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I.I CHARACTERIZATION OF ELECTROMAGNETIC
RADIATION

Molecular spectroscopy may be defined as the study of the interaction of
clectromagnetic waves and matter. Throughout this book we shall be con-
cerned with what spectroscopy can tell us of the structure of matter, so it is
essential in this first chapter to discuss briefly the nature of electromagnetic
radiation and the sort of interactions which may occur; we shall also con-
sider, in outline, the experimental methods of spectroscopy.

Electromagnetic radiation, of which visible light forms an obvious but
very small part, may be considered as a simple harmonic wave propagated
from a source and travelling in straight lines except when refracted or
reflected. The properties which undulate—corresponding to the physical
displacement of a stretched string vibrating, or the alternate compressions
and rarefactions of the atmosphere during the passage of a sound wave—
are interconnected electric and magnetic fields. We shall see later that it is
these undulatory fields which interact with matter giving rise to a spectrum.

It is trivial to show that any simple harmonic wave has properties of
the sine wave, defined by y = A sin 0, which is plotted in Fig. 1.1. Here y is
the displacement with a maximum value A, and @ is an angle varying
between 0 and 360° (or 0 and 27 radians). The relevance of this represen-
lation to a travelling wave is best seen by considering the left-hand side of
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 radians

Figure 1.1 The curve of y = A sin 8.

Fig. 1.2. A point P travels with uniform angular velocity @ rad s~' in a
circular path of radius A; we measure the time from the instant when P
passes 0" and then, after a time ¢ seconds, we imagine P to have described
an angle 0 = wt radians. Its vertical displacement is then y = A sin 6 = A
sin wi, and we can plot this displacement against time as on the right-hand
side of Fig. 1.2. After a time of 2x/w seconds, P will return to 0, completing
a ‘cycle’. Further cycles of P will repeat the pattern and we can describe the
displacement as a continuous function of time by the graph of Fig. 1.2

In one second the pattern will repeat itselfl @/2n times, and this is
referred (0 as the frequency (v) of the wave. The SI unit of frequency is called
the hertz (abbreviated to Hz) and has the dimensions of reciprocal seconds
(abbreviated s~ '). We may then write:

y = Asin et = A sin 2awvt (L1)

as a basic equation of wave motion.
So far we have discussed the variation of displacement with time, but in
order to consider the nature of a travelling wave, we are more interested in

Flpuljl‘hedexﬁptiundnduminluudlhnmﬂummdnpﬂmFll:
uniform angular velocity of w rad s ',
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Figure 1.3 The concept of a travelling wave with a wavelength 4

the distance variation of the displacement. For this we need the fundamen-
tal distance-time relationship:

X = ct (1.2)

where x is the distance covered in time t at a speed c. Combining (1.1) and
(1.2) we have:

2nvx
c

y= A sin 2nvt = A sin

and the wave is shown in Fig 1.3, Besides the frequency v, we now have
another property by which we can characterize the wave —its wavelength A,
which is the distance travelled during a complete cycle. When the velocity is
¢ metres per second and there are v cycles per second, there are evidently v
waves in ¢ metres, or

VA= A=c¢/v meltres (1.3)
so we have:
y = A sin 3%5 (1.4)

In spectroscopy wavelengths are expressed in a variety of units, chosen
so that in any particular range (see Fig. 14) the wavelength does not
involve large powers of ten. Thus, in the microwave region, A is measured
in centimetres or millimetres, while in the infra-red it is usually given in
micrometres (um)—formerly called the micron—where

1um=10"%m (1.5)

In the visible and ultra-violet region, 4 is still often expressed in Angstrom
units (A) where 1 A = 10°'° m, although the proper SI unit for this region
is the nanometre:

Inm=10"m=10A (1.6)
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There is yet a third way in which electromagnetic radiation can be
usefully characterized, and this is in terms of the wavenumber ¥. Formally
this is defined as the reciprocal of the wavelength expressed in centimetres:

F=1/1 em™! (L7
and hence
y= A sin 2nix (1.8)

It 1s more useful to think of the wavenumber, however, as the number of
compete waves or cycles contained in each centimetre length of radiation.
Since the formal definition is based on the centimetre rather than the metre,
the wavenumber is, of course, a non-SI unit; it is, however, so convenient a
unit for the discussion of infra-red spectra that—like the Angstrom—it will
be many years before it falls into disuse.

It is unfortunate that the conventional symbols of wavenumber (#) and
frequency (v) are similar; confusion should not arise, however, if the units of
any expression are kept in mind, since wavenumber is invariably expressed
in reciprocal centimetres (cm ~ ') and frequency in cycles per second (s~ ' or
Hz). The two are, in fact, proportional: v = ¥, where the proportionality
constant is the velocity of radiation expressed in centimetres per second
(that is, 3 x 10'® em s '); the velocity in SI units is, of course,
I 10"ms ",

1.2 THE QUANTIZATION OF ENERGY

Towards the end of the last century experimental data were observed which
were quite incompatible with the previously accepted view that matter
could take up energy continuously. In 1900 Max Planck published the
revolutionary idea that the energy of an oscillator is discontinuous and that
any change in its energy content can occur only by means of a Jump
between two distinct energy states. The idea was later extended to cover
many other forms of the energy of matter.

A molecule in space can have many sorts of energy; e.g., it may possess
rotational energy by virtue of bodily rotation about its centre of gravity; it
will have vibrational energy due to the periodic displacement of its atoms
from their equilibrium positions; it will have electronic energy since the
electrons associated with each atom or bond are in unceasing motion, etc.
The chemist or physicist is early familiar with the electronic energy states of
an atom or molecule and accepts the idea that an electron can exist in one
of several discrete energy levels: he learns to speak of the energy as being
quantized. In much the same way the rotational, vibrational, and other
energies of a molecule are also quantized —a particular molecule can exist
in a variety of rotational, vibrational, etc., energy levels and can move from







qutall dooly
cliac2l s / oghull &l

dol - 4L ol

Molecular spectroscopy

3+2 JJ.=|a,.n.|i

2021 8:30 AM



INTRODUCTION §

one level to another only by a sudden jump involving a finite amount of
energy.

Consider two possible energy states of a system—two rotational energy
levels of a molecule, for example—Ilabelled E, and E, in the following
diagram. The suffixes | and 2 used to distinguish these levels are, in fact,

E,

4

E,

quantum numbers. The actual significance of quantum numbers goes far
deeper than their use as a convenient label—in particular, we shall later see
that analytical expressions for energy levels usually involve an algebraic
function of one or more quantum numbers. Transitions can take place
between the levels E, and E, provided the appropriate amount of energy,
AE = E, — E,, can be cither absorbed or emitted by the system. Planck
suggested that such absorbed or emitted energy can take the form of elec-
tromagnetic radiation and that the frequency of the radiation has the
simple form:

v=AE/h Hz
e,

AE = hv joules (19)

where we express our energies E in terms of the joule, and h is a universal
constant—Planck’s constant. This suggestion has been more than amply
confirmed by experiment.

The significance of this is that if we take a molecule in state | and direct
on to it a beam of radiation of a single frequency v (monochromatic
radiation), where v = AE/h, energy will be absorbed from the beam and the
molecule will jump to state 2. A detector placed to collect the radiation
after its interaction with the molecule will show that its intensity has de-
creased. Also if we use a beam containing a wide range of frequencies
(*white’ radiation), the detector will show that energy has been absorbed
only from that frequency v = AE/h, all other frequencies being undiminished
in intensity. In this way we have produced a spectrum-—an absorption spec-
trum.

Alternatively the molecule may already be in state 2 and may revert 1o
state 1 with the consequent emission of radiation. A detector would show




immwmmn

this radiation to have frequency v = AE/h only, and the emission spectrum
wluuudi:phinlymplmurymlhe lbmpﬁunlpuﬂmmohhepm-
vious paragraph.

h =663 x 10" joules s molecule " !

Often we are interested in the total energy involved when a gram-molecule
of a substance changes its energy state: for this we multiply by the Avo-
gadro number N = 602 x 10°*

Hm.thmmhvmmuunrthe

huonmnuurlnmdy.umhqmq.ﬂwhmdumumbwnif
they were energy units. T‘hu:inrdwrh:.to'umndlﬂm"‘he
mu'-mamum:mwmmmmmmu
radiation has a wavenumber value of 10 cm " The first expression is so
simple and convenient that it is essential to become familiar with wavenum-
ber and frequency energy uﬁuimhtnwmmh
hnmp.nm'boutthhhnotumllulhelrmbulnowt
energy in cm ",

It cannot be too firmly stressed at this point that the frequency of
radiation associated with an energy change does mot imply that the tran-
sition between energy levels occurs a certain number of times each second.
Thus an electronic transition in an atom or molecule may absorb or emit
radiation of frequency some 10'* Hz, but the electronic transition does not
itselfl occur 10'* times per second. It may occur once or many times and on
each occurrence it will absorb or emit an energy quantum of the appropri-

ate frequency.

1.3 REGIONS OF THE SPECTRUM

Figure 1.4 illustrates in pictorial fashion the various, rather arbitrary,
regions into which electromagnetic radiation has been divided. The bound-
lﬁnhtlm!hemumhrmmummmwlhmuhculu
processes associated with each region are quite different. Each succeeding
chapter in this book deals essentially with one of these processes.

