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Interference of Waves 

Waves do interact with the boundaries of the medium, and all or part of the 

wave can be reflected. 

Reflection and Transmission 

When a wave propagates through a medium, it reflects when it encounters the 

boundary of the medium. The wave before hitting the boundary is known as 

the incident wave.  

The wave after encountering the boundary is known as the reflected wave.  

How the wave is reflected at the boundary of the medium depends on the 

boundary conditions; waves will react differently if the boundary of the 

medium is fixed in place or free to move (Figure 7). A fixed boundary 

condition exists when the medium at a boundary is fixed in place so it cannot 

move. A free boundary condition exists when the medium at the boundary 

is free to move. 

 

Figure (7) 
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Figure (8) 

In some situations, the boundary of the medium is neither fixed nor free. Consider 

Figure. 8(a), where a low-linear mass density string is attached to a string of a higher 

linear mass density. In this case, the reflected wave is out of phase with respect 

to the incident wave. There is also a transmitted wave that is in phase with 

respect to the incident wave. Both the transmitted and the reflected waves have 

amplitudes less than the amplitude of the incident wave.  

 

Part (b) of the figure shows a high-linear mass density string is attached to a string 

of a lower linear density. In this case, the reflected wave is in phase with respect 

to the incident wave. There is also a transmitted wave that is in phase with 



Lectures of Waves Physics                                            2nd year 
 

 

respect to the incident wave. Both the incident and the reflected waves have 

amplitudes less 

than the amplitude of the incident wave. 

 

Superposition and Interference 

Most interesting mechanical waves consist of a combination of two or more 

traveling waves propagating in the same medium. The principle of 

superposition can be used to analyze the combination of waves. 

Consider two simple pulses of the same amplitude moving toward one another 

in the same medium, as shown in Figure (9) . Eventually, the waves overlap, 

producing a wave that has twice the amplitude, and then continues unaffected 

by the encounter. The pulses are said to interfere, and this phenomenon is 

known as interference. 
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Figure (9) 

   To analyze the interference of two or more waves, we use the principle of 

superposition. For mechanical waves, the principle of superposition states 

that if two or more traveling waves combine at the same point, the 

resulting position of the mass element of the medium, at that point, is the 

algebraic sum of the position due to the individual waves. This property is 

exhibited by many waves observed, such as waves on a string, sound waves, 

and surface water waves. Electromagnetic waves also obey the superposition 

principle, but the electric and magnetic fields of the combined wave are added 

instead of the displacement of the medium. Waves that obey the superposition 
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principle are linear waves; waves that do not obey the superposition principle 

are said to be nonlinear waves. 

    Mechanical waves that obey superposition are normally restricted to waves 

with amplitudes that are small with respect to their wavelengths. If the 

amplitude is too large, the medium is distorted past the region where the 

restoring force of the medium is linear. 

 

     Waves can interfere constructively or destructively. Figure (10) shows 

two identical sinusoidal waves that arrive at the same point exactly in phase.  

Figure 10(a) and (b) show the two individual waves, and (c) shows the 

resultant wave that results from the algebraic sum of the two linear waves. 

The crests of the two waves are precisely aligned, as are the troughs. This 

superposition produces constructive interference. Because the disturbances 

add, constructive interference produces a wave that has twice the amplitude 

of the individual waves, but has the same wavelength. 
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Figure 10 Constructive interference of two identical waves produces a wave 

with twice the amplitude, but the same wavelength. 

   Figure (11) shows two identical waves that arrive exactly 180̊ out of phase, 

producing destructive interference. Figure 11(a) and (b) show the individual 

waves, and Figure 11(c) shows the superposition of the two waves. Because 

the troughs of one wave add the crest of the other wave, the resulting 

amplitude is zero for destructive interference—the waves completely cancel. 
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Figure 11 Destructive interference of two identical waves, one with a phase shift of 

180̊(π rad) , produces zero amplitude, or complete cancellation. 

