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Physical Optics /Assist. Prof. Dr. Muwafaq Fadhil Al-Mishlab 

6th lecture [ Michelson interferometer, Fabry-Perot interferometer] 

1. Michelson Interferometer   

The Michelson interferometer is an important example of amplitude division. Here the two beams obtained by 

amplitude division are sent in quite different directions against plane mirrors, whence they are brought together 

again to form interference fringes. The arrangement is shown schematically in Figure (1). The main optical 

parts consist of two highly polished plane mirrors M1 and M2 and two plane-parallel plates of glass Gl and G2 

Sometimes the rear side of the plate G1 is lightly silvered (shown by the heavy line in the figure) so that the 

light coming from the source S is divided into (1) a reflected and (2) a transmitted beam of equal intensity. The 

light reflected normally from mirror M1 passes through G1 a third time and reaches the eye as shown. The light 

reflected from the mirror M2 passes back through G2 for the second time, is reflected from the surface of G1 

and into the eye. 

 

Fig. 1: Diagram of the Michelson interferometer. 

 

The purpose of the plate G2, called the compensating plate, is to render the path in glass of the two rays equal. 

This is not essential for producing fringes in monochromatic light, but it is indispensable when white light is 

used. 
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The mirror M1 is mounted on a carriage C and can be moved along the well-machined ways or tracks T. This 

slow and accurately controlled motion is accomplished by means of the screw V, which is calibrated to show 

the exact distance the mirror has been moved. To obtain fringes, the mirrors M1 and M2 are made exactly 

perpendicular to each other by means of screws shown on mirror M2. 

Even when the above adjustments have been made, fringes will not be seen unless two important requirements 

are fulfilled. First, the light must originate from an extended source (A sodium flame or a mercury arc). A 

point source or a slit source, as used in the methods previously described, will not produce the desired system 

of fringes in this case. The reason for this will appear when we consider the origin of the fringes. Second, the 

light must in general be monochromatic, or nearly so. 

In order to obtain the fringes, the next step is to measure the distances of M1 and M2 to the back surface of G1 

roughly with a millimeter scale and to move M1 until they are the same to within a few millimeters. The mirror 

M2 is now adjusted to be perpendicular to M1 by observing the images of a common pin, or any sharp point, 

placed between the source and G1. Two pairs of images will be seen, one coming from reflection at the front 

surface of G1 and the other from reflection at its back surface. When the tilting screws on M2 are turned until 

one pair of images falls exactly on the other, the interference fringes should appear. When they first appear, 

the fringes will not be clear unless the eye is focused on or near the back mirror M1, so the observer should 

look constantly at this mirror while searching for the fringes. 

Circular fringes are produced with monochromatic light when the mirrors are in exact adjustment and are the 

ones used in most kinds of measurement with the interferometer. Their origin can be understood by reference 

to the diagram of Figure (2). Here the real mirror M2 has been replaced by its virtual image 𝑀2
\
 formed by 

reflection in G1. 𝑀2
\
 is then parallel to M1. Owing to the several reflections in the real interferometer, we may 

now think of the extended source as being at L, behind the observer, and as forming two virtual images L1 and 

L2 in M1 and 𝑀2
\
;. These virtual sources are coherent in that the phases of corresponding points in the two are 

exactly the same at all instants. If d is the separation M1M, the virtual sources will be separated by 2d. When 

d is exactly an integral number of half wavelengths, i.e., the path difference 2d equal to an integral number of 

whole wavelengths, all rays of light reflected normal to the mirrors will be in phase. Rays of light reflected at 

an angle, however, will in general not be in phase. The path difference between the two rays coming to the eye 

from corresponding points P' and P" is 2d cos e, as shown in the figure. The angle θ is necessarily the same for 

the two rays when M1 is parallel to 𝑀2
\
 so that the rays are parallel. Hence when the eye is focused to receive 

parallel rays (a small telescope is more satisfactory here, especially for large values of d) the rays will support 

each other to produce maxima for those angles θ satisfying the relation: 

2 d cos θ = m λ --------------------------- (1) m = 0,1, 2, …   (Bright fringes) 
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Fig. 2: Formation of circular fringes in the Michelson interferometer. 

 

Since for a given m, λ, and d the angle θ is constant, the maxima will lie in the form of circles about the foot 

of the perpendicular from the eye to the mirrors. By expanding the cosine, it can be shown from Eq. (l) that the 

radii of the rings are proportional to the square roots of integers, as in the case of Newton's rings. The intensity 

distribution across the rings follows Eq.  𝐼 =  𝐴2 = 4 𝑎2 𝑐𝑜𝑠2  
𝛿

2
  , in which the phase difference is given by 

𝛿 =  
2𝜋

𝜆
 2 𝑑 cos 𝜃  

Fringes of this kind, where parallel beams are brought to interference with a phase difference determined by 

the angle of inclination e, are often referred to as fringes of equal inclination.  

