h2/8^2m)V2 + V) Hamiltonian operator

{(-h2/8fl2m)(52/5x2 + /و2%2 + و2مح ) + V} م  = E م

82y/8x2 + (42 م/ ة ) y = 0



How to write Hamiltonian for different 
systems? 

{(-h2/8fl2m)V2 + V} ۴  = E ¥

• Hydrogen atom:
• KE = V m (vx2 + v̂ 2 + v̂ 2)
• PE = -e2/r, (r = distance between the

electron and the nucleus.)
• H = {(-h2/8ft2m) V2 -e2/r}
• V2 ۴ + (8م m/h2)(E+e2/r) ۴ = 0
• If the effective nuclear charge is Ze

• H = {(-h2/8rc2m )V2 -Ze2/r}



Ĥ + Molecule

e (x,y,z)

the wave function depends on the coordinates of the two nuclei, 
represented by RA and RB, and of the single electron, represented by r؛.



e (x,y,z) 

r - /  \ r ،

• PE = V = -e2/ra -  e2/rb + e2/Rab

• H = (-h2/8^2m)V2 + ( -  e2/ra - e2/rb + e2/Rab)

• The Wave equation is
• V م + (8م 2  m / h 2)  ( E +  e 2/ r a +  e 2/ r b -  e 2/ R ab)  0  = م 

Born-Oppenheimer approximation



V = -e2/4 Ŝo [1 /ra+1 /rb-1 /Rab]



e1 (xp yi» Z1

r i

H e A tom
r12

e2 (x2, y2, z2) r2 Nucleus (+2e)

{ ( - h 2/8rc2m ) V 2 +  V } م   =  E م 

• V = -2e2/r1 -  2e2/r2 + e2/r12
• H = (-h2/8rc2m) (V!2 + V22) + V
• The Wave equation is
• (V^ + V22 ) م + (8م  m/h2)(E-V) 0 = م



e1 (xi, ٨ , Z1) r e2 (x2, y2, Z2) ؛2

rb2
H

a

BaRA

PE = V = ?
H = (-h2/8^2m)(V12 + V22) + V 
The Wave equation is
(V^ + V22 )۴ + (8ft2 m/h2)(E-V) ۴  = 0



V  = -e2/4^£o[1/ra1+ 1/ b̂1 + 1/ra2 +1/rb2 -1/r12 -1/Rabl

attractive potential energy Eاectron-eاectron repulsion ' /

Internuclear repulsion





Particle in a box 

An electron moving along x-axis in a ^eld V(x)



x =ax =0

d2 ۴  /dx2 + 8م  m/h2 (E-V) ۴  = 0 
Assume V=0 between x=0 & x=a 

Also ۴  = 0 at x = 0 & a

d2¥ /d x 2 + [8rc2mE/h2] ۴  = 0

0 where k2 = 8^2mE/h2 = ؟dx2 + k2؟،/d2 

Solution is: ۴  = C cos kx + D sin kx

Applying Boundary conditions:
0 = ۴ = 0 at x = 0 ^  C

.٠. ۴ = D sin kx



۴  = D sin kx
Applying Boundary Condition:
۴ = 0 at x = a, D sin ka = 0
sin ka = 0 or ka = UK, x = 0  x =a
k = nft/a
n =0, 1, 2, 3, 4 . . .
۴  = D sin (^ /a )x  
k2 = 8ft2m/h2[E] or E = k2h2/ 8ft2m 
E = n2 h2/ 8ma2 k2= n2 ft2/a2
n = 0 not acceptable: ۴  = 0 at all x 
Lowest kinetic Energy = E0 = h2/8ma2



A n E lectron  in O ne D im ensional Box
a م  = D sin (m /a)x 

Efl = n2 h2/ 8ma2 
n =  1, 2, 3, . . .
E = h2/8ma2 , n=1 
E = 4h2/8ma2 , n=2 
E = 9h2/8ma2 , n=3

V = X

E nergy  is quan tized

V = X





Function
H e  h a s  b e e n  d e s c r i b e d  

a s  a  m o o d y  a n d  i m p u l s i v e  

p e r s o n .  H e  w o u l d  t e l l  h i s  

s t u d e n t ,  ” Y o u  m u s t  n o t  m i n d  

m y  b e i n g  r u d e .  I  h a v e  a  

r e s i s t a n c e  a g a i n s t  a c c e p t i n g  

s o m e t h i n g  n e w .  I  g e t  a n g r y  a n d  

s w e a r  b u t  a l w a y s  a c c e p t  a f t e r  a  

t i m e  i f  i t  i s  r i g h t . ”

MAX BORN



Characteristics of Wave Function:
What Prof. Born Said

• Heisenberg’s Uncertainty principle: We can 
never know exactly where the particle is.

