
Intro Classes Efficiency OOP

Introduction to C++ (and C) Programming

Hans Petter Langtangen1,2

Simula Research Laboratory1

Dept. of Informatics, Univ. of Oslo2

January 2006

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Outline
1 Intro to C++ programming

About C and C++
Introductory C++ example
Manipulate data files
Matrix-vector product
The C preprocessor
Exercises
About classes in C++
A simple class

2 Class programming
Class Complex
A vector class
Standard Template Library

3 Efficiency; C++ vs. F77
4 Object-Oriented Numerical Programming

OOP example: ODE solvers
Classes for PDEs

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Contents

Gentle introduction to C++

File I/O

Arrays and loops

Detailed explanation of classes with built-in arithmetics

Computational efficiency aspects

Object-oriented programming and class hierarchies

Using C++ objects in numerical applications

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Required background

Programming experience with either Java or Fortran/Matlab

Interest in numerical computing with C++

Interest in low-level details of the computer

Knowledge of some C is advantageous (but not required)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

About learning C++

C++ is a complicated computer language

It takes time to master C++ – one year is the rule of thumb

Four days can only give a taste of C++

You need to work intensively with C++ in your own projects
to master the language

C++ exposes you to lots of “low-level details” – these are
hidden in languages like Java, Matlab and Python

Hopefully, you will appreciate the speed and flexibility of C++

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Teaching philosophy

Intensive course:

Lectures 9-12

Hands-on training 13-16

Learn from dissecting examples

Get in touch with the dirty work

Get some overview of advanced topics

Focus on principles and generic strategies

Continued learning on individual basis

This course just gets you started - use textbooks, reference
manuals and software examples from the Internet for futher work
with projects

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Recommended attitude

Dive into executable examples

Don’t try to understand everything

Try to adapt examples to new problems

Look up technical details in manuals/textbooks

Learn on demand

Stay cool

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Why do you need to learn “old” compiled languages?

Because C, C++, and Fortran (77/95) are the most efficient
existing tools for intensive numerical computing

Because tons of fast and well-tested codes are available in
Fortran, C/C++

Newer languages have emphasized simplicity and reliability –
at the cost of computational efficiency

To get speed, you need to dive into the details of compiled
languages, and this course is a first, gentle step

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C

C is a dominating language in Unix and Windows
environments

The C syntax has inspired lots of popular languages (Awk,
C++, Java, Perl, Python, Ruby)

Numerous tools (numerical libraries, e.g., MPI) are written in
C; interfacing them requires C knowledge

C is extremely portable; “all” machines can compile and run C
programs

C is very low level and close to the machine

Unlimited possibilities; one can do anything in C

Programmers of high-level languages often get confused by
strange/unexpected errors in C

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C++

C++ extends C with

nicer syntax:

- declare variables wherever you want
- in/out function arguments use references (instead of pointers)

classes for implementing user-defined data types

a standard library (STL) for frequently used data types (list,
stack, queue, vector, hash, string, complex, ...)

object-oriented programming

generic programming, i.e., parameterization of variable types
via templates

exceptions for error handling

C is a subset of C++

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C versus other languages

Fortran 77 is more primitive but more reliable

Matlab is as simple/primitive as Fortran 77, but with many
more high-level commands (= easy to use)

C++ is a superset of C and much richer/higher-level/reliable

Java is simpler and more reliable than C++

Python is even more high-level, but potentially slow

Fortran 90/95 is simpler than Java/C++ and a good
alternative to C

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Speed of C versus speed of other languages

C is regarded as very fast

Fortran 77 may yield slightly faster code

C++ and Fortran 90/95 are in general slower, but C++ is
very close to C in speed

Java is normally considerably slower

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Some guidelines

C programmers need to be concerned with low-level details
that C++ (and Java or Fortran) programmers can omit

Don’t use C unless you have to - use C++ instead

The best solution is often to combine languages: Python to
administer user interfaces, I/O and computations, with
intensive numerics implemented in C++ or Fortran

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

High vs low level programs

Goal: make a window on the screen with the text “Hello
World”

Implementations in
1 C and the X11 library
2 C++ and the Qt library
3 Python

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C/X11 implementation (1)

#include <stdio.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define STRING "Hello, world"
#define BORDER 1
#define FONT "fixed"

XWMHints xwmh = {
(InputHint|StateHint), /* flags */
False, /* input */
NormalState, /* initial_state */
0, /* icon pixmap */
0, /* icon window */
0, 0, /* icon location */
0, /* icon mask */
0, /* Window group */

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C/X11 implementation (2)

main(argc,argv)
int argc;
char **argv;

{
Display *dpy; /* X server connection */
Window win; /* Window ID */
GC gc; /* GC to draw with */
XFontStruct *fontstruct; /* Font descriptor */

unsigned long fth, pad; /* Font size parameters */
unsigned long fg, bg, bd; /* Pixel values */
unsigned long bw; /* Border width */
XGCValues gcv; /* Struct for creating GC */
XEvent event; /* Event received */
XSizeHints xsh; /* Size hints for window manager */
char *geomSpec; /* Window geometry string */
XSetWindowAttributes xswa; /* Temp. Set Window Attr. struct */

if ((dpy = XOpenDisplay(NULL)) == NULL) {
fprintf(stderr, "%s: can’t open %s\en", argv[0],

XDisplayName(NULL));
exit(1);

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C/X11 implementation (3)

if ((fontstruct = XLoadQueryFont(dpy, FONT)) == NULL) {
fprintf(stderr, "%s: display %s doesn’t know font %s\en",

argv[0], DisplayString(dpy), FONT);
exit(1);

}
fth = fontstruct->max_bounds.ascent +

fontstruct->max_bounds.descent;

bd = WhitePixel(dpy, DefaultScreen(dpy));
bg = BlackPixel(dpy, DefaultScreen(dpy));
fg = WhitePixel(dpy, DefaultScreen(dpy));

pad = BORDER;
bw = 1;

xsh.flags = (PPosition | PSize);
xsh.height = fth + pad * 2;
xsh.width = XTextWidth(fontstruct, STRING,

strlen(STRING)) + pad * 2;
xsh.x = (DisplayWidth(dpy,DefaultScreen(dpy))-xsh.width)/2;
xsh.y = (DisplayHeight(dpy,DefaultScreen(dpy))-xsh.height)/2;

win = XCreateSimpleWindow(dpy, DefaultRootWindow(dpy),
xsh.x, xsh.y, xsh.width, xsh.height,
bw, bd, bg);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C/X11 implementation (4)

XSetStandardProperties(dpy, win, STRING, STRING, None,
argv, argc, &xsh);

XSetWMHints(dpy, win, &xwmh);

xswa.colormap = DefaultColormap(dpy, DefaultScreen(dpy));
xswa.bit_gravity = CenterGravity;
XChangeWindowAttributes(dpy, win,

(CWColormap | CWBitGravity), &xswa);

gcv.font = fontstruct->fid;
gcv.foreground = fg;
gcv.background = bg;
gc = XCreateGC(dpy, win,

(GCFont | GCForeground | GCBackground), &gcv);
XSelectInput(dpy, win, ExposureMask);

XMapWindow(dpy, win);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C/X11 implementation (5)

/*
* Loop forever, examining each event.
*/
while (1) {

XNextEvent(dpy, &event);
if (event.type == Expose && event.xexpose.count == 0) {

XWindowAttributes xwa;
int x, y;
while (XCheckTypedEvent(dpy, Expose, &event));
if (XGetWindowAttributes(dpy, win, &xwa) == 0)

break;
x = (xwa.width - XTextWidth(fontstruct, STRING,

strlen(STRING))) / 2;
y = (xwa.height + fontstruct->max_bounds.ascent

- fontstruct->max_bounds.descent) / 2;
XClearWindow(dpy, win);
XDrawString(dpy, win, gc, x, y, STRING, strlen(STRING));

}
}
exit(1);

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C++/Qt implementation

#include <qapplication.h>
#include <qlabel.h>

int main(int argc, char* argv[])
{
QApplication a(argc, argv);
QLabel hello("Hello world!", 0);
hello.resize(100, 30);
a.setMainWidget(&hello);
hello.show();
return a.exec();

}

Point: C++ offers abstractions, i.e., complicated variables that
hide lots of low-level details. Something similar is offered by Java.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Python implementation

#!/usr/bin/env python
from Tkinter import *
root = Tk()
Label(root, text=’Hello, World!’,

foreground="white", background="black").pack()
root.mainloop()

Similar solutions are offered by Perl, Ruby, Scheme, Tcl

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

THE textbook on C

Kernighan and Ritchie: The C Programming Language

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Recommended C++ textbooks

Stroustrup, Barton & Nackman, or Yang:

More books reviewed:
http:://www.accu.org/
http://www.comeaucomputing.com/booklist/

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The first C++ encounter

Learning by doing:

Scientific Hello World: the first glimpse of C++

Data filter: reading from and writing to files, calling functions

Matrix-vector product: arrays, dynamic memory management,
for-loops, subprograms

We mainly teach C++ – the C version specialities are discussed at
the end of each example (in this way you learn quite some C with
little extra effort)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Scientific Hello World in C++

Usage:

./hw1.app 2.3

Output of program hw1.app:

Hello, World! sin(2.3)=0.745705

What to learn:
1 store the first command-line argument in a floating-point

variable
2 call the sine function
3 write a combination of text and numbers to standard output

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The code

#include <iostream> // input/output functionality
#include <math.h> // the sine function
#include <stdlib.h> // the atof function

int main (int argc, char* argv[])
{

// convert the text argv[1] to double using atof:
double r = atof(argv[1]);
// declare variables wherever needed:
double s = sin(r);
std::cout << "Hello, World! sin(" << r << ")=" << s << ’\n’;
return 0; /* success */

}

File: src/C++/hw/hw1.cpp (C++ files have extension .cpp, .C or
.cxx)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dissection (1)

The compiler must see a declaration of a function before you
can call it (the compiler checks the argument and return
types)

The declaration of library functions appears in “header files”
that must be included in the program:

#include <math.h> // the sine function

We use three functions (atof, sin, and std::cout <<; these
are declared in three different header files

Comments appear after // on a line or between /* and */

(anywhere)

On some systems, including stdlib.h is not required because
iostream includes stdlib.h

Finding the right header files (.h) is always a challenge

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dissection (2)

The main program is a function called main

The command-line arguments are transferred to the main
function:
int main (int argc, char* argv[])

argc is the no of command-line arguments + 1

argv is a vector of strings containing the command-line
arguments

argv[1], argv[2], ... are the command-line args

argv[0] is the name of the program

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dissection (3)

Floating-point variables in C and C++:
1 float: single precision
2 double: double precision

atof: transform a text (argv[1]) to float

Automatic type conversion: double = float

The sine function is declared in math.h
(note: math.h is not automatically included)

Formatted output is possible, but easier with printf

The return value from main is an int (0 if success)

The operating system stores the return value, and other

programs/utilities can check whether the execution was successful or not

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

An interactive version

Let us ask the user for the real number instead of reading it
from the command line

std::cout << "Give a real number:";
double r;
std::cin >> r; // read from keyboard into r
double s = sin(r);
// etc.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Scientific Hello World in C

#include <stdlib.h> /* atof function */
#include <math.h> /* sine function */
#include <stdio.h> /* printf function */

int main (int argc, char* argv[])
{

double r, s; /* declare variables in the beginning */
r = atof(argv[1]); /* convert the text argv[1] to double */
s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

}

File: src/C/hw/hw1.c (C files have extension .c)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Differences from the C++ version

C uses stdio.h for I/O and functions like printf for output;
C++ can use the same, but the official tools are in iostream
(and use constructions like std::cout << r)

Variables can be declared anywhere in C++ code; in C they
must be listed in the beginning of the function

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to compile and link C++ programs

One step (compiling and linking):

unix> g++ -Wall -O3 -o hw1.app hw1.cpp -lm

-lm can be skipped when using g++
(but is otherwise normally required)

Two steps:
unix> g++ -Wall -O3 -c hw1.cpp # compile, result: hw1.o
unix> g++ -o hw1.app hw1.o -lm # link

Native C++ compiler on other systems:
IBM AIX> xlC -O2 -c hw1.cpp
IBM AIX> xlC -o hw1.app hw1.o -lm

other unix> CC -O2 -c hw1.cpp
other unix> CC -o hw1.app hw1.o -lm

Note: -Wall is a g++-specific option

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Collect compiler commands in a script

Even for small test programs it is tedious to write the
compilation and linking commands

Automate with a script!

#!/bin/sh
g++ -Wall -O3 -c hw1.cpp
g++ -o hw1.app hw1.o -lm

or parameterize the program name:

#!/bin/sh
progname=$1
g++ -Wall -O3 -c $progname.cpp
g++ -o $progname.app $progname.o -lm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Running the script

Suppose the name of the script is compile.sh

Make the script executable:
unix> chmod a+x compile.sh

Execute the script:

unix> ./compile.sh

or if it needs the program name as command-line argument:

unix> ./compile.sh hw1

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The make.sh scripts in the course software

Compiler name and options depend on the system

Tip: make a script make.sh to set up suitable default compiler
and options, and go through the compilation and linking

With this course we have some make.sh scripts using
environment variables in your start-up file (.bashrc, .cshrc):

C++ compiler and associated options:
CPP_COMPILER
CPP_COMPILER_OPTIONS

If not defined, these are set according to the computer system
you are on (detected by uname -s)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The make.sh script (1)

#!/bin/sh

determine compiler options (check first if the environment
variable CPP_COMPILER is set):
if [! -n "$CPP_COMPILER"]; then

base CPP_COMPILER on the current machine type:
case ‘uname -s‘ in

Linux)
CPP_COMPILER=g++
CPP_COMPILER_OPTIONS="-Wall -O3"
;;

AIX)
CPP_COMPILER=xlC
CPP_COMPILER_OPTIONS="-O"
;;

SunOS)
CPP_COMPILER=CC
CPP_COMPILER_OPTIONS="-O3"
;;

*)
GNU’s gcc is available on most systems...
C_COMPILER=gcc
C_COMPILER_OPTIONS="-Wall -O3"
;;

esac
fi

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The make.sh script

fetch all C++ files:
files=‘/bin/ls *.cpp‘

for file in $files; do
stem=‘echo $file | sed ’s/\.cpp$//’‘
echo $CPP_COMPILER $CPP_COMPILER_OPTIONS -I. -o $stem.app $file -lm
$CPP_COMPILER $CPP_COMPILER_OPTIONS -I. -o $stem.app $file -lm
ls -s $stem.app

done

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to compile and link C programs

To use GNU’s compiler: just replace g++ by gcc

On other systems:
IBM AIX> xlc -O2 -c hw1.c
IBM AIX> xlc -o hw1.app hw1.o -lm

other unix> cc -O2 -c hw1.c
other unix> cc -o hw1.app hw1.o -lm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to compile and link in general

We compile a bunch of Fortran, C and C++ files and link
these with some libraries

Compile each set of files with the right compiler:

unix> g77 -O3 -I/some/include/dir -c *.f
unix> gcc -O3 -I/some/other/include/dir -I. -c *.c
unix> g++ -O3 -I. -c *.cpp
Each command produces a set of corresponding object files
with extension .o

Then link:
unix> g++ -o executable_file -L/some/libdir -L/some/other/libdir \

*.o -lmylib -lyourlib -lstdlib

Here, we link all *.o files with three libraries: libmylib.a,
libyourlib.so, libstdlib.so, found in /some/libdir or
/some/other/libdir

Library type: lib*.a: static; lib*.so: dynamic

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Executables vs. libraries

A set of object files can be linked with a set of libraries to
form an executable program, provided the object files contains
one main program

If the main program is missing, one can link the object files to
a static or sheared library mylib2:

unix> g++ -shared -o libmylib2.so *.o
unix> g++ -static -o libmylib2.a *.o

If you write a main program in main.cpp, you can create the
executable program by
unix> g++ -O -c main.cpp # create main.o
unix> g++ -o executable_file main.o -L. -lmylib2

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Makefiles

Compiling and linking are traditionally handled by makefiles

The make program executes the code in makefiles

Makefiles have an awkward syntax and the make language is
primitive for text processing and scripting

The (old) important feature of make is to check time stamps
in files and only recompile the required files

I have stopped using makefiles – I prefer plain scripts

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Things can easily go wrong in C

Let’s try a version of the program where we fail to include
stdlib.h (i.e. the compiler does not see the declaration of
atof)

unix> gcc -o tmp -O3 hw-error.c
unix> ./tmp 2.3
Hello, World! sin(1.07374e+09)=-0.617326

File: src/C/hw/hw-error.c

The number 2.3 was not read correctly...

argv[1] is the string "2.3"

r is not 2.3 (!)

