Chapter one

The Slop and The equation of a Straight line

1.The distance between two point

The distance between two points P, (X;, ;) and P,(X,,Y,) is given by the
following:

d =+/(AX)? + (Ay)? "

AX = X5 — X1, AY =Y — Y1

{x-ll y.l} Urg-y-]]

Figure 1

Example: Calculate the distance between the point (-1, 2) and (2, -2).

Solution:

d = (A2 + (Ay)? =/ (%2 = %0)? + (Y2 — 11)°

d=/2— ()2 +(2-2)% =/@3)2 +(4)2 =/9+16 = /25 =5



2- The Slop of a Straight Line

If a straight line is not parallel to the y-axis (x=0), and the straight line graph passing
through co-ordinates P,(x,,y,)and P,(x,,y,)then the slope of a straight line is the
ratio of the change in the value of y to the change in the value of x between any two
points on the line and is given by:

:Ay: Yo =Y,
AX X, — X

m

Ay=y,-y,
A(x. )
’
/ Ax=x,—x
’
’
’
. X
’
’
Figure 2

Example: Calculate the slope of the line through the points P1(1,2) and P2(3,8).

Solution:

AX X, — X 3—-1 2

If, as x increases, ( ), y also increases (=), then the gradient (slope) is

positive. If as x increases (—), y decreases (\L ), then the slope is negative. See
figure (3):
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Figure (3)

In figure 3(a), the slope is 2

In figure 3(b), the slope is -3

Figure 3(c) shows a straight line graph y = 3. Since the straight line is
horizontal the gradient (slope) is zero.

The value of y when x = 0 is called the y-axis intercept. In Fig. .3(a) the y-axis
intercept is 1 and in Fig. .3(b) is 2.



3- Equation of Straight lines

From equation (2) [ m = ﬂ YN

AX X=X
the more useful equation:

], multiplying both side by (x—x;) gives us

y=mx—mx; +Y;

y = mx+(y; —mxq)

Where m is the slope of the line and b is (y; + m¥;) , which is a constant in fact (0,b) is the

point where the line crosses the y-axis. The number b is called the y-intercept of the line,
and Eq. (4) is called the slope- intercept equation of the line.

Example: Write an equation for the line through the point (1,2) with slope m = —% Where

does this line cross the y-axis? The x-axis?

Solution:
y—Yyp =m(X—X)
3
—-2=——(x-1
y 4( )

3 3 3.1
y=——X+—+2=—-—X+—
4 4 4

To find where the line cross the y-axis, we set x=0 in equation above and solve for y:

11 1

y=-2O+T =7

To find where the line cross the x-axis, we set y=0 in equation above and solve for x:
3 11 3 11 11
= —X=—=X=—
4 4 4 4 3
Example: y=5x+2, represents a straight line of gradient ( slope) 5 and y-axis

intercept 2. Similarly, y = -3x—4represents a straight line of gradient -3 and y-
axis intercept -4.



For a horizontal line the equation y =mx-+breducesto y=0.x+b

or y=Db, the equation y = -5 is the slope- intercept equation of the line that passes the
through point (0,-5) with slope m=0.



Chapter Two

Functions

Given two sets A and B, a set with elements that are ordered pairs (X, y), where X is an element of
A and y is an element of B, is a relation from A to B. A relation from A to B defines a relationship
between those two sets. A function is a special type of relation in which each element of the first
set is related to exactly one element of the second set. The element of the first set is called the
input; the element of the second set is called the output. Functions are used all the time in
mathematics to describe relationships between two sets. For any function, when we know the input,
the output is determined, so we say that the output is a function of the input. For example, the area
of a square is determined by its side length, so we say that the area (the output) is a function of its
side length (the input). The velocity of a ball thrown in the air can be described as a function of
the amount of time the ball is in the air. Since functions have so many uses, it is important to have
precise definitions and terminology to study them.

Definition

A function f consists of a set of inputs, a set of outputs, and a rule for assigning each input to
exactly one output. The set of inputs is called the domain of the function. The set of outputs is
called the range of the function.

The concept of a function can be visualized using Figure 2.1, Figure 2.2, and Figure 2.3.

Input ___ el Qutput
X f(x)

Figure 2.1 A function can be visualized as an input/output device.
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Figure 2.2 A function maps every element Figure 2.3 In this case, a graph of a function f has a domain
in the domain to exactly one element in the of {1, 2, 3} and a range of {1, 2}. The independent variable
range. is x and the dependent variable is y.




Every function is determined by two things: (1) the domain of the first variable x and (2)
the Range or the rule or condition that the pairs (X, y) must satisfy to belong the function.

To graph a function, we carry out three steps.
1.Make a table of pairs from the function.

2.Plot enough of corresponding point to learn the shape of graph. Add more pairs to the
table if necessary.

3.Complete the sketch by connecting the points.

Example:

Problem 1. Plot the graph f(X) =y =4x+3in the range x = -3 to x = +4. From the graph, find
(a) the value of y when x = 2.2, and (b) the value of x wheny = -3

Solution:
The domain is taken to be the set of all real numbers x for which f (x) is a real number
D f(x)=R
To find the range we set
f(X) =y=4Xx+3=4x=y-3

IRV

So that the range is taken to be the set of all real numbers y.

R f(x)=R

Whenever an equation is given and a graph is
required, a table giving corresponding values of
the variable is necessary. The table is achieved as
follows:

When x=-3, y=4xr4+3=4-3)43
=—124+3=-9
When x=-2, y=4(-2)+3
=—843=-5, and s0 on.

