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Self-Inductance

An inductor is a coil. The circuit symbol for an inductor is a coil. When an inductor is

connected at a source, current will flow through it and this current will produce magnetic field

inside the coil. That is there is magnetic flux crossing the loops of the coil due to its own

magnetic field. If the current changes with time, then the magnetic field inside the coil will

change with time which implies the magnetic flux crossing the coil will change with time.

According to Faraday’s law, this change in the magnetic flux will produce induced emf in the

coil. This kind of induced emf is called self induced emf (𝜺𝒔𝒆𝒍𝒇) because it is caused by the

current in the coil itself.

Inductance



Since the magnetic field due to a coil (solenoid) is proportional to the current flowing in the

coil, the magnetic flux crossing the coils is proportional to the current. The constant of

proportionality between the flux (∅𝒔𝒆𝒍𝒇) and the current is defined to be the inductance (L) of

the coil:

∅𝒔𝒆𝒍𝒇 = 𝑳 𝑰

According to Faraday’s law, the self-induced emf (𝜺𝒔𝒆𝒍𝒇) is equal to the negative rate of change

of this flux with time.

𝜺𝒔𝒆𝒍𝒇 = −𝑳
𝒅𝑰

𝒅𝒕

The negative sign indicates that the polarity of the self-induced emf is in such a way as to

appose the cause for the change in flux, which is the rate of change of current with time.



The unit of measurement for inductance is V/A which is defined to be Henry, abbreviated

as H.

The average induced emf in a given time interval ∆𝒕 can be obtained by integrating 𝜺𝒔𝒆𝒍𝒇
with time interval ∆𝒕 and then dividing by ∆𝒕:

𝜺𝒔𝒆𝒍𝒇 = −
𝑳

∆𝒕
 
𝒕

𝒕+∆𝒕𝒅𝑰

𝒅𝒕
𝒅𝒕 = −

𝑳

∆𝒕
 
𝑰

𝑰+∆𝑰

𝒅𝑰

and the average self induced emf may be given as

𝜺𝒔𝒆𝒍𝒇 = −𝑳
∆𝑰

∆𝒕
= −𝑳

(𝑰𝒇 − 𝑰𝒊)

∆𝒕



Inductance of a solenoid in terms of its geometry

The inductance of an inductor depends on the geometry of the coil only. Consider a solenoid of

length 𝒍, radius R and number of turns N. The magnetic flux crossing the solenoid is N times

the flux crossing a single turn:

∅𝒔𝒆𝒍𝒇 = 𝑵𝑩𝑨

But, for a solenoid

𝑨 = 𝝅𝑹𝟐 𝒂𝒏𝒅 𝑩 =
𝝁𝒐𝑵 𝑰

𝒍

Therefore, 𝑳 =
𝑵 ∅𝒔𝒆𝒍𝒇

𝑰

The inductance of a solenoid in terms of its geometry is given as:

𝑳 =
𝝁𝒐𝑵

𝟐 𝝅𝑹𝟐

𝒍



Magnetic energy Stored by an inductor

Consider an inductor connected to a source. According to Lenz’s law, the self induced emf

should oppose the source because it is the cause for the change of flux. Therefore the source

has to do work to push a charge through the inductor. This work is stored by the inductor as

magnetic energy. The work done by the source in pushing a charge dq across the inductor is

𝒅𝒘𝒆𝒙𝒕 = −𝒅𝒒 𝜺𝒔𝒆𝒍𝒇

The negative sign is needed because the work done by the external force (source) is opposite to

the work done by the self induced emf.

But

𝜺𝒔𝒆𝒍𝒇 = −𝑳
𝒅𝑰

𝒅𝒕



𝒅𝒘𝒆𝒙𝒕 = −𝒅𝒒 −𝑳
𝒅𝑰

𝒅𝒕
= 𝑳

𝒅𝒒

𝒅𝒕
𝒅𝑰 = 𝑳𝑰 𝒅𝑰

The amount of magnetic energy 𝑼𝑩 stored by the inductor when the current is increased from

zero to a value I is obtained by integration

𝑼𝑩 =  𝒅𝒘𝒆𝒙𝒕 =  
𝟎

𝑰

𝑳𝑰 𝒅𝑰

Therefore the amount of magnetic energy stored by an inductor when the current is I is given

by:

𝑼𝑩 =
𝟏

𝟐
𝑳 𝑰𝟐



Magnetic Energy Density Inside a Current Carrying Solenoid

Consider a solenoid of N turns, length l and cross sectional radius R carrying a current I.

