i Making Everything Easier!™ 2nd Edition

Microsoft®

Excel VBA
Programming

Learn to:

’ * Use the essential tools and Operations
. for VBA
|

* Work with range objects and control
Program flow

* Handle errors and eliminate bugs
in your code

* Develop custom

User interfaces for your l
applications, including dialog boxes

John Walkenbach

Author of Excel 2010 Bible

http://www.it-ebooks.info/
http://www.a-pdf.com/?tr-demo

Get More and Do More at Dummies.come®
Start with FREE Cheat Sheets

C\\Qae‘ Cheat Sheets include
(7\0»@ * Checklists
* Charts
* Common Instructions
* And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/excelvbaprogramming

'?’;:

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
*Videos
* [llustrated Articles
* Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
- Digital Photography
* Microsoft Windows & Office
* Personal Finance & Investing
* Health & Wellness
« Computing, iPods & Cell Phones
* eBay
* Internet
* Food, Home & Garden

Find out“HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.
ooks.com/

http://www.dummies.com/cheatsheet/excelvbaprogramming
www.dummies.com
www.dummies.com
www.dummies.com
www.dummies.com
www.dummies.com
http://www.it-ebooks.info/

Excel VBA
Programming

IJO)

DUMMIES

2ND EDITION

by John Walkenbach

WILEY
Wiley Publishing, Inc.

OOOOOOOOOO

http://www.it-ebooks.info/

Excel® VBA Programming For Dummies®, 2nd Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates in the United States and other countries, and may not be used without written permission.
Excel is a registered trademark of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with
any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010925699
ISBN: 978-0-470-50369-0

Manufactured in the United States of America
109 8 7654321

WILEY

ooks.com/

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
www.dummies.com
http://www.it-ebooks.info/

About the Author

John Walkenbach is the bestselling author of more than 50 spreadsheet
books and lives in southern Arizona. When he’s not using Excel, he’s prob-
ably playing clawhammer banjo.

ooks.com/

http://www.it-ebooks.info/

ooks.com/

http://www.it-ebooks.info/

Dedication

This book is dedicated to Toad and Mrs. Toad because I'm running out of
people for book dedications.

Author’s Acknowledgments

I'm grateful to all the talented people at Wiley Publishing for giving me the
opportunity to write Excel books. Special thanks to Colleen Totz Diamond
(project editor) and Jan Karel Pieterse (technical editor). They certainly
made my job easier.

ooks.com/

http://www.it-ebooks.info/

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http: //dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Composition Services

Media Development Project Coordinator: Kristie Rees

Project Editor: Colleen Totz Diamond Layout and Graphics: Ashley Chamberlain,

Acquisitions Editor: Katie Mohr Samantha K. Cherolis

Copy Editor: Melba Hopper Proofreaders: Laura L. Bowman,

Technical Editor: Jan Karel Pieterse Jessica Kramer

Editorial Manager: Jodi Jensen Indexer: Rebecca Salerno

Media Development Assistant Project
Manager: Jenny Swisher

Media Development Associate Producer:
Josh Frank

Editorial Assistant: Amanda Graham
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Composition Services

Debbie Stailey, Director of Composition Services

ooks.com/

http://www.it-ebooks.info/

Contents at a Glance

JOEFOAUCEION «eeeeeaeaaeaeeeeeeeeennaaaaeeeeeeeennnnnsaseeeeeeennnnnaes |

Part I: Introducing UBAccuueeeeeicceeciceeeiinncaee 11

Chapter 1: What IS VBA?oo ottt et e e e ve e s vae e enes 13
Chapter 2: Jumping Right INcccceiviiiiiiiiieeee e 23
Part II: How UBA Works with Excel..............cccccceeueeee. 35
Chapter 3: Working In the Visual Basic EditOr..........ccoceiiiinininiiiiceeee 37
Chapter 4: Introducing the Excel Object Model...........cccccoeeevieciieiieeienieeieeeeeeeeeneen 55
Chapter 5: VBA Sub and Function Proceduresccccooveviieiiievieecenieceeceeeeveennen 69
Chapter 6: Using the Excel Macro Recordercocoeeevirciinciennieniieniienieneeneeseeneenn 81

Part l1I: Programming Concepts............cccceeeceeiceecaceanee 93

Chapter 7: Essential VBA Language Elements...........cccoceeiieienenininieneneneneeceeeene 95
Chapter 8: Working with Range ODbjects..........cccevievieeiecieciieeeeeecee e 115
Chapter 9: Using VBA and Worksheet Functions...........ccccceevvvvinneniiniinieniienieenennne 129
Chapter 10: Controlling Program Flow and Making Decisions...........ccccccoeevercvenunenne 141
Chapter 11: Automatic Procedures and Events...........ccccocevievininenininneneneseee, 161
Chapter 12: Error-Handling TeChNIQUESccceevvieiiieiieiicieceeieeeeeee e 183
Chapter 13: Bug Extermination Techniques...........ccccovvevviriiiniinniniinenieeeeeeee 197
Chapter 14: VBA Programming EXamples..........cccocevvieriiniinniinniinnieniesiesieseeseeneenne 211
Part IV: Communicating with Your Users................... 233
Chapter 15: Simple Dialog BOXESccccoiviriirieieieeieeeeeeeee et 235
Chapter 16: USerForm BasiCSccccieciiiiiiiecieniecieeieee ettt ae e aesanesse s 253
Chapter 17: Using UserForm Controlsccccoecieviiniineeneniiinienieeteseeseeseesieenieenne 269
Chapter 18: UserForm Techniques and TYiCKSccccoeveeveriiiriiieniencienieniesieseenieenne 289
Chapter 19: Accessing Your Macros through the User Interface...............c.......... 313
Part U: Putting It All Together..............cccoueeeceeeiaceeese 331
Chapter 20: Creating Worksheet Functions — and Living to Tell about It............. 333
Chapter 21: Creating Excel Add-INScccocveriiniiniiniiiienienieerestesee st 349

ooks.com/

http://www.it-ebooks.info/

Part Ul: The Part of Tens.........cccccveeeeceeecaceeeecaceenaeee 301

Chapter 22: Ten VBA Questions (And ANSWETS)ccceeverviiriiniieniienieenieneeneeneenne 363
Chapter 23: (Almost) Ten Excel RESOUICES.........ccceevvevieiiirciiniieieeiecieeceeteseesieene 367

ooks.com/

http://www.it-ebooks.info/

Table of Contents

JOEPOAUCEION a...aeeeeeeeeeeenaaaaaeeeeeeeennnnnsaaseeeeeesnnnnssseeees]

Is This the Right BOOK?cooiiiiiiiieeceeeeeeeeeee et 1
So You Want to Be a Programmeercocoviiniinieniinecieeieeieeieneeneenne 2
WRhY BOthEr?... ..ottt ettt 3
What [ASsume about YOUcoecueuirierirenenininictetee et 3
Obligatory Typographical Conventions Sectionc..cececeevvevenenenenen. 4
Check Your Security Settings........ccccceevverienienienieeiieeieeieeie et seesee e 5
How This Book Is Organizedccccoevieeiinienienienieieeieeiecie e 6
Part I: Introducing VBAcccooviiiiiiieeeteteteeeeee e 6
Part II: How VBA Works with Excel.........cccoccoviiniiniinniiniiiienieee 6
Part III: Programming CONCepPts.......c.cccueevveeeerierieneeeereeieereene e 7
Part IV: Communicating with Your Users..........cccocevverirvinenenencnne. 7
Part V: Putting It All Togetherccocveieeviieieecieceeeeeeeeee e 7
Part VI: The Part of Tens.........ccceceeiieiinininiiiieceneecteeeeeeee 7
But Wait, There’s MOTE! ...ttt eeeeeateeee e e e sesnanaeees 7
Icons Used in This BOOKccccevviiiiiriieniiniiiientctcecteeeee st 8
Getting the Sample Files ..ot 8
INOW WRAL?....ceiieeee ettt sttt s 9

Part I: Introducing UBAcueeeceeecceeeaeneaneeneacee 11

Chapter 1: WhatIsVBA? i 13
Okay, SO What Is VBA?c.iiieieeteeeeeteeese sttt ettt 13
What Can You Do with VBA? ..o 14

Inserting a bunch of teXtcooceviririiriieieieeee e 15
Automating a task you perform frequentlyccccoovevieniennnnnns 15
Automating repetitive operationscccecevvvenceenienieneeneeeeienns 15
Creating a custom command..........c.cceeceerierreenienrieniiennienieneeseeseennes 15
Creating a custom BUttOnccccevivvieiiiiiiiiiececee e 16
Developing new worksheet functionscccccoecvveeciiecieeiieecneenee, 16
Creating complete, macro-driven applications...........cccccecerereneene. 16
Creating custom add-ins for EXcel..........cccoovvieviiicinciincieniecieeene, 16
Advantages and Disadvantages of VBAccccooviiviinievincincieeieceeee 16
VBA adVantagescccoceviinieniinieeiieeieeieeie st steseeseeesveesseesaeessesnsenns 17
VBA disadvantagesccccoeceeveriiiniinniiniienieniesieeteseese et 17
VBA in a NUtShell......coooiiiiiiecc et 18
An Excursion into Versions..........ccccecevierieniieneinieneeeeeeeseeeeeeeeee e 20

ooks.com/

http://www.it-ebooks.info/

X

Excel VBA Programming For Dummies, 2nd Edition

Chapter 2: Jumping RightIn............t 23
First Things FirSt.......ccoueoieiioiieiieeeeeceeeeee ettt 23
EXCEl 2010 USEI'S ...cveieieiieiieieeieeieeteetesteseeesee e esaeestesaesaessnesanesnas 24
EXCEl 2007 USEI'S ...cveeiieiieiiiieeieniesiestestesteseesteesseessessesaesssesasesnas 24
What YOU'Il BE DOINGocveeeieeieiieieeeeceeeeetee e 25
Taking the FIirst STEPS ...ccveoviiiiicieeieeeceetesteee ettt 25
Recording the MaCrO........coceiviiiiiriieieieteteeeeeee et 26
Testing the MACYO......ccuecieiieiecieeeceeese ettt et eees 27
Examining the MaCIOcccoeviiiiiiriieeieeiecesteeeeee et 27
Modifying the MaCrOcocveviiriiiiiiceeectece ettt 30
Saving Workbooks That Contain Macrosccceevevvierviercieniienieeneeneenenn 30
Understanding Macro SECUTItYcccceeciieeiiiiiciieieeeeceee e 31
More about the NameAndTime Macroccoceevevinireeiienieneneseeeeeeene 33

Part II: How UBA Works with Excelccceeueeeeeeeee. 35

Chapter 3: Working In the Visual Basic Editor.................... 37
What Is the Visual Basic EQitOr?.........ccoccovviiniiniiniiniiiccnesieeieseeeeee 37
Activating the VBE.........ccooiiieee et 37
Understanding VBE components...........cocccocereenennennennenneeneeneene 38
Working with the Project Windowccccoecveviiniinieniecieieceeieeeeeee 40
Adding a new VBA modUlecccoeevuievieriienienieneeneeeesieesieesaeenens 41
Removing a VBA module..........cccocvriirvieniiniinieecieeieeieeeesveseenes 41
Exporting and importing objects.......ccccecvevienieninnenienienienieneee 42
Working with a Code WindOW...........cccoecuieieeieciinieceeeeeee e 42
Minimizing and maximizing windowscccccecevvennenniennieneeneenne. 42
Creating @ MOAUIE.........cc.eccverieiiiiieceeceece e 44
Getting VBA code into a module...........ccccoeveeveenieeciincienienieeieeeee 44
Entering code dir€Ctly........ccooiviiieieieieieiecceeeeeeese s 45
Using the macro recorder...........occovvevvienienieneeneeeeienieeeeseeeeenes 47
Copying VBA COAE ..ottt 49
Customizing the VBA Environmentcccceeeeiiievieecieeienieeieeeeeeeeeeneen 49
Using the Editor tab.........ooiiiiiiiniiieeeeeeeeee e 50
Using the Editor Format tabcccovveviiiiiiieeeeeceeeeeeens 52
Using the General tab.........cccccooiiieieeeieriecceeeeeeee s 53
Using the Docking tabccccoveiieircieieeeeeeeeeeee s 54
Chapter 4: Introducing the Excel Object Model 55
EXCEl IS N ODJECE?....ceieeieiieieieete ettt s neas 56
Climbing the Object Hierarchycccceeoeeeieeciieciieieeieeeceeeeeceeeeeeeen 56
Wrapping Your Mind around Collections...........ccceceeeerienienenenencnceeenen. 58

ooks.com/

http://www.it-ebooks.info/

Table of Contents

Referring t0 ODJECES ...uviiuieciiiiicieeeeeeeeeee ettt 58
Navigating through the hierarchycccoccoviinienieciiiieeeieee 59
Simplifying object references..........ccceceevercieneenieneesieeceeeeeeeeee 60

Diving into Object Properties and Methodscccccceeeveeviinviinvieneeneennen. 60
ODbjJECt PrOPEIti€S.....cccvieieeieriieriieieeeecte ettt s 62
Object MethOdS........oocvivieriiieieeeee e 63
ODjJECE EVENLES....ccvieiicieeieceeceecee ettt e b e e e e e e s aeesaee e 64

FINAING OUt MOTE......oiiiiiiiieieeie ettt 64
Using VBA’s Help SYSteM......c.cccieiiiieeieciecieeeeeieeie e 65
Using the Object BrOWSETccccoviiiiiriieiiieeeeeeceee e 66
Automatically listing properties and methodsccccceveenennnns 66

Chapter 5: VBA Sub and Function Procedures 69

Subs versus FUNCLIONSc..cooviririiiiiinenccceceeeee e 69
Looking at Sub procedures...........ccocevierienieneenenieeieniesieeeeseenes 70
Looking at Function procedures...........c.ccecoeeeiiiecieeiiiecieecieeeeeeee, 70
Naming Subs and FUNCtioNSccoceevieiereninieeeeeeeeeceeene 71

Executing SUb ProCedures...........cceeieeiiniinienieieeieeieeteete et 71
Executing the Sub procedure directlyccccovvvvvieviniinneniennnne. 73
Executing the procedure from the Macro dialog box..................... 74
Executing a macro by using a shortcut kKey.........ccccecervirvieniennnnne. 75
Executing the procedure from a button or shape........................... 76
Executing the procedure from another procedure......................... 78

Executing Function procedures............cccocueevieeeenieeniienieeiieeieeieceeeeeseeeen 78
Calling the function from a Sub procedure............cccccevvvervrervennnnnne. 79
Calling a function from a worksheet formula..........c.cccccevvvervnnnnnnne. 79

Chapter 6: Using the Excel Macro Recorder...................... 81

[STt Live OF IS Tt VBAY ..ottt st 81

Recording BaSiCScoviiriiiiiiiiiieeiectestctctcee ettt 82

Preparing to RECOTd.........cccviiiiiiieeeeeeee et 84

Relative or ADSOIULE?cocueviiriiiieiieeeee e 84
Recording in absolute mode............cccoecveeieriinieniecieieeeeeeee e 84
Recording in relative modeccocuevvierieniinienieeccccceeeeee 85

What Gets Recorded?.........coooeeieieniininininecicicnienieceeeeese e 87

Recording OPionS........ccooieiiiiiiiiinieeteseeee ettt 88
MAaCTO NAIMEeiiiiiiiiieiieeeteeee ettt sttt enneas 88
SNOTECUL K@Y ...ttt 89
StOre MAaCrO IN ..ottt 89
DESCIIPLION c..eiiiiiieieeceeteeee et 89

Is This Thing Efficient?.........ccccooviriiiriiniiieeeeecececeee e 90

ooks.com/

xi

http://www.it-ebooks.info/

xii Excel VBA Programming For Dummies, 2nd Edition

Part [11: Programming Conceptscccceeeceeeeeeaeecee 93

Chapter 7: Essential VBA Language Elements 95
Using Comments in Your VBA Codeccoceeveeriieiiienieeiieeieeieceeeeeneeeen 95
Using Variables, Constants, and Data TYPesccccceveevvercieriiervieneeneennen. 97

Understanding variables.........cccccocevviervieniiniienieniceeieeeeieseeseene 97
What are VBA’s data types?cccocevveevieriieniienienteneeneeieeneeeeeseens 98
Declaring and scoping variables..........cccccooeririniieieneneneneeeeeeens 99
Working with constantscccecieviieciieciicciececeeeee e, 105
Pre-made constants..........cocooeiieiiiienininneeeceee e 106
Working with Stringscccceveeviiiinninicieceeeece e 107
Working with dates........cccoeieviiiiiiiiiiiceee e 108
Using Assignment Statements.........ccccoecevierieneininninieeieneeneeseeseeeene 109
Assignment statement eXamplesccccecevvienienienieneenenneeeee 109
About that equal SiGNccceevieiiiiiiieiieeeeceee e 109
SMOOth OPEIAtOTSccueiiieiieiieiieieeeeteetere e 110
WoOrking With Arraysccceeeevienieneeiieniecieeetee ettt sae s 112
DeClaring AITAYScccceveeriierierrieeiieriesiestesteseeseesteesaeesessessessesseens 112
Multidimensional arraysccocceeveeveereererniennienieeieseseeeeeseeseens 113
D)7 0E:100) (G-) 8 - 7 TSRS 113
USING LADEIS ...ttt 114

Chapter 8: Working with Range Objects 115
A QUICK REVIEW ...t 115
Other Ways to Refer to a Range.........cccceveeviieviiniiiniieciecieceeceeseeseeeee 117

The Cells ProOPerty......cccccevieriieieriiirieeieeeeseese e e e sreebesaeseeens 117
The Offset PrOPerty......cccvveiviiiiriiiiiecieteeet e 118
Referring to entire columns and rOws..........cceceeveevervieriieniienneenneen. 119
Some Useful Range Object Propertiescccooueeveviieveecieeciesieeeeeeeseenns 119
The Value ProPertY.....ccccvevieiiieciieiiciecieeteseesie e ve e ae e 120
The TeXt PrOPEItY.....ccciiiiieriieiieciieie ettt see e ete e ebeeae e 121
The Count ProPerty.....cccccecieveereriieiierierreneeseese e eee e ereeaesanens 121
The Column and Row properties..........ccccocoveeviieeciienieecciieeiee e, 121
The Address PrOPEItYcccceveevierrieriierientereenieereesie ettt see s 122
The HasFormula propertyccccceeeieeeeeeeiiensieecieesieeeveeevee e 122
The FONt PrOPEertY.....cccieciieiiieiiecieeie ettt ae e 123
The INterior ProPertyccceceeciieciiiieeieeeeceese e re e ae e 123
The Formula Property.....cccccoceeceeciiriierienienieneeseesieeieesvesvesnesnens 124
The NumberFormat property.........ccceeceevienienieneenencienienieeeeneens 126
Some Useful Range Object Methodsccocceveiviininnieniienienienienceneee 126
The Select method ..o 126
The Copy and Paste methodsccccooevirieiiieninineeeeeee 127
The Clear methodc.cociiiiiiiiiiieee e 128
The Delete methodccoocoveiiiiiiiinininneeccecereee 128

ooks.com/

http://www.it-ebooks.info/

Table of Contents

Chapter 9: Using VBA and Worksheet Functions................. 129
What Is @ FUNCHON?ooouiiiiiiiceeececeeetet et 129
Using Built-In VBA FUNCHONSccceeiiiiiiienieeciecieeecieeee et 130

VBA function eXamplesocevirviirnieniieniienienieneeneene e 130
VBA functions that do more than return a value............cc.c......... 132
Discovering VBA functions...........cccceevveeeenieneenecceeeceeveeveeenne 133
Using Worksheet Functions in VBA...........cccoeiririiiiininiceeeeeeeee 135
Worksheet function examples...........cccocceevveeviinciencieneenieneeceeceeene, 136
Entering worksheet functionscccocceevvevienieneeniencincecieceeene 138
More about Using Worksheet FUNCtionsc.cceeevvierciinciiniiniieneenenns 139
Using Custom FUNCHIONS........ccociriiiiiniinieictciccecee ettt 139

Chapter 10: Controlling Program Flow and Making Decisions. 111
Going with the Flow, Dudecccoviiiiiiiiiiiiniieeteteeeeeeeeee 141
The GOTO StatEMENLtcceeieieiieeeeeeeeeeeet et enene 142

Decisions, deCiSIONScccveieeiiieeieiiiieccee e 143
The If-Then StruCtUIeccceceeeiieiiciecieeeeeee e 143
The Select Case StruCture.........ccecuveieecieeienienieneeseeeeeere e 148
Knocking Your Code for @ LOOP......cccceeievienieneenieiienieeieceeeeeseeseenieenee 151
FOT-NEXE I0OPS ...cvviiieiieiieecteete ettt et e ane e 152
DO-WHhIlE L0ODcevieieiietieeeteete ettt e ane e 156
DO-UNtil I0OP..c.uiiiiiiiiiiiiieeeeeeee ettt 157
Looping through a ColleCtionc.ccuevuiiieiieeeeeieieeeeeeeeeeee e 158

Chapter 11: Automatic Procedures and Events................... 161

Preparing for the Big Eventcccooiiiiiiinieniccececececeeeeeeeee 161
Are events USeful?..........ccceevieiiiiiieiieiccecece e 163
Programming event-handler procedures..........c.cccocevvvvrciirreneennnnn. 164

Where Does the VBA Code GO?coovvieriiniiniiienieecieeieeieeieseeeenn 164

Writing an Event-Handler Procedure.............cccooeeiiiiiieecieeieeeeeieee 165

Introductory EXamplescoccooveiiiiiiniiniiniieeeeeeeeeeeeee e 167
The Open event for a WOrkbooKc.ccceeviviiniecinciieiieieceene 167
The BeforeClose event for a workbook............ccccceeeeciiriiincieneennnnn. 169
The BeforeSave event for a workbooK..........ccceeeeveriiiriiinienciennnnn. 169

Examples of Activation Eventscccocooiiiieiiiiiieccieee e, 170
Activate and deactivate events in a sheet.........ccccoeceevirviincnnennee. 170
Activate and deactivate events in a workbook.............ccccceeeeeenee. 171
Workbook activation events...........ccocceeveiiinieenciinnieniecieceeenn 173

Other Worksheet-Related Eventsccccecieviieciiniinieniienieceeceeeeeeene 174
The BeforeDoubleClick event...........cccocevierienieneeniensienieeienieeens 174
The BeforeRightClick event..........ccoccevvieviiniiniiniiniieneniecieene 174
The Change €VENtc.cccvvivieieieieerereeeeee et seens 175

ooks.com/

Xi

http://www.it-ebooks.info/

xi(/ Excel VBA Programming For Dummies, 2nd Edition

Events Not Associated with Objects........cccceeveviieiieiieieccceceeeeeee 177
The ONTIimMe EVENLcccieviieiieiieie ettt 178
KEYPIeSS EVENLScc.ccciiiieiieiieieeie ettt seeesaeeseeveebeeaesseens 180

Chapter 12: Error-Handling Techniques......................... 183

TYPES Of EXTOTS ettt st 183

An Erroneous EXampleccocovieviiiiiiiienienieiceeneeeee e 184
The macro’s not quite perfect..........cocovvvevieeiiiecciiciieeeecee e, 185
The macro is still not perfect........cccooeeieecieeiiiicieeeeeee e, 186
Is the macro perfect yet? ... eiiecieeeeeceeeeee e 186
Giving up on perfection..........cocvcerererinieerieeeeeeeee e 187

Handling Errors Another Way.......c.ccccoeeveeienienieneesieeeeiecie e 188
Revisiting the EnterSquareRoot procedure............ccccceevvvrvernennnn. 188
About the On Error statementcccecevvieriinviinienieneeneeneeee, 189

Handling Errors: The Details.........ccceceviiniiniininniiineeieseeseeeeeseeseene 190
Resuming after an €rror..........cccoccveeeeiieecieecieee e 190
Error handling in a nutshell..........c..ccooeviieiiniinienieceeeeeeeeee 192
Knowing when to ignore errorsccceeeeveereeneeseecieecieeieeeeennens 192
Identifying SpecifiC €rTorsS........cccoeciiviirieeieriereeeeeeeeeee e 193

An Intentional EXTOYcccooviiiiiiiiiiciiniecetctctce e 194

Chapter 13: Bug Extermination Techniques 197

SPECIES Of BUES ..cuviiiiiiiiieieeeeeeeteteet ettt 197

[dentifying BUZScccvevuiiriiiiriiiieeeetetetetee ettt 198

Debugging TeChNIQUESccceeeiiieciieiececeeceeeee e 199
ExXamining your COAE........ccuunimnimniiiniieienienieseesieesieeieereeveeaesenens 199
Using the MsgBoxX function.........c.cccecueeieeienieniencenieeieececveeeeennn 200
Inserting Debug.Print statements..........ccccoocvevieveeneeciniinienienn, 201
Using the VBA debuggercoccoocvvvieriiniinienieneeseeieeesieeieeeenn 202

About the DeDUZZETcoiiiiiiiiiieiieeteteteee e 202
Setting breakpoints in your code.........c.coceeeevieneeceecieecieeieereenne 202
Using the Watch window ..o 206
Using the Locals WINAOW.........cccceciiierieeienienieseeeeie e 207

Bug RedUCHION TIPS ...ccvviiieiiiiiiieeieeiesiecteeteie ettt ve et s eesaeesee e 208

Chapter 14: VBA Programming Examples 211

Working with Rangesccccoeviviiiiiniiiiicieeeeeeecese e 211
COPYING @ TANZE ...ovviiiiiieiieiieriteriterie et eieesteesaeesaeesaestesresssesasesanens 212
Copying a variable-sized rangecccccocceeveevieriiersiensieniieniieneeneens 213
Selecting to the end of a row or column............ccccveeivecriecreeeennn. 214
Selecting a rOW OF COIUMIcc.ceiiieriiniiieeeieee et 215
MOVING @ FANZEecuvieeieeieeiieeiieeiieeteseesteesteesreesteesaeesaesssessesssassnesseens 215
Looping through a range efficientlycccccoevvvveivenciniinneniennnne 216
Looping through a range efficiently (Part ID).......cccccoccevvvervienvennn. 217
Prompting for a cell value.......c.ccocovvieriiniiniiniiicieceeeieeeeene 218
Determining the selection type........c.ccoceveeieeciiicciienieeeeeeee e 219
Identifying a multiple selection..........c.cccecvevienienieceeciecieeieciene 219

ooks.com/

http://www.it-ebooks.info/

Table of Contents

Changing EXcel SettingsS.......ccceeievieiiieiiieieeieeie ettt eve s 220
Changing Boolean settingsccccooeveririieiieneneneneceeeeee 221
Changing non-Boolean settings..........ccccocvveveeveenieesieecienieeieeeeeens 221

Working with Chartscccceevievieiiiiiieiceceeeeeee e 222
Modifying the chart typeccoceviiriiriiieeeeeee 224
Looping through the ChartObjects collection............ccccevueeueennen. 224
Modifying chart properties...........ccccoeevueeienienieneeceeeeeeeeereeene 225
Applying chart formattingcccceeveeciecienciieieeeeceeeeeee e, 225

VBA SPEEA TiPS...cuiiiiieiiiieeiietiesieeieete ettt et e sieesaeesvesteeaeebessnasneans 227
Turning off screen updatingcccocceevveevienienieneeneeceeeeeeeeeenn 227
Turning off automatic calculationc.cceceevvenienencinniniieniennn. 228
Eliminating those pesky alert messages..........ccocevevvervieriienceennnn. 228
Simplifying object references...........cccoceevveveeneeneeceeceeceeeeeeene 229
Declaring variable tyPescccoccevviirieriienieneieeeeeeeeeeeeeeeeene 230
Using the With-End With structure..........c.ccccooovvveeveniincieiecien, 231

Part IV: Communicating with Your Users.................... 233

Chapter 15: Simple DialogBoxescccovvnntns. 235
UserForm AErnativescccooverieerenieinenieinenieenieseeeseeseeeeesseseeneneene 235
The MSgBOX FUNCHONcccviiiiiiiciececete et 236

Getting a response from a message boX.......cceeueevieeciervieniveeceennnn. 237
Customizing message DOXES........cccoeceeveerieeniienieerieeieeie e 238
The InputBox FUNCHIONc.oooiiiiiiice e 241
INPULBOX SYNEAX ...coviiiiiiiiiicieeiece ettt 241
An InputBox eXampleccoeciiiiiieiieeiceee e 242
The GetOpenFilename Method...........ccccooivevininiienienerieeeeeeseee 244
The syntax for the GetOpenFilename method..............ccecueeueenen. 244
A GetOpenFilename eXamplecccceevvervieriiinieneeneeneeneeneesieennes 245
Selecting multiple filescccceevirviiiiieriienieeeeeee e 247
The GetSaveAsFilename Method...........cocoviiniiiiininniniiniiniieceeee 248
Getting a Folder NAmMEcceevieiieiiieiieieeecie et 249
Displaying Excel’s Built-in Dialog BoXes.........cccoceveveninininiienieneneeene 250

Chapter 16: UserFormBasics..................ccoiiiiiinnnnn, 253
Knowing When to Use a UserFOrm........ccoccoocceveiiiniinninicnncnicniencceee 253
Creating UserForms: An OVEIVIEWccceeeuieviieiiieiieeiieeieeieseeseeseesieenns 254
Working with USErFOrmS..........cccocveeeieieiienicecccceteeeee e 255

Inserting a new USErFOIM........cccccvevievieniieieieieieieeeeeeee e 255
Adding controls to a UserForm..........ccccoeceeriiniinciininninnenneeienee, 256
Changing properties for a UserForm control............c.cccceeveeueenenn. 257
Viewing the UserForm Code Windowccceecevereeieienienenenenne 258
Displaying a USErFOrMccccveuieiieiiiiiieiieeeieteieee e 259
Using information from a UserForm..........c.cccoeeevvevencinciencienceennnen. 259

ooks.com/

xv

http://www.it-ebooks.info/

X(/i Excel VBA Programming For Dummies, 2nd Edition

A UserForm EXample..........coooviiiiiiiiiiiiecie e 260
Creating the USerFOrm........c.cocooviiiiiiinininieeeeeeee e 260
Adding the CommandButtons...........ccccceevveecienienieneeneeseeceeeeeee, 261
Adding the OptionButtons...........ccceeveevierciinienieneeseeeeeee e 262
Adding event-handler procedures..........cccoecuervveneenieneeneeneennennnes 263
Creating a macro to display the dialog boX.........ccccevverviirvieneennnnn. 265
Making the macro available...........ccccoeviriiiiniiiiieeeeeee e, 266
Testing the MacCrO ..o 267

Chapter 17: Using UserForm Controls........................... 269

Getting Started with Dialog Box Controls............cccceeeveneninienienieniennenne. 269
Adding CONLIOIS......cccviviiiiiieeeteeeeee e 269
Introducing control propertiescccceecvevienieneenencensenieniennens 270

Dialog Box Controls: The Details........ccccecuevieneiniiiniinnienienienieneeneeneenne 273
CheckBox CONIOlccooiiiniiiiieicicececcceeeeeceeeree e 274
CombOBOX CONLIOL.....c.coiiiiiiiiiiiiiciereccsi e 274
CommandButton control..........c.ccoceverininieiienereeeeeee e 275
Frame CONtrol........ocoiiiiiiiiiiiieeeeeeee e 276
IMAge CONLIOL....ccuieiiiieiieeeeeceee e 276
Label CONIOlccooiiiiiiiiineneeecee ettt 277
ListBOX CONEIOl......couiiiiiiiiiiniieeicee et 278
MultiPage control............ccocvieeiiiiiiiieeee e 279
OptionButton control..........cccoecevieiiiiriinieeeeeee e 279
RefEdit CONLIOL ...c.oiiiiiiiiiiiiee e 280
ScrollBar Control.........cocoviiiiiiniiiiiiienenneeeee e 281
SpinButton CONtrolcooeiviieiiiiiiiienietcece e 282
TabStrip CONtIOL........coiiiieieeeeeeeee e 282
TextBox CONtrolcocieiiiniiiceeecccreeceeeeeee e 282
ToggleButton COntrolcooeeiiriiiiiniiniieeteeeeeeeeeeeeeene 283

Working with Dialog Box CONntrolsc.cccceeceeeienienienieceeieeieeieeeeeenne 284
Moving and resizing CONtrols.........ccccoeveevieiieneenieeciieieeieeieceeeeenn 284
Aligning and spacing controls.........ccccecevcierviiniieneeniieneeneeneeeeene 284
Accommodating keyboard USers........cccecuevvieriinieniinienieeeeee, 285
Testing @ USErFOIMcocuiiiiiiiiiiiiiiiieeietcectecceee e 287

Dialog BOX A€SthetiCscooieiiriiiirieieeeeeetee e 287

Chapter 18: UserForm Techniques and Tricks 289

Using Dialog BOXEScoviiiiiiiiiiieeeeecteteteeeeeee ettt 289

A UserForm EXample..........cccooieiieiiiiiiiiiicieciceeeeeseene e eveeae e 289
Creating the dialog DOX.....cccocveviirienieniiiececiececeee e 290
Writing code to display the dialog boX........cccecevvevvinienennieeniennne. 292
Making the macro available...........cccccooceeiiiniininiiniieceeeeee 292
Trying out your dialog bOX.........cccceeeiiieciiiicieeieeieeieeeeeeee e 293
Adding event-handler procedures...........cccecuevveeeeneenieseeseesneene. 294
Validating the data.........cccceeieiieciieiieiicececcceeeee e 295
Now the dialog boX WOTKSccccevviiiiiriinieniereeeeeeieeeeveeee e 296

ooks.com/

http://www.it-ebooks.info/

Table of Contents X(/'i i

More UserForm EXamplesccoooiiiiieeiiieniineieeee e 296
A ListBOX €XaMPIEccuviieieiieiieiieiieieeteeie et 296
SeleCting @ FANGEccceeivieriieiieceeie ettt ettt reeaeeae e 301
Using multiple sets of OptionButtonscccceeveeveiiiniiincienciennnnn. 302
Using a SpinButton and a TextBoXcccoecvevieneenerneniienienienen, 303
Using a UserForm as a progress indicatorccccocevverveeneennnnn. 305
Creating a tabbed dialog bOXccovevuieviieiiiiiieeeeceeeeeeeee 308
Displaying a chart in @ UserForm.......c...ccccoocevinninvinninninncneenene 310

A Dialog BOX ChecKIiStcccveiiiiiieieeiieieeieciesteeese ettt 311

Chapter 19: Accessing Your Macros through the User Interface . . .313

What Happened to CommandBars?cccceevvevienieneeneecieenieecieeneennns 313
Ribbon Customizationc.ccccooereeiriienineninneeceeeteeee e 314
Customizing the Ribbon manually............cccceevervirviniiniinienienne 314
Customizing the Ribbon with XMLcccccoooeivinniniiniiniinieneeene 316
Customizing ShortCut MENUS..........ccovevvievieecieeciieiecteeie et e e 321
Commanding the CommandBars collection...........cccecceveerienuennnne. 321
Listing all shortcut menusccccoecveevieeienienieceeceeeee e 321
Referring to CommandBarsc.ocevvvevienienienieneeceeieeieeeeenns 322
Referring to controls in a CommandBarccccceeevvieriienvieneennnen. 323
Properties of CommandBar controlscccceeevieviiecciieccieennen, 324
VBA Shortcut Menu EXamplescccocceeieeienienienieneeceeieeve e 326
Adding a new item to the Cell shortcut menu.........c.ccccceeverenenne 326
Disabling a ShortCut MenU..........cccceecueerieeienienieseeceeie e 328
Creating a Custom TOOIDAYccceerieiiiiriieiieieeeeee e 329

Part U: Putting It All Together...............ccoueeeeeeaceeeaeeee 331

Chapter 20: Creating Worksheet Functions —

and Livingto TellaboutIt................... ...t 333
Why Create Custom FUNCtions?...........ccccoecveeieeienienieceeceeeeveeieereeeen 333
Understanding VBA Function Basicsccceceeviriiiiienenininiiieecneene 334
WIiting FUNCHIONS ...cc.ooveiiiiiiiciieeeece ettt 335
Working with Function Argumentsc.ccecevienienienienenseeieeeeeesenn 335
Function EXamplescccoooviiiiiieiiieee et 336

A function with no argument...........cccccecerviirviiniiiniiineteeeeeee, 336
A function with one argument............cccccceeviereiiiecin e, 336
A function with two arguments...........ccccecveeviievieeceesienieseeeeeee, 338
A function with a range argumentccccceevvenienceeneeneeneecieenne. 339
A function with an optional argumentc.ccoeceevvvenveneeneennennne. 340
A function with an indefinite number of arguments...................... 342
Functions That Return an Arrayccccceeevvievenninninnensienieneeeeeneeneene 343
Returning an array of month names..........cccceccveveviieviieecienceeeiene 343
Returning a sorted list.........cocceeveriiriinieniiniieeeeeeeeeeeeee 344

ooks.com/

http://www.it-ebooks.info/

X'(/iii Excel VBA Programming For Dummies, 2nd Edition

Using the Insert Function Dialog BoX.......c.ccccoecviiviieeciiieciieieeeeeeee, 345

Displaying the function’s descriptionccccceeveeveeciiecieciecciennnnn, 346

Argument deSCrPIONScccveviieiiieiiieieeiece e 347

Chapter 21: Creating Excel Add-Ins 349

Okay . ..So What’s an Add-In?.........c.cecveeviieiieiiiniiieiececeeceeeee e 349

Why Create Add-INS?c.cceevieriiriieieieieiere et 350

Working with Add-INS........c.ccevviriiririeieieee e 351

Add-IN BASICS ..ttt 352

An Add-In EXAMPIEcocvviiiiiieiicieeece ettt et e 353

Setting up the WOrkbOOK.........ccovieiiiniiiiieieieeeeceeee e 353

Testing the WOrkboOKc.ccoeuieieiiiiiiececcee e 355

Adding descriptive information..........cccecevviiniiencieniienieneeeeeee, 356

Protecting the VBA cOde........ooveeeieiiiiceceeeee e 357

Creating the add-iNccooevieirieieeeceeeeeee s 357

Opening the add-iNcoccveiiiiiiiieeeeeeeeee e 357

Distributing the add-incccoeeieeiiiieeciecieeeeeeeee e 358

Modifying the add-in..........cccceeirieciiiicieececeeee e 359

Part Ul: The Part of Tens..........cccccceeeecceeecaseeeecaneecens 361

Chapter 22: Ten VBA Questions (And Answers).................. 363

Chapter 23: (Almost) Ten Excel Resources 367

The VBA Help SYStemcocuevviiiiiiieietitetceceeteeee sttt 367

Microsoft Product SUPPOTtcoueeiiieiiieiieiecie et 367

Internet NEWSZIOUPS.....ccccccuiiiiieiieieeieeie e teee et esteesteeaeeaesseesaessaenseanes 368

Internet Web SItescoooiiiiiiiniiiie et 369

EXCEL BLOZS ..evieiieiieiteiteece ettt sttt ettt et e s aesaeenae e 369

GOOGIE ...ttt ettt ettt e st s e s be e s e e naeeaeenee 369

BiIIG ...ttt ettt e st s ettt snnenn 369

LOCAl USEY GYOUPSecveeeeeiieiieieeteeeeetesieeseesseesseesseessesssesssesssessaesssesseenns 370

My Other BOOKSooieuiiieieieiecee ettt s 370

Bonus Chapterscccceueuu..... See companion Web site
(www.dummies.com/go/excelvbaprogrammingfd2e)

Bonus Chapter 1: Working with Colors Companion Web site

Bonus Chapter 2: Ten VBA Do’s and Don'ts. Companion Web site

JOACK caaeeaeeeeeeeeeeeeeeeeeaeaaaaaaaaaannnnnnnnnnneeseeeeeeeeeesesaceees 3]

ooks.com/

http://www.it-ebooks.info/

Introduction

Gveetings, prospective Excel programmer . . .

Thanks for buying my book. I think you’ll find that it offers a fast, enjoyable
way to discover the ins and outs of Microsoft Excel programming. Even if you
don’t have the foggiest idea of what programming is all about, this book can
help you make Excel jump through hoops in no time (well, it will take some
time).

Unlike most programming books, this one is written in plain English, and
even normal people can understand it. Even better, it’s filled with information
of the “just the facts, ma’am” variety — and not the drivel you might need
once every third lifetime.

Is This the Right Book?

Go to any large bookstore and you'll find many Excel books (far too many,
as far as I'm concerned). A quick overview can help you decide whether this
book is really right for you. This book

v Is designed for intermediate to advanced Excel users who want to get up
to speed with Visual Basic for Applications (VBA) programming.
1 Requires no previous programming experience.
v Covers the most commonly used commands.
v~ Is appropriate for Excel 2007 or Excel 2010.
v Just might make you crack a smile occasionally — it even has cartoons.
If you are using Excel 2000, XP, or 2003, this book is not for you. Excel 2007

and Excel 2010 are very different from previous versions. If you're still using a
pre-2007 version of Excel, locate a book that is specific to that version.

ooks.com/

http://www.it-ebooks.info/

2 Excel VBA Programming For Dummies, 2nd Edition

Oh yeah, this is not an introductory Excel book. If you're looking for a general-
purpose Excel book, check out any of the following books, which are all pub-
lished by Wiley:

v Excel 2010 For Dummies, by Greg Harvey
v Excel 2010 Bible, by John Walkenbach (yep, that’s me)

v Excel 2010 For Dummies Quick Reference, by John Walkenbach (me
again) and Colin Banfield

These books are also available in Excel 2007 editions.

Notice that the title of this book isn’t The Complete Guide to Excel VBA
Programming For Dummies. 1 don’t cover all aspects of Excel programming —
but then again, you probably don’t want to know everything about this topic.
In the unlikely event that you want a more comprehensive Excel program-
ming book, you might try Microsoft Excel 2010 Power Programming with VBA,
by John Walkenbach (is this guy prolific, or what?), also published by Wiley.
And, yes, an edition for Excel 2007 is also available.

So Vou Want to Be a Programmer . . .

Besides earning money to pay my bills, my main goal in writing this book is
to show Excel users how to use the VBA language — a tool that helps you sig-
nificantly enhance the power of the world’s most popular spreadsheet. Using
VBA, however, involves programming. (Yikes! The p word.)

If you're like most computer users, the word programmer conjures up an
image of someone who looks and behaves nothing like you. Perhaps words
such as nerd, geek, and dweeb come to mind.

Times have changed. Computer programming has become much easier, and
even so-called normal people now engage in this activity — and even admit
it to friends and family. Programming simply means developing instructions
that the computer automatically carries out. Excel programming refers to the
fact that you can instruct Excel to automatically do things that you normally
do manually — saving you lots of time and (you hope) reducing errors. |
could go on, but I need to save some good stuff for Chapter 1.

If you've read this far, it’s a safe bet that you need to become an Excel
programmer. This could be something you came up with yourself or (more
likely) something your boss decided. In this book, I tell you enough about Excel
programming so that you won't feel like an idiot the next time you’re trapped
in a conference room with a group of Excel aficionados. And by the time you
finish this book, you can honestly say, “Yeah, I do some Excel programming.”

ooks.com/

http://www.it-ebooks.info/

Introduction

Why Bother?

Most Excel users never bother to explore VBA programming. Your interest in
this topic definitely places you among an elite group. Welcome to the fold! If
you're still not convinced that mastering Excel programming is a good idea,
I've come up with a few good reasons why you might want to take the time to
learn VBA programming:

v~ It will make you more marketable. Like it or not, Microsoft’s applica-
tions are extremely popular. You may already know that all applications
in Microsoft Office support VBA. The more you know about VBA, the
better your chances for advancement in your job.

1~ It lets you get the most out of your software investment (or, more
likely, your employer’s software investment). Using Excel without know-
ing VBA is sort of like buying a TV set and watching only the odd-
numbered channels.

v It will improve your productivity (eventually). Mastering VBA definitely
takes some time, but you’ll more than make up for this in the amount of
time you ultimately save because you’'re more productive. Sort of like
what they told you about going to college.

v It’s fun (well, sometimes). Some people really enjoy making Excel do
things that are otherwise impossible. By the time you finish this book,
you just might be one of those people.

Now are you convinced?

What 1 Assume about Vou

People who write books usually have a target reader in mind. For this book,
my target reader is a conglomerate of dozens of Excel users I've met over the
years (either in person or out in cyberspace). The following points more or
less describe my hypothetical target reader:

»* You have access to a PC at work — and probably at home.

v You're running Excel 2007 or Excel 2010.

» You've been using computers for several years.

»* You use Excel frequently in your work, and you consider yourself to be
more knowledgeable about Excel than the average bear.

»* You need to make Excel do some things that you currently can’t make
it do.

v You have little or no programming experience.

ooks.com/

3

http://www.it-ebooks.info/

4

Excel VBA Programming For Dummies, 2nd Edition

v You understand that the Help system in Excel can actually be useful.
Face it, this book doesn’t cover everything. If you get on good speaking
terms with the Help system, you’ll be able to fill in some of the missing
pieces.

» You need to accomplish some work, and you have a low tolerance for
thick, boring computer books.

Obligatory Typographical
Conventions Section

All computer books have a section like this. (I think some federal law requires
it.) Read it or skip it.

Sometimes, I refer to key combinations — which means you hold down one
key while you press another. For example, Ctrl+Z means you hold down the
Ctrl key while you press Z.

For menu commands, I use a distinctive character to separate menu items.
For example, you use the following command to open a workbook file:

Filec>Open

Note that in Excel 2007, there is no such thing as a “File” menu visible on
your screen. In Excel 2007, the File menu was replaced with the Office Button,
a little round contraption that shows up on the top-left side of any Office
2007 application that has implemented what is called the Ribbon. At some
point, Microsoft decided that the Office Button wasn’t such a great idea, and
Excel 2010 dumped that round Office Button and replaced it with a Ribbon
tab named File. In this book, I call it “File,” so if you're using Excel 2007, just
remember that “File” means “little round contraption on the top-left side.”

Any text you need to enter appears in bold. For example, | might say, enter
=SUM(B:B) in cell Al.

Excel programming involves developing code — that is, the instructions Excel
follows. All code in this book appears in a monospace font, like this:

Range ("Al:Al12") .Select
Some long lines of code don’t fit between the margins in this book. In such

cases, | use the standard VBA line continuation character sequence: a space
followed by an underscore character. Here’s an example:

ooks.com/

http://www.it-ebooks.info/

Introduction 5

Selection.PasteSpecial Paste:=x1Values,
Operation:=x1None, SkipBlanks:=False, _
Transpose:=False

When you enter this code, you can type it as written or place it on a single
line (omitting the spaces and the underscore characters).

Check Vour Security Settings

It’s a cruel world out there. It seems that some scam artist is always trying
to take advantage of you or cause some type of problem. The world of com-
puting is equally cruel. You probably know about computer viruses, which
can cause some nasty things to happen to your system. But did you know
that computer viruses can also reside in an Excel file? It’s true. In fact, it’s
relatively easy to write a computer virus by using VBA. An unknowing user
can open an Excel file and spread the virus to other Excel workbooks, and to
other systems.

Over the years, Microsoft has become increasingly concerned about security
issues. This is a good thing, but it also means that Excel users need to under-
stand how things work. You can check Excel’s security settings by using the
File>Options=>Trust Center=>Trust Center Settings command. There is a
plethora of options in there, and people have been known to open that dialog
box and never be heard from again.

If you click the Macro Settings tab (on the left side of the Trust Center dialog
box), your options are as follows:

v~ Disable all macros without notification: Macros will not work, regard-
less of what you do.

v+~ Disable all macros with notification: When you open a workbook with
macros, you will either see the Message Bar open with an option you
can click to enable macros, or (if the VBE is open) you’ll get a message
asking if you want to enable macros.

1+ Disable all macros except digitally signed macros: Only macros with a
digital signature are allowed to run (but even for those signatures you
haven’t marked as trusted, you still get the security warning).

v~ Enable all macros (not recommended; potentially dangerous code can
run).

ooks.com/

http://www.it-ebooks.info/

6

Excel VBA Programming For Dummies, 2nd Edition

Consider this scenario: You spend a week writing a killer VBA program that
will revolutionize your company. You test it thoroughly and then send it to
your boss. He calls you into his office and claims that your macro doesn’t do
anything at all. What’s going on? Chances are, your boss’s security setting
does not allow macros to run. Or maybe he chose to go along with Microsoft’s
default suggestion and disable the macros when he opened the file.

Bottom line? Just because an Excel workbook contains a macro, it is no guar-
antee that the macro will ever be executed. It all depends on the security set-
ting and whether the user chooses to enable or disable macros for that file.

In order to work with this book, you will need to enable macros for the files
you work with. My advice is to use the second security level. Then when

you open a file that you've created, you can simply enable the macros. If you
open a file from someone you don’t know, you should disable the macros and
check the VBA code to ensure that it doesn’t contain anything destructive or
malicious. Usually, it’s pretty easy to identify suspicious VBA code.

How This Book Is Organized

I divided this book into six major parts, each of which contains several chap-
ters. Although I arranged the chapters in a fairly logical sequence, you can
read them in any order you choose. Here’s a quick preview of what’s in store
for you.

Part I: Introducing VBA

Part I has but two chapters. I introduce the VBA language in the first chapter.
In Chapter 2, I let you get your feet wet right away by taking you on a hands-
on guided tour.

Part II: How UBA Works with Excel

In writing this book, I assume that you already know how to use Excel. The four
chapters in Part II give you a better grasp on how VBA is implemented in Excel.
These chapters are all important, so I don’t recommend skipping them, okay?

ooks.com/

http://www.it-ebooks.info/

Introduction

Part I11: Programming Concepts

The eight chapters in Part Ill get you into the nitty-gritty of what program-
ming is all about. You may not need to know all this stuff, but you’ll be glad
it’s there if you ever do need it.

Part IU: Communicating with Your Users

One of the coolest parts of programming in Excel is designing custom dialog
boxes (well, at least / like it). The five chapters in Part [V show you how to
create dialog boxes that look like they came straight from the software lab at
Microsoft.

Part U: Putting It All Together

The two chapters in Part V pull together information from the preceding
chapters. You discover how to include your own custom buttons in the Excel
user interface, and you find out how to develop custom worksheet functions,
create add-ins, design user-oriented applications, and even work with other
Office applications.

Part Ul: The Part of Tens

Traditionally, books in the For Dummies series contain a final part that con-
sists of short chapters with helpful or informative lists. Because I'm a sucker
for tradition, this book has two such chapters that you can peruse at your
convenience. (If you're like most readers, you’ll turn to this part first.)

But Wait, There’s Move!

I got carried away, and [wrote two more chapters that wouldn't fit in this
book because I ran out of pages. So [put them on this book’s Web site,
along with the sample files (see “Getting the Sample Files,” later in this
Introduction). The two extra chapters are “Working With Colors” and “Ten
VBA Do’s and Don’ts.”

ooks.com/

/

http://www.it-ebooks.info/

8 Excel VBA Programming For Dummies, 2nd Edition

Icons Used in This Book

“&N\BER
QNING/

$'

R

Somewhere along the line, a market research company must have shown that
publishers can sell more copies of their computer books if they add icons to
the margins of those books. Icons are those little pictures that supposedly
draw your attention to various features or help you decide whether some-
thing is worth reading.

[don’t know if this research is valid, but I'm not taking any chances. So here
are the icons you encounter in your travels from front cover to back cover:

When you see this icon, the code being discussed is available on the Web.
Download it to eliminate lots of typing. See “Getting the Sample Files” for more
information.

This icon flags material that you might consider technical. You may find it
interesting, but you can safely skip it if you're in a hurry.

Don’t skip information marked with this icon. It identifies a shortcut that can
save you lots of time (and maybe even allow you to leave the office at a rea-
sonable hour).

This icon tells you when you need to store information in the deep recesses of
your brain for later use.

Read anything marked with this icon. Otherwise, you may lose your data, blow
up your computer, cause a nuclear meltdown — or maybe even ruin your
whole day.

Getting the Sample Files

This book has its very own Web site where you can download the example
files and view the Bonus Chapters. To get these files, point your Web browser
to www.dummies.com/go/excelvbaprogrammingfd2le.

Having the sample files will save you a lot of typing. Better yet, you can play
around with them and experiment with various changes. In fact, I highly rec-
ommend playing around with these files. Experimentation is the best way to
master VBA.

ooks.com/

http://www.dummies.com/go/excelvbaprogrammingfd2e
http://www.it-ebooks.info/

Introduction

Now What?

Reading this introduction was your first step. Now, it’s time to move on and
become a programmer (there’s that p word again!).

If you're a programming virgin, [strongly suggest that you start with Chapter 1
and progress through the book until you've discovered enough to do what
you want to do. Chapter 2 gives you some immediate hands-on experience,
so you have the illusion that you’re making quick progress.

But it’s a free country (at least it was when [wrote these words); [won't sic
the Computer Book Police on you if you opt to thumb through randomly and
read whatever strikes your fancy.

[hope you have as much fun reading this book as I did writing it.

ooks.com/

http://www.it-ebooks.info/

1 0 Excel VBA Programming For Dummies, 2nd Edition

ooks.com/

http://www.it-ebooks.info/

Part|
Introducing VBA

The 5th Wave By Rich Tennant
At FTEMA, employees often use F.Xcel)%

VBA Programming to create
formulas for disaster.

ooks.com/

http://www.it-ebooks.info/

In this part . . .

Every book must start somewhere. This one starts by
introducing you to Visual Basic for Applications (and
I'm sure you two will become very good friends over the
course of a few dozen chapters). After the introductions
are made, Chapter 2 walks you through a real-live Excel
programming session.

ooks.com/

http://www.it-ebooks.info/

Chapter 1
What Is VBA?

In This Chapter

Gaining a conceptual overview of VBA

Finding out what you can do with VBA

Discovering the advantages and disadvantages of using VBA
Taking a mini-lesson on the history of Excel

f you're anxious to jump into VBA programming, hold your horses. This

chapter is completely devoid of any hands-on training material. It does,
however, contain some essential background information that assists you in
becoming an Excel programmer. In other words, this chapter paves the way
for everything else that follows and gives you a feel for how Excel program-
ming fits into the overall scheme of the universe. It’s not as boring as you
might think.

Okay, So What Is UBA?

VBA, which stands for Visual Basic for Applications, is a programming lan-
guage developed by Microsoft — you know, the company that tries to get you
to buy a new version of Windows every few years. Excel, along with the other
members of Microsoft Office, includes the VBA language (at no extra charge).
In a nutshell, VBA is the tool that people like you and me use to develop pro-
grams that control Excel.

Imagine an intelligent robot that knows all about Excel. This robot can read
instructions, and it can also operate Excel very fast and accurately. When you
want the robot to do something in Excel, you write up a set of robot instruc-
tions by using special codes. Tell the robot to follow your instructions, while
you sit back and drink a glass of lemonade. That’s kind of what VBA is all
about — a code language for robots. Note, however, that Excel does not
come with a robot or lemonade.

ooks.com/

http://www.it-ebooks.info/

Part I: Introducing VBA

Excel programming terminology can be a bit
confusing. For example, VBA is a programming
language, but it also serves as a macro lan-
guage. What do you call something written in

A few words about terminology

completed automatically. For example, if you
write a macro that adds color to some cells,
prints the worksheet, and then removes the
color, you have automatedthose three steps.

VBA and executed in Excel? Is it a macro, or is
it a program? Excel’s Help system often refers
to VBA procedures as macros, so | use that ter-
minology. But | also call this stuff a program.

By the way, macro does not stand for Messy
And Confusing Repeated Operation. Rather, it
comes from the Greek makros, which means
large — which also describes your paycheck
| use the term automate throughout this book. after you become an expert macro programmer.

This term means that a series of steps are

What Can Vou Do with UBA?

You're probably aware that people use Excel for thousands of different tasks.
Here are just a few examples:

v Analyzing scientific data

v Budgeting and forecasting

v Creating invoices and other forms
v Developing charts from data

v Keeping lists of things such as customers’ names, students’ grades, or
holiday gift ideas (a nice fruitcake would be lovely)

v Yadda, yadda, yadda

The list could go on and on, but I think you get the idea. My point is simply
that Excel is used for a wide variety of things, and everyone reading this book
has different needs and expectations regarding Excel. One thing virtually
every reader has in common is the need to automate some aspect of Excel.
That, dear reader, is what VBA is all about.

For example, you might create a VBA program to import some numbers, and
then format and print your month-end sales report. After developing and test-
ing the program, you can execute the macro with a single command, causing
Excel to automatically perform many time-consuming procedures. Rather
than struggle through a tedious sequence of commands, you can grab a cup
of joe and let your computer do the work — which is how it’s supposed to

be, right?

ooks.com/

http://www.it-ebooks.info/

Chapter 1: What Is VBA?

In the following sections, I briefly describe some common uses for VBA
macros. One or two of these may push your button.

Inserting a bunch of text

If you often need to enter your company name, address, and phone number
in your worksheets, you can create a macro to do the typing for you. You
can extend this concept as far as you like. For example, you might develop
a macro that automatically types a list of all salespeople who work for your
company.

Automating a task you perform frequently

Assume you’re a sales manager and you need to prepare a month-end sales
report to keep your boss happy. If the task is straightforward, you can
develop a VBA program to do it for you. Your boss will be impressed by the
consistently high quality of your reports, and you’ll be promoted to a new job
for which you are highly unqualified.

Automating repetitive operations

If you need to perform the same action on, say, 12 different Excel workbooks,
you can record a macro while you perform the task on the first workbook and
then let the macro repeat your action on the other workbooks. The nice thing
about this is that Excel never complains about being bored. Excel’s macro
recorder is similar to recording live action on a video recorder. But it doesn’t
require a camera, and the battery never needs to be recharged.

Creating a custom command

Do you often issue the same sequence of Excel menu commands? If so, save
yourself a few seconds by developing a macro that combines these com-
mands into a single custom command, which you can execute with a single
keystroke or button click. You probably won’t save that much time, but you’ll
probably be more accurate. And the guy in the next cubicle will be really
impressed.

ooks.com/

15

http://www.it-ebooks.info/

10

Part I: Introducing VBA

Creating a custom button

You can customize your Quick Access toolbar with your own buttons that
execute the macros you write. Office workers tend to be very impressed by
buttons that perform magic.

If you're using Excel 2010, you can even add buttons to the Ribbon — something
that’s off-limits in Excel 2007.

Developing new worksheet functions

Although Excel includes numerous built-in functions (such as SUM and
AVERAGE), you can create custom worksheet functions that can greatly
simplify your formulas. [guarantee you’ll be surprised by how easy this is.

(I show you how to do this in Chapter 20.) Even better, the Insert Function
dialog box displays your custom functions, making them appear built-in. Very
snazzy stuff.

Creating complete, macro-driven
applications

If you're willing to spend some time, you can use VBA to create large-scale
applications complete with a custom Ribbon tab, dialog boxes, on-screen
help, and lots of other accoutrements. This book doesn’t go quite that far,
but I'm just telling you this to impress you with how powerful VBA really is.

Creating custom add-ins for Excel

You’re probably familiar with some of the add-ins that ship with Excel. For
example, the Analysis ToolPak is a popular add-in. You can use VBA to
develop your own special-purpose add-ins. I developed my Power Utility
Pak add-in by using only VBA, and people all around the world pay me real
money so they can use it.

Advantages and Disadvantages of VUBA

In this section, I briefly describe the good things about VBA — and I also
explore its darker side.

ooks.com/

http://www.it-ebooks.info/

Chapter 1: What Is VBA?

VBA advantages

You can automate almost anything you do in Excel. To do so, you write
instructions that Excel carries out. Automating a task by using VBA offers
several advantages:

v Excel always executes the task in exactly the same way. (In most cases,
consistency is a good thing.)

v Excel performs the task much faster than you can do it manually (unless,
of course, you're Clark Kent).

v If you're a good macro programmer, Excel always performs the task
without errors (which probably can’t be said about you or me).

v If you set things up properly, someone who doesn’t know anything
about Excel can perform the task.

» You can do things in Excel that are otherwise impossible — which can
make you a very popular person around the office.

v For long, time-consuming tasks, you don’t have to sit in front of your
computer and get bored. Excel does the work, while you hang out at the
water cooler.

VBA disadvantages

It’s only fair that I give equal time to listing the disadvantages (or potential
disadvantages) of VBA:

* You have to know how to write programs in VBA (but that’s why you
bought this book, right?). Fortunately, it’s not as difficult as you might
expect.

1 Other people who need to use your VBA programs must have their own
copies of Excel. It would be nice if you could press a button that trans-
forms your Excel/VBA application into a stand-alone program, but that
isn’t possible (and probably never will be).

v Sometimes, things go wrong. In other words, you can’t blindly assume
that your VBA program will always work correctly under all circum-
stances. Welcome to the world of debugging and, if others are using
your macros, technical support.

v VBA is a moving target. As you know, Microsoft is continually upgrad-
ing Excel. Even though Microsoft puts great effort into compatibility
between versions, you may discover that VBA code you’ve written
doesn’t work properly with older versions or with a future version of
Excel.

ooks.com/

17

http://www.it-ebooks.info/

18 rarti: Introducing VBA

UBA in a Nutshell

Just to let you know what you’re in for, I've prepared a quick and dirty sum-
mary of what VBA is all about. Of course, I describe all this stuff in semi-
excruciating detail later in the book.

+* You perform actions in VBA by writing (or recording) code in a VBA
module. You view and edit VBA modules by using the Visual Basic
Editor (VBE).

v A VBA module consists of Sub procedures. A Sub procedure has noth-
ing to do with underwater vessels or tasty sandwiches. Rather, it’s a
chunk of computer code that performs some action on or with objects
(discussed in a moment). The following example shows a simple Sub
procedure called AddEmUp. This amazing program displays the result of
1 plus 1.

Sub AJdEmUD ()

Sum = 1 + 1

MsgBox "The answer is " & Sum
End Sub

A Sub procedure that doesn’t perform properly is said to be substandard.

+* A VBA module can also have Function procedures. A Function proce-
dure returns a single value. You can call it from another VBA procedure
or even use it as a function in a worksheet formula. An example of a
Function procedure (named AddTwo) follows. This Function accepts
two numbers (called arguments) and returns the sum of those values.

Function AddTwo (argl, arg2)
AddTwo = argl + arg2
End Function

A Function procedure that doesn’t work correctly is said to be
dysfunctional.

»* VBA manipulates objects. Excel provides dozens and dozens of objects
that you can manipulate. Examples of objects include a workbook, a
worksheet, a cell range, a chart, and a shape. You have many more
objects at your disposal, and you can manipulate them by using VBA
code.

+” Objects are arranged in a hierarchy. Objects can act as containers for
other objects. At the top of the object hierarchy is Excel. Excel itself
is an object called Application. The Application object contains other
objects such as Workbook objects and Add-In objects. The Workbook
object can contain other objects, such as Worksheet objects and Chart

ooks.com/

http://www.it-ebooks.info/

Chapter 1: What Is VBA?

objects. A Worksheet object can contain objects such as Range objects
and PivotTable objects. The term object model refers to the arrangement
of these objects. (Object model mavens can find out more in Chapter 4.)

v Objects of the same type form a collection. For example, the
Worksheets collection consists of all the worksheets in a particular
workbook. The Charts collection consists of all Chart objects in a work-
book. Collections are themselves objects.

* You refer to an object by specifying its position in the object hierar-
chy, using a dot (that is, a period) as a separator. For example, you can
refer to the workbook Bookl1.xlsx as

Application.Workbooks ("Bookl.xlsx")

This refers to the workbook Book1 .xlsx in the Workbooks collection.
The Workbooks collection is contained in the Application object (that is,
Excel). Extending this to another level, you can refer to Sheetl in Bookl.
xlsx as

Application.Workbooks ("Bookl.xlsx") .
Worksheets ("Sheetl")

As shown in the following example, you can take this to still another
level and refer to a specific cell (in this case, cell Al):

Application.Workbooks ("Bookl.xlsx") .
Worksheets ("Sheetl") .Range ("Al")

v+ If you omit specific references, Excel uses the active objects. If Bookl.
xlsx is the active workbook, you can simplify the preceding reference as
follows:

Worksheets ("Sheetl") .Range ("Al")

If you know that Sheet] is the active sheet, you can simplify the refer-
ence even more:

Range ("Al")

1 Objects have properties. You can think of a property as a setting for
an object. For example, a Range object has such properties as Value
and Address. A Chart object has such properties as HasTitle and Type.
You can use VBA to determine object properties and also to change
properties.

” You refer to a property of an object by combining the object name
with the property name, separated by a dot. For example, you can refer
to the Value property in cell Al on Sheet1 as follows:

Worksheets ("Sheetl") .Range("Al") .Value

ooks.com/

19

http://www.it-ebooks.info/

2() Parti: Introducing VBA

» You can assign values to variables. A variable is a named element that
stores information. You can use variables in your VBA code to store
such things as values, text, or property settings. To assign the value
in cell Al on Sheet] to a variable called Interest, use the following VBA
statement:

Interest = Worksheets ("Sheetl") .Range("Al") .Value

* Objects have methods. A method is an action Excel performs with
an object. For example, one of the methods for a Range object is
ClearContents. This aptly named method clears the contents of the
range.

+* You specify a method by combining the object with the method, sepa-
rated by a dot. For example, the following statement clears the contents
of cell Al:

Worksheets ("Sheetl") .Range ("Al") .ClearContents

v VBA includes all the constructs of modern programming languages,
including arrays and looping. In other words, if you're willing to spend
a little time mastering the ropes, you can write code that does some
incredible things.

Believe it or not, the preceding list pretty much describes VBA in a nutshell.
Now you just have to find out the details. That’s why this book has more

pages.

An Excursion into Versions

If you plan to develop VBA macros, you should have some understanding
of Excel’s history. [know you weren’t expecting a history lesson when you
picked up this book, but bear with me. This is important stuff that might
make you a hit at the next nerd party.

Here are all the major Excel for Windows versions that have seen the light of
day, along with a few words about how they handle macros:

v Excel 2: The original version of Excel for Windows was called Version
2 (rather than 1) so that it would correspond to the Macintosh version.
Excel 2 first appeared in 1987, but nobody uses it anymore, so you can
pretty much forget that it ever existed.

1 Excel 3: Released in late 1990, this version features the XLM macro lan-
guage. Nobody uses this version either.

ooks.com/

http://www.it-ebooks.info/

Chapter 1: What IsVBA? 2]

v Excel 4: This version hit the streets in early 1992. It also uses the XLM
macro language. A small number of people still use this version. (They
subscribe to the philosophy if it ain’t broke, don't fix it.)

v~ Excel 5: This one came out in early 1994. It was the first version to use
VBA (but it also supports XLM). Excel 5 users are becoming increasingly
rare.

v Excel 95: Technically known as Excel 7 (there is no Excel 6), this version
began shipping in the summer of 1995. It’s a 32-bit version and requires
Windows 95 or Windows NT. It has a few VBA enhancements, and it sup-
ports the XLM language.

v Excel 97: This version (also known as Excel 8) was born in January,
1997. It has many enhancements and it features an entirely new inter-
face for programming VBA macros. Excel 97 also uses a new file format
(which previous Excel versions cannot open). Occasionally, I run into
someone who still uses this version.

v Excel 2000: This version’s numbering scheme jumped to four digits.
Excel 2000 (also known as Excel 9) made its public debut in June 1999.
It includes only a few enhancements from a programmer’s perspective,
with most enhancements being for users — particularly online users.
With Excel 2000 came the option to digitally sign macros, thus enabling
you to guarantee that the code delivered to your users is truly yours.
Excel 2000 still has a modest number of users.

v Excel 2002: This version (also known as Excel 10 or Excel XP) appeared
in late 2001. Perhaps this version’s most significant feature is the ability
to recover your work when Excel crashes. This is also the first version
to use copy protection (known as product activation).

v Excel 2003: Of all the Excel upgrades I've ever seen (and I've seen them
all), Excel 2003 has the fewest new features. In other words, most hard-
core Excel users (including yours truly) were very disappointed with
Excel 2003. Yet people still bought it. I think these were the folks moving
up from a pre-Excel 2002 version. As I write this, Excel 2003 is probably
the most commonly used version.

v Excel 2007: Excel 2007 signaled the beginning of a new era. Excel 2007
dumped the old menu and toolbar interface and introduced the Ribbon.
It also allows much larger worksheets — more than a million rows.

v Excel 2010: The latest, and without a doubt, the greatest. Microsoft
outdid its corporate self with this version. This version has some slick
new features (such as sparkline graphics), and it also performs quite a
bit better in some areas. And if you need really, really huge workbooks,
you can install the 64-bit version.

ooks.com/

http://www.it-ebooks.info/

22

Part I: Introducing VBA

<MBER
ég“

This book is written for Excel 2007 and Excel 2010, so if you don’t have one of
those versions, you run the risk of getting confused in a few places.

So what’s the point of this mini history lesson? If you plan to distribute your
Excel/VBA files to other users, it’s vitally important that you understand
which version of Excel they use. People using an older version won’t be able
to take advantage of features introduced in later versions. For example, if you
write VBA code that references cell XFD1048576 (the last cell in a workbook),
those who use a version prior to Excel 2007 will get an error because those
pre-Excel 2007 worksheets only had 65,536 rows and 255 columns (the last
cell is [V65536).

Excel 2007 and Excel 2010 also have some new objects, methods, and properties.
If you use these in your code, users with an older version of Excel will get

an error when they run your macro — and you’ll get the blame. However,
Microsoft has made available an Office Compatibility Pack, which allows
users of Excel 2003 and Excel XP to open and save workbooks in the new

file format. This product (which is free, by the way) doesn’t give these older
versions the new features. It just lets them open and save files in the Excel
2007/2010 file format.

ooks.com/

http://www.it-ebooks.info/

Chapter 2
Jumping Right In

In This Chapter

Developing a useful VBA macro: A hands-on, step-by-step example
Recording your actions by using Excel’s macro recorder
Examining and testing recorded code

Dealing with macro security issues

Changing a recorded macro

'm not much of a swimmer, but [have found that the best way to get into

a cold body of water is to jump right in — no sense prolonging the agony.
By wading through this chapter, you can get your feet wet immediately but
avoid getting in over your head.

By the time you reach the end of this chapter, you may start feeling better
about this Excel programming business, and you’ll be glad you took the
plunge. This chapter provides a step-by-step demonstration of how to
develop a simple but useful VBA macro.

First Things First

Before you can call yourself an Excel programmer, you must go through the
initiation rites. That means you need to make a small change so Excel will dis-
play a new tab at the top of the screen: Developer.

When you click the Developer tab, the Ribbon displays information that is of

interest to programmers (that’s you!). Figure 2-1 shows how the Ribbon looks
when the Developer tab is selected.

ooks.com/

http://www.it-ebooks.info/

24

Part I: Introducing VBA

|
Figure 2-1:
The
Developer
tabis
normally
hidden, but
it's easy to
unhide.
|

L Modify

The Developer tab is not visible when you first open Excel; you need to tell
Excel to show it. Getting Excel to display the Developer tab is easy (and you
only have to do it one time). The procedure varies, though, depending on
which version of Excel you use.

Excel 2010 Users

Follow these steps:

1. Right-click any part of the Ribbon, and choose Customize The Ribbon.

2. In the Customize Ribbon tab of the Excel Options dialog box, locate
Developer in the second column.

3. Put a check mark next to Developer.

4. Click OK, and you’re back to Excel with a brand-new tab: Developer.

Excel 2007 Users

Follow these steps:

1. Choose File=>Excel Options.

Remember, in Excel 2007 the File command means clicking the round
button in the upper left.

2. In the Excel Options dialog box, select Popular.
3. Place a check mark next to Show Developer tab in the Ribbon.

4. Click OK to see the new Developer tab displayed in the Ribbon.

ooks.com/

http://www.it-ebooks.info/

Chapter 2: Jumping Right In 25

What You'll Be Doing

In this section, I describe how to create your first macro. The macro that
you'’re about to create will do this

v Type your name into a cell.

v Enter the current date and time into the cell below.

v Format both cells to display bold.

v Change the font size of both cells to 16 point.
This macro won’t be winning any prizes in the Annual VBA Programmer’s
Competition, but everyone must start somewhere. The macro accomplishes
all these steps in a single action. As I describe in the following sections, you
start by recording your actions as you go through these steps. Then you test

the macro to see whether it works. Finally, you edit the macro to add some
finishing touches. Ready?

Taking the First Steps

This section describes the steps you take prior to recording the macro. In
other words, you need to make a few preparations before the fun begins.

1. Start Excel if it’s not already running.

2. If necessary, create a new, empty workbook (Ctrl+N is my favorite way
to do that).

3. Click the Developer tab, and take a look at the Use Relative
References button in the Code group.

If the color of that button is different than the other buttons, then you're
in good shape. If the Use Relative References button is the same color as
the other buttons, then you need to click it.

[explain more about the Use Relative References button in Chapter 6. For

now, just make sure that the option is turned on. When it’s turned on, it will
be a different color.

ooks.com/

http://www.it-ebooks.info/

26

Part I: Introducing VBA

Recording the Macro

|
Figure 2-2:
The Record
Macro
dialog box
appears
when you're
about to
record a
macro.
|

Here comes the hands-on part. Follow these instructions carefully:

1. Select a cell — any cell will do.

2. Choose Developer->Coder>Record Macro, or click the macro recording

button on the status bar.

The Record Macro dialog box appears, as shown in Figure 2-2.

Recard Macro 5|)
Macra name:
MameAndTime
Shorkcut key:
Crrl+shift+ | W
Stare macro in:

This Workbook |z|

Description:
This macro enters my name and the current time,

Cancel

. Enter a name for the macro.

Excel provides a default name, but it’s better to use a more descriptive
name. NameAndTime (with no spaces) is a good name for this macro.

. Click in the Shortcut Key box and enter Shift+N (for an uppercase N)

as the shortcut key.

Specifying a shortcut key is optional. If you do specify one, then you
can execute the macro by pressing a key combination — in this case,
Ctrl+Shift+N.

5. Make sure the Store Macro In setting is This Workbook.

6. You can enter some text in the Description box if you like. This is

optional. Some people like to describe what the macro does (or is sup-
posed to do).

. Click OK.

The dialog box closes, and Excel’s macro recorder is turned on. From this
point, Excel monitors everything you do and converts it to VBA code.

8. Type your name in the active cell.

9. Move the cell pointer to the cell below, and enter this formula:

=NOW ()

The formula displays the current date and time.

ooks.com/

http://www.it-ebooks.info/

Chapter 2: Jumping Right In 2 7

10. Select the formula cell and press Ctrl+C to copy that cell to the
Clipboard.

11. Choose Homer>Clipboard->Paster>Values.
This command converts the formula to its value.

12. With the date cell selected, press Shift+up arrow to select that cell and
the one above it (which contains your name).

13. Use the controls in the Homer>Font group to change the formatting to
Bold, and make the font size 16 point.

14. Choose Developer~Code=>Stop Recording.
The macro recorder is turned off.

Congratulations! You just created your first Excel VBA macro. You may want
to phone your mother and tell her the good news.

Testing the Macro

Now you can try out this macro and see whether it works properly. To test
your macro, move to an empty cell and press Ctrl+Shift+N.

In a flash, Excel executes the macro. Your name and the current date are dis-
played in large, bold letters.

<P Another way to execute the macro is to choose Developer~>Code=>Macros (or
press Alt+F8) to display the Macros dialog box. Select the macro from the list
(in this case, NameAndTime) and click Run. Make sure you select the cell that
will hold your name before executing the macro.

Examining the Macro

So far, you've recorded a macro and you’ve tested it. If you're a curious type,
you’re probably wondering what this macro looks like. And you might even
wonder where it’s stored.

Remember when you started recording the macro? You indicated that Excel

should store the macro in This Workbook. The macro is stored in the work-
book, but you need to activate the Visual Basic Editor (VBE, for short) to see it.

ooks.com/

http://www.it-ebooks.info/

28

Part I: Introducing VBA

Follow these steps to see the macro:

1. Choose Developer—>Coder>Visual Basic (or press Alt+F11).

The Visual Basic Editor program window appears, as shown in Figure
2-3. This window is highly customizable, so your VBE window may look a
bit different. The VBE program window contains several other windows
and is probably very intimidating. Don'’t fret; you’ll get used to it.

. In the VBE window, locate the window called Project.

The Project window (also known as the Project Explorer window) con-
tains a list of all workbooks and add-ins that are currently open. Each
project is arranged as a free and can be expanded (to show more infor-
mation) or contracted (to show less information).

#9 Micrasoft Visual Basic - Baok - [Sheet] [Cade)] ===
i/ File Edit View Inset Format Debug Run Tools Adddns Window Help Type a questian for help .- @ x
Ha-dl (9cir 0 aISEY @] B
Project - VBAProject £l [(Generat | [iectarations) =
&= B —
-85 VBAProject (Book1) =
53 Microsoft Excel Objects
EE) Sheet1 (Sheet1)
4] Thisorkbook
|
Figure 2-3:
The Visual
Basic Editor =
is where = - A
R Immediate x|
you view -
and edit
VBA code. =
| 2
|
<P The VBE uses quite a few different windows, any of which can be either

open or closed. If a window isn’t immediately visible in the VBE, you
can choose an option from the View menu to display the window.

For instance, if the Project window is not visible, you can choose
Viewr>Project Explorer (or press Ctrl+R) to display it. You can display
any other VBE window in a similar manner. [explain more about the
components of the Visual Basic Editor in Chapter 3.

. Select the project that corresponds to the workbook in which you

recorded the macro.

If you haven’t saved the workbook, the project is probably called
VBAProject (Book1).

4. Click the plus sign (+) to the left of the folder named Modules.

ooks.com/

http://www.it-ebooks.info/

|
Figure 2-4:
The VBE
displays the
VBA code in
Module1 of
Bookl.

Chapter 2: Jumping Right In

29

The tree expands to show Modulel, which is the only module in the project.

5. Double-click Modulel.

The VBA code in that module is displayed in a Code window. Figure 2-4
shows how it looks on my screen. Your screen may not look exactly the

same.

#9 Micrasoft Visual Basic - Baok1 - [Madule1 {Cocle}] [F=n{=H ===
i/ File Edit View Inset Format Debug Run Tools AddIns Window Help Tupe a question for help .8 x
HE-dl BRl9 ey 0 8 ISES 2@ 103t _
Project - VBAProject x| [iGenerat =] [MameAndTime =]
=] = -] Sub NemeAndTime () =1
= @ VBAProject (Book1) ' —
=455 Microsoft Excel Objects ! NaweindTime Macro
EF) Sheetl (Sheetl) ! This macro enters my name and the current time.
467 Thisorkbook '
£ 45 Modules ! Eeyboard Shorteut: Ctrl+Shift+l
-3 Modulsl '
botiveCell.ForwulaR1Cl = "John Walkenbach"
hotivecCell.Offsec (1, O).Range ("41™).5elect
ActivecCell.ForwmulaR1Cl = "=NOW(]"™
Selection.Copy
Selection.PasteSpecial Paste:=x1PasteValues, Operatiom:=xINone, SkipElanks _

:=False, Transpose:=False
AotiveCell,Offset (-1, 0).Range("Al:i2").Select
ActiveCell.Activate
gelection.Font,Bold = True
Vith Selection.Font
Heme = "Calibrit
.Size = 186
.Strikethrough = False
.Superscript = False
.Subscript = False
.CutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ThemeColor = x1TheweColorLightl
.TintindShade = 0 -
. ThemeFont = x1ThemeFontMinor

End With

End Zub
SI=EA »
Immediate x|
K — JJ

At this point, the macro probably looks like Greek to you. Don’t worry. Travel a
few chapters down the road, and all will be as clear as the view from Olympus.

The NameAndTime macro (also known as a Sub procedure) consists of
several statements. Excel executes the statements one by one, from top to
bottom. A statement preceded by an apostrophe () is a comment. Comments
are included only for your information and are essentially ignored. In other
words, Excel skips right over comments.

The first actual VBA statement (which begins with the word Sub) identifies
the macro as a Sub procedure and gives its name — you provided this name
before you started recording the macro. If you read through the code, you
may be able to make sense of some of it. You see your name, the formula you
entered, and lots of additional code that changes the font. The Sub procedure
ends with the End Sub statement.

ooks.com/

http://www.it-ebooks.info/

30

Part I: Introducing VBA

Hey, | didn’t record that!

Earlier in this chapter, | mentioned that the
macro recorder is like recording sound on a
tape recorder. When you play back an audio-
tape and listen to your own voice, you invari-
ably say, “l don't sound like that.” And when
you look at your recorded macro, you may see
some actions that you didn't think you recorded.

When you recorded the NameAndTime exam-
ple, you changed only the font size, yet the

recorded code shows all sorts of font-chang-
ing statements (Strikethrough, Superscript,
Shadow, and so on). Don’t worry; it happens all
the time. Excel often records lots of seemingly
useless code. In later chapters, you find out
how to remove the extra stuff from a recorded
macro.

\\3

Modifying the Macro

As you might expect, not only can you view your macro in the VBE, you can
also change it. If you look at the code, some of it will actually make sense.

Even though you have no idea what you're doing at this point, I'll bet you can
make these changes to the code:

v Change the name that’s entered into the active cell. If you have a dog,

use your dog’s name.

v Change the font name or size.

v See if you can figure out the appropriate location for a new statement:

Selection.Font.Italic

= True

Working in a VBA code module is much like working in a word-processing

document (except there’s no word wrap and you can’t format the text). On
second thought, I guess it’s more like working in Windows Notepad. You can
press Enter to start a new line, and the familiar editing keys work as expected.

After you’ve made your changes, jump back to Excel and try out the revised
macro to see how it works. Just as you can press Alt+F11 in Excel to display
the VBE, you can press Alt+F11 in the VBE to switch back to Excel.

Saving Workbooks That Contain Macros

If you store one or more macros in a workbook, the file must be saved with

“macros enabled.” In other words, the file must be saved with an XLSM exten-

sion rather than the normal XLSX extension.

ooks.com/

http://www.it-ebooks.info/

Chapter 2: Jumping Right In

|
Figure 2-5:
If your
workbook
contains
macros,
and you
attempt to
saveitina
non-macro
file format,
Excel
warns you.

For example, when you save the workbook that contains your NameAndTime
macro, the file format in the Save As dialog box defaults to XLSX (a format
that cannot contain macros!). Unless you change the file format to XLSM,
Excel displays the warning shown in Figure 2-5. You need to click No, and
then choose Excel Macro-Enabled Workbook (*.xlsm) from the Save As Type
drop-down list.