The program compiled and linked successfully!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Remedy

Use the C++ compiler, e.g.
unix> g++ -o tmp -O3 hw-error.c
hw-error.c: In function ‘int main(int, char **)’:
hw-error.c:9: implicit declaration of function ‘int atof(...)’

or use gcc -Wall with gcc:
unix> gcc -Wall -o tmp -O3 hw-error.c
hw-error.c: In function ‘main’:
hw-error.c:9: warning: implicit declaration of function ‘atof’

The warning tells us that the compiler cannot see the declaration
of atof, i.e., a header file with atof is missing

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Example: Data transformation

Suppose we have a file with xy-data:
0.1 1.1
0.2 1.8
0.3 2.2
0.4 1.8

and that we want to transform the y data using some
mathematical function f(y)

Goal: write a C++ program that reads the file, transforms the
y data and write new xy-data to a new file

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Program structure

1 Read name of input and output files as command-line
arguments

2 Print error/usage message if less than two command-line
arguments are given

3 Open the files
4 While more data in the file:

1 read x and y from the input file
2 set y = myfunc(y)
3 write x and y to the output file

5 Close the files

File: src/C++/datatrans/datatrans1.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The C++ code (1)

#include <iostream>
#include <fstream>
#include <iomanip>
#include <math.h>

double myfunc(double y)
{

if (y >= 0.0) {
return pow(y,5.0)*exp(-y);

} else {
return 0.0;

}
}

int main (int argc, char* argv[])
{

char* infilename; char* outfilename;
/* abort if there are too few command-line arguments */
if (argc <= 2) {
std::cout << "Usage: " << argv[0] << " infile outfile" << ’\n’;
exit(1);

} else {
infilename = argv[1]; outfilename = argv[2];

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The C++ code (2)

std::ifstream ifile(infilename);
std::ofstream ofile(outfilename);
std::cout << argv[0] << ": converting " << infilename << " to "
<< outfilename << ’\n’;

double x, y;
int ok = true; // boolean variable for not end of file
while (ok) {
if (!(ifile >> x >> y)) ok = false;
if (ok) {

y = myfunc(y);
ofile.unsetf(std::ios::floatfield);
ofile << x << " ";
ofile.setf(std::ios::scientific, std::ios::floatfield);
ofile.precision(5);
ofile << y << std::endl;

}
}
ifile.close(); ofile.close();
return 0;

}

We can avoid the prefix std:: by writing

using namespace std; /* e.g.: cout now means std::cout */

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C++ file opening

File handling in C++ is implemented through classes

Open a file for reading (ifstream):

#include <fstream>
const char* filename1 = "myfile";
std::ifstream ifile(filename1);

Open a file for writing (ofstream):

std::string filename2 = filename1 + ".out"
std::ofstream ofile(filename2); // new output file

or open for appending data:

std::ofstream ofile(filename2, ios_base::app);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C++ file reading and writing

Read something from the file:

double a; int b; char c[200];
ifile >> a >> b >> c; // skips white space in between

Can test on success of reading:

if (!(ifile >> a >> b >> c)) ok = 0;

Print to file:
ofile << x << " " << y << ’\n’;

Of course, C’s I/O and file handling can be used

#include <cstdio> // official C++ name for stdio.h

call ios::sync_with_stdio() if stdio/iostream are mixed

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Formatted output with iostream tools

To set the type of floating-point format, width, precision, etc,
use member functions in the output object:

ofile.setf(std::ios::scientific, std::ios::floatfield);
ofile.precision(5);

I find such functions tedious to use and prefer printf syntax
instead

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Formatted output with printf tools

The iostream library offers comprehensive formatting control

printf-like functions from C makes the writing faster
(and more convenient?)

Writing to standard output:

printf("f(%g)=%12.5e for i=%3d\n",x,f(x),i);

There is a family of printf-like functions:
1 printf for writing to standard output
2 fprintf for writing to file
3 sprintf for writing to a string

Writing to a file: use fprintf and C-type files, or use C++
files with the oform tool on the next slide

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A convenient formatting tool for C++

Use the C function sprintf to write to a string with
printf-like syntax:

char buffer[200];
sprintf(buffer, "f(%g)=%12.5e for i=%3d",x,f(x),i);
std::cout << buffer;

This construction can be encapsulated in a function:

std::cout << oform("f(%g)=%12.5e for i=%3d",x,f(x),i);

char* oform (const char* fmt, ...) /* variable no of args! */
{
va_list ap; va_start(ap, fmt);
static char buffer[999]; // allocated only once
vsprintf (buffer, fmt, ap);
va_end(ap);
return buffer;

}

static variables in a function preserve their contents from call
to call

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The printf syntax

The printf syntax is used for formatting output in many
C-inspired languages (Perl, Python, awk, partly C++)

Example: write
i= 4, r=0.7854, s= 7.07108E-01, method=ACC

i.e.

i=[integer in a field of width 2 chars]

r=[float/double written as compactly as possible]

s=[float/double written with 5 decimals, in scientific notation,
in a field of width 12 chars]

method=[text]

This is accomplished by

printf("i=%2d, r=%g, s=%12.5e, method=%s\n", i, r, s, method);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

More about I/O in C++

General output object: ostream

General input object: istream

ifstream (file) is a special case of istream

ofstream (file) is a special case of ostream

Can write functions
void print (ostream& os) { ... }
void scan (istream& is) { ... }

These work for both cout/cin and ofstream/ifstream

That is, one print function can print to several different media

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

What is actually the argv array?

argv is an array of strings

C/C++ declaration:
char** argv;
or
char* argv[];

argv is a double pointer; what this means in plain English is
that

1 there is an array somewhere in memory
2 argv points to the first entry of this array
3 entries in this array are pointers to other arrays of characters

(char*), i.e., strings

Since the first entry of the argv array is a char*, argv is a
pointer to to a pointer to char, i.e., a double pointer (char**)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The argv double pointer

.

.

. some running text

abc

some string

char**

char*

char*

char*

NULL

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Type conversion

The atof function returns a float, which is then stored in a
double
r = atof(argv[1]);

C/C++ transforms floats to doubles implicitly

The conversion can be written explicitly:

r = (double) atof(argv[1]); /* C style */
r = double(atof(argv[1])); // C++ style

Explicit variable conversion is a good habit; it is safer than
relying on implicit conversions

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Data transformation example in C

Suppose we have a file with xy-data:
0.1 1.1
0.2 1.8
0.3 2.2
0.4 1.8

and that we want to transform the y data using some
mathematical function f(y)

Goal: write a C program that reads the file, transforms the y
data and write the new xy-data to a new file

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Program structure

1 Read name of input and output files as command-line
arguments

2 Print error/usage message if less than two command-line
arguments are given

3 Open the files
4 While more data in the file:

1 read x and y from the input file
2 set y = myfunc(y)
3 write x and y to the output file

5 Close the files

File: src/C/datatrans/datatrans1.c

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The C code (1)

#include <stdio.h>
#include <math.h>

double myfunc(double y)
{

if (y >= 0.0) {
return pow(y,5.0)*exp(-y);

} else {
return 0.0;

}
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The C code (2)

int main (int argc, char* argv[])
{

FILE *ifile; /* input file */
FILE *ofile; /* outout file */
double x, y;
char *infilename;
char *outfilename;
int n;
int ok;

/* abort if there are too few command-line arguments */
if (argc < 3) {
printf("Usage: %s infile outfile\n", argv[0]); exit(1);

} else {
infilename = argv[1]; outfilename = argv[2];

}
printf("%s: converting %s to %s\n",

argv[0],infilename,outfilename);
ifile = fopen(infilename, "r"); /* open for reading */
ofile = fopen(outfilename, "w"); /* open for writing */

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The C code (3)

ok = 1; /* boolean (int) variable for detecting end of file */
while (ok) {
n = fscanf(ifile, "%lf%lf", &x, &y); /* read x and y */
if (n == 2) {

/* successful read in fscanf: */
printf("%g %12.5e\n", x, y);
y = myfunc(y);
fprintf(ofile, "%g %12.5e\n", x, y);

} else { /* no more numbers */ ok = 0; }
}
fclose(ifile); fclose(ofile); return 0;

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Major differences from the C++ version

Use of FILE* pointers instead of ifstream and ofstream

Use of fscanf and fprintf instead of

ifile >> object;
ofile << object;

You can choose any of these two I/O tools in C++

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C file opening

Open a file:
FILE *somefile;
somefile = fopen("somename", "r" /* or "w" */);
if (somefile == NULL) {

/* unsuccessful open, write an error message */
...

}

More C-ish style of the if-test:

if (!somefile) { ... }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

C file reading and writing

Read something from the file:

double a; int b; char c[200];
n = fscanf(somefile, "%lf%d%s", &a, &b, c);

/* %lf means long float, %d means integer, %s means string */
/* n is the no of successfully converted items */

/* variables that are to be set inside the function, as in
fscanf, must be preceeded by a &, except arrays (c is
a character array - more about this later)

*/

/* fscanf returns EOF (predefined constant) when reaching
the end-of-file mark

*/

Print to file:
fprintf(ofile, "Here is some text: %g %12.5e\n", x, y);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Read until end of file

Method 1: read until fscanf fails:
ok = 1; /* boolean variable for not end of file */
while (ok) {
n = fscanf(ifile, "%lf%lf", &x, &y); /* read x and y */
if (n == 2) {

/* successful read in fscanf: */ ... }
} else {

/* didn’t manage to read two numbers, i.e.
we have reached the end of the file

*/
ok = 0;

}
}

Notice that fscanf reads structured input; errors in the file
format are difficult to detect

A more fool-proof and comprehensive approach is to read
character by character and interpret the contents

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Next example: matrix-vector product

Goal: calculate a matrix-vector product

Declare a matrix A and vectors x and b

Initialize A

Perform b = A*x

Check that b is correct

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

What to learn

How one- and multi-dimensional are created in C and C++

Dynamic memory management

Loops over array entries

More flexible array objects in C++

C and C++ functions

Transfer of arguments to functions

Pointers and references

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Basic arrays in C and C++

C and C++ use the same basic array construction

These arrays are based on pointers to memory segments

Array indexing follows a quickly-learned syntax:
q[3][2] is the same as q(3,4) in Fortran, because

1 C/C++ (multi-dimensional) arrays are stored row by row
(Fortran stores column by column)

2 base index is 0 (Fortran applies 1)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Declaring basic C/C++ vectors

Basic C/C++ arrays are somewhat clumsy to define

C++ has more high-level vectors in its Standard Template
Library, or one can use third-party array objects or write one’s
own

Declaring a fixed-size vector in C/C++ is very easy:

#define N 100

double x[N];
double b[50];

Vector indices start at 0

Looping over the vector:
int i;
for (i=0; i<N; i++) {
x[i] = f(i) + 3.14;

}

double f(int i) { ... } /* definition of function f */

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Declaring basic C matrices

Declaring a fixed-size matrix:

/* define constants N and M: */
#define N 100
#define M 100

double A[M][N];

Array indices start at 0

Looping over the matrix:
int i,j;
for (i=0; i<M; i++) {
for (j=0; j<N; j++) {

A[i][j] = f(i,j) + 3.14;
}

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Matrix storage scheme

Note: matrices are stored row wise; the column index should
vary fastest

Recall that in Fortran, matrices are stored column by column

Typical loop in Fortran (2nd index in outer loop):

for (j=0; j<N; j++) {
for (i=0; i<M; i++) {

A[i][j] = f(i,j) + 3.14;
}

}

But in C and C++ we now traverse A in jumps!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dynamic memory allocation

The length of arrays can be decided upon at run time and the
necessary chunk of memory can be allocated while the
program is running

Such dynamic memory allocation is error-prone!

You need to allocate and deallocate memory

C++ programmers are recommended to use a library where
dynamic memory management is hidden

We shall explain some details of dynamic memory
management; you should know about it, but not necessarily
master the details

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dynamic memory allocation in C

Static memory allocation (at compile time):

double x[100];

Dynamic memory allocation (at run time):

double* x;
x = (double*) calloc(n, sizeof(double));
/* or: */
x = (double*) malloc(n*sizeof(double));

calloc: allocate and initialize memory chunk (to zeros)

malloc: just allocate a memory chunk

Free memory when it is no longer used:

free(x);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Dynamic memory allocation in C++

The ideas are as in C (allocate/deallocate), but

C++ uses the functions new and delete instead of malloc

and free

double* x = new double[n]; // same as malloc
delete [] x; // same as free(x)

// allocate a single variable:
double* p = new double;
delete p;

Never mix malloc/calloc/free with new/delete!

double* x = new double[n];
...
free(x); // dangerous

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

High-level vectors in C++

C++ has a Standard Template Library (STL) with vector
types, including a vector for numerics:

std::valarray<double> x(n); // vector with n entries

It follows the subscripting syntax of standard C/C++ arrays:

int i;
for (i=0, i<N; i++) {
x[i] = f(i) + 3.14;

}

// NOTE: with STL one often avoids for-loops
// (more about this later)

STL has no matrix type!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Storage of vectors

A vector is actually just a pointer to the first element:

double* x; // dynamic vector
double y[N]; // vector with fixed size at compile time

Note: one can write
double *x;
/* or */
double* x;

(the first is C style, the second is C++ style...)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Storage of matrices

A matrix is represented by a double pointer (e.g. double**)
that points to a contiguous memory segment holding a
sequence of double* pointers

Each double* pointer points to a row in the matrix

double** A; // dynamic matrix
A[i] is a pointer to the i+1-th row
A[i][j] is matrix entry (i,j)

.

.

.

double**

.

double*

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Allocation of a matrix in C

.

.

.

double**

.

double*

Allocate vector of pointers to rows:

A = (double**) calloc(n, sizeof(double*));

Allocate memory for all matrix entries:

A[0] = (double*) calloc(n*n, sizeof(double));

Set the row pointers to the correct memory address:

for (i=1; i<n; i++) A[i] = A[0] + n*i;

C++ style allocation:

A = new double* [n]; A[0] = new double [n*n];

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Deallocation of a matrix in C

When the matrix is no longer needed, we can free/deallocate
the matrix

Deallocation syntax:

free(A[0]); /* free chunk of matrix entries*/
free(A); /* free array of pointers to rows */

C++ style:

delete [] A[0];
delete [] A;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Warning: be careful with dynamic memory management!

Working with pointers, malloc/calloc and free is notoriously
error-prone!

Avoid explicit memory handling if you can, that is, use C++
libraries with classes that hide dynamic memory management

Tip: Stroustrup’s Handle class offers a smart pointer (object
with pointer-like behavior) that eliminates the need for explicit
delete calls

Source can be found in
src/C++/Wave2D/Handle.h

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A glimpse of the Handle class

template< typename T > class Handle
{

T* pointer; // pointer to actual object
int* pcount; // the number of Handle’s pointing to the same object

public:
explicit Handle(T* pointer_)

: pointer(pointer_), pcount(new int(1)) {}

explicit Handle(const Handle<T>& r) throw()
: pointer(r.pointer), pcount(r.pcount) { ++(*pcount); }

~Handle() throw()
{ if (--(*pcount) == 0) { delete pointer; delete pcount; } }

T* operator->() { return pointer; }
T& operator*() { return *pointer; }

Handle& operator= (const Handle& rhs) throw() {
if (pointer == rhs.pointer) return *this;
if (--(*pcount) == 0) {

delete pointer; delete pcount;
}
pointer = rhs.pointer;
pcount = rhs.pcount;
++(*pcount);
return *this;

}
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Using our own array type

In C++ we can hide all the allocation/deallocation details in
a new type of variable

For convenience and educational purposes we have created
the special type MyArray:

MyArray<double> x(n), A(n,n), b(n);

// indices start at 1:
for (i=1; i <=n; i++) {
x(i) = ...;
A(3,i) = ...;

}

MyArray indexing is inspired by Fortran 77: data are stored
column by column and the first index is 1 (not 0!)

MyArray is a dynamic type with built-in new/delete

MyArray’s internal storage: a plain C vector

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Declaring and initializing A, x and b

MyArray<double> A, x, b;
int n;
if (argc >= 2) {
n = atoi(argv[1]);

} else {
n = 5;

}
A.redim(n,n); x.redim(n); b.redim(n);

int i,j;
for (j=1; j<=n; j++) {
x(j) = j/2.0;
for (i=1; i<=n; i++) {
A(i,j) = 2.0 + double(i)/double(j);

}
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Matrix-vector product loop

Computation:
double sum;
for (i=1; i<=n; i++) {
sum = 0.0;
for (j=1; j<=n; j++) {

sum += A(i,j)*x(j);
}
b(i) = sum;

}

Note: we traverse A column by column because A is stored
(and indexed) in Fortran fashion

Complete code: src/C++/mv/mv2.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The corresponding C version

Explicit allocation/deallocation of vector/matrix

The core loop is not that different:

for (i=0; i<n; i++) {
x[i] = (i+1)/2.0;
for (j=0; j<n; j++) {

A[i][j] = 2.0 + (((double) i)+1)/(((double) j)+1);

if (n < 10) { printf("A(%d,%d)=%g\t", i,j,A[i][j]); }
}
if (n < 10) { printf(" x(%d)=%g\n", i,x[i]); }

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Subprograms in C++

Subprograms are called functions in C++

void as return type signifies subroutines in Fortran (no return
value)

A function with return value:
double f(double x) { return sin(x)*pow(x,3.2); } // as in C

Default transfer of arguments: “call by value”, i.e., in
x1 = 3.2;
q = f(x1)

f takes a copy x of x1

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Call by reference

Problem setting: How can changes to a variable inside a function
be visible in the calling code?

C applies pointers,
int n; n=8;
somefunc(&n); /* &n is a pointer to n */

void somefunc(int *i)
{
i = 10; / n is changed to 10 */
...