• Our knowledge of the position of a particle 
can never be absolute.

• In Classical mechanics, square of wave 
amplitude is a measure of radiation intensity

• In a similar way, y 2 or y  y* may be related 
to density or appropriately the probability of 
finding the electron in the space.



The wave function ۴ is the probability amplitude
Hv

If the wavefunction of a particle has the value yfat some point X, then the 
probability of finding the particle between X and X + dx is proportional to 
lv^|2dx.



If the wavefunction of a particle has the vaiue v^at some point ٣٠ then the 
probabiiity of finding the particie in an infinitesimal volume d r  = dx dy dz at 
that point is proportional to 12/ ا \ا  dr.



ty؛l؛Pr©bab
density

The sign of the wave function has not direct physical sign^cance: the 
positive and negative regions of this wave function both corresponds 
to the same probability distribution. Positive and negative regions of 
the wave Unction may corresponds to a high probability of Ending a 
particle in a region.



Characteristics of Wave Function: 
What Prof. Born Said 

Let p (x, y, z) be the probability function,

d^ = 1
Let م (x, y, z) be the solution of the wave equation 
for the wave function of an electron. Then we may 
anticipate that
p (x, y, z) X 2م  (x, y, z)
choosing a constant in such a way that X is
converted to =
p (x, y, z) = 2م  (x, y, 

ام2  d^ = 1

The total probability of finding the particle is 1. Forcing this condition on 
the wave function is called normalization.



إي2 آل = 1 •  Normalized wave function
• I f  ۴  is com plex then  rep lace  ۴  by ۴ ۴ *

• If the function is not normalized, it can be done 
by multiplication of the wave Unction by a 
constant. N such that

• N is te rm ed  as N orm aliza tion  C o n stan t



A cceptable w ave functions

The wave equation has in^nite number of solutions, all of which 
do not corresponds to any physical or chemical reality.

• For electron bound to an atom/molecule, the wave 

function must be every where finite, and it must 
vanish in the boundaries

• Single valued
• Continuous
• Gradient (d؟،/dr) must be continuous
م •  is finite, so that م  can be normalized

• Stationary States

• E = Eigen Value ; م  is Eigen Function



N eed fo r Effective A pprox im ate  
M ethod  o f Solving the  W ave E q u atio n

• Born Oppenheimer Principle.
• How can we get the most suitable 

approximate wave function?
• How can we use this approximate wave 

function to calculate energy E?



Operators
“For every dynamical variables there is a corresponding operator”

Energy, momentum, angular 
momentum and position coordinates

Operators ► Symbols for mathematical operation



Eigen values

The permissible values that a dynamical variable 
may have are those given by 

ay = a<p
٠- eigen function of the operator a  that 
corresponds to the observable whose permissible 
values are a

a  -operator 
y - wave function 
a - eigen value



a ا =  أ ا

If performing the operation on the wave function yields 
original function multiplied by a constant, then ا is an eigen 
function ofthe operator a

 e2x and the operator a = d/dx = <ا>
Operating on the function with the operator

dا/■dx= 2e2x = constant.e2*

e2x is an eigen function of the operator a



For a given system, there may be various possible 
values.