Microsoft Excel ==

The following features cannaot be saved in macro-free workbooks:

0 « B project
[)
= To save a file with these features, dick No, and then choose a macro-enabled File bype in the File Type list,

To continue saving as a macro-free workbook, click Yes,

‘ Yes | | Ho | | Help

Understanding Macro Security

gMBER

Macro security is a key feature in Excel. The reason is that VBA is a powerful
language — so powerful that even a simple macro can do serious damage to
your computer. A macro can delete files, send information to other comput-
ers, and even destroy Windows so that you can’t even start your system.

The macro security features in Excel 2007 and Excel 2010 were created to
help prevent these types of problems.

Figure 2-6 shows the Macro Settings section of the Trust Center dialog box.
To display this dialog box, choose Developerm>Codemr>Macro Security.

By default, Excel uses the Disable All Macros with Notification section. With
this setting in effect, if you open a workbook that contains macros (and the
file is not digitally “signed” or stored in a trusted location), Excel displays a
warning like the one in Figure 2-7. If you are certain that the workbook comes
from a trusted source, click Enable Macros, and the macros will be enabled.

You see the pop-up box in Figure 2-7 only if the VBE is open. Otherwise, Excel

displays an eye-catching Security Warning above the Formula bar. You can
click the button to enable the macros.

ooks.com/

31

http://www.it-ebooks.info/

32

Part I: Introducing VBA

|
Figure 2-6:
The Macro
Settings
section of
the Trust
Center dia-
log box.
|

|
Figure 2-7:
Excel's
warning that
the file to

be opened
contains
macros.
|

e [==

Trusted Publishers

Maco Settings
Trusted Locations
Trusted Documents Disable all macros without notification
@ Disable all macros with notification

Disable all macras except digitally signed macras

Enable all macros (ot recommended: patentially dangerous code can rni

Developer Macro Settings

V] Trust accass to the VBA praject abject modal

If you use Excel 2010, Excel will remember if you've designated a workbook
to be safe. So, the next time you open it, you won’t see the Security Warning.
That’s not the case with Excel 2007 though. You’ll get the security warning
every time — unless you store that workbook in a trusted location.

Micrasoft Office Excel Security Matice 7]
@ Microsoft Office has identified a potential security concern.

Warning: It is not possible to determine that this content came
from a trustworthy source. You should leave this content disabled
unless the content provides critical functionality and you trust its
source.

File Path: <:\...Programming\ExamplestChapter 1 7\reverse pivol table. xlsm

Macros have been disabled. Macros might contain viruses or other security
hazards. Do not enable this content unless you trust the source of this File,

More information

Enable Macros | ‘ Disable Macros |

Perhaps the best way to handle macro security is to designate one or
more folders as tfrusted locations. All the workbooks in a trusted location
are opened without a macro warning. You designate trusted folders in the
Trusted Locations section of the Trust Center dialog box.

If you want to find out what the other macro security settings imply, press
F1 while the Macro Settings section of the Trust Center dialog box is in view.
The Help screen opens and the subject “Enable or disable macros in Office
documents” is shown in the Help window.

ooks.com/

http://www.it-ebooks.info/

Chapter 2: Jumping Right In 33

More about the NameAndTime Macro

By the time you finish this book, you’ll completely understand how the
NameAndTime macro works — and you’ll be able to develop more-sophisti-
cated macros. For now, I wrap up the example with a few additional points
about the macro:

v For this macro to work, its workbook must be open. If you close the
workbook, the macro doesn’t work (and the Ctrl+Shift+N shortcut has
no effect).

v As long as the workbook containing the macro is open, you can run the
macro while any workbook is active. In other words, the macro’s own
workbook doesn’t have to be active.

v The macro isn’t “pro-quality” code. It will overwrite existing text with no
warning — and its effects can’t be undone.

v Before you started recording the macro, you assigned it a new shortcut
key. This is just one of several ways to execute the macro.

» You can enter this macro manually rather than record it. To do so, you
need a good understanding of VBA. (Be patient, you’ll get there.)

»* You can store this macro in your Personal Macro Workbook. If you do
so, the macro is available automatically whenever you start Excel. See
Chapter 6 for details about your Personal Macro Workbook.

»* You can also convert the workbook to an add-in file. (More about this in
Chapter 21.)

You’ve been initiated into the world of Excel programming. (Sorry, there’s
no secret handshake or decoder ring.) I hope this chapter helps you realize
that Excel programming is something you can actually do — and even live to
tell about. Keep reading. Subsequent chapters almost certainly answer any
questions you have, and you’ll soon understand exactly what you did in this
hands-on session.

ooks.com/

http://www.it-ebooks.info/

3/ Parti:introducing VBA

ooks.com/

http://www.it-ebooks.info/

Part Il

How VBA Works
with Excel

The 5th Wave By Rich Tennant

@ QlCHTENMN‘—

“Look -what if we just increase the size of
the charts?”

ooks.com/

http://www.it-ebooks.info/

In this part . . .

Fe next four chapters provide the necessary founda-
tion for discovering the ins and outs of VBA. You find
out about modules (the sheets that store your VBA code)
and are introduced to the Excel object model (something
you won'’t want to miss). You also discover the difference
between subroutines and functions, and you get a crash

course in the Excel macro recorder.

ooks.com/

http://www.it-ebooks.info/

Chapter 3

Working In the Visual Basic Editor

In This Chapter
Understanding the Visual Basic Editor

Discovering the Visual Basic Editor parts

Knowing what goes into a VBA module

Understanding three ways to get VBA code into a module

Customizing the VBA environment

A s a more-experienced-than-average Excel user, you probably know a good
deal about workbooks, formulas, charts, and other Excel goodies. Now
it’s time to expand your horizons and explore an entirely new aspect of Excel:
the Visual Basic Editor. In this chapter, you find out how to work with the Visual
Basic Editor, and you get down to the nitty-gritty of writing some VBA code.

What Is the Visual Basic Editor?

SMBER
S

I'm going to save some wear and tear on my fingers, and refer to the Visual
Basic Editor as the VBE. The VBE is a separate application where you write
and edit your VBA macros. It works seamlessly with Excel. By seamlessly, 1
mean that Excel takes care of opening the VBE when you need it.

You can’t run the VBE separately; Excel must be running in order for the VBE
to run.

Activating the UBE

The quickest way to activate the VBE is to press Alt+F11 when Excel is active.
To return to Excel, press Alt+F11 again.

You can also activate the VBE by using the Developer~>Code=>Visual Basic
command. If you don’t have a Developer tab at the top of your Excel window,
flip back to Chapter 2 where I explain how to get that handy Developer tab to
show up.

ooks.com/

http://www.it-ebooks.info/

38

Part ll: How VBA Works with Excel

A\

|
Figure 3-1:
The VBE is
your cus-
tomizable
friend.
|

Understanding VBE components

Figure 3-1 shows the VBE program, with some of the key parts identified.
Because so much is going on in the VBE, I like to maximize the window to see
as much as possible.

Chances are your VBE program window won’t look exactly like what you see
in Figure 3-1. The VBE contains several windows, and it’s highly customiz-
able. You can hide windows, rearrange windows, dock windows, and so on.

Menu bar Code window

£ Microsoft Visual Basic - BookL - [Modulel {Code)] J
i File Edit View Inset Format Debug Run Tools Add-Ins Window Help

Toolbar

===

Type a question for help -.8x

[» 0 @ I HEFY ©1@I|in,col

i
[(Generan =] [wectarationsy |

B =3 = I =]

—E - aly

Project - VBAPraject x|

- = &5
& PUP7 (pupT.<lam)

- &% vBAProject (Book1)

(=453 Microsoft Excel Objects

-] Sheet? (Shest1)

Sheet3 (Sheet3)
457 ThisWorkbaok
E-E5 Modules
2 Modulel
&4 vBAProject (PERSONAL.XLSB)

&

Properties - Madulel
[Module1 module |
Alphabetic | Categorized |

Modulel

1]

== 3

Immediate

» [

L

el | ‘

Immediate window

Project window Properties window

Actually, the VBE has even more parts than are shown in Figure 3-1. I discuss
these additional components throughout the book, when they become relevant.

Menu bar

The VBE menu bar works just like every other menu bar you’ve encountered.
It contains commands that you use to do things with the various components
in the VBE. You also find that many of the menu commands have shortcut
keys associated with them.

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor

a\\J

The VBE also features shortcut menus. You can right-click virtually anything
in the VBE and get a shortcut menu of common commands.

Toolbar

The Standard toolbar, which is directly under the menu bar by default (refer
to Figure 3-1), is one of four VBE toolbars available. You can customize the
toolbars, move them around, display other toolbars, and so on. If you're so
inclined, use the View=>Toolbars command to work with VBE toolbars. Most
people (including me) just leave them as they are.

Project window

The Project window displays a tree diagram that shows every workbook cur-
rently open in Excel (including add-ins and hidden workbooks). Double-click
items to expand or contract them. I discuss this window in more detail in the
upcoming “Working with the Project Window” section.

If the Project window is not visible, press Ctrl+R or use the View>Project
Explorer command. To hide the Project window, click the Close button in its
title bar. Or right-click anywhere in the Project window and select Hide from
the shortcut menu.

Code window

A Code window contains VBA code. Every object in a project has an associ-
ated Code window. To view an object’s Code window, double-click the object
in the Project window. For example, to view the Code window for the Sheet1
object, double-click Sheet1 in the Project window. Unless you’ve added some
VBA code, the Code window will be empty.

You find out more about Code windows later in this chapter’s “Working with
a Code Window” section.

Immediate window

The Immediate window may or may not be visible. If it isn’t visible, press
Ctrl+G or use the View=>Immediate Window command. To close the
Immediate window, click the Close button in its title bar (or right-click any-
where in the Immediate window and select Hide from the shortcut menu).

The Immediate window is most useful for executing VBA statements
directly and for debugging your code. If you're just starting out with VBA,
this window won’t be all that useful, so feel free to hide it and free up some
screen space for other things.

In Chapter 13, I discuss the Immediate window in detail. It may just become
your good friend!

ooks.com/

39

http://www.it-ebooks.info/

40

Part ll: How VBA Works with Excel

What's new in the Visual Basic Editor?

Excel 2007 introduced a brand-new user inter-
face. Menus and toolbars are gone, and the
new “Ribbon” replaces them. If you've used
the Visual Basic Editor in a previous ver-
sion of Excel, you'll be in familiar territory. In
Excel 2007, Microsoft left the VBE essentially
untouched. And they continued the hands-off

The VBA programming language has been
updated to accommodate the new Excel fea-
tures, but the VBE has no new features, and the
old-style toolbars and menus work exactly like
they always have. Maybe they’ll eventually get
around to updating the VBE, but I'm not holding
my breath.

tradition in Excel 2010.

Working with the Project Window

When you're working in the VBE, each Excel workbook and add-in that’s open
is a project. You can think of a project as a collection of objects arranged as
an outline. You can expand a project by clicking the plus sign (+) at the left

of the project’s name in the Project window. Contract a project by clicking
the minus sign (-) to the left of a project’s name. Or you can double-click the
items to expand and contract them.

Figure 3-2 shows a Project window with three projects listed: an add-in
named pup7.xlam, a workbook named investments.xlsm, and the Personal
Macro Workbook (which is always named PERSONAL.XLSB).

I | Project - VBAProject El
. E =@ -
Figure 3-2: L=
. . [@ PUPT {pup7.alam}
This PI’O]eCt - vBAProject (investments.xlsm)
WindOW -3 Microsoft Excel Objects
I|StS th ree : Sheets (Sheet3)
projects. || 48] Thiswrorkbook
i -3 Modules
One ofthem || ~ T
is expan ded |[|® & VBAProject (PERSONAL.XLSB)
to show its
objects.
|

Every project expands to show at least one node called Microsoft Excel
Objects. This node expands to show an item for each sheet in the work-
book (each sheet is considered an object) and another object called
ThisWorkbook (which represents the Workbook object). If the project has

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor

3

any VBA modules, the project listing also shows a Modules node. And, as you
see in Part IV, a project may also contain a node called Forms, which con-
tains UserForm objects (which hold custom dialog boxes).

The concept of objects may be a bit fuzzy for you. However, I guarantee that
things become much clearer in subsequent chapters. Don’t be too concerned
if you don’t understand what’s going on at this point.

Adding a new UBA module

Follow these steps to add a new VBA module to a project:

1. Select the project’s name in the Project window.
2. Choose Insert>Module.

Or

1. Right-click the project’s name.

2. Choose Insert=>Module from the shortcut menu.
When you record a macro, Excel automatically inserts a VBA module to hold
the recorded code. Which workbook holds the module for the recorded macro

depends on where you chose to store the recorded macro, just before you
started recording.

Removing a UBA module

Need to remove a VBA module from a project?

1. Select the module’s name in the Project window.

2. Choose File>"Remove xxx, where xxx is the module name.
Or

1. Right-click the module’s name.
2. Choose Remove xxx from the shortcut menu.

Excel, always trying to keep you from doing something you’ll regret, will
ask if you want to export the code in the module before you delete it.
Almost always, you don’t. (If you do want to export the module, see the
next section.)

ooks.com/

41

http://www.it-ebooks.info/

42

Part ll: How VBA Works with Excel

SMBER
S

You can remove VBA modules, but there is no way to remove the other code
modules — those for the Sheet objects or ThisWorkbook.

Exporting and importing objects

Every object in a VBA project can be saved to a separate file. Saving an indi-
vidual object in a project is known as exporting. It stands to reason that you
can also import objects to a project. Exporting and importing objects might
be useful if you want to use a particular object (such as a VBA module or a
UserForm) in a different project.

Follow these steps to export an object:

1. Select an object in the Project window.

2. Choose File~>Export File or press Ctrl+E.
You get a dialog box that asks for a filename. Note that the object
remains in the project; only a copy of it is exported.

Importing a file to a project goes like this:

1. Select the project’s name in the Explorer window.
2. Choose Filew>Import File or press Ctrl+M.

You get a dialog box that asks for a file. Locate the file and click Open.
You should only import a file if the file was exported by using the
Filec>Export File command.

Working with a Code Window

WMBER
@Q
&

As you become proficient with VBA, you spend lots of time working in Code
windows. Macros that you record are stored in a module, and you can type
VBA code directly into a VBA module.

Minimizing and maximizing window's

If you have several projects open, the VBE may have lots of Code windows at
any given time. Figure 3-3 shows an example of what I mean.

ooks.com/

http://www.it-ebooks.info/

|
Figure 3-3:
Code
window
overload
isn't pretty.
|

Chapter 3: Working In the Visual Basic Editor

#9 Microsaft Visual Basic - investments.xlsm [E=n(EoRc|
i Eile Edit View Inset Format Debug Run Tools AddIns Window Help Type a question for help
E&E-d Al ey e HEY @ B
Project - VBAProject x|
=] (] =
‘ -] A investmentsdsm - Modulel {Code) == ==
& PUPT (pup7.<lam) -
- & ¥BAProject (investments.xlsm) . [tGenerah] [wedtarations) =
155 Microsoft Excel Objects =
Sheet1 (Sheet1) (Genera
sheetz (sheetz) Sub)
Sheet (Sheetd) B ez
4] ThisWarkbook Endl -
-5 Forms —
UserForm1 -
=15 Moddles
8% Madulel
& todule2
% vBAProject (PERSONAL.XLSB)
=
hd
—
i =
U
==«
iy
oy
o L
i K iy

Code windows are much like workbook windows in Excel. You can minimize
them, maximize them, resize them, hide them, rearrange them, and so on. Most
people find it much easier to maximize the Code window that they’re working
on. Doing so lets you see more code and keeps you from getting distracted.

To maximize a Code window, click the Maximize button in its title bar (right
next to the X). Or just double-click its title bar to maximize it. To restore a
Code window to its original size, click the Restore button. When a window is
maximized, its title bar isn’t visible, so you'll find the Restore button below
the VBE title bar.

Sometimes, you may want to have two or more Code windows visible. For
example, you may want to compare the code in two modules or copy code
from one module to another. You can arrange the windows manually, or
use the Window=>Tile Horizontally or Window=>Tile Vertically command to
arrange them automatically.

You can quickly switch among code windows by pressing Ctrl+Tab. If you

repeat that key combination, you keep cycling through all the open code win-
dows. Pressing Ctrl+Shift+Tab cycles through the windows in reverse order.

ooks.com/

43

http://www.it-ebooks.info/

44

Part ll: How VBA Works with Excel

A\\S

Minimizing a Code window gets it out of the way. You can also click the win-
dow’s Close button (which displays “X”) in a Code window’s title bar to close
the window completely. (Closing a window just hides it; you won’t lose any-
thing.) To open it again, just double-click the appropriate object in the
Project window. Working with these Code windows sounds more difficult than
it really is.

Creating a module

In general, a VBA module can hold three types of code:

v Declarations: One or more information statements that you provide to
VBA. For example, you can declare the data type for variables you plan
to use, or set some other module-wide options.

v Sub procedures: A set of programming instructions that performs some
action.

+* Function procedures: A set of programming instructions that returns a
single value (similar in concept to a worksheet function, such as SUM).

A single VBA module can store any number of Sub procedures, Function
procedures, and declarations. Well, there is a limit — about 64,000 charac-
ters per module. By way of comparison, this particular chapter has about
half that many characters. After more than 15 years of VBA programming,
[haven’t even come close to reaching that limit. And if I did, the solution is
simple: Just insert a new module.

How you organize a VBA module is completely up to you. Some people prefer
to keep all their VBA code for an application in a single VBA module; others
like to split up the code into several different modules. It’s a personal choice,
just like arranging furniture.

Getting UBA code into a module

An empty VBA module is like the fake food you see in the windows of some
Chinese restaurants; it looks good but it doesn’t really do much for you.
Before you can do anything meaningful, you must have some VBA code in the
VBA module. You can get VBA code into a VBA module in three ways:

v Enter the code directly.

v Use the Excel macro recorder to record your actions and convert them
to VBA code (see Chapter 6).

v Copy the code from one module and paste it into another.

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor

Pause for a terminology break

| need to digress for a moment to discuss ter-
minology. Throughout this book, | use the terms
Sub procedure, routine, procedure, and macro.
These terms are a bit confusing. Programming
folks usually use the word procedure to
describe an automated task. Technically, a pro-
cedure can be a Sub procedure or a Function

procedure — both of which are sometimes
called routines. | use all these terms inter-
changeably. As detailed in later chapters, how-
ever, there is an important difference between
Sub and Function procedures. For now, don't
worry about the terminology. Just try to under-
stand the concepts.

b5

WMBER
@&
&

A\\S

Entering code directly

Sometimes, the best route is the most direct one. Entering code directly
involves . . . well, entering the code directly. In other words, you type the code
via your keyboard. Entering and editing text in a VBA module works as you
might expect. You can select, copy, cut, paste, and do other things to the text.

Use the Tab key to indent some of the lines to make your code easier to read.
This isn’t necessary, but it’s a good habit to acquire. As you study the code |
present in this book, you’ll understand why indenting code lines is helpful.

A single line of VBA code can be as long as you like. However, you may want
to use the line-continuation character to break up lengthy lines of code. To
continue a single line of code (also known as a statement) from one line to the
next, end the first line with a space followed by an underscore (_). Then con-
tinue the statement on the next line. Here’s an example of a single statement
split into three lines:

Selection.Sort Keyl:=Range("Al"),
Orderl:=x1Ascending, Header:=x1lGuess,
Orientation:=x1TopToBottom

This statement would perform exactly the same way if it were entered in a
single line (with no line-continuation characters). Notice that I indented the
second and third lines of this statement. Indenting is optional, but it helps
clarify the fact that these lines are not separate statements.

The white-coated engineers who designed the VBE realized that people like

us would be making mistakes. Therefore, the VBE has multiple levels of undo
and redo. If you deleted a statement that you shouldn’t have, use the Undo
button on the toolbar (or press Ctrl+Z) until the statement shows up again.
After undoing, you can use the Redo button to perform the changes you've
undone. This undo/redo business is more complicated to describe than it is to

ooks.com/

http://www.it-ebooks.info/

4 6 Part Il: How VBA Works with Excel

use. | recommend playing around with this feature until you understand how
it works.

Ready to enter some real-live code? Try the following steps:

. Create a new workbook in Excel.
. Press Alt+F11 to activate the VBE.
. Click the new workbook’s name in the Project window.

. Choose Insert=>"Module to insert a VBA module into the project.

G A W N e

. Type the following code into the module:

Sub GuessName ()
Msg = "Is your name " & Application.UserName & "?"
Ans = MsgBox (Msg, vbYesNo)
If Ans = vbNo Then MsgBox "Oh, never mind."
If Ans = vbYes Then MsgBox "I must be
psychic!"
End Sub

6. Make sure the cursor is located anywhere within the text you typed,
and press F5 to execute the procedure.

F5 is a shortcut for the Run=>Run Sub/UserForm command. If you
entered the code correctly, Excel executes the procedure, and you can
respond to the simple dialog box shown in Figure 3-4. Unless your name
happens to be the same as mine, the dialog box will be different from the
one shown in the figure.

Figure 3-4: [Wicosor beel 5
The
GUESSName Is your name John Walkenbach?
procedure
displays this
dialog box.
|

When you enter the code listed in Step 5, you might notice that the VBE makes
some adjustments to the text you enter. For example, after you type the Sub
statement, the VBE automatically inserts the End Sub statement. And if you
omit the space before or after an equal sign, the VBE inserts the space for you.
Also, the VBE changes the color and capitalization of some text. This is all per-
fectly normal. It’s just the VBE’s way of keeping things neat and readable.

If you followed the previous steps, you just wrote a VBA Sub procedure, also

known as a macro. When you press F5, Excel executes the code and follows
the instructions. In other words, Excel evaluates each statement and does

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor

WMBER
@&
&

what you told it to do. (Don’t let this newfound power go to your head.) You
can execute this macro any number of times — although it tends to lose its
appeal after a few dozen times.

For the record, this simple macro uses the following concepts, all of which
are covered later in this book:

v Defining a Sub procedure (the first line)

v Assigning values to variables (Msg and Ans)

v Concatenating (joining) a string (using the & operator)

v Using a built-in VBA function (MsgBox)

v Using built-in VBA constants (vbYesNo, vbNo, and vbYes)

v Using an If-Then construct (twice)

v Ending a Sub procedure (the last line)

Not bad for a beginner, eh?

Using the macro recorder

Another way you can get code into a VBA module is by recording your
actions, using the Excel macro recorder. If you worked through the hands-on
exercise in Chapter 2, you already have some experience with this technique.

By the way, there is absolutely no way you can record the GuessName pro-
cedure shown in the preceding section. You can record only things that you
can do directly in Excel. Displaying a message box is not in Excel’s normal
repertoire. (It’s a VBA thing.) The macro recorder is useful, but in many cases,
you’ll probably need to enter at least some code manually.

Here'’s a step-by-step example that shows you how to record a macro that
turns off the cell gridlines in a worksheet. If you want to try this example,
start with a new, blank workbook and follow these steps:

1. Activate a worksheet in the workbook.

Any worksheet will do. If the worksheet is not displaying gridlines, add
a new worksheet that does. You need to start with a worksheet that has
gridlines.

2. Choose Developer-~>Coder>Record Macro. Or you can click the icon
with a small red dot in the left side of the status bar.

Excel displays its Record Macro dialog box.

3. In the Record Macro dialog box, name the macro Gridlines, and use
Ctrl+Shift+G for the shortcut key.

ooks.com/

b7

http://www.it-ebooks.info/

58

Part ll: How VBA Works with Excel

4. Click OK to start recording.

Excel automatically inserts a new VBA module into the project that cor-
responds to the active workbook. From this point on, Excel converts
your actions into VBA code. While recording, the icon in the status

bar turns into a small blue square. This is a reminder that the macro
recorder is running. You can also click that blue square to stop the
macro recorder.

5. Choose Viewr>Show - Gridlines.
The gridlines in the worksheet disappear.

6. Choose Developer->Code=>Stop Recording. Or click the Stop
Recording button in the status bar (the blue square).

Excel stops recording your actions.
To view this newly recorded macro, press Alt+F11 to activate the VBE. Locate
the workbook’s name in the Project window. You see that the project has a
new module listed. The name of the module depends on whether you had any
other modules in the workbook when you started recording the macro. If you

didn’t, the module will be named Modulel. You can double-click the module
to view the Code window for the module.

Here’s the code generated by your actions:

Sub Gridlines ()

' Gridlines Macro
' Keyboard Shortcut: Ctrl+Shift+G

ActiveWindow.DisplayGridlines = False
End Sub

To try out this macro, activate a worksheet that has gridlines displayed and
then press the shortcut key that you assigned in Step 3: Ctrl+Shift+G.

If you didn’t assign a shortcut key to the macro, don’t worry. Here’s how to
display a list of all macros available and run the one you want.

1. Choose Developer->Code~>Macros.

Keyboard fans can press Alt+F8. Either of these methods displays a
dialog box that lists all the available macros.

2. Select the macro in the list (in this case, Gridlines).
3. Click the Run button.

Excel executes the macro, and the gridlines magically disappear.

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor 4 9

Of course, you can execute any number of commands and perform any
number of actions while the macro recorder is running. Excel dutifully trans-
lates your mouse actions and keystrokes to VBA code. It works similarly to a
tape recorder, but Excel never runs out of tape.

This recorded macro isn’t really all that useful. After all, it’s easy enough to
turn off gridlines without a macro. It would be more useful if it would toggle
gridlines on and off. To make this change, activate the module and change
the statement to this:

ActiveWindow.DisplayGridlines = _
Not ActiveWindow.DisplayGridlines

This modification makes the macro serve as a toggle. If gridlines are dis-
played, the macro turns them off. If gridlines are not displayed, the macro
turns them on. Oops, I'm getting ahead of myself — sorry, but I couldn’t
resist that simple enhancement. By the way, this is another example of a
macro that can’t be recorded. You can record a macro to turn gridlines on or
turn them off — but you can’t record one that will toggle the gridlines.

Copying UBA code

The final method for getting code into a VBA module is to copy it from another
module or from some other place (such as a Web site). For example, a Sub

or Function procedure that you write for one project might also be useful in
another project. Instead of wasting time reentering the code, you can activate
the module and use the normal Clipboard copy-and-paste procedures (I'm
rather fond of the keyboard shortcuts, Ctrl+C to copy and Ctrl+V to paste).
After pasting it into a VBA module, you can modify the code if necessary.

You'll also find lots of VBA code examples on the Web. If you'd like to try
them, select the code in your browser and press Ctrl+C to copy it. Then, acti-
vate a module and press Ctrl+V to paste it.

Customizing the UBA Environment

If you're serious about becoming an Excel programmer, you'll spend a lot of
time with VBA modules on your screen. To help make things as comfortable
as possible (no, please keep your shoes on), the VBE provides quite a few
customization options.

When the VBE is active, choose Tools=>Options. You'll see a dialog box with

four tabs: Editor, Editor Format, General, and Docking. I discuss some of the
most useful options in the sections that follow.

ooks.com/

http://www.it-ebooks.info/

50

Part ll: How VBA Works with Excel

|
Figure 3-5:
This is the
Editor tab in
the Options
dialog box.
|

Using the Editor tab

Figure 3-5 shows the options accessed by clicking the Editor tab of the
Options dialog box. Use the options in the Editor tab to control how certain
things work in the VBE.

Options (=)
Editor | Ecftor Fomat | General | Docking |

Code Settings
™ Auto Syntax Check. ¥ Auto Indent
[¥ Require Varisble Declaration
Tab width: |4
I Auto List Members
¥ Auto Quick Info
¥ Auto Data Tips

window Settings
|v Drag-and-Drop Text Editing
W Default bo Full Module Yiew
W Procedure Separator

aK I Cancel Help

Auto Syntax Check option

The Auto Syntax Check setting determines whether the VBE pops up a dialog
box if it discovers a syntax error while you're entering your VBA code. The
dialog box tells roughly what the problem is. If you don’t choose this setting,
VBE flags syntax errors by displaying them in a different color from the rest
of the code, and you don’t have to deal with any dialog boxes popping up on
your screen.

[usually keep this setting turned off because I find the dialog boxes annoy-
ing and I can usually figure out what’s wrong with a statement. Before | was a
VBA veteran, I found this assistance quite helpful.

Require Variable Declaration option

If the Require Variable Declaration option is set, VBE inserts the following
statement at the beginning of each new VBA module you insert:

Option Explicit
Changing this setting affects only new modules, not existing modules. If this

statement appears in your module, you must explicitly define each variable
you use. In Chapter 7, I explain why you should develop this habit.

ooks.com/

http://www.it-ebooks.info/

|
Figure 3-6:
An example
of Auto List
members.
|

|
Figure 3-7:
Auto Quick
Info offers
help about
the MsgBox
function.
|

Chapter 3: Working In the Visual Basic Editor

Auto List Members option

If the Auto List Members option is set, VBE provides some help when you’re
entering your VBA code. It displays a list that would logically complete the
statement you're typing. This bit of magic is sometimes called “IntelliSense.”

This is one of the best features of the VBE, and I always keep it turned on.
Figure 3-6 shows an example (which will make lots more sense when you
start writing VBA code).

% investments.xlsm - Modulel {Code] EI@
|(General) j |ShowPage ﬂ

Sub ShowPage () et
WEFath = ac:lvemnr){bnnk.fl

End Sub & Final -
=& FollowHyperlink
E&' ForceFullCalculation
=& ForwardMailer
B lruiname]
B FullNarmeURLEncoded
=B GetwarklowTasks 58

Auto Quick Info option

If the Auto Quick Info option is set, VBE displays information about functions
and their arguments as you type. This can be very helpful. Figure 3-7 shows
this feature in action, telling me about the arguments for the MsgBox function.

Auto Data Tips option

If the Auto Data Tips option is set, VBE displays the value of the variable over
which your cursor is placed when you're debugging code. When you enter
the wonderful world of debugging, as I describe in Chapter 13, you’ll appreci-
ate this option.

% investments.dsm - Modulel (Code) (=@ ==
[(Generan =] [snowpage ~|
Sub ShowPage | [=|
UBPath = letiveWorkbook.Fulllame
msghox |
End MsgBh ipt, [Bettons As VbMsgBoxStyle = vhOKONIy), [Title], [HepFifel, [Context) As VbMsoBoxResult
=J= 4 i
158

ooks.com/

51

http://www.it-ebooks.info/

52

Part ll: How VBA Works with Excel

A\

Auto Indent setting

The Auto Indent setting determines whether VBE automatically indents each
new line of code the same as the previous line. I'm big on using indentations
in my code, so I keep this option on.

Use the Tab key to indent your code, not the spacebar. Also, you can use
Shift+Tab to “unindent” a line of code. If you want to indent more than just one
line, select all the lines you want to indent. Then press the Tab key.

The VBE'’s Edit toolbar (which is hidden by default) contains two useful but-

tons: Indent and Outdent. These buttons let you quickly indent or “unindent”
a block of code. Select the code and click one of these buttons to change the
block’s indenting.

Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move

text by dragging and dropping with your mouse. [keep this option turned on,
but I never use it. I prefer to copy and move by using the keyboard.

Default to Full Module View option

The Default to Full Module View option sets the default state for new mod-
ules. (It doesn’t affect existing modules.) If set, procedures in the Code
window appear as a single scrollable list. If this option is turned off, you can
see only one procedure at a time. I keep this option turned on.

Procedure Separator option

When the Procedure Separator option is turned on, separator bars appear at
the end of each procedure in a Code window. I like the idea of separator bars,
so [keep this option turned on.

Using the Editor Format tab

Figure 3-8 shows the Editor Format tab of the Options dialog box. With this
tab, you can customize the way the VBE looks.

Code Colors option

The Code Colors option lets you set the text color and background color
displayed for various elements of VBA code. This is largely a matter of per-
sonal preference. Personally, I find the default colors to be just fine. But for a
change of scenery, I occasionally play around with these settings.

ooks.com/

http://www.it-ebooks.info/

Chapter 3: Working In the Visual Basic Editor

|
Figure 3-8:
Change

the VBE's
looks with
the Editor
Format tab.
|

Options @

Editor Edltor Fomat | Gieneral | Dacking |

Code Colars Font:

- Courier New (Western) -

Selection Text
Syntax Error Text = Size:
Execution Paint Text ’—_|
EBreakpoint Text 10 A
Comment Text
Kewword Text

< W' Margin Indicator Bar

Sample

Foreground: Background: Indicator: AECIYZaboxyz

| Auta j | Auta j | Auta j

oK | Cancel Help

Font option

The Font option lets you select the font that’s used in your VBA modules. For
best results, stick with a fixed-width font such as Courier New. In a fixed-width
font, all characters are exactly the same width. This makes your code more
readable because the characters are nicely aligned vertically, and you can
easily distinguish multiple spaces (which is sometimes useful).

Size setting

The Size setting specifies the point size of the font in the VBA modules. This
setting is a matter of personal preference determined by your video display
resolution and how many carrots you've been eating.

Margin Indicator Bar option

This option controls the display of the vertical margin indicator bar in your
modules. You should keep this turned on; otherwise, you won’t be able to see
the helpful graphical indicators when you’re debugging your code.

Using the General tab

Figure 3-9 shows the options available under the General tab in the Options
dialog box. In almost every case, the default settings are just fine.

The most important setting is Error Trapping. I strongly suggest that you
use the Break On Unhandled Errors setting (which is the default). If you use
a different setting, your error-handling code won’t work. You can read more
about this in Chapter 12.

ooks.com/

53

http://www.it-ebooks.info/

54 Partii: How VBA Works with Excel

If you're really interested in these options, click the Help button for details.

Options @
Editor | Editor Format - General | Dacking |
Form Grid Settings Edit and Continue
[~ Show Grid [Motify Before State Loss

Grid Units: Points Error Trapping

width: |6 " Break on All Errors
Height: | & " Break in Class Module

— I™ align Controls to Grid {+ Break on Unhandled Errars
Figure 3-9: compe
The General % show ToolTips o L —
tab of the [V Collapse Pra, Hides Windows W Background Compile
Options dia-
log box. [ok | cancal Help
|
Using the Docking tab
Figure 3-10 shows the Docking tab. These options determine how the various
windows in the VBE behave. When a window is docked, it is fixed in place
along one of the edges of the VBE program window. This makes it much
easier to identify and locate a particular window. If you turn off all docking,
you have a big, confusing mess of windows. Generally, the default settings
work fine.
Editor | Editor Format | General Docking
Dockable
v Immediate Window
v Locals Window
Iv Wiatch Window
W Project Explorer
— ¥ Properties Window
Figure 3-10: [Object Brawser
The Docking
tab of the
Options
dialog box.
—— ok Cancel Help

ooks.com/

http://www.it-ebooks.info/

Chapter 4

Introducing the Excel
Object Model

In This Chapter

Introducing the concept of objects

Finding out about the Excel object hierarchy

Understanding object collections

Referring to specific objects in your VBA code

Accessing or changing an object’s properties

Performing actions with an object’s methods

NBER
\‘&
&

E/eryone is familiar with the word object. Well, folks, forget the definition
you think you know. In the world of programming, the word object has a
different meaning. You often see it used as part of the expression object-
oriented programming, or OOP for short. OOP is based on the idea that soft-
ware consists of distinct objects that have attributes (or properties) and can
be manipulated. These objects are not material things. Rather, they exist in
the form of bits and bytes.

In this chapter, I introduce you to the Excel object model, which is a hierar-
chy of objects contained in Excel. By the time you finish this chapter, you’ll
have a reasonably good understanding of what OOP is all about — and why
you need to understand this concept to become a VBA programmer. After all,
Excel programming really boils down to manipulating Excel objects. It’s as
simple as that.

The material in this chapter may be a bit overwhelming. But please take my
advice and plow through it, even if you don’t fully grasp it at first. The impor-
tant concepts presented here will make a lot more sense as you progress
through the book.

ooks.com/

http://www.it-ebooks.info/

56 Part Il: How VBA Works with Excel

Excel Is an Object?

You’ve used Excel for quite a while, but you probably never thought of it as
an object. The more you work with VBA, the more you view Excel in those
terms. You’ll understand that Excel is an object and that it contains other
objects. Those objects, in turn, contain still more objects. In other words,
VBA programming involves working with an object hierarchy.

At the top of this hierarchy is the Application object — in this case, Excel
itself (the mother of all objects).

Climbing the Object Hierarchy

The Application object contains other objects. Following is a list of some of
the more useful objects contained in the Excel Application:

v Addin

v Window

»* Workbook

1 WorksheetFunction
Each object contained in the Application object can contain other objects.
For example, the following is a list of objects that can be contained in a
Workbook object:

v Chart

»* Name

v VBProject

v Window

1 Worksheet
In turn, each of these objects can contain still other objects. Consider a
Worksheet object, which is contained in a Workbook object, which is con-
tained in the Application object. Some of the objects that can be contained in
a Worksheet object are:

v Comment

v Hyperlink

1+ Name

v PageSetup

ooks.com/

http://www.it-ebooks.info/

Chapter 4: Introducing the Excel Object Model

|
Figure 4-1:
Visualizing

a part of the
Excel object
model.
|

WMBER
&Q‘
&

v PivotTable
1 Range

Put another way, if you want to do something with a range on a particular
worksheet, you may find it helpful to visualize that range in the following
manner:

Ranger>contained in Worksheet=>contained in Workbookm>contained in
Excel

Is this beginning to make sense?

Figure 4-1 shows part of Excel’s Object Model Map. If you really want to be
overwhelmed, display the VBA Help system and search for object model map.
It’s a huge diagram that lists all objects, and each one is clickable so you can
read all about it.

Excel Developer Reference
Object Model Map

All

AboveAverage

Borders
Border

Font

Interior

Range
Actions
Areas
Borders
Characters
Comment
Errors
Font
FormatConditions
Hyperlinks
Interior
ListObject
Phonetic
Phonetics
PivotCell
PivotField
PivotItem

PivotTable

CubeField

CubeFields

CustomProperties

CustomProperty

CustomView

CustomViews

Databar
ConditionValue

Range

DataLabel
Characters

ChartFormat

DataLabels
ChartFormat
DataLabel

DataTable

DefaultWebOptions

Dialog

Yes folks, Excel has more objects than you can shake a stick at, even old-
timers like me can get overwhelmed. The good news is that you’ll never have
to actually deal with most of these objects. When you’re working on a problem,
you can just focus on a few relevant objects — which you can often discover
by recording a macro.

ooks.com/

57

http://www.it-ebooks.info/

58 Partil: How VBA Works with Excel

Wrapping Vour Mind around Collections

Collections are another key concept in VBA programming. A collection is a
group of objects of the same type. And to add to the confusion, a collection is
itself an object.

Here are a few examples of commonly used collections:

v Workbooks: A collection of all currently open Workbook objects

v Worksheets: A collection of all Worksheet objects contained in a par-
ticular Workbook object

v Charts: A collection of all Chart objects (chart sheets) contained in a
particular Workbook object

1 Sheets: A collection of all sheets (regardless of their type) contained in a
particular Workbook object

You may notice that collection names are all plural, which makes sense (at
least | hope).

“What are collections for?” you may rightfully ask. Well, for example, they are
very useful when you want to do stuff with not just one worksheet, but with
a couple of them. As you'’ll see, your VBA code can loop through all members
of a collection, and do something to each one.

Referring to Objects

[presented the information in the previous sections to prepare you for the
next concept: referring to objects in your VBA code. Referring to an object is
important because you must identify the object that you want to work with.
After all, VBA can’t read your mind — yet. I believe the mind-reading object
will be introduced in Excel 2013.

You can work with an entire collection of objects in one fell swoop. More
often, however, you need to work with a specific object in a collection (such
as a particular worksheet in a workbook). To reference a single object from
a collection, you put the object’s name or index number in parentheses after
the name of the collection, like this:

Worksheets ("Sheetl")

Notice that the sheet’s name is in quotation marks. If you omit the quotation
marks, Excel won’t be able to identify the object (Excel will think it’s a vari-
able name).

If Sheetl is the first (or only) worksheet in the collection, you can also use
the following reference:

ooks.com/

http://www.it-ebooks.info/

Chapter 4: Introducing the Excel Object Model

WBER
“&
&

Worksheets (1)

In this case, the number is not in quotation marks. Bottom line? If you refer to
an object by using its name, use quotation marks. If you refer to an object by
using its index number, use a plain number without quotation marks.

Another collection, called Sheets, contains all the sheets (worksheets and
Chart sheets) in a workbook. If Sheet1 is the first sheet in the workbook, you
can reference it as

Sheets (1)

Navigating through the hierarchy

If you want to work with the Application object, it’s easy: You start by typing
Application.

Every other object in Excel’s object model is under the Application object.
You get to these objects by moving down the hierarchy and connecting each
object on your way with the dot (.) operator. To get to the Workbook object
named “Book]1.xlsx”, start with the Application object and navigate down to
the Workbooks collection object.

Application.Workbooks ("Bookl.xlsx")

To navigate farther to a specific worksheet, add a dot operator and access
the Worksheets collection object.

Application.Workbooks ("Bookl .x1lsx") .Worksheets (1)

Not far enough yet? If you really want to get the value from cell Al on the first
Worksheet of the Workbook named Book1.xlsx, you need to navigate one
more level to the Range object.

Application.Workbooks ("Bookl.xlsx"). _
Worksheets (1) .
Range ("Al") .Value

When you refer to a Range object in this way, it’s called a fully qualified refer-
ence. You've told Excel exactly which range you want, on which worksheet
and in which workbook, and have left nothing to the imagination. Imagination
is good in people, but not so good in computer programs.

By the way, workbook names also have a dot to separate the filename from
the extension (for example Book1.xlsx). That’s just a coincidence. The dot in
a file name has nothing at all to do with the dot operator I referred to a few
paragraphs ago.

ooks.com/

59

http://www.it-ebooks.info/

60

Part ll: How VBA Works with Excel

<MBER
é‘,*

Simplifying object references

If you were required to fully qualify every object reference you make, your
code would get quite long, and it might be more difficult to read. Fortunately,
Excel provides you with some shortcuts that can improve the readability
(and save you some typing). For starters, the Application object is always
assumed. There are only a few cases when it makes sense to type it. Omitting
the Application object reference shortens the example from the previous
section to

Workbooks ("Bookl .x1sx") .Worksheets (1) .Range ("Al") .Value

That’s a pretty good improvement. But wait, there’s more. If you're sure that
Bookl1.xlsx is the active workbook, you can omit that reference, too. Now
you're down to

Worksheets (1) .Range("Al") .Value

Now you’re getting somewhere. Have you guessed the next shortcut? That’s
right, if you know the first worksheet is the currently active worksheet, then
Excel will assume that reference and allow you to just type

Range ("Al") .Value

Contrary to what some people may think, Excel does not have a Cell object. A
cell is simply a Range object that consists of just one element.

The shortcuts described here are great, but they can also be dangerous.
What if you only think Book1.xlsx is the active workbook? You could get

an error, or worse, you could get the wrong value and not even realize it’s
wrong. For that reason, it’s often best to fully qualify your object references.

In Chapter 14, I discuss the With-End With structure, which helps you fully
qualify your references but also helps to make the code more readable and
cuts down on the typing. The best of both worlds!

Diving into Object Properties and Methods

Although knowing how to refer to objects is important, you can’t do anything
useful by simply referring to an object (as in the examples in the preceding
sections). To accomplish anything meaningful, you must do one of two
things:

v Read or modify an object’s properties.

v Specify a method of action to be used with an object.

ooks.com/

http://www.it-ebooks.info/

Chapter 4: Introducing the Excel Object Model

With literally thousands of properties and methods available, you can easily
be overwhelmed. I've been working with this stuff for years, and I'm still

overwhelmed. But as I've said before and I say again: You’ll never need to use
most of the available properties and methods.

Another slant on McObjects,
McProperties, and McMethods

Here's an analogy that may help you understand
the relationships among objects, properties,
and methods in VBA. In this analogy, | compare
Excel with a fast-food restaurant chain.

The basic unit of Excel is a Workbook object. In
a fast-food chain, the basic unit is an individual
restaurant. With Excel, you can add a workbook
and close a workbook, and all the open work-
books are known as Workbooks (a collection of
Workbook objects). Similarly, the management
of a fast-food chain can add a restaurant and
close a restaurant, and all the restaurants in the
chain can be viewed as the Restaurants collec-
tion (a collection of Restaurant objects).

An Excel workbook is an object, but it also
contains other objects such as worksheets,
charts, VBA modules, and so on. Furthermore,
each object in a workbook can contain its own
objects. For example, a Worksheet object can
contain Range objects, PivotTable objects,
Shape objects, and so on.

Continuing with the analogy, a fast-food res-
taurant (like a workbook) contains objects such
as the Kitchen, DiningArea, and Tables (a col-
lection). Furthermore, management can add or
remove objects from the Restaurant object. For
example, management may add more tables to
the Tables collection. Each of these objects can
contain other objects. For example, the Kitchen
object has a Stove object, VentilationFan object,
Chef object, Sink object, and so on.

So far, so good. This analogy seems to work. Let
me see if | can take it further.

Excel’s objects have properties. For example, a
Range object has properties such as Value and
Name, and a Shape object has properties such
as Width, Height, and so on. Not surprisingly,
objects in a fast-food restaurant also have prop-
erties. The Stove object, for example, has proper-
ties such as Temperature and NumberofBurners.
The VentilationFan has its own set of properties
(TurnedOn, RPM, and so on).

Besides properties, Excel’s objects also have
methods, which perform an operation on an
object. For example, the ClearContents method
erases the contents of a Range object. An object
in a fast-food restaurant also has methods.
You can easily envision a ChangeThermostat
method for a Stove object or a SwitchOn
method for a VentilationFan object.

In Excel, methods sometimes change an
object’s properties. The ClearContents method
for a Range changes the Range’s Value prop-
erty. Similarly, the ChangeThermostat method
on a Stove object affects its Temperature
property. With VBA, you can write procedures
to manipulate Excel’s objects. In a fast-food
restaurant, the management can give orders
to manipulate the objects in the restaurants.
(“Turn the stove on and switch the ventilation
fan to high.”)

The next time you visit your favorite fast-food
joint, just say, “I'll have a Burger object with the
Onion property set to False.”

ooks.com/

http://www.it-ebooks.info/

62 Part Il: How VBA Works with Excel

Object properties

Every object has properties. You can think of properties as attributes that
describe the object. An object’s properties determine how it looks, how it
behaves, and even whether it is visible. Using VBA, you can do two things
with an object’s properties:

v Examine the current setting for a property.

v Change the property’s setting.

For example, a single-cell Range object has a property called Value. The
Value property stores the value contained in the cell. You can write VBA
code to display the Value property, or you may write VBA code to set the
Value property to a specific value. The following macro uses the VBA built-
in MsgBox function to bring up a box that displays the value in cell Al on
Sheet] of the active workbook. See Figure 4-2.

Sub ShowValue ()
Contents = Worksheets ("Sheetl") .Range("Al") .Value
MsgBox Contents

End Sub

I | 5] investments dsm

- . A] C] E F
Figure 4-2: Y

1
Thismes- |[2| soras [Microsoft Excel (ol
sage box || * 68381
. 4
displays || .

954,92

aRange ||
object’s || 7
Value |-
proper‘ty. 10 -

4 4 » M| Sheetl ‘Sheet? Sheet3 I 4 p[.:
I

By the way, MsgBox is a very useful function. You can use it to display results
while Excel executes your VBA code. I tell you more about this function in
Chapter 15, so be patient (or just skip and read all about it).

The code in the preceding example displays the current setting of a cell’s
Value property. What if you want to change the setting for that property?
The following macro changes the value in cell Al by changing the cell’s Value

property:
Sub ChangeValue ()

Worksheets ("Sheetl") .Range ("Al") .Value = 994.92
End Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 4: Introducing the Excel Object Model 63

SMBER
é‘,\“

After Excel executes this procedure, cell Al on Sheet1 of the active work-
book contains the value 994.92. If the active workbook does not have a sheet
named Sheet1, executing that macro will display an error message. VBA just
follows instructions, and it can’t work with a sheet that doesn’t exist.

Each object has its own set of properties, although some properties are
common to many objects. For example, many (but not all) objects have a
Visible property. Most objects also have a Name property.

Some object properties are read-only, which means that you can see the
property’s value, but you can’t change it.

As I mention earlier in this chapter, a collection is also an object. This means
that a collection also has properties. For example, you can determine how
many workbooks are open by accessing the Count property of the Workbooks
collection. The following VBA procedure displays a message box that tells you
how many workbooks are open:

Sub CountBooks ()
MsgBox Workbooks.Count
End Sub

Object methods

In addition to properties, objects have methods. A method is an action you
perform with an object. A method can change an object’s properties or make
the object do something.

This simple example uses the ClearContents method on a Range object to
erase the contents of cell Al on the active sheet:

Sub ClearRange ()
Range ("Al") .ClearContents
End Sub

Some methods take one or more arguments. An argument is a value that further
specifies the action to perform. You place the arguments for a method after the
method, separated by a space. Multiple arguments are separated by a comma.

The following example activates Sheet1 (in the active workbook) and then
copies the contents of cell Al to cell B1 by using the Range object’s Copy
method. In this example, the Copy method has one argument — the destina-
tion range for the copy operation:

Sub CopyOne ()
Worksheets ("Sheetl") .Activate
Range ("Al") .Copy Range("B1")
End Sub

ooks.com/

http://www.it-ebooks.info/

64

Part ll: How VBA Works with Excel

WMBER
@Q
&

Notice that | omit the worksheet reference when I refer to the Range objects.
I can do this safely because [used a statement to activate Sheetl (using the
Activate method).

Because a collection is also an object, collections have methods. The following
macro uses the Add method for the Workbooks collection:

Sub AddAWorkbook ()
Workbooks .Add
End Sub

As you may expect, this statement creates a new workbook. In other words,
it adds a new workbook to the Workbooks collection. After you execute this
macro, a fresh workbook will be the active workbook.

Object events

In this section, I briefly touch on one more topic that you need to know
about: events. Objects respond to various events that occur. For example,
when you’re working in Excel and you activate a different workbook, an
Activate event occurs. You could, for example, have a VBA macro that is
designed to execute whenever an Activate event occurs for a particular
Workbook object.

Excel supports many events, but not all objects can respond to all events.
And some objects don’t respond to any events. The only events you can use
are those made available by the programmers of Microsoft Excel. The con-
cept of an event becomes clear in Chapter 11 and also in Part IV.

Finding Out More

Consider yourself initiated into the wonderful world of objects, properties,
methods, and events. You find out more about these concepts in the chap-
ters that follow this one. If you just can’t get enough, you may also be inter-
ested in three other excellent tools:

v VBA’s Help system

v The Object Browser

v Auto List Members

ooks.com/

http://www.it-ebooks.info/

3

|
Figure 4-3:
An example
from VBA's
Help

system.
|

Chapter 4: Introducing the Excel Object Model 65

Using VUBA’s Help system

The VBA Help system describes every object, property, and method available
to you. This is an excellent resource for finding out about VBA, and it is more
comprehensive than any book on the market.

If you’re working in a VBA module and want information about a particular
object, method, or property, move the cursor to the word you’re interested in
and press F1. In a few seconds, you see the appropriate help topic, complete
with cross-references and perhaps even an example or two.

Figure 4-3 shows a screen from the VBA Help system — in this case, for a
Worksheet object.

v Click Properties to get a complete list of this object’s properties.

v Click Methods to get a listing of its methods.

v~ Click Events to get a listing of the events it responds to.

@) Excel Help = B R
© 0 0® @ Al s B
worksheet ~ P Search =
TTable of Contents % | Excel 2010 Deweloper Reference = Excel Object Model Reference = Worksheet Ghject A
@ Watch Object e
@ Watches Object Excel Developer Reference
& Webptions Obdect Worksheet Object
@ Windon objct Represents a workshest.
@ Windaws Ciject Remarks)
@ ook cbrect lﬁfh‘:s;:rslt‘::::lhﬁ: s amember ofthe Worksheets colecon. The Worksheeks colecion cotains
(e @ The Werksheet cbiect s also amember of the Shects calection, The Sheets collection cotains ol the
@ Workbooks Objert shests in the workbook (ot chart sheets and worksheets)
Mworksheet Ohject Example
Obiect), where indaxis the workshesk index number or name, to return a single
@WWksheet [e—— Workehbct st T olound e int o cheet it achen sitios, |
@ Froperies Visual Basic for Applications £
- Uorksheets (1) .¥isible = False
&@pEvents The worksheet index number denctes the position of the worksheet on the workbook's tab bar,

Weorksheets (1} s the first (leftmost) worksheet in the workbook, and Worksheets

@ WorksheetFunction Cbject (Workshests. Count | is the last one. All workshests are induded in the index count, even if they're

& Workshests Object hidden.

@ Worksheetiew Object The workshest name is shown on the tab for the worksheet, Use the Name property to set or return the
& siriDaksBinding Object warkshest name, The following example protects the scenarios on Sheetl,

A4

@ mitep Chjsct ¥isual Basic for Applications

& ¥riaps Object
7 Dim strPassword As String

& ¥minamespace Object strPassword = InputBox ("Enter the password for the worksheer™)

@ ¥miNamespaces Object Uorksheets ("Sheet1”) . Protect password:=strPassword, scenarios:=Tru

@

@ umiSchema Object “When a worksheet is the active sheet, you can use the ActiveSheet property to refer to it The Following

@ miSchemas Obisct example uses the Activate method ko activate Shest1, sets the page orientation to landscape mode, and

&g ~miochemas Shjec! then prints the workshest,

&@Path Object
p ¥isual Basic for Applications

@ Enumerations =

Nl) £ | Uorksheets ("Sheeti”).ictivate
@ Microsoft Graph Visual Basic Referen ActiveSheet.PageSetup.Crientation = xllandscape
d@zMicrasoft OfFfice 2010 Object Mol = | AStivedhest.PrintOut -
< m v« T b
Developer Reference | | @ orfiine

ooks.com/

http://www.it-ebooks.info/

66

Part ll: How VBA Works with Excel

|
Figure 4-4:
Browsing

for objects
with the
Object
Browser.
|

Using the Object Browser

The VBE includes another tool known as the Object Browser. As the name
implies, this tool lets you browse through the objects available to you. To
access the Object Browser, press F2 when the VBE is active (or choose
View=>Object Browser). You see a window like the one shown in Figure 4-4.

%5 Object Brawser =l e]
<All Libraries> -] 4 ﬂ
commient - #4) 2
Search Results
| Class | Member
2 Range -& AddComment S
£ SignatureSetup & AllowComments
£ Range =& ClearComments
i Comment
@ ListOhject E& Comment
& Name B8 Comment
B Rannp B Comment %
Classes Members of 'Comment’
£ CommandButton « [E8 Application
ES' Author
& Comments S Creator
) Conditionvalue -& Delete
£ Connections - Next
£ ConnectorFormat ES' Parent
& Constants & Previous
& Constants ES' Shape
= ContentVeriicationResulte [+ Text
£ control ' visible
& ContralFormat
) Contrals
« Conversion
B crop
) CubeField
#) FuhaCialde =
Class Comment
Memiser of Excel

The drop-down list at the top contains a list of all currently available object
libraries. Figure 4-4 shows All Libraries. If you want to browse through Excel’s
objects, select Excel from the drop-down list.

The second drop-down list is where you enter a search string. For example, if
you want to look at all Excel objects that deal with comments, type comment
into the second field and click the Search button. (It has a pair of binoculars
on it.) The Search Results window displays everything in the object library
that contains the text comment. If you see something that looks like it may be
of interest, select it and press F1 for more information.

Automatically listing properties and methods

In Chapter 3, I noted a handy feature called Auto List Members (AKA,
“IntelliSense”). This feature provides a list of properties and methods as you
type. Figure 4-5 shows an example for the Workbooks collection.

ooks.com/

http://www.it-ebooks.info/

|
Figure 4-5:
The

Auto List
Members
feature
helps you
identify
properties
and meth-
ods for an
object.
|

Chapter 4: Introducing the Excel Object Model 6 7

% nvestments.dsm - Modulel {Code)

|(General) j |Col||ﬂWorkI)ooks

Sub CountWorkbooks ()
BookCount=workbooks. 1:|
End Sub =@ CanCheckOut =
=% ChackOut
= Close |
o CETTIN
e8! Creator
B8 Item
=& Open

By

After I typed the dot after workbooks, the VBE volunteered to help by display-
ing a list of properties and methods for that collection. After [typed the ¢

the list was narrowed to items that began with that letter. Highlight the item
you need, press Tab, and voila! You've eliminated some typing — and also
ensured that the property or method was spelled correctly.

ooks.com/

http://www.it-ebooks.info/

68 Part Il: How VBA Works with Excel

ooks.com/

http://www.it-ebooks.info/

Chapter 5

VBA Sub and Function Procedures

In This Chapter

Understanding the difference between Sub procedures and Function procedures

Executing Sub procedures (many ways)

Executing Function procedures (two ways)

Subs

Several times in preceding chapters, I mention Sub procedures and allude
to the fact that Function procedures also play a role in VBA. In this chap-
ter, I clear up confusion about these concepts.

versus Functions

The VBA code that you write in the Visual Basic Editor is known as a proce-
dure. The two most common types of procedures are Sub and Function.

v A Sub procedure is a group of VBA statements that performs an action
(or actions) with Excel.

v A Function procedure is a group of VBA statements that performs a cal-
culation and returns a single value.

Most of the macros you write in VBA are Sub procedures. You can think of
a Sub procedure as being like a command: Execute the Sub procedure and
something happens. (Of course, exactly what happens depends on the Sub
procedure’s VBA code.)

A Function is also a procedure, but it’s quite different from a Sub. You're
already familiar with the concept of a function. Excel includes many work-
sheet functions that you use every day (well, at least every weekday).
Examples include SUM, PMT, and VLOOKUP. You use these worksheet func-
tions in formulas. Each function takes one or more arguments (although a
few functions don’t use any arguments). The function does some behind-the-
scenes calculations using those arguments, and then it returns a single value.
The same goes for Function procedures that you develop with VBA.

ooks.com/

http://www.it-ebooks.info/

70

Part ll: How VBA Works with Excel

A\\S

<MBER
S

Looking at Sub procedures

Every Sub procedure starts with the keyword Sub and ends with an End Sub
statement. Here’s an example:

Sub ShowMessage ()
MsgBox "That's all folks!"
End Sub

This example shows a procedure named ShowMessage. A set of parentheses
follows the procedure’s name. In most cases, these parentheses are empty.
However, you may pass arguments to Sub procedures from other proce-
dures. If your Sub uses arguments, list them between the parentheses.

When you record a macro with the Excel macro recorder, the result is always
a Sub procedure.

As you see later in this chapter, Excel provides quite a few ways to execute a
VBA Sub procedure.

Looking at Function procedures

Every Function procedure starts with the keyword Function and ends with an
End Function statement. Here’s a simple example:

Function CubeRoot (number)
CubeRoot = number ~ (1 / 3)
End Function

This function, named CubeRoot, takes one argument (named number), which
is enclosed in parentheses. Functions can have any number of arguments or
none at all. When you execute the function, it returns a single value — the
cube root of the argument passed to the function.

VBA allows you to specify what type of information (also known as data type)
is returned by a Function procedure. Chapter 7 contains more information on
specifying data types.

You can execute a Function procedure in only two ways. You can execute it
from another procedure (a Sub or another Function procedure) or use it in a
worksheet formula.

No matter how hard you try, you can’t use the Excel macro recorder to record

a Function procedure. You must manually enter every Function procedure
that you create.

ooks.com/

http://www.it-ebooks.info/

Chapter 5: VBA Sub and Function Procedures

Naming Subs and Functions

Like humans, pets, and hurricanes, every Sub and Function procedure must
have a name. Although it is perfectly acceptable to name your dog Hairball

Harris, it’s usually not a good idea to use such a freewheeling attitude when
naming procedures. When naming procedures, you must follow a few rules:

» You can use letters, numbers, and some punctuation characters, but the
first character must be a letter.

» You can’t use any spaces or periods in the name.
v VBA does not distinguish between uppercase and lowercase letters.

» You can’t embed any of the following characters in a procedure name: #,
$, %, & @, ", * or!

v If you write a Function procedure for use in a formula, don’t use a name
that looks like a cell address (for example, AK47). Actually, Excel allows
such function names, but why make things more confusing than they are
already?

v Procedure names can be no longer than 255 characters. (Of course, you
would never make a procedure name this long.)

Ideally, a procedure’s name describes the routine’s purpose. A good prac-
tice is to create a name by combining a verb and a noun — for example,
ProcessData, PrintReport, Sort_Array, or CheckFilename.

Some programmers prefer using sentence-like names that provide a complete
description of the procedure. Some examples include WriteReportToTextFile
and Get_Print_Options_and_Print_Report. The use of such lengthy names
has pros and cons. On the one hand, such names are descriptive and usually
unambiguous. On the other hand, they take longer to type. Everyone devel-
ops a naming style, but the main objectives are to make the names descrip-
tive and to avoid meaningless names such as Dolt, Update, Fix, and Macrol.

Executing Sub procedures

Although you may not know much about developing Sub procedures at this
point, I'm going to jump ahead a bit and discuss how to execute these pro-
cedures. This is important because a Sub procedure is worthless unless you
know how to execute it.

ooks.com/

/1

http://www.it-ebooks.info/

/2

Part ll: How VBA Works with Excel

By the way, executing a Sub procedure means the same thing as running or
calling a Sub procedure. You can use whatever terminology you like.

How do I run you? Let me count the ways. You can execute a VBA Sub in
many ways — that’s one reason you can do so many useful things with Sub
procedures. Here’s an exhaustive list of the ways (well, at least all the ways |
could think of) to execute a Sub procedure:

v With the Run®Run Sub/UserForm command (in the VBE). Excel executes
the Sub procedure in which the cursor is located. This menu command
has two alternatives: the F5 key and the Run Sub/UserForm button on
the Standard toolbar in the VBE. These methods don’t work if the proce-
dure requires one or more arguments.

v From Excel’s Macro dialog box. You open this box by choosing
Developer~Code>Macros or by choosing View>Macros=>Macros. Or
bypass the Ribbon and just press the Alt+F8 shortcut key. When the
Macro dialog box appears, select the Sub procedure you want and click
Run. This dialog box lists only the procedures that don’t require an
argument.

v Using the Ctrl+key shortcut assigned to the Sub procedure (assuming
you assigned one).

v Clicking a button or a shape on a worksheet. The button or shape must
have a Sub procedure assigned to it.

+* From another Sub procedure that you write.

v From a button that you've added to the Quick Access toolbar. (See
Chapter 19.)

v From a custom item on the ribbon you develop. (See Chapter 19.)
v Automatically, when you open or close a workbook. (See Chapter 11.)

»* When an event occurs. As [explain in Chapter 11, these events include
saving the workbook, making a change to a cell, activating a sheet, and
other things.

v From the Immediate window in the VBE. Just type the name of the Sub
procedure and press Enter.

[demonstrate some of these techniques in the following sections. Before I
can do that, you need to enter a Sub procedure into a VBA module.

1. Start with a new workbook.
2. Press Alt+F11 to activate the VBE.

3. Select the workbook in the Project window.

ooks.com/

http://www.it-ebooks.info/

Chapter 5: VBA Sub and Function Procedures

4. Choose Insert=>Module to insert a new module.
5. Enter the following into the module:

Sub CubeRoot ()
Num = InputBox("Enter a positive number")
MsgBox Num ~ (1/3) & " is the cube root."
End Sub

This procedure asks the user for a number and then displays that number’s
cube root in a message box. Figures 5-1 and 5-2 show what happens when you
execute this procedure.

|
Figure 5-1:
Using the | MicresoftBxcel
built-in VBA | Enterapositive number {
InputBox Cancsl
function to
geta | [1erse
number.

|
|

Figure 5-2:

Dlsplaylng Micrasoft Excel ==
the cube
root of a

number via
the MsgBox

function.
|

5.72406975595830 15 the cube root.

By the way, CubeRoot is not an example of a good macro. It doesn’t check for
errors, so it fails easily. To see what [mean, try clicking the Cancel button in
the input box or entering a negative number.

Executing the Sub procedure directly

The quickest way to execute this procedure is by doing so directly from the
VBA module in which you defined it. Follow these steps:

1. Activate the VBE and select the VBA module that contains the
procedure.

ooks.com/

http://www.it-ebooks.info/

74 Part ll: How VBA Works with Excel

2. Move the cursor anywhere in the procedure’s code.
3. Press F5 (or choose Run>Run Sub/UserForm).
4. Respond to the input box and click OK.
The procedure displays the cube root of the number you entered.
MBER You can’t use the Run=>Run Sub/UserForm command to execute a Sub proce-
dure that uses arguments, because you have no way to pass the arguments to

the procedure. If the procedure contains one or more arguments, the only way
to execute it is to call it from another procedure — which must supply the

argument(s).

Executing the procedure from
the Macro dialog box

Most of the time, you execute Sub procedures from Excel, not from the VBE.
The following steps describe how to execute a macro by using Excel’s Macro

dialog box.
1. Activate Excel.
Alt+F11 is the express route.
2. Choose Developer~Coder>Macros (or press Alt+F8).
Excel displays the dialog box shown in Figure 5-3.

3. Select the macro.
4. Click Run (or double-click the macro’s name in the list box).

Macra [|]

Macra name:
CubeRoak .3

Step Into

Edit

it

Figure 5-3:
Delete
The Macro
dialog box
liStS a” Macros in: | All Open Workbooks |Z|

available | pescription

Sub
procedures. —
|

E

Options...

{

ooks.com/

http://www.it-ebooks.info/

Chapter 5: VBA Sub and Function Procedures

|
Figure 5-4:
The Macro
Options
dialog box
lets you set
options

for your
macros.
|

Executing a macro by using a shortcut key

Another way to execute a macro is to press its shortcut key. But before you
can use this method, you must assign a shortcut key to the macro.

You have the opportunity to assign a shortcut key in the Record Macro
dialog box when you begin recording a macro. If you create the procedure
without using the macro recorder, you can assign a shortcut key (or change
an existing shortcut key) by using the following procedure:

1. Choose Developer->Code~>Macros.
2. Select the Sub procedure name from the list box.
In this example, the procedure is named CubeRoot.
3. Click the Options button.
Excel displays the dialog box shown in Figure 5-4.

4. Click the Shortcut Key option and enter a letter in the box labeled
Ctrl.

The letter you enter corresponds to the key combination you want to
use for executing the macro. For example, if you enter the lowercase
letter ¢, you can then execute the macro by pressing Ctrl+C. If you enter
an uppercase letter, you need to add the Shift key to the key combina-
tion. For example, if you enter C, you can execute the macro by pressing
Ctrl+Shift+C.

5. Click OK or Cancel to close the Macro Options dialog box.

Macra Options 7] =]

Macro name:
CubeRoot

Shorbcut key:
Crrl45hift+ | C

Description:

Cancel

After you’'ve assigned a shortcut key, you can press that key combination to
execute the macro.

ooks.com/

75

http://www.it-ebooks.info/

76

Part ll: How VBA Works with Excel

“ NG/
QA \!

|
Figure 5-5:
The Ribbon,
showing

the controls
available
when you
click Insert
on the
Developer
tab.
|

The shortcut keys you assign to macros override Excel’s built-in shortcut
keys. For example, if you assign Ctrl+C to a macro, you can’t use this shortcut
key to copy data in your workbook. This is usually not a big deal because
Excel always provides other ways to execute commands.

Executing the procedure from
a button or shape

Sometimes, you might like the idea of assigning the macro to a button (or any
other shape) on a worksheet. To assign the macro to a button, follow these
steps:

1. Activate a worksheet.

2. Add a button from the Form Controls group.

To display the Form Controls group, choose Developer=>Controls=Insert

(see Figure 5-5).
Home Insert Page Layout Farmulas Data Reaview View Developer
= ¥ Record Macra = L'-‘\/ E Properties E Jﬁ
2 [E5] use Relative References k=] gl view Code e
ros Insert ian Source Document
A\ Macra Security = - Run Dialog Panel
Code Form Controls XML Maclify
- o =F g=;Ac
ave &
B [U Ao 3 abl H
ActiveX Controls
== =B FEE 2
#Heo AER%

3. Click the Button tool in the Form Controls group.
4. Drag in the worksheet to create the button.

After you add the button to your worksheet, Excel jumps right in and
displays the Assign Macro dialog box shown in Figure 5-6.

5. Select the macro you want to assign to the button.
6. Click OK.

ooks.com/

http://www.it-ebooks.info/

Chapter 5: VBA Sub and Function Procedures

|
Figure 5-6:
When you
add a but-
tonto a
worksheet,
Excel auto-
matically
displays

the Assign
Macro
dialog box.
|

?—1 O
Buttonl -
Assign Macro 7 ==
= . Macro name:
Suttonl_Click B3 Hewe
CubeRook -
Record...
Macros in: | all Open Workbooks E
Description

After you’ve made the assignment, clicking the button will execute the
macro — just like magic.

Note that the Assign Macro dialog box also gives you an opportunity to
record a macro (by clicking the Record button). Or click the New button, and
Excel will insert an empty Sub procedure with the name you specify. Most of
the time, though, you’ll assign an existing macro to a button.

When you add a button, note that the drop-down box shows two sets of con-
trols: Form Controls and ActiveX Controls. These two groups of controls look
similar, but they are actually very different. In practice, the Form Controls are
easier to use.

You can also assign a macro to any other shape or object. For example,
assume you’d like to execute a macro when the user clicks a Rectangle
object.
1. Add the Rectangle to the worksheet.

Insert a rectangle by using the Insert=Illustrations=>Shapes command.
. Right-click the rectangle.
. Choose Assign Macro from its shortcut menu.
. Select the macro from the Assign Macro dialog box.
. Click OK.

G e W N

ooks.com/

/7

http://www.it-ebooks.info/

78 Part Il: How VBA Works with Excel

After performing these steps, clicking the rectangle will execute the assigned
macro.

Executing the procedure from
another procedure

You can also execute a procedure from another procedure. Follow these
steps if you want to give this a try:

1. Activate the VBA module that holds the CubeRoot routine.

2. Enter this new procedure (either above or below CubeRoot code — it
makes no difference):

Sub NewSub ()
Call CubeRoot
End Sub

3. Execute the NewSub macro.

The easiest way to do this is to move the cursor anywhere within the
NewSub code and press F5. Notice that this NewSub procedure simply
executes the CubeRoot procedure.

By the way, the keyword Call is optional. The statement can consist of only
the Sub procedure’s name. I find, however, that using the Call keyword makes
it perfectly clear that a procedure is being called.

Executing Function procedures

Functions, unlike Sub procedures, can be executed in only two ways:

1 By calling the function from another Sub procedure or Function procedure

v By using the function in a worksheet formula
Try this simple function. Enter it into a VBA module:

Function CubeRoot (number)
CubeRoot = number ~ (1/3)
End Function

This function is pretty wimpy — it merely calculates the cube root of the
number passed to it as its argument. It does, however, provide a starting
point for understanding functions. It also illustrates an important concept
about functions: how to return the value. (You do remember that a function
returns a value, right?)

ooks.com/

http://www.it-ebooks.info/

Chapter 5: VBA Sub and Function Procedures 79

Notice that the single line of code that makes up this Function procedure
performs a calculation. The result of the math (number to the power of /5) is
assigned to the variable CubeRoot. Not coincidentally, CubeRoot is also the
name of the function. To tell the function what value to return, you assign
that value to the name of the function.

Calling the function from a Sub procedure

Because you can’t execute a function directly, you must call it from another
procedure. Enter the following simple procedure in the same VBA module
that contains the CubeRoot function:

Sub CallerSub()
Ans = CubeRoot (125)
MsgBox Ans

End Sub

When you execute the CallerSub procedure (using any of the methods
described earlier in this chapter), Excel displays a message box that contains
the value of the Ans variable, which is 5.

Here’s what’s going on: The CubeRoot function is executed, and it receives an
argument of 125. The calculation is performed by the function’s code, and the
function’s returned value is assigned to the Ans variable. The MsgBox func-
tion then displays the value of the Ans variable.

Try changing the argument that’s passed to the CubeRoot function and run
the CallerSub macro again. It works just like it should — assuming that you
give the function a valid argument (a positive number).

By the way, the CallerSub procedure could be simplified a bit. The Ans vari-
able is not really required. You could use this single statement to obtain the
same result:

MsgBox CubeRoot (125)

Calling a function from a worksheet formula

Now it’s time to call this VBA Function procedure from a worksheet formula.
Activate a worksheet in the same workbook that holds the CubeRoot function
definition. Then enter the following formula into any cell:

=CubeRoot (1728)

The cell displays 12, which is indeed the cube root of 1,728.

ooks.com/

http://www.it-ebooks.info/

80

Part ll: How VBA Works with Excel

|
Figure 5-7:
The
CubeRoot
function
appearsin
the User
Defined
category of
the Insert
Function
dialog box.
|

A\

As you might expect, you can use a cell reference as the argument for the

CubeRoot function. For example, if cell Al contains a value, you can enter

=CubeRoot(Al). In this case, the function returns the number obtained by
calculating the cube root of the value in Al.

You can use this function any number of times in the worksheet. As with
Excel’s built-in functions, your custom functions also appear in the Insert
Function dialog box. Click the Insert Function toolbar button and choose the
User Defined category. As shown in Figure 5-7, the Insert Function dialog box
lists your very own function.

Insert Function

Search For a function:

Type a brief description of what you want to do and then click.
50

Qr select a category: User Defined E|

Select a function:

CubeRoot{number)
Mo help available.

Help on this function

oK Cancel

If you want the Insert Function dialog box to display a description of the func-
tion, follow these steps:
1. Choose Developer->Code~>Macros.

Excel displays the Macro dialog box, but CubeRoot doesn’t appear in
the list. (CubeRoot is a Function procedure, and this list shows only Sub
procedures.) Don't fret.

. Type the word CubeRoot in the Macro Name box.
. Click the Options button.
. Enter a description of the function in the Description box.

. Close the Macro Options dialog box.

S G e W N

. Close the Macro dialog box by clicking the Cancel button.

This descriptive text now appears in the Insert Function dialog box.
By now, things may be starting to come together for you. (I wish I'd had this
book when / was starting out.) You've found out lots about Sub and Function

procedures. You start creating macros in Chapter 6, which discusses the ins
and outs of developing macros by using the Excel macro recorder.

ooks.com/

http://www.it-ebooks.info/

Chapter 6
Using the Excel Macro Recorder

In This Chapter

Recording your actions by using the Excel built-in macro recorder
Understanding the types of macros you can record
Setting the appropriate options for macro recording

ou can use two methods to create an Excel macro:

v Record it by using the Excel macro recorder.

v Write it manually.

This chapter deals specifically with the ins and outs of using the Excel macro
recorder. Recording a macro isn’t always the best approach, and some
macros simply can’t be recorded, no matter how hard you try. You'll see,
however, that the Excel macro recorder is very useful. Even if your recorded
macro isn’t quite what you want, the macro recorder can almost always lead
you in the right direction.

Is It Live or Is It UBA?

In previous editions of this book, | compared recording a macro to using a
tape recorder. However, it occurred to me that tape recorders are rapidly
going the way of the dinosaurs. So [modernized this section, and it now com-
pares macro recording to making a digital video. This analogy, like the previ-
ous one, goes only so far. Table 6-1 compares macro recording with making a
video.

ooks.com/

http://www.it-ebooks.info/

Part ll: How VBA Works with Excel

Table 6-1

Video Recording versus Macro Recording

Video Recorder

Excel Macro Recorder

What equipment is
required?

A video camera.

A computer and a copy
of Excel.

What is recorded?

Video and audio.

Actions taken in Excel.

Where is the record-
ing stored?

On a flash memory card.

In a VBA module.

How do you play it
back?

Locate the file and press
Play.

Locate the macro in the
Macros dialog box and

click Run (or use other

methods).

Can you edit the
recording?

Yes, if you have the proper
video-editing software.

Yes, if you know what
you're doing.

Can you copy the
recording?

Yes, just like copying any
other file.

Yes (no additional
equipment required).

Is the recording
accurate?

Depends on the situation
and the equipment quality.

Depends on how you
set things up when you
record the macro.

What if you make a
mistake?

Rerecord the video (or edit
it if possible).

Rerecord the macro (or
edit it if possible).

Can you view the
recording?

Yes, by opening the file
with appropriate software.

Yes, by opening a
module in the VBE.

Can you share it with
the world?

Yes, YouTube is a good
option.

Yes, post it at your Web
site or blog.

Can you make money
with the recording?

Yes, if it's really good (edit-
ing usually required).

Yes, but you need to do
a lot of editing first.

Recording Basics

You take the following basic steps when recording a macro. I describe these
steps in more detail later in this chapter.
1. Determine what you want the macro to do.
2. Get things set up properly.
This step determines how well your macro works.

3. Determine whether you want cell references in your macro to be rela-
tive or absolute.

ooks.com/

http://www.it-ebooks.info/

Chapter 6: Using the Excel Macro Recorder 83

<MBER
é"\&

4. Click the Record Macro button in the left side of the status bar (or
choose Developer=>Code~’Record Macro).

Excel displays its Record Macro dialog box.
5. Enter a name, shortcut key, macro location, and description.

Each of these items — with the exception of the name — is optional.
6. Click OK in the Record Macro dialog box.

Excel automatically inserts a VBA module. From this point, Excel con-
verts your actions into VBA code. It also displays a Stop Recording
button on your status bar (a blue square).

7. Perform the actions you want recorded by using the mouse or the
keyboard.

8. After you're finished, click the Stop Recording button on the status
bar (or choose Developer->Code=>Stop Recording).

Excel stops recording your actions.
9. Test the macro to make sure it works correctly.
10. As an option, you might want to clean up the code by removing extra-

neous statements.

The macro recorder is best suited for simple, straightforward macros. For
example, you might want a macro that applies formatting to a selected range
of cells or that sets up row and column headings for a new worksheet.

The macro recorder is for Sub procedures only. You can’t use the macro
recorder to create Function procedures.

You may also find the macro recorder helpful for developing more complex
macros. Often, | record some actions and then copy the recorded code into
another, more complex macro. In most cases, you need to edit the recorded
code and add some new VBA statements.

The macro recorder cannot generate code for any of the following tasks,
which I describe later in the book:
v Performing any type of repetitive looping
v Performing any type of conditional actions (using an If-Then statement)
v Assigning values to variables
v Specifying data types
v Displaying pop-up messages

v Displaying custom dialog boxes

ooks.com/

http://www.it-ebooks.info/

&4 Partil: How VBA Works with Excel

QgN\BEH The macro recorder’s limited capability certainly doesn’t diminish its impor-
& tance. I make the following point throughout the book: Recording your actions
is perhaps the best way to master VBA. When in doubt, try recording. Although

the result may not be exactly what you want, viewing the recorded code may
steer you in the right direction.

Preparing to Record

Before you take the big step and turn on the macro recorder, spend a minute

or two thinking about what you’re going to do. You record a macro so that
QQN\BER Excel can automatically repeat the actions you record.
<
&

Ultimately, the success of a recorded macro depends on five factors:

v How the workbook is set up while you record the macro
v What is selected when you start recording

1 Whether you use absolute or relative recording mode
v The accuracy of your recorded actions

v The context in which you play back the recorded macro

The importance of these factors becomes crystal clear when I walk you
through an example.

Relative or Absolute?

When recording your actions, Excel normally records absolute references
to cells. (This is the default recording mode.) Very often, this is the wrong
recording mode. If you use relative recording, Excel records relative refer-
ences to cells. The distinction is explained in this section.

Recording in absolute mode

Follow these steps to record a simple macro in absolute mode. This macro
simply enters three month names into a worksheet:

1. Choose Developer~Code~>Record Macro.
2. Type Absolute as the name for this macro.

3. Click OK to begin recording.

ooks.com/

http://www.it-ebooks.info/

WMBER
@“
&

Chapter 6: Using the Excel Macro Recorder 85

. Activate cell Bl and type Jan in that cell.
. Move to cell C1 and type Feb.

. Move to cell D1 and type Mar.

. Click cell B1 to activate it again.

. Stop the macro recorder.

. Press Alt+F11 to activate the VBE.

© W N S G A

10. Examine the Modulel module.
Excel generates the following code:
Sub Absolute ()

1

' Absolute Macro

1

Range ("B1") .Select

ActiveCell .FormulaR1Cl = "Jan"
Range ("Cl") .Select
ActiveCell .FormulaR1Cl = "Feb"
Range ("D1") .Select
ActiveCell.FormulaR1Cl = "Mar"
Range ("B1") .Select

End Sub

When executed, this macro selects cell Bl and inserts the three month
names in the range B1:D1. Then the macro reactivates cell B1.

These same actions occur regardless of which cell is active when you
execute the macro. A macro recorded by using absolute references always
produces the same results when it is executed. In this case, the macro always
enters the names of the first three months into the range B1:D1.

Recording in relative mode

In some cases, you want your recorded macro to work with cell locations in a
relative manner. You may want the macro to start entering the month names
in the active cell. In such a case, you need to use relative recording.

You can change the manner in which Excel records your actions by clicking
the Use Relative References button in the Code group in the Developer tab.
This button is a toggle button. When the button appears in a different color,
the recording mode is relative. When the button appears normally, you are
recording in absolute mode.

You can change the recording method at any time, even in the middle of
recording.

ooks.com/

http://www.it-ebooks.info/

86 Part Il: How VBA Works with Excel

To see how relative mode recording works, erase the cells in B1:D1 and then
perform the following steps:

. Activate cell B1.

. Choose Developer->Code=>Record Macro.

. Name this macro Relative.

. Click OK to begin recording.

G b W N e

. Click the Use Relative References button to change the recording
mode to relative.

When you click this button, it changes to a different color than the rest
of the ribbon.

. Activate cell B1 and type Jan in that cell.
. Move to cell C1 and type Feb.

. Move to cell D1 and type Mar.

. Select cell B1.

10. Stop the macro recorder.

e ® I &

Notice that this procedure differs slightly from the previous example. In this
example, you activate the beginning cell before you start recording. This is an
important step when you record macros that use the active cell as a base.

This macro always starts entering text in the active cell. Try it. Move the cell
pointer to any cell and then execute the Relative macro. The month names
are always entered beginning at the active cell.

