Functions of a complex Variable

1. Functions

If to each of set of complex numbers z , there corresponds one or more value of variable w then w is called a function of the complex variable z , written $w=f(z)$. in general, we can write

$$
\begin{equation*}
f(z)=f(x+i y)=u(x, y)+i v(x, y) \tag{1.1}
\end{equation*}
$$

Example. Consider a simple function of z, namely $f(z)=z^{2}$. We may write

$$
f(z)=z^{2}=(x+i y)^{2}=x^{2}-y^{2}+2 i x y=u(x, y)+i v(x, y)
$$

where $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$.

2. Analytic functions

If $f(z)$ is single-valued and continuous in some region of z plane the derivative of $f(z)$, denoted by $f^{\prime}(z)$, is defined as
2.1

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

Provided the limit exists independent of the manner in which $\Delta z \rightarrow 0$. If the limit exists for $z=z_{0}$, then the function $f(z)$ is called analytic at z_{0}. if the limit exists for all z values in a region R , then $f(z)$ is called analytic function in R .

Example 1. Show that $(d / d z)\left(z^{2}\right)=2 z$. By (2.1) we have

$$
\begin{aligned}
\frac{d}{d z}\left(z^{2}\right) & =\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{z^{2}+2 z \Delta z+(\Delta z)^{2}-z^{2}}{\Delta z} \\
& =\lim _{\Delta z \rightarrow 0}(2 z+\Delta z)=2 z
\end{aligned}
$$

We see that the result is independent of how Δz tends to zero; thus z^{2} is an analytic function. By the same method it follows that $f^{\prime}(z)=\frac{d}{d z}(z)^{n}=n z^{n-1}$ if \boldsymbol{n} is a positive integer.

