وزارة التعليم العالى والبنحك الغلمى حسجاز الالسراف والتقويم المأسمي دائرة حسنان الجودة والاعتماد الأكاديمي استعارة وصف البرنامج الأكاديمي للكليات والمعاهد الجامعة : المثلى الكلية/ المعهد: كلية العلوم القسم العلمي : الفيزياء اسم البردامج الأكاديمي : بكالوريوس اسم الشهادة النهانية: بكالوريوس في علوم الليزياء النظام الدراسي:فصلى (كورساند) تاريخ مل، الملف : 2024-2023 التوقيع : التوفيع : اسم رئيس القسم : المرد ، موفق فاضل جدوع اسم المعاون العلمي: ١ م ميتم عياس مكي 2024/6/2版: 世纪 2024/6/ 12 : 51/12 similar and / united days دقق العلف من أليل شعبة ضمان الجودة والأداء الجامعي non مصالح عبيد لزام مصادقة السيد العميد 2024 1 6 124 64 124 التوخيق

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

Academic Program and Course Description Guide

2024

Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

Concepts and terminology:

<u>Academic Program Description</u>: The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

<u>Program Vision</u>: An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

Program Mission: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

Program Objectives: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

Curriculum Structure: All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

Learning Outcomes: A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

4

Academic Program Description Form

University Name: Al Muthanna Faculty/Institute: Science Scientific Department: Physics Academic or Professional Program Name: Bachelor's Final Certificate Name: Bachelor's in Physics Academic System: courses Description Preparation Date: File Completion Date:

Signature:	Signature:
Head of Department Name:	Scientific Associate Name:
Asst. Prof. Dr. Muwafaq Fadhil Jaddoa	Asst. Prof. Maythem
Date: 25-6-2024	Date:26-6-2024

The file is checked by:

Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department: Date: Signature:

Approval of the Dean

1. Program Vision

Leadership in physics sciences and its applications at the local and international levels, effective participation with community institutions and seeking to upgrade the department to ensure its suitability to international standards in the field of physics and its applications to meet the needs of the labor market, and excellence in preparing qualified national competencies scientifically and research, which makes it distinguished at the level of physics departments in local, regional and international universities.

2. Program Mission

Creativity and excellence in higher education and scientific research in the disciplines of physics, qualifying specialized cadres scientifically and professionally in the field of physics, securing the appropriate educational and academic environment to provide them with the necessary expertise and skills to provide society with specialized competencies in physics and in the field of education and scientific research, as well as developing their scientific capabilities and using them in life phenomena, analyzing them and finding appropriate scientific solutions to them by providing distinguished educational programs that comply with quality standards and meet the requirements of the labor market.

3. Program Objectives

1. The Department of Physics pays great attention to topics that serve the scientific march of the country with all its needs from the various fields of knowledge in the fields of theoretical and practical physics and medical physics.

2. Qualifying specialized scientific and professional competencies to contribute to conducting distinguished scientific and applied research.

3. Providing studies and research related to physics that meet the needs and requirements of institutions and bodies spread throughout the country, and upgrading the level of graduates by achieving comprehensive quality standards through the preparation of advanced and

renewable educational programs that qualify graduates to keep pace with the requirements of the knowledge society and the labor market.

4. The department also meets the need of students to continue their postgraduate studies and provide optimal work in the fields of science and practical application by paying attention to the scientific ability of the teaching staff, developing their scientific, technical and administrative abilities, and upgrading scientific research to contribute to conducting distinguished scientific and applied research.

5. Establishing research centers and exchanging scientific experiences and competencies with research centers in prestigious Arab and international universities.

4. Program Accreditation

Does the program have program accreditation? And from which agency? NO.

5. Other external influences

6. Program Structu	ire			
Program Structure	Number of	Credit hours	Percentage	Reviews *
	Courses			
Institution	-	-	-	-
Requirements				
College	4	24	-	-
Requirements				
Department	34	180		Basic
Requirements				
Summer Training	2	4		basic
Other				

Second Year / First Semester				
Subject		Credit hours	Code	

	Total credit	practical	Theoretical	
Electronics I	3	2	2	Phys 217
Modern physics	3	2	2	Phys 218
Analytical Mechanic I	2	-	2	Phys 219
Advanced Calculus	2	-	2	Math 205
Thermodynamics	3	2	2	Phys 216
English language II	2	-	2	UREQ 106
Computer science II	1	2		UREQ 207
Total	16	8	12	

Second Year / Second Semester						
Subject	Total	Cred				
Subject	credit	practical	Theoretical	Code		
Electronics II	3	2	2	Phys 222		
Analytical Mechanic II	2	-	2	Phys 224		
Material science	2	-	2	Phys 221		
Modern physics II	3	2	2	Phys 223		
Differential Equations	2	-	2	Math 206		
Statistical Mechanics	3	2	2	Phys 335		
Computer IV	1	2		CR 207		
Total	16	6	12			

Third Year / First Semester								
Subject	Total	Cred						
Subject	credit	practical	Theoretical	Code				
Quantum Mechanics I	3	-	3	Phys 326				
Laser physics I	2	-	2	Phys 327				
Geometric Optics	3	-	3	Phys 328				
Mathematical Physics I	2	-	2	Phys 329				
Astronomy Physics	2	-	2	Phys 330				
Waves physics	2	-	2	Phys331				
Elective subject I	2	-	2					
Matlab	3	2 2		CR 308				
Practical Physics V	2	4	-	Phys 332				
Total	21	6	18					

Third Year / Second Semester							
Subject	Total	Cred	it hours	0.1			
Subject	credit	practical	Theoretical	Code			
Quantum Mechanic II	3	-	3	Phys 333			
Laser physics II	2	-	2	Phys 334			
Physical Optics	3	-	3	Phys 337			
Mathematical Physics II	2	-	2	Phys 336			
Numerical Analysis	3	2	2	Math 307			
Elective subject II	2	-	2				
English language III	2	-	2	UREQ 107			
Practical Physics VI	2	4	-	Phys 338			
Total	19	6	16				

Fourth Year / First Semester							
Subject	Total	Cred	it hours				
Subject	credit	practical	Theoretical	Code			
Nuclear physics I	3	-	3	Phys 439			
Solid state physics I	3	-	3	Phys 440			
Electromagnetism I	3	-	3	Phys 441			
Elective subject I	2	-	2				
Elective subject II	2	-	2				
English language IV	2	-	2	UREQ 108			
Practical Physics	2	4	-	Phys 442			
Total	17	4	15				

Fourth Year / Second Semester							
Subject	Total	Cred	Cala				
Subject	credit	practical	Theoretical	Code			
Nuclear physics II	3	-	3	Phys 444			
Solid state physics II	3	-	3	Phys 445			
Electromagnetism II	3	-	3	Phys 446			
Elective subject III	2	-	2				
Elective subject IV	2	-	2				
Practical Physics	2	4	Phys 447				
Research project	2	2	-	Phys 443			
Total	17	6	13				

Course Description Form

1. Course Name:

Analog Electronics

- 2. Course Code:
- 3. Semester / Year:

First semester / 2023-2024 / 2_{nd} stage

4. Description Preparation Date:

8-5-2024

5. Available Attendance Forms:

Attendance in class

6. Number of Credit Hours (Total) / Number of Units (Total)

Th. 2 / Pr. 2

7. Course administrator's name (mention all, if more than one name)

Name: Prof. Dr. Hassan Maktuf Jabber

Email: <u>hassankirkukly@mu.edu.iq</u>

8. Course Objectives	
Course Objectives	Enable the student to know the basics of analogue
	electronics
	Knowing the student how to create a diode and a transistor
	Analyze electronic circuits mathematically
	Apply electronic circuits in the laboratory

9. Teaching and Learning Strategies

The program adopts a variety of teaching and learning strategies, including:

- Active Participation and Interaction: Encouraging students to participate in lectures, ask questions, and engage in discussions.
- Active Listening: Emphasizing attentive listening during explanations and demonstrations.
- Hands-on Laboratory Sessions: Providing practical laboratory sessions to apply theoretical knowledge.
- **Case Studies and Practical Workshops:** Incorporating real-world scenarios to enhance problem-solving skills.
- **Communication Skills Training:** Focusing on effective scientific communication, both written and oral.
- **Integration of General and Transferable Skills:** Developing critical thinking, problem-solving, and research skills.
- Ethical Considerations: Teaching responsible use of genetic engineering and discussing ethical dilemmas.
- **Staying Updated with Research:** Encouraging students to keep up with the latest advancements in the field.
- **Collaboration and Teamwork:** Promoting group projects and assignments to simulate real-world scientific collaborations.

10. Evaluation methods

- Evaluation methods are implemented at various stages of the program, including:
- Continuous Assessment: Regular quizzes, assignments, and participation.
- Laboratory Reports: Evaluation of practical work and experimental results.
- Examinations: Mid-term and final exams to assess comprehensive understanding.
- Projects and Presentations: Assessing the ability to apply knowledge and communicate findings.
- Peer and Self-Assessment: Encouraging reflective learning and peer feedback.
- Mid exam
- Final exam

Progra m Skills	Outline														
	Required program Learning outcomes														
Year/Level	Course Code	Course Name	or Tal	Knowle	dge			Skills				Ethics			
Yea	Cour	Cour	Basic or optional	A1	A2	A 3	A4	B1	B 2	B3	B4	C1	C2	C3	C4
		Analog Electroni cs	optional	+	+	+		+	+			+	+		
Second															
p		Digital Electron ics	optional	+	+	+		+	+			+	+		
Second															

Course Description Form

1 C N. Angles Electronics
1. Course Name: Analog Electronics
2. Course Code:
3. Semester / Year: First /2024
4. Description Preparation Date: 26–5–2024
5. Available Attendance Forms:
6. Number of Credit Hours (Total) / Number of Units (Total)
2\3hr
7. Course administrator's name (mention all, if more than one name)
Name: Prof. Dr. Hassan Maktuff Jaber Al-Ta'ii
Email: <u>hassankirkukly@mu.edu.iq</u>

8. Co	urse Objectives						
Course	Basic principles of electronics and devices, starting from						
Objectives	discussing the semiconductor materials and prototype						
	semiconductor based electronic devices towards various						
	electronic devices and applications,						
	Afterwards, the communication system and digital						
	electronics technologies are discussed and analysed.						
	Through this course, the students: -						
	- Acquire a basic knowledge in solid state electronics including diodes, MOSFET, BJT, and operational amplifier.						
	- Develop the ability to analyze and design analog electronic circuits using discrete components Observe the amplitude and frequency responses of common amplification circuits						
	- Design, construct, and take measurement of various analog circuits to compare experimental results in the laboratory with theoretical analysis						

9. C	ourse S	tructure			
Week	Hours	Required	Unit or subject name	Learning	Evaluatio
		Learning		method	n method
		Outcomes			
1	2	Semiconduct ing Materials)	The Structure of Semi-conductor Materials, The Energy-Band Levels, Classification of Materials (Conductors, Semiconductors, Insulators) Conduction in Semiconductor, Intrinsic and Extrinsic Semiconductors	Lecture and Discussion	Quiz
2	2	Semicond ucting Materials)	Extrinsic Semiconductors, N-Type, Semi- conductors,P-Type Semiconductors, Analysis of Drift and Diffusion Currents	Lecture and Discussion	
3	2	(Diodes and Applications)	Fabrication of a Semiconductor P-N Junction Diode, Diodes, Diode Applied Bias Current-Voltage (I-V) response in F.B. and R.B.Static and Dynamic Resistance, DC load line for a diode, Temperature Effects on P-N Junction, Junction capacitances	Practical Workshop	
4	2	(Diodes and Applications)	Diode equivalent circuits, Ideal Diode Models, Zener diodes, Applications of Diode, Series Diode, Configurations with DC Inputs, Parallel Diode, Configurations with DC Inputs, (Rectifier), Half-wave rectifier, Full-wave rectifier, Filter circuits	Lecture and Discussion	Mid-term Exam
5	2	(Diodes and Applicati ons)	Filter circuits, Capacitor- input filter, Regulated power supply, CLIPPERS (Diode limiting), CLAMPERS, Voltage Multipliers	Lecture and Discussion	
6	2	Types of Diodes	Zener Diodes, Varactor diodes (variable- capa-citance diodes), Optical Diodes, Light Emitting Diode (LED), The Photodiode/ Solar Cells	Lecture and Discussion	Quiz
7	2	Types of Diodes	Other types of Diodes, Current Regulator Diode, The Schottky Diode (hot-carrier diode), The PIN Diode, The step-recovery diode (SRD), The Tunnel Diode, Laser Diode	Practical Workshop	Assignment
8	2	Transistor s, Biasing Circuits and Applicati	Bipolar Junction Transistor (BJT), Construction of BJT and Operation, BJT Characteristics and Parameters, Transistor Amplifying Action, Transistor Switching	Lecture and Discussion	
9	2	Transistors, Biasing Circuits and Applications	Transistor Configurations, Common Emitter Configuration (CEC), Common Base Configuration (CBC), Common Collector Configuration (CCC), Base Bias Collector to Base Bias, Voltage Divider Bias	Lecture and Discussion	Quiz

