
David J. Anderson

http://freepdf-books.com

Copyright © 2011 Microsoft Corporation.

Originally published on MSDN. Reproduced with permission from
Microsoft Corporation. All rights reserved.

Lean-Kanban University, Seattle, WA

www.leankanbanuniversity.com

http://freepdf-books.com

http://msdn.microsoft.com/en-us/library/hh533841%28v%3Dvs.110%29
www.leankanbanuniversity.com

The term Lean Software Development was first coined as the
title for a conference organized by the ESPRIT initiative of
the European Union, in Stuttgart Germany, October 1992.
Independently, the following year, Robert “Bob” Charette in

1993 suggested the concept of “Lean Software Development” as part
of his work exploring better ways of managing risk in software projects.
The term “Lean” dates to 1991, suggested by James Womack, Daniel
Jones, and Daniel Roos, in their book The Machine That Changed the
World: The Story of Lean Production [1] as the English language term to
describe the management approach used at Toyota. The idea that Lean
might be applicable in software development was established very early,
only 1 to 2 years after the term was first used in association with trends
in manufacturing processes and industrial engineering.

In their 2nd book, published in
1995, Womack and Jones [2]
defined five core pillars of Lean
Thinking. These were:

•	 Value

•	 Value Stream

•	 Flow

•	 Pull

•	 Perfection

This became the default working
definition for Lean over most
of the next decade. The pursuit of perfection, it was suggested, was
achieved by eliminating waste. While there were 5 pillars, it was the 5th
one, pursuit of perfection through the systemic identification of wasteful
activities and their elimination, that really resonated with a wide
audience. Lean became almost exclusively associated with the practice
of elimination of waste through the late 1990s and the early part of the
21st Century.

http://freepdf-books.com

The Womack and Jones definition for Lean is not shared universally. The
principles of management at Toyota are far more subtle. The single word
“waste” in English is described more richly with three Japanese terms:

•	 Muda – literally meaning “waste” but implying non-value-added
activity

•	 Mura – meaning “unevenness” and interpreted as “variability in
flow”

•	 Muri – meaning “overburdening” or “unreasonableness”

Perfection is pursued through the reduction of non-value-added
activity but also through the smoothing of flow and the elimination
of overburdening. In addition, the Toyota approach was based in a
foundational respect for people and heavily influenced by the teachings
of 20th century quality assurance and statistical process control experts
such as W. Edwards Deming.

Unfortunately, there are almost as many definitions for Lean as there are
authors on the subject.

Since 2007, the emergence of Lean as a new force in the
progress of the software development profession has been
focused on improving flow, managing risk, and improving

(management) decision making. Kanban has become a
major enabler for Lean initiatives in IT-related work.

Lean and Agile
Bob Charette was invited but unable to attend the 2001 meeting at
Snowbird, Utah, where the Manifesto for Agile Software Development
[3] was authored. Despite missing this historic meeting, Lean Software
Development was considered as one of several Agile approaches to
software development. Jim Highsmith dedicated a chapter of his 2002
book [4] to an interview with Bob about the topic. Later, Mary & Tom
Poppendieck went on to author a series of 3 [5,6,7] books. During the
first few years of the 21st Century, Lean principles were used to explain
why Agile methods were better. Lean explained that Agile methods
contained little “waste” and hence produced a better economic
outcome. Lean principles were used as a “permission giver” to adopt
Agile methods.

http://freepdf-books.com

Lean Beyond Agile
In recent years, Lean Software Development has really emerged as
its own discipline related to, but not specifically a subset of the Agile
movement. This evolution started with the synthesis of ideas from
Lean Product Development and the work of Donald G. Reinertsen [8,9]
and ideas emerging from the non-Agile world of large scale system
engineering and the writing of James Sutton and Peter Middleton [10].
I also synthesized the work of Eli Goldratt and W. Edwards Deming
and developed a focus on flow rather than waste reduction [11]. At
the behest of Reinertsen around 2005, I introduced the use of kanban
systems that limit work-in-progress and “pull” new work only when the
system is ready to process it. Alan Shalloway added his thoughts on Lean
software development in his 2009 book on the topic [12]. Since 2007,
the emergence of Lean as a new force in the progress of the software
development profession has been focused on improving flow, managing
risk, and improving (management) decision making. Kanban has become
a major enabler for Lean initiatives in IT-related work. It appears that
a focus on flow, rather than a focus on waste elimination, is proving a
better catalyst for continuous improvement within knowledge work
activities such as software development.