Such a table 15 shown below: Are

x|l -3 —2 —1 0o 1 2 3 4| |t
v -9 -5 -1 3 7 11 15 19




(@) whenx=2.2,y=11.8, and
(b) wheny D =-3,x=-15

Example: Consider the function
f(X)=y=+4x+3+1
find the following: 1. The domain. 2.The range. 3. Sketch a graph of f (x)

Solution:

1.To find the domain we set
VX+320=>x+3>20=>x>-3
D f(x):{X:XZ—3}

2. To find the range we set

y=\/x—+3+l
y—1=+/x+3
(y—l)2 =X+3
Xx=(y-1)°-3

We just need to verify that x is in the domain of f (X). Since the domain of f consists of all real
numbers greater than or equal to -3, and

x:(y—1)2—32—3

there does exist an x in the domain of f (X). We conclude that the range of f is {y y= _1}

R f(x)= V1Y=-1

3. To graph this function, we make a table of values. Since we need x + 3 > 0, we need to choose
values of x > -3. We choose values that make the square-root function easy to evaluate.



f(x) 1 2 3

xV

Example: Consider the function

f(x)= y=\/l—x2

find the following: 1. The domain. 2.The range.
Solution:

1.To find the domain we set

V1-x220=1-x22>0
@-x)1+x)=>0
1-x)20=>—x>2-1=2>=> x<1
or

@L+x)20==x>-1

So that

D f(x)= {XZ—lSXSl}

2. To find the range we set

y:\/l—x2 :>y2 —1- x? :>x:\/1—y2

J1-y%>0

3. Sketch a graph of f(X)




J1-y2>0=1-y?>0
1-y)A+y)=0
Ql-y)20=-y2>2-1==y<l1
or

Ql+y)20==y>-1

So that
R f(x)= Vi-1<y<l

3. Exercise: (is left to the student as homework)

Example. Consider the function f(x)=y=1/3-x , find the following:
1.The domain. 2.The range. 3. Sketch a graph of f(X)

1.To find the domain we set

J3-x>0=—Xx>-3==x<3

The set of real number less than 3

D f(x)= {x:x<3}

2. To find the range we set

1 1 1 1
=>V3-X=—=23-X=—=>X=3-——

NEE'¢ y y2 y2

We just need to verify that x is in the domain of f (X). Since the domain of f consists of all real
numbers less than 3, and

x=3—j5<3
y

there does exist an x in the domain of f (X). We conclude that the range of f is fy:y> O}



Chapter Three

Exponential and Logarithmic Functions

1.Exponential

any function of the form f(x)= bx, where b>0 b1 jsan exponential function with
base b and exponent x . Exponential functions have constant bases and variable

b
exponents. Note that a function of the form F(X) =X for some constant b is not an
exponential function but a power function. To see the difference between an

2
exponential function and a power function, we compare the functions ¥ =* and
2
Y=2"|n Table 1, we see that both ¥Y=2"and ¥ =X approach infinity as X >,
X
Eventually, however, y=2 becomes larger than

2
Y=X"and grows more rapidly as x — oo.In the opposite direction, as x — -oo,

2 X
y=X">©whereas ¥ =2 0,

2+ 1/8 1/4 1/2 ] 2 4 8 16 32 64

Table 1. Values of x? and 2%




In Figure 1, we graph both y = x? and y=2* to show how the graphs differ.
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Figure 1. both and approach infinity as X — % Eventually, however,
_ 2
becomes larger than Y=X"and grows more rapidly as X — oo.In the opposite direction, as x
2 X
0, Y =X > Pphereas Y =2 >0,



Rule: Laws of Exponents

For any constants @ > 0, b > 0, and for all x and y,

1. p*.pY=p""?

X x—y
2. §=b
3. (b =p"

4. (ab)* =a*b*

s 2=()



Use the laws of exponents to simplify each of the following expressions.

23y

, b

{4X—|f3]2

(y7)’

b > )

(o)
Solution

a. We can simplify as follows:

[2.1:3’3)32 _ 23[1-"-"3]31 _ 31_22;3 _x2x2B3 _ 8
2 - 2 2
{4}:‘”3] 42{_1_—]13] 16x
b. We can simplify as follows:
2 2 2
[*'3}'_12 _() {-“'_i}z _ X_‘;}‘i 46,2, 4 802

RN

The function f (x) = X is the only exponential function b* with b= e = 2.718282.
we call the function f (x) = e* the natural exponential function.

2. Logarithmic Functions

The exponential function f (x) = b* is one-to-one, with domain (-co, c) and range (0, o). Therefore,
it has an inverse function, called the logarithmic function with base b. For any b >0, b # 1, the

logarithmic function with base b, denoted Logy, , has domain (0, «) and range (-o, ), and satisfies
Logs (X) =Y if and only if b’ = x

For example,



log-(8) =3 since 23 = 8,

1 Y — _ ; —2__1 __1
lﬂglu(lﬂ[})_ 2  since 107 = 102~ 100°
log,(1)=0 since pY = 1 for any base b > 0.

Furthermore, since y = log;(x) and y = b" are inverse functions,

lo
log, (b*) = xand b 8

The most commonly used logarithmic function is the function log,. Since this function uses natural e as its base, it is

called the natural logarithm. Here we use the notation In(x) or Inx to mean log, (x). For example,

In(e) = loge(e) = 1, Infe?) = loge ¢’} = 3, In(1) = log, (1) = 0.

Since the functions f(x) = ¢* and g(x) = In(x) are inverses of each other,

In(e") = xand ™ = x,

Rule: Properties of Logarithms
If a,b,c>0,b+#1, and r is any real number, then

1. logp(ac) =logy(a) +log,(c)  (Product property)
2. log, (%) =log, (a) —log,(c)  (Quotient property)
3. log,, (a") = rlog,(a) (Power property)



Solving Equations Involving Exponential Functions

Solve each of the following equations for x.
a. 5'=2
b. e'+6e™ =5

Solution

a. Applying the natural logarithm function to both sides of the equation, we have

In5* =In2.

Using the power property of logarithms,
xIn5 = In2.

Therefore, x = In2/In5.

b. Multiplying both sides of the equation by e”, we arrive at the equation

e 46 =56

Rewriting this equation as

e _ 5054+ 6=0,

we can then rewrite it as a quadratic equation in e”:

(€)% =5(e™) + 6 = 0.

Now we can solve the quadratic equation. Factoring this equation, we obtain

(e*=3)e*—2)=0.

Therefore, the solutions satisfy ¢* =3 and e* = 2. Taking the natural logarithm of both sides gives us

the solutions x = In3, In2.



