_’ THIRD EDITION
— FOR ENGINEERS
& SCIENTISTS

Gary R. Bronson

Colin Dean

Spotlight on Careers in Computing

Colin Dean of Volant, PA graduated with a B.S. in
Computer Science from Westminster College in

New Wilmington, PA in May 2007. He completed his
M.S. in Business Education in July 2008 at Robert
Morris University and is employed as a developer in
Pittsburgh, PA.

You knew you were a Computer Science major when...

I had that feeling when, somewhat on a whim, | proposed to Westminster’s
information systems department that they lend me nine new, unused computers
in order to build a Folding@Home cluster in the Unix Lab. They approved, and that
cluster ran 24/7 for about six months. (http://www.cs.westminster.edu/folding/).

One piece of advice for first year students:
Ask questions. Don’t be afraid to virtually inundate a professor with questions.
Remember, it’s your education—get what you want out of it. If a professor is
too busy to help you, find another one to help. Don’t share your code with
classmates—don’t even let them look at it unless you get permission from a
_ professor: it’s against every school’s academic integrity policies. And finally, learn
\ at least one weird (read: non-major) language like Scheme, Smalltalk, Prolog, or
A\ even Haskell. You never know when it might come in handy.

If you could have dinner with a famous computer scientist, living or dead, who
would you choose?

Tim Berners-Lee, the father of the World Wide Web. His creation has changed
more lives directly than just about any other technology has. It’s enabled

the dissemination of vast amounts of knowledge and enabled collaboration
throughout the world.

What technology blogs do you read on a regular basis?
| find myself on Ars Technica, A List Apart, and The Daily WTF most often, as well as
Engadget and a few politics and technology blogs.

Where do you see yourself in ten years?
I hope to be running my own successful Internet-based company and
contemplating a doctorate, and perhaps holding public office.

http://www.cs.westminster.edu/folding/
www.course.com/coursetechnology

for Engineers and Scientists
Third Edition

Gary J. Bronson

G.J. Borse
Contributing Editor
Lehigh University

~% COURSE TECHNOLOGY
L 4

| CENGAGE Learning

Australia Brazil » Japan s Korea « Mexico « Singapore « Spain « United Kingdom « United States

~% COURSE TECHNOLOGY

1&» CENGAGE Learning

C++ for Engineers and Scientists, Third
Edition
Gary). Bronson
Managing Editor: Marie Lee
Acquisitions Editor: Amy Jollymore
Senior Product Manager: Alyssa Pratt
Developmental Editor: Lisa M. Lord
Content Product Manager: Matt Hutchinson
Marketing Manager: Bryant Chrzan
Editorial Assistant: Julia Leroux-Lindsey
Art Director: Marissa Falco

Compositor: GEX Publishing Services

© 2010 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions
Further permission questions can be e-mailed to
permissionrequest@cengage.com

ISBN-13: 978-0-324-78643-9
ISBN-10 : 0-324-78643-3

Course Technology

20 Channel Center Street
Boston, Massachusetts 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred
online store www.ichapters.com

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used through-
out this book is intended for instructional purposes only. At the time this
book was printed, any such data was fictional and not belonging to any real
persons or companies.

The programs in this book are for instructional purposes only.

They have been tested with care but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not

offer any warranties or representations, nor do they accept any liabilities

with respect to the programs.

Printed in the United States of America

1234567141312 1110

www.cengage.com/permissions
www.cengage.com
www.ichapters.com

BRIEF TABLE OF CONTENTS

Part 1

Fundamentals of C++ Programming 1
Chapter 1

Preliminaries 3
Chapter 2

Problem Solving Using C++ 43
Chapter 3

Assignment, Formatting, and Interactive Input 103
Chapter 4

Selection Structures 177
Chapter 5

Repetition Statements 231
Chapter 6

Modularity Using Functions 293
Chapter 7

Arrays 373
Chapter 8

I/0 Streams and Data Files 439
Chapter 9

Completing the Basics 489
Part 2

Object-Oriented Programming 551
Chapter 10

Introduction to Classes 553
Chapter 11

Class Functions and Conversions 597

Brief Table of Contents 3

Brief Table of Contents

Part 3

Data Structures 663
Chapter 12

Pointers 665
Chapter 13

Structures 707
Part 4

Additional Topics 749
Chapter 14

Numerical Methods 751
Chapter 15

Bit Operations 787
Appendix A

Operator Precedence Table 801
Appendix B

ASCII Character Codes 803
Appendix C

Floating-Point Number Storage 805
Appendix D

Command-Line Arguments 809
Index 815

CONTENTS

Part 1
Fundamentals of C++ Programming 1
Chapter 1
Preliminaries 3
1.1 Preliminary One: Unit Analysis 4
Engineering and Scientific Units 6
1.2 Preliminary Two: Exponential and Scientific Notations 10
Using Scientific Notation 11
1.3 Preliminary Three: Software Development 14
Phase |: Development and Design 15
Phase Il: Documentation 19
Phase Ill: Maintenance 19
Backup 20
1.4 Preliminary Four: Algorithms 22
1.5 A Closer Look: Software, Hardware, and Computer Storage 28
Machine Language 28
Assembly Languages 28
Low- and High-Level Languages 29
Procedural and Object Orientations 30
Application and System Software 30
The Development of C++ 31
Computer Hardware 33
Computer Storage 34
1.6 Common Programming Errors 37
1.7 Chapter Summary 37
Chapter 2
Problem Solving Using C++ 43
2.1 Introduction to C++ 43
The main () Function 46
The cout Object 48
2.2 Programming Style 53
Comments 55
2.3 Data Types 58
Integer Data Types 59
Determining Storage Size 62
Signed and Unsigned Data Types 64
Floating-Point Types 65
2.4 Arithmetic Operations 68
Expression Types 70
Integer Division 71
Negation 71
Operator Precedence and Associativity 72
2.5 Variables and Declaration Statements 76
Declaration Statements 78
Multiple Declarations 81
Memory Allocation 83
Displaying a Variable’s Address 85
Contents 5

Contents

2.6 A Case Study: Radar Speed Traps 90
2.7 Common Programming Errors 94
2.8 Chapter Summary 95
Chapter 3
Assignment, Formatting, and Interactive Input 103
3.1 Assignment Operations 103
Coercion 107
Assignment Variations 108
Accumulating 110
Counting 111
3.2 Formatting Numbers for Program Output 117
3.3 Using Mathematical Library Functions 131
Casts 135
3.4 Program Input Using cin 139
A First Look at User-Input Validation 143
3.5 Symbolic Constants 149
Placement of Statements 151
3.6 A Case Study: Acid Rain 158
3.7 A Closer Look: Programming Errors 164
3.8 Common Programming Errors 167
3.9 Chapter Summary 167
Chapter 4
Selection Structures 177
4.1 Selection Criteria 178
Relational Operators 178
Logical Operators 181
A Numerical Accuracy Problem 183
4.2 The if-else Statement 184
Compound Statements 187
Block Scope 190
One-Way Selection 191
Problems Associated with the 1f-else Statement 193
4.3 Nested if Statements 199
The if-else Chain 201
4.4 The switch Statement 208
4.5 A Case Study: Solving Quadratic Equations 213
4.6 A Closer Look: Program Testing 220
4.7 Common Programming Errors 222
4.8 Chapter Summary 223
Chapter 5
Repetition Statements 231
5.1 Basic Loop Structures 232
Pretest and Posttest Loops 232
Fixed-Count Versus Variable-Condition Loops 233
5.2 while Loops 234
5.3 Interactive while Loops 245
Sentinels 251
break and continue Statements 253