Defining Lean Software
Development
Defining Lean Software Development is challenging because there
is no specific Lean Software Development method or process. Lean
is not an equivalent of Personal Software Process, V-Model, Spiral
Model, EVO, Feature-Driven Development, Extreme Programming,
Scrum, or Test-Driven Development. A software development
lifecycle process or a project management process could be said to
be “lean” if it was observed to be aligned with the values of the Lean
Software Development movement and the principles of Lean Software
Development. So those anticipating a simple recipe that can be followed
and named Lean Software Development will be disappointed. You
must fashion or tailor your own software development process by
understanding Lean principles and adopting the core values of Lean.

http://freepdf-books.com

There are several schools of thought within Lean Software Development.
The largest, and arguably leading, school is the Lean-Systems Society
which is based on the Kanban Method. Mary and Tom Poppendieck’s
work stands separately, as does the work of Craig Larman, Bas Vodde
[13,14], and, most recently, Jim Coplien [15]. This article seeks to be
broadly representative of the Lean Systems Society (LSS) viewpoint and
to provide a synthesis and summary of the LSS ideas.

Values
The Lean Software & Systems Consortium (reorganized in 2012 as the
Lean Systems Society [16]) published its values and principles at the
2011 Lean Software & Systems Conference [17]. It listed the following
values:

•	 Accept the human condition
•	 Accept that complexity & uncertainty are natural to knowledge

work
•	 Work towards a better Economic Outcome
•	 While enabling a better Sociological Outcome
•	 Seek, embrace & question ideas from a wide range of disciplines
•	 A values-based community enhances the speed & depth of

positive change

http://freepdf-books.com

Accept the Human Condition
Knowledge work such as software development is undertaken by
human beings. We humans are inherently complex and, while logical
thinkers, we are also led by our emotions and some inherent animalistic
traits that can’t reasonably be overcome. Our psychology and neuro-
psychology must be taken into account when designing systems or
processes within which we work. Our social behavior must also be
accommodated. Humans are inherently emotional, social, and tribal,
and our behavior changes with fatigue and stress. Successful processes
will be those that embrace and accommodate the human condition
rather than those that try to deny it and assume logical, machine-like
behavior.

Accept that Complexity &
Uncertainty are Natural to
Knowledge Work
The behavior of customers and markets are unpredictable. The flow of
work through a process and a collection of workers is unpredictable.
Defects and required rework are unpredictable. There is inherent
chance or seemingly random behavior at many levels within software
development. The purpose, goals, and scope of projects tend to change
while they are being delivered. Some of this uncertainty and variability,
though initially unknown, is knowable in the sense that it can be studied
and quantified and its risks managed, but some variability is unknowable
in advance and cannot be adequately anticipated. As a result, systems of
Lean Software Development must be able to react to unfolding events,
and the system must be able to adapt to changing circumstances. Hence
any Lean Software Development process must exist within a framework
that permits adaptation (of the process) to unfolding events.

http://freepdf-books.com

Work Towards a Better Economic
Outcome
Human activities such as Lean Software Development should be focused
on producing a better economic outcome. Capitalism is acceptable
when it contributes both to the value of the business and the benefit
of the customer. Investors and owners of businesses deserve a return
on investment. Employees and workers deserve a fair rate of pay for a
fair effort in performing the work. Customers deserve a good product or
service that delivers on its promised benefits in exchange for a fair price
paid. Better economic outcomes will involve delivery of more value to
the customer, at lower cost, while managing the capital deployed by the
investors or owners in the most effective way possible.

Enable a Better Sociological
Outcome
Better economic outcomes should not be delivered at the expense of
those performing the work. Creating a workplace that respects people
by accepting the human condition and provides systems of work that
respect the psychological and sociological nature of people is essential.
Creating a great place to do great work is a core value of the Lean
Software Development community.