As most of the properties may vary, we desire to 
determine the averagi or expectatirn value.
We know

Multiply both side of the equation by محؤ*
4>a<j) = $*a$
To get the sum ofthe probability over all space 

*a$ d^ = f$  *a$ d^

a -  constant, not affected by the order ofoperation



Removing ‘a’ from the integral and solving for ‘a’

a = dx/! ٠ * d t

a  cannot be removed ^om the integral

a = <y ءء| ٠ |  > /<y | ٠  >



V aria tio n  M ethod: Q uick  w ay to get E

H ^  = E ¥

۴  H y  = ۴  E y  = E y  ۴
I f  ۴  is com plex, 
E = j Y * H T d T / J Y * ¥ d x  
E =<Y  H y >  /< y  y >  
B r a - K e t  n o ta tio n



W hat does E = م>   H م> </م م > tell us أ

• Given any م , E can be calculated.
• If the wave function is not known, we can 

begin by educated guess and use Variation 
Theorem.
م ع  E 1

م2ع  E 2

“!f a trial wave function is used to calculate the energy, 
the value calculated is never less than the true energy” 
— Variation Theorem.



E1 ع ۴ •

ب •  E2
The Variation Theorem tells that

• E1, E >  Eg, Eg true energy of the ground state

• IF, E1 > E2

• Then E2 and ۴ is better approximation to the energy 
and corresponding wave function ۴ to the true wave

function



V ariation  M ethod: T he F irs t Few  Steps

• We can chose a whole family of wave 
function at the same time, like tria l 
function with one or more variable 
param eters C 1, C2, C3,....

• Then E is  function of C1, C2, C3 .......e tc .
• C 1, C2, C3 .... etc. are such tha t E  is 

minimized with respect to them.
• We will utilize this method in explaining 

chemical bonding.



Chemical Bonding

• Two existing theories,
• M olecular O rbital Theory (MOT)
• Valence Bond Theory (VBT)

M olecular O rbita l Theor

• M OT starts with the idea that the quantum  
mechanical principles applied to atoms 
may be applied equally well to the 
molecules.



Bof)dincj in aihyribH-C=C-H

٠



M OT: We can w rite the following principles

ة و  D e s c r i b e  E a c h  e l e c t r o n  in  a  m o l e c u l e  b y  a  

c e r t a in  w a v e  f u n c t i o n  T  -  M o l e c u l a r  O r b i t a l

( M O ) .

و  E a c h  T  is  d e f i n e d  b y  c e r t a i n  q u a n t u m  n u m b e r s ,  

w h i c h  g o v e r n  i t s  e n e r g y  a n d  i t s  s h a p e .

و  E a c h  T  is  a s s o c i a t e d  w i t h  a  d e f i n i t e  e n e r g y  

v a l u e .

و  E a c h  e l e c t r o n  h a s  a  s p in ,  ±  V  a n d  l a b e l e d  b y  i t s  

s p in  q u a n t u m  n u m b e r  m s.

و  W h e n  b u i l d i n g  t h e  m o l e c u l e -  A u f b a u  P r i n c i p l e  

( B u i l d i n g  P r i n c i p l e )  -  P a u l i  E x c l u s i o n  P r i n c i p l e .



Simplest possible molecule: 
H2+ : 2 nuclei and 1 electron.

• Let the two nuclei be labeled as A and B & 
wave functions as ٢  & T B.

• Since the complete MO has characteristics 
separately possessed by TA and T B,

• ٢  = CÂ A + Cb^b
• or ٢  = N(؟ a +( ار ٢٧

٨ • = Cb/Ca, and N - normalization constant



This m ethod  is know n as L in e a r C om bination  
o f A tom ie O rb ita ls  o r L C A O

• ¥ a and WB are same atomic orbitals except 
for their different origin.

• By symmetry I A and ءم  must appear with 
equal weight and we can therefore write

or X = ±1 ,همو = 1 •
• Therefore, the two allowed M O’s are

• ¥  =  ¥ A ±  X B



For ¥ a+ ¥ b 
we can now calculate the energy

From Variation Theorem we can write the 
energy function as

+%<<b>/< ^ a+ ^ b * a+ E؟ =  < ^ a+ ^ b H ^ a



Looking at the numerator:
E =  H ب/ه+مبما ء ة ا >  ^a+ ^b >

^ H مبم+لألآ> a+Yb> == <^a H * a> +

<^b H B̂ ٧ +

<^a H لأ +

<^b H ٧

= <^a H ^a> + ه H ¥,2+ <ء<^a H b̂>



¥ b> + 2< ¥ a H ¥ b><y b H

g r o u n d  s t a t e  e n e r g y  o f  a  h y d r o g e n  

a t o m .  l e t  u s  c a l l  t h i s  a s  E A

< Y a H Y b >  =  < ۴ H ¥ ا a >  =  p

p  =  r e s o n a n c e  i n t e g r a l

N u m e r a t o r  =  2 E A +  2  p



Physical Chemistry class test answer scripts will be shown to 
the students on 3rd March (Tuesday) at 5:30 pm in

