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Motion of a charged particle in a uniform magnetic field

Consider the motion of a charged particle in a uniform magnetic field, i.e. a magnetic field

having the same intensity and direction at all its points. The magnetic force which is given :

𝑭 = 𝒒 𝒗 𝑩 is perpendicular to the velocity, its effect is to change the direction of the velocity

without changing its magnitude, resulting in a uniform circular motion as in the figure below

and by using the equation of motion, we have:

𝑭 =
𝒎𝒗𝟐

𝒓
𝑪𝒆𝒏𝒕𝒆𝒓𝒑𝒆𝒕𝒂𝒍 𝒇𝒐𝒓𝒄𝒆

and then

𝒎𝒗𝟐

𝒓
= 𝒒𝒗𝑩

𝒓 =
𝒎𝒗

𝒒𝑩



Which give the radius of the circle described by the charged particle of mass (m).

Above equation tells us that the curvature of the path of a charged particle in a magnetic field

depends on the energy of the particle. The larger the energy (or the momentum p=mv), the

larger the radius of the path and the smaller the curvature.

By writing:

𝒗 = 𝝎𝒓 𝒘𝒉𝒆𝒓𝒆 𝝎 𝒊𝒔 𝒕𝒉𝒆 𝒂𝒏𝒈𝒖𝒍𝒂𝒓 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒐𝒇 𝒕𝒉𝒆 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆,

𝝎 =
𝒒

𝒎
𝑩

Therefore, the angular velocity 𝝎 is independent on the linear velocity 𝒗 and depend only on 

the ratio (
𝒒

𝒎
) and the field 𝑩.



Above expression gives the magnitude of 𝝎 but not its direction. We recall the acceleration in

a uniform circular motion may be written in vector form as:

𝒂 = 𝝎 × 𝒗

Therefore the equation of motion 𝑭 = 𝒎𝒂 becomes

𝒎𝝎 × 𝒗 = 𝒒𝒗 × 𝑩

On reversing the vector product on the right hand side and dividing by (m), we get:

𝝎 = −(
𝒒

𝒎
)𝑩

Which gives (𝝎) in both magnitude and direction. The minus sign indicates that (𝝎) has the

opposite direction 𝐵 for a positive charge, and the same direction for a negative charge, we call

𝝎 “cyclotron frequency”.



• It is customary to represent a field perpendicular to the paper by a dot (•) if it is directed

toward the reader and by a cross (𝘹) if it is directed into the page.

• Figure below represent the path of a positive and negative field perpendicular to the page. In

(a) 𝝎 is directed into the page and in (b) toward the reader.

q positive: 𝑩 upward, 𝝎 downward           q negative: 𝑩 and 𝝎 upward

Figure circular path of negative and positive charge in uniform magnetic field



If a charged particle moves in a direction that is not perpendicular to the magnetic field, we

may separate the velocity into its parallel and perpendicular components relative to the

magnetic field. The parallel component remains unaffected and the perpendicular component

changes continuously in direction but not in magnitude. The motion is then the resultant of a

uniform motion parallel to the field and a circular motion around the field, with angular

velocity given by:

𝝎 =
𝒒

𝒎
𝑩

The path is a helix, as shown in the figure below for a positive ion.

Figure helical path of a positive ion moving obliquely to a uniform magnetic field



Motion of a charged particle in a non-uniform magnetic field

We shall now consider the case when a particle moves in a magnetic field which is not uniform.

We learn from 

𝒓 =
𝒎𝒗

𝒒𝑩

that the larger the magnetic field, the smaller the radius of the path of the charged particle.

Therefore, if the magnetic field is not uniform, the path is not circular.

Figure below shows a magnetic field directed left to right with its strength increasing in that

direction. Thus a charged particle injected at the left hand side of the field describes a helix

whose radius decreases continuously.



Figure path of a positive ion in a non-uniform magnetic field

A more detailed analysis, which we must omit here, would show that the component of the

velocity parallel to the field does not remain constant but decreases (and therefore the pitch

of the helix also decreases) as the particle moves in the direction of increasing field

strength.



Magnetic force on a current carrying wire

Consider a long straight wire suspended in the region between the two magnetic poles.

The magnetic field points out the page and is represented with dots. It can be readily

demonstrated that when a downward current passes through, the wire is deflected to the left.

However, when the current is upward, the deflection is rightward, as shown in figure below.

Figure deflection of current-carrying wire by magnetic force



• To calculate the force exerted on the wire, consider a segment of wire of length 𝒍 and cross

sectional area A, as in the figure below. The magnetic field points into the page, and is

represented with crosses.

The charges move at an average drift velocity 𝒗𝒅.