Principles
The Lean Software & Systems community seems to agree on a few
principles that underpin Lean Software Development processes.

•	 Follow a Systems Thinking & Design Approach
•	 Emergent Outcomes can be Influenced by Architecting

the Context of a Complex Adaptive System
•	 Respect People (as part of the system)
•	 Use the Scientific Method (to drive improvements)
•	 Encourage Leadership
•	 Generate Visibility (into work, workflow, and system operation)
•	 Reduce Flow Time
•	 Reduce Waste to Improve Efficiency

http://freepdf-books.com

Follow a Systems Thinking &
Design Approach
This is often referred to in Lean literature as “optimize the whole,” which
implies that it is the output from the entire system (or process) that
we desire to optimize, and we shouldn’t mistakenly optimize parts in
the hope that it will magically optimize the whole. Most practitioners
believe the corollary to be true, that optimizing parts (local optimization)
will lead to a suboptimal outcome.

A Lean Systems Thinking and Design Approach requires that we consider
the demands on the system made by external stakeholders, such as
customers, and the desired outcome required
by those stakeholders. We must study the
nature of demand and compare it with
the capability of our system to deliver.
Demand will include so-called “value
demand,” for which customers
are willing to pay, and “failure
demand,” which is typically rework
or additional demand caused by a
failure in the supply of value demand.
Failure demand often takes two forms:
rework on previously delivered value
demand and additional services or support due
to a failure in supplying value demand. In software development, failure
demand is typically requests for bug fixes and requests to a customer
care or help desk function.

A systems design approach requires that we also follow the Plan-Do-
Study-Act (PDSA) approach to process design and improvement. W.
Edwards Deming used the words “study” and “capability” to imply
that we study the natural philosophy of our system’s behavior. This
system consists of our software development process and all the
people operating it. It will have an observable behavior in terms of lead
time, quality, quantity of features or functions delivered (referred to in
Agile literature as “velocity”), and so forth. These metrics will exhibit
variability and, by studying the mean and spread of variation, we can
develop an understanding of our capability. If this is mismatched with
the demand and customer expectations, then the system will need to be
redesigned to close the gap.

Capability is
95% influenced by

system design,
and only 5% by
the variance in
performance of

individuals.

http://freepdf-books.com

Deming also taught that capability is 95% influenced by system
design, and only 5% by the variance in performance of individuals. In
other words, we can respect people by not blaming them for a gap in
capability compared to demand and by redesigning the system to enable
them to be successful.

To understand system design, we must have a scientific understanding of
the dynamics of system capability and how it might be affected. Models
are developed to predict the dynamics of the system. While there are
many possible models, several popular ones are in common usage: the
understanding of economic costs; so-called transaction and coordination
costs that relate to production of customer-valued products or services;
the Theory of Constraints – the understanding of bottlenecks; and The
Theory of Profound Knowledge – the study and recognition of variability
as either common to the system design or special and external to the
system design.

Emergent Outcomes can be
Influenced by Architecting the
Context for a Complex Adaptive
System
Complex systems have starting conditions and simple rules that, when
run iteratively, produce an emergent outcome. Emergent outcomes
are difficult or impossible to predict given the starting conditions.
The computer science experiment “The Game of Life” is an example
of a complex system. A complex adaptive system has within it some
self-awareness and an internal method of reflection that enables it
to consider how well its current set of rules is enabling it to achieve a
desired outcome. The complex adaptive system may then choose to
adapt itself – to change its simple rules – to close the gap between the
current outcome and the desired outcome. The Game of Life adapted
such that the rules could be re-written during play would be a complex
adaptive system.

In software development processes, the “simple rules” of complex
adaptive systems are the policies that make up the process definition.
The core principle here is based in the belief that developing software

http://freepdf-books.com

products and services is not a deterministic activity, and hence a defined
process that cannot adapt itself will not be an adequate response
to unforeseeable events. Hence, the process designed as part of our
system thinking and design approach must be adaptable. It adapts
through the modification of the policies of which it is made.