10	2	Field effect Transistor s - FET	Junction Field Effect transistor (JFET), Types of FET, Biasing of the JFET, Characteristics of JFETs, JFET Operating Characteristics, FET as a Voltage- Controlled Resistor		Assignment
11	2	Field effect Transistors - FET)	N-Channel JFET Operation, MOSFETs, JFET (n-channel) Biasing Circuits, The Potential (Voltage) Divider Bias		Mid-term Exam
12	2	Transistor Amplifiers, Operational Amplifiers and Applications	BJT Amplifier, Multistage Amplifiers, Gain in Decibels, Band Width of an Amplifier, Single stage CE Amplifier, Capacitor Coupled two stage CE Amplifier	Lecture and Discussion	Quiz
13	2	Transistor Amplifiers, Operational Amplifiers and Applicati	Feedback Amplifier, Operational Amplifiers (Op-Amp), Op-Amp Input Modes and Parameters, Negative Feedback, Noninverting Amplifier.		
14	2	Transistor Amplifiers, Operational Amplifiers and Applicati	Comparators,Nonzero-Level Detection, Comparator Applications, Summing Amplifier, Integrators, The Op-Amp Differentiator	Lecture and Discussion	Assignment
15	2	Revision			Final Exam

10. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

11. Learning and Teaching Resource	S
Required textbooks (curricular books, if any	A Textbook of Electrical Technology, B.L. Theraja, A.K. Theraja, 1st, 1999
Main references (sources)	
Recommended books and references (scientific journals, reports)	 Schaums outline series theory and problems of electric circuits, 2nd, Josef A. Edminister, 1983. Electronics Physics - Subhi Al Rawii - Mosul University 1974
Electronic References, Websites	 PubMed Science direct Analog Electronics website

1. Program Vision

To develop problem solving skills and understanding of atomic mechanisms through the application of techniques.

2. Program Mission

- 1. Recognize the basic components of atom.
- 2. List the various terms associated with quantum numbers.
- 3. Summarize what is meant by a basic atomic transitions.
- 4. Discuss the reaction and involvement of electrons in its orbitals.
- 5. Study spin angular momentum by stern-garlic experiment.
- 6. The effects of different strength of electric and magnetic fields on electrons.
- 7. Knowing the basic terminology of quantum mechanics.

3. Program Objectives

To understand development of atomic structure of materials.

. This course deals with the basic concept of quantum mechanics of atom. Dealing with different atomic spectra.

4. **Program Accreditation**

Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.

5. Other external influences

6. Program Structure								
Program Structure Number of Credit hours Percentage Reviews*								
	Courses							
Institution								
Requirements								
College								
Requirements								

Department	1	3	
Requirements			
Summer Training			
Other			

* This can include notes on whether the course is basic or optional.

7. Program Description							
Year/Level Course Code Course Name Credit Hours							
Тwo	Phys 2306	Modern I	theoretical practical				

8. Expected learning outcomes of the program						
Knowledge						
Learning Outcomes 1	 Master fundamental theories of modern physics. Understand the applications of quantum mechanics and relativity physics. Stay informed on contemporary research and advancements in the field. 					

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing physic systems.
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.

Ethics	
Learning Outcomes 4	• Commit to professional integrity and ethical conduct in sciences.
Learning Outcomes 5	• To use and transition scientific knowledge responsibly to the generation of the future.

9. Teaching and Learning Strategies

- The main strategy that will be adopted in delivering this module
- is to encourage students' participation in the exercises, while at the same time refining
- and expanding their critical thinking skills. This will be achieved through classes,
- interactive tutorials and by considering type of simple ideas and equations involving
- some sampling activities that are interesting to the students.

10. Evaluation methods

- Lectures.
- Discussion within the academic university by reading e-books that can be developed.
- Directing students to some websites to benefit from them in understanding the material.
- Small discussion circles to treat sports racing.
- Training students on how to prepare scientific research.
- Using simulation programs to explain atomic transitions.

Professional Development

Mentoring new faculty members

- Orientation programs to familiarize them with departmental policies and teaching methodologies.
- Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in modern physics.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

11. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

12. The most important sources of information about the program

• Concepts of Modern Physics By Arthur Beiser

13. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in clinical analysis and laboratory medicine to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.
- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.
- •

			P	rogram	Skills	Outl	ine								
					Required program Learning outcomes										
Year/Level	Code Name		Basic or	Knov	Knowledge S			Skills			Ethics				
	antional	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4			
Тwo	2306	Modern I	Basic	+	+	+		+	+			+	+		+

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:
Modern I
2. Course Code:
Phys 2306
3. Semester / Year:
Frist / Two
4. Description Preparation Date:
26-6-2024
5. Available Attendance Forms:
Classroom
6. Number of Credit Hours (Total) / Number of Units (Total)
3/3
7. Course administrator's name (mention all, if more than one name)
Name: Dr. Hassan Tarikhum Badah
Email: <u>hassan.tarikhum@mu.edu.iq</u>

8. Course Objectives							
Objectives	To understand development of atomic structure of materials. Basics of solid state physics and nuclear physics. This course deals with the basic concept of quantum mechanics of atom. Dealing with different atomic spectra.						

9. Teaching and Learning Strategies									
\$ Strategy	The main strategy that will be adopted in delivering this module is to encourage students' participation in								
0,	the exercises, while at the same time refining and expanding their critical thinking skills. This will be								
	achieved through classes, interactive tutorials and by considering types of simple experiments involving								
	some interesting sampling activities for the students.								

10. Cou	urse Struct	ure			
Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	3	Atomic Models Thomson's Atomic Model,.	Atomic Models	Lecture and Discussion	Assignment
2	3	Rutherford Atomic Model, Alpha partial scattering,	Atomic Models	Lecture and Discussion	Quiz
3	3	Rutherford Scattering Formula,	Atomic Models	Lecture and Discussion	Report
4	3	Distance of closest Approach,	Atomic Models	Lecture and Discussion	Mid-term Exam
5	3	Electron Orbits,	Atomic Models	Lecture and Discussion	Report
6	3	Atomic Spectra,	Atomic Models	Lecture and Discussion	Quiz
7	3	Spectral Series,	Atomic Models	Lecture and Discussion	Assignment
8	3	Boher Atomic Model, Electron waves in the atom,	Atomic Models	Lecture and Discussion	Report
9	3	Energy Levels and Spectra,	Atomic Models	Lecture and Discussion	Quiz
10	3	Special Relativity, Postulates of Special Relativity	Special Relativity	Lecture and Discussion	Assignment
11	3	Time dilation	Special Relativity	Lecture and Discussion	Mid-term Exam
12	3	Doppler Effect	Special Relativity	Lecture and Discussion	Quiz
13	3	Length Contraction	Special Relativity	Lecture and Discussion	Report
14	3	Twin Paradox	Special Relativity	Lecture and Discussion	Assignment
15	3	Mass And Energy	Special Relativity	Lecture and Discussion	Final Exam

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources			
Required textbooks (curricular books, if any)			
Main references (sources)			
Recommended books and references			
(scientific journals, reports)			
Electronic References, Websites			

1. Program Vision

To develop problem solving skills and understanding of modern physics through the application of techniques.

2. Program Mission

1. Recognize the basic components of Particle Properties of Waves and Wave Properties of Particles.

2. Knowing the basic terminology of quantum mechanics.

3. Program Objectives

To understand development of modern physics. This course deals with the basic concept of Particle, Wave Properties, and quantum mechanics.

4. **Program Accreditation**

Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.

5. Other external influences

6. Program Structure								
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*				
Institution								
Requirements								
College								
Requirements								
Department Requirements	1	3						
Summer Training								
Other								

* This can include notes on whether the course is basic or optional.

7. Program Description							
Year/Level Course Code Course Name Credit Hours							
Тwo	Phys 2306	Modern II	theoretical	practical			

8. Expected learning outcomes of the program								
Knowledge								
Learning Outcomes 1	 Master fundamental theories of modern physics. Understand the applications of quantum mechanics and relativity physics. Stay informed on contemporary research and advancements in the field. 							

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing physic systems.
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.

Ethics	
Learning Outcomes 4	• Commit to professional integrity and ethical conduct in sciences.
Learning Outcomes 5	• To use and transition scientific knowledge responsibly to the generation of the future.

9. Teaching and Learning Strategies

- The main strategy that will be adopted in delivering this module
- is to encourage students' participation in the exercises, while at the same time refining
- and expanding their critical thinking skills. This will be achieved through classes,
- interactive tutorials and by considering type of simple ideas and equations involving
- some sampling activities that are interesting to the students.

10. Evaluation methods

- Lectures.
- Discussion within the academic university by reading e-books that can be developed.
- Directing students to some websites to benefit from them in understanding the material.
- Small discussion circles to treat sports racing.
- Training students on how to prepare scientific research.
- Using simulation programs to explain atomic transitions.

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of teaching st	
	General	Special	Staff	Lecturer
Assistant Professor Dr.	Physics			

Professional Development

Mentoring new faculty members

- Orientation programs to familiarize them with departmental policies and teaching methodologies.
- Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in modern physics.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

11. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

12. The most important sources of information about the program

• Concepts of Modern Physics By Arthur Beiser

13. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in clinical analysis and laboratory medicine to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.
- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.

•

	Program Skills Outline														
					Required program Learning outcomes										
Year/Level	Course Code	e Course Basic or Name optional	Basic or	Knov	Knowledge			Skills			Ethics				
			optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C 3	C4
Тwo	2306	Modern II	Basic	+	+	+		+	+			+	+		+
															<u> </u>

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:
Modern II
2. Course Code:
Phys 2306
3. Semester / Year:
Second / Two
4. Description Preparation Date:
26-6-2024
5. Available Attendance Forms:
Classroom
6. Number of Credit Hours (Total) / Number of Units (Total)
3/3
7. Course administrator's name (mention all, if more than one name)
Name: Dr. Hassan Tarikhum Badah
Email: <u>hassan.tarikhum@mu.edu.iq</u>

8. Course Objectives			
Course Objectives	To understand development of atomic structure of materials. Basics of solid state physics and nuclear physics. This course deals with the basic concept of quantum mechanics of atom. Dealing with different atomic spectra.		

9. Teaching and Learning Strategies				
Strategy	The main strategy that will be adopted in delivering this module is to encourage students' participation in			
	the exercises, while at the same time refining and expanding their critical thinking skills. This will be			
	achieved through classes, interactive tutorials and by considering types of simple experiments involving			
	some interesting sampling activities for the students.			

10. Course Structure						
Week	Hours	Required Learning	Unit or subject	Learning	Evaluation	
		Outcomes	name	method	method	
1	3	Particle Properties of Waves	Particle Properties of Waves	Lecture and Discussion	Assignment	
2	3	Blackbody Radiation	Particle Properties of Waves	Lecture and Discussion	Quiz	
3	3	Photoelectric Effect	Particle Properties of Waves	Lecture and Discussion	Report	
4	3	X-Ray Diffraction	Particle Properties of Waves	Lecture and Discussion	Mid-term Exam	
5	3	Compton Effect	Particle Properties of Waves	Lecture and Discussion	Report	
6	3	Pair Production	Particle Properties of Waves	Lecture and Discussion	Quiz	
7	3	Wave Properties of Particles	Wave Properties of Particles	Lecture and Discussion	Assignment	
8	3	De Broglie Waves	Wave Properties of Particles	Lecture and Discussion	Report	
9	3	Describing a Wave	Wave Properties of Particles	Lecture and Discussion	Quiz	
10	3	Phase and Group Velocities	Wave Properties of Particles	Lecture and Discussion	Assignment	
11	3	Particle Diffraction	Wave Properties of Particles	Lecture and Discussion	Mid-term Exam	
12	3	Uncertainty Principle	Wave Properties of Particles	Lecture and Discussion	Quiz	
13	3	The Wave Equation	Wave Properties of Particles	Lecture and Discussion	Report	
14	3	Schrödinger's Equation: Time-Dependent Form	Wave Properties of Particles	Lecture and Discussion	Assignment	
15	3	Schrödinger's Equation: Time-Independent Form	Wave Properties of Particles	Lecture and Discussion	Final Exam	

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resource	ces	
Required textbooks (curricular books, if any)		
Main references (sources)		
Recommended books and references		
(scientific journals, reports)		
Electronic References, Websites		

14. **Program Vision**

Our vision is to provide a distinguished scientific environment to reach the highest standards to contribute to community service, thus enhancing the role of the Physics Department in the academic aspect and scientific research, and the application of knowledge to investigate the nature of vibrational motion in the form of waves and wave phenomena by analyzing simple harmonic motion.

