1. مقدمــة Introduction

ماتلاب Matrix Laboratory) MATLAB) (وتعني مختبر المصفوفات) هو برنامج رائد في التطبيقات الهندسية والرياضية من إنتاج شركة ماثووركس Mathworks

مؤسس البرنامج هما كل من كليف مولر و جاك ليتل

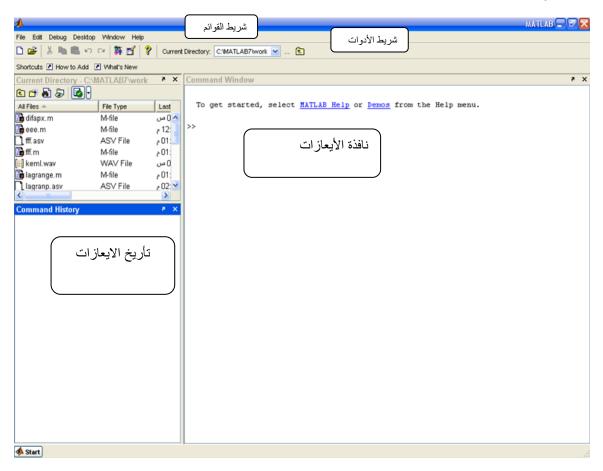
يقوم بعمليات تحليل وتمثيل البيانات من خلال معالجة تلك البيانات تبعاً لقاعدة البيانات الخاصة به, فمثلاً يستطيع البرنامج عمل التفاضل differentiation و التكامل Integration و كذلك يقوم بحل المعادلات الجبرية Algebraic Equations وكذلك المعادلات التفاضلية Differential Equations ذات الرتب العليا والتي قد تصل من الصعوبة ما تصل, ليس فقط ذلك بل يستطيع البرنامج عمل التفاضل الجزئي.

يسمح MATLAB بالقيام بالعمليات الحسابية على بالمصفوفات، بالرسم البياني للتوابع الرياضية، بتنفيذ الخوار زميات المختلفة، إنشاء واجهات المستخدم الرسومية.

يستخدم البرنامج مع العديد من التطبيقات والأدوات المساعدة الأخرى مثل(Simulink)

الإضافات التي تنتجها الشركة تنقسم قسمين: إضافات خاصه بماتلاب وإضافات خاصة بسميولينك الإضافات الخاصة بالماتلاب تُسمى صناديق عدة (Toolbox) هذه الصناديق تختلف عن بعضها البعض إذا لكل صندوق تخصص علمي تعالجه فهي تحوي بداخلها تعلميات برمجية تؤدي إلى حل المسائل العلمية في التخصص الذي أنشئت من أجله الأداة مثل أداة معالجة الصور فهي تعالج تخصص تحليل الصور وكتابة خوارزميات لترتيب البكسلات و هكذا.

أما الإضافات الخاصة بسميولينك Simulink فهي تُسمى كُتل (block set) تقوم بتطبيق النظريات الفيزيائية أو الرياضية على نموذجك الذي أنشئته لتعطيك محاكاة لوضع نموذجك في حال تم خضوع نموذجك لهذه النظريات الفيزيائيه أو الرياضية في الواقع الحقيقي لنأخذ كتله كمثال يوجد في برنامج سميولينك كتله تحاكي الطائرات والسفن الفضائية وأنظمة الدفع تسمى(Aerospace Block set) تستفيد الشركات المصنعة للطائرات من هذه الكتلة في إخضاع طائراتهم لعوامل جوية معينة كالضغط الجوي وتأثيره على هيكل الطائرة بشكل افتراضي ورؤية نتائج أداء طائراتهم على الحاسب بمساعده برنامج المحاكاة سميولينك و هذه الكتلة.


يسمح برنامج ماتلاب برسم أشكال ثلاثية الأبعاد بعد كتابة معادلاتها الرياضية قي نافذة معينة. بعد رسم الأشكال يمكن تغيير لون و حجم الجسم المرسوم بواسطة شريط خاص للأدوات. عند رسم أشكال معقدة, يمكن جعل أجزاء معينة نصف شفافة حتى يستطيع المستخدم رؤية الأجزاء الأخرى التي تقع خلفها. يستخدم هذا البرنامج أيضاً في رسم الخطوط البيانية ثنائية الأبعاد و في حل المعادلات الرياصية الصعبة.