}

Pointers also work in C++ (C is a subset of C++!), but in
C++ it is standard to use references

int n; n=8;
somefunc(n); /* just transfer n itself */

void somefunc(int& i) // reference to i
{
i = 10; /* n is changed to 10 */
...

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Always use references for large objects

This function implies a copy of x:

void somefunc(MyArray<double> x)
{ ... }

Copying is inefficient if x is large!!

Here only a reference (kind of address) is transferred to the
function:
void somefunc(MyArray<double>& x)
{
// can manipulate the entries in x
x(5) = 10; // ok

}

Manipulation of the array can be avoided using the const
keyword:

void somefunc(const MyArray<double>& x)
{
// can NOT manipulate the entries in x
x(5) = 10; // illegal to assign new values
r = x(1); // ok to read array entries

} H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A C++ function

Initialize A and x in a separate function:

void init (MyArray<double>& A, MyArray<double>& x)
{
const int n = x.size();
int i,j;
for (j=1; j<=n; j++) {

x(j) = j/2.0; /* or completely safe: double(j)/2.0 */
for (i=1; i<=n; i++) {
A(i,j) = 2.0 + double(i)/double(j);

}
}

}

Notice that n is not transferred as in C and Fortran 77; n is a
part of the MyArray object

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Subprograms in C

The major difference is that C has not references, only
pointers

Call by reference (change of input parameter) must use
pointers:

void init (double **A, double *x, int n)
{
int i,j;
for (i=1; i<=n; i++) {

x[i] = (i+1)/2.0;
for (j=1; j<=n; j++) {
A[i][j] = 2.0 + (((double) i)+1)/(((double) j)+1);

}
}

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

More about pointers

A pointer holds the memory address to a variable

int* v; /* v is a memory address */
int q; /* q is an integer */
q=1;
v = &q; /* v holds the address of q */
v = 2; / q is changed to 2 */

In function calls:
int n; n=8;
somefunc(&n);

void somefunc(int *i) /* i becomes a pointer to n */
{
/* i becomes a copy of the pointer to n, i.e.,

i also points to n.
*/
i = 10; / n is changed to 10 */
...

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Array arguments in functions

Arrays are always transferred by pointers, giving the effect of
call by reference

That is, changes in array entries inside a function is visible in
the calling code

void init (double** A, double* x, int n)
{
/* initialize A and x ... */

}

init(A, x, n);
/* A and x are changed */

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Pointer arithmetics

Manipulation with pointers can increase the computational
speed

Consider a plain for-loop over an array:

for (i=0; i<n; ++i) { a[i] = b[i]; }

Equivalent loop, but using a pointer to visit the entries:
double *astop, *ap, *bp;
astop = &a[n - 1]; /* points to the end of a */
for (ap=a, bp=b; a <= astop; ap++, bp++) *ap = *bp;

This is called pointer arithmetic

What is the most efficient approach?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Preprocessor directives

The compilation process consists of three steps
(the first is implicit):

1 run the preprocessor
2 compile
3 link

The preprocessor recognices special directives:

#include <math.h> /* lines starting with #keyword */

meaning: search for the file math.h, in /usr/include or
directories specified by the -I option to gcc/cc, and copy the
file into the program

Directives start with #

There are directives for file include, if-tests, variables,
functions (macros)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Preprocessor if-tests

If-test active at compile time:

for (i=0; i<n; i++) {
#ifdef DEBUG
printf("a[%d]=%g\n",i,a[i])

#endif

Compile with DEBUG defined or not:
unix> gcc -DDEBUG -Wall -o app mp.c # DEBUG is defined
unix> gcc -UDEBUG -Wall -o app mp.c # DEBUG is undefined
unix> gcc -Wall -o app mp.c # DEBUG is undefined

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Macros

Macros for defining constants:
#define MyNumber 5

meaning: replace the text MyNumber by 5 anywhere

Macro with arguments (a la text substitution):

#define SQR(a) ((a)*(a))

#define MYLOOP(start,stop,incr,body) \
for (i=start; i<=stop; i=i+incr) \
{ body }

r = SQR(1.2*b);
MYLOOP(1,n,1, a[i]=i+n; a[i]=SQR(a[i]);)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to examine macro expansions

You can first run the preprocessor on the program files and
then look at the source code (with macros expanded):

unix> g++ -E -c mymacros.cpp

Output will be in mymacros.o

r = ((1.2*b)*(1.2*b));
for (i= 1 ; i<= n ; i=i+ 1)
{ a[i]=i+n; a[i]= (a[i])*(a[i]) ; }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A useful debug macro

void debugprint(char *str, int line, char *file)
{ printf("%s, line %6d: %s\n",file,line,str); }

#ifdef DEBUG
/* define debug as call to debugprint */
#define debug(s) debugprint(s,__LINE__,__FILE__)
/* __LINE__ and __FILE__ are predefined preprocessor macros */
#else
/* define debug as empty string */
#define debug(s)
#endif

debug("some debug line"); /* active/deactive; depends on DEBUG */
debug(oform("r=%g, b=%g, i=%d, a[0]=%f",r,b,i,a[0]));

output:
macros.c, line 35: r=21.538, b=3.86742, i=10, a[0]=100.0

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Single vs double precision

Can introduce a macro real:
real myfunc(real x, real y, real t)
{ ... }

Define real at compile time
gcc -Dreal=double ...

or in the code:
#define real float

(in some central header file)

If hardcoded, using typedef is considered as a more fool-proof
style:

typedef double real; /* define real as double */

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Macros and C++

Message in C++ books: avoid macros

Macros for defining constants
#define n 5

are in C++ replaced by const variables:
const int n = 5;

Macros for inline functions
#define SQR(a) (a)*(a)

are in C++ replaced by inline functions:

inline double sqr (double a) { return a*a; }

Much less use of macros in C++ than in C

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Requirements to solutions of exercises

Write as clear and simple code as possible

(Long and tedious code is hard to read)

(Too short code is hard to read and dissect)

Use comments to explain ideas or intricate details

All exercises must have a test example, “proving” that the
implementation works!

Output from the test example must be included!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 1: Modify the C++ Hello World program

Locate the first Hello World program

Compile the program and test it
(manually and with ../make.sh)

Modification: write “Hello, World!” using cout and the
sine-string using printf

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 2: Extend the C++ Hello World program

Locate the first Hello World program

Read three command-line arguments: start, stop and inc

Provide a “usage” message and abort the program in case
there are too few command-line arguments

For r=start step inc until stop, compute the sine of r and
write the result

Write an additional loop using a while construction

Verify that the program works

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 3: Integrate a function (1)

Write a function
double trapezoidal(userfunc f, double a, double b, int n)

that integrates a user-defined function function f between a

and b using the Trapezoidal rule with n points:

b
∫

a

f (x)dx ≈ h

(

f (a)

2
+

f (b)

2
+

n−2
∑

i=1

f (a + ih)

)

, h =
b − a

n − 1
.

The user-defined function is specified as a function pointer:

typedef double (*userfunc)(double x);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 3: Integrate a function (2)

Any function taking a double as argument and returning
double, e.g.,

double myfunc(double x) { return x + sin(x); }

can now be used as a userfunc type, e.g.,

integral_value = trapezoidal(myfunc, 0, 2, 100);

Verify that trapezoidal is implemented correctly
(hint: linear functions should be integrated exactly)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Binary format

A number like π can be represented in ASCII format as 3.14

(4 bytes) or 3.14159E+00 (11 bytes), for instance

In memory, the number occupies 8 bytes (a double), this is
the binary format of the number

The binary format (8 bytes) can be stored directly in files

Binary format (normally) saves space, and input/output is
much faster since we avoid translatation between ASCII chars
and the binary repr.

The binary format varies with the hardware and occasionally
with the compiler version

Two types of binary formats: little and big endian

Motorola and Sun: big endian; Intel and Compaq: little endian

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 4: Work with binary data in C (1)

Scientific simulations often involve large data sets and binary
storage of numbers saves space in files

How to write numbers in binary format in C:

/* f is some FILE* pointer */

/* r is some double, n is some int */
fwrite((void*) &r, sizeof(r), 1, f);
fwrite((void*) &n, sizeof(n), 1, f);

/* a is some double* array of length n */
fwrite((void*) a, sizeof(double), n, f);

fwrite gets r as an array of bytes (rather than array of
doubles), and the sequence of bytes is dumped to file

Reading binary numbers follow the same syntax; just replace
fwrite by fread

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise: Work with binary data in C (2)

Create datatrans2.c (from datatrans1.c) such that the
input and output data are in binary format

To test the datatrans2.c, we need utilities to create and read
binary files

1 make a small C program that generates n xy-pairs of data and
writes them to a file in binary format (read n from the
command line),

2 make a small C program that reads xy-pairs from a binary file
and writes them to the screen

With these utilities you can create input data to
datatrans2.c and view the file produced by datatrans2.c

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise: Work with binary data in C (3)

Modify the datatrans2.c program such that the x and y
numbers are stored in one long (dynamic) array

The storage structure should be x1, y1, x2, y2, ...

Read and write the array to file in binary format using one
fread and one fwrite call

Try to generate a file with a huge number (10 000 000?) of
pairs and use the Unix time command to test the efficiency of
reading/writing a single array in one fread/fwrite call
compared with reading/writing each number separately

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 5: Work with binary data in C++

Do the C version of this exercise first!

How to write numbers in binary format in C++:

/* os is some ofstream object */

/* r is some double, n is some int */
os.write((char*) &r, sizeof(double));
os.write((char*) &n, sizeof(int));

/* a is some double* array of length n */
os.write((char*) a, sizeof(double)*n);

/* is is some std::ifstream object */
is.read((char*) &r, sizeof(double));
is.read((char*) &n, sizeof(int));
is.read((char*) a, sizeof(double)*n);

Modify the datatrans1.cpp program such that it works with
binary input and output data (use the C utilities in the
previous exercise to create input file and view output file)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 6: Efficiency of dynamic memory allocation (1)

Write this code out in detail as a stand-alone program:
#define NREPETITIONS 1000000
int i,n;
n = atoi(argv[1]);
for (i=1; i<=NREPETITIONS; i++)
{
// allocate a vector of n doubles
// deallocate the vector

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise 6: Efficiency of dynamic memory allocation (2)

Write another program where each vector entry is allocated
separately:
int i,j;
for (i=1; i<=NREPETITIONS; i++)
{
// allocate each of the doubles separately:
for (j=1; j<=n; j++)
{

// allocate a double
// free the double

}
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Exercise: Efficiency of dynamic memory allocation (3)

Measure the CPU time of vector allocations versus allocation
of individual entries:
unix> time myprog1
unix> time myprog2

Adjust NREPETITIONS such that the CPU time of the
fastest program is of order 10 seconds (CPU measurements
should last a few seconds, so one often adapts problem
parameters to get CPU times of this order)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Traditional programming

Traditional procedural programming:

subroutines/procedures/functions

data structures = variables, arrays

data are shuffled between functions

Problems with procedural approach:

Numerical codes are usually large, resulting in lots of functions
with lots of arrays (and their dimensions)

Too many visible details

Little correspondence between mathematical abstraction and
computer code

Redesign and reimplementation tend to be expensive

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Programming with objects (OOP)

Programming with objects makes it easier to handle large and
complicated codes:

Well-known in computer science/industry

Can group large amounts of data (arrays) as a single variable

Can make different implementations look the same for a user

Not much explored in numerical computing
(until late 1990s)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Example: programming with matrices

Mathematical problem:

Matrix-matrix product: C = MB

Matrix-vector product: y = Mx

Points to consider:

What is a matrix?

a well defined mathematical quantity, containing a table of
numbers and a set of legal operations

How do we program with matrices?

Do standard arrays in any computer language give good
enough support for matrices?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A dense matrix in Fortran 77

Fortran syntax (or C, conceptually)

integer p, q, r
double precision M(p,q), B(q,r), C(p,r)
double precision y(p), x(q)

C matrix-matrix product: C = M*B
call prodm(M, p, q, B, q, r, C)

C matrix-vector product: y = M*x
call prodv(M, p, q, x, y)

Drawback with this implementation:

Array sizes must be explicitly transferred

New routines for different precisions

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Working with a dense matrix in C++

// given integers p, q, j, k, r
MatDense M(p,q); // declare a p times q matrix
M(j,k) = 3.54; // assign a number to entry (j,k)

MatDense B(q,r), C(p,r);
Vector x(q), y(p); // vectors of length q and p
C=M*B; // matrix-matrix product
y=M*x; // matrix-vector product
M.prod(x,y); // matrix-vector product

Observe that

we hide information about array sizes

we hide storage structure (the underlying C array)

the computer code is as compact as the mathematical
notation

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A dense matrix class

class MatDense
{
private:

double** A; // pointer to the matrix data
int m,n; // A is an m times n matrix

public:
// --- mathematical interface ---
MatDense (int p, int q); // create pxq matrix
double& operator () (int i, int j); // M(i,j)=4; s=M(k,l);
void operator = (MatDense& B); // M = B;
void prod (MatDense& B, MatDense& C); // M.prod(B,C); (C=M*B)
void prod (Vector& x, Vector& z); // M.prod(y,z); (z=M*y)
MatDense operator * (MatDense& B); // C = M*B;
Vector operator * (Vector& y); // z = M*y;
void size (int& m, int& n); // get size of matrix

};

Notice that the storage format is hidden from the user

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

What is this object or class thing?

A class is a collection of data structures and operations on
them

An object is a realization (variable) of a class

The MatDense object is a good example:
1 data: matrix size + array entries
2 operations: creating a matrix, accessing matrix entries,

matrix-vector products,..

A class is a new type of variable, like reals, integers etc

A class can contain other objects;
in this way we can create complicated variables that are easy
to program with

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Extension to sparse matrices

Matrix for the discretization of −∇2u = f .

Only 5n out of n2 entries are nonzero.

Store only the nonzero entries!

Many iterative solution methods for Au = b can operate on
the nonzeroes only

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to store sparse matrices (1)

A =













a1,1 0 0 a1,4 0
0 a2,2 a2,3 0 a2,5

0 a3,2 a3,3 0 0
a4,1 0 0 a4,4 a4,5

0 a5,2 0 a5,4 a5,5













.

Working with the nonzeroes only is important for efficiency!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

How to store sparse matrices (2)

The nonzeroes can be stacked in a one-dimensional array

Need two extra arrays to tell where a row starts and the
column index of a nonzero

A = (a1,1, a1,4, a2,2, a2,3, a2,5, . . .

irow = (1, 3, 6, 8, 11, 14),

jcol = (1, 4, 2, 3, 5, 2, 3, 1, 4, 5, 2, 4, 5).

⇒ more complicated data structures and hence more
complicated programs

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Sparse matrices in Fortran

Code example for y = Mx

integer p, q, nnz
integer irow(p+1), jcol(nnz)
double precision M(nnz), x(q), y(p)
...
call prodvs (M, p, q, nnz, irow, jcol, x, y)

Two major drawbacks:

Explicit transfer of storage structure (5 args)

Different name for two functions that perform the same task
on two different matrix formats

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Sparse matrix as a C++ class (1)

class MatSparse
{

private:
double* A; // long vector with the nonzero matrix entries
int* irow; // indexing array
int* jcol; // indexing array
int m, n; // A is (logically) m times n
int nnz; // number of nonzeroes

public:
// the same functions as in the example above
// plus functionality for initializing the data structures

void prod (Vector& x, Vector& z); // M.prod(y,z); (z=M*y)
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Sparse matrix as a C++ class (2)

What has been gained?

Users cannot see the sparse matrix data structure

Matrix-vector product syntax remains the same

The usage of MatSparse and MatDense is the same

Easy to switch between MatDense and MatSparse

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The jungle of matrix formats

When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:

- dense matrix
- banded matrix
- tridiagonal matrix
- general sparse matrix
- structured sparse matrix
- diagonal matrix
- finite difference stencil as matrix

The efficiency of numerical algorithms is often strongly
dependent on the matrix storage scheme

Goal: hide the details of the storage schemes

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Different matrix formats

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

The matrix class hierarchy

MatSparseMatDense MatTriDiag MatBanded

Matrix

Generic interface in base class Matrix

Implementation of storage and member functions in the
subclasses

Generic programming in user code:
Matrix& M;

M.prod(x,y); // y=M*x

i.e., we need not know the structure of M, only that it refers to
some concrete subclass object;
C++ keeps track of which subclass object!

prod must then be a virtual function

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Object-oriented programming

Matrix = object

Details of storage schemes are hidden

Common interface to matrix operations

Base class: define operations, no data

Subclasses: implement specific storage schemes and
algorithms

It is possible to program with the base class only!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Bad news...