15. **Program Mission**

Our mission is to provide a comprehensive education, equipping students with the knowledge and skills necessary to excel in academic, research. students will be able to determine how a wave moves through space, what the various forms of waves are, and how those waves can be generated..

16. **Program Objectives**

Program Objectives for a Sound and Wave Motion Program:

1. Fundamental Understanding: to study and understand basic wave concepts.

2. Research and Innovation: Foster the ability to conduct independent research, innovate experimental techniques, and contribute to advancements in the discussion of simple harmonic, damped, forced, and coupled oscillators.

3. Technical Proficiency: Equip students with advanced technical skills in the use of specialized instruments, computational tools, and methodologies essential for sound and wave motion research.

4. Professional Development: Prepare students for successful careers in academia, industry, and government by enhancing their communication, collaboration, and leadership skills through comprehensive training and professional development opportunities.

By achieving these objectives, the program aims to produce highly skilled physicists who are capable of advancing the field and addressing the complex challenges of the modern world.

18. Other external influences

19. Program Structure				
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	X			
College Requirements	X			
Department Requirements	2	2		
Summer Training	X			
Other				

* This can include notes on whether the course is basic or optional.

20. Program Description					
Year/Level	Course Code	Course Name	Credit Hours		
second			theoretical	practical	

21. Expected learning outcomes of the program			
Knowledge			
Learning Outcomes 1	 Recognize the wave properties. Understanding the simple harmonic motion and its applications. Understanding the damped oscillation and its difference with forced oscillation. 		

22. Teaching and Learning Strategies

- The program adopts a variety of teaching and learning strategies, including:
- Active Participation and Interaction: Encouraging students to participate in lectures, ask questions, and engage in discussions.
- Active Listening: Emphasizing attentive listening during explanations and demonstrations.
- Case Studies and Practical Workshops: Incorporating real-world scenarios to enhance problem-solving skills.
- Communication Skills Training: Focusing on effective scientific communication, both written and oral.
- Integration of General and Transferable Skills: Developing critical thinking, problem-solving, and research skills.
- Staying Updated with Research: Encouraging students to keep up with the latest advancements in the field.
- Collaboration and Teamwork: Promoting group projects and assignments to simulate real-world scientific collaborations.

4. To understand the sound and shock waves.

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing physics systems.
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.

Ethics	
Learning Outcomes 4	• Establishing teaching principles to limit the misuse of their responsibilities in the scientific and educational field
	• Commit to professional integrity and ethical conduct in research.
Learning Outcomes 5	• Explaining the importance of science in human life and the great role that physics plays in serving people's lives

23. Evaluation methods

- Evaluation methods are implemented at various stages of the program, including:
- Continuous Assessment: Regular quizzes, assignments, and participation.
- Examinations: Mid-term and final exams to assess comprehensive understanding.
- Projects and Presentations: Assessing the ability to apply knowledge and communicate findings.
- Peer and Self-Assessment: Encouraging reflective learning and peer feedback.
- Mid exam
- Final exam

Professional Development

Mentoring new faculty members

□ Orientation programs to familiarize them with departmental policies and teaching methodologies.

□ Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

24. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

25. The most important sources of information about the program

- Waves and Oscillations, Walter Fox Smith, Oxford University Press 2010
- Waves and Oscillations, R.N. Chaudhuri, New Age International (P) Ltd., Publishers 2010

26. Program Development Plan

The development plan for the program involves continuous curriculum review and updates based on the following key elements:

•Feedback from Students, and Faculty: Regularly collect and incorporate feedback from students, faculty, and to ensure the curriculum remains relevant and meets the needs of all stakeholders.

•Emerging Trends and Technological Advancements: Stay abreast of the latest trends and technological advancements.

•Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.

• Periodic Assessments: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.

	Program Skills Outline														
							Req	uired	progr	am Lo	earnin	g outcon	nes		
Year/Level	Course Course Code Name	Course Name		Knov	Knowledge		Skills		Ethics	Ethics					
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C 3	C4
Four		Sound and wave motion	Basic	+	+	+		+	+			+	+		+

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

13.	Course Name:					
Sound and	Sound and Wave Motion					
14.	4. Course Code:					
Phys 2401	4					
15.	Semester / Year:					
secon	d/2024					
16.	Description Preparation Date:					
26-6-	-2024					
17.Ava	ailable Attendance Forms:					
Classr	oom					
18.Nur	mber of Credit Hours (Total) / Number of Units (Total)					
4						
19.	19. Course administrator's name (mention all, if more than one					
name)						
Name: Dr. Shaimaa K.Hussian						
Email: <u>shymaahussen@mu.edu.iq</u>						

20.	Course Objectives
Course	1. To study and understanding basic waves concepts.
Objectives	2. Discussion of simple harmonic, damped, forced and coupled oscillators .
	 Behavior of transverse waves on a string, longitudinal waves in a gas and a solid, voltage and current waves on a transmission line. Explain the difference between sound and hearing and Describe sound as a wave.

21.	Teaching and Learning Strategies
Strategy	The main strategy that will be adopted in delivering this module is to encourage students' participation in
0,	the exercises, while at the same time refining and expanding their critical thinking skills. This will be
	achieved through classes, interactive tutorials and by considering types of simple experiments involving
	some interesting sampling activities for the students.

22. Cours	22. Course Structure					
Week	Hours	Required Learning	Unit or subject	Evaluation		
		Outcomes	name	method	method	
1	2	Simple Harmonic Motion, Periodic Motion, The Time Period, The Frequency, The Displacement, Restoring Force or Return Force	Principles in wave physics	Lecture and Discussion	Lab Report	
2	2	SimpleHarmonic Motion (SHM), Velocity, Acceleration and Energy of a Simple Harmonic Oscillator	Essential characteristics of the waves	Lecture and Discussion	Quiz	
3	2	The Simple Pendulum, solved problems		Practical Workshop	Lab Report	
4	2	Degrees of Freedom, Superposition Principle		Lecture and Discussion	Mid-term Exam	
5	2	Linearity and Superposition, Source Transformations, Thévenin and Norton Equivalents		Lecture and Discussion	Lab Report	
6	2	Superposition Principle for Linear		Lecture and Discussion	Quiz	

		Inhomogeneous Equation, Superposition of Simple Harmonic Motions along a Straight Line		
7	2	Superposition of Two Simple Harmonic Motions at Right Angles to Each Other, Solved Problems.	Practical Workshop	Assignment
8	2	Damped Harmonic Motion	Lecture and Discussion	Lab Report
9	2	Damped LC Oscillations (LCR Circuit), Solved Problems	Lecture and Discussion	Quiz
10	2	Forced Vibrations, Resonance	Lecture and Case Study	Assignment
11	2	Quality Factor Q, Helmholtz Resonator, Solved Problems	Practical Workshop	Mid-term Exam
12	2	The wave equation, travelling sinusoidal waves, sound waves	Lecture and Discussion	Quiz
13	2	models describing sound, Speed of Sound in Various Media	Lecture and Discussion	Lab Report
14	2	Interference of Sound Waves, beats, Doppler effect	Lecture and Discussion	Assignment
15	2	Shock Waves and Sonic Booms	Lecture and Case Study	Final Exam

23. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

24. Learning and Teaching Resources					
Required textbooks (curricular books, if any	Waves and Oscillations, Walter Fox Smith, Oxford University Press 2010				

Main references (sources)	Waves and Oscillations, R.N. Chaudhuri, New Age International (P) Ltd., Publishers 2010
Recommended books and references	
(scientific journals, reports)	
Electronic References, Websites	

Course Description Form

Course Name: Heat and Thermodynamic
 Course Code:
 Semester / Year: Second year/ 1 semesters
 2023 - 2024
 Description Preparation Date:

1/6/2024

5 Available Attendance Forms:

Presence

6 Number of Credit Hours (Total) / Number of Units (Total)

Two theoretical hours, Two practical hours, and (3 Units)

7 Course administrator's name (mention all, if more than one name)

Name: Prof.Dr. Hady Qasim Email: hadey.mohamad@mu.edu.iq

27. **Program Vision**

Our vision is to establish a leading program in geometric optics that cultivates a deep understanding of optics principles and its innovations. We aim to foster a learning environment that promotes scientific curiosity, critical thinking, and the application of laboratory knowledge.

28. **Program Mission**

Our mission is to provide a comprehensive education in geometric optics, equipping students with the knowledge and skills necessary to excel in academic and research. We strive to advance the field through cutting-edge research, ethical practices, and the development of innovative solutions to global optical challenges.

29. **Program Objectives**

The objectives of the optical analysis program are designed to highlight the importance and purpose of the practical study:

1- Familiarize the student with scientific equipment and train him to use them safely.

2- Training the student to maintain safety in the laboratory and college: the safety of his body and clothing, the safety of his colleagues, and the safety of the laboratory, including its furniture and equipment.

3- Giving the student social and scientific attitudes such as: cooperation, working within a group, respecting the opinion of others, scientific objectivity, being careful in making judgements, resorting to scientific experience, and appreciating the efforts of scientists.

4- Giving the student the skill of obtaining data, classifying it, tabulating it, representing it with graphs, and drawing conclusions.

5- The student is trained in the scientific method, given the opportunity to explore and investigate, and enjoy the success he achieves when he reaches the result himself.

6- Integration of theoretical knowledge with the student's practical experience.

7- Positive interaction with the environment in proposing alternatives, designing alternative experiences, and applying what is for the benefit of the student in his practical life.

30. **Program Accreditation**

Yes- Ministry of Higher Education and Scientific Research (Iraq)

31. Other external influences

Ministry of Higher Education and Scientific Research (Iraq)

32. Program Structure				
Program Structure	Number of	Credit hours	Percentage	Reviews*
	Courses			
Institution				
Requirements				
College Requirements				
Department	X	3		
Requirements				
Summer Training				
The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some				

sampling activities that are interesting to the students.

* This can include notes whether the course is basic or optional.

33. Program Description						
Year/Level	Year/Level Course Code Course Name Credit Hours					
3 rd		First	theoretical	practical		
			3	2		

34. Expecte	34. Expected learning outcomes of the program				
Knowledge					
Learning	1-Recognize how light behave as a particle and as a wave.				
Outcomes 1	2-List the various theories of light nature in last centuries.				
	3-Summarize what is meant by waves in physics.				
4-Discuss the properties and superposition of electromagnetic waves.					
	5-Describe the reflection of light.				
	6-Explain reflection experiment.				
	7-Describe the refraction of light.				
	8-Explain refractive index experiment.				
	9-Explain the dispersion and its problems.				

Skills	
Learning Outcomes 2	1-To develop problem solving skills and understanding of geometrical optics.
	2-To understand light nature, wave's superposition, light reflection, refraction and dispersion.
	3-This course deals with the basic concept of geometrical nature and propagation of light.
	4-This is the basic subject for all lenses and mirrors experiments.
	5-To understand Types of light refraction and its applications.
	6- To understand dispersion of light and their types.

Ethics	
Learning Outcomes 4	
Learning Outcomes 5	

35. Teaching and Learning Strategies

The program adopts a variety of teaching and learning strategies, including:

- Active Participation and Interaction: Encouraging students to participate in lectures, ask questions, and engage in discussions.
- Active Listening: Emphasizing attentive listening during explanations and demonstrations.
- Hands-on Laboratory Sessions: Providing practical laboratory sessions to apply theoretical knowledge.
- Case Studies and Practical Workshops: Incorporating real-world scenarios to enhance problem-solving skills.
- **Communication Skills Training:** Focusing on effective scientific communication, both written and oral.
- Integration of General and Transferable Skills: Developing critical thinking, problem-solving, and research skills.
- **Staying Updated with Research:** Encouraging students to keep up with the latest advancements in the field.
- **Collaboration and Teamwork:** Promoting group projects and assignments to simulate real-world scientific collaborations.

36. Evaluation methods

1-Evaluation methods are implemented at various stages of the program, including:

2-Continuous Assessment: Regular quizzes, assignments, and participation.

3-Laboratory Reports: Evaluation of practical work and experimental results.

4-Examinations: Mid-term and final exams to assess comprehensive understanding.

5-Projects and Presentations: Assessing the ability to apply knowledge and communicate findings.

6-Peer and Self-Assessment: Encouraging reflective learning and peer feedback.

- 7-Mid exam
- 8-Final exam

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of the teaching staff		
	General	Special	Staff	Lecturer	
Lecturer Dr.	physics	optics			

Professional Development

Mentoring new faculty members

1-Orientation programs to familiarize them with departmental policies and teaching methodologies.

2-Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

1-Workshops on innovative teaching and learning strategies.

2-Seminars on the latest research advancements in microbial genetics.

3-Opportunities for faculty to attend conferences and participate in collaborative research projects.

4-Regular assessments and feedback sessions to enhance teaching effectiveness.

