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Physical Optics, Assist. Prof. Dr. Muwafaq Fadhil AlMishlab 

First lecture [ Wave Equation] 

 

1. One-dimensional wave equation  

 

The most general form of transverse wave, and the differential equation it satisfies can 

be determined in the following way. Consider first a one-dimensional wave pulse of 

arbitrary shape, described by 𝑦′ = 𝑓 (𝑥′), fixed to a coordinate system 𝑂′ (𝑥′, 𝑦′), as in 

figure 1. Consider next that the 𝑂′ system, together with the pulse, moves to the right 

along the x-axis at uniform speed v relative to a fixed coordinate system, 𝑂 (𝑥, 𝑦) as in 

figure 1. As it moves, the pulse is assumed to maintain its shape. Any point on the pulse, 

such as P, can be described by either of two coordinates, x or x’, where x’ = x – vt . the 

y- coordinate is identical in either system. From the point of view of the stationary 

coordinate system, then, the moving pulse has the mathematical form 𝑦 =  𝑦′ =

𝑓 (𝑥′) = 𝑓 (𝑥 − 𝑣𝑡 ). If the pulse moves to the left, the sign of v must be reversed, so 

that in general we may write:  

𝑦 = 𝑓 (𝑥 ± 𝑣𝑡 ) 1 

  

 as the general form of travelling wave. Notice that we have assumed x = x’ at t = 0. The 

original shape of the pulse, y’ = f ( x’ ) , does not vary but is found simply translated 

along the x-direction by the amount vt at time t. the function f is any function whatsoever, 

so that example,  

 𝑦 = 𝐴 sin( 𝑥 − 𝑣𝑡 ), 𝑦 = 𝐴 (𝑥 + 𝑣𝑡)2, 𝑦 =  𝑒(𝑥−𝑣𝑡 ) 

 

All represent traveling waves. Only the first represents the important case of a periodic 

wave. We wish to fined the next partial differential equation that is satisfied by all such 

periodic waves, regardless of the particular function f . since y is a function of two 

variables, x and t, we use the chain rule of partial differentiation and write  y = f ( x’) , 

where x’ = x +- vt .  
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Fig. 1: traveling wave pulses. 

 

 

  so that  

𝜕𝑥′

𝜕𝑥
= 1  𝑎𝑛𝑑 

𝜕𝑥′

𝜕𝑡
=  ±𝑣 

Employing the chain rule, the space derivative is  

𝜕𝑦

𝜕𝑥
=  

𝜕𝑓

𝜕𝑥′
 
𝜕𝑥′

𝜕𝑥
=  

𝜕𝑓

𝜕𝑥′
 

Repeating the procedure to fined the second derivatives, 

𝜕2𝑦

𝜕𝑥2
=  

𝜕

𝜕𝑥
 (

𝜕𝑦

𝜕𝑥
) =  

𝜕 (𝜕𝑦 𝜕𝑥)⁄

𝜕𝑥′
 
𝜕𝑥′

𝜕𝑥
=  

𝜕

𝜕𝑥′
 (

𝜕𝑓

𝜕𝑥′
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𝜕2𝑓

𝜕𝑥′2
 

 

 Similarly, the time derivatives are found:  

𝜕𝑦

𝜕𝑡
=  

𝜕𝑓

𝜕𝑥′
 
𝜕𝑥′

𝜕𝑡
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𝜕𝑓

𝜕𝑥′
 

𝜕2𝑦

𝜕𝑡2
=  

𝜕

𝜕𝑡
 (

𝜕𝑦

𝜕𝑡
) =  

𝜕 (𝜕𝑦 𝜕𝑡)⁄

𝜕𝑥′
 
𝜕𝑥′

𝜕𝑡
=  

𝜕

𝜕𝑥′
 (±𝑣 

𝜕𝑓

𝜕𝑥′
) (±𝑣) =  𝑣2

𝜕2𝑓

𝜕𝑥′2
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Combining the results for the two second derivatives, we write at the one dimensional 

differential wave equation, 

𝜕2𝑦

𝜕𝑥2
=  

1

𝑣2
 
𝜕2𝑦

𝜕𝑡2
 2 

 

any wave of the form of Eq. 1 must satisfy the wave Eq. 2 

 

2. Simple Harmonic Motion  

Simple harmonic motion is defined as the projection on any diameter of a graph point 

moving in a circle with uniform speed. The motion is illustrated in Fig. 2. The graph 

point p moves around the circle of radius a with a uniform speed v. If at every instant of 

time a normal is drawn to the diameter AB, the intercept P, called the mass point, moves 

with SHM. 

