4.Cauchy's theorem

Let C be a simple closed curve. If f(z) is analytic function within the region bounded by C as well as on C then we have Cauchy's theorem that

4.1
$$\int_C f(z)dz = \oint_C f(z)dz = 0$$

Proof:

$$\oint_{\mathcal{C}} f(z)dz = \oint_{\mathcal{C}} (u+iv)(dx+idv) = \oint_{\mathcal{C}} udx - vdy + i\oint_{\mathcal{C}} vdx + udy$$

By using Green's theorem $\oint_C p dx + Q dy = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy$, we get:

$$\oint_{C} u dx - v dy = \iint_{R} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy \qquad , \qquad \oint_{C} v dx - u dy = \iint_{R} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy$$

Where R is the region (simply-connected) bounded by C. Since f(z) is analytic function within the region bounded by C, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, and so the above integrals

are zero.

Then $\int_C f(z)dz = \oint_C f(z)dz = 0$, assuming f'(z) to be continuous.

Theorem 2: If f(z) is analytic function within and on the boundary of region bounded by two closed curves C_0 and C_1 , then;

$$\oint_{C0} f(z)dz = \oint_{C_1} f(z)dz$$

 C_0

Prove that

5. Cauchy's integral formulas

If f(z) is analytic function within and on a simple closed curve C and z_0 is any interior to C, then

5.1
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$

Or

5.2
$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

Also, the *n*th derivative of f(z) at $z = z_0$ is given by

5.3
$$\frac{d^n}{dz} f(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Or

5.4
$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i \frac{d^n}{dz} f(z_0)}{n!}$$

Example 1.

$$\oint_C \frac{f(z)}{(z-z_0)^3} dz = \frac{2\pi i f^2(z_0)}{2!} = \pi i \frac{d^2}{dz} f(z_0)$$

Prove (5.1)

Let C_0 be a circle of radius r having center at $z = z_0$.

Since f(z) is analytic function within and on the

boundary of region bounded by two closed curves C

and C₀, then from equation (4.2) we have

$$\oint_C \frac{f(z)}{z - z_0} dz = \oint_{C_0} \frac{f(z)}{z - z_0} dz$$
, To evaluate this last integral, not that on C₀,

$$|z-z_0|=r$$
 or $z-z_0=re^{i\theta}$, and $dz=ire^{i\theta}d\theta$. The integral equals to

$$\oint_C \frac{f(z)}{z - z_0} dz = \oint \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta = i \oint f(z_0 + re^{i\theta}) d\theta$$

As
$$r \to 0$$
 , $z \to z_0$

$$\oint_C \frac{f(z)}{z - z_0} dz = if(z_0) \int_0^{2\pi} d\theta = 2\pi i f(z_0)$$

Example 3. Evaluate the integral $\oint_C \frac{z^3}{(z+1)^3} dz$, where C is simple closed curve enclosing $z_0 = -1$

$$\oint_C \frac{z^3}{(z+1)^3} dz = \frac{2\pi i}{2} f^2(z_0), \qquad f(z) = z^3 \Rightarrow f'(z) = 3z^2 \Rightarrow f^2(z) = 6z \Rightarrow f^2(-1) = -6$$

$$\therefore \oint_C \frac{z^3}{(z+1)^3} dz = \frac{2\pi i}{2} f^2(-1) = -6\pi i$$

Example 2. Calculate $f(\frac{\pi}{3})$, where $f(z) = \oint_C \frac{\tan z}{(z-a)^3} dz$. Here C is the circle |z| = 2.

$$f(\frac{\pi}{3}) = \oint_C \frac{\tan z}{(z - \frac{\pi}{3})^3} dz, \quad n + 1 = 3 \Rightarrow \quad n = 2. \quad f(z) = \tan z$$

$$\therefore \oint_C \frac{\tan z}{(z - \frac{\pi}{3})^3} dz = \frac{2\pi i}{2} \frac{d^2}{dz} f(\frac{\pi}{3})$$

$$f(z) = \tan z \Rightarrow f'(z) = \sec^2 z$$

$$\therefore \frac{d^2}{dz} f(z) = 2\sec z [\sec z . \tan z] = 2\sec z [\frac{\sin z}{\cos^2 z}]$$

$$\therefore \frac{d^2}{dz} f(\frac{\pi}{3}) = 2\sec(\pi/3) \cdot \left[\frac{\sin(\pi/3)}{\cos^2(\pi/3)}\right] = 2\frac{1}{1/2} \left[\frac{\sqrt{3}/2}{1/4}\right] = 8\sqrt{3}$$

$$\therefore f(\frac{\pi}{3}) = \oint_C \frac{\tan z}{(z - \frac{\pi}{3})^3} dz = \frac{2\pi i}{2} f''(\frac{\pi}{3}) = i\pi 8\sqrt{3}$$