Homework: Prove the following

Rule: Change-of-Base Formulas

Leta>0,b>0, anda# 1, b# 1.

xloga
1. a*=b" 20" tor any real number x.
1
If b =e, this equation reduces to a* = e el = g¥Ina,
log, x
2. logyx= 286 g0 any real number x > 0.
log,a

If b = e, this equation reduces to log,x = %g—;.



Chapter Four

1. Trigonometric Functions

To define the trigonometric functions, first consider the unit circle centered at the origin and a
point P = (x, y) on the unit circle. Let 6 be an angle with an initial side that lies along the positive
x -axis and with a terminal side that is the line segment OP. An angle in this position is said to be
in standard position (Figure 1). We can then define the values of the six trigonometric functions
for 6 in terms of the coordinates x and y.

2 P=(y)
1

‘\H

oji

Figure 1. The angle 0 is in standard position. The values of the trigonometric functions for
0 are defined in terms of the coordinates x and y.

Definition:
Let P = (X, y) be a point on the unit circle centered at the origin O. Let 6 be an

angle with an initial side along the positive x -axis and a terminal side given by the

line segment OP. The trigonometric functions are then defined as



sind=y cscl=

cosf =x secl=

b

= cotf =

tand =

\:tlH HI'—- u_~|.—-

If x=0, secf and tan@ are undefined. If y = 0, then cot@ and csc@ are undefined.

We can see that for a point P = (X, y) on a circle of radius r with a corresponding angle 9, the
coordinates x and y satisfy

— X
cosf = -
x =rcosf
sinf = =

y = rsind.

The values of the other trigonometric functions can be expressed in terms of X, vy,
and r

Yi

y%\ (x, y) = (r cosé, r sing)

Vi

N

~

Figure 2. For a point P = (X, y) on a circle of radius r, the coordinates x and y satisfy x
=rcosO and y = rsin®.




Table 1.9 shows the values of sine and cosine at the major angles in the first
guadrant. From this table, we can determine the values of sine and cosine at the
corresponding angles in the other quadrants. The values of the other trigonometric
functions are calculated easily from the values of sin@ and cosé.

i) sinf cos@
0 0 1

b4 1 V3

6 2 2

.4 W2 V2

4 2 2

z | 3 1

3 2 2

b4

5 1 0

Table 1. Values of sind and cos@ at Major Angles @ in the First Quadrant



Rule: Trigonometric Identities

Reciprocal identities
_ sinf? _ cosf
tan¢! = cosf cote = sind
cscl = —L seclh = 1
sin cosf
Pythagorean identities
sin29+coszﬂ= 1 1+Ian29=sec29 1+cmzﬂ=csczﬂ

Addition and subtraction formulas
sinla + ) = sinacos f £+ cosasinf
cos(a + ff) = cosacos f F sinasin f§i
Double-angle formulas
sin(28) = 2sinfcosf

c0s(26) = 2c0s’f — 1 = 1 — 2sin’ @ = cos’ @ — sin’ @

Solving Trigonometric Equations

For each of the following equations, use a trigonometric identity to find all solutions.

a. 1+ cos(20) = cosl

b. sin(26) = tanf

Solution

a. Using the double-angle formula for cos(26)), we see that @ is a solution of

1 4+ cos(26) = cos@

if and only if
1 +2cos?0—1= cos@,

which is true if and only if

2¢0s26 — cosf = 0.




To solve this equation, it is important to note that we need to factor the left-hand
side and not divide both sides of the equation by cos6. The problem with dividing
by cos6 is that it is possible that cos6 is zero. In fact, if we did divide both sides of
the equation by cos6, we would miss some of the solutions of the original equation.

Factoring the left-hand side of the equation, we see that 6 is a solution of this
equation if and only if.

cos@(2cosd - 1) =0.

Since cos@ = (0 when

and cos@ = 1/2 when

we conclude that the set of solutions to this equation is

9=%+nﬁ,9=%+2mr, and @ = —%+2mr, n=0, +1, +2,....

b. Using the double-angle formula for sin(2¢) and the reciprocal identity for tan(f), the equation can be

written as

)

2sinfcosf = Sl
Cos

&

To solve this equation, we multiply both sides by cos@ to eliminate the denominator, and say that if
satisfies this equation, then @ satisfies the equation

2sinfcos2 6 — sind = 0.

However, we need to be a little careful here. Even if 0 satisfies this new equation, it
may not satisfy the original equation because, to satisfy the original equation, we
would need to be able to divide both sides of the equation by cos6. However, if coso



= 0, we cannot divide both sides of the equation by cos6. Therefore, it is possible
that we may arrive at extraneous solutions. So, at the end, it is important to check
for extraneous solutions. Returning to the equation, it is important that we factor sin6
out of both terms on the left-hand side instead of dividing both sides of the equation

by sin@. Factoring the left-hand side of the equation, we can rewrite this equation as

sinf(2cos?60 — 1) = 0.

Therefore, the solutions are given by the angles 6 such that sind =0 or cos?@ = 1/2. The solutions
of the first equation are =0, +x, +2x,.... The solutions of the second equation are

0= nld, (/d) + (x/2), (n/4) + x,.... After checking for extraneous solutions, the set of solutions to the
equation is

— = nr . _
0 =nr and 6‘—4+2,n—0,il,i2,....

Period = 27 Period = 27
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Figure 3 The six trigonometric functions are periodic.



Inverse Trigonometric Functions

Definition

The inverse sine function, denoted sin”! or arcsin, and the inverse cosine function, denoted cos !
defined on the domain D = {x| - 1 <x < 1} as follows:

~!(x) = yif and only if sin(y) = xand — % y < %‘,
(x) = yif and only if cos(y) =xand 0 < y < .

The inverse tangent function, denoted tan™" or arctan, and inverse cotangent function, denoted cot”!

defined on the domain D = {x] — 00 < x < 00} as follows:

an~! (x) = yif and only if tan(y) = x and —% <y<Z

ot ™ (x) = yif and only if cot(y) = xand 0 < y < 7.