Since the total amount of charge in this segment is:

𝑸𝒕𝒐𝒕 = 𝒒 (𝒏𝑨𝒍)

Where n is the number of charges per unit volume,

the total magnetic force on the segment is:

𝑭𝑩 = 𝑸𝒕𝒐𝒕 𝒗𝒅 × 𝑩 = 𝒒𝒏𝑨𝒍 𝒗𝒅 × 𝑩 = 𝑰( 𝒍 × 𝑩)

Where, 𝑰 = 𝒒𝒏 𝒗𝒅 𝑨 and  𝒍 is a length vector

with a magnitude 𝒍 and directed along

the direction of the electric current.

Figure magnetic force on a conducting wire



• For a wire of arbitrary shape, the magnetic force can be obtained by summing over the forces

acting on the small segments that make up the wire. Let the differential segment be denoted as

𝒅𝑺.

The magnetic force acting on the segment is:

𝒅𝑭𝒔 = 𝑰 𝒅𝑺 × 𝑩

Thus the total force,  𝑭𝒔 = 𝑰  𝒂

𝒃
𝒅𝑺 × 𝑩

Where a and b represent the endpoints of the wire.

As an example, consider a curved wire carrying a current I

in a uniform magnetic field 𝑩 as in the figure below:

Figure current carrying wire

placed in a magnetic field

Figure a curved wire carrying a current I



𝑭𝑩 = 𝑰 ( 
𝒂

𝒃

𝒅𝑺) × 𝑩 = 𝑰  𝒍 × 𝑩

Where  𝒍 is the length vector directed from a to b. However, if the wire forms a closed loop of

arbitrary shape (as in the figure below) the force on the loop becomes.

𝑭𝑩 = 𝑰 ( 𝒅𝑺) × 𝑩

Since the set of differential length elements 𝒅𝑺

form a closed polygon, and their vector sum is zero.

i.e.,  𝒅𝑺 = 𝟎 . 

Then net magnetic force on a closed loop is 𝑭𝑩 = 𝟎.

Figure a closed loop carrying a current I 

in a uniform magnetic field



Torque on a current loop

What happens when we place a rectangular loop carrying a current I in the xy plane and switch

on a uniform magnetic field 𝑩 = 𝑩  𝒊 which runs parallel to the plane of the loop, as in the

figure below.

Figure (a) A rectangular current loop placed in a uniform 

magnetic field. (b) The magnetic forces acting on sides 2 and 4



From equation below, we see the magnetic forces acting on sides 1 and 3 vanish because the

length vectors  𝒍𝟏 = −𝒃  𝒊 and  𝒍𝟑 = 𝒃  𝒊 are parallel and anti parallel to 𝑩 and their cross

products vanish. On the other hand, the magnetic forces acting on the segments 2 and 4 are non

vanishing:

𝑭𝟐 = 𝑰 −𝒂  𝑱 × 𝑩  𝒊 = 𝑰𝒂𝑩  𝒌

𝑭𝟒 = 𝑰 𝒂  𝑱 × 𝑩  𝒊 = −𝑰𝒂𝑩  𝒌

For 𝑭𝟐 pointing out of the page and 𝑭𝟒 into the page. Thus the net force on the rectangular loop 

is: 𝑭𝒏𝒆𝒕 = 𝑭𝟏 + 𝑭𝟐 + 𝑭𝟑 + 𝑭𝟒 = 𝟎



As expected, even through the net force on the loop vanishes, the forces 𝑭𝟐 and 𝑭𝟒 will

produce a torque which causes the loop to rotate about the y-axis. The torque with respect to the

center of the loop is:

𝝉 = −
𝒃

𝟐
 𝒊 × 𝑭𝟐 +

𝒃

𝟐
 𝒊 × 𝑭𝟒

𝝉 = −
𝒃

𝟐
 𝒊 × 𝑰𝒂𝑩  𝒌 +

𝒃

𝟐
 𝒊 × −𝑰𝒂𝑩  𝒌

𝝉 =
𝑰𝒂𝒃𝑩

𝟐
+

𝑰𝒂𝒃𝑩

𝟐
 𝑱 = 𝑰𝒂𝒃𝑩  𝑱 = 𝑰𝑨𝑩  𝑱

Where A=ab represents the area of the loop and the positive sign indicates that the rotation is

clockwise about the y-axis. It is convenient to introduce the area vector 𝑨 = 𝑨  𝒏 where  𝒏 is a

unit vector in the direction normal to the plane of the loop. The direction of the positive sense

of  𝒏 is set by the conventional right hand rule. In our case, we have  𝒏 = +  𝒌. The above

expression for torque can then be written as:

𝝉 = 𝑰𝑨 × 𝑩



• Notice that the magnitude of the torque is at maximum when 𝑩 is parallel to the plane of the

loop (or perpendicular to 𝑨).

• Consider now the more general situation where the loop (or the area vector 𝑨) makes an angle

𝜽 with respect to the magnetic field.

