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4.Cauchy's theorem  

Let C be a simple closed curve. If )(zf is analytic function within the region bounded by C 

as well as on C then we have Cauchy's theorem that  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2 : If )(zf is analytic function within and on the boundary of region bounded 

by two closed curves C0 and C1, then; 

  

 

 

Prove that 
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Where R is the region (simply-connected) bounded by C. Since )(zf is analytic function 

within the region bounded by C, 
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are zero. 

Then      c c dzzfdzzf 0)()( , assuming )(zf  to be continuous. 
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5.  Cauchy's integral formulas 

  If )(zf is analytic function within and on a simple closed curve C and 0z  is any interior to 

C, then  
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Also, the nth derivative of )(zf  at 0zz  is given by  
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Example 1.  
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Prove (5.1) 

Let C0 be a circle of radius r having center at 0zz  . 

Since )(zf  is analytic function within and on the  

boundary of region bounded by two closed curves C  

and C0, then from equation (4.2) we have 
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Example3.  Evaluate the integral 
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Example 2. Calculate )
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