With the recording mode set to relative, the code that Excel generates is
quite different from the code generated in absolute mode:

Sub Relative ()

' Relative Macro

ActiveCell.FormulaR1Cl = "Jan"

ActiveCell.Offset (0, 1).Range("Al").Select

ActiveCell.FormulaR1Cl = "Feb"

ActiveCell.Offset (0, 1).Range("Al").Select

ActiveCell.FormulaR1Cl = "Mar"

ActiveCell .Offset (0, -2).Range("Al").Select
End Sub

To test this macro, activate any cell except B1. The month names are entered
in three cells, beginning with the cell that you activated.

ooks.com/

http://www.it-ebooks.info/

Chapter 6: Using the Excel Macro Recorder 8 7

Notice that the code generated by the macro recorder refers to cell Al. This
may seem strange because you never used cell Al during the recording of the
macro. This is simply a byproduct of the way the macro recorder works. (I dis-
cuss this in more detail in Chapter 8 where I talk about the Offset method.)

What Gets Recorded?

When you turn on the macro recorder, Excel converts your mouse and
keyboard actions into valid VBA code. I could probably write several pages
describing how Excel does this, but the best way to understand the process
is by watching the macro recorder in action. (Figure 6-1 shows how my
screen looked while I had the macro recorder turned on.)

Follow these steps:

1. Start with a blank workbook.
2. Make sure that the Excel window is not maximized.

3. Press Alt+F11 to activate the VBE (and make sure that this program
window is not maximized).

4. Resize and arrange the Excel window and the VBE window so that
both are visible.

For best results, position the Excel window on top of the VBE window,
and minimize any other applications that are running.

5. Activate Excel and choose Developer~>Code~>Record Macro.
6. Click OK to start the macro recorder.

Excel inserts a new module (named Modulel) and starts recording in
that module.

7. Activate the VBE program window.

8. In the Project Explorer window, double-click Modulel to display that
module in the Code window.

Jump back to Excel and play around for a while. Choose various Excel com-
mands and watch the code being generated in the VBE window. Select cells,
enter data, format cells, use the Ribbon commands, create a chart, change
column widths, manipulate graphics objects, and so on — go crazy! I guar-
antee that you'll be enlightened as you watch Excel spit out the VBA code
before your very eyes.

ooks.com/

http://www.it-ebooks.info/

88

Part ll: How VBA Works with Excel

|
Figure 6-1: A
convenient
window
arrangement
for watching
the macro
recorder do
its thing.
|

A9~ = Baok2 - Microsoft Excel
m Home Insert Pagelayout Formulas Data Review
v == (@ Stop Recording E T mport
= " -
== [Use Relative References) Expansion Packs
Visual Mac Remove Source Document
sic Comments Panel
Inspectar L WMadify
Bl - F | Jan v
A B [D E F G H J K L ™M N o
1 Jan Feb Mar
2
3
4 =
5
&
7
8
[}
10
11
12 B
H 4 » M| Sheetl /¥3 [0+« »[]
Ready | @ | |[EDm 0% (= y!)
£ Microsoft Visual Basic for Applications - Book2 - [Modulel {Code)] [===
i File Edit Yiew Insert Format Debug Run Tools Add-Ins Window Help Type a question far help - L8 X
HE =R | A 9 pou @ WEY @ Ln12colt -]
Project - VBAProject x| [1seneran | [Retative |
M—ia Sub Relative() =1l
=& ¥BAProject (Book2) !
=145 Microsoft Excel Objects ' Relative Macro
) Sheet! (Sheet1) !
4] Thisorkbook
(=125 Modules .
31 vdlet hetiveCell. FormulsRICL = "Jan™
ActiveCell.0ffset(0, 1).Range("Al").3elect
ActiveCell, FormulaRICL = "Feh™
AcriveCell.Offseti0, 1).Range("Al").Select
ActiveCell. FormulaRICL = "Mar”
hetiveCell Offset(D, -2).Range("Al").Select
End Sub
D

Recording Options

When recording your actions to create VBA code, you have several options.
Recall that the Developer=>Coder>Record Macro command displays the
Record Macro dialog box before recording begins, as shown in Figure 6-2.

The Record Macro dialog box, shown in Figure 6-2, lets you specify a few
aspects of your macro. In the following sections, [describe these options.

Macro name

You can enter a name for the Sub procedure that you are recording. By
default, Excel uses the names Macrol, Macro2, and so on for each macro you
record. I usually just accept the default name. If the macro works correctly
and I want to save it, I give it a more descriptive name later on. You, however,
may prefer to name the macro upfront — the choice is yours.

ooks.com/

http://www.it-ebooks.info/

Chapter 6: Using the Excel Macro Recorder 89

|
Figure 6-2:
The Record
Macro
dialog box
provides
several
options.
|

SMBER

Record Macro @
Macro name:
Macral
Sharkcut key:
Chrl+
Store macro in:
This Workbook

]

Description:

Cancel

Shortcut key

The Shortcut key option lets you execute the macro by pressing a shortcut
key combination. For example, if you enter w (lowercase), you can execute
the macro by pressing Ctrl+W. If you enter W (uppercase), the macro comes
alive when you press Ctrl+Shift+W.

You can add or change a shortcut key at any time, so you don’t have to set
this option when recording a macro. See Chapter 5 for instructions on assign-
ing a shortcut key to an existing macro.

Store Macro In

The Store Macro In option tells Excel where to store the macro that it is
recording. By default, Excel puts the recorded macro in a module in the
active workbook. If you prefer, you can record it in a new workbook (Excel
opens a blank workbook) or in your Personal Macro Workbook.

Your Personal Macro Workbook is a hidden workbook that opens automati-
cally when Excel starts. This is a good place to store macros that you'll use with
multiple workbooks. The Personal Macro Workbook is named PERSONAL.XLSB.
This file doesn’t exist until you specify it as the location for a recorded macro. If
you’ve made any changes to this file, Excel prompts you to save it when you exit.

Description

If you’d like to add some descriptive comments to your macro, use the
Description box. You can put anything you like here or nothing at all. As far
as I'm concerned, the Description option is a waste of time because it’s just
as easy to add comments to the recorded macro.

ooks.com/

http://www.it-ebooks.info/

90 Partii: How VBA Works with Excel

Is This Thing Efficient?

You might think that recording a macro would generate some award-winning
VBA code — better than you could ever write manually. Think again. In many
cases, the recorder spits out lots of extraneous garbage, and it often gener-
ates code that’s less than efficient.

Don’t get me wrong. I'm a staunch supporter of the macro recorder. It’s a
great tool for helping you master VBA. Other than simple macros, however,
I've never used a recorded macro without fixing it up a bit (usually quite

a bit).

To demonstrate just how inefficient the macro recorder’s code can be, try
this:

1. Turn on the macro recorder.

2. Choose the Page Layout->Page Setup- Orientation=>Landscape
command.

3. Turn off the macro recorder.

To take a look at the macro, activate the Modulel sheet. This single — and
very simple — command generates the following code:

Sub Macrol ()

With ActiveSheet.PageSetup
.PrintTitleRows = ""
.PrintTitleColumns = ""

End With

ActiveSheet.PageSetup.PrintArea = ""

With ActiveSheet.PageSetup
.LeftHeader = ""

.CenterHeader = ""

.RightHeader = ""

.LeftFooter = ""

.CenterFooter = ""

.RightFooter = ""

.LeftMargin = Application.
InchesToPoints (0.708661417322835)

.RightMargin = Application.
InchesToPoints (0.708661417322835)

.TopMargin = Application.
InchesToPoints (0.748031496062992)

.BottomMargin = Application.
InchesToPoints (0.748031496062992)

ooks.com/

http://www.it-ebooks.info/

Chapter 6: Using the Excel Macro Recorder

.HeaderMargin = Application.

InchesToPoints (0.31496062992126)

.FooterMargin = Application.

InchesToPoints (0.31496062992126)

.PrintHeadings = False
.PrintGridlines = False
.PrintComments = x1PrintNoComments
.PrintQuality = 300
.CenterHorizontally = False
.CenterVertically = False
.Orientation = xlLandscape

.Draft = False

.PaperSize = xlPaperLletter
.FirstPageNumber = xlAutomatic
.Order = xl1DownThenOver
.BlackAndWhite = False

.Zoom = 100

.PrintErrors = xX1PrintErrorsDisplayed
.0ddAndEvenPagesHeaderFooter = False
.DifferentFirstPageHeaderFooter = False
.ScaleWithDocHeaderFooter = True
.AlignMarginsHeaderFooter = True
.EvenPage.LeftHeader.Text = ""
.EvenPage.CenterHeader.Text = ""
.EvenPage.RightHeader.Text = ""
.EvenPage.LeftFooter.Text = ""
.EvenPage.CenterFooter.Text = ""
.EvenPage.RightFooter.Text = ""
.FirstPage.LeftHeader.Text = ""
.FirstPage.CenterHeader.Text = ""
.FirstPage.RightHeader.Text = ""
.FirstPage.LeftFooter.Text = ""
.FirstPage.CenterFooter.Text = ""
.FirstPage.RightFooter.Text = ""

End With

End Sub

You may be surprised by the amount of code generated by this single com-
mand. (I was the first time I tried something like this.) Although you changed
only one print setting, Excel generated code that sets many other print-
related properties.

This is a good example of macro-recording overkill. If you want a macro that
just switches the page setup to landscape mode, you can simplify this macro
considerably by deleting the extraneous code. This makes the macro faster
and easier to read. Here’s how the macro looks after I deleted the irrelevant

lines:

ooks.com/

91

http://www.it-ebooks.info/

92

Part ll: How VBA Works with Excel

Sub Macrol ()
With ActiveSheet.PageSetup
.Orientation = xlLandscape
End With
End Sub

[deleted all the code except the line that sets the Orientation property.
Actually, you can simplify this macro even more because you don'’t really
need the With.End With construct (I explain more about this construct in
Chapter 14):

Sub Macrol ()
ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

In this case, the macro changes the Orientation property of the PageSetup
object on the active sheet. All other properties are unchanged. By the way,
xlLandscape is a built-in constant that makes your code easier to read. This
constant has a value of 2, so the following statement works exactly the same
(but isn’t as easy to read):

ActiveSheet.PageSetup.Orientation = 2
Stay tuned. I discuss built-in constants in Chapter 7.

Rather than record this macro, you can enter it directly into a VBA module.
To do so, you have to know which objects, properties, and methods to use.
Although the recorded macro isn’t all that great, by recording it, you real-
ize that the PageSetup object has an Orientation property. Armed with this
knowledge (and probably some experimentation), you can write the macro
manually.

This chapter nearly sums it up when it comes to using the macro recorder.
The only thing missing is experience. Eventually, you discover which
recorded statements you can safely delete. Better yet, you discover how to
modify a recorded macro to make it more useful.

ooks.com/

http://www.it-ebooks.info/

Part Il

Programming
Concepts

The Sth Wave By Rich Tennant
© FicHTENN

“T started ru*m«ing ‘what if’ scenarios on my
spreadsheet, 1ike, “What i£ T were sick of this
dirtwad Job and funneled some of the company’s

money into an off—shore account?”

ooks.com/

http://www.it-ebooks.info/

In this part . . .

Fis is the part of the book that you've been waiting
for. In the next eight chapters, you find out about all
the essential elements of Excel programming. And in the
process, you see some illuminating examples that you can
adapt to your own needs.

ooks.com/

http://www.it-ebooks.info/

Chapter 7
Essential VBA Language Elements

In This Chapter

Knowing when, why, and how to use comments in your code
Using variables and constants
Telling VBA what type of data you're using

Knowing why you may need to use labels in your procedures

Because VBA is a real, live programming language, it uses many elements
common to all programming languages. In this chapter, I introduce you
to several of these elements: comments, variables, constants, data types,
arrays, and a few other goodies. If you've programmed with other languages,
some of this material will be familiar. If you're a programming newbie, it’s
time to roll up your sleeves and get busy.

Using Comments in Your VUBA Code

A comment is the simplest type of VBA statement. Because VBA ignores these
statements, they can consist of anything you want. You can insert a comment
to remind yourself why you did something or to clarify some particularly
elegant code you wrote. Use comments liberally and extensively to describe
what the code does (which isn’t always obvious by reading the code itself).
Often, code that makes perfect sense today mystifies you tomorrow. Been
there. Done that.

You begin a comment with an apostrophe (). VBA ignores any text that fol-
lows an apostrophe in a line of code. You can use a complete line for your
comment or insert your comment at the end of a line of code. The following
example shows a VBA procedure with three comments, although they’re not
necessarily good comments:

ooks.com/

http://www.it-ebooks.info/

90

Part lll: Programming Concepts

WMBER
@&
&

\\3

Sub CommentsDemo ()

' This procedure does nothing of value
x =0 'x represents nothingness
'Display the result
MsgBox X

End Sub

The “apostrophe indicates a comment” rule has one exception: VBA doesn’t
interpret an apostrophe inside a set of quotation marks as a comment indica-
tor. For example, the following statement doesn’t contain a comment, even
though it has an apostrophe:

Msg = "Can't continue"

When you're writing code, you may want to test a procedure by excluding a
particular statement or group of statements. You could delete the statements
and then retype them later. But that’s a waste of time. A better solution is to
simply turn those statements into comments by inserting apostrophes. VBA
ignores statements beginning with apostrophes when executing a routine. To
reactivate those “commented” statements, just remove the apostrophes.

Here’s a quick way to convert a block of statements to comments. In the VBE,
choose Viewr>Toolbars=>Edit to display the Edit toolbar. To convert a block
of statements to comments, select the statements and click the Comment
Block button. To remove the apostrophes, select the statements and click the
Uncomment Block button.

Although comments can be helpful, not all comments are created equal. For
example, the following procedure uses lots of comments, but they add noth-
ing of value. In this case, the code is clear enough without the comments.

Sub BadComments ()
! Declare variables
Dim x As Integer
Dim y As Integer
Dim z As Integer
! Start the routine
x = 100 ' Assign 100 to x
vy = 200 ' Assign 200 to y
! Add x and y and store in z
Z =X +y
! Show the result
MsgBox z
End Sub

Everyone develops his or her own style of commenting. To be useful, how-
ever, comments should convey information that’s not immediately obvious
from reading the code. Otherwise, comments just chew up bytes and make
files larger than necessary.

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements 9 7

A\
The following tips can help you make effective use of comments:

v Briefly describe the purpose of each Sub or Function procedure you write.
1 Use comments to keep track of changes you make to a procedure.

v Use a comment to indicate that you're using a function or a construct in
an unusual or nonstandard manner.

v Use comments to describe the variables you use, especially if you don’t
use meaningful variable names.

v Use a comment to describe any workarounds you develop to overcome
bugs in Excel.

v Write comments as you develop code, instead of saving the task for a
final step.

v Depending on your work environment, consider adding a joke or two as
a comment. The person who takes over your job when you get promoted
might appreciate the humor.

Using Variables, Constants, and Data Types

VBA'’s main purpose is to manipulate data. VBA stores the data in your comput-
er’s memory; it may or may not end up on disk. Some data, such as worksheet
ranges, resides in objects. Other data is stored in variables that you create.

Understanding variables

A variable is simply a named storage location in your computer’s memory.
You have lots of flexibility in naming your variables, so make the variable
names as descriptive as possible. You assign a value to a variable by using
the equal sign operator. (More about this later in the “Using Assignment
Statements” section.)

The variable names in these examples appear on both the left and right sides
of the equal signs. Note that the last example uses two variables.

x =1

InterestRate = 0.075
LoanPayoffAmount = 243089
DatakEntered = False

x =x + 1

UserName = "Bob Johnson"
DateStarted = #3/14/2010#
MyNum = YourNum * 1.25

ooks.com/

http://www.it-ebooks.info/

98 Part lll: Programming Concepts

VBA enforces a few rules regarding variable names:

» You can use letters, numbers, and some punctuation characters, but the
first character must be a letter.

» You cannot use any spaces or periods in a variable name.
+* VBA does not distinguish between uppercase and lowercase letters.
+* You cannot use the following characters in a variable name: #, $, %, &, or \.

v Variable names can be no longer than 255 characters. Of course, you're
only asking for trouble if you use variable names 255 characters long.

To make variable names more readable, programmers often use mixed case
(for example, InterestRate) or the underscore character (interest_rate).

VBA has many reserved words that you can’t use for variable names or pro-
cedure names. These include words such as Sub, Dim, With, End, Next, and
For. If you attempt to use one of these words as a variable, you may get a
compile error (which means your code won’t run). So, if an assignment state-
ment produces an error message, double-check and make sure that the vari-
able name isn’t a reserved word.

VBA does allow you to create variables with names that match names in Excel’s
object model, such as Workbook and Range. But, obviously, using names like
that just increases the possibility of getting confused. So resist the urge to use a
variable named Workbook, and use something like MyWorkbook instead.

What are UBA’s data types?

When I talk about data type, I'm referring to the manner in which a program
stores data in memory — for example, as integers, real numbers, or strings.
Although VBA can take care of these details automatically, it does so at a
cost. (There’s no free lunch.) Letting VBA handle your data typing results

in slower execution and inefficient memory use. For small applications, this
usually doesn’t present much of a problem. But for large or complex applica-
tions, which may be slow or need to conserve every last byte of memory, you
need to be on familiar terms with data types.

VBA automatically handles all the data details, which makes life easier for
programmers. Not all programming languages provide this luxury. For exam-
ple, some languages are strictly typed, which means the programmer must
explicitly define the data type for every variable used.

VBA does not require that you declare the variables that you use, but it’s
definitely a good practice. You'll see why later in this chapter.

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements

NG/
Q\“\ H

VBA has a variety of built-in data types. Table 7-1 lists the most common
types of data that VBA can handle.

Table 7-1 VBA's Built-In Data Types

Data Type Bytes Used Range of Values

Boolean 2 True or False

Integer 2 -32,768 to 32,767

Long 4 —2,147,483,648 to 2,147,483,647
Single 4 —3.402823E38 to 1.401298E45
Double (negative) 8 —1.79769313486232E308 to

—4.94065645841247E-324

Double (positive) 8 4,94065645841247E-324 to
1.79769313486232E308

Currency 8 —922,337,203,685,477.5808 to
922,337,203,685,477.5807

Date 8 1/1/100 to 12/31/9999

String 1 per char Varies

Object 4 Any defined object

Variant Varies Any data type

User defined Varies Varies

In general, choose the data type that uses the smallest number of bytes but
can still handle all the data you want to store in the variable.

Loop counters are often declared as integers. If you use the counter in order
to loop through rows in the worksheet, your program might just error out!
Why? Integers cannot be larger than 32,767. Beginning with Excel 2007, work-
sheets have many more rows (1,048,576 to be exact). Instead, declare such
loop counters as Long.

Declaring and scoping variables

If you read the previous sections, you now know a bit about variables and
data types. In this section, you discover how to declare a variable as a certain
data type.

If you don’t declare the data type for a variable you use in a VBA routine, VBA
uses the default data type: Variant. Data stored as a variant acts like a chame-
leon; it changes type depending on what you do with it. For example, if a vari-
able is a Variant data type and contains a text string that looks like a number

ooks.com/

99

http://www.it-ebooks.info/

7 00 Part Ill: Programming Concepts

WMBER
é&
&

(such as “143"), you can use this variable for string manipulations as well as
numeric calculations. VBA automatically handles the conversion. Letting VBA
handle data types may seem like an easy way out — but remember that you
sacrifice speed and memory.

Before you use variables in a procedure, it’s an excellent practice to declare
your variables — that is, tell VBA each variable’s data type. Declaring your
variables makes your program run faster and use memory more efficiently.
The default data type, Variant, causes VBA to repeatedly perform time-
consuming checks and reserve more memory than necessary. If VBA knows
avariable’s data type, it doesn’t have to investigate and can reserve just
enough memory to store the data.

To force yourself to declare all the variables you use, include the following as
the first statement in your VBA module:

Option Explicit

When this statement is present, you won’t be able to run your code if it con-
tains any undeclared variables.

You need to use Option Explicit only once: at the beginning of your module,
prior to the declaration of any procedures in the module. Keep in mind that
the Option Explicit statement applies only to the module in which it resides. If
you have more than one VBA module in a project, you need an Option Explicit
statement for each module.

Suppose that you use an undeclared variable (that is, a Variant) named
CurrentRate. At some point in your routine, you insert the following statement:

CurentRate = .075

This misspelled variable, which is difficult to spot, will probably cause your
routine to give incorrect results. If you use Option Explicit at the beginning of
your module (forcing you to declare the CurrentRate variable), Excel gener-
ates an error if it encounters a misspelled variation of that variable.

To ensure that the Option Explicit statement is inserted automatically when-
ever you insert a new VBA module, turn on the Require Variable Definition
option. You find it in the Editor tab of the Options dialog box (in the VBE,
choose Tools=>Options). I highly recommend doing so.

Declaring your variables also lets you take advantage of a shortcut that can save

some typing. Just type the first two or three characters of the variable name, and
then press Ctrl+Space. The VBE will either complete the entry for you or — if the
choice is ambiguous — show you a list of matching words to select from. In fact,

this slick trick works with reserved words and functions, too.

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements 1 0 ’

You now know the advantages of declaring variables, but how do you do this?
The most common way is to use a Dim statement. Here are some examples of
variables being declared:

Dim YourName As String
Dim AmountDue As Double
Dim RowNumber As Long
Dim X

The first three variables are declared as a specific data type. The last vari-
able, X, is not declared as a specific data type, so it’s treated as a Variant (it
can be anything).

Besides Dim, VBA has three other keywords that are used to declare variables:

1 Static
v Public
v Private

[explain more about the Dim, Static, Public, and Private keywords later on,
but first [must cover two other topics that are relevant here: a variable’s
scope and a variable’s life.

Recall that a workbook can have any number of VBA modules. And a VBA
module can have any number of Sub and Function procedures. A variable’s
scope determines which modules and procedures can use the variable. Table 7-2
describes the scopes in detail.

Confused? Keep turning the pages and you’ll see some examples that will
make this stuff crystal clear.

Table 7-2 Variable's Scope

Scaope How the Variable Is Declared

Procedure only By using a Dim or a Static statement in the pro-
cedure that uses the variable

Module only By using a Dim or a Private statement before
the first Sub or Function statement in the
module

All procedures in all modules By using a Public statement before the first Sub

or Function statement in a module

ooks.com/

http://www.it-ebooks.info/

7 02 Part lll: Programming Concepts

Humorous declarations

Topic such as variables, data types, declarations, and scope can be pretty boring. So | puttogether
some semi-humorous declaration statements for your amusement. These are all valid declarations.

Dim King As String, Kong As Long
Dim Mouthful as Byte

Dim Julian As Boolean

Dim Unmarried As Single

Dim Trouble As Double

Dim WindingRoad As Long

Dim Blind As Date

Public Nuisance

Private FirstClass

Static Cling, Electricity

Dim BaseballCards As New Collection
Dim DentalFloss As String

You can probably come up with some others.

Procedure-only variables

The lowest level of scope for a variable is at the procedure level. (A procedure
is either a Sub or a Function procedure.) Variables declared with this scope
can be used only in the procedure in which they are declared. When the pro-
cedure ends, the variable no longer exists (it goes to the great bit bucket in
the sky), and Excel frees up its memory. If you execute the procedure again,
the variable comes back to life, but its previous value is lost.

The most common way to declare a procedure-only variable is with a Dim
statement. Dim doesn’t refer to the mental capacity of the VBA designers.
Rather, it’s an old programming term that’s short for dimension, which
simply means you are setting aside memory for a particular variable. You
usually place Dim statements immediately after the Sub or Function state-
ment and before the procedure’s code.

The following example shows some procedure-only variables declared by
using Dim statements:

Sub MySub ()
Dim x As Integer
Dim First As Long
Dim InterestRate As Single
Dim TodaysDate As Date
Dim UserName As String
Dim MyValue
[The procedure's code goes here]

End Sub

ooks.com/

http://www.it-ebooks.info/

NG/
Q\“\ H

|
Figure 7-1:
Each VBA
module
hasa
Declarations
section,
which
appears
before

any Sub or
Function
procedures.
|

Chapter 7: Essential VBA Language Elements 1 03

Notice that the last Dim statement in the preceding example doesn’t declare
a data type; it declares only the variable itself. The effect is that the variable
MyValue is a Variant.

By the way, you can also declare several variables with a single Dim state-
ment, as in the following example:

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

Unlike some languages, VBA doesn’t allow you to declare a group of variables
to be a particular data type by separating the variables with commas. For
example, though valid, the following statement does not declare all the vari-
ables as Integers:

Dim i, j, k As Integer

In this example, only k is declared to be an Integer; the other variables are
declared to be Variants.

If you declare a variable with procedure-only scope, other procedures in

the same module can use the same variable name, but each instance of the
variable is unique to its own procedure. In general, variables declared at the
procedure level are the most efficient because VBA frees up the memory they
use when the procedure ends.

Module-only variables

Sometimes, you want a variable to be available to all procedures in a module.
If so, just declare the variable (using Dim or Private) before the module’s first
Sub or Function statement — outside any procedures. This is done in the
Declarations section, at the beginning of your module. (This is also where the
Option Explicit statement is located.) Figure 7-1 shows how you know when
you’re working with the Declarations section.

% Baakl - Madulel {Code) E@
|(General) j ‘(Declarmions) j

Option Explicit I

| |

=j=4 | oy

ooks.com/

http://www.it-ebooks.info/

7 04 Part lll: Programming Concepts

As an example, suppose that you want to declare the CurrentValue variable
so that it’s available to all the procedures in your module. All you need to do
is use the Dim statement in the Declarations section:

Dim CurrentValue As Integer

With this declaration in place — and in the proper place — the CurrentValue
variable can be used from any other procedure within the module, and it
retains its value from one procedure to another.

Public variables

If you need to make a variable available to all the procedures in all your
VBA modules in a workbook, declare the variable at the module level (in the
Declarations section) by using the Public keyword. Here’s an example:

Public CurrentRate As Long

The Public keyword makes the CurrentRate variable available to any proce-
dure in the workbook — even those in other VBA modules. You must insert
this statement before the first Sub or Function statement in a module.

If you would like a variable to be available to modules in other workbooks, you
must declare the variable as Public and establish a reference to the workbook
that contains the variable declaration. Set up a reference by using the
Tools>References command in VBE. In practice, sharing a variable across
workbooks is hardly ever done. In fact, I've never done it once in my entire
VBA programming career. But I guess it’s nice to know that it can be done, in
case it ever comes up as a Jeopardy! question.

Static variables

Normally, when a procedure ends, all the procedure’s variables are reset.
Static variables are a special case because they retain their value even when
the procedure ends. You declare a static variable at the procedure level. A
static variable may be useful if you need to track the number of times you
execute a procedure. You can declare a static variable and increment it each
time you run the procedure.

As shown in the following example, you declare static variables by using the
Static keyword:

Sub MySub ()
Static Counter As Integer
Dim Msg As String
Counter = Counter + 1

Msg = "Number of executions: " & Counter
MsgBox Msg
End Sub

ooks.com/

http://www.it-ebooks.info/

NG/

Q‘“\NG!

Chapter 7: Essential VBA Language Elements 1 05

The code keeps track of the number of times the procedure was executed.
The value of the Counter variable is not reset when the procedure ends, but
it is reset when you close and reopen the workbook.

Even though the value of a variable declared as Static is retained after a vari-
able ends, that variable is unavailable to other procedures. In the preceding
MySub procedure example, the Counter variable and its value are available only
within the MySub procedure. In other words, it’s a procedure-level variable.

Life of variables

Nothing lives forever, including variables. The scope of a variable not only
determines where that variable may be used, it also affects under which cir-
cumstances the variable is removed from memory.

You can purge all variables from memory by using three methods:

v Click the Reset toolbar button (the little blue square button on the
Standard toolbar in the VBE).

v Click “End” when a runtime error message dialog box shows up.

» Include an End statement anywhere in your code. This is not the same
as an End Sub or End Function statement.

Otherwise, only procedure-level variables will be removed from memory
when the macro code has completed running. Static variables, module level
variables, and global (public) variables all retain their values in between runs
of your code.

If you use module-level or global-level variables, make sure they have the
value you expect them to have. You never know whether one of the situations
I just mentioned may have caused your variables to lose their content!

Working with constants

A variable’s value may (and usually does) change while your procedure is
executing. That’s why they call it a variable. Sometimes you need to refer to
a value or string that never changes. In such a case, you need a constant — a
named element whose value doesn’t change.

As shown in the following examples, you declare constants by using the
Const statement. The declaration statement also gives the constant its value:

Const NumQuarters As Integer = 4

Const Rate = .0725, Period = 12
Const ModName As String = "Budget Macros"
Public Const AppName As String = "Budget Application"

ooks.com/

http://www.it-ebooks.info/

7 06 Part Ill: Programming Concepts

A\\S

égmmm

&

Using constants in place of hard-coded values or strings is an excellent pro-
gramming practice. For example, if your procedure needs to refer to a specific
value (such as an interest rate) several times, it’s better to declare the value
as a constant and refer to its name rather than the value. This makes your
code more readable and easier to change. When the interest rate changes, you
have to change only one statement rather than several.

Like variables, constants have a scope. Keep these points in mind:

v To make a constant available within only a single procedure, declare the
constant after the procedure’s Sub or Function statement.

v To make a constant available to all procedures in a module, declare the
constant in the Declarations section for the module.

v To make a constant available to all modules in the workbook, use the
Public keyword and declare the constant in the Declarations section of
any module.

If you attempt to change the value of a constant in a VBA routine, you get an
error. This isn’t too surprising because a constant is constant. Unlike a vari-
able, the value of a constant does not vary. If you need to change the value of
a constant while your code is running, what you really need is a variable.

Pre-made constants

Excel and VBA contain many predefined constants, which you can use with-
out the need to declare them yourself. The macro recorder usually uses
constants rather than actual values. In general, you don’t need to know the
value of these constants to use them. The following simple procedure uses a
built-in constant (xICalculationManual) to change the Calculation property of
the Application object. (In other words, this changes the Excel recalculation
mode to manual.)

Sub CalcManual ()
Application.Calculation = xlCalculationManual
End Sub

[discovered the xlCalculationManual constant by recording a macro while I
changed the calculation mode. I also could have looked in the Help system.
Figure 7-2 shows the Help screen that lists the constants for the Calculation

property.

The actual value of the built-in xlCalculationManual constant is -4135.
Obviously, it’s easier to use the constant’s name than try to remember such

an odd value. By the way, the constant for changing to automatic calculation
mode is xlCalculationAutomatic; its value is —4105. As you can see, many of the
built-in constants are just arbitrary numbers that have special meaning to VBA.

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements

|
Figure 7-2:
Constants
that deter-
mine the
Calculation
mode.
|

A\\S

107

&) Excel Help o B &
« x %) 6 A e S &
calculation ~ P Search -

Excel 2010 Developer Reference = Excel Object Model Reference = Enurmerations -
XlCalculation Enumer ation
Specifies the calculation mode.

Version Information =
¥ersion Added: Excel 2007

Name Yalue Description
sICalculationAutomatic -4105 Exrel controls recalculation.
xiCalculationManual -4135 Calculation is done when the user requests it
xICalculationSemiautomatic 2 Excel controls recalculation but ignores changes in tables, 8
Developer Reference | | .6 Offline

To find the actual value of a built-in constant, use the Immediate window in
the VBE, and execute a VBA statement such as the following:

? x1CalculationAutomatic

If the Immediate window isn’t visible, press Ctrl+G. The question mark is a
shortcut for typing Print.

Working with strings

Excel can work with both numbers and text, so it should come as no surprise
that VBA has this same power. Text is often referred to as a string. You can
work with two types of strings in VBA:

+ Fixed-length strings are declared with a specified number of characters.
The maximum length is 65,526 characters. That’s a lot of characters! As a
point of reference, this chapter contains about half that many characters.

v Variable-length strings theoretically can hold as many as two billion
characters. If you type five characters per second, it would take you
about 760 days to bang out two billion characters — assuming you don’t
take any breaks to eat or sleep.

When declaring a string variable with a Dim statement, you can specify the
maximum length if you know it (it’s a fixed-length string) or let VBA handle it
dynamically (it’s a variable-length string). The following example declares the
MyString variable as a string with a maximum length of 50 characters. (Use
an asterisk to specify the number of characters, up to the 65,526 character
limit.) YourString is also declared as a string, but its length is unspecified:

Dim MyString As String * 50
Dim YourString As String

ooks.com/

http://www.it-ebooks.info/

7 08 Part Ill: Programming Concepts

NG/

WMBER
@Q
&

When declaring a fixed-length string, do not use a comma in the number that
specifies the string size. In fact, never use commas when entering a numeric
value in VBA. VBA doesn’t like that.

Working with dates

Another data type you may find useful is Date. You can use a string variable
to store dates, but then you can’t perform date calculations. Using the Date
data type gives your routines greater flexibility. For example, you might need
to calculate the number of days between two dates. This would be impos-
sible if you used strings to hold your dates.

A variable defined as a Date can hold dates ranging from January 1, 0100,
to December 31, 9999. That’s a span of nearly 10,000 years and more than
enough for even the most aggressive financial forecast. You can also use the
Date data type to work with time data (seeing as VBA lacks a time data type).

These examples declare variables and constants as a Date data type:

Dim Today As Date

Dim StartTime As Date

Const FirstDay As Date = #1/1/2010#
Const Noon = #12:00:00#

In VBA, place dates and times between two hash marks, as shown in the pre-
ceding examples.

Date variables display dates according to your system’s short date format,
and they display times according to your system’s time format (either 12- or
24-hour formatting). The Windows Registry stores these settings, and you
can modify them via the Regional and Language Options dialog box in the
Windows Control Panel. Therefore, the VBA-displayed date or time format
may vary, depending on the settings for the system on which the application
is running.

When writing VBA code, however, you must use one of the U.S. date formats
(such as mm/dd/yyyy). So the following statement assigns a day in October
to the MyDate variable (even if your system is set to use dd/mm/yyyy for
dates):

MyDate = #10/11/2009#
When you display the variable (with the MsgBox function, for example), VBA

shows MyDate using your system settings. So if your system uses the dd/mm/
yyyy date format, MyDate will be displayed as 11/10/2009.

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements 1 09

Using Assignment Statements

3

An assignment statement is a VBA statement that assigns the result of an
expression to a variable or an object. Excel’s Help system defines the term
expression as

... a combination of keywords, operators, variables, and constants that
yields a string, number, or object. An expression can be used to perform
a calculation, manipulate characters, or test data.

[couldn’t have said it better myself, so I won’t even try.
Much of your work in VBA involves developing (and debugging) expressions.
If you know how to create formulas in Excel, you’ll have no trouble creating

expressions. With a worksheet formula, Excel displays the result in a cell. A
VBA expression, on the other hand, can be assigned to a variable.

Assignment statement examples

In the assignment statement examples that follow, the expressions are to the
right of the equal sign:

x =1
x =x + 1
x = (y *2) / (z * 2)

HouseCost = 375000
FileOpen = True
Range ("TheYear") .Value = 2012

Expressions can be as complex as you need them to be; use the line continu-
ation character (a space followed by an underscore) to make lengthy expres-
sions easier to read.

Often, expressions use functions: VBA’s built-in functions, Excel’s worksheet

functions, or functions that you develop with VBA. I discuss functions in
Chapter 9.

About that equal sign

As you can see in the preceding example, VBA uses the equal sign as its
assignment operator. You're probably accustomed to using an equal sign as

ooks.com/

http://www.it-ebooks.info/

’ ’0 Part Ill: Programming Concepts

a mathematical symbol for equality. Therefore, an assignment statement like
the following may cause you to raise your eyebrows:

z =2z + 1

How can the variable z be equal to itself plus 1? Answer: It can’t. In this case,
the assignment statement is increasing the value of z by 1. Just remember that
an assignment uses the equal sign as an operator, not a symbol of equality.

Smooth operators

Operators play a major role in VBA. Besides the equal sign operator (dis-
cussed in the previous section), VBA provides several other operators. Table
7-3 lists these operators, with which you are familiar from your worksheet
formulas experience.

Table 7-3 VBA's Operators

Function Operator Symbol
Addition +

Multiplication *

Division /

Subtraction -

Exponentiation A
String concatenation &
Integer division (the result is always an integer) \

Modulo arithmetic (returns the remainder of a division operation) Mod

The term concatenation is programmer speak for “join together.” Thus, if you
concatenate strings, you are combining strings to make a new and improved
string.

As shown in Table 7-4, VBA also provides a full set of logical operators.
Consult the Help system for complete details.

ooks.com/

http://www.it-ebooks.info/

A\\S

Chapter 7: Essential VBA Language Elements

Table 7-4 VBA's Logical Operators

Operator What It Does

Not Performs a logical negation on an expression.

And Performs a logical conjunction on two expressions.
Or Performs a logical disjunction on two expressions.
XoR Performs a logical exclusion on two expressions.
Eqv Performs a logical equivalence on two expressions.
Imp Performs a logical implication on two expressions.

The precedence order for operators in VBA is exactly the same as in Excel
formulas. Exponentiation has the highest precedence. Multiplication and divi-
sion come next, followed by addition and subtraction. You can use parenthe-
ses to change the natural precedence order, making whatever’s sandwiched
in parentheses come before any operator. Take a look at this code:

x = 3
y = 2
z =xXx +5 *vy

When this code is executed, what’s the value of z? If you answered 13, you
get a gold star that proves you understand the concept of operator prece-
dence. If you answered 16, read this: The multiplication operation (5 * y)
is performed first, and that result is added to x. If you answered something
other than 13 or 16, I have no comment.

By the way, I can never remember how operator precedence works, so I tend
to use parentheses even when they aren’t required. For example, in real life I
would write that last assignment statement like this:

z =x + (5 *vy)
Don’t be shy about using parentheses even if they aren’t required — espe-

cially if doing so makes your code easier to understand. VBA doesn’t care if
you use extra parentheses.

ooks.com/

111

http://www.it-ebooks.info/

7 ’2 Part Ill: Programming Concepts

Working with Arrays

A\\S

Most programming languages support arrays. An array is a group of variables
that share a common name. You refer to a specific variable in the array by
using the array name and an index number in parentheses. For example, you
can define an array of 12 string variables to hold the names of the months

of the year. If you name the array MonthNames, you can refer to the first ele-
ment of the array as MonthNames (1), the second element as MonthNames
(2), and so on.

Declaring arrays

Before you can use an array, you must declare it. No exceptions. Unlike normal
variables, VBA is very strict about this rule. You declare an array with a Dim or
Public statement, just as you declare a regular variable. However, you also need
to specify the number of elements in the array. You do this by specifying the first
index number, the keyword To, and the last index number — all inside parenthe-
ses. The following example shows how to declare an array of 100 integers:

Dim MyArray(l To 100) As Integer
When you declare an array, you can choose to specify only the upper index.
VBA assumes that 0 is the lower index. Therefore, both of the following state-
ments declare the same 101-element array:

Dim MyArray (0 To 100) As Integer

Dim MyArray (100) As Integer
If you want VBA to assume that 1 (rather than 0) is the lower index for your
arrays, include the following statement in the Declarations section of your
module:

Option Base 1
This statement forces VBA to use 1 as the first index number for arrays that
declare only the upper index. If this statement is present, the following state-
ments are identical, both declaring a 100-element array:

Dim MyArray (1 To 100) As Integer

Dim MyArray (100) As Integer

ooks.com/

http://www.it-ebooks.info/

Chapter 7: Essential VBA Language Elements

Multidimensional arrays

The arrays created in the previous examples are all one-dimensional arrays.
Think of one-dimensional arrays as a single line of values. Arrays you create
in VBA can have as many as 60 dimensions — although you rarely need more
than two or three dimensions in an array. The following example declares an
8l-integer array with two dimensions:

Dim MyArray (1 To 9, 1 To 9) As Integer

You can think of this array as occupying a 9 x 9 matrix — perfect for storing
all numbers in a soduku puzzle.

To refer to a specific element in this array, you need to specify two index
numbers (similar to it’s “row” and it’s “column” in the matrix). The following
example shows how you can assign a value to an element in this array:

MyArray (3, 4)= 125
This statement assigns a value to a single element in the array. If you’re think-
ing of the array in terms of a 9 x 9 matrix, this assigns 125 to the element
located in the third row and fourth column of the matrix.
Here’s how to declare a three-dimensional array, with 1,000 elements:

Dim My3DArray (1 To 10, 1 To 10, 1 To 10) As Integer
You can think of a three-dimensional array as a cube. Visualizing an array of

more than three dimensions is more difficult. Sorry, I haven’t yet mastered
the fourth dimension and beyond.

Dynamic arrays

You can also create dynamic arrays. A dynamic array doesn’t have a preset
number of elements. Declare a dynamic array with an empty set of parentheses:

Dim MyArray () As Integer

Before you can use this array, you must use the ReDim statement to tell VBA
how many elements the array has. Usually, the number of elements in the
array is determined while your code is running. You can use the ReDim state-
ment any number of times, changing the array’s size as often as needed. The
following example demonstrates how to change the number of elements in a

ooks.com/

113

http://www.it-ebooks.info/

7 ’4 Part lll: Programming Concepts

NG/
Q\“\ H

dynamic array. It assumes that the NumElements variable contains a value,
which your code calculated.

ReDim MyArray (1 To NumElements)

When you redimension an array by using ReDim, you wipe out any values cur-
rently stored in the array elements. You can avoid destroying the old values
by using the Preserve keyword. The following example shows how you can
preserve an array’s values when you redimension the array:

ReDim Preserve MyArray(l To NumElements)

If MyArray currently has ten elements and you execute the preceding state-
ment with NumElements equaling 12, the first ten elements remain intact, and
the array has room for two additional elements (up to the number contained
in the variable NumElements). If NumElements equals 7 however, the first
seven elements are retained but the remaining three elements meet their
demise.

The topic of arrays comes up again in Chapter 10, when I discuss looping.

Using Labels

WBER
é&
&

In early versions of BASIC, every line of code required a line number. For
example, if you had written a BASIC program in the '70s (dressed, of course,
in your bell bottoms), it may have looked something like this:

010: LET X=5
020: LET Y=3
030: LET Z=X*Y
040: PRINT Z
050: END

VBA permits the use of such line numbers, and it even permits text labels. You
don’t typically use a label for each line, but you may occasionally need to use
a label. For example, insert a label if you use a GoTo statement (which I dis-
cuss in Chapter 10). A label must begin with the first nonblank character in a
line and end with a colon.

The information in this chapter becomes clearer as you read subsequent
chapters. If you want to find out more about VBA language elements, I refer
you to the VBA Help system. You can find as much detail as you need, or
care, to know.

ooks.com/

http://www.it-ebooks.info/

Chapter 8
Working with Range Objects

In This Chapter
Finding out why Range objects are so important
Understanding the various ways of referring to ranges
Discovering some of the more useful Range object properties

Uncovering some of the more useful Range object methods

n this chapter, I dig a bit deeper into Excel’s dungeons and take a closer
look at Range objects. Excel is all about cells, and the Range object is a
container for cells. Why do you need to know so much about Range objects?
Because much of the programming work you do in Excel focuses on Range

objects. You can thank me later.

A Ouick Review

A Range object represents a range contained in a Worksheet object. Range
objects, like all other objects, have properties (which you can examine and
change) and methods (which perform actions on the object).

A Range object can be as small as a single cell (for example, B4) or as large as
every one of the 17,179,869,184 cells in a worksheet (A1:XFD1048576).

When you refer to a Range object, the address is always surrounded by
double quotes, like this:

Range ("Al:C5")

ooks.com/

http://www.it-ebooks.info/

116

Part lll: Programming Concepts

\NG/
Vg,“

WING/
&

If the range consists of one cell, you still need the quotes:
Range ("K9")

If the range happens to have a name (created by using Formulas=>Defined
Names=Define Name), you can use an expression like this:

Range ("PriceList")
Unless you tell Excel otherwise by qualifying the range reference, it assumes
that you're referring to a range on the active worksheet. If anything other than

a worksheet is active (such as a chart sheet), the range reference fails, and
your macro displays an error message.

As shown in the following example, you can refer to a range outside the
active sheet by qualifying the range reference with a worksheet name from
the active workbook:

Worksheets ("Sheetl") .Range ("Al:C5")

If you need to refer to a range in a different workbook (that is, any workbook
other than the active workbook), you can use a statement like this:

Workbooks ("Budget .x1sx") .Worksheets ("Sheetl") .
Range ("Al1:C5")

A Range object can consist of one or more entire rows or columns. You can
refer to an entire row (in this case, row 3) by using syntax like this:

Range ("3:3")
You can refer to an entire column (column 4 in this example) like this:

Range ("D:D")
In Excel, you select noncontiguous ranges by holding down the Ctrl key while
selecting various ranges with your mouse. Figure 8-1 shows a noncontiguous
range selection. You shouldn’t be surprised that VBA also lets you work with
noncontiguous ranges. The following expression refers to a two-area noncon-
tiguous range. Notice that a comma separates the two areas.

Range ("A1:B8,D9:G16")

Be aware that some methods and properties cause havoc with noncontiguous
ranges. You may have to process each area separately by using a loop.

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects

|
Figure 8-1:

A noncon-
tiguous
range
selection.
|

e~ e un B W e

L A e = =T
~|e ||k W|N(F|e

E
=

Other Ways to Refer to a Range

WMBER
@ﬁ
&

The more you work with VBA, the more you realize that it’s a fairly well
conceived language and is usually quite logical (despite what you may be
thinking right now). Often, VBA provides multiple ways to perform an action.
You can choose the most appropriate method for your problem. This section
discusses some of the other ways to refer to a range.

This chapter barely scratches the surface for the Range object’s properties
and methods. As you work with VBA, you’ll probably need to access other
properties and methods. The Help system is the best place to find out about
them, but it’s also a good idea to record your actions and examine the code
Excel generates.

The Cells property

Rather than use the VBA Range keyword, you can refer to a range via the
Cells property.

Notice that [wrote Cells property, not Cells object or even Cells collection.
Although Cells may seem like an object (or a collection), it’s really not. Rather,
Cells is a property that VBA evaluates. VBA then returns an object (more spe-
cifically, a Range object). If this seems strange, don’t worry. Even Microsoft
appears to be confused about this issue. In some earlier versions of Excel, the
Cells property was known as the Cells method. Regardless of what it is, just
understand that Cells is a handy way to refer to a range.

ooks.com/

117

http://www.it-ebooks.info/

7 ’8 Part Ill: Programming Concepts

A\\S

The Cells property takes two arguments: row and column. Both of these argu-
ments are numbers, even though we usually refer to columns by using let-
ters. For example, the following expression refers to cell C2 on Sheet2:

Worksheets ("Sheet2") .Cells (2, 3)

You can also use the Cells property to refer to a multi-cell range. The follow-
ing example demonstrates the syntax you use:

Range (Cells (1, 1), Cells (10, 10))

This expression refers to a 100-cell range that extends from cell Al (row 1,
column 1) to cell J10 (row 10, column 10).

The following statements both produce the same result; they enter a value of
99 into a 10-by-10 range of cells. More specifically, these statements set the
Value property of the Range object:

Range ("Al1:J10") .Value = 99
Range (Cells (1, 1), Cells (10, 10)).Value = 99

The advantage of using the Cells method to refer to ranges becomes apparent
when you use variables rather than actual numbers as the Cells arguments.
And things really start to click when you understand looping, which I cover in
Chapter 10.

The Offset property

The Offset property provides another handy means for referring to ranges.
This property, which operates on a Range object and returns another Range
object, lets you refer to a cell that is a particular number of rows and col-
umns away from another cell.

Like the Cells property, the Offset property takes two arguments. The first
argument represents the number of rows to offset; the second represents the
number of columns to offset.

The following expression refers to a cell one row below cell Al and two col-
umns to the right of cell Al. In other words, this refers to the cell commonly
known as C2:

Range ("Al") .Offset (1, 2)

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects

\\3

The Offset method can also use negative arguments. A negative row offset
refers to a row above the range. A negative column offset refers to a column
to the left of the range. The following example refers to cell Al:

Range ("C2") .Offset (-1, -2)

And, as you may expect, you can use 0 as one or both of the arguments for
Offset. The following expression refers to cell Al:

Range ("Al") .Offset (0, 0)
The Offset method is most useful when you use variables rather than actual

values for the arguments. In Chapter 10, I present some examples that demon-
strate this.

Referring to entire columns and rows

If you need to refer to a range that consists of one or more entire columns,
you can use an expression like the following:

Columns ("A:C")
And to refer to one or more complete rows, use an expression like this:

Rows ("1:5")

Some Useful Range Object Properties

WBER
“&
&

A Range object has dozens of properties. You can write VBA programs non-
stop for the next 10 years and never use them all. In this section, I briefly
describe some of the more commonly used Range properties. For complete
details, consult the Help system in the VBE.

Some Range properties are read-only properties, which means that you can
have your code look at their values, but you can’t have it change them (“look,
but don’t touch”). For example, every Range object has an Address property
(which holds the range’s address). You can access this read-only property,
but you can’t change it.

By the way, the examples that follow are typically statements rather than
complete procedures. If you’d like to try any of these (which you should),
create a Sub procedure to do so. Also, many of these statements work prop-
erly only if a worksheet is the active sheet.

ooks.com/

119

http://www.it-ebooks.info/

7 20 Part lll: Programming Concepts

Assigning the values in a multi-cell
range to a variable

| wasn't being fully truthful when | wrote “you x = Range("Al:C3").Value
can read the Value property only for a single-
cell Range object.” In fact, you can assign the
values in a multi-cell range to a variable, as long
as the variable is a variant. That's because a
variant can actlike an array. Here's an example: MsgBox x (1, 2)

Then you can treat the x variable as if it were an
array. This statement, for example, returns the
value in cell B1:

Dim x As Variant

A\

The Ualue property

The Value property represents the value contained in a cell. It’s a read-write
property, so your VBA code can either read or change the value.

The following statement displays a message box that shows the value in cell
Al on Sheetl:

MsgBox Worksheets ("Sheetl") .Range("Al") .Value

It stands to reason that you can read the Value property only for a single-cell
Range object. For example, the following statement generates an error:

MsgBox Worksheets ("Sheetl") .Range("Al:C3") .Value

You can, however, change the Value property for a range of any size. The fol-
lowing statement enters the number 123 into each cell in a range:

Worksheets ("Sheetl") .Range ("Al1:C3") .Value = 123
Value is the default property for a Range object. In other words, if you omit a
property for a Range, Excel uses its Value property. The following statements

both enter a value of 75 into cell Al on Sheet1:

Worksheets ("Sheetl") .Range ("Al") .Value = 75
Worksheets ("Sheetl") .Range ("Al") = 75

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects 1 2 ’

The Text property

The Text property returns a string that represents the text as displayed in a
cell — the formatted value. The Text property is read-only. For example, sup-
pose that cell Al contains the value 12.3 and is formatted to display two deci-

mals and a dollar sign ($12.30). The following statement displays a message
box containing $12.30:

MsgBox Worksheets ("Sheetl") .Range("Al") .Text
But the next statement displays a message box containing 12.3:

MsgBox Worksheets ("Sheetl") .Range("Al") .Value
If the cell contains a formula, the Text property returns the result of the for-
mula. If a cell contains text, then the Text property and the Value property

will always return the same thing, because text (unlike a number) can’t be
formatted to display differently.

The Count property

The Count property returns the number of cells in a range. It counts all cells,
not just the nonblank cells. Count is a read-only property (think about it for
a second, and you'll understand why). The following statement accesses a
range’s Count property and displays the result (9) in a message box:

MsgBox Range("Al:C3") .Count

The Column and Row properties

The Column property returns the column number of a single-cell range. It’s
sidekick, the Row property, returns the row number of a single-cell range.
Both are read-only properties. For example, the following statement displays 6
because cell F3 is in the sixth column:

MsgBox Sheets ("Sheetl") .Range("F3") .Column

The next expression displays 3 because cell F3 is in the third row:

MsgBox Sheets("Sheetl") .Range("F3") .Row

ooks.com/

http://www.it-ebooks.info/

7 22 Part Ill: Programming Concepts

WBER
@““ If the Range object consists of more than one cell, the Column property
returns the column number of the first column in the range, and the Row prop-
erty returns the row number of the first row in the range.
QNING/ Don’t confuse the Column and Row properties with the Columns and Rows
& properties (discussed earlier in this chapter). The Column and Row properties
return a single value. Columns and Rows properties return a Range object.
What a difference an “s” makes.
The Address property
Address, a read-only property, displays the cell address for a Range object in
absolute notation (a dollar sign before the column letter and before the row
number). The following statement displays the message box shown in Figure
8-2.
MsgBox Range(Cells(l, 1), Cells(5, 5)) .Address
|
Figure 8-2:
This mes- [Miaesreea sl
sage hox
displays the | AL
Address
property
of a 1-by-5
range.
|
The HasFormula property
The HasFormula property (which is read-only) returns True if the single-cell
range contains a formula. It returns False if the cell does not have a formula.
If the range consists of more than one cell, VBA returns True only if all cells
in the range contain a formula, or False if all cells in the range don’t have a
formula. The property returns a Null if there is a mixture of formulas and
nonformulas in the range. Null is kind of a no-man’s land: The range contains
NG/ a mixture of formulas and values.
QUING/
§V~

You need to be careful when you work with properties that can return Null.
More specifically, the only data type that can deal with Null is Variant.

For example, assume that cell Al contains a value and cell A2 contains a for-

mula. The following statements generate an error because the range doesn’t
consist of all formulas or all nonformulas:

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects 1 23

Dim FormulaTest As Boolean
FormulaTest = Range("Al:A2") .HasFormula

The Boolean data type can handle only True or False. Null causes it to
complain and throw up an error message. To fix this type of situation, the
best thing to do is make sure that the FormulaTest variable is declared as a
Variant rather than as a Boolean. The following example uses VBA’s handy
TypeName function (along with an If-Then statement) to determine the data
type of the FormulaTest variable. If the range has a mixture of formulas and
nonformulas, the message box displays Mixed!

Dim FormulaTest As Variant
FormulaTest = Range("Al:A2") .HasFormula
If TypeName (FormulaTest) = "Null" Then MsgBox "Mixed!™"

The Font property

As I note earlier in this chapter (see “The Cells property”), a property can
return an object. The Font property of a Range object is another example of
that concept at work. The Font property returns a Font object.

A Font object, as you may expect, has many accessible properties. To change
some aspect of a range’s font, you must first access the range’s Font object
and then manipulate the properties of that object. This may be confusing, but
maybe this example will help.

The following statement uses the Font property of the Range object to return
a Font object. Then the Bold property of the Font object is set to True. In
plain English, this makes the cell display in boldface:

Range ("Al") .Font.Bold = True
Truth is, you don’t really need to know that you’'re working with a special
Font object that’s contained in a Range object. As long as you use the proper
syntax, it will work just fine. Often, recording your actions while you record a

macro will tell you everything you need to know about the proper syntax.

See Chapter 6 for more information about recording macros.

The Intevior property

Here’s yet another example of a property that returns an object. A Range
object’s Interior property returns an Interior object (strange name, but that’s
what it’s called). This type of object referencing works the same way as the
Font property (which I describe in the preceding section).

ooks.com/

http://www.it-ebooks.info/

7 24 Part lll: Programming Concepts

WMBER
@ﬁ
&

For example, the following statement changes the Color property of the
Interior object contained in the Range object:

Range ("Al") .Interior.Color = 8421504

In other words, this statement changes the cell’s background to middle gray.
What’s that? You didn’t know that 8421504 is middle gray? For some insights
into Excel’s wonderful world of color, see the sidebar, “A quick & dirty color
primer.”

The Formula property

The Formula property represents the formula in a cell. This is a read-write
property, so you can access it to insert a formula into a cell. For example, the
following statement enters a SUM formula into cell A13:

Range ("Al3") .Formula = "=SUM(Al:Al2)"
Notice that the formula is a text string and is enclosed in quotation marks.

If the formula itself contains quotation marks, things get a bit tricky. For
example, let’s say you want to insert this formula by using VBA:

=SUM (Al1:A12)&" Stores"

This formula displays a value, followed by the word Stores. To make this for-
mula acceptable, you need to replace every quotation mark in the formula
with two quotation marks. Otherwise, VBA will get confused, and claim that
there’s a syntax error (because there is!). So here’s a statement that will
enter a formula that contains quotes:

Range ("Al3") .Formula = "=SUM(Al:Al2)&"" Stores"""

By the way, you can access a cell’s Formula property even if the cell doesn’t
have a formula. If a cell has no formula, the Formula property returns the
same as its Value property.

If you need to know whether a cell has a formula, use the HasFormula
property.

Be aware that VBA “speaks” U.S. English. This means that in order to put a

formula in a cell, you must use the U.S. syntax. To use your own locale formula
syntax in VBA, check the FormulaLocal property.

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects 7 25

A quick & dirty color primer

Prior to Excel 2007, Microsoft tried to convince us that 56 colors were good enough for a spread-
sheet. But things have changed, and we can use more than 16 million colors in a workbook.
16,777,216 colors to be exact.

Many objects have a Color property, and that property accepts color values that range from 0 to
16777215. Nobody can remember that many color values, so (fortunately) there’s an easier way to
specify colors: use VBA's RGB function. This function takes advantage of the fact that any of these
16 million colors can be represented by various levels of red, green, and blue. The three arguments
inthe RGB function correspond to the color’s red, green, and blue components, and each of these
arguments can range from 0 to 255.

Note that 256 x 256 x 256 = 16,777,216 — which happens to be the number of colors. Don't you just
love it when the math works out?

Following are a few examples that use the RGB function to change a cell’s background color:

Range ("Al") .Interior.Color = RGB(0, 0, 0) 'black

Range ("Al") .Interior.Color = RGB(255, 0, 0) ' pure red

Range ("Al") .Interior.Color = RGB(0, 0, 255) ' pure blue

Range ("Al") .Interior.Color = RGB(200, 89, 18) ' orangy-brown
Range ("Al") .Interior.Color = RGB(128, 128, 128) ' middle gray

If you need to use standard colors, you may prefer to use one of the built-in color constants:
vbBlack, vbRed, vbGreen, vbYellow, vbBlue, voMagenta, vbCyan, or vbWhite. For example, the
following statement makes cell A1 yellow:

Range ("Al") .Interior.Color = vbYellow

Excel 2007 also introduced “theme colors.” These are the colors that appear when you use color
control such as the Fill Color control in the Font group of the Home tab. Try recording a macro while
you change colors, and you'll get something like this:

Range ("Al") .Interior.ThemeColor = xlThemeColorAccent4
Range ("Al") .Interior.TintAndShade = 0.399975585192419

Yep, two more color-related properties to deal with. Here we have a theme color (the basic color,
specified as a built-in constant), plus a “tint and shade” value that represents how dark or light the
coloris. TintAndShade values range from —1.0 to +1.0. Positive values of the TintAndShade property
make the color lighter, and negative values make the color darker. When you set a color using the
ThemeColor property, the color will change if you apply a different document theme (using the
Page Layout>Themes=>Themes command).

The NumberFormat property

The NumberFormat property represents the number format (expressed as
a text string) of the Range object. This is a read-write property, so your VBA
code can change the number format. The following statement changes the
number format of column A to a percent with two decimal places:

ooks.com/

http://www.it-ebooks.info/

7 26 Part lll: Programming Concepts

Columns ("A:A") .NumberFormat = "0.00%"

Follow these steps to see a list of other number formats. Better yet, turn on
the macro recorder while you do this:

1. Activate a worksheet.

2. Access the Format Cells dialog box by pressing Ctrl+1.

3. Click the Number tab.

4. Select the Custom category to view and apply some additional number
format strings.

Some Useful Range Object Methods

“NG’

A\

As you know, a VBA method performs an action. A Range object has dozens
of methods but, again, you won’t need most of these. In this section, [point
out some of the more commonly used Range object methods.

The Select method

Use the Select method to select a range of cells. The following statement
selects a range on the active worksheet:

Range ("Al:C1l2") .Select

Before selecting a range, it’s often a good idea to use one additional statement
to ensure that the correct worksheet is active. For example, if Sheetl contains
the range you want to select, use the following statements to select the range:

Sheets ("Sheetl") .Activate
Range ("Al:Cl2") .Select

Contrary to what you may expect, the following statement generates an error
if Sheet1 is not already the active sheet. In other words, you must use two
statements rather than just one: one to activate the sheet and another to
select the range.

Sheets ("Sheetl") .Range("Al:Cl2") .Select
If you use the GoTo method of the Application object to select a range, you

can forget about selecting the right worksheet first. This statement activates
Sheetl and then selects the range:

ooks.com/

http://www.it-ebooks.info/

Chapter 8: Working with Range Objects 1 2 7

\\3

Application.Goto Sheets("Sheetl") .Range("Al:C12")

The GoTo method is the VBA equivalent of pressing F5 in Excel, which dis-
plays the GoTo dialog box.

The Copy and Paste methods

You can perform copy and paste operations in VBA by using the Copy and
Paste methods. Note that two different objects come into play. The Copy
method is applicable to the Range object, but the Paste method applies to
the Worksheet object. It actually makes sense: You copy a range and paste it
to a worksheet.

This short macro (courtesy of the macro recorder) copies range A1:A12 and
pastes it to the same worksheet, beginning at cell C1:

Sub CopyRange ()
Range ("Al:Al12") .Select
Selection.Copy
Range ("Cl1l") .Select
ActiveSheet.Paste

End Sub

Notice that in the preceding example, the ActiveSheet object is used with the
Paste method. This is a special version of the Worksheet object that refers to
the currently active worksheet. Also notice that the macro selects the range
before copying it. However, you don’t have to select a range before doing
something with it. In fact, the following procedure accomplishes the same task
as the preceding example by using a single statement:

Sub CopyRange?2 ()
Range ("Al:Al2") .Copy Range("C1l")
End Sub

This procedure takes advantage of the fact that the Copy method can use an
argument that corresponds to the destination range for the copy operation.

The Clear method

The Clear method deletes the contents of a range, plus all of the cell format-
ting. For example, if you want to zap everything in column D, the following
statement does the trick:

Columns ("D:D") .Clear

ooks.com/

http://www.it-ebooks.info/

7 28 Part Ill: Programming Concepts

You should be aware of two related methods. The ClearContents method deletes
the contents of the range but leaves the formatting intact. The ClearFormats
method deletes the formatting in the range but not the cell contents.

The Delete method

Clearing a range differs from deleting a range. When you delete a range, Excel
shifts the remaining cells around to fill up the range you deleted.

The following example uses the Delete method to delete row 6:

Rows ("6:6") .Delete
When you delete a range that’s not a complete row or column, Excel needs
to know how to shift the cells. (To see how this works, experiment with the

Excel Homer>Cells>Delete command.)

The following statement deletes a range and then fills the resulting gap by
shifting the other cells to the left:

Range ("C6:C10") .Delete x1ToLeft
The Delete method uses an argument that indicates how Excel should shift

the remaining cells. In this case, | use a built-in constant (xIToLeft) for the
argument. I could also use xIUp, another named constant.

ooks.com/

http://www.it-ebooks.info/

Chapter 9

Using VBA and Worksheet
Functions

In This Chapter
Using functions to make your VBA expressions more powerful
Using the VBA built-in functions
Using Excel worksheet functions in your VBA code
Writing custom functions

n previous chapters, I allude to the fact that you can use functions in your

VBA expressions. There are three flavors of functions: those built into
VBA, those built into Excel, and other functions written in VBA. I provide a
full explanation in this chapter. Functions can make your VBA code perform
some powerful feats, with little or no programming effort required. If you like
that idea, this chapter’s for you.

What Is a Function?

Except for a few people who think Excel is a word processor, all Excel users
use worksheet functions in their formulas. The most common worksheet func-
tion is the SUM function, and you have hundreds of others at your disposal.

A function essentially performs a calculation and returns a single value. The
SUM function, of course, returns the sum of a range of values. The same
holds true for functions used in your VBA expressions: Each function does its
thing and returns a single value.

The functions you use in VBA can come from three sources:

v Built-in functions provided by VBA
v Worksheet functions provided by Excel

v+ Custom functions that you (or someone else) write, using VBA

ooks.com/

http://www.it-ebooks.info/

’30 Part Ill: Programming Concepts

The rest of this chapter clarifies the differences and (I hope) convinces you
of the value of using functions in your VBA code.

Using Built-In UBA Functions

VBA provides numerous built-in functions. Some of these functions take argu-
ments and some do not.

VBA function examples

In this section, I present a few examples of using VBA functions in code. In
many of these examples, [use the MsgBox function to display a value in a
message box. Yes, MsgBox is a VBA function — a rather unusual one, but a
function nonetheless. This useful function displays a message in a pop-up
dialog box. For more details about the MsgBox function, see Chapter 15.

A workbook that contains all the examples is available at this book’s Web site.

Displaying the system date or time

The first example uses VBA’s Date function to display the current system
date in a message box:

Sub ShowDate ()
MsgBox Date
End Sub

Notice that the Date function doesn’t use an argument. Unlike worksheet
functions, a VBA function with no argument doesn’t require an empty set of
parentheses. In fact, if you type an empty set of parentheses, the VBE will
promptly remove them.

To get the system time, use the Time function. And if you want it all, use the
Now function to return both the date and the time.

Finding a string length

The following procedure uses the VBA Len function, which returns the length
of a text string. The Len function takes one argument: the string. When you
execute this procedure, the message box displays 11 because the argument
has 11 characters.

ooks.com/

http://www.it-ebooks.info/

WMBER
@&
&

Sub GetLength ()
Dim MyString As String
Dim StringLength As Integer
MyString = "Hello World"
StringLength = Len (MyString)
MsgBox StringLength

End Sub

Excel also has a Len function, which you can use in your worksheet formulas.
The Excel version and the VBA function work the same.

Displaying the integer part of a number
The following procedure uses the Fix function, which returns the infeger por-
tion of a value — the value without any decimal digits:

Sub GetIntegerPart ()
Dim MyValue As Double
Dim IntValue As Integer
MyValue = 123.456
IntValue = Fix(MyValue)
MsgBox IntValue

End Sub

In this case, the message box displays 123.

VBA has a similar function called Int. The difference between Int and Fix is
how each deals with negative numbers. It’s a subtle difference, but sometimes
it’s important.

v Int returns the first negative integer that’s less than or equal to the argu-
ment. Fix (-123.456) returns -124.

v Fix returns the first negative integer that’s greater than or equal to the
argument. Fix (-123.456) returns -123.

Determining a file size
The following Sub procedure displays the size, in bytes, of the Excel execut-
able file. It finds this value by using the FileLen function.

Sub GetFileSize()
Dim TheFile As String
TheFile = "C:\Program Files\Microsoft Office\Officel4d\
Excel .exe"
MsgBox FileLen (TheFile)
End Sub

Notice that this routine hard codes the filename (that is, it explicitly states the
path). Generally, this isn’t a good idea. The file might not be on the C drive,
or the Excel folder may have a different name. The following statement shows
a better approach:

ooks.com/

Chapter 9: Using VBA and Worksheet Functions 13 ’

http://www.it-ebooks.info/

’32 Part Ill: Programming Concepts

A\

TheFile = Application.Path & "\EXCEL.EXE"

Path is a property of the Application object. It simply returns the name of the
folder in which the application (that is, Excel) is installed (without a trailing
backslash).

Identifying the type of a selected object

The following procedure uses the TypeName function, which returns the type
of the selection on the worksheet (as a string):

Sub ShowSelectionType ()
Dim SelType As String
SelType = TypeName (Selection)
MsgBox SelType

End Sub

This could be a Range, a Picture, a Rectangle, a ChartArea, or any other type
of object that can be selected.

The TypeName function is very versatile. You can also use this function to
determine the data type of a variable.

UBA functions that do more
than return a value

A few VBA functions go above and beyond the call of duty. Rather than
simply return a value, these functions have some useful side effects. Table 9-1
lists them.

Table 9-1 Functions with Useful Side Benefits
Function What It Does
MsgBox Displays a handy dialog box containing a message and buttons.

The function returns a code that identifies which button the user
clicks. See Chapter 15 for details.

InputBox Displays a simple dialog box that asks the user for some input. The
function returns whatever the user enters into the dialog box. |
discuss this in Chapter 15.

Shell Executes another program. The function returns the task /D (a
unique identifier) of the other program (or an error if the function
can't start the other program).

ooks.com/

http://www.it-ebooks.info/

Chapter 9: Using VBA and Worksheet Functions

3

Discovering UBA functions

How do you find out which functions VBA provides? Good question. The best
source is the Excel Visual Basic Help system. I compiled a partial list of func-
tions, which I share with you in Table 9-2. I omitted some of the more special-
ized or obscure functions.

For complete details on a particular function, type the function name into a
VBA module, move the cursor anywhere in the text, and press F1.

Table 9-2 VBA's Most Useful Built-In Functions

Function What It Does

Abs Returns a number’s absolute value.

Array Returns a variant containing an array.

Asc Converts the first character of a string to its ASCII value.

Atn Returns the arctangent of a number.

Choose Returns a value from a list of items.

Chr Converts an ANSI value to a string.

Cos Returns a number’s cosine.

CurDir Returns the current path.

Date Returns the current system date.

DateAdd Returns a date to which a specified time interval has been added —
for example, one month from a particular date.

DateDiff Returns an integer showing the number of specified time intervals
between two dates — for example, the number of months between
now and your birthday.

DatePart Returns an integer containing the specified part of a given date — for
example, a date’s day of the year.

DateSerial Converts a date to a serial number.

DateValue Converts a string to a date.

Day Returns the day of the month from a date value.

Dir Returns the name of a file or directory that matches a pattern.

Erl Returns the line number that caused an error.

Err Returns the error number of an error condition.

Error Returns the error message that corresponds to an error number.

Exp Returns the base of the natural logarithm (e) raised to a power.

(continued)

ooks.com/

133

http://www.it-ebooks.info/

’34 Part lll: Programming Concepts

Table 9-2 (continued)

Function What It Does

FileLen Returns the number of bytes in a file.

Fix Returns a number’s integer portion.

Format Displays an expression in a particular format.

GetSetting Returns a value from the Windows registry.

Hex Converts from decimal to hexadecimal.

Hour Returns the hours portion of a time.

InputBox Displays a box to prompt a user for input.

InStr Returns the position of a string within another string.

Int Returns the integer portion of a number.

IPmt Returns the interest payment for an annuity or loan.

IsArray Returns True if a variable is an array.

IsDate Returns True if an expression is a date.

ISsEmpty Returns True if a variable has not been initialized.

IsError Returns True if an expression is an error value.

IsMissing Returns True if an optional argument was not passed to a procedure.
IsNull Returns True if an expression contains no valid data.
IsNumeric Returns True if an expression can be evaluated as a number.
IsObject Returns True if an expression references an OLE Automation object.
LBound Returns the smallest subscript for a dimension of an array.
LCase Returns a string converted to lowercase.

Left Returns a specified number of characters from the left of a string.
Len Returns the number of characters in a string.

Log Returns the natural logarithm of a number to base.

LTrim Returns a copy of a string, with any leading spaces removed.
Mid Returns a specified number of characters from a string.
Minute Returns the minutes portion of a time value.

Month Returns the month from a date value.

MsgBox Displays a message box and (optionally) returns a value.
Now Returns the current system date and time.

RGB Returns a numeric RGB value representing a color.

ooks.com/

http://www.it-ebooks.info/

Chapter 9: Using VBA and Worksheet Functions 135

Function What It Does

Replace Replaces a substring in a string with another substring.
Right Returns a specified number of characters from the right of a string.
Rnd Returns a random number between 0 and 1.

RTrim Returns a copy of a string, with any trailing spaces removed.
Second Returns the seconds portion of a time value.

Sgn Returns an integer that indicates a number’s sign.

Shell Runs an executable program.

Sin Returns a number’s sine.

Space Returns a string with a specified number of spaces.

Split Splits a string into parts, using a delimiting character.

Sqr Returns a number’s square root.

Str Returns a string representation of a number.

StrComp Returns a value indicating the result of a string comparison.
String Returns a repeating character or string.

Tan Returns a number’s tangent.

Time Returns the current system time.

Timer Returns the number of seconds since midnight.

TimeSerial Returns the time for a specified hour, minute, and second.
TimeValue Converts a string to a time serial number.

Trim Returns a string without leading or trailing spaces.
TypeName Returns a string that describes a variable’s data type.
UBound Returns the largest available subscript for an array’s dimension.
UCase Converts a string to uppercase.

Val Returns the numbers contained in a string.

VarType Returns a value indicating a variable’s subtype.

Weekday Returns a number representing a day of the week.

Year Returns the year from a date value.

Using Worksheet Functions in VBA

Although VBA offers a decent assortment of built-in functions, you might not
always find exactly what you need. Fortunately, you can also use most of
Excel’s worksheet functions in your VBA procedures. The only worksheet func-
tions that you cannot use are those that have an equivalent VBA function.

ooks.com/

http://www.it-ebooks.info/

736 Part Ill: Programming Concepts

WMBER
@"&
&

\\3

VBA makes Excel’s worksheet functions available through the
WorksheetFunction object, which is contained in the Application object.
Therefore, any statement that uses a worksheet function must use the
Application.WorksheetFunction qualifier. In other words, you must precede
the function name with Application.WorksheetFunction (with a dot separat-
ing the two). The following is an example:

Total = Application.WorksheetFunction.Sum(Range ("Al:A12"))
You can omit the Application part or the WorksheetFunction part of the

expression. In either case, VBA will figure out what you're doing. In other
words, these three expressions all work exactly the same:

Total = Application.WorksheetFunction.Sum(Range ("Al:A12"))
Total = WorksheetFunction.Sum(Range("Al:A12"))
Total = Application.Sum(Range ("Al:A12"))

My personal preference is to use the WorksheetFunction part just to make it
perfectly clear that the code is using an Excel function.

Worksheet function examples

In this section, I demonstrate how to use worksheet functions in your VBA
expressions.

Finding the maximum value in a range

Here’s an example that shows how to use Excel’s MAX worksheet function in
a VBA procedure. This procedure displays the maximum value in column A
on the active worksheet:

Sub ShowMax ()
Dim TheMax As Double
TheMax = WorksheetFunction.Max (Range ("A:A"))
MsgBox TheMax

End Sub

You can use the MIN function to get the smallest value in a range. And, as you
might expect, you can use other worksheet functions in a similar manner. For
example, you can use the LARGE function to determine the kth-largest value
in a range. The following expression demonstrates this:

SecondHighest = WorksheetFunction.Large (Range("A:A"),2)

Notice that the LARGE function uses two arguments; the second argument
represents the kth part — 2 in this case (the second-largest value).

ooks.com/

http://www.it-ebooks.info/

Chapter 9: Using VBA and Worksheet Functions 13 7

Calculating a mortgage payment

The next example uses the PMT worksheet function to calculate a mortgage
payment. [use three variables to store the data that’s passed to the Pmt func-
tion as arguments. A message box displays the calculated payment.

Sub PmtCalc ()

Dim IntRate As Double

Dim LoanAmt As Double

Dim Periods As Integer

IntRate = 0.0825 / 12

Periods 30 * 12

LoanAmt 150000

MsgBox WorksheetFunction. _

Pmt (IntRate, Periods, -LoanAmt)

End Sub

As the following statement shows, you can also insert the values directly as
the function arguments:

MsgBox WorksheetFunction.Pmt (0.0825 /12, 360, -150000)

However, using variables to store the parameters makes the code easier to
read and modify, if necessary.

Using a lookup function

The following example uses VBA’s InputBox and MsgBox functions, plus
Excel’s VLOOKUP function. It prompts for a part number and then gets the
price from a lookup table. In Figure 9-1, range A1:B13 is named PriceList.

Sub GetPrice()
Dim PartNum As Variant
Dim Price As Double
PartNum = InputBox("Enter the Part Number")
Sheets ("Prices") .Activate
Price = WorksheetFunction. _
VLookup (PartNum, Range ("PriceList"), 2, False)
MsgBox PartNum & " costs " & Price

EWEB End Sub
\\

)

““’"’I// You can download this workbook from the book’s Web site.

The procedure starts this way:

1. VBA’s InputBox function asks the user for a part number.

2. This statement assigns the part number the user enters for the PartNum
variable.

ooks.com/

http://www.it-ebooks.info/

’38 Part Ill: Programming Concepts

|
Figure 9-1:
The range,
named
PricelList,
contains
prices for
parts.
|

3

3. The next statement activates the Prices worksheet, just in case it’s not
already the active sheet.

4. The code uses the VLOOKUP function to find the part number in the
table.

Notice that the arguments you use in this statement are the same as
those you would use with the function in a worksheet formula. This
statement assigns the result of the function to the Price variable.

5. The code displays the price for the part via the MsgBox function.

A B (D E F G H | J

Llpart lprice |

2 a1 39.95

3 a-183 12.95

4 |B-9a2 16.49 g

5 |c-832 3.99

6 |c-999 17.59

7 |p-873 19.99

8 |F-143 39.95 Micrasoft Bxcel

) |G-771 49.95

a7z 129,95 Enter the Part Number R
11 [M-732 39,95

12 p-101 3.95 e
13 |r-932 13.95

14 99

15

16

This procedure doesn’t have any error handling, and it fails miserably if you
enter a nonexistent part number. (Try it.) If this were an actual application,
you would want to add some error-handling statements for a more robust
procedure. I discuss error handling in Chapter 12.

Entering worksheet functions

You can’t use the Excel Paste Function dialog box to insert a worksheet func-
tion into a VBA module. Instead, enter such functions the old-fashioned way:
by hand. However, you can use the Paste Function dialog box to identify the

function you want to use and find out about its arguments.

You can also take advantage of the VBE’s Auto List Members option, which
displays a drop-down list of all worksheet functions. Just type Application.
WorksheetFunction, followed by a period. Then you'll see a list of the function
you can use.

If this feature isn’t working, choose the VBE’s Tools=>Options command, click
the Editor tab, and place a check mark next to Auto List Members.

ooks.com/

http://www.it-ebooks.info/

Chapter 9: Using VBA and Worksheet Functions

More about Using Worksheet Functions

3

Newcomers to VBA often confuse VBA'’s built-in functions and Excel’s work-
book functions. A good rule to remember is that VBA doesn’t try to reinvent
the wheel. For the most part, VBA doesn’t duplicate Excel worksheet functions.

For most worksheet functions that are unavailable as methods of the
WorksheetFunction object, you can use an equivalent VBA built-in operator
or function. For example, the MOD worksheet function is not available in the
WorksheetFunction object because VBA has an equivalent, its built-in Mod
operator.

Bottom line? If you need to use a function, first determine whether VBA has
something that meets your needs. If not, check out the worksheet functions. If
all else fails, you may be able to write a custom function by using VBA.

Using Custom Functions

I've covered VBA functions and Excel worksheet functions. The third cat-
egory of functions you can use in your VBA procedures is custom functions.
A custom function (also known as User Defined Function, UDF) is one you
develop yourself by using (what else?) VBA. To use a custom function, you
must define it in the workbook in which you use it.

Here’s an example of defining a simple Function procedure and then using it
in a VBA Sub procedure:

Function MultiplyTwo (numl, num2) As Double
MultiplyTwo = numl * num2
End Function

Sub ShowResult ()
Dim nl As Double, n2 As Double
Dim Result As Double
nl = 123
n2 = 544
Result = MultiplyTwo (nl, n2)
MsgBox Result

End Sub

The custom function MultiplyTwo has two arguments. The ShowResult Sub
procedure uses this Function procedure by passing two arguments to it (in
parentheses). The ShowResult procedure then displays a message box show-
ing the value returned by the MultiplyTwo function.

ooks.com/

139

http://www.it-ebooks.info/

7 4 0 Part Ill: Programming Concepts

I probably don’t have to tell you that the MultiplyTwo function is fairly use-
less. It’s much more efficient to perform the multiplication in the ShowResult
Sub procedure. I include it simply to give you an idea of how a Sub procedure
can make use of a custom function.

You can also use custom functions in your worksheet formulas. For example,
if MultiplyTwo is defined in your workbook, you can write a formula such as
this one:

=MultiplyTwo (Al,A2)

This formula returns the product of the values in cells Al and A2.

Custom worksheet functions is an important (and very useful) topic. So
important (and useful) that I devote an entire chapter to it. See Chapter 20.

ooks.com/

http://www.it-ebooks.info/

Chapter 10

Controlling Program Flow and
Making Decisions

In This Chapter

Discovering methods for controlling the flow of your VBA routines
Finding out about the dreaded GoTo statement

Using If-Then and Select Case structures

Performing looping in your procedures

Some VBA procedures start at the code’s beginning and progress line by
line to the end, never deviating from this top-to-bottom program flow.
Macros that you record always work like this. In many cases, however, you
need to control the flow of your code by skipping over some statements,
executing some statements multiple times, and testing conditions to deter-
mine what the procedure does next. Hang on to your hat and enjoy the ride,
because you're about to discover the essence of programming.

Going with the Flow, Dude

Some programming newbies can’t understand how a dumb computer can
make intelligent decisions. The secret is in several programming constructs
that most programming languages support. Table 10-1 provides a quick sum-
mary of these constructs. (I explain all of these later in this chapter.)

ooks.com/

http://www.it-ebooks.info/

’ 42 Part Ill: Programming Concepts

Table 10-1 Programming Constructs for Making Decisions

Construct How It Works

GoTo statement Jumps to a particular statement.

If-Then structure Does something if something else is true.

Select Case Does any of several things, depending on some-
thing’s value.

For-Next loop Executes a series of statements a specified
number of times.

Do-While loop Does something as long as something else
remains true.

Do-Until loop Does something until something else becomes
true.

The GoTo Statement

A GoTo statement offers the most straightforward means for changing a pro-
gram’s flow. The GoTo statement simply transfers program execution to a
new statement, which is preceded by a label.

Your VBA routines can contain as many labels as you like. A label is just a
text string followed by a colon.

The following procedure shows how a GoTo statement works:

Sub GoToDemo ()
UserName = InputBox("Enter Your Name: ")
If UserName <> "Bill Gates" Then GoTo WrongName
MsgBox ("Welcome Bill...")
! ...[More code here]
Exit Sub
WrongName :
MsgBox "Sorry. Only Bill Gates can run this."
End Sub

The procedure uses the InputBox function to get the user’s name. If the

user enters a name other than Bill Gates, the program flow jumps to the
WrongName label, displays an apologetic message, and the procedure ends.
On the other hand, if Mr. Gates runs this procedure and uses his real name,
the procedure displays a welcome message and then executes some additional
code (not shown in the example). Notice that the Exit Sub statement ends the
procedure before the second MsgBox function has a chance to work.

