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Physical Optics  

Assist. Prof. Dr. Muwafaq Fadhil Al-Mishlab 

Second lecture [ The Superposition of Waves] 

When two sets of waves are made to cross each other, e.g., the waves created by dropping two stones 

simultaneously in a quiet pool, interesting and complicated effects are observed. In the region of 

crossing there are places where the disturbance is practically zero and others where it is greater than 

that given by either wave alone. A very simple law can be used to explain these effects, this is known 

as the principle of superposition and was first clearly stated by Young in 1802. 

1. Superposition of Waves of The Same Frequency  

Considering first the effect of superimposing two sine waves of the same frequency. The displacements 

due to the two waves are here taken to be along the same line, which we shall call the y direction. If the 

amplitudes of the two waves are a1 and a2 these will be the amplitudes of the two periodic motions 

impressed on the particle, we can write the separate displacements as follows: 

𝑦1 =  𝑎1 sin(𝜔𝑡 − 𝛼1) , 𝑦2 =  𝑎2 sin(𝜔𝑡 − 𝛼2) 1 

Note that ω is the same for both waves, since we have assumed them to be of the same frequency. 

According to the principle of superposition, the resultant displacement y is merely the sum of y1 and y2, 

and we have: 

𝑦 =  𝑎1 sin(𝜔𝑡 − 𝛼1) +  𝑎2 sin(𝜔𝑡 − 𝛼2) 2 

When the expression for the sine of the difference of two angles is used, 

sin (A+B) = sin A cos B + cos A sin B 

𝑦 = 𝑎1 sin 𝜔𝑡 cos 𝛼1 − 𝑎1 cos 𝜔𝑡 sin 𝛼1 +  𝑎2 sin 𝜔𝑡 cos 𝛼2 −  𝑎2 cos 𝜔𝑡 sin 𝛼2 = 

(𝑎1 cos 𝛼1 +  𝛼2 cos 𝛼2) sin 𝜔𝑡 −  (𝑎1 sin 𝛼1 + 𝑎2 sin 𝛼2) cos 𝜔𝑡  

3 

Now since the a's and α’s are constants, 

(𝑎1 cos 𝛼1 + 𝛼2 cos 𝛼2) = 𝐴 cos 𝜃  , (𝑎1 sin 𝛼1 +  𝑎2 sin 𝛼2) = 𝐴 sin 𝜃 4 

Squaring and adding Eq. 4 
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𝐴2(𝑐𝑜𝑠2𝜃 +  𝑠𝑖𝑛2𝜃) =  𝑎1
2 (𝑐𝑜𝑠2 𝛼1 +  𝑠𝑖𝑛2 𝛼1) + 𝑎2 

2 (𝑐𝑜𝑠2 𝛼2 + 𝑠𝑖𝑛2 𝛼2) +

2𝑎1𝑎2(𝑐𝑜𝑠𝛼1 cos 𝛼2 + sin 𝛼1 sin 𝛼2)  
5 

Dividing the lower equation (4) by the upper one, we obtain 

tan 𝜃 =  
𝑎1 sin 𝛼1 +  𝑎2 sin 𝛼2

𝑎1 cos 𝛼1 +  𝑎2 cos 𝛼2
 7 

Equation (6) and (7) show that values of (A) and (θ) which satisfy Eqs. (4), and we can rewrite Eq. (3), 

substituting the right-hand members of Eq. (4). This gives 

𝑦 = 𝐴 cos 𝜃 sin 𝜔𝑡 − 𝐴 sin 𝜃 cos 𝜔𝑡 8 

which has the form of the sine of the difference of two angles and can be expressed as 

𝑦 = 𝐴 sin(𝜔𝑡 −  𝜃) 9 

This equation is the same as either of our original equations for the separate simple harmonic motions 

but contains a new amplitude (A) and a new phase constant (θ). Hence, we have the important result 

that the sum of two simple harmonic motions of the same frequency and along the same line is also a 

simple harmonic motion of the same frequency. The amplitude and phase constant of the resultant 

motion can easily be calculated from those of the component motions by Eqs. (6) and (7), respectively. 

The resultant amplitude A depends, according to Eq. (6), upon the amplitudes a1 and a2 of the 

component motions and upon their difference of phase δ = α1-α2. When we bring together two beams 

of light, as is done in the Michelson interferometer, the intensity of the light at any point will be 

proportional to the square of the resultant amplitude. By Eq. (6) we have, in the case where a1 = a2, 

𝐼 ≈  𝐴2 = 2 𝑎2 (1 + cos 𝛿) = 4 𝑎2 𝑐𝑜𝑠2  
𝛿

2
 

10 

If the phase difference is such that δ = 0, 2π, 4π, …., this gives 4 a2 , or 4 times the intensity of either 

beam. If δ = π, 3π, 5π, …., the intensity is zero.  

 

Or 𝐴2 =  𝑎1
2 +  𝑎2

2 + 2𝑎1𝑎2 cos(𝛼1 − 𝛼2)  6 
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2. Vector Addition of Amplitudes  

very simple geometrical construction can be used to find the resultant amplitude and phase constant of 

the combined motion in the above case of two simple harmonic motions along the same line. If we 

represent the amplitudes a1 and a2 by vectors making angles α1, and α2 with x-axis as in figure (1a) the 

resultant amplitude A is the vector sum of a1 and a2 and makes an angle θ with that axis.  