In increasing frequency the regions are:

I. Radiofrequency region: 3 x 10°-3 x 10'° Hz: 10 m-1 cm wavelength.
Nuclear magnetic resonance (n.m.r) and electron spin resonance (esr)
spectroscopy. The energy change involved is that arising from the re-
versal of spin of a nucleus or electron, and is of the order 0-001-10
joules/mole (Chapter 7).
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2. Microwave region: 3 x 10'°-3 x 10'* Hz; | em-100 um wavelength,
Rotational spectroscopy. Separations between the rotational levels of
molecules are of the order of hundreds of joules per mole (Chapter 2).

3. Infra-red region: 3 x 10'*-3 x 10" Hz; 100 um-1 pm wavelength.
Vibrational spectroscopy. One of the most valuable spectroscopic re-
gions for the chemist. Separations between levels are some 10* joules/
mole (Chapter 3).

4. Visible and ultra-violet regions: 3 x 10'*-3 x 10'* Hz: | um-10 nm
wavelength. Electronic spectroscopy. The scparalions between the ener-
ﬁuduhnuehﬂ:ommmhundmd:nftﬂujuuhparmoh
(Chapters S and 6).

5. X-ray region: 3 x 10'*-3 x 10'* Hz; 10 nm-100 pm wavelength. Energy
mmvdﬁummmﬂmlimwlm'ﬂm
mrhdorduuﬂwumdkilojoﬂutmn

6. y-ray region: 3 x 10'*-3 x 10*® Hz; 100 pm-1 pm wavelength. Energy
changes involve the rearrangement of nuclear particles, having energies
of 10°-10"" joules per gram atom (Chapter §).

Dmolherlypcohpeﬂrmy.lhﬂdhmmndbylmnuﬂbuﬁn.
his name, is discussed in Chapter 4. This, it will be seen, yields information
similar to that obtained in the microwave and infra-red regions, although
the experimental method is such that observations are made in the visible
region.

In order that there shall be some mechanism for interaction between
the incident radiation and the nuclear, molecular, or electronic changes
depicted in Fig 1.4, there must be some electric or magnetic effect produced
by the change which can be influenced by the electric or magnetic fields
associated with the radiation. There are several possibilities:

I. The radiofrequency region. We may consider the nucleus and electron to
be tiny charged particles, and it follows that their spin is associated with
a tiny magnetic dipole. The reversal of this dipole consequent upon the
spin reversal can interact with the magnetic field of electromagnetic
radiation at the appropriate frequency. Consequently all such spin re-
versals produce an absorption or emission spectrum.

2. The visible and ultra-violet region. The excitation of a valence electron
involves the moving of electronic charges in the molecule. The conse-
quent change in the electric dipole gives rise to a spectrum by its interac-
tion with the undulatory electric field of radiation.

3. The microwave region. A molecule such as hydrogen chloride, HCI, in
which one atom (the hydrogen) carries a permanent net positive charge
and the other a net negative charge, is said 1o have a permanent electric
dipole moment. H, or Cl,, on the other hand, in which there is no such
charge separation, have a zero dipole. If we consider the rotation of HCI
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By the use of the Schrédinger equation it may be shown that the
rotational energy levels allowed to the rigid diatomic molecule are given by
the expression:

1

h
E,-s—ﬁ.ﬂ.f-l»l]jmllu where J =0, 1,2, ... (2.10)

In this expression h is Planck’s constant, and [ is the moment of inertia,
either I or /¢, since both are equal. The quantity J, which can take integral
values from zero upwards, is called the rotational quantum number: its re-
striction to integral values arises directly out of the solution to the Schré-
dinger equation and is by no means arbitrary, and it is this restriction
which effectively allows only certain discrete rotational energy levels to the
molecule.

Equation (2.10) expresses the allowed energies in joules; we, however,
are interested in differences between these energics, or, more particularly, in
the corresponding frequency, v = AE/h Hz, or wavenumber, ¥ = AE/hc
em ', of the radiation emitted or absorbed as a consequence of changes
between energy levels. In the rotational region spectra are usually discussed
in terms of wavenumber, so it is useful to consider energies expressed in
these units. We write:

E h
- -1 -
Ll h,k..'u+|]m V=012..) (2.11)
where ¢, the velocity of light, is here expressed in cm s ', since the unit of
wavenumber is reciprocal centimetres.

Equation (2.11) is usually abbreviated to:

g = BN+ 1)em™" (J=012..) (2.12)
where B, the rotational constant, is given by
h -1
B—W cm (2.13)

in which we have used explicitly the moment of inertia /,. We might
equally well have used /- and a rotational constant C, but the notation of
(2.13) is conventional.

From Eq. (2.12) we can show the allowed energy levels diagram-
matically as in Fig. 2.2. Plainly for J = 0 we have ¢, = 0 and we would say
that the molecule is not rotating at all. For J = 1, the rotational energy is
€, = 2B and a rotating molecule then has its lowest angular momentum.
We may continue to calculate ¢, with increasing J values and, in principle,
there is no limit to the rotational energy the molecule may have. In practice,
of course, there comes a point at which the centrifugal force of a rapidly
rotating diatomic molecule is greater than the strength of the bond, and the
molecule is disrupted, but this point is not reached at normal temperatures.
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Figure 1.2 The allowed rotational energy levels of a ngid distomic molecule.

Figure 1.3 Allowed transitions between the energy levels of a rigid diatomic molecule and the
spectrum which anses from them

We now need to consider differences between the levels in order to
discuss the spectrum. If we imagine the molecule to be in the J = 0 state
(the ground rotational state, in which no rotation occurs), we can let incident
radiation be absorbed to raise it to the J = | state. Plainly the energy
absorbed will be:

t,..-—l;_.-Zi--ﬂ-zl ﬂll_l

and, therefore,
Vjugeguy =28 cm™! (2.14)
In other words, an absorption line will appear at 28 cm ', If now the

molecule is raised from the J = | to the J = 2 level by the absorption of
more energy, we see immediately :

Vjutagag ™ Ejay = 8
=68 — 28 =48 cm ' (2.15)
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In general, to raise the molecule from the state J to state J + 1, we would
have:

Vjassr=BU + 1)J +2)— BIJ + 1)
' =B[J? +3J+2-(*+ )]

i!"]*l - 2.&1 + I] l.‘-'l'l'l-l [2.’ﬁ]

Thus a stepwise raising of the rotational energy results in an absorption
spectrum consisting of lines at 2B, 4B, 68, ..., cm ™', while a similar lower-
ing would result in an identical emission spectrum. This is shown at the foot
of Fig. 2.3.

In deriving this pattern we have made the assumption that a transition
can occur from a particular level only to its immediate neighbour, either
above or below: we have not, for instance, considered the sequence of
transitions J = 0-+J =2 J =4 ... In fact, a rather sophisticated appli-
cation of the Schrodinger wave equation shows that, for this molecule, we
need only consider transitions in which J changes by one unit—all other
transitions being spectroscopically forbidden. Such a result is called a selec-
tion rule, and we may formulate it for the rigid diatomic rotator as:

Seclection rule: AJ = +1 (2.17

Thus Eq. (2.16) gives the whole spectrum to be expected from such a mol-
ecule.

Of course, only if the molecule is asymmetric (heteronuclear) will this
spectrum be observed, since if it is homonuclear there will be no dipole
component change during the rotation, and hence no interaction with radi-
ation. Thus molecules such as HCl and CO will show a rotational spec-
trum, while N, and O, will not. Remember also, that rotation about the
bond axis was rejected in Sec. 2.1: we can now see that there are two
reasons for this. Firstly, the moment of inertia is very small about the bond
so, applying Eqs (2.10) or (2.11) we see that the energy levels would be
extremely widely spaced: this means that a molecule requires a great deal of
energy to be raised from the J = 0 to the J = | state, and such transitions
do not occur under normal spectroscopic conditions. Thus diatomic {and
all lincar) molecules are in the J = 0 state for rotation about the bond axis,
and they may be said to be not rotating. Secondly, even if such a transition
should occur, there will be no dipole change and hence no spectrum.

To conclude this section we shall apply Eq. (2.16) to an observed spec-
trum in order to determine the moment of inertia and hence the bond
length. Gilliam et al.t have measured the first line (J = 0) in the rotation

t Gillam, Johnson, and Gordy, Physical Review, TR, 140 (1950).
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2.3.2 The Intensities of Spectral Lines

We want now to consider briefly the relative intensities of the spectral lines
of Eq. (2.16); for this a prime requirement is plainly a knowledge of the
relative probabilities of transition between the various energy levels, [_)c.pn,
for instance, a molecule have more or less chance of making the transition
J =0-+J =1 than the transition J = 1—+J = 27 We mentioned above
calculations which show that a change of AJ = +2, +3, etc, was
forbidden—in other words, the transition probability for all these changes is
zero. Precisely similar calculations show that the probability o!' all Fhanncs
with AJ = 4+ 1 is almost the same—all, to a good approximation, are
equally likely to occur.
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This does not mean, however, that all spectral lines will be equally
intense. Although the intrinsic probability that a single molecule in the
J = 0 state, say, will move to J = | is the same as that of a single molecule
moving from J = 1 to J = 2, in an assemblage of molecules, such as in a
normal gas sample, there will be different numbers of molecules in each
level to begin with, and therefore different total numbers of molecules will
carry out transitions between the various levels. In fact, since the intrinsic
probabilities are identical, the line intensities will be directly proportional to

the initial numbers of molecules in cach level,

The first factor governing the population of the levels is the Boltzmann
distribution (cf. Sec. 1.7.2). Here we know that the rotational energy in the
lowest level is zero, since J = 0, so, if we have Ny molecules in this state, the

number in any higher state is given by:

Ny/Ng = exp (— E,/kT) = exp { — BheJ(J + 1)/kT)

where, we must remember, ¢ is the velocity of light in em s~ ! when B is in
em "', A very simple calculation shows how N, varies with J: for example,
taking a typical value of B=2cm™', and room temperature (say

T = 300 K), the relative population in the J = | state is:

N, - 2663 x 10" x3x100x1x2
P, 138 x 10° 3 x 300

= exp (—0:019) = 0-98

and we see that there are almost as many molecules in the J = | state, at
equilibrium, as in the J = 0. In a similar way the two graphs of Fig. 2.4
have been calculated, showing the more rapid decrease of N,/N, with

increasing J and with larger B.