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions 743

What is structured programming? Does it matter?

If you hang around with programmers, sooner
or later you hear the term structured program-
ming. This term has been around for decades,
and programmers generally agree that struc-
tured programs are superior to unstructured
programs. So, what s structured programming?

manner and is easy to follow — unlike a program
that jumps around in a haphazard fashion. This
pretty much rules out using the GoTo statement.

In general, a structured program is easier to
read and understand. More important, it's also
easier to modify when the need arises.

And can you do that using VBA?
VBA is indeed a structured language. It offers
standard structured constructs such as If-Then-
Else, For-Next loops, Do-Until loops, Do-While
loops, and Select Case structures. Furthermore,
it fully supports module code constructions. If
you're new to programming, you should try to
develop good structure-programming habits
early on. End of lecture.

The basic premise of structured programming
is that a routine or code segment should have
only one entry point and one exit point. In other
words, a block of code should be a stand-alone
unit. A program cannot jump into the middle of
this unit, nor can it exit at any point except the
single exit point. When you write structured
code, your program progresses in an orderly

This simple routine works, but VBA provides several better (and more struc-

tured) alternatives than GoTo. In general, you should use GoTo only when

you have no other way to perform an action. In real life, the only time you

must use a GoTo statement is for trapping errors. (I cover this in Chapter 12.)
WNG/ Many hard-core programming types have a deep-seated hatred for GoTo state-
ments because using them tends to result in difficult-to-read (and difficult-to-
maintain) “spaghetti code.” Therefore, you should avoid this subject when
talking with other programmers.

Decisions, decisions

In this section, [discuss two programming structures that can empower your
VBA procedures with some impressive decision-making capabilities: If-Then
and Select Case.

The If-Then structure

Okay, I'll say it: If-Then is VBA’s most important control structure. You'll
probably use this command on a daily basis (at least / do). As in many other
aspects of life, effective decision-making is the key to success in writing Excel
macros. If this book has the effect I intend, you’ll soon share my philosophy

ooks.com/

http://www.it-ebooks.info/

7 44 Part Ill: Programming Concepts

that a successful Excel application boils down to making decisions and acting
upon them.

The If-Then structure has this basic syntax:
If condition Then statements [Else elsestatements]

Use the If-Then structure when you want to execute one or more statements
conditionally. The optional Else clause, if included, lets you execute one or
more statements if the condition you’re testing is not true. Sound confusing?
Don’t worry; a few examples make this crystal clear.

If-Then examples

The following routine demonstrates the If-Then structure without the
optional Else clause:

Sub GreetMe ()
If Time < 0.5 Then MsgBox "Good Morning"
End Sub

The GreetMe procedure uses VBA’s Time function to get the system time.

If the current system time is less than .5 (in other words, before noon), the
routine displays a friendly greeting. If Time is greater than or equal to .5, the
routine ends and nothing happens.

To display a different greeting if Time is greater than or equal to .5, add
another If-Then statement after the first one:

Sub GreetMe2 ()

If Time < 0.5 Then MsgBox "Good Morning"

If Time >= 0.5 Then MsgBox "Good Afternoon"
End Sub

Notice that [used >= (greater than or equal to) for the second If-Then state-
ment. This ensures that the entire day is covered. Had I used > (greater than),
then no message would appear if this procedure were executed at precisely
12:00 noon. That’s pretty unlikely, but with an important program like this,
we don’t want to take any chances.

An If-Then-Else example

Another approach to the preceding problem uses the Else clause. Here’s the
same routine recoded to use the If-Then-Else structure:

Sub GreetMe3 ()
If Time < 0.5 Then MsgBox "Good Morning" Else _
MsgBox "Good Afternoon"
End Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions 145

Notice that I use the line continuation character (underscore) in the preced-
ing example. The If-Then-Else statement is actually a single statement. VBA
provides a slightly different way of coding If-Then-Else constructs that use an
End-If statement. Therefore, the GreetMe procedure can be rewritten as:

Sub GreetMe4 ()
If Time < 0.5 Then
MsgBox "Good Morning"
Else
MsgBox "Good Afternoon"
End If
End Sub

In fact, you can insert any number of statements under the If part, and any
number of statements under the Else part. | prefer to use this syntax because
it’s easier to read and makes the statements shorter.

What if you need to expand the GreetMe routine to handle three conditions:
morning, afternoon, and evening? You have two options: Use three If-Then
statements or use a nested If-Then-Else structure. Nesting means placing

an If-Then-Else structure within another If-Then-Else structure. The first
approach, the three statements, is simplest:

Sub GreetMeb5 ()
Dim Msg As String

If Time < 0.5 Then Msg = "Morning"
If Time >= 0.5 And Time < 0.75 Then Msg = "Afternoon"
If Time >= 0.75 Then Msg = "Evening"
MsgBox "Good " & Msg
End Sub

The Msg variable gets a different text value, depending on the time of day.
The final MsgBox statement displays the greeting: Good Morning, Good
Afternoon, or Good Evening.

The following routine performs the same action but uses an If-Then-End If
structure:

Sub GreetMe6 ()
Dim Msg As String
If Time < 0.5 Then

Msg = "Morning"

End If

If Time >= 0.5 And Time < 0.75 Then
Msg = "Afternoon"

End If

If Time >= 0.75 Then
Msg = "Evening"

End If

MsgBox "Good " & Msg

End Sub

ooks.com/

http://www.it-ebooks.info/

7 46 Part lll: Programming Concepts

How fast are loops?

You might be curious about how fast VBA can run through If-Then loops. Do some systems run
code significantly faster than others? As an informal experiment, | posted the following VBA
procedure at my blog, and asked others to post their result.

Sub TimeTest ()
'100 million random numbers, tests, and math operations
Dim x As Long
Dim StartTime As Single
Dim i As Long
x =0
StartTime = Timer
For i = 1 To 100000000
If Rnd <= 0.5 Then x = x + 1 Else x = x - 1
Next i
MsgBox Timer - StartTime & " seconds"
End Sub

The code loops 100 million times, and performs some operations inside the loop: It generates a
random number, does an If-Then comparison, and performs a mathematical operation. When the
loop is finished, the elapsed time is displayed in a message box. My system ran through this loop in
8.03 seconds. About 100 others posted their results, and times ranged from about 5 seconds up to
about 30 seconds. In other words, some computers are about six times faster than others. That's
good to know.

But the real question is, how long would it take me to do this task manually? | wrote 0 on a piece
of paper, and | flipped a coin. If it came up heads, | added one to my tally. If it came up tails, |
subtracted 1. | did this ten times and it took me 42 seconds. So, one time through my “loop” took 4.2
seconds. Using this information, | calculated that it would take me 799 years to perform this task
100 million times — but only if | work non-stop. The conclusion: My computer is about 52.3 million
times faster than | am.

Using Elself

In the previous examples, every statement in the routine is executed — even
in the morning. A more efficient structure would exit the routine as soon as
a condition is found to be true. In the morning, for example, the procedure
should display the Good Morning message and then exit — without evaluat-
ing the other superfluous conditions.

With a tiny routine like this, you don’t have to worry about execution speed.
But for larger applications in which speed is important, you should know
about another syntax for the If-Then structure. The Elself syntax follows:

If condition Then
[statements]

[ElseIf condition-n Then
[elseifstatements]]

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions 14 7

[Else
[elsestatements]]
End If

Here’s how you can rewrite the GreetMe routine by using this syntax:
Sub GreetMe7 ()

Dim Msg As String
If Time < 0.5 Then

Msg = "Morning"
ElseIf Time >= 0.5 And Time < 0.75 Then
Msg = "Afternoon"
Else
Msg = "Evening"
End If
MsgBox "Good " & Msg
End Sub

When a condition is true, VBA executes the conditional statements and the
If structure ends. In other words, VBA doesn’t waste time evaluating the
extraneous conditions, which makes this procedure a bit more efficient than
the previous examples. The trade-off (there are always trade-offs) is that the
code is more difficult to understand. (Of course, you already knew that.)

Q&!EB

S

S \/“‘{lls’\\\\ A workbook that contains all of the GreetMe examples can be downloaded
\ =) from this book’s Web site.

!

Another If-Then example

Here’s another example that uses the simple form of the If-Then structure.
This procedure prompts the user for a quantity and then displays the appro-
priate discount, based on the quantity the user enters:

Sub ShowDiscount ()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox ("Enter Quantity:")
If Quantity > 0 Then Discount = 0.1

If Quantity >= 25 Then Discount = 0.15
If Quantity >= 50 Then Discount = 0.2
If Quantity >= 75 Then Discount = 0.25
MsgBox "Discount: " & Discount

End Sub

A workbook that contains this section’s examples can be downloaded from
this book’s Web site.

Notice that each If-Then statement in this routine is executed, and the value
for Discount can change as the statements are executed. However, the rou-
tine ultimately displays the correct value for Discount because I put the
If-Then statements in order of ascending Discount values.

ooks.com/

http://www.it-ebooks.info/

7 48 Part Ill: Programming Concepts

The following procedure performs the same tasks by using the alternative
Elself syntax. In this case, the routine ends immediately after executing the
statements for a true condition.

Sub ShowDiscount? ()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox ("Enter Quantity: ")
If Quantity > 0 And Quantity < 25 Then
Discount = 0.1
ElseIf Quantity >= 25 And Quantity < 50 Then
Discount = 0.15
ElseIf Quantity >= 50 And Quantity < 75 Then
Discount = 0.2
ElseIf Quantity >= 75 Then
Discount = 0.25
End If
MsgBox "Discount: " & Discount
End Sub

Personally, I find these multiple If-Then structures rather cumbersome. |
generally use the If-Then structure for only simple binary decisions. When a
decision involves three or more choices, the Select Case structure offers a
simpler, more efficient approach.

The Select Case structure

The Select Case structure is useful for decisions involving three or more
options (although it also works with two options, providing an alternative to
the If-Then-Else structure).

The syntax for the Select Case structure follows:

Select Case testexpression
[Case expressionlist-n
[statements-n]]
[Case Else
[elsestatements]]
End Select

Don’t be scared off by this official syntax. Using the Select Case structure is
quite easy.

A Select Case example

The following example shows how to use the Select Case structure. This also
shows another way to code the examples presented in the previous section:

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions

Sub ShowDiscount3 ()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox("Enter Quantity: ")
Select Case Quantity
Case 0 To 24
Discount = 0.1
Case 25 To 49
Discount = 0.15
Case 50 To 74
Discount = 0.2
Case Is >= 75
Discount = 0.25

End Select
MsgBox "Discount: " & Discount
End Sub

In this example, the Quantity variable is being evaluated. The routine is
checking for four different cases (0-24, 25-49, 50-74, and 75 or greater).

Any number of statements can follow each Case statement, and they all are
executed if the case is true. If you use only one statement, as in this example,
you can put the statement on the same line as the Case keyword, preceded
by a colon — the VBA statement separator character. In my opinion, this
makes the code more compact and a bit clearer. Here’s how the routine
looks, using this format:

Sub ShowDiscount4d ()
Dim Quantity As Integer
Dim Discount As Double
Quantity = InputBox ("Enter Quantity: ")
Select Case Quantity

Case 0 To 24: Discount = 0.1
Case 25 To 49: Discount = 0.15
Case 50 To 74: Discount = 0.2
Case Is >= 75: Discount = 0.25
End Select
MsgBox "Discount: " & Discount

End Sub

When VBA executes a Select Case structure, the structure is exited as soon as
VBA finds a true case and executes the statements for that case.

A nested Select Case example

As demonstrated in the following example, you can nest Select Case struc-
tures. This routine examines the active cell and displays a message describ-
ing the cell’s contents. Notice that the procedure has three Select Case struc-
tures and each has its own End Select statement.

ooks.com/

149

http://www.it-ebooks.info/

’50 Part Ill: Programming Concepts

«@@EB

Figure 10-1:
A message
displayed

by the
CheckCell
procedure.
|

Sub CheckCell ()
Dim Msg As String
Select Case IsEmpty (ActiveCell)
Case True
Msg = "is blank."
Case Else
Select Case ActiveCell.HasFormula
Case True
Msg = "has a formula"
Case False
Select Case IsNumeric (ActiveCell)
Case True

Msg = "has a number"
Case Else
Msg = "has text"

End Select
End Select

End Select
MsgBox "Cell " & ActiveCell.Address & " " & Msg
End Sub

This example is available at this book’s Web site.
The logic goes something like this:

1. Find out whether the cell is empty.
2. If it’s not empty, see whether it contains a formula.
3. If there’s no formula, find out whether it contains a numeric value

or text.

When the routine ends, the Msg variable contains a string that describes the
cell’s contents. As shown in Figure 10-1, the MsgBox function displays that
message.

You can nest Select Case structures as deeply as you need to, but make sure
that each Select Case statement has a corresponding End Select statement.

A F) C D E F G H
1

2 |Jan 32 Micrasoft Excel £
3 |Feb 0

4 |Mar 5 Cell $845 has a formula

5 |Apr 43

6 |May 83

4 |Total 235_

.:I

10

11

12

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions 15 ’

<P If you've ever wondered why I indent the code [present here, the previous list-
ing serves as a good example. The indentations really help to make the nesting
levels clear (at least I think so). If you don’t believe me, take a look at the same
procedure without any indentation:

Sub CheckCell ()

Dim Msg As String

Select Case IsEmpty (ActiveCell)
Case True

Msg = "is blank."

Case Else

Select Case ActiveCell.HasFormula
Case True

Msg = "has a formula"

Case False

Select Case IsNumeric (ActiveCell)
Case True

Msg = "has a number"
Case Else
Msg = "has text"

End Select

End Select

End Select

MsgBox "Cell " & ActiveCell.Address & " " & Msg
End Sub

Fairly incomprehensible, eh?

Knocking Your Code for a Loop

The term looping refers to repeating a block of VBA statements numerous
times. In this section, I explain about several different types of loops.

There are two types of loops: good loops and bad loops. (Good loops get
rewarded, and bad loops get sent to their room.)

The following code demonstrates a bad loop. The procedure simply enters
consecutive numbers into a range. It starts by prompting the user for

two values: a starting value and the total number of cells to fill. (Because
InputBox returns a string, I convert the strings to integers by using the
ClInt function.) This loop uses the GoTo statement to control the flow. The
CellCount variable keeps track of how many cells are filled. If this value is
less than the number requested by the user, program control loops back to
DoAnother.

ooks.com/

http://www.it-ebooks.info/

’52 Part Ill: Programming Concepts

Sub BadLoop ()
Dim Startval As Long
Dim NumToFill As Long
Dim CellCount As Long
StartVal = InputBox ("Enter the starting value: ")
NumToFill = InputBox("How many cells? ")
ActiveCell = StartVval
CellCount = 1
DoAnother:
ActiveCell.Offset (CellCount, 0) = Startval + CellCount
CellCount = CellCount + 1
If CellCount < NumToFill Then GoTo DoAnother _
Else Exit Sub
End Sub

This routine works as intended, but I'm not particularly proud of it. So why is
it an example of bad looping? As [mention earlier in this chapter, avoid using
a GoTo statement unless it’s absolutely necessary. Using GoTo statements to
perform looping

v Is contrary to the concept of structured programming. (See the side-
bar earlier in this chapter, “What is structured programming? Does it
matter?”)

v Makes the code more difficult to read.
v Is more prone to errors than using structured looping procedures.
VBA has enough structured looping commands that you almost never have

to rely on GoTo statements for your decision-making. Again, the exception is
for error handling.

Now you can move on to a discussion of good looping structures.

For-Next loops

The simplest type of loop is a For-Next loop. Here’s the syntax for this
structure:

For counter = start To end [Step stepvall
[statements]
[Exit For]
[statements]

Next [counter]

The looping is controlled by a counter variable, which starts at one value and
stops at another value. The statements between the For statement and the

ooks.com/

http://www.it-ebooks.info/

WING/
&

Chapter 10: Controlling Program Flow and Making Decisions

Next statement are the statements that get repeated in the loop. To see how
this works, keep reading.

A For-Next example

The following example shows a For-Next loop that doesn’t use the optional
Step value or the optional Exit For statement. This routine loops 20 times and
uses the VBA Rnd function to enter a random number into 20 cells, beginning
with the active cell:

Sub FillRange ()
Dim Count As Long
For Count = 0 To 19
ActiveCell.Offset (Count, 0) = Rnd
Next Count
End Sub

In this example, Count (the loop counter variable) starts with a value of 0
and increases by 1 each time through the loop. Because I didn’t specify a
Step value, VBA uses the default value (1). The Offset method uses the value
of Count as an argument. The first time through the loop, Count is 0 and

the procedure enters a number into the active cell offset by zero rows. The
second time through (Count = 1), the procedure enters a number into the
active cell offset by one row, and so on.

Because the loop counter is a normal variable, you can write code to change
its value within the block of code between the For and the Next statements.
This, however, is a very bad practice. Changing the counter within the loop
can have unpredictable results. Take special precautions to ensure that your
code does not directly change the value of the loop counter.

A For-Next example with a Step

You can use a Step value to skip some values in a For-Next loop. Here’s the
same procedure as in the preceding section, rewritten to insert random num-
bers into every other cell:

Sub FillRange?2 ()
Dim Count As Long
For Count = 0 To 19 Step 2
ActiveCell.Offset (Count, 0) = Rnd
Next Count
End Sub

This time, Count starts out as 0 and then takes on a value of 2, 4, 6, and so
on. The final Count value is 18. The Step value determines how the counter is
incremented. Notice that the upper loop value (19) is not used because the
highest value of Count after 18 would be 20, and 20 is larger than 19.

Figure 10-2 shows the result of running FillRange2 when cell B2 is the
active cell.

ooks.com/

153

http://www.it-ebooks.info/

754 Part lll: Programming Concepts

Earlier in this chapter, you saw the BadLoop example, which uses a GoTo
statement. Here’s the same example, which is available on this book’s Web
site, converted into a good loop by using the For-Next structure:

Sub GoodLoop ()

Dim Startval As Long

Dim NumToFill As Long

Dim CellCount As Long

StartvVal = InputBox ("Enter the starting value: ")

NumToFill = InputBox ("How many cells? ")

For CellCount = 1 To NumToFill
ActiveCell.Offset (CellCount - 1, 0) =

StartvVal + CellCount - 1
Next CellCount

End Sub
A B B D E
1
2 I U.l145353.|
4 0.414033
3 0.862619
8 0.79043
5
10 0.373536
11
12 0.961353
13
——— 0.871446
15
Figure 10-2: |15 0.056237
Using aloop | ¥
g p 18 0.949557
to gener- [,
ate random |20 0.364019
numbers. |*
2

A For-Next example with an Exit For statement

A For-Next loop can also include one or more Exit For statements within the
loop. When VBA encounters this statement, the loop terminates immediately.

The following example, available on the book’s Web site, demonstrates the
Exit For statement. This routine identifies which of the active worksheet’s
cells in column A has the largest value:

Sub ExitForDemo ()
Dim MaxVal As Double
Dim Row As Long
MaxVal = WorksheetFunction.Max (Range ("A:A"))
For Row = 1 To Rows.Count

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions 155

If Range("Al") .Offset (Row-1, 0).Value = MaxVal Then
Range ("Al") .Offset (Row-1, 0).Activate
MsgBox "Max value is in Row " & Row
Exit For
End If
Next Row
End Sub

The routine calculates the maximum value in the column by using Excel’s
MAX function and assigns the result to the MaxVal variable. The For-Next
loop then checks each cell in the column. If the cell being checked is equal to
MaxVal, the routine doesn’t need to continue looping (its job is finished), so
the Exit For statement terminates the loop.

Now you might shout “Hey, but you said something about always using a
single point of exit!” Well, you're right, and obviously you're getting the hang
of this structured programming business. But in some cases, ignoring that
rule is a wise decision. In this example it will greatly speed up your code
because there’s no reason to continue the loop after the value is found.

Before terminating the loop, the procedure activates the cell with the maxi-
mum value and informs the user of its location.

Notice that [use Rows.Count in the For statement. The count property of
the Rows object returns the number of rows in the worksheet. Therefore,
you can use this procedure with earlier versions of Excel (which have fewer
Yows).

A nested For-Next example

So far, all this chapter’s examples use relatively simple loops. However,
you can have any number of statements in the loop and nest For-Next loops
inside other For-Next loops.

The following example uses a nested For-Next loop to insert random numbers
into a 12-row-x-5-column range of cells, as shown in Figure 10-3. Notice that
the routine executes the inner loop (the loop with the Row counter) once

for each iteration of the outer loop (the loop with the Col counter). In other
words, the routine executes the Cells(Row, Col) = Rnd statement 60 times.

Sub FillRange?2 ()
Dim Col As Long
Dim Row As Long
For Col = 1 To 5
For Row = 1 To 12
Cells (Row, Col) = Rnd
Next Row
Next Col
End Sub

ooks.com/

http://www.it-ebooks.info/

756 Part Ill: Programming Concepts

A B B D E F E H
1| 0705548 0.862619 0.4687 0.635116 0.23448
2 | 0533424 0.79048 0.293165 0.930003 0.045649

3 | 0579519 0.373536 0.622697 0.243931 0.295773)
Fill Range

I | o | 0239562 0.961953 0.647821 0533373 0382011
. |5] 0201948 0871446 0.263793 010627 0.30097
Figure 10-3: || 77050 c.056237 0.279392 0.99915 0.948571
These cells | 7 | 0.014018 0.949557 0.829802 0.676176 0979529
were filled | | 0760724 0364019 0.824602 0.015704 0.401374
.)| 081249 0524868 0.589163 0.575184 0.27828
by using a [y o700 0.767112 0.986093 0.100052 0.16042
nested For- |11 0.045353 0.053505 0.910964 0.103023 0.162822
Next loop. |12 0414032 0592458 0226856 0753334 0.646587

The next example uses nested For-Next loops to initialize a three-dimensional
array with the value 100. This routine executes the statement in the middle of
all the loops (the assignment statement) 1,000 times (10 * 10 * 10), each time
with a different combination of values for i, j, and k:

Sub NestedLoops ()
Dim MyArray (10, 10, 10)
Dim i As Integer
Dim j As Integer
Dim k As Integer
For i = 1 To 10
For j = 1 To 10
For k = 1 To 10
MyArray (i, j, k) = 100
Next k
Next j
Next i
' Other statements go here
End Sub

Refer to Chapter 7 for information about arrays.

Do-While loop

VBA supports another type of looping structure known as a Do-While loop.
Unlike a For-Next loop, a Do-While loop continues until a specified condition
is met. Here’s the Do-While loop syntax:

Do [While condition]
[statements]
[Exit Do]
[statements]

Loop

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions

SMBER
S

The following example uses a Do-While loop. This routine uses the active cell
as a starting point and then travels down the column, multiplying each cell’s
value by 2. The loop continues until the routine encounters an empty cell.

Sub DoWhileDemo ()

Do While ActiveCell.Value <> Empty
ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset (1, 0).Select

Loop

End Sub

Some people prefer to code a Do-While loop as a Do-Loop While loop. This
example performs exactly as the previous procedure but uses a different
loop syntax:

Sub DoLoopWhileDemo ()
Do
ActiveCell .Value = ActiveCell.Value * 2
ActiveCell.Offset (1, 0).Select
Loop While ActiveCell.Value <> Empty
End Sub

Here’s the key difference between the Do-While and Do-Loop While loops: The
Do-While loop always performs its conditional test first. If the test is not true,
the instructions inside the loop are never executed. The Do-Loop While loop,
on the other hand, always performs its conditional test after the instructions
inside the loop are executed. Thus, the loop instructions are always executed
at least once, regardless of the test. This difference can sometimes have a big
effect on how your program functions.

Do-Until loop

The Do-Until loop structure is similar to the Do-While structure. The two
structures differ in their handling of the tested condition. A program contin-
ues to execute a Do-While loop while the condition remains true. In a Do-Until
loop, the program executes the loop until the condition is true.

Here’s the Do-Until syntax:

Do [Until condition]
Sstatements]
[Exit Do]
[statements]

Loop

The following example is the same one presented for the Do-While loop but
recoded to use a Do-Until loop:

ooks.com/

157

http://www.it-ebooks.info/

158

Part lll: Programming Concepts

\NG/
g““

Sub DoUntilDemo ()

Do Until IsEmpty (ActiveCell.Value)
ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset (1, 0).Select

Loop

End Sub

Just like with the Do-While loop, you may encounter a different form of the
Do-Until loop — a Do-Loop Until loop. The following example, which has the
same effect as the preceding procedure, demonstrates an alternate syntax for
this type of loop:

Sub DoLoopUntilDemo ()
Do
ActiveCell.Value = ActiveCell.Value * 2
ActiveCell.Offset (1, 0).Select
Loop Until IsEmpty (ActiveCell.Value)
End Sub

There is a subtle difference in how the Do-Until loop and the Do-Loop Until
loop operate. In the former, the test is performed at the beginning of the loop,
before anything in the body of the loop is executed. This means that it is pos-
sible that the code in the loop body will not be executed if the test condition
is met. In the latter version, the condition is tested at the end of the loop.
Therefore, at a minimum, the Do-Loop Until loop always results in the body of
the loop being executed once.

Another way to think about it is like this: The Do-While loop keeps looping as
long as the condition is True. The Do-Until loop keeps looping as long as the
condition is False.

Looping through a Collection

VBA supports yet another type of looping — looping through each object in a
collection of objects. Recall that a collection consists of a number of objects
of the same type. For example, Excel has a collection of all open workbooks
(the Workbooks collection), and each workbook has a collection of work-
sheets (the Worksheets collection).

When you need to loop through each object in a collection, use the For Each-
Next structure. The syntax is

For Each element In collection
[statements]
[Exit For]
[statements]

Next [element]

ooks.com/

http://www.it-ebooks.info/

Chapter 10: Controlling Program Flow and Making Decisions

The following example loops through each worksheet in the active workbook
and deletes the first row of each worksheet:

Sub DeleteRowl ()
Dim WkSht As Worksheet
For Each WkSht In ActiveWorkbook.Worksheets
WkSht.Rows (1) .Delete
Next WkSht
End Sub

In this example, the variable WkSht is an object variable that represents
each worksheet in the workbook. Nothing is special about the variable name
WkSht — you can use any variable name that you like.

The example that follows loops through the cells in a range, and checks each
cell. The code switches the sign of the values (negative values are made
positive; positive values are made negative). It does this by multiplying each
value times -1. Note that [used an If-Then construct, along with the VBA
IsNumeric function, to ensure that the cell contains a numeric value:

Sub ChangeSign ()
Dim Cell As Range
For Each Cell In Range("Al:E50")
If IsNumeric(Cell.Value) Then
Cell.Value = Cell.Value * -1
End If
Next Cell
End Sub

The preceding code sample has a problem: It changes any formulas in the
range it loops through to values, zapping your formulas. That’s probably not
what you want. Here’s another version of the Sub that skips formula cells. It
checks whether the cell has a formula by accessing the HasFormula property:

Sub ChangeSign2 ()
Dim Cell As Range
For Each Cell In Range("Al:E50")
If Not Cell.HasFormula Then
If IsNumeric(Cell.Value) Then
Cell.Value = Cell.vValue * -1

End If
End If
Next Cell

End Sub

And here’s one more For Each-Next example. This procedure loops through
each chart on Sheet1 (that is, each member of the ChartObjects collection) and
changes each chart to a line chart. In this example, Cht is a variable that repre-
sents each ChartObject. If Sheetl has no ChartObjects, nothing happens.

ooks.com/

159

http://www.it-ebooks.info/

7 60 Part Ill: Programming Concepts

Sub ChangeCharts ()
Dim Cht As ChartObject
For Each Cht In Sheets("Sheetl").ChartObjects
Cht.Chart.ChartType = xlLine
Next Cht
End Sub

To write a procedure like ChangeCharts, you need to know something about
the object model for charts. You can get that information by recording a
macro to find out which objects are involved and then checking the Help
system for details.

Excel 2007 users are out of luck here: The macro recorder in Excel 2007 does
not record all chart changes you make.

ooks.com/

http://www.it-ebooks.info/

Chapter 11
Automatic Procedures and Events

In This Chapter

Knowing the event types that can trigger an execution

Finding out where to place your event-handler VBA code
Executing a macro when a workbook is opened or closed

Executing a macro when a workbook or worksheet is activated

ou have a number of ways to execute a VBA Sub procedure. One way is

to arrange for the Sub to be executed automatically. In this chapter, I
cover the ins and outs of this potentially useful feature, explaining how to set
things up so that a macro is executed automatically when a particular event
occurs. (No, this chapter is not about capital punishment.)

Preparing for the Big Event

What types of events am I talking about here? Good question. An event is
basically something that happens in Excel. Following are a few examples of
the types of events that Excel can deal with:

v A workbook is opened or closed.

v A window is activated.

v A worksheet is activated or deactivated.

v Data is entered into a cell or the cell is edited.

v A workbook is saved.

1 A worksheet is calculated.

v An object, such as a button, is clicked.

v A particular key or key combination is pressed.

v A particular time of day occurs.

» An error occurs.

ooks.com/

http://www.it-ebooks.info/

’ 62 Part Ill: Programming Concepts

Most Excel programmers never need to worry about most of the events in
this list. You should, however, at least know that these events exist because
they may come in handy someday. In this chapter, I discuss the most com-
monly used events. To simplify things, I talk about two types of events: work-
book and worksheet.

Table 11-1 lists most of the workbook-related events. If, for some reason, you
need to see the complete list of workbook-related events, you’ll find it in the
Help system.

Table 11-1 Workbook Events

Event When It's Triggered

Activate The workbook is activated.

AddinInstall An add-in is installed (relevant only for add-ins).
AddinUninstall The add-in is uninstalled (relevant only for

add-ins).

BeforeClose

The workbook is closed.

BeforePrint

The workbook is printed.

BeforeSave The workbook is saved.

Deactivate The workbook is deactivated.
NewSheet A new sheet is added to the workbook.
Open The workbook is opened.
SheetActivate A sheetin the workbook is activated.

SheetBefore DoubleClick

A cell in the workbook is double-clicked.

SheetBefore RightClick

A cell in the workbook is right-clicked.

SheetCalculate

A sheet in the workbook is recalculated.

SheetChange

A change is made to a cell in the workbook.

SheetDeactivate

A sheet in the workbook is deactivated.

SheetFollowHyperlink A hyperlink in a worksheet is clicked.

SheetSelectionChange The selection is changed.

WindowActivate The workbook window is activated.
WindowDeactivate The workbook window is deactivated.
WindowResize The workbook window is resized.

Table 11-2 lists most of the worksheet-related events.

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 163

\NG/
S

Table 11-2 Worksheet Events

Event When It's Triggered

Activate The worksheet is activated.

BeforeDoubleClick A cell in the worksheet is double-clicked.

BeforeRightClick A cell in the worksheet is right-clicked.

Calculate The worksheet is recalculated.

Change A change is made to a cell in the
worksheet.

Deactivate The worksheet is deactivated.

FollowHyperlink A hyperlink is activated.

SelectionChange The selection is changed.

Are events useful?

At this point, you may be wondering how these events can be useful. Here’s a
quick example.

Suppose you have a workbook in which you enter data in column A. Your
boss tells you that he needs to know exactly when each data point was
entered. Entering data is an event — a WorksheetChange event. You can
write a macro that responds to this event. That macro kicks in whenever the
worksheet is changed. If the change was made in column A, the macro puts
the date and time in column B, next to the data point that was entered.

In case you're curious, here’s what such a macro would look like. (It should
be in the Code module for the worksheet.) Probably a lot simpler than you
thought it would be, eh?

Private Sub Worksheet_Change (ByVal Target As Range)

If Target.Column = 1 Then
Target.Offset (0, 1) = Now
End If
End Sub

Just because your workbook contains procedures that respond to events
doesn’t guarantee that those procedures will actually run. As you know, it’s
possible to open a workbook with macros disabled. In such a case, all macros
(even procedures that respond to events) are turned off. Keep this fact in
mind when you create workbooks that rely on event-handler procedures.

ooks.com/

http://www.it-ebooks.info/

7 64 Part lll: Programming Concepts

Programming event-handler procedures

A VBA procedure that executes in response to an event is called an event-
handler procedure. These are always Sub procedures (as opposed to Function
procedures). Writing these event-handlers is relatively straightforward after
you understand how the process works. It boils down to a few steps, all of
which I explain later:

1. Identify the event you want to trigger the procedure.

2. Press Alt+F11 to Activate the Visual Basic Editor.

3. In the VBE Project Window, double-click the appropriate object listed
under Microsoft Excel Objects.

For workbook-related events, the object is ThisWorkbook. For a work-
sheet-related event, the object is a Worksheet object (such as Sheetl).

4. In the Code window for the object, write the event-handler procedure
that is executed when the event occurs.

This procedure will have a special name that identifies it as an event-
handler procedure.

These steps become clearer as you progress through the chapter. Trust me.

Where Does the VBA Code Go?

It’s very important to understand where your event-handler procedures go.
They must reside in the Code window of an Object module. They do not go
in a standard VBA module. If you put your event-handler procedure in the
wrong place, it simply won’t work. And you won’t see any error messages
either.

Figure 11-1 shows the VBE window with one project displayed in the Project
window. (Refer to Chapter 3 for some background on the VBE.) Notice that
the VBA project for Bookl is fully expanded and consists of several objects:

v One object for each worksheet in the workbook (in this case, three Sheet
objects)
* An object labeled ThisWorkbook

1 A VBA module that I inserted manually by using the Insert=>Module
command

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 1 6 5

#9 Micrasoft Visual Basic - Baok - [Sheet] [Cade)] [E] S
i File Edit View Inset Format Debug Run Toals Adddns Window Help Type a question for help -8 x
&l BRIy u e IS EE 2@ s o B
Lig=die g X[Worksheet <] [change =
EE3 |~ Private Sub Worksheet Change (ByWal Target As Range) al
-2 VBAProject (Book1) Tf Target.Colmwn = 1 Then
455 Microsoft Excel Ohjects Target.Offset (0, 1) = Now
EE] Sheet1 (Sheet1) End If
EE] Sheet2 (Sheet2) End Sub
~EH] Sheet3 (Shest3)
-4&] Thiswerkbogk
=125 Modules
o Module1
I
Figure 11-1: -
Si= 3
The VBE
. . Immediate X|
window dis- 5
plays items
for a single
prolect. |
Ll | Ein
I

Double-clicking any of these objects displays the code associated with the
item, if any.

The event-handler procedures that you write go into the Code window for the
ThisWorkbook item (for workbook-related events) or one of the Sheet objects
(for worksheet-related events).

In Figure 11-1, the Code window for the Sheetl object is displayed, and it hap-
pens to have a single event-handler procedure defined. Notice the two drop-

down controls at the top of the Code module? Keep reading to find out why
those are useful.

Writing an Event-Handler Procedure

The VBE helps you out when you’re ready to write an event-handler proce-
dure; it displays a list of all events for the selected object.

At the top of each Code window, you find two drop-down lists:

v The Object drop-down list (the one on the left)
v The Procedure drop-down list (the one on the right)
By default, the Object drop-down list in the Code window displays General.

If you're writing an event-handler for the ThisWorkbook object, you need to
choose Workbook from the Object drop-down (it’s the only other choice).

ooks.com/

http://www.it-ebooks.info/

’ 66 Part Ill: Programming Concepts

Figure 11-2:
Choosing an
event in the
Code
window

for the
ThisWork-
book object.
|

WMBER
@ﬁ
&

If you're writing an event-handler for a Sheet object, you need to choose
Worksheet (again, the only other choice).

After you’ve made your choice from the Object drop-down list, then you can
choose the event from the Procedure drop-down list. Figure 11-2 shows the
choices for a workbook-related event.

Micrasoft Visual Basic - Baok1 - [ThisWarkbaok {Code)] ===
i File Edit View Inset Format Debug Run Tools Add-lns Window Help Tupe a question far help 8 x
H&E-dl BRIy 0 3 ISEFS 2@ Lndcolt g
Project - VBAProject x| ‘w‘"khwk j ‘opan j
BE= = Private Sub Workkook_Opemi Do mameart [=H
=& vBAProject (Book1) INeveShest
23 Microsoft Excel Objects End Sub
Sheet1 {Sheet1) vt TableCloseConnection
Sheet {Sheetz) [Pivet TableOpenConnection
Sheet3 {Sheet3) RowsetComplete
Thisiarkbook g:egg?wﬁﬂs pcick
ieetBetareDaobleClic
= 52?;'5; o IShestBetoreRightClick
. o [SheetCaloulate
heetCh -
== 4 »
Immediate x|
| DI

When you select an event from the list, VBE automatically starts creating an
event-handler procedure for you. This is a very useful feature, because you
can verify that the proper arguments are used.

Here’s a little quirk. When you first selected Workbook from the Object list,
VBE always assumes that you want to create an event-handler procedure for
the Open event and creates it for you. If you're actually creating a Workbook_
Open procedure, that’s fine. But if you're creating a different event-procedure,
you need to delete the empty Workbook_Open Sub that Excel created.

VBE’s help goes only so far, however. It writes the Sub statement and the
End Sub statement. Writing the VBA code that goes between these two state-
ments is your job.

You don'’t really have to use those two drop-downs, but it makes your job
easier because the name of the event-handler procedure is critically impor-
tant. If you don’t get the name exactly right, it won’t work. Plus, some event-
handler procedures use one or more arguments in the Sub statement. There’s
no way you can remember what those arguments are. For example, if you
select SheetActivate from the event list for a Workbook object, VBE writes the
following Sub statement:

Private Sub Workbook_SheetActivate (ByVal Sh As Object)

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 16 7

In this case, Sh is the argument passed to the procedure and is a variable that
represents the sheet in the activated workbook. Examples in this chapter
clarify this point.

Introductory Examples

In this section, I provide a few examples so that you can get the hang of this
event-handling business.

The Open event for a workbook

One of the most commonly used events is the Workbook Open event. Assume
that you have a workbook that you use every day. The Workbook_Open
procedure in this example is executed every time the workbook is opened.
The procedure checks the day of the week; if it’s Friday, the code displays a
reminder message for you.

To create the procedure that is executed whenever the Workbook Open
event occurs, follow these steps:

1.

U1 W N

Open the workbook.
Any workbook will do.

. Press Alt+F11 to activate the VBE.

. Locate the workbook in the Project window.

. Double-click the project name to display its items, if necessary.
. Double-click the ThisWorkbook item.

The VBE displays an empty Code window for the ThisWorkbook object.

. In the Code window, select Workbook from the Object (left) drop-

down list.

The VBE enters the beginning and ending statements for a Workbook_
Open procedure.

. Enter the following statements, so the complete event-procedure looks

like this:

Private Sub Workbook_Open ()
Dim Msg As String
If WeekDay (Now) = 6 Then
Msg = "Today is Friday. Make sure that you "
Msg = Msg & "do your weekly backup!™"
MsgBox Msg
End If
End Sub

ooks.com/

http://www.it-ebooks.info/

168

Part lll: Programming Concepts

Figure 11-3:
The event-
handler
procedure

is executed
when the
workbook is
opened.
|

The Code window should look like Figure 11-3.

#7 Micrasoft Visual Basic - Baok1 - [ThisWarkbaok {Code)] ===
i/ File Edit View Inset Format Debug Run Tools AddIns Window Help Type a question far help -8 x
== BRIy 0 aRIFEY @ wmacl g
Project - VEAProject x| [Workbook | [oven =]
BE= E Private Sub Workkook_Opemi =
= @vsnvrnie:t(nnnkl) Dim Msg As String
= icrasoft Excel Objects If Weekday(lNow) = & Then
Sheetl (Sheetl) Msy = "Today is Friday. Meke sure that you "
Sheet2 (SheetZ) Msy = Msy & "do your weekly backup!"
Sheet3 (Sheet3) MsgBox Msg
-4&] Thiswerkbogk End If
1 Modules End Sub
Al Modulel
== »
Immediate x|
Ll | 5|

Workbook_Open is executed automatically whenever the workbook is
opened. It uses VBA’s WeekDay function to determine the day of the week. If
it’s Friday (day 6), a message box reminds the user to perform a weekly file
backup. If it’s not Friday, nothing happens.

If today isn’t Friday, you might have a hard time testing this procedure. Here’s
a chance to test your own skill at VBA. You can modify this procedure any way
you like. For example, the following version displays a message every time the
workbook is opened. This gets annoying after a while, trust me.

Private Sub Workbook_Open ()

Msg = "This is Frank's cool workbook!"
MsgBox Msg
End Sub

A Workbook_Open procedure can do almost anything. These event-handlers
are often used for the following:

v Displaying welcome messages (such as in Frank’s cool workbook)

v Opening other workbooks

v Activating a particular worksheet in the workbook

v Setting up custom shortcut menus

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 169

SING/
&

The BeforeClose event for a workbook

Here’s an example of the Workbook_BeforeClose event-handler procedure,
which is executed automatically immediately before the workbook is closed.
This procedure is located in the Code window for a ThisWorkbook object:

Private Sub Workbook_BeforeClose (Cancel As Boolean)
Dim Msg As String
Dim Ans As Integer
Dim FName As String
Msg = "Would you like to make a backup of this file?"
Ans = MsgBox (Msg, vbYesNo)
If Ans = vbYes Then

FName = "F:\BACKUP\" & ThisWorkbook.Name
ThisWorkbook.SaveCopyAs FName
End If
End Sub

This routine uses a message box to ask the user whether he would like to
make a backup copy of the workbook. If the answer is yes, the code uses the
SaveCopyAs method to save a backup copy of the file on drive F. If you adapt
this procedure for your own use, you probably need to change the drive and
path.

Excel programmers often use a Workbook_BeforeClose procedure to clean
up after themselves. For example, if you use a Workbook_Open procedure to
change some settings when you open a workbook (hiding the status bar, for
example), it’s only appropriate that you return the settings to their original
state when you close the workbook. You can perform this electronic house-
keeping with a Workbook_BeforeClose procedure.

There is an unfortunate caveat with the Workbook_BeforeClose event. If you
close Excel and any open file has been changed since the last save, Excel
will show its usual “Do you want to save changes” message box. Clicking

the Cancel button cancels the entire closing process. But the Workbook_
BeforeClose event will have been executed anyway.

The BeforeSave event for a workbook

The BeforeSave event, as its name implies, is triggered before a workbook is
saved. This event occurs when you use either the Filem>Save or Filem>Save As
command.

The following procedure, which is placed in the Code window for a
ThisWorkbook object, demonstrates the BeforeSave event. The routine
updates the value in a cell (cell Al on Sheetl) every time the workbook
is saved. In other words, cell Al serves as a counter to keep track of the
number of times the file was saved.

ooks.com/

http://www.it-ebooks.info/

7 70 Part lll: Programming Concepts

Private Sub Workbook_BeforeSave (ByVal SaveAsUI _
As Boolean, Cancel As Boolean)
Sheets ("Sheetl") .Range("Al") .Value = _
Sheets ("Sheetl") .Range("Al") .Value +1
End Sub

Notice that the Workbook_BeforeSave procedure has two arguments,
SaveAsUI and Cancel. To demonstrate how these arguments work, examine
the following macro, which is executed before the workbook is saved. This
procedure prevents the user from saving the workbook with a different name.
If the user chooses the Filem>Save As command, then the SaveAsUI argument
is True.

When the code executes, it checks the SaveAsUI value. If this variable is True,
the procedure displays a message and sets Cancel to True, which cancels the
Save operation.

Private Sub Workbook_BeforeSave (ByVal SaveAsUI _
As Boolean, Cancel As Boolean)
If SaveAsUI Then
MsgBox "You cannot save a copy of this workbook!"
Cancel = True
End If
End Sub

Keep in mind that this procedure won'’t really prevent anyone from saving

a copy with a different name. If someone really wants to do it, they can just
open the workbook with macros disabled. When macros are disabled, event-
handler procedures are also disabled — which makes sense because they
are, after all, macros.

Examples of Activation Events

Another category of events consists of activating and deactivating objects —
specifically, sheets and workbooks.

Activate and deactivate events in a sheet

Excel can detect when a particular sheet is activated or deactivated and
execute a macro when either of these events occurs. These event-handler
procedures go in the Code window for the Sheet object.

ooks.com/

http://www.it-ebooks.info/

A\

Chapter 11: Automatic Procedures and Events

You can quickly access a sheet’s code window by right-clicking on the sheet’s
tab and selecting View Code.

The following example shows a simple procedure that is executed whenever
a particular sheet is activated. This code simply pops up a message box that
displays the name of the active sheet:

Private Sub Worksheet_ Activate()
MsgBox "You just activated " & ActiveSheet.Name
End Sub

Here’s another example that activates cell A1 whenever the sheet is activated:

Private Sub Worksheet_Activate()
Range ("Al") .Activate
End Sub

Although the code in these two procedures is about as simple as it gets,
event-handler procedures can be as complex as you like.

The following procedure (which is stored in the Code window for the Sheet1
object) uses the Deactivate event to prevent a user from activating any other
sheet in the workbook. If Sheet1 is deactivated (that is, another sheet is acti-
vated), the user gets a message and Sheet] is activated.

Private Sub Worksheet_Deactivate ()
MsgBox "You must stay on Sheetl"
Sheets ("Sheetl") .Activate

End Sub

By the way, [don’t recommend using procedures, such as this one, that
attempt to take over Excel. These so-called “dictator” applications can be
very frustrating and confusing for the user. Rather, | recommend training the
user how to use your application correctly.

Activate and deactivate
events in a workbook

The previous examples use events associated with a specific worksheet. The
ThisWorkbook object also handles events that deal with sheet activation and
deactivation. The following procedure, which is stored in the Code window

for the ThisWorkbook object, is executed when any sheet in the workbook is
activated. The code displays a message with the name of the activated sheet.

ooks.com/

171

http://www.it-ebooks.info/

’ 72 Part Ill: Programming Concepts

Private Sub Workbook_SheetActivate (ByVal Sh As Object)
MsgBox Sh.Name
End Sub

The Workbook_SheetActivate procedure uses the Sh argument. Sh is a vari-
able that represents the active Sheet object. The message box displays

the Sheet object’s Name property. The next example is contained in a
ThisWorkbook Code window. It consists of two event-handler procedures:

1 Workbook_SheetDeactivate: Executed when any sheet in the workbook
is deactivated. It stores the sheet that is deactivated in an object vari-
able. (The Set keyword creates an object variable.)

v Workbook_SheetActivate: Executed when any sheet in the workbook
is activated. It checks the type of sheet that is activated (using the
TypeName function). If the sheet is a chart sheet, the user gets a mes-
sage (see Figure 11-4). When the OK button in the message box is
clicked, the previous sheet (which is stored in the OldSheet variable) is
reactivated.

i3] activate and deactivate events.dsm = = =

Chart1

\

1 Micrasaft Excel =
Figure 11-4:
This chart cantains 7 data paints.
When a Click OK to return to Shest2

chart sheet
is activated,
the user
sees a mes-
sage like ad o o=

H Jan Feb Mar Apr May lun ul
this.

M 4 b ¥ Sheet1 | Chartl Sheet2 /Sheet3 /“Chart2 /%] [« T] | »

ooks.com/

http://www.it-ebooks.info/

gﬂv

—
I[,, | \\

Chapter 11: Automatic Procedures and Events 1 73

A workbook that contains this code is available at this book’s Web site.
Dim OldSheet As Object

Private Sub Workbook_SheetDeactivate (ByVal Sh As Object)
Set 0OldSheet = Sh
End Sub

Private Sub Workbook_SheetActivate (ByVal Sh As Object)
Dim Msg As String
If TypeName (Sh) = "Chart" Then
Msg = "This chart contains "
Msg = Msg & ActiveChart.SeriesCollection (1) .
Points.Count
Msg = Msg & " data points." & vbNewLine
Msg = Msg & "Click OK to return to " & OldSheet.
Name
MsgBox Msg
OldSheet.Activate
End If
End Sub

Workbook activation events

Excel also recognizes the event that occurs when you activate or deactivate
a particular workbook. The following code, which is contained in the Code
window for the ThisWorkbook object, is executed whenever the workbook is
activated. The procedure simply maximizes the workbook’s window.

Private Sub Workbook_Activate()
ActiveWindow.WindowState = x1Maximized
End Sub

The Workbook_Deactivate code, shown next, is executed when a workbook is
deactivated. Here’s an example procedure that copies the selected range. It
might be useful if you’re copying data from lots of different areas and pasting
them to a different workbook. Select the range, activate the other workbook,
select the destination, and press Ctrl+V to paste the copied data.

Private Sub Workbook_Deactivate ()
ThisWorkbook.Windows (1) .RangeSelection.Copy
End Sub

Simple as it is, this procedure required some experimentation before I got it
to work correctly. First I tried this:

Selection.Copy

ooks.com/

http://www.it-ebooks.info/

7 74 Part lll: Programming Concepts

This statement didn’t work as [had intended. It copied the range from the
second workbook (the one I activated after deactivating the first workbook).
That’s because the second workbook became the active workbook after the
deactivation event occurred.

This statement didn’t work either. In fact, it gave me a runtime error:
ThisWorkbook.ActiveSheet.Selection.Copy

[eventually remembered the RangeSelection property of a Window object.
And that one did the trick.

Other Worksheet-Related Events

In the preceding section, I present examples for worksheet activation and
deactivation events. In this section, I discuss three additional events that
occur in worksheets: double-clicking a cell, right-clicking a cell, and changing
a cell.

The BeforeDoubleClick event

You can set up a VBA procedure to be executed when the user double-clicks
a cell. In the following example (which is stored in the Code window for a
Sheet object), double-clicking a cell in that sheet makes the cell bold (if it’s
not bold) or not bold (if it is bold):

Private Sub Worksheet_ BeforeDoubleClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
Target.Font.Bold = Not Target.Font.Bold
Cancel = True

End Sub

The Worksheet_BeforeDoubleClick procedure has two arguments: Target and
Cancel. Target represents the cell (a Range object) that was double-clicked. If
Cancel is set to True, the default double-click action doesn’t occur.

The default action for double-clicking a cell is to put Excel into cell edit mode.
[didn’t want that to happen, so I set Cancel to True.

The BeforeRightClick event

The BeforeRightClick event is similar to the BeforeDoubleClick event, except
that it consists of right-clicking a cell. The following procedure checks to see
whether the cell that was right-clicked contains a numeric value. If so, the

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events

code displays the Format Number dialog box and sets the Cancel argument
to True (avoiding the normal shortcut menu display). If the cell does not
contain a numeric value, nothing special happens — the shortcut menu is
displayed as usual.

Private Sub Worksheet_ BeforeRightClick _
(ByVal Target As Excel.Range, Cancel As Boolean)
If IsNumeric (Target) And Not IsEmpty (Target) Then
Application.CommandBars.ExecuteMso _
("NumberFormatsDialog")
Cancel = True
End If
End Sub

Notice that the code, which is available on this book’s Web site, makes an
additional check to see if the cell is not empty. This is because VBA considers
empty cells to be numeric. Don’t ask me why; it just does.

The Change event

The Change event occurs whenever any cell on the worksheet is changed. In
the following example, the Worksheet_Change procedure effectively prevents
a user from entering a nonnumeric value into cell Al. This code is stored in
the Code window for a Sheet object.

Private Sub Worksheet_Change (ByVal Target As Range)
If Target.Address = "ASS1" Then
If Not IsNumeric (Target) Then
MsgBox "Enter a number in cell Al."
Range ("Al") .ClearContents
Range ("Al") .Activate
End If
End If
End Sub

The single argument for the Worksheet_Change procedure (Target) repre-
sents the range that was changed. The first statement sees whether the cell’s
address is A1. If so, the code uses the IsNumeric function to determine
whether the cell contains a numeric value. If not, a message appears, and

the cell’s value is erased. Cell Al is then activated — useful if the cell pointer
moved to a different cell after the entry was made. If the change occurs in
any cell except Al, nothing happens.

Why not use data validation?

You may be familiar with the Datar>Data Tools>Data Validation com-
mand. This is a handy feature that makes it easy to ensure that only data
of the proper type is entered into a particular cell or range. Although the

ooks.com/

175

http://www.it-ebooks.info/

7 76 Part lll: Programming Concepts

Figure 11-5:
These set-
tings allow
only whole

numbers
between 1
and 12.

Datar>Data Tools=>Data Validation command is useful, it’s definitely not
foolproof. To demonstrate, start with a blank worksheet and perform the
following steps:

1. Select the range A1:C12.

2. Choose Datac>Data Tools=>Data Validation.

3. Set up your validation criteria to accept only whole numbers between
1 and 12, as shown in Figure 11-5.

Data Validation 7]
Settings | Inpuk Message | Error Alert
Walidation criteria
Allov;
‘Whole number |z| +/| Ignore blank
Data:
between |z|
Minirmurm:
1 (]
Magimurn:
1z 3
Apply these changes to all other cells with the same settings

Now, enter some values in the range A1:C12. The data validation works as it
should. But to see it fall apart at the seams, try this:

1. Enter -1 into any cell outside the validation range (any cell not in
A1:C12).

2. Press Ctrl+C to copy the negative number to the Clipboard.
3. Select any cell in the validation range.

4. Press Ctrl+V to paste the copied value.

You find that the paste operation is allowable. Look a little closer, however,
and you find that the cell into which you pasted the negative value no longer
has any validation criteria. Pasting wipes out the data validation criteria!
The severity of this flaw depends on your application. In the next section, I
describe how to use the Change event to provide for better validating.

Pasting wipes out data validation because Excel considers validation a format
for a cell. Therefore, it is in the same classification as font size, color, or other
similar attributes. When you paste a cell, you are replacing the formats in the
target cell with those of the source cell. Unfortunately, those formats also
include your validation rules.

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 1 77

Preventing data validation from being destroyed

The procedure in this section demonstrates how to prevent users from copy-
ing data and wiping out data validation rules. This example assumes that the
worksheet has a range named InputArea, and this input area contains data
validation rules (set up by using the DatarvData Tools=>Data Validation com-
mand). The range can have any validation rules you want.

A workbook that contains this code is available at this book’s Web site:

Private Sub Worksheet_Change (ByVal Target As Range)
Dim VT As Long
'Do all cells in the validation range
'still have validation?
On Error Resume Next
VT = Range ("InputRange") .Validation.Type
If Err.Number <> 0 Then
Application.Undo
MsgBox "Your last operation was canceled." & _
"It would have deleted data validation rules.",
vbCritical
End If
End Sub

The procedure is executed whenever a cell is changed. It checks the valida-
tion type of the range (named InputRange) that is supposed to contain the
data validation rules. If the VT variable contains an error, that means that
one or more cells in the InputRange no longer have data validation (the user
probably copied some data over it). If that’s the case, the code executes the
Undo method of the Application object and reverses the user’s action. Then
it displays a message box.

The net effect? It’s impossible to wipe out the validation rules by copying
data. When Excel is broken, use VBA to fix it.

Events Not Associated with Objects

The events that [discuss previously in this chapter are associated with either
a workbook object or a worksheet object. In this section, I discuss two types
of events that are not associated with objects: time and keypresses.
CMBER . : : : .
Because time and keypresses aren’t associated with a particular object such
as a workbook or a worksheet, you program these events in a normal VBA
module (unlike the other events discussed in this chapter).

ooks.com/

http://www.it-ebooks.info/

7 78 Part lll: Programming Concepts

3

The OnTime event

The OnTime event occurs when a particular time of day occurs. The follow-
ing example demonstrates how to get Excel to execute a procedure when
the 3:00 p.m. event occurs. In this case, a robot voice tells you to wake up,
accompanied by a message box:

Sub SetAlarm()
Application.OnTime 0.625, "DisplayAlarm"
End Sub

Sub DisplayAlarm()
Application.Speech.Speak ("Hey, wake up")
MsgBox " It's time for your afternoon break!"
End Sub

In this example, [use the OnTime method of the Application object. This
method takes two arguments: the time (0.625 or 3:00 p.m.) and the name of
the Sub procedure to execute when the time event occurs (DisplayAlarm).

This procedure is quite useful if you tend to get so wrapped up in your work
that you forget about meetings and appointments. Just set an OnTime event
to remind yourself.

Most people (this author included) find it difficult to think of time in terms
of the Excel numbering system. Therefore, you may want to use the VBA
TimeValue function to represent the time. TimeValue converts a string that
looks like a time into a value that Excel can handle. The following statement
shows an easier way to program an event for 3:00 p.m.:

Application.OnTime TimeValue("3:00:00 pm"), "DisplayAlarm"

If you want to schedule an event relative to the current time — for example,
20 minutes from now — you can use a statement like this:

Application.OnTime Now + TimeValue ("00:20:00"),
"DisplayAlarm"

You can also use the OnTime method to run a VBA procedure on a particular
day. You must make sure that your computer keeps running and that the
workbook with the procedure is kept open. The following statement runs the
DisplayAlarm procedure at 5:00 p.m. on December 31, 2010:

Application.OnTime DatevValue("12/31/2010 5:00 pm"),
"DisplayAlarm"

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 1 79

This particular code line could come in handy to warn you that you need to
go home and get ready for the New Year’s Eve festivities.

Here’s another example that uses the OnTime event. Executing the
UpdateClock procedures writes the time to cell Al and also programs
another event five seconds later. This event reruns the UpdateClock proce-
dure. The net effect is that cell Al is updated with the current time every five
seconds. To stop the events, execute the StopClock procedure (which can-
cels the event). Note that NextTick is a module-level variable that stores the
time for the next event.

Dim NextTick As Date

Sub UpdateClock ()

Updates cell Al with the current time
ThisWorkbook.Sheets (1) .Range ("Al") = Time
Set up the next event five seconds from now
NextTick = Now + TimeValue("00:00:05")
Application.OnTime NextTick, "UpdateClock"
End Sub

Sub StopClock ()
! Cancels the OnTime event (stops the clock)
On Error Resume Next

Application.OnTime NextTick, "UpdateClock", , False
End Sub
Vg‘“\NG! The OnTime event persists even after the workbook is closed. In other words,

if you close the workbook without running the StopClock procedure, the work-
book will reopen itself in five seconds (assuming that Excel is still running). To
prevent this, use a Workbook_BeforeClose event procedure that contains the
following statement:

Call StopClock

The OnTime method has two additional arguments. If you plan to use this
method, you should refer to the online help for complete details.

If you'd like to see a rather complicated application, download a copy of
my analog clock workbook, shown in Figure 11-6. The clock face is actually
a chart, and the chart is updated every second to display the time of day.
Useless, but fun.

ooks.com/

http://www.it-ebooks.info/

7 80 Part Ill: Programming Concepts

Figure 11-6:
My analog
clock
application.
|

2] vba clack chartxdsm

Start Clock | Stop Clock | [¥] AnalogClack

12

11 1
10 2
9,,3/ 3
8 4
| P

Keypress events

While you work, Excel constantly monitors what you type. Because of this,
you can set up a keystroke or a key combination to execute a procedure.

Here’s an example that reassigns the PgDn and PgUp keys:

Sub

End

Sub

End

Sub

End

After setting up the OnKey events by executing the Setup_OnKey procedure,
pressing PgDn moves you down one row. Pressing PgUp moves you up one row.

Notice that the key codes are enclosed in braces, not in parentheses. For a
complete list of keyboard codes, consult the Help system. Search for OnKey.

Setup_OnKey ()

Application.OnKey "{PgDn}", "PgDn_Sub"
Application.OnKey "{PgUp}", "PgUp_Sub"
Sub

PgDn_Sub ()

On Error Resume Next
ActiveCell.Offset (1, 0).Activate
Sub

PgUp_Sub ()

On Error Resume Next
ActiveCell.Offset (-1, 0).Activate

Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 11: Automatic Procedures and Events 18 ’

WING/

3

In this example, [use On Error Resume Next to ignore any errors that are gen-
erated. For example, if the active cell is in the first row, trying to move up one
row causes an error that can safely be ignored. And if a chart sheet is active,
there is no active cell.

By executing the following routine, you cancel the OnKey events:

Sub Cancel_OnKey ()
Application.OnKey "{PgDn}"
Application.OnKey "{PgUp}"

End Sub

Using an empty string as the second argument for the OnKey method does
not cancel the OnKey event. Rather, it causes Excel to simply ignore the key-
stroke. For example, the following statement tells Excel to ignore Alt+F4. The
percent sign represents the Alt key:

Application.OnKey "${F4}", ""

Although you can use the OnKey method to assign a shortcut key for execut-
ing a macro, you should use the Macro Options dialog box for this task. For
more details, see Chapter 5.

If you close the workbook that contains the code and leave Excel open, the
OnKey method will not be reset. As a consequence, pressing the shortcut key
will cause Excel to automatically open the file with the macro. To prevent
this from happening, you should include code in your Workbook_BeforeClose
event code (shown earlier in this chapter) to reset the Onkey event.

ooks.com/

http://www.it-ebooks.info/

7 82 Part lll: Programming Concepts

ooks.com/

http://www.it-ebooks.info/

Chapter 12
Error-Handling Techniques

In This Chapter
Understanding the difference between programming errors and run-time errors
Trapping and handling run-time errors
Using the VBA on Error and Resume statements

Finding out how you can use an error to your advantage

T) err is human. To anticipate errors is divine. When working with VBA,
you should be aware of two broad classes of errors: programming errors
and run-time errors. (I cover programming errors, also known as bugs, in
Chapter 13.) A well-written program handles errors the way Fred Astaire
danced: gracefully. Fortunately, VBA includes several tools to help you iden-
tify errors — and then handle them gracefully.

Types of Errors

If you've tried any of the examples in this book, you have probably encoun-
tered one or more error messages. Some of these errors result from bad VBA
code. For example, you may spell a keyword incorrectly or type a statement
with the wrong syntax. If you make such an error, you won’t even be able to
execute the procedure until you correct it.

This chapter does not deal with those types of errors. Instead, I discuss run-
time errors — the errors that occur while Excel executes your VBA code.
More specifically, this chapter covers the following fascinating topics:

v~ Identifying errors

v Doing something about the errors that occur

v Recovering from errors

v Creating intentional errors (Yes, sometimes an error can be a good thing.)

ooks.com/

http://www.it-ebooks.info/

7 84 Part lll: Programming Concepts

The ultimate goal of error handling is to write code that avoids displaying
Excel’s error messages as much as possible. In other words, you want to
anticipate potential errors and deal with them before Excel has a chance to
rear its ugly head with a (usually) less-than-informative error message.

An Erroneous Example

To get things started, I developed a short VBA macro. Activate the VBE,
insert a module, and enter the following code:

Figure 12-1:
The
InputBox
function
displays a
dialog box
that asks
the user for
a value.
|

A\\S

Sub EnterSquareRoot ()

Dim Num As Double
Prompt for a value
Num = InputBox("Enter a value")

Insert the square root
ActiveCell.Value = Sqgr (Num)

End Sub

As shown in Figure 12-1, this procedure asks the user for a value. It then per-
forms a magical calculation and enters the square root of that value into the
active cell.

10

B C D E F G H
—1

Microsoft Excel @

Enter a value

[123

You can execute this procedure directly from the VBE by pressing F5.
Alternatively, you may want to add a button to a worksheet (use Developer—
Controlse>Insert and select the Form controls button to do this) and then
assign the macro to the button. (Excel prompts you for the macro to assign.)
Then you can run the procedure by simply clicking the button.

ooks.com/

http://www.it-ebooks.info/

Chapter 12: Error-Handling Techniques 1 85

Figure 12-2:
Excel
displays
this error
message
when the
procedure
attempts to
calculate
the square
root of a
negative
number.
|

The macro’s not quite perfect

Execute the code a couple of times to try it out. It works pretty well, doesn’t
it? Now try entering a negative number when you are prompted for a value.
Oops. Trying to calculate the square root of a negative number is illegal on
this planet. Excel responds with the message shown in Figure 12-2, indicating
that your code generated a run-time error. For now, just click the End button.
If you click the Debug button, Excel suspends the macro so you can use the
debugging tools to help track down the error. (I describe the debugging tools
in Chapter 13.)

Microsoft Visual Basic

Run-time error '5't

Inwalid procedure call or argument

Help

Most folks don’t find the Excel error messages (for example, Invalid procedure
call or argument) very helpful. To improve the procedure, you need to antici-
pate this error and handle it more gracefully. In other words, you need to add
some error-handling code.

Here’s a modified version of EnterSquareRoot:

Sub EnterSquareRoot2 ()
Dim Num As Double
! Prompt for a value
Num = InputBox("Enter a value")

! Make sure the number is nonnegative
If Num < 0 Then
MsgBox "You must enter a positive number."
Exit Sub
End If

! Insert the square root

ActiveCell.Value = Sqgr (Num)
End Sub

ooks.com/

http://www.it-ebooks.info/

7 86 Part Ill: Programming Concepts

An If-Then structure checks the value contained in the Num variable. If Num
is less than 0, the procedure displays a message box containing information
that humans can actually understand. The procedure ends with the Exit Sub
statement, so the run-time error never has a chance to occur.

The macvo is still not perfect

So the modified EnterSquareRoot procedure is perfect, right? Not really. Try
entering text rather than a value. Or click the Cancel button in the input box.
Both of these actions generate an error (Type mismatch). This simple little
procedure needs still more error-handling code.

The following modified code uses the IsNumeric function to make sure that
Num contains a numeric value. If the user doesn’t enter a number, the proce
dure displays a message and then stops. Also, notice that the Num variable
is now defined as a Variant. If it were defined as a Double, the code would
generate an unhandled error if the user entered a nonnumeric value into the
input box.

Sub EnterSquareRoot3 ()
Dim Num As Variant
! Prompt for a value
Num = InputBox("Enter a value")

! Make sure Num is a number
If Not IsNumeric (Num) Then
MsgBox "You must enter a number."
Exit Sub
End If

Make sure the number is nonnegative

If Num < 0 Then
MsgBox "You must enter a positive number."
Exit Sub

End If

' Insert the square root
ActiveCell.Value = Sqgr (Num)
End Sub

Is the macro perfect yet?

Now this code is absolutely perfect, right? Not quite. Try running the proce-
dure while the active sheet is a chart sheet. Yikes, another run-time error;
this time it’s the dreaded Number 91 (see Figure 12-3). This error occurs
because there is no active cell when a chart sheet is active, or when some-
thing other than a range is selected.

ooks.com/

http://www.it-ebooks.info/

Figure 12-3:
Running the
procedure
when a
chartis
selected
generates
this error.
|

Chapter 12: Error-Handling Techniques 18 7

Microsoft Visual Basic

Run-time error ‘31"

Dbject variable or With block variable not set

Help

The following listing uses the TypeName function to make sure that the selec-
tion is a range. If anything other than a range is selected, this procedure dis-
plays a message and then exits:

Sub EnterSquareRoot4 ()

Dim Num As Variant

Make sure a worksheet is active

If TypeName (Selection) <> "Range" Then
MsgBox "Select a cell for the result."
Exit Sub

End If

Prompt for a value
Num = InputBox("Enter a wvalue")

Make sure Num is a number

If Not IsNumeric (Num) Then
MsgBox "You must enter a number."
Exit Sub

End If

Make sure the number is nonnegative

If Num < 0 Then
MsgBox "You must enter a positive number."
Exit Sub

End If

Insert the square root
ActiveCell.Value = Sqgr (Num)

End Sub

Giving up on perfection

By now, this procedure simply must be perfect. Think again, pal. Protect the
worksheet (using the Reviewr>Changesr>Protect Sheet command) and then
run the code. Yep, a protected worksheet generates yet another error. And I
probably haven’t thought of all the other errors that can occur. Keep reading
for another way to deal with errors — even those you can’t anticipate.

ooks.com/

http://www.it-ebooks.info/

7 88 Part lll: Programming Concepts

Handling Errors Another Way

How can you identify and handle every possible error? Often you can’t.
Fortunately, VBA provides another way to deal with errors.

Revisiting the EnterSquareRoot procedure

Examine the following code. I modified the routine from the previous sec-
tion by adding an all-purpose On Error statement to trap all errors and then
checking to see whether the InputBox was cancelled.

Sub EnterSquareRootb5 ()
Dim Num As Variant
Dim Msg As String

! Set up error handling
On Error GoTo BadEntry

! Prompt for a value
Num = InputBox("Enter a value")

! Exit if cancelled
If Num = "" Then Exit Sub

! Insert the square root
ActiveCell.Value = Sqgr (Num)

Exit Sub
BadEntry:
Msg = "An error occurred." & vbNewLine & vbNewLine
Msg = Msg & "Make sure a range is selected, "
Msg = Msg & "the sheet is not protected, "

Msg = Msg & "and you enter a nonnegative value."
MsgBox Msg, vbCritical
End Sub

This routine traps any type of run-time error. After trapping a run-time error,

the revised EnterSquareRoot procedure displays the message box shown in
Figure 12-4. This message box describes the most likely causes for the error.

ooks.com/

http://www.it-ebooks.info/

Chapter 12: Error-Handling Techniques 1 89

A\
On Error not working?
If an On Error statement isn't working as adver- 4. Make sure that the Break On All Errors set-
tised, you need to change one of your settings. ting is deselected.
1. Activate the VBE. If this setting is selected, Excel essentially
2. Choose the Tools=>0ptions command. ignores any On Error stateme.nts. Yo_u normally
want to keep the Error Trapping options set to
3. Click the General tab of the Options Break on Unhandled Errors.
dialog box.
|
Figure 1_2-4: Microsoft Excel ==
A run-time
error in the ~) An error occurred.
prOCEdure " Make sure arange is selected, the sheet is not protected, and you enter
generates a normegatlve value,
this helpful
error
message.
|

3

About the On Error statement

Using an On Error statement in your VBA code lets you bypass Excel’s built-
in error handling and use your own error-handling code. In the previous
example, a run-time error causes macro execution to jump to the statement
labeled BadEntry. As a result, you avoid Excel’s unfriendly error messages,
and you can display your own (friendlier, [hope) message to the user.

Notice that the example uses an Exit Sub statement right before the BadEntry

label. This statement is necessary because you don’t want to execute the
error-handling code if an error does not occur.

ooks.com/

http://www.it-ebooks.info/

’ 90 Part Ill: Programming Concepts

Handling Errors: The Details

You can use the On Error statement in three ways, as shown in Table 12-1.

Table 12-1 Using the On Error Statement
Syntax What It Does
On Error GoTo label After executing this statement, VBA resumes

execution at the specified line. You must
include a colon after the label so that VBA rec-
ognizes it as a label.

On Error Resume Next After executing this statement, VBA simply
ignores all errors and resumes execution with
the next statement.

On Error GoTo 0 After executing this statement, VBA resumes
its normal error-checking behavior. Use this
statement after using one of the other On Error
statements, or when you want to remove error
handling in your procedure.

Resuming after an error

In some cases, you simply want the routine to end gracefully when an error
occurs. For example, you may display a message describing the error and
then exit the procedure. (The EnterSquareRoot5 example uses this tech-
nique.) In other cases, you want to recover from the error, if possible.

To recover from an error, you must use a Resume statement. This clears the
error condition and lets you continue execution at some location. You can
use the Resume statement in three ways, as shown in Table 12-2.

Table 12-2 Using the Resume Statement
Syntax What It Does
Resume Execution resumes with the statement that caused the error.

Use this if your error-handling code corrects the problem and
it's okay to continue.

Resume Next Execution resumes with the statement immediately following
the statement that caused the error. This essentially ignores the
error.

Resume /abel Execution resumes at the /abel you specify.

ooks.com/

http://www.it-ebooks.info/

Figure 12-5:
If an error
occurs,

the user

can decide
whether to
try again.
|

The following example uses a Resume statement after an error occurs:

Sub EnterSquareRoot6 ()
Dim Num As Variant
Dim Msg As String
Dim Ans As Integer
TryAgain:
! Set up error handling
On Error GoTo BadEntry

Prompt for a value
Num = InputBox("Enter a value")
If Num = "" Then Exit Sub

! Insert the square root
ActiveCell .Value = Sgr (Num)

Exit Sub
BadEntry:
Msg = Err.Number & ": " & Error (Err.Number)

Msg = Msg & vbNewLine & vbNewLine
Msg = Msg & "Make sure a range is selected, "
Msg = Msg & "the sheet is not protected, "
Msg = Msg & "and you enter a nonnegative value."
Msg = Msg & vbNewLine & vbNewLine & "Try again?"
Ans = MsgBox (Msg, vbYesNo + vbCritical)
If Ans = vbYes Then Resume TryAgain

End Sub

This procedure has another label: TryAgain. If an error occurs, execution
continues at the BadEntry label, and the code displays the message shown in
Figure 12-5. If the user responds by clicking Yes, the Resume statement kicks
in and execution jumps back to the TryAgain label. If the user clicks No, the

procedure ends.

Notice that the error message also includes the error number, along with the
“official” error description. I threw that in because I write about it later. See

“Identifying specific errors.”

Micrasoft Excel EZ

"0' 5: Invalid procedure call ar argument

Make sure a range is selected, the sheet is not protected, and you enter
a nonnegative value,

Try again?

ooks.com/

Chapter 12: Error-Handling Techniques

191

http://www.it-ebooks.info/

7 92 Part Ill: Programming Concepts

Remember that the Resume statement clears the error condition before con-
tinuing. To see what [mean, try substituting the following statement for the
second-to-last statement in the preceding example:

If Ans = vbYes Then GoTo TryAgain
The code doesn’t work correctly if you use GoTo rather than Resume. To
demonstrate, enter a negative number: You get the error prompt. Click Yes
to try again and then enter another negative number. This second error is not

trapped because the original error condition was not cleared.

This example is available on this book’s Web site.

Error handling in a nutshell

To help you keep all this error-handling business straight, I've prepared a
quick-and-dirty summary. A block of error-handling code has the following
characteristics:

v It begins immediately after the label specified in the On Error statement.

v It should be reached by your macro only if an error occurs. This means
that you must use a statement such as Exit Sub or Exit Function immedi-
ately before the label.

v It may require a Resume statement. If you choose not to abort the pro-
cedure when an error occurs, you must execute a Resume statement
before returning to the main code.

Knowing when to ignore errors

In some cases, it’s perfectly okay to ignore errors. That’s when the On Error
Resume Next statement comes into play.

The following example loops through each cell in the selected range and con-
verts the value to its square root. This procedure generates an error message
if any cell in the selection contains a negative number or text:

Sub SelectionSqgrt ()
Dim cell As Range
If TypeName (Selection) <> "Range" Then Exit Sub
For Each cell In Selection
cell.Value = Sgr(cell.vValue)
Next cell
End Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 12: Error-Handling Techniques

In this case, you may want to simply skip any cell that contains a value you
can’t convert to a square root. You can create all sorts of error-checking
capabilities by using If-Then structures, but you can devise a better (and sim-
pler) solution by simply ignoring the errors that occur.

The following routine accomplishes this by using the On Error Resume Next
statement:

Sub SelectionSgrt ()
Dim cell As Range
If TypeName (Selection) <> "Range" Then Exit Sub
On Error Resume Next
For Each cell In Selection
cell.Value = Sgr(cell.Value)
Next cell
End Sub

In general, you can use an On Error Resume Next statement if you consider
the errors inconsequential to your task.

Identifying specific errors

All errors are not created equal. Some are serious and some are less serious.
Although you may ignore errors you consider inconsequential, you must deal
with other, more serious errors. In some cases, you need to identify the spe-
cific error that occurred.

When an error occurs, Excel stores the error number in an Error object
named Err. This object’s Number property contains the error number. You
can get a description of the error by using the VBA Error function. For exam-
ple, the following statement displays the error number and a description:

MsgBox Err.Number & ": " & Error (Err.Description)

Figure 12-5, earlier in this chapter, shows an example of this. Keep in mind,
however, that the Excel error messages are not always very useful — but you
already know that.

The following procedure demonstrates how to determine which error
occurred. In this case, you can safely ignore errors caused by trying to get
the square root of a nonpositive number (that is, error 5) or errors caused by
trying to get the square root of a nonnumeric value (error 13). On the other
hand, you need to inform the user if the worksheet is protected and the selec-
tion contains one or more locked cells. (Otherwise, the user may think the
macro worked when it really didn’t.) This event causes error 1004.

ooks.com/

193

http://www.it-ebooks.info/

7 94 Part lll: Programming Concepts

Sub SelectionSqgrt ()
Dim cell As Range
Dim ErrMsg As String
If TypeName (Selection) <> "Range" Then Exit Sub
On Error GoTo ErrorHandler
For Each cell In Selection
cell.Value = Sgr(cell.vValue)
Next cell
Exit Sub

ErrorHandler:
Select Case Err.Number
Case 5 'Negative number
Resume Next
Case 13 'Type mismatch
Resume Next
Case 1004 'Locked cell, protected sheet
MsgBox "Cell is locked. Try again.", vbCritical,
cell.Address
Exit Sub
Case Else
ErrMsg = Error (Err.Number)
MsgBox "ERROR: " & ErrMsg, vbCritical, cell.
Address
Exit Sub
End Select
End Sub

When a run-time error occurs, execution jumps to the code beginning at the
ErrorHandler label. The Select Case structure (I discuss that structure in
Chapter 10) tests for three common error numbers. If the error number is 5
or 13, execution resumes at the next statement. (In other words, the error is
ignored.) But if the error number is 1004, the routine advises the user and
then ends. The last case, a catchall for unanticipated errors, traps all other
errors and displays the actual error message.

An Intentional Error

Sometimes you can use an error to your advantage. For example, suppose
you have a macro that works only if a particular workbook is open. How can
you determine whether that workbook is open? One way is to write code that
loops through the Workbooks collection checking to determine if the work-
book you’re interested in is in that collection.

ooks.com/

http://www.it-ebooks.info/

Chapter 12: Error-Handling Techniques 1 95

Here’s an easier way: a general-purpose function that accepts one argument
(a workbook name) and returns True if the workbook is open, False if it’s not.

Here’s the function:

Function WorkbookIsOpen (book As String) As Boolean
Dim WBName As String
On Error GoTo NotOpen
WBName = Workbooks (book) .Name
WorkbookIsOpen = True
Exit Function
NotOpen:
WorkbookIsOpen = False
End Function

This function takes advantage of the fact that Excel generates an error if you
refer to a workbook that is not open. For example, the following statement
generates an error if a workbook named MyBook.xlIsx is not open:

WBName = Workbooks ("MyBook.xlsx") .Name

In the WorkbooklIsOpen function, the On Error statement tells VBA to resume
the macro at the NotOpen statement if an error occurs. Therefore, an error
means that the workbook is not open, and the function returns False. If the
workbook is open, no error occurs and the function returns True.

Here’s another variation on the WorkbookIsOpen function. This version uses
On Error Resume Next to ignore the error. But the code checks Err’'s Number
property. If Err.Number is 0, no error occurred and the workbook is open. If
Err.Number is anything else, it means that an error occurred (and the work-
book is not open).

Function WorkbookIsOpen (book) As Boolean
Dim WBName As String
On Error Resume Next
WBName = Workbooks (book) .Name
If Err.Number = 0 Then WorkbookIsOpen = True _
Else WorkbookIsOpen = False
End Function

The following example demonstrates how to use this function in a Sub
procedure:

Sub UpdatePrices/()

If Not WorkbookIsOpen ("Prices.xlsx") Then
MsgBox "Please open the Prices workbook first!"
Exit Sub

End If

[Other code goes here]

End Sub

ooks.com/

http://www.it-ebooks.info/

7 96 Part Ill: Programming Concepts

The UpdatePrices procedure (which must be in the same workbook as
WorkbooklsOpen) calls the WorkbooklIsOpen function and passes the work-
book name (Prices.xlsx) as an argument. The WorkbookIsOpen function
returns either True or False. Therefore, if the workbook is not open, the
procedure informs the user of that fact. If the workbook is open, the macro
continues.

Error handling can be a tricky proposition — after all, many different errors
can occur, and you can’t anticipate all of them. In general, you should trap
errors and correct the situation before Excel intervenes, if possible. Writing
effective error-trapping code requires a thorough knowledge of Excel and a
clear understanding of how the VBA error handling works. Subsequent chap-
ters contain more examples of error handling.

ooks.com/

http://www.it-ebooks.info/

Chapter 13
Bug Extermination Techniques

In This Chapter
Defining a bug and why you should squash it

Recognizing types of program bugs you may encounter
Using techniques for debugging your code
Using the VBA built-in debugging tools

f the word bugs conjures up an image of a cartoon rabbit, this chapter can

set you straight. Simply put, a bug is an error in your programming. Here
[cover the topic of programming bugs — how to identify them and how to
wipe them off the face of your module.

Species of Bugs

Welcome to Entomology 101. The term program bug, as you probably know,
refers to a problem with software. In other words, if software doesn’t perform
as expected, it has a bug. Fact is, all major software programs have bugs —
lots of bugs. Excel itself has hundreds (if not thousands) of bugs. Fortunately,
the vast majority of these bugs are relatively obscure and appear in only very
specific circumstances.

When you write non-trivial VBA programs, your code probably will have
bugs. This is a fact of life and not necessarily a reflection of your program-
ming ability. The bugs may fall into any of the following categories:

v Logic flaws in your code: You can often avoid these bugs by carefully
thinking through the problem your program addresses.

v Incorrect context bugs: This type of bug surfaces when you attempt to
do something at the wrong time. For example, you may try to write data
to cells in the active sheet when the active sheet is actually a chart sheet
(which has no cells).

1 Extreme-case bugs: These bugs rear their ugly heads when you encoun-
ter data you didn’t anticipate, such as very large or very small numbers.

ooks.com/

http://www.it-ebooks.info/

198

Part lll: Programming Concepts

WMBER
@ﬁ
&

+ Wrong data type bugs: This type of bug occurs when you try to process
data of the wrong type, such as attempting to take the square root of a
text string.

1 Wrong version bugs: This type of bug involves incompatibilities
between different Excel versions. For example, you may develop a
workbook with Excel 2010 and then find out that the workbook doesn’t
work with Excel 2003. You can usually avoid such problems by not using
version-specific features. Often, the easiest approach is to develop your
application by using the lowest version number of Excel that users
might have. In all cases, however, you should test your work on all ver-
sions you expect it will be used with.

+* Beyond-your-control bugs: These are the most frustrating. An example
occurs when Microsoft upgrades Excel and makes a minor, undocu-
mented change that causes your macro to bomb. Even security updates
have been known to cause problems.

Debugging is the process of identifying and correcting bugs in your program.
Developing debugging skills takes time, so don’t be discouraged if this pro-
cess is difficult at first.