The Null Statement 254

Contents 7

5.4 for Loops 256
5.5 A Closer Look: Loop Programming Techniques 268
Technique 1: Interactive Input in a Loop 268
Technique 2: Selection in a Loop 269
Technique 3: Evaluating Functions of One Variable 270
Technigue 4: Interactive Loop Control 273
5.6 Nested Loops 276
5.7 do while Loops 281
Validity Checks 283
5.8 Common Programming Errors 285
5.9 Chapter Summary 286
Chapter 6
Modularity Using Functions 293
6.1 Function and Parameter Declarations 294
Function Prototypes 295
Calling a Function 296
Defining a Function 297
Placement of Statements 302
Function Stubs 302
Functions with Empty Parameter Lists 303
Default Arguments 305
Reusing Function Names (Overloading) 305
Function Templates 306
6.2 Returning a Single Value 313
Inline Functions 319
6.3 Returning Multiple Values 324
Passing and Using Reference Parameters 324
6.4 A Case Study: Rectangular to Polar Coordinate Conversion 333
6.5 Variable Scope 346
Scope Resolution Operator 349
Misuse of Globals 351
6.6 Variable Storage Categories 354
Local Variable Storage Categories 355
Global Variable Storage Categories 358
6.7 Common Programming Errors 362
6.8 Chapter Summary 364
Chapter 7
Arrays 373
7.1 One-Dimensional Arrays 374
Input and Output of Array Values 378
7.2 Array Initialization 384
7.3 Declaring and Processing Two-Dimensional Arrays 388
Larger Dimensional Arrays 392
7.4 Arrays as Arguments 394
Internal Array Element Location Algorithm 401
7.5 A Case Study: Statistical Analysis 404
7.6 The Standard Template Library (STL) 410
7.7 A Closer Look: Searching and Sorting 418
Search Algorithms 418
Big O Notation 425

Sort Algorithms 426

Contents

7.8 Common Programming Errors 432
7.9 Chapter Summary 433
Chapter 8
I/0 Streams and Data Files 439
8.1 1/0 File Stream Objects and Methods 440
Files 440
File Stream Objects 441
File Stream Methods 442
8.2 Reading and Writing Character-Based Files 454
Reading from a Text File 456
Standard Device Files 461
Other Devices 462
8.3 Random File Access 465
8.4 File Streams as Function Arguments 468
8.5 A Case Study: Pollen Count File Update 472
8.6 A Closer Look: The iostream Class Library 479
File Stream Transfer Mechanism 479
Components of the iostream Class Library 480
In-Memory Formatting 482
8.7 Common Programming Errors 483
8.8 Chapter Summary 484
Chapter 9
Completing the Basics 489
9.1 Exception Handling 490
9.2 Exceptions and File Checking 496
Opening Multiple Files 500
9.3 The string Class 504
string Class Functions 505
String Input and Output 507
String Processing 511
9.4 Character Manipulation Functions 522
Character 1/0O 526
A Second Look at User-Input Validation 531
9.5 Input Data Validation 533
9.6 A Closer Look: Namespaces and Creating a Personal Library 541
9.7 Common Programming Errors 546
9.8 Chapter Summary 546
Part 2
Object-Oriented Programming 551
Chapter 10
Introduction to Classes 553
10.1 Abstract Data Types in C++ (Classes) 553
Abstract Data Types 555
Class Construction 556

Terminology 563

Contents 9

10.2 Constructors 567
Calling Constructors 570
Overloaded and Inline Constructors 570
Destructors 574

10.3 A Case Study: Constructing a Room Object 576

10.4 A Closer Look: Object Identification and the Unified Modeling Language (UML) 582
Representing Problems with Models 583
Class and Object Diagrams 585
Relationships 588

10.5 Common Programming Errors 592

10.6 Chapter Summary 593

Chapter 11

Class Functions and Conversions 597

11.1 Assignment 597
Copy Constructors 602
Base/Member Initialization 605

11.2 Additional Class Features 607
Class Scope 607
Static Class Members 607
Friend Functions 612

11.3 Operator Functions 616
Operator Functions as Friends 623

11.4 Data Type Conversions 625
Built-in to Built-in Conversion 626
Built-in to Class Conversion 626
Class to Built-in Conversion 628
Class to Class Conversion 630

11.5 A Case Study: Random Numbers and Simulations 635
Scaling 636
Elevator Simulation 637

11.6 Class Inheritance 645
Access Specifications 647

11.7 Polymorphism 653

11.8 Common Programming Errors 658

11.9 Chapter Summary 658

Part 3

Data Structures 663

Chapter 12

Pointers 665

12.1 Addresses and Pointers 666
Storing Addresses 667
Using Addresses 667
Declaring Pointers 668
References and Pointers 671

12.2 Array Names as Pointers 677
Dynamic Array Allocation 682

12.3 Pointer Arithmetic 686
Pointer Initialization 689

12.4 Passing Addresses 690
Passing Arrays 695

Advanced Pointer Notation 699

10

Contents

12.5 Common Programming Errors 702
12.6 Chapter Summary 704
Chapter 13
Structures 707
13.1 Single Structures 708
13.2 Arrays of Structures 714
13.3 Structures as Function Arguments 718
Passing a Pointer 721
Returning Structures 724
13.4 Linked Lists 727
13.5 Dynamic Data Structure Allocation 735
13.6 Unions 742
13.7 Common Programming Errors 744
13.8 Chapter Summary 745
Part 4
Additional Topics 749
Chapter 14
Numerical Methods 751
14.1 Introduction to Root Finding 751
14.2 The Bisection Method 755
14.3 Refinements to the Bisection Method 761
Regula Falsi Method 762
Modified Regula Falsi Method 764
Summary of the Bisection Methods 769
14.4 The Secant Method 770
14.5 Introduction to Numerical Integration 774
14.6 The Trapezoidal Rule 775
Computational Form of the Trapezoidal Rule Equation 776
Example of a Trapezoidal Rule Calculation 777
14.7 Simpson'’s Rule 779
Example of Simpson’s Rule as an Approximation to an Integral 781
14.8 Common Programming Errors 783
14.9 Chapter Summary 783
Chapter 15
Bit Operations 787
15.1 The AND Operator 788
15.2 The Inclusive OR Operator 790
15.3 The Exclusive OR Operator 793
15.4 The Complement Operator 795
15.5 Different-Size Data Items 795
15.6 The Shift Operators 796
15.7 Chapter Summary 799
Appendix A
Operator Precedence Table 801

Appendix B

ASCII Character Codes

803

Contents 11

Appendix C
Floating-Point Number Storage 805
Appendix D
Command-Line Arguments 809

Index 815

This page intentionally left blank

PREFACE

The C++ programming language, which includes C as a proper subset, has become the
preeminent programming language in the engineering and scientific fields. For most
engineers and scientists, however, using the full potential of C++, which is a hybrid language
containing both structured and object-oriented features, involves a gradual refinement of
programming skills from a structured approach to an object-oriented one. One reason for this
is that many engineering and scientific problems can be solved efficiently and conveniently
by using only C++’s structured elements.