A second factor is also required—the possibility of degeneracy in the
energy states. Degeneracy is the existence of two or more energy states
which have exactly the same energy. In the case of the diatomic rotator we

may approach the problem in terms of its angular momentum.

The defining equations for the energy and angular momentum of a

rotator are:
E=}o® Pe=ilo

where 1 is the moment of inertia, w the rotational frequency (in radians per

second), and P the angular momentum, Rearrangement of these gives
P=./2E]
The energy level expression of Eq. (2.10) can be rewritten:

hl
2El = J(J + 1}4—":
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has been drawn taking values of B = Sand 10cm ' and T = 300 K in Eq. (2.18).

and hence
P=JMN +1) % = /J(J 4 1) units (2.19)

where, following convention, we take h/2r as the fundamental unit of angu-
lar momentum. Thus we see that P, like E, is quantized.

Throughout the above derivation P has been printed in bold face type
10 show that it is a vector—i.e., it has direction as well as magnitude. The
direction of the angular momentum vector is conventionally taken to be
along the axis about which rotation occurs and it is usually drawn as an
arrow of length proportional to the magnitude of the momentum. The
number of different directions which an angular momentum vector may
take up is limited by a quantum mechanical law which may be stated:

‘For integral values of the rotational quantum number (in this case J),
the angular momentum vector may only take up directions such that its
component along a given reference direction is zero or an integral multiple
of angular momentum units.’
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diminishes. Differentiation of Eq. (2.20) shows that the population is a max-
imum at the nearest integral J value to:

aF 1
1 1 . = — - 2—-2]
Maximum population: J . (2.21)
We have seen that line intensities are directly proportional to the popu-
lations of the rotational levels, hence it is plain that transitions between
levels with very low or very high J values will have small intensities while
the intensity will be a maximum at or near the J value given by Eq. (2.21).

2.3.3 The Effect of Isotopic Substitution

When a particular atom in a molecule is replaced by its isotope—an ele-
ment identical in every way except for its atomic mass—the resulting sub-
stance is identical chemically with the original. In particular there is no
appreciable change in internuclear distance on isotopic substitution. There
is, however, a change in total mass and hence in the moment of inertia and
B value for the molecule.

Considering carbon monoxide as an example, we see that on going
from "*C'®0O to '*C'®0 there is a mass increase and hence a decrease in
the B value. If we designate the "*C molecule with a prime we have B > B’
This change will be reflected in the rotational energy levels of the molecule
and Fig. 28 shows, much exaggerated, the relative lowering of the '*C
levels with respect to those of '*C. Plainly, as shown by the diagram at the
foot of Fig. 2.8, the spectrum of the heavier species will show a smaller
separation between the lines (28') than that of the lighter one (2B), Again
the effect has been much exaggerated for clarity, and the transitions due to
the heavier molecule are shown dashed.

Observation of this decreased separation has led to the evaluation of
precise atomic weights. Gilliam et al, as already stated, found the first
rotational absorption of '*C'®0 to be at 384235 cm ™', while that of
'3C'*0 was at 3-67337 cm™'. The values of B determined from these
figures are:

B=192118cm™" and B' = 183669 cm !
where the prime refers to the heavier molecule. We have immediately:
B h 8*l'e I g

where u is the reduced mass, and the internuclear distance is considered
unchanged by isotopic substitution. Taking the mass of oxygen to be
15-9994 and that of carbon-12 to be 12-00, we have:

I 15-9994m’ 12 + 15-9994

£ = 1046 =
p 159994 + m 12 x 159994
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Figure 2.8 The effect of isotopic substitution on the energy levels and hence rotational spec-
trum of a distomic molecule such as carbon monoxide,

from which m’, the atomic weight of carbon-13, is found to be 13-0007. This
is within 0-02 per cent of the best value obtained in other ways.

It is noteworthy that the data quoted above were obtained by Gilliam
et al. from '*C"*O molecules in natural abundance (i.e., about 1 per cent of
ordinary carbon monoxide). Thus, besides allowing an extremely precise
determination of atomic weights, microwave studies can give directly an
estimate of the abundance of isotopes by comparison of absorption inten-
sities.

2.3.4 The Non-Rigid Rotator

At the end of Sec. 2.3.1 we indicated how internuclear distances could be
calculated from microwave spectra. It must be admitted that we selected
our data carefully at this point—spectral lines for carbon monoxide, other
than the first, would not have shown the constant 2B separation predicted




MICROWAVE SPECTROSCOPY 58

when the bond is elastic, a molecule may have vibrational energy—i.c., the
bond will stretch and compress periodically with a certain fundamental
frequency dependent upon the masses of the atoms and the elasticity (or
force constant) of the bond. If the motion is simple harmonic (which, we
shall see in Chapter 3, is usually a very good approximation to the truth)
the force constant is given by:

k= 4n’@?c’u 222)

where @ is the vibration frequency (expressed in ¢cm '), and ¢ and u have
their previous definitions. Plainly the variation of B with J is determined by
the force constant—the weaker the bond, the more readily will it distort
under centrifugal forces.

The second consequence of clasticity is that the quantities r and B vary
during a vibration. When these quantities are measured by microwave tech-
niques many hundreds of vibrations occur during a rotation, and hence the
mecasured value is an average, However, from the defining equation of B we
have:

h h

" Bnllc Smicpr’

or
B o 1/r? (2.23)

since all other quantities are independent of vibration. Now, although in
simple harmonic motion a molecular bond is compressed and extended an
equal amount on cach side of the equilibrium distance and the average
value of the distance is therefore unchanged, the average value of 1/r? is not
equal to 1/r], where r, is the equilibrium distance. We can see this most
casily by an example. Consider a bond of equilibrium length 01 nm vibrat-
ing between the limits 0-09 and 011 nm. We have:

009 + 011

(e, = 2

-ol-r.

= 10305 nm?

1 (1/0-09)* + (1/0-11)?
<r'>... . 2

and therefore {r),, = . /1/103-5 = 00985 nm. The difference, though small,
is not negligible compared with the precision with which B can be measured
spectroscopically. And in fact the real situation is rather worse. We shall see
in Chapter 3 that real vibrations are not simple harmonic, since a real bond

may be stretched more easily than it may be compressed, and this usually
results in r,, being greater than r, .
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It is usual, then, to define three different sets of values for B and r. At
the equilibrium separation, r,, between the nuclei, the rotational constant I8
B,; in the vibrational ground state the average internuclear separation is r,
associated with a rotational constant B,; while if the molecule has excess
vibrational energy the quantities are r, and B,, where v is the vibrational
quantum number.

During the remainder of this chapter we shall ignore the small differ-
ences between By, B,, and B,—the discrepancy is most important in the
consideration of vibrational spectra in Chapter 3.

We should note, in passing that the rotational spectrum of hydrogen
fluoride given in Table 2.1 extends from the microwave well into the infra-
red region (cf. Fig. 1.4). This underlines the comment made in Chapter |
that there is no fundamental distinction between spectral regions, only dif-
ferences in technique. Since hydrogen fluoride, together with other diatomic
hydrides, has a small moment of inertia and hence a large B value, the
spacings between rotational energy levels become large and fall into the
infra-red region afier only a few transitions. Historically, indeed, the mo-
ments of inertia and bond lengths of these molecules were first determined
from spectral studies using infra-red techniques.

2.3.5 The Spectrum of a Non-Rigid Rotator

The Schrodinger wave equation may be set up for a non-rigid molecule, and
the rotational energy levels are found to be:

h b 2
E,= i V- g Y+ 1)
or
&y = Eylhe = BIJ 4 1) = DINJ 4+ 1) em™ ! (2.249)

where the rotational constant, B, is as defined previously, and the centrix
fugal distortion constant D, is given by: h

h'
© 22k
which is a positive quantity. Equation (2.24) applies for a simple harmonic
force field only; if the force ficld is anharmonic, the expression becomes :
&= BIJ+ ) =DIJ 4+ 1P + HIY + 1) + KINI +1)* - em ™"
(2.26)

where H, K, etc,, are small constants dependent upon the geometry of the
molecule. They are, however, negligible compared with D and most modern
spectroscopic data are adequately fitted by Eq. (2.24).

D cm ! (2.25)
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From the defining equations of B and D it may be shown directly that

16B°n?uc? 48°

= X -3 (2.27)
where @ is the vibrational frequency of the bond, and k has been expressed
according to Eq. (2.22). We shall see in Chapter 3 that vibrational fre-
quencies are usually of the order of 10° cm "', while B we have found to be
of the order of 10 cm ~'. Thus we see that D, being of the order 10 * em ¢,
is very small compared with B. For small J, therefore, the correction term
DJ*J + 1)* is almost negligible, while for J values of 10 or more it may
become appreciable.

Figure 2.9 shows, much exaggerated, the lowering of rotational levels
when passing from the rigid to the non-rigid diatomic molecule. The spectra
are also compared, the dashed lines connecting corresponding energy levels
and transitions of the rigid and the non-rigid molecules. It should be noted
that the selection rule for the latter is still AJ = + 1.