37.Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

38. The most important sources of information about the program

1) Fundamentals of Optics, Francis Arthur Jenkins and Harvy E. White, McGraw-Hill Education. 2) Introduction to optics (3rd edition), by: F. L. Pedrotti, Leno M. Pedrotti and Leno S. Pedrotti.

3) Principles of optics, (7th edition), by: Max Born and Emil Wolf.

39. Program Development Plan

The development plan involves continuous curriculum review and updates based on the following key elements:

1- Feedback from Students and faculty: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.

2- Emerging Trends and Technological Advancements: Stay abreast of the latest trends and technological advancements in physical optics to integrate new knowledge and techniques into the curriculum.

3- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.

4- Periodic Assessments: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessar to improve outcomes and maintain excellence.

Program Ski	rogram Skills Outline															
					Requ	uired p	rogra	m Lea	arning	g outc	omes					
Year/Level	Course Code	CourseBasicorName		Knov	vledge			Skills	5			Ethics				
0	optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C 3	C4			
3rd		Geometric optics	Basic		+	+	+		+	+			+	+		
															<u> </u>	

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

25.Course Name:
Geometric optics
26.Course Code:
Phys 337
27.Semester / Year:
First /2024
28.Description Preparation Date:
27-6-2024
29.Available Attendance Forms:
Weekly/official working hours
30.Number of Credit Hours (Total) / Number of Units (Total)
3 hr./ 3 unit
31.Course administrator's name (mention all, if more than one name)
Name: Lecturer Dr. Thill Akeel Kadhum Almusawi
Email: <u>thillakeel@mu.edu.iq</u>

32.	Course Objectives
Course	
Objectives	

33.Teac	hing and Learning Strategies		
Strategy	The main strategy that will be adopted in delivering this module is to		
	encourage students' participation in the exercises, while at the same time		
	refining and expanding their critical thinking skills. This will be		
	achieved through classes, interactive tutorials and by considering type		
	of simple experiments involving some sampling activities that are		
	interesting to the students.		

34. Course Structure						
Week	Hours	Required Learning Outcomes	Unit or subject name	Learning method	Evaluatio n method	
1	2	Nature of light	Nature of light, Electromagnetic spectrum.	Lecture and Discussion	Quiz	
2	2	Nature of light	Maxwell's equations, Fermat principle, Optical path length.	Laboratory Session	Lab Report	
3	2	Reflection	Interaction of lightwithmatter,Reflection of light,Fermatprinciple(Law of reflection),Types of reflection,Laws of reflection.	Practical Workshop	Lab Report	
4	2	Reflection	Reflection of light by spherical mirrors, Terminology of spherical mirrors, Types of spherical mirrors, Image formation by concave mirror, Image formation by convex mirror	Lecture and Discussion	Mid-term Exam	
5	2	Reflection	Derivation of mirror equation, Image Magnification	Laboratory Session	Lab Report	
6	2	Reflection	Total internal reflection of light, application of total internal reflection of light, Optical fibers.	Lecture and Discussion	Quiz	
7	2	Refraction	Refraction, Fermat principle (Law of refraction),	Practical Workshop	Assignme nt	
8	2	Refraction	The lenses, types of lenses, Image	Laboratory Session	Lab Report	

			formation by concave lens, Image formation by convex lens.		
9	2	Refraction	Lens makers' formula, power of lens.	Lecture and Discussion	Quiz
10	2	Refraction	Thin lens and compound lens.	Lecture and Case Study	Assignme nt
11	2	Refraction	Refractive index, type of refractive index, equation of refractive index.	Practical Workshop	Mid-term Exam
12	2	Refraction	Applicationofrefraction,Totallyreflectingprism,SparklingofDiamond,Mirageand rainbow.	Lecture and Discussion	Quiz
13	2	Optical instruments	Optical instruments, the human eye, Camera, and Telescope.	Laboratory Session	Lab Report
14	2	Optical instruments	Visual defects, Myopia, Hyperopia, Astigmatism, Presbyopia.	Lecture and Discussion	Assignme nt
15	2	Optical instruments	Visual defects, Myopia, Hyperopia, Astigmatism, Presbyopia.	Lecture and Case Study	Final Exam

35.Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

36.Learning and Teaching Resources	
Required textbooks (curricular books, if any)	1) Introcution to optics (3rd edition),
	by: F. L. Pedrotti, Leno M. Pedrotti
	and Leno S. Pedrotti.
	2) Principles of optics, (7th edition),
	by: Max Born and Emil Wolf.
Main references (sources)	
Recommended books and references	1) Fundamentals of optics, (4th
(scientific journals, reports)	edition), by: Francis A. Jenkins and
	Harvey E. White.
Electronic References, Websites	

40. **Program Vision**

Our vision is to establish a leading program in physical optics that cultivates a deep understanding of optics principles and its innovations. We aim to foster a learning environment that promotes scientific curiosity, critical thinking, and the application of laboratory knowledge.

41. **Program Mission**

Our mission is to provide a comprehensive education in physical optics, equipping students with the knowledge and skills necessary to excel in academic and research. We strive to advance the field through cutting-edge research, ethical practices, and the development of innovative solutions to global optical challenges.

42. **Program Objectives**

The objectives of the optical analysis program are designed to highlight the importance and purpose of the practical study:

1- Familiarize the student with scientific equipment and train him to use them safely.

2- Training the student to maintain safety in the laboratory and college: the safety of his body and clothing, the safety of his colleagues, and the safety of the laboratory, including its furniture and equipment.

3- Giving the student social and scientific attitudes such as: cooperation, working within a group, respecting the opinion of others, scientific objectivity, being careful in making judgements, resorting to scientific experience, and appreciating the efforts of scientists.

4- Giving the student the skill of obtaining data, classifying it, tabulating it, representing it with graphs, and drawing conclusions.

5- The student is trained in the scientific method, given the opportunity to explore and investigate, and enjoy the success he achieves when he reaches the result himself.

6- Integration of theoretical knowledge with the student's practical experience.

7- Positive interaction with the environment in proposing alternatives, designing alternative experiences, and applying what is for the benefit of the student in his practical life.

43. **Program Accreditation**

Yes- Ministry of Higher Education and Scientific Research (Iraq)

44. Other external influences

Ministry of Higher Education and Scientific Research (Iraq)

45. Program Structure					
Program Structure	Number of	Credit hours	Percentage	Reviews*	
	Courses				
Institution					
Requirements					
College Requirements					
Department	Х	3			
Requirements					
Summer Training					
The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some					

sampling activities that are interesting to the students.

* This can include notes whether the course is basic or optional.

46. Program Description					
Year/Level	Course Code	Course Name	Credit Hours		
3 rd		Second	theoretical	practical	
			3	2	

47. Expecte	d learning outcomes of the program
Knowledge	
Learning	1-Recognize how light behave as a particle and as a wave.
Outcomes 1	2-List the various theories of light nature in last centuries.
	3-Summarize what is meant by waves in physics.
	4-Discuss the properties and superposition of waves as electromagnetic waves.
	5-Describe the interference of light.
	6-Explain Young's double slit experiment.
	7-Identify the conditions of bright and dark fringes.
	8-Discuss thin film interference and its types.
	9-Explain the diffraction and its problems.
	10-Explain the polarization of light and lts types and the problems and applications of polarization.

Skills	
Learning Outco	omes 1-To develop problem solving skills and understanding of wave optics.
	2-To understand light nature, wave's superposition, light interference, diffraction and polarization.
	3-This course deals with the basic concept of wave nature and propagation of light.
	4-This is the basic subject for all interference experiments.
	5-To understand Types of light diffraction and its applications.
	6- To understand polarization of light and the polarizers and their types.

Ethics					
Learning Outcomes 4					
Learning Outcomes 5					

48. **Teaching and Learning Strategies**

The program adopts a variety of teaching and learning strategies, including:

- Active Participation and Interaction: Encouraging students to participate in lectures, ask questions, and engage in discussions.
- Active Listening: Emphasizing attentive listening during explanations and demonstrations.
- Hands-on Laboratory Sessions: Providing practical laboratory sessions to apply theoretical knowledge.
- **Case Studies and Practical Workshops:** Incorporating real-world scenarios to enhance problem-solving skills.
- **Communication Skills Training:** Focusing on effective scientific communication, both written and oral.
- Integration of General and Transferable Skills: Developing critical thinking, problem-solving, and research skills.
- **Staying Updated with Research:** Encouraging students to keep up with the latest advancements in the field.
- **Collaboration and Teamwork:** Promoting group projects and assignments to simulate real-world scientific collaborations.

49. Evaluation methods

1-Evaluation methods are implemented at various stages of the program, including:

2-Continuous Assessment: Regular quizzes, assignments, and participation.

3-Laboratory Reports: Evaluation of practical work and experimental results.

4-Examinations: Mid-term and final exams to assess comprehensive understanding.

5-Projects and Presentations: Assessing the ability to apply knowledge and communicate findings.

6-Peer and Self-Assessment: Encouraging reflective learning and peer feedback.

- 7-Mid exam
- 8-Final exam

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number teaching	
	General	Special	Staff	Lecturer
Lecturer Dr.	physics	optics		

Professional Development

Mentoring new faculty members

1-Orientation programs to familiarize them with departmental policies and teaching methodologies.

2-Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

1-Workshops on innovative teaching and learning strategies.

2-Seminars on the latest research advancements in microbial genetics.

3-Opportunities for faculty to attend conferences and participate in collaborative research projects.

4-Regular assessments and feedback sessions to enhance teaching effectiveness.

50.Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

51. The most important sources of information about the program

1) Fundamentals of Optics, Francis Arthur Jenkins and Harvy E. White, McGraw-Hill Education.

2) Introduction to optics (3rd edition), by: F. L. Pedrotti, Leno M. Pedrotti and Leno S. Pedrotti.

3) Principles of optics, (7th edition), by: Max Born and Emil Wolf.

52.Program Development Plan

The development plan involves continuous curriculum review and updates based on the following key elements:

1- Feedback from Students and faculty: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.

2- Emerging Trends and Technological Advancements: Stay abreast of the latest trends and technological advancements in physical optics to integrate new knowledge and techniques into the curriculum.

3- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.

4- Periodic Assessments: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessar to improve outcomes and maintain excellence.

Program Ski	Program Skills Outline															
				Requ	uired p	rogra	m Lea	arning	g outc	omes						
Year/Level Course Code		e Name	Basic		Knowledge		Skills			Ethics						
			optional		A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	С3	C4
3rd		physical optics	Basic		+	+	+		+	+			+	+		
																-

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

37.Course Name:
Geometric optics
38.Course Code:
Phys 337
39.Semester / Year:
First /2024
40.Description Preparation Date:
27-6-2024
41.Available Attendance Forms:
Weekly/official working hours
42.Number of Credit Hours (Total) / Number of Units (Total)
3 hr./ 3 unit
43.Course administrator's name (mention all, if more than one name)
Name: Lecturer Dr. Thill Akeel Kadhum Almusawi
Email: <u>thillakeel@mu.edu.iq</u>

44.	Course Objectives
Course	
Objectives	

45.Teac	45.Teaching and Learning Strategies								
Strategy	The main strategy that will be adopted in delivering this module is to								
	encourage students' participation in the exercises, while at the same time								
	refining and expanding their critical thinking skills. This will be								
	achieved through classes, interactive tutorials and by considering type								
	of simple experiments involving some sampling activities that are								
	interesting to the students.								