The refinement approach, from structural to object-oriented programming, is the one
C++ for Engineers and Scientists, Third Edition, takes. Therefore, like the first two editions, this
new edition begins by providing a strong foundation in structured programming. This
foundation is then expanded to a complete object orientation in a pedagogically sound and
achievable progression. Additionally, to keep it current with the current ANSI/ISO C++
standard, this edition has several important changes and added features, including the
following;:

e Restructuring Part One to include both arrays and files, which allows using Part One
as the basis for a complete semester course in C++

e Adding more than 40 new engineering and scientific exercises that incorporate the
fields of electrical engineering, mechanical engineering thermodynamics, structural
engineering, numerical applications, physics, heat transfer, chemistry, and fluid
mechanics
Adding a section on performing a unit analysis
Adding a new introduction to the Standard Template Library
Adding a section that introduces the fundamentals of the Unified Modeling
Language (UML)

e Restructuring the case studies throughout the book to emphasize specific engineer-
ing or scientific applications

e Adding end-of chapter programming projects that supplement the exercises at the
end of each section

e Labeling all exercises and programming projects as to application type

The following features have been retained from the second edition:

e Fundamentals of software engincering are discussed from both procedural and
object-oriented viewpoints.

e Common Programming Errors sections have been retained. These sections antici-
pate problems that novice C++ programmers encounter.

e The ANSI/ISO C++ iostream library and namespace mechanism are used in all
programs.

e Exception handling is discussed in a complete section, with practical applications of
exception handling included throughout the book.
The new C++ string class is covered.
A thorough discussion is included of input data validation and functions to check the
numerical data type of input items and to allow reentering invalid numerical types.

In practical terms, this book has been written to support both a one- and two-semester
technical C++ programming course; the only prerequisite is that students should be familiar

Preface 13

14

Preface

with fundamental algebra. This book is constructed to be flexible enough so that professors
can mold the book to their preferences for topic presentations. This flexibility is achieved in
the following ways.

Excluding Chapter 1, which includes computer literacy material for those who require
this background, Part One presents the basic structured syntax, flow control, and modularity
topics needed for a thorough understanding of C++’s structural features. With the topics of
arrays (Chapter 7) and files (Chapter 8) having been moved to Part One, this part now
provides a comprehensive one-semester course. As Chapters 7 and 8 have been written
specifically to depend only on Chapters 1 through 6, their order of presentation in the
classroom is entirely up to the professor’s discretion. With time permitting, the basics of
classes, introduced in Chapter 10, can also be covered to complete a one-semester course.
Additionally, depending on time and inclination, the numerical techniques discussed in
Chapter 14 can be presented at any point after Part One has been completed. Figure 1
illustrates this one-semester topic dependency.

Arrays
> Chapter 7
Part One .
Introduction Files
Chapters
Chapter 1 ‘ S 2106 > Chapter 8 ‘
and 9
Objects

> Chapter 10
Figure 1 Topic dependency for a one-semester course

An important feature of this book is that Part 'Two, on object-oriented programming, and
Part Three, on data structures, are interchangeable. So if you want to cover object-oriented
programming early, follow a Part One—Part 'Two—Part Three progression. On the other hand,
if you want to continue with additional structured programming reinforcement and discuss
object-oriented programming at the end of the course or the start of a second semester, follow
the sequence Part One-Part Three—Part Two. In either case, the material on arrays in
Chapter 7, files in Chapter 8, classes in Chapter 10, and numerical techniques in Chapter 14
can be introduced at any time after covering the first six chapters. Figure 2 shows the topic
dependency chart for the complete book and illustrates the flexibility of introducing different
topics under the umbrella of procedural programming, object-oriented programming, and
data structures.

Preface 15

Part Two
A, (Chapters 10 and 11)
Object-Oriented
Programming

Chapter 1 Part One Part Three

Literacy > Procedural > (Chapters 12 and 13)
Topics Programming Data Structures
N Part Four

(Chapters 14 and 15)

Figure 2 Topic dependency chart

Distinctive Features of This Book

Writing Style One thing I have found to be essential in my own classes is that after the
professor sets the stage in class, the assigned book must continue to encourage, nurture, and
assist students in acquiring and “owning” the material. To do this, the book must be written
in a manner that makes sense to students. My primary concern, and one of the distinctive
features of this book, is that it has been written for students. Therefore, I believe the writing
style used to convey the concepts is one of the most important aspects of this book.

Modularity To produce readable and maintainable programs, modularity is essential. C++,
by its nature, is a modular language. Therefore, the connection between C++ functions and
modules is made early in Chapter 2 and sustained throughout the book. Similarly, the idea
of parameter passing into modules is discussed early in Chapter 3, using C++’s mathematical
library. Explaining these concepts early introduces students to function and argument passing
as natural programming techniques. With the introduction of object-oriented programming
techniques in Chapter 10, students can build on the basic concept of encapsulating both data
and functions, which strengthens this modular emphasis.

Software Engineering Rather than simply introduce students to programming in C++,
this book introduces students to the fundamentals of software engineering from both a
structured and object-oriented viewpoint. Chapter 1 introduces the software development
procedure, which incorporates one of this book’s main themes: emphasizing problem-solving
techniques. Therefore, the importance of understanding and defining a problem, selecting
and refining a solution, and understanding the relationship between analysis, design, coding,
and testing is stated early and followed through with practical examples in all subsequent
case studies.

Case Studies Starting with Chapter 2, most chapters contain a case study. These case
studies demonstrate and reinforce effective problem solving in the context of the software

16

Preface

development procedure explained in Chapter 1 and are extended to object-oriented
development when classes are introduced in Chapter 10.

Program Testing Every C++ program in this book has been compiled and run successfully
and has been quality assurance tested with Microsoft Visual C++ .NE'I. Source code for all
programs can be found on the Course Technology Web site (www.cengage.comfcoursetechnology).
Using the source code permits students to experiment with and extend the existing programs
and modify them more easily, as required for a number of end-of-section exercises.

Pedagogical Features
To facilitate the goal of making C++ accessible as a first-level course, the following
pedagogical features have been incorporated into this book.

End-of-Section Exercises Almost every section in the book contains numerous and
diverse skill-building and programming exercises. Each exercise is identified as to type
(practice, desk check, and so forth) or application (such as electrical engineering, heat
transfer, environmental, and so on). Additionally, solutions to all exercises are provided in the
Instructor Downloads section on www.cengage.com/coursetechnology.

End-of-Chapter Programming Projects FEach chapter includes several programming
projects that combine all elements of C++ covered in previous sections and chapters. Projects
are identified as to type (practice, desk check, and so forth) or application (electrical
engineering, heat transfer, environmental, and so on).

Common Programming Errors and Chapter Summary Each chapter ends with a sec-
tion on common programming errors and a summary of the main topics covered in the
chapter.

Enrichment Sections Given the many different emphases that can be used in teaching
C++, several chapters include an enrichment section called “A Closer Look.” These sections
allow you to provide varying emphases with different students in C++ classes.