We may casily write an analytical expression for the transitions:

ﬂng -y ™= FJ = H[{J + IIJ + 2)--’{;’ + Il]
= D[ + 1)’ + 2 = J3J + 1))
=2B(J 4+ 1) —4D(J + 1) cm " (2.28)

where ¥, represents equally the upward transition from J to J + 1, or the
downward from J + 1 to J. Thus we see analytically, and from Fig. 2.9, that
the spectrum of the elastic rotor is similar to that of the rigid molecule
except that each line is displaced slightly to low frequency, the displacement
increasing with (J + 1)°.

A knowledge of D gives rise to two useful items of information. Firstly,
it allows us to determine the J value of lines in an observed spectrum. If we
have measured a few isolated transitions it is not always easy to determine
from which J value they arise; however, fitting Eq. (2.28) to them—
provided three consecutive lines have been measured —gives unique values
for B, D, and J. The precision of such fitting is shown by Table 2.1 where
the wavenumbers are calculated from the equation:

Vy=41122) 4+ 1) - 852 x10°%J + 1) em ™! (2.29)

Secondly, a knowledge of D enables us to determine—although rather
inaccurately —the vibrational frequency of a diatomic molecule. From the
above data for hydrogen fluoride and Eq. (2.27) we have:

Ll
@ = % = 1633 x 10 em~')?

D

L.,
@ = 4050 cm !
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lows the usual pattern: source, monochromator, beam direction, sample,
and detector. We shall discuss each in turn,

|. The source and monochromator. The usual source in this region is the
klystron valve which, since it emits radiation of only a very narrow
frequency range, is called ‘monochromatic’ and acts as its own mono-
chromator. The actual emission frequency is variable electronically and
hence a spectrum may be scanned over a limited range of frequencies
using a single klystron,

One slight disadvantage of this source is that the total energy radi-
ated is very small—of the order of milliwatts only. However, since all this
is concentrated into a narrow frequency band a sharply tuned detector
can be sufficiently activated to produce a strong signal.

2. Beam direction. This is achieved by the use of ‘waveguides’—hollow
tubes of copper or silver, usually of rectangular cross-section—inside
which the radiation is confined. The waveguides may be gently tapered
or bent to allow focusing and directing of the radiation. Atmospheric
absorption of the beam is considerable, so the system must be efficiently
evacuated.

3. Sample and sample space. In almost all microwave studies so far the
sample has been gaseous. However, pressures of 0-01 mmHg are suffi-
cient to give a reasonable absorption spectrum, so many substances
which are usually thought of as solid or liquid may be examined provid-
ed their vapour pressures are above this value. The sample is retained by
very thin mica windows in a piece of evacuated waveguide.

4. Detector. It is possible to use an ordinary superheterodyne radio receiver
as detector, provided this may be tuned to the appropriate high fre-
quency; however, a simple crystal detector is found to be more sensitive
and ecasier to use. This detects the radiation focused upon it by the
waveguide, and the signal it gives is amplified electronically for display
on an oscilloscope, or for permanent record on paper.

2.5.2 The Stark Effect

We cannot leave the subject of microwave spectroscopy without a brief
description of the Stark effect and its applications. A more detailed dis-
cussion is to be found in the books by Kroto and by Townes and Schawlow
mentioned in the bibliography.

Experimentally the Stark effect requires the placing of an electric field,
either perpendicular or parallel to the direction of the radiation beam,
across the sample. Practically it is simpler to have a perpendicular field. We
shall consider three advantages of this field.

I. A molecule exhibiting a rotational spectrum must have an electric dipole
moment, and so its rotational energy levels will be perturbed by the
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We saw in the previous chapter how the elasticity of chemical bonds led to
anomalous results in the rotational spectra of rapidly rotating molecules—
the bonds stretched under centrifugal forces. In this chapter we consider
another consequence of this elasticit y—the fact that atoms in a molecule do
not remain in fixed relative positions but vibrate about some mean position.
We consider first the case of a diatomic molecule and the spectrum which
arises if its only motion is vibration: then we shall deal with the more
practical case of a diatomic molecule undergoing vibration and rotation
simultancously; finally we shall extend the discussion to more complex
molecules.

3.1 THE VIBRATING DIATOMIC MOLECULE

3LI The Energy of a Diatomic Molecule

When two atoms combine to form a stable covalent molecule (e.g, HCI gas)
they may be said 1o do so because of some internal electronic rearrange-
mnt.MhmhMﬂdﬁmlﬁ:dﬂaﬁHMﬂMl

nuclei of both atoms, and between the negative electron ‘clouds’; on the
other there is an altraction between the nucleus of one atom and the
clectrons of the other, and vice versa. The two atoms settle at a mean

n
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o |mm—-—-—-

Figure 3.1 Parabolic curve of energy plotied against the extension or compression of a spring
obeying Hooke's law.

internuclear distance such that these forces are just balanced and the energy
of the whole system is at a minimum. Attempt to squeeze the atoms more
closely together and the repulsive force rises rapidly; attempt to pull them
further apart and we are resisted by the attractive force. In either case an
attempt to distort the bond requires an input of energy and so we may plot
energy against inlernuclear distance as in Fig. 3.1. At the minimum the
internuclear distance is referred to as the equilbrium distance r, , or more
simply, as the bond length.

The compression and extension of a bond may be likened to the behav-
iour of a spring and we may extend the analogy by assuming that the bond,
like a spring, obeys Hooke's law. We may then write

fo —kr—ry) @
where [ is the restoring force, k the force constant, and r the internuclear
distance. In this case the energy curve is parabolic and has the form
E = §kir - r,) (3.2)
This model of a vibrating diatomic molecule—the so-called simple har-
monic oscillator model-—while only an approximation, forms an excellent
starting point for the discussion of vibrational spectra.
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3.1.2 The Simple Harmonic Oscillator

In Fig. 3.1 we have plotted the energy according to Eq. (3.2). The zero of
curve and equation is found at r = r__ , and any energy in excess of this, for
cxample, ¢,, arises because of extension or compression of the bond. The
figure shows that il one atom (A) is considered to be stationary on the r = 0
axis, the other will oscillate between B and B”. If the energy is increased to
&, the oscillation will become more vigorous—that is 1o say, the degree of
compression or extension will be greater—but the vibrational frequency will
not change. An elastic bond, like a spring, has a certain vibration frequency
dependent upon the mass of the system and the force constant, but indepen-
dent of the amount of distortion. Classically it is casy to show that the
oscillation frequency is:

w2 (33)
- YT

where p is the reduced mass of the system (cf. Eq. (2.9)). To convert this
frequency to wavenumbers, the unit most usually employed in vibrational
spectroscopy, we must divide by the velocity of light, ¢, expressed in cm s~
(cf. Sec. 1.1), obtaining :

1 k
D, = =— [= it (34)
Oone. = Ixc I v

Vibrational energies, like all other molecular energies, are quantized,
and the allowed vibrationa! energies for any particular system may be
calculated from the Schrodinger equation. For the simple harmonic oscil-
lator these turn out to be:

E,=(+%ho, joules (v=0,1,2 ) (3.5)

where v is called the vibrational quantum number. Converting to the spectro-
scopic units, cm "', we have:

-.-f—;-{wi)&.._ em ™! (3.6)

as the only energies allowed to a simple harmonic vibrator. Some of these
are shown in Fig. 3.2

In particular we should notice that the lowest vibrational energy, ob-
tained by putting v = 0 in Eq. (3.5) or (3.6), is
Eo = tho,,, joules [, in Hz)
or
to = Y, em™! [y, in cm™"] (3.7)
The implication is that the diatomic molecule (and, indeed, any molecule)
can never have zero vibrational energy; the atoms can never be completely
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Figure 3.2 The allowed vibrational energy levels and transitions between them for a diatomic

at rest relative 1o each other. The quantity thw,, joules or {i,, cm™' is
known as the zero-point energy; it depends only on the classical vibration
frequency and hence (Eq. (3.3) or (3.4)) on the strength of the chemical bond
and the atomic masses.

The prediction of zero-point energy is the basic difference between the
wave mechanical and classical approaches to molecular vibrations. Clas-
sical mechanics could find no objection to a molecule possessing no vibra-
tional energy but wave mechanics insists that it must always vibrate to
some extent; the latter conclusion has been amply borne out by experiment.

Further use of the Schrédinger equation leads to the simple selection
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rule for the harmonic oscillator undergoing vibrational changes:
Av= % | (3.8)

To this we must, of course, add the condition that vibrational energy
changes will only give rise 10 an observable spectrum if the vibration can
interact with radiation, i.e. (cf. Chapter 1), if the vibration involves a change
in the dipole moment of the molecule. Thus vibrational spectra will be
observable only in heteronuclear diatomic molecules since homonuclear
molecules have no dipole moment.

Applying the selection rule we have immediately :

bsrae =0+ 1 + Do, ~ (v + D,
= @, tm™" (3.9a)
for emission and
Eapsy =, ocm™?! (3.9b)

for absorption, whatever the initial value of v.

Such a simple result is also obvious from Fig. 3.2—since the vibrational
levels are equally spaced, transitions between any two neighbouring states
will give rise to the same energy change. Further, since the difference
between energy levels expressed in cm ' gives directly the wavenumber of
the spectral line absorbed or emitted

Dppectroncoptc ™= & = (D, €M~ (3.10)

This, again, is obvious if one considers the mechanism of absorption or
emission in classical terms. In absorption, for instance, the vibrating mol-
ecule will absorb energy only from radiation with which it can coherently
interact (cf. Fig. 1.8) and this must be radiation of its own oscillation

frequency.