The Kanban approach to Lean Software Development utilizes this
concept by treating the policies of the Kanban pull system as the
“simple rules,” and the starting conditions are that work and workflow
is visualized, that flow is managed using an understanding of system
dynamics, and that the organization uses a scientific approach to
understanding, proposing, and implementing process improvements.

Complex systems have starting conditions
and simple rules that, when run iteratively,
produce an emergent outcome. Emergent

outcomes are difficult or impossible to predict
given the starting conditions.

Respect People
The Lean community adopts Peter Drucker’s definition of knowledge
work that states that workers are knowledge workers if they are more
knowledgeable about the work they perform than their bosses. This
creates the implication that workers are best placed to make decisions
about how to perform work and how to modify processes to improve
how work is performed. So the voice of the worker should be respected.
Workers should be empowered to self-organize to complete work and
achieve desired outcomes. They should also be empowered to suggest
and implement process improvement opportunities or “kaizen events”
as they are referred to in Lean literature. Making process policies
explicit so that workers are aware of the rules that constrain them
is another way of respecting them. Clearly defined rules encourage
self-organization by removing fear and the need for courage. Respecting
people by empowering them and giving them a set of explicitly declared
policies holds true with the core value of respecting the human
condition.

http://freepdf-books.com

Use the Scientific Method
Seek to use models to understand the dynamics of how work is done
and how the system of Lean Software Development is operating.
Observe and study the system and its capability, and then develop and
apply models for predicting its behavior. Collect quantitative data in your
studies, and use that data to understand how the system is performing
and to predict how it might change when the process is changed.

The Lean Software & Systems community uses statistical methods such
as statistical process control charts and spectral analysis histograms of
raw data for lead time and velocity to understand system capability.
They also use models such as: the Theory of Constraints to understand
bottlenecks; The System of Profound Knowledge to understand variation
that is internal to the system design versus that which is externally
influenced; and an analysis of economic costs in the form of tasks
performed to merely coordinate, set up, deliver, or clean up after
customer-valued product or services are created. Some other models
are coming into use, such as Real Option Theory, which seeks to apply
financial option theory from financial risk management to real-world
decision making.

The scientific method suggests: we study; we postulate an outcome
based on a model; we perturb the system based on that prediction; and
we observe again to see if the perturbation produced the results the
model predicted. If it doesn’t, then we check our data and reconsider
whether our model is accurate. Using models to drive process
improvements moves it to a scientific activity and elevates it from a
superstitious activity based on intuition.

Encourage Leadership
Leadership and management are not the same. Management is the
activity of designing processes, creating, modifying, and deleting
policy, making strategic and operational decisions, gathering resources,
providing finance and facilities, and communicating information about
context such as strategy, goals, and desired outcomes. Leadership is
about vision, strategy, tactics, courage, innovation, judgment, advocacy,
and many more attributes. Leadership can and should come from
anyone within an organization. Small acts of leadership from workers

http://freepdf-books.com

will create a cascade of improvements that will deliver the changes
needed to create a Lean Software Development process.

Generate Visibility
Knowledge work is invisible. If you can’t see something, it is (almost)
impossible to manage it. It is necessary to generate visibility into the
work being undertaken and the flow of that work through a network of
individuals, skills, and departments until it is complete. It is necessary
to create visibility into the process design by finding ways of visualizing
the flow of the process and by making the policies of the process explicit
for everyone to see and consider. When
all of these things are visible, then the
use of the scientific method is possible,
and conversations about potential
improvements can be collaborative
and objective. Collaborative process
improvement is almost impossible if work
and workflow are invisible and if process
policies are not explicit.

Reduce Flow Time
The software development profession and the academics who
study software engineering have traditionally focused on measuring
time spent working on an activity. The Lean Software Development
community has discovered that it might be more useful to measure
the actual elapsed calendar time something takes to be processed.
This is typically referred to as Cycle Time and is usually qualified by the
boundaries of the activities performed. For example, Cycle Time through
Analysis to Ready for Deployment would measure the total elapsed
time for a work item, such as a user story, to be analyzed, designed,
developed, tested in several ways, and queued ready for deployment to
a production environment.