Point of Information Boxes These boxes present additional clarification of commonly
used or difficult concepts, such as abstraction, 1lvalues and rvalues, values versus
identities, flags, and stream formatting. In addition, many Point of Information boxes explain
alternative and advanced programming techniques, useful technical points, programming
tips, and programming tricks used by professional programmers.

Pseudocode Descriptions Pscudocode is used throughout the book. Flowchart symbols
are introduced but are used only in illustrating flow-of-control constructs.

Engineering and Scientific Disciplines Many chapters have a box at the end with
information on several engineering and scientific fields, such as electrical, chemical, mechani-
cal, and aeronautical engineering.

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

Preface 17

Appendixes This book includes four appendixes on operator precedence, ASCII character
codes, floating-point number storage, and command-line arguments. Additionally, Course
"Technology provides tutorials for using various C++ compilers at www.cengage.com/coursetechnology.

Supplemental Materials

The following supplemental materials are available when this book is used in a classroom
setting:

Electronic Instructor’s Resources. 'T'he Instructor’s Resources that accompany this book
include the following:

e Additional instructional material to assist in class preparation, including suggestions
for lecture topics
e Solutions to all the end-of-chapter materials, including the programming projects

ExamView®. 'This book is accompanied by ExamView, a powerful testing software
package that allows instructors to create and administer printed, computer (LAN-based), and
Internet exams. ExamView includes hundreds of questions that correspond to the topics
covered in this book, enabling students to generate detailed study guides that include page
references for further review. These computer-based and Internet testing components allow
students to take exams at their computers and save instructors time because each exam is
graded automatically. The Test Bank is also available in WebC'T and Blackboard formats.

PowerPoint Presentations. This book comes with Microsoft PowerPoint slides for each
chapter. They are included as a teaching aid for classroom presentations, to make available
to students on the network for chapter review, or to be printed for classroom distribution.
Instructors can add their own slides for additional topics they introduce to the class.

Source Code. T'he source code for this book is available at www.cengage.com/coursetechnology
and is also available on the Teaching Tools CD.

Solution Files. The solution files for all programming exercises and projects are available
at www.cengage.comfcoursetechnology and on the Teaching Tools CD.

www.cengage.com/coursetechnology
www.cengage.com/coursetechnology
www.cengage.com/coursetechnology

18

Preface

To Rochelle, Jeremy, David, and Matthew Bronson

Acknowledgments

The writing of this third edition is a direct result of the success (and limitations) of the
previous two editions. In this regard, my most heartfelt acknowledgment and appreciation is
to the instructors and students who found the previous editions to be of service in their
quests to teach and learn C++.

Next, I would like to thank Alyssa Pratt, my Senior Product Manager at Course
"Technology. In addition to her continuous faith and encouragement, her ideas and partner-
ship were instrumental in creating this book. After the writing process was completed, the
task of turning the final manuscript into a book depended on many people other than myself.
For this, I especially want to thank my developmental editor, Lisa Lord, who provided an
outstanding job. Her editing so dovetailed with both the spirit and idiosyncrasies of my own
writing style that it was an absolute pleasure working with her. She stayed true to what I was
attempting to achieve while patiently going through both the technical and grammatical
content. A truly incredible feat! This editing was supplemented by the equally detailed work
of my colleague, Professor Joan Zucker Hoffman, with structural engineering applications
provided by Professors Andy Gregg and Al Branchi and moral support provided by Dr. John
Becker of the Theology Department. Finally, I would like to thank the testers at Course
Technology’s MQA Department as well as GEX Publishing Services, especially the interior
designer, and Camille Kiolbasa, the copyeditor. The dedication of this team of people was
extremely important to me and I am very grateful to them.

The following reviewers provided extensive, extremely useful, and detailed information and
corrections that made this edition better and more accurate. No matter how careful 1 was, each
reviewer pointed out something that I missed or could be stated better. I am very thankful to
them. Naturally, all errors rest squarely on my shoulders, but these reviewers made the load
much easier: Hyder Ali, California State University, Northridge, and Robert Baird, Salt Lake
Community College. In addition, I'd like to thank the following instructors who reviewed the
proposal for this edition and offered valuable feedback: Randy Bower, Jacksonville University;
Helen Darcey, Cleveland State Community College; Akira Kawaguchi, The City College of New
York; Cynthia Lester, Tuskegee University; and Sherman Wong, Baruch University.

As with the first edition, special acknowledgement goes to Dr. G.J. Borse of Lehigh
University, who provided material that was adapted for this book. Specifically, his contribu-
tion includes almost all of Chapter 14, which Dr. Borse graciously permitted me to adapt from
his FORTRAN 77 text (copyright held by PWS Publishing). I would also like to acknowl-
edge, with extreme gratitude, the wonderful academic environment for learning and teaching
created at Fairleigh Dickinson University—starting with the President, Dr. Michael Adams,
followed through in the academic departments by the university and campus provosts, Dr.
Joseph Kiernan and Dr. Kenneth Greene, and finally to the direct encouragement and
support provided by my dean, Dr. William Moore, and my chairperson, Dr. Paul Yoon.
Without their support, this book could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided by my friend,
wife, and partner, Rochelle.

Gary Bronson
2009

" One

Fundamentals of C++
Programming

Although C++ is an object-oriented Preliminaries
language, it was developed as an

Problem Solving

extension to C, a procedural-oriented Using C++

language. As such, C++ is a hybrid _ _
language having both procedural and Assignment, Formatting,
object features. Because of this hybrid and Interactive Input
nature, not only is it possible to write a Selection Structures
complete C++ program using just
procedural code, but also it's
impossible to write an object-oriented Modularity Using Functions
program in C++ that doesn’t include
procedural elements. Therefore, a
proper start to learning C++ requires /O Streams and Data Files
familiarity with its procedural aspects. Completing the Basics

Repetition Statements

Arrays

This page intentionally left blank

11
1.2

1.3

1.4

1.5

1.6
1.7

Chapter

Preliminary One: Unit Analysis

Preliminary Two: Exponential
and Scientific Notations Preliminaries

Preliminary Three: Software
Development

Preliminary Four: Algorithms

A Closer Look: Software,
Hardware, and Computer
Storage

Common Programming Errors
Chapter Summary

No L

Programming scientific and engineering applications requires a number of basic skills, both in
understanding the underlying applications and in understanding the fundamentals of the programming
process itself. On the applications side, a knowledge of numerical measurements and their corresponding
units, as well as a familiarity with performing calculations, are assumed. Using consistent sets of units
and knowing how to convert between units is a basic prerequisite of these applications.

Additionally, the programming process assumes the programmer starts with a preliminary set of
skills. As you develop your programming abilities in C++, a clear understanding of how programs are
developed, in general, is important. This understanding includes what constitutes a “good” program
and what an algorithm is.

This chapter covers these preliminary requirements and can be used as an introduction or a review.

