4.Cauchy's theorem

Let \mathbf{C} be a simple closed curve. If $f(z)$ is analytic function within the region bounded by \mathbf{C} as well as on C then we have Cauchy's theorem that
4.1 $\int_{c} f(z) d z \equiv \oint_{c} f(z) d z=0$

Proof:

$\oint_{C} f(z) d z=\oint_{C}(u+i v)(d x+i d v)=\oint_{C} u d x-v d y+i \oint_{C} v d x+u d y$ By using Green's theorem $\oint_{c} p d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$, we get: $\oint_{C} u d x-v d y=\iint_{R}\left(-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) d x d y \quad, \quad \oint_{C} v d x-u d y=\iint_{R}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right) d x d y$

Where \mathbf{R} is the region (simply-connected) bounded by C. Since $f(z)$ is analytic function within the region bounded by $\mathbf{C}, \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$, and so the above integrals are zero.

Then $\int_{c} f(z) d z \equiv \oint_{c} f(z) d z=0$, assuming $f^{\prime}(z)$ to be continuous.

Theorem 2 : If $f(z)$ is analytic function within and on the boundary of region bounded by two closed curves C_{0} and C_{1}, then;
4.2 $\quad \oint_{C 0} f(z) d z=\oint_{C_{1}} f(z) d z$

Prove that

5. Cauchy's integral formulas

If $f(z)$ is analytic function within and on a simple closed curve \mathbf{C} and z_{0} is any interior to C , then

$$
5.1 \quad f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

Or
5.2

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

Also, the \boldsymbol{n} th derivative of $f(z)$ at $z=z_{0}$ is given by
5.3

$$
\frac{d^{n}}{d z} f\left(z_{0}\right)=\frac{n!}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Or

$$
5.4 \quad \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i \frac{d^{n}}{d z} f\left(z_{0}\right)}{n!}
$$

Example 1.

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{3}} d z=\frac{2 \pi i f^{2}\left(z_{0}\right)}{2!}=\pi i \frac{d^{2}}{d z} f\left(z_{0}\right)
$$

Prove (5.1)

Let \mathbf{C}_{0} be a circle of radius \boldsymbol{r} having center at $z=z_{0}$.
Since $f(z)$ is analytic function within and on the boundary of region bounded by two closed curves \mathbf{C}
 and C_{0}, then from equation (4.2) we have
$\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint_{C_{0}} \frac{f(z)}{z-z_{0}} d z$, To evaluate this last integral, not that on C_{0}, $\left|z-z_{0}\right|=r$ or $z-z_{0}=r e^{i \theta}$, and $d z=i r e^{i \theta} d \theta$. The integral equals to
$\oint_{C} \frac{f(z)}{z-z_{0}} d z=\oint \frac{f\left(z_{0}+r e^{i \theta}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta=i \oint f\left(z_{0}+r e^{i \theta}\right) d \theta$

As $r \rightarrow 0 \quad, \quad z \rightarrow z_{0}$
$\oint_{C} \frac{f(z)}{z-z_{0}} d z=i f\left(z_{0}\right) \int_{0}^{2 \pi} d \theta=2 \pi i f\left(z_{0}\right)$

Example3. Evaluate the integral $\oint_{C} \frac{z^{3}}{(z+1)^{3}} d z$, where C is simple closed curve enclosing $z_{0}=-1$
$\oint_{C} \frac{z^{3}}{(z+1)^{3}} d z=\frac{2 \pi i}{2} f^{2}\left(z_{0}\right)$, $f(z)=z^{3} \Rightarrow f^{\prime}(z)=3 z^{2} \Rightarrow f^{2}(z)=6 z \Rightarrow f^{2}(-1)=-6$
$\therefore \oint_{C} \frac{z^{3}}{(z+1)^{3}} d z=\frac{2 \pi i}{2} f^{2}(-1)=-6 \pi i$

Example 2. Calculate $f\left(\frac{\pi}{3}\right)$, where $f(z)=\oint_{C} \frac{\tan z}{(z-a)^{3}} d z$. Here C is the circle $|z|=2$.

$$
\begin{aligned}
& f\left(\frac{\pi}{3}\right)=\oint_{C} \frac{\tan z}{\left(z-\frac{\pi}{3}\right)^{3}} d z, \quad n+1=3 \Rightarrow n=2 . \quad f(z)=\tan z \\
& \therefore \oint_{C} \frac{\tan z}{\left(z-\frac{\pi}{3}\right)^{3}} d z=\frac{2 \pi i}{2} \frac{d^{2}}{d z} f\left(\frac{\pi}{3}\right) \\
& f(z)=\tan z \Rightarrow f^{\prime}(z)=\sec ^{2} z \\
& \therefore \frac{d^{2}}{d z} f(z)=2 \sec z[\sec z \cdot \tan z]=2 \sec z\left[\frac{\sin z}{\cos ^{2} z}\right] \\
& \therefore \frac{d^{2}}{d z} f\left(\frac{\pi}{3}\right)=2 \sec (\pi / 3) \cdot\left[\frac{\sin (\pi / 3)}{\cos ^{2}(\pi / 3)}\right]=2 \frac{1}{1 / 2}\left[\frac{\sqrt{3} / 2}{1 / 4}\right]=8 \sqrt{3} \\
& \therefore f\left(\frac{\pi}{3}\right)=\oint_{C} \frac{\tan z}{\left(z-\frac{\pi}{3}\right)^{3}} d z=\frac{2 \pi i}{2} f^{\prime \prime}\left(\frac{\pi}{3}\right)=i \pi 8 \sqrt{3}
\end{aligned}
$$