Focusing on the time work takes to flow through the process is
important in several ways. Longer cycle times have been shown to
correlate with a non-linear growth in bug rates. Hence shorter cycle
times lead to higher quality. This is counter-intuitive as it seems

http://freepdf-books.com

ridiculous that bugs could be inserted in code while it is queuing and
no human is actually touching it. Traditionally, the software engineering
profession and academics who study it have ignored this idle time.
However, empirical evidence suggests that cycle time is important to
initial quality.

Alan Shalloway has also talked about the concept of “induced work.”
His observation is that a lag in performing a task can lead to that task
taking a lot more effort than it may have done. For example, a bug found
and fixed immediately may only take 20 minutes to fix, but if that bug is
triaged, is queued and then waits for several days or weeks to be fixed, it
may involve several or many
hours to make the fix. Hence,
the cycle time delay has
“induced” additional work.
As this work is avoidable, in
Lean terms, it must be seen
as “waste.”

The third reason for focusing
on cycle time is a business
related reason. Every feature,
function, or user story has
a value. That value may be
uncertain but, nevertheless,
there is a value. The value
may vary over time. The
concept of value varying over time can be expressed economically as
a market payoff function. When the market payoff function for a work
item is understood, even if the function exhibits a spread of values to
model uncertainty, it is possible to evaluate a “cost of delay.” The cost of
delay allows us to put a value on reducing cycle time.

With some work items, the market payoff function does not start until
a known date in the future. For example, a feature designed to be used
during the 4th of July holiday in the United States has no value prior to
that date. Shortening cycle time and being capable of predicting cycle
time with some certainty is still useful in such an example. Ideally, we
want to start the work so that the feature is delivered “just in time”
when it is needed and not significantly prior to the desired date, nor
late, as late delivery incurs a cost of delay. Just-in-time delivery ensures

http://freepdf-books.com

that optimal use was made of available resources. Early delivery implies
that we might have worked on something else and have, by implication,
incurred an opportunity cost of delay.

As a result of these three reasons, Lean Software Development seeks to
minimize flow time and to record data that enables predictions about
flow time. The objective is to minimize failure demand from bugs, waste
from over-burdening due to delay in fixing bugs, and to maximize value
delivered by avoiding both cost of delay and opportunity cost of delay.

Reduce Waste to Improve Efficiency
For every valued-added activity, there are setup, cleanup and delivery
activities that are necessary but do not add value in their own right.
For example, a project iteration that develops an increment of working
software requires planning (a setup activity), an environment and
perhaps a code branch in version control (collectively known as
configuration management and also a setup activity), a release plan
and performing the actual release (a delivery activity), a demonstration
to the customer (a delivery activity), and perhaps an environment
teardown or reconfiguration (a cleanup activity.) In economic terms,
the setup, cleanup, and delivery activities are transaction costs on
performing the value-added work. These costs (or overheads) are
considered waste in Lean.

Any form of communication overhead can be considered waste.
Meetings to determine project status and to schedule or assign
work to team members would be considered a coordination cost in
economic language. All coordination costs are waste in Lean thinking.
Lean software development methods seek to eliminate or reduce
coordination costs through the use of colocation of team members,
short face-to-face meetings such as standups, and visual controls such as
card walls.

The third common form of waste in Lean Software Development is
failure demand. Failure demand is a burden on the system of software
development. Failure demand is typically rework or new forms of work
generated as a side-effect of poor quality. The most typical forms of
failure demand in software development are bugs, production defects,
and customer support activities driven out of a failure to use the

http://freepdf-books.com

software as intended. The percentage of work-in-progress that is failure
demand is often referred to as Failure Load. The percentage of value-
adding work against failure demand is a measure of the efficiency of the
system.

The percentage of value-added work against the total work, including
all the non-value adding transaction and coordination costs, determines
the level of efficiency. A system with no transaction and coordination
costs and no failure load would be considered 100% efficient.

Traditionally, Western management science has taught that efficiency
can be improved by increasing the batch size of work. Typically,
transaction and coordination costs are fixed or rise only slightly with
an increase in batch size. As a result, large batches of work are more
efficient. This concept is known as “economy of scale.” However, in
knowledge work problems, coordination costs tend to rise non-linearly
with batch size, while transaction costs can often exhibit a linear growth.
As a result, the traditional 20th Century approach to efficiency is not
appropriate for knowledge work problems like software development.