Room C-306: Sections 11 and 12



Looking at the denominator:
م +۴ |دءم+مم> E؛۴ +مم</>د  = <۴  +۴ Ih

>م +

 >ؤلآ +

>لألآ +

B<۴ +۴>ابممبم = <۴

B<۴

<۴

<۴ ^ A >

^ B = <۴ >ي + <B۴>ألأو + 2<مو<



Ya and Yb are normalized,
so <Ya Ya> = <Yb ¥ b>=1

م = مء ¥هاب < <لا=
S = Overlap integral.

٠٠٠ D enom ina to r = 2(1 + S)



Summing Up. .  ٠
E م> =  + م  I h  I م + م +م>/<م +م م >

E+=(E a +P)/(1  +
Also E_ = (Ea - P)/ (1 — S)

S is very small 
Neglect S



Energy level diagram
e a " ء
ء

ء

e a + ء



Linear combination of atomic orbitals

Rules for }inear combination

1. Atomic orbitals must be roughly of the same energy.

2. The orbital must overlap one another as much as 
possible- atoms must be close enough for effective 
overlap.
3. In order to produce bonding and antibonding MOs, 
either the symmetry of two atomic orbital must remain 
unchanged when rotated about the internuclear line or 
both atomic orbitals must change symmetry in identical 
manner.



Rules for the use of ٧٨^

* When two AOs mix, two MOs will be produced

* Each orbital can have a total of two electrons 
(Pauli principle)

* Lowest energy orbitals are filled first (Aufbau 
principle)

* Unpaired electrons have parallel sp!n (Hund’s rule)

Bond order = V (bonding electrons -  antibonding 
electrons)



The wave function for the molecular orbitals can be 
approximated by taking linear combinations of atomic
orbitals.

Va Vb

ch each AO؛cB y ) c -extent to wh + ٧٨ y AB = N(cA 
cont^butes to the MO

(2 cA2 Va2 + 2cAcB Va Vb + cB2 Vb) = ١٨٢

Probability density Ov r̂lap integral



bonding٧؛
Region of 
cor،stru ctivB 
interferencec A =  c B =

Copyright © T h e  McGraw-Hill Companies. Inc. Permission r e t i r e d  for reproduction or display.

Waves reinforce

+
٠

Amplitudes of wave 
functions added



What holds the molecule together

the molecule ااأ)<طآأ There is nothing magie ٠
being bonded

— Electrons deferentially spend time between the
two nuclei. They act as electrostatic “؛

^2AB = (cA2 ̂ A2 + 2cAcB Va ^B + cB2 ̂ B 2:

electron density on original atoms,



The accumulation of electron density between the nuclei put the 
electron in a position where it interacts strongly with both nuclei.

Nuclei are shielded from each other

The energy of the molecule is lower



o ء-
antibonding

Destructive interference 
Nodal plane perpendicular to the 
H-H bond axis (en density = 0) 
Energy of the en in this orbital is

م •'،>'؛؛؛'' . ؟



+٠ (

CA = + 1 , C B =  - 1  

¥u =  N [ ¥ a - ¥ b ]

Waves cancel

Amplitudes of wave 
functions 

subtracted.



(b)
The electron is excluded from internuclear region 7  destabilizing؛

Antibonding



When 2 atomic orbitals combine there are 
resuitant orbitals.

م§ ;ا م
high energy antibonding orbital

Isa

ءام
low energy bonding orbital

. s orbitals

^s

Molecular
orbitals



oo
Internuclear separation

Molecular potential energy curve shows the variation 
of the molecular energy with internuclear separation.



