Chapter one

The Slop and The equation of a Straight line

1.The distance between two point

The distance between two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ is given by the following:

$$
\begin{equation*}
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}} \tag{1}
\end{equation*}
$$

$\Delta x=x_{2}-x_{1}, \Delta y=y_{2}-y_{1}$

Figure 1

Example: Calculate the distance between the point $(-1,2)$ and $(2,-2)$.
Solution:

$$
\begin{aligned}
& d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(2-(-1))^{2}+(-2-2)^{2}}=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

2- The Slop of a Straight Line

If a straight line is not parallel to the y -axis ($\mathrm{x}=0$), and the straight line graph passing through co-ordinates $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ then the slope of a straight line is the ratio of the change in the value of y to the change in the value of x between any two points on the line and is given by:

$$
\begin{equation*}
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{2}
\end{equation*}
$$

Figure 2

Example: Calculate the slope of the line through the points $P_{1}(1,2)$ and $P_{2}(3,8)$.

Solution:

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-2}{3-1}=\frac{6}{2}=3
$$

If, as x increases, (\rightarrow), y also increases (\rightarrow), then the gradient (slope) is positive. If as x increases (\rightarrow), y decreases (\downarrow), then the slope is negative. See figure (3):

(c)

Figure (3)
In figure 3(a), the slope is

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-3}{3-1}=\frac{4}{2}=2
$$

In figure 3(b), the slope is

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{11-2}{-3-0}=\frac{9}{-3}=-3
$$

Figure 3(c) shows a straight line graph $y=3$. Since the straight line is horizontal the gradient (slope) is zero.

The value of y when $x=0$ is called the y-axis intercept. In Fig. .3(a) the y-axis intercept is 1 and in Fig. .3(b) is 2.

3- Equation of Straight lines

From equation (2) [$m=\frac{\Delta y}{\Delta x}=\frac{y-y_{1}}{x-x_{1}}$], multiplying both side by ($x-x_{1}$) gives us the more useful equation:

$$
\begin{align*}
& y-y_{1}=m\left(x-x_{1}\right) \ldots \ldots \tag{3}\\
& y=m x-m x_{1}+y_{1} \\
& y=m x+\left(y_{1}-m x_{1}\right) \\
& y=m x+b \ldots \ldots \ldots \ldots . . \ldots
\end{align*}
$$

Where \mathbf{m} is the slope of the line and \mathbf{b} is $\left(y_{1}+m x_{1}\right)$, which is a constant in fact $(0, \mathbf{b})$ is the point where the line crosses the \mathbf{y}-axis. The number \mathbf{b} is called the \mathbf{y}-intercept of the line, and Eq. (4) is called the slope-intercept equation of the line.

Example: Write an equation for the line through the point (1,2) with slope $m=-\frac{3}{4}$. Where does this line cross the \mathbf{y}-axis? The x -axis?

Solution:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=-\frac{3}{4}(x-1) \\
& y=-\frac{3}{4} x+\frac{3}{4}+2=-\frac{3}{4} x+\frac{11}{4}
\end{aligned}
$$

To find where the line cross the \mathbf{y}-axis, we set $\mathbf{x}=\mathbf{0}$ in equation above and solve for \mathbf{y} :
$y=-\frac{3}{4}(0)+\frac{11}{4}=\frac{11}{4}$
To find where the line cross the \mathbf{x}-axis, we set $\mathbf{y}=\mathbf{0}$ in equation above and solve for \mathbf{x} :
$0=-\frac{3}{4} x+\frac{11}{4} \Rightarrow \frac{3}{4} x=\frac{11}{4} \Rightarrow x=\frac{11}{3}$
Example: $y=5 x+2$, represents a straight line of gradient (slope) 5 and y axis intercept 2. Similarly, $y=-3 x-4$ represents a straight line of gradient -3 and y-axis intercept -4.

For a horizontal line the equation $y=m x+b$ reduces to $y=0 \cdot x+b$
or $y=b$, the equation $y=-5$ is the slope- intercept equation of the line that passes the through point $(0,-5)$ with slope $m=0$.