In above figure, the lever arms can be expressed by:

𝒓𝟐 =
𝒃

𝟐
− 𝐬𝐢𝐧 𝜽  𝒊 + 𝐜𝐨𝐬 𝜽  𝒌 = −𝒓𝟒

and the net torque is becomes:

𝝉 = 𝒓𝟐 × 𝑭𝟐 + 𝒓𝟒 × 𝑭𝟒 = 𝟐𝒓𝟐 × 𝑭𝟐

𝝉 = 𝟐 .
𝒃

𝟐
− 𝐬𝐢𝐧 𝜽  𝒊 + 𝐜𝐨𝐬 𝜽  𝒌 × (𝑰𝒂𝑩  𝒌)

𝝉 = 𝑰𝒂𝒃𝑩 𝐬𝐢𝐧 𝜽  𝑱 = 𝑰 𝑨 × 𝑩

Figure Rotation of a rectangular current loop



For the loop consisting of N turns, the magnitude of the torque is:

𝝉 = 𝑵𝑰𝑨𝑩 𝐬𝐢𝐧 𝜽

The quantity 𝑵𝑰𝑨 is called magnetic dipole moment 𝝁 : 𝝁 = 𝑵𝑰𝑨

The direction of 𝝁 is the same as the area 𝑨 (perpendicular to the plane of the loop) and is

determined by the right hand rule.

The SI unit of the magnetic dipole moment is (𝐴𝑚𝑝𝑒𝑟𝑒. 𝑚𝑒𝑡𝑒𝑟2).

Using the expression for 𝝁 the torque exerted on the current carrying loop can be written:

𝝉 = 𝝁 × 𝑩

This expression in analogues to 𝝉 = 𝒑 × 𝑬 the torque exerted on an electric dipole moment 𝒑

in the presence of an electric field 𝑬. 



Magnetic force on a dipole

Consider the situation where a small dipole is placed along the symmetric axis of a bar magnet,

as in the figure below:

Figure a magnetic dipole near a bar magnet

The dipole experiences an attractive force by the

bar magnet whose magnetic field is non uniform

in the space. Thus, an external force must be

applied to move the dipole to the right. The

amount of force 𝑭𝒆𝒙𝒕 exerted by an external agent

to move the dipole by a distance ∆𝒙 is given by:

𝑭𝒆𝒙𝒕 ∆𝒙 = 𝑾𝒆𝒙𝒕 = ∆𝑼 = −𝝁𝑩 𝒙 + ∆𝒙 + 𝝁𝑩 𝒙

𝑭𝒆𝒙𝒕 ∆𝒙 = −𝝁[𝑩 𝒙 + ∆𝒙 − 𝑩 𝒙 ]



For small ∆𝒙, the external force may be obtained as:

𝑭𝒆𝒙𝒕 = −𝝁
𝑩 𝒙 + ∆𝒙 − 𝑩 𝒙

∆𝒙
= −𝝁

𝒅𝑩

𝒅𝒙

Which is positive quantity since
𝒅𝑩

𝒅𝒙
< 𝟎, i.e., the magnetic field decreases with increasing 𝒙.

This is precisely the force needed to overcome the attractive force due to the bar magnet. Thus,

we have:

𝑭𝑩 = 𝝁
𝒅𝑩

𝒅𝒙
=

𝒅

𝒅𝒙
(𝝁. 𝑩)

More generally, the magnetic force experienced by a dipole 𝝁 placed in non uniform magnetic

field 𝑩 can be written as:

𝑭𝒔 = 𝛁(𝝁. 𝑩)

Where,   𝛁 =
𝝏

𝝏𝒙
 𝒊 +

𝝏

𝝏𝒚
 𝒋 +

𝝏

𝝏𝒛
 𝒌 is gradient Operator.



Example 1: A proton is moving in a circular orbit of radius 14 cm in a uniform 0.35 T

magnetic field perpendicular to the velocity of the proton. Find the linear speed of the

proton.

Sol.



Example 2: A particle with charge 𝑞 = 3.2 × 10−19 𝐶 mass 𝑚 = 3 × 10−27 𝑘𝑔 and velocity

 𝑣 = 5 × 105  𝑖 𝑚/𝑠, enters a region of uniform magnetic field 𝐵 = 1.6  𝑗 𝑇. (a) compute

magnitude and direction of the magnetic force (b) compute the radius of the resulting charge

circular orbit, angular velocity and the frequency

Sol. 



Example 3: In an experiment designed to measure the magnitude of a uniform electric field,

electrons are accelerated from rest through a potential difference of 350 V. The electrons travel

along a curved path because of the magnetic force exerted on them, and the radius of the path is

measured by 7.5 cm. If the magnetic field is perpendicular to the beam. (a) what is the

magnitude of the field? (b) what is the angular speed of the electrons?

• Sol. 



H.W: two isotopes of uranium, 235𝑈 (mass of 3.90 × 10−25 𝑘𝑔) and 238𝑈 (mass of 3.95 ×

10−25 𝑘𝑔), are sent into a mass spectrometer with a speed of 1.05 × 105 𝑚/𝑠. Given that

each isotope is singly ionized, and the strength of the magnetic field is 0.750 T, what is the

separation between two isotopes after they complete half a circular orbit?




