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Rolling Rod

A rod with a mass m and radius R is mounted on two parallel rails of length a separated by a

distance 𝒍, as in the figure below. The rod carries a current I and rolls without slipping along

the rails which are placed in a uniform magnetic field 𝑩 directed into the page. If the rod is

initially at rest, what is its speed as it leaves the rails?

𝑭𝑩 = 𝑰  𝒍 × 𝑩 = 𝑰 𝒍  𝒊 × −𝑩  𝒌 = 𝑰 𝒍 𝑩  𝒋

The total work done by the magnetic force on the rod

as it moves through the region is 

𝑾 =  𝑭𝑩. 𝒅𝒔 = 𝑭𝑩 𝒂 = 𝑰 𝒍 𝑩 𝒂

By the work–energy theorem, W must be equal to

the change in the kinetic energy: ∆𝑲 =
𝟏

𝟐
𝒎 𝒗𝟐 +

𝟏

𝟐
𝑰 𝝎𝟐

Figure Rolling rod in uniform magnetic field



Where both translation and rolling are involved. Since the moment of inertia of the rod is 

given by 𝑰 =
𝒎 𝑹𝟐

𝟐
and the condition of rolling with rolling implies

𝝎 =
𝒗

𝑹
.

𝑰 𝒍 𝑩 𝒂 =
𝟏

𝟐
𝒎 𝒗𝟐 +

𝟏

𝟐

𝒎 𝑹𝟐

𝟐

𝒗

𝑹

𝟐

=
𝟏

𝟐
𝒎 𝒗𝟐 +

𝟏

𝟒
𝒎 𝒗𝟐 =

𝟑

𝟒
𝒎 𝒗𝟐

Thus the speed of the rod as it leaves the rails is:

𝒗 =
𝟒 𝑰 𝒍 𝑩 𝒂

𝟑 𝒎



Suspended Conducting Rod

A conducting rod having a mass density 𝜆 𝑘𝑔/𝑚 is suspended by two flexible wires in a

uniform magnetic field 𝐵 which points out of the page as in the figure below.

If the tension of the wire is zero, what are the magnitude and the direction of the current in the 

rod?

Figure suspended conducting rod in uniform magnetic field



Because of the tension is zero, the magnetic force 𝑭𝑩 = 𝑰  𝒍 × 𝑩 acting on the conductor must

exactly cancel the downward gravitational force

𝑭𝒔 = −𝒎𝒈  𝒌

For 𝑭𝑩 to point in the +z direction we must have  𝒍 = −𝒍  𝒋 i.e. the current flows to the left so

that:

𝑭𝑩 = 𝑰  𝒍 × 𝑩 = 𝑰 −𝒍  𝒋 × 𝑩  𝒊 = −𝑰 𝒍 𝑩  𝒋 ×  𝒊 = 𝑰 𝒍 𝑩  𝒌

The magnitude of the current can be obtain from

𝑰 𝒍 𝑩 = 𝒎𝒈

𝑰 =
𝒎 𝒈

𝒍 𝑩
=

𝝀 𝒈

𝑩



Magnetic force on an electric current

• Electric current is a stream of electric charges moving in a vacuum or through matter. The

intensity of the electric current has been found as the charge passing per unit time through a

section of the conductor.

• Therefore when a conductor carrying an electric current is placed in a magnetic field, it

experiences a force which is the resultant of the magnetic forces exerted on each of the

moving charges. Then as shown below, the magnetic force on the conductor is giving by:

Figure current carrying conductor in a magnetic field



𝑭 = 𝑰  𝒖𝑻 × 𝑩 𝒅𝒍

In the case of rectilinear conductor placed in a uniform magnetic field 𝑩, both 𝒖𝑻 𝑎𝑛𝑑 𝑩

are constant we may write:

𝑭 = 𝑰 𝒖𝑻 × 𝑩  𝒅𝒍

If 𝑳 =  𝒅𝒍 is the length of the rectilinear conductor, the force is:

𝑭 = 𝑰 𝑳 𝒖𝑻 × 𝑩

The direction of 𝑭 is perpendicular to 𝒖𝑻 (is a unit vector along the axis of the filament).

A conductor carrying a current and placed in a magnetic field is subject to a force

perpendicular to the current and to the magnetic field.



This is the principle on which electric motors

operate. If 𝜽 is the angle between the

conductor and the magnetic field, we may

write for the magnitude of the force 𝑭.