1.1

Preliminaries

Preliminary One: Unit Analysis

In all fields of study, using consistent and correct units when making computations is crucial.
As a simple example, consider calculating the area of a rectangle by using this formula:

Area = length x width [Eq. 1-1]

When using this formula, the units for length and width must be the same. Therefore,
if the length is given as 2 feet and the width as 3 inches, at least one of these units must be
converted to ensure that both length and width are in the same units before the area is
calculated. Converting the length to inches, the rectangle’s area is computed as follows:

12in
17

Similarly, if you choose to convert the width from 3 inches to its equivalent feet, the
calculation becomes the following:

Area=2ﬁ‘(Jx3in=36z'n2 [Eq. 1-1a]

m

Area =2 ft X3 in (%]=0.25ﬁ‘2 [Eq. 1-1Db]

In the same manner, if one side of the rectangle is given in centimeters and the other in
meters, a conversion 1S necessary to compute the area.

Notice that in Equations 1-1a and 1-1b, units for both length and width as we// as units
for the conversion factor ([12 in/1 ft] in Eq. 1-1a and [1 ft/12 in] in Eq. 1-1b) are included in
the formula. The reason is that the terms for units can be multiplied and divided to provide
the final unit result. In many cases, this technique is a powerful one for selecting a correct
conversion factor and ensuring that a computation is being calculated correctly.

To see why, continue with the area example. Use Eq. 1-1a, but include only the unit
terms, which yields the following:

Arm=ﬁ(%) X in [Eq. 1-1c]

Now a unit of f# divided by a unit of f7 is 1. That is, you can cancel the f# units in
Eq. 1-1c as follows, which yields the final units as 7z multiplied by 7z, or i#* which is a correct
unit for the area:

Area =7€t(%) X in=in’

Including only the units and conversion factors in an equation, and canceling out
corresponding units in the numerator and denominator, is referred to as performing a unit
analysis. As an example of a unit analysis for selecting a correct form of a conversion factor,
assume you need to convert miles (symbol mi) to kilometers (symbol km), and you have the
information that 1 kilometer = 0.6214 miles. As a conversion factor, this equality can be
written as either of the following fractions:

1 km or 0.6214 mi
0.6214 m: 1 /m

Deciding which conversion factor to use in converting miles to kilometers is easy when
you consider units. To see why, try both factors with miles, canceling the units that occur

Chapter 1 5
Preliminary One: Unit Analysis

in both the numerator and denominator and concerning yourself only with the final
resulting units:

14m
X| —— |=fkm
0.6214

and

. 0.6214 m: mi*
mi X | — | = ——
RW Fm

Because the first factor (1 km/0.6214 mi) provides the correct final units of kilometers,
it’s the form of the conversion factor that must be applied to convert miles to kilometers.
For a slightly more complicated example of performing a unit analysis for selecting
correct conversion factors, consider converting days to seconds. You can determine the correct
form of each conversion factor easily by including the units with each conversion factor, as
you change days to hours, then hours to minutes, and finally minutes to seconds, performing
each conversion one at a time and canceling units as you proceed with each conversion, as
follows:
1st conversion:
days to hours
(cross out the days)

|

24 hr
deays X
The next conversion changes the units of hours to minutes, using the conversion factor
60 min/hr, as follows:
1st conversion:

days to hours
(cross out the days)

2nd conversion:
hours to minutes
(cross out the hours)

1

247614X 60 min
ey A

s X

6

Preliminaries

The final conversion is used to convert minutes to seconds:
1st conversion:
days to hours

(cross out the days)

2nd conversion:
hours to minutes
(cross out the hours)

3rd conversion:
minutes to seconds
(cross out the minutes)

l

2474-% 60 ##+ 60 sec

-dldjffﬂ%* #X%_W

In a single line, the complete conversion appears as follows:
24-;914 60 #7160 sec
days X X =sec
-ﬂhy— A i
Before showing how a unit analysis can help ensure that a complete computation is being
calculated correctly, it’s useful to first summarize the systems of units in common use.

Engineering and Scientific Units

Two unit systems are commonly used in engineering and scientific work: the English
Engineering system and the International System (SI). Both are used in this book. Table 1.1
lists the units used in these two systems.

Table 1.1 Commonly Used Physical Quantities

Quantity Symbol | International English Conversion
System (SI) Units | Engineering Units | Equalities

Time t seconds (s) seconds (sec)
Length [meters (m) feet (ft) 1 m = 3.2808 ft
Area A sq. meters (m?) sq. feet (ft?) 1 m? =

10.76 ft*
Volume v cubic meters (m3) | cubic feet (ft3) 1Tm3=

35.31 ft?

Mass m kilograms (kg) pounds-mass (lbm) | 1 kg = 2.19 lbm
Force F Newton (1 N = pounds-force (Ibf = | 1 Ibf = 4.448 N
1 kg-m/s?) lbm-ft/sec?)

Weight W Newton (N) pounds-force (Ibf) 1 Ibf = 4.448 N

Density p kilograms/cubic pounds-mass/cubic | 1 Ibf/ft? =
meters (kg/m?) ft (lom/ft3) 16.02 kg/m3
Velocity v meters/sec (m/s) feet/sec (ft/sec) 1 m/s =
3.2808 ft/sec
Acceleration | a meters/sec? (m/s?) | feet/sec? (ft/sec?) 1 m/s? =
3.2808 ft/sec?

Chapter 1 7
Preliminary One: Unit Analysis

Table 1.1 Commonly Used Physical Quantities (continued)

Quantity Symbol | International English Conversion
System (SI) Units | Engineering Units | Equalities
Pressure P Pascal (Pa) (1 Pa = | Ibf/ft? 1 Ibf/ft? =
1 N/m?) 47.88 Pa
Heat transfer | Q Joules (J) (1) =1 British Thermal 1 BTU = 1055 J
N.m) Unit (BTU)
Heat flux Q Joules/sec (J/s) (1 BTU/sec 1 BTU/sec =
J/s = 1 Watt) 1055 J/s
Work W Joules (J) ft-Ibf 1 ft-lbf =
1.356 J
Power wW Watts (W) (1 W = | ft-Ibf/sec 1 ft-lbf/sec =
1 1/s) 1.356 W
Temperature | T degrees Celsius degrees Fahrenheit
(C) and degrees (F) and degrees
Kelvin (K) Rankin (R)

The following conversion formulas show the relationships between the various tempera-
ture scales:

°F =1.8°C + 32 = 9/5°C + 32
°C = (°F - 32)/1.8 = 5/9 (°F - 32)
°K ="°C +273.15

°R = °F + 459.67

°R = 1.8°K

°C = ("R - 491.67) / 1.8 = 5/9 (°R - 491.67)
Using these conversion formulas provides the equivalent boiling and freezing points of
water for each of the temperature scales listed in the following chart:

Oc OF OK OR
Freezing point 0 32 273.15 491.67
of water
Boiling point 100 212 373.15 671.67
of water

As an example, using the conversion equalities in Table 1.1 (last column), consider
calculating Newton’s Second Law for a mass of 5 kilograms and an acceleration of 32.2 ft/sec’.
Newton’s Second Law states that

Force = Mass x Acceleration
Assuming SI units are used, the calculation becomes
322 # [1m j_ 49.07 kg m

Foree =5 kg X T 32808 %) =49.07N

sec sec z

Preliminaries

Notice from the information in Table 1.1 that 1 m = 3.2808 f# is used to create this
conversion factor

1m
3.2808

rather than this conversion factor

(3.2808]9)

1m

because the first form achieves the desired cancelation of units. If you mistakenly use the
second conversion factor, you would end up with the following final units, which immediately
alert you that an incorrect result would occur:

2
Forwe = 54g x SZ.ZZﬁ (3.2808]9) ke fr

sec 1 m sec’ m
Finally, you could also achieve the correct conversion by using the following set of
conversions:
1st conversion:
feet to inches
(cross out the ft)

2nd conversion:
inches to centimeters
(cross out the in)

3rd conversion:
centimeters to meters
(cross out the cm)

1

Foree=5 kg 32.27fl=x 12-ﬁi—x Z.S%fm-x 1m
sec” i +# 100 e+
Frequently, when you don’t know the final conversion factor, making intermediate
conversions, as in this last calculation, can get you to the correct result easily. Notice that by
applying one conversion factor at a time and canceling units as you go along, you avoid the
common mistake of multiplying or dividing by the wrong conversion factor. If the final units,
by themselves, do not yield the correct resulting units, then the resulting numerical answer
must be incorrect. Correspondingly, if correct conversion factors and correct individual mea-
surements are used, the result will be correct in both numerical and unit terms. Using the
correct units and doing a unit analysis certainly can’t protect you against using incorrect
numbers in a calculation or making calculation errors, but by itself, a unit analysis can ensure
that you’re on the right path to computing a final numerical result correctly.

=49.073 kg m/s’

Chapter 1 9
Preliminary One: Unit Analysis

EXERCISES 1.1

. (Practice) a. To convert inches (in) to feet (ft), the number of inches should be multi-
plied by which of the following conversion factors?

1. 12 in/1 ft i. 1ft/12 in

b. To convert meters (m) to kilometers (km), the number of meters should be multiplied
by which of the following conversion factors?

i. 1000 m/1 km ii. 1 km/1000 m

c. To convert minutes (min) to seconds (sec), the number of minutes should be multi-
plied by which of the following conversion factors?

i. 60 sec/l min ii. 1 min/60 sec

d. To convert seconds (sec) to minutes (min), the number of seconds should be multi-
plied by which of the following conversion factors?

i. 60 sec/1 min ii. 1 min/60 sec

. (Practice) a. To convert feet (ft) to meters (m), the number of feet should be multiplied
by which of the following conversion factors?

i. 1 m/3.28 ft il. 3.28 ft/1 m

b. To convert sq.in to sq.ft, the number of sq.in should be multiplied by which of the
following conversion factors?
1. 144 sq.in/1 sq.ft il. 1 sq.ft/144 sq.in

c. To convert sq.yd to sq.ft, the number of sq.yd should be multiplied by which of the
following conversion factors?

i. 1 sq.yd/9 sq.ft il. 9 sq.ft/1 sq.yd
. (Practice) Determine the final units of the following expression:
9.8 m/s* x 100 cm/1 m x 1 in/2.54 cm x 1 ft/12 in

. (Practice) a. Determine the conversion factors that can be used to convert miles per
gallon (mpg = mi/gal) to kilometers per liter (km/liter), given that 1 liter = 0.22 gallons
and 1 kilometer = 0.6214 miles.

b. Using the conversion factors you determined in Exercise 4a, convert 25 mpg into
km/liter.

. (Automotive) a. An automobile engine’s performance can be determined by monitoring
its rotations per minute (rpm). Determine the conversion factors that can be used to con-
vert rpm to frequency in Hertz (Hz), given that 1 rotation = 1 cycle, 1 minute = 60 sec-
onds, and 1 Hz = 1 cycle/sec.

b. Using the conversion factors you determined in Exercise 5a, convert 2000 rpm into Hertz.
. (Chemistry) a. Determine the final units of the following expression, which provides the
molecular weight of 1.5 moles of hydrogen peroxide:

1.5 moles x 34.0146 grams/mole

10

Preliminaries

b. Determine the final units of the following expression, which provides the molecular
weight of 5.3 moles of water:

5.3 moles x 18 grams/mole

. (Oceanography) The pressure, P, exerted on an underwater object can be determined

by this formula:
P=pgh
P is the density of water, which is 100 kg/m>.

¢ is the acceleration caused by Earth’s gravity, which is 9.8 m/s?.
/% is the depth of the object in the water in meters.

a. Determine the units of P by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for pressure listed in Table 1.1.

b. Determine the pressure on a submarine operating at a depth of 500 meters.

. (Thermodynamics) The work, W, performed by a single piston in an engine can be

determined by this formula:
W=Fd

F is the force provided by the piston in Newtons.
d is the distance the piston moves in meters.

a. Determine the units of W by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for work listed in Table 1.1.

b. Determine the work performed by a piston that provides a force of 1000 N over a dis-
tance of 15 centimeters.

1.2

Preliminary Two: Exponential and Scientific Notations

Many engineering and scientific applications require dealing with extremely large and
extremely small numbers. For example, Avogadro’s number, used in chemistry, has the value
602,214,179,000,000,000,000,000; the universal gravitational constant used in acrospace and
rocketry applications has the value 0.0000000000667428. To make entering these numbers in
a computer program easier, they can be written in a more compact form known as exponential
notation. Similarly, in performing hand calculations for verification purposes, an equivalent
representation known as scientific notation is typically used.

The following examples illustrate how numbers with decimals can be expressed in both
exponential and scientific notation:

Decimal Notation Exponential Notation Scientific Notation
1625. 1.625¢3 1.625 x 10°
63421. 6.3421e4 6.3421 x 10*
.00731 7.31e-3 7.31 x 107

.000625 6.25¢-4 6.25 x 10

Chapter 1 11
Preliminary Two: Exponential and
Scientific Notations

In exponential notation, the letter e stands for exponent. The number following the e
represents a power of 10 and indicates the number of places the decimal point should be moved
to obtain the standard decimal value. The decimal point is moved to the right if the number after
e is positive, or it’s moved to the left if the number after e is negative. For example, the €3 in
1.625e3 means move the decimal place three places to the right, so the number becomes 1625.
The e-3 in 7.31e-3 means move the decimal point three places to the left, so 7.31e-3 becomes
.00731. Using these representations, Avogadro’s number is written as 6.02214179¢23 and
6.02214179 x 10* in exponential and scientific notation, and the universal gravitational constant
is written as 6.67428¢-11 in exponential notation and 6.67428 x 107" in scientific notation.

As noted previously, exponential notation is used to enter very large or very small
numbers in a C++ program and will be used in Section 2.6, where very large numbers are
required for the given application.