The upper part of Figure (3) shows how the circular fringes look under different conditions. Starting with M1 

a few centimeters beyond M2, the fringe system will have the general appearance shown in (a) with the rings 

very closely spaced. If M1 is now moved slowly toward M2 so that d is decreased, Eq. (1) shows that a given 

ring, characterized by a given value of the order m, must decrease its radius because the product 2d cos θ must 

remain constant. The rings therefore shrink and vanish at the center, a ring disappearing each time 2d decreases 

by λ, or d by λ/2. This follows from the fact that at the center cos θ = 1, so that Eq. (1) becomes 

2 d = m λ 
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Fig. 3: Appearance of the various types of fringes observed in the Michelson interferometer. Upper row, circular 

fringes. Lower row, localized fringes. 

 

To change m by unity, d must change by λ/2. Now as M1 approaches M2 the rings become more widely spaced, 

as indicated in Fig.3(b), until finally we reach a critical position where the central fringe has spread out to cover 

the whole field of view, as shown in (c). This happens when M1 and 𝑀2
\
 are exactly coincident, for it is clear 

that under these conditions the path difference is zero for all angles of incidence. If the mirror is moved still 

farther, it effectively passes through 𝑀2
\
, and new widely spaced fringes appear, growing out from the center. 

These will gradually become more closely spaced as the path difference increases, as indicated in (d) and (e) 

of the figure. 

2. Fabry-Perot Interferometer 

This instrument utilizes the fringes produced in the transmitted light after multiple reflection in the air film 

between two plane plates thinly silvered on the inner surfaces (Figure. 4). Since the separation d between the 

reflecting surfaces is usually fairly large (from 0.1 to 10 cm) and observations are made near the normal 

direction, the fringes come under the class of fringes of equal inclination. To observe the fringes, the light from 

a broad source (S1 S2) of monochromatic light is allowed to traverse the interferometer plates E1E2 Since any 

ray incident on the first silvered surface is broken by reflection into a series of parallel transmitted rays, it is 

essential to use a lens L, which may be the lens of the eye, to bring these parallel rays together for interference. 
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Fig. 3: Fabry-Perot interferometer E1E2 set up to show the formation of circular interference fringes from 

multiple reflections. 

 

In Fig. 4 a ray from the point P1 on the source is incident at the angle (θ), producing a series of parallel rays at 

the same angle, which are brought together at the point P2 on the screen AB. It is to be noted that P2 is not an 

image of P1. The condition for reinforcement of the transmitted rays is given by Eq. (2 n d cos θ = m λ) with n 

= 1 for air, so that 

2 d cos θ = m λ   (maxima)  

This condition will be fulfilled by all points on a circle through P2 with their center at 0, the intersection of the 

axis of the lens with the screen AB. When the angle (θ) is decreased, the cosine will increase until another 

maximum is reached for which m is greater by 1,2, ..., so that we have for the maxima a series of concentric 

rings on the screen with 0 as their center. the spacing of the rings is the same as for the circular fringes in that 

instrument and they will change in the same way with change in the distance d. In the actual interferometer 

one plate is fixed, while the other may be moved toward or away from it on a carriage riding on accurately 

machined ways by a slow-motion screw. 

3. Chromatic Resolving Power 

The great advantage of the Fabry-Perot interferometer over the Michelson instrument lies in the sharpness of 

the fringes. The difference in the appearance of the fringes for the two instruments is illustrated in Figure (4). 

where the circular fringes produced by a single spectral line are compared. If a second line were present, it 

would merely reduce the visibility in (a) but would show as a separate set of rings in (b). As will appear later, 

this fact also permits more exact inter-comparisons of wavelength.  



Michelson interferometer, Fabry-Perot interferometer 

6 
 

 

Fig. 4: Comparison of the types of fringes produced with (a) the Michelson 

interferometer and (b) the Fabry-Perot interferometer with surfaces of reflectance 0.8. 

 

It is important to know how close together two wavelengths may be and still be distinguished as separate rings. 

The ability of any type of spectroscope to discriminate wavelengths is expressed as the ratio λ /Δλ, where λ is 

the mean wavelength of a barely resolved pair and Δλ is the wavelength difference between the components. 

This ratio is called the chromatic resolving power of the instrument at that wavelength.  In the present case, it 

is convenient to say that the fringes formed by λ and λ + Δλ are just resolved when the intensity contours of 

the two in a particular order lie in the relative positions shown in Figure (5). If the separation Δθ is such as to 

make the curves cross at the half-intensity point, IT = 0.5I0, there will be a central dip of 17 percent in the sum 

of the two, as shown in (b) of the figure. The eye can then easily recognize the presence of two lines. 

 

Fig. 5: Intensity contour of two Fabry-Perot fringes that are just resolved: (a) shown separately; (b) 

added, to give the observed effect. 

 

In order to find the Δλ corresponding to this separation, we note first that in going from the maximum to the 

halfway point the phase difference, this requires that: 

𝑠𝑖𝑛2  
𝛿

2
=  

(1− 𝑟2)
2

4 𝑟2    
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If the fringes are reasonably sharp, the change of 
𝛿

2
 from a multiple of π will be small. Then the sine may be set 

equal to the angle, and if we denote by Δδ the change in going from one maximum to the position of the other. 

the chromatic resolving power 

𝜆

Δ𝜆
= 𝑚 

𝜋 𝑟

1− 𝑟2  

It thus depends on two quantities, the order m, which may be taken as (2 d / λ) and the reflectance r2 of the 

surfaces. 

 