It’s important to understand the distinction between bugs and syntax errors. A
syntax error is a language error. For example, you might misspell a keyword,
omit the Next statement in a For-Next loop, or have a mismatched parenthesis.
Before you can even execute the procedure, you must correct these syntax
errors. A program bug is much subtler. You can execute the routine, but it
doesn’t perform as expected.

Identifying Bugs

Before you can do any debugging, you must determine whether a bug actu-
ally exists. You can tell that your macro contains a bug if it doesn’t work the
way it should. (Gee, this book is just filled with insight, isn’t it?) Usually, but
not always, you can easily discern this.

A bug often (but not always) becomes apparent when Excel displays a run-
time error message. Figure 13-1 shows an example. Notice that this error
message includes a button labeled Debug. More about this later in the “About
the Debugger” section.

A key fact known to all programmers is that bugs often appear when you
least expect them. For example, just because your macro works fine with one
data set doesn’t mean you can assume it will work equally as well with all
data sets.

ooks.com/

http://www.it-ebooks.info/

Chapter 13: Bug Extermination Techniques

Figure 13-1:
An error
message

like this
often means
that your
VBA code
contains a
bug.

Micrasoft Visual Basic

Run-time error '11"

Division by zero

End P Help

The best debugging approach is to start with thorough testing, under a vari-
ety of real-life conditions. And because any workbook changes made by your
VBA code cannot be undone, it is always a good idea to use a backup copy of
the workbook that you use for testing. I usually copy some files into a tempo-
rary folder and use those files for my testing.

Debugging Techniques

In this section, I discuss the four most common methods for debugging Excel
VBA code:

v Examining the code
v Inserting MsgBox functions at various locations in your code

v Inserting Debug.Print statements

v Using the Excel built-in debugging tools

Examining your code

Perhaps the most straightforward debugging technique is simply taking a
close look at your code to see whether you can find the problem. If you're
lucky, the error jumps right out, and you slap your forehead and say, “Doh!”
When the forehead pain diminishes, you can fix the problem.

Notice I said, “If you're lucky.” That’s because often you discover errors
when you have been working on your program for eight hours straight, it is

2 a.m., and you are running on caffeine and willpower. At times like that, you
are lucky if you can even see your code, let alone find the bugs. Thus, don’t
be surprised if simply examining your code isn’t enough to make you find and
expunge all the bugs it contains.

ooks.com/

199

http://www.it-ebooks.info/

200 Part lll: Programming Concepts

Figure 13-2:
Using a
message
box to
display the
value of two
variables.
|

Using the MsgBox function

A common problem in many programs involves one or more variables not
taking on the values you expect. In such cases, monitoring the variable(s)
while your code runs is a helpful debugging technique. One way to do this is
by inserting temporary MsgBox functions into your routine. For example, if
you have a variable named CellCount, you can insert the following statement:

MsgBox CellCount

When you execute the routine, the MsgBox function displays CellCount’s
value.

It’s often helpful to display the values of two or more variables in the mes-
sage box. The following statement displays the current value of two vari-
ables: Looplndex (1) and CellCount (72), as shown in Figure 13-2:

MsgBox LoopIndex & " " & CellCount

Microsoft Excel

Notice that [combine the two variables with the concatenation operator (&)
and insert a space character between them. Otherwise, the message box
strings the two values together, making them look like a single value. You can
also use the built-in constant, vbNewLine, in place of the space character.
vbNewLine inserts a line-feed break, which displays the text on a new line.
The following statement displays three variables, each on a separate line:

MsgBox LoopIndex & vbNewLine & CellCount & _
vbNewLine & MyVal

This technique isn’t limited to monitoring variables. You can use a message
box to display all sorts of useful information while your code is running. For
example, if your code loops through a series of sheets, the following state-
ment displays the name and type of the active sheet:

MsgBox ActiveSheet.Name & " " & TypeName (ActiveSheet)

ooks.com/

http://www.it-ebooks.info/

Chapter 13: Bug Extermination Techniques 20 ’

Figure 13-3:
Pressing
Ctrl+Break
halts
execution of
your code
and gives
you some
choices.
|

WMBER
“&
&

If your message box shows something unexpected, hit control-break, and you
see a dialog box that tells you, “Code execution has been interrupted.” As
shown in Figure 13-3, you have four choices:

v Click the Continue button, and the code continues executing.

v Click the End button, and execution stops.

v Click the Debug button, and the VBE goes into Debug mode (which is
explained a bit later).

v Click the Help button, and a help screen tells you that you pressed
Ctrl+Break. In other words, it’s not very helpful.

Microsoft Visual Basic

Code execution has been interrupted

Continue End Help

Feel free to use MsgBox functions frequently when you debug your code. Just
make sure that you remove them after you identify and correct the problem.

Inserting Debug. Print statements

As an alternative to using MsgBox functions in your code, you can insert one
or more temporary Debug.Print statements. Use these statements to print the
value of one or more variables in the Immediate window. Here’s an example
that displays the value of three variables:

Debug.Print LoopIndex, CellCount, MyVal
Notice that the variables are separated with commas. You can display as
many variables as you like with a single Debug.Print statement. If VBE’s

Immediate window is not visible, press Ctrl+G.

Unlike MsgBox, Debug.Print statements do not halt your code. So you’ll need
to keep an eye on the Immediate window to see what’s going on.

ooks.com/

http://www.it-ebooks.info/

202 Part lll: Programming Concepts

Figure 13-4:
Even pro-
fessional

programmers
sometimes
forget to
remove their

Debug.Print

statements.

|

After you’'ve debugged your code, be sure to remove all the Debug.Print
statements. Even big companies like Microsoft occasionally forget to remove
their Debug.Print statements. In several previous versions of Excel, every
time the Analysis ToolPak add-in was opened, you’'d see several strange mes-
sages in the Immediate window (as shown in Figure 13-4). That problem was
fixed in Excel 2007.

Immediate

> E

[auto_open] <
[SetupFunctionIDs] <
[ZetupFunctionIls] =
[PickPlatform] <
[PickPlatform] >
[VerifyCOpen] <
[VerifyOpen] > 1
[RegisterFunctionIDs] <
[RegisterFunctionIDs] =
[auto_open] >

I o
| o

Using the UBA debugger

The Excel designers are intimately familiar with the concept of bugs. conse-
quently, Excel includes a set of debugging tools that can help you correct prob-
lems in your VBA code. The VBA debugger is the topic of the next section.

About the Debugger

In this section, I discuss the gory details of using the Excel debugging tools.
These tools are much more powerful than the techniques I discuss in the pre-
vious section. But along with power comes responsibility. Using the debug-
ging tools takes a bit of setup work.

Setting breakpoints in your code

Earlier in this chapter, I discuss using MsgBox functions in your code to mon-
itor the values of certain variables. Displaying a message box essentially halts
your code in mid-execution, and clicking the OK button resumes execution.

Wouldn't it be nice if you could halt a routine’s execution, take a look at the
value of any of your variables, and then continue execution? Well, that’s
exactly what you can do by setting a breakpoint. You can set a breakpoint in
your VBA code in several ways:

ooks.com/

http://www.it-ebooks.info/

Chapter 13: Bug Extermination Techniques 203

v Move the cursor to the statement at which you want execution to stop;
then press F9.

v Click in the gray margin to the left of the statement at which you want
execution to stop.

v Position the insertion point in the statement at which you want execu-
tion to stop. Then use the Debugr>Toggle Breakpoint command.

v Right-click a statement and choose Togglec>Breakpoint from the short-
cut menu.

The results of setting a breakpoint are shown in Figure 13-5. Excel highlights
the line to remind you that you set a breakpoint there; it also inserts a large
dot in the gray margin.

#9 Micrasoft Visual Basic - list formulas.dsm - [Madulel {Code)] ===
() File Edit View Inset Format Debug Run Tools Adddns Window Help Type a question for help L@ x
&l BRIy u eI EE @ B
Project - VBAProject £l [(General) | [ListFormutas. -]
2] = |~ Option Explicit |
£ & vBAProject (list formulas.slsm) =
£ Microsoft Excel Objects Sub ListFormulas ()
EE) Sheet1 (Sheet1) Dim InputRange is Range
47 Thisorkbook Dim OutputSheet is Uorksheet
155 Modules Dim CutputRow As Long
-2 Modulel Dim Cell is Range

Create a range chjscts

L] Set InputRange = ActiveSheet.UsedRange}

idd & new sheet
Set OutputSheet = Worksheets.idd

Varisble for the output row
QutputRow = 1
Loop through the range
For Each Cell In InputRenge

If Cell.HasFormula Then
| OutputSheet.Cells (OutputRow, 1) " ¢ Cell.iddress
OutputSheet.Cells {OutputRouw, 2) " & Cell.Formula

Figure 13-5: OutputRow = GutputRov + 1 | |

End If

The hlgh- Next Cell

lighted =
statement i
marks a
breakpoint
in this
procedure.
|

tﬁl—>u |L|L

When you execute the procedure, Excel goes into Break mode before the

line with the breakpoint is executed. In Break mode, the word [break] is dis-
played in the VBE title bar. To get out of Break mode and continue execution,
press F5 or click the Run Sub/UserForm button in the VBE toolbar. See “step-
ping through your code” later in this chapter to find out more.

e To quickly remove a breakpoint, click the large dot in the gray margin or move

the cursor to the highlighted line and press F9. To remove all breakpoints in
the module, press Ctrl+Shift+F9.

ooks.com/

http://www.it-ebooks.info/

204 Part lll: Programming Concepts

a\\J

VBA also has a keyword that forces Break mode:
Stop

When your code reaches the Stop keyword, VBA enters Break mode. The
handy thing about this Stop word is that if your code is protected, it will be
ignored.

What is Break mode? You can think of it as a state of suspended animation.
Your VBA code stops running, and the current statement is highlighted in
bright yellow. In Break mode, you can

v Type VBA statements in the Immediate window. (See the next section for
details.)

v Press F8 to step through your code one line at a time to check various
things while the program is paused.

v Move the mouse pointer over a variable to display its value in a small
pop-up window.

v Skip the next statement(s) and continue execution there (or even go
back a couple of statements).

v~ Edit a statement and then continue.

Figure 13-6 shows some debugging action. A breakpoint is set (notice the big
dot), and I'm using the F8 key to step through the code line by line (notice the
arrow that points to the current statement). I used the Immediate window to
check a few things, the mouse pointer is hovering over the OutputRow vari-
able, and the VBE displays its current value.

Using the Immediate window

The Immediate window may not be visible in the VBE. You can display the
VBE’s Immediate window at any time by pressing Ctrl+G.

In Break mode, the Immediate window is particularly useful for finding the
current value of any variable in your program. For example, if you want to
know the current value of a variable named CellCount, enter the following in
the Immediate window and press Enter:

Print CellCount

You can save a few milliseconds by using a question mark in place of the
word Print, like this:

? CellCount

ooks.com/

http://www.it-ebooks.info/

|
Figure 13-6:
Atypical
scene in
Break mode.
|

A\

3

Chapter 13: Bug Extermination Techniques 205

#9 Micrasoft Visual Basic - list formulas.dsm [break] - [Modulel (Cade)] ===
i@ Eile Edit View Inset Format Debug Run Toals Addns Window Help Type a question for help S_ 8 x
&l BRI oy @M%Y 2@ ot B

Project - VBAProject £l [(General) | [ListFormutas. -]
B=EI3 —

Option Explicit ’

£ & vBAProject (list formulas.slsm)
£ Microsoft Excel Objects
EE) Sheet1 (Sheet1)
EE] Sheet2 (Sheet2)
-4&] Thisworkbook

Sub ListFormulas ()
Dim InputRange ks Range
Dim CutputSheet s Worksheet
Dim CutputRow is Long

=125 Modules
-« Modulel

Dim Cell As Range

Create a range chjscts

L] Set InputRange = ActiveSheet.UsedRange}

idd & new sheet
Set OutputSheet = Worksheets.idd

Varisble for the output row
QutputRow = 1

Loop through the range
For Each Cell In InputRenge

| | If Cell.HasFormula Then
OutputSheet.Cells (OutputRow, 1) = "' & Cell,hddress
OutputSheet.Cells {OutputRow, 2] = "'" & Cell.Formula
QutputRow = OutputRdw + 1 |
End If OutputRow = 2
Next Cell
End Sub
= 6 LIJ
Immediate x|
? inputrange.iddress =
§A91:9I524
? cell.Rddress
§B§2
| jJ

The Immediate window lets you do other things besides check variable
values. For example, you can change the value of a variable, activate a differ-
ent sheet, or even open a new workbook. Just make sure that the command
you enter is a valid VBA statement.

You can also use the Immediate window when Excel is not in Break mode. I
often use the Immediate window to test small code snippets (whatever [can
cram on a single line) before incorporating them into my procedures.

Stepping through your code

While in Break mode, you can also step through your code line by line. One
statement is executed each time you press F8. Throughout this line-by-line
execution of your code, you can activate the Immediate window at any time
to check the status of your variables.

You can use your mouse to change which statement VBA will execute next.
If you put your mouse pointer in the gray margin to the left of the currently
highlighted statement (which will usually be yellow), your pointer changes
to a right-pointing arrow. Simply drag your mouse to the statement you want
done next and watch that statement turn yellow.

ooks.com/

http://www.it-ebooks.info/

206

Part lll: Programming Concepts

Figure 13-7:
The Add
Watch dia-
log box lets
you specify
a condition
that causes
a break.
|

Using the Watch window

In some cases, you may want to know whether a certain variable or expres-
sion takes on a particular value. For example, suppose that a procedure
loops through 1,000 cells. You notice that a problem occurs during the 900th
iteration of the loop. Well, you could insert a breakpoint in the loop, but that
would mean responding to 899 prompts before the code finally gets to the
iteration you want to see (and that gets boring real fast). A more efficient
solution involves setting a watch expression.

For example, you can create a watch expression that puts the procedure
into Break mode whenever a certain variable takes on a specific value — for
example, Counter=900. To create a watch expression, choose Debugr>Add
Watch to display the Add Watch dialog box. See Figure 13-7.

B list formulas dsm - Madule L {Cadls) o |[E 5=
[(eneran = [watchwindowbeme -
Option Explicit =
Sub Watchiindowbemo |
Dim Counter As Long
Dim Sumdgqrs As Double
Suwdgrs = 0
For Counter = 1 To 1000
SumSgrs = SumSgrs + CellsiCounter, 1).Value * 2
Next Counter
MsgBox Sumdgrs
End Sub Add Watch =5
i
[Counter=a00
Cancel
Context
Procedure: |WatchivindowDema - Heb ‘
Mode: [Modue1 =]
Project: WBAProject
Watch Type
" Watch Expression
& Break When Yalue Is True
" Break When Yalue Changes
== 4 iy

The Add Watch dialog has three parts:

v~ Expression: Enter a valid VBA expression or a variable here. For exam-
ple, Counter=900 or just Counter.

1 Context: Select the procedure and the module you want to watch. Note
that you can select All Procedures and All Modules.

v+ Watch Type: Select the type of watch by clicking an option button. Your
choice here depends on the expression you enter. The first choice,
Watch Expression, does not cause a break; it simply displays the expres-
sion’s value when a break occurs.

ooks.com/

http://www.it-ebooks.info/

Figure 13-8:
The
Watches
window
displays all
watches.
|

Chapter 13: Bug Extermination Techniques 20 7

Execute your procedure after setting up your watch expression(s). Things run
normally until your watch expression is satisfied (based on the Watch Type
you specified). When that happens, Excel enters Break mode (you did set the
Watch Type to “Break When Value Is True,” didn’t you?). From there, you can
step through the code or use the Inmediate window to debug your code.

When you create a watch, VBE displays the Watches window shown in Figure
13-8. This window displays the value of all watches that you've defined. In this
figure, the value of Counter hit 900, which caused Excel to enter Break mode.

< list formulas xdsm - Madule L (Codle) =B 5|
[(Generan =] [watchwindowpeme ~|
Option Explicit —
Sub WatchiindowDemo ()
Dim Counter As Long
Dim SumSqrs As Double
SumSgrs = 0
For Counter = 1 To 1000
= SuwSeqrs = SueSgrs + Cells(Counter, 1).Value © 2
Next Counter
MsgBox SumSqrs
End Sub
Watches]
Expression Waiue Tupe Context -
@& Counter =500 True Boolean Moslel Watchitindow Demo
SEA 3

The best way to understand how this Watch business works is to use it and
try various options. Before long, you’ll probably wonder how you ever got
along without it.

Using the Locals Window

Another useful debugging aid is the Locals window. You can show this
window by choosing Viewr>Locals Window from the VBE’s menu. When you
are in Break mode, this window will show you a list of all variables that are
local to the current procedure (see Figure 13-9). The nice thing about this
window is that you don’t have to add a load of watches manually if you want
to look at the content of many variables. The VBE has done all the hard work
for you.

ooks.com/

http://www.it-ebooks.info/

208 Part lll: Programming Concepts

4 list farmulas.dsm - Madule 1 {Code) o= =)
|(Ge||em|) j |Wmcl|WimlowDemn j
Option Explicit =
Sub WatchUindowDews ()
Dim Counter Ais Long
Dim SumSgrs As Double
.
For Counter = 1 To 1000
| | SunSqrs = Swndgrs + Cells(Counter, 1).Value * 2
Next Counter
| HsgBox SumSqrs
End Sub
Figure 13-9:
The Locals = 5
window [vBRProject Madule1 watchWindawDeme]
. Expression [vane Type -
d|sp|ays] Macilet Module Moduiet
Counter 15 Long
a” |0ca| SumSars 3.83027862718137 Double
variables
and their =
content. =l
o K o7
|

Bug Reduction Tips

[can’t tell you how to completely eliminate bugs in your programs. Finding
bugs in software can be a profession by itself, but I can provide a few tips to
help you keep those bugs to a minimum:

1 Use an Option Explicit statement at the beginning of your modules.
This statement requires you to define the data type for every vari-
able you use. This creates a bit more work for you, but you avoid the
common error of misspelling a variable name. And it has a nice side ben-
efit: Your routines run a bit faster.

+* Format your code with indentation. Using indentations helps delineate
different code segments. If your program has several nested For-Next
loops, for example, consistent indentation helps you keep track of
them all.

<P v Be careful with the On Error Resume Next statement. As [discuss in
Chapter 12, this statement causes Excel to ignore any errors and con-
tinue executing the routine. In some cases, using this statement causes
Excel to ignore errors that it shouldn’t ignore. Your code may have bugs,
and you may not even realize it.

v Use lots of comments. Nothing is more frustrating than revisiting code
you wrote six months ago and not having a clue as to how it works. By
adding a few comments to describe your logic, you can save lots of time
down the road.

ooks.com/

http://www.it-ebooks.info/

Chapter 13: Bug Extermination Techniques 209

1 Keep your Sub and Function procedures simple. By writing your code
in small modules, each of which has a single, well-defined purpose, you
simplify the debugging process.

” Use the macro recorder to help identify properties and methods. When
[can’t remember the name or the syntax of a property or method, I often
simply record a macro and look at the recorded code.

1 Understand Excel’s debugger. Although it can be a bit daunting at first,
the Excel debugger is a useful tool. Invest some time and get to know it.

Debugging code is not one of my favorite activities (it ranks right up there
with getting audited by the IRS), but it’s a necessary evil that goes along with
programming. As you gain more experience with VBA, you spend less time
debugging and, when you have to debug, are more efficient at doing so.

ooks.com/

http://www.it-ebooks.info/

2 ’0 Part lll: Programming Concepts

ooks.com/

http://www.it-ebooks.info/

Chapter 14
VBA Programming Examples

In This Chapter
Exploring VBA examples
Making your VBA code run as fast as possible

M y philosophy for figuring out how to write Excel macros places heavy
emphasis on examples. I find that a good example often communi-

cates a concept much better than a lengthy description of the underlying
theory. Because you're reading this book, you probably agree with me. This
chapter presents several examples that demonstrate common VBA
techniques.

[organize these examples into the following categories:

v Working with ranges

v Changing Excel settings

v Working with charts

v Speeding up your VBA code

Although you may be able to use some of the examples directly, in most
cases you must adapt them to your own needs.

Working with Ranges

Most of your VBA programming probably involves worksheet ranges. (For a
refresher course on Range objects, refer to Chapter 8.) When you work with
Range objects, keep the following points in mind:

»* Your VBA doesn’t need to select a range to work with it.

v If your code does select a range, its worksheet must be active.

v The macro recorder doesn’t always generate the most efficient code.
Often, you can create your macro by using the recorder and then edit
the code to make it more efficient.

ooks.com/

http://www.it-ebooks.info/

212

Part lll: Programming Concepts

=S
)

v It’s a good idea to use named ranges in your VBA code. For example,
using Range(“Total”) is better than using Range(“D45”). In the latter
case, if you add a row above row 45, you need to modify the macro so
that it uses the correct range address (D46). Note that you name a range
of cells by choosing Formulas=>Defined Names=Define Name.

» When running a macro that works on the current range selection, the
user might select entire columns or rows. In most cases, you don’t want
to loop through every cell in the selection (that could take a long time).
Your macro should create a subset of the selection consisting of only
the nonblank cells.

v Excel allows multiple selections. For example, you can select a range,
press Ctrl, and select another range with your mouse. Your code can
test for a multiple selection and take appropriate actions.

The examples in this section, which are available at this book’s Web site, dem-
onstrate these points.

If you prefer to enter these examples yourself, press Alt+F11 to activate the
VBE. Then insert a VBA module and type the code. Make sure that the work-
book is set up properly. For instance, if the example uses two sheets named
Sheetl and Sheet2, make sure that the workbook has sheets with those names.

Copying a range

Copying a range ranks right up there as one of the most favorite Excel activi-
ties of all time. When you turn on the macro recorder and copy a range from
A1:A5 to B1:B5, you get this VBA macro:

Sub CopyRange ()
Range ("Al:A5") .Select
Selection.Copy
Range ("B1") .Select
ActiveSheet.Paste
Application.CutCopyMode = False
End Sub

Notice the last statement. This statement was generated by pressing Esc,
which cancels the marching ants display that appears in the worksheet when
you copy a range.

This macro works fine, but you can copy a range more efficiently than this.
You can produce the same result with the following one-line macro, which
doesn’t select any cells:

Sub CopyRange?2 ()

Range ("Al1:A5") .Copy Range("B1")
End Sub

ooks.com/

http://www.it-ebooks.info/

Figure 14-1:
This range
can consist
of any num-
ber of rows.
|

Chapter 14: VBA Programming Examples 2 ’3

This procedure takes advantage of the fact that the Copy method can use
an argument that specifies the destination. I found that by consulting the
VBA Help system. This example also demonstrates that the macro recorder
doesn’t always generate the most efficient code.

Copying a variable-sized range

In many cases, you need to copy a range of cells but don’t know the exact
row and column dimensions. For example, you might have a workbook that
tracks weekly sales. The number of rows changes as you add new data.

Figure 14-1 shows a range on a worksheet. This range consists of several
rows, and the number of rows can change from day to day. Because you
don’t know the exact range address at any given time, writing a macro to
copy the range can be challenging. Are you up for the challenge?

A B it D E F
1 |Date Units Amount
2 15-Mov 132 52,737
la-Mov 143 5154
4 17-Mov 133 5109
5 18-Mov 169 5614
i 19-Mov 102 52,744
7 20-MNov 143 55,164
3 21-Mov 109 54,314
9 22-Mov 122 54,448
10 23-Nov 156 54,657
11 24-Mov 187 56,989
12 25-MNov 140 52,014
13 2a-Mov 132 51,070

The following macro demonstrates how to copy this range from Sheet1 to
Sheet2 (beginning at cell Al). It uses the CurrentRegion property, which
returns a Range object that corresponds to the block of cells around a par-
ticular cell. In this case, that cell is Al.

Sub CopyCurrentRegion ()
Range ("Al") .CurrentRegion.Copy
Sheets ("Sheet2") .Select
Range ("Al") .Select
ActiveSheet.Paste
Sheets ("Sheetl") .Select
Application.CutCopyMode = False
End Sub

ooks.com/

http://www.it-ebooks.info/

2 ’4 Part lll: Programming Concepts

Using the CurrentRegion property is equivalent to choosing Home=Editing=>
Find & Select=>Goto Special (which displays the Go To Special dialog box),
and choosing the Current Region option. To see how this works, record your
actions while issuing that command. Generally, the CurrentRegion consists of
a rectangular block of cells surrounded by one or more blank rows or
columns.

You can make this macro even more efficient by not selecting the destina-
tion. The following macro takes advantage of the fact that the Copy method
can use an argument for the destination range:

Sub CopyCurrentRegion2 ()
Range ("Al") .CurrentRegion.Copy _
Sheets ("Sheet2") .Range ("Al")
Application.CutCopyMode = False
End Sub

Selecting to the end of a row or column

You're probably in the habit of using key combinations such as Ctrl+Shift+Right
Arrow and Ctrl+Shift+Down Arrow to select a range that consists of every-
thing from the active cell to the end of a row or a column. Not surprisingly,
you can write macros that perform these types of selections.

You can use the CurrentRegion property to select an entire block of cells. But
what if you want to select, say, one column from a block of cells? Fortunately,
VBA can accommodate this type of action. The following VBA procedure
selects the range beginning at the active cell and extending down to the cell
just above the first blank cell in the column. After selecting the range, you
can do whatever you want with it — copy it, move it, format it, and so on.

Sub SelectDown ()
Range (ActiveCell, ActiveCell.End(xlDown)) .Select
End Sub

You can make this type of selection manually: Select the first cell, hold down
the Shift key, press End, and then press Down Arrow.

This example uses the End method of the ActiveCell object, which returns a
Range object. The End method takes one argument, which can be any of the
following constants:

v x1Up

v xIDown

v xITolLeft

v xIToRight

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 2 ’5

Keep in mind that it’s not necessary to select a range before doing some-
thing with it. The following macro applies bold formatting to a variable-sized
(single column) range without selecting the range:

Sub MakeBold()
Range (ActiveCell, ActiveCell.End(x1Down))
.Font.Bold = True
End Sub

Selecting a row or column

The following procedure demonstrates how to select the column that con-
tains the active cell. It uses the EntireColumn property, which returns a
Range object that consists of a full column:

Sub SelectColumn ()
ActiveCell .EntireColumn.Select
End Sub

As you may expect, VBA also offers an EntireRow property, which returns a
Range object that consists of an entire row.

Moving a range

You move a range by cutting it to the Clipboard and then pasting it in
another area. If you record your actions while performing a move operation,
the macro recorder generates code like the following:

Sub MoveRange ()
Range ("Al1:C6") .Select
Selection.Cut
Range ("A10") .Select
ActiveSheet.Paste

End Sub

As with the copying example earlier in this chapter, this is not the most effi-
cient way to move a range of cells. In fact, you can move a range with a single
VBA statement, as follows:

Sub MoveRange?2 ()

Range ("Al1:C6") .Cut Range("Al0")
End Sub

ooks.com/

http://www.it-ebooks.info/

2 ’6 Part lll: Programming Concepts

This macro takes advantage of the fact that the Cut method can use an
argument that specifies the destination. Notice also that the range was not
selected. The cell pointer remains in its original position.

Looping through a range efficiently

Many macros perform an operation on each cell in a range, or they might
perform selected actions based on each cell’s content. These macros usually
include a For-Next loop that processes each cell in the range.

The following example demonstrates how to loop through a range of cells. In
this case, the range is the current selection. An object variable named Cell
refers to the cell being processed. Within the For-Next loop, the single state-
ment evaluates the cell and applies bold formatting if the cell contains a posi-
tive value.

Sub ProcessCells()
Dim Cell As Range
For Each Cell In Selection
If Cell.Value > 0 Then Cell.Font.Bold = True
Next Cell
End Sub

This example works, but what if the selection consists of an entire column

or row? This is not uncommon because Excel lets you perform operations

on entire columns or rows. In such a case, the macro seems to take forever
because it loops through each cell (all 1,048,576 of them) in the column —
even the blank cells. To make the macro more efficient, you need a means for
processing only the nonblank cells.

The following routine does just that by using the SpecialCells method. (Refer
to the VBA Help system for specific details about its arguments.) This routine
uses the Set keyword to create two new Range objects: the selection’s subset
that consists of cells with constants and the selection’s subset that consists
of cells with formulas. The routine processes each of these subsets, with the
net effect of skipping all blank cells. Pretty slick, eh?

Sub SkipBlanks ()
Dim ConstantCells As Range
Dim FormulaCells As Range
Dim cell As Range

! Ignore errors
On Error Resume Next

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 2 ’ 7

! Process the constants

Set ConstantCells = Selection _
.SpecialCells (x1Constants)

For Each cell In ConstantCells
If cell.Value > 0 Then

cell.Font.Bold = True

End If

Next cell

! Process the formulas
Set FormulaCells = Selection _
.SpecialCells (x1Formulas)
For Each cell In FormulaCells
If cell.Value > 0 Then
cell.Font.Bold = True
End If
Next cell
End Sub

The SkipBlanks procedure works equally fast, regardless of what you select.
For example, you can select the range, all columns in the range, all rows in
the range, or even the entire worksheet. It’s a vast improvement over the
ProcessCells procedure presented earlier in this section.

Notice that [use the following statement in this code:
On Error Resume Next

This statement tells Excel to ignore any errors that occur and simply process
the next statement (see Chapter 12 for a discussion of error handling). This
statement is necessary because the SpecialCells method produces an error if
no cells qualify.

Using the SpecialCells method is equivalent to choosing the Home=Editing=>
Find & Select=>Goto Special command, and selecting the Constants option

or the Formulas option. To get a feel for how this works, record your actions
while you issue that command and select various options.

Looping through a range
efficiently (Part 11)

And now, the sequel. This section demonstrates another way of processing
cells in an efficient manner. It takes advantage of the UsedRange property —
which returns a Range object that consists only of the used area of the work-
sheet. It also uses the Intersect method, which returns a Range object that
consists of cells that two ranges have in common.

ooks.com/

http://www.it-ebooks.info/

2 ’8 Part lll: Programming Concepts

Here’s a variation of the SkipBlanks procedure from the previous section:

Sub SkipBlanks2 ()
Dim WorkRange As Range
Dim cell As Range
Set WorkRange = Intersect _
(Selection, ActiveSheet.UsedRange)
For Each cell In WorkRange
If cell.value > 0 Then
cell.Font.Bold = True
End If
Next cell
End Sub

The WorkRange object variable consists of cells that are common to the
user’s selection, and the worksheet’s used range. Therefore, if an entire
column is selected, WorkRange contains only the cells that are within the
used area of the worksheet. Fast and efficient, with no CPU cycles wasted on
processing cells that are outside of the worksheet’s used area.

Prompting for a cell value

As shown in Figure 14-2, you can use VBA’s InputBox function to get a value
from the user. Then you can insert that value into a cell. The following proce-
dure demonstrates how to ask the user for a value and place the value in cell
Al of the active worksheet, using only one statement:

Sub GetValue ()
Range ("Al") .Value = InputBox _
("Enter the value for cell Al")

End Sub
A B [E F H
o 1
_ Microsoft Excel (sl
|
4 Enter the value for cell AL -
Figure 14-2: |- —
Use the VBA |
InputBox | s
function to l'
getavalue [
fromthe |z
user. =
14
|

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 2 ’ 9

If you try this example, you'll find that clicking the Cancel button in the Input
Box erases the current value in cell Al. Erasing the user’s data isn’t a very
good programming practice. The following macro demonstrates a better
approach: using a variable (x) to store the value entered by the user. If the
value is not empty (that is, the user didn’t click Cancel), the value of x is
placed into cell Al. Otherwise, nothing happens.

Sub GetValue?2 ()
Dim x as Variant
x = InputBox("Enter the value for cell Al")
If x <> "" Then Range("Al") .Value = x

End Sub

The variable x is defined as a Variant data type because it could be a number
or an empty string (if the user clicks Cancel).

Determining the selection type

If you design your macro to work with a range selection, the macro must be
able to determine whether a range is actually selected. If something other
than a range is selected (such as a chart or a shape), the macro will probably
bomb. The following procedure uses the VBA TypeName function to identify
the type of object that is currently selected:

Sub SelectionType ()
MsgBox TypeName (Selection)
End Sub

If a Range object is selected, the MsgBox displays Range. If your macro
works only with ranges, you can use an If statement to ensure that a range is
selected. This example displays a message and exits the procedure if the cur-
rent selection is not a Range object:

Sub CheckSelection ()
If TypeName (Selection) <> "Range" Then
MsgBox "Select a range."
Exit Sub
End If
! ... [Other statements go here]
End Sub

Identifying a multiple selection

As you know, Excel allows multiple selections by pressing Ctrl while choosing
objects or ranges. This can cause problems with some macros. For example,
you can’t copy a multiple selection that consists of nonadjacent cells. If you
attempt to do so, Excel scolds you with the message shown in Figure 14-3.

ooks.com/

http://www.it-ebooks.info/

220 Part lll: Programming Concepts

A B P D E F G H

1 63 12 25 49 51 15 57 54

2 95 48 6 32 68 63 78 87

3 28 84 73 35 39 8 10 a7

4 6 a8 65 96 14 20 12 37

5 15 19 6 a5 77 52 88 50

6 26 7 79 14 49 10 12 83

7 2 33 58 49 13 17 59 31

3 74 79 37 50 37 91 34 62

9 91 69 92 7 81 PE! 57 64

10 27 a7 53 9 73 53 98 73

11 69 95 71 95 35 91 83 24

e | 2 94 52 71 94 36 1 19 29

13 83 24 26 3 a4 91 50 82

Figure 14-3: |14 84 33 a0 3 53 o1 61 57

Excel | 38 54 23 65 38 57 @13 58

1o e 16 62 Microsoft Office Excel 93

doesn'tlike [9 a1

itifyoutry |i 72 B, That command cannot be used on muliple selections. a0

19 53 a7

to COPY a o s a

mU|tIp|e 21 37 T I E oa 9 [it:]

selection. |22 21 72 76 24 9 55 15 20
==

The following macro demonstrates how to determine whether the user made
a multiple selection so your macro can take appropriate action:

Sub MultipleSelection/()
If Selection.Areas.Count > 1 Then
MsgBox "Multiple selections not allowed."
Exit Sub
End If
! ... [Other statements go here]
End Sub

This example uses the Areas method, which returns a collection of all objects
in the selection. The Count property returns the number of objects in the
collection.

Changing Excel Settings

Some of the most useful macros are simple procedures that change one or
more of Excel’s settings. For example, if you find yourself making frequent
trips to the Excel Options dialog box to change a setting, that’s a good candi-
date for a simple time-saving macro.

This section presents two examples that show you how to change settings in

Excel. You can apply the general principles demonstrated by these examples
to other operations that change settings.

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 22 ’

Changing Boolean settings

Like a light switch, a Boolean setting is either on or off. For example, you
might want to create a macro that turns the worksheet page break display on
and off. After you print or preview a worksheet, Excel displays dashed lines
to indicate the page breaks. Some people (author included) find these dashed
lines very annoying. Unfortunately, the only way to get rid of the page break
display is to open the Excel Options dialog box, click the Advanced tab, and
scroll down until you find the Show Page Breaks check box. If you turn on the
macro recorder when you change that option, Excel generates the following
code:

ActiveSheet .DisplayPageBreaks = False

On the other hand, if page breaks are not visible when you record the macro,
Excel generates the following code:

ActiveSheet.DisplayPageBreaks = True

This may lead you to suspect that you need two macros: one to turn on the
page break display and one to turn it off. Not true. The following procedure
uses the Not operator, which turns True to False and False to True. Executing
the TogglePageBreaks procedure is a simple way to toggle the page break dis-
play from True to False and from False to True:

Sub TogglePageBreaks ()
On Error Resume Next
ActiveSheet.DisplayPageBreaks = Not _
ActiveSheet.DisplayPageBreaks
End Sub

The first statement ignores an error that occurs if the active sheet is a chart
sheet. (Chart sheets don’t display page breaks.)

You can use this technique to toggle any settings that have Boolean (True or
False) values.

Changing non-Boolean settings

Use a Select Case structure for non-Boolean settings. This example toggles
the calculation mode between manual and automatic and displays a message
indicating the current mode:

ooks.com/

http://www.it-ebooks.info/

222 Part lll: Programming Concepts

Sub ToggleCalcMode ()
Select Case Application.Calculation
Case x1Manual
Application.Calculation = xlCalculationAutomatic
MsgBox "Automatic Calculation Mode"
Case xlAutomatic
Application.Calculation = xlCalculationManual
MsgBox "Manual Calculation Mode"
End Select
End Sub

You can adapt this technique for changing other non-Boolean settings.

Working with Charts

Charts are jam-packed with different objects, so manipulating charts with
VBA can be a bit of a challenge. The challenge increases with Excel 2007,
because Microsoft decided to omit recording macros for all the new and
fancy chart formatting stuff. Fortunately, this serious problem was corrected
in Excel 2010.

[fired up Excel 2010, entered some numbers in A1:A3 and selected that range.
Then I turned on the macro recorder and created a basic column chart with
three data points. I deleted the chart’s legend and added a shadow effect to
the columns. Here’s the macro:

Sub Macrol ()
ActiveSheet.Shapes.AddChart.Select
ActiveChart.ChartType = xlColumnClustered
ActiveChart.SetSourceData Source:=Range _

("'Sheetl'!SAS1:3$AS3")
ActiveChart.Legend.Select
Selection.Delete
ActiveSheet.ChartObjects ("Chart 1") .Activate
ActiveChart.SeriesCollection(l) .Select
Selection.Format.Shadow.Type = msoShadow2l
End Sub

If you record this macro in Excel 2007, the last statement (which applies the
shadow) is not even generated. That’s just one example of how Excel 2007
ignores chart formatting commands when recording a macro.

This macro, by the way, will probably generate an error because it hard-
codes the chart’s name in the macro. When you run this macro, the chart
that’s created is not necessarily named Chart 1. If you happen to have a chart
named Chart 1, the shadow formatting will be applied to that one — not the

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 223

one that the macro created. Also, the chart’s data range is hard-coded, so
you couldn’t use this for a general-purpose chart-creator macro.

However, examining the recorded code does reveal a few things that may be
helpful in writing your own chart-related macros. If you're curious, here’s

a hand-crafted version of that macro that creates a chart from the selected
range:

Sub CreateAChart ()
Dim ChartData As Range
Dim ChartShape As Shape
Dim NewChart As Chart

! Create object variables
Set ChartData = ActiveWindow.RangeSelection
Set ChartShape = ActiveSheet.Shapes.AddChart
Set NewChart = ChartShape.Chart

! Adjust the chart
With NewChart
.ChartType = x1ColumnClustered
.SetSourceData Source:=Range (ChartData.Address)
.Legend.Delete
.SeriesCollection(1l) .Format.Shadow.Type =
msoShadow21
End With
End Sub

If you need to write VBA macros that manipulate charts, you must under-
stand some terminology. An embedded chart on a worksheet is a ChartObject
object. You can activate a ChartObject much like you activate a sheet. The
following statement activates the ChartObject named Chart 1:

ActiveSheet.ChartObjects ("Chart 1") .Activate
After you activate the chart, you can refer to it in your VBA code as the
ActiveChart. If the chart is on a separate chart sheet, it becomes the active
chart as soon as you activate that chart sheet.
A ChartObject is also a Shape, which can be a bit confusing. In fact, when your
VBA code creates a chart, it starts by adding a new Shape. You can also acti-
vate a chart by selecting the Shape object that holds the chart:
ActiveSheet.Shapes ("Chart 1") .Select

[prefer to use the ChartObject object in my code, just to make it perfectly
clear that I'm working with a chart.

ooks.com/

http://www.it-ebooks.info/

224 Part lll: Programming Concepts

NG/

When you click an embedded chart, Excel actually selects an object inside the
ChartObject object. You can select the ChartObject itself by pressing Ctrl
while clicking the embedded chart.

Modifying the chart type

Here’s a confusing statement for you: A ChartObject object acts as a con-
tainer for a Chart object. Read that a few times, and it might actually make
sense.

To modify a chart with VBA, you don’t have to activate the chart. Rather, the
Chart method can return the chart contained in the ChartObject. Are you thor-
oughly confused yet? The following two procedures have the same effect —
they change the chart named Chart 1 to an area chart. The first procedure
activates the chart first and then works with the active chart. The second
procedure doesn’t activate the chart. Rather it uses the Chart property to
return the Chart object contained in the ChartObject object.

Sub ModifyChartl ()
ActiveSheet.ChartObjects ("Chart 1") .Activate
ActiveChart.Type = xlArea

End Sub

Sub ModifyChart2 ()
ActiveSheet.ChartObjects ("Chart 1") _
.Chart.Type = xlArea
End Sub

Looping through the
ChartObjects collection

This example changes the chart type of every embedded chart on the active
sheet. The procedure uses a For-Next loop to cycle through each object in
the ChartObjects collection, access the Chart object in each, and change its
Type property.

Sub ChartType ()
Dim cht As ChartObject
For Each cht In ActiveSheet.ChartObjects
cht.Chart.Type = xlArea
Next cht
End Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 225

The following macro performs the same function but works on all the chart
sheets in the active workbook:

Sub ChartType?2 ()
Dim cht As Chart
For Each cht In ActiveWorkbook.Charts
cht.Type = xlArea
Next cht
End Sub

Modifying chart properties

The following example changes the Legend font for all charts on the active
sheet. It uses a For-Next loop to process all ChartObject objects:

Sub LegendMod ()
Dim cht As ChartObject
For Each cht In ActiveSheet.ChartObjects
With cht.Chart.Legend.Font

.Name = "Calibri"
.FontStyle = "Bold"
.Size = 12
End With
Next cht
End Sub

Note that the Font object is contained in the Legend object, which is con-
tained in the Chart object, which is contained in the ChartObjects collection.
Now do you understand why it’s called an object hierarchy?

Applying chart formatting

This example applies several different types of formatting to the active chart.
[created this macro by recording my actions as [formatted a chart. Then I
cleaned up the recorded code by removing irrelevant lines.

Sub ChartMods ()
ActiveChart.Type = xlArea
ActiveChart.ChartArea.Font.Name = "Calibri"
ActiveChart.ChartArea.Font.FontStyle = "Regular"
ActiveChart.ChartArea.Font.Size = 9
ActiveChart.PlotArea.Interior.ColorIndex = xl1None
ActiveChart.Axes (x1Value) .TickLabels.Font.Bold = True
ActiveChart.Axes (x1Category) .TickLabels.Font.Bold = _

True

ActiveChart.Legend.Position = xl1Bottom

End Sub

ooks.com/

http://www.it-ebooks.info/

226 Part lll: Programming Concepts

You must activate a chart before executing the ChartMods macro. Activate
an embedded chart by clicking it. To activate a chart on a chart sheet, acti-
vate the chart sheet.

To ensure that a chart is selected, you can add a statement to determine if
a chart is active. Here’s the modified macro, which displays a message (and
ends) if a chart is not activated:

Sub ChartMods2 ()
If ActiveChart Is Nothing Then

End

MsgBox "Activate a chart."
Exit Sub
If

ActiveChart.Type = xlArea
ActiveChart.ChartArea.Font.Name = "Calibri"

Act
Act
Act
Act
Act

Act
End Sub

iveChart.ChartArea.Font.FontStyle = "Regular"
iveChart.ChartArea.Font.Size = 9
iveChart.PlotArea.Interior.ColorIndex = x1None
iveChart.Axes (x1Value) .TickLabels.Font.Bold = True
iveChart .Axes (x1Category) .TickLabels.Font.Bold = _

True

iveChart.Legend.Position = xl1Bottom

Here’s another version that uses the With-End With construct to save some
typing and make the code a bit clearer. Once again, I'm getting ahead of
myself. Flip ahead a few pages to read about the With End-With structure.

Sub Cha

rtMods3 ()

If ActiveChart Is Nothing Then

MsgBox "Activate a chart."
Exit Sub

End If

Wit

h ActiveChart

.Type = xlArea

.ChartArea.Font.Name = "Calibri"
.ChartArea.Font.FontStyle = "Regular"

.ChartArea.Font.Size = 9
.PlotArea.Interior.ColorIndex = x1None
.Axes (x1Value) .TickLabels.Font.Bold = True
.Axes (x1Category) .TickLabels.Font.Bold = True
.Legend.Position = x1Bottom
End With
End Sub

When it comes to using VBA to work with charts, this short section barely

scratched

the surface. There’s a lot more to it, of course, but at least this

basic introduction will get you headed in the right direction.

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 22 7

VBA Speed Tips

VBA is fast, but it’s not always fast enough. (Computer programs are never
fast enough.) This section presents some programming examples you can use
to speed up your macros.

Turning off screen updating

When executing a macro, you can sit back and watch all the on-screen action
that occurs in the macro. Although doing this can be instructive, after get-
ting the macro working properly, it’s often annoying and can slow down the
course of your macro considerably. Fortunately, you can disable the screen
updating that normally occurs when you execute a macro. To turn off screen
updating, use the following statement:

Application.ScreenUpdating = False

If you want the user to see what’s happening at any point during the macro,
use the following statement to turn screen updating back on:

Application.ScreenUpdating = True

To demonstrate the difference in speed, execute this simple macro, which
fills a range with numbers:

Sub FillRange ()
Dim r as Long, c As Long
Dim Number as Long
Number = 0
For r = 1 To 50
For ¢ = 1 To 50
Number = Number + 1
Cells(r, c).Select
Cells(r, c).Value = Number
Next c
Next r
End Sub

You see each cell being selected, and the value being entered into the cells.
Now insert the following statement at the beginning of the procedure and
execute it again:

Application.ScreenUpdating = False

ooks.com/

http://www.it-ebooks.info/

228 Part lll: Programming Concepts

\\3

\NG/
Vg\“

The range is filled up much faster, and you don’t see the end result until the
macro is finished running.

When debugging code, sometimes program execution ends somewhere in the
middle, without having turned Screen updating back on (and yes, this happens
to me, too). This sometimes causes Excel’s application window to become
totally unresponsive. The way out of this frozen state is simple: Go back to the
VBE and execute the following statement in the Inmediate window:

Application.ScreenUpdating = True

Turning off automatic calculation

If you have a worksheet with many complex formulas, you may find that you
can speed things up considerably by setting the calculation mode to manual
while your macro is executing. When the macro finishes, set the calculation
mode back to automatic.

The following statement sets the Excel calculation mode to manual:
Application.Calculation = xlCalculationManual

Execute the next statement to set the calculation mode to automatic:
Application.Calculation = xlCalculationAutomatic

If your code uses cells with formula results, remember that turning off calcu-
lation means that the cells will not be recalculated unless you explicitly tell
Excel to do so!

Eliminating those pesky alert messages

As you know, a macro can automatically perform a series of actions. In

many cases, you can start a macro and then go hang out in the mail room
while Excel does its thing. Some Excel operations, however, display mes-
sages that require a human response. For example, if your macro deletes a
nonempty sheet, your code comes to a screeching halt while Excel waits for
your response to the message shown in Figure 14-4. These types of messages
mean that you can’t leave Excel unattended while it executes your macro —
unless you know the secret trick.

ooks.com/

http://www.it-ebooks.info/

Figure 14-4:
You can
instruct
Excel to

not display
these types
of alerts
while run-
ning a
macro.
|

Chapter 14: VBA Programming Examples 229

Micrasoft Office Excel ==

! Data may exist in the sheetis) selected For deletion. To permanently delete the data, press Delete.

Cancel

The secret trick: To avoid these alert messages, insert the following VBA
statement in your macro:

Application.DisplayAlerts = False

Excel executes the default operation for these types of messages. In the case
of deleting a sheet, the default operation is Delete (which is just what you
want to happen). If you're not sure what the default operation is, perform a
test and see what happens.

When the procedure ends, Excel automatically resets the DisplayAlerts prop-
erty to True (its normal state). If you need to turn the alerts back on before
the procedure ends, use this statement:

Application.DisplayAlerts = True

Simplifying object references

As you probably already know, references to objects can become very
lengthy. For example, a fully qualified reference to a Range object may look
like this:

Workbooks ("MyBook.x1sx") .Worksheets ("Sheetl")
.Range ("InterestRate")

If your macro frequently uses this range, you may want to create an object
variable by using the Set command. For example, the following statement
assigns this Range object to an object variable named Rate:

Set Rate = Workbooks ("MyBook.xlsx") _
.Worksheets ("Sheetl") .Range ("InterestRate")

ooks.com/

http://www.it-ebooks.info/

230 Part lll: Programming Concepts

After defining this object variable, you can use the variable Rate rather than
the lengthy reference. For example, you can change the value of the cell
named InterestRate:

Rate.Value = .085
This is much easier to type (and understand) than the following statement:

Workbooks ("MyBook.x1sx") .Worksheets ("Sheetl") . _
Range ("InterestRate") = .085

In addition to simplifying your coding, using object variables also speeds up
your macros considerably. After creating object variables, I've seen some
macros execute twice as fast as before.

Declaring variable types

You don’t usually have to worry about the type of data you assign to a vari-
able. Excel handles all the details for you behind the scenes. For example, if
you have a variable named MyVar, you can assign a number of any type to
that variable. You can even assign a text string to it later in the procedure.

<MBER But if you want your procedures to execute as fast as possible (and avoid
some potentially nasty problems), tell Excel what type of data will be assigned
to each of your variables. This is known as declaring a variable’s type. (Refer
to Chapter 7 for complete details.) Get into the habit of declaring all variables
that you use.

In general, you should use the data type that requires the smallest number
of bytes yet can still handle all the data assigned to it. When VBA works with
data, execution speed depends on the number of bytes VBA has at its dis-
posal. In other words, the fewer bytes data uses, the faster VBA can access
and manipulate the data.

If you use an object variable (as described in the preceding section), you can
declare the variable as a particular object type. Here’s an example:

Dim Rate as Range

Set Rate = Workbooks ("MyBook.xlsx") _
.Worksheets ("Sheetl") .Range ("InterestRate")

ooks.com/

http://www.it-ebooks.info/

Chapter 14: VBA Programming Examples 23 ’

A\

Using the With-End With structure

Do you need to set a number of properties for an object? Your code runs
faster if you use the With-End With structure. An additional benefit is that
your code may be easier to read.

The following code does not use With-End With:

Selection.HorizontalAlignment = xlCenter
Selection.VerticalAlignment = xlCenter
Selection.WrapText = True
Selection.Orientation = 0
Selection.ShrinkToFit = False
Selection.MergeCells = False

Here’s the same code, rewritten to use With-End With:

With Selection
.HorizontalAlignment = xlCenter
.VerticalAlignment = xlCenter
.WrapText = True
.Orientation = 0
.ShrinkToFit = False
.MergeCells = False

End With

If this structure seems familiar to you, it’s probably because the macro

recorder uses With-End With whenever it can. And I presented another exam-
ple earlier in this chapter.

ooks.com/

http://www.it-ebooks.info/

232 Part Ill: Programming Concepts

ooks.com/

http://www.it-ebooks.info/

Part IV

Communicating
with Your Users

The 5t Wave By Rich Tennant

“T've used several spreadsheet p:rog*rams, but
this is the best one for designing quilt patterns.”

ooks.com/

http://www.it-ebooks.info/

In this part . . .

Tle five chapters in this part show you how to develop
custom dialog boxes (also known as UserForms). This
VBA feature is fairly easy to use after you get a few basic

concepts under your belt. And, if you're like me, you may
actually enjoy creating dialog boxes.

ooks.com/

http://www.it-ebooks.info/

Chapter 15
Simple Dialog Boxes

In This Chapter

Saving time by using any of several alternatives to UserForms

Using the InputBox and MsgBox functions to get information from the user

Getting a filename and path from the user

Getting a folder name from the user

Writing VBA code to execute Ribbon commands that display Excel built-in dialog boxes

ou can’t use Excel very long without being exposed to dialog boxes.

They seem to pop up almost every time you select a command. Excel —
like most Windows programs — uses dialog boxes to obtain information,
clarify commands, and display messages. If you develop VBA macros, you
can create your own dialog boxes that work just like those built into Excel.
Those custom dialog boxes are called UserForms in VBA.

This chapter doesn’t tell you anything about creating UserForms. Rather, it
describes some techniques you might be able to use in place of UserForms.
Chapters 16 through 18, however, do cover UserForms.

UserForm Alternatives

Some of the VBA macros you create behave the same every time you execute
them. For example, you may develop a macro that enters a list of your
employees into a worksheet range. This macro always produces the same
result and requires no additional user input.

You might develop other macros, however, that behave differently under var-
ious circumstances or that offer the user options. In such cases, the macro
may benefit from a custom dialog box. A custom dialog box provides a simple
means for getting information from the user. Your macro then uses that infor-
mation to determine what it should do.

UserForms can be quite useful, but creating them takes time. Before I cover

the topic of creating UserForms in the next chapter, you need to know about
some potentially timesaving alternatives.

ooks.com/

http://www.it-ebooks.info/

236 Part IV: Communicating with Your Users

VBA lets you display several different types of dialog boxes that you can
sometimes use in place of a UserForm. You can customize these built-in
dialog boxes in some ways, but they certainly don’t offer the options avail-
able in a UserForm. In some cases, however, they're just what the doctor
ordered.

In this chapter you read about

v The MsgBox function

v The InputBox function

v The GetOpenFilename method
v The GetSaveAsFilename method
v The FileDialog method

[also describe how to use VBA to display the Excel built-in dialog boxes —
the dialog boxes that Excel uses to get information from you.

The MsgBox Function

You're probably already familiar with the VBA MsgBox function — I use

it quite a bit in the examples throughout this book. The MsgBox function,
which accepts the arguments shown in Table 15-1, is handy for displaying
information and getting simple user input. It’s able to get user input because
it’s a function. A function, as you recall, returns a value. In the case of the
Msgbox function, it uses a dialog box to get the value that it returns. Keep
reading to see exactly how it works.

Here’s a simplified version of the syntax for the MsgBox function:

MsgBox (prompt [, buttons][, title])
Table 15-1 MsgBox Function Arguments
Argument What It Does
prompt The text Excel displays in the message box
buttons A number that specifies which buttons (along with what icon)

appear in the message box (optional)

title The text that appears in the message box's title bar (optional)
Displaying a simple message box

ooks.com/

http://www.it-ebooks.info/

Figure 15-1:
A simple
message

box.
|

Chapter 15: Simple Dialog Boxes 23 7

You can use the MsgBox function in two ways:

v To simply show a message to the user. In this case, you don’t care
about the result returned by the function.

+* To get a response from the user. In this case, you do care about the
result returned by the function. The result depends on the button that
the user clicks.

If you use the MsgBox function by itself, don’t include parentheses around
the arguments. The following example simply displays a message and does
not return a result. When the message is displayed, the code stops until the
user clicks OK.

Sub MsgBoxDemo ()
MsgBox "Click OK to begin printing."
Sheets ("Results") .PrintOut

End Sub

Figure 15-1 shows how this message box looks.

Microsoft Excel ==

Click OK to begin printing.

Getting a response from a message box

If you display a message box that has more than just an OK button, you’ll
probably want to know which button the user clicks. You're in luck. The
MsgBox function can return a value that represents which button is clicked.
You can assign the result of the MsgBox function to a variable.

In the following code, I use some built-in constants (which I describe later in
Table 15-2) that make it easy to work with the values returned by MsgBox:

Sub GetAnswer ()
Dim Ans As Integer
Ans = MsgBox("Did you eat lunch yet?", vbYesNo)
Select Case Ans
Case vbYes
! ...[code if Ans is Yes]...
Case vbNo
! ...[code if Ans is No]...
End Select
End Sub

ooks.com/

http://www.it-ebooks.info/

238 Part IV: Communicating with Your Users

Figure 15-2 shows how it looks. When you execute this procedure, the Ans
variable is assigned a value of either vbYes or vbNo, depending on which
button the user clicks. The Select Case statement uses the Ans value to deter-
mine which action the code should perform.

Figure 15-2:
A simple | i you cat lunch yet?
message
box, with

two buttons.
|

Microsoft Excel &3

You can also use the MsgBox function result without using a variable, as the
following example demonstrates:

Sub GetAnswer?2 ()
If MsgBox ("Continue?", vbYesNo) = vbYes Then
! ...[code if Yes is clicked]...
Else
! ...[code if Yes is not clicked]...
End If
End Sub

Customizing message boxes

The flexibility of the buttons argument makes it easy to customize your mes-
sage boxes. You can specify which buttons to display, determine whether an
icon appears, and decide which button is the default (the default button is
“clicked” if the user presses Enter).

Table 15-2 lists some of the built-in constants you can use for the buttons
argument. If you prefer, you can use the value rather than a constant (but I
think using the built-in constants is a lot easier).

Table 15-2 Constants Used in the MsgBox Function
Constant Value What It Does

vbOKOnly 0 Displays OK button only.

vbOKCancel 1 Displays OK and Cancel buttons.
vbAbortRetrylgnore 2 Displays Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Displays Yes, No, and Cancel buttons.
vbYesNo 4 Displays Yes and No buttons.

ooks.com/

http://www.it-ebooks.info/

Chapter 15: Simple Dialog Boxes 239

Constant Value What It Does

vbRetryCancel 5 Displays Retry and Cancel buttons.
vhCritical 16 Displays Critical Message icon.
vbQuestion 32 Displays Warning Query icon.
vbExclamation 48 Displays Warning Message icon.
vbInformation 64 Displays Information Message icon.
vbDefaultButton1 0 First button is default.
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.

To use more than one of these constants as an argument, just connect them
with a + operator. For example, to display a message box with Yes and No
buttons and an exclamation icon, use the following expression as the second
MsgBox argument:

vbYesNo + vbExclamation

Or, if you prefer to make your code less understandable, use a value of 52
(that is, 4 + 48).

The following example uses a combination of constants to display a message
box with a Yes button and a No button (vbYesNo) as well as a question mark
icon (vbQuestion). The constant vbDefaultButton2 designates the second
button (No) as the default button — that is, the button that is clicked if the
user presses Enter. For simplicity, | assign these constants to the Config vari-
able and then use Config as the second argument in the MsgBox function:

Sub GetAnswer3 ()
Dim Config As Integer
Dim Ans As Integer
Config = vbYesNo + vbQuestion + vbDefaultButton2
Ans = MsgBox ("Process the monthly report?", Config)
If Ans = vbYes Then RunReport

End Sub

Figure 15-3 shows the message box Excel displays when you execute the
GetAnswer3 procedure. If the user clicks the Yes button, the routine executes
the procedure named RunReport (which is not shown). If the user clicks the
No button (or presses Enter), the routine ends with no action. Because [omit-
ted the title argument in the MsgBox function, Excel uses the default title,
Microsoft Excel.

ooks.com/

http://www.it-ebooks.info/

240

Part IV: Communicating with Your Users

Figure 15-3:
The MsgBox
function’s
buttons
argument
determines
what
appearsin
the mes-
sage box.
|

Micrasoft Excel 3

l:el Pracess the monthly report?

=

(1] | Mo

The following routine provides another example of using the MsgBox function:

Sub GetAnswer4 ()
Dim Msg As String, Title As String
Dim Config As Integer, Ans As Integer
Msg = "Do you want to process the monthly report?"

Msg = Msg & vbNewLine & vbNewLine

Msg = Msg & "Processing the monthly report will "
Msg = Msg & "take approximately 15 minutes. It "
Msg = Msg & "will generate a 30-page report for "
Msg = Msg & "all sales offices for the current "
Msg = Msg & "month."

Title = "XYZ Marketing Company"

Config = vbYesNo + vbQuestion

Ans = MsgBox (Msg, Config, Title)

If Ans = vbYes Then RunReport
End Sub

This example demonstrates an efficient way to specify a longer message in

a message box. [use a variable (Msg) and the concatenation operator (&) to
build the message in a series of statements. The vbNewLine constant inserts
a line break character that starts a new line (use it twice to insert a blank
line). I also use the title argument to display a different title in the message
box. Figure 15-4 shows the message box Excel displays when you execute this
procedure.

Previous examples have used constants (such as vbYes and vbNo) for the
return value of a MsgBox function. Besides these two constants, Table 15-3
lists a few others.

And that’s pretty much all you need to know about the MsgBox function.
Use message boxes with caution, though. There’s usually no reason to dis-
play message boxes that serve no purpose. For example, people tend to get
annoyed when they see a message box every day that reads, “Good morning,
thanks for loading the Budget Projection workbook.”

ooks.com/

http://www.it-ebooks.info/

Chapter 15: Simple Dialog Boxes 24 ’

|
Figure 15-4:

Th|S d|alog A¥Z Marketing Campany =
box, dis-
played by

"~ Processing the monthly report will take approximately 15 minutes. It
the MSQBOX will generate a 30-page report for all sales offices for the current month,

f "~ | Dayouwantto process the manthly report?

function, dis-
plays a title,
anicon, and
two buttons.
|

Table 15-3 Constants Used as Return Values for the MsgBox Function
Constant Value What It Means

vbOK 1 User clicked OK.
vbCancel 2 User clicked Cancel.
vbAbort 3 User clicked Abort.
vbRetry 4 User clicked Retry.
vblgnore 5 User clicked Ignore.
vbYes 6 User clicked Yes.
vbNo 7 User clicked No.

The InputBox Function

The VBA InputBox function is useful for obtaining a single piece of informa-
tion from the user. That information could be a value, a text string, or even a
range address. This is a good alternative to developing a UserForm when you
need to get only one value.

InputBox syntax
Here’s a simplified version of the syntax for the InputBox function:
InputBox (prompt[, title][, default])

The InputBox function accepts the arguments listed in Table 15-4.

ooks.com/

http://www.it-ebooks.info/

242 Part IV: Communicating with Your Users

Table 15-4 InputBox Function Arguments

Argument What It Means

Prompt The text displayed in the input box

Title The text displayed in the input box's title bar
(optional)

Default The default value for the user’s input (optional)

An InputBox example
Here’s an example showing how you can use the InputBox function:
TheName = InputBox("What is your name?", "Greetings")

When you execute this VBA statement, Excel displays the dialog box shown
in Figure 15-5. Notice that this example uses only the first two arguments and
does not supply a default value. When the user enters a value and clicks OK,
the routine assigns the value to the variable TheName.

|
Figure 15-5: [[Greetings =
The | whatis yourname?
InputBox p—
function
displays this | |
dialog box.
|

The following example uses the third argument and provides a default value.
The default value is the username stored by Excel (the Application object’s
UserName property).

Sub GetName ()
Dim DefName As String
Dim TheName As String
DefName = Application.UserName
TheName = InputBox("What is your name?", _
"Greetings", DefName)
End Sub

The input box always displays a Cancel button. If the user clicks Cancel, the
InputBox function returns an empty string.

ooks.com/

http://www.it-ebooks.info/

Figure 15-6:
Another
example of
using the
InputBox
function.

Chapter 15: Simple Dialog Boxes 243

VBA'’s InputBox function always returns a string, so if you need to get a value,
your code will need to do some additional checking. The following example
uses the InputBox function to get a number. It uses the IsNumeric function to
check whether the string is a number. If the string does contain a number, all
is fine. If the user’s entry cannot be interpreted as a number, the code displays
a message box.

Sub GetName2AddSheet ()
Dim Prompt As String
Dim Caption As String
Dim DefValue As Integer
Dim NumSheets As String

Prompt = "How many sheets do you want to add?"
Caption = "Tell me..."

Defvalue = 1

NumSheets = InputBox (Prompt, Caption, DefValue)

If NumSheets = "" Then Exit Sub 'Canceled
If IsNumeric (NumSheets) Then
If NumSheets > 0 Then Sheets.Add Count:=NumSheets
Else
MsgBox "Invalid number"
End If
End Sub

Figure 15-6 shows the dialog box that this routine produces.

Tell me...

Haow many sheets do you want to add?

] Cancel

The information presented in this section applies to VBA’s InputBox function.
In addition, you have access to the InputBox method, which is a method of the
Application object.

One big advantage of using the InputBox method is that your code can
prompt for a range selection. The user can then select the range in the work-
sheet by highlighting the cells. Here’s a quick example that prompts the user
to select a range:

ooks.com/

http://www.it-ebooks.info/

244 Part IV: Communicating with Your Users

Sub GetRange ()

Dim Rng As Range

On Error Resume Next

Set Rng = Application.InputBox _

(prompt:="Specify a range:", Type:=8)

If Rng Is Nothing Then Exit Sub

MsgBox "You selected range " & Rng.Address
End Sub

In this simple example, the code tells the user the address of the range that
was selected. In real life, your code would actually do something useful with
the selected range.

The Application.InputBox method is similar to VBA’s InputBox function, but
it also has some differences. Check the Help system for complete details.

The GetOpenFilename Method

WBER
@&
&

If your VBA procedure needs to ask the user for a filename, you could use the
InputBox function. An input box usually isn’t the best tool for this job, how-
ever, because most users find it difficult to remember paths, backslashes,
filenames, and file extensions. In other words, it’s far too easy to make a typo-
graphical error when typing a filename.

For a better solution to this problem, use the GetOpenFilename method of
the Application object, which ensures that your code gets its hands on a
valid filename, including its complete path. The GetOpenFilename method
displays the familiar Open dialog box (a dead ringer for the dialog box Excel
displays when you choose File>Open).

The GetOpenFilename method doesn’t actually open the specified file. This

method simply returns the user-selected filename as a string. Then you can
write code to do whatever you want with the filename.

The syntax for the GetOpenFilename
method

The official syntax for the GetOpenFilename method is as follows:

object.GetOpenFilename ([fileFilter], [filterIndex],
[title], [buttonText], [multiSelect])

ooks.com/

http://www.it-ebooks.info/

Chapter 15: Simple Dialog Boxes 245

The GetOpenFilename method takes the optional arguments shown in
Table 15-5.

Table 15-5 GetOpenFilename Method Arguments
Argument What It Does
FileFilter Determines the types of files that appear in the dialog box (for

example, *.TXT). You can specify several different filters from
which the user can choose.

FilterIndex Determines which of the file filters the dialog box displays by
default.

Title Specifies the caption for the dialog box’s title bar.

ButtonText Ignored (used only for the Macintosh version of Excel).

MultiSelect If True, the user can select multiple files.

A GetOpenFilename example

The fileFilter argument determines what appears in the dialog box’s Files of
Type drop-down list. This argument consists of pairs of file filter strings fol-
lowed by the wild card file filter specification, with commas separating each
part and pair. If omitted, this argument defaults to the following:

All Files (*.*), *.*

Notice that this string consists of two parts:
All Files (*.*)

and

* *

The first part of this string is the text displayed in the Files of Type drop-
down list. The second part determines which files the dialog box displays.
For example, *.* means all files.

The code in the following example brings up a dialog box that asks the user
for a filename. The procedure defines five file filters. Notice that I use the
VBA line continuation sequence to set up the Filter variable; doing so helps
simplify this rather complicated argument.

ooks.com/

http://www.it-ebooks.info/

246 Part IV: Communicating with Your Users

Sub GetImportFileName ()
Dim Finfo As String
Dim FilterIndex As Integer
Dim Title As String
Dim FileName As Variant

! Set up list of file filters
FInfo = "Text Files (*.txt),*.txt," & _
"Lotus Files (*.prn),*.prn," & _
"Comma Separated Files (*.csv),*.csv," & _
"ASCII Files (*.asc),*.asc," &
"All Files (*.*), *._ *»

! Display *.* by default
FilterIndex = 5

' Set the dialog box caption
Title = "Select a File to Import"

! Get the filename
FileName = Application.GetOpenFilename (FInfo,
FilterIndex, Title)

! Handle return info from dialog box
If FileName = False Then
MsgBox "No file was selected."
Else
MsgBox "You selected " & FileName
End If
End Sub

Figure 15-7 shows the dialog box Excel displays when you execute this proce-
dure. In a real application, you would do something more meaningful with the
filename. For example, you might want to open it by using a statement such
as this:

Workbooks .Open FileName

Notice that the FileName variable is declared as a Variant data type. If the
user clicks Cancel, that variable contains a Boolean value (False). Otherwise,
FileName is a string. Therefore, using a Variant data type handles both possi-
bilities.

By the way, the dialog box may look different, depending on which version of
Windows you use.

ooks.com/

http://www.it-ebooks.info/

Figure 15-7:
The
GetOpen-
Filename
method
displays a
customiz-
able dialog
box and
returns the
selected
file's path
and name.

It does not
open the file.
|

Chapter 15: Simple Dialog Boxes 24 7

\1_—'.| Select a File to Import

G-

‘ Organize ~ BE Views ~

T Documents
5 Recently Changed

More »

Folders

. v Computer » OS(C) » TextFiles

§ New Folder

"‘yll)’esr:h 0|

=
Mame Date madified Type »

filel Lt file02. vt filed. vt file0d vt

sample.xdsm o &
. Start Menu
StednParts

filsliot | filelioe | filellot Aledsn

. Tester
Text Files

o Users
Default

File name: file06. txt

- |AlFiles [-

Selecting multiple files

If the MultiSelect argument for the GetOpenFilename method is True, the user
can select multiple files in the dialog box by pressing Ctrl while clicking the
files. In this case, the GetOpenFilename method returns an array of filenames.
Your code must loop through the array to identify each selected filename, as
the following example demonstrates:

Sub GetImportFileName?2 ()

Dim FileNames As Variant
Dim Msg As String
Dim I As Integer
FileNames = Application.GetOpenFilename _
(MultiSelect:=True)
If IsArray (FileNames) Then
Display full path and name of the files
Msg = "You selected:" & vbNewLine

For I = LBound(FileNames) To UBound (FileNames)
Msg = Msg & FileNames (i) & vbNewLine
Next i
MsgBox Msg
Else
Cancel button clicked
MsgBox "No files were selected."
End If

End Sub

ooks.com/

http://www.it-ebooks.info/

248

Part IV: Communicating with Your Users

Figure 15-8:
Select
multiple
filenames

by using the
GetOpen-
Filename
method.
|

Figure 15-8 shows the result of running this procedure. The message box dis-
plays the filenames that were selected.

Microsoft Excel ==

You selected:

C\Test Files'filed Ltst
CText Files'file3 txt
C\Text Files'filedd bt

Notice that [use a named argument for the GetOpenFilename method. I also
set the MultiSelect argument to True. The other arguments are omitted, so
they take on their default values. Using named arguments eliminates the need
to specify arguments that aren’t used.

The FileNames variable is defined as a Variant data type. | use the IsArray
function to determine whether FileName contains an array. If so, the code
uses the VBA LBound and UBound functions to determine the array’s lower
and upper bounds and build a message that consists of each array element. If
FileNames is not an array, that means the user clicked the Cancel button (the
FileNames variable contains an array even if only one file is selected).

The GetSaveAsFilename Method

The Excel GetSaveAsFilename method works just like the GetOpenFilename
method, but it displays the Excel Save As dialog box rather than its Open
dialog box. The GetSaveAsFilename method gets a path and filename from
the user but doesn’t do anything with it. It’s up to you to write code that
actually saves the file.

The syntax for this method follows:

object.GetSaveAsFilename ([InitialFilename], [FileFilter],
[FilterIndex], [Title], [ButtonText])

The GetSaveAsFilename method takes Table 15-6’s arguments, all of which
are optional.

ooks.com/

http://www.it-ebooks.info/

Chapter 15: Simple Dialog Boxes 249

Table 15-6 GetSaveAsFilename Method Arguments

Argument What It Does

InitialFileName Specifies a default filename that appears in the File
Name box.

FileFilter Determines the types of files Excel displays in the

dialog box (for example, *.TXT). You can specify sev-
eral different filters from which the user can choose.

FilterIndex Determines which of the file filters Excel displays by
default.
Title Defines a caption for the dialog box’s title bar.

Getting a Folder Name

Sometimes, you don’t need to get a filename; you just need to get a folder
name. If that’s the case, the FileDialog object is just what the doctor ordered.

The following procedure displays a dialog box that allows the user to select a
directory. The selected directory name (or “Canceled”) is then displayed by
using the MsgBox function.

Sub GetAFolder ()

With Application.FileDialog (msoFileDialogFolderPicker)
.InitialFileName = Application.DefaultFilePath & "\"
.Title = "Please select a location for the backup"

. Show

If .SelectedItems.Count = 0 Then
MsgBox "Canceled"

Else
MsgBox .SelectedItems (1)

End If

End With
End Sub

The FileDialog object lets you specify the starting directory by specifying

a value for the InitialFileName property. In this case, the code uses Excel’s
default file path as the starting directory.

ooks.com/

http://www.it-ebooks.info/

250 Part IV: Communicating with Your Users

Displaying Excel’s Built-in Dialog Boxes

Figure 15-9:
Displaying
one of
Excel’s dia-
log boxes by
using VBA.
|

WMBER
@?«
&

One way to look at VBA is that it’s a tool that lets you mimic Excel com-
mands. For example, consider this VBA statement:

Range ("Al:Al2") .Name = "MonthNames"

Executing this VBA statement has the same effect as choosing Formulas=>
Defined Names=>Define Name to display the New Name dialog box, and then
typing MonthNames in the Name box and A1:A12 in the Refers to box, and
clicking OK.

When you execute the VBA statement, the New Name dialog box does not
appear. This is almost always what you want to happen; you don’t want
dialog boxes flashing across the screen while your macro executes.

In some cases, however, you may want your code to display one of Excel’s
many built-in dialog boxes and let the user make the choices in the dialog
box. You can do this by using VBA to execute a Ribbon command. Here’s an
example that displays the New Name dialog box (see Figure 15-9).

Application.CommandBars.ExecuteMso ("NameDefine")

New Name 2 =S
Mame: |

Scopei Workhook E|

Zamment:

Refers to: | _sheetzijEg? =

Your VBA code can’t get any information from the dialog box. For example, if
you execute the code to display the New Name dialog box, your code can’t get
the name entered by the user, or the range that’s being named.

The ExecuteMso is a method of the CommandBars object, and accepts one
argument, an idMso parameter that represents a Ribbon control. Unfortunately,
these parameters are not listed in the Help system. Code that uses the
ExecuteMso method is not compatible with versions prior to Excel 2007.

ooks.com/

http://www.it-ebooks.info/

Chapter 15: Simple Dialog Boxes 25 ’

You can download a file from this book’s Web site that lists all of the Excel
Ribbon command parameter names.

Here’s another example of using the ExecuteMso method. This statement,
when executed, displays the Font tab of the Format Cells dialog box:

Application.CommandBars.ExecuteMso ("FormatCellsFontDialog")
If you try to display a built-in dialog box in an incorrect context, Excel dis-
plays an error message. For example, here’s a statement that displays the
Format Number dialog box:

Application.CommandBars.ExecuteMso ("NumberFormatsDialog")
If you execute this statement when it’s not appropriate (for example, a Shape

is selected), Excel displays an error message because that dialog box is
appropriate only for worksheet cells.

ooks.com/

http://www.it-ebooks.info/

252 Part IV: Communicating with Your Users

ooks.com/

http://www.it-ebooks.info/

Chapter 16
UserForm Basics

In This Chapter

Finding out when to use UserForms

Understanding UserForm objects

Displaying a UserForm

Creating a UserForm that works with a useful macro

A UserForm is useful if your VBA macro needs to get information from

a user. For example, your macro may have some options that can be
specified in a UserForm. If only a few pieces of information are required (for
example, a Yes/No answer or a text string), one of the techniques I describe
in Chapter 15 may do the job. But if you need to obtain more information, you
must create a UserForm. In this chapter, I introduce you to UserForms. You'll
be pleased to make their acquaintance.

Knowing When to Use a UserForm

This section describes a situation in which a UserForm is useful. The follow-
ing macro changes the text in each cell in the selection to uppercase letters.
It does this by using the VBA built-in UCase function.

Sub ChangeCase /()
Dim WorkRange As Range

Exit if a range is not selected
If TypeName (Selection) <> "Range" Then Exit Sub

! Process only text cells, no formulas
On Error Resume Next
Set WorkRange = Selection.SpecialCells _
(x1CellTypeConstants, xl1lCellTypeConstants)
For Each cell In WorkRange
cell.Value = UCase(cell.Value)
Next cell
End Sub

ooks.com/

http://www.it-ebooks.info/

254 Part IV: Communicating with Your Users

Figure 16-1:
You can get
informa-
tion from
the user by
displaying a
UserForm.
|

You can make this macro even more useful. For example, it would be nice

if the macro could also change the text in the cells to either lowercase or
proper case (capitalizing the first letter in each word). One approach is to
create two additional macros — one for lowercase and one for proper case.
Another approach is to modify the macro to handle the other options. If you
use the second approach, you need some method of asking the user which
type of change to make to the cells.

The solution is to display a dialog box like the one shown in Figure 16-1. You
create this dialog box on a UserForm in the VBE and display it by using a VBA
macro. In the next section, I provide step-by-step instructions for creating
this dialog box. Before I get into that, I set the stage with some introductory
material.

Change Case ==

Options

' Upper Case Zancel

" Lower Case

" Proper Case

In VBA, the official name for a dialog box is a UserForm. But a UserForm is
really an object that contains what’s commonly known as a dialog box. This
distinction isn’t important, so I tend to use these terms interchangeably.

Creating UserForms: An Overview

To create a UserForm, you usually take the following general steps:
1. Determine how the dialog box will be used and where it will be dis-
played in your VBA macro.
2. Press Alt+F11 to activate the VBE and insert a new UserForm object.
A UserForm object holds a single UserForm.
3. Add controls to the UserForm.

Controls include items such as text boxes, buttons, check boxes, and list
boxes.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 255

4. Use the Properties window to modify the properties for the controls or
for the UserForm itself.

5. Write event-handler procedures for the controls (for example, a macro
that executes when the user clicks a button in the dialog box).

These procedures are stored in the Code window for the UserForm
object.

6. Write a procedure (stored in a VBA module) that displays the dialog
box to the user.

Don’t worry if some of these steps seem foreign. [provide more details in
the following sections, along with step-by-step instructions for creating a
UserForm.

When you are designing a UserForm, you are creating what developers call
the Graphical User Interface (GUI) to your application. Take some time to
consider what your form should look like and how your users are likely

to want to interact with the elements on the UserForm. Try to guide them
through the steps they need to take on the form by carefully considering the
arrangement and wording of the controls. Like most things VBA-related, the
more you do it, the easier it gets.

Working with UserForms

Each dialog box that you create is stored in its own UserForm object — one
dialog box per UserForm. You create and access these UserForms in the
Visual Basic Editor.

Inserting a new UserForm

Insert a UserForm object with the following steps:

1. Activate the VBE by pressing Alt+F11.
2. Select the workbook in the Project window.
3. Choose Insert~>UserForm.

The VBE inserts a new UserForm object, which contains an empty
dialog box.

Figure 16-2 shows a UserForm — an empty dialog box, in need of some controls.

ooks.com/

http://www.it-ebooks.info/

256 Part IV: Communicating with Your Users

9 Micrasoft Visual Basic far Applications - BaokL - [UserForm 1 (UserFarm}] =)= =]
iE File Edit View Inset Format Debug Run Toals Adddns Windew Help -
EE-d Poaoa NEY R @ B
Project - VBAProject X | W P P
UserForm
—_— 3 =
(£ &4 ¥BAProject (Book1)
=155 Microsoft Excel Objects
~EH] Sheetl (Sheet1)
-8 Thisworkboak
B Farms
UserForm1
Toolbox B
Conlrols |
I kA abl
V&g
Figure 16-2: [P
Anew sdam
UserForm
object.
I

Adding controls to a UserForm

When you activate a UserForm, the VBE displays the Toolbox in a floating
window, as shown in Figure 16-2. You use the tools in the Toolbox to add con-
trols to your UserForm. If the Toolbox doesn’t appear when you activate your
UserForm, choose Viewr>Toolbox.

To add a control, just click the desired control in the Toolbox and drag it into
the dialog box to create the control. After you add a control, you can move
and resize it by using standard techniques.

Table 16-1 indicates the various tools, as well as their capabilities. To deter-
mine which tool is which, hover your mouse pointer over the control and
read the small pop-up description.

Table 16-1 Toolbox Controls

Control What It Does

Label Shows text.

TextBox Allows the user to enter text.

ComboBox Displays a drop-down list.

ListBox Displays a list of items.

CheckBox Useful for on/off or yes/no options.

OptionButton Used in groups; allows the user to select one of several
options.

ToggleButton A button that is either on or off.

Frame A container for other controls.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 25 7

Control What It Does

CommandButton A clickable button.

TabStrip Displays tabs.

MultiPage A tabbed container for other objects.

ScrollBar A draggable bar.

SpinButton A clickable button often used for changing a value.
Image Contains an image.

RefEdit Allows the user to select a range.

Changing properties for a UserForm control

Every control you add to a UserForm has a number of properties that deter-
mine how the control looks or behaves. In addition, the UserForm itself
also has its own set of properties. You can change these properties with
the Properties window. Figure 16-3 shows the properties window when a
CommandButton control is selected.

The Properties window appears when you press F4, and the properties
shown in this window depend on what is selected. If you select a different
control, the properties change to those appropriate for that control. To hide
the Properties window, click the close button in its title bar.

£ Micrasoft Visual Basic for Applications - Baokl - [UserForm L {UserFarm)] =] e ==
i@ Fle Edit Yiew Inset Format Debug Run Tools Adddns Window Help Type a question for help .8 %
EE-d ¥ 9 Pona HEY R Q@ B
Project - VBAProject x|
UserFarm1
B3 @ | [. prewesl >
B[: i
=& ¥BAProject (Book1)
=23 Microsoft Excel Objects
BH) sheetl (sheetl)
47 Thisworkbook Properties - CommandButtonl =]
-5 Forms
e |CommandButton1 Commandston |
Alphatetic | Categorized |
IR CommandButtont -
Accelerator
Autasize False
BackCalor [erenooo00Fe:
Backstyle 1 - FmBackstyleOpagque
Cancel False
| Caption CommandButtont
ControlTipText
s . Default False
Flgure 16-3: = Enabled True 3
Toolbax = Fonk Tahoma
Use the Cantiols ‘ :ove:to\or !&Hauuuamz&
. eig
Properties X A abl Heponsn 0
. Left 126
BV & 2
windows to @ & Lovied Fase
[oo Mouselcon (None)
Change the 4 g ™ MousePointer 0 - FmMousePointerDefault
. g A= Picture (Nane)
p ro p e rtl es PicturePosition 7 - fmPicturePositionAboveCenter
Tahindex 0
of UserForm Tabsicp True i
Tan
controls.
|

ooks.com/

http://www.it-ebooks.info/

258 Part IV: Communicating with Your Users

A\

Properties for controls include the following:

v+ Name

v Width

v Height

v Value

v Caption
Each control has its own set of properties (although many controls have
some common properties). To change a property using the Properties
window:

1. Make sure that the correct control is selected in the UserForm.

2. Make sure the Properties window is visible (press F4 if it’s not).

3. In the Properties window, click on the property that you want to
change.

4. Make the change in the right portion of the Properties window.

If you select the UserForm itself (not a control on the UserForm), you can use
the Properties window to adjust UserForm properties.