 

Fig. 1 Graphical composition of two waves of the same frequency, but different amplitude and 

phase. 

To prove this, we first note from Fig. 1(b) that in the triangle formed by a1 , a2  and A the law of cosines 

gives 

And the phase angle is clearly given by Eq. (7).  The graphical method is particularly useful where we 

have more than two motions to compound. Figure (2) shows the result of adding five motions of equal 

amplitudes a and having equal phase differences δ. 

 𝐴2 =  𝑎1
2 +  𝑎2

2 + 2𝑎1𝑎2 cos(𝜋 − (𝛼1 − 𝛼2)  11 
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Fig. 2 Vector addition of five amplitudes 

having the same magnitude and phase 

difference δ. 

 

Example: Determine the result of superposition of the following harmonic waves: 

𝐸1 = 7 sin(𝜔𝑡 +  𝜋 3⁄ ), 𝐸2 = 12 cos(𝜔𝑡 +  𝜋 4⁄ ), 𝐸3 = 20 sin(𝜔𝑡 + 𝜋 5⁄ ) 

Solution:   

To make all phase angles consistent, first change the cosine wave to a sine wave : 

𝐸2 = 12 sin(𝜔𝑡 + 𝜋 4⁄ +  𝜋 2⁄ ) = 12 sin(𝜔𝑡 +  3𝜋 4⁄ ) then by using following Eq.  

 

 

 

 

 

Or  𝐸0
2 =  (26.303)2 +  (11.195)2 𝑎𝑛𝑑 𝐸0 = 28.6  

The same result can be found from the next Eq.  
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The phase angle of the resulting harmonic wave is found by  

 

 

 

 

 

 

 

 

 

3. Superposition of Two Wave Trains of The Same Frequency 

we can conclude directly that the result of superimposing two trains of sine waves of the same frequency 

and traveling along the same line is to produce another sine wave of that frequency but having a new 

amplitude which is determined for given values of a1 and a2 by the phase difference δ between the 

motions imparted to any particle by the two waves. As an example, let us find the resultant wave 

produced by two waves of equal frequency and amplitude traveling in the same direction +x, but with 

one a distance Δ ahead of the other. The equations of the two waves will be 

𝑦1 = 𝑎 sin(𝜔𝑡 − 𝑘𝑥)  𝑎𝑛𝑑 𝑦2 = 𝑎 sin[𝜔𝑡 − 𝑘 (𝑥 +  ∆)] 12 

By the principle of superposition, the resultant displacement is the sum of the separate ones, so that 

𝑦 = 𝑦1 +  𝑦2 =  𝑎 {sin(𝜔𝑡 − 𝑘𝑥) + sin[𝜔𝑡 − 𝑘(𝑥 +  ∆)]} 13 

Applying the trigonometric formula 
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sin 𝐴 + sin 𝐵 = 2 sin
1

2
 (𝐴 + 𝐵) cos

1

2
 (𝐴 − 𝐵) 

14 

We find  

𝑦 = 2 𝑎 cos
𝑘∆

2
sin [𝜔𝑡 − 𝑘 (𝑥 + 

∆

2
)] 

15 

 

 

Fig. 3 Superposition of two wave trains (a) almost in phase and (b) almost 180' out of phase. 

This corresponds to a new wave of the same frequency but with the amplitude 2a cos (k Δ/2) = 2 a cos 

(πΔ/λ). When Δ is a small fraction of a wavelength, this amplitude will be nearly 2a, while if Δ is in the 

neighborhood of ½ λ, it will be practically zero. These cases are illustrated in Fig. 3 where the waves 

represented by Eqs. 12 (light curves) and (15) (heavy curve) are plotted at the time t = 0. 

4. Standing Waves  

Another important case of superposition arises when a given wave exists in both forward and reverse 

directions along the same medium. This condition occurs most frequently when the forward wave 

experiences a reflection at same point along its path as in figure 4. 
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Fig. 4 A typical standing wave 

 Two such waves can be represented by the equations 

𝑦1 = 𝑎 sin(𝜔𝑡 − 𝑘𝑥)  𝑎𝑛𝑑  𝑦2 = 𝑎 sin(𝜔𝑡 + 𝑘𝑥) 16 

The resultant wave in the medium, by the principle of superposition, is  

𝑦 =  𝑦1 + 𝑦2 = 𝑎 [sin(𝜔𝑡 + 𝑘𝑥) + sin(𝜔𝑡 − 𝑘𝑥)] 17 

𝛼 = 𝜔𝑡 + 𝑘𝑥 𝑎𝑛𝑑 𝛽 =  𝜔𝑡 − 𝑘𝑥  

sin 𝛼 + sin 𝛽 = 2 sin
1

2
 (𝛼 +  𝛽) cos

1

2
 (𝛼 −  𝛽)  

𝑦 =  2 𝑎 cos(−𝑘𝑥 ) sin(𝜔𝑡)   𝑜𝑟 𝑦 = 2 𝑎 sin 𝑘𝑥 cos 𝜔𝑡  18 

Which represent the standing wave. For any value of x we have simple harmonic motion, whose 

amplitude varies with x between the limits 2a when kx = 0, π, 2π, 3π, ... and zero when kx = π/2, 3π/2, 

5π/2, .... such points are call the nodes of standing wave and are separated by half wavelength  

x= m (λ/2)  