 

 

 

Fig. 2 Simple harmonic motion along a straight line AB. 
 

Moving back and forth along the line AB, the mass point is continually changing speed 

vx' Starting from rest at the end points A or B, the speed increases until it reaches C. 

From there it slows down again coming to rest at the other end of its path. The return of 
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the mass point is a repetition of this motion in reverse. The displacement of an object 

undergoing SHM is defined as the distance from its equilibrium position C to the point 

P. It will be seen in Fig. 2 that the displacement x varies in magnitude from zero up to 

its maximum value a, which is the radius of the circle of reference. The maximum 

displacement a is called the amplitude, and the time required to make one complete 

vibration is called the period. If a vibration starts at B, it is completed when the mass 

point P moves across to A and back again to B. If it starts at C and moves to B and back 

to C, only half a vibration has been completed. The amplitude a is measured in meters, 

or a fraction thereof, while the period is measured in seconds.  

The frequency of vibration is defined as the number of complete vibrations per second. 

If a particular vibrating body completes one vibration in t s, the period T = t s and it will 

make three complete vibrations in 1 s. If a body makes 10 vibrations in 1 s, its period 

will be T = fo s. In other words, the frequency of vibration υ and the period T are 

reciprocals of each other: 

Frequency= 1/period , Period= 1/frequency 

𝜐 =
1

𝑇
 ,    𝑇 =

1

𝜐
 3 

 

If the vibration of a body is described in terms of the graph point p, moving in a circle, 

the frequency is given by the number of revolutions per second, or cycles per second: 

1 cycle/second = 1 vibration/ second         [called Hertz , 1vib/s = 1 Hz] 
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3. Theory of SHM 

At this point we present the theory of SHM and derive an equation for the period of 

vibrating bodies. In Fig.3 we see that the displacement x is given by: 

𝑥 = 𝑎 𝑐𝑜𝑠𝜃  4 

 

As the graph point p moves with constant speed ν, the radius vector a rotates with 

constant angular speed ω, so that the angle θ changes at a constant rate 

𝑥 = 𝑎 𝑐𝑜𝑠𝜔𝑡  5 

 

The graph point p, moving with a speed ν, travels once around the circle of reference, a 

distance equal to 2πa, in the time of one period T. We now use the relation in mechanics 

that time equals distance divided by speed, and obtain  

Τ =
2𝜋𝑎

𝑣
  

6 

 

To obtain the angular speed ω of the graph point in terms of the period, we have 

Τ =
2𝜋

𝜔
 , 𝑜𝑟 𝜔 =

2𝜋

Τ
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An object moving in a circle with uniform speed ν has a centripetal acceleration toward 

the center, given by 

𝑎𝑐 =
𝑣2

𝑎
  

8 
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Since this acceleration ac continually changes the direction of the motion, its component 

ax along the diameter, or x axis, changes in magnitude and is given by ax = ac cos θ. 

Substituting in Eq. (8), we find 

𝑎𝑥 =
𝑣2

𝑎
cos 𝜃  

9 

 

 

Fig. 3 The acceleration ax of any mass moving with simple harmonic 

motion is toward a position of equilibrium C. 

 

From the right triangle CPp, cos 𝜃 =  𝑥
𝑎⁄      direct substitution gives 

𝑎𝑥 =  
𝑣2

𝑎
 
𝑥

𝑎
   𝑜𝑟    𝑎𝑥 =  

𝑣2

𝑎2
 𝑥 

We now multiply both sides of the equation by a2/ax v
2, take the square root of both sides 

of the equation, and obtain 

𝑎2

𝑣2
=  

𝑥

𝑎𝑥
      𝑎𝑛𝑑        

𝑎

𝑣
=  √

𝑥

𝑎𝑥
     

For a/v in Eq. (6) we now substitute √
𝑥

𝑎𝑥
     and obtain for the period of any SHM the 

relation 
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Τ = 2𝜋 √
𝑥

𝑎𝑥
  

10 

 