Using Scientific Notation

An essential part of engineering and scientific programming is understanding what formulas
are to be used and verifying calculations, typically by hand. For evaluating formulas that use
very large or very small numbers, which isn’t uncommon in the applications you’ll be
programming, scientific notation is convenient. The reason is that scientific notation permits
using the following two basic exponential rules, as they apply to the powers of 10:

Rule 1: 10" x 10™ = 10™™ for any values, positive or negative, of n and m
Examples: 10 x 10° = 107 (thatis, 100 x 100,000 = 10,000,000)

10? x 10 = 10° (that is, .01 x 100,000 = 1,000)
102 x 10®° =102 (that is, 100 x .00001 = .001)

102 x 10° =107 (thatis, .01 x .00001 = .0000001)
1023 x 10°* = 10"

1 n
Rule 2: o =10" for any positive or negative value of n

1 1
: =10 is, — =100
Examples: 102 (that is, o1)
1 1
=107 is, — =.01
102 (that is, 100)
ELEE (that i L—1000)
10° 5001

1 4 .
107 10 (thatis, 155500
Notice that in scientific notation (as in exponential notation), if the exponent is positive,
it represents the actual number of zeros that follow the 1, but if the exponent is negative, is
represents one less than the number of zeros after the decimal point and before the 1.
After you understand the basic rules of using scientific notation, you can combine them
easily, as shown in this computation:

2 5 7
—1013410 =%= 107 x 10 =10°

=.0001)

12

Preliminaries

If scientific notation were concerned only with powers of 10, as in the preceding
example, its usefulness would be extremely limited. Fortunately, however, this notation can
be used with any decimal number. For example, take a look at this computation:

236,000 x .345 x 1,345,000
67.8 x .000007

"This computation is calculated more easily by first converting each number to its equivalent
scientific notation, and then combining exponents (using Rules 1 and 2) as follows:

2.36 X 10 x 3.45x 10" x 1.345x10° _
6.78 x10' x 7.0 x 10°

2.36 X 3.45 X 1.345 x 10"
6.78 7.0 10°

2.36 x 3.45 x 1.345 x 10"
6.78 x 7.0

Finally, the remaining numbers in the numerator can be multiplied and then divided by
the numbers in the denominator to yield a final result of .2307 x 10" = 2.307 x 10™.

Whenever a formula contains one or more extremely small or large numbers, use the
technique of first, converting the number to scientific notation, and second, dealing with the
exponents and remaining numbers individually. This technique can be of great help in the
final computation. (Note that converting all the numbers isn’t necessary.) You’ll make use of
this technique often in performing hand calculations to validate results during the testing
phase of a program.

Scientific Notational Symbols Certain scientific notations occur frequently enough in
science and engineering applications that they have their own symbols. The most commonly
used are listed in Table 1.2.

Table 1.2 Scientific Notational Symbols

Scientific Notation Symbol Name
10712 p pico
107 n nano
10° u micro
107 m milli
10° k kilo
10° M mega
10° G giga
102 T tera

For example, the storage capacities of computer disks and thumb drives are currently
specified in megabytes (MB) and gigabytes (GB), which means they contain millions (10°)
and billions (10°) of bytes, respectively. (See Section 1.5 for the definition of a byte.)Similarly,
computer processing speeds are specified in the nanosecond (nsec) range, which means a
billionth (10°) of a second.

Chapter 1 13
Preliminary Two: Exponential and
Scientific Notations

EXERCISES 1.2

1. (Practice) Convert the following numbers from exponential form into standard decimal form:

a.

o e T

6.34¢5
1.95162¢2
8.395¢l
2.95e-3
4.623¢-4

2. (Practice) Convert the following numbers from scientific notation into standard
decimal form:

a.

™o e T

2.67 x 10°

2.67 x 107°

1.872 x 10°

1.872 x 107

2.67 x 10°

6.6256 x 10* (known as Planck’s constant)

3. (Practice) Write the following decimal numbers using scientific notation:

s.

a. 126

b. 656.23
c. 3426.95
d.
e
f.

4893.2

. 321

.0123
.006789

4. (Practice) Compute the following: 102 % 107 % 10*

a.

b.

10* x 107° x 107 x 10'? c.

10" x 10° x 10° x 10"

1 10°x 107 x 10™
10* x 10° x 10® x 10" 10° x 10°

S. (Practice) Compute the following: 14 % 10°% 25 x 10’ x 5.310°*

a. 2.8 x 10 x 1.6 x 10° x 3.2 x 107 c.

32 x 10" x 1.8 x 10® x 2.7 x 10°

1 d 7.1 x 10° x 845 x 107 x 3.6710*
45 x 10" x 1.8 x 10® x 6.7 x 10*) 9.89 x 10° x 6.28 x 10°

14

Preliminaries

(Aeronautics) The initial acceleration, @, of a rocket fired from earth, with an initial
thrust, 7, is given by this formula:
T—m
g "
m

a is the initial acceleration.

T is the thrust in Newtons.

m 1is the mass in kg.

¢ is the acceleration caused by gravity in m/s?.

a. Determine the units of the initial acceleration by calculating the units resulting from the
right side of the equation. (Hinr. As listed in Table 1.1, a Newton is N = kg — m/s%.)

b. Determine the initial acceleration of a rocket having a mass of 5 x 10* kg and an ini-
tial thrust of 6 x 105 Newtons. The value of g is 9.81 m/s%

(Heat Transfer) The energy radiated from the surface of the sun or a planet in the solar
system can be calculated by using Stephan-Boltzmann’s Law:

E=cT

E is the energy radiated.
o is Stephan-Boltzmann’s constant (5.6697 x 10® Watts/m?K™).
T is the surface temperature in degrees Kelvin (°K = °C + 273).

a. Determine the units of £ by calculating the units resulting from the right side of the
formula.

b. Determine the energy radiated from the sun’s surface, given that the sun’s average
temperature is approximately 6,000°K.

1.3

Preliminary Three: Software Development

A computer is a machine, and like other machines, such as an automobile or a lawnmower,
it must be turned on and then driven, or controlled, to perform the task it was meant to do.
In an automobile, for example, control is provided by the driver, who sits inside the car and
directs it. In a computer, the driver is a set of instructions called a program. More formally,
a computer program is a self-contained set of instructions used to operate a computer to
produce a specific result. Another term for a program or set of programs is software, and both
terms are used interchangeably throughout this book.!

At its most basic level, a program is a solution developed to solve a particular problem,
written in a form that can be executed on a computer. Therefore, writing a program is almost
the last step in a process that first determines the problem to be solved and the method to
be used in the solution. Each field of study has its own name for the systematic method of
designing solutions to solve problems. In science and engineering, the approach is referred
to as the scientific method, and in quantitative analysis, the approach is called the systems
approach. Professional software developers use the software development procedure for

"More inclusively, the term “software” is also used to denote both the programs and the data on which programs operate.

Chapter 1 15

Preliminary Three: Software Development

understanding the problem to be solved and for creating an effective, appropriate software
solution. This procedure, illustrated in Figure 1.1, consists of three overlapping phases:

1. Development and design
2. Documentation
3. Maintenance

N t Maintenance |
| |
Program | Documentation i
life cycle ! !
stages Development
and design |
|
N
? Time 'f
Request for Program no
a program longer used

Figure 1.1 The three phases of program development

As a discipline, software engineering is concerned with creating readable, efficient,
reliable, and maintainable programs and systems, and it uses the software development
procedure to achieve this goal.

Phase I: Development and Design

Phase I begins with a statement of a problem or a specific request for a program, which is
referred to as a program requirement. After a problem has been stated or a specific request for
a program solution has been made, the development and design phase begins. This phase
consists of four well-defined steps, as illustrated in Figure 1.2.