 

*When linear waves interfere, the resultant wave is just the algebraic sum of 

the individual waves as stated in the principle of superposition. 

* When two linear waves in the same medium interfere, the height of a 

resulting wave is the sum of the heights of the individual waves, taken point 

by point. 

 *The superposition of most waves produces a combination of constructive 

and destructive interference and can vary from place to place and time to time. 

 

 

 

Figure 12 Superposition of nonidentical waves exhibits both constructive and destructive 

interference. 
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Superposition of Sinusoidal Waves that Differ by a Phase Shift 

Many examples in physics consist of two sinusoidal waves that are identical 

in amplitude, wave number, and angular frequency, but differ by a phase shift: 

 

When these two waves exist in the same medium, the resultant wave resulting 

from the superposition of the two individual waves is the sum of the two 

individual waves: 

 

by using the trigonometric identity: 

 

 

This equation is usually written as 

𝑦𝑅(𝑥, 𝑡) = [2𝐴 cos(
𝜙

2
)] sin (𝑘𝑥 − 𝜔𝑡 +

𝜙

2
)    (13) 

The resultant wave has the same wave number and angular frequency, an 

amplitude of 𝐴𝑅 = [2𝐴 cos(
𝜙

2
)] ,and a phase shift equal to half the original 

phase shift. 

 

Standing Waves  

Under certain conditions, waves can bounce back and forth through a 

particular region, effectively becoming stationary. These are called standing 

waves. 
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In the case of standing waves, the relatively large amplitude standing waves 

are produced by the superposition of smaller amplitude component waves. 

 

If the two waves have the same amplitude and wavelength, then they alternate 

between constructive and destructive interference. The resultant looks like a 

wave standing in place and, thus, is called a standing wave.` 

 

 

 

Consider two identical waves that move in opposite directions. The first wave 

has a wave function of 𝒚𝟏(𝒙, 𝒕) = 𝑨 𝐬𝐢𝐧 (𝒌𝒙 − 𝝎𝒕) and the second wave has 

a wave function 𝒚𝟐(𝒙, 𝒕) = 𝑨 𝐬𝐢𝐧 (𝒌𝒙 + 𝝎𝒕). The waves interfere and form 

a resultant wave 

 
This can be simplified using the trigonometric identity 

 

which simplifies to 

𝑦(𝑥, 𝑡) = [2𝐴 sin (𝑘𝑥)] cos(𝜔𝑡)       (14) 
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Initially, at time t=0, the two waves are in phase, and the result is a wave that 

is twice the amplitude of the individual waves. The waves are also in phase at 

the time 𝑡 =
𝑇

2
  .In fact, the waves are in phase at any integer multiple of half 

of a period: 

 

At other times, the two waves are 180 ̊ (π radians) out of phase, and the 

resulting wave is equal to zero. This happens at 

 

Notice that some x-positions of the resultant wave are always zero no matter 

what the phase relationship is. 

These positions are called nodes. Consider the solution to the sum of the two 

waves 

𝑦(𝑥, 𝑡) = [2𝐴 sin (𝑘𝑥)]cos (𝜔𝑡) 

Finding the positions where the sine function equals zero provides the 

positions of the nodes. 

 

There are also positions where y oscillates between y=±A. These are the 

antinodes. We can find them by considering which values of x result in 

sin(𝑘𝑥) = ±1 . 
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   The resulting wave appears to be a sine wave with nodes at integer multiples 

of half wavelengths. The antinodes oscillate between y=±2A due to the cosine 

term, cos(ωt), which oscillates between ±1. 

A common example of standing waves is the waves produced by stringed 

musical instruments.   