𝑭 = 𝑰 𝑳 𝑩 𝐬𝐢𝐧 𝜽

The force is zero if the conductor is parallel to

the field ( 𝜽 = 𝟎 ) and maximum if it is

perpendicular to it (𝜽 = 𝝅/𝟐). The direction of

the force is found by applying the right hand

rule, as showing in the figure below.
Figure Vector relation between the magnetic 

force on a current carrying conductor, the 

magnetic field and the current



Magnetic field produced by a closed current 

A general expression has been obtained for calculating the magnetic field produced by a closed

current for any shape. This expression called Ampere-Laplace Law: (see figure below).

𝑩 = 𝑲𝒎 𝑰  
𝒖𝑻×𝒖𝒓

𝒓𝟐 𝒅𝑳

• 𝑲𝒎 is a constant depending on the unit chosen

• 𝑲𝒎 = 𝟏𝟎−𝟕 𝑻. 𝒎. 𝑨−𝟏 = 𝟏𝟎−𝟕𝒎 𝒌𝒈 𝑪−𝟐

Also,  𝑲𝒎 =
𝝁𝒐

𝟒𝝅

where  𝜇𝑜is magnetic permeability of vacuum and equals to 

𝝁𝒐 = 𝟒𝝅 × 𝟏𝟎−𝟕 𝒎 𝒌𝒈 𝑪−𝟐

Figure magnetic field produced by 

an electric current at point P



𝒖𝒓 is a unit vector along the radius.

𝒖𝑻 is the tangential unit vector.

Above equation for the Ampere-Laplace law become:

𝑩 =
𝝁𝒐

𝟒𝝅
𝑰  

𝒖𝑻 × 𝒖𝒓

𝒓𝟐
𝒅𝑳

Since an electric current is simply a stream of electric charges moving in the same direction,

we come to the important conclusion that “the magnetic field, and accordingly the magnetic

interaction, is produced by moving electric charge”



Consider a very long and thin rectilinear 

current as in the figure below. 

Magnetic field of a rectilinear current (Biot-Savart Law)

Figure magnetic field produced by a 

rectilinear current at point P

Application of above equation showing that the magnitude 

of the magnetic field at a point distance R from the current 

is:

𝑩 =
𝝁𝒐𝑰

𝟐𝝅𝑹
𝒖𝜽

To derive above equation, use the Ampere-Laplace law:

𝑩 =
𝝁𝒐

𝟒𝝅
𝑰  

𝒖𝑻 × 𝒖𝒓

𝒓𝟐
𝒅𝑳

𝒖𝑻 × 𝒖𝒓 = 𝒖𝑻 𝒖𝒓 𝐬𝐢𝐧 𝜽 𝒖𝜽 = 𝐬𝐢𝐧 𝜽 𝒖𝜽

𝑩 =
𝝁𝒐

𝟒𝝅
𝑰  

−∞

∞
𝐬𝐢𝐧 𝜽

𝒓𝟐
𝒅𝑳 𝒖𝜽



In magnitude as

𝑩 =
𝝁𝒐

𝟒𝝅
𝑰  

−∞

∞
𝐬𝐢𝐧 𝜽

𝒓𝟐
𝒅𝑳

From the figure we can see that:

𝒓 = 𝑹 𝐜𝐬𝐜 𝜽 𝒓𝟐 = 𝑹𝟐 𝐜𝐬𝐜𝟐 𝜽

𝑳 = −𝑹 𝐜𝐨𝐭 𝜽 𝒅𝑳 = 𝑹 𝐜𝐬𝐜𝟐 𝜽 𝒅𝜽

Subtracting in the above equation and noting that

𝑳 = −∞ 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒔 𝒕𝒐 𝜽 = 𝟎

𝑳 = +∞ 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒔 𝒕𝒐 𝜽 = 𝝅

We obtain

𝑩 =
𝝁𝒐

𝟒𝝅
𝑰  

𝟎

𝝅
𝐬𝐢𝐧 𝜽

𝑹𝟐 𝐜𝐬𝐜𝟐 𝜽
𝑹 𝐜𝐬𝐜𝟐 𝜽 𝒅𝜽 =

𝝁𝒐𝑰

𝟒𝝅𝑹
 

𝟎

𝝅

𝐬𝐢𝐧 𝜽 𝒅𝜽

𝑩 =
𝝁𝒐𝑰

𝟒𝝅𝑹
− 𝐜𝐨𝐬 𝜽

𝝅
𝟎

Then the magnitude of 𝑩 is:

𝑩 =
𝝁𝒐𝑰

𝟐𝝅𝑹
and in a vector form as 

𝑩 =
𝝁𝒐𝑰

𝟐𝝅𝑹
𝒖𝜽

This is called the “Biot-Savart Law”



Magnetic field of a circular current

The magnetic field of a circular current is illustrated in figure below, where the vector product

𝒖𝑻 × 𝒖𝒓 is perpendicular to the plane 𝑷𝑨  𝑨 and has a magnitude of one because these two unit

vectors are perpendicular. Therefore, the field 𝒅𝑩, produced by the length element 𝒅𝑳 at P, has

the magnitude:

𝒅𝑩 =
𝝁𝒐

𝟒𝝅
𝑰

𝒅𝑳

𝒓𝟐

Figure computation of the magnetic field 

along the axis of a circular current

and is perpendicular to the plane 

𝑷𝑨  𝑨, being thus oblique to the z-axis.



Decomposing 𝒅𝑩 into a component 𝒅𝑩∥ parallel to the axis and a component 𝒅𝑩⊥

perpendicular to it, we see that, when we integrate along the circle, for each 𝒅𝑩⊥, there is

another in, the opposite direction from the length element directly opposed to 𝒅𝑳, and therefore

all vectors 𝒅𝑩⊥ add to zero. The resultant B will be the sum of all 𝒅𝑩∥, and therefore is parallel

to the axis.

Now, since 𝐜𝐨𝐬 𝜶 = 𝒂/𝒓

𝒅𝑩∥ = 𝐝𝐁 𝐜𝐨𝐬 𝜶 =
𝒂

𝒓
𝒅𝑩 =

𝝁𝒐 𝑰 𝒂

𝟒𝝅 𝒓𝟑
𝒅𝑳

The distance r remains constant when we integrate around the circle.

 𝒅𝑳 = 𝟐𝝅 𝒂



We may write for the magnitude of the resultant magnetic field 

𝑩 =  𝒅𝑩∥ =
𝝁𝒐 𝑰 𝒂

𝟒𝝅 𝒓𝟑
 𝒅𝑳 =

𝝁𝒐 𝑰 𝒂𝟐

𝟐 𝒓𝟑

Noting that: 𝒓 = (𝒂𝟐 + 𝑹𝟐)𝟏/𝟐

We can write the magnetic field for points on the axis of a circular current as:

𝑩 =
𝝁𝒐 𝑰 𝒂𝟐

𝟐(𝒂𝟐 + 𝑹𝟐)𝟑/𝟐

At R = 0, the magnetic field at the center of a circular current is:

𝑩 =
𝝁𝒐 𝑰

𝟐 𝒂



Magnetic field of moving charge

The fact that an electric current produces a magnetic field suggests that a single moving charge

must also produce a magnetic field.

For a charge moving with a velocity 𝒗, small compared with the velocity of light.

The magnetic field at a point A, at a distance r from the charge (as in the figure below) is given

by:

Figure electric and magnetic fields produced by 

moving charge



𝑩 =
𝝁𝒐

𝟒𝝅

𝒒 𝒗 × 𝒖𝒓

𝒓𝟐

and the magnitude of 𝑩 is:                   𝑩 =
𝝁𝒐

𝟒𝝅

𝒒 𝒗 𝐬𝐢𝐧 𝜽

𝒓𝟐

And the direction is perpendicular to 𝒓 and 𝒗. The magnetic lines of force are then circles, 𝜽 is 

the angle between 𝒗 and 𝒖𝒓.

The magnetic lines of force are then circles, note that the magnitude of the magnetic field is

zero along the line of motion, and has its maximum value on the plane perpendicular to the line

of motion and passing through the charge. The electric field 𝑬 produced by charge q at point A,

𝑬 =
𝒒 𝒖𝒓

𝟒 𝝅 𝝐𝒐 𝒓𝟐

Therefore, we may write:     𝑩 = 𝝁𝒐𝝐𝒐 𝒗 × 𝑩 =
𝟏

𝒄𝟐 𝒗 × 𝑬

Where,  𝒄 =
𝟏

(𝝐𝒐 𝝁𝒐)𝟏/𝟐 = 𝟑 × 𝟏𝟎𝟖 𝒎/𝒔