Wee	Hours	Required Learning	Unit or subject	Learning	Evaluation	
k	libuis	Outcomes	name	method	method	
1	3	Interference	Superposition of	Lecture	Quiz	
			waves, addition	and		
			of waves	Discussion		
	3	Interference	Huygens's			
•			principles,	Laboratory		
2			division of wave	Session	Lab Report	
			front			
2	3	Interference	Interference,	Practical	Lab Danart	
3			Newton's rings	Workshop	Lab Report	
	3	Interference	Constructive	Lastura		
1			interference,	Lecture	Mid-term	
4			destructive	and Discussion	Exam	
			interference.	Discussion		
5 3	3	Interference	Young's double	Laboratory		
			slits exp.,	Session	Lab Report	
			Fresnel's exp.	50351011		
	3	Interference	Thin film	Lecture		
6			interference	and	Quiz	
				Discussion		
	3	Interference	Michelson's			
7			interferometer,	Practical	Assignment	
			Fabry-Perot	Workshop	0	
	2	Diffus eti su	interferometer	T als a water was		
8	3	Diffraction	Diffraction	Laboratory Session	Lab Report	
	3	Diffraction	Diffraction by	Lecture		
9	5	Dimaction	single slit	and	Quiz	
7			single sit	Discussion	Quiz	
	3	Diffraction	Fraunhofer and	Lecture		
10			Fresnel	and Case	Assignment	
10			diffraction	Study		
1.1	3	Diffraction	Diffraction	Practical	Mid-term	
11	_		Grating	Workshop	Exam	
	3	Diffraction	The double slits	Lecture		
12			diffraction	and	Quiz	
				Discussion		
12	3	Polarization	Introduction to	Laboratory	Lab Danaut	
13			the Polarization	Session	Lab Report	

	3	Polarization	Polarization by	Lecture	
14			reflection and	and	Assignment
			Brewster's angle	Discussion	
	3	Polarization	Law of Malus,	Lecture	
15			Fresnel's	and Case	Final Exam
15			diffraction	Study	Fillal Exam

47.Course Evaluation Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

48.Learning and Teaching Resource	S
Required textbooks (curricular books	1) Introcution to optics (3rd edition), by: F.
any)	L. Pedrotti, Leno M. Pedrotti and Leno S.
	Pedrotti.
	2) Principles of optics, (7th edition), by: Max Born and Emil Wolf.
Main references (sources)	
Recommended books and references	1) Fundamentals of optics, (4th edition), by:
(scientific journals, reports)	Francis A. Jenkins and Harvey E. White.
Electronic References, Websites	

Course Description Form

1. Course Name

Quantum mechanics1

2. Course Code

Department of Physical Sciences – third stage

3. Semester / Year

First Semester(2023-2024)

- 4. Description Preparation Date: 22-6-2024
- 5. Available Attendance Forms

Actual Attendance

- 6. Number of Credit Hours (Total) / Number of Units (Total)
- (2 Theory)
- 7. Course administrator's name

Name: Prof.Dr. Hadi Qasim Mohamed Email: hadey.mohamad@mu.edu.iq

8. Course Objectives

9. Teaching and Learning Strategies	
Strategy	 -Group discussions and assignments -Creating an atmosphere of competition among students and treating individual differences using appropriate educational methods. -Research groups - nested discussion circles. - Teaching methods include the use of educational technology. - Encouraging students to self-learn.

10. Cour	se Structure						
Week	Hours	Required Learning Outcomes	Unit or subje name	ect	Learning method	Evaluation method	
1	(2 Th+1 Tu)	character quantum and the in of quantu	ElementaryTheoreticalcharacteristics ofquantum mechanicsand the importanceof quantummechanics inphysics		etical	Daily preparation, daily and oral exams on the board and assignments	
2	(2 Th+1 Tu)	Vector fur its interpr	nction and retation	Theor	etical	Daily preparation, daily and oral exams on the board and assignments	
3	(2 Th+1 Tu)	Derivation Schödinge equation	-	Theor	etical	Daily preparation, daily and oral exams on the board and assignments	
4	(2 Th+1 Tu)	Schödinge equation -		Theor	etical	Daily preparation, daily and oral exams on the board and assignments	
5	(2 Th+1 Tu)	Schödinge equation -		Theor	etical	Daily preparation, daily and oral exams on the board and assignments	
6	(2 Th+1 Tu)	Derivation vector equ the hydro	ation for	Theor	etical	Daily preparation, daily and oral exams on the board and assignments	
7	(2 Th+1 Tu)	Deduce th Laplacian that affect	effects	Theor	etical	Daily preparation, daily and oral exams on the	

1. Course Name

Quantum mechanics2

2. Course Code

Department of Physical Sciences – third stage

3. Semester / Year

Second Semester(2023-2024)

4. Description Preparation Date:

5. Available Attendance Forms

Actual Attendance

6. Number of Credit Hours (Total) / Number of Units (Total)

(2 Theory+1 Tutorial)

7. Course administrator's name (mention all, if more than one name)

Name: Prof.Dr. Hadi Dwaich ALattabi Email: alattabih@uowasit.edu.iq

8.	Course	Objectives	
0.	0000000	0.01000.000	

9. Teaching and Learning Strategies

Strategy	-Group discussions and assignments
	-Creating an atmosphere of competition
	among students and treating individual
	differences using appropriate educational
	methods.
	-Research groups - nested discussion
	circles.
	- Teaching methods include the use of
	educational technology.
	- Encouraging students to self-learn.

10. Course Structure

Week	Hours	Required Learning	Required Learning Unit or subject		ing method	Evaluation method	
		Outcomes	name				
1	(2 Th+1 Tu)	mechanic correspon	nd to ntal results al	Theoretical	d o	aily preparation, aily and oral exams n the board and ssignments	
2	(2 Th+1 Tu)	dependent	Solution of the time- dependent Schödinger equation		d o	Daily preparation, daily and oral exams on the board and assignments	
3	(2 Th+1 Tu)	Complem time-depo Schöding equation		Theoretical	d o	aily preparation, aily and oral exams n the board and ssignments	
4	(2 Th+1 Tu)	Characte energy le vector fu	vels and	Theoretical	d o a	aily preparation, aily and oral exams n the board and ssignments	
5	(2 Th+1 Tu)	Dissolutio		Theoretical	d o a	aily preparation, aily and oral exams n the board and ssignments	
6	(2 Th+1 Tu)	Results in the time- independ		Theoretical	d o a	aily preparation, aily and oral exams n the board and ssignments	
7	(2 Th+1 Tu)	Results in the time- independ Schöding equation	ent	Theoretical	d o	aily preparation, aily and oral exams n the board and ssignments	
8	(2 Th +1		Mid-term E	xam	written	exams	
9	(2 Th+1 Tu)	Mathemat expression features of Kroenker	and f the	Theoretical	dai on	ly preparation, ly and oral exams the board and ignments	
10	(2 Th+1 Tu)	Represent vector fun with an ex	ction pansion	Theoretical	dai on ass	ly preparation, ly and oral exams the board and ignments	
11	(2 Th+1 Tu)	Effects pro	-	Theoretical	dai on ass	ly preparation, ly and oral exams the board and ignments	
12	(2 Th+1 Tu)	Substituti	-	Theoretical	dai on ass	ly preparation, ly and oral exams the board and ignments	
13	(2 Th+1 Tu)	The expec per unit of depends o effect of st the change value repl	f time n the udying e in the	Theoretical	dai on	ly preparation, ly and oral exams the board and ignments	

14	(2 Th+1 Tu)	Low probability	Theoretical	Daily preparation, daily and oral exams on the board and assignments
15	(3 h)	Probability stream and quantized states	Theoretical	reports
16	(3 h)	Symmetry in quantum mechanics	Theoretical	Daily preparation, daily and oral exams on the board and assignments

11. Course Evaluation

Distributing the	Daily	Daily	reports	Seminars	Mid-term	Final -Exam
score out of 100	preparation,	assignments			Exam	
according to the	daily and					
tasks assigned to	oral exams					
the student such as						
daily preparation,						
daily oral, monthly,						
or written exams,						
reports etc						
Course						
2nd	15	15	5	5	10	50

53. **Program Vision**

To advance nuclear physics through innovative research, cutting-edge technology, and global collaboration, enhancing our understanding of atomic nuclei and leveraging nuclear science for societal benefit.

54. **Program Mission**

The mission of our Nuclear Physics Program is to advance the understanding of atomic nuclei and their fundamental interactions. We aim to foster groundbreaking research, develop innovative technologies, and train the next generation of scientists. Through cutting-edge experiments, theoretical advancements, and interdisciplinary collaboration, we seek to uncover the mysteries of nuclear matter, contribute to national security, and drive progress in energy, medicine, and industry. Our commitment is to excellence in education, research, and community engagement, ensuring our work has a lasting impact on science and society.

55. **Program Objectives**

Program Objectives for a Nuclear Physics Program:

1. Fundamental Understanding: Develop a deep understanding of the fundamental principles of nuclear physics, including the structure, behavior, and interactions of atomic nuclei.

2. Research and Innovation: Foster the ability to conduct independent research, innovate experimental techniques, and contribute to advancements in nuclear physics through original scientific investigations.

3. Technical Proficiency: Equip students with advanced technical skills in the use of specialized instruments, computational tools, and methodologies essential for modern nuclear physics research.

4. Professional Development: Prepare students for successful careers in academia, industry, and government by enhancing their communication, collaboration, and leadership skills through comprehensive training and professional development opportunities.

By achieving these objectives, the program aims to produce highly skilled nuclear physicists who are capable of advancing the field and addressing the complex challenges of the modern world.

57. Other external influences

58. Program Structure				
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	x			
College Requirements	X			
Department Requirements	1	3	5%	
Summer Training	X			
Other	Lab			

* This can include notes on whether the course is basic or optional.

59. Program Description					
Year/Level	Course Code	Course Name	Credit Hours		
Four	Phy407		Theoretical	practical	

60. Expected learning outcomes of the program				
Knowledge				
Learning Outcomes 1	 Master fundamental theories of nuclear physics, including nuclear structure and reactions. Understand the applications of quantum mechanics and relativity in nuclear physics. Stay informed on contemporary research and advancements in the field. 			

61. Teaching and Learning Strategies

- Lectures and Seminars: Deliver comprehensive lectures and interactive seminars to provide foundational knowledge and facilitate in-depth discussions on advanced topics in nuclear physics.
- •
- Laboratory Work: Incorporate hands-on laboratory sessions where students can apply theoretical knowledge, develop experimental skills, and gain experience with advanced instrumentation.
- Research Projects: Encourage independent and collaborative research projects that allow students to explore specific areas of interest, develop critical thinking, and contribute to scientific advancements.
- •
- Problem-Based Learning: Utilize problem-based learning approaches to enhance problem-solving skills, foster critical thinking, and apply theoretical concepts to real-world scenarios.
- •
- Guest Lectures and Industry Collaboration: Invite experts from academia, industry, and research institutions to share their knowledge, provide insights into current developments, and expose students to diverse perspectives and career opportunities.

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing nuclear systems.
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.

Ethics	
Learning Outcomes 4	• Understand ethical considerations in nuclear research, focusing on safety, security, and environmental impact.
	• Commit to professional integrity and ethical conduct in research.
Learning Outcomes 5	• Recognize the societal implications of nuclear physics and aim to use scientific knowledge responsibly.

62. Evaluation methods

Evaluation in the nuclear physics program utilizes a combination of rigorous assessment tools to measure student progress and achievement. Methods include:

- Examinations: Regular assessments covering theoretical knowledge and problemsolving skills in nuclear physics principles.
- Laboratory Reports: Analysis of experimental data, methodologies, and interpretations to gauge practical skills in nuclear physics research.
- Research Projects: Independent or group-based research projects evaluating students' ability to formulate hypotheses, conduct experiments, and analyze results.
- Presentations: Oral presentations and written reports on research findings, assessing communication and dissemination skills.

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of the teaching staff	
	General	Special	Staff	Lecturer
Assistant Professor Dr.	Physics			

Professional Development

Mentoring new faculty members

□ Orientation programs to familiarize them with departmental policies and teaching methodologies.

□ Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in microbial genetics.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

63. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

64. The most important sources of information about the program

- Principles in nuclear physics, By Mayerhoof.1984.
- Nuclear physics, by Anka, 1988, John Wiley and Sons.
- Fundamentals of Nuclear Physics (cambridge.org)

65. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in clinical analysis and laboratory medicine to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.
- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.
- •

			P	rogram	Skills	o Outl	ine								
							Req	uired	progr	am Lo	earnin	g outcon	nes		
Year/Level	Course Code	Course Name	Basic or				Ethics								
		optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	
Four		Nuclear Phys	Basic	+	+	+		+	+			+	+		+

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

49.	Course Name:
Nuclea	r Physics I
50.	Course Code:
Phy40	7
51.	Semester / Year:
First /F	ourth
52.	Description Preparation Date:
26-6-2	2024
53.Avai	lable Attendance Forms:
Classro	om
54.Num	ber of Credit Hours (Total) / Number of Units (Total)
3/17	7
55.	Course administrator's name (mention all, if more than one
nam	e)
Nam	e: Dr. Ali N Sabbar
Emai	il: <u>alinadhm@mu.edu.iq</u>

56.	Course Objectives
Course	Defining the nucleus and its composed, nuclear models, nuclear force, reactions and reactor
Objectives	types and nuclear pollution

57.	Teaching and Learning Strategies
Strategy	The main strategy that will be adopted in delivering this module is to encourage students' participation in
	the exercises, while at the same time refining and expanding their critical thinking skills. This will be
	achieved through classes, interactive tutorials and by considering types of simple experiments involving
	some interesting sampling activities for the students.