3.1.3 The Anharmonic Oscillator

Real molecules do not obey exactly the laws of simple harmonic motion;
real bonds, although elastic, are not so homogeneous as to obey Hooke's
law. If the bond between atoms is stretched, for instance, there comes a
point at which it will break—the molecule dissociates into atoms. Thus
although for small compressions and extensions the bond may be taken as
perfectly elastic, for larger amplitudes—say greater than 10 per cent of the
bond length—a much more complicated behaviour must be assumed.
Figure 3.3 shows, diagrammatically, the shape of the energy curve for a
typical diatomic molecule, together with (dashed) the ideal, simple harmo-
nic parabola.
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Figwre 33 The Morse curve: the energy of a diatomic molecule undergoing anharmonic
exlensions and compressions.

A purely empirical expression which fits this curve to a good approx-
imation was derived by P. M. Morse, and is called the Morse function:

E=D,[1—exp {alr, — r}])? (3.11)

where a is a constant for a particular molecule and D, is the dissociation
energy.

When Eq. (3.11) is used instead of Eq. (3.2) in the Schridinger equation,
the pattern of the allowed vibrational energy levels is found to be:

e,=+da,-@w+¥Pa,x, em™ (=0,1,2..) (EI12)

where @, is an oscillation frequency (expressed in wavenumbers) which we
shall define more closely below, and x, is the corresponding anharmonicity
constant which, for bond stretching vibrations, is always small and positive
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dustomic molecule undergoing anharmonic oscillations.

(= + 0-01), so that the vibrational levels crowd more closely together with
increasing v. Some of these levels are sketched in Fig. 3.4.

It should be mentioned that Eq. (3.12), like (3.11), is an approximation
only; more precise expressions for the energy levels require cubic, quartic,
e, terms in (v + §) with anharmonicity constants y,, z,. etc., rapidly
diminishing in magnitude. These terms are important only at large values of
v, and we shall ignore them.
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If we rewrite Eq. (3.12), for the anharmonic oscillator, as:

e,=a,{l -xv+div+d (3.13)

and compare with the energy levels of the harmonic oscillator (Eq. (3.6)), we
see that we can write:

B =@, {1 - x v+ §) (3.14)

Thus the anharmonic oscillator behaves like the harmonic oscillator but
with an oscillation frequency which decreases steadily with increasing v. If
we now consider the hypothetical energy state obtained by putting v = —4
' (at which, according to Eq. (3.13), ¢ = 0) the molecule would be at the
equilibrium point with zero vibrational energy. Its oscillation frequency (in
cm ') would be:
Wy, = @,

Thus we see that @, may be defined as the (hypothetical) equilibrium oscil-
lation frequency of the anharmonic system-—the frequency for infinitely
small vibrations about the equilibrium point. For any real state specified by
a positive integral v the oscillation frequency will be given by Eq. (3.14).
Thus in the ground state (v = 0) we would have:

g = @1 — §x) em”!
and

o = a1 — §x,) em™!
and we see that the zero point energy differs slightly from that for the

harmonic oscillator (Eq. (3.7).
The selection rules for the anharmonic oscillator are found to be:

Ave 4+ 1, +2 £3,...

Thus they are the same as for the harmonic oscillator, with the additional
possibility of larger jumps. These, however, are predicted by theory and
observed in practice to be of rapidly diminishing probability and normally
only the lines of Av= + 1, + 2, and % 3, at the most, have observable
intensity. Further, the spacing between the vibrational levels is, as we shall
shortly see, of order 10° cm ' and, at room temperature, we may use the
Boltzmann distribution (Eq. (1.12)) to show

N,.!_“ 663 x 10°* x 3 x 10'° < 10°
Ras Y 138 x 10 x 300

= exp (—48) = 0008,

In other words, the population of the v = | state is nearly 001 or some one
per cent of the ground state population. Thus, to a very good approx-
imation, we may ignore all transitions originating at v = | or more and
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restrict ourselves to the three transitions:

Lv=0—wv=]Av= + 1, with considerable intensity.

Ae=8,., = 8 ug
=1 + B, - x (1 + P, - (o, - B’x,0,)
=d/fl —2x,) em~! (3.15a)

2 v=0-p=2 Ap= + 2, with small intensity.
As = (2 + Do, — x 2 + Yo, - ($a, - dPx,a,)
=201 —3x,) em! (3.15b)
3 v=0-v=3 Av= +3, with normally negligible intensity.
Ac = (3 + Pa, - 4o, - @rx,a,}
=3l —4x,) em™! (3.15¢)

These three transitions are shown in Fig. 3.4. To a good approximation,
since x, = 001, the three spectral lines lie very close to @,, 2a,, and 3@, .
mﬁnenurd:,hulhdﬂuﬁmadbmrpﬁm.whikmmmrm,
and 3@, are called the first and second overtones, respectively. The spectrum
of HCI, for instance, shows a very intense absorption at 2886 cm ™', a
weaker one at 5668 cm "', and a very weak one at 8347 cm . If we wish to
find the equilibrium frequency of the molecule from these data. we must
solve any two of the three equations (cf. Egs. (3.15)):

@[l — 2x,) = 2886

21 — 3x,) = 5668

3ol — 4x,) = 8347 em !
and we find @, = 2990 cm "', x, = 0:0174. Thus we see that, whereas for
the ideal harmonic oscillator the spectral absorption occurred exactly at the

classical vibration frequency, for real, anharmonic molecules the observed
fundamental absorption frequency and the equilibrium frequency may dif-
fer considerably.

The force constant of the bond in HCI may be calculated directly from
Eq. (2.22) by inserting the value of @, :

k=arldlc’y Nm™!
=516 Nm!

when the fundamental constants and the reduced mass are insceried. These
data, together with that for a few of the very many other diatomic mol-
ecules studied by infra-red techniques, are collected in Table 3.1,

¥
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Table 3.1 Some molecular data for diatomic molecules determined by
infra-red spectroscopy
Vibration Anharmonicity Force constant Internuclear

Molecule  (em™") constant, x, (Nm™") distance r_ (nm)
HF 41385 00218 P66 00927
HCIt 29906 00174 516 01274
HBr 2649-7 00171 412 01414
HI 23095 o2 34 01609
CO 21607 00046 | 1902 01131
NO 19040 00073 1595 01151
1Cit 3842 0-0038 238 02321

t Data refers to the **Clisotope.

Although we have ignored transitions from v = 1 to higher states, we
should note that, if the temperature is raised or if the vibration has a
particularly low frequency, the population of the v = | state may become
appreciable. Thus at, say, 600 K (ie, about 300°C) N,.,/N,., becomes
exp (—2-4) or about 009, and transitions from v = 1 to v = 2 will be some
10 per cent the intensity of those from v = 0 to v = 1. A similar increase in
the excited state population would arise if the vibrational frequency were
500 cm ~ " instead of 1000 em "', We may calculate the wavenumber of this
transition as:

4 ve=l-sv=2 Av= 41, normally very weak,

Ae = 2§a), - 6x, @, — {{@, - 2}x,@,)
=-wfl —4x,) em™! (3.154)

Thus, should this weak absorption arise, it will be found close to and at
slightly lower wavenumber than the fundamental (since x, is small and
positive). Such weak absorptions are usually called hot bands since a high
temperature is one condition for their occurrence. Their nature may be
confirmed by raising the temperature of the sample when a true hot band
will increase in intensity.

We turn now to consider a diatomic molecule undergoing simultaneous
vibration and rotation.

3.2 THE DIATOMIC VIBRATING-ROTATOR

We saw in Chapter 2 that a typical diatomic molecule has rotational encrgy
separations of 1-10 cm ', while in the preceding section we found that the
vibrational energy separations of HCl were nearly 3000 cm ~'. Since the

Scanned By KagazScanner
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energies of the two motions are so different we may, as a first approx-
imation, consider that a diatomic molecule can execute rotations and vibra-
tions quite independently. This, which we shall call the Born-Oppenheimer
approximation (although, cf. Eq. (6:1), this strictly includes electronic
energies), is tantamount to assuming that the combined rotational—
vibrational energy is simply the sum of the separate energies:

IE"uml - Em + E\-Ih. {]011]63}
Erorm) = Err, + &y, (em ™) (3.16)

We shall see later in what circumstances this approximation does not apply.
Taking the separate expressions for ¢, and &, from Eqgs (2.26) and
(3.12) respectively, we have:

By . =8+ E,
=BJJ+1)=DIJ + 1P+ HIJ + 1) + ...
+ @+ o, — x v+ @, cm ! (3.17)

[nitially, we shall ignore the small centrifugal distortion constants D, H, etc.,
and hence write

Eyorat = = BJ{J + ” + {ﬂ + ‘i’k’-}. — I.{U + ‘hlﬂ'), (3.18)

Note, however, that it is not logical to ignore D since this implies that we
are treating the molecule as rigid, yet vibrating! The retention of D would
have only a very minor effect on the spectrum.

The rotational levels are sketched in Fig. 3.5 for the two lowest vibra-
tional levels, v = 0 and v = 1. There is, however, no attempt at scale in this
diagram since the separation between neighbouring J values is, in fact, only
some 1/1000 of that between the v values. Note that since the rotational
constant B in Eq. (3.18) is taken to be the same for all J and v (a conse-
quence of the Born-Oppenheimer assumption), the separation between two
levels of given J is the same in the v = 0 and v = 1 states.

It may be shown that the selection rules for the combined motions are
the same as those for each separately; therefore we have:

Av= +1, + 2, etc. Al = + | (3.19)

Strictly speaking we may also have Av = 0, but this corresponds to the
purely rotational transitions already dealt with in Chapter 2. Note carefully,
however, that a diatomic molecule, except under very special and rare cir-
cumstances, may not have AJ = 0; in other words a vibrational change must
be accompanied by a simultaneous rotational change.

