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Physical Pendulum (Compound Pendulum) 

  A compound/physical pendulum is a rigid body of any arbitrary shape capable of rotating 

in a vertical plane about an axis passing through the pendulum but not through the center 

of gravity of the pendulum. 

 The distance between the point of suspension and the center of gravity is called the length 

of the pendulum, When the pendulum is displaced through an angle θ from the mean 

position, a restoring torque comes into play which tries to bring the pendulum back to the 

mean position. However, the oscillation continues due to the inertia of restoring force. 

  As for the simple pendulum, the restoring force of the physical pendulum is the force of 

gravity. With the simple pendulum, the force of gravity acts on the center of the pendulum 

bob. In the case of the physical pendulum, the force of gravity acts on the center of mass 

(CM) of an object. The object oscillates about a point O. Consider an object of a generic 

shape as shown in Figure 19. 

 

 
Figure 19: A physical pendulum 

     

When a physical pendulum is hanging from a point but is free to rotate, it rotates because 

of the torque applied at the CM, produced by the component of the object’s weight that 

acts tangent to the motion of the CM. Taking the counterclockwise direction to be positive, 

the component of the gravitational force that acts tangent to the motion is−𝑚𝑔 𝑠𝑖𝑛𝜃 . The 

minus sign is the result of the restoring force acting in the opposite direction of the 

increasing angle. Recall that the torque is equal to 𝜏 = �⃑⃑� × �⃑⃑⃑�. The magnitude of the torque 

is equal to the length of the radius arm times the tangential component of the force 

applied,|𝜏| = 𝑟𝐹𝑠𝑖𝑛𝜃 . Here, the length L of the radius arm is the distance between the 

point of rotation and the CM.  
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  To analyze the motion, start with the net torque. Recall from Fixed-Axis Rotation on 

rotation that the net torque is equal to the moment of inertia 𝐼 = ∫ 𝑟2𝑑𝑚 times the angular 

Acceleration α where 𝛼 =
𝑑2𝜃

𝑑𝑡2
 : 

 

Using the small angle approximation 𝑠𝑖𝑛𝜃 ≈ 𝜃 and rearranging: 

 

The solution is:        

 

where Θ is the maximum angular displacement. The angular frequency is: 

𝜔 = √
𝑚𝑔𝐿

𝐼
 

The period is therefore: 

𝑇 = 2𝜋√
𝐼

𝑚𝑔𝐿
 

Note that for a simple pendulum, the moment of inertia is 𝐼 = ∫ 𝑟2𝑑𝑚 = 𝑚𝐿2 and the 

period reduces to 𝑇 = 2𝜋√
𝐿

𝑔
 . 

 

Torsional Pendulum 

A torsional pendulum consists of a rigid body suspended by a light wire or spring (Figure 

20). When the 

body is twisted some small maximum angle  Θ and released from rest, the body oscillates 

between (𝜃 = +Θ) and (𝜃 = −Θ). The restoring torque is supplied by the shearing of the 

string or wire. 
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Figure.20: A torsional pendulum 

 

The restoring torque can be modeled as being proportional to the angle: 

𝜏 = −𝜅𝜃 

The variable kappa (𝜅)is known as the torsion constant of the wire or string. The minus 

sign shows that the restoring torque acts in the opposite direction to increasing angular 

displacement. The net torque is equal to the moment of inertia times the angular 

acceleration: 

 

This equation says that the second time derivative of the position (in this case, the angle) 

equals a negative 

constant times the position. This looks very similar to the equation of motion for the SHM   

𝒅𝟐𝒙

𝒅𝒕𝟐
= −

𝒌

𝒎
𝒙 , where the period was found to be 𝑻 = 𝟐𝝅√

𝒎

𝒌
 . Therefore, the period of the 

torsional pendulum can be found using 

𝑇 = 2𝜋√
𝐼

𝜅
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Example//  A rod has a length of l=0.3m and a mass of 4 kg. A string is attached to the 

CM of the rod and the system is hung from the ceiling (Figure 21). The rod is displaced 10 

degrees from the equilibrium position and released from rest. The rod oscillates with a 

period of 0.5 s. What is the torsion constant ? 

 

 

Figure 21 (a) A rod suspended by a string from the ceiling. (b) Finding the rod’s moment 

of inertia. 