Chapter 17 tells you everything you need to know about working with dialog
box controls.

Some of the UserForm properties serve as default settings for new controls
you drag onto the UserForm. For example, if you change the Font property for
a UserForm, controls that you add will use that same font. Controls that are
already on the UserForm are not affected.

Viewing the UserForm Code window

Every UserForm object has a Code module that holds the VBA code (the
event-handler procedures) executed when the user works with the dialog
box. To view the Code module, press F7. The Code window is empty until you
add some procedures. Press Shift+F7 to return to the dialog box.

Here’s another way to switch between the Code window and the UserForm
display: Use the View Code and View Object buttons in the Project window’s
title bar. Or right-click the UserForm and choose View Code. If you're viewing
code, double-click the UserForm name in the Project window to return to the
UserForm.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 259

WBER
‘x&
&

Displaying a UserForm

You display a UserForm by using the UserForm’s Show method in a VBA
procedure.

The macro that displays the dialog box must be in a VBA module — not in the
Code window for the UserForm.

The following procedure displays the dialog box named UserForm1:

Sub ShowDialog ()

UserForml . Show
! Other statements can go here
End Sub

When Excel displays the dialog box, the ShowDialog macro halts until the
user closes the dialog box. Then VBA executes any remaining statements in
the procedure. Most of the time, you won’t have any more code in the pro-
cedure. As you later see, you put your event-handler procedures in the Code
window for the UserForm.

Using information from a UserForm

The VBE provides a name for each control you add to a UserForm. The con-
trol’s name corresponds to its Name property. Use this name to refer to a
particular control in your code. For example, if you add a CheckBox control to
a UserForm named UserForm1, the CheckBox control is named CheckBox1 by
default. The following statement makes this control appear with a check mark:

UserForml.CheckBoxl.Value = True
Most of the time, you write the code for a UserForm in the UserForm’s code
module. If that’s the case, you can omit the UserForm object qualifier and
write the statement like this:

CheckBoxl.Value = True
Your VBA code can also check various properties of the controls and take
appropriate actions. The following statement executes a macro named
PrintReport if the check box (named CheckBox1) is checked:

If CheckBoxl.Value = True Then Call PrintReport

I discuss this topic in detail in Chapter 17.

ooks.com/

http://www.it-ebooks.info/

260 Part IV: Communicating with Your Users

A\\S

[recommend that you change the default name the VBE has given to your con-
trols to something more meaningful. You might consider naming the check
box described above “cbxPrintReport.” Note that I precede the name with a
three-letter prefix (for “checkbox”), indicating the type of control. It is a
matter of taste whether you think doing so is a good practice.

A UserForm Example

This section’s UserForm example is an enhanced version of the ChangeCase
macro from the beginning of the chapter. Recall that the original version of
this macro changes the text in the selected cells to uppercase. This modi-
fied version uses a UserForm to ask the user which type of change to make:
uppercase, lowercase, or proper case.

This dialog box needs to obtain one piece of information from the user: the
type of change to make to the text. Because the user has three choices, your
best bet is a dialog box with three OptionButton controls. The dialog box
also needs two more buttons: an OK button and a Cancel button. Clicking
the OK button runs the code that does the work. Clicking the Cancel button
causes the macro to finish without doing anything.

This workbook is available at the book’s Web site. However, you get more out
of this exercise if you follow the steps provided here and create it yourself.

Creating the UserForm

These steps create the UserForm. Start with an empty workbook.

1. Press Alt+F11 to activate the VBE.

2. If multiple projects are in the Project window, select the project that
corresponds to the workbook you’re using.

3. Choose Insert~>UserForm.
The VBE inserts a new UserForm object with an empty dialog box.
4. Press F4 to display the Properties window.

5. In the Properties window, change the dialog box’s Caption property to
Change Case.

6. The dialog box is a bit too large, so you may want to click it and use
the handles (on the right and bottom sides) to make it smaller.

Step 6 can also be done after you position all the controls in the
dialog box.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 26 ’

Adding the CommandButtons

Ready to add two CommandButtons — OK and Cancel — to the dialog box?
Follow along:

1.

Make sure that the Toolbox is displayed. If it isn’t, choose
Viewr>Toolbox.

2. If the Properties window isn’t visible, press F4 to display it.

3. In the Toolbox, drag a CommandButton into the dialog box to create a

button.

As you see in the Properties box, the button has a default name and cap-
tion: CommandButtonl.

4. Make sure that the CommandButton is selected. Then activate the
Properties window and change the following properties:
Property Change To
Name OKButton
Caption OK
Default True
5. Add a second CommandButton object to the UserForm and change the
following properties:
Property Change To
Name CancelButton
Caption Cancel
Cancel True
6. Adjust the size and position of the controls so your dialog box looks
something like Figure 16-4.
Boaokl - UserFarml1 {UserFarm) EI@
Change Case ==
—
Figure 16-4: 5566604s ao]
The Dl _ﬂ[o)
UserForm S
with two 254
Command
Button
controls.
|

ooks.com/

http://www.it-ebooks.info/

262 Part IV: Communicating with Your Users

Adding the OptionButtons

In this section, you add three OptionButtons to the dialog box. Before adding
the OptionButtons, you add a Frame object that contains the OptionButtons.
The Frame isn’t necessary, but it makes the dialog box look more professional.
1. In the Toolbox, click the Frame tool and drag it into the dialog box.
This step creates a frame to hold the options buttons.
2. Use the Properties window to change the frame’s caption to Options.

3. In the Toolbox, click the OptionButton tool and drag it into the dialog
box (within the Frame).

Doing this creates an OptionButton control.

4. Select the OptionButton and use the Properties window to change the

following properties:

Property Change To
Name OptionUpper
Caption Upper Case
Accelerator U

Value True

Setting the Value property to True makes this OptionButton the default.

5. Add another OptionButton and use the Properties window to change
the following properties:
Property Change To
Name OptionLower
Caption Lower Case
Accelerator L
6. Add a third OptionButton and use the Properties window to change
the following properties:
Property Change To
Name OptionProper
Caption Proper Case
Accelerator P
7. Adjust the size and position of the OptionButtons, Frame, and

dialog box.

Your UserForm should look something like Figure 16-5.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 263

Figure 16-5:
This is the
UserForm

after adding

three Option
Button
controls
inside a
Frame
control.
|

If you'd like a sneak preview to see what the UserForm looks like when it’s
displayed, press F5. None of the controls are working yet, so you need to
click the red “X” in the title bar to close the dialog box.

Booll - UserFarm1 {UserForm) EI@
Change Case ==

(-
[O Upper Case A
L Lower Case I -
oL haoo Cancel @ o
L[Proper Case I -

(a4

The Accelerator property determines which letter in the caption is
underlined — more important, it determines what Alt-key combination
selects that control. For example, you can select the Lower Case option by
pressing Alt+L because the L is underlined. Accelerator keys are optional,
but some users prefer to use the keyboard to navigate dialog boxes.

You may wonder why the OptionButtons have accelerator keys but the
CommandButtons go without. Generally, OK and Cancel buttons never have
accelerator keys because they can be accessed from the keyboard. Pressing
Enter is equivalent to clicking OK because the control’s Default property

is True. Pressing Esc is equivalent to clicking Cancel because the control’s
Cancel property is True.

Adding event-handler procedures

Now it’s time to make the UserForm actually do something. Here’s how to
add an event-handler procedure for the Cancel and OK buttons:

1. Double-click the Cancel button.

VBE activates the Code window for the UserForm and inserts an empty
procedure:

Private Sub CancelButton_Click()

The procedure named CancelButton_Click is executed when the Cancel
button is clicked, but only when the dialog box is displayed. In other
words, clicking the Cancel button when you’re designing the dialog box

ooks.com/

http://www.it-ebooks.info/

264 Part IV: Communicating with Your Users

won’t execute the procedure. Because the Cancel button’s Cancel prop-
erty is set to True, pressing Esc also triggers the CancelButton_Click

procedure.

2. Insert the following statement inside the procedure (before the End

Sub statement):

Unload UserForml

This statement closes the UserForm (and removes it from memory)
when the Cancel button is clicked.

3. Press Shift+F7 to return to the UserForm.

4. Double-click the OK button.

VBE activates the code window for the UserForm and inserts an empty

Sub procedure called

Private Sub OKButton_Click()

When the UserForm is displayed, clicking OK executes this procedure.
Because this button has its Default property set to True, pressing Enter
also executes the OKButton_Click procedure.

5. Enter the following code inside the procedure:

Private Sub OKButton_Click()
Dim WorkRange As Range

! Process only text cells,

On Error Resume Next
Set WorkRange =

! Upper case
If OptionUpper Then
For Each cell In
cell.vValue =
Next cell
End If

! Lower case
If OptionLower Then
For Each cell In
cell .vValue =
Next cell
End If

! Proper case
If OptionProper Then
For Each cell In
cell .Value =

no formulas

Selection.SpecialCells _
(x1CellTypeConstants,

x1CellTypeConstants)

WorkRange
UCase (cell.Value)

WorkRange
LCase(cell.Value)

WorkRange
Application.

WorksheetFunction.Proper?cell.Value)

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 265

Next cell
End If
Unload UserForml
End Sub

The preceding code is an enhanced version of the original ChangeCase
macro that | present at the beginning of the chapter. The macro consists of
three separate blocks of code. This code uses three If-Then structures; each
one has a For Each loop. Only one block is executed, determined by which
OptionButton the user selects. The last statement unloads (closes) the dialog
box after the work is finished.

Here’s something kind of odd. Notice that VBA has a UCase function and

an LCase function, but it doesn’t have a function to convert text to proper
case. Therefore, I use Excel’s PROPER worksheet function (preceded by
Application.WorksheetFunction) to do the proper case conversion. Another
option is to use the VBA StrConv function. (See the Help system for details.)
The StrConv function is not available in all Excel versions, so I use the
PROPER worksheet function instead.

Creating a macro to display the dialog box

We're almost finished with this project. The only thing missing is a way to
display the dialog box. Follow these steps to make the procedure that makes
the dialog box appear:
1. In the VBE window, choose Insert->Module.
The VBE adds an empty VBA module (named Modulel) to the project.
2. Enter the following code:

Sub ChangeCase ()

If TypeName (Selection) = "Range" Then
UserForml . Show
Else
MsgBox "Select a range.", vbCritical
End If
End Sub

This procedure is simple. It checks to make sure that a range is selected. If
so, the dialog box is displayed (using the Show method). The user then inter-
acts with the dialog box and the code stored in the UserForm’s Code pane

is executed. If a range is not selected, the user sees a MsgBox with the text,
“Select a range.”

ooks.com/

http://www.it-ebooks.info/

266 Part IV: Communicating with Your Users

Figure 16-6:
Assign a
shortcut key
to execute
the Change
Case macro.
|

Making the macro available

At this point, everything should be working properly. But you still need an
easy way to execute the macro. Assign a shortcut key (Ctrl+Shift+C) that
executes the ChangeCase macro:
1. Activate the Excel window via Alt+F11.
2. Choose Developer-~>Coder>Macros or press Alt+F8.
3. In the Macros dialog box, select the ChangeCase macro.
4. Click the Options button.
Excel displays its Macro Options dialog box.
5. Enter an uppercase C for the Shortcut key.
See Figure 16-6.
6. Enter a description of the macro in the Description field.
7. Click OK.

8. Click Cancel when you return to the Macro dialog box.

Macra Options 7] =]

Macro name:
ChangeCase
Shorbcut key:
Crrl45hift+ | C
Description:
Change the case of kext in the selected cells.

Cancel

After you perform this operation, pressing Ctrl+Shift+C executes the
ChangeCase macro, which displays the UserForm if a range is selected.

You can also make this macro available from the Quick Access toolbar. Right-
click the Quick Access toolbar and choose Customize Quick Access Toolbar.
The Excel Options dialog box appears, and you’ll find the ChangeCase macro
listed under Macros (see Figure 16-7). Adding a macro to your Quick Access
toolbar works much better in Excel 2010. If the workbook that contains the
macro isn’t open, Excel 2010 opens it and runs the macro. In Excel 2007, you
get an error if the workbook isn’t open.

ooks.com/

http://www.it-ebooks.info/

Chapter 16: UserForm Basics 26 7

Figure 16-7:
Adding the
Change
Chase
macro to
the Quick
Access
toolbar.
|

|
Figure 16-8:
The
UserForm is
in action.
|

Excel Options [Eae=<=

General

@ Customize the Quick Access Toolbar
Formulas

Choose commands from: Customize Quick Access Toolbar:(s
Praofing Macros [=] For all documents (default [=]
Save

Separator = save
fa ChangeCase 9 unde >
© Redo >
Ada > -
e Tl Law-] =]
<< Remove
Add-Ins
Trust Center —
WModify...
customizatons: | Reset v |G
] Show Quick Access Toolbar below the
Ribbon Impor/ExportiTl|G
q i v

Testing the macro

Finally, you need to test the macro and dialog box to make sure they work

properly:

W N e

. Activate a worksheet (any worksheet in any workbook).
. Select some cells that contain text.
. Press Ctrl+Shift+C.

The UserForm appears. Figure 16-8 shows how it should look.

4. Make your choice and click OK.

If you did everything correctly, the macro makes the specified change to

the text in the selected cells.

| 4| A B [
|1
12| january
EX February
14 march
15 | april

|6 | may

17 | june

| & | july

|9 | august

| 10| september
| 11| october
|12 november
|13 | december
|14 |

|15 Formula: flanuary 13
| 16 |Date: Sunday, June 13, 2010
|17 |

| 18 |

|19 |

20

D

Change Case

Opians
& Upper Case
" Lower Case

" Proper Case

Cancel

ooks.com/

http://www.it-ebooks.info/

268 Part IV: Communicating with Your Users

Figure 16-9:
The text

has been
converted to
uppercase.
|

Figure 16-9 shows the worksheet after converting the text to uppercase.
Notice that the formula in cell B15 and the date in cell B16 were not changed.
The macro, as you recall, works only with cells that contain text.

A B (
1
2 JANUARY
3 FEBRUARY
4 MARCH
5 APRIL
6 MAY
7 JUNE
3 JULY
9 AUGUST
10 SEPTEMEER
11 OCTOBER
12 NOVEMBER
13 DECEMBER
14
15 Formula; January 13
16 Date: Sunday, June 13, 2010
17
13
10

As long as the workbook is open, you can execute the macro from any other
workbook. If you close the workbook that contains your macro, Ctrl+Shift+C
no longer has any function.

If the macro doesn’t work properly, double-check the preceding steps to
locate and correct the error. Don’t be alarmed; debugging is a normal part of
developing macros. As a last resort, download the completed workbook from
this book’s Web site, and try to figure out where you went wrong.

ooks.com/

http://www.it-ebooks.info/

Chapter 17
Using UserForm Controls

In This Chapter

Understanding each type of dialog box control

Changing each control’s properties
Working with dialog box controls

A user responds to a custom dialog box (also known as a UserForm) by
using the various controls (buttons, edit boxes, option buttons, and
so on) that the dialog box contains. Your VBA code then makes use of these
responses to determine which actions to take. You have quite a few controls
at your disposal, and this chapter tells you about them.

If you worked through the hands-on example in Chapter 16, you already have
some experience with UserForm controls. This chapter fills in the gaps.

Getting Started with Dialog Box Controls

In this section, I tell you how to add controls to a UserForm, give them mean-
ingful names, and adjust some of their properties.

<MBER Before you can do any of these things, you must have a UserForm, which you
get by choosing Insert>UserForm in the VBE. When you add a UserForm,
make sure that the correct project is selected in the Project window (if more
than one project is available).

Adding controls

Oddly enough, the VBE doesn’t have menu commands that let you add con-
trols to a dialog box. You must use the floating Toolbox, which I describe in
Chapter 16, to add controls. Normally, the Toolbox pops up automatically
when you activate a UserForm in the VBE. If it doesn’t, you can display the
Toolbox by choosing View=>Toolbox.

ooks.com/

http://www.it-ebooks.info/

2 70 Part IV: Communicating with Your Users

Follow along to add a control to the UserForm:

1. Click the Toolbox tool that corresponds to the control you want to add.
2. Click in the UserForm and drag to size and position the control.

Alternatively, you can simply drag a control from the Toolbox to the
UserForm to create a control with the default dimensions. Figure 17-1
shows a UserForm that contains a few controls.

Bool2 - UserFarm1 {UserForm) EI@
UserFarmL =5

Framel.

. { CptionButtonl
| . {7 OptionButton2
| OptionButkond

——
o I checkBoxd

Figure 17-1:
A UserForm
with a few
controls
added.
|

CommandButtond | - - - - -

L e

N A UserForm may contain vertical and horizontal grid lines, which help align

the controls you add. When you add or move a control, it snaps to the grid. If
you don't like this feature, you can turn off the grids by following these steps:
1. Choose Tools->Options in the VBE.
2. In the Options dialog box, select the General tab.

3. Set your desired options in the Form Grid Settings section.

Introducing control properties

Every control that you add to a UserForm has properties that determine how
the control looks and behaves. You can change a control’s properties at the
following two times:

v At design time — when you’re designing the UserForm. You do so manu-
ally, using the Properties window.

v At runtime — while your macro is running. You do so by writing VBA
code. Changes made at runtime are always temporary; they are made to
the copy of the dialog box you are showing, not to the actual UserForm
object you designed.

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 2 7 ’

Figure 17-2:
Use the
Properties
window

to make
design-time
changes to
a control’s
properties.
|

<MBER
ég“

When you add a control to a UserForm, you almost always need to make
some design-time adjustments to its properties. You make these changes in
the Properties window. (To display the Properties window, press F4.) Figure
17-2 shows the Properties window, which displays properties for the object
selected in the UserForm — which happens to be a CheckBox control.

[E=8ECE &)

Book2 - UserFormL {UserForm)

UserFormlL

&

Propetties - CheckBoxL
|CheckBox1 Checkox
Alphabetic | Cateqorized |

hiame)
Accelerator

Framel: -+

O OptionButtond [oIl

" OptionButtanz CheckBoxc1 -

" OptionButton3 Aligriment
Autasize
BackColor

Backstyle

1 - FradlignmentRight
Falsz.

[aHzooo000Fe:

1 - fmBackStyleOpaque
CheckBoxc 1

(ControlSource:

Enabled
Font
ForsColor
Grouphlame.
Height 18

HelpCantextIn 0

Left 12

Locked False:

Mouselron (Hone)

MousePointer |0 - fmMoussPointerDefaul
Picture (Mone)

Pictur=Position 7 - FriPicturePostionibaveCerter
SpecialEffect 2 - fmButton€ffectSunken
TahTodey 1

True
Tahoma
M eHB00000128

To change a control’s properties at runtime, you must write VBA code. For
example, you may want to hide a particular control when the user clicks a
check box. In such a case, you write code to change the control’s Visible

property.

Each control has its own set of properties. All controls, however, share some
common properties, such as Name, Width, and Height. Table 17-1 lists some
of the common properties available for many controls.

Table 17-1
Property

Common Control Properties

What It Is

The letter underlined in the control’s caption. The user
presses this key in conjunction with the Alt key to
select the control.

Accelerator

AutoSize If True, the control resizes itself automatically based
on the text in its caption.

BackColor The control’s background color.

BackStyle The background style (transparent or opaque).

(continued)

ooks.com/

http://www.it-ebooks.info/

2 72 Part IV: Communicating with Your Users

Figure 17-3:
Change
some
properties
by select-
ing from a
drop-down
list of valid
property
values.
|

Table 17-1 (continued)

Property What It Is

Caption The text that appears on the control.

Value The control’s value.

Left and Top Values that determine the control’s position.

Width and Height Values that determine the control’s width and height.
Visible If False, the control is hidden.

Name The control’s name. By default, a control’s name is

based on the control type. You can change the name
to any valid name, but each control’'s name must be
unique within the dialog box.

Picture A graphics image to display. The image can be from
a graphics file, or you can select the Picture property
and paste an image that you copied to the Cliphoard.

When you select a control, that control’s properties appear in the Properties
window. To change a property, just select it in the Properties window and
make the change. Some properties give you some help. For example, if you
need to change the TextAlign property, the Properties window displays a drop-
down list that contains all valid property values, as shown in Figure 17-3.

Praperties - CheckBoxL =]
|CheckBox1 CheckBox |
Alphabetic |Catagnrlzed |

Font Tahoma -
Forecolor [l &Ha000001 28,

Grouphame:

Height 18

HelpContextID |0

Left 1z

Locked False

Mouselcon (Mone)

MousePainter |0 - FriMousePointerDefault

Picture (Mone)

PicturePosition | 7 - FrPicturePositionAboveCenter
SpecialEffect |2 - FmButtonEffectSunken
TabIndesx 1

TabStop True
Tag

m,

P - FrTextalignCenter -

1 - fmTextAlignLeft

2 - fmTextAlignCenter

Top
TripleState
Walue e
isible Trug
wfidth 108
wordwirap True

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 2 73

Dialog Box Controls: The Details

3

Figure 17-4:
The Help
system pro-
vides lots of
information
for each
property

and control.
|

In the following sections, I introduce you to each type of control you can use
in custom dialog boxes and discuss some of the more useful properties. |
don’t discuss every property for every control because that would require a
book that’s about four times as thick (and it would be a very boring book).

The Help system for controls and properties is thorough. To find complete
details for a particular property, select the property in the Properties window
and press F1. Figure 17-4 shows the online help for the SpecialEffect property —
useful for when you make your next blockbuster adventure UserForm.

All the sample files in this section are available at this book’s Web site.

@) Excel Help o B =%
x (3 M e s

~ P Search ~

SpecialEffect Property

Specifies the visual appearance of an object.
Syntax

For CheckBaox, OptionButton, TaggleButtan
obiect.SpecialEffect [= FmButfonciFect]

For other contrals
ohject.SpecialEffect [= fmSpecalttfect]
The SpecialEffect property syntax has these parts:

Part Description
object Required. A valid object,
fmButtonsffect Optional, The desired visual appearance for a CheckBos, OptionButton, or ToggleButton, E
fmpecialFrace Optional, The desired visual appearance of an object other than a CheckBox, OptionButton, or
ToggleButton,
Settings
The settings for fmSpecadiFect are:

Constant ¥alue Description

Obiject appears flat, distinguished from the surrounding Farm by & border, a change

of color, or both. Default for Image and Label, valid For all controls.

Obiject has a highlight on the top and left and & shadaw an the battom and right. Mot

wvalid far check boxes or option buttans.

Obiject has a shadow on the top and left and a highlight an the bottam and right.

FfmspecalcifactSunkan 2 The contral and its border appear to be carved into the Form that contains them.
Default for CheckBox and OptionButton, valid for all contrals (default),

FmEpecalcifactat o

fmEpecalcifactRared 1

Border appears to be carved around the edge of the control. Mot valid for check.
boxes or option buttons.

Obiject has 5 ridge on the bottam and right and appears flat on the top and left. Mot
valid far check boxes or option buttans,

fmEpecalfecitiched 3
fmEpecalfectfump 6

For a Frame, the default value is Stanken,

Mote that only Siaf and Swken (0 and 2) are acceptable values for CheckBox, OptionButton, and ToggleButton.
All values listed are acceptable for other controls,

Remarks -

Develaper Reference | | q&ofﬂme

ooks.com/

http://www.it-ebooks.info/

2 74 Part IV: Communicating with Your Users

|
Figure 17-5:
CheckBox
controls.
|

\NG/
&Vg\“

|
Figure 17-6:
ComboBox
controls.
|

CheckBox control

A CheckBox control is useful for getting a binary choice: yes or no, true or
false, on or off, and so on. Figure 17-5 shows some examples of CheckBox
controls.

CheckBox Contrals ==

[Prink 15t Quarker Repart
[Prink 2nd Quarter Report

Cancel

[Prink 3rd Quarter Report

[Prirt 4th Quarter Report ok

The following is a description of a CheckBox control’s most useful properties:

v Accelerator: A letter that lets the user change the value of the control
by using the keyboard. For example, if the accelerator is A, pressing
Alt+A changes the value of the CheckBox control (from checked to
unchecked, or from unchecked to checked).

v ControlSource: The address of a worksheet cell that’s linked to the
CheckBox. The cell displays TRUE if the control is checked or FALSE if
the control is not checked.

v Value: If True, the CheckBox has a check mark. If False, it does not have
a check mark.

Don’t confuse CheckBox controls with OptionButton controls. They look kind
of similar, but they are used for different purposes.

CombobBox control

A ComboBox control is similar to a ListBox control (described later in the
“ListBox control” section). A ComboBox, however, is a drop-down box and
displays only one item at a time. Another difference is that the user may be
allowed to enter a value that does not appear in the list of items. Figure 17-6
shows two ComboBox controls. The control on the right (for the year) is
being used, so it displays its list of options.

ComhaBaox Contrals ==

| September j | 201z j Cancel
-

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 2 75

|
Figure 17-7:
Command
Button
controls.
|

The following is a description of some useful ComboBox control properties:
+* BoundColumn: If the list contains multiple columns, this property deter-
mines which column contains the returned value.
+* ColumnCount: The number of columns in the list.
1 ControlSource: A cell that stores the value selected in the ComboBox.
v~ ListRows: The number of items to display when the list drops down.
v~ ListStyle: The appearance of the list items.

1 RowSource: A range address that contains the list of items displayed in
the ComboBox.

1 Style: Determines whether the control acts like a drop-down list or a
combo box. A drop-down list doesn’t allow the user to enter a new value.

v Value: The text of the item selected by the user and displayed in the
ComboBox.

If your list of items is not in a worksheet, you can add items to a ComboBox
control by using the AddItem method. More information on this method is in
Chapter 18.

CommandButton control

CommandButton is just a common clickable button. It is of no use unless you
provide an event-handler procedure to execute when the button is clicked.
Figure 17-7 shows a dialog box with nine CommandButtons. Two of these but-
tons feature a clipart image (specified by copying the clipart and then pasting
it into the Picture field in the Properties window).

CommandButtan Contrals ==
CommandButton AR
0 [) & "
T o

\
1 z 3 4 o
Accept Reject

Cancel oK ‘

When a CommandButton is clicked, it executes an event-handler procedure
with a name that consists of the CommandButton’s name, an underscore, and
the word Click. For example, if a command button is named MyButton, click-
ing it executes the macro named MyButton_Click. This macro is stored in the
Code window for the UserForm.

ooks.com/

http://www.it-ebooks.info/

2 76 Part IV: Communicating with Your Users

Figure 17-8:
An Image
control
displays a
photo.
|

The following is a description of some useful CommandButton control
properties:

v Cancel: If True, pressing Esc executes the macro attached to the button.
(Only one of the form’s buttons should have this option set to True.)

v Default: If True, pressing Enter executes the macro attached to the
button. (Again: Just one button should have this option set to True.)

Frame control

A Frame control encloses other controls. You do so either for aesthetic pur-
poses or to logically group a set of controls. A frame is particularly useful
when the dialog box contains more than one set of OptionButton controls.
(See “OptionButton control,” later in this chapter.)

The following list describes some useful Frame control properties:

+” BorderStyle: The frame’s appearance.

v Caption: The text displayed at the top of the frame. The caption can be
an empty string if you don’t want the control to display a caption.

Image control

An Image control displays an image. You may want to use an Image control to
display your company’s logo in a dialog box. Figure 17-8 shows a dialog box
with an Image control that displays a photo of some guy who writes Excel
books.

.}mage Contrals (3]

i Cancel

ooks.com/

http://www.it-ebooks.info/

WING/

&@

Figure 17-9:
Label
controls

are easily
molded.
|

Chapter 17: Using UserForm Controls 2 77

The following list describes the most useful Image control properties:

v Picture: The graphics image that is displayed.

v PictureSizeMode: How the picture is displayed if the control size does
not match the image size.

When you click the Picture property, you are prompted for a filename.
However, the graphics image (once it’s retrieved) is stored in the workbook.
That way, if you distribute your workbook to someone else, you don’t have to
include a copy of the graphics file.

Excel’s clipart collection is a great source of images. Use Insert=>lllustrations=
Clipart and choose an image to place in your worksheet. Select the image and
press Ctrl+C to copy it to the Clipboard. Then activate your UserForm, click
the Image control, and select the Picture property in the Properties box. Press
Ctrl+V to paste the copied image. You can then delete the clipart image in the
worksheet.

Some graphics images are very large and can make your workbook size
increase dramatically. For best results, use an image that’s as small as
possible.

Label control

A Label control simply displays text in your dialog box. Figure 17-9 shows a
few Label controls. As you can see, you have a great deal of control over the
formatting of a Label control.

Label Contrals ==

Label controls Are |You can vary the size and color. |
Very Flexible And change the font atfribites.

Four score and seven years ago our Fathers brought Forth on this continent, a new nation, conceived in
Liberty, and dedicated to the proposition that all men are created equal.

Mow we are engaged in a great civil war, testing whether that nation, or any nation so conceived and
so dedicated, can long endure, We are met on a great battle-field of that war, We have come to
dedicate a portion of that field, as a final resting place For those who here gave their lives that that
nation might live. It is altogether fitting and proper that we should do this.

But, in alarger sense, we can not dedicate -- we can not consecrate - we can not hallow -- this ground,
The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to
add or detract. The world will little note, nor long remember what we say here, but it can never forget
what they did here. It is for us the living, rather, to be dedicated here to the unfinished wark which
they who Fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the
great task remaining befare us -- that from these honored dead we take increased devation to that
cause For which they gave the last Full measure of devotion -- that we here highly resolve that these
dead shall nat have died in vain -- that this nation, under God, shall have a new birth of freedam - and
that gavernment of the people, by the people, for the peaple, shall nat perish from the earth.

Cancel

ooks.com/

http://www.it-ebooks.info/

2 78 Part IV: Communicating with Your Users

|
Figure 17-10:
ListBox
controls.
|

ListBox control

The ListBox control presents a list of items from which the user can choose
one or more. Figure 17-10 shows a dialog box with two ListBox controls.

ListBox Cantrals

Januar s 2009
2010
March

=5
j Cancel

April 20z
N

June 2014

ListBox controls are very flexible. For example, you can specify a worksheet
range that holds the ListBox items, and the range can consist of multiple col-
umns. Or you can fill the ListBox with items by using VBA code. (Did I tell you
[prefer that method?)

If a ListBox isn’t tall enough to display all the items in the list, a scrollbar
appears so the user can scroll down to see more items.

The following list is a description of the most useful ListBox control properties:
+* BoundColumn: If the list contains multiple columns, this property deter-
mines which column contains the returned value.
v ColumnCount: The number of columns in the list.
1 ControlSource: A cell that stores the value selected in the ListBox.

v+ IntegralHeight: This is True if the ListBox height adjusts automatically
to display full lines of text when the list is scrolled vertically. If False, the
ListBox may display partial lines of text when it is scrolled vertically.
Note that when this property is True, the actual height of your ListBox
may be slightly different, when your UserForm is shown, from what you
had set it originally. Visual Basic may adjust the height to ensure that
the last entry is entirely visible.

v ListStyle: The appearance of the list items.

v MultiSelect: Determines whether the user can select multiple items from
the list.

1 RowSource: A range address that contains the list of items displayed in
the ListBox.

»* Value: The text of the selected item in the ListBox.

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 2 79

<MBER
o

Figure 17-11:
Use a
MultiPage
control to
create a
tabbed dia-
log box.
|

\\3

If the ListBox has its MultiSelect property set to 1 or 2, then the user can
select multiple items in the ListBox. In such a case, you cannot specify a
ControlSource; you need to write a macro that determines which items are
selected. Chapter 18 demonstrates how to do so.

MultiPage control

A MultiPage control lets you create tabbed dialog boxes, like the Format Cells
dialog box (the one that appears when you press Ctrl+1 in Excel). Figure 17-11
shows an example of a custom dialog box that uses a MultiPage control. This

particular control has three pages, or tabs.

Multipage Cantrals ==

Display IWorkbook Active Sheet

I Row and column headers
[Page breaks
v Gridines

Descriptions of the most useful MultiPage control properties follow:

1 Style: Determines the appearance of the control. The tabs can appear
normally (on the top), on the left, as buttons, or hidden (no tabs — your
VBA code determines which page is displayed).

v Value: Determines which page or tab is displayed. A Value of 0 displays
the first page, a Value of 1 displays the second page, and so on.

By default, a MultiPage control has two pages. To add pages, right-click a tab
and select New Page from the resulting Context menu.

OptionButton control

OptionButtons are useful when the user needs to select from a small number
of items. OptionButtons are always used in groups of at least two. Figure 17-12
shows two sets of OptionButtons, and each set is contained in a frame.

ooks.com/

http://www.it-ebooks.info/

280 Part IV: Communicating with Your Users

|
Figure 17-12:
TWO sets Of OptionButton Controls ==
Optlon Report Destination Layout
Button con- {:Pr\nter (: Portrait Cancel
‘trols' each File " Landscape - E
contained el
in a Frame
control.
|
The following is a description of the most useful OptionButton control
properties:

v Accelerator: A letter that lets the user select the option by using the
keyboard. For example, if the accelerator for an option button is C, then
pressing Alt+C selects the control.

v GroupName: A name that identifies an option button as being associ-
ated with other option buttons with the same GroupName property.

v ControlSource: The worksheet cell that’s linked to the option button.
The cell displays TRUE if the control is selected or FALSE if the control
is not selected.

v Value: If True, the OptionButton is selected. If False, the OptionButton is
not selected.

\‘&N\BEB If your dialog box contains more than one set of OptionButtons, you must

& change the GroupName property for all OptionButtons in a particular set.

Otherwise, all OptionButtons become part of the same set. Alternatively, you
can enclose each set of OptionButtons in a Frame control, which automatically
groups the OptionButtons in the frame.
Re(Edit control
The RefEdit control is used when you need to let the user select a range in
a worksheet. Figure 17-13 shows a UserForm with two RefEdit controls. Its
Value property holds the address of the selected range (as a text string).

NN | RefEdit Controls ==

Figure 17-13 Source Range: Sheet11§851 = ancel

Two RefEdit i 4{ -

COﬂtl’O|S. Destination Range: ‘ Sheetz1§B12 J

oK

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 28 ’

NG/

Figure 17-14:

A ScrollBar
control, with
a Label con-
trol below it.
|

The RefEdit control sometimes causes trouble on more complex UserForms.
For best results, do not place a RefEdit control inside a Frame or MultiPage
control.

ScrollBar control

When you add a ScrollBar control, you can make it horizontal or vertical.
The ScrollBar control is similar to a SpinButton control (described later).
The difference is that the user can drag the ScrollBar’s button to change the
control’s value in larger increments. Another difference is that when you
click the up button on a vertical ScrollBar, the value decreases — which is

a bit counter-intuitive. So, a ScrollBar is not always a good substitute for a
SpinButton.

Figure 17-14 shows a ScrollBar control, with a horizontal orientation. Its
Value property is displayed in a Label control, placed below the ScrollBar.

ScrollBar Contrals (=3

j J ﬂ ‘ Cancel

645

The following is a description of the most useful properties of a ScrollBar
control:

v Value: The control’s current value.

v Min: The control’s minimum value.

v Max: The control’s maximum value.

1+ ControlSource: The worksheet cell that displays the control’s value.

v SmallChange: The amount that the control’s value is changed by a click.

v LargeChange: The amount that the control’s value is changed by click-

ing either side of the button.

The ScrollBar control is most useful for specifying a value that extends
across a wide range of possible values.

ooks.com/

http://www.it-ebooks.info/

282 Part IV: Communicating with Your Users

Figure 17-15:
SpinButton
controls.
|

“ NG/
s}

SpinButton control

The SpinButton control lets the user select a value by clicking the control,
which has two arrows (one to increase the value and the other to decrease
the value). As with a ScrollBar control, a SpinButton can be oriented either
horizontally or vertically. Figure 17-15 shows a dialog box that uses two verti-
cally oriented SpinButton controls. Each control is linked to the Label control
on the right (by using VBA procedures).

SpinButtan Contrals ==

:‘ 8 Cancel

B
.
-] 9

The following descriptions explain the most useful properties of a SpinButton
control:

v Value: The control’s current value.

v Min: The control’s minimum value.

v Max: The control’s maximum value.

1 ControlSource: The worksheet cell that displays the control’s value.

v SmallChange: The amount that the control’s value is changed by a click.

Usually this property is set to 1, but you can make it any value.

If you use a ControlSource for a SpinButton, you should understand that

the worksheet is recalculated every time the control’s value is changed.
Therefore, if the user changes the value from 0 to 12, the worksheet is calcu-
lated 12 times. If your worksheet takes a long time to calculate, you may want
to avoid using a ControlSource to store the value.

TabStrip control

A TabStrip control is similar to a MultiPage control, but it’s not as easy to
use. In fact, I'm not sure why this control is even included. You can pretty
much ignore it and use the MultiPage control instead.

TextBox control

A TextBox control lets the user enter text. Figure 17-16 shows a dialog box
with two TextBox controls.

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 283

|
Figure 17-16:
TextBox
controls.
|

A\

TextBox Cantrols @

Microsoft Excel ﬂ

The current version is
Excel 2010,

The following is a description of the most useful TextBox control properties:

v AutoSize: If True, the control adjusts its size automatically, depending
on the amount of text.

1 ControlSource: The address of a cell that contains the text in the
TextBox.

v IntegralHeight: If True, the TextBox height adjusts automatically to
display full lines of text when the list is scrolled vertically. If False, the
TextBox may display partial lines of text when it is scrolled vertically.

1 MaxLength: The maximum number of characters allowed in the
TextBox. If 0, the number of characters is unlimited.

v MultiLine: If True, the TextBox can display more than one line of text.
v TextAlign: Determines how the text is aligned in the TextBox.
v WordWrap: Determines whether the control allows word wrap.

v ScrollBars: Determines the type of scroll bars for the control: horizontal,
vertical, both, or none.

When you add a TextBox control, its WordWrap property is set to True, and

its MultiLine property is set to False. The net effect? Word wrap doesn’t work!
So, if you want the words to wrap in a TextBox control, make sure that you set
the MultiLine property to True.

ToggleButton control

A ToggleButton control has two states: on and off. Clicking the button toggles
between these two states, and the button changes its appearance when
clicked. Its value is either True (pressed) or False (not pressed). Figure 17-17
shows a dialog box with four ToggleButton controls. The top two are toggled.

[hardly ever use ToggleButton controls. I prefer to use CheckBox controls.

ooks.com/

http://www.it-ebooks.info/

284 Part IV: Communicating with Your Users

Figure 17-17:
Toggle
Button

controls.
|

TaggleButton Controls @

First Quarter

Second Quarter

Third Quarter Cancel

Fourth Quarter

Working with Dialog Box Controls

3

In this section, I discuss how to work with dialog box controls in a UserForm
object.

Moving and resizing controls

After you place a control in a dialog box, you can move it and resize it by
using standard mouse techniques. Or for precise control, you can use the
Properties window to enter a value for the control’s Height, Width, Left, or
Top property.

You can select multiple controls by Ctrl+clicking the controls. Or you can click
and drag to “lasso” a group of controls. When multiple controls are selected,
the Properties window displays only the properties common to all selected
controls. You can change those common properties, and the change will be
made to all controls you selected, which is much quicker than doing them one
at a time.

A control can hide another control; in other words, you can stack one control
on top of another. Unless you have a good reason for doing so, make sure
that you do not overlap controls.

Aligning and spacing controls

The Format menu in the VBE window provides several commands to help
you precisely align and space the controls in a dialog box. Before you use
these commands, select the controls you want to work with. These com-
mands work just as you might expect, so [don’t explain them here. Figure
17-18 shows a dialog box with several CheckBox controls about to be aligned.

ooks.com/

http://www.it-ebooks.info/

Figure 17-18:
Use the
Format=>
Align com-
mand to
change the
alignment

of UserForm
controls.
|

A\

Chapter 17: Using UserForm Controls 285

9 Micrasoft Visual Basic far Applications - Baok3 [)
i File Edit View Insert | Format | Debug Run Tools Addns Window Help Type a question for help

- - Lo Align b2 Lefts [~

EHE-Ed & - b @ E

Project - VBAProject Make Same Size b | & Centers

I=ie N - I L
(52 VoAProject (Bookcn) | 13

3 Microsoft Excel Object

2l Rights
T Tops
b Middles

EE) Sheet1 (Sheet1)
4 Thisorkbook il Bottoms
B& 'mus — CenterinForm » |8 toGrid
[UserForm
Agrange Buttons ¥

- Baolk3 - Userform (UserForm) (E=5 B =)
B Group
UserForm L =

Oreler N |l e
B (" OptionButtonl

(" OptionButton2

When you select multiple controls, the last selected control appears with white
handles rather than the normal black handles. The control with the white han-
dles is the basis for aligning or resizing the other selected controls when you
use the Format menu.

Accommodating keyboard users

Many users (including yours truly) prefer to navigate through a dialog box by
using the keyboard: Pressing Tab or Shift+Tab cycles through the controls,
while pressing a hot key instantly activates a particular control.

To make sure that your dialog box works properly for keyboard users, you
must be mindful of two issues:
v Tab order

v Accelerator keys

Changing the tab order

The tab order determines the order in which the controls are activated when
the user presses Tab or Shift+Tab. It also determines which control has the
initial focus — that is, which control is the active control when the dialog
box first appears. For example, if a user is entering text into a TextBox, the

ooks.com/

http://www.it-ebooks.info/

286 Part IV: Communicating with Your Users

|
Figure 17-19:
The Tab
Order dialog
box.
|

A\

TextBox has the focus. If the user clicks an OptionButton, the OptionButton
has the focus. The first control in the tab order has the focus when Excel first
displays a dialog box.

To set the control tab order, choose View=>Tab Order. You can also right-
click the dialog box and choose Tab Order from the shortcut menu. In either
case, Excel displays the Tab Order dialog box shown in Figure 17-19.

Tab Order

B>

Tab Order

OptionB utton
OptionButtan2
OptionButtan3
OptionButtand
CheckBox1

0K |
Cancel
Move Up
Move Down

CommandButton2

The Tab Order dialog box lists all the controls in the UserForm. The tab
order in the UserForm corresponds to the order of the items in the list. To
change the tab order of a control, select it in the list and then click the arrow
buttons up or down. You can choose more than one control (click while
pressing Shift or Ctrl) and move them all at one time.

Rather than use the Tab Order dialog box, you can set a control’s position
in the tab order by using the Properties window. The first control in the tab
order has a TabIndex property of 0. If you want to remove a control from the
tab order, set its TabStop property to False.

Some controls (such as Frame or MultiPage controls) act as containers for
other controls. The controls inside a container control have their own tab
order. To set the tab order for a group of OptionButtons inside a Frame
control, select the Frame control before you choose the Viewr>Tab Order
command.

Setting hot keys

Normally, you want to assign an accelerator key, or hot key, to dialog box
controls. You do so by entering a letter for the Accelerator property in the
Properties window. If a control doesn’t have an Accelerator property (a
TextBox, for example), you can still allow direct keyboard access to it by
using a Label control. That is, assign an accelerator key to the Label and put
the Label directly before the TextBox in the tab order.

Figure 17-20 shows a UserForm with three TextBoxes. The Labels that
describe the TextBoxes have accelerator keys, and each Label precedes its
corresponding TextBox in the tab order. Pressing Alt+D, for example, acti-
vates the TextBox next to the Department Label.

ooks.com/

http://www.it-ebooks.info/

Chapter 17: Using UserForm Controls 28 7

Figure 17-20:
Use Labels
to provide
direct
access to
controls that
don't have
accelerator
keys.
|

Emplayee Infarmation ==

Mame: |

Department: |

Hire Date: |

Cancel

Testing a UserForm

The VBE offers three ways to test a UserForm without calling it from a VBA
procedure:

v Choose the Run=>Run Sub/UserForm command.

v Press F5.

v Click the Run Sub/UserForm button on the Standard toolbar.

When a dialog box is displayed in this test mode, you can try out the tab

order and the accelerator keys.

Dialog Box Aesthetics

Dialog boxes can look good, bad, or somewhere in between. A good-looking
dialog box is easy on the eye, has nicely sized and aligned controls, and
makes its function perfectly clear to the user. Bad-looking dialog boxes con-
fuse the user, have misaligned controls, and give the impression that the
developer didn’t have a plan (or a clue).

Try to limit the number of controls on your form. If you do need many con-
trols (a rule of thumb: more than 10 controls), consider using a MultiPage
control to split the task the user has to do into logical (and smaller) steps.

A good rule to follow is to try to make your dialog boxes look like the Excel

built-in dialog boxes. As you gain more experience with dialog box construc-
tion, you can duplicate almost all the features of the Excel dialog boxes.

ooks.com/

http://www.it-ebooks.info/

288 Part IV: Communicating with Your Users

ooks.com/

http://www.it-ebooks.info/

Chapter 18
UserForm Techniques and Tricks

In This Chapter

Using a custom dialog box in your application

Creating a dialog box: a hands-on example

Tle previous chapters show you how to insert a UserForm (which con-
tains a custom dialog box), add controls to the UserForm, and adjust
some of the control’s properties. These skills, however, won’t do you much
good unless you understand how to make use of UserForms in your VBA
code. This chapter provides these missing details and presents some useful
techniques and tricks in the process.

Using Dialog Boxes

When you use a custom dialog box in your application, you normally write
VBA code that does the following:

v~ Initializes the UserForm controls. For example, you may write code that
sets the default values for the controls.

v Displays the dialog box by using the UserForm object’s Show method.

v Responds to the events that occur for the various controls.

v Validates the information provided by the user (if the user did not
cancel the dialog box). This step is not always necessary.

v Takes some action with the information provided by the user (if the
information is valid).

A UserForm Example

This example demonstrates the five points I describe in the preceding sec-
tion. In this example, you use a dialog box to get two pieces of information:
a person’s name and sex. The dialog box uses a TextBox control to get the

ooks.com/

http://www.it-ebooks.info/

290 Part IV: Communicating with Your Users

Figure 18-1:
This dialog
box asks

the user

to enter a
Name and
choose a
Sex.
|

name, and it uses three OptionButtons to get the sex (Male, Female, or
Unknown). The information collected in the dialog box is then sent to the
next blank row in a worksheet.

Creating the dialog box

Figure 18-1 shows the finished UserForm for this example. For best results,
start with a new workbook with only one worksheet in it. Then follow these
steps:

1. Press Alt+F11 to activate the VBE.

2. In the Project window, select the empty workbook and choose
Insert=>UserForm.

An empty UserForm is added to the project.
3. Change the UserForm’s Caption property to Get Name and Sex.

If the Properties window isn’t visible, press F4.

9 Microsoft Visual Basic for Applications - get name and sexxdsm - [get name and sexxdsm - Userform L (UserfForm)] [= || 3 5]

i File Edit View Inset Farmat Debug Run Tools Add-ns Windaw Help - a8 x
EE-d 0 AR NEWE B
Project - VBProject x| [

Get Mame and Sex ==
=Rl

Pl R |
=-&% ¥BProject (get name and sex Hame: Close

455 Microsoft Excel Objects

EF) Sheett (Sheet1) e
4 Thisworkbook " male
E1455 Forms
[UserFormt L
155 Modules @ Unknown
-2 Modulel

This dialog box has eight controls:

v A Label. | modified the following properties for this control:

Property Value
Accelerator N
Caption Name
Tablndex 0

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 29 ’

v A TextBox. I modified the following properties for this control:

Property Value
Name TextName
Tablndex 1
v A Frame object. [modified the following properties for this control:
Property Value
Caption Sex
Tablndex 2
v An OptionButton. I modified the following properties for this control:
Property Value
Accelerator M
Caption Male
Name OptionMale
TabIndex 0
v Another OptionButton. | modified the following properties for this control:
Property Value
Accelerator F
Caption Female
Name OptionFemale
Tablndex 1
v Another OptionButton. | modified the following properties for this control:
Property Value
Accelerator U
Caption Unknown
Name OptionUnknown
Tablndex 2
Value True

1+ A CommandButton. | modified the following properties for this control:

Property Value
Caption Enter
Default True

Name EnterButton
Tablndex 3

ooks.com/

http://www.it-ebooks.info/

292 Part IV: Communicating with Your Users

3

+* Another CommandButton. [modified the following properties for this

control:

Property Value
Caption Close
Cancel True

Name CloseButton
Tablndex 4

If you're following along on your computer (and you should be), take a few
minutes to create this UserForm by using the preceding information. Make
sure to create the Frame object before adding the OptionButtons to it.

In some cases, you may find copying an existing control easier than creating a
new one. To copy a control, press Ctrl while you drag the control.

If you prefer to cut to the chase, you can download the example from this
book’s Web site.

Writinq code to display the dialog box

After you’'ve added the controls to the UserForm, your next step is to develop
some VBA code to display this dialog box:

1. In the VBE window, choose Insert->Module to insert a VBA module.

2. Enter the following macro:

Sub GetData ()
UserForml . Show
End Sub

This short procedure uses the UserForm object’s Show method to dis-
play the dialog box.

Making the macro available

The next set of steps gives the user an easy way to execute the procedure:

1. Activate Excel.

2. Choose Developer->Controls->Insert and click the Button icon in the
Forms section.

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 293

3. Drag in the worksheet to create the button.
The Assign Macro dialog box appears.
4. Assign the GetData macro to the button.
5. Edit the button’s caption so that it reads Data Entry.

<P If you want to get really fancy, you can add an icon to your Quick Access
toolbar. Then clicking the icon runs the GetData macro. To set this up,
right-click your Quick Access toolbar and choose Customize Quick Access
Toolbar, which displays the Quick Access Toolbar tab of the Excel Options
dialog box. In the Choose Commands From drop-down menu, select Macros.
Then select the GetData macro and click Add. If you like, you can click the
Modify button and change the icon. If you use Excel 2010, you make the Quick
Access Toolbar icon visible only when the appropriate workbook is activated.
Before you add the macro, use the drop-down control at the top-right of the
Excel Options dialog box to specify the workbook name, rather than For All
Documents (Default).

Trying out your dialog box
Follow these steps to test your dialog box:

1. Click the Data Entry button on the worksheet. Or click the Quick
Access toolbar icon if you set one up.

The dialog box appears, as shown in Figure 18-2.

Figure 18-2:
Executing | ™
the GetData o=
procedure o
displays the
dialog box.
|

Get Mame and Sex

" Female

& Unknown

2. Enter some text into the edit box.
3. Click Enter or Close.

Nothing happens — which is understandable because you haven’t cre-
ated any procedures yet.

4. Click the “X” button in the dialog box’s title bar to get rid of the
dialog box.

ooks.com/

http://www.it-ebooks.info/

294 Part IV: Communicating with Your Users

Adding event-handler procedures

In this section, I explain how to write the procedures that handle the events
that occur when the dialog box is displayed.

1.

Press Alt+F11 to activate the VBE, and then make sure that the
UserForm is displayed.

. Double-click the Close button on the UserForm.

The VBE activates the Code window for the UserForm and provides an
empty procedure named CloseButton_Click.

. Modify the procedure as follows:

Private Sub CloseButton_Click()
Unload UserForml
End Sub

This procedure, which is executed when the user clicks the Close
button, simply unloads the dialog box from memory.

4. Press Shift+F7 to redisplay UserForm1.

5. Double-click the Enter button and enter the following procedure:

Private Sub EnterButton_Click()
Dim NextRow As Long

U Make sure Sheetl is active
Sheets ("Sheetl") .Activate

! Determine the next empty row
NextRow = Application.WorksheetFunction. _
CountA (Range ("A:A")) + 1

! Transfer the name
Cells (NextRow, 1) = TextName.Text

! Transfer the sex

If OptionMale Then Cells (NextRow, 2) = "Male"

If OptionFemale Then Cells (NextRow, 2) = "Female"

If OptionUnknown Then Cells (NextRow, 2) = _
"Unknown"

! Clear the controls for the next entry
TextName.Text = ""
OptionUnknown = True
TextName.SetFocus

End Sub

6. Now activate Excel and run the procedure again by clicking the Data

Entry button.

The dialog box works just fine. Figure 18-3 shows how this looks in action.

ooks.com/

http://www.it-ebooks.info/

Figure 18-3:
Use the
custom

dialog box
for data
entry.
|

Chapter 18: UserForm Techniques and Tricks 295

A B C D E F G H I 1
Bob Male

Henry Male Female

1
2 1ill Female Get Name and Sex)
3 Theresa Female Mame: Beth Cose
4 James Male
Sex =
5 Thomas Male
6 Jim Male " Male
7
3

Karen Female £ Unkoown

-

lennifer Female
10 Hank Male
11 Kenny Male
12 Sparky Male
13

14

15

-

Here’s how the EnterButton_Click procedure works:

v First, the code makes sure that the proper worksheet (Sheetl) is active.

v~ It then uses the Excel COUNTA function to count the number of entries
in column A and to determine the next blank cell in the column.

v Next, the procedure transfers the text from the TextBox to Column A.

v~ It then uses a series of If statements to determine which OptionButton
was selected and writes the appropriate text (Male, Female, or Unknown)
to column B.

v~ Finally, the dialog box is reset to make it ready for the next entry. Notice
that clicking the Enter button doesn’t close the dialog box, because the
user will probably want to enter more data. To end data entry, click the
Close button.

Validating the data

Play around with this routine some more and you find that the macro has a
small problem: It doesn’t ensure that the user actually enters a name into the
TextBox. The following code — which is inserted in the EnterButton_Click
procedure before the text is transferred to the worksheet — ensures that
the user enters some text in the TextBox. If the TextBox is empty, a message
appears and the routine stops.

' Make sure a name is entered

If TextName.Text = "" Then
MsgBox "You must enter a name."
Exit Sub

End If

ooks.com/

http://www.it-ebooks.info/

296 Part IV: Communicating with Your Users

Now the dialog box works

After making these modifications, you find that the dialog box works flaw-
lessly. In real life, you’d probably need to collect more information than just
name and sex. However, the same basic principles apply. You just have to
deal with more UserForm controls.

One more thing to remember: If the data doesn’t begin in row 1 or if the data
area contains any blank rows, the counting for the NextRow variable will be
wrong. The COUNTA function is counting the number of cells in Al, and the
assumption is that the data begins in cell Al and there are no blank cells
above the last name in the column. Here’s another way of determining the
next empty row:

NextRow = Cells(Rows.Count, 1).End(x1lUp).Row + 1

The statement simulates activating the last cell in column A, pressing End,
pressing Up Arrow, and then moving down one row. If you do that manually,
the cell pointer will be in the next empty cell in column A — even if the data
area doesn’t begin in row 1 and contains blank rows.

More UserForm Examples

[could probably fill an entire book with interesting and useful tips for work-
ing with custom dialog boxes. Unfortunately, this book has a limited number
of pages, so I wrap it up with a few more examples.

A ListBox example

ListBoxes are useful controls, but working with them can be a bit tricky.
Before displaying a dialog box that uses a ListBox, fill the ListBox with items.
Then when the dialog box is closed, you need to determine which item(s) the
user selected.

When dealing with ListBoxes, you need to know about the following properties
and methods:

v AddlItem: You use this method to add an item to a ListBox.

v ListCount: This property returns the number of items in the ListBox.

v~ ListIndex: This property returns the index number of the selected item
or sets the item that’s selected (single selections only). The first item
has a ListIndex of 0 (not 1).

ooks.com/

http://www.it-ebooks.info/

A\

Chapter 18: UserForm Techniques and Tricks 29 7

1 MultiSelect: This property determines whether the user can select more
than one item from the ListBox.

+* RemoveAllltems: Use this method to remove all items from a ListBox.

v Selected: This property returns an array indicating selected items
(applicable only when multiple selections are allowed).

v Value: This property returns the selected item in a ListBox.

Most of the methods and properties that work with ListBoxes also work with
ComboBoxes. Thus, after you have figured out how to handle ListBoxes, you
can transfer that knowledge to your work with ComboBoxes.

Filling a ListBox

For best results, start with an empty workbook. The example in this section

assumes the following:

» You've added a UserForm.

v The UserForm contains a ListBox control named ListBox1.

v The UserForm has a CommandButton named OKButton.

v The UserForm has a CommandButton named CancelButton, which has
the following event-handler procedure:

Private Sub CancelButton_Click()
Unload UserForml

End Sub

The following procedure is stored in the Initialize procedure for the

UserForm:

1. Select your UserForm and press F7 to activate its Code window.

The VBE displays the Code window for your form and is ready for you to
input the code for the Initialize event.

2. Using the Procedure drop-down list at the top of the Code window,

choose Initialize.

3. Add the initialization code for the form:

Sub UserForm_Initialize()
! Fill the list box

With ListBoxl

.AddItem
.AddItem
.AddItem
.AddItem
.AddItem
.AddItem

"January"
"February"
"March"
"April"

n May n
"June"

ooks.com/

http://www.it-ebooks.info/

298 Part IV: Communicating with Your Users

.AddItem "July"
.AddItem "August"
.AddItem "September"
.AddItem "October"
.AddItem "November"
.AddItem "December"

End With

! Select the first list item

ListBoxl.ListIndex = 0

End Sub

This initialization routine runs automatically whenever your UserForm
is loaded. So when you use the Show method for the UserForm, the code
is executed and your ListBox is populated with 12 items, each added via

the AddItem method.

4. Insert a VBA module and type a short Sub procedure to display the

dialog box:

Sub ShowList ()
UserForml . Show
End Sub

It is not mandatory to use the Initialize event procedure to populate your lists.
You could do so in a regular VBA procedure. Using an Initialize event proce-
dure just seems like a natural place to take care of such a mundane (though
important) step. If you hide the UserForm by using UserForm1.Hide and later

on show the form again (UserForm1.Show), the Initialize event does not fire

again.

Determining the selected item

The preceding code merely displays a dialog box with a ListBox filled with
month names. What’s missing is a procedure to determine which item in the

ListBox is selected.

Add the following to the OKButton_Click procedure:

Private Sub OKButton_Click()

Dim Msg As String

Msg = "You selected item #

Msg = Msg & ListBoxl.ListIndex
Msg = Msg & vbNewLine

Msg = Msg & ListBoxl.Value

MsgBox Msg
Unload UserForml
End Sub

This procedure displays a message box with the selected item number and

the selected item.

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 299

Figure 18-4:
Determining
which item
in a ListBox
is selected.
|

e\(’N' S Tl"k

If no item in the ListBox is selected, the ListiIndex property returns -1.
However, this will never be the case for this particular ListBox, because code
in the UserForm_Initialize procedure selected the first item. So, there will
always be a selected item, if the user doesn’t actually select a month.

Figure 18-4 shows how this looks.

A B (D E F G H J
1
2 -
- ListBax Dema 23
4
January -
Z February oK
@ March
8 June e
9 JAuIy Microsoft Excel Ex2)
wgust
10 September
11 October J You selected item = 3
12 April
13
14
s
16
17

The first item in a ListBox has a ListIndex of 0, not 1 (as you might expect).
This is always the case, even if you use an Option Base 1 statement to change
the default lower bound for arrays.

This example is available at this book’s Web site.

Determining multiple selections

If your ListBox is set up so the user can select more than one item, you find
that the ListIndex property returns only the last item selected. To determine
all selected items, you need to use the Selected property, which contains an
array.

To allow multiple selections in a ListBox, set the MultiSelect property to either
1 or 2. You can do so at design time by using the Properties window or at run-
time by using a VBA statement such as this:

UserForml.ListBoxl.MultiSelect = 1

The MultiSelect property has three possible settings. The meaning of each is
shown in Table 18-1.

ooks.com/

http://www.it-ebooks.info/

300

Part IV: Communicating with Your Users

Table 18-1 Settings for the MultiSelect property
Value VBA Constant Meaning
0 fmMultiSelectSingle Only a single item can be selected.
1 fmMultiSelectMulti Clicking an item or pressing the space bar
selects or deselects an item in the list.
2 fmMultiSelect Items are added to or removed from the
Extended selection set by holding down the Shift or

Ctrl key as you click items.

The following procedure displays a message box that lists all selected items
in a ListBox. Figure 18-5 shows an example.

A B 5 D E

Figure 18-5:
Determining
the selected
items in

a ListBox
allows

Select one or mare manths,

January

Cancel

Woe o i W e

August
September j

=

ListBox Derma &

multiple
selections.
|

e
[y

13

(2]
T

Microsoft Excel ==

You selected:
March

May

July

Private Sub OKButton_Click()

Dim Msg As String
Dim i As Integer

Dim Counter As Integer
Msg = "You selected:"

& vbNewLine

For i = 0 To ListBoxl.ListCount - 1
If ListBoxl.Selected(i) Then
Counter = Counter + 1
Msg = Msg & ListBoxl.List (i) & vbNewLine

End If
Next i

If Counter = 0 Then Msg

MsgBox Msg
Unload UserForml
End Sub

= Msg & " (nothing)"

ooks.com/

http://www.it-ebooks.info/

“I‘": 210

\\\\ 2

Figure 18-6:
This dialog
box lets the
user select
arange.
|

Chapter 18: UserForm Techniques and Tricks 30 ’

This routine uses a For-Next loop to cycle though each item in the ListBox.
Notice that the loop starts with item 0 (the first item) and ends with the last
item (determined by the value of the ListCount property minus 1). If an item’s
Selected property is True, it means that the list item was selected. The code
also uses a variable (Counter) to keep track of how many items are selected.
An If-Then statement modifies the message if nothing is selected.

This example is available at this book’s Web site.

Selecting a range

In some cases, you may want the user to select a range while a dialog box

is displayed. An example of this choice occurs in the Create Table dialog

box, which is displayed when you choose Homer>Insert=>Tables=>Table. The
dialog box has a range selector control that contains Excel’s guess regarding
the range to be converted — but you can use this control to change the range
by selecting cells in the worksheet.

To allow a range selection in your dialog box, add a RefEdit control. The fol-
lowing example displays a dialog box with the current region’s range address
displayed in a RefEdit control, as shown in Figure 18-6. The current region is
the block of nonempty cells that contains the active cell. The user can accept
or change this range. When the user clicks OK, the procedure makes the
range bold.

83 8 2 7 i 54| [RefEdit Deme =
5 45 70 13 6 48] | Range to make bold:

&)
73 5 & 70 2 & sdLdrize =

31 a7 a0 70 3 g3 T
31 68 1 62] g7|

ooks.com/

http://www.it-ebooks.info/

302 Part IV: Communicating with Your Users

This example assumes the following:

»* You have a UserForm named UserForm1.
v The UserForm contains a CommandButton control named OKButton.
v The UserForm contains a CommandButton control named CancelButton.

v The UserForm contains a RefEdit control named RefEdit1.

The code is stored in a VBA module and shown here. This code does two
things: initializes the dialog box by assigning the current region’s address to
the RefEdit control and displays the UserForm.

Sub BoldCells ()
! Exit if worksheet is not active
If TypeName (ActiveSheet) <> "Worksheet" Then Exit Sub

! Select the current region
ActiveCell.CurrentRegion.Select

! Initialize RefEdit control
UserForml.RefEditl.Text = Selection.Address

! Show dialog
UserForml . Show
End Sub

The following procedure is executed when the OK button is clicked. This pro-
cedure does some simple error checking to make sure that the range speci-
fied in the RefEdit control is valid.

Private Sub OKButton_Click()
On Error GoTo BadRange
Range (RefEditl.Text) .Font.Bold = True
Unload UserForml
Exit Sub
BadRange:
MsgBox "The specified range is not valid."
End Sub

If an error occurs (most likely an invalid range specification in the RefEdit

control), the code jumps to the BadRange label, and a message box is dis-
played. The dialog box remains open so the user can select another range.

Using multiple sets of OptionButtons

Figure 18-7 shows a custom dialog box with three sets of OptionButtons. If your
UserForm contains more than one set of OptionButtons, make sure that each
set of OptionButtons works as a group. You can do so in either of two ways:

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 303

Figure 18-7:
This dialog
box

contains
three sets
of Option
Button
controls.
|

<MBER

é’@‘

«”
=S
=

—

v Enclose each set of OptionButtons in a Frame control. This approach
is the easiest, and also makes the dialog box look more organized. It’s
easier to add the Frame before adding the OptionButtons. You can, how-
ever, also drag existing OptionButtons into a Frame.

v Make sure that each set of OptionButtons has a unique GroupName
property (which you specify in the Properties box). If the OptionButtons
are in a Frame, you don’t have to be concerned with the GroupName

property.
OptienButtans Dema =5
Fawvarite Music Genre
' Blues " Jazz
" Falk " Other

Favorite Ice Cream

& Yanila " Chacalate
" Other

Favorite Spreadsheet

* Excel " Other

Only one OptionButton in a group can have a value of True. To specify a
default option for a set of OptionButtons, just set the Value property for the
default item to True. You can do this directly in the Properties box or by using
VBA code:

UserForml.OptionButtonl.Value = True

This example is available at this book’s Web site. It also has code that displays
the selected options when the user clicks OK.

Using a SpinButton and a TextBox

A SpinButton control lets the user specify a number by clicking arrows. This
control consists only of arrows (no text), so you usually want a method to
display the selected number. One option is to use a Label control, but this
has a disadvantage: The user can’t type text in a Label. A better choice is to
use a TextBox.

A SpinButton control and TextBox control form a natural pair, and Excel
uses them frequently. For example, check out Excel’s Page Setup dialog box
for a few examples. Ideally, the SpinButton and its TextBox are always in
sync: If the user clicks the SpinButton, the SpinButton’s value should appear

ooks.com/

http://www.it-ebooks.info/

304 Part IV: Communicating with Your Users

in the TextBox. And if the user enters a value directly into the TextBox, the
SpinButton should take on that value. Figure 18-8 shows a custom dialog box
with a SpinButton and a TextBox.

Figure 18-8:
A UserForm
with a
SpinBUtton Specify a value between 1 and 100:
anda |2 =
companion
TextBox.
|

SpinButton / TextBax Demo ==

This UserForm contains the following controls:

v A SpinButton named SpinButton1, with its Min property set to 1 and its
Max property set to 100

1 A TextBox named TextBox1
1+ A CommandButton named OKButton

The event-handler procedure for the SpinButton follows. This procedure
handles the Change event, which is triggered whenever the SpinButton value
is changed. When the SpinButton’s value changes (when it’s clicked), this
procedure assigns the SpinButton’s value to the TextBox. To create this
procedure, double-click the SpinButton to activate the Code window for the
UserForm. Then enter this code:

Private Sub SpinButtonl_Change ()
TextBoxl.Text = SpinButtonl.Value
End Sub

The event-handler for the TextBox, which is listed next, is a bit more com-
plicated. To create this procedure, double-click the TextBox to activate the
Code window for the UserForm. This procedure is executed whenever the
user changes the text in the TextBox.

Private Sub TextBoxl_Change ()
Dim NewVal As Integer

NewVal = Val (TextBoxl.Text)

If NewVal >= SpinButtonl.Min And _
NewVal <= SpinButtonl.Max Then _
SpinButtonl.Value = NewVal

End Sub

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 305

Figure 18-9:
This
UserForm
functions as
a progress
indicator for
a lengthy
macro.
|

This procedure uses a variable, which stores the text in the TextBox (con-
verted to a value with the Val function). It then checks to ensure that the
value is within the proper range. If so, the SpinButton is set to the value in
the TextBox. The net effect is that the SpinButton’s value is always equal
to the value in the TextBox (assuming that the SpinButton’s value is in the
proper range).

If you use F8 to single-step through the code in debugging mode, you will
notice that when the line SpinButtonl.Value = NewVal is executed, the change
event of the SpinButton immediately fires. In turn, the SpinButtonl_Change
event sets the value of TextBox1. Luckily, this in turn does not fire the
TextBox1_Change event, because its value is not actually changed by the
SpinButton1_Change event. But you can imagine this effect can cause sur-
prising results in your UserForm. Confused? Just remember that if your code
changes the Value of a control, the Change event of that control will fire.

This example is available at this book’s Web site. It also has a few other bells
and whistles that you may find useful.

Using a UserForm as a progress indicator

One of the most common Excel programming questions I hear is, “How can I
display the progress of a lengthy macro?”

Answer: Use a UserForm to create an attractive progress indicator, as shown
in Figure 18-9. Such a use of dialog boxes does, however, require a few tricks —
which I'm about to show you.

A B c o B F G H I J K
1 705 533 579 283 301 774 14 760 814 709 a5
2 793 as7 9 41 41 451 693 499 06 945
3 894 a66 Progress (3| P 308 78 879
4 835 436 Entering random rumbers. ., 205 443 685 281
5 781 25 66%. 584 893 815 a9l
5 116 a3 r_ 631 332 18 778
7 593 429 u7 250 373 601
s 969 722 820 aas 290 208 268 80 253 344 127
a 198 495 374 858 730 84 297 m 199 306 197
10 820 748 509 30 740 726 611 360 87 426 537
1 604 738 760 as3 786 291 50 390 201 213 32
12 435 371 732 584 a10 223 596 980 1 355 21
3 a7l s 492 12 79 837 776 859 294 123
14 472 121 01 316 997 611 935 655 956 54 947
15 555 727 259 953 661 83 389 180 416 21 456
15 976 357 341 443 837 as1 305 300 702 769 439
17 221 314 250 137 278 286 155 308 254 143 430
13 838 764 796 155 406 603 350 536 330 573 a78
19 327 319 762 115 197 466 299 318 397 689 au
20 534 ass 921 64 223 422 630 6as 2 aa7 850

736 509 399 685 544 754 350 n 1 465 728

134 4 91 46 64 11 1 926

ooks.com/

http://www.it-ebooks.info/

306 Part IV: Communicating with Your Users

Creating the progress indicator dialog box
The first step is to create your UserForm. In this example, the dialog box dis-
plays the progress while a macro inserts random numbers into 100 columns
and 1,000 rows of the active worksheet. To create the dialog box, follow these
steps:

1. Activate the VBE and insert a new UserForm.

2. Change the UserForm’s caption to Progress.

3. Add a Frame object and set the following properties:

Property Value
Caption 0%
Name FrameProgress
SpecialEffect 2 — fmSpecialEffectSunken
Width 204
Height 28

4. Add a Label object inside the Frame and set the following properties:
Property Value
Name LabelProgress
BackColor &HO000000FF& (red)
Caption (no caption)
SpecialEffect 1 — fmSpecialEffectRaised
Width 20
Height 13
Top 5
Left 2

5. Add another Label above the frame and change its caption to Entering
random numbers. . .

The UserForm should resemble Figure 18-10.

pragress indicatorxdsm - UserForm L {UserForm) E@
| Pragress =
Figure 18-10: Entering random numbers. ..
D%
The Ig
progress
indicator
UserForm.
|

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 30 7

The procedures
This example uses two procedures and a module level variable.

+* The module level variable. Located in a VBA module. This variable
holds the copy of the userform:

Dim ProgressIndicator as UserForml

v EnterRandomNumbers. It does all the work and is executed when the
UserForm is shown. Notice that it calls the UpdateProgress procedure,
which updates the progress indicator in the dialog box:

Sub EnterRandomNumbers ()
! Inserts random numbers on the active worksheet
Dim Counter As Long
Dim RowMax As Long, ColMax As Long
Dim r As Long, c¢ As Long
Dim PctDone As Single

! Create a copy of the form in a variable
Set ProgressIndicator = New UserForml

! Show ProgressIndicator in modeless state
ProgressIndicator.Show vbModeless
If TypeName (ActiveSheet) <> "Worksheet" Then
Unload ProgressIndicator
Exit Sub
End If

! Enter the random numbers
Cells.Clear
Counter = 1
RowMax = 200
ColMax = 50
For r = 1 To RowMax
For ¢ = 1 To ColMax

Cells(r, c) = Int(Rnd * 1000)
Counter = Counter + 1
Next c

PctDone = Counter / (RowMax * ColMax)
Call UpdateProgress (PctDone)
Next r
Unload ProgressIndicator
Set ProgressIndicator = Nothing
End Sub

v+~ UpdateProgress. This procedure accepts one argument and updates the
progress indicator in the dialog box:

Sub UpdateProgress (pct)
With ProgressIndicator
.FrameProgress.Caption = Format (pct, "0%")
.LabelProgress.Width = pct * (.FrameProgress _

ooks.com/

http://www.it-ebooks.info/

308 Part IV: Communicating with Your Users

«‘3*‘

\Nﬂe

.Width - 10)
End With
! The DoEvents statement makes the form update
DoEvents

End Sub

How this example works

When the EnterRandomNumbers procedure is executed, it loads a copy of
UserForm1 into the module variable named Progressindicator. Then it sets
the width of the LabelProgress label to 0 and displays the UserForm in mode-
less state (so the code will continue to run).

The EnterRandomNumber procedure checks the active sheet. If it’s not a
worksheet, the UserForm (Progressindicator) is closed, and the procedure
ends with no action. If the active sheet is a worksheet, the procedure does
the following:

1. Erases all cells on the active worksheet.

2. Loops through the rows and columns (specified by the RowMax and
ColMax variables) and inserts a random number.

3. Increments the Counter variable and calculates the percentage com-
pleted (which is stored in the PctDone variable).

4. Calls the UpdateProgress procedure, which displays the percentage
completed by changing the width of the LabelProgress label and updat-
ing the caption of the frame control.

5. Last, the UserForm is unloaded.
Using a progress indicator will, of course, make your macro run a bit slower
because the code is doing additional work updating the UserForm. If speed is
absolutely critical, think twice about using a progress indicator.
If you adapt this technique for your own use, you need to figure out how to
determine the macro’s progress, which varies depending on your macro.
Then call the UpdateProgress procedure at periodic intervals while your
macro is executing.

This example is available at this book’s Web site.

Creating a tabbed dialog box

Tabbed dialog boxes are useful because they let you present information in
small, organized chunks. Excel’s Format Cells dialog box (which is displayed

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 309

when you right-click a cell and choose Format Cells) is a good example. The
dialog box in this example uses three tabs to help organize some of Excel’s
display options.

Creating your own tabbed dialog boxes is relatively easy, thanks to the
MultiPage control. Figure 18-11 shows a custom dialog box that uses a
MultiPage control with three pages, or tabs. When the user clicks a tab, a
new page is activated, and only the controls on that page are displayed.

Notice that this is a modeless dialog box. In other words, the user can keep
it displayed while working. Each of the controls has an immediate effect, so
there is no need to have an OK button.

Multipage Controls ==

Display | workbook] Active Sheet]

I Formula bar

v Status bar

Multipage Contrals =)
Z
e Display Workbook | active Shest I
[0l i
I¥ Sheet tabs
I¥ Horizontal scrollbar
I Vertical scrollbar
Multipage Controls =
Display] Workhook Active Sheet
| T
i Close
Flgllre 18'1 1: [¥ Row and column headers
The three [Page breaks
tabs of a v aridines
MultiPage
control.
|
<MBER
>
&

Keep the following points in mind when using the MultiPage control to create
a tabbed dialog box:
v Use only one MultiPage control per dialog box.

v Make sure to use the MultiPage control, not the TabStrip control. The
TabStrip control is more difficult to use.

v To make some controls (such as OK, Cancel, or Close buttons) visible at
all times, place these controls outside the MultiPage control.

v Right-click a tab on the MultiPage control to display a shortcut menu
that lets you add, remove, rename, or move a tab.

ooks.com/

http://www.it-ebooks.info/

3 ’ 0 Part IV: Communicating with Your Users

v~ At design time, click a tab to activate the page. After it is activated, add
other controls to the page by using normal procedures.

v To select the MultiPage control itself (rather than a page on the con-
trol), click the border of the MultiPage control. Keep your eye on the
Properties window, which displays the name and type of the selected
control. You can also select the MultiPage control by selecting its name

from the drop-down list in the Properties window.

» You can change the look of the MultiPage control by changing the Style

and TabOrientation properties.

v The Value property of a MultiPage control determines which page is dis-
played. For example, if you write code to set the Value property to 0, the

,\\\EB first page of the MultiPage control is displayed.
S

[S) ,I/"\

\“\\\ky,,}\ This example is available at this book’s Web site.

!

Displaying a chart in a UserForm

If you need to display a chart in a UserForm, you find that Excel doesn’t
provide any direct way to do so. Therefore, you need to get creative. This
section describes a technique that lets you display one or more charts in a
UserForm.

Figure 18-12 shows an example, which displays three charts. The UserForm
has an Image control. The trick is to use VBA code to save the chart as a GIF
file and then specify that file as the Image control’s Picture property (which
loads the image from your disk). The Previous and Next buttons switch the
displayed chart.

Charts

800

Product C

700
600

500

L . = o B B B B E B

I vl E B B R B R EEEERI

w00+ — — = — — = — = — — — -

Figure 18-12: sl R R R ERRERERIRREI

Displaying 0

T T T T T T T T T T T 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec

achartina

UserFOI’m. < Previgus

Close

ooks.com/

http://www.it-ebooks.info/

Chapter 18: UserForm Techniques and Tricks 3 ’ ’

In this example, which is also available on this book’s Web site, the three
charts are on a sheet named Charts. The Previous and Next buttons determine
which chart to display, and this chart number is stored as a Public variable
named ChartNum, which is accessible to all procedures. A procedure named
UpdateChart, which is listed here, does the actual work.

Private Sub UpdateChart ()
Dim CurrentChart As Chart
Dim Fname As String

Set CurrentChart = _

Sheets ("Charts") .ChartObjects (ChartNum) .Chart
CurrentChart.Parent.Width = 300
CurrentChart.Parent.Height = 150

! Save chart as GIF
Fname = ThisWorkbook.Path & "\temp.gif"
CurrentChart.Export FileName:=Fname, FilterName:="GIF"

! Show the chart
Imagel.Picture = LoadPicture (Fname)
End Sub

This procedure determines a name for the saved chart and then uses the
Export method to export the GIF file. Finally, it uses the VBA LoadPicture
function to specify the Picture property of the Image object.

A Dialog Box Checklist

[wrap up this chapter with a checklist for use when creating dialog boxes:

Q Are the controls aligned with each other?

Q Are similar controls the same size?

Q Are controls evenly spaced?

4 Does the dialog box have an appropriate caption?

Q Is the dialog box overwhelming? If so, you may want to use a series of
dialog boxes or divide them over a MultiPage control.

A Can the user access every control with an accelerator key?
4 Are any accelerator keys duplicated?

4 Are the controls grouped logically, by function?

ooks.com/

http://www.it-ebooks.info/

3 ’ 2 Part IV: Communicating with Your Users

Q Is the tab order set correctly? The user should be able to tab through
the dialog box and access the controls sequentially.

Q If you plan to store the dialog box in an add-in, did you test it thoroughly
after creating the add-in?

4 Will your VBA code take appropriate action if the user cancels the dialog
box or presses Esc or uses the close button?

Q Does the text contain any misspellings? Unfortunately, the Excel spell
checker doesn’t work with UserForms, so you’re on your own when it
comes to spelling.

Q Will your dialog box fit on the screen in the lowest resolution to be used
(usually 800x600 mode)? In other words, if you develop your dialog box
by using a high-resolution video mode, your dialog box may be too big
to fit on a screen in lower resolution.

Q Do all TextBox controls have the appropriate validation setting? If you
intend to use the WordWrap property, is the MultiLine property also set
to True?

Q Do all ScrollBars and SpinButtons allow valid values only?

Q Do all ListBoxes have their MultiSelect property set properly?
The best way to master custom dialog boxes is by creating dialog boxes —
lots of them. Start simply and experiment with the controls and their proper-

ties. And don’t forget about the Help system; it’s your best source for details
about every control and property.

ooks.com/

http://www.it-ebooks.info/

Chapter 19

Accessing Your Macros through
the User Interface

In This Chapter
A sneak peek into customizing the Ribbon using XML

Adding items to a right-click menu
Adding a button to the Quick Access toolbar (manually)
Customizing the Ribbon (manually)

Before Excel 2007, users had access to dozens of built-in toolbars, and
creating new toolbars was a snap. But, as Bob Dylan wrote, “The Times
They Are A-Changin.” This chapter describes what has changed, beginning
with Excel 2007, and shows you a little bit of what you can do to show your
macros in the user interface.

What Happened to CommandBars?

When programming in Excel 2003 and before, you wrote code to create a tool-
bar (called a CommandBar in VBA). The toolbar contained buttons to allow
the user (or yourself) to access your macros. In addition, you could use the
CommandBar object to add new commands to Excel’s menus. Beginning with
Excel 2007, it’s the new Ribbon user interface that changes the picture drasti-
cally. There is good news and bad news.

The good news is that most of the old CommandBar code written in VBA will
still work.

The bad news is that your finely crafted VBA code that tries to create a tool-
bar or add a command to a menu is intercepted by Excel. Instead of display-
ing your well-thought-out interface enhancement, Excel 2007 (and Excel 2010)
simply dumps your customized menus and toolbars into a catchall Ribbon
tab named Add-Ins.

ooks.com/

http://www.it-ebooks.info/

3 ’ 4 Part IV: Communicating with Your Users

Ribbon Customization

NBER
@&
&

Just about everything I've written in this book applies to both Excel 2007 and
Excel 2010. I'm about to point out a significant difference between these two
versions, and it involves customizing the Ribbon.

If you use Excel 2007, you have one way to customize the Ribbon: Learn to
write RibbonX code and add the modification to a workbook. This is not a
simple task, as you'll see later. But if you use Excel 2010, you can also modify
the Ribbon manually, using the Customize Ribbon tab of the Excel Options
dialog box.

You cannot make changes to the Ribbon by using VBA. Sad, but true. For
example, if you write an application and you’d like to add a few new buttons to
the Ribbon, you need to program those changes outside of Excel, using some-
thing called RibbonX.

Customizing the Ribbon manually

It’s very easy to make changes to the Ribbon manually, but you must be using
Excel 2010. If you use Excel 2007, you should just skip this section because it
doesn’t apply to you.

You can customize the Ribbon in these ways:

v Tabs
¢ Add a new custom tab.
® Delete custom tabs.
e Add a new group to tab.
¢ Change the order of the tabs.
¢ Change the name of a tab.
¢ Hide built-in tabs.
v Groups
¢ Add new custom groups.
e Add commands to a custom group.
¢ Remove commands from custom groups.