2. واجهة البرنامج

تتسم واجهة البرنامج بالسهولة في التعامل معها, حيث يتم تقسيم مناطق العمل بها إلى ثلاث مناطق رئيسية, وهي كالتالي نافذة الأوامر Command و منطقة العمل Workspace و تاريخ الأوامر History

عند تشغيل واجهة المستخدم للماتلاب بالنقر على الأيقونة Start من سطح المكتب او من قائمة Start ومن All programmes

الاصدارات القديمة

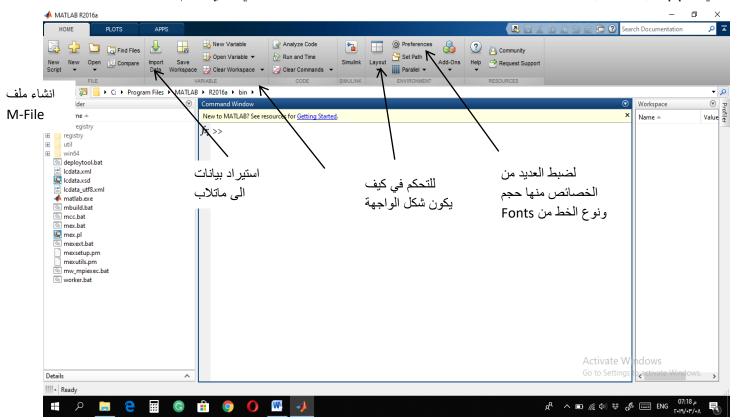
من الشاشة الظاهرة تستطيع ان تتعرف على الأجزاء الرئيسية وهي:

- 1. شريط القوائم menu bar
- 2. شريط الأدوات Toolbar
- 3. شريط يوضح الحافظة المستخدمة حاليا للعمل current directory
 - 4. مساحة العمل work space
 - 5. نافذة الأبيعازات command window
 - 6. تأريخ الأيعازات command history
- 7. قائمة للبدء start في يسار الشاشة و هي تحتوي حزم الأدوات toolbox المتوفرة في الماتلاب وكذلك عروض عملية Demos لبرامج معدة مسبقا
- ستلاحظ عند بدء التشغيل ظهور رسالة في شاشة الأيعازات ومن اسفل منها ستجد الأشارة << والتي تعني ان الماتلاب مستعد لتلقي الأيعازات. هنا يمكن البدء بكتابة الأيعازات باستخدام لوحة المفاتيح.

قائمة ملف File

قائمة التعديل Edit

فكما تعودنا في تلك القائمة أن نجد أو امر (نسخ Copy, قص Cut, لصق Paste, بحث Find), ولكن هنالك ثلاث أدوات هامة بها وهي


قائمة Desktop:

في هذه القائمة يتم التحكم بمحتوى الواجهة الخاصة ببرنامج الماتلاب, فمثلاً يمكننا إظهار نافذة الأوامر أو إخفائها

الواجهة الحديثة

صممت هذه الواجهة بطريقة التبويبات Tabs بدلا من القوائم المنسدلة. حيث يحتوي على ثلاث تبويبات رئيسية وهي Home, Plots, Apps وكل واحد منها يختص بمجموعة من الادوات التي تؤي مهام معينة.

المتغيرات والدوال الجاهزة:

عندما نريد ان نعرف على اي لغة من لغات الحاسوب ونحتاج الى معرفة في اول الأمر ما هي المتغيرات وما هي الثوابت المسموح استخدامها ضمن هذه اللغة

المتغيرات variables:

هي اسماء تمثل قيم عددية او كمية او ثوابت حرفية او بعض البيانات الثابتة مثل (صح true)

يوجد في الماتلاب ثلاثة انواع من المتغيرات :متغيرات موضعية local variables , متغيرات شاملة global , متغيرات مستمرة persistent variables .

1- المتغيرات الموضعية :كل دالة من دوال الماتلاب لها متغيرات موضعية وهي متغيرات لا يتم تخزين قيمها في ذاكرة البرنامج وتحسب في كل مرة يجري فيها تشغيل البرنامج .

2- المتغيرات الشاملة:

3- المتغيرات المستمرة :وهي متغيرات يتم تعريفها واستخدامها فقط في matlab function وتكون متاحة فقط للاستخدام من قبل هذه الدالة . وأيضا لا يقوم الماتلاب بمسحها من الذاكرة فتبقى للاستعمالات اللاحقة لنفس الدالة وفي هذا النوع من المتغيرات يجب تعريفها قبل استخدامها

3. العمليات الحسابية يحوى ماتلاب على مجموعة من العمليات الحسابية:

الطريقة	الأجراء	العملية
a+b	الجمع	+
a-b	الطرح	-
a/b او a/b	قسمة من اليمين او اليسار	/ أو \
a^b	الأس	٨
a*b	الضرب	*

امثلة:

>> a=3

a=

3

>> b=6

b=

6

>> a+b

Ans =

9

>> a-b

Ans =

3

>> a/b Ans = 0.5000

>> a^b Ans= 729

4. الدوال الجاهزة

هناك مجموعة من الدوال التي تحتويها مكتبة ماتلاب ومنها: القيمة المطلقة للمتغير (abs(x): القيمة المطلقة للمتغير (relation المعلقة المطلقة للمتغير اذا كانت سالبة فأن الناتج موجب اما اذا كانت موجبة تبقى موجبة:

>> x=-19; >>y=abs(x) y=19

الدالة (round(x

تقريب العدد الى اقرب عدد صحيح

>> round(160.7) .ans = 161

>> round(-167.7) .ans = -168

>>round(130.4) .ans = 130

الدالة (fix(x

تقرب الى اقرب عدد باتجاه الصفر

>> fix(-134.4)
.ans =
-134

>> fix(130.4)
.ans =
130

>> fix(160.7)
.ans =
160

الدالة floor(x) : هي قيمة عددية مقربة الى اصغر عدد صحيح , اصغر او يساوي x

>>floor (130.4)
.ans =
130

>> floor (-130.4)	>>floor (160.7)
	.ans =
-131	160

وفيما يلي جداول بالتوابع الرياضية حسب نوع الاستخدام

صيغة الاستعمال	الشرح	توابع الدوال المثلثية
cos (x)	تابع لجيب التمام	cos
sin (x)	تابع لجيب	sin
tan(x)	تابع تابع للظل	tan
cot(x)	تابع للظل تمام	cot
sec(x)	تابع للقاطع	sec
csc(x)	تابع للقاطع تمام	CSC
acos(x)	تابع معكوس الجيب تمام	cos ⁻¹ (x)
asin(x)	تابع معكوس الجيب	sin ⁻¹ (x)
atan(x)	تابع معكوس الظل	tan⁻¹(x)
acot(x)	تابع معكوس الظل تمام	cot ⁻¹
asec(x)	تابع معكوس القاطع	sec ⁻¹
acsc(x)	تابع معكوس القاطع تمام	CSC ⁻¹
cosh(x)	تابع الجيب القطعي	cosh

sinh(x)	تابع الجيب القطعي	sin <i>h</i>
tanh(x)	تابع الظل القطعي	tan <i>h</i>
coth(x)	تابع الظل تمام القطعي	coth
sech(x)	تابع القاطع القطعي	sech
csch(x)	تابع القاطع تمام القطعي	csch
acosh(x)	تابع العكسي لجيب التمام القطعي	cosh ⁻¹
asinh(x)	تابع العكسي للجيب القطعي	sinh ⁻¹
atanh(x)	تابع العكسي للظل القطعي	tanh ⁻¹
acoth(X)	تابع العكسي للظل تمام القطعي	coth ⁻¹
asech(x)	تابع العكسي للقاطع القطعي	sech ⁻¹
acsch(x)	تابع العكسي للقاطع تمام القطعي	csch ⁻¹

ملاحظة: اذا كانت الزاوية بالدرجات نضيف حرف d فثلا لايجاد جيب الزاوية 90⁰ نكتب (90) sind

طريقة الاستعمال	الشرح	التوابع الأسية
x^2	الرفع إلى قوة	x^2
exp(x)	التابع الآسي (رفع العدد e للقوة x)	e ^x
log(x)	اللوغاريتم الطبيعي	ln(x)
log10(x)	اللو غاريتم للأساس 10(logx)	$log_{10}(x)$
log2(x)	اللو غاريم للأساس 2	$\log_2(x)$
pow2(x)	رفع العدد 2 لقوة معينة	2 ^x
sqrt(x)	الجذر التربيعي	\sqrt{x}

طريقة الاستعمال	الشرح	التوابع العقدية
abs(z)	القيمة المطلقة للعدد المعقد	abs(z)= z
conj(z)	مرافق العدد المعقد Z	conj
imag(z)	الجزء التخيلي من العدد المعقد	imag
real(z)	الجزء الحقيقي من العدد المعقد	real
complex(x,y)	بناء عدد معقد من عددين	complex
angle(z)	الزاوية بالراديان	angle

طريقة الاستعمال	الشرح	توابع التدوير وباقي القسمة
fix(x)	يقرب نحو الصفر	fix
floor(x)	يقرب نحو اللانهاية السالبة	floor
ceil(x)	يقرب نحو اللانهاية الموجبة	ceil
round(x)	يقرب الى اقرب عدد صحيح	round
mod(x,y)	باقي القسمة	mod

rem(x,y)	الباقي بعد القسمة	rem
sign(x)	تابع الإشارة الجبرية	sign

طريقة الاستعمال	الشرح	توابع تحويل الإحداثيات
cart2sph(x,y,z)	التحويل من الإحداثيات الديكارتية إلى	cart2sph
	الكروية	
cart2pol(x,y)	التحويل من الإحداثيات الديكارتية إلى	cartpol
	القطبية	
pol2cart(θ,r)	التحويل من الإحداثيات القطبية إلى	pol2cart
	الديكار تية	
sph2cart(θ,Ω,r)	التحويل من الإحداثيات الكروية إلى	sph2cart
	الديكارتية	

طريقة الاستعمال	الشرح	توابع نظرية الأعداد
factor(x)	التحليل الى العوامل الأولية	factor
primes(x)	يولد قائمة بالأعداد الأولية	primes
gcd(x,y)	القاسم المشترك الأكبر	gcd
lcm(x,y)	المضاعف المشترك الأصغر	lcm
perms(a)	كافة التباديل الممكنة	perms
nchoosek(n,k)	كافة التوافيق الممكنة لـ N عنصر مأخوذة	nchoosek
	لـ K عنصر في كل مرة	

.H.W جد ناتج مايلي باستخدام برنامج الماتلاب:

$$y1 = x\sqrt{x^2 + 1}$$
, $x = 7$
 $y2 = log_2(x) + \frac{2^x}{sin^{-1}(\frac{x}{100})}$, $x = 10$