58. Cours	se Structu	ıre				
Week	Hours	Required Learning	Unit or subject Learning Evaluation			
		Outcomes	name	method	method	
1	3	Demonstrate a thorough understanding of the fundamental principles and concepts underlying nuclear physics theories and applications.	Principles in nuclear physics	Lecture and Discussion	Lab Report	
2	3	Explain the structure, composition, and properties of atomic nuclei, including their size, mass, and charge distribution.	Essential characteristics of the nucleus	Laboratory Session	Quiz	
3	3	Describe how various types of radiation (alpha, beta, gamma) interact with matter at the atomic and molecular levels, including ionization and excitation processes.	Interaction of radiation with matter	Practical Workshop	Lab Report	
4	3	Analyze the behavior of electrons when interacting with matter, focusing on scattering processes, energy loss mechanisms, and the production of secondary radiation.	Interaction of electron with matter	Lecture and Discussion	Mid-term Exam	
5	3	Evaluate neutron interactions with different materials, including scattering, absorption, and moderation processes,	Interaction of neutron with matter	Laboratory Session	Lab Report	

		and their implications for]
		and their implications for nuclear reactions and			
		shielding.			
	3	Discuss the penetration,			
	5	attenuation, and			
		,			
		absorption of gamma rays	Interaction of commo	Lastura and	
6		in various materials, and the mechanisms of	Interaction of gamma	Lecture and Discussion	Quiz
			rays with matter	Discussion	
		photoelectric effect,			
		Compton scattering, and			
	2	pair production. Describe the factors			
	3				
		influencing nuclear			
		stability, such as binding	N. 1	Duriting	
7		energy, nuclear shell	Nuclear structure and	Practical	Assignment
		model, and the role of	stability	Workshop	0
		isotopes and isotones in			
		determining nuclear			
	2	stability.			
	3	Compare and contrast			
		different nuclear models			
0		(liquid drop model, shell	NT 1 1 1	Laboratory	L L D
8		model, collective model)	Nuclear models	Session	Lab Report
		to explain nuclear			
		properties and predict			
	2	nuclear behavior.			
	3	Explain the nature and			
		characteristics of nuclear			
0		forces (strong and weak	N 1 C	Lecture and	0.1
9		nuclear forces), their role	Nuclear forces	Discussion	Quiz
		in nuclear stability,			
		binding energy, and			
	3	nuclear reactions.			
	3	Evaluate methods and implications of nuclear			
				Lecture and Case Study	
10		activation, including	Nuclear activation		Assignment
10		induced radioactivity and its applications in	Nuclear activation		Assignment
		its applications in medicine, industry, and			
		-			
	3	research. Analyze the principles of			
	3	nuclear reactor operation,			
		including reactor types,		Practical	
11		fuel cycles, safety	Nuclear reactors	Workshop	Mid-term Exam
		mechanisms, and		workshop	
		environmental impact.			
	3	Assess the sources,			
	5	effects, and mitigation			
		strategies of radiation	Radiation pollution	Lecture and	
12		pollution on the	and its biological	Discussion	Quiz
		÷ .	effects	Discussion	
	3	biological systems.			
	3	Explain the concept of			
		radioactivity, radioactive		Laborator	
13		decay processes, decay	Radioactivity	Laboratory	Lab Report
		laws, and the use of		Session	-
		radioactive isotopes in			
		various applications.			

14	3	Define radiation units	Radiation Un Exposure	nits,	Lecture an Discussion	nd Assignment
15	3	Calculate and interpret radiation units such as exposure (roentgen), absorbed dose (rad, gray), and equivalent dose (rem, sievert), and their significance in radiation protection and dosimetry.		Dose,	Lecture as Case Study	nd Final Exam

59. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

60. Learning and Teaching Resources					
Required textbooks (curricular books, if any	Principles in nuclear physics, By Mayerhoof.1984.				
Main references (sources)	Nuclear physics, by Anka, 1988, John Wiley and Sons.				
Recommended books and references					
(scientific journals, reports)					
Electronic References, Websites	Fundamentals of Nuclear Physics (cambridge.org)				

Course Description Form

1. Course Name:
Nuclear Physics II
2. Course Code:
Phy407
3. Semester / Year:
Second /Fourth
4. Description Preparation Date:
26-6-2024
5. Available Attendance Forms:
Classroom
6. Number of Credit Hours (Total) / Number of Units (Total)
3/17
7. Course administrator's name (mention all, if more than one name)
Name: Dr. Ali N Sabbar
Email: <u>alinadhm@mu.edu.iq</u>

8. Course Objectives		
Course	Defining the nucleus and its composed, nuclear models, nuclear force, reactions and reactor	
Objectives	types and nuclear pollution	

9. Teaching and Learning Strategies		
Strategy	The main strategy that will be adopted in delivering this module is to encourage students' participation in	
	the exercises, while at the same time refining and expanding their critical thinking skills. This will be	
	achieved through classes, interactive tutorials and by considering types of simple experiments involving	
	some interesting sampling activities for the students.	

Week	Hours	Required Learning	Unit or subject	Learning	Evaluation
		Outcomes	name	method	method
1	3	Understand the concept of radioactive decay and its significance in nuclear physics. Identify different types of radioactive decay processes, including alpha, beta, and gamma decay. Calculate decay constants and half-lives of radioactive isotopes.	Radioactive decay Nuclear decay modes	Lecture and Discussion	Lab Report
2	3	Explain the mechanism of alpha decay and its characteristics. Calculate decay energies and understand the emission of alpha particles from nuclei.	Alpha decay	Laboratory Session	Quiz
3	3	Describe beta decay processes, distinguishing between beta-minus and beta-plus decay. Discuss the role of neutrinos in beta decay and apply the neutrino hypothesis.	Beta decay Neutrino hypothesis	Practical Workshop	Lab Report
4	3	Explain electron capture as a nuclear decay process. Compare electron capture with positron emission and beta-minus decay.	Electron capture	Lecture and Discussion	Mid-term Exam
5	3	Interpret and construct decay schemes for radioactive nuclei.	Decay scheme	Laboratory Session	Lab Report
6	3	Understand gamma decay processes, emission of gamma rays, and associated energy transitions.	Gamma decay	Lecture and Discussion	Quiz
7	3	Apply radiometric dating methods to estimate the age or lifetime of radioactive samples.	Radiometric dating (estimatio n lifetime of sample)	Practical Workshop	Assignment
8	3	Define nuclear reactions and distinguish between fusion and fission processes. Calculate reaction energies and understand	Nuclear reactions Q-value of reaction	Laboratory Session	Lab Report

		conservation laws in nuclear reactions.			
9	3	Differentiate between exergonic (exothermic) and endergonic (endothermic) nuclear reactions.	Exothermic and endothermic reactions (Exergonic and Endergonic reactions)	Lecture and Discussion	Quiz
10	3	Describe nuclear fission and fusion processes, including their applications and energy release mechanisms.	Fission & Fusion	Lecture and Case Study	Assignment
11	3	Explain the principles and operation of nuclear reactors.	Nuclear reactors	Practical Workshop	Mid-term Exam
12	3	Understand neutron activation analysis and its role in material characterization.	Nuclear activation	Lecture and Discussion	Quiz
13	3	Define cross-sectional area in the context of nuclear interactions. Calculate cross-sections and interpret their role in nuclear reactions and shielding.	Cross-sectional area Macroscopic cross-section	Laboratory Session	Lab Report
14	3	Identify and describe elementary particles relevant to nuclear physics, such as protons, neutrons, electrons, neutrinos, and mesons.	Elementary particles	Lecture and Discussion	Assignment
15	3	Study neutron properties, interactions, and behavior in nuclear environments.	Neutron physics	Lecture and Case Study	Final Exam

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources		
Required textbooks (curricular books, if any	Principles in nuclear physics, By Mayerhoof.1984.	
Main references (sources)	Nuclear physics, by Anka, 1988, John Wiley and Sons.	

Recommended books and references	
(scientific journals, reports)	
Electronic References, Websites	Fundamentals of Nuclear Physics (cambridge.org)

66. **Program Vision**

To Have social, scientific and ethical values in the stages of collecting, interpreting, announcing and applying the data in the field of physics. Can research interdisciplinary fields. Use techniques and modern instruments for applications in Physics. Keep up with latest developments and new applications in physics.

67. **Program Mission**

The mission of this Program is to advance theoretical and applied knowledge about physics. use theoretical and applied knowledge of science and mathematics. Examine the concepts and ideas in Physics through scientific methods, express and analyze the problem, formulate a solution based on research, and interpret and evaluate the results. Take responsibility to solve unpredictable and complex problems encountered in applications as an individual and as a member of a team. Plan and manage activities in teamwork. Identify and assess learning needs and evaluate the knowledge and skills acquired with an inquisitive approach.

68. **Program Objectives**

Program Objectives for Electromagnetism I Program:

1. Fundamental Understanding: Program and use numerical methods to illustrate or solve relevant problems involving electromagnetic fields. Access and read critically relevant scientific literature, making original connections to other publications and the course.

2. Research and Innovation: Foster the ability to conduct independent research, innovate experimental techniques, and contribute to advancements in electromagnetic fields through original scientific investigations.

3. Technical Proficiency: Equip students with advanced technical skills in the use of specialized instruments, computational tools, and methodologies essential for electromagnetic fields research. In addition, to effectively communicate scientific concepts and results in written as well as oral form.

4. Professional Development: Prepare students for successful careers in academia, industry, and government by enhancing their communication, collaboration, and leadership skills through comprehensive training and professional development opportunities.

By achieving these objectives, the program aims to give students a solid foundation in electromagnetism. After undertaking this course, students should be confident in their ability to present electromagnetism to high school students. Students will be able to solve problems involving charges, circuits and electromagnetic waves. They will be introduced to Maxwell's equations in the integral form and be able to use these to solve problems involving moving and static charges. Students will be able to plan experiments and carry them out.

69. **Program Accreditation**

70. Other external influences

71. Program Structure				
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*
Institution Requirements	X			
College Requirements	Х			
Department Requirements	2	3		
Summer Training	Х			
Other	Х			

* This can include notes on whether the course is basic or optional.

72. Program Description				
Year/Level	Course Code	Course Name		Credit Hours
Four			theoretical	practical
			3	1

73. Expected learning outcomes of the program			
Knowledge			
Learning Outcomes 1	 Describe and understand the basic concepts underpinning electricity and magnetism such as potential and field. Understand the relationship between electric and magnetic fields. Calculate the electrostatic and magnetic fields produced by static and moving charges in a variety of simple configurations. 		

Skills			
Learning Outcomes 2	 See how the theory describing electricity and magnetism relates to areas in physics such as gravitation, fluids, thermal physics and quantum mechanics. Identify and apply appropriate theoretical techniques to solve a range of different problems in electromagnetism. Apply those theoretical techniques to solve problems in any context underpinned by coupled linear differential equations. 		
Learning Outcomes 3	• Design, set up, and carry out experiments; analyze data recognizing and accounting for errors; and compare with theoretical predictions		

Ethics	
Learning Outcomes 4	 Understand ethical considerations in the electromagnetism research field, focusing on safety, and security impact. Commit to professional integrity and ethical conduct in research.

Learning Outcomes 5	٠	Recognize the societal implications of electromagnetism and aim to
-		use scientific knowledge responsibly.

74. Teaching and learning strategies			
The Strategy	 Weekly lectures included providing students with the basics and topics related to the pre-skills education outcomes to solve practical problems through presentation, lecture, or conducting experiments. Solve a group of practical and applied examples by faculty members. Through discussion, students participate in solving some practical problems. Asking the student to visit the library and the international information network (the Internet) to obtain additional knowledge of the academic subjects. Presenting a seminar to the student in front of his fellow students to enhance his self-confidence. 		