The inverse cosecant function, denoted esc™! or arcesc, and inverse secant function, denoted sec”!
defined on the domain D = {xlx| > 1} as follows:

Or arccos, dare

Or arccot, are

Or darcsec, are

sc™l(x) = yif and only if csc(y) = xand —%5 y < % y # 0;

ec”l(x) = yif and only if sec(y) = xand 0 <y < &, vy # #/2.

To graph the inverse trigonometric functions, we use the graphs of the trigonometric
functions restricted to the domains defined earlier and reflect the graphs about the

liney=x



yi yi yi

| ) sin 1(x) \ Py=cos™ o - {()f{ ;t;aini dlfx)

Ny
N

\ f(x) = cot (x) J f(x) = sec 1(x)
N\ .| f6) = csc (x)
El 1 L

0 ’ ;

Figure 1. The graph of each of the inverse trigonometric functions is a reflection
about the line y = x of the corresponding restricted trigonometric function.

When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate cos™! (%) we need to

find an angle @ such that cosf = % Clearly, many angles have this property. However, given the definition of cos™!, we

need the angle @ that not only solves this equation, but also lies in the interval [0, z]. We conclude that cos~! (L) =

I
2] 3

We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions

V2

sin(sin_l (—2)] and sin_l(sin(:r)). For the first one, we simplify as follows:
- -—lﬁ))_ infZ) = 2
sm(sm ( 5 ))= sm(4) =5

For the second one, we have

sin~!(sin(x)) = sin~1(0) = 0.



Hyperbolic Functions

The hyperbolic functions are defined in terms of certain combinations of e* and e™.
These functions arise naturally in various engineering and physics applications,
including the study of water waves and vibrations of elastic membranes. Another
common use for a hyperbolic function is the representation of a hanging chain or
cable, also known as a catenary (Figure 1.49). If we introduce a coordinate system
so that the low point of the chain lies along the y -axis, we can describe the height
of the chain in terms of a hyperbolic function. First, we define the hyperbolic

functions.

Definition

Hyperbolic cosine

coshx = £ "'2‘&'
Hyperbolic sine
sinhy =& —€™*
Hyperbolic tangent
tanhx = Sinhx _ e* —e™

Hyperbolic cosecant

by — L 2
csehx = sinhx ~ ¥ — ™~
Hyperbolic secant
1 _ 2
sechx = Coshx — 254 o
Hyperbolic cotangent

_coshx _e*+e™*
cothx = =="= = =
sinhx e¢*—¢



2t -2t 2t —2r
cosh?t — sinh?r = € +2+e _eT=2+e = 1.
4 4
Vi
[ x2—y>=1
14 (cosh(1), sinh(1))
i
-1+

Figure 1. The unit hyperbola cosh”t —sinh®t =1

Graphs of Hyperbolic Functions

To graph coshx and sinhx, we make use of the fact that both functions approach (1/2)e* as x = o0, since ¢ ¥ =0
as x = 00. As x — —co, coshx approaches 1/2e™, whereas sinhx approaches —1/2¢ . Therefore, using the graphs
of 1/2¢*, 1/2¢™", and —1/2¢™" as guides, we graph coshx and sinhx. To graph tanhx, we use the fact that
tanh(0) = 1, =1 < tanh(x) < 1 for all x, tanhx — 1 as x - oo, and tanhx — —1 as x — —co. The graphs of the

other three hyperbolic functions can be sketched using the graphs of coshx, sinhx, and tanhx -~ =~ 7|

Y4 y = cosh(x) v

y ;  e’ y = sinh(x)

Y 3 -2




¥ = sechix)

v = csch(x)

_/1-.¥ 14+
T i X
-1+ i+
yi yi

- - + \ y = coth(x)
y = tanh(x
y=1 y=1
T 1 % T g T %
- - - - - - };----l- j""'"';“"l‘

Figure 2. The hyperbolic functions involve combinations of e* and e™.

Rule: Identities Involving Hyperbolic Functions

1. cosh(—x) =coshx
2. sinh(—x) = —sinhx
3. coshx +sinhx ="

4. coshx —sinhx=e

—X



5. cosh’x —sinhx =1
6. 1—tanh’x =sech®x
7. coth®’x—1=csch®x
8. sinh(x + y) = sinhxcoshy + coshxsinhy

Q. ECIS]'I(I + }'] = coshxcosh = sinhx Eiﬂh}’

Example
Evaluating Hyperbolic Functions

a. Simplify sinh(5Inx).

b. If sinhx = 3/4, find the values of the remaining five hyperbolic functions.

Solution
a. Using the definition of the sinh function, we write
5 -5
—_— ] Injx In|x
Slnx _E—Sln.:. e [ ]_B [ ]_ xS _x—S

. _E
sinh(5Inx) = 3 = 5 = 5

b. Using the identity cosh®x — sinh®x =1, we see that

I

cosh®x=1+ &] = %

Since coshx > 1 for all x, we must have coshx =5/4. Then, using the definitions for the other
hyperbolic functions, we conclude that tanhx = 3/5, cschx = 4/3, sechx = 4/5, and cothx = 5/3.



Inverse Hyperbolic Functions

Definition

Inverse Hyperbolic Functions

sinh~! x = arcsinhx = ln[x+ sz +1 | cosh™ ! x = arccoshx = ln(x + x2-1

_ o[l +x _ L (x+1
tanh ! x = arctanhx = 2111(1 N ) coth™! x = arccotx = 2ln( == 1)
+f 1! 2
sech ™ x = arcsechx = [1 + V1 —x ] csch ™ x = arceschx = ln[%+ %]

Let’s look at how to derive the first equation. The others follow similarly. Suppose y = sinh™ x. Then, x = sinhy and,

=

2

by the definition of the hyperbolic sine function, x = . Therefore,

eV =2x-¢" =0
Multiplying this equation by ¢”, we obtain
e - 2xe’ = 1=0.

This can be solved like a quadratic equation, with the solution

y_ 2+ 14’ 44 =x+d+1.