It is better to focus on reducing the overheads while keeping batch
sizes small in order to improve efficiency. Hence, the Lean way to be
efficient is to reduce waste. Lean software development methods
focus on fast, cheap, and quick planning methods; low communication
overhead; and effective low overhead coordination mechanisms, such
as visual controls in kanban systems. They also encourage automated
testing and automated deployment to reduce the transaction costs
of delivery. Modern tools for minimizing the costs of environment
setup and teardown, such as modern version control systems and use
of virtualization, also help to improve efficiency of small batches of
software development.

Practices
Lean Software Development does not prescribe practices. It is more
important to demonstrate that actual process definitions are aligned
with the principles and values. However, a number of practices are being
commonly adopted. This section provides a brief overview of some of
these.

http://freepdf-books.com

Cumulative Flow Diagrams
Cumulative Flow Diagrams have been a standard part of reporting in
Team Foundation Server since 2005. Cumulative flow diagrams plot an
area graph of cumulative work items in each state of a workflow. They
are rich in information and can be used to derive the mean cycle time
between steps in a process as well as the throughput rate (or “velocity”).
Different software development lifecycle processes produce different
visual signatures on cumulative flow diagrams. Practitioners can learn
to recognize patterns of dysfunction in the process displayed in the
area graph. A truly Lean process will show evenly distributed areas of
color, smoothly rising at a steady pace. The picture will appear smooth
without jagged steps or visible blocks of color.

In their most basic
form, cumulative flow
diagrams are used to
visualize the quantity
of work-in-progress at
any given step in the
work item lifecycle. This
can be used to detect
bottlenecks and observe
the effects of “mura”
(variability in flow).

Visual Controls
In addition to the use of cumulative flow diagrams, Lean Software
Development teams use physical boards, or projections of electronic
visualization systems, to visualize work and observe its flow. Such
visualizations help team members observe work-in-progress
accumulating and enable them to see bottlenecks and the effects of
“mura.” Visual controls also enable team members to self-organize
to pick work and collaborate together without planning or specific
management direction or intervention. These visual controls are often
referred to as “card walls” or sometimes (incorrectly) as “kanban
boards.”

http://freepdf-books.com

Virtual Kanban Systems
A kanban system is a practice adopted from Lean manufacturing. It uses
a system of physical cards to limit the quantity of work-in-progress at
any given stage in the workflow. Such work-in-progress limited systems
create a “pull” where new work is started only when there are free
kanban indicating that new work can be “pulled” into a particular state
and work can progress on it.

In Lean Software Development, the kanban are virtual and often tracked
by setting a maximum number for a given step in the workflow of a work
item type. In some implementations, electronic systems keep track of
the virtual kanban and provide a signal when new work can be started.
The signal can be visual or in the form of an alert such as an email.

Virtual kanban systems are often combined with visual controls to
provide a visual virtual kanban system representing the workflow of
one or several work item types. Such systems are often referred to as
“kanban boards” or “electronic kanban systems.”

Small Batch Sizes / Single-Piece
Flow
Lean Software Development requires that work is either undertaken in
small batches, often referred to as “iterations” or “increments,” or that
work items flow independently, referred to as “single-piece flow.” Single-
piece flow requires a sophisticated configuration management strategy
to enable completed work to be delivered while incomplete work is
not released accidentally. This is typically achieved using branching
strategies in the version control system. A small batch of work would
typically be considered a batch that can be undertaken by a small team
of 8 people or less in under 2 weeks.

Small batches and single-piece flow require frequent interaction with
business owners to replenish the backlog or queue or work. They also
require a capability to release frequently. To enable frequent interaction
with business people and frequent delivery, it is necessary to shrink the
transaction and coordination costs of both activities. A common way to
achieve this is the use of automation.

http://freepdf-books.com

Automation
Lean Software Development expects a high level of automation to
economically enable single-piece flow and to encourage high quality
and the reduction of failure demand. The use of automated testing,
automated deployment, and software factories to automate the
deployment of design patterns and creation of repetitive low variability
sections of source code will all be commonplace in Lean Software
Development processes.