In Fig. 3.6 we have drawn some of the relevant energy levels and
transitions, designating rotational quantum numbers in the v = 0 state as J"
and in the v = 1 state as J". The use of a single prime for the upper state
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Figwre 3.5 The rotational encrgy levels for two different vibrational states of a diatomic

molecule.

and a double for the lower state is conventional in all branches of spectros-
copy.

Remember (and cf. Eq. (2.20)) that the rotational levels J* are filled to
varying degrees in any molecular population, so the transitions shown will
occur with varying intensities. This is indicated schematically in the spec-
trum at the foot of Fig. 3.6.

An analytical expression for the spectrum may be obtained by applying
the selection rules (Eq. (3.19)) to the energy levels (Eq. (3.18)). Considering
only the v = 0 p = | transition we have in general:

A‘J.! =Ey o)~ Ep yuo
=BJ(J' + )+ Ha, - 2x, @, - (BIU" + 1) + d&, - ix, @)
=@, +BJ -~ N +J"+1) em™!

where, for brevity, we write @, for @1 — 2x,).

We should note that taking B 1o be identical in the upper and lower
vibrational states is a direct consequence of the Born-Oppenheimer
approximation—rotation is unaffected by vibrational changes.

Scanned By KagazScanner
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Figure 3.6 Some transitions between the rotational-vibrational energy levels of a diatomic
molecule together with the spectrum anising from them.

Now we can have:

L AJ=+Lie, ' =J"4+10ot) —J" = +1; hence
Aty =@, +2B(J" + I)em ™" J =01 2... (3.20a)
2A8)=~lie, ' =t %1l0t) -J)"= ~1;and

Aey =@, - 2B(J + 1)em™" J=012... (3.20b)
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34 BREAKDOWN OF THE BORN-OPPENHEIMER
APPROXIMATION: THE INTERACTION OF ROTATIONS
AND VIBRATIONS

So far we have assumed that vibration and rotation can proceed quite
independently of each other. A molecule vibrates some 10° times during the
course of a single rotation, however, so it is evident that the bond length
(and hence the moment of inertia and B constant) also changes continually
during the rotation. If the vibration is simple harmonic the mean bond
length will be the same as the equilibrium bond length and it will not vary
with vibrational energy; this is seen in Fig. 3.1. However, the rotational
constant B depends on 1/r? and, as shown by an example in Sec. 2.3.4, the
average value of this quantity is not the same as 1/r], where r is the
equilibrium length. Further an increase in the vibrational energy is accom-
panied by an increase in the vibrational amplitude and hence the value of B
will depend on the v quantum number,

In the case of anharmonic vibrations the situation is rather more com-
plex. Now an increase in vibrational energy will lead to an increase in the
average bond length—this is perhaps most evident from Fig. 3.4, The rota-
tional constant then varies even more with vibrational energy.

In general, it is plain that, since r,, increases with the vibrational
energy, B is smaller in the upper vibrational state than in the lower. In fact
an equation of the form:

B, =B, ~alv+4% (3.22)

gives, 1o a high degree of approximation, the value of B , the rotational
constant in vibrational level v, in terms of the equilibrium value B, and «, a
small positive constant for each molecule.
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35 THE VIBRATIONS OF POLYATOMIC MOLECULES

In this section and the next, just as in the corresponding one dealing with
the pure rotational spectra of polyatomic molecules, we shall find that
although there is an increase in the complexity, only slight and quite logical
extensions to the simple theory are adequate to give us an understanding of
the spectra. We shall need to discuss:

. The number of fundamental vibrations and their symmetry
2. The possibility of overtone and combination bands
3. The influence of rotation on the spectra.

3.5.1 Fundamental Vibrations and their Symmetry

Consider a molecule containing N atoms: we can refer to the position of
each atom by specifying three coordinates (e.g, the x, y, and z cartesian
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coordinates). Thus the total number of coordinate values is 3N and we say
the molecule has 3N degrees of freedom since each coordinate value may be
specified quite independently of the others. However, once all 3N coordi-
nates have been fixed, the bond distances and bond angles of the molecule
are also fixed and no further arbitrary specifications can be made.

Now the molecule is free to move in three-dimensional space, as a
whole, without change of shape. We can refer to such movement by noting
the position of its centre of gravity at any instant—to do this requires a
statement of three coordinate values. This translational movement uses
three of the 3N degrees of freedom leaving 3N — 3. In general, also, the
rotation of a non-linear molecule can be resolved into components about
three perpendicular axes (cf. Sec. 1.1). Specification of these axes also re-
quires three degrees of freedom, and the molecule is left with AN -6
degrees of freedom. The only other motion allowed to it 18 internal vibra-
tion, so we know immediatelv that a non-linear N-atomic molecule can
have 3N — 6 different internal vibrations:

Non-linear: 3N — 6 fundamental vibrations (3.24q)

I[; on the other hand, the molecule is lincar, we saw in Chapter 2 that
there is no rotation about the bond axis: hence only two degrees of rota-
tional freedom are required, leaving 3N — 5 degrees of vibrational
freedom-—one more than in the case of a non-linear molecule:

Linear: 3N — 5 fundamental vibrations (3.24b)

In both cases, since an N-atomic molecule has N — | bonds (for acyclic
molecules) between its atoms, N — | of the vibrations are bond-stretching
motions, the other 2N — 5 (non-linear) or 2N — 4 (linear) are bending mo-
tions,

Let us look briefly at examples of these rules. First. we see that for a
diatomic molecule (perforce linear) such as we have already considered in
this chapter: N = 2, 3N — 5§ = 1 and thus there can be only one fundamen-
tal vibration. Note, however, that the 3N — § rule says nothing about the
presence, absence, or intensity of overtone vibrations—these are governed
solely by anharmonicity.

Next, consider water, H,0. This ( Fig. 3.9) is non-linear and triatomic.
Also in the figure are the 3N — 6 = 3 allowed vibrational modes, the arrows
attached to each atom showing the direction of its motion during half of the
vibration. Each motion is described as stretching or bending depending on
the nature of the change in molecular shape.

These three vibrational motions are also referred to as the normal
modes of vibration (or normal vibrations) of the molecule: in general a
normal vibration is defined as a molecular motion in which all the atoms
move in phase and with the same frequency.



INFRA-RED SPECTROSCOPY 93

C, axis

PRl el

(@) symmertric streiching ib) symmetric bending  (¢) antisymmetric stretch
3651 7em”"! 15950 em™"' 37558 em ™!
v, parallel (|) v,, parallel (]) vy, perpendicular { L)

Figure 39 The symmetry of the water molecule and s three fundamental vibrations. The
maotion of the oxygen atom, which must occur to keep the centre of gravity of the molecule
stationary, is here ignored.

Further each motion of Fig. 3.9 is labelled either symmetric or anti-
symmetric. It is not necessary here to go far into the matter of general
molecular symmetry since other excellent texts already exist for the inter-
ested student, but we can see quite readily that the water molecule contains
some elements of symmetry. In particular consider the dashed line at the
top of Fig. 3.9 which bisects the HOH angle; if we rotate the molecule
about this axis by 1807 its final appearance is identical with the imitial one.
This axis is thus referred to as a C, axis since twice in every complete
revolution the molecule piesents an identical aspect to an observer. This
particular molecule has only the one rotational symmetry axis, and it is
conventional to refer the molecular vibrations to this axis. Thus consider
the first vibration, Fig. 3.9(a). If we rotate the vibrating molecule by 180" the
vibration is quite unchanged in character—we call this a symmetric vibra-
tion. The bending vibration, v,, is also symmetric. Rotation of the stretch-
ing motion of Fig. 3.9(c) about the C, axis, however, produces a vibration
which is in antiphase with the original and so this motion is described as
the antisymmetric stretching mode.

In order to be infra-red active, as we have seen, there must be a dipole
change during the vibration and this change may take place either along
the line of the symmetry axis (parallel to it, or ||) or at right angles to the
line (perpendicular, L). Figure 3.10 shows the nature of the dipole changes
for the three vibrations of water, and justifies the labels parallel or perpen-
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Figure .10 The change in the electric dipole moment produced by each vibration of the water
molecule. This is seen 10 occur either along () or across (1), the symmetry axis. The ampli-
tudes are greatly exaggerated for clarity.

dicular attached to them in Fig. 3.9. We shall see later that the distinction is
important when considering the influence of rotation on the spectrum.

Finally the vibrations are labelled in Fig. 39 as v,, v,, and v,. By
convention it is usual to label vibrations in decreasing frequency within
their symmetry type. Thus the symmetric vibrations of H,0 are labelled v,
for the highest fully symmetric frequency (3651-7 ¢em '), and v, for the next
highest (1595:0 cm " '); the antisymmetric vibration at 37558 cm ! is then
labelled v, .

Our final example is of the linear triatomic molecule CO,, for which
the normal vibrations are shown in Fig. 3.11. For this molecule there are
two different sets of symmetry axes. There is an infinite number of twofold
axes (C,) passing through the carbon atom at right angles to the bond
direction, and there is an co-fold axis (C_) passing through the bond axis
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Figure 3.11 The symmetry and fundamental vibrations of the carbon dioxide molecule.

itself (this is referred to as co-fold since rotation of the molecule about the
bond axis through any angle gives an identical aspect). The names sym-
metric stretch and antisymmetric stretch are self-evident, but it should be
noted that the symmetric stretch produces no change in the dipole moment
(which remains zero) so that this vibration is not infra-red active; the vibra-
tion frequency may be obtained in other ways, however, which we shall
discuss in the next chapter.