If the displacement is to the right of C, its value is +x, and if the acceleration is to the 

left, its value is – ax. Conversely, when the displacement is to left of C, we have - x, and 

the acceleration is to the right, or +ax. This is the reason for writing  

Τ = 2𝜋 √−
𝑥

𝑎𝑥
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4. Transverse waves  

 

All light waves are classified as transverse waves. Transverse waves are those in which 

each small part of the wave vibrates along a line perpendicular to the direction of 

propagation and all parts are vibrating in the same plane. When a source vibrates with 

SHM and sends out transverse waves through a homogeneous medium, they have the 

general appearance of the waves shown in Fig. 4. 

 

 

Fig. 4 Diagram of a transverse wave, vibrating in the plane of the page, showing the 

wavelength λ., the amplitude a, the displacement y, and the speed v. 

 



8 
 

The distance between two similar points of any two consecutive wave forms is called 

the wavelength λ. One wavelength, for example, is equal to the distance between two 

wave crests or two wave troughs. 

The displacement y of any given point along a wave, at any given instant in time, is given 

by the vertical distance of that point from its equilibrium position. The value is 

continually changing from + to - to +, etc. The amplitude of any wave is given by the 

letter a in Fig. 4, and is defined as the maximum value of the displacement y.  

The frequency of a train of waves is given by the number of waves passing by, or arriving 

at, any given point per second, and is specified in hertz, or in vibrations per second. From 

the definition of frequency υ and the wavelength λ, the speed of the waves v is given by 

the wave equation: 

𝜈 =  𝜐𝜆   12 

 

The length of one wave times the number of waves per second equals the distance the 

waves will travel in 1 s. 

 

5. Sine Waves  

The simplest kind of wave train is that for which the motions of all points along the wave 

have displacements y given by the sine or cosine of some uniformly increasing function. 

This in effect describes what we have called SHM.  

Consider transverse waves in which the motions of all parts are perpendicular to the 

direction of propagation. The displacement y of any point on the wave is then given by 



9 
 

𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋𝑥

𝜆
 

13 

 

A graph of this equation is shown in Fig. 5, and the significance of the constants a and 

A is clear. To make the wave move to the right with a velocity v, we introduce the time 

t as follows: 

𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋

𝜆
 (𝑥 − 𝜈𝑡) 

14 

 

 

Fig. 5 Contour of a sine wave at time t = O. 

 

Any particle of the wave, such as P in the diagram, will carry out SHM and will occupy 

successive positions P, P', P, P’” etc., as the wave moves. The time for one complete 

vibration of anyone point is the same as any other point. Furthermore, the period T and 

its reciprocal the frequency υ are given by the wave equation (12): 

𝑣 =  𝜐𝜆 =  
𝜆

𝑇
   

15 

 

If we substitute several of these variables in Eq. (14), we can obtain useful equations for 

wave motion in general:  
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𝑦 = 𝑎 sin 2𝜋 (
𝑡

𝑇
− 

𝑥

𝜆
) 

16 

 

𝑦 = 𝑎 𝑠𝑖𝑛
2𝜋

𝑇
 (𝑡 −

𝑥

𝑣
) 

17 

 

𝑦 = 𝑎 sin 2𝜋𝜈 (𝑡 −
𝑥

𝑣
) 

18 

 

A useful and brief way of expressing the equation for simple harmonic waves is in terms 

of the angular frequency w = 2πυ and the propagation number k = 2π/λ. Equation (l4) 

then becomes: 

𝑦 = 𝑎 sin(𝑘𝑥 − 𝜔𝑡) = 𝑎 sin(𝜔𝑡 − 𝑘𝑥 +  𝜋) = 𝑎 cos (𝜔𝑡 − 𝑘𝑥 +
𝜋

2
) 

19 

 

The addition of a constant to the quantity in parentheses is of little physical significance, 

Thus the equations when written 

𝑦 = 𝑎 cos(𝜔𝑡 − 𝑘𝑥)  𝑎𝑛𝑑 𝑦 = 𝑎 sin(𝜔𝑡 − 𝑘𝑥)  20 

 

will describe the wave of Fig. 5, if the curve applies at times t = T/4 and T/2, respectively, 

instead of at t = 0. 

 