“=7

Since ¢¥ > 0, the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the

= ln(x | UA’Z +1 '

equation, we conclude that



Evaluating Inverse Hyperbolic Functions

Evaluate each of the following expressions.
sinh~!(2)
tanh~1(1/4)

Solution

sinh ™! (2) = In(2 +122 + 1) = In(2 + 5) ~ 1.4436

tanh~'(1/4) = 2in(112) = Lin(324) = Lin(3) ~ 0.2554




Chapter Five

1. The Limit of a Function

We begin our exploration of limits by taking a look at the graphs of the functions

lx — 2| _ 1
10 =25 g0 = K= andiey = ——,

which are shown in Figure 1. In particular, let’s focus our attention on the behavior
of each graph at and around x = 2.

0 =< o) = 2= M) = 5

@ b o (©

Figure 1. These graphs show the behavior of three different functions around x = 2.

Each of the three functions is undefined at x = 2, but if we make this statement and

no other, we give a very incomplete picture of how each function behaves in the




vicinity of x = 2. To express the behavior of each graph in the vicinity of 2 more

completely, we need to introduce the concept of a limit.

Intuitive Definition of a Limit

2
Intuitive Definition of a Limit () =" =4)/(X=2)pehaves around x = 2 in
Figure 1. As the values of x approach 2 from either side of 2, the values of y = f
(x) approach 4. Mathematically, we say that the limit of f (x) as x approaches 2 is

4. Symbolically, we express this limit as
Iim f(x) = 4.
x — 2

From this very brief informal look at one limit, let’s start to develop an intuitive
definition of the limit. We can think of the limit of a function at a number a as being
the one real number L that the functional values approach as the x-values approach
a, provided such a real number L exists. Stated more carefully, we have the following

definition:

Definition

Let f (x) be a function defined at all values in an open interval containing a, with the
possible exception of a itself, and let L be a real number. If all values of the function
f(X) approach the real number L as the values of x (# a) approach the number a, then
we say that the limit of f (x) as x approaches a is L. (More succinct, as x gets closer

to a, f (x) gets closer and stays close to L..) Symbolically, we express this idea as



xli_l)na f(x) = L.

Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional

Values

1. To evaluate lim f(x), we begin by completing a table of functional values. We
xX—a

should choose two sets of x-values—one set of values approaching a and less than
a, and another set of values approaching a and greater than a. Table 1. demonstrates
what your tables might look like.

x fx) x flx)

a—0.1 fla—=0.1) a+0.1 fla+0.1)
a—0.01 f(a—0.01) a+0.01 fla+0.01)

a —0.001 fla —0.001) a + 0.001 f(a+0.001)

a —0.0001 f(a —0.0001) a+ 0.0001 fla+0.0001)
Use additional values as necessary. Use additional values as necessary.

Tablel. Table of Functional Values for lim f(x)

xX—a
2. Next, let’s look at the values in each of the f (x) columns and determine whether the values
seem to be approaching a single value as we move down each column. In our columns, we
look at the sequence f (a - 0.1), f (a- 0.01), f (a - 0.001)., f (a - 0.0001), and so on, and f (a +
0.1), f (a +0.01), f (a + 0.001), f (a + 0.0001), and so on. (Note: Although we have chosen the
x-valuesa £ 0.1, a + 0.01, a £ 0.001, a + 0.0001, and so forth, and these values will probably

work nearly every time, on very rare occasions we may need to modify our choices.)



3. If both columns approach a common y-value L, we state lim f(x) = L. We can use the
x—-a

following strategy to confirm the result obtained from the table or as an alternative method

for estimating a limit.

Example 1: Evaluate lir% sinx/x using a table of functional values.
X—

Solution
We have calculated the values f(x) = lin(} sinx/x for the values of x listed in Table 2.
X—

—0.1 0.998334166468 0.1 0.998334166468
—0.01 0.999983333417 0.01 0.999983333417
—0.001 0.999999833333 0.001 0.999999833323
—0.0001 0.999999998333 0.0001 0.999999998333

Table 2. Table of Functional Values for lim sinx/x

x—-0

Note: The values in this table were obtained using a calculator and using all the places given
in the calculator output. As we read down each ( sin x /x ) column, we see that the values in
each column appear to be approaching one. Thus, it is fairly reasonable to conclude that

lim( sinx/x) = 1. A calculator-or computer generated graph of f(x) = lin(} sinx/x would
x—0 x=

be similar to that shown in Figure 2, and it confirms our estimate.



0.6+

0.4+

0.2+

0.2+

-0.4+

xV

Figure 2. The graph of f(x) = lirron sinx/x confirms the estimate from Table 2.
X

Example 2. Evaluate lin}}@ using a table of functional values.
X—>

Solution
As before, we use a table—in this case, Table 3.—to list the values of the function for the
given values of x.

x o x o

3.9 0.251582341869 4.1 0.248456731317
3.99 0.25015644562 4.01 024984394501
3.999 0.250015627 4.001 0.249984377
39999 | 0.250001563 40001 | 0.249998438
3.99999 0.25000016 4.00001 0.24999984

Vx-2
x—4

Table 3. Table of Functional VValues for liq‘}
X

After inspecting this table, we see that the functional values less than 4 appear to be
decreasing toward 0.25 whereas the functional values greater than 4 appear to be increasing
Vx-2

x—

toward 0.25. We conclude that linz = 0.25. We confirm this estimate using the graph
X

Vx—2

x—4

of f(x) = lin} shown in Figure 3.
X—>



0.50

0.45-

0.40

0.35+

0.30

0.25

0 2 4 6 8%

Vx—2

Figure 3. The graph of f(x) = confirms the estimate from Table 3.

x—4

Definition

We define two types of one-sided limits.

Limit from the left: Let f (x) be a function defined at all values in an open interval of the form z,
and let L be a real number. If the values of the function f (x) approach the real number L as the
values of x (where x < a) approach the number a, then we say that L is the limit of f (x) as x

approaches from the left. Symbolically, we express this idea as

lim_ f(x) = L.