Kaizen Events
In Lean literature, the term kaizen means “continuous improvement”
and a kaizen event is the act of making a change to a process or tool that
hopefully results in an improvement.

Lean Software Development processes use several different activities
to generate kaizen events. These are listed here. Each of these activities
is designed to stimulate a conversation about problems that adversely
affect capability and, consequently, ability to deliver against demand.
The essence of kaizen in knowledge work is that we must provoke
conversations about problems across groups of people from different
teams and with different skills.

Daily Standup Meetings
Teams of software developers, often up to 50, typically meet in front of
a visual control system such as a whiteboard displaying a visualization
of their work-in-progress. They discuss the dynamics of flow and factors
affecting the flow of work. Particular focus is made to externally blocked
work and work delayed due to bugs. Problems with the process often
become evident over a series of standup meetings. The result is that a
smaller group may remain after the meeting to discuss the problem and
propose a solution or process change. A kaizen event will follow. These
spontaneous meetings are often referred to as spontaneous quality
circles in older literature. Such spontaneous meetings are at the heart of
a truly kaizen culture. Managers will encourage the emergence of kaizen
events after daily standup meetings in order to drive adoption of Lean
within their organization.

http://freepdf-books.com

Retrospectives
Project teams may schedule regular meetings to reflect on recent
performance. These are often done after specific project deliverables
are complete or after time-boxed increments of development known as
iterations or sprints in Agile software development.

Retrospectives typically use an anecdotal approach to reflection
by asking questions like “what went well?”, “what would we do
differently?”, and “what should we stop doing?”

Retrospectives typically produce a backlog of suggestions for kaizen
events. The team may then prioritize some of these for implementation.

Operations Reviews
An operations review is typically larger than a retrospective and includes
representatives from a whole value stream. It is common for as many
as 12 departments to present objective, quantitative data that show
the demand they received and reflect their capability to deliver against
the demand. Operations reviews are typically held monthly. The key
differences between an operations review and a retrospective is that
operations reviews span a wider set of functions, typically span a
portfolio of projects and other initiatives, and use objective, quantitative
data. Retrospectives, in comparison, tend to be scoped to a single
project; involve just a few teams such as analysis, development, and
test; and are generally anecdotal in nature.

An operations review will provoke discussions about the dynamics
affecting performance between teams. Perhaps one team generates
failure demand that is processed by another team? Perhaps that
failure demand is disruptive and causes the second team to miss their
commitments and fail to deliver against expectations? An operations
review provides an opportunity to discuss such issues and propose
changes. Operations reviews typically produce a small backlog of
potential kaizen events that can be prioritized and scheduled for future
implementation.

There is no such thing as a single Lean Software Development process.
A process could be said to be Lean if it is clearly aligned with the

http://freepdf-books.com

values and principles of Lean Software Development. Lean Software
Development does not prescribe any practices, but some activities
have become common. Lean organizations seek to encourage kaizen
through visualization of workflow and work-in-progress and through
an understanding of the dynamics of flow and the factors (such as
bottlenecks, non-instant availability, variability, and waste) that affect
it. Process improvements are suggested and justified as ways to reduce
sources of variability, eliminate waste, improve flow, or improve value
delivery or risk management. As such, Lean Software Development
processes will always be evolving and uniquely tailored to the
organization within which they evolve. It will not be natural to simply
copy a process definition from one organization to another and expect it
to work in a different context. It will also be unlikely that returning to an
organization after a few weeks or months to find the process in use to
be the same as was observed earlier. It will always be evolving.

The organization using a Lean software development process could
be said to be Lean if it exhibited only small amounts of waste in all
three forms (“mura,” “muri,” and “muda”) and could be shown to
be optimizing the delivery of value through effective management
of risk. The pursuit of perfection in Lean is always a journey. There is
no destination. True Lean organizations are always seeking further
improvement.

Lean Software Development is still an emerging field, and we can expect
it to continue to evolve over the next decade.

http://freepdf-books.com

About David J. Anderson

David J. Anderson is a thought leader in managing effective technology
development. He leads an international management training and
consulting firm, David J. Anderson & Associates Inc. (www.djaa.com),
that helps businesses improve their performance through better
management policies and decision making.