For linear triatomic molecules, 3N — § = 4, and we would expect four
vibrational modes instead of the three shown in Fig. 3.11. However, con-
sideration shows that v, in fact consists of two vibrations—one in the plane
of the paper as drawn, and the other in which the oxygen atoms move
simultaneously into and out of the plane. The two sorts of motion are, of
course, identical in all respects except direction and are termed degenerate;
they must, nevertheless, be considered as separate motions, and it is always
in the degeneracy of a bending mode that the extra vibration of a linear
molecule over a non-linear one is to be found.

It might be thought that v, of H,O (Fig. 3.9(b)) could occur by the
hydrogens moving simultaneously in and out of the plane of the paper.
Such a motion is not a vibration, however, but a rotation. As the molecule
approaches lincarity this rotation degenerates into a vibration, and the
molecule loses one degree of rotational freedom in exchange for one of
vibration.



Table 3.4 Characteristic stretching frequencies of some molecular

groups

Approximate frequency Approximate frequency
Group fem™") Group fem™ %)
—OH 3600 >C=0 1750- 1600
—NH, 3400 >C=C< 1650
=CH 3300 >C=N- 1600

H >C—C=
O, 3060 >C—N< 1200-1000
2 »C—0=.
=CH, 3030
>C=8§ 1100

—CH, 2970 (asym. stretch)

2870 (sym. stretch) >C—F 1050

1460 (asym. deform.)

l]TS_ {sym. deform.) =C—Cl 725
—CH,— 2930 (asym. stretch) > C—Br 650

2860 (sym. siretch)

1470 (deformation) > C—1 550
—SH 2580
—C=N 2250
—C=C— N0
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replaced by sulphur; the question might be asked: is the molecule CH,CO.
SH, or CH,CS.OH?I The infra-red spectrum gives a very clear answer. It
shows a very sharp absorption at about 1730 cm ~*, and one at about 2600
cm ', and these are consistent with the presence of >C=0 and —SH
groups, respectively (cf. Table 3.4). Also there is little or no absorption at
1100 em ™" (apart from the general background caused by the skeletal
vibrations), thus indicating the absence of > C=S.

The idea of group vibrations also covers the motions of isolated fea-
tures of a molecule which have frequencies not too near those of the skeletal
vibrations. Thus isolated multiple bonds (for example, >C=C< or
—C=C—) have frequencies which are highly characteristic. When, how-

cver, two such groups which, in isolation, have comparable frequencies,
~ occur together in a molecule, resonance occurs and the group frequencies
may be shifted considerably from the expected value. Thus the isolated

R
carbonyl in a ketone ( >C—-—0) and the > C=C < double bond, have
e

group frequencies of 1715 and 1650 cm ™" respectively; however, when the
grouping }C=(|':—(l3=0 occurs, their separate frequencies are shifted to

1675 and about 1600 cm ™' respectively and the intensity of the > C=C <
absorption increases to become comparable with that of the inherently
strong > C=0 band (cf. Fermi resonance, p. 97). Closer coupling of the
two groups, as in the ketene radical, > C=C=0, gives rise to absorptions
at about 2100 and 1100 em ™', which are very far removed from the ‘charac-
teristic’ frequencies of the separate groups.

Shifts in group frequencies can arise in other ways too, particularly as
the result of interactions between different molecules. Thus the —OH
stretching frequency of alcohols is very dependent on the degree of hydro-
gen bonding, which lengthens and weakens the —OH bond, and hence
lowers its vibrational frequency. If the hydrogen bond is formed between
the —OH and, say, a carbonyl group, then the latter frequency is also
lowered, although to a less extent than the —OH, since hydrogen bonding
weakens the > C=0 linkage also. However, shifts in group frequency posi-
tion caused by resonance or intermolecular effects are in themselves highly
characteristic and very useful for diagnostic purposes.

In a similar way a change of physical state may cause a shift in the
frequency of a vibration, particularly if the molecule is rather polar. In
general the more condensed phase gives a lower frequency: v, > vy =
Viotution > Vyotia- Thus in the relatively polar molecule HCI there is a shift of
some 100 cm ™" in passing from vapour to liquid and a further decrease of
20 em ™' on solidification. Non-polar CO,, on the other hand, shows
negligible shifts in its symmetric vibrations (Fig. 3.11(a) and (b)) but a
lowering of some 60 cm ™! in v, on solidification.



CHAPTER

SIX

ELECTRONIC SPECTROSCOPY
OF MOLECULES

In the first section of this chapter we shall discuss, in some detail, the
electronic spectra of diatomic molecules. We shall find that the overall
appearance of such spectra can be considered without assuming any know-
ledge of molecular structure, without reference to any particular electronic
transition, and indeed, with little more than a formal understanding of the
nature of electronic transitions within molecules. In Sec. 6.2 we shall sum-
marize modern ideas of molecular structure and show how these lead to a
classification of electronic states analogous to the classification of atomic
states discussed in the previous chapter. Section 6.3 will extend the ideas of
Secs 6.1 and 6.2 to polyatomic molecules and Sec. 6.4 will deal briefly with
experimental techniques.

6.1 ELECTRONIC SPECTRA OF DIATOMIC MOLECULES

6.1.1 The Born-Oppenheimer Approximation

As a first approach to the electronic spectra of diatomic molecules we may
use the Born-Oppenheimer approximation previously mentioned in Sec.
3.2: in the present context this may be written:

Ewa ™ Elhﬂmlt + E ipraticn + E rointicn (6.1)

197
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which implies that the electronic, vibrational, and rotational energies of a
molecule are completely independent of each other. We shall see later to
what extent this approximation is invalid. A change in the total energy of a
molecule may then be written:

AE = AE, +AE, +AE_ )

or
The approximate orders of magnitude of these changes are:
Ay, = Ac,, x 10" = Ae, x 10* (6.3)

and so we sec that vibrational changes will produce a ‘coarse structure’ and
rotational changes a “fine structure’ on the spectra of electronic transitions.
We should also note that whereas pure rotation spectra (Chapter 2) are
shown only by molecules possessing a permanent eleciric dipole moment,
and vibrational spectra (Chapter 3) require a change of dipole during the
motion, electronic spectra are given by all molecules since changes in the
electron distribution in a molecule are always accompanied by a dipole
change. This means that homonuclear molecules (for example, H; or N,),
which show no rotation or vibration-rotation spectra, do give an electronic
spectrum and show vibrational and rotational structure in their spectra
from which rotational constants and bond vibration frequencies may be
derived.

Initially we shall ignore rotational fine structure and discuss the
appearance of the vibrational coarse structure of spectra.

6.1.2 Vibrational Coarse Structure: Progressions
Ignoring rotational changes means that we rewrite Eq. (6.1) as

Ewi=Eyy +Ep
or

Crsd ™ Egppe. + 8, cm™! (6.4)
From Eq. (3.12) we can write immediately :
bowt = Lgge. + (0 + P, — xfo + @, em ' (0=0,1,2,..) (69

The encrgy levels of this equation are shown in Fig. 6.1 for two arbitrary
vﬂuuof:,u,.hshpuviomchmmlhehwmmmdiﬁntuhhdby
nmpmqf.q_‘;-muuuppummwnml“mm
(v, e ) Note that such a diagram cannot show correctly the relative
scparations between levels of different ¢, , on the one hand, and those
with different ¢' or ¢v* on the other (cf Eq. (6.3)), but that the spacing
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between the upper vibrational levels 1s deliberately shown to be rather
smaller than that between the lower; this is the normal situation since an
excited electronic state usually corresponds to a weaker bond in the mol-
ecule and hence a smaller vibrational wavenumber @, .

There is essentially no selection rule for v when a molecule undergoes
an electronic transition, i.e., every transition ¢” — ¢’ has some probability,
and a great many spectral lines would, therefore, be expected. However, the
situation is considerably simplified if the absorption spectrum is considered
from the electronic ground state. In this case, as we have seen in Sec. 3.1.3,
virtually all the molecules exist in the lowest vibrational state, that is,
" = 0, and s0 the only transitions 1o be observed with appreciable intensity
are those indicated in Fig 6.1. These are conventionally labelled according
to their (v, v") numbers (note: upper state first), that is, (0, 0), (1, 0), (2, 0),
ctc. Such a set of transitions is called a band since, under low resolution,
cach line of the set appears somewhat broad and diffuse, and is more
particularly called a v progression, since the value of ¢ increases by unity
for each line in the set. The diagram shows that the lines in & band crowd
together more closely at high frequencies; this is a direct consequence of the
anharmonicity of the upper state vibration which causes the excited vibra-
tional levels 1o converge.

i §
: 4
] L}
i J
I
{
v =0 Cotee
1 ]
3
F
1
0 =) e
0.0 1.0 10 10 4np 5D &0
cm " —

Figure 6.1 The vibrational ‘coarse” structure of the band formed during electronic absorption
from the ground (v = 0) state 1o a higher state

Scanned By KagazScanner




ELECTRONIC SPECTROSCOPY OF MOLECULES 201

Energy

. " ——— Inicrnuclear distance

Figure 6.2 The probability distribution for a diatomic molecule according to the quantum
theory mtuddm-mﬁkdymhhudtlmmnjmbythmﬂuﬂth
curve for each vibrational state

limits of the curve. Classical theory would suggest that the oscillating atom
would spend most of its time on the curve at the turning point of its motion,
since it is moving most slowly there; quantum theory, while agreeing with
this view for high values of the vibrational quantum number, shows that for
o = 0 the atom is most likely 1o be found at the centre of its motion, ie., at
the equilibrium internuclear distance r,, . For v =1,2.3, ... the most prob-
able positions steadily approach the extremities until, for high v, the quantal
and classical pictures merge. This behaviour is shown in Fig. 6.2 where we
plot the probability distribution in cach vibrational state against inter-
nuclear distance. Those who have studied quantum mechanics will realize
that Fig. 6.2 shows the variation of ¢* with internuclear distance, where ¥
is the vibrational wave function.

