(b) Construction of new wavefront for a circular wave

- Explanation as in the construction of new wavefront for a plane wavefront
- But the wavefront A'B' is a curve touching points Q₁,Q₂,Q₃ and Q₄.
 - The curve A'B' is the new (circular) wavefront after *t* second.

(c) Diffraction of wave at a single slit

- Huygens' principle can be used to explain the diffraction of wave.
 - Each of the point in figure shown, acts as a secondary source of wavelets (red circular arc)
 - The tangent to the wavelets from points 2, 3 and 4 is a plane wavefront.
 - But at the edges, points 1 and 5 are the last points that produce wavelets.
 - Huygens' principle suggest that in conforming to the curved shape of the wavelets near the edges, the new wavefront bends or diffracts around the edges - applied to all kinds of waves.

If the size of the slit is small (a $<< \lambda$), then diffraction will occur as shown in figure .

1.3. Interference of Light Waves

- Light waves are electromagnet waves.
- Consists of varying electric field E and varying magnetic field B which are perpendicular to each other

Electric field: $E = E_O \sin(\omega t - kx)$

Magnetic field: $B = B_O \sin(\omega t - kx)$

o Interference

When two light waves meet at a point, a bright or a dark region will be produced in accordance to the *Principle of Superposition*.

Principle of Superposition:

The resultant displacement at any point is the vector sum of the displacements due to the two light waves.

Constructive interference

 Reinforcement of amplitudes of light waves that will produce a bright fringe (maximum).

Destructive interference

 Total cancellation of amplitudes of light waves that will produce a dark fringe (minimum).

1.4. Condition for Fixed Interference

- (a) Two coherent sources.
 - The sources must have the same wavelength (monochromatic).
 - the sources must have a constant phase difference between them.
- (b) The waves that are interfering must have the same or approximately the same amplitude to obtain total cancellation at minimum or to obtain a good contrast at maximum.

1.5. Path difference

 Definition – is defined as the difference in distance from each source to a particular point.

Path Difference,
$$\Delta L = |S_2P - S_1P|$$

= $|x_2 - x_1|$

1.6. Interference of Two Coherent Sources in phase

o Path difference for constructive interference

 S_1 and S_2 are coherent sources in phase

* A bright fringe at P if $\Delta \Phi = 2m\pi$ where m = 0,1,2,...

* At P,

$$E_{IP} = E_0 \sin(\omega t - kx_1)$$

$$E_{2P} = E_0 \sin(\omega t - kx_2)$$
then

$$\Delta \Phi = (\omega t - kx_1) - (\omega t - kx_2)$$

$$\Delta \Phi = (\omega t - kx_2) - (\omega t - kx_1)$$

$$\Delta \Phi = k(x_1 - x_2) \text{ since } k = \frac{2\pi}{\lambda} \text{ and}$$

$$\Delta \Phi = \frac{2\pi}{\lambda} \Delta L \qquad (x_1 - x_2) = \Delta L$$

Therefore

$$2m\pi = \frac{2\pi}{\lambda}\Delta L$$

$$\Delta L = m\lambda$$

where m = 0,1,2,....

 λ : wavelength

Note

When

m=0 \Longrightarrow Central bright fring

 $m = 1 \longrightarrow 1^{st}$ bright fringe

m=2 \Longrightarrow 2nd bright fringe

13