L ooking a t the  E nergy  Profile
• Bonding orbital
• called 1s orbital
• s electron
• The energy of Is orbital 

decreases as R decreases
• However at small separation, 

repulsion becomes large
• There is a minimum in potential 

energy curve



t H2

11.4 eV 

109 nm

Location of 
Bonding orbital 
4.5 eV

Nodalplane اا»ح
( Ci ٠ 1 ٠ b )

م٥,،ا٠عوء1 ٠ b iT\sj  Antibonding

0 and a M  LCAO of n A.O ع  n M.O. ا
.„ل . .

film ٠/) Pro
bab

ility 1
a b G \sBonding١٨ orbitals of Electron chargetwo widely density (probability) Energyseparated Molecular orbitals along a line joining two levelhydrogen atoms of H, molecule hydrogen nuclei: a and Ij diagram



The overlap integral

■The extent to which two atomic orbitals on different atom 
overlaps : the overlap integral

0؟.

0.

0.4

0.2

v A v B d T

s

2 4
R/a0



antiBonding ءأ,0

...

٨٠

(١٠).

محمحم
محوتقر

ض

ح

م ا ن

م ء،م م ب ء م م س ل ، * ه ء ى ب ا س غ JirTMjifirif adHnli uridilrj ؛٠ ph،،jv«ت ء ل . ا
n آء،لا.ءك. - u l

s = 0 nonbonding



٠ The extent to which 
orbitals overlap can be 
eva l^ ted  using an 
overlap integral s.
— s = 0 indicates that the 

orbitals do not. 
overlap/interact with one 
another

— s depends 011 the
symmetry ol the orbital

Bond strength depends on the 
degree of overlap



Linear combinations o fp  orbitals

,AOs results a bonding a . ,  M O رم Vddilion o j  two/ ٠ 
ا أ ؛ ا ا *^give an cmfihuntiingG ا  MO [اارالاآائ*لاأاااح ١١■ ؛ا 

perpendicular  10 bond axis ءاااآل:ا nodal

م ءب هآ م + ]ا ب م(ل ه[ءب = ي

ء > ق :لت x j ' O O
—p

plane اوس

« □

,ء،'ا -ا؛ء' 'اا-ي[مبم'ربم'

ى •-'•ص



Linear combinations of p and p orbitals

MO ؛ر A يإآ]؛ااآلآاأاأن s rL'siiUs< .■\> ١٦١.ر r)*< ٠ '■.ااااا؛،؛ب>أا0ا’بلاا> ؛إ
:nodal lilani.‘ alon.Li tliL* bond axis ه L'oiUaimn.Li

-
o
ص

ء
itiUibomling jr.,'1 MO uilli two  nodal ٤١:؛ results ٠ ^ااآالا'اائ'ا؛0آا 

bond 1 ا1ااآ planes:one plam.‘ perpeiidiciiku' anJ )(اأء'ءم'را'ء'ا'،//م 0
axis

ه
د

لا-ا*م



(a)

م ب <

( b )

>=ا
(ء)

>=ا



Homonuclear Diatomics

• MOs may be classi^ed according to:

(i) Their symmetry around the molecular axis.

(ii) Their bonding and antibonding character.

• s 1s< s 1s*< s 2s< 2̂ ب*<  p< "y(2p) = n،(2p) 
<^y*(2p) =^z*(2p)<s 2p*•



Classifying orbitals b}' symmetry

iliL'ir ٠١، ho d a s s i l l L ' J  according أ$' آ]ائتا آ أ ♦ ا >i'hiLils !؛أ بماآ[ناا[>ا
T h e s e ٠٠٢ .؟؛ ch u n k 'tor is l ic s  as a .  JT 'لاأآألآآل'إمح’أ roUilkuuil 

ilid u>r d ا-ااا aLsi-؛ im a n ik 's .  blit\ ا ؛لا'ا‘ sLrict\] اا>ي1ا ;  اآ؛لوواألآ*لا[آ><ةأ
use ilieni u> J ؛11 c s c r i b c  bonds  b e tw e e n  pairs  o l ' iU onis

.l » K  LiloitfiL‘ molecules
'xydx̂ -dŷ  and d

■1.fuilrfjb l'r ■1-1 ء ■ا ابم'-اا؛ااا ٧ 
u ١١٣ راااااآhiTij 1 ام؛ا■ t i i l d l  c -v r r l i | i 