The symmetrical boundary conditions (a node at each end) dictate the possible 

frequencies that can excite standing waves. Starting from a frequency of zero 

and slowly increasing the frequency, the first mode n=1 appears as shown in 

Figure 13. The first mode, also called the fundamental mode or the first 

harmonic, shows half of a wavelength has formed, so the wavelength is equal 

to twice the length between the nodes 𝜆1 = 2𝐿 . The fundamental frequency, 

or first harmonic frequency, that drives this mode is 

 

 

where the speed of the wave is 𝑣 = √
𝐹𝑇

𝜇
 .Keeping the tension constant and 

increasing the frequency leads to the second harmonic or the mode n=2. This 

mode is a full wavelength 𝜆2 = 𝐿 and the frequency is twice the fundamental 

frequency: 
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Figure 13 Standing waves created on a string of length L. A node occurs at each end of 

the string. The nodes are boundary conditions that limit the possible frequencies that excite 

standing waves. The standing wave patterns possible on the string are known as the normal 

modes. 

  

The next two modes, or the third and fourth harmonics, have wavelengths of 

𝜆3 =
2

3
𝐿and 𝜆4 =

2

4
𝐿 driven by frequencies of 𝑓3 =

3𝑣

2𝐿
= 3𝑓1and 𝑓4 =

4𝑣

2𝐿
=

4𝑓1 All frequencies above the frequency 𝑓1 are known as the overtones. The 

equations for the wavelength and the frequency can be summarized as: 

 

𝜆𝑛 =
2

𝑛
𝐿      𝑛 = 1,2,3,4,5 …       (15) 

𝑓𝑛 = 𝑛
𝑣

2𝐿
= 𝑛𝑓1     𝑛 = 1,2,3,4,5 ….      (16) 

 

    The standing wave patterns that are possible for a string, the first four of 

which are shown in Figure 13, are known as the normal modes, with 

frequencies known as the normal frequencies. In summary, the first frequency 

to produce a normal mode is called the fundamental frequency (or first 
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harmonic). Any frequencies above the fundamental frequency are overtones. 

The second frequency of the n=2 normal mode of the string is the first 

overtone (or second harmonic). The frequency of the n=3 normal mode is the 

second overtone (or third harmonic) and so on. 

Note// The solutions shown as Eq. 15 and Eq 16 are for a string with the 

boundary condition of a node on each end. When the boundary condition on 

either side is the same, the system is said to have symmetric boundary 

conditions. Eq.15 and Eq.16 are good for any symmetric boundary conditions, 

that is, nodes at both ends or antinodes at both ends. 

 

Example.7// Standing Waves on a String 

Consider a string L=2m  of attached to an adjustable-frequency string vibrator 

as shown in Figure 14. The waves produced by the vibrator travel down the 

string and are reflected by the fixed boundary condition at the pulley. The 

string, which has a linear mass density μ=0.006 kg/m of is passed over a 

frictionless pulley of a negligible mass, and the tension is provided by a 2.00-

kg hanging mass. (a) What is the velocity of the waves on the string? (b) Draw 

a sketch of the first three normal modes of the standing waves that can be 

produced on the string and label each with the wavelength. (c) List the 

frequencies that the string vibrator must be tuned to in order to produce the 

first three normal modes of the standing waves. 

 
 

 

Figure 14: string attached to an adjustable-frequency string vibrator. 

Solution 

a. Begin with the velocity of a wave on a string. The tension is equal to the weight of the 

hanging mass. The linear mass density and mass of the hanging mass are given: 
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b. The first normal mode that has a node on each end is a half wavelength. The next two 

modes are found by adding a half of a wavelength. 

 

 

 

c. The frequencies of the first three modes are found by using 𝑓 =
𝑣𝜔

𝜆
 

 

H.w //Consider the experimental setup shown below. The length of the string 

between the string vibrator and the pulley is L=1 m. The linear density of the 

string is μ=0.006 kg/m. The string vibrator can oscillate at any frequency. The 

hanging mass is 2.00 kg. (a)What are the wavelength and frequency of n=6 

mode? (b) The string oscillates the air around the string. What is the 

wavelength of the sound if the speed of the sound is v=343 m/s. 
 