® Remove groups from a tab.

ooks.com/

http://www.it-ebooks.info/

Figure 19-1:
The
Customize
Ribbon tab
of the Excel
Options dia-
log box.
|

Chapter 19: Accessing Your Macros through the User Interface

* Move a group to a different tab.

e Change the order of the groups within a tab.

¢ Change the name of a group.

That’s a fairly comprehensive list of customization options, but there are
some actions that you cannot do (no matter how hard you try):

» You cannot remove built-in tabs — but you can hide them.

»* You cannot remove commands from built-in groups.

»* You cannot change the order of commands in a built-in group.

You make manual changes to the Ribbon in the Customize Ribbon panel
of the Excel Options dialog box (see Figure 19-1). The quickest way to dis-
play this dialog box is to right-click anywhere in the Ribbon and choose
Customize The Ribbon.

Excel Options 7=
General ﬁ Customize the Ribbon
Formulas
Choose commands from: (i Customize the Ribbon:
Pracfing Popular Commans [+] Main Tabs [+]
Save
i Al cChart Types... -
Language " porgers)
Advanced alculate How
Customize Ribhon E conditional Formatting »
] connections
Qu s Toolbar & copy
LT TH] custom Sort... 3
AdeIns % o
Thust Center A DecreaseFont Size
S Delete Calls,.,
Delete sheet Columns E
=" Delete Sheet Rows rs
(G2 E-mail ¥ [7] Background Removal
<r Fill Color 3
7= Filter
Font I~
A Font Calor r
Font Size i
% Format Calls...
J Format Painter
| Freeze Panes »
A" Increase Fant Size —
5= Insert Cells... New Tab
Jz Insert Function.. Customizations: | Reset ¥ |0
4 Insert Sheet Columns
Cr= Insert Sheet Rows - Inport/Export T |0
Gancel

The process of customizing the Ribbon is very similar to customizing the
Quick Access toolbar, which is described later in this chapter. The only dif-
ference is that you need to decide where to put the command within the
Ribbon. The general procedure is:

ooks.com/

315

http://www.it-ebooks.info/

3 ’ 6 Part IV: Communicating with Your Users

<MBER
é"\&

SMBER
)

1. Use the drop-down list on the left (labeled Choose Command From) to
display various groups of commands.

2. Locate the command in the list box on the left, and select it.

3. Use the drop-down list on the left (labeled Customize The Ribbon) to
choose a group of tabs. Main Tabs refer to the tabs that are always vis-
ible; Tool Tabs refer to the context tabs that appear when a particular
object is selected.

4. In the list box on the right, select the tab and the group where you
would like to put the command. You'll need to click the “plus sign” con-
trols to expand the hierarchical lists.

5. Click the Add button to add the selected command from the left to the
group on the right.

Keep in mind that you can use the New Tab button to create a new tab, and
the New Group button to create a new group within a tab. New tabs and
groups are given generic names, so you'll probably want to give them more
meaningful names. Use the Rename button to rename the selected tab or
group. You can also rename built-in tabs and groups.

Although you cannot remove a built-in tab, you can hide the tab by uncheck-
ing the check box next to its name.

Fortunately, you can also add macros to the Ribbon. Choose Macros from the
drop-down list on the left, and all of the currently available macros are listed,
ready to be added to the Ribbon.

If you customize the Ribbon to include a macro, the macro command in the
Ribbon is visible even when the workbook that contains the macro is not
open. Clicking the command will open the workbook that contains the macro.

Customizing the Ribbon with XML

In some situations, you may want to modify the ribbon automatically, when a
workbook or add-in is opened. Doing so makes it easy for the user to access
your macro. It also eliminates the need for the user to modify the Ribbon
manually by using the Excel Options dialog box.

Making automatic changes to the Ribbon can be done with Excel 2007 and
Excel 2010, but it’s not easy. Modifying the Ribbon involves writing XML code
in a text editor, copying that XML file into the workbook file, editing a bunch
of XML files (which also are stashed away inside the new Excel file format,
which in reality is nothing more than a zipped container of individual — but
related — files), and then writing VBA procedures to handle the clicking of
the controls you put in the XML file.

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 3 ’ 7

Get the software

If you'd like to follow along with the Ribbon customization example, you need to download a small
program called Custom Ul Editor for Microsoft Office. This is a free program that greatly simplifies
the process of customizing the Ribbon in Microsoft Office applications. Using this software still
requires a lot of work, butit's a lot easier than doing it manually.

As | was writing this, the software was available here:
http://openxmldeveloper.org/articles/customuieditor.aspx

If that URL doesn't work, search the Web for “Custom Ul Editor for Microsoft Office” and you'll find
the software. It's a small download, and it's free.

Fortunately, software is available to assist you with customizing the Ribbon —
but you still need to be on familiar terms with XML.

Explaining all the intricate details involved in customizing the Ribbon is well
beyond the scope of this book. However, [walk you through a quick example
that demonstrates the steps required to add a new Ribbon group to the
Home tab. The new Ribbon group is named Excel VBA For Dummies, and it
contains one button, labeled Click Me. Clicking that button runs a VBA macro
named ShowMessage.

You can download a sample file from this book’s Web site, which contains this
customization. If you'd like to create it yourself, follow these steps exactly:

1. Create a new Excel workbook.

2. Save the workbook, and name it ribbon modification.xlsm.
3. Close the workbook. This step is very important.
4

. Launch the Custom Ul Editor for Microsoft Office. If you don’t have
this software, you need to find it and install it. Refer to the sidebar,
“Get the software,” earlier in this chapter.

5. In the Custom Ul Editor, choose File=>Open, and find the workbook
you saved in Step 2.

6. Choose Insert->Office 2007 Custom Ul Part. Choose this command
even if you're using Excel 2010.

7. Type the following code into the code panel (named customUI.xml)
displayed in the Custom Ul Editor (see Figure 19-2):

ooks.com/

http://www.it-ebooks.info/

3 ’ 8 Part IV: Communicating with Your Users

10.

11.
12.

13.
14.

15.

<customUI xmlns='http://schemas.microsoft.com/
office/2006/01/customui'>
<ribbon>
<tabs>
<tab idMso='TabHome'>
<group 1id='Groupl' label='Excel VBA For Dummies'>
<button id='Buttonl'
label='Click Me'
size="'large'
onAction="'ShowMessage'
imageMso='FileStartWorkflow' />
</group>
</tab>
</tabs>
</ribbon>
</customUI>

. Click the Validate button in the toolbar. If the code has any syntax

errors, you will get a message that describes the problem. If any
errors are identified, you must correct them.

. Click the Generate Callback button.

The Custom UI Editor creates a VBA Sub procedure that is executed
when the button is clicked (see Figure 19-3). This procedure is not actu-
ally inserted into the workbook, so you need to copy it for later use (or
memorize it if you have a good memory).

Go back to the customUl.xml module and choose File=>Save (or click
the Save icon in the toolbar).

Close the file by using the File=>Close command.

Open the workbook in Excel. Click the Home tab, and you should see
the new Ribbon group and Ribbon button. But it doesn’t work yet.

Press Alt+F11 to activate the VBE.

Insert a new VBA module and paste (or type) the callback procedure
that was generated in Step 9. Add a MsgBox statement, so you’ll know
if the procedure is actually being executed. The procedure is:

Sub ShowMessage (control As IRibbonControl)
MsgBox "Congrats. You found the new ribbon
command. "
End Sub

Press Alt+F11 to jump back to Excel. Click the new button on the
Ribbon. If all went well, you’ll see the MsgBox shown in Figure 19-4.

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 3 ’ 9

= ribbon madification.xlsm - Custom UI Editar for Microsaft Office ===
File Edit Insert
EdEde =
421 ribbon modification slsm |<customUI xmlns='http://schemas.wicrosoft.com/office/2006/01/ customi' >
) il <riphon:
<tapsy

<rah idMso='TabHome'>
<group id='Groupi' lebel='Excel WBA For Dummies'>
<button id='Buttonl'
label='Click Me'
size='large'
onkction='Showlessage'
imageMso='FileStarcWorkilow' />

I L
Figure 19-2: e
RibbonX </ customli T
code dis-
played in
the Custom

Ul Editor.

CAUsers'John' Desktopribban madification.xdsm

4 ribbon modification.xdsm - Custom Ul Editor for Microseft Office (===

Figure 19-3: | r- cor s

The VBA | —
k2] ribbon modffication Wsm [Callback for Buttonl onkction
Ca”back 1 customULsml Sub ShowMessage (control s TRibbonContraol)

procedure .
thatis
executed by
clicking the
Ribbon
button.
|

ChUsers\John'Desktopiribbon modification.xdsm

= B 2
al@ o @ 2

e jm e ﬂ_l E Autasum - 2? }}

& Fill -

MNeutral _ Insert Delete Format . Sort & Find &
M - - - Clear = Filter * Select~ =
Cells Editing Excel VBA For Dummies
v
o} R 5 T u v N X L

|
Figure 19-4:
PI‘OOf that Microsoft Excel @
adding a

new Rlbbon Congrats. You found the new ribbon command.
command
using XML
is actually
possible.
|

ooks.com/

http://www.it-ebooks.info/

320 Part IV: Communicating with Your Users

In the Custom Ul Editor, when you choose Insert=>Office 2007 Custom UI Part,
you insert a Ul part for Excel 2007. The Custom UI Editor also has an option to
insert a Ul part for Excel 2010. If you choose that option, the Ribbon modifica-
tion will not work in Excel 2007. In addition, you need to specify a different
Namespace in the first XML statement:

WMBER
@"&
&

<customUI xmlns='http://schemas.microsoft.com/
office/2009/07/customui '>

You only need to insert a Ul part for Excel 2010 if you use features that are
unique to Excel 2010. You can also have a Ul part for each version, but that’s

rarely necessary.

You probably realize that making Ribbon modification using XML is not
exactly intuitive. Even with a good tool to help (such as the Custom Ul
Editor), you still need to understand XML. If that sounds appealing to you,
check the bookstores. You'll find books devoted exclusively to customizing
the Ribbon interface in Microsoft Office. This isn’t one of them.

Adding a button to the Quick Access toolbar

If you create a macro that you use frequently,
you may want to add a new button to the Quick
Access toolbar. Doing so is easy, but you must
do it manually. The Quick Access toolbar is
intended to be customized by end users only —
not programmers. Here's how to do it:

1. Right-click the Quick Access toolbar and
select Customize Quick Access toolbar to
display the Quick Access toolbar tab of the
Excel Options dialog box. In Excel 2007,
this tab is labeled Customize.

2. In the drop-down box labeled Choose
Commands From, select Macros.

3. Select your macro from the list.

4. Click the Add button, and the macro is
added to the Quick Access toolbar list on
the right.

5. If you like, click the Modify button to
change the icon and (optionally) the dis-
play name.

If you use Excel 2007, the Quick Access toolbar
button works only when the workbook that con-
tains the macro is open. Even worse, the macro
works only when that workbook is the active
workbook. But these problems were fixed in
Excel 2010. When you click a macro button on
the Quick Access toolbar, the workbook that
contains the macro is opened (if it's not already
open). And the macro can be executed when
any workbook is open.

Excel 2010 also has an option to display the
Quick Access toolbar button only when a
particular workbook is open. Before you add
the macro, use the drop-down control at the
top-right of the Excel Options dialog box, and
specify the workbook name, rather than For All
Documents (Default).

If you have macros that are useful for many dif-
ferent workbooks, storing them in your Personal
Macro Workbook is a good idea.

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 32 ’

Because this XML stuff is way too complex for the beginner VBA program-
mer, the remainder of this chapter focuses on Ul customization that uses the
old method (VBA only). It’s not as slick as the Ribbon, but it’s a lot easier,
and it still provides quick access to your macros.

Customizing Shortcut Menus

Before Excel 2007, VBA programmers used the CommandBar object for creat-
ing custom menus, custom toolbars, and custom shortcut (right-click) menus.

Beginning with Excel 2007, the CommandBar object is in a rather odd posi-
tion. If you write code to customize a menu or a toolbar, Excel intercepts that
code and ignores many of your commands. As | noted earlier in this chapter,
menu and toolbar customizations end up in the Add-Ins>Menu Commands
or the Add-Ins=>Custom Toolbars group. So, for all practical purposes, you're
limited to the shortcut menus. And that’s what I cover in the sections that
follow.

Commanding the CommandBars collection

Excel supports three types of CommandBars, differentiated by their Type
property. For shortcut menus, you're nterested in type 2, also known by its
built-in constant name, msoBarTypePopup.

Listing all shortcut menus

The procedure listed here uses the CommandBars collection. It displays, in
a worksheet, the names of all shortcut menus — CommandBars that have a
Type property of 2 (msoBarTypePopup). For each CommandBar, the proce-
dure lists its Index and Name.

Sub ShowShortcutMenusName ()
Dim Row As Long
Dim cbar As CommandBar
Row = 1
For Each cbar In Application.CommandBars
If cbar.Type = msoBarTypePopup Then
Cells(Row, 1) = cbar.Index
Cells (Row, 2) cbar .Name
Row = Row + 1
End If
Next cbar
End Sub

ooks.com/

http://www.it-ebooks.info/

322 Part IV: Communicating with Your Users

,\\\gWEg Figure 19-5 shows a portion of the result of running this procedure, which is
S/ /,; = available at this book’s Web site. For example, you see that the shortcut menu
‘\ 9 “\ named Workbook Tabs has an index of 34. That’s the shortcut menu that

Q “‘ea'/,//
’ appears when you right-click a sheet tab.

A B C
1 21 PivotChart Menu
2 34 Workbook tabs
3 35 Cell
4 36 Column
5 37 Row
L[] 38 Cell
7 39 Column
a 40 Row
9 a Ply
10 42 HLM Cell
11 43 Document
12 44 Desktop
— 13 45 Nondefault Drag and Drop
Figure 19_5: 14 4a AutoFill
15 47 Butten
AVBA 1o 48 Dialog
macro |17 49 Series
produced 18 50 Plot Area
.. 19 51 Floor and walls
this list Of 20 52 Trendline
allshort- |21| 53 chart
cut menu 22 54 Format DaFa Series
23 55 Format Axis
names. |, 56 Format Legend Entry
I | 57 Formula Bar

Referring to CommandBars

You can refer to a particular CommandBar by its Index or by its Name. If you
refer to Figure 19-5, you see that the Cell right-click menu has an Index of 35
or 38. This is because the content of the cell right-click menu differs when
Excel is in a different state. Number 35 is the one you get when Excel is in
Normal view mode, number 38 shows when you are in Page Break Preview
mode. You can refer to the shortcut menu in either of two ways:

Application.CommandBars (35)
or
Application.CommandBars ("Cell")
QNING/ Even though there are two Cell CommandBars, the second line of code
above always addresses the one with index 35. For some reason, Microsoft
isn’t consistent in naming the CommandBars. You would expect each sepa-

rate CommandBar to have its own unique name, but they obviously don’t.
Right-click menus that differ in content — depending on the state Excel is

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 323

Figure 19-6:
Displaying
the Caption
property for
a control.
|

WMBER
“&
&

in — appear more than once in the list of available CommandBars. You might
think that referring to CommandBars by using their Index property is better.
Wrong! But even that can cause problems because the Index numbers have
not always remained constant across the different Excel versions. In fact, the
Index property can even vary within a single version of Excel.

Referring to controls in a CommandBar

A CommandBar object contains Control objects, which are buttons, menus,
or menu items. The following procedure displays the Caption property for
the first Control in the cell’s right-click menu:

Sub ShowCaption ()
MsgBox Application.CommandBars ("Cell"). _
Controls(1l) .Caption
End Sub

When you execute this procedure, you see the message box shown in Figure
19-6. The ampersand is used to indicate the underlined letter in the text —
the keystroke that will execute the menu item.

Microsoft Excel ==

Culit

In some cases, Control objects on a shortcut menu contain other Control
objects. For example, the Sort control on the Cell right-click menu contains
other controls.

Each control has a Name and an Id property. You can access a control by
using either of these properties (locating a control by its Id is slightly more
complex though):

Sub AccessControlByName ()
MsgBox CommandBars ("Cell") .Controls ("Copy") .Caption
End Sub

Sub AccessControlById()

MsgBox CommandBars ("Cell") .FindControl (ID:=19) .Caption
End Sub

ooks.com/

http://www.it-ebooks.info/

324 Part IV: Communicating with Your Users

QNING/ Don’t use the Caption property to access a control if you are writing code that
& may be used by users with a different language version of Excel. The Caption is
language specific, so your code will fail on those users’ systems. Instead, use
the FindControl method in conjunction with the Id of the control (which is lan-
guage independent). Luckily, the CommandBar names are not internationalized.

Properties of CommandBar controls

CommandBar controls have a number of properties that determine how the
controls look and work. This list contains some of the more useful properties
for CommandBar controls:

v Caption: The text displayed for the control. If the control shows only an
image, the Caption appears when you move the mouse over the control.

v FacelD: A number that represents a graphics image displayed next to
the control’s text.

v BeginGroup: True if a separator bar appears before the control.

»* OnAction: The name of a VBA macro that executes when the user clicks
the control.

v Builtln: True if the control is an Excel built-in control.
+ Enabled: True if the control can be clicked.

v~ Visible: True if the control is visible. Many of the shortcut menus con-
tain hidden controls.

v ToolTipText: Text that appears when the user moves the mouse pointer
over the control.

The ShowShortcutMenultems procedure lists all the first-level controls on
every shortcut menu. In addition, it identifies hidden controls by placing
their Captions in angle brackets.

Sub ShowShortcutMenuItems ()
Dim Row As Long, Col As Long
Dim Cbar As CommandBar
Dim Ctl As CommandBarControl
Row = 1
Application.ScreenUpdating = False
For Each Cbar In Application.CommandBars
If Cbar.Type = msoBarTypePopup Then

Cells(Row, 1) = Cbar.Index
Cells (Row, 2) = Cbar.Name
Col = 3

For Each Ctl In Cbar.Controls

ooks.com/

http://www.it-ebooks.info/

Figure 19-7:
Listing all
top-level

controls in
all shortcut
menus.
|

Chapter 19: Accessing Your Macros through the User Interface 325

If Ctl.Visible Then

Cells(Row, Col) = Ctl.Caption
Else
Cells (Row, Col) = "<" & Ctl.Caption & ">"
End If
Col = Col + 1
Next Ctl
Row = Row + 1
End If
Next Cbar

End Sub
Figure 19-7 shows a portion of the output.
The ShowShortcutMenultems procedure is available at this book’s Web site.

If you run the macro, you can see that many of the shortcut menus contain
hidden controls.

A B [D E F
1 | 21 PivotChart Menu Field settif&ngs &options... &Refresh Data &Hide PivotChart Field Buttons For&mulas
2 34 Workbook tabs Sheetl <&Sheet List: <&Sheet List> <&Sheet List> <&Sheet List>
3 35cCell Cudt ' &Paste &Paste Table
4 36 Column Culit &Paste &Paste Table
5 37 Row Cult &Paste &Paste Table
6 38 cCell Cudt &Paste &Paste Table
7 39 Column Culit &Paste &Paste Table
& 40 Row Cu&t &Copy &Paste &Paste Table
9 4LPly &lnsert... ZDelete &Rename &Move or Copy... &View Code
10 42 XM cell Cuit &Copy EPaste Paste &Special... &Paste Table
11 43 Document &Save Save &as... &Print.. Page Set&up.. &spelling...
12 44 Desktop Zopen... Save &Workspace... &Calculate Now <F&ull Screen
13 45 Mondefault Drag and Drop Copy Here as &Values Only Copy Here as &Formats Only &Link Here
14 46 AutoFill &Copy Cells Fill &Formatting Only Fill With&out Fermatting Fill &Days
15 47 Button Cult LCopy Copy Ink As &Text EPaste Clear
16 43 Dialog Epaste Ta&b Order... &Run Dialog <F&ull screen
17 49 Series &Selected Object Chart T&ype... S&elect Data. Add T&rendline.. Cle&ar
13 50 Plot Area &Selected Object Chart Thype... S&elect Data... Chart Opt&ions... &Meove Chart...
19 51 Floorand Walls &selected Object 3-D &View... Cle&ar
20 52 Trendline &Selected Object Cle&ar
21 53 Chart &Selected Object Cle&ar
22 54 Format Data Series &selected Object Chart TRype... S&elect Data... Add T&rendline... &Hide Detail
23 55 Format Axis &Selected Object Cle&ar &Hide Detail &Show Detail
24 56 Format Legend Entry &Selected Object &Hide Detail &Show Detail Cle8ar
25 57 Formula Bar Cult &Copy &Paste &Format Cells... Pic&k From Drop|
6 58 PivotTable Context Menuy Cony Format Cell: =Number Forma&t, Refresh <&Sort

This has been a quick and dirty overview of CommandBars. There’s a lot
more to CommandBars, of course, but this is as far as I take it in this book.
The next section provides some examples that may help clear up any confu-
sion you have.

With the introduction of the new Ribbon user interface, a lot has changed.
Some of the changes are for the better, and some for the worse. The possibili-
ties for gaining control over the user interface by using just VBA are now very
limited.

ooks.com/

http://www.it-ebooks.info/

326 Part IV: Communicating with Your Users

VBA Shortcut Menu Examples

This section contains a few examples of using VBA to manipulate the Excel
right- click menus — commonly known as shortcut menus. These examples
give you an idea of the types of things you can do, and they can all be modi-
fied to suit your needs.

Resetting all built-in right-click menusThe following procedure resets all built-
in toolbars to their original state:

Sub ResetAll ()
Dim cbar As CommandBar
For Each cbar In Application.CommandBars
If cbar.Type = msoBarTypePopup Then
cbar.Reset
cbar.Enabled = True
End If
Next cbar
End Sub

This procedure will have no effect unless someone has executed some VBA
code that adds items, removes items, or disables shortcut menus.

Adding a new item to the
Cell shortcut menu

In Chapter 16 I describe the Change Case utility. You can enhance that utility
,\Q&,WEB a bit by making it available from the Cell shortcut menu.

I,,..»
“\\ ',,}\

This example is available at this book’s Web site.

The AddToShortcut procedure adds a new menu item to the Cell shortcut
menu. Recall that Excel has two Cell shortcut menus. This procedure modi-
fies the normal right-click menu, but not the right-click menu that appears in
Page Break Preview mode.

Sub AddToShortCut ()

Dim Bar As CommandBar

Dim NewControl As CommandBarButton

DeleteFromShortcut

Set Bar = Application.CommandBars ("Cell")

Set NewControl = Bar.Controls.Add _
(Type:=msoControlButton, ID:=1,
temporary:=True)

With NewControl
.Caption = "&Change Case"

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 32 7

SMBER

Figure 19-8:
The Cell
shortcut

menu
showing

a custom
menu item.
|

.OnAction = "ChangeCase"
.Style = msoButtonIconAndCaption
End With

End Sub

When you modify a shortcut menu, that modification remains in effect until
you restart Excel. In other words, modified shortcut menus don’t reset them-
selves when you close the workbook that contains the VBA code. Therefore,
if you write code to modify a shortcut menu, you almost always write code to
reverse the effect of your modification.

The DeleteFromShortcut procedure removes the new menu item from the
Cell shortcut menu.

Sub DeleteFromShortcut ()
On Error Resume Next
Application.CommandBars ("Cell") .Controls _
("&Change Case") .Delete
End Sub

Figure 19-8 shows the new menu item displayed after right-clicking a cell.

A B C D B F G
2 January
3 February
4 March calibi - 11 - A" 4T § - % o+ [
. . Bflgﬂ'é'ﬁ'faﬁ;ﬁs
7 June
8 July ‘ﬁ tug
9 August 53| Cony
10 September ' Paste 9|Jli0|1s
11 October
12 November
12 December
14
15
16
17
15 ot
19 = Insert Comment
20 .
21 ' Format Cells
22 Pick From Drop-cdawn List.
23 Define Mame,
24 ‘:_?,J Hyperlink
25 Change Case
26 k
27

The first actual command after the declaration of a couple of variables calls
the DeleteFromShortcut procedure. This statement ensures that only one
Change Case menu item appears on the shortcut Cell menu. Try commenting
out that line (put an apostrophe at the start of the line) and running the

ooks.com/

http://www.it-ebooks.info/

328 Part IV: Communicating with Your Users

WING/
&

procedure a few times — now don’t get carried away! Right-click a cell, and
you can see multiple instances of the Change Case menu item. Get rid of all
the entries by running DeleteFromShortcut multiple times (once for each
extra menu item).

Finally, you need a way to add the shortcut menu item when the workbook is
opened and to delete the menu item when the workbook is closed. Doing this
is easy . .. if you've read Chapter 11. Just add these two event procedures to
the ThisWorkbook code module:

Private Sub Workbook_Open ()
Call AddToShortCut
End Sub

Private Sub Workbook_BeforeClose (Cancel As Boolean)
Call DeleteFromShortcut
End Sub

The Workbook_Open procedure is executed when the workbook is opened,
and the Workbook_BeforeClose procedure is executed before the workbook
is closed. Just what the doctor ordered.

Disabling a shortcut menu

If you're so inclined, you can disable an entire shortcut menu. For example,
you can make it so that right-clicking a cell does not display the normal
shortcut menu. The following procedure, which is executed automatically
when the workbook is opened, disables the Cell shortcut menu:

Private Sub Workbook_Open ()
Application.CommandBars ("Cell") .Enabled = False
End Sub

And here’s its companion procedure that enables the shortcut menu when
the workbook is closed.

Private Sub Workbook_ BeforeClose (Cancel As Boolean)
Application.CommandBars ("Cell") .Enabled = True
End Sub

Keep in mind that changes to CommandBars are permanent. If you don’t exe-
cute the procedure to enable the disabled shortcut menu, that shortcut menu
will not be available until you restart Excel. The ResetAll procedure mentioned
earlier in this chapter shows you how to get all your CommandBars back to
their bare-bones state again.

ooks.com/

http://www.it-ebooks.info/

Chapter 19: Accessing Your Macros through the User Interface 329

Creating a Custom Toolbar

Figure 19-9:
Displaying
the Built-in
Menus
shortcut
menu.
|

If you check out all the CommandBars available, you may have noticed one
called Built-in Menus. This CommandBar contains all the old Excel 2003 menu
commands. Figure 19-9 shows part of this giant pop-up menu. All the old com-
mands are there, but they aren’t arranged very well.

Eile

Print Area
Send To
Edit

Fill

Clear All
Object Formats

Yiew

Contents

Camments %

Hyperlinks

Toolbars
Insert

Mame

Picture

Farmat

Eow

Column

Sheet
Phanetic Guide

Taals

*y vy ¥ v ¥ v v v v vr v v v v v v v ¥

In this example, | present a VBA procedure that (kind of) re-creates the old
Excel 2003 menu bar. It creates a new CommandBar and then copies the con-
trols from the Built-in Menus CommandBar.

Sub MakeOldMenus ()
Dim cb As CommandBar
Dim cbc As CommandBarControl
Dim OldMenu As CommandBar

' Delete it, if it exists
On Error Resume Next
Application.CommandBars ("Old Menus") .Delete
On Error GoTo 0

' Create an old-style toolbar

' Set the last argument to False for a more compact menu
Set OldMenu = Application.CommandBars.Add
_("0ld Menus", , True)

Copy the controls from Excel's "Built-in Menus"

shortcut menu
With CommandBars ("Built-in Menus")

ooks.com/

http://www.it-ebooks.info/

330 Part IV: Communicating with Your Users

.Controls ("&File") .Copy OldMenu
.Controls ("&Edit") .Copy OldMenu
.Controls ("&View") .Copy OldMenu
.Controls("&Insert") .Copy OldMenu
.Controls ("F&ormat") .Copy OldMenu
.Controls ("&Tools") .Copy OldMenu
.Controls("&Data") .Copy OldMenu
.Controls ("&Window") .Copy OldMenu
.Controls ("&Help") .Copy OldMenu
End With

! Make it visible.

End Sub

It appears in the Add-Ins tab
Application.CommandBars ("Old Menus") .Visible =

True

Figure 19-10 shows the result of running the MakeOldMenus procedure.
Notice that it appears in the Custom Toolbars group of the Add-Ins tab. This
menu is, after all, a toolbar. It just looks like a menu.

9 Bl create sl 2003 menus.xism - Microsoft Excel o B o=
m Home Insert Page layout Formulas Data Review View Developer Add-Ins [~ @ o g R
File = Edit = View = nsert - Format ~| Toals = Data = window = Help =
7 spelling
i Research..
Custom Tooll v Eror Checking...
=3 - S v | show Text To Speech Toalbar v
A B ¢ D 1 J K L [} ~
10
£ Track Changes
12
13
T Protection * &g ProtectShest,
I 15 | gl Alow Users to Edit Ranges..
Figure 19-10: | ./ N
g " 17 Scenarios... &1 Protect and Share Worki ook
A toolbar, € Formula Auditing 8
19
H Lacro
pretending | = |
21
to be the |5, 7 AutaCorrect Optians..
23 omize...
Excel 2003 i
24 Options...
menu 25
26 -
| [H 0] sheet1 <Fa 4 »
system h T
Ready | 23 | |[EC @ 100% (=} Iy} (F)
I =

The new CommandBar is named Old Menus. The procedure starts by deleting
that toolbar, if it already exists. Then code copies the “top level” controls from
the CommandBar named Built-in Menus to the Old Menus CommandBar. A new
CommandBar is hidden by default, so the final statement makes it visible.

The new “menu” system isn’t perfect. A few of the commands don’t work.
You'll also notice that the recent files on the File menu show only placehold-

ers. To get rid of the toolbar, right-click it and choose Delete Custom Toolbar.

This example is available on the book’s Web site.

ooks.com/

http://www.it-ebooks.info/

PartV

Putting It All
Together

The Sth Wave By Rich Tennant
|OVER-SPREADSHEETING

“According to gour current pkgswal ngptoms,
ygou’ll be bald well before you're £at.”

ooks.com/

http://www.it-ebooks.info/

In this part . . .

Fe preceding 19 chapters cover quite a bit of material.
At this point, you may still feel a bit disjointed about all
the VBA stuff. The chapters in this part fill in the gaps and
tie everything together. You learn how to include your own
custom buttons in the Excel user interface. [discuss cus-
tom worksheet functions (a very useful feature), describe
add-ins, provide more programming examples, and wrap
up with a discussion of user-oriented applications.

ooks.com/

http://www.it-ebooks.info/

Chapter 20

Creating Worksheet Functions —

and Living to Tell about It

In This Chapter

Knowing why custom worksheet functions are so useful

Exploring functions that use various types of arguments

Understanding the Insert Function dialog box

Why

F)r many people, VBA’s main attraction is the capability to create custom
worksheet functions — functions that look, work, and feel just like those
that Microsoft built into Excel. A custom function offers the added advantage
of working exactly how you want it to (because you wrote it). I introduce
custom functions in Chapter 5. In this chapter, I get down to the nitty-gritty
and describe some tricks of the trade.

Create Custom Functions?

You are undoubtedly familiar with Excel’s worksheet functions — even

Excel novices know how to use common worksheet functions, such as SUM,
AVERAGE, and IF. By my count, Excel 2007 contains more than 350 predefined
worksheet functions, and Excel 2010 adds about 50 more. And if that’s not
enough, you can create functions by using VBA.

With all the functions available in Excel and VBA, you may wonder why you
would ever need to create functions. The answer: to simplify your work. With
a bit of planning, custom functions are very useful in worksheet formulas and
VBA procedures. Often, for example, you can significantly shorten a formula
by creating a custom function. After all, shorter formulas are more readable
and easier to work with.

ooks.com/

http://www.it-ebooks.info/

334 Partv: Putting It All Together

What custom worksheet functions can't do

As you develop custom functions for use in your worksheet formulas, it's important that you under-
stand a key point. VBA worksheet Function procedures are essentially passive. For example, code
within a Function procedure cannot manipulate ranges, change formatting, or do many of the other
things that are possible with a Sub procedure. An example may help.

It might be useful to create a function that changes the color of text in a cell based on the cell’s
value. Try as you might, however, you can’t write such a function. It always returns an error value.

Just remember this: A function used in a worksheet formula returns a value — it does not perform
actions with objects.

That said, there are a few exceptions to this rule. For example, here’s a Function procedure that
changes the text in a cell comment:

Function ChangeComment (cell, NewText)
cell.Comment .Text NewText
End Function

And here's a formula that uses the function. It assumes that cell A1 already has a comment. When
the formula is calculated, the comment is changed.

=ChangeComment (Al, "I changed the comment!")

I’'m not sure if this is an oversight or a feature. But it's a rare example of a VBA function that
changes something in a worksheet.

Understanding UBA Function Basics

Time for a quick review. A VBA function is a procedure that’s stored in a VBA
module. You can use these functions in other VBA procedures or in your
worksheet formulas.

A module can contain any number of functions. You can use a custom function in
a formula just as if it were a built-in function. If the function is defined in a differ-
ent workbook, however, you must precede the function name with the workbook
name. For example, assume you developed a function called DiscountPrice (which
takes one argument), and the function is stored in a workbook named pricing.xlsm.
To use this function in the pricing.xlsm workbook, enter a formula such as this:

=DiscountPrice (Al)

If you want to use this function in a different workbook, enter a formula such
as this:

=pricing.xlsm!discountprice (Al)

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 335

A\

If the custom function is stored in an add-in, you don’t need to precede the
function name with the workbook name. I discuss add-ins in Chapter 21.

Custom functions appear in the Insert Function dialog box, in the User Defined
category. Pressing Shift+F3 is one way to display the Insert Function dialog box.

Writing Functions

Remember that a function’s name acts like a variable. The final value of this
variable is the value returned by the function. To demonstrate, examine the
following function, which returns the user’s first name:

Function FirstName ()
Dim FullName As String
Dim FirstSpace As Integer
FullName = Application.UserName
FirstSpace = InStr(FullName, " ")

If FirstSpace = 0 Then

FirstName = FullName
Else

FirstName = Left (FullName, FirstSpace - 1)
End If

End Function

This function starts by assigning the UserName property of the Application
object to a variable named FullName. Next, it uses the VBA InStr function to
locate the first space in the name. If there is no space, FirstSpace is equal to
0, and FirstName is equal to the entire name. If FullName does have a space,
the Left function extracts the text to the left of the space and assigns it to
FirstName.

Notice that FirstName is the name of the function and is also used as a vari-
able name in the function. The final value of FirstName is the value that’s
returned by the function. Several intermediate calculations may be going on
in the function, but the function always returns the last value assigned to the
variable that is the same as the function’s name.

d&“*&

All the examples in this chapter are available at this book’s Web site.

ﬂ%@

Working with Function Arguments

To work with functions, you need to understand how to work with arguments.
The following points apply to the arguments for Excel worksheet functions and
custom VBA functions:

ooks.com/

http://www.it-ebooks.info/

" " ooks.com/

http://www.it-ebooks.info/

336 Part V: Putting It All Together

v Arguments can be cell references, variables (including arrays), con-
stants, literal values, or expressions.

v Some functions have no arguments.
v Some functions have a fixed number of required arguments (from 1 to 60).

+* Some functions have a combination of required and optional arguments.

Function Examples

The examples in this section demonstrate how to work with various types of
arguments.

A function with no argument

Like Sub procedures, Function procedures need not have arguments. For
example, Excel has a few built-in worksheet functions that don’t use argu-
ments, including RAND, TODAY, and NOW.

Here’s an example of a function with no arguments. The following function
returns the UserName property of the Application object. This name appears
in the General tab of the Excel Options dialog box (In Excel 2007, it’s called
the Popular tab). This simple but useful example shows the only way you can
get the user’s name to appear in a worksheet cell:

Function User ()

! Returns the name of the current user
User = Application.UserName

End Function

When you enter the following formula into a worksheet cell, the cell displays
the current user’s name:

=User ()
As with the Excel built-in functions, you must include a set of empty paren-

theses when using a function with no arguments. Otherwise, Excel tries to
interpret the function as a named range.

A function with one argument

The single-argument function in this section is designed for sales managers
who need to calculate the commissions earned by their salespeople. The com-
mission rate depends on the monthly sales volume; those who sell more earn

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 33 7

a higher commission rate. The function returns the commission amount based
on the monthly sales (which is the function’s only argument — a required argu-
ment). The calculations in this example are based on Table 20-1.

Table 20-1 Commission Rates by Sales
Monthly Sales Commission Rate
$0-$9,999 8.0%

$10,000-$19,999 10.5%

$20,000-$39,999 12.0%

$40,000+ 14.0%

You can use several approaches to calculate commissions for sales amounts
entered into a worksheet. You could write a lengthy worksheet formula such
as this:

=IF (AND(A1>=0,A1<=9999.99),A1*0.08, IF (AND(A1>=10000,
Al1<=19999.99),A1*0.105, IF (AND(A1>=20000,A1<=39999.99) ,
A1*0.12,IF (A1>=40000,A1*0.14,0))))

A couple reasons make this a bad approach. First, the formula is overly com-
plex. Second, the values are hard-coded into the formula, making the formula
difficult to modify if the commission structure changes.

A better approach is to create a table of commission values and use a
LOOKUP table function to compute the commissions:

=VLOOKUP (Al, Table, 2) *Al

Another approach, which doesn’t require a table of commissions, is to create
a custom function:

Function Commission (Sales)
! Calculates sales commissions

Const Tierl As Double = 0.08
Const Tier2 As Double = 0.105
Const Tier3 As Double = 0.12
Const Tier4 As Double = 0.14
Select Case Sales
Case 0 To 9999.99: Commission = Sales * Tierl

Case 10000 To 19999.99: Commission = Sales * Tier2
Case 20000 To 39999.99: Commission = Sales * Tier3
Case Is >= 40000: Commission = Sales * Tier4

End Select

Commission = Round(Commission, 2)

End Function

ooks.com/

http://www.it-ebooks.info/

338 Partv: Putting It All Together

Figure 20-1:
Using the
Commission
functionina
worksheet.
|

Notice that the four commission rates are declared as constants, rather than
hard-coded. This makes it very easy to modify the function if the commission
rates change.

After you define this function in a VBA module, you can use it in a worksheet
formula. Entering the following formula into a cell produces a result of 3,000.
The amount of 25000 qualifies for a commission rate of 12 percent:

=Commission (25000)

Figure 20-1 shows a worksheet that uses the Commission function in formulas
in column C.

A E & D

Wlname sales _commission |
2 |Adams 561,983.00 58,677.62
3 |Baker 53,506.00 5250.48
4 Douglas 538,973.00 54,676.76
5 Emmett $32,092.00 53,85L.04
G Franklin $27,354.00 $3,282.48
7 Johnson 517,833.00 51,872.46
3 Kent 541,598.00 55,823.72
9 Mays $32,000.00 53,840.00
10 | Quingy 55,000.00 5400.00
11 |Randall 208,793.00 59,631.02
12 |Smith 531,093.00 53,731.16
13 \Walker 524,509.00 52,941.08
14 Zeller 541,544.00 55,816.16
15

A function with two arguments

The next example builds on the preceding one. Imagine that the sales man-
ager implements a new policy to reward long-term employees: The total com-
mission paid increases by 1 percent for every year the salesperson has been
with the company.

[modified the custom Commission function (defined in the preceding sec-
tion) so that it takes two arguments, both of which are required arguments.
Call this new function Commission2:

Function Commission2 (Sales, Years)

! Calculates sales commissions based on years in service
Const Tierl As Double = 0.08
Const Tier2 As Double = 0.105
Const Tier3 As Double = 0.12
Const Tier4 As Double = 0.14

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 339

Select Case Sales
Case 0 To 9999.99: Commission2=Sales*Tierl
Case 10000 To 19999.99: Commission2=Sales*Tier2
Case 20000 To 39999.99: Commission2=Sales*Tier3
Case Is>=40000: Commission2=Sales*Tier4

End Select

Commission2=Commission2+ (Commission2*Years/100)

Commission2=Round (Commission2, 2)

End Function

I simply added the second argument (Years) to the Function statement and
included an additional computation that adjusts the commission before exit-
ing the function. This additional computation multiplies the original commis-
sion by the number of years in services, divides by 100, and then adds the
result to the original computation.

Here’s an example of how you can write a formula by using this function. (It
assumes that the sales amount is in cell Al; cell Bl specifies the number of
years the salesperson has worked.)

=Commission2 (Al,B1l)

A function with a range argument

Using a worksheet range as an argument is not at all tricky; Excel takes care
of the behind-the-scenes details.

Assume that you want to calculate the average of the five largest values in
arange named Data. Excel doesn’t have a function that can do this, so you
would probably write a formula:

= (LARGE (Data, 1) +LARGE (Data, 2) +LARGE (Data, 3) +
LARGE (Data, 4) +LARGE (Data, 5)) /5

This formula uses Excel’s LARGE function, which returns the nth largest
value in a range. The formula adds the five largest values in the range named
Data and then divides the result by 5. The formula works fine, but it’s rather
unwieldy. And what if you decide that you need to compute the average of
the top six values? You would need to rewrite the formula — and make sure
that you update all copies of the formula.

Wouldn't this be easier if Excel had a function named TopAvg? Then you
could compute the average by using the following (nonexistent) function:

=TopAvg (Data, 5)

ooks.com/

http://www.it-ebooks.info/

340 Partv: Putting It All Together

3

This example shows a case in which a custom function can make things much
easier for you. The following custom VBA function, named TopAvg, returns
the average of the /Vlargest values in a range:

Function TopAvg (InRange, N)
! Returns the average of the highest N values in InRange
Dim Sum As Double
Dim I As Long
Sum = 0
For i = 1 To N
Sum = Sum + WorksheetFunction.Large (InRange, i)
Next i
TopAvg = Sum / N
End Function

This function takes two arguments: InRange (which is a worksheet range) and
N (the number of values to average). It starts by initializing the Sum variable
to 0. It then uses a For-Next loop to calculate the sum of the N largest values
in the range. Note that [use the Excel LARGE function within the loop. Finally,
TopAvg is assigned the value of Sum divided by N.

You can use all Excel worksheet functions in your VBA procedures except
those that have equivalents in VBA. For example, VBA has a Rnd function that
returns a random number. Therefore, you can’t use the Excel RAND function
in a VBA procedure.

A function with an optional argument

Many Excel built-in worksheet functions use optional arguments. An example
is the LEFT function, which returns characters from the left side of a string.
Its official syntax follows:

LEFT (text[,num_chars])
The first argument is required, but the second (in square brackets) is
optional. If you omit the optional argument, Excel assumes a value of 1.

Therefore, the following formulas return the same result:

=LEFT(Al,1)
=LEFT (Al)

The custom functions you develop in VBA also can have optional arguments.
You specify an optional argument by preceding the argument’s name with

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 34 ’

the keyword Optional, followed by an equal sign and the default value. If the
optional argument is missing, the code uses the default value.

The following example shows a custom function that uses an optional argument:

Function DrawOne (InRange, Optional Recalc = 0)
! Chooses one cell at random from a range

Randomize
! Make function volatile if Recalc is 1
If Recalc = 1 Then Application.Volatile True

' Determine a random cell
DrawOne = InRange (Int ((InRange.Count) * Rnd + 1))
End Function

This function randomly chooses one cell from an input range. The range
passed as an argument is actually an array (I explain arrays in Chapter 7),
and the function selects one item from the array at random. If the second
argument is 1, the selected value changes whenever the worksheet is recalcu-
lated. (The function is made volatile.) If the second argument is 0 (or is omit-
ted), the function is not recalculated unless one of the cells in the input range
is modified.

Debugging custom functions

Debugging a Function procedure can be a bit
more challenging than debugging a Sub proce-
dure. If you develop a function for use in work-
sheet formulas, you find that an error in the
Function procedure simply results in an error
display in the formula cell (usually #VALUE!). In
other words, you don’t receive the normal run-
time error message that helps you locate the
offending statement.

You can choose among three methods for
debugging custom functions:

v Place MsgBox functions at strategic
locations to monitor the value of specific
variables. Fortunately, message boxes in
Function procedures pop up when you

execute the procedure. Make sure that only
one formula in the worksheet uses your
function, or the message boxes appear for
each formula that's evaluated — which
could get very annoying.

Test the procedure by calling it from a Sub
procedure. Run-time errors appear nor-
mally in a pop-up window, and you can
either correctthe problem (if you know it) or
jump right into the debugger.

Set a breakpoint in the function and then
use the Excel debugger to step through the
function. You can then access all the usual
debugging tools. Refer to Chapter 13 to find
out about the debugger.

ooks.com/

http://www.it-ebooks.info/

342 Partv: Putting It All Together

[use the Randomize statement to ensure that a different random number
“seed” is chosen each time the workbook is opened. Without this statement,
the same random numbers are generated each time the workbook is opened.

You can use this function for choosing lottery numbers, selecting a winner
from a list of names, and so on.

A function with an indefinite
number of arguments

Some Excel worksheet functions take an indefinite number of arguments. A
familiar example is the SUM function, which has the following syntax:

SUM (numberl, number2. . .)

The first argument is required, but you can have as many as 254 additional
arguments. Here’s an example of a SUM function with four range arguments:

=SUM(A1:A5,Cl:C5,E1:E5,G1:G5)

Here’s a VBA function that can have any number of single-value arguments.
This function doesn’t work with multi-cell range arguments.

Function Concat (stringl, ParamArray string2())
! Demonstrates indefinite number of function arguments
Dim Args As Variant

Process the first argument
Concat = stringl

Process additional arguments (if any)
If UBound(string2) <> -1 Then
For Args = LBound(string2) To UBound (string2)
Concat = Concat & " " & string2 (Args)
Next Args
End If
End Function

This function is similar to the Excel CONCATENATE function, which com-
bines text arguments into a single string. The difference is that this custom
function inserts a space between each pair of concatenated strings.

The second argument, string2(), is an array preceded by the ParamArray key-
word. If the second argument is empty, the UBound function returns -1 and
the function ends. If the second argument is not empty, the procedure loops
through the elements of the string2 array and processes each additional

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 343

argument. The LBound and UBound functions determine the beginning and
ending elements of the array. The beginning element is normally 0 unless you
either declare it as something else or use an Option Base 1 statement at the
beginning of your module.

é&mBEn ParamArray can apply to only the last argument in the procedure. It is always
& a Variant data type, and it is always an optional argument (although you don’t
use the Optional keyword). Figure 20-2 shows this function in use. Examine the
figure to see how the results differ from those produced by the Excel
CONCATENATE function, which doesn’t insert a space between the concate-
nated items.

Figure 20-2:
Using the
Concat
function in
worksheet
formulas.
IS

A B 5 D
Writle _Fist st Concat |
2 Mr. Jim Smith Mr. Jim Smith
3 |Dr. Tina Peterson Dr. Tina Petersan
4 |Ms. Jane Doe Ms. Jane Doe
5 Frank Franklin Frank Franklin
G r. Wwillie Niglson M. willie Nielson
7 Mrs. Steve Marks Mrs. Steve Marks
8 Hank Walker Hank walker
9 Mr. Bill Mr. Bill

Functions That Return an Array

Array formulas are one of Excel’s most powerful features. If you're familiar
with array formulas, you’ll be happy to know that you can create VBA func-
tions that return an array.

Returning an array of month names

I'll start out with a simple example. The MonthNames function returns a
12-element array of — you guessed it — month names.

Function MonthNames ()

MonthNames = Array ("January", "February", "March",
"April n , "May " , n Jul’le n , n July n , n AugUSt n , _
"September", "October", "November", "December")

End Function

To use the MonthNames function in a worksheet, you must enter it

as a 12-cell array formula. For example, select range Al:L1 and enter
=MonthNames(). Then use Ctrl+Shift+Enter to enter the array formula in all
12 selected cells. Figure 20-3 shows the result.

ooks.com/

http://www.it-ebooks.info/

344 Partv: putting it All Together

Figure 20-3:
Using the
Month
Names
function
toreturn a
12-element
array.
|

A B C D E F G H I J K L M
1 January February March April May June July August September October November December
2

4

g

If you want the month names to display in a column, select 12 cells in
a column and use this array formula (don’t forget to enter it by using
Ctrl+Shift+Enter):

=TRANSPOSE (MonthNames ())

Returning a sorted list

Suppose that you have a list of names you want to show in sorted order in
another range of cells. Wouldn't it be nice to have a worksheet function do
that for you?

The custom function in this section does just that: It takes a single-column
range of cells as its argument and then returns an array of those cells sorted.
Figure 20-4 shows how it works. Range A2:A13 contains some names. Range
C2:C13 contains this multi-cell array formula. (Remember, the formula must
be entered by pressing Ctrl+Shift+Enter.)

=Sorted (A2:A13)
Here’s the code for the Sorted function:

Function Sorted(Rng As Range)
Dim SortedData () As Variant
Dim Cell As Range
Dim Temp As Variant, i As Long, j As Long
Dim NonEmpty As Long

! Transfer data to SortedData
For Each Cell In Rng
If Not IsEmpty(Cell) Then
NonEmpty = NonEmpty + 1
ReDim Preserve SortedData(l To NonEmpty)
SortedData (NonEmpty) = Cell.Value
End If
Next Cell

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 345

Sort the array
For i = 1 To NonEmpty
For j = i + 1 To NonEmpty
If SortedData (i) > SortedData(j) Then
Temp = SortedData(j)

SortedData (j) = SortedData (i)
SortedData (i) = Temp
End If
Next j
Next i

! Transpose the array and return it
Sorted = Application.Transpose (SortedData)
End Function

A B (£ D
.
2 |Keith Abigail
I | 3 Frank Ann
Figure 20_4: 4 Ji—:](‘k\e Darren
. 5 Tim Franlk
Usinga |s ann Jackie
custom | 7 |Louise Keith
function |2 ' Loutse
9 Opie Mary
to return 10 Ralph Opie
a sorted |1t Mary Ralph
12 |Abigail Tim
range. 13 Darren Zola
| _________________JEF

The Sorted function starts by creating an array named SortedData. This array
contains all the nonblank values in the argument range. Next, the SortedData
array is sorted, using a bubble sort algorithm. Because the array is a horizon-
tal array, it must be transposed before it is returned by the function.

The Sorted Function works with a range of any size, as long as it’s in a single
column or row. If the unsorted data is in a row, your formula needs to use
Excel’s TRANSPOSE function to display the sorted data horizontally. For
example:

=TRANSPOSE (Sorted (A16:L16))

Using the Insert Function Dialog Box

The Excel Insert Function dialog box is a handy tool that lets you choose a
worksheet function from a list and prompts you for the function’s arguments.
And, as I note earlier in this chapter, your custom worksheet functions also

ooks.com/

http://www.it-ebooks.info/

3406

Part V: Putting It All Together

appear in the Insert Function dialog box. Custom functions appear in the
User Defined category.

<P Function procedures defined with the Private keyword do not appear in the
Insert Function dialog box. Therefore, if you write a Function procedure that’s
designed to be used only by other VBA procedures (but not in formulas), you
should declare the function as Private.

Displaying the function’s description

The Insert Function dialog box displays a description of each built-in func-
tion. But, as you can see in Figure 20-5, a custom function displays the follow-
ing text as its description: No help available.

Insert Function 7 =%
Search For a function:

I Type a brief description of what you want to do and then click

Go

Flgure 20-5: O select a cabegory: User Defined E|
By defaUItr Select a Function:
the Insert | [concat i
. Drawine
Function Firsthame
. MonthMames
dialog box
does not
. TopaAvg(InRange,N)
prOVIde a No help available,
description
for custom
fUnCthns. Help on this function
|

To display a meaningful description of your custom function in the Insert
Function dialog box, perform a few additional (nonintuitive) steps:

1. Activate a worksheet in the workbook that contains the custom
function.

2. Choose Developer~Code~>Macros (or press Alt+F8).
The Macro dialog box appears.

3. In the Macro Name field, type the function’s name.

Note that the function does not appear in the list of macros; you must
type the name in.

4. Click the Options button.
The Macro Options dialog box appears.

ooks.com/

http://www.it-ebooks.info/

Chapter 20: Creating Worksheet Functions — and Living to Tell about It 34 7

5. In the Description field, type a description of the function.
6. Click OK.
7. Click Cancel.

Now the Insert Function dialog box displays the description for your func-
tion; see Figure 20-6.

Insert Function -7 |=%
Search For a function:

Type a brief description of what you want to do and then click.

G0

Or select & category: | User Defined E|
Select a function:

Concat -
| DroOne

FirstMamne
Monthiames

Figure 20-6: | |scereo i
The custom | |user_ hd
function ;:;?:tg: :::g;'g the M largest values in a range.
now dis-
plays a
description. Help on this Fnction Cancel
|

Custom functions, by default, are listed in the User Defined category. To add a
function to a different category, you need to use VBA. This statement, when
executed, adds the TopAvg function to the Math & Trig category (which is cat-

egory #3):

A\

Application.MacroOptions Macro:="TopAvg", Category:=3

Check the Help system for other category numbers. And remember, you need
to execute this statement only one time. After you execute it (and save the
workbook), the category number is permanently assigned to the function.

Argument descriptions

When you access a built-in function from the Insert Function dialog box, the
Function Arguments dialog box displays a description of each argument. (See
Figure 20-7.) If you use Excel 2007, there is no direct way to provide such
descriptions for custom functions.

But if you use Excel 2010, a new feature lets you specify descriptions for your

custom functions. You do this by using the MacroOptions method. Here’s an
example that adds descriptions for the arguments used by the TopAvg function:

ooks.com/

http://www.it-ebooks.info/

348 Partv: Putting It All Together

Figure 20-7:
By default,
the Function
Arguments
dialog box
displays
function
argument
descriptions
for built-in
functions
only.
|

Sub AddArgumentDescriptions ()
Application.MacroOptions Macro:="TopAvg",
ArgumentDescriptions:= _
Array ("Range that contains the values",
"Number of values to average")
End Sub

You need to execute this procedure only one time. After you execute it, the
argument descriptions are stored in the workbook and are associated with
the function.

Notice that the argument descriptions appear as arguments for the Array
function. You must use the Array function even if you're assigning a descrip-
tion for a function that has only one argument.

Functian Arguments 7=
PMT

Rate |,065/12 [E5] = o.o0s416667

Nper & = =en

Type % =
Calculates the payment for a loan based on constant payments and a constant interest rate,

Nper s the kotal number of payments For the loan,

Farmula result =
Help on this Function Cancel

This chapter provides lots of information about creating custom worksheet
functions. Use these examples as models when you create functions for your
own work. As usual, the online help provides additional details. Turn to
Chapter 21 if you want to find out how to make your custom functions more
accessible by storing them in an add-in.

ooks.com/

http://www.it-ebooks.info/

Chapter 21

Creating Excel Add-Ins

In This Chapter
Using add-ins: What a concept!
Knowing why you might want to create your own add-ins

Creating custom add-ins

0ne of the slickest features of Excel — at least in my mind — is the capa-
bility to create add-ins. In this chapter, I explain why I like this feature
and show you how to create add-ins by using only the tools built into Excel.

Okay . . . So What's an Add-In?

What’s an add-in? Glad you asked. An Excel add-in is something you add to
enhance Excel’s functionality. Some add-ins provide new worksheet functions
you can use in formulas; other add-ins provide new commands or utilities. If
the add-in is designed properly, the new features blend in well with the origi-
nal interface so they appear to be part of the program.

<P Excel ships with several add-ins, including the Analysis ToolPak and Solver.
You can also get Excel add-ins from third-party suppliers or as shareware. My
Power Utility Pak is an example of an add-in (it adds about 70 new features to
Excel, plus a slew of new worksheet functions).

Any knowledgeable user can create add-ins, but VBA programming skills are
required. An Excel add-in is basically a different form of an XLSM workbook
file. More specifically, an add-in is a normal XLSM workbook with the follow-
ing differences:

v The IsAddin property of the Workbook object is True.

v The workbook window is hidden and can’t be unhidden by using the
View>Window=>Unhide command.

v The workbook is not a member of the Workbooks collection. Rather, it’s
in the AddIns collection.

ooks.com/

http://www.it-ebooks.info/

350 Partv: Putting It All Together

WMBER
@&
&

You can convert any workbook file into an add-in, but not all workbooks

are good candidates. Because add-ins are always hidden, you can’t display
worksheets or chart sheets contained in an add-in. However, you can access
an add-in’s VBA Sub and Function procedures and display dialog boxes con-
tained on UserForms.

Excel add-ins usually have an XLAM file extension to distinguish them from
XLSM worksheet files. Earlier versions of Excel created add-ins with an XLA
extension.

Why Create Add-Ins?

You might decide to convert your Excel application into an add-in for any of
the following reasons:

1 Make it more difficult to access your code: When you distribute an
application as an add-in (and you protect its VBA project), casual users
can’t view the sheets in the workbook. If you use proprietary techniques
in your VBA code, you can make it more difficult for others to copy the
code. Excel’s protection features aren’t perfect though, and password-
cracking utilities are available.

v Avoid confusion: If a user loads your application as an add-in, the file
is invisible and therefore less likely to confuse novice users or get in
the way. Unlike a hidden workbook, the contents of an add-in can’t be
revealed.

v~ Simplify access to worksheet functions: Custom worksheet functions
that you store in an add-in don’t require the workbook name qualifier.
For example, if you store a custom function named MOVAVG in a work-
book named NEWFUNC.XLSM, you must use syntax like the following to
use this function in a different workbook:

=NEWFUNC . XLLSM ! MOVAVG (A1 :A50)

But if this function is stored in an add-in file that’s open, you can use
much simpler syntax because you don’t need to include the file reference:

=MOVAVG (A1 :A50)

v Provide easier access for users: After you identify the location of your
add-in, it appears in the Add-Ins dialog box, with a friendly name and a
description of what it does. The user can easily enable or disable your
add-in.

ooks.com/

http://www.it-ebooks.info/

Chapter 21: Creating Excel Add-Ins

v Gain better control over loading: Add-ins can be opened automatically
when Excel starts, regardless of the directory in which they are stored.

v Avoid displaying prompts when unloading: When an add-in is closed,
the user never sees the dialog box prompt asking if you want to save
changes in the file.

Working with Add-Ins

Figure 21-1:
The Add-
Ins dialog

box lists all

the add-ins
known to
Excel.
|

\NG/
Vg,\\

You load and unload add-ins by using the Add-Ins dialog box. To display
this dialog box, choose Filec>Options>Add-Ins. Then select Excel Add-Ins
from the drop-down list at the bottom of this dialog screen and click Go.

If you're using Excel 2010, getting to this dialog box is a bit easier: Choose
Developer=Add-Ins=>Add-Ins. But the easiest method is to just press Alt+TI
(the old Excel 2003 keyboard shortcut).

Any of these methods displays the Add-Ins dialog box shown in Figure 21-1. The
list box contains the names of all add-ins that Excel knows about. In this list,
check marks identify any currently open add-ins. You can open and close add-
ins from the Add-Ins dialog box by selecting or deselecting the check boxes.

+ o'

er Ltility
Solver Add-in pa—
Text Tools wufomation. ..

H

Add-Ins

Add-Ins available:

Analysis ToolPak
Analysis ToolPak - VBA
Enhanced Data Form v3b
Euro Currency Tools
Power Utility Pak v

Power Utility Pak w7

Add-In Tools For Excel 2007 - Licensed
Copyright 1999-2007 J-Walk & Associates
All Rights Reserved

You can also open most add-in files (as if they were workbook files) by choos-
ing the File=>Open command. An add-in opened in this manner does not
appear in the Add-Ins dialog box. In addition, if the add-in was opened by
using the Open command, you can’t close it by choosing Filez>Close. You can
remove the add-in only by exiting and restarting Excel or by writing a macro
to close the add-in.

ooks.com/

351

http://www.it-ebooks.info/

352 PartV: Putting It All Together

When you open an add-in, you may or may not notice anything different. In
many cases, however, the Ribbon changes in some way — Excel displays
either a new tab or one or more new groups on an existing tab. For example,
opening the Analysis ToolPak add-in gives you a new item on the Data tab:
Analysis®>Data Analysis. If the add-in contains only custom worksheet func-
tions, the new functions appear in the Insert Function dialog box, and you’ll
see no change to Excel’s user interface.

Add-In Basics

Although you can convert any workbook to an add-in, not all workbooks ben-
efit from this conversion. A workbook with no macros makes a completely
useless add-in. In fact, the only types of workbooks that benefit from being
converted to an add-in are those with macros. For example, a workbook that
consists of general-purpose macros (Sub and Function procedures) makes an
ideal add-in.

Creating an add-in isn’t difficult, but it does require a bit of extra work. Use
the following steps to create an add-in from a normal workbook file:

1. Develop your application and make sure that everything works
properly.
Don’t forget to include a method for executing the macro or macros.
You might want to define a shortcut key or customize the user interface
in some way (see Chapter 19). If the add-in consists only of functions,
there’s no need to include a method to execute them because they will
appear in the Insert Function dialog box.

2. Test the application by executing it when a different workbook is
active.

Doing so simulates the application’s behavior when it’s used as an
add-in because an add-in is never the active workbook.

3. Activate the VBE and select the workbook in the Project window;
choose Tools=>VBAProject Properties and click the Protection tab;
select the Lock Project for Viewing check box and enter a password
(twice); click OK.

This step is necessary only if you want to prevent others from viewing
or modifying your macros or UserForms.

4. In Excel 2010, choose Developer~>Document Panel. In Excel 2007,
choose Office~>Prepare~>Properties.

Excel displays its Document Properties pane below the Ribbon.

ooks.com/

http://www.it-ebooks.info/

Chapter 21: Creating Excel Add-Ins 353

5. In the Document Properties pane, enter a brief descriptive title in the
Title field and a longer description in the Comments field.

Steps 4 and 5 are not required but make the add-in easier to use,
because the descriptions you enter appear in the Add-Ins dialog box
when your add-in is selected.

6. Choose Filez>Save As.

7. In the Save As dialog box, select Excel add-in (*.xlam) from the Save
as Type drop-down list.

8. Specify the folder that will store the add-in.

Excel proposes a folder named AddlIns, but you can save the file in any
folder you like.

9. Click Save.

A copy of your workbook is converted to an add-in and saved with an XLAM
extension. Your original workbook remains open.

An Add-In Example

«\\E B

§

e

’

In this section, I discuss the basic steps involved in creating a useful add-
in. The example is based on the Change Case text conversion utility that I
describe in Chapter 16.

The XLSM version of this example is available at this book’s Web site. You can
create an add-in from this workbook.

Setting up the workbook

The workbook consists of one blank worksheet, a VBA module, and a
UserForm. In Chapter 19, I already added code to the workbook that creates a
new menu item on the Cell right-click shortcut menu.

The original version of the utility included options for uppercase, lowercase,
and proper case. For the add-in version, | added two new options to the
UserForm, so it has the same options as the built-in tool in Microsoft Word:

1+ Sentence Case: Makes the first letter uppercase, and all other letters
lowercase.

1 Toggle Case: All uppercase characters are converted to lowercase, and
vice versa.

ooks.com/

http://www.it-ebooks.info/

354 Partv:Putting It All Together

Figure 21-2 shows UserForm1. The five OptionButton controls are inside
a Frame control. In addition, the UserForm has a Cancel button (named
CancelButton) and an OK button (named OKButton).

I | Change Case ==
Figure 21-2: Options
The (¥ Upper Case
" Lower Case
UserForm -
for the (" Proper Case
(" Zentence Case @
Change 3
Case add-?n " Logol cose
|

The code executed when the Cancel button is clicked is very simple. This
procedure unloads the UserForm with no action:

Private Sub CancelButton_Click()
Unload UserForml
End Sub

The code that’s executed when the OK button is clicked follows. This code
does all the work:

Private Sub OKButton Click()
Dim TextCells As Range
Dim cell As Range
Dim Text As String
Dim i As Long

! Create an object with just text constants
On Error Resume Next
Set TextCells = Selection.SpecialCells (xlConstants,
x1TextValues)

' Turn off screen updating
Application.ScreenUpdating = False

! Loop through the cells
For Each cell In TextCells

Text = cell.Value

Select Case True

Case OptionLower 'lowercase
cell.Value = LCase(cell.Value)

Case OptionUpper 'UPPERCASE
cell.Value = UCase(cell.Value)

Case OptionProper 'Proper Case
cell.Value = _

WorksheetFunction.Proper (cell.Value)

ooks.com/

http://www.it-ebooks.info/

Chapter 21: Creating Excel Add-Ins

Case OptionSentence 'Sentence case
Text = UCase(Left(cell.Value, 1))
Text = Text & LCase (Mid(cell.Value, 2,
Len(cell.Value)))
cell.Value = Text
Case OptionToggle 'tOGGLE CASE

For i = 1 To Len(Text)
If Mid(Text, i, 1) Like "[A-Z]" Then
Mid(Text, 1, 1) = LCase(Mid(Text, i, 1))
Else
Mid(Text, i, 1) = UCase(Mid(Text, i, 1))
End If
Next i

cell.Value = Text
End Select
Next

! Unload the dialog box
Unload UserForml
End Sub

In addition to the two new options, this version of the Change Case utility dif-
fers from the version in Chapter 16 in two other ways:

v~ [use the SpecialCells method to create an object variable that consists of
the cells in the selection that contain a text constant (not a formula). This
technique makes the routine run a bit faster if the selection contains many
formula cells. See Chapter 14 for more information on this technique.

v [added the Change Case menu item to the Row and the Column short-
cut menus. So now, you can execute the utility by right-clicking a range
selection, a complete row selection, or a complete column selection.

Testing the workbook

Test the add-in before converting this workbook. To simulate what happens
when the workbook is an add-in, you should test the workbook when a dif-
ferent workbook is active. Remember, an add-in is never the active sheet or
workbook, so testing it when a different workbook is open may help you iden-
tify some potential errors.

1. Open a new workbook and enter information into some cells.

For testing purposes, enter various types of information, including text,
values, and formulas. Or just open an existing workbook and use it for
your tests — remember that any changes to the workbook cannot be
undone, so you may want to use a copy.

2. Select one or more cells (or entire rows and columns).

ooks.com/

355

http://www.it-ebooks.info/

356 Part V: Putting It All Together

3. Execute the ChangeCase macro by choosing the new Change Case
command from your Cell (or Row or Column) right-click menu.

WMBER If the Change Case command doesn’t appear on your right-click menu, the
most likely reason is that you did not enable macros when you opened the
change case.xlsm workbook. Close the workbook and then reopen it — and
make sure that you enable macros.

Adding descriptive information

[recommend entering a description of your add-in, but this isn’t required.

1. Activate the change case.xlsm workbook.

2. In Excel 2010, choose Developer~Document Panel. In Excel 2007,
choose Officec>Prepare->Properties.

Excel displays the Document Properties panel above the Formula bar.
See Figure 21-3.

3. Enter a title for the add-in in the Title field.

This text appears in the list of add-ins in the Add-Ins dialog box. For this
example, enter Change Case.

&9~ B~ change case.sdsm - Microsaft Excel o = o=
g Home Insert Page Layaut Formulas Data Review View Develaper 2@ = =
= ERecord Maao &3 Y T Import
| 2 & & = e,
—— u elative Referances 4= Expansion Packs o —
visual Macros 1e-Ins nsert Design Source Document
asic 1Y A Mode @ Run Dialog Panel
Add-Ins Cantrals ML Modlify
@ Document Properties = Location: AExcel 2010 VB DummiesiChapter Examples\ch21|change case.xlsm s Required field X
Author: Title: Subject: Keywords: Category:
John Wakkenbach Change Case
Status:
Commenks:
Changes the case of kest in the selecked cells. Access this tlity by Using the right-click shorteut
K10 A f;.- v
A B (D E F c H 1) K L5
| 1
Figure 21-3:
B
Use the |
Document | ¢
. 7
Properties | s
9
anel —
p 10 -
to enter | it
.. 12,
descriptive | =
- . 14
information |
about your L
= . M 4 » »| Sheetl =] 4 »
add-in heet1 /F
Ready | 3 | || @ 100% (=) [} ()
| - -

ooks.com/

http://www.it-ebooks.info/

Chapter 21: Creating Excel Add-Ins 35 7

4. In the Comments field, enter a description.

This information appears at the bottom of the Add-Ins dialog box when
the add-in is selected. For this example, enter Changes the case of text in
selected cells. Access this utility by using the right-click shortcut menu.

Protecting the UBA code

If you want to add a password to prevent others from viewing the VBA code,
follow these steps:

1. Activate the VBE and select the change case.xlsm workbook in the
Project window.

2. Choose Tools=>VBAProject Properties and click the Protection tab on
the dialog box that appears.

3. Select the Lock Project for Viewing check box and enter a password
(twice).

4. Click OK.

5. Save the workbook by choosing Filer>Save from the VBE’s menu or by
going back to the Excel window and choosing File~>Save.

Creating the add-in

At this point, you've tested the change case.xlsm file, and it’s working cor-
rectly. The next step is to create the add-in:
1. If needed, reactivate Excel.
2. Activate the change case.xlsm workbook and choose File>Save As.
Excel displays its Save As dialog box.
3. In the Save as Type drop-down menu, select Add-In (*.xlam).
4. Specify the location and click Save.

A new add-in file (with an XLAM extension) is created, and the original XLSM
version remains open.

Opening the add-in

To avoid confusion, close the XLSM workbook before opening the add-in that
you created from that workbook.

ooks.com/

http://www.it-ebooks.info/

358 PartV: Putting It All Together

Open the add-in with these steps:

1. Press AIt+TI.
Excel displays the Add-Ins dialog box.
2. Click the Browse button.
3. Locate and select the add-in you just created.
4. Click OK to close the Browse dialog box.

After you find your new add-in, the Add-Ins dialog box lists the add-
in. As shown in Figure 21-4, the Add-Ins dialog box also displays the
descriptive information you provided in the Document Properties
panel.

5. Make sure that the Add-Ins dialog box has a check mark for your new
add-in.

6. Click OK to close the dialog box.

Excel opens the add-in, and you can now use it with all your workbooks.

Add-Ins -7 |=%

Add-Ins available:

Analysis ToolPak
Analysis ToolPak - VBA

O

Enhanced Data Form w3b

Euro Currency Toals
Ei

Power Utility Pak vé EUSHE:

Power Utility Pak v7

Solver Add-in

| Text Tools
Figure 21-4:
The Add-
Ins dialog

box hasthe | change case

new ad d-in Changes the case of text in the selected cells,
Access this utiity by using the right-click shortcut

selected. menu.
|

Distributing the add-in

If you're in a generous mood, you can distribute this add-in to other Excel
users simply by giving them a copy of the XLAM file (they don’t need the
XLSM version). When they open the add-in, the new Change Case command
appears on the shortcut menu when they select a range, one or more rows,
or one or more columns. If you locked the VBA project with a password,
others cannot view your macro code (unless they know the password).

ooks.com/

http://www.it-ebooks.info/

\\3

Figure 21-5:
Making an
add-in not
an add-in.

|

Chapter 21: Creating Excel Add-Ins 359

Modifying the add-in

If you ever need to modify the add-in (and you protected the VBA project
with a password), you need to unlock it:

1. Open your XLAM file if it’s not already open.

2. Activate the VBE.

3. Double-click the project’s name in the Project window.

You are prompted for the password.

4. Enter your password and click OK.

5. Make your changes to the code.

6. Save the file from the VBE by choosing File>Save.
If you create an add-in that stores information in a worksheet, you must set
the workbook’s IsAddIn property to False to view the workbook. You do this
in the Property window when the ThisWorkbook object is selected (see Figure

21-5). After you’ve made your changes to the workbook, make sure that you
set the [sAddIn property back to True before you save the file.

You now know how to work with add-ins and why you might want to create
your own add-ins.

#9 Micrasoft Visual Basic far Applications - change casedam - [ThisWarkbaak (Codle)] =8 I=H ===
i File Edit View Inset Format Debug Run Tools Adddns Window Help Type a question for help I
HE=Rg=] 5N - b0 @b WY N @ ncdl B

[= L x| [Workbook | [Beforetiose =]
lj“"—ia Private Sub Uorkbook Open(] =
% vBAProject (Books) Call iddToShortcur

£ & ¥BProject {change case.xlam End Sub

E1-55 Microsoft Excel Gbjects
EE] Sheet1 (Sheett)

ﬂ ThisWarkbook Private Sub Workbook BeforeClose(Cancel is Boolean)
1 Forms Call DeleteFromShortout
[UserFarmi End Sub
(23 Modes Properties - ThisWorkbook =
[Thisworkbaok tarkbook |
Alphabetic | Cateqorized |
(Hame) ThisWorkbook .
AccuracyVersion 0
AutoUpdateFrequency o
ChangeHistaryDur ation o
CheckCompatibility False
(ConflictResolution 1 -l
Date1904 False:
DisplayDrawingObjects -4104 - xlDisplayShapes |E
DisplayInkCommertts False:
DonotPromptFor Convert False
EnablefutoRecover True
EncryptionProvider
Envelopetisile False
Final False:
ForceFulCalculation False
HighlightChangesOnScreen False:
InactivelistBordervisible True
T e =l
keepChangeHistary True
ListChangesOnhiewshest False
Password kb
PersonalviewlistSettings True

ooks.com/

http://www.it-ebooks.info/

360 rartv: putting It Al Together

ooks.com/

http://www.it-ebooks.info/

Part VI
The Part of Tens

The 5th Wave By Rich Tennant
® m;H.—rENNANr - NS

Oo-lodk! Stare long
enough at the center
and a 3-D 1mage of
a bird in £hght_..__

I've never seen &
a opyeadsheet so = =
0 dense wWith coloy =
and data. :

ooks.com/

http://www.it-ebooks.info/

In this part . . .

F)r reasons that are historical — as well as useful —
all the books in the For Dummies series have chap-
ters with lists in them. The next two chapters contain my
own “ten” lists, which deal with frequently asked ques-
tions and other resources.

ooks.com/

http://www.it-ebooks.info/

Chapter 22
Ten VBA Questions (And Answers)

In This Chapter

Storing worksheet function procedures

Limitation of the macro recorder
Speeding up your VBA code

Declaring variables explicitly

Using the VBA line continuation character

l he following ten questions (and answers) address some of the most
common issues asked by VBA newcomers.

I created a custom VBA function. When I try to use it in a formula, the for-
mula displays #NAME?. What’s wrong?

You probably put your function code in the wrong location. VBA code for
worksheet functions must be in a standard VBA module — not in a module
for a sheet or in ThisWorkbook. In the VBE, use Insert=>Module to insert a
standard module. Then cut and paste your code to the new VBA module.

This is a very common mistake, because a Sheet module looks exactly like a
standard VBA module. Resist the temptation to put your code there. Spend
four seconds and choose Insert>Module.

Can I use the VBA macro recorder to record all my macros?

Only if your macros are very simple. Normally, you use it only to record
simple macros or as a starting point for a more complex macro. The macro
recorder can’t record macros that use variables, looping, or any other type
of program flow constructs. In addition, you cannot record a Function proce-
dure in the VBA macro recorder. Unfortunately, Excel 2007 refuses to record
many actions that are related to charts and shapes. This oversight was cor-
rected in Excel 2010.

ooks.com/

http://www.it-ebooks.info/

364 Partvi: The Part of Tens

How can I prevent others from viewing my VBA code?

1. Activate your project in the VBE, and choose Tools=>xxxxx Properties.
The xxxxx corresponds to the name of your VBA project.

2. In the dialog box that appears, click the Protection tab and select Lock
Project for Viewing.

3. Enter a password (twice) and click OK.

4. Save your workbook.

Doing so prevents casual users from viewing your code, but password pro-
tection is certainly not 100 percent secure. Password-cracking utilities exist.

What'’s the VBA code for increasing or decreasing the number of rows and
columns in a worksheet?

No such code exists. The number of rows and columns is fixed and cannot be
changed. However, if you open a workbook that has been created by using
an earlier Excel version (before Excel 2007), the text Compatibility Mode
appears in the title bar. This notice indicates that this workbook is limited to
the old 256-x-65536 cell grid. You can get out of this mode (and thus get the
new, bigger cell grid) by saving the file as a normal (XLSX or XLSM) work-
book and then closing and reopening this new file.

When I refer to a worksheet in my VBA code, I get a “subscript out of
range” error. I'm not using any subscripts. What gives?

This error occurs if you attempt to access an element in a collection that
doesn’t exist. For example, this statement generates the error if the active
workbook doesn’t contain a sheet named MySheet:

Set X = ActiveWorkbook.Sheets ("MySheet")
In your case, the workbook that you think is open is probably not open (so
it’s not in the Workbooks collection). Or, maybe you misspelled the work-
book name.
Is there a VBA command that selects a range from the active cell to the last
entry in a column or a row? (In other words, how can a macro accomplish
the same thing as Ctrl+Shift+! or Ctrl+Shift+—?)
Here’s the VBA equivalent for Ctrl+Shift+l:

Range (ActiveCell, ActiveCell.End(x1lDown)) .Select

ooks.com/

http://www.it-ebooks.info/

Chapter 22: Ten VBA Questions (And Answers) 36 5

For the other directions, use the constants xIToLeft, xIToRight, or xlUp rather
than xIDown.

How can I make my VBA code run as fast as possible?
Here are a few tips:

1 Be sure to declare all your variables as a specific data type. (Use Option
Explicit in each module’s Declarations section to force yourself to
declare all variables.)

v If you reference an object (such as a range) more than once, create an
object variable using the Set keyword.

v Use the With-End With construct whenever possible.

v If your macro writes data to a worksheet and you have lots of complex
formulas, set the calculation mode to Manual while the macro runs (but
make sure you do a calculation when you need to use the results!).

v If your macro writes information to a worksheet, turn off screen updat-
ing by using Application.ScreenUpdating = False.

Don’t forget to reinstate these last two settings to their starting value when
your macro is finished.

How can I display multiline messages in a message box?
The easiest way is to build your message in a string variable, using the
vbNewLine constant to indicate where you want your line breaks to occur.
The following is a quick example:

Msg = "You selected the following:" & vbNewLine

Msg = Msg & UserAns

MsgBox Msg

I wrote some code that deletes worksheets. How can I avoid showing
Excel’s warning prompt?

Insert this statement before the code that deletes the worksheets:
Application.DisplayAlerts = False

Why can’t I get the VBA line-continuation character (underscore) to work?

The line continuation sequence is actually two characters: a space followed

by an underscore. Be sure to use both characters and press Enter after the
underscore.

ooks.com/

http://www.it-ebooks.info/

366 Part VI: The Part of Tens

ooks.com/

http://www.it-ebooks.info/

Chapter 23
(Almost) Ten Excel Resources

In This Chapter
Using the VBA Help System
Getting assistance from Microsoft

Finding help online

Fis book is only an introduction to Excel VBA programming. If you
hunger for more information, feel free to feed on the list of additional
resources I've compiled here. You can discover new techniques, communi-
cate with other Excel users, download useful files, ask questions, access the
extensive Microsoft Knowledge Base, and lots more.

“&N\BER Several of these resources are online services or Internet resources, which
& tend to change frequently. The descriptions are accurate at the time I'm writ-

ing this, but I can’t guarantee that this information will remain current. That’s
how the Internet works.

The UBA Help System

[hope you've already discovered VBA’s Help system. I find this reference
source particularly useful for identifying objects, properties, and methods.
It’s readily available, it’s free, and (for the most part) it’s accurate. So use it.

Microsoft Product Support

Microsoft offers a wide variety of technical support options (some for free,
others for a fee). To access Microsoft’s support services (including the useful
Knowledge Base), go here:

http://support.microsoft.com

ooks.com/

http://www.it-ebooks.info/

368 Partvi: The Part of Tens

And don’t forget about Microsoft’s Office site, which has lots of material
related to Excel:

http://office.microsoft.com
Another great resource is the Microsoft Developer Network site (MSDN). It
has lots and lots of information aimed at the developer (yes, that is you!).
Here is a link to the main site, where you can search for Excel-related

information:

http://msdn.microsoft.com

Internet Newsgroups

A\\S

Microsoft’s newsgroups are perhaps the best place to go if you have a ques-
tion. You can find hundreds of newsgroups devoted to Microsoft products —
including a dozen or so newsgroups just for Excel. The best way to access
these newsgroups is by using special newsreader software. Or, use the e-mail
client that comes with Windows. Depending on your version of Windows,

it’s called Outlook Express, Windows Mail, or Windows Live Mail. All these
programs let you connect to newsgroups. Set your newsreader software to
access the news server at msnews.microsoft.com.

The more popular English-language, Excel-related newsgroups are listed here:

microsoft.public.excel.charting
microsoft.public.excel .misc
microsoft.public.excel.printing
microsoft.public.excel.programming
microsoft.public.excel.setup
microsoft.public.excel .worksheet. functions
If you prefer to access the newsgroups by using your Web browser, you have
two choices:
http://microsoft.com/communities/
http://groups.google.com
Without even knowing what your question is, I'm willing to bet that it has

already been answered. To search old newsgroup messages by keyword, point
your Web browser to:

http://groups.google.com

ooks.com/

http://www.it-ebooks.info/

Chapter 23: (Almost) Ten Excel Resources 369

Internet Web Sites

Several Web sites contain Excel-related material. A good place to start your
Web surfing is my very own site, which is named The Spreadsheet Page. After
you get there, you can check out my material and then visit my Resources
section, which leads you to dozens of other Excel-related sites. The URL for
my site is:

http://spreadsheetpage.com

Excel Blogs

You can find literally millions of blogs (short for weblogs) on the Web. A
blog is basically a frequently updated diary about a particular topic. Quite a
few blogs are devoted exclusively to Excel. I maintain a list of Excel blogs at
my site:

http://spreadsheetpage.com/index.php/excelfeeds

Google

Bing

When I have a question about any topic (including Excel programming), my
first line of attack is Google — currently the world’s most popular search site.

http://google.com
Enter a few key search terms and see what Google finds. I get an answer
about 90 percent of the time. If that fails, then I search the newsgroups

(described earlier) by using this URL:

http://groups.google.com

Bing is Microsoft’s answer to the Google search site. Some people prefer it
over Google; others don't. If you haven't tried it, the URL is:

http://bing.com

ooks.com/

http://www.it-ebooks.info/

370 Partvi: The Part of Tens

Local User Groups

Many larger communities and universities have an Excel user group that
meets periodically. If you can find a user group in your area, check it out.
These groups are often an excellent source for contacts and sharing ideas.