Object-oriented programming do wonderful things, but might
be inefficient

Adjusted picture:
When indexing a matrix, one needs to know its data storage
structure because of efficiency

In the rest of the code one can work with the generic base
class and its virtual functions

⇒ Object-oriented numerics: balance between efficiency and OO
techniques

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

A simple class example

We may use C++ classes to encapsulate C code and make C
functions easier to use

Example: a tool for measuring CPU time in programs

We “wrap” a class around basic C library calls

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Simple clock; C function interface

time.h has a function clock for measuring the CPU time

Basic usage:
#include <time.h>
clock_t t0 = clock(); // read CPU time
// do tasks ...
clock_t t1 = clock();
double cpu_time = (t1 - t0)/CLOCKS_PER_SEC;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

More info; C function interface

sys/times.h has a struct (class without functions) tms

tms gives info about user time and system time of the current
and all children processes

tms is a C struct with data attributes
tms_utime : user time (this process)
tms_stime : system time (this process)
tms_cutime : user time, child process
tms_cstime : system time, child process

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Example on using tms

Basic usage (GNU/Linux):

#include <sys/times.h> /* tms */
#include <unistd.h> /* for clock ticks per sec */
tms t1, t2;
times(&t1);
/* perform operations... */
times(&t2);
tms diff;
// user time:
diff.tms_utime = t2.tms_utime - t1.tms_utime;
// system time:
diff.tms_stime = t2.tms_stime - t1.tms_stime;
// user time, children processes:
diff.tms_cutime = t2.tms_cutime - t1.tms_cutime;
// system time, children processes:
diff.tms_cstime = t2.tms_cstime - t1.tms_cstime;
double ticks = sysconf(_SC_CLK_TCK);
double cpu_time;
cpu_time = double(diff.tms_utime + diff.tms_stime)/ticks;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Desired easy-to-use C++ function interface

#include <CPUclock.h>

CPUclock clock;
clock.init();
// perform tasks ...
double cpu_time = clock.getCPUtime();
...

// perform more tasks
...
double cpu_time2 = clock.getCPUtime();

// perform even more tasks
...
double cpu_time3 = clock.getCPUtime();

clock.getCPUtime() returns the CPU time since the last call to
the function

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

class CPUclock; simplest approach

class CPUclock
{
private:

clock_t t0;
public:

void init () { t0 = clock(); }
double getCPUtime() {
double t0_end = clock();
double cpu = double((t0_end - t0)/CLOCKS_PER_SEC)
t0 = clock_t(t0_end);
return cpu;

}
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

class CPUclock with tms struct

#ifndef CPUclock_H
#define CPUclock_H
#include <time.h> // clock function

#ifdef HAS_TMS
#include <sys/times.h> // tms struct
#endif

class CPUclock
{
private:

clock_t t0;

#ifdef HAS_TMS
tms t1, diff;
double cpu_time, child_cpu_time;

#endif

public:
void init ();
double getCPUtime();

};
#endif

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

CPUclock.cpp (1)

#include <CPUclock.h>
#ifdef HAS_TMS
#include <unistd.h>
#endif

void CPUclock:: init ()
{

t0 = clock();
#ifdef HAS_TMS

times(&t1);
#endif
}

Note: the implementation may differ between platforms
(e.g. Linux, SunOS, Windows)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

CPUclock.cpp (2)

double CPUclock:: getCPUtime ()
{

double t0_end = clock();
double cpu_time_clock = double((t0_end - t0)/CLOCKS_PER_SEC);

#ifdef HAS_TMS
tms t2;
times(&t2);
diff.tms_utime = t2.tms_utime - t1.tms_utime;
diff.tms_stime = t2.tms_stime - t1.tms_stime;
diff.tms_cutime = t2.tms_cutime - t1.tms_cutime;
diff.tms_cstime = t2.tms_cstime - t1.tms_cstime;
double clock_ticks_per_sec = sysconf(_SC_CLK_TCK); // Linux
cpu_time_clock = double(diff.tms_utime + diff.tms_stime) \

/clock_ticks_per_sec;
child_cpu_time = \
double(diff.tms_cutime + diff.tms_cstime)/clock_ticks_per_sec;

// update t1 such that next getCPUtime() gives new difference:
times(&t1);

#endif
t0 = clock_t(t0_end);

return cpu_time_clock;
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Why do we need classes to do this?

We could have made a plain function interface, e.g.,

CPUclock_init();
// perform tasks ...
double cpu_time = CPUclock_getCPUtime();

to hide the original (long) C code

Problem: we need to store t0 and t1 as a global variables

The class solution is cleaner, easier to extend (e.g., return
user time, system time, user time of child process, etc.)

When functions need to remember a state (like t0), one is
better off with a class

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP C/C++ Hello World I/O A*x Macros Exercises Classes Simple class

Extension

Offer a function for system time:

double CPUclock:: getSystemTime()
{
#ifdef HAS_TMS
return double(diff.tms_stime)/sysconf(_SC_CLK_TCK);

#endif
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Complex arithmetic in C++

Making a class for complex numbers is a good educational
example

Note: C++ already has a class complex in its standard
template library (STL) – use that one for professional work

#include <complex>

std::complex<double> z(5.3,2.1), y(0.3);

std::cout << z*y + 3;

However, writing our own class for complex numbers is a very
good exercise for novice C++ programmers!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Usage of our Complex class

#include "Complex.h"

void main ()
{

Complex a(0,1); // imaginary unit
Complex b(2), c(3,-1);
Complex q = b;

std::cout << "q=" << q << ", a=" << a << ", b=" << b << "\n";

q = a*c + b/a;

std::cout << "Re(q)=" << q.Re() << ", Im(q)=" << q.Im() << "\n";
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Basic contents of class Complex

Data members: real and imaginary part

Member functions:
1 construct complex numbers

Complex a(0,1); // imaginary unit
Complex b(2), c(3,-1);

2 Write out complex numbers:

std::cout << "a=" << a << ", b=" << b << "\n";

3 Perform arithmetic operations:

q = a*c + b/a;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Declaration of class Complex

class Complex
{
private:

double re, im; // real and imaginary part
public:

Complex (); // Complex c;
Complex (double re, double im = 0.0); // Complex a(4,3);
Complex (const Complex& c); // Complex q(a);

~Complex () {}
Complex& operator= (const Complex& c); // a = b;
double Re () const; // double real_part = a.Re();
double Im () const; // double imag_part = a.Im();
double abs () const; // double m = a.abs(); // modulus

friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator- (const Complex& a, const Complex& b);
friend Complex operator* (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);

};

friend means that stand-alone functions can work on private parts
(re, im)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The simplest member functions

Extract the real and imaginary part (recall: these are private,
i.e., invisible for users of the class; here we get a copy of them
for reading)

double Complex:: Re () const { return re; }
double Complex:: Im () const { return im; }

What is const? see next slide...

Computing the modulus:

double Complex:: abs () const { return sqrt(re*re + im*im); }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The const concept (1)

const variables cannot be changed:
const double p = 3;
p = 4; // ILLEGAL!! compiler error...

const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)
{ c.re = 0.2; /* ILLEGAL!! compiler error... */ }

const Complex arguments can only call const member
functions:
double myabs (const Complex& c)
{ return c.abs(); } // ok because c.abs() is a const func.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The const concept (2)

Without const in
double Complex:: abs () { return sqrt(re*re + im*im); }

the compiler would not allow the c.abs() call in myabs

double myabs (const Complex& c)
{ return c.abs(); }

because Complex::abs is not a const member function

const functions cannot change the object’s state:

void Complex::myfunc2 () const
{ re = 0.0; im = 0.5; /* ILLEGAL!! compiler error... */ }
You can only read data attributes and call \emp{const} functions

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Overloaded operators

C++ allows us to define + - * / for arbitrary objects

The meaning of + for Complex objects is defined in the
function
Complex operator+ (const Complex& a, const Complex& b); // a+b

The compiler translates
c = a + b;

into
c = operator+ (a, b);

i.e., the overhead of a function call

If the function call appears inside a loop, the compiler cannot
apply aggressive optimization of the loop! That is why the
next slide is important!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Inlined overloaded operators

Inlining means that the function body is copied directly into
the calling code, thus avoiding calling the function

Inlining is enabled by the inline keyword:

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Inline functions, with compliete bodies, must be written in the
.h (header) file

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Consequence of inline

Consider
c = a + b;

that is,
c.operator= (operator+ (a,b));

If operator+, operator= and the constructor Complex(r,i) all
are inline functions, this transforms to
c.re = a.re + b.re;
c.im = a.im + b.im;

by the compiler, i.e., no function calls

More about this later

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Friend functions (1)

The stand-alone function operator+ is a friend of class
Complex

class Complex
{
...
friend Complex operator+ (const Complex& a, const Complex& b);
...

};

so it can read (and manipulate) the private data parts re and
im:
inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Friend functions (2)

Since we do not need to alter the re and im variables, we can
get the values by Re() and Im(), and there is no need to be a
friend function:
inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.Re() + b.Re(), a.Im() + b.Im()); }

operator-, operator* and operator/ follow the same set up

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Constructors

Constructors have the same name as the class

The declaration statement
Complex q;

calls the member function Complex()

A possible implementation is

Complex:: Complex () { re = im = 0.0; }

meaning that declaring a complex number means making the
number (0,0)

Alternative:
Complex:: Complex () {}

Downside: no initialization of re and im

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Constructor with arguments

The declaration statement
Complex q(-3, 1.4);

calls the member function Complex(double, double)

A possible implementation is

Complex:: Complex (double re_, double im_)
{ re = re_; im = im_; }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The assignment operator

Writing
a = b

implies a call

a.operator= (b)

– this is the definition of assignment

We implement operator= as a part of the class:

Complex& Complex:: operator= (const Complex& c)
{
re = c.re;
im = c.im;
return *this;

}

If you forget to implement operator=, C++ will make one
(this can be dangerous, see class MyVector!)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Copy constructor

The statements
Complex q = b;
Complex q(b);

makes a new object q, which becomes a copy of b

Simple implementation in terms of the assignment:

Complex:: Complex (const Complex& c)
{ *this = c; }

this is a pointer to “this object”, *this is the present object,
so *this = c means setting the present object equal to c, i.e.,

this->operator= (c)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Output function

Output format of a complex number: (re,im), i.e., (1.4,-1)

Desired user syntax:
std::cout << c;
any_ostream_object << c;

The effect of << for a Complex object is defined in

ostream& operator<< (ostream& o, const Complex& c)
{ o << "(" << c.Re() << "," << c.Im() << ") "; return o;}

The input operator (operator>>) is more complicated (need
to recognize parenthesis, comma, real numbers)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The multiplication operator

First attempt:

inline Complex operator* (const Complex& a, const Complex& b)
{
Complex h; // Complex()
h.re = a.re*b.re - a.im*b.im;
h.im = a.im*b.re + a.re*b.im;
return h; // Complex(const Complex&)

}

Alternative (avoiding the h variable):

inline Complex operator* (const Complex& a, const Complex& b)
{
return Complex(a.re*b.re - a.im*b.im, a.im*b.re + a.re*b.im);

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Inline constructors

To inline the complete expression a*b, the constructors and
operator= must also be inlined!

inline Complex:: Complex () { re = im = 0.0; }
inline Complex:: Complex (double re_, double im_)
{ ... }
inline Complex:: Complex (const Complex& c)
{ ... }
inline Complex:: operator= (const Complex& c)
{ ... }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Behind the curtain

// e, c, d are complex

e = c*d;

// first compiler translation:

e.operator= (operator* (c,d));

// result of nested inline functions
// operator=, operator*, Complex(double,double=0):

e.re = c.re*d.re - c.im*d.im;
e.im = c.im*d.re + c.re*d.im;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Benefit of inlined operators in loops

Consider this potentially very long loop:
Complex s, a;
// initialize s and a...
for (i = 1; i <= huge_n; i++) {
s = s + a;
a = a*3.0;

}

Without inlining operator=, operator+, operator*, and the
constructors, we introduce several (how many??) function
calls inside the loop, which prevent aggressive optimization by
the compiler

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The “real” name of C++ functions (1)

C++ combines the name of the function and the type of
arguments; this name is seen from the operating system

This allows for using the same function name for different
functions if only the arguments differ

Examples (g++ generated names):

Complex:: Complex()
_ZN7ComplexC1Ev

Complex:: Complex(double re_, double im_)
_ZN7ComplexC1Edd

void Complex:: abs()
_ZN7Complex5absEv

void Complex:: write(ostream& o)
_ZN7Complex5writeERSo

Complex operator+ (const Complex& a, const Complex& b)
ZplRK7ComplexS1

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The “real” name of C++ functions (2)

You need to know the “real” name of a C++ function if you
want to call it from C or Fortran

You can see the “real” name by running nm on the object file:
unix> nm Complex.o

It takes some effort to get used to reading the output from nm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Header file

We divide the code of class Complex into a header file
Complex.h and a file Complex.cpp with the body of the
functions

The header file contains the class declaration (data and
functions), declaration of stand-alone functions, and all inline

functions with bodies

#ifndef Complex_H
#define Complex_H

#include <...>

class Complex
{...};

std::ostream operator<< (std::ostream& o, const Complex& c);
std::istream operator>> (const Complex& c, std::istream& i);

// inline functions with bodies:
inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex(a.re + b.re, a.im + b.im); }
...
#endif

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Other files

Complex.cpp contains the bodies of the non-inline functions in
class Complex

Test application (with main program): any filename with
extension .cpp, e.g., main.cpp

Complex.cpp can be put in a library (say) mylib.a together
with many other C++ classes

Complex.h (and other header files for the library) are put in an
include directory $HOME/mysoft/include

Compile main.cpp and link with the library (you must notify
the compiler about the include dir and where the library is)

g++ -I$HOME/mysoft/include -c main.cpp
g++ -o myexecutable -L$HOME/mysoft/lib main.o -lmylib -lm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Example: class MyVector

Class MyVector: a vector

Data: plain C array

Functions: subscripting, change length, assignment to another
vector, inner product with another vector, ...

This examples demonstrates many aspects of C++
programming

Note: this is mainly an educational example; for professional
use one should use a ready-made vector class (std::valarray
for instance)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

MyVector functionality (1)

Create vectors of a specified length:

MyVector v(n);

Create a vector with zero length:
MyVector v;

Redimension a vector to length n:

v.redim(n);

Create a vector as a copy of another vector w:

MyVector v(w);

Extract the length of the vector:

const int n = v.size();

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

MyVector functionality (2)

Extract an entry:

double e = v(i);

Assign a number to an entry:

v(j) = e;

Set two vectors equal to each other:
w = v;

Take the inner product of two vectors:

double a = w.inner(v);

or alternatively

a = inner(w,v);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

MyVector functionality (3)

Write a vector to the screen:
v.print(std::cout);

Arithmetic operations with vectors:

// MyVector u, y, x; double a
u = a*x + y; // ’DAXPY’ operation

The proposed syntax is defined through functions in class
MyVector

Class MyVector holds both the data in the vector, the length
of the vector, as well as a set of functions for operating on the
vector data

MyVector objects can be sent to Fortran/C functions:

// v is MyVector
call_my_F77_function (v.getPtr(), v.size(), ...)
// array length

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The MyVector class

class MyVector
{
private:

double* A; // vector entries (C-array)
int length;
void allocate (int n); // allocate memory, length=n
void deallocate(); // free memory

public:
MyVector (); // MyVector v;
MyVector (int n); // MyVector v(n);
MyVector (const MyVector& w); // MyVector v(w);

~MyVector (); // clean up dynamic memory

bool redim (int n); // v.redim(m);
MyVector& operator= (const MyVector& w);// v = w;
double operator() (int i) const; // a = v(i);
double& operator() (int i); // v(i) = a;

void print (std::ostream& o) const; // v.print(cout);
double inner (const MyVector& w) const; // a = v.inner(w);
int size () const { return length; } // n = v.size();
double* getPtr () { return A; } // send v.getPtr() to C/F77

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Functions declared in the MyVector header file

These appear after the class MyVector declaration:

// operators:
MyVector operator* (double a, const MyVector& v); // u = a*v;
MyVector operator* (const MyVector& v, double a); // u = v*a;
MyVector operator+ (const MyVector& a, const MyVector& b); // u = a+b;

The reason why these are declared outside the class, that the
functions take two arguments: the left and right operand

An alternative is to define the operators in the class, then the
left operand is the class (this object) and the argument is the
right operand

We recommend to define binary operators outside the class
with explicit left and right operand

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Constructors (1)

Constructors tell how we declare a variable of type MyVector

and how this variable is initialized
MyVector v; // declare a vector of length 0

// this actually means calling the function

MyVector::MyVector ()
{ A = NULL; length = 0; }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Constructors (2)

More constructors:
MyVector v(n); // declare a vector of length n

// means calling the function

MyVector::MyVector (int n)
{ allocate(n); }

void MyVector::allocate (int n)
{
length = n;
A = new double[n]; // create n doubles in memory

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Destructor

A MyVector object is created (dynamically) at run time, but
must also be destroyed when it is no longer in use. The
destructor specifies how to destroy the object:

MyVector::~MyVector ()
{
deallocate();

}

// free dynamic memory:
void MyVector::deallocate ()
{
delete [] A;

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The assignment operator

Set a vector equal to another vector:

// v and w are MyVector objects
v = w;

means calling

MyVector& MyVector::operator= (const MyVector& w)
// for setting v = w;
{
redim (w.size()); // make v as long as w
int i;
for (i = 0; i < length; i++) { // (C arrays start at 0)

A[i] = w.A[i];
}
return *this;