The magnetic energy density 𝒖𝑩 inside a solenoid is obtained as the ratio of the total magnetic

energy (𝑼𝑩 =
𝟏

𝟐
𝑳 𝑰𝟐) to the volume of the solenoid (𝑽 = 𝝅𝑹𝟐𝒍).

𝒖𝑩 =
𝑼𝑩
𝑽
=

𝑳 𝑰𝟐

𝟐 𝝅𝑹𝟐𝒍

But, the inductance of a solenoid is given as, 𝑳 =
𝝁𝒐𝑵

𝟐 𝝅𝑹𝟐

𝒍

and the magnetic field inside the solenoid is given as 𝑩 =
𝝁𝒐 𝑵 𝑰

𝒍
⇒ 𝑰 =

𝑩 𝒍

𝝁𝒐 𝑵

Now, substitutions for the inductance and the current, the magnetic energy density depends on

the magnetic field according to the equation: 𝒖𝑩 =
𝑩𝟐

𝟐 𝝁𝒐



When two coils carrying time dependent currents are in the vicinity of each other, they will

induce on each other. This kind of induction is called mutual induction.

Consider two coils, coil 1 and coil 2, in the vicinity of each other. The mutual inductance of

coil 2 with respect to coil 1 (𝑴𝟐𝟏) is defined to be the ratio between the flux crossing coil 2

due to the current in the coil 1 and the current in coil 1 (𝑰𝟏). If the number of turns of coil 2 is

(𝑵𝟐) and the magnetic flux per coil crossing coil 2 is ∅𝟏𝟐, then

𝑴𝟐𝟏 =
𝑵𝟐∅𝟐𝟏
𝑰𝟏

Similarly, the mutual inductance of coil 1 with respect to coil 2 is defined to be

𝑴𝟏𝟐 =
𝑵𝟏∅𝟏𝟐
𝑰𝟐

It can be shown that 𝑴𝟐𝟏 = 𝑴𝟏𝟐 = 𝑴

Mutual Induction



Where𝑴 is called the mutual inductance of the coils

𝑴 =
𝑵𝟏∅𝟏𝟐
𝑰𝟐

=
𝑵𝟐∅𝟐𝟏
𝑰𝟏

Applying Faraday’s law the emf induced in coil 2 (𝜺𝟐) is given by

𝜺𝟐 = −𝑵𝟐
𝒅∅𝟐𝟏
𝒅𝒕

But ∅𝟐𝟏 =
𝑴 𝑰𝟏

𝑵𝟐
and it follows that

𝜺𝟐 = −𝑴
𝒅𝑰 𝟏
𝒅𝒕

The emf induced on coil 2 by coil 1 is directly proportional to the rate of change of the current

flowing in coil 1. Similarly, the emf induced on coil 1 by coil 2 is given by:

𝜺𝟏 = −𝑴
𝒅𝑰 𝟐
𝒅𝒕



Mutual Inductance of Two Concentric Solenoids of the same Length

Consider two concentric solenoids with the inner solenoid being coil 1 and the outer being 

coil 2.

The magnetic flux induced on the solenoid 1 by solenoid 2 is

∅𝟏𝟐 = 𝑩𝟐 𝑨𝟏 =
𝝁𝒐𝑵𝟐𝑰𝟐
𝒍

𝑨𝟏

Therefore the mutual inductance of solenoid 1 with respect to solenoid 2 is

𝑴 = 𝑴𝟏𝟐 =
𝑵𝟏 ∅𝟏𝟐
𝑰𝟐

Which simplifies to

𝑴 =
𝝁𝒐𝑵𝟏𝑵𝟐 𝑨𝟏

𝒍



Example 1: the current in an inductor of inductance 5 H varies with time according to 

equation 𝑰 = 𝟐 𝐬𝐢𝐧𝟏𝟎𝒕 𝑨 a) Give a formula for the self-induced emf as a function of time 

b) Calculate the value of the induced emf after 
𝜋

40

Sol.



Example 2: The current in a 2 mH inductor change from 10 A to 4 A in 0.2 seconds. Calculate

the average self-induced emf in the inductor?

