4.Cauchy's theorem

Let C be a simple closed curve. If f (z)is analytic function within the region bounded by C
as well as on C then we have Cauchy's theorem that

o f(z2)dz=§_ f(z)dz=0

Proof:
fo f(2)dz = {. (u+iv)(dx+idv) = § udx —vdy +if. vdx + udy

By using Green's theorem §. pdXx + Qdy = [[5 (@ — E)dxdy, we get:
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Where R is the region (simply-connected) bounded by C. Since f (z) is analytic function
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within the region bounded by C, — = — = ——, and so the above integrals
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are zero.

Then -[C f(z)dz = fc f (z)dz =0, assuming f '(2) to be continuous.

Theorem 2:1f f (2) is analytic function within and on the boundary of region bounded

by two closed curves Co and Ci, then;

fco f(z)dz = §C1 f(z)dz

Prove that




5. Cauchy's integral formulas

If f (z)is analytic function within and on a simple closed curve C and zg is any interior to
C, then
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Also, the nth derivative of f (z) at Z=zgis given by
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Prove (5.1)

Let Co be a circle of radius r having center at Z = zg.

Since f (z) isanalytic function within and on the

boundary of region bounded by two closed curves C

and Co, then from equation (4.2) we have

§ f(2) dz =¢ f(2) dz , To evaluate this last integral, not that on Co,
Cz—-2z9 Co z —zg

lz—zp|=rorz—-z9= re'? and dz =ire'?d@. The integral equals to
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Example3. Evaluate the integral §C—3
(z+1)

dz, where C is simple closed curve enclosing

dz = 2;1 f2(z), f(2)=2"= 1'(2)=32" = f*(2) =62 f *(-1) =6
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Example 2. Calculate f (= ) where f (2) = ffc ﬂdz. Here C is the circle ‘Z‘ =

taLdz, nN+1=3= n=2. f(z)=tanz
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f(z)=tanz = f’(z):sec2 z
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