Ihcil حل[ااء:ملا نلصت-,.ا,.ار اابناا>ا-جماالا 
..jf J.Q؛l|،؛■iln-iEEl : ri ■ hi q I hr nhrm

-2
Cl4R e = R e C l4

آ]زاأالا كحكآلل(لا ا  I'omitl ا[ا (س
ل■ لا’مر ة ا ' i م i s ا]ابم-اا s j j c d c N

Nodal
plane

ol hi Li l srrorhiLils



‘a d eU n g e r a d e  o r

)ا

s in inolocLilos that are c: ااائ'ا e n t ro s } in in o t r i i( ٠

(o r  ( I I زلإ) he as 
 - لاا'؛ءءأأ I'or pr^diciiiig^p-L'dro^aipic ininsitiuns 0اأ

؟٧١٦ ا■■_ ، ن ا ا ا ي t ةئ-آال ٠١٠٠ 'أ1ا h e  vva1■.el 'Linci ion آ [ آ i آت m p l i e s رلاء 
.٧: m n ' l j e u l - j ا ا1ة :أ t• آ h e  c e n t a l ا1ا آ ا ئا ا'ن i أ1ا n v e r s i o n ٦١١،

sign ا!_؛ة:̂ تيآاآن€ااا ihul ا ا بمةاال ااآ
g- identical 
under inversion

u- not identical

ة1  and Itu orb ita l
^ ٩ ٥ ١  and ما ب آ | orbitals



us*

n*٠ ٠

٠٠

71 ;٦’

-قز ٦رم-

un

زهر،ي٨

ف ئ
'• ■'G ؤ

(ء)



Bond order: 1

Bond order =
A (bonding electrons -  antibonding electrons)

٧
LUMO

HOMO (  • •
٦٠٠٠٠٠٠. 5  bonding MQ



Diatomic molecules: The bonding in He^

^1s2, a*1s2

Bo^d order: 0

Molecula٢ Orbital theory is powerful because it allows us to predict whether 
molecules should exist or not and it gives us a clear picture of the of the 
electronic structure of any hypothetical molecule that we can imagine.

He He^ He

/II \ "
٠٠

<
ج
0

لا ل 1s 11( , ) ه ٠ ،١ء . ٠



م »صممس

٢٠
-ى

°-*

ء .. م ء ء ^ . ض ■

م0مم
ء ء تمه

د
٠٠
٠٠

'ث ء'د

ه

م

آ !٢

٠ ©
\يل

٠٠



Full energy 
level ،Jiagram 
for secon،J row 
diatomics



als^, a*1s م ̂, *

Bond order: 1



Diatomic. molecules: Molecules of ،he Second Period

^1s2, ^*1s2, a2s2, ^*2s2

Bond ô dê : 0



Molecular oxygen
AOs

Atom ط

Simplified

٨٥؛ /—'>■
بمما م.>يبم

ي ت ه ا أ

'■ى

مء'-س'حبم„
ءءهن:ت.

س 'ما Aها ٨٦ و ص dialurritt ف

2 = Bond order 
unpaired e le c tro n  ->  paramagnetic ئ

energy



Molecular fluorine
AOs

ب؛ء ه ؛ه

Atom ط

Simplified

AOs /—\ءء'
.مح؛ه '\'ه

4 ت H - K

-'ي;•

هي؛<’
Atom و لاءءسءسمح؛هخة1م

٦ = Bond 
0 ^paired electrons ->  diamagnetic

energy



Diamagnetic??

B

atom
ة2

molecule
B

atom

n

2م بمب

E

م - 2s'لأ f i -v

'—H—ا



O r b i t a l  M i x i n g

energy mlerael. ii'lhcy have ihe *الا؛بم؛1اآن Orbilals with ٠
appropriate symmetries

The a_> and C7j. orbitals arc svnitnetry related and give ٠ 
Illi ١١ rise 1 0  two nc^' orbitals, otic with higher and one

loner enertzv

Li : 200 kJ/mol 
F: 2500 kJ/mol



Effect o f  orbital mixing
٢٦/ء

w

٠نمذ

/مح \'نق

ي
.م

\ ءم /

ى
ط■

؛nergyء.,■ي■، 'لاا

ندث
ئ

د - ، ى ■ا ■ ٢.ا ^1.U i i i i f

\ءئ

_ق
H،؛ :■□١■!