}

// return of *this, i.e. a MyVector&, allows nested
// assignments:
u = v = u_vec = v_vec;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Redimensioning the length

Change the length of an already allocated MyVector object:

v.redim(n); // redimension v to length n

Implementation:

bool MyVector::redim (int n)
{
if (length == n)

return false; // no need to allocate anything
else {

if (A != NULL) {
// "this" object has already allocated memory
deallocate();

}
allocate(n);
return true; // the length was changed

}
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The copy constructor

Create a new vector as a copy of an existing one:

MyVector v(w); // take a copy of w

MyVector::MyVector (const MyVector& w)
{
allocate (w.size()); // "this" object gets w’s length
*this = w; // call operator=

}

this is a pointer to the current (“this”) object, *this is the
object itself

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The const concept (1)

const is a keyword indicating that a variable is not to be
changed

const int m=5; // not allowed to alter m

MyVector::MyVector (const MyVector& w)
// w cannot be altered inside this function
// & means passing w by _reference_
// only w’s const member functions can be called
// (more about this later)

MyVector::MyVector (MyVector& w)
// w can be altered inside this function, the change
// is visible from the calling code

bool MyVector::redim (int n)
// a local _copy_ of n is taken, changing n inside redim
// is invisible from the calling code

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The const concept (2)

const member functions, e.g.,

void MyVector::print (std::ostream& o) const

means that the functions do not alter any data members of
the class

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Essential functionality: subscripting

a and v are MyVector objects, want to set

a(j) = v(i+1);

The meaning of a(j) and v(i+1) is defined by

inline double& MyVector::operator() (int i)
{
return A[i-1];
// base index is 1 (not 0 as in C/C++)

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

More about the subscription function

Why return a double reference?

double& MyVector::operator() (int i) { return A[i-1]; }

Because the reference (“pointer”) gives access to the memory
location of A[i-1] so we can modify its contents (assign new
value)

Returning just a double,

double MyVector::operator() (int i) { return A[i-1]; }

gives access to a copy of the value of A[i-1]

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Inlined subscripting

Calling operator() for subscripting implies a function call

Inline operator(): function body is copied to calling code, no
overhead of function call

Note: inline is just a hint to the compiler; there is no
guarantee that the compiler really inlines the function

With inline we hope that a(j) is as efficient as a.A[j-1]

Note: inline functions and their bodies must be implemented
in the .h (header) file!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

More about inlining

Consider this loop with vector arithmetics:

// given MyVector a(n), b(n), c(n);
for (int i = 1; i <= n; i++)
c(i) = a(i)*b(i);

Compiler inlining translates this to:

for (int i = 1; i <= n; i++)
c.A[i-1] = a.A[i-1]*b.A[i-1];

// or perhaps
for (int i = 0; i < n; i++)
c.A[i] = a.A[i]*b.A[i];

More optimizations by a smart compiler:

double* ap = &a.A[0]; // start of a
double* bp = &b.A[0]; // start of b
double* cp = &c.A[0]; // start of c
for (int i = 0; i < n; i++)
cp[i] = ap[i]*bp[i]; // pure C!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Add safety checks

New version of the subscripting function:

inline double& MyVector::operator() (int i)
{
#ifdef SAFETY_CHECKS
if (i < 1 || i > length)

std::cerr << // or write to std::cout
"MyVector::operator(), illegal index, i=" << i;

#endif

return A[i-1];
}

In case of a false ifdef, the C/C++ preprocessor physically
removes the if-test before the compiler starts working

To define safety checks:
g++ -DSAFETY_CHECKS -o prog prog.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

More about const (1)

Const member functions cannot alter the state of the object:

Return access to a vector entry and allow the object to be
changed:

double& operator() (int i) { return A[i-1]; }

a(j) = 3.14; // example

The same function with a const keyword can only be used for
reading array values:

double c = a(2); // example

double operator() (int i) const
{ return A[i-1]; }

(return double, i.e., a copy, not double&)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

More about const (2)

Only const member functions can be called from const
objects:

void someFunc (const MyVector& v)
{
v(3) = 4.2; // compiler error, const operator() won’t work

}

void someFunc (MyVector& v)
{
v(3) = 4.2; // ok, calls non-const operator()

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Two simple functions: print and inner

void MyVector::print (std::ostream& o) const
{

int i;
for (i = 1; i <= length; i++)
o << "(" << i << ")=" << (*this)(i) << ’\n’;

}

double a = v.inner(w);

double MyVector::inner (const MyVector& w) const
{

int i; double sum = 0;
for (i = 0; i < length; i++)
sum += A[i]*w.A[i];

// alternative:
// for (i = 1; i <= length; i++) sum += (*this)(i)*w(i);
return sum;

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Operator overloading (1)

We can easily define standard C++ output syntax also for our
special MyVector objects:

// MyVector v
std::cout << v;

This is implemented as

std::ostream& operator<< (std::ostream& o, const MyVector& v)
{
v.print(o); return o;

}

Why do we return a reference?

// must return std::ostream& for nested output operators:
std::cout << "some text..." << w;

// this is realized by these calls:
operator<< (std::cout, "some text...");
operator<< (std::cout, w);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Operator overloading (2)

We can redefine the multiplication operator to mean the inner
product of two vectors:

double a = v*w; // example on attractive syntax

// global function:
double operator* (const MyVector& v, const MyVector& w)
{

return v.inner(w);
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Operator overloading (3)

// have some MyVector u, v, w; double a;

u = v + a*w;

// global function operator+
MyVector operator+ (const MyVector& a, const MyVector& b)
{

MyVector tmp(a.size());
for (int i=1; i<=a.size(); i++)
tmp(i) = a(i) + b(i);

return tmp;
}

// global function operator*
MyVector operator* (const MyVector& a, double r)
{

MyVector tmp(a.size());
for (int i=1; i<=a.size(); i++)
tmp(i) = a(i)*r;

return tmp;
}

// symmetric operator: r*a
MyVector operator* (double r, const MyVector& a)
{ return operator*(a,r); }

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Limitations due to efficiency

Consider this code segment:
MyVector u, x, y; double a;
u = y + a*x; // nice syntax!

What happens behind the curtain?

MyVector temp1(n);
temp1 = operator* (a, x);
MyVector temp2(n);
temp2 = operator+ (y, temp1);
u.operator= (temp2);

⇒ Hidden allocation - undesired for large vectors

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Alternative to operator overloading

Avoid overloaded operators and their arithmetics for large
objects (e.g., large arrays) if efficiency is crucial

Write special function for compound expressions,
e.g., u = y + a*x could be computed by

u.daxpy (y, a, x)

which could be implemented as

void MyVector:: daxpy (const MyVector& y, double a,
const MyVector& x)

{
for (int i = 1; i <= length; i++)
A[i] = y.A[i] + a*x.A[i];

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Another implementation of daxpy

Having specialized expressions such as a*x+y as member
functions, may “pollute” the vector class

Here is a stand-alone function (outside the class):

void daxpy (MyVector& u, const MyVector& y,
double a, const MyVector& x)

{
for (int i = 1; i <= y.size(); i++)
u(i) = a*x(i) + y(i);

}

// usage:
daxpy(u, y, a, x);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Yet another implementation of daxpy

The result is returned:
MyVector daxpy (const MyVector& y, double a, const MyVector& x)
{

MyVector r(y.size()); // result
for (int i = 1; i <= y.size(); i++)
r(i) = a*x(i) + y(i);

return r;
}

// usage:
u = daxpy(y, a, x);

What is the main problem wrt efficiency here?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Vectors of other entry types

Class MyVector is a vector of doubles

What about a vector of floats or ints?

Copy and edit code...?

No, this can be done automatically by use of macros or
templates

Templates is the recommended C++ approach

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Macros for parameterized types (1)

Substitute double by Type:

class MyVector(Type)
{
private:
Type* A;
int length;

public:
...
Type& operator() (int i) { return A[i-1]; }
...

};

Define MyVector(Type) through a macro:

#define concatenate(a,b) a ## b
#define MyVector(X) concatenate(MyVector_,X)

Store this declaration in a file (say) MyVector.h

The preprocessor translates MyVector(double) to
MyVector double before the code is compiled

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Macros for parameterized types (2)

Generate real C++ code in other files:
// in MyVector_double.h, define MyVector(double):
#define Type double
#include <MyVector.h>
#undef Type

// MyVector_float.h, define MyVector(float):
#define Type float
#include <MyVector.h>
#undef Type

// MyVector_int.h, define MyVector(int):
#define Type int
#include <MyVector.h>
#undef Type

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Templates

Templates are the native C++ constructs for parameterizing
parts of classes

MyVector.h:

template<typename Type>
class MyVector
{
Type* A;
int length;

public:
...
Type& operator() (int i) { return A[i-1]; }
...

};

Declarations in user code:
MyVector<double> a(10);
MyVector<int> counters;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Subscripting in parameterized vectors

Need a const and a non-const version of the subscripting
operator:

Type& operator() { return A[i-1]; }
const Type& operator() const { return A[i-1]; }

Notice that we return a const reference and not just

Type operator() const { return A[i-1]; }

Why?
returning Type means taking a copy of A[i-1], i.e., calling the
copy constructor, which is very inefficient if Type is a large
object (e.g. when we work with a vector of large grids)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Note

We have used int for length of arrays, but size t (an unsigned
integer type) is more standard in C/C++:

double* A;
size_t n; // length of A

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

About doing exercises

We strongly recommend to go through the exercises on the
next pages, unless you are an experienced C++ class
programmer

The step from one exercise to the next is made sufficiently
small such that you don’t get too many new details to fight
with at the same time

Take the opportunity to consult teachers in the computer lab;
doing the exercises there with expert help is efficient
knowledge building – towards the more demanding compulsory
exercises and projects in this course

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 7: Get started with classes (1)

Make a small program with the following code:
class X
{
private:
int i,j;

public:
X(int i, int j);
void print() const;

};

X::X(int i_, int j_)
{ i = i_; j = j_; }

void X::print() const
{
std::cout << "i=" << i << " j=" << j << ’\n’;

}

plus a main program testing class X:

X x(3,9); x.print();

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 7: Get started with classes (2)

Compile and run

How can you change the class such that the following code is
legal:

X myx; myx.i=5; myx.j=10; myx.print();

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 8: Work with .h and .cpp files (1)

Consider the program from the previous exercise

Place the class declaration in a header file X.h:
#ifndef X_H
#define X_H

#include <...>

class X
{
...

};

// inline functions:
...

#endif

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 8: Work with .h and .cpp files (2)

Implement the constructor(s) and print function in an X.cpp

file:
#include <X.h>

X::X(int i_, int j_)
{ ... }

void X::print()
{ ... }

Place the main function in main.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 8: Work with .h and .cpp files (3)

Compile the two .cpp files:
g++ -I. -O2 -c X.cpp main.cpp

Link the files with the libraries:
g++ -o Xprog X.o main.o -lm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 9: Represent a function as a class

In exercise 3 we implemented a C/C++ function userfunc

that used a function pointer for representing a user-defined
function f

As an alternative, f may be realized as a class,
class F : public FunctionClass
{
double a; // parameter in the function expression

public:
F(double a_) { a = a_; }
virtual double operator() (double x) const { return a*x; }

};

The trapezoidal function now has the signature

double trapezoidal(FunctionClass& f, double a, double b, int n)

Implement this function and verify that it works

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 10: Implement class MyVector

Type in the code of class MyVector

Collect the class declaration and inline functions in MyVector.h

#ifndef MyVector_H
#define MyVector_H

class MyVector
{ ... };

inline double& operator() (int i)
{ ... }
...
#endif

Write the bodies of the member functions in MyVector.cpp

#include <MyVector.h>
// other includes...

MyVector::MyVector () { A = NULL; length = 0; }
...

Make a main program for testing: main.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 11: DAXPY (1)

The mathematical vector operation

u ← ax + y ,

where a is scalar and x and y are vectors, is often referred to
as a DAXPY operation, because DAXPY is the Fortran
subroutine name for this operation in the standardized BLAS1
library

Make a C++ function
void daxpy (MyVector& u, double a, const MyVector& x,

const MyVector& y)
{ ... }

performing a loop over the array entries for computing u

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 11: DAXPY (2)

Make a C++ function
void daxpy_op (MyVector& u, double a, const MyVector& x,

const MyVector& y)
{
u = a*x + y;

}

using overloaded operators in the MyVector class

Compare the efficiency of the two functions
(hint: run 10p daxpy operations with vectors of length 10q ,
e.g., with p = 4 and q = 6)

Compare the efficiency with a tailored Fortran 77 subroutine

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 12: Communicate with C

Say you want to send a MyVector object to a Fortran or C
routine

Fortran and C understand pointers only: double*

MyVector has an underlying pointer, but it is private

How can class MyVector be extended to allow for
communication with Fortran and C?

Test the procedure by including a C function in the main
program, e.g.,

void printvec(double* a, int n)
{
int i;
for (i=0; i<n; i++) { printf("entry %d = %g\n",i,a[i]); }

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 13: Communicate with Fortran

Consider the previous exercise, but now with a printvec

routine written in Fortran 77:
SUBROUTINE PRINTVEC77(A,N)
INTEGER N,I
REAL*8 A(N)
DO 10 I=1,N
WRITE(*,*) ’A(’,I,’)=’,A(I)

10 CONTINUE
RETURN
END

C/C++ wrapper function (i.e., the F77 routine as viewed
from C/C++):

extern "C" {
void printvec77_ (double* a, const int& n);

}

Compile and link the F77 and C++ files (sometimes special
Fortran libraries like libF77.a must be linked)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 14: Extend MyVector (1)

Extend class MyVector with a scan function

scan reads an ASCII file with values of the vector entries

The file format can be like this:
n
v1
v2
v3
...

where n is the number of entries and v1, v2, and so on are the
values of the vector entries

Compile, link and test the code

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 14: Extend MyVector (2)

Make an alternative to scan:
// global function:
istream& operator>> (istream& i, MyVector& v)
{ ... }

for reading the vector from some istream medium (test it with
a file and standard input)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

A more flexible array type

Class MyVector is a one-dimensional array

Extension: MyArray

Basic ideas:
1 storage as MyVector, i.e., a long C array
2 use templates (entry type is T)
3 offer multi-index subscripting:

T& operator() (int i, int j);
T& operator() (int i, int j, int k);

MyArray may be sufficiently flexible for numerical simulation

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Class MyArray

template <class T>
class MyArray
{
protected:

T* A; // vector entries (C-array)
int length;

public:
MyArray (); // MyArray<T> v;
MyArray (int n); // MyArray<T> v(n);
MyArray (const MyArray& w); // MyArray<T> v(w);

~MyArray (); // clean up dynamic memory

int redim (int n); // v.redim(m);
int size () const { return length; } // n = v.size();

MyArray& operator= (const MyArray& w); // v = w;

T operator() (int i) const; // a = v(i);
const T& operator() (int i); // v(i) = a;

T operator() (int i, int j) const; // a = v(p,q);
const T& operator() (int i, int j); // v(p,q) = a;

void print (ostream& o) const; // v.print(cout);
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

The interior of MyArray

The code is close to class MyVector

The subscripting is more complicated

(i,j) tuples must be transformed to a single address in a long
vector

Read the source code for details:
src/C++/Wave2D/MyArray.h and
src/C++/Wave2D/MyArray.cpp

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 15: 3D MyArray

MyArray works for one and two indices

Extend MyArray such that it handles three indices as well:

T& operator() (int i, int j, int k);

A few other functions must be supplied

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Memory-critical applications

C++ gives you the possibility to have full control of dynamic
memory, yet with a simple and user-friendly syntax

Suppose you want to keep track of the memory usage

Make a class MemBoss that manages a large chunk of memory

Use MemBoss instead of plain new/delete for allocation and
deallocation of memory

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Outline of class MemBoss (1)

class MemBoss
{
private:
char* chunk; // the memory segment to be managed
size_t size; // size of chunk in bytes
size_t used; // no of bytes used
std::list<char*> allocated_ptrs; // allocated segments
std::list<size_t> allocated_size; // size of each segment

public:
MemBoss(int chunksize)
{ size=chunksize; chunk = new char[size]; used=0; }

~MemBoss() { delete [] chunk; }
void* allocate(size_t nbytes)
{ char* p = chunk+used;

allocated_ptrs.insert_front(p);
allocated_size.insert_front(nbytes);
used += nbytes;
return (void*) p;

}
void deallocate(void* p); // more complicated
void printMemoryUsage(std::ostream& o);

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Outline of class MemBoss (2)

// memory is a global object:
MemBoss memory(500000000); // 500 Mb

// redefine new and delete:
void* operator new (size_t t)
{ return memory.allocate(t); }

void operator delete (void* v)
{ memory.deallocate(v); }

// any new and delete in your program will work with
// the new memory class!!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Local new and delete in a class

A class can manage its own memory

Example: list of 2D/3D points can allocate new points from a
common chunk of memory

Implement the member functions operator new, operator
delete

Any new or delete action regarding an object of this class will
use the tailored new/delete operator

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Lessons learned

It is easy to use class MyVector

Lots of details visible in C and Fortran 77 codes are hidden
inside the class

It is not easy to write class MyVector

Thus: rely on ready-made classes in C++ libraries unless you
really want to write develop your own code and you know
what are doing

C++ programming is effective when you build your own high-level
classes out of well-tested lower-level classes

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Don’t use MyVector - use a library

Class MyVector has only one index (one-dim. array)

Class MyArray (comes with this course) is a better alternative
for numerical computing

Even better: use a professional library

One possible choice is Blitz++
http://www.oonumerics.org/blitz/
(works well under GNU’s g++ compiler)

H. P. Langtangen Introduction to C++ (and C) Programming

http://www.oonumerics.org/blitz/

Intro Classes Efficiency OOP Complex MyVector STL

C++ (array) libraries

Blitz++: high-performance C++ array library

A++/P++: serial and parallel array library

Overture: PDE (finite difference/volume) on top of
A++/P++

MV++: template-based C++ array library

MTL: extension of STL to matrix computations

PETSc: parallel array and linear solver library
(object-oriented programming in C)

Kaskade: PDE (finite element) solver library

UG: PDE solver library (in C)

Diffpack: PDE (finite element) solver library w/arrays

H. P. Langtangen Introduction to C++ (and C) Programming

http://www.diffpack.com

Intro Classes Efficiency OOP Complex MyVector STL

The Standard Template Library

STL = Standard Template Library

STL comes with all C++ compilers

Contains vectors, lists, queues, stacks, hash-like data
structures, etc.

