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To solve an equation of second order

AXT + DX+ C=0 (1)

we use the quadratic formula
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(1) If bz —4ac =0, the equation (1) have two real roots ( numbers).

(2) If bz —4ac < 0, there is no real number X which satisfies the equation (1).




To allows solution of such and similar equation if b* —4ac<0 , the set of
complex numbers are introduced.

The complex number is written by the form zZ =X + iy , where

X :1s the real part of complex number and denoted by [ Re(z) ].

¥ :1s the real imaginary part of complex number and denoted by [ Im(z) |.

1: ¥ :isthe real imaginary unit, has the property that i!'2 =—land i=+-1.

Example : .‘-'i.'2 +1=0

Solation: x =%+-/—1 = %7
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'11.1. Operation on complex numbers |

Let 7y = x1 +Iy¥y,and 29 = X9 + IV
1- Addition (denoted 71 + z7)
zZ1+zy=(xy +x2)+ iy + ¥2)

2- Subtraction (denoted z; — 27 )

71—z =(x1 —x2)+ iy - »2)




3- Multiplication (denoted z{ x z7)
7123 = (x) + iy Nxq +1y7) =(xx2-y1¥2) +i(x1y2 + x20)

Z
4-Division (denoted —=, 7 # 0)
¥,
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1.2. Conjugation

If z=x +1y,is complex number then its conjugate denoted by 7

Example: if Zz=23+ 2i, then 7=3-12i

Example: Prove the following properties

W 21+23=21+2; , O7-23=21-7
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Im(z) =%(z _2)




1.3. Absolute value

The absolute value of complex number 7 =X + [V denoted by

|z|=xf;=~‘fx2 +‘]:2

Example: If z=3-41

=2z =x* + y2 = @) + (4)? =9+ 16 =5

Properties of absolute value

1) |,Z|=‘\JI{;=*\.|'I2 +_];2 . @) |2'|2 —zz7=x" +}-‘2 @) |z1.22|=|z1||z2 |

. |za|=0, @) |z + 22| = 21| + |22