X—d

Limit from the right: Let f (x) be a function defined at all values in an open interval of the form (a,
c), and let L be a real number. If the values of the function f (x) approach the real number L as the
values of x (where x > a) approach the number a, then we say that L is the limit of f (x) as x

approaches from the right. Symbolically, we express this idea as



lim+ f(x)=L.

xX—a
Example

_ x+1 ifx<2
For the function f(x) =

’ o , evaluate each of the following limits.
x“=4 ifx>2

>l S0

b. lim f(x)
X — 2+
x f)=x+1 x fx) =x*—4
1.9 2.9 2.1 0.41
1.99 2.99 2.01 0.0401
1.999 2.999 2.001 0.004001
1.9999 2.9999 2.0001 0.00040001
1.99999 2.99999 2.00001 0.0000400001
Table 4.

c+ lifx <2
Table of Functional Values for f(x) = {A; l. '
x“—=4ifx>2

Based on this table, we can conclude that a. lir%m_ f(x) =3 andb. “‘}1 f(x) = 0. Therefore,
X X—

the (two-sided) limit of f (x) does not exist at x = 2. Figure 4 shows a graph of f (x) and

reinforces our conclusion about these limits.



Figure 4.

x+1lifx<?2

The graph of f(x) ={
Braph of J) =122 _ gif x> 2

Theorem 1: Two Important Limits

Let a be a real number and ¢ be a constant.

. limx=a
X=1i

. limc=c
X—=d

Theorem 2.: Relating One-Sided and Two-Sided Limits

Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself,
and let L be a real number. Then,

limaf(x) = L.ifand only if lim_f(x) =Land lLim f(x)=L.
xr= X—=a +

X—=a



Definition

We define three types of infinite limits.
Infinite limits from the left: Let f (x) be a function defined at all values in an open interval
of the form (b, a)

1- If the values of f (x) increase without bound as the values of x (where x < a) approach the
number a, then we say that the limit as x approaches from the left is positive infinity and

we write

lim_ £(x) = +c0.

X=d

2- If the values of f (x) decrease without bound as the values of x (where x < a) approach
the number a, then we say that the limit as x approaches from the left is negative infinity
and we write

lim_ f(x) = —co0.

Infinite limits from the right: Let f (X) be a function defined at all values in an open interval
of the form (a, c).

1- If the values of f (x) increase without bound as the values of x (where x > a) approach the
number a, then we say that the limit as x approaches a from the left is positive infinity and we

write

lim_f(x) = +co.

X —=d

2-If the values of f (x) decrease without bound as the values of x (where x > a) approach the
number a, then we say that the limit as x approaches from the left is negative infinity and we
write

lim f(x)= —o0.
X = ﬁ+



Two-sided infinite limit: Let f (x) be defined for all X # a in an open interval containing a.

1-1f the values of f (x) increase without bound as the values of x (where X # a) approach the
number a, then we say that the limit as x approaches a is positive infinity and we write

lim f(x) = +oo.

2- If the values of f (x) decrease without bound as the values of x (where x # a) approach the

number a, then we say that the limit as x approaches a is negative infinity and we write

_rli—I}naf (x) = —co.

Example 5. Evaluate each of the following limits, if possible. Use a table of
functional values and graph f(x) = % to confirm your conclusion.

. 1
a. lim =
x—=0" 4
b.  lim &

X = U'+

. 1

C lim =+

r — X

Solution

Begin by constructing a table of functional values.



x 1 x 1

-0.1 —10 0.1 10

—0.01 —100 0.01 100
—0.001 —1000 0.001 1000
—0.0001 —10,000 0.0001 10,000
—0.00001 —100,000 0.00001 100,000
—0.000001 —1,000,000 0.000001 1,000,000

Table 5. Table of Functional Values for f(x) = %

a. The values of 1/x decrease without bound as x approaches 0 from the left. We

conclude that

b. The values of 1/x increase without bound as x approaches 0 from the right. We

conclude that

“ . 1
c- Since lim - =
x->0" X

lim_

A —

x—-0t X

- = —Q0,

—oo and lim 1 +oo have different values, we conclude that




. 1 .
lim = does not exis
x—0X

[
N.
x!

Figure 5. The graph of f(x) = %confirms that the limit as x approaches 0 does
not exist.

Theorem 3: Infinite Limits from Positive Integers

If n is a positive even integer, then

X—=a(x a)”_+oo
If n is a positive odd integer, then

lim —1 — = +c0

x—>a+(x_ﬂ)n
and

lim_—1 — = —

x—»a‘{x—a}"__



Example 6. Evaluate each of the following limits

a. lim_—L—
x—= =3 (x+ 3)

b. nm-——l—E
.J:—r—3+|:x+3)

. 1m1—J—?
x—==3(x+3)

Solution
a. Hm_——L—I=+x
x==3" (x+3)
b.  lim —Ll =4
X — —3+ (I + 3)
C. lim l 4=+m
x—=3(x+3)

The Limit Laws

Theorem 4: Basic Limit Results

For any real number a and any constant c,

Iimx=a
=
limc=¢

X—=i



Example 7. Evaluate each of the following limits using Basic Limit Results.

a. limx
X —

b. 1lim 35
x—2

Solution

a. The limit of x as x approaches @ is a: lim_x = 2.
X —

b. The limit of a constant is that constant: lim 5 = 5.

X —

Theorem 5: Limit Laws

Let f(x) and g(x) be defined for all x # a over some open interval containing a. Assume that L and M are real

numbers such that xlglﬂf (x)=L and Jrli_r’I'lalg(Jt) = M. Let ¢ be a constant. Then, each of the following statements

holds:
Sum law for limits: Jt_li_rpa(f(x) +g(x)) = Jim f(x) + lim g(x) =L+ M
Difference law for limits: xli_r’na[f (x) —gx) = JL_li_r}nﬂ f(x) - JL_li_rpnag(x) =
Constant multiple law for limits: xli_r)nac f(x)=c- xli_r}l af (x)=cL

Product law for limits: xli_r’na[f (x)-gx) = xli_r)n af (x) -xlgnag(x) =

. . . f) xh—rrnaf ) =L
Quotient law for limits: 11_TPH g(x) hm g(x) M

for M #0

n
Power law for limits: xli_r)na[f (x)" = Llll,naf (x)) = L" for every positive integer n.