My Other Books

Sorry, but I couldn’t resist the opportunity for a blatant plug. To take VBA
programming to the next level, check out my Excel 2007 Power Programming
with VBA or Excel 2010 Power Programming with VBA (both published by
Wiley).

ooks.com/

http://www.it-ebooks.info/

Index

o Symbols ®

= (equal sign), 109-110

' (apostrophe) in comments, 95-96

+ (addition) operator, 110-111

/ (division) operator, 110-111

A (exponentiation) operator, 110-111

\ (integer division) operator, 110

* (multiplication) operator, 110-111

& (string concatenation) operator, 110
- (subtraction) operator, 110-111

o/] o

Abs function, 133
absolute mode (macro recorder), 84-85
accelerator keys, 263, 285-286
Accelerator property, 263, 271
Activate event, 64, 162-163, 170-174
activating VBE, 37
active objects, 19
adding. See also inserting

buttons to Ribbon, 16

controls to UserForms, 254, 256-257,

261-263, 269-270

VBA module to a project, 41
AddinInstall event, 162
add-ins

Analysis ToolPak, 349

Change Case add-in, 353-359

closing, 351

code, 350

converting workbook files into

an add-ins, 350

creating, 16, 349-353

defined, 349

distributing, 358

IsAddin property, 349

loading, 351

modifying, 359

opening, 351-352

Power Utility Pak, 349

Ribbon, 352

shareware, 349

Solver, 349

third-party suppliers, 349

unloading, 351

worksheet functions, 350

XLAM file extension, 350
AddinUninstall event, 162
addition (+) operator, 110-111
Address property (Range object), 122
advantages of VBA, 17
aesthetics of UserForms, 287
alert messages, 228-229
aligning controls in UserForms, 284-285
Analysis ToolPak, 349
and operator, 111
apostrophe () in comments, 95-96
Application object, 56
applications

creating, 16

users, BC20
arguments in functions

defined, 335

descriptions, 347-348

indefinite number of arguments, 342-343

no argument, 336
one argument, 336-338
optional argument, 340-342
range argument, 339-340
two arguments, 338-339
arranging windows, 43
Array function, 133
arrays
declaring, 112
defined, 112
dynamic, 113-114
functions, 343-345
multidimensional, 113

Note: BC (Bonus Chapter) in a page number denotes content located on this book’s companion Web site
(www.dummies.com/go/excelvbaprogrammingfd2e).

ooks.com/

http://www.dummies.com/go/excelvbaprogrammingfd2e
http://www.it-ebooks.info/

372

Excel VBA Programming For Dummies, 2nd Edition

Asc function, 133
assigning
macros to a button, 76-77
values to variables, 20
assignment statements, 109-110
Atn function, 133
Auto Data Tips option (VBE), 51
Auto Indent option (VBE), 52

Auto List Members option (VBE), 51, 66-67

Auto Quick Info option (VBE), 51
Auto Syntax Check option (VBE), 50
automatic calculation, 228
automating

defined, 14

repetitive operations, 15

tasks, 15
AutoSize property, 271

ol e

BackColor property, 271
BackStyle property, 271
backups, BC20
Banfield, Colin, Excel 2010 For Dummies
Quick Reference, 2
BeforeClose event, 162, 169
BeforeDoubleClick event, 163, 174
BeforePrint event, 162
BeforeRightClick event, 163, 174-175
BeforeSave event, 162, 169-170
Bing, 369
blogs, 369
Boolean data type, 99
Boolean settings, 221
Break mode, 203-207
breakpoints
defined, 202
removing, 203
setting, 202-203
bugs. See also debugging
comments, 208
defined, 183
error messages, 198-199
extreme-case bugs, 197
Function procedures, 209
identifying, 198-199
incorrect context bugs, 197
logic flaws, 197

reduction tips, 208-209

security updates, 198

Sub procedures, 209

syntax errors, 198

wrong data type bugs, 198

wrong version bugs, 198
built-in constants, 106-107
built-in data types, 99
built-in functions, 130-135
buttons

adding to Ribbon, 16

custom buttons, 16

macros, 76-77

Quick Access toolbar, 320

oo

Calculate event, 163
calculating mortgage payment, 137
calling a Function procedure from a Sub
procedure, 79
Caption property, 272
cell ranges. See ranges
Cell shortcut menu, 326-328
Cells property, 117-118
Change Case add-in, 353-359
Change event, 163, 175-177
changing
control properties, 257-258, 270-272
settings, 220-222
tab order in dialog boxes, 285-286
changing properties, 62-63
charts
Chart property, 224
ChartObject object, 223-224
ChartObijects collection, 224-225
embedded charts, 223-224
formatting, 225-226
grayscale, BC7-BC8
macros, 222-223
modifying chart type, 224
properties, 225
selecting, 226
UserForms, 310-311
CheckBox control, 256, 274
checklist for creating UserForms, 311-312
Choose function, 133
Chr function, 133

ooks.com/

http://www.it-ebooks.info/

Index 3 73

cleaning up code, BC18
Clear method, 128
clearing ranges, 128
closing
add-ins, 351
windows, 44
code
add-ins, 350
breakpoints, 202-203
cleaning up, BC18
comments, 95-97
conventions used in this book, 4
copying, 49
entering into VBA modules, 44-49
indenting, 52, 208
labels, 113
line continuation character sequence, 4-5
line numbers, 113
logic flaws, 197
modular code, BC18
password-protecting, 364, BC17-BC18
running as fast as possible, 365
stepping through line by line, 205
variables, 97-98
versions of Excel, BC20
Code Colors option (VBE), 52-53
Code window
for UserForms, 258
in VBE, 38-39, 42-44
collections
defined, 19, 58
loops, 158-160
methods, 64
properties, 63
Color property, 125
colors
Color property, 125
controls (UserForms), 271
converting, BC3-BC4, BC6-BC7
decimal color values, BC1-BC5
grayscale, BC5-BC8
objects, 125
predefined constants, BC1
RGB color system, BC1-BC2, BC8-BC9
specifying, BC1
ThemeColor property, BC12
themes, BC10-BC15
TintAndShade property, 125, BC12-BC13

Column property (Range object), 121-122
columns
decreasing the number of, 364
increasing the number of, 364
Range objects, 119
ComboBox control, 256, 274-275
CommandBars object, 250-251, 313,
321-325
CommandButton control, 257, 275-276
comments
apostrophe (), 95-96
bugs, 208
converting statements into comments, 96
defined, 95
effective use of, 97
inserting, 95-96
compile errors, 97
computer viruses, 5-6
concatenation, 110
Const statement, 105
constants
built-in constants, 106-107
Const statement, 105
declaring, 105
MsgBox function, 238-239
predefined constants for colors, BC1
scoping, 106
values, 105-107
contracting projects, 40
controls (CommandBars), 323-325
controls (UserForms)
Accelerator property, 271
adding, 254, 256-257, 261-263, 269-270
aligning, 284-285
AutoSize property, 271
BackColor property, 271
BackStyle property, 271
Caption property, 272
changing properties, 257-258, 270-272
CheckBox, 256
CheckBox control, 274
colors, 271
ComboBox, 256
ComboBox control, 274-275
CommandButton, 257, 275-276
Frame, 256
Frame control, 276
help, 273

ooks.com/

http://www.it-ebooks.info/

3 74 Excel VBA Programming For Dummies, 2nd Edition

controls (UserForms) (continued)
hiding, 284
Image, 257, 276-277
images, 272
Label, 256, 277
Left and Top property, 272
ListBox, 256, 278-279
ListBox control, 296-301
moving, 284
MultiPage, 257, 279
Name property, 272
naming, 259-260, 272
OptionButton, 256, 279-280
OptionButton control, 302-303
Picture property, 272
positioning, 270
properties, 257-258, 270-272
RefEdit, 257
RefEdit control, 280-281, 301-302
resizing, 284
ScrollBar, 257, 281
sizing, 270
spacing, 284-285
SpinButton, 257, 282
SpinButton control, 303-305
TabStrip, 257, 282
TextBox, 256, 282-283
TextBox control, 303-305
ToggleButton, 256, 283
Value property, 272
Visible property, 272
Width and Height property, 272
conventions, explained, 4
converting
colors, BC3-BC4, BC6-BC7
statements into comments, 96
workbook files into an add-ins, 350
Copy method, 127
copy protection, 21
copying
code, 49
ranges, 127, 212-214
Cos function, 133
Count property (Range object), 121
counters, 99
creating
add-ins, 16, 349-353
applications, 16
buttons, 16

commands, 15
dialog boxes, 254-255, 260-263
functions, 16
macros, 25-27
message boxes, 236-237
UserForms, 254-255, 260-263, 290-292
VBA modules, 44
watch expressions, 206-207
worksheet functions, 333-335
Ctrl+Shift+! and Ctrl+Shift+—, 364-365
CurDir function, 133
Currency data type, 99
CurrentRegion property, 214
custom buttons, 16
custom commands, 15
custom dialog boxes. See dialog boxes
custom functions, 16, 138-139, 333-335
Custom Ul Editor for Microsoft Office,
317-320
customizing
message boxes, 238-241
Ribbon, 24, 314-321
shortcut menus, 321-328
toolbars, 329-330
Visual Basic Editor (VBE), 49-54
cycling through windows, 43

o e

data backup procedure, BC20
data types
Boolean, 99
built-in, 99
Currency, 99
Date, 99, 108
defined, 98
Double (negative), 99
Double (positive), 99
identifying data type of a selected
object, 132
Integer, 99
Long, 99
Object, 99
Single, 99
String, 99
User defined, 99
variables, 98-99, 230
Variant, 99
wrong data type bugs, 198

ooks.com/

http://www.it-ebooks.info/

Index 3 75

data validation, 175-177, 295
Date data type, 99, 108
date, displaying, 130
Date function, 130, 133
DateAdd function, 133
DateDiff function, 133
DatePart function, 133
DateSerial function, 133
DateValue function, 133
Day function, 133
Deactivate event, 162-163, 170-174
debugging
breakpoints, 202
Debug.Print statements, 201-202
defined, 198
Function procedures, 341
MsgBox function, 200-201
techniques, 199-202
VBA Debugger, 202-208
Debug.Print statements, 201-202
decimal color values, BC1-BC5
DECIMAL2RGB function, BC3-BC4
decision-making constructs. See program
flow
declarations in VBA modules, 44
declaring
arrays, 112
constants, 105
variable data types, 230
variables, 98-105, BC17
decreasing the number of rows/columns in
a worksheet, 364
Default to Full Module View option (VBE), 52
Delete method, 128
deleting. See also removing
ranges, 128
toolbars, 330
worksheets, 365
descriptions
arguments, 347-348
functions, 346-347
macros, 26, 88
Developer tab, 23-24
dialog boxes. See also UserForms
accelerator keys, 285-286
adding controls, 254, 256-257, 261-263,
269-270
aesthetics, 287
aligning controls, 284-285

alternatives to, 235-236
changing control properties, 257-258,
270-272
charts, 310-311
checklist for creating, 311-312
Code window, 258
creating, 254-255, 260-263, 290, 292
data validation, 295
displaying, 259, 265, 292
displaying built-in dialog boxes, 250-251
event-handler procedures, 263-265,
294-295
example, 289-293, 295-296
hiding controls, 284
inserting, 255-256
keyboard users, 285
macros, 265-268, 292-293
moving controls, 284
naming controls, 259-260
positioning controls, 270
progress indicator, 305-308
resizing controls, 284
sizing controls, 270
spacing controls, 284-285
tab order, 285-286
tabbed, 308-310
testing, 287
when to use, 253-254
Dim keyword, 102-104
Dim statement, 102-104
Dir function, 133
disabling
macros, 5-6
shortcut menus, 328
warning prompts, 365
disadvantages of VBA, 17
displaying
date, 130
integer part of a number, 131
time, 130
UserForms, 250-251, 259, 265, 292
distributing add-ins, 358
division (/) operator, 110-111
Docking tab (VBE), 54
docking windows, 54
document themes
colors, BC10-BC15
defined, BC10
downloading, BC10

ooks.com/

http://www.it-ebooks.info/

376

Excel VBA Programming For Dummies, 2nd Edition

document themes (continued)

effects, BC10

fonts, BC10

mixing and matching elements, BC10
Double (negative) data type, 99
Double (positive) data type, 99
Do-Until loops, 142, 157-158
Do-While loops, 142, 156-157
Drag-and-Drop Text Editing option (VBE), 52
dynamic arrays, 113-114

oF o

editing
macros, 30
VBA modules, 18
Editor Format tab (VBE), 52-53
Editor tab (VBE), 50
effects (themes), BC10
efficiency of macro recorder, 90-92
Elself structure, 146-147
embedded charts, 223-224
enabling macros, 5-6, BC19
End Function statement, 70
End statement, 105
End Sub statement, 70
entering
code into VBA modules, 44-49
worksheet functions, 138
EntireColumn property, 215
EntireRow property, 215
equal sign (=) operator, 109-110
eqv operator, 111
Erl function, 133
Err function, 133
Err object, 193-194
Error function, 133
error messages, 198-199
errors
bugs, 183
compile errors, 97
EnterSquareRoot procedure, 184-188
Err object, 193-194
On Error Resume Next statement, 192
On Error statement, 189-190, 192
Exit Function statement, 192
Exit Sub statement, 192
identifying, 193-194

ignoring, 192-193
intentional, 194-196
macros, 22
programming errors, 183
Resume statement, 190-192
run-time errors, 183
“subscript out of range” error, 364
event-handler procedures
programming, 164-167
UserForms, 263-265, 294-295
events
Activate, 64, 162-163, 170-174
Addinlnstall, 162
AddinUninstall, 162
BeforeClose, 162, 169
BeforeDoubleClick, 163, 174
BeforePrint, 162
BeforeRightClick, 163, 174-175
BeforeSave, 162, 169-170
Calculate, 163
Change, 163, 175-177
Deactivate, 162-163, 170-174
defined, 64, 161-162
FollowHyperlink, 163
keypresses, 177, 180-181
macros, 163
NewSheet, 162
OnKey, 180-181
OnTime, 178-180
Open, 162, 167-168
SelectionChange, 163
SheetActivate, 162
SheetBefore DoubleClick, 162
SheetBefore RightClick, 162
SheetCalculate, 162
SheetChange, 162
SheetDeactivate, 162
SheetFollowHyperlink, 162
SheetSelectionChange, 162
time, 177-180
WindowActivate, 162
WindowDeactivate, 162
WindowResize, 162
workbooks, 162
worksheets, 163
Excel
changing settings, 220-222
considering other options, BC19

ooks.com/

http://www.it-ebooks.info/

Index

Office Compatibility Pack, 22
versions, 20-22, 198, BC20
worksheet functions, 135-139
Excel 2007 Power Programming with VBA
(Walkenbach), 370
Excel 2010 Bible (Walkenbach), 2
Excel 2010 For Dummies (Harvey), 2
Excel 2010 For Dummies Quick Reference
(Walkenbach and Banfield), 2
Excel 2010 Power Programming with VBA
(Walkenbach), 370
Excel object model, 55
Excel programming
benefits of learning, 3
code, 4
defined, 2
line continuation character sequence, 4-5
sample files, 8
viruses, 5-6
ExecuteMso method, 250-251
executing
Function procedures, 70, 78-80
Sub procedures, 70-78
Exit Function statement, 192
Exit Sub statement, 192
Exp function, 133
expanding projects, 40
experimentation, BC19
exponentiation (") operator, 110-111
exporting objects, 42
expressions
defined, 109
functions, 109
line continuation character, 109
watch expressions, 206-207
extreme-case bugs, 197

ofF e

FileDialog object, 249
FileLen function, 131-132, 134
filenames, hard coding, 131
files
determining a file size, 131
sample files, 8
selecting multiple files, 247-248
finding
maximum value in a range, 136
string length, 130-131

Fix function, 131, 134
fixed-length strings, 107-108
folders

getting a folder name, 249

trusted locations, 32
FollowHyperlink event, 163
Font option (VBE), 53
Font property (Range object), 123
fonts (themes), BC10
forcing Break mode, 204
Format function, 134
formatting charts, 225-226
Forms node, 41
Formula property (Range object), 124
For-Next loops, 142, 152-156
Frame control, 256, 276
fully qualified reference, 59
Function procedures

bugs, 209

calling from a Sub procedure, 79

debugging, 341

defined, 18, 69-70

End Function statement, 70

executing, 70, 78-80

Function keyword, 70

naming, 71

recording, 70

reserved words, 98

VBA modules, 44
functions (VBA)

Abs, 133

arguments, 335-336

Array, 133

arrays, 343-345

Asc, 133

Atn, 133

built-in, 130-135

Choose, 133

Chr, 133

Cos, 133

creating, 16

CurDir, 133

custom, 16, 138-139, 333

Date, 130, 133

DateAdd, 133

DateDiff, 133

DatePart, 133

DateSerial, 133

DateValue, 133

ooks.com/

377

http://www.it-ebooks.info/

3 78 Excel VBA Programming For Dummies, 2nd Edition

functions (VBA) (continued) Shell, 132, 135
Day, 133 Sin, 135
defined, 129, 334 Space, 135
Dir, 133 Split, 135
Erl, 133 Sqr, 135
Err, 133 Str, 135
Error, 133 StrComp, 135
Exp, 133 String, 135
expressions, 109 Tan, 135
FileLen, 131-132, 134 Time, 135
Fix, 131, 134 Timer, 135
Format, 134 TimeSerial, 135
GetSetting, 134 TimeValue, 135
Hex, 134 Trim, 135
Hour, 134 TypeName, 132, 135
InputBox, 132, 134, 218, 241-244 UBound, 135
InStr, 134 UCase, 135, 253
Int, 131, 134 User Defined Function (UDF), 138
IPmt, 134 Val, 135
IsArray, 134 VarType, 135
IsDate, 134 Weekday, 135
IsEmpty, 134 Year, 135
IsError, 134 functions (worksheet)
IsMissing, 134 add-ins, 350
IsNull, 134 arguments, 335-343
IsNumeric, 134 creating, 333-335
IsObject, 134 custom, 333-335
LBound, 134 DECIMAL2RGB, BC3-BC4
LCase, 134 descriptions, 346-347
Left, 134 entering, 138
Len, 130-131, 134 examples, 336-341
Log, 134 LARGE, 136
lookup, 137-138 MAX, 136
LTrim, 134 PMT, 137
Mid, 134 RGB, 125, 134, BC2
MIN, 136 RGB2DECIMAL, BC3-BC4
Minute, 134 VLOOKUP, 137-138
Month, 134 WorksheetFunction object, 139
MsgBox, 132, 134, 200-201, 236-241
MultiplyTwo, 138-139 PY G PY
Now, 134
Replace, 135 General tab (VBE), 53-54
Right, 135 GetOpenFilename method, 244-248
Rnd, 135 GetSaveAsFilename method, 248-249
RTrim, 135 GetSetting function, 134
Second, 135 getting a folder name, 249
Sgn, 135 global variables, 104-105

ooks.com/

http://www.it-ebooks.info/

Index 3 79

Google, 369 UserForms, 255-256
GoTo statement, 142-143 worksheet functions into a VBA
grayscale, BC5-BC8 module, 138
grid lines, 270 InStr function, 134
GUI (Graphical User Interface), 255 Int function, 131, 134
Integer data type, 99
Y H PY integer division (\) operator, 110
integer part of a number, displaying, 131
hard coding filenames, 131 intentional errors, 194-196
Harvey, Greg, Excel 2010 For Dummies, 2 Interior property (Range object), 123-124
HasFormula property (Range object), Internet newsgroups, 368
122-123 [Pmt function, 134
help IsAddin property, 349
controls (UserForms), 273 IsDate function, 134
VBA Help System, 65, 367 IsEmpty function, 134
Hex function, 134 IsError function, 134
hiding IsMissing function, 134
controls (UserForms), 284 IsNull function, 134
windows, 43-44 IsNumeric function, 134
hierarchy of objects, 18-19, 56-57 IsObject function, 134
hot keys, 263, 285-286
Hour function, 134 () K ()
° I ° key combinations, 4
keyboard users and dialog boxes, 285
icons, explained, 8 keypl‘esses, 177, 180-181
identifying keywords
bugs, 198-199 Dim, 102-104
data type of a selected object, 132 Function, 70
errors, 193-194 Public, 104
If-Then structure, 142-148 Range, 115-117
If-Then-Else structure, 144-145 Stop, 204
ignoring errors, 192-193 Sub, 70
Image control, 257, 276-277
images for UserForm controls, 272 o L o
Immediate window (VBE), 38-39, 204-205
imp operator, 111 Label control, 256, 277
importing objects, 42 labels, 113
incorrect context bugs, 197 LARGE worksheet function, 136
increasing number of rows/columns in a LBound function, 134
worksheet, 364 LCase function, 134
indenting code, 52, 208 Left and Top property, 272
InputBox function, 132, 134, 218, 241-244 Left function, 134
Insert Function dialog box, 345-348 Len function, 130-131, 134
inserting. See also adding life of variables, 105
comments, 95-96 line continuation character, 109
text, 15

ooks.com/

http://www.it-ebooks.info/

380

Excel VBA Programming For Dummies, 2nd Edition

line continuation character sequence,
4-5, 365
line numbers in code, 113
list, returning, 344-345
ListBox control, 256, 278-279, 296-301
listing shortcut menus, 321-322
loading add-ins, 351
Locals window (VBE), 207-208
Log function, 134
logic flaws in code, 197
logical operators, 111
Long data type, 99
lookup functions, 137-138
loop counters, 99
loops
collections, 158-160
defined, 151-152
Do-Until loops, 142, 157-158
Do-While loops, 142, 156-157
For-Next loops, 142, 152, 154-156
ranges, 216-218
speed of, 146
LTrim function, 134

ol o

macro recorder
absolute mode, 84-85
efficiency, 90-92
Function procedures, 70
limitations of, 83-84
preparation for using, 25, 84
recording options, 88-89
relative mode, 85-86
step-by-step directions, 26-27, 82-83
Sub procedures, 70
VBA modules, 47-48
what gets recorded, 87-88

macros
assigning to a button, 76-77
charts, 222-223
creating, 25-27
Ctrl+Shift+!, 364-365
defined, 14
description, 26
descriptions, 88
disabling, 5-6
editing, 30
enabling, 5-6, BC19

errors, 22
events, 163
NameAndTime macro, 25-33
naming, 26, 88
Quick Access toolbar, 266
recording, 26-27, 30, 47-48, 81-92, 363
saving, 30-31
security, 31-32
shortcut keys, 26, 75-76, 88
storing, 26-27, 88
testing, 27, 267-268
UserForms, 265-268, 292-293
viewing, 27-29
Margin Indicator Bar option (VBE), 53
MAX worksheet function, 136
maximizing windows, 42-43
memory, 105
menu bar in Visual Basic Editor (VBE), 38
message boxes
creating, 236-237
customizing, 238-241
displaying the value of two variables,
200-201
multiline messages, 365
responses, 237-238
methods
Auto List Members, 66-67
Clear method, 128
collections, 64
Copy method, 127
defined, 20, 60-61, 63-64
Delete, 128
ExecuteMso, 250-251
GetOpenFilename, 244-248
GetSaveAsFilename, 248-249
Paste method, 127
Range object, 126
Range objects, 127-128
Select method, 126-127
specifying, 20
VBA Help System, 65
Microsoft Developer Network
site (MSDN), 368
Microsoft Excel
changing settings, 220-222
considering other options, BC19
Office Compatibility Pack, 22
versions, 20-22, 198, BC20
worksheet functions, 135-139

ooks.com/

http://www.it-ebooks.info/

Index 38 ’

Microsoft Excel 2010 Power Programming
with VBA (Walkenbach), 2
Microsoft Excel Objects node, 40
Microsoft Product Support, 367-368
Mid function, 134
MIN worksheet function, 136
minimizing windows, 42-44
Minute function, 134
mixing and matching document theme
elements, BC10
modifying
add-ins, 359
chart type, 224
modular code, BC18
module-only variables, 103-104
modules. See VBA modules
Modules node, 41
modulo arithmetic (mod) operator, 110
Month function, 134
mortgage payment, calculating, 137
moving
controls (UserForms), 284
ranges, 215
MSDN (Microsoft Developer
Network site), 368
MsgBox function, 132, 134, 200-201,
236-241
multidimensional arrays, 113
multiline messages, 365
MultiPage control, 257, 279
multiplication (*) operator, 110-111
MultiplyTwo custom function, 138-139
MultiSelect property, 299-300

o\ o

#NAME formula, 363

Name property, 272

NameAndTime macro
creating, 25-27
description, 26
editing, 30
features, 25-33
naming, 26
recording, 26-27, 30
saving, 30-31
security, 31-32
shortcut key, 26
storing, 26-27

testing, 27
viewing, 27-29
naming
controls (UserForms), 259-260, 272
Function procedures, 71
macros, 26, 88
Sub procedures, 71
variables, 97-98
newsgroups, 368
NewSheet event, 162
nodes (projects)
defined, 40
Forms node, 41
Microsoft Excel Objects node, 40
Modules node, 41
non-Boolean settings, 221-222
noncontiguous ranges, 116-117
not operator, 111
Now function, 134
NumberFormat property (Range object), 126

o () o

Object Browser, 66
Object data type, 99
Object Model Map, 57
object-oriented programming (OOP), 55
objects. See also objects by name
active, 19
collections, 19, 58
colors, 125
defined, 18, 55-56
events, 64
exporting, 42
expressions, 109-110
hierarchy, 18-19, 56-57
identifying type of a selected object, 132
importing, 42
methods, 20, 60-61, 63-64
navigating through the hierarchy, 59
Object Browser, 66
Object Model Map, 57
properties, 19, 60-63
references, 19, 58-60, 229-230
VBA Help System, 65
Office Compatibility Pack, 22
Offset property, 118-119
On Error Resume Next statement,
192-193, 208

ooks.com/

http://www.it-ebooks.info/

382

Excel VBA Programming For Dummies, 2nd Edition

On Error statement, 189-190, 192
OnKey event, 180-181
OnTime event, 178-180
OOP (object-oriented programming), 55
Open event, 162, 167-168
opening add-ins, 351-352
(integer division) operator, 110
operators
and, 111
addition (+), 110-111
division (/), 110-111
equal sign (=) operator, 109-110
eqv, 111
exponentiation (), 110-111
imp, 111
integer division (\), 110
logical, 111
modulo arithmetic (mod), 110
multiplication (*), 110-111
not, 111
or, 111
precedence order, 111
string concatenation (&), 110
subtraction (-), 110-111
using parentheses to change precedence
order, 111
XoR, 111
Option Explicit statement, 100-101, 208
OptionButton control, 256, 279-280,
302-303
or operator, 111
organizing VBA modules, 44

oo

parentheses, using to change operator
precedence order, 111
passwords
protecting code, 364, BC17-BC18
security, BC17-BC18
Paste method, 127
pasting ranges, 127
Picture property, 272
PMT worksheet function, 137
positioning controls in UserForms, 270
Power Utility Pak, 349
precedence order for operators, 111
predefined constants for colors, BC1
Procedure Separator option (VBE), 52

procedure-only variables, 102-103
procedures. See event-handler procedures;
Function procedures; Sub procedures
product activation, 21
program bugs. See bugs
program flow
described, 141
Do-Until loops, 142, 157-158
Do-While loops, 142, 156-157
Elself structure, 146-147
For-Next loops, 142, 152-156
GoTo statement, 142-143
If-Then structure, 142-148
If-Then-Else structure, 144-145
Select Case structure, 142, 148-151
With-End With structure, 231
programming
benefits of learning, 3
code, 4
defined, 2
experimentation, BC19
line continuation character sequence, 4-5
sample files, 8
structured programming, 143
viruses, 5-6
programming errors, 183
programs, defined, 14
progress indicator, 305-308
Project window (VBE), 28, 38-42
projects
adding a VBA module, 41
contracting, 40
defined, 40
expanding, 40
nodes, 40-41
removing a VBA module, 41-42
properties. See also properties by name
Auto List Members, 66-67
changing, 62-63
charts, 225
collections, 63
controls (UserForms), 257-258, 270
defined, 19, 60-62
Range objects, 119-126
references, 19
ThemeColor property, 125
VBA Help System, 65
viewing, 62-63
Properties window (VBE), 38

ooks.com/

http://www.it-ebooks.info/

Index 383

protecting
code, 364, BC17-BC18
data validation rules, 177
Public keyword, 104
Public statement, 104
public variables, 104-105

purging variables from memory, 105

oQo

Quick Access toolbar, 266, 320

o R o

Range keyword, 115-117
Range objects. See also ranges
Address property, 122
Cells property, 117-118
Color property, 125
Column property, 121-122
columns, 119
Count property, 121
CurrentRegion property, 214
defined, 115
EntireColumn property, 215
EntireRow property, 215
Font property, 123
Formula property, 124
HasFormula property, 122-123
Interior property, 123-124
methods, 126-128
noncontiguous ranges, 116-117
NumberFormat property, 126
Offset property, 118-119
properties, 119-126
read-only properties, 119
references, 115-119
Row property, 121-122
rows, 119
selecting, 211
SpecialCells method, 216-217
Text property, 121
ThemeColor property, 125
Value property, 120
ranges. See also Range objects
arguments, 339-340
clearing, 128
copying, 127, 212-214
deleting, 128

determining selection type, 219
loops, 216-218
maximum value in a range, 136
moving, 215
multiple ranges, 219-220
named ranges, 212
pasting, 127
prompting for a cell value, 218-219
selecting, 126-127, 211-212, 214-215,
219-220
variable-sized ranges, 213-214
rearranging windows, 43
recording macros
absolute mode, 84-85
efficiency, 90-92
Function procedures, 70
macro recorder, 26-27, 30, 47-48,
81-92, 363
preparation, 25, 84
recording options, 88-89
relative mode, 85-86
step-by-step directions, 26-27, 82-83
Sub procedures, 70
VBA modules, 47-48
what gets recorded, 87-88
ReDim statement, 113-114
Redo button (VBE), 45-46
RefEdit control, 257, 280-281, 301-302
references
fully qualified reference, 59
to object properties, 19
to objects, 19, 58-60, 229-230
to Range objects, 115-119
relative mode (macro recorder), 85-86
removing. See also deleting
breakpoints, 203
toolbars, 330
VBA module from a project, 41-42
repetitive operations, automating, 15
Replace function, 135
Require Variable Declaration
option (VBE), 50
reserved words
Function procedures, 98
Sub procedures, 98
variables, 98
resizing
controls (UserForms), 284
windows, 43

ooks.com/

http://www.it-ebooks.info/

384

Excel VBA Programming For Dummies, 2nd Edition

Resume statement, 190-192
returning a sorted list, 344-345
RGB color system, BC1-BC2, BC8-BC9
RGB function, 125, 134, BC2
RGB2DECIMAL function, BC3-BC4
Ribbon
adding buttons, 16
add-ins, 352
customizing, 24, 314-321
Developer tab, 23-24
Right function, 135
Rnd function, 135
routines, defined, 45
Row property (Range object), 121-122
rows
decreasing the number of rows, 364
increasing the number of rows, 364
Range objects, 119
RTrim function, 135
running
code as fast as possible, 365
Visual Basic Editor (VBE), 37
run-time errors, 183

oS e

sample files, 8
saving macros, 30-31
scoping

constants, 106

variables, 99-105
screen updating, 227-228
ScrollBar control, 257, 281
Second function, 135
security

macros, 31-32

passwords, BC17-BC18

settings, 5

Trust Center, 5

trusted locations, 32
security updates, 198
security warning, 32
Select Case structure, 142, 148-151
Select method, 126-127
selecting

charts, 226

multiple files, 247-248

Range objects, 211
ranges, 126-127, 211-212, 214-215,
219-220
SelectionChange event, 163
separator bars, 52
setting breakpoints in code, 202-203
settings. See also properties
Boolean settings, 221
changing, 220-222
non-Boolean settings, 221-222
security, 5
Sgn function, 135
shareware, 349
SheetActivate event, 162
SheetBefore DoubleClick event, 162
SheetBefore RightClick event, 162
SheetCalculate event, 162
SheetChange event, 162
SheetDeactivate event, 162
SheetFollowHyperlink event, 162
SheetSelectionChange event, 162
Shell function, 132, 135
shortcut keys for macros, 26, 75-76, 88
shortcut menus
Cell shortcut menu, 326-328
CommandBars object, 321-325
customizing, 321-328
disabling, 328
examples, 326-327
listing, 321-322
Visual Basic Editor (VBE), 39
Sin function, 135
Single data type, 99
Size option (VBE), 53
sizing controls (UserForms), 270
Solver, 349
sorted list, returning, 344-345
Space function, 135
spacing controls (UserForms), 284-285
SpecialCells method, 216-217
specifying
colors, BC1
methods, 20
speed of loops, 146
speed tips, 227-229, 231
SpinButton control, 257, 282, 303-305
Split function, 135

ooks.com/

http://www.it-ebooks.info/

Index 385

Spreadsheet Page, The, Web site, 369

Sqr function, 135

statements
assignment statements, 109-110
converting into comments, 96
defined, 45

static variables, 104-105

stepping through code, 205

Stop keyword, 204

storing macros, 26-27, 88

Str function, 135

StrComp function, 135

string concatenation (&) operator, 110

String data type, 99
String function, 135
strings
concatenation, 110
defined, 107
fixed-length, 107-108
string length, finding, 130-131
variable-length, 107
structured programming, 143
Sub procedures
bugs, 209
calling a Function procedure, 79
defined, 18, 69-70
End Sub statement, 70
executing, 70-78
naming, 71
recording, 70
reserved words, 98
Sub keyword, 70
VBA modules, 44
“subscript out of range” error, 364
subtraction (-) operator, 110-111
switching among windows, 43
syntax errors, 198
system date or time, displaying, 130

o o

tab order for dialog boxes, 285-286
tabbed dialog boxes, 308-310
TabStrip control, 257, 282

Tan function, 135

tasks, automating, 15

testing

macros, 27, 267-268

UserForms, 287, 293
text

inserting, 15

strings, 107
Text property (Range object), 121
TextBox control, 256, 282-283, 303-305
theme colors, 125
ThemeColor property (Range object),

125, BC12

themes

colors, BC10-BC15

defined, BC10

downloading, BC10

effects, BC10

fonts, BC10

mixing and matching elements, BC10
third-party suppliers of add-ins, 349
time, displaying, 130
time events, 177-180
Time function, 135
Timer function, 135
TimeSerial function, 135
TimeValue function, 135
TintAndShade property, 125, BC12-BC13
ToggleButton control, 256, 283
toolbars

customizing, 329-330

deleting, 330

VBE, 38-39
Trim function, 135
Trust Center, 5
trusted locations, 32
turning on/off

alert messages, 228-229

automatic calculation, 228

grid lines, 270

screen updating, 227-228
TypeName function, 132, 135

olf o
UBound function, 135

UCase function, 135, 253
UDF (User Defined Function), 138

ooks.com/

http://www.it-ebooks.info/

386

Excel VBA Programming For Dummies, 2nd Edition

Undo button in VBE, 45-46
unloading add-ins, 351
User defined data type, 99
User Defined Function (UDF), 138
user groups, 370
UserForms. See also dialog boxes
accelerator keys, 285-286
adding controls, 254, 256-257, 261-263,
269-270
aesthetics, 287
aligning controls, 284-285
alternatives to, 235-236
changing control properties, 257-258,
270-272
charts, 310-311
checklist for creating, 311-312
Code window, 258
creating, 254-255, 260-263, 290-292
data validation, 295
displaying, 250-251, 259, 265, 292
event-handler procedures, 263-265,
294-295
example, 289-293, 295-296
hiding controls, 284
inserting, 255-256
keyboard users, 285
macros, 265-268, 292-293
moving controls, 284
naming controls, 259-260
positioning controls, 270
progress indicator, 305-308
resizing controls, 284
sizing controls, 270
spacing controls, 284-285
tab order, 285-286
tabbed, 308-310
testing, 287, 293
using information from, 259
when to use, 253-254
UserName property, 335
users, BC20

o/ o

Val function, 135
validation rules, 175-177
Value property
controls (UserForms), 272
Range object, 120

values
assigning to variables, 20
constants, 105-107
decimal color values, BC1-BC5
finding maximum value in a range, 136
prompting for a cell value, 218-219
variables, 105
variable-length strings, 107
variables
arrays, 112-114
assigning values, 20
data types, 98-99, 230
declaring, 98-105, BC17
defined, 20, 97
Dim statement, 102-104
displaying the value of two variables,
200-201
End statement, 105
expressions, 109-110
global, 104-105
life of, 105
module-only, 103-104
naming, 97-98
Option Explicit statement, 100-101
procedure-only, 102-103
public, 104-105
Public statement, 104
purging from memory, 105
reserved words, 98
scoping, 99-105
static, 104-105
values, 105
variable-sized ranges, 213-214
Variant data type, 99
VarType function, 135
VBA (Visual Basic for Applications)
advantages, 17
benefits of learning, 3
code, 4
common uses, 14-16
defined, 13
disadvantages, 17
line continuation character sequence,
4-5, 365
sample files, 8
viruses, 5-6
VBA code. See code
VBA Debugger, 202-208
VBA functions. See functions (VBA)

ooks.com/

http://www.it-ebooks.info/

Index 387

VBA Help System, 65, 367
VBA macro recorder. See macro recorder
VBA modules
adding to a project, 41
copying code, 49
creating, 44
declarations, 44
defined, 334
editing, 18
entering code, 44-49
Function procedures, 18, 44
inserting worksheet functions, 138
organizing, 44
removing from a project, 41-42
Sub procedures, 18, 44
viewing, 18
VBE (Visual Basic Editor). See Visual Basic
Editor (VBE)
versions of Excel, 20-22, 198, BC20
viewing
macros, 27-29
properties, 62—-63
VBA modules, 18
viruses, 5-6
Visible property, 272
Visual Basic Editor (VBE)
activating, 37
Auto Data Tips option, 51
Auto Indent option, 52
Auto List Members option, 51, 66-67
Auto Quick Info option, 51
Auto Syntax Check option, 50
Code Colors option, 52-53
Code window, 38-39, 42-44
customizing, 49-54
Default to Full Module View option, 52
Docking tab, 54
Drag-and-Drop Text Editing option, 52
Editor Format tab, 52-53
Editor tab, 50
Font option, 53
General tab, 53-54
Immediate window, 38-39, 204-205
Locals window, 207-208
Margin Indicator Bar option, 53
menu bar, 38
new features, 40
Procedure Separator option, 52

Project window, 28, 38-42

Properties window, 38

Redo button, 45-46

Require Variable Declaration option, 50

running, 37

shortcut menus, 39

Size option, 53

toolbars, 38-39

Undo button, 45-46

Watches window, 206-207
Visual Basic for Applications (VBA). See

VBA (Visual Basic for Applications)

VLOOKUP worksheet function, 137-138

o[/ o

Walkenbach, John
Excel 2007 Power Programming
with VBA, 370
Excel 2010 Bible, 2
Excel 2010 For Dummies Quick Reference, 2
Excel 2010 Power Programming
with VBA, 370
Microsoft Excel 2010 Power Programming
with VBA, 2
warnings
disabling warning prompts, 365
security warning, 32
watch expressions, 206-207
Watches window (VBE), 206-207
Web sites
Microsoft Developer Network site
(MSDN), 368
Microsoft Product Support, 367-368
Spreadsheet Page, The, 369
Weekday function, 135
Width and Height property, 272
WindowActivate event, 162
WindowDeactivate event, 162
WindowResize event, 162
windows
arranging, 43
closing, 44
cycling through windows, 43
docking, 54
hiding, 43-44
maximizing, 42-43
minimizing, 42-44

ooks.com/

http://www.it-ebooks.info/

388

Excel VBA Programming For Dummies, 2nd Edition

windows (continued)
rearranging, 43
resizing, 43
switching among windows, 43
With-End With structure, 231
workbooks
converting workbook files into
an add-ins, 350
events, 162
WorkRange object, 218
worksheet functions. See functions
(worksheet)
WorksheetFunction object, 136-139

worksheets

deleting, 365

events, 163
wrong data type bugs, 198
wrong version bugs, 198

o X o

XLAM file extension, 350
XoR operator, 111

oyo

Year function, 135

ooks.com/

http://www.it-ebooks.info/

Business/Accounting

& Bookkeeping
Bookkeeping For Dummies
978-0-7645-9848-7

eBay Business
All-in-One For Dummies,
2nd Edition
978-0-470-38536-4

Job Interviews

For Dummies,

3rd Edition
978-0-470-17748-8

Resumes For Dummies,
5th Edition
978-0-470-08037-5

Stock Investing
For Dummies,

3rd Edition
978-0-470-40114-9

Successful Time
Management

For Dummies
978-0-470-29034-7

Computer Hardware
BlackBerry For Dummies,
3rd Edition
978-0-470-45762-7

Computers For Seniors
For Dummies
978-0-470-24055-7

iPhone For Dummies,
2nd Edition
978-0-470-42342-4

Laptops For Dummies,
3rd Edition
978-0-470-27759-1

Macs For Dummies,
10th Edition
978-0-470-27817-8

Cooking & Entertaining
Cooking Basics

For Dummies,

3rd Edition
978-0-7645-7206-7

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition
Dieting For Dummies,
2nd Edition
978-0-7645-4149-0

Nutrition For Dummies,
4th Edition
978-0-471-79868-2

Weight Training
For Dummies,

3rd Edition
978-0-471-76845-6

Digital Photography
Digital Photography
For Dummies,

6th Edition
978-0-470-25074-7

Photoshop Elements 7
For Dummies
978-0-470-39700-8

Gardening
Gardening Basics
For Dummies
978-0-470-03749-2

Organic Gardening
For Dummies,

2nd Edition
978-0-470-43067-5

Green/Sustainable
Green Building

& Remodeling

For Dummies
978-0-470-17559-0

Green Cleaning
For Dummies
978-0-470-39106-8

Green IT For Dummies
978-0-470-38688-0

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies
978-0-471-77383-2

Hobbies/General
Chess For Dummies,
2nd Edition
978-0-7645-8404-6

Drawing For Dummies
978-0-7645-5476-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Organizing For Dummies
978-0-7645-5300-4

SuDoku For Dummies
978-0-470-01892-7

Home Improvement
Energy Efficient Homes
For Dummies
978-0-470-37602-7

Home Theater

For Dummies,

3rd Edition
978-0-470-41189-6

Living the Country Lifestyle
All-in-One For Dummies
978-0-470-43061-3

Solar Power Your Home
For Dummies
978-0-470-17569-9

Green Business
Practices

Learn to:
Frotesen o s v s i
——
Banmen s e e
R
btane pretas o imshain
e

Lisa Swallow, CPA, CMA, M5
presil

Job Interviews

e ——————

Joyee Lakn Kennedy

A Reference for the Rest of Usl’

A Reference
for the,

Rest of Us!

Po_ul Mrad]mwk

Making Everyshing Fasler!

Learn to:
[—

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

ooks.com/

http://www.dummies.com
http://www.wileyeurope.com
http://www.wiley.ca
http://www.it-ebooks.info/

Internet

Blogging For Dummies,
2nd Edition
978-0-470-23017-6

eBay For Dummies,
6th Edition
978-0-470-49741-8

Facebook For Dummies
978-0-470-26273-3

Google Blogger
For Dummies
978-0-470-40742-4

Web Marketing
For Dummies,

2nd Edition
978-0-470-37181-7

WordPress For Dummies,
2nd Edition
978-0-470-40296-2

Language & Foreign
Language

French For Dummies
978-0-7645-5193-2

Italian Phrases
For Dummies
978-0-7645-7203-6

Spanish For Dummies
978-0-7645-5194-9

Spanish For Dummies,
Audio Set
978-0-470-09585-0

Macintosh

Mac 0S X Snow Leopard
For Dummies
978-0-470-43543-4

Math & Science
Algebra | For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies
978-0-7645-5326-4

Calculus For Dummies
978-0-7645-2498-1

Chemistry For Dummies
978-0-7645-5430-8

Microsoft Office
Excel 2007 For Dummies
978-0-470-03737-9

Office 2007 All-in-One
Desk Reference

For Dummies
978-0-471-78279-7

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

iPod & iTunes

For Dummies,

6th Edition
978-0-470-39062-7

Piano Exercises
For Dummies
978-0-470-38765-8

Parenting & Education
Parenting For Dummies,
2nd Edition
978-0-7645-5418-6

Type 1 Diabetes
For Dummies
978-0-470-17811-9

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dog Training For Dummies,
2nd Edition
978-0-7645-8418-3

Puppies For Dummies,
2nd Edition
978-0-470-03717-1

Religion & Inspiration
The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies
978-0-7645-5391-2

Women in the Bible
For Dummies
978-0-7645-8475-6

Self-Help & Relationship
Anger Management

For Dummies
978-0-470-03715-7

Overcoming Anxiety
For Dummies
978-0-7645-5447-6

Sports

Baseball For Dummies,
3rd Edition
978-0-7645-7537-2

Basketball For Dummies,
2nd Edition
978-0-7645-5248-9

Golf For Dummies,
3rd Edition
978-0-471-76871-5

Web Development
Web Design All-in-One
For Dummies
978-0-470-41796-6

Windows Vista
Windows Vista

For Dummies
978-0-471-75421-3

Msking Everything Esster!

Lisa Sabin-Wilson

T —
e

Mshing Everything Eavier”

Digital Photography

Learn to:
e ——
Bt o b B pacty
e g

e e ye—
e

IN FULL COLOR!

Julie Adair King
Serge Timachaff

PR ——)
e o b i B L—
et g s e et
fermte ey

Edward C. Baig

—

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.
ooks.com/

http://www.dummies.com
http://www.wileyeurope.com
http://www.wiley.ca
http://www.it-ebooks.info/

Bonus Chapter 1
Working with Colors

In This Chapter

Specifying colors in your VBA code
Using VBA conversion functions
Converting colors to grayscale
Working with document themes

Back in the pre-Excel 2007 days, a workbook stored a palette of 56
colors. Sure, you could modify any or all of those colors, but there was
no way to exceed the 56-color limit for a workbook. But things changed with
the introduction of Excel 2007. You now have access to a virtually unlimited
number of colors in a workbook — actually, the limit is 16,777,216 colors, but
that certainly qualifies as virtually unlimited in my book.

Color My World

In VBA, you can specify a color as a decimal color value, which is a number
between 0 and 16,777,215. For example, the VBA statement that follows
changes the background color of the active cell to a dark maroon:

ActiveCell.Interior.Color = 5911168

In addition, VBA has predefined constants for some common colors. For
example, vbRed has a value of 255 (the decimal value for pure red), and
vbGreen has a value of 65,280.

No one, of course, can keep track of nearly 17 million colors, and the pre-
defined constants are pretty limited. A better way to change a color is to
specify the color in terms of its red, green, and blue components — the RGB
color system.

ooks.com/

http://www.it-ebooks.info/

BCZ Excel VBA Programming For Dummies, 2nd Edition

The RGB color system

The RGB color system combines various levels of three colors: red, green,
and blue. Each of these color values can range from 0 through 255. Therefore,
the total number of possible colors is 256 x 256 x 256 = 16,777,216.

v When all three color components are 0, the color is pure black.

v+ When all three components are 255, the color is pure white.

v When all three are 128 (the half-way point), the color is middle gray.
v The remaining 16,777,213 possible combinations of these three values

represent other colors, some of which you may have actually seen.

To specify a color using the RGB system in VBA, use the RGB function. This
function accepts three arguments that represent the red, blue, and green
components of a color. The function returns a decimal color value, between 0
and 16,777,216.

Here’s how it works. The statement that follows uses the RGB function to
assign a color that’s exactly the same as the one assigned in the preceding
section (that dark maroon, with a decimal color number of 5,911,168):

ActiveCell.Interior.Color = RGB(128, 50, 90)

Table 1-1 shows the RGB values and the decimal color codes of some
common colors.

Table 1-1 Color Examples
Name Red Green Blue Color Value
Component Component Component
Black 0 0 0 0
White 255 255 255 16777215
Red 255 0 0 255
Green 0 255 0 65280
Blue 0 0 255 16711680
Yellow 255 255 0 65535
Pink 255 0 255 16711935
Turquoise 0 255 255 16776960
Brown 153 51 0 13209
Indigo 51 51 153 10040115
80% Gray 51 51 51 3355443

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC3

Converting colors

If you know a color’s red, green, and blue component values, converting the
color to a decimal color is easy. Just use VBA’s RGB function. Assume three
variables (r, g, and b), each of which represents a color component value
between 0 and 255. To calculate the equivalent decimal color value, use a
statement like this:

DecimalColor = RGB(r, g, b)

To perform this conversion in a worksheet formula, create this simple VBA
wrapper function:

Function RGB2DECIMAL (R, G, B) As Long

! Converts from RGB to decimal color
RGB2DECIMAL = RGB(R, G, B)

End Function

The following example worksheet formula assumes the three color values are
in A1:Cl:

=RGB2DECIMAL (Al,B1,C1)

Converting a decimal color to its red, green, and blue components is a bit
more complicated. Here’s a function that returns a three-element array:

Function DECIMAL2RGB(ColorVal) As Variant
! Converts a color value to an RGB triplet
! Returns a 3-element variant array
DECIMAL2RGB = Array(ColorVal \ 256 ~ 0 And 255, _
ColorVal \ 256 ~ 1 And 255, ColorVal \ 256 ~ 2 _
And 255)
End Function

To use the DECIMAL2RGB function in a worksheet formula, the formula must
be entered as a three-cell array formula. For example, assume that cell Al
contains a decimal color value. To convert that color value to its RGB com-
ponents, select a three-cell horizontal range and then enter the following
formula. Press Ctrl+Shift+Enter to make it an array formula, and don’t enter
the braces.

{=DECIMAL2RGB (Al)}
If the three-cell range is vertical, you need to transpose the array, as follows:
{=TRANSPOSE (DECIMAL2RGB (Al)) }

Figure 1-1 shows the DECIMAL2RGB and RGB2DECMAL functions at work in a
worksheet.

ooks.com/

http://www.it-ebooks.info/

BC4 Excel VBA Programming For Dummies, 2nd Edition

Qﬁﬂfﬂ
§

=N

&

The workbook shown in Figure 1-1 is available at this book’s Web site.

A B @ D E F G H

1 Decimal Decimal-To-RGB RGB-To-Decimal

2 Colorvalue R G B Color Value

3 0 0 0 0 0

4 167,772 92 143 2 167,772

5 335,544 184 30 s 335,544

6 503,316 20 174 7 503,316

7 671,088 112 6l 10 671,088

8 838,360 204 204 12 838,360

3 1,006,632 a0 92 15 1,006,532

10 1,174,404 132 235 17 1,174,404

11 1,342,176 224 122 20 1,342,176

12| 1,509,943 60 10 23 1,509,943
e 2 1677720 152 153 25 1,677,720
14 1,845,492 24 a0 23 1,345,492

Figure 1-1: 15 2,013,204 30 184 30 2,013,264
Awork- 16 2181036 172 71 33 2,131,036
17| 2,348,308 8 215 35 2,348,308

sheetthat ;55500 100 102 33 2,516,580
usesthe 13 2684352 192 215 20 2,684,352
DECIMAL 20 2852124 28 133 23 2,852,124
21 3,019,896 120 20 15 3,019,895

2RGBand 5, 3ia766s 212 163 48 3,137,668
RGB2 == 3,355,440 8 51 51 3,355,440
DECMAL 24 3523202 140 194 53 3,523,212
. 25| 3,690,984 232 31 56 3,690,984
functions. 5| ss7s6 68 225 58 3,858,756
I 27| 4026528 160 112 61 4,026,528

More about decimal color values

You may be curious about how the 16,777,216 decimal color values are
arranged. Color 0 is black, and color 16,777,216 is white, but what about all
those colors in between?

It might help to think of the decimal color values as being generated by
nested For-Next loops, as shown in the following code:

Sub GenerateColorValues ()
Dim Red As Long, Blue As Long, Green As Long
Dim AllColors (0 To 16777215) As Long
Dim ColorNum As Long
ColorNum = 0
For Blue = 0 To 255
For Green = 0 To 255
For Red = 0 To 255
AllColors (ColorNum) = RGB(Red, Blue, Green)
ColorNum = ColorNum + 1

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC5

Next Red
Next Green
Next Blue
End Sub

After this procedure runs, the values in the AllColors array correspond
exactly to the decimal color values used by Excel.

Understanding Grayscale

When you create worksheets and charts that are intended to be printed,
it’s important to remember that not everyone has a color printer. And
even if your chart is printed on a color printer, it’s possible that it may be
photocopied, faxed, or viewed by someone who is colorblind (a condition
that affects about 8 percent of the male population).

When content is printed on a non-color device, colors are converted to
grayscale. Sometimes you’ll be lucky, and your colors will display nicely
when converted to grayscale. Other times, you won’t be so lucky. For exam-
ple, the columns in a chart may be indistinguishable when the colors are
converted.

Every grayscale color has an equal component of red, green, and blue.
Pure black is RGB(0, 0, 0). Pure white is RGB(255, 255, 255). Neutral gray is
RGB(128, 128, 128). Using this color system produces 256 shades of gray.

To create a 256-color grayscale in a range of cells, execute the procedure that
follows. It colors the background of cells in the range A1:A256, starting with
black and ending with white. You might want to zoom out on the worksheet
to see the entire range.

Sub GenerateGrayScale ()
Dim r As Long
For r = 0 To 255
Cells(r + 1, 1) .Interior.Color = RGB(r, r, r)
Next r
End Sub

Figure 1-2 shows the result. After decreasing the row heights and making

column A wider, you've got a nice gradient that goes from pure black to pure
white. I don’t know what you can do with it, but it looks pretty good.

ooks.com/

http://www.it-ebooks.info/

BC6 Excel VBA Programming For Dummies, 2nd Edition

|
Figure 1-2:
Cells dis-
playing 256
shades of
gray.
|

Converting colors to gray

So what if you want to convert colors to grayscale? One approach is to simply
average the Red, Green, and Blue components of a color and use that single
value for the Red, Green, and Blue components of its grayscale equivalent.
That method, however, doesn’t take into account the fact that different colors
are perceived as varying levels of brightness. For example, green is perceived
to be brighter than red, and red is perceived to be brighter than blue.

Perceptual experiments have arrived at the following “recipe” to convert an
RGB color value to a grayscale value (go easy on the salt):

v 28.7% of the red component

v 58.9% of the green component

v 11.4% of the blue component
For example, consider color value 16751001, a shade of violet that corre-
sponds to RGB(153, 153, 255). Applying the factors listed previously, the RGB
values are

v Red: 28.7% x 153 = 44

v Green: 58.9% x 153 = 90

v Blue: 11.4% x 255 = 29

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC7

The sum of these values is 163. Therefore, the corresponding grayscale RGB
value for color value 16751001 is RGB(163, 163, 163).

Following is a VBA function that does the math for you. This function accepts
a decimal color value as its argument and returns the corresponding gray-
scale decimal value.

Function Grayscale(color) As Long
Dim r As Long, g As Long, b As Long
r = (color \ 256 ©~ 0 And 255) * 0.287
g = (color \ 256 ~ 1 And 255) * 0.589
b = (color \ 256 ~ 2 And 255) * 0.114
Grayscale = RGB(r + g + b, r + g + b, r + g + b)
End Function

Viewing charts as grayscale

Unfortunately, Excel’s print preview feature doesn’t do grayscale conversion.
For example, if you have a black and white laser printer, previewing your
print job shows colors — not the grayscale that is actually produced by your
printer.

By the way, the Sheet tab of the Page Setup dialog box (displayed by clicking
the dialog box launcher in the Page Layout=>Page Setup group) has an option
labeled Black And White. When checked, your charts are printed in true
black and white — which is not the same as grayscale. Colors are converted
to patterns that consist of black and white (no gray). Note that this setting
applies only to charts and other graphic objects. When printing in Black And
White mode, cells’ colors are ignored.

Here’s a technique that lets you see how an embedded chart looks when it’s
converted to grayscale:

1. Select the chart.

2. Press Ctrl+C to copy the chart to the Clipboard.

3. Click a cell and choose Homer>Clipboard=>Paste=>Picture(U).

4.

Select the pasted picture and choose Picture Toolsw>Format=>Adjust~
Color and then choose the Grayscale color mode from the Recolor sec-
tion of the drop-down gallery (see Figure 1-3).

These steps are automated in the macro that follows. The
ShowChartAsGrayScale procedure copies the active chart as a picture and
converts the picture to grayscale. After you've determined whether the
colors are satisfactory for grayscale printing, you can delete the picture.

ooks.com/

http://www.it-ebooks.info/

BCS Excel VBA Programming For Dummies, 2nd Edition

Sub ShowChartAsGrayScale ()
! Copies the active chart as a grayscale picture
! Embedded charts only
If ActiveChart Is Nothing Then
MsgBox "Select a chart."
Exit Sub
End If
ActiveChart.Parent.CopyPicture
ActiveChart.Parent.TopLeftCell.Select
ActiveSheet.Pictures.Paste
ActiveSheet.Pictures (ActiveSheet.Pictures.Count) .
ShapeRange.PictureFormat.ColorType = _
msoPictureGrayscale
End Sub

<g£“E8

A workbook with this example is available at this book’s Web site.

Hd9- =l Book3 - Micrasoft Excel icture Tools
“ Home Inset FPagelayout Formuls Data Review View Developer AddIns PUPYT | Format |
T
=] 3 compress pictur I - _)
= . ¢ 5 change Picture il || | ol Py D
Remave | Corrections | Calor | Artis u o =
Backaround - ~ | Effects -+ @ Reset Picture

Color Saturation

Picture 3 - .
A B

Color Tone

1
2
3
———
5
5
7
8

Figure 1-3:
Converting
a picture of "
achartto |
grayscale. “
| 15
3

Don’t overlook the built-in grayscale chart styles. The grayscales used in these
styles seem to be optimized for showing variations in chart elements.

Experimenting with Colors

Figure 1-4 shows a workbook that I created that deals with colors. If you're at
all confused about how the RGB color model works, spending some time with
this color demo workbook will probably make it all very clear. Or, it may give
you a headache.

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors Bcg

AB i D B F G H
1
) Excel J O Demo
3
S W vy NI
5 Hex
[191 Decimal
7
8 Use the scroll bars on the left to
9 specify a value for the Red, Blue
10 and Green component
11
12
e
14
Figure 1-4: 15
. 10
ThIS 17 The color value that results from
workbook 1s combining the RGB values is:
demon- ig 12,564,102
strates how 21 An approximate grayscale depiction
22 of the specified color.
red, green, 167
and blue = : : '
25 Hue Saturation Luminance The corresponding HSL color
COlOfS 26 134 79 163 maodel values.
combine.

The workbook shown in Figure 1-4 is available on the companion CD-ROM.

This workbook contains three vertical scrollbars, each of which controls the
background color of a range. Use these scrollbars to specify the red, green,
and blue components for a color to values between 0 and 255. Moving the
scrollbars changes several areas of the worksheet:

v The cells above the scrollbars (in rows 5 and 6) display the color com-
ponents in hexadecimal (00-FF) and in decimal (0-255). Hexadecimal
RGB color values are often used when specifying colors for HTML
documents.

v The ranges next to each scrollbar change intensity, corresponding to
the scrollbar’s position (that is, the value of the color component).

v A range below the scrollbars depicts the combined color, determined by
the RGB values you specify.

v A cell displays the decimal color value.

v Another range depicts the color’s approximate appearance when it’s
converted to grayscale.

v Cells in row 26 show the corresponding HSL color values (HSL is another
color model used in some software).

ooks.com/

http://www.it-ebooks.info/

BC ’ 0 Excel VBA Programming For Dummies, 2nd Edition

Understanding Document Themes

<MBER
)

A significant new feature introduced in Excel 2007 was document themes.
With a single mouse click, you can change the entire look of a document. A
document theme consists of three components: colors, fonts, and effects (for
graphic objects). The rationale for using themes is that they may help users
produce better-looking and more consistent documents. A theme applies to
the entire workbook, not just the active worksheet.

About document themes

Microsoft Office 2010 ships with about 40 document themes, and you can
also download or create additional themes. The Ribbon includes several style
galleries (for example, the Chart Styles gallery). The styles available in these
galleries vary depending on which theme is assigned to the document. If you
apply a different theme to the document, the document changes to reflect the
new theme’s colors, fonts, and effects.

If you haven'’t explored the wonderful world of document themes, open the
workbook named document theme demo.xlsx found on this book’s Web site.
This workbook contains a range that shows each theme color, two shapes, text
(using the headings and body fonts), and a chart. Choose Page Layout=>
Themes=>Themes Gallery to see how the worksheet changes with each theme.

Users can also mix and match theme elements. For example, you can use
the colors from one theme, the fonts from another theme, and the effects
from yet a different theme. In addition, you can create a new color set or a
new font set. You can save these customized themes and then apply them to
other workbooks.

The concept of document themes is based on the notion that users will apply
little, if any, non-theme formatting to the document. If the user applies colors
or fonts that aren’t part of the current theme, this formatting will not be modi-
fied if a new theme is applied to the document. Therefore, it’s still very easy to
create an ugly document with mismatched colors and too many different fonts.

Understanding document theme colors

When a user applies a color to a cell or object, the color is selected from a
Ribbon control like the one shown in Figure 1-5. The control displays the
60 theme colors (10 columns by 6 rows) plus 10 additional standard colors.

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC’ ’

Clicking the More Colors option displays the Color dialog box, in which you
can specify any of the 16,777,216 available colors.

Calibri 11 v A A =
inter B 7 U~ [~ &'A-
Faont Theme Colors
HE EEEEE
- £
- —— I _
i
|
Figure 1-5: o IIII..%
Standard Colors
A color- am T T
selection o Fil
control. % More Colars
|

The 60 theme colors are identified by pop-up ToolTips. For example, the
color in the second row of the sixth column is affectionately known as
“Accent 2, Lighter 80%.”

The first row in each column of colors contains the “pure” color. Below each
pure color are six “tint and shade” variations. Figure 1-6 shows the color
descriptions for the color picker controls.

Background Background

Text 1
| t

Text2 Accentl | Accent2 | Accent3 | Accentd | AccentS | Accentd

Figure 1-6: Darker 5% [Lighter 50% | Darker 10% | Lighter 80% |Lighter 80% | Lighter 80% | Lighter 80% | Lighter 30% | Lighter 50% |Lighter 30%

CO|Or Darker 15% | Lighter 35% | Darker 25% | Lighter 0% |Lighter 60% | Lighter 60% | Lighter 60% | Lighter 0% | Lighter 60% | Lighter 60%
descriptions
for Excel

Darker 25% | Lighter 25% Darker 50% |Lighter 80% |Lighter 40% | Lighter 40% | Lighter 40% | Lighter 40% | Lighter 40% | Lighter 40%

CO|0r Darker 35% | Lighter 15% Darker 75% |Darker 25% | Darker 25% | Darker 25% | Darker 25% | Darker 25% | Darker 25% | Darker 25%

pickers.
|

Darker5o% | Lighter 5% |Darker 90% | Darker 50% |Darker 50% | Darker 50% | Darker 50% | Darker 50% | Darker 50% | Darker 50%

Keep in mind that these are generic color names; they remain the same even
if a different document theme is applied. The document theme colors actu-
ally consist of the ten colors displayed in the top row (four text/background
colors and six accent colors), and each of these ten colors has five tint/shade
variations.

You may find it enlightening to record a macro while you change the fill color
and text color of a range. Following is a macro that [recorded when a range
was selected. For the fill color, I chose “Accent 2, Darker 25%,” and for the
text color, I chose “Text 2, Lighter 80%.”

ooks.com/

http://www.it-ebooks.info/

BC ’ 2 Excel VBA Programming For Dummies, 2nd Edition

Sub ChangeColors ()
With Selection.Interior
.Pattern = x1Solid
.PatternColorIndex = xlAutomatic
.ThemeColor = x1ThemeColorAccent2
.TintAndShade = -0.249977111117893
.PatternTintAndShade = 0
End With
With Selection.Font
.ThemeColor = xl1ThemeColorLight2
.TintAndShade = 0.799981688894314
End With
End Sub

First of all, you can safely ignore the three pattern-related properties
(Pattern, PatternColorIndex, and PatternTintAndShade). These properties
refer to the ugly, old-fashioned (but still supported) cell patterns, which you
can specify in the Fill tab of the Format Cells dialog box. These statements
are included in the recorded macro to maintain any existing pattern that may
exist in the range.

The recorded macro, after I deleted the three pattern-related properties (and
added comments), is

Sub ChangeColors ()
With Selection.Interior
' (Accent 2, Darker 25%)
.ThemeColor = x1ThemeColorAccent2
.TintAndShade = -0.249977111117893
End With
With Selection.Font
' (Text 2, Lighter 80%)
.ThemeColor = x1lThemeColorLight2
.TintAndShade = 0.799981688894314
End With
End Sub

As you can see, each color is specified in terms of a ThemeColor property
and a TintAndShade property. The ThemeColor property is easy enough to
decipher. Property values are assigned using built-in constants, and these
values correspond to the column number of the 10 x 6 theme color table.
For example, xIThemeColorAccent2 has a value of 6. But what about the
TintAndShade property?

The TintAndShade property can have a value between -1 and +1. A value of

-1 results in black, and a value of +1 results in white. A TintAndShade prop-
erty value of 0 gives the pure color. In other words, as the TintAndShade

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC ’3

value goes negative, the color gets increasingly darker until it’s pure black.
As the TintAndShade value goes positive, the color gets increasingly lighter
until it’s pure white. The TintAndShade value corresponds to the color name
displayed in the color selection controls.

If the color variation is expressed as “Darker,” the TintAndShade prop-
erty value is negative. If the color variation is expressed as “Lighter,” the
TintAndShade property value is positive.

By the way, [don’t know why the TintAndShade values have such a high level
of precision in recorded macros. It’s certainly not necessary. For example,

a TintAndShade property value of -0.249977111117893 produces the same
visual result as a TintAndShade property value of —-0.25. It’s just one of those
VBA mysteries.

Displaying all theme colors

[wrote a macro that displays all 60 theme color variations in a range of cells.
These 60 colors are the colors that appear in the color selection controls.

Sub ShowThemeColors ()
Dim r As Long, ¢ As Long
For r = 1 To 6
For ¢ = 1 To 10
With Cells(r, c).Interior
.ThemeColor = c
Select Case c
Case 1 'Text/Background 1
Select Case r

Case 1: .TintAndShade = 0
Case 2: .TintAndShade = -0.05
Case 3: .TintAndShade = -0.15
Case 4: .TintAndShade = -0.25
Case 5: .TintAndShade = -0.35
Case 6: .TintAndShade = -0.5

End Select

Case 2 'Text/Background 2

Select Case r
Case 1: .TintAndShade = 0
Case 2: .TintAndShade = 0.5
Case 3: .TintAndShade = 0.35
Case 4: .TintAndShade = 0.25
Case 5: .TintAndShade = 0.15
Case 6: .TintAndShade = 0.05

End Select

ooks.com/

http://www.it-ebooks.info/

BC ’ 4 Excel VBA Programming For Dummies, 2nd Edition

Case 3 'Text/Background 3
Select Case r

Case 1: .TintAndShade = 0

Case 2: .TintAndShade = -0.1
Case 3: .TintAndShade = -0.25
Case 4: .TintAndShade = -0.5
Case 5: .TintAndShade = -0.75
Case 6: .TintAndShade = -0.9

End Select
Case Else 'Text/Background 4, and Accent 1-6
Select Case r

Case 1: .TintAndShade = 0
Case 2: .TintAndShade = 0.8
Case 3: .TintAndShade = 0.6
Case 4: .TintAndShade = 0.4
Case 5: .TintAndShade = -0.25
Case 6: .TintAndShade = -0.5
End Select
End Select
Cells(r, c¢) = .TintAndShade
End With
Next c
Next r
End Sub

Figure 1-7 shows the result of executing the ShowThemeColors procedure
(it’'s more impressive in color). If you switch to a different document theme,
the colors will be updated to reflect those in the new theme.

-0.09998 0.799982 0.799982 0.799982 0.799982 0.799982 0.799982 0.799982
|

Figure 1-7: A
VBA macro : a 0399976 0.399376 0.399976 0.339976 0.399976 0.399976
generated
these theme
colors.
|

-0.24998 0.599994 0.599994 0.599994 0.599994 0.599994 0.599994 0.599994

This example is available at this book’s Web site.

Earlier in this chapter, [described how to change the fill color of a range by
setting the Color property of the Interior object. As I noted, using the VBA
RGB function makes this easier. These two statements demonstrate how to
change the fill color of a range (they both have the same result):

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 1: Working with Colors BC ’5

5913728
RGB(128, 60, 90)

Range ("Al1l:F24") .Interior.Color
Range ("Al:F24") .Interior.Color

It’s important to understand that assigning a color in this way doesn’t make it
a theme color. In other words, if the user switches to a new document theme,
the range A1:F24 won’t change colors. To change cell colors in a way that is
consistent with themes, you must use the ThemeColor and (optionally) the
TintAndShade property.

ooks.com/

http://www.it-ebooks.info/

BC ’ 6 Excel VBA Programming For Dummies, 2nd Edition

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 2

TenVBA Do's and Don'ts

f you are reading this bonus chapter, you've probably read most of the
content of this book and are familiar with Excel VBA. This chapter gives
you some advice you should take into account when you start developing your
own VBA solutions. Following these guidelines is no panacea to keep you out
of (programming) trouble, but following them can help you avoid pitfalls that

others have stumbled over.

Do Declare All Variables

How convenient it is: Simply start typing your VBA code without having to
go through the tedious chore of declaring each and every variable you want
to use. Although Excel allows you to use undeclared variables, doing so is
simply asking for trouble.

The first commandment of VBA programming should be: Thou shalt declare
every variable.

If you lack self-discipline, add “Option Explicit” at the top of your modules.
That way, your code won'’t even run if it includes one or more undeclared
variables. Not declaring all variables has only one advantage: You save a few
seconds of time. But using undeclared variables will eventually come back to
haunt you. And I guarantee that it will take you more than a few seconds to
figure out the problem.

Don’t Confuse Passwords with Security

You spent months creating a killer Excel app, with some amazing macros.
You're ready to release it to the world, but you don’t want others to see your
incredible macro programming. Just password-protect the VBA Project and
you're safe, right? Wrong.

ooks.com/

http://www.it-ebooks.info/

BC ’ 8 Excel VBA Programming For Dummies, 2nd Edition

Using a VBA password can keep most casual users from viewing your code. But
if someone really wants to check it, he’ll figure out how to crack the password.

Bottom line? If you absolutely, positively need to keep your code a secret,
Excel isn’t the best choice for a development platform.

Do Clean Up Your Code

After your app is working to your satisfaction, you should clean it up. Code
housekeeping tasks include the following:

1 Make sure every variable is declared.

v Make sure all the lines are indented properly so the code structure is
apparent.

v Rename any poorly named variables. For example, if you use the vari-
able MyVariable, there’s a pretty good chance that you can make the
variable name more descriptive. You’'ll thank yourself later.

v If you're like me, your modules probably have a few “test” procedures
that you wrote while trying to figure something out. They’'ve served their
purpose, so delete them.

v Add comments so you'll understand how the code works when you
revisit it six months from now.

1 Make sure everything is spelled correctly — especially text in
UserForms and message boxes.

v Check for redundant code. If you have two or more procedures that
have identical blocks of code, consider creating a new procedure that
other procedures can call.

Don’t Put Everything in One Procedure

Want to make an unintelligible program? An efficient way to accomplish that
is by putting all your code inside one nice big procedure. If you ever revisit
this program again to make changes to it, you're bound to make mistakes and
introduce some fine-looking bugs in there.

Do you see the problem? The solution is modular code. Split your program
into smaller chunks, where each chunk is designed to perform a specific
task. After you pick up this habit, you find that writing bug-free code is
easier than ever.

ooks.com/

http://www.it-ebooks.info/

Bonus Chapter 2: Ten VBA Do’s and Don’ts BC ’ 9

Do Consider Other Software

Excel is an amazingly versatile program, but it’s not suitable for everything.
When you’re ready to undertake a new project, take some time and consider
all your options. To paraphrase an old saying, “When all you know is Excel
VBA, everything looks like a VBA macro.”

Don’t Assume That Everyone
Enables Macros

As you know, Excel allows you to open a workbook with its macros disabled.
In fact, it’s almost as if the designers of recent versions of Excel want to
encourage users to disable macros.

Enabling macros when you open a workbook from an unknown source is not
a good idea, of course. So you need to know your users. In some corporate
environments, all Microsoft Office macros are disabled, and the user has no
choice in the matter.

One thing to consider is adding a digital signature to the workbooks that you
distribute to others. That way, the user can be assured that it actually comes
from you, and that it hasn’t been altered. Consult the Help system for more
information about digital signatures.

Do Get in the Habit of Experimenting

When I work on a large-scale Excel project, I usually spend a significant
amount of time writing small VBA “experiments.” For example, if 'm trying to
find out about a new object, method, or property, I'll just write a simple Sub
procedure and play around with it until I'm satisfied that [have a thorough
understanding of how it works — and the potential problems.

Setting up simple experiments is almost always much more efficient than

incorporating a new idea into your existing code without the understanding
that those experiments bring.

ooks.com/

http://www.it-ebooks.info/

BCZO Excel VBA Programming For Dummies, 2nd Edition

Don’t Assume That Vour Code Will
Work with Other Excel Uersions

Currently, at least five different versions of Excel for Windows are in use
around the world. When you create an Excel app, you have absolutely no
guarantee that it will work flawlessly in older versions or in newer versions.
In some cases, the incompatibilities will be obvious (for example, if your code
refers to cell XDY877322, you know that it won’t work in versions prior to
Excel 2007 because those versions used a smaller worksheet grid). But you’ll
also find that things that should work with an earlier version don’t work.

Excel includes a handy compatibility checker (choose FileInfo> Check For
Issuesw>Check Compatibility), but it only checks the workbook and ignores
the VBA code. The only way to be sure that your application works with ver-
sions other than the one you created it with is to test it on those versions.

Do Keep Your Users in Mind

Excel apps fall into two main categories: those that you develop for yourself
and those that you develop for others to use. If you develop apps for others,
your job is much more difficult because you can’t make the same types of
assumptions. For example, you can be more lax with error handling if you're
the only user. If an error crops up, you’ll have a pretty good idea of where to
look so you can fix it. If someone else is using your app and the same error
appears, they’ll be out of luck. And when working with your own application,
you can usually get by without instructions.

You need to understand the skill level of those who will be using your work-
books and try to anticipate problems that they might have. Try to picture
yourself as a new user of your application and identify all areas that may
cause confusion or problems.

Don’t Forget About Backups

Nothing is more discouraging than a hard drive crash without a backup. If
you’re working on an important project, ask yourself a simple question: If
my computer dies tonight, what will [have lost? If your answer is more than
a few hours of work, then you need to take a close look at your data backup
procedure. You do have a data backup procedure, right?

ooks.com/

http://www.it-ebooks.info/

With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App.With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you'll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:
www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

ooks.com/

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps
http://www.it-ebooks.info/

Accelerate into the Excel
fast lane and zip through
spreadsheet customizations

Are you ready to make Excel jump through hoops? Do
your spreadsheets work exactly the way you want? With
this book, you can say “yes”! Inside, you'll find step-by-step
instructions on how to significantly enhance the power of
Excel using the VBA language.You'll soon be building your
own Excel applications so you can get the most out of
your data.

* Dive into VBA — see how VBA is implemented in Excel, apply
advanced techniques, and use VBA with other Office applications

* Get into it — explore programming concepts from range objects
and worksheet functions to events and error-handling

* Communication is key — learn how to build dialog boxes that
look like they came straight from Microsoft’s software lab

* Safety first — use Excel macros to make your spreadsheets more
secure and lock out viruses

* Make it your own — develop custom worksheet functions, create
add-ins, design user-oriented applications, and boost your
career options

Visit the companion Web site at http://www.dummies.com/
go/excelvbaprogrammingfd2e, where you can download the
sample files featured in the book and view bonus chapters

John Walkenbach is principal of J-Walk and Associates, Inc., a leading
authority on spreadsheet software and creator of the award-winning
Power Utility Pak. Walkenbach has written more than 50 books and 300
articles for publications including PC World, InfoWorld, and Windows.

Computers/Spreadsheets

Open the book and find:

* How to work in the Visual Basic®
Editor

*Tips for error-handling and bug
extermination

* Ways to build automatic
procedures and events

* How to use the Excel macro
recorder

* UserForm techniques and tricks

* Instructions for designing VBA
macros

* Steps for accessing your macros
through the user interface

* Secrets for creating Excel add-ins

Go to Dummies.com®
for videos, step-by-step examples,
how-to articles, or to shop!

For Dummies®
A Branded Imprint of

K)WILEY
$29.99 US /$35.99 CN / £21.99 UK

ISBN 978-0-470-503kL9-0

“ 52999

9ll7804701503690

m/

http://www.dummies.com/
www.dummies.com/go/excelvbaprogrammingfd2e
http://www.it-ebooks.info/

	Excel® VBA Programming For Dummies®, 2nd Edition
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	Is This the Right Book?
	So You Want to Be a Programmer . . .
	Why Bother?
	What I Assume about You
	Obligatory Typographical Conventions Section
	Check Your Security Settings
	How This Book Is Organized
	Icons Used in This Book
	Getting the Sample Files
	Now What?

	Part I: Introducing VBA
	Chapter 1: What Is VBA?
	Okay, So What Is VBA?
	What Can You Do with VBA?
	Advantages and Disadvantages of VBA
	VBA in a Nutshell
	An Excursion into Versions

	Chapter 2: Jumping Right In
	First Things First
	What You’ll Be Doing
	Taking the First Steps
	Recording the Macro
	Testing the Macro
	Examining the Macro
	Modifying the Macro
	Saving Workbooks That Contain Macros
	Understanding Macro Security
	More about the NameAndTime Macro

	Part II: How VBA Works with Excel
	Chapter 3: Working In the Visual Basic Editor
	What Is the Visual Basic Editor?
	Working with the Project Window
	Working with a Code Window
	Customizing the VBA Environment

	Chapter 4: Introducing the Excel Object Model
	Excel Is an Object?
	Climbing the Object Hierarchy
	Wrapping Your Mind around Collections
	Referring to Objects
	Diving into Object Properties and Methods
	Finding Out More

	Chapter 5: VBA Sub and Function Procedures
	Subs versus Functions
	Executing Sub procedures
	Executing Function procedures

	Chapter 6: Using the Excel Macro Recorder
	Is It Live or Is It VBA?
	Recording Basics
	Preparing to Record
	Relative or Absolute?
	What Gets Recorded?
	Recording Options
	Is This Thing Efficient?

	Part III: Programming Concepts
	Chapter 7: Essential VBA Language Elements
	Using Comments in Your VBA Code
	Using Variables, Constants, and Data Types
	Using Assignment Statements
	Working with Arrays
	Using Labels

	Chapter 8: Working with Range Objects
	A Quick Review
	Other Ways to Refer to a Range
	Some Useful Range Object Properties
	Some Useful Range Object Methods

	Chapter 9: Using VBA and Worksheet Functions
	What Is a Function?
	Using Built-In VBA Functions
	Using Worksheet Functions in VBA
	More about Using Worksheet Functions
	Using Custom Functions

	Chapter 10: Controlling Program Flow and Making Decisions
	Going with the Flow, Dude
	The GoTo Statement
	Knocking Your Code for a Loop
	Looping through a Collection

	Chapter 11: Automatic Procedures and Events
	Preparing for the Big Event
	Where Does the VBA Code Go?
	Writing an Event-Handler Procedure
	Introductory Examples
	Examples of Activation Events
	Other Worksheet-Related Events
	Events Not Associated with Objects

	Chapter 12: Error-Handling Techniques
	Types of Errors
	An Erroneous Example
	Handling Errors Another Way
	Handling Errors: The Details
	An Intentional Error

	Chapter 13: Bug Extermination Techniques
	Species of Bugs
	Identifying Bugs
	Debugging Techniques
	About the Debugger
	Bug Reduction Tips

	Chapter 14: VBA Programming Examples
	Working with Ranges
	Changing Excel Settings
	Working with Charts
	VBA Speed Tips

	Part IV: Communicating with Your Users
	Chapter 15: Simple Dialog Boxes
	UserForm Alternatives
	The MsgBox Function
	The InputBox Function
	The GetOpenFilename Method
	The GetSaveAsFilename Method
	Getting a Folder Name
	Displaying Excel’s Built-in Dialog Boxes

	Chapter 16: UserForm Basics
	Knowing When to Use a UserForm
	Creating UserForms: An Overview
	Working with UserForms
	A UserForm Example

	Chapter 17: Using UserForm Controls
	Getting Started with Dialog Box Controls
	Dialog Box Controls: The Details
	Working with Dialog Box Controls
	Dialog Box Aesthetics

	Chapter 18: UserForm Techniques and Tricks
	Using Dialog Boxes
	A UserForm Example
	More UserForm Examples
	A Dialog Box Checklist

	Chapter 19: Accessing Your Macros through the User Interface
	What Happened to CommandBars?
	Ribbon Customization
	Customizing Shortcut Menus
	VBA Shortcut Menu Examples
	Creating a Custom Toolbar

	Part V: Putting It All Together
	Chapter 20: Creating Worksheet Functions — and Living to Tell about It
	Why Create Custom Functions?
	Understanding VBA Function Basics
	Writing Functions
	Working with Function Arguments
	Function Examples
	Functions That Return an Array
	Using the Insert Function Dialog Box

	Chapter 21: Creating Excel Add-Ins
	Okay . . . So What’s an Add-In?
	Why Create Add-Ins?
	Working with Add-Ins
	Add-In Basics
	An Add-In Example

	Part VI: The Part of Tens
	Chapter 22: Ten VBA Questions (And Answers)
	Chapter 23: (Almost) Ten Excel Resources
	The VBA Help System
	Microsoft Product Support
	Internet Newsgroups
	Internet Web Sites
	Excel Blogs
	Google
	Bing
	Local User Groups
	My Other Books

	Index
	Bonus Chapter 1: Working with Colors
	Color My World
	Understanding Grayscale
	Experimenting with Colors
	Understanding Document Themes

	Bonus Chapter 2: Ten VBA Do’s and Don’ts
	Do Declare All Variables
	Don’t Confuse Passwords with Security
	Do Clean Up Your Code
	Don’t Put Everything in One Procedure
	Do Consider Other Software
	Don’t Assume That Everyone Enables Macros
	Do Get in the Habit of Experimenting
	Don’t Assume That Your Code Will Work with Other Excel Versions
	Do Keep Your Users in Mind
	Don’t Forget About Backups

Excel VBA
Programming

X