Solution// 

 

 

Damped Oscillations 

  For a free oscillation, the energy remains constant. Hence oscillation continues 

indefinitely. However, in real fact, the amplitude of the oscillatory system gradually 

decreases due to experiences of damping force like friction and resistance of the media. 
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The oscillators whose amplitude, in successive oscillations goes on decreasing due to the 

presence of resistive forces are called damped oscillators, and oscillations are called 

damping oscillations. 

 The oscillations of a mass kept in water, charge oscillations in a LCR circuit are examples 

of damped oscillations. Let us assume that in addition to the elastic force F = -kx, there is 

a force that is opposed to the velocity, F = b v where b is a constant known as the resistive 

coefficient and it depends on the medium, shape of the body.   

 

 

Fig.22. (A) Spring oscillation under damping is created by viscous liquid. (B) Equivalent 

LCR circuit in series 

 

Writing this as a differential equation in x, we obtain: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0 

This is a homogeneous, linear differential equation of second order. 
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Recall that the angular frequency of a mass undergoing SHM is equal to the square root of 

the force constant divided by the mass. This is often referred to as the natural angular 

frequency, which is represented as  𝜔° = √
𝑘

𝑚
 . The angular freq uency for damped 

harmonic motion becomes  𝜔 = √𝜔°
2 − (

𝑏

2𝑚
)2 . 

 

 

 

Figure 23 Position versus time for the mass oscillating on a spring in a viscous fluid. 
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    Critical damping is often desired, because such a system returns to equilibrium rapidly 

and remains at 

equilibrium as well. In addition, a constant force applied to a critically damped system 

moves the system to a new equilibrium position in the shortest time possible without 

overshooting or oscillating about the new position. 

 

Figure .24 

Forced Oscillations 

     The oscillations occur that under the action of an external periodic force are called 

forced oscillations. During forced oscillations the system oscillates with the frequency of 

the external periodic force. Examples for forced oscillations are Sonometer wire set to 

oscillations using a tuning fork or electromagnet. Resonance air column.  
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The forces acting on the system during forced oscillations 

1. Restoring force acting in the direction opposite to the displacement. 

2. Damping force due to the viscous medium. 

3. External periodic force acting on the system. 

Let F = Fo Cosωt be the oscillating applied force , The equation of motion is given by 

 

   When an oscillator is forced with a periodic driving force, the motion may seem chaotic. 

The motions of the oscillator are known as transients. After the transients die out, the 

oscillator reaches a steady state, where the motion is periodic. After some time, the steady 

state solution to this differential equation is 

 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙) 

 

the amplitude is equal to 

𝐴 =
𝐹°

√𝑚2(𝜔2 − 𝜔°
2)2 + 𝑏2𝜔2

 

where 𝜔° = √
𝑘

𝑚
  is the angular frequency of the driving force. Looking at the denominator 

of the equation for the amplitude, when the driving frequency is much smaller, or much 

larger, than the natural frequency, the square of the difference of the two angular 

frequencies (𝜔2 − 𝜔°
2)2 is positive and large, making the denominator large, and the result 

is a small amplitude for the oscillations of the mass. As the frequency of the driving force 

approaches the natural frequency of the system, the denominator becomes small and the 

amplitude of the oscillations becomes large. The maximum amplitude results when the 

frequency of the driving force equals the natural frequency of the system𝐴𝑚𝑎𝑥 =
𝐹°

𝑏𝜔
. 

•A system’s natural frequency is the frequency at which the system oscillates if not affected 

by driving or damping forces. 

• A periodic force driving a harmonic oscillator at its natural frequency produces resonance. 

The system is said to resonate. 

• The less damping a system has, the higher the amplitude of the forced oscillations near 

resonance. The more damping a system has, the broader response it has to varying driving 

frequencies. 

 

Resonance: - 
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The amplitude of vibration becomes large for small damping and the maximum amplitude 

is inversely proportional to resistive term (b) hence called resonance. It is the phenomenon 

of a body setting a body into vibrations with its natural frequency by the application of a 

periodic force of the same frequency. 

If the amplitude of oscillation is maximum when the driving frequency is the same as the 

natural frequency of an oscillator. (i.e., ω =ω0). 

 