ردة

Same symmetry, energy mix- 
the one with higher energy moves higher and the one with lower energy moves lower



B

->.3su*

1

(Px>Pyj
s ' ' i  2p

2p f

ا UM/ ٠ ٠ 'ح'وهة
ؤ  / uH^ ' " آ\ O M O

2s
ه - م ب

ه2 ق ,
2s

Paramagnetic

B

atom
B2

molecule
B

atom

ؤ آ 2 p

/ ti 2؟،

م2 —f - v

u

4*■

-\tt— ،2؟

x— Hr— z

ء



Diamagnetic



Paramagnetic ?



General MO diagrams

O; and F2Li2 to N2
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٧1tc

٧1a
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Orbital mixing Lî  to N2



Bond lengths in diatomic molecules

Valence electrons

B
on

d 
di

st
an

ce
 

(p
m

)



Bond Oi‘de،’ ١ s. Bond Length & Enei'^>

S p e ه ا ء ء  B o n d ء  م لإ ء ا ■ B o n d  I w i g t h / p f l i B o n d  & n e r g y - ' k J  m o H

h 2 + 1ةم 1 Q h.2 ء 5ه

H s ٦ 74.1 4ءث

h 2 " ؛ V؛ - 1م0-ق0ء
- h■؟ t e ٥ ء7 و 0-1ي

ولمل 1 هة ? ث. 101
و 0ق م - 4

ة ء 1 ء 1و ة ء و
ء لآ ق ة 1ق4.ة س

؛ N؛ و و.ه 1و &4ء

0ت ئ 1وت,7 س
مب ب 2قمآ ٦٦٦.ء G 43

'ا ء آ أ / ء و 1ة ء 3ة

0هم■ ١ ص -

1 1بم1.ت ا ة ء
M e ? ٧ ث ها 0.مة

f o r c e s ه اوا؟سم و V م a r*



S u m m a r y

From a basis set of N atomic orbitals, N molecular orbitals are
constructed. In Period 2, N=8.

The eight orbitals can be classified by symmetry into two sets: 4 a 
and 4 7T orbitals.
The four n orbitals from one doubly degenerate pair of bonding
orbitals and one doubly degenerate pair of antibonding orbitals.

The four a orbitals span a range of energies, one being strongly 
bonding and another strongly antibonding, with the remaining
two ٠ orbitals lying between these extremes.

To establish the actual location of the energy levels, it is necessary 
to use absorption spectroscopy or photoelectron spectroscopy.



Molecular Nitrogen
♦  ■According 10 calculat ions the CT orbital is higher i

energy than the two I k y .  orbitals:

ءئه'؛تن
N ؛..؟TTVi ء

؛ثمبمم

يثميه
س N-1 د

nergy؛

Bond order — ة N atom ه
no unpaired electrons ->  diamagnetic



I letronuclear diatomics

٠٢١٦^ contributions TO the MO from  each of 

the atoms is unequal

- ي = )صهعء + اا<ييع(ة)
♦ The more electronegative atom contributesما

strongly to the bonding orbital

♦ The less electronegative atom contributes 

strongly to the anti-bonding orbital

-  g iv e s  rise to  po la r i ty
Distance between b-MO and AO



I
■■■■.؟

Heteronuciear Diatomics....

3  The energy level diagram is not symmetrical.

ااا-مإء2 —  c 6 >  C A

3 T h e  b o n d i n g  M O s  a r e  
c oل s e r  t o  t h e  a t o m i c  
o r b i t a l s  w h i c h  a r e  
l o w e r  in  e n e r g y .

3  T h e  a n t i b o n d i n g  M O s  
a r e  c l o s e r  t o  t h o s e  
h i g h e r  in  e n e r g y .

c — extent to which each atomic 
orbitals contribute to MO

If c^>c  ̂the MO is composed principally of



HF



Largely
nonbonding



2s> 2p ٦ |-|1ء
F2s +  c 3 <l)F2pz؛l؛ H is +  c ٧ C1 ؛!؛2

2px and 2py 

l a 2 2o2ln4

٢١̂?©
Exclusively F

Mainly F