Root law for limits: xli_r}nar{/ flx) = ’{/xlgna fx)= L forall L if nis odd and for L > 0 if n is even.



Example:

Use the limit laws to evaluate lim (4x + 2).

X ==

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind
the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.

lim 3(4x +2) = lim 4x+ lim 32 Apply the sum law.
x=-

X— - x—= =3

=4. lim x+ lim 32 Apply the constant multiple law.
B K 5

x—==3

=4.(-3)+2=-10.  Apply the basic limit results and simplify.

Example:

Using Limit Laws Repeatedly

2
Use the limit laws to evaluate lIim 2x”—3x+1 .
x=2 yii4q

Solution



To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite
the limit in terms of other limits, each new limit must exist for the limit law to be applied.

22 _3pyq Jim(2x?=3x+1)
lim_ =X ; L5 2 e £ 2' 3 Apply the quotient law, making sure that. 2P +4+#0
=2 x+4 hm(x +4]
x=2
2- limx* -3 limx+ lim 1
== T — Apply the sum law and constant multiple law.
lim x” + lim 4
X = x=2
2
2-(fimx) =3 tim v+ lim |
== T 2_x=2  Apply the power law.
(tim ) + lim 4
x =2 x=2
= w =1 Apply the basic limit laws and simplify.
@3+4 4
Example:
Evaluate the lim M
x—=3 5x+4

Solution
Since 3 is in the domain of the rational function f(x) = 2325;%, we can calculate the limit by substituting

3 for x into the function. Thus,

lim
x—=3

Sx+4

Example:

2x2=3x+1_ 10

=10



Evaluating a Limit by Factoring and Canceling

2
Evaluate lim :f;h
x—=32y- —5x-3

Solution
Step 1. The function fi{x) = ﬁ is undefined for x = 3. In fact, if we substitute 3 info the function
we get /0, which is undefined. Factoring and canceling is a good strategy:

2 -

x]i_r}naﬁ - X ]—~ 3&%
x> —3x X
Step 2. For all x # 3, 2 sr_3 =75 T Therefore,
x(x—3) x

G D AT
Step 3. Evaluate using the limit laws:
X 3

dm T T

Evaluating a Limit by Multiplying by a Conjugate

Evaluate lim JX+£2=1

x—=-1 x+1

Solution

Step 1. —M:-El_] has the form 0/0 at —1. Let’s begin by multiplying by Vx + 2 + 1, the conjugate of

Vx+ 2 — 1, onthe numerator and denominator:

r—-1 x+1 x—=-1 x+1 1|I|_x+2+]l

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that
the (x + 1) in the denominator cancels out in the end:;

= lim x4l :
x=-1x+ DVx+2+1)




Step 3. Then we cancel:

= lim

x— =1+ 241 2+1

Step 4. Last, we apply the limit laws:

Im ——— l.

x—>—1"|." -|-1

Example:

Evaluating a Limit by Simplifying a Complex Fraction

.

1
Evaluate lim <-—2
=1 x=1

Solution
; _

-1
A+ D2 +1):

1
Step 1. L2 s the form 00 at 1. We simplify the algebraic fraction by multiplying by

1 | |
oxal 2o+l 2 2x+])
T T M T A )




Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able
to cancel the factor (x —1):

o 2—(x+])
= Jim S T e+

Step 3. Then, we simplify the numerator:

— 1 —x+1
= Im T a1

Step 4. Now we factor out —1 from the numerator:

o —(x—=1)
= Im D+

Step 5. Then, we cancel the common factors of (x — 1):

= lim ——1
x Eﬂl?.( +1)
Step 6. Last, we evaluate using the limit laws:
im——1 - _1
R Ten ) iy

Example:

Evaluating a Limit When the Limit Laws Do Not Apply

(1 5
Evaluate Ill_rpﬂ( ++ o 5)).

Solution

Both 1/x and 5/x(x — 5) fail to have a limit at zero. Since neither of the two functions has a limit at zero, we

cannot apply the sum law for limits; we must use a different strategy. In this case, we find the limit by performing
addition and then applying one of our previous strategies. Observe that

l+ 5 _x=5+5
X x(x—3) xx—35)

X
x(x—35)

Thus,
R L 5 — 1 X
xl'_r,“u[x =5 J Jm )

T 1
_tlEn(]x -5

L |—



Example:

Evaluating a One-Sided Limit Using the Limit Laws

Evaluate each of the following limits, if possible.

a. lim_Yx—3
r—=3

b. lim Yx-—3

xr—=3

Solution
Figure 8. illustrates the function f(x) = vx — 3 and aids in our understanding of these limits.

i

+
-
4=
-
=

L] ) JI'- "
X

Figure 8. The graph shows the function f(x) = vx — 3

a. The function f(x) = %¥x — 3 is defined over the interval [3, +o00). Since this function is not defined to

the left of 3, we cannot apply the limit laws to compute lin31_ Yx — 3. In fact, since f(x) =Vx—3 is
X —

undefined to the left of 3, lin}_ Vx — 3 does not exist.
X —

b. Since f(x) = Vx —3 is defined to the right of 3, the limit laws do apply to lim+ Vx — 3. By applying

x—=3

these limit laws we obtain lim Vx -3 = 0.

x =3



Example:

Evaluating a Two-Sided Limit Using the Limit Laws

4x-3 ifx<?2

For f(x)= {

7 . , evaluate each of the following limits:
(x=3)" ifx>2

e lin 109
b tm o
. Jim,

Solution:

Figure 9. illustrates the function f (x) and aids in our understanding of these limits.

T f(x)

1 \
3 3

5
T T - L2

x!

Figure 9. This graph shows a function f (x).



a. Since f(x)=4x-3 forallxin (—co, 2), replace f(x) in the limit with 4x — 3 and apply the limit
laws:

lim_f(x)= lim_(4x-3)=5.
x—=2 x—=2

b. Since f(x)=(x-— 3]2 for all xin (2, +00), replace f(x) in the limit with (x — 3)2 and apply the
limit laws:
. . . 2 _
) 1_1.11;+ju] = Jl_1_1)n%_ (x=3)"=1

c. Since lin21_ f(x)=5 and Iim+ f(x) =1, we conclude that limzf(x) does not exist.
X = X =

x—=2

2.Continuity

We begin our investigation of continuity by exploring what it means for a function to have
continuity at a point. Intuitively, a function is continuous at a particular point if there is no break
in its graph at that point.