Contains generic algorithms (functions) operating on the
various data structures

STL is a good example on C++ programming with templates,
so called generic programming, an alternative to OOP

In generic programming, data structures and algorithms are
separated (algorithms are stand-alone functions, not member
functions in data structures as in OOP)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Working with STL

STL has three basic ingredients:

Containers (vector, list, ...)

Iterators (generalized pointers to elements in containers)

Algorithms (copy, sort, find, ...)

Each container has an associated iterator, and algorithms work on
any container through manipulation with iterators

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Container: vector

#include <vector>

std::vector<double> v(10, 3.2 /* default value */);
v[9] = 1001; // indexing, array starts at 0
const int n = v.size();
for (int j=0; j<n; j++)

std::cout << v[j] << " "; // only one index is possible

// vector of user-defined objects:
class MyClass { ... };
std::vector<MyClass> w(n);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Container: string

#include <string>

std::string s1 = "some string";
std::string s2;
s2 = s1 + " with more words";
std::string s3;
s3 = s2.substr(12 /*start index*/, 16 /*length*/);
printf("s1=%s, s3=%s\n", s1.c_str(), s3.c_str());
// std::string’s c_str() returns a char* C string

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

STL lists

List:
#include <list>

std::list<std::string> slist;
slist.push_front("string 1"); // add at beginning
slist.push_front("string 2");
slist.push_back("string 3"); // add at end

slist.clear(); // erase the whole list

// slist<std::string>::iterator p; // list position
slist.erase(p); // erase element at p
slist.insert(p, "somestr"); // insert before p

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Iterators (1)

Iterators replace “for-loops” over the elements in a container

Here is a typical loop over a vector

// have some std::vector<T> v;
std::vector<T>::iterator i;
for (i=v.begin(); i!=v.end(); ++i)
std::cout << *i << " ";

(i is here actually a T* pointer)

...and a similar loop over a list:
std::list<std::string>::iterator s;
for (s=slist.begin(); s!=slist.end(); ++s)
std::cout << *s << ’\n’;

(s is here more complicated than a pointer)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Iterators (2)

All STL data structures are traversed in this manner,
some_iterator s;
// given some_object to traverse:
for (s=some_object.begin(); s!=some_object.end(); ++s) {
// process *s

}

The user’s code/class must offer begin, end, operator++, and
operator* (dereferencing)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Algorithms

Copy:
std::vector<T> v;
std::list<T> l;
...
// if l is at least as long as v:
std::copy(v.begin(), v.end(), l.begin());
// works when l is empty:
std::copy(v.begin(), v.end(), std::back_inserter(l));

Possible implementation of copy:
template<class In, class Out>
Out copy (In first, In last, Out result)
{
// first, last and result are iterators
while (first != last) {

*result = *first; // copy current element
result++; first++; // move to next element

}
// or a more compact version:
// while (first != last) *result++ = *first++;
return result;

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Specializing algorithms

Note that copy can copy any sequence
(vector, list, ...)

Similar, but specialized, implementation for vectors of doubles
(just for illustration):

double* copy(double* first, double* last,
double* result)

{
for (double* p = first; p != last; p++, result++) {

*p = *result;
}
// or
while (first != last) {

*result = *first;
result++; first++;

}
return result;

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Some other algorithms

find: find first occurence of an element

count: count occurences of an element

sort: sort elements

merge: merge sorted sequences

replace: replace element with new value

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 16: List of points (1)

Make a class for 2D points
class Point2D
{
double x, y; // coordinates

public:
Point2D();
Point2D(double x_, double y_);
Point2D(const Point2D& p);
void set(double x_, double y_);
void get(double& x_, double& y) const;
double getX() const;
double getY() const;
void scan (istream& is); // read from e.g. file
void print(ostream& os);

};
istream& operator>> (istream& is, Point2D& p);
ostream& operator<< (ostream& os, const Point2D& p);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

Exercise 16: List of points (2)

Make a list of 2D points:
std::list<Point2D> plist;

Fill the list with points

Call the STL algorithm sort to sort the list of points
(find some electronic STL documentation)

Print the list using a for-loop and an iterator

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

STL and numerical computing

std::valarray is considered superior to std::vector for numerical
computing

valarray does not support multi-index arrays

Can use valarray as internal storage for a new matrix or
multi-index array type

Supports arithmetics on vectors
#include <valarray>

std::valarray<double> u1(7), u2(7), u3(7);
u1[6]=4;
u3 = 3.2*u1 + u2;

// no begin(), end() for valarray
for (j=0; j<7; j++)
std::cout << u3[j] << " ";

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP Complex MyVector STL

STL and the future

Many attractive programming ideas in STL

For numerical computing one is normally better off with other
libraries than STL and its valarray

Template (generic) programming is more efficient than OOP
since the code is fixed at compile time

The template technology enables very efficient code (e.g.
automatic loop unrolling controlled by a library)

Blitz++: creative use of templates to optimize array
operations

MTL: extension of STL to matrix computations (promising!)

Still portability problems with templates

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Efficiency in the large

What is efficiency?

Human efficiency is most important for programmers

Computational efficiency is most important for program users

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Smith, Bjorstad and Gropp

“In the training of programming for scientific computation the
emphasis has historically been on squeezing out every drop of
floating point performance for a given algorithm. This
practice, however, leads to highly tuned racecarlike software codes:
delicate, easily broken and difficult to maintain, but capable of
outperforming more user-friendly family cars.”

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Premature optimization

“Premature optimization is the root of all evil”
(Donald Knuth)

F77 programmers tend to dive into implementation and think
about efficiency in every statement

“80-20” rule: “80” percent of the CPU time is spent in “20”
percent of the code

Common: only some small loops are responsible for the vast
portion of the CPU time

C++ and F90 force us to focus more on design

Don’t think too much about efficiency before you have a
thoroughly debugged and verified program!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Some rules

Avoid lists, sets etc, when arrays can be used without too
much waste of memory

Avoid calling small virtual functions in the innermost loop
(i.e., avoid object-oriented programming in the innermost
loop)

Implement a working code with emphasis on design for
extensions, maintenance, etc.

Analyze the efficiency with a tool (profiler) to predict the
CPU-intensive parts

Attack the CPU-intensive parts after the program is verified

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Some more rules

Heavy computation with small objects might be inefficient,
e.g., vector of class complex objects

Virtual functions: cannot be inlined, overhead in call

Avoid small virtual functions (unless they end up in more than
(say) 5 multiplications)

Save object-oriented constructs and virtual functions for the
program management part

Use C/F77-style in low level CPU-intensive code
(for-loops working on plain C arrays)

Reduce pointer-to-pointer-to....-pointer links inside for-loops

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

And even some more rules

Attractive matrix-vector syntax like y = b - A*x has normally
significant overhead compared to a tailored function with one
loop

Avoid implicit type conversion
(use the explicit keyword when declaring constructors)

Never return (copy) a large object from a function
(normally, this implies hidden allocation)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Examples on inefficient constructions

Code:
MyVector somefunc(MyVector v) // copy!
{
MyVector r;
// compute with v and r
return r; // copy!

}

⇒ two unnecessary copies of possibly large MyVector arrays!

More efficient code:
void somefunc(const MyVector& v, MyVector& r)
{
// compute with v and r

}

Alternative: use vectors with built-in reference counting such
that r=u is just a copy of a reference, not the complete data
structure

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Hidden inefficiency

Failure to define a copy constructor
class MyVector
{
double* A; int length;

public:
// no copy constructor MyVector(const MyVector&)

};

C++ automatically generates a copy constructor with copy of
data item by data item:

MyVector::MyVector(const MyVector& v)
{
A = v.A; length = v.length;

}

Why is this bad? What type of run-time failure can you think
of? (Hint: what happens in the destructor of w if you created
w by MyVector(u)?)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

C++ versus Fortran 77

F77 is normally hard to beat

With careful programming, C++ can come close

Some special template techniques can even beat F77
(significantly)

C++ often competes well with F77 in complicated codes

F77 might be considerably faster than C++ when running
through large arrays (e.g., explicit finite difference schemes)

If C++ is not fast enough: port critical loops to F77

Remark: F90 is also often significantly slower than F77

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Efficiency tests

Diffpack/C++ vs. C vs. FORTRAN 77

Low-level linear algebra (BLAS)

Full PDE simulators

Joint work with Cass Miller’s group at the Univ. of North Carolina
at Chapel Hill

H. P. Langtangen Introduction to C++ (and C) Programming

In
tro

C
la

sse
s

E
ffi

cie
n
cy

O
O

P

T
est:

D
A
X
P
Y

y
←

a
x

+
y

C

C
+

+

IB
M

H
P

S

G
I

S
U

N
0

0.5 1

1.5
Normalized CPU time

(58.0 s)

(58.0 s)

(242.0 s)

(242.0 s)

(368.0 s)

(366.0 s)

(485.0 s)

(505.0 s)

H
.
P
.
L
a
n
g
ta

n
g
e
n

In
tro

d
u
ctio

n
to

C
+

+
(a

n
d

C
)

P
ro

g
ra

m
m

in
g

In
tro

C
la

sse
s

E
ffi

cie
n
cy

O
O

P

T
est:

D
D

O
T

s
←

(u
,v

)

C

C
+

+

IB
M

H
P

S

G
I

S
U

N
0

0.2

0.4

0.6

0.8 1

1.2

Normalized CPU time

(42.0 s)

(49.0 s)

(183.0 s)

(217.0 s)

(252.0 s)

(281.0 s)

(341.0 s)

(336.0 s)

H
.
P
.
L
a
n
g
ta

n
g
e
n

In
tro

d
u
ctio

n
to

C
+

+
(a

n
d

C
)

P
ro

g
ra

m
m

in
g

In
tro

C
la

sse
s

E
ffi

cie
n
cy

O
O

P

T
est:

D
G
E
M

V

x
←

A
y

C

C
+

+

IB
M

H
P

S

G
I

S
U

N
0

0.5 1

1.5
Normalized CPU time

(58.0 s)

(58.0 s)

(242.0 s)

(242.0 s)

(368.0 s)

(366.0 s)

(485.0 s)

(505.0 s)

H
.
P
.
L
a
n
g
ta

n
g
e
n

In
tro

d
u
ctio

n
to

C
+

+
(a

n
d

C
)

P
ro

g
ra

m
m

in
g

Intro Classes Efficiency OOP

Test: linear convection-diffusion

Model:
∂u

∂t
+ ~v · ∇u = k∇2u in 3D

Tests iterative solution (BiCGStab w/Jacobi prec.) of linear
systems

100x20x10

200x20x10

500x10x10

Grid size

IBM HP SGI
0

0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

(2
29

.0
 s

)

(4
92

.0
 s

)

(6
30

.0
 s

)

(3
82

.0
 s

)

(9
40

.0
 s

)

(1
21

5.
0

s)

(6
34

.0
 s

)

(1
53

4.
0

s)

(2
00

5.
0

s)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Test: Richards’ equation

Model:

∂θ

∂t
+ SsS

∂ψ

∂t
=

∂

∂z

[

K

(

∂ψ

∂z
+ 1

)]

in 1D

Tests FE assembly w/advanced constitutive relations

 800

1,600

3,200

Grid size

IBM HP SGI
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 C
P

U
 ti

m
e (2

0.
0

s)

(5
9.

0
s)

(1
77

.0
 s

)

(1
2.

2
s)

(3
8.

0
s)

(1
14

.0
 s

)

(5
3.

6
s)

(1
70

.0
 s

)

(5
33

.0
 s

)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Test: convection-diffusion-reaction

Model:
convection-diffusion + αu2 in 1D

by Newton’s method

Tests FE assembly

 1,000

10,000

50,000

Grid size

IBM SUN
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 C
P

U
 ti

m
e

(4
.7

 s
)

(4
2.

0
s)

(1
49

.0
 s

)

(1
3.

0
s)

(1
65

.0
 s

)

(5
76

.0
 s

)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Strong sides of C++

Rich language (over 60 keywords)

Good balance between OO support and numerical efficiency

Very widespread for non-numerical software

Careful programming can give efficiency close to that of F77

Well suited for large projects

Compatibility with C

The compiler finds many errors

Good software development tools

Good standard library for strings, lists, arrays, etc. (STL)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Weak sides of C++

Lacks good standard libraries for numerics
(STL is too primitive)

Many possibilities for inefficient code

Many ways of doing the same things
(programming standard is important!)

Supports ugly constructs

The language is under development, which causes portability
problems

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

An ideal scientific computing environment

Write numerical codes close to the mathematics and numerical
algorithms!

Write very high-level code for rapid prototyping

Write lower-level code to control details
– when needed

Get efficiency as optimized Fortran 77 code

Recall: high-level codes are easier to read, maintain, modify and
extend!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Application example

Finite difference PDE solver for, e.g.,

∂2u

∂t2
=

∂

∂x

(

H(x , y)
∂u

∂x

)

+
∂

∂y

(

H(x , y)
∂u

∂y

)

on a rectangular grid

Explicit 2nd-order finite difference scheme:

u`+1
i ,j = G (u`−1

i ,j , u`
i ,j , u

`
i−1,j , u

`
i+1,j , u

`
i ,j−1, u

`
i ,j+1)

Abstractions: 2D arrays, grid, scalar fields,
FD operators, ...

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Typical features of a modern library

Layered design of objects:

smart pointers
(automatic memory handling)

arrays

finite difference grid

scalar field over the grid

Example here: Diffpack (www.diffpack.com)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Array classes

VecSimplest

VecSimple

VecSort

ArrayGenSel

ArrayGen

Vec

Vector

ArrayGenSimplest

ArrayGenSimple

op= op<< op>>

op< op<= etc

plain C array
op()(int i)

op()(int i, int j)

op()(int i, int j, int k)

can print, scan, op=op+ op- op* op/

inactive entries (FDM & non-rect. geom.)

Vec + multiple indices

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

PDE classes

Grid

ArrayGen& values() { return *vec; }

Handle<ArrayGen> vec

Handle<Grid> grid

Field Grid

ArrayGen

Handle<X>
X* ptr
smart pointer

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Why all these classes?

A simple scalar wave equation solver is easy to implement
with just plain Fortran/C arrays

The grid/field abstractions pay off in more complicated
applications

This application is (probably) a “worst case” example of using
object-oriented programming; seemingly lots of overhead

So: How much efficiency is lost?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Coding a scheme

Traverse field values:
#define U(i,j) u.values()(i,j)

for (i=1; i<=in; i++) {
for (j=1; j<=jn; j++) {

U(i,j) = ... + U(i-1,j) + ...

U(i,j) is a set of nested function calls:

u.values() calls Handle<ArrayGen>::operator*
(i,j) calls ArrayGen::operator()
operator() returns A[nx*(i-1)+j] with A[] in a

virtual base class (i.e. ptr->A[])

⇒ 3 nested function calls

All functions are inline, but does the compiler really see that
the loop just operates on a 1D C array?

The scheme is 1 page of code and consumes 90 percent of the
CPU time of a wave simulator

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Virtual base class

#1 #2 #n•••

Segment SC

virtual base
class pointer

Segment SA

double* a

int n

Segment SB

 Vec object

class Vec : public virtual VecSimplest
{
 public:
 Vec (int length);
 ~Vec ();

 •••
}

class VecSimplest
{
 protected:
 double* a;
 int n;
 public:
 VecSimplest (int length);
 ~VecSimplest ();

 •••
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Speeding up the code (1)

Help the compiler; extract the array

ArrayGen& U = u.values();

for (i=1; i<=in; i++)
for (j=1; j<=jn; j++)

U(i,j) = ... + U(i-1,j) + ...

⇒ one function call to inline operator()

Almost 30 percent reduction in CPU time

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Speeding up the code (2)

Help the compiler; work with a plain C array
#ifdef SAFE_CODE
ArrayGen& U = u.values();
for (i=1; i<=in; i++)
for (j=1; j<=jn; j++)

U(i,j) = ... + U(i-1,j) + ...
#else

double* U = u.values().getUnderlyingCarray();

const int i0 = -nx-1;
for (i=1; i<=in; i++) {
for (j=1; j<=jn; j++) {

ic = j*nx + i + i0
iw = ic - 1
...
U[ic] = ... + U[iw] + ...