75. Course structure

Week	Hours	Name of the unit or topic	Required learning outcomes	Learning method	Evaluation method
1	3	Electromagnetics Overview What is electromagnetics? Why study electromagnetics? Course topics	An introductory introduction to electromagnetic fields and their importance in electrical engineering	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
2	3	Vector Algebra: Scalars and Vectors; Unit Vector; Vector Addition and Subtraction; Position and Distance Vectors; Vector Multiplication; Components of a Vector	Vector review	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
3	3	Coordinate Systems and Transformation: Cartesian Coordinates (x, y, z); Circular Cylindrical Coordinates (ρ, φ, z); Spherical Coordinates (r, Ø, φ); Constant-Coordinate Surfaces, the transformation between coordinate system.	Learn about coordinate systems, transformation, and vector calculations	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
4	3	Vector Calculus: Differential Length, Area, and Volume; Line, Surface, and Volume	Learn about coordinate systems, transformation, and vector calculations	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports

		Integrals Del Operator; Gradient			
		of a Scalar; Divergence of a Vector			
		and Divergence Theorem.			
		-			
5	9	Coulomb's Law and Electric Field Intensity: The experimental law of Coulomb, Electric field intensity; Field of n point charges;	Study of Coulomb's law and electric field intensity	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
6	3	Electric fields due to continuous charge distributions (line charge, surface charge and volume charge distributions),	Study of Coulomb's law and electric field intensity	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
7	3	Steam line and sketches of fields; Electric flux density.	Study of Coulomb's law and electric field intensity	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
8	3	Gauss's Law-Electric Flux Density: Gauss's law; Some symmetrical charge distribution	Study of Chaos' law and its applications	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
9	3	Application of Gauss's law; Maxwell's first equation (for electrostatics);	Study of Chaos' law and its applications	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
10	3	The vector operator and the divergence theorem.	Study of Chaos' law and its applications	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
		Electrostatic Fields			Daily, oral,
11	3	Coulomb's Law and Field Intensity; Electric Flux Density, and Gauss's Law;	Identify the electric field intensity	Lectures, Tutorials	monthly, written examinations and reports
12	3	Applications of Gauss's Law; Energy and Potential.	Identify the electric field intensity	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
13	3	Energy and Potential: Energy and potential-energy expended in moving a point charge in an electric field	Learn how to calculate energy and electrical magnitude Difference	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
14	3	The line integrals; Potential difference and potential, The potential field of a point charge; The potential field of a system of charges	Learn how to calculate energy and electrical magnitude Difference	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
15	3	Conservative property; Potential gradient; The dipole energy density in the electrostatic field.	Learn how to calculate energy and electrical magnitude Difference	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
76. Cou	rse Eval	uation			

Distribution of the grade out of 100 according to the tasks assigned to the student,						
such as daily prepara	such as daily preparation, daily, oral, monthly, written exams, reports, etc.					
	Quiz	zes	10% (10)			
	Assignme	ents	10% (10)			
	Proje	ects	10% (10)			
	Rep		10% (10)			
	Annual qu		40% (40)			
	Final Exam		60% (60)			
	Total assessm		100% (100 Marks)			
77.Learning and	teaching resources					
Required textbooks (metho	odology, if any)	Ma		ements of Electromagnetics."		
			· · · · · · · · · · · · · · · · · · ·	18).		
Main references (sources)		Electromagnetics By Joseph Edminister (Schaum's				
		Outline Series) : Joseph Edminister, Vishnu Priye Mc		•		
			Graw Hill	Education		
Recommended supporting books and references		All scientific magazines and periodicals related to		and periodicals related to		
(scientific journals, reports)			electromag	gnetic fields		
Electronic references, Internet sites		https://www.coursera.org/browse/physical-science-and-				
			engineering/elec	trical-engineering		

Course Description Form

1. Course Name:
Electromagnetism I
2. Course Code:
3. Semester / Year:
Fourth /2024
4. Description Preparation Date:
27-6-2024
5. Available Attendance Forms:
Physically
6. Number of Credit Hours (Total) / Number of Units (Total)
3 hours
7. Course administrator's name (mention all, if more than one name)
Name: Asst Prof. Dr. Rasha A. Hussein
Email: rasha.lasereng@mu.edu.iq

14

78. Co	ourse st	tructure			
Week	Hours	Name of the unit or topic	Required learning outcomes	Learning method	Evaluation method
1	3	Static magnetic field and its sources	Induction to magnetic field, Lorentz force law and its applications.	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
2	3	Biot-Savart law	Biot-Savart Law and its applications.	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
3	3	Ampere law	Ampere's Law (differential and integral shape). Application of Ampere's law.	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
4	3	Magnetic flux density and magnetic flux	Magnetic flux density	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
5	3	Curl of vector field and stocks theory and applications	Divergence and curl of the magnetic field.	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
6	3	Forces of magnetic field and electric-magnetic field combined	force and Torques on Rigid Circuits	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
7	3	Microscopic properties of magnetic materials	The origin of magnetism in the matter. Magnetic moment of the atom. Magnetic current density. Surface current density. Magnetic Intensity.	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
8	3	Mid-term Exam	Exam	Tutorials	Daily, oral, monthly, written examinations and reports

9	3	Inductance	Self Induction Mutual Induction	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
10	3	Faradays law and magnetic circuit	Magnetic Energy of		Daily, oral, monthly, written examinations and reports
11	3	Maxwell's equation	Displacement Current	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
12	3	Applications of Maxwell's equations in matter	Maxwell's Equation's	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
13	3	Wave equation	- Wave Equation for Electric and Magnetic Field	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
14	3	Poynting vector	Poynting vector	Lectures, Tutorials	Daily, oral, monthly, written examinations and reports
15	3	Preparatory week before the Final Exam	Preparatory week before the Final Exam	Tutorials	Daily, oral, monthly, written examinations and reports
79. Co	ourse E	valuation			
		e grade out of 100 accord paration, daily, oral, mon	C	C	
		Qui	zzes 10% (10)		
		Assignme	ents 10% (10)		
		Proj			
			port 10% (10)		
		Annual qu			
			Final Exam 60% (60) Total assessment 100% (100 Mar		
00 T	uning		100% (100 Mar	xs)	
	0	nd teaching resources nethodology, if any)	Matthew N.O. "Sadii	ai Flementa a	f Electromagnetics "
required le	AUDOKS (II	iculouology, II ally)	Matthew, N. O. "Sadiku Elements of Electromagnetics (2018).		
Main refere	nces (sourc	ces)	Electromagnetics By Joseph Edminister (Schaum's Outline Series) : Joseph Edminister, Vishnu Priye Mc Graw Hill Education		

Recommended supporting books and references	All scientific magazines and periodicals related to	
(scientific journals, reports)	electromagnetic fields	
Electronic references, Internet sites	https://www.coursera.org/browse/physical-science-and-	
	engineering/electrical-engineering	

81. Faculty

Faculty Members

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of the teaching staff	
	General	Special	Staff	Lecturer
Assistant Professor Dr.	Physics			

Professional Development

Mentoring new faculty members

□ Orientation programs to familiarize them with departmental policies and teaching methodologies.

 \Box Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in microbial genetics.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

82. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

83. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in clinical analysis and laboratory medicine to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set by relevant accrediting bodies to ensure the program maintains high educational and professional standards.
- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.
- ٠

Course Description Fo	rm
------------------------------	----

61. Course Name:				
Electromagnetism II				
62. Course Code:				
63. Semester / Year:				
Fourth /2024				
64. Description Preparation Date:				
27-6-2024				
65.Available Attendance Forms:				
Physically				
66.Number of Credit Hours (Total) / Number of Units (Total)				
3 hours				
67. Course administrator's name (mention all, if more than one				
name)				
Name: Asst Prof. Dr. Rasha A. Hussein				
Email: rasha.lasereng@mu.edu.iq				

1. Program Vision

To understand the field of Solid state physics through a combination of course work, laboratory experiences, research, and practical training. The combination of instructional methods leads students to a balanced understanding of the scientific theories of solid state to make observations, develop insights and create new knowledge about the physical laws and theories that controlling the matter.

2. Program Mission

The Program seeks to provide all physical students with fundamental knowledge of solid state physics, as well as a deeper understanding of a selected focus area within the solid sciences. The curriculum and advising have been designed to prepare student for their professional future, whether they choose to work as field of solid state specializing. The solid state physical program also provides the necessary fundamental knowledge of wide range of phenomena in solid state. In addition, physical courses provide a key laboratory science experience for those students seeking to complete the general education requirements in solid state physic.

3. Program Objectives

Program Objectives for a Nuclear Physics Program:

1. Fundamental Understanding: Develop a deep understanding of the fundamental principles of solid state physics, including the structure, behavior, and the properties of solid state material.

2. Research and Innovation: Foster the ability to conduct independent research, innovate experimental techniques, and contribute to advancements in solid state physics through original scientific investigations.

3. Technical Proficiency: Equip students with advanced technical skills in the use of specialized instruments, computational tools, and methodologies essential for modern solid state physics research.

4. Professional Development: Prepare students for successful careers in academia, industry, and government by enhancing their communication, collaboration, and leadership skills through comprehensive training and professional development opportunities.

By achieving these objectives, the program aims to produce highly skilled physicists who are capable of advancing the field and addressing the complex challenges of the modern world.

5. Other external influences

6. Program Structure						
Program Structure	Number of	Credit hours	Percentage	Reviews*		
	Courses					
Institution	X					
Requirements						
College	X					
Requirements						
Department	1	3	5%			
Requirements						
Summer Training	X					
Other	Lab					

* This can include notes on whether the course is basic or optional.

7. Program Description									
Year/Level	Year/Level Course Code Course Name Credit Hours								
Four	Phys 440	Solid state I	Theoretica	practical					

8. Expected learning outcomes of the program								
Knowledge								
Learning Outcomes 1	1. Recognize the type of Crystal structure.							
2. List the various terms associated with solid state material.								

3. Summarize what is meaning of crystal lattice.
4. Discuss the types of bonds involvement of crystal structure.
5. Describe real space, Fourier space (reciprocal space), and
the relation between two space.
6. Define diffraction condition law.
7. Identify the type of Crystal structure and their applications.
8. Discuss the type of wave and in physics and their rule to
transfer energy.
9. Discuss the vibration mode of crystal lattice in one, two and
three dimension.
10. Explain the dispersion relation which consist of angular
frequency and the wave vector formed from the vibration
mode and understand the transfer of energy in crystal
lattice.

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing the solid state system
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.
Fthics	

Ethics	
Learning Outcomes 4	 Understand ethical considerations in solid state research, focusing on safety, security, and environmental impact. Commit to professional integrity and ethical conduct in research.
Learning Outcomes 5	• Recognize the societal implications of solid state physics and aim to use scientific knowledge responsibly.

10. Teaching and Learning Strategies

- Lectures and Seminars: Deliver comprehensive lectures and interactive seminars to provide foundational knowledge and facilitate in-depth discussions on advanced topics in solid state physics.
- Laboratory Work: Incorporate hands-on laboratory sessions where students can apply theoretical knowledge, develop experimental skills, and gain experience with advanced instrumentation.
- Research Projects: Encourage independent and collaborative research projects that allow students to explore specific areas of interest, develop critical thinking, and contribute to scientific advancements.
- Problem-Based Learning: Utilize problem-based learning approaches to enhance problemsolving skills, foster critical thinking, and apply theoretical concepts to real-world scenarios.
- Guest Lectures and Industry Collaboration: Invite experts from academia, industry, and research institutions to share their knowledge, provide insights into current developments, and expose students to diverse perspectives and career opportunities.

9. Evaluation methods

Evaluation in the solid state physics program utilizes a combination of rigorous assessment tools to measure student progress and achievement. Methods include:

- Examinations: Regular assessments covering theoretical knowledge and problemsolving skills in solid state physics principles.
- Laboratory Reports: Analysis of experimental data, methodologies, and interpretations to gauge practical skills in solid state research.
- Research Projects: Independent or group-based research projects evaluating students' ability to formulate hypotheses, conduct experiments, and analyze results.
- Presentations: Oral presentations and written reports on research findings, assessing communication and dissemination skills.

11.Faculty

Faculty Members

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of the teaching staff	
	General	Special	Staff	Lecturer
Assistant Professor Dr.	Physics			

Professional Development

Mentoring new faculty members

□ Orientation programs to familiarize them with departmental policies and teaching methodologies.

□ Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in solid state physic.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

12. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

13. The most important sources of information about the program

- Introduction to solid state physics, By Charles Kittle.
- فيزياء الحالة الصلبة ز تاليف الكتور مؤيد جبرائيل يوسف
- فيزياء الحالة الصلبة تاليف الدكتور يحيى الجمال

14. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in solid state and laboratory experiment to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set to ensure the program maintains high educational and professional standards.

- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.

	Program Skills Outline														
						Required program Learning outcomes									
Year/Level	Course Code	Code Name	Name		Knowledge			Skills			Ethics				
			optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4
Four	Phys 440	Solid state I	Basic	+	+	+		+	+			+	+		+
															<u> </u>
															<u> </u>

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

1. Course Name:
Solid state Physics I
2. Course Code:
Phys 440
3. Semester / Year:
First /Fourth
4. Description Preparation Date:
26-6-2024
5. Available Attendance Forms:
Classroom
6. Number of Credit Hours (Total) / Number of Units (Total)
3/17
7. Course administrator's name (mention all, if more than one name)
Name: Dr. Salah. A. Hassan
Email: <u>salah.almurshidee@mu.edu.iq</u>

8. Course Objectives									
Course	Teach students the most important basic concepts, principles, laws, and								
Objectives	scientific theories of the Solid state Physics, the student has the scientific skills								
	that enable him to perform their professional and business functions, and others.								

	9. Teaching and Learning Strategies							
Stra	ategy	The main strategy that will be adopted in delivering this module is to encourage students'						
		participation in the exercises, while at the same time refining and expanding their critical						
		thinking skills. This will be achieved through classes, interactive tutorials and by considering						
		types of simple experiments involving some interesting sampling activities for the students.						