Before we look at a formal definition of what it means for a function to be continuous at a point,
let’s consider various functions that fail to meet our intuitive notion of what it means to be
continuous at a point. We then create a list of conditions that prevent such failures.

Our first function of interest is shown in Figure 1. We see that the graph of f (x) has a hole at a.
In fact, f (a) is undefined. At the very least, for f (x) to be continuous at a, we need the following
condition:

i. f(a)is defined

Yi

f(x)

/ a X

Figure 1. The function f (x) is not continuous at a because f (a) is undefined.



However, as we see in Figure 2. this condition alone is insufficient to guarantee continuity at the
point a. Although f (a) is defined, the function has a gap at a. In this example, the gap exists
because lim f(x) does not exist. We must add another condition for continuity at a—namely,

xX—a

ii. _l_ll_r}nuf(x) exists.

Yi

o0
e

-

Figure 2. The function f (x) is not continuous at a because lim f(x) does not exist.
x—-a

)

However, as we see in Figure 3., these two conditions by themselves do not guarantee continuity
at a point. The function in this figure satisfies both of our first two conditions, but is still not
continuous at a. We must add a third condition to our list:

iii. lim f(x) = f(a).

Yi

Figure 3. The function f (x) is not continuous at a because lim f(x) # f(a)
x—a



Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f(x) is continuous at a point a if and only if the following three conditions are satisfied:
. f(a) is defined
. lim f(x) exists
i Jim, f0)= fl@)

A function is discontinuous at a point a if it fails to be continuous at a.

Problem-Solving Strategy: Determining Continuity at a Point

1. Check to see if f(a) is defined. If f(a) is undefined, we need go no further. The function is not continuous

ata. If f(a) is defined, continue to step 2.

2. Compute xlima f(x). In some cases, we may need to do this by first computing lim_ f(x) and lim f(x).
- x—a Y=

If xli_l;na f(x) does not exist (that is, it is not a real number), then the function is not continuous at a and the

problem is solved. If xli_l;na f(x) exists, then continue to step 3.

3. Compare f(a) and Xli_l;na_f(x), If Xli_l}lﬂf(x) # f(a), then the function is not continuous at a. If

xll_l;na f(x) = f(a), then the function is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a
function is continuous at a given point. These examples illustrate situations in which each of
the conditions for continuity in the definition succeed or fail.



Example: Determining Continuity at a Point, Condition 1

Using the definition, determine whether the function f(x) = (x* — 4)/(x — 2) is continuous
at x = 2. Justify the conclusion.

Solution
Let’s begin by trying to calculate f (2). We can see that f(2) = 0/0 , which is undefined.

Therefore, f(x) = (x?> —4)/(x — 2) is discontinuous at 2 because f (2) is undefined. The

graph of f (x) is shown in Figure 4.

f(x)

Figure 4. The function f (x) is discontinuous at 2 because f (2) is undefined.

Example:

Determining Continuity at a Point, Condition 2

—x*4+4 ifx<3
4x—8 ifx>3

Using the definition, determine whether the function f(x) = { is continuous at x = 3. Justify

the conclusion.
Solution
Let’s begin by trying to calculate f(3).
f@)=-3H+4=-5.
Thus, f(3) is defined. Next, we calculate lim3f(x). To do this, we must compute lirr?}_ f(x) and
x— X —

lim+ f(x):

x—=3



lim_ f(x) = - (3%) +4 = -5

lim_f(x)=4(3)-8=4.

x—=3

Therefore, lirg f(x) does not exist. Thus, f (x) is not continuous at 3. The graph of f (x) is shown
X—
in Figure5.

fx)

Figure 5. The function f (x) is not continuous at 3 because ling f(x) does not exist.
X

Example:

Determining Continuity at a Point, Condition 3

SINX i x 2 0

Using the definition, determine whether the function f(x) = { X is continuous at x = (.
1 ifx=0



Solution

First, observe that
f(0)=1.
Next,

lim f(x)= lim 310X = |,
.\'—rnf() x—r[] A

Last, compare f(0) and lim':L f(x). We see that
X =

f(0)=1= lim f(x).

r=

Since all three of the conditions in the definition of continuity are satisfied, f(x) is continuous at x = 0.

Homework
e+ 1 ifx<l
Using the definition, determine whether the function f(x) = 2 if x =1 iscontinuous at x = 1.
-x+4 ifx>1

Derivative Functions

If f(X)is single-valued and continuous in some region of x , the derivative of f(X),
denoted by f'(X), is defined as

, . fT(x+Ax) - f(x)
2.1 f'(x) =
-l




Where Ax =x — x,
Example: Find the derivative of f(x) = Vx

Solution:
, . F(x+Ax)— f(x
£(x) = fim oA = TX)
AX—0 AX

) = |i \/X+Ax—\/;X\/x+Ax +/x
A)I(I’_TJO AX X+ AX + /X

(VX + AX) % + VXX + AX = /XX + AX — (/%) ?

f'(x) =
Alx_m AXN X+ AX + /X
= fim 2 fim = fim
Ax—s0 AXA/ X + AX +Jx AX_>0AX X+ AX +\/_ Ax—0 V X+ AX +\/_
f(X)——

24/x

Example: Find the derivative of the function f(x) = x? — 2x

f(x+Ax) — f(x)

f'(x) = lim
Ax—0 AX
, . X + AX)2 — 2(X + AX) — (X% — 2x
F0x) = [ & A0% =20+ A% )
AX—0 AX
2 2 2
, . X 4+ 2XAX + (AX)C — 2X — 2AX — X° + 2X
£ = [im ()
AX—0 AX
, . 2XAX + (AX)? —2AX  AX(2X + AX — 2
/() = [jm 27228 A )
AX—0 AX AX

f'(X)=lim (2x+Ax—-2)=2x—-2
AX—0