He has 30 years experience in the high technology industry. He has
led software teams delivering superior productivity and quality using
innovative agile methods at large companies such as Sprint, Motorola,
and Microsoft.

David is the author of three books, Agile Management for Software
Engineering – Applying the Theory of Constraints for Business Results,
Kanban – Successful Evolutionary Change for your Technology
Business, and Lessons in Agile Management: On the Road to Kanban.
David is CEO of Lean-Kanban University, a business dedicated to assuring
quality of training in Lean and Kanban throughout the world.

About Lean-Kanban University

Lean-Kanban University (LKU) works to assure the highest quality
coaching and training on Kanban for knowledge work and service
work worldwide. LKU Accredited Kanban Training™ program partners
and Kanban Coaching Professionals™ follow the Kanban Method for
evolutionary organizational change.

Lean-Kanban University offers accreditation for Kanban trainers, a
professional designation for Kanban coaches, and certification and LKU
membership for Kanban practitioners.

www.leankanbanuniversity.com

http://freepdf-books.com

www.djaa.com
www.leankanbanuniversity.com

References

1.	 Womack, James P., Daniel T. Jones and Daniel Roos, The Machine
That Changed the World: The Story of Lean Production, 2007
updated edition, Free Press, 2007

2.	 Womack, James P., and Daniel T. Jones, Lean Thinking: Banish Waste
and Create Wealth in your Corporation, 2nd Edition, Free Press,
2003

3.	 Beck, Kent et al, The Manifesto for Agile Software Development,
2001 http://www.agilemanifesto.org/

4.	 Highsmith, James A., Agile Software Development Ecosystems,
Addison Wesley, 2002

5.	 Poppendieck, Mary and Tom Poppendieck, Lean Software
Development: An Agile Toolkit, Addison Wesely, 2003

6.	 Poppendieck, Mary and Tom Poppendieck, Implementing Lean
Software Development: From Concept to Cash, Addison Wesley,
2006

7.	 Poppendieck, Mary and Tom Poppendieck, Leading Lean Software
Development: Results are not the Point, Addison Wesley, 2009

8.	 Reinertsen, Donald G., Managing the Design Factory, Free Press,
1997

9.	 Reinertsen, Donald G., The Principles of Product Development Flow:
Second Generation Lean Product Development, Celeritas Publishing,
2009

10.	 Sutton, James and Peter Middleton, Lean Software Strategies:
Proven Techniques for Managers and Developers, Productivity Press,
2005

11.	 Anderson, David J., Agile Management for Software Engineering:
Applying the Theory of Constraints for Business Results, Prentice
Hall PTR, 2003

12.	 Shalloway, Alan, and Guy Beaver and James R. Trott, Lean-Agile
Software Development: Achieving Enterprise Agility, Addison
Wesley, 2009

13.	 Larman, Craig and Bas Vodde, Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-scale Scrum, Addison
Wesley Professional, 2008

14.	 Practices for Scaling Lean & Agile Development: Large, Multisite, and
Offshore Product Development with Large-Scale Scrum, Addison
Wesley Professional, 2010

15.	 Coplien, James O. and Gertrud Bjornvig, Lean Architecture: for Agile
Software Development, Wiley, 2010

16.	 http://leansystemssociety.org/
17.	 http://www.leanssc.org/2011/05/

leanssc-vision-values-and-mission-1-0beta/
18.	 Anderson, David J., Agile Management for Software Engineering:

Applying the Theory of Constraints for Business Results, Prentice
Hall PTR, 2003

19.	 Anderson, David J., Kanban: Successful Evolutionary Change for your
Technology Business, Blue Hole Press, 2010

20.	 Anderson, David J., Lessons in Agile Management: On the Road to
Kanban, Blue Hole Press, 2012

http://freepdf-books.com

http://www.agilemanifesto.org
http://leansystemssociety.org
http://www.leanssc.org/2011/05/leanssc
http://www.leanssc.org/2011/05/leanssc

www.leankanbanuniversity.com

http://freepdf-books.com

www.leankanbanuniversity.com