10. Course Structure									
Week	Week Hours Required Learning Unit or subject Learning Evaluation								
		Outcomes	name	method	method				
1	3	Introduction, Crystal, Crystal Structure, Translation Vectors ,	Principles in solid state	Lecture and Discussion	Lab Report				

2	3	Types of Unit Cell, Crystal System, Unit Cell, Area and Volume of Unit Cell	Crystal Structure	Lecture and Discussion	Quiz
3	3	Crystal Plane and their Indices, Inter planar distance, Wigner- Seitz	Crystal Structure	Lecture and Discussion	Lab Report
4	3	The bonding, Types of bond, Crystal lattice energy	The bonding	Lecture and Discussion	Mid-term Exam
5	3	Determination of Madelung Constant in 1D and 2D, Crystal structures for some Crystals	The bonding	Lecture and Discussion	Lab Report
6	3	The diffraction, The Bragg diffraction law	The diffraction Law	Lecture and Discussion	Quiz
7	3	Fourier Analysis	The diffraction Law	Practical Workshop	Assignment
8	3	Reciprocal Lattice, Reciprocal Lattice Vectors,	The diffraction Law	Lecture and Discussion	Lab Report
9	3	The Ewald sphere diffraction in Reciprocal Lattice	The diffraction Law	Lecture and Discussion	Quiz
10	3	Brilloun Zones, Geometrical Structure Factor	The diffraction Law	Lecture and Case Study	Assignment
11	3	Sound Waves, Atomical Vibration in the lattice,.	Vibrational modes	Practical Workshop	Mid-term Exam
12	3	Vibrational modes of linear monoatomic lattice.	Vibrational modes	Lecture and Discussion	Quiz
13	3	Velocities in wave motion of linear monoatomic lattice.	Vibrational modes	Lecture and Discussion	Lab Report
14	3	Vibrational modes of diatomic linear lattice,	Vibrational modes	Lecture and Discussion	Assignment
15	3	Velocities in wave motion of diatomic linear lattice.	Vibrational modes	Lecture and Discussion	Final Exam

11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

12. Learning and Teaching Resources	
Required textbooks (curricular books, if any	 Introduction to solid state physics, By Charles Kittle.
Main references (sources)	فيزياء الحالة الصلبة ز تاليف الكتور مؤيد جبرائيل • يوسف فيزياء الحالة الصلبة تاليف الدكتور يحيى الجمال
Recommended books and references (scientific journals, reports)	
Electronic References, Websites	

15. **Program Vision**

To understand the field of Solid state physics through a combination of course work, laboratory experiences, research, and practical training. The combination of instructional methods leads students to a balanced understanding of the scientific theories of solid state to make observations, develop insights and create new knowledge about the physical laws and theories that controlling the matter.

16. **Program Mission**

The Program seeks to provide all physical students with fundamental knowledge of solid state physics, as well as a deeper understanding of a selected focus area within the solid sciences. The curriculum and advising have been designed to prepare student for their professional future, whether they choose to work as field of solid state specializing. The solid state physical program also provides the necessary fundamental knowledge of wide range of phenomena in solid state. In addition, physical courses provide a key laboratory science experience for those students seeking to complete the general education requirements in solid state physic.

17. **Program Objectives**

Program Objectives for a Nuclear Physics Program:

1. Fundamental Understanding: Develop a deep understanding of the fundamental principles of solid state physics, including the structure, behavior, and the properties of solid state material.

2. Research and Innovation: Foster the ability to conduct independent research, innovate experimental techniques, and contribute to advancements in solid state physics through original scientific investigations.

3. Technical Proficiency: Equip students with advanced technical skills in the use of specialized instruments, computational tools, and methodologies essential for modern solid state physics research.

4. Professional Development: Prepare students for successful careers in academia, industry, and government by enhancing their communication, collaboration, and leadership skills through comprehensive training and professional development opportunities.

By achieving these objectives, the program aims to produce highly skilled physicists who are capable of advancing the field and addressing the complex challenges of the modern world.

18. **Program Accreditation**

19. Other external influences

20. Program Structure								
Program Structure Number of Credit hours Percentage Revie								
Institution Requirements	x							
College Requirements	X							
Department Requirements	1	3	5%					
Summer Training	X							
Other	Lab							

* This can include notes on whether the course is basic or optional.

21. Program Description								
Year/Level	Course Code	Course Name	Credit Hours					
Four	Phys 445		Theoretical	practical				
			3	2				

22. Expected learning outcomes of the program						
Knowledge						
Learning Outcomes 1	11. Recognize the type of thermal and electrical properties of					

solids state materials.
12. List the various terms associated with thermal and electrical
properties of solids state materials.
13. Summarize the Classical, Einstein and Debye theories to
calculate specific heat capacity.
14. Summarize Classical, quantum theory for free electron gas to
calculate the electronic properties of material.
15. Summarize Band Theory in solid and their rule calculate the
electronic.
16. Discuss the failed and the success of the Classical, Einstein
and Debye theories to give a good agreement with the
experimental values for specific heat capacity at higher and
low temperature.
17. Discuss the failed of the Classical and quantum theory for
free electron gas to give a good agreement with the
experimental values.
18. Describe Band Theory in solid and their rule to calculate the
electronic properties of material.
19. Identify the type of the semiconductors and their potential
application in devises.

Skills	
Learning Outcomes 2	 Develop expertise in experimental techniques and advanced instrumentation. Enhance computational skills for modeling, simulating, and analyzing the solid state system
Learning Outcomes 3	 Improve problem-solving and critical thinking through independent research. Strengthen scientific communication, both written and oral.

Ethics								
Learning Outcomes 4	 Understand ethical considerations in solid state research, focusing on safety, security, and environmental impact. Commit to professional integrity and ethical conduct in research. 							
Learning Outcomes 5	• Recognize the societal implications of solid state physics and aim to use scientific knowledge responsibly.							

24. Teaching and Learning Strategies

- Lectures and Seminars: Deliver comprehensive lectures and interactive seminars to provide foundational knowledge and facilitate in-depth discussions on advanced topics in solid state physics.
- Laboratory Work: Incorporate hands-on laboratory sessions where students can apply theoretical knowledge, develop experimental skills, and gain experience with advanced instrumentation.
- Research Projects: Encourage independent and collaborative research projects that allow students to explore specific areas of interest, develop critical thinking, and contribute to scientific advancements.
- Problem-Based Learning: Utilize problem-based learning approaches to enhance problemsolving skills, foster critical thinking, and apply theoretical concepts to real-world scenarios.
- Guest Lectures and Industry Collaboration: Invite experts from academia, industry, and research institutions to share their knowledge, provide insights into current developments, and expose students to diverse perspectives and career opportunities.

23. Evaluation methods

Evaluation in the solid state physics program utilizes a combination of rigorous assessment tools to measure student progress and achievement. Methods include:

- Examinations: Regular assessments covering theoretical knowledge and problemsolving skills in solid state physics principles.
- Laboratory Reports: Analysis of experimental data, methodologies, and interpretations to gauge practical skills in solid state research.
- Research Projects: Independent or group-based research projects evaluating students' ability to formulate hypotheses, conduct experiments, and analyze results.
- Presentations: Oral presentations and written reports on research findings, assessing communication and dissemination skills.

25. Faculty

Faculty Members

Academic Rank	Specialization	Special Requirements/Skills (if applicable)	Number of the tea	ching staff
	General	Staff	Lecturer	
Assistant Professor Dr.	Physics			

Professional Development

Mentoring new faculty members

□ Orientation programs to familiarize them with departmental policies and teaching methodologies.

 \Box Regular meetings with experienced faculty mentors to discuss teaching strategies and research integration.

Professional development of faculty members

The academic and professional development plan includes:

- Workshops on innovative teaching and learning strategies.
- Seminars on the latest research advancements in solid state physic.
- Opportunities for faculty to attend conferences and participate in collaborative research projects.
- Regular assessments and feedback sessions to enhance teaching effectiveness.

26. Acceptance Criterion

The program follows the central admission regulations set by the university, which include academic qualifications, entrance exams, and interviews.

27. The most important sources of information about the program

- Introduction to solid state physics, By Charles Kittle.
- فيزياء الحالة الصلبة زتاليف الكتور مؤيد جبرائيل يوسف
- فيزياء الحالة الصلبة تاليف الدكتور يحيى الجمال

28. Program Development Plan

The development plan for the Clinical Analysis program involves continuous curriculum review and updates based on the following key elements:

- Feedback from Students, Faculty, and Industry Partners: Regularly collect and incorporate feedback from students, faculty, and industry partners to ensure the curriculum remains relevant and meets the needs of all stakeholders.
- **Emerging Trends and Technological Advancements**: Stay abreast of the latest trends and technological advancements in solid state and laboratory experiment to integrate new knowledge and techniques into the curriculum.
- Accreditation Requirements and Standards: Adhere to accreditation requirements and standards set to ensure the program maintains high educational and professional standards.

- **Periodic Assessments**: Conduct regular assessments and evaluations of the program to ensure it meets its educational and professional objectives, making adjustments as necessary to improve outcomes and maintain excellence.

	Program Skills Outline														
				Req	uired	progr	am Lo	earnin	g outcon	nes					
Year/Level	Course Code	Course Name	Basic or	Knov	wledge			Skills	5			Ethics			
			optional	A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C 3	C4
Four	Phys 445	Solid state II	Basic	+	+	+		+	+			+	+		+
															<u> </u>
															<u> </u>

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

Course Description Form

13.	Course Name:							
	Solid state Physics II							
14.	Course Code:							
Phys 4	445							
15.	Semester / Year:							
Second	d /Fourth							
16.	Description Preparation Date:							
26-6-2	26-6-2024							
17.Avai	17.Available Attendance Forms:							
Classro	Classroom							
18.Num	nber of Credit Hours (Total) / Number of Units (Total)							
3/1	7							
19.	Course administrator's name (mention all, if more than one							
nam	name)							
Nam	Name: Dr. Salah. A. Hassan							
Ema	il: <u>salah.almurshidee@mu.edu.iq</u>							

CourseTeach students the most important basic concepts, principles, laws, and scientific theories of the Solid state Physics, the student has the scientific skills	
that enable him to perform their professional and business functions, and others.	

21.	Teaching and Learning Strategies						
Strategy	The main strategy that will be adopted in delivering this module is to encourage students'						
	participation in the exercises, while at the same time refining and expanding their critical						
	thinking skills. This will be achieved through classes, interactive tutorials and by considering						
	types of simple experiments involving some interesting sampling activities for the students.						

22. 0	22. Course Structure									
Wee	Hours	Required Learning	Unit or subject	Learning	Evaluation					
k		Outcomes	name	method	method					

1	3	Thermal properties of solid, Classical model of specific heat capacity,	Thermal properties of solid	Lecture and Discussion	Lab Report
2	3	Einstein theory for specific heat, Phonon.	Thermal properties of solid	Lecture and Discussion	Quiz
3	3	The Density of states, Debye theory for specific heat.	Thermal properties of solid	Lecture and Discussion	Lab Report
4	3	Electrical Conductivity, Metal, Energy distribution functions, Maxwell-Boltzmann distribution.	Electrical Properties of metals	Lecture and Discussion	Mid-term Exam
5	3	Bose-Einstein distribution, Fermi-Dirac distribution. Electron Conductivity in Metals.	Electrical Properties of metals	Lecture and Discussion	Lab Report
6	3	Classical Free electron model, Drude Theory for Free Electron Conductivity.	Electrical Properties of metals	Lecture and Discussion	Quiz
7	3	Quantum Theory of free Electron Gas, Ideal Fermi – Dirac Gas.	Electrical Properties of metals	Practical Workshop	Assignment
8	3	Fermi – Dirac function, Electronic levels in one dimension, Electronic levels in three dimension	Electrical Properties of metals	Lecture and Discussion	Lab Report
9	3	Density of states in 3D, Fermi energy level at T=0 K. Electron velocity at Fermi surface, kinetic energy.	Electrical Properties of metals	Lecture and Discussion	Quiz
10	3	Electronic properties at $T \neq 0K$, Sommerfeld Theory for Electrical Conductivity.	Electrical Properties of metals	Lecture and Case Study	Assignment
11	3	Brillouin Zones in Band Theory, Kronig- Penny Model.	Band Theory	Practical Workshop	Mid-term Exam
12	3	General properties of Bloch Theory, Energy band according to Bloch Theory.	Bloch Theory	Lecture and Discussion	Quiz
13	3	Semiconductors, Intrinsic Semiconductors, Concentration of electrons and holes in semiconductor.	Semiconductors	Lecture and Discussion	Lab Report
14	3	Doping of Semiconductors. Concentration of electrons and holes in dopped Semiconductors.	Semiconductors	Lecture and Discussion	Assignment
15	3	Applications of semiconductors in important devises.	Semiconductors	Lecture and Discussion	Final Exam

23. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc

24. Learning and Teaching Resources				
Required textbooks (curricular books, if any)	Introduction to solid state physics by kittle			
Main references (sources)	فيزياء الحالة الصلبة للدكتور مؤيد جبرائيل يوسف فيزياء الحالة الصلبة للدكتور يحيى الجمال			
Recommended books and references (scientific journals, reports)				
Electronic References, Websites				