Sol.



Example 3: A solenoid of length 10 cm, number of turns 200 and cross sectional radius 2 cm

is carrying a current 2A. a) Calculate the magnetic energy density inside the solenoid

b) Calculate the total magnetic energy stored inside the solenoid

Sol.

(a)



A series combination of an inductor and a resistor connected to a dc source

Consider a battery of emf 𝜺 connected to a series combination of a resistor of a resistance R

and an inductor of inductance L. An inductor behaves like a resistor when its current increases

(gaining magnetic energy at the expense of electrical energy) and behaves like a source when

current decreases (losing magnetic energy to create electrical energy). Therefore, both resistor

and source sign conventions apply depending on the situation. If transversed in the direction of

the current, the potential difference in both cases is −𝑳
𝒅𝑰

𝒅𝒕
.

The difference between resistor and source behavior is contained in the sign of
𝒅𝑰

𝒅𝒕
.

Now applying Kirchhoff’s rule in the direction of the current:

𝜺 − 𝑳
𝒅𝑰

𝒅𝒕
− 𝑰𝑹 = 𝟎

𝒅𝑰

𝒅𝒕
=
𝜺 − 𝑰𝑹

𝑳
⟹ 𝒅𝑰 =

𝜺 − 𝑰𝑹

𝑳
𝒅𝒕



Integrating,                              𝟎
𝑰 𝒅𝑰

𝜺−𝑰𝑹
=  𝟎

𝒕 𝒅𝒕

𝑳

Let         𝒖 = 𝜺 − 𝑰𝑹 Then 𝒅𝒖 = −𝑹𝒅𝑰

𝒖(𝒕 = 𝟎) = 𝜺 and 𝒖(𝒕) = 𝜺 − 𝑰𝑹

With this substitution the integral becomes        −
𝟏

𝑹
 𝜺
𝜺−𝑰𝑹 𝒅𝒖

𝒖
=
𝒕

𝑳

Which implies that,           𝑳𝒏
𝜺−𝑰𝑹

𝜺
= −

𝑹

𝑳
𝒕

Or 𝜺 − 𝑰𝑹 = 𝜺 𝒆−
𝑹

𝑳
𝒕

and solving for the current the following expression for the current as a function of time is

obtained,

𝑰 𝒕 =
𝜺

𝑹
(𝟏 − 𝒆−

𝑹
𝑳 𝒕)



The current attains its maximum value at infinity

𝑰𝒎𝒂𝒙 =
𝜺

𝑹
𝐥𝐢𝐦
𝒕→∞

𝟏 − 𝒆−
𝑹
𝑳 𝒕

The current approaches its maximum value asymptotically with time. The expression
𝑹

𝑳

determines how fast the current approaches its maximum value and is called the time constant

of the circuit. The greater the time constant the faster the current approaches its maximum

value. The potential difference across the resistor is equal to current times its resistance:

𝑽𝑹 𝒕 = 𝜺 𝟏 − 𝒆
−
𝑹
𝑳
𝒕



The potential difference across the resistor is zero initially and approaches the emf of the

battery asymptotically as time approaches infinity. The self induced emf of the inductor can be

obtained as

𝜺𝒔𝒆𝒍𝒇 = −𝑳
𝒅𝑰

𝒅𝒕
= −𝑳

𝒅

𝒅𝒕

𝜺

𝑹
𝟏 − 𝒆−

𝑹
𝑳
𝒕

Which gives the following expression for the dependence of the emf:

𝜺𝒔𝒆𝒍𝒇(𝒕) = −𝜺 𝒆
−
𝑹
𝑳 𝒕

The self induced emf has its maximum value initially and approaches zero asymptotically as

time approaches infinity. Adding the potential difference and the self induced voltage shows

that it is always equal −𝜺 as expected:

−𝑽𝑹 + 𝜺𝒔𝒆𝒍𝒇 = −𝜺 𝟏 − 𝒆
−
𝑹
𝑳 𝒕 − 𝜺 𝒆−

𝑹
𝑳 𝒕 = −𝜺



Example 1: A series combination of a 1000 Ω resistor and a 20 H inductor is connected to a

battery of emf 20 V. (a) calculate the maximum current (b) calculate the time taken for the

current to reach a value one fourth of its maximum value

Sol. (a