}
}
#endif

Almost 80 percent reduction in CPU time!

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Speeding up the code (3)

Do the intensive array work in F77
#ifdef SAFE_CODE
ArrayGen& U = u.values();
for (i=1; i<=in; i++) {
for (j=1; j<=jn; j++) {

U(i,j) = ... + U(i-1,j) + ...
#else

double* U = u.values().getUnderlyingCarray();

scheme77_ (U, ...); // Fortran subroutine

#endif

65 percent reduction in CPU time (Fujitsu f95)

73 percent reduction in CPU time (GNU g77)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Speeding up the code (4)

Lend arrays to a fast C++ array library

Example: Blitz++

Wrap a Blitz++ subscripting interface

double* ua = u.values().getUnderlyingCarray();

blitz::Array<real, 2> U(ua,
blitz::shape(nx,ny),
blitz::neverDeleteData,
blitz::FortranArray<2>());

for (i=1; i<=in; i++)
for (j=1; j<=jn; j++)

U(i,j) = ... + U(i-1,j) + ...

Note: same application code as for our ArrayGen object

62 percent reduction in CPU time

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

A note about compilers

Main computational work in nested loops

for (i=1; i<=in; i++)
for (j=1; j<=jn; j++)

U(i,j) = ... + U(i-1,j) + ...

GNU and Fujitsu compilers have been tested with numerous
options (-O1, -O2, -O3, -ffast-math -funroll-loops)

All options run at approx the same speed (!)

Optimal optimization of the loop (?)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP

Lessons learned

Exaggerated use of objects instead of plain arrays slows down
the code

The inner intensive loops can be recoded in C or F77 to get
optimal performance

The recoding is simple and quick human work

The original, safe code is available for debugging

The grid/field abstractions are very convenient for all work
outside the intensive loops
(large parts of the total code!)

This was probably a worst case scenario

⇒ Program at a high level, migrate slow code to F77 or C. This is
trivial in the Diffpack environment.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Object-based vs. -oriented programming

Class MyVector is an example on programming with objects,
often referred to as object-based programming (OBP)

Object-oriented programming (OOP) is an extension of OBP

OOP works with classes related to each other in a hierarchy

OOP is best explained through an example

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

An OOP example: ODE solvers

Topic: a small library for solving ordinary differential equations
(ODEs)

dyi

dt
= fi(y1, . . . , yn, t), yi(0) = y0

i ,

for i = 1, . . . , n

Demonstrates OO design for a simple problem

Introduces the basic OOP concepts in C++

Principles are generic and apply to advanced numerics

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

ODE problems and methods

Some vector yi(t) fulfills a 1st-order differential equation
dyi/dt = fi(y , t), where fi is a vector

Such mathematical models arise in physics, biology,
chemestry, statistics, medicine, finance, ...

Typical numerical solution method:
1 start with some initial state y(0)
2 at discrete points of time: compute new y(t) based on

previously calcluated y values

The simplest method (Forward Euler scheme):

yi(t + ∆t) = yi(t) + ∆tfi(y(t), t)

where ∆t is a small time interval

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Our problem framework

There are numerous numerical solution methods for ODEs

We want to
1 implement a problem (i.e. f(y,t))
2 easily access a range of solution methods

A range of different problems (ODEs) must be easily
combined with a range of solution methods

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Design of a traditional F77 library

Subroutines implementing various methods, e.g.

SUBROUTINE RK4(Y,T,F,WORK1,N,TSTEP,TOL1,TOL2,...)

for a 4th-order Runge-Kutta algorithm

Y is the current solution (a vector)

T is time

F is a function defining the f values

WORK1 is a scratch array

N is the length of Y

TSTEP is the time step (dt)

TOL1, TOL2 are various parameters needed in the algorithm

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

User-given information

Think of an ODE with lots of parameters C1, C2, ...

Function F (user-given) defining f(y,t):

SUBROUTINE MYF(FVEC,Y,T,C1,C2,C3,C4,C5)

Problem: MYF is to be called from a general RK4 routine; it
does not know about the problem-dependent parameters C1,
C2, C3, ...
CALL F(FVEC,Y,T)

Problem-dependent parameters in MYF must be transferred
through COMMON blocks

SUBROUTINE MYF(FVEC,Y,T)
...
COMMON /MYFPRMS/ C1, C2, C3, ...
...

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Improvements

Internal scratch arrays needed in algorithms should not be
visible for the end-user

All parameters needed in an algorithm must be specified as
arguments; the user should only need to set a small set of
parameters at run time, relying on sensible default values for
the rest

Ideally, the calling interface to all the ODE solvers is identical

Problem-specific parameters in the definition of the equations
to be solved should not need to be global variables

All these goals can easily be reached by using C++ and
object-oriented programming

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The basic ideas of OO programming

Create a base class with a generic interface

Let the interface consist of virtual functions

A hierarchy of subclasses implements various versions of the
base class

Work with a base class pointer only througout the code; C++
automatically calls the right (subclass) version of a virtual
function

This is the principle of object-oriented programming

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The ODESolver hierarchy

Create a base class for all ODE solver algorithms:
class ODESolver
{
// common data needed in all ODE solvers

public:
...
// advance the solution one step according to the alg.:
virtual void advance(MyArray<double>& y,

double t, double dt);
};

Implement special ODE algorithms as subclasses:
class ForwardEuler : public ODESolver
{
...

public:
// the simple Forward Euler scheme:
virtual void advance(MyArray<double>& y, double t, double dt);

};

class RungeKutta4 : public ODESolver
{ ... };

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Working with ODE solvers

Let all parts of the code work with ODE solvers through the
common base class interface:
void somefunc(ODESolver& solver, ...)
{
...
solver.advance(y,t,dt);
...

}

Here, solver will call the right algorithm, i.e., the advance

function in the subclass object that solver actually refers to

Result: All details of a specific ODE algorithm are hidden; we
just work with a generic ODE solver

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Some initial problem-dependent code is needed

At one place in the code we must create the right subclass
object:

ODESolver* s= new RungeKutta4(...);

// from now on s is sent away as a general ODESolver,
// C++ remembers that the object is actually a Runge-Kutta
// solver of 4th order:
somefunc(*s, ...);

Creation of specific classes in a hierarchy often takes place in
what is called a factory function

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

User-provided functions

The user needs to provide a function defining the equations

This function is conveniently implemented as a class, i.e. in a
problem class:
class Oscillator
{
double C1, C2, C3, C4;

public:
int size() { return 2; } // 2 ODEs to be solved
void equation(MyArray<double>& f,

const MyArray<double>& y, double t);
void scan(); // read C1, C2, ... from some input

};

Any ODESolver can now call the equation function of the
problem class to evaluate the f vector

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Generalizing

Problem: The problem class type (Oscillator) cannot be
visible from an ODESolver (if so, the solver has hardcoded the
name of the problem being solved!)

Remedy: all problem classes are subclasses of a common base
class with a generic interface to ODE problems

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Base class for all problems

Define
class ODEProblem
{
// common data for all ODE problems

public:
virtual int size();
virtual void equation(MyArray<double>& f,

const MyArray<double>& y, double t);
virtual void scan();

};

Our special problem is implemented as a subclass:
class Oscillator : public ODEProblem
{
...

public:
virtual int size() { return 2; }
virtual void equation(MyArray<double>& f,

const MyArray<double>& y, double t);
virtual void scan(); // read C1, C2, ...

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Implementing class Oscillator (1)

ODE model:

ÿ + c1(ẏ + c2ẏ |ẏ |) + c3(y + c4y
3) = sinωt

Rewritten as a 1st order system (advantageous when applying
numerical schemes):

ẏ1 = y2 ≡ f1

ẏ2 = −c1(y2 + c2y2|y2|)− c3(y1 + c4y
3
1) + sinωt ≡ f2

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Implementing class Oscillator (2)

class Oscillator : public ODEProblem
{
protected:

real c1,c2,c3,c4,omega; // problem dependent paramters
public:

Oscillator () {}

// here goes our special ODE:
virtual void equation (MyArray<double>& f,

const MyArray<double>& y, real t);

virtual int size () { return 2; } // 2x2 system of ODEs
virtual void scan ();
virtual void print (Os os);

};

void Oscillator::equation (MyArray<double>& f,
const MyArray<double>& y, real t)

{
f(1) = y(2);
f(2) = -c1*(y(2)+c2*y(2)*abs(y(2))) - c3*(y(1)+c4*pow3(y(1)))

+ sin(omega*t);
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

ODESolvers work with ODEProblems

All ODE solvers need to access a problem class:
class ODESolver
{
ODEProblem* problem;
...

};

// in an advance function of a subclass:
problem->equation (f, y, t);

Since equation is a virtual function, C++ will automatically
call the equation function of our current problem class

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Initially we need to make specific objects

ODEProblem* p = new Oscillator(...);
ODESolver* s = new RungeKutta4(..., p, ...);
somefunc(*s, ...);

From now on our program can work with a generic ODE solver and
a generic problem

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The class design

ODEProblem ODESolver

RungeKutta4A

RungeKutta4

RungeKutta2

ForwardEuler

Oscillator

........

Solid arrows: inheritance (“is-a” relationship)
Dashed arrows: pointers (“has-a” relationship)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Functions as arguments to functions (1)

In C: functions can be sent as argument to functions via
function pointers

typedef double (*funcptr)(double x, int i);

In C++ one applies function objects (or functors)

Idea: the function pointer is replaced by a base-class
pointer/ref., and the function itself is a virtual function in a
subclass
class F : public FunctionClass
{
public:

virtual double operator() (double x) const;
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

PDE problems

Partial differential equations (PDEs) are used to describe
numerous processes in physics, engineering, biology, geology,
meteorology, ...

PDEs typically contain
1 input quantities: coefficients in the PDEs, boundary

conditions, etc.
2 output quantities: the solution

Input/output quantities are scalar or vector fields

field = function defined over a 1D, 2D or 3D grid

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Example: scalar field over a 2D grid

−0.4 0 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u

−2.84

−2.26

−1.67

−1.09

−0.507

0.0753

0.658

1.24

1.82

2.41

2.99

−0.4 0 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

PDE codes

PDEs are solved numerically by finite difference, finite element
or finite volume methods

PDE codes are often large and complicated

Finite element codes can easily be x00 000 lines in Fortran 77

PDE codes can be difficult to maintain and extend

Remedy: program closer to the mathematics, but this requires
suitable abstractions (i.e. classes)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

A simple model problem

2D linear, standard wave equation with constant wave velocity
c

∂2u

∂t2
= c2

(

∂2u

∂x2
+
∂2u

∂y2

)

or variable wave velocity c(x , y):

∂2u

∂t2
=

∂

∂x

(

c(x , y)2
∂u

∂x

)

+
∂

∂y

(

c(x , y)2
∂u

∂y

)

Vanishing normal derivative on the boundary

Explicit finite difference scheme

Uniform rectangular grid

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Possible interpretation: water waves

u: water surface elevation; c2: water depth

−0.07

−0.056

−0.042

−0.028

−0.014

−8.67e−19

0.014

0.028

0.042

0.056

0.07

X

Y

Z

−1

0

0.7

0

10

20 0

10

20

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Basic abstractions

Flexible array

Grid

Scalar field

Time discretization parameters

Smart pointers

References:

Roeim and Langtangen: Implementation of a wave simulator
using objects and C++

Source code: src/C++/Wave2D

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

A grid class

Obvious ideas

collect grid information in a grid class

collect field information in a field class

Gain:

shorter code, closer to the mathematics

finite difference methods: minor

finite element methods: important

big programs: fundamental

possible to write code that is (almost) independent of the
number of space dimensions (i.e., easy to go from 1D to 2D
to 3D!)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Grids and fields for FDM

Relevant classes in a finite difference method (FDM):

Field represented by FieldLattice:
1 a grid of type GridLattice
2 a set of point values, MyArray
3 MyArray is a class implementing user-friendly arrays in one and

more dimensions

Grid represented by GridLattice
1 lattice with uniform partition in d dimensions
2 initialization from input string, e.g.,

d=1 domain: [0,1], index [1:20]

d=3 [0,1]x[-2,2]x[0,10]
indices [1:20]x[-20:20]x[0:40]

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Working with the GridLattice class

Example of how we want to program:

GridLattice g; // declare an empty grid
g.scan("d=2 [0,1]x[0,2] [1:10]x[1:40]"); // initialize g

const int i0 = g.getBase(1); // start of first index
const int j0 = g.getBase(2); // start of second index
const int in = g.getMaxI(1); // end of first index
const int jn = g.getMaxI(2); // end of second index
int i,j;
for (i = i0; i <= in; ++i) {

for (j = i0; j <= jn; ++j) {
std::cout << "grid point (" << i << ’,’ << j

<< ") has coordinates (" << g.getPoint(1,i)
<< ’,’ << g.getPoint(2,j) << ")\n";

}
}
// other tasks:
const int nx = g.getDivisions(1);
const int ny = g.getDivisions(2);
const int dx = g.Delta(1);
const int dy = g.Delta(2);

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (1)

Data representation:

Max/min coordinates of the corners, plus no of divisions

class GridLattice
{

// currently limited to two dimensions
static const int MAX_DIMENSIONS = 2;

// variables defining the size of the grid
double min[MAX_DIMENSIONS]; // min coordinate values

// in each dimension
double max[MAX_DIMENSIONS]; // max coordinate values

// in each dimension
int division[MAX_DIMENSIONS]; // number of points

// in each dimension
int dimensions; // number of dimensions

static: a common variable shared by all GridLattice objects

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (2)

Member functions:

Constructors

Initialization (through the scan function)

Accessors (access to internal data structure)

public:
GridLattice();
GridLattice(int nx, int ny,

double xmin_, double xmax_,
double ymin_, double ymax_);

void scan(const std::string& init_string);
// scan parameters from init_string

friend std::ostream& operator<<(std::ostream&, GridLattice&);

int getNoSpaceDim () const;

double xMin(int dimension) const;
double xMax(int dimension) const;

// get the number of points in each dimension:
int getDivisions(int i) const;

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (3)

...
// get total no of points in the grid:
int getNoPoints() const;

double Delta(int dimension) const;
double getPoint(int dimension, int index);

// start of indexed loops in dimension-direction:
int getBase(int dimension) const;
// end of indexed loops in dimension-direction:
int getMaxI(int dimension) const;

};

Mutators, i.e., functions for setting internal data members, are not
implemented here. Examples could be setDelta, setXmax, etc.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (4)

double GridLattice:: xMin(int dimension) const
{ return min[dimension - 1]; }

double GridLattice:: xMax(int dimension) const
{ return max[dimension - 1]; }

inline int GridLattice:: getDivisions(int i) const
{ return division[i-1]; }

int GridLattice:: getNoPoints() const
{

int return_value = 1;
for(int i = 0; i != dimensions; ++i)

return_value *= division[i];

return return_value;
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (5)

Nested inline functions:
inline double GridLattice:: Delta(int dimension) const
{

return (max[dimension-1] - min[dimension-1])
/ double(division[dimension-1]);

}

inline double GridLattice::
getPoint(int dimension, int index)

{
return min[dimension-1] +

(Delta(dimension) * (index - 1));
}

Some of today’s compilers do not inline nested inlined
functions

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (6)

Remedy: can use a preprocessor macro and make our own
tailored optimization:
inline double GridLattice:: getPoint

(int dimension, int index)
{
#ifdef NO_NESTED_INLINES

return min[dimension-1] +
((max[dimension-1]- min[dimension-1])
/ double(division[dimension-1]))*(index - 1);

#else
return min[dimension-1] +

(Delta(dimension) * (index - 1));
#endif
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (7)

The scan function is typically called as follows:

// GridLattice g
g.scan("d=2 [0,1]x[0,2] [1:10]x[1:40]");

To parse the string, use functionality in the C++ standard
library:

void GridLattice:: scan(const string& init_string)
{
using namespace std; // allows dropping std:: prefix
// work with an istream interface to strings:
istringstream is(init_string.c_str());

// ignore "d="
is.ignore(1, ’d’); is.ignore(1, ’=’);

// get the dimensions
is >> dimensions;
if (dimensions < 1 || dimensions > MAX_DIMENSIONS) {

// write error message
...