If a diatomic molecule undergoes a transition into an upper electronic
state in which the excited molecule is stable with respect to dissociation into
its atoms. then we can represent the upper state by a Morse curve similar in
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Figure 6.3 The operation of the Franck-Condon principle for (a) internuclear distances equal
in upper and lower states, (b) upper-state internuclear distance a little greater than that in the
lower state, and () upper-state distance considerably greater.

outline to that of the ground electronic state. There will probably (but not
necessarily) be differences in such parameters as vibrational frequency, equi-
librium internuclear distance, or dissocation encrgy between the two states,
but this simply means that we should consider each excited molecule as a
new, but rather similar, molecule with a different, but also rather similar,
Morse curve.

Figure 6.3 shows three possibilities. In (a) we show the upper electronic
state having the same equilibrium internuclear distance as the lower. Now
the Franck-Condon principle suggests that a transition occurs vertically on
this diagram, since the internuclear distance does not change, and so if we
consider the molecule to be initially in the ground state both clectronically
(") and vibrationally (v = 0), then the most probable transition is that
indicated by the vertical line in Fig. 6.3(a). Thus the strongest spectral line
of the v” = 0 progression will be the (0, 0). However, the quantum theory



may take up any value of kinetic energy, the transitions are not quantized
and a continuum results. This is shown at the foot of the figure. We con-
sider the phenomenon of dissociation more fully in the next section.

The situation is rather more complex for emission spectra and for
absorption from an excited vibrational state, for now transitions take place
from both ends of the vibrational limits with equal probability; hence each
progression will show two maxima which will coincide only il the equi-
librium separations are the same in both states.

6.1.4 Dissociation Energy and Dissociation Products

Figure 6.4(a) and (b) shows two of the ways in which electronic excitation
can lead to dissociation (a third way called predissociation, will be con-
sidered in Sec. 6.1.7). Part (a) of the figure represents the case, previously
discussed, where the equilibrium nuclear separation in the upper state is
considerably greater than that in the lower. The dashed line limits of the
Morse curves represent the dissociation of the normal and excited molecule
into atoms, the dissociation energies being Dj and D}, from the v = 0 state
in each case. We see that the total energy of the dissociation products (i.e.,
atoms) from the upper siate is greater by an amount called E_, than that of
the products of dissociation in the lower state. This energy is the excitation
energy of one (or rarely both) of the atoms produced on dissociation.

We saw in the previous section that the spectrum of this system consists
of some vibrational transitions (quantized) followed by a continuum {non-
quantized transitions) representing dissociation. The lower wavenumber
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Figure 6.4 Nustrating dissociation by excitation into (a) a stable upper stale, and (b) a contin-
Uous upper state

Iilmit of this continuum must represent just sufficient energy to cause disso-
caaﬁoq and no more (i.e., the dissociation products separate with virtually
zero kinetic energy) and thus we have

Visantimeum umimy = Do + E, om~} 6.7)

and we see that we can measure D}, the dissociation energy, if we know
E,, , the excitation energy of the products, whatever they may be. Now
although the excitation energy of atoms to various electronic states ir:
md_nl_v m'ealsur-ble by atomic spectroscopy (cf. Chapter 5), the precise state
of ?umanon products is not always obvious, There are several ways in
which the total energy Dj + E,, may be scparated into its components,
however; here we shall mention just two,

Firstly, thermochemical studies often lead to an approximate value of
Dy and hence, since Dfj + E,, is accurately measurable spectroscopically, a
roulh value for E,, is obtained. When the spectrum of the atomic products
is studied, it usually happens that only one value of excitation energy
corresponds at all well with E,, . Thus the state of the products is known,
E.. measured accurately, and a precise value of D) deduced.

Secondly, if more than one spectroscopic dissociation limit is found,
corresponding to dissociation into two or more different states of products
with different excitation energies, the separations between the excitation
energies are often found to correspond closely with the separations between
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with diff inati gies, the separations between the excitation
encrgies are often found to correspond closely with the separations between
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designate [ values of 0, 1, 2, . . .. However, it will be remembered that in
order to discuss the components of | we required to invoke some reference
direction called the z direction; in a diatomic molecule a reference direction
is already quite obviously specified—the inernuclear axis, or bond—and it
would be perverse (not to say wrong) to discuss the components of | along
any other direction. Furthermore, a force-field exists along this direction
due to the presence of two nuclear charges; therefore different | components
are not degenerate but represent different energies.

The axial component of orbital angular momentum is of more import-
ance in molecules than the momentum itself and for this reason it is given
the special symbol 4. Formally 4 = |[,|, so that A4 takes positive integral
values or is zero, and we designate the i state of an electron in a molecule
by using the small Greek letters corresponding to the s, p, d, . . . of atomic
nomenclature. Thus we have, for

I,=0 +1, £2 £3,...
A=01213...
and the symbols are o,nd d,...

Since 4 has positive values only, each 4 state with 4 > 0 is doubly degener-
ate, because it corresponds to [, being both positive and negative. The
significance of 4 is that the axial component of orbital angular
momentum = ih/2n or A units.

The total orbital angular momentum of several electrons in a molecule
can be discussed, as for atoms, in terms of the quantum number L = I,
Xl —= 1, etc, with L= /L(L + 1)h/2r, but again the axial component,
denoted by A, is of greatest significance. Since, by definition, all individual
4, lie along the internuclear axis, their summation is particularly simple. We

have

A =|E4| (6.29)
and states are designated by capital Greek letters I, I, A, etc, for A =0, |1,
- AFE— We must take into account, when using Eq. (6.29), that the individ-

ual 4, may have the same or opposite directions and all possible com-
binations which give a positive A should be considered. Thus for a = and a
& electron (4; = 1, 4; = 2) we could have A = | or 3 (but not — 1), that is, a
IT or a @ state.

Electron spin momentum, on the other hand, is not greatly affected by
the electric field of the two nuclei ~we say the spin-axial coupling is weak,
whereas the orbital-axial coupling is usually strong. Normally, therefore,
we use the same notation for electronic_spin in molecules as in atoms; the
total spin momentum S is given by /S(S + 1) where the total spin quan-
tum number § is:

S=IS5,.E5,~-1E5,-2...,%0r0 (6.30)

Scanned By KagazScanner







e il
5 _(;L"'li.&’ |
i) L

Jédﬁéh
.ﬁ::::‘t:\\k

dﬁM
OLECUIAR “\
0\

w
S
PEC TROSCOPY
ﬂo

‘?:f::::_
S ”ﬂ
10 : 830 >l

= &u.ao l il > SO
+* » b ’ ;

2021
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3 to about 210 nm. Fine strimlun: if desired, may hc mmlbd_bx
using cyclohexane or other hydrm:nr‘lmn solvents which, being less
‘polar, have least interaction with the absorbing molecules. Table
1-1 gives a list of common solvents and the minimum wavelength
o from which they may be used in 1 cm. cells.

| The effect of solvent polarity on the position of maxima is dis-
. cussed in section 1-9. '

1. Selection Rules and Inteusity A »,--;.._J:‘
The irradiation of organi¢ conipounds ﬁf or may not give rise

e e to excitation of electrons from one orbital (usually a lone-pair or
" bonding orbital) to another orbital (usually a nnn-bmmding or anti-
bonding orbital). It can be shown that: ._w- |

g = ﬂ-E'leEF“P :—"

“} rﬁ.—r‘\ {1 3)

whm Pis callhd the transition probability (with values from 0 to 1)
and a is thc.ia;m_mﬁ_gf the absorbing system; the absorbing
system is ysually called a chromophore. With common chromo-
: : phores of the order of 10 A long, a transition of unit probability will
3 haveans?almuflﬂ’ThiamclhsutathchighestnhwvndMum,

: : though—with unusually !ohg chiromophores— values in excess of
: this have been measured. IIF practice, a chromophore giving rise to
l % absorption by-a fully allowed transition will have & values greater
i than about g.ﬂm. whlla unn mth low transition probabilities
l_ G )0. The important point is that, in general,
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3. Nuclear Magnetic
Resonance Spectra

3-1. Note. 33 Nuclear Spin and (he Specirometer, 3.3 Chemical
Shift, 3-4, Anisotropy of Carbony!, Double Hond and Aromagic § Vatems,
3-5, Spin-Spin Coupling, 3-¢, Integration, 3.7, Simple Spin-Spin
Splitting Patterns, 3-8. Factors Affecting Coupling Constans, 3-9,
Long-Range Spin-Spin Coupling. 3-10. Taliles of Coupling Constunis,
3-11. Shifr Reagens, 312, Spin Decoupling, 3-13, 3¢ NMR Specira,
Bibliograpiy. Catalogues and literature citations.

3-1. Note ;

Many of the NMR spectra illustrated in this chapter are repro-
duced from the Varian NMR catalogucs, volumes 1 and 2, with
the permission of Varian Associates to whom we express our most
sincere thanks. Fach spectrum is referenced in terms of its catalogue
number. These spectra have been determined in_ dilute solution

(ca. 7 per cent) in CDCJ 3 and at 60 MHzf. -
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