

Lecturer : Shaymaa Adil Mohammed

¹³CNMR spectroscopy

- •The ¹²C nucleus is not magnetically "active" (spin number, I, is zero), but the ¹³C nucleus, like the ¹H, has a spin number ½.
- •The natural abundance of ¹³C is only 1.1% that of ¹²C and its sensitivity is only about 1.6% that of 1H, the overall sensitivity of ¹³C compared to ¹H is about 1/5700.

¹³CNMR spectroscopy

There are some differents between ¹H and ¹³C-:

- •The broadband proton decoupled technique allow the ¹³C peak to appear as a singlet unless the molecule has other magenitic active nucleus like ²H, ¹⁹F or ³¹P...
- •The ¹³C peaks are distributed over a larger chemical shift range in comparison with the proton range.
- •The ¹³C nuclei are much less abundant and much less sensitive than proton. Larger samples and longer times are needed.
- •For a given deuterated solvent, the ¹³C and ¹H solvent peaks differ in multiplicities.

1H Decoupling Techinques

Because the larger ${}^{1}J_{CH}$ values for ${}^{13}C{}^{-1}H$ (about 110-320 Hz) and appreciable ${}^{2}J_{CH}$, ${}^{3}J_{CH}$ values for ${}^{13}C{}^{-}C{}^{-1}H$ and ${}^{13}C{}^{-}C{}^{-1}H$ (about 0-60 Hz) coupling, proton-coupled ${}^{13}C$ spectra usually show complex overlapping multiplets that are diffecult to interpret.

1H Decoupling Techinques

DECOUPLING THE PROTON SPINS

A common method used in determining a carbon-13 NMR spectrum is to irradiate all of the hydrogen nuclei in the molecule at the same time the carbon resonances are being measured.

This requires a second radiofrequency (RF) source (the decoupler) tuned to the frequency of the hydrogen nuclei, while the primary RF source is tuned to the ¹³C frequency.

In this method the hydrogen nuclei are "saturated", a situation where there are as many downward as there are upward transitions, all occuring rapidly.

During the time the carbon-13 spectrum is being determined, the hydrogen nuclei cycle rapidly between their two spin states (+1/2 and -1/2) and the carbon nuclei see an average coupling (i.e., zero) to the hydrogens.

The hydrogens are said to be decoupled from the carbon-13 nuclei.

You no longer see multiplets for the ¹³C resonances. Each carbon gives a singlet, and the spectrum is easier to nterpret.

ETHYL PHENYLACETATE

Correlation chart for ¹³C Chemical Shifts (ppm(

$C_3H_7NO_2$

 C_5H_7CI

The DEPT Experiment

Distortions enhancement by polarization transfer (DEPT(

Used to distinguish carbon atoms according to the number of attached hydrogen atoms. A multipulse experiment – uses pulses on both the H-1 and C-13 channels.

Dept 45 – only shows carbons that have attached hydrogen atoms (quaternary carbon atoms do not appear.(

Dept 90 – only carbon atoms with a single attached hydrogen atom (methine carbon atoms) appear.

Dept 135 – distinguishes between carbon atoms based on their phasing CH and CH3 carbon atoms are phased the same way (usually positive), CH₂ carbon atoms are phased the opposite way (usually negative.(

DEPT experiments of 2-Bromobutane

All carbons appear on DEPT-45 (all carbon atoms have attached protons(On the DEPT-90 only the C2 carbon appears (the only carbon atom with one attached proton) On the DEPT-135 only the C3 carbon exhibits negative phasing (the only methylene carbon(

Dept experiments of 3-(1-chloromethyl)pentane

Dept experiments of 1-pentene

No significant UV absorption above 220 nm

δ (ppm)