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The GridLattice class (8)

Constructor with data for initialization:
GridLattice:: GridLattice(int nx, int ny,

double xmin, double xmax,
double ymin, double ymax)

{
dimensions = 2;
max[0] = xmax; max[1] = ymax;
min[0] = xmin; min[1] = ymin;
division[0] = nx; division[1] = ny;

}

Constructor with no arguments:

GridLattice:: GridLattice()
{

// set meaningful values:
dimensions = 2;
for (int i = 1; i <= MAX_DIMENSIONS; ++i) {

min[i] = 0; max[i] = 1; division[i] = 2;
}

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Various types of grids

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0−8.92 7.92

1

2

3

4

5

6

7

8

0−8.92 7.92

1

2

3

4

5

6

7

8

More complicated data structures but the grid is still a single
variable in the simulation code

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The FieldLattice class (1)

0 1
0

1

0

0.00595

0.0119

0.0178

0.0238

0.0297

0.0357

0.0416

0.0476

0.0535

0.0595

0 1
0

1

Collect all information about a scalar finite difference-type field in
a class with

pointer to a grid (allows the grid to be shared by many fields)

pointer to an array of grid point values

optional: name of the field

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The FieldLattice class (2)

class FieldLattice
{
public:
Handle<GridLattice> grid_lattice;
Handle< MyArray<real> > grid_point_values;
std::string fieldname;

public:
// make a field from a grid and a fieldname:
FieldLattice(GridLattice& g,

const std::string& fieldname);

// enable access to grid-point values:
MyArray<real>& values()
{ return *grid_point_values; }

const MyArray<real>& values() const
{ return *grid_point_values; }

// enable access to the grid:
GridLattice& grid() { return *grid_lattice; }

const GridLattice& grid() const { return *grid_lattice; }

std::string name() const { return fieldname; }
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The FieldLattice class (3)

FieldLattice:: FieldLattice(GridLattice& g,
const std::string& name_)

{
grid_lattice.rebind(&g);
// allocate the grid_point_values array:
if (grid_lattice->getNoSpaceDim() == 1)
grid_point_values.rebind(

new MyArray<real>(grid_lattice->getDivisions(1)));
else if (grid_lattice->getNoSpaceDim() == 2)
grid_point_values.rebind(new MyArray<real>(

grid_lattice->getDivisions(1),
grid_lattice->getDivisions(2)));

else
; // three-dimensional fields are not yet supported...

fieldname = name_;
}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

A few remarks on class FieldLattice

Inline functions are obtained by implementing the function
body inside the class declaration

We use a parameter real, which equals float or double (by
default)

The Handle<> construction is a smart pointer, implementing
reference counting and automatic deallocation (almost
garbage collection)

Using a Handle<GridLattice> object instead of a GridLattice

object, means that a grid can be shared among several fields

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

C/C++ pointers cause trouble...

Observations:

Pointers are bug no 1 in C/C++

Dynamic memory demands pointer programming

Lack of garbage collection (automatic clean-up of memory
that is no longer in use) means that manual deallocation is
required

Every new must be paried with a delete

Codes with memory leakage eat up the memory and slow
down computations

How to determine when memory is no longer in use? Suppose
5 fields point to the same grid, when can we safely remove the
grid object?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Smart pointers with reference counting

Solution to the mentioned problems:

Avoid explicit deallocation

Introduce reference counting, i.e., count the number of
pointer references to an object and perform a delete only if
there are no more references to the object

Advantages:

negligible overhead

(kind of) automatic garbage collection

several fields can safely share one grid

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Smart pointers: usage

Handle<X> x; // NULL pointer

x.rebind (new X()); // x points to new X object

someFunc (*x); // send object as X& argument

// given Handle(X) y:
x.rebind (*y); // x points to y’s object

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Time discretization parameters

Collect time discretization parameters in a class:
1 current time value
2 end of simulation
3 time step size
4 time step number

class TimePrm
{
double time_; // current time value
double delta; // time step size
double stop; // stop time
int timestep; // time step counter

public:
TimePrm(double start, double delta_, double stop_)
{ time_=start; delta=delta_; stop=stop_; initTimeLoop(); }

double time() { return time_; }
double Delta() { return delta; }

void initTimeLoop() { time_ = 0; timestep = 0; }

bool finished()
{ return (time_ >= stop) ? true : false; }

void increaseTime() { time_ += delta; ++timestep; }

int getTimeStepNo() { return timestep; }
};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Simulator classes

The PDE solver is a class itself

This makes it easy to
1 combine solvers (systems of PDEs)
2 extend/modify solvers
3 couple solvers to optimization, automatic parameter analysis,

etc.

Typical look (for a stationary problem):

class MySim
{
protected:
// grid and field objects
// PDE-dependent parameters

public:
void scan(); // read input and init
void solveProblem();
void resultReport();

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Our wave 2D equation example

What are natural objects in a 2D wave equation simulator?

GridLattice

FieldLattice for the unknown u field at three consecutive time
levels

TimePrm

Class hierarchy of functions:
1 initial surface functions I(x,y) and/or
2 bottom functions H(x,y)

Use smart pointers (Handles) instead of ordinary C/C++ pointers

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Hierarchy of functions

Class WaveFunc: common interface to all I(x,y) and H(x,y)
functions for which we have explicit mathematical formulas
class WaveFunc
{
public:
virtual ~WaveFunc() {}
virtual real valuePt(real x, real y, real t = 0) = 0;
virtual void scan() = 0; // read parameters in depth func.
virtual std::string& formula() = 0; // function label

};

Subclasses of WaveFunc implement various I(x,y) and H(x,y)
functions, cf. the ODEProblem hierarchy

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Example

class GaussianBell : public virtual WaveFunc
{
protected:
real A, sigma_x, sigma_y, xc, yc;
char fname; // I or H
std::string formula_str; // for ASCII output of function

public:
GaussianBell(char fname_ = ’ ’);
virtual real valuePt(real x, real y, real t = 0);
virtual void scan();
virtual std::string& formula();

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Example cont.

inline real GaussianBell:: valuePt(real x, real y, real)
{
real r = A*exp(-(sqr(x - xc)/(2*sqr(sigma_x))

+ sqr(y - yc)/(2*sqr(sigma_y))));
return r;

}

GaussianBell:: GaussianBell(char fname_)
{ fname = fname_; }

std::string& GaussianBell:: formula()
{ return formula_str; }

void GaussianBell:: scan ()
{
A = CommandLineArgs::read("-A_" + fname, 0.1);
sigma_x = CommandLineArgs::read("-sigma_x_" + fname, 0.5);
sigma_y = CommandLineArgs::read("-sigma_y_" + fname, 0.5);
xc = CommandLineArgs::read("-xc_" + fname, 0.0);
yc = CommandLineArgs::read("-yc_" + fname, 0.0);

}

Class CommandLineArgs is our local tool for parsing the command
line

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The wave simulator (1)

class Wave2D
{
Handle<GridLattice> grid;
Handle<FieldLattice> up; // solution at time level l+1
Handle<FieldLattice> u; // solution at time level l
Handle<FieldLattice> um; // solution at time level l-1
Handle<TimePrm> tip;
Handle<WaveFunc> I; // initial surface
Handle<WaveFunc> H; // bottom function
// load H into a field lambda for efficiency:
Handle<FieldLattice> lambda;

void timeLoop(); // perform time stepping
void plot(bool initial); // dump fields to file, plot later
void WAVE(FieldLattice& up, const FieldLattice& u,

const FieldLattice& um, real a, real b, real c);

void setIC(); // set initial conditions
real calculateDt(int func); // calculate optimal timestep

public:
void scan(); // read input and initialize
void solveProblem(); // start the simulation

};

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The wave simulator (2)

void Wave2D:: solveProblem ()
{
setIC(); // set initial conditions
timeLoop(); // run the algorithm

}

void Wave2D:: setIC ()
{
const int nx = grid->getMaxI(1);
const int ny = grid->getMaxI(2);

// fill the field for the current time period
// with values from the appropriate function
MyArray<real>& uv = u->values();
for (int j = 1; j <= ny; j++)

for (int i = 1; i <= nx; i++)
uv(i, j) = I->valuePt(grid->getPoint(1, i),

grid->getPoint(2, j));

// set the help variable um:
WAVE (*um, *u, *um, 0.5, 0.0, 0.5);

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The wave simulator (3)

void Wave2D:: timeLoop ()
{
tip->initTimeLoop();
plot(true); // always plot initial condition (t=0)

while(!tip->finished()) {
tip->increaseTime();

WAVE (*up, *u, *um, 1, 1, 1);
// move handles (get ready for next step):
tmp = um; um = u; u = up; up = tmp;

plot(false);
}

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The wave simulator (4)

void Wave2D:: scan ()
{
// create the grid...
grid.rebind(new GridLattice());
grid->scan(CommandLineArgs::read("-grid",

"d=2 [-10,10]x[-10,10] [1:30]x[1:30]"));
std::cout << *grid << ’\n’;

// create new fields...
up. rebind(new FieldLattice(*grid, "up"));
u. rebind(new FieldLattice(*grid, "u"));
um. rebind(new FieldLattice(*grid, "um"));
lambda.rebind(new FieldLattice(*grid, "lambda"));

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The wave simulator (5)

// select the appropriate I and H
int func = CommandLineArgs::read("-func", 1);
if (func == 1) {

H.rebind(new GaussianBell(’H’));
I.rebind(new GaussianBell(’U’));

}
else {

H.rebind(new Flat());
I.rebind(new Plug(’U’));

}

// initialize the parameters in the functions
H->scan();
I->scan();

tip.rebind(new TimePrm(0, calculateDt(func),
CommandLineArgs::read("-tstop", 30.0)));

}

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

The model problem

∂

∂x

(

H(x , y)
∂u

∂x

)

+
∂

∂y

(

H(x , y)
∂u

∂y

)

=
∂2u

∂t2
, in Ω

∂u

∂n
= 0, on ∂Ω

u(x , y , 0) = I (x , y), in Ω

∂

∂t
u(x , y , 0) = 0, in Ω

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Discretization (1)

Introduce a rectangular grid: xi = (i − 1)∆x , yj = (j − 1)∆y

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

(i-1,j) (i,j) (i+1,j)

(i,j+1)

(i,j-1)

Seek approximation u`
i ,j on the grid at discrete times t` = `∆t

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Discretization (2)

Approximate derivatives by central differences

∂2u

∂t2
≈

u`+1
i ,j − 2u`

i ,j + u`−1
i ,j

∆t2

Similarly for the x and y derivatives.

Assume for the moment that H ≡ 1, then

u`+1
i ,j − 2u`

i ,j + u`−1
i ,j

∆t2
=

u`
i+1,j − 2u`

i ,j + u`
i−1,j

∆x2
+

u`
i ,j+1 − 2u`

i ,j + u`
i ,j−1

∆y2

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Discretization (3)

Solve for u`+1
i ,j (the only unknown quantity), simplify with

∆x = ∆y :

u`+1
i ,j = 2u`

i ,j − u`−1
i ,j + ∆t2[∆u]`i ,j

[∆u]`i ,j = ∆x−2(u`
i+1,j + u`

i−1,j +

u`
i ,j+1 + u`

i ,j−1 − 4u`
i ,j)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Graphical illustration

a

a

a

a

a

�
�

��
a

a

@
@

@@
u`
i,j

u`+1
i,j

u
`−1
i,j

u`
i+1,j

u`
i−1,j u`

i,j+1

u`
i,j−1

a

a

a

a

a

�
�

��
a

a

@
@

@@
2 − 4r2

1

−1

r2

r2
r2

r2

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Discretization (4)

A spatial term like (Huy)y takes the form

1

∆y

(

Hi ,j+ 1
2

(

u`
i ,j+1 − u`

i ,j

∆y

)

− Hi ,j− 1
2

(

u`
i ,j − u`

i ,j−1

∆y

))

Thus we derive

u`+1
i ,j = 2u`

i ,j − u`−1
i ,j

+r2
x

(

H
i+

1
2 ,j

(

u`
i+1,j − u`

i ,j

)

− H
i−

1
2 ,j

(

u`
i ,j − u`

i−1,j

)

)

+r2
y

(

H
i ,j+

1
2

(

u`
i ,j+1 − u`

i ,j

)

− H
i ,j−

1
2

(

u`
i ,j − u`

i ,j−1

)

)

= 2u`
i ,j − u`−1

i ,j + [∆u]`i ,j

where rx = ∆t/∆x and ry = ∆t/∆y

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Algorithm (1)

Define:
– storage u+

i ,j , ui ,j , u−

i ,j for u`+1
i ,j , u`

i ,j , u`−1
i ,j

– whole grid: ¯(∞) = {i = 1, . . . , nx , j = 1, . . . , ny}
– inner points: (∞) = {i = 2, . . . , nx − 1, j = 1, . . . , ny − 1}

Set initial conditions

ui ,j = I (xi , yj), (i , j) ∈ (∞)

Define u−

i ,j

u−

i ,j = ui ,j + [∆u]i ,j , (i , j) ∈ (∞)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Algorithm (2)

Set t = 0

While t < tstop

t = t + ∆t

Update all inner points

u+
i ,j = 2ui ,j − u−

i ,j + [∆u]i ,j , (i , j) ∈ (∞)

Set boundary conditions

Initialize for next step

u−

i ,j = ui ,j , ui ,j = u+
i ,j , (i , j) ∈ ¯(∞)

(without H)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Implementing boundary conditions (1)

We shall impose full reflection of waves like in a swimming pool

∂u

∂n
≡ ∇u · n = 0

Assume a rectangular domain. At the vertical (x =constant)
boundaries the condition reads:

0 =
∂u

∂n
= ∇u · (±1, 0) = ±

∂u

∂x

Similarly at the horizontal boundaries (y =constant)

0 =
∂u

∂n
= ∇u · (0,±1) = ±

∂u

∂y

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Implementing boundary conditions (2)

Applying the finite difference stencil at the left boundary (i = 1,
j = 1, . . . , ny):

−1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

9

10
Ghost cells

The computations involve cells outside our domain. This is a
problem. The obvious answer is to use the boundary condition,
e.g.,

u2,j − u0,j

2∆x
= 0 ⇒ u0,j = u2,j

But how do we include this into the scheme..?

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Implementing boundary conditions (3)

There are two ways to include boundary conditions:

Add “ghost cells” at boundary with explicit updating of
fictitious values outside the domain based upon values in the
interior, e.g., u0,j = u2,j

Modify stencil at boundary: uxx →
u2,j−2u1,j+u2,j

∆x2

−1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

9

10
Ghost cells

−1 0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

6

7

8

9

10
Modified stencile

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Updating of internal points

WAVE(u+, u, u−, a, b, c)

update all inner points:

u+
i ,j = 2aui ,j − bu−

i ,j + c [4u]i ,j , (i , j) ∈ (∞)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Updating of internal and boundary points

update boundary points:

i = 1, j = 2, . . . , ny − 1;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i−1→i+1,

i = nx , j = 2, . . . , ny − 1;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i+1→i−1,

j = 1, i = 2, . . . , nx − 1;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:j−1→j+1,

j = ny , i = 2, . . . , nx − 1;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:j−1→j+1,

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Updating of corner points

update corner points on the boundary:
i = 1, j = 1;

u+
i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i−1→i+1,j−1→j+1

i = nx , j = 1;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i+1→i−1,j−1→j+1

i = 1, j = ny ;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i−1→i+1,j+1→j−1

i = nx , j = ny ;
u+

i ,j = 2aui ,j − bu−

i ,j + c[4u]i ,j:i+1→i−1,j+1→j−1

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Modified algorithm

Definitions: as above

Initial conditions: ui ,j = I (xi , yj), (i , j) ∈ ¯(∞)

Variable coefficient: set/get values for λ

Set artificial quantity u−

i ,j : WAVE(u−, u, u−, 0.5, 0, 0.5)

Set t = 0

While t ≤ tstop

t ← t + ∆t

(If λ depends on t: update λ)

update all points: WAVE(u+, u, u−, 1, 1, 1)

initialize for next step:

u−

i ,j = ui ,j , ui ,j = u+
i ,j , (i , j) ∈ (∞)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Visualizing the results

0
10

20
30

40
50

0

10

20

30

40

50

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time t=0.000

0
10

20
30

40
50

0

10

20

30

40

50

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time t=0.250

0
10

20
30

40
50

0

10

20

30

40

50

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time t=0.500

0
10

20
30

40
50

0

10

20

30

40

50

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time t=0.750

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Ex: waves caused by earthquake (1)

Physical assumption: long waves in shallow water

∂2u

∂t2
= ∇ ·

[

H(x)∇u
]

Rectangular domain Ω = (sx , sx + wx)× (sy , sy + wy) with
initial (Gaussian bell) function

I (x , y) = Au exp

(

−
1

2

(

x − xc
u

σux

)2

−
1

2

(

y − y c
u

σuy

)2
)

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Ex: waves caused by earthquake (1)

The equations model an initial elevation caused by an
earthquake. The earthquake takes place near an underwater
seamount

H(x , y) = 1− AH exp

(

−
1

2

(

x − xc
H

σHx

)2

−
1

2

(

y − y c
H

σHy

)2
)

Simulation case inspired by the Gorringe Bank southwest of
Portugal. Severe ocean waves have been generated due to
earthquakes in this region.

H. P. Langtangen Introduction to C++ (and C) Programming

Intro Classes Efficiency OOP ODEs PDEs

Acknowledgements

This collection of slides on C++ and C programming has benefited
greatly from corrections and additions suggested by

Igor Rafienko

Vetle Roeim

Knut-Andreas Lie

H. P. Langtangen Introduction to C++ (and C) Programming

	Intro to C++ programming
	C/C++
	Hello World
	I/O
	A*x
	Macros
	Exercises
	Classes
	Simple class

	Class programming
	Complex
	MyVector
	STL

	Efficiency; C++ vs. F77
	Object-Oriented Numerical Programming
	ODEs
	PDEs