» .
| Testing |
Development L Coding |
and | l
design | Desion |
steps
AnalysisI
N

Time

Figure 1.2 The development and design steps

16

Preliminaries

Step 1 Analyze the Problem

The analysis of a problem can consist of up to two parts. The first part is a basic analysis that
must be performed on all problems; it consists of extracting the complete input and output
information supplied by the problems. For this analysis, you must

1. Determine and understand the output items the program must produce.
2. Determine the input items.

Together, these two items are referred to as the problem’s input/output (1/0). Only after
determining a problem’s I/O can you select specific steps for transforming inputs into
outputs. At this point, doing a hand calculation to verify that the output(s) can indeed be
obtained from the inputs is sometimes necessary and/or useful. Clearly, if you have a formula
that relates inputs to the output, you can omit this step. If the required inputs are available
and the desired outputs can be produced, the problem is said to be clearly defined and can
be solved.

For a variety of reasons, completing a basic analysis might not be possible. If so, an
extended analysis might be necessary. An extended analysis simply means you must gather
more information about the problem so that you thoroughly understand what’s being asked
for and how to achieve the result. In this book, any additional information required to
understand the problem is supplied along with the problem statement.

Step 2 Develop a Solution

In this step, you select the exact set of steps, called an “algorithm,” to be used to solve the
problem. Typically, you find the solution by a series of refinements, starting with the initial
solution you find in the analysis step, until you have an acceptable and complete solution.
"This solution must be checked, if it wasn’t done in the analysis step, to make sure it produces
the required outputs correctly. The check is usually carried out by doing one or more hand
calculations that haven’t been done already.

For small programs, the selected solution might be extremely simple and consist of only
one or more calculations. More typically, you need to refine the initial solution and organize
it into smaller subsystems, with specifications for how the subsystems interface with each
other. To achieve this goal, the solution’s description starts from the highest level (top)
requirement and proceeds downward to the parts that must be constructed to meet this
requirement. To make this explanation more meaningful, consider a computer program that
must track the number of parts in inventory. The required output for this program is a
description of all parts carried in inventory and the number of units of each item in stock; the
given inputs are the initial inventory quantity of each part, the number of items sold, the
number of items returned, and the number of items purchased.

For these specifications, a designer could initially organize the program’s requirements
into the three sections illustrated in Figure 1.3. This figure is referred to as both a top-level
structure diagram and a first-level structure diagram because it represents the first overall
structure of the program the designer has selected.

After an initial structure is developed, it’s refined until the tasks in the boxes are
completely defined. For example, the data entry and report modules shown in Figure 1.3
would be refined further. The data entry module certainly must include provisions for
entering data. Because planning for contingencies and human error is the system designer’s
responsibility, provisions must also be made for changing incorrect data after an entry is made
and for deleting previous entries. Similar subdivisions for the report module can be made.

Chapter 1 17

Preliminary Three: Software Development

Inventory
control
program
—
eD:ttr?/ Calcul_a\tion Repprt
. section section
section

Figure 1.3 A first-level structure diagram

Figure 1.4 illustrates a second-level structure diagram for an inventory tracking system that
includes these further refinements.

Inventory
control
program
1
)) |
Data Calculation Report
entr y section section
section
Enter Change Delete Screen Printer
data data data reports reports

Figure 1.4 A second-level structure diagram

The process of refining a solution continues until the smallest requirement is included.
Notice that the design produces a treelike structure, in which the levels branch out as you
move from the top of the structure to the bottom. When the design is finished, each task
designated in a box is typically coded with separate sets of instructions that are executed as
they’re called on by tasks higher up in the structure.

Step 3 Code the Solution (Write the Program)

This step consists of actually writing a C++ program that corresponds to the solution
developed in Step 2. If the analysis and solution steps have been performed correctly, the
coding step becomes rather mechanical in nature. In a well-designed program, the statements
making up the program, however, conform to certain well-defined patterns or structures that
have been defined in the solution step. These structures control how the program executes
and consist of the following types:

Sequence
e Selection

18 Preliminaries

Iteration
e Invocation

Sequence defines the order in which the program executes instructions. Specifying which
instruction comes first, which comes second, and so on is essential if the program is to achieve
a well-defined purpose.

Selection provides the capability to make a choice between different operations, depending
on the result of some condition. For example, the value of a number can be checked before a
division is performed: If the number is not zero, it can be used as the denominator of a division
operation; otherwise, the division isn’t performed and the user is issued a warning message.

Iteration, also referred to as “looping” and “repetition,” makes it possible to repeat the
same operation based on the value of a condition. For example, grades might be entered and
added repeatedly until a negative grade is entered. In this case, the entry of a negative grade
is the condition that signifies the end of the repetitive input and addition of grades. At that
point, an average for all grades entered could be calculated.

Invocation involves invoking, or summoning, a sct of statements as it’s needed. For example,
computing a person’s net pay involves the tasks of obtaining pay rates and hours worked,
calculating the net pay, and providing a report or check for the required amount. Each task is
typically coded as a separate unit that’s called into execution, or invoked, as it’s needed.

Step 4 Test and Correct the Program

The purpose of testing is to verify that a program works correctly and actually fulfills its
requirements. In theory, testing would reveal all existing program errors. (In computer
terminology, a program error is called a bug.?) In practice, finding all errors would require
checking all possible combinations of statement execution. Because of the time and effort
required, this goal is usually impossible, except for extremely simple programs. (Section 4.8
explains why this goal is generally considered impossible.)

Because exhaustive testing isn’t feasible for most programs, different philosophies and
methods of testing have evolved. At its most basic level, however, testing requires a conscious
effort to make sure a program works correctly and produces meaningful results. This effort means
giving careful thought to what the test is meant to achieve and to the data used in the test. If
testing reveals an error (bug), the process of debugging, which includes locating, correcting, and
verifying the correction, can be initiated. Realize that although testing might reveal the presence
of an error, i doesn’t necessarily indicate the absence of one. Therefore, the fact that a test revealed one
bug does not indicate thar another one isn’t lurking somewhere else in the program.

To catch and correct errors in a program, developing a set of test data for determining
whether the program gives correct answers is important. In fact, often an accepted step in
formal software development is to plan test procedures and create meaningful test data before
writing the code. Doing this step first helps you be more objective about what the program
must do because it circumvents the subconscious temptation after coding to avoid test data
that would reveal a problem with your program. The procedures for testing a program should
examine every possible situation in which the program will be used. The program should be
tested with data in a reasonable range as well as at the limits and in areas where the program

“The derivation of this term is rather interesting. When a program stopped running on the Mark I ac Harvard University in September 1945,
Grace Hopper traced the malfunction to a dead insect that had gotten into the electrical circuits. She recorded the incident in her logbook as
“Relay #70. . . . (moth) in relay. First actual case of bug being found.”

Chapter 1 19

Preliminary Three: Software Development

should tell the user that the data is invalid. Developing good test procedures and data for
sophisticated problems can be more difficult than writing the program code itself.

Table 1.3 lists the comparative amount of effort that’s typically expended on each
development and design step in large commercial programming projects. As this listing
shows, coding is not the major effort in Phase I. Many new programmers have trouble
because they spend the majority of their time writing the program and don’t spend enough
time understanding the problem or designing an appropriate solution. To help you avoid
making the same mistake, remember the programming proverb, “It is impossible to write a
successful program for a problem or application that’s not fully understood.” An equally
valuable proverb is, “The sooner you start coding a program, the longer it usually takes to
complete.”

Table 1.3 Effort Expended in Phase |

Step Effort
Analyze the problem 10%
Develop a solution 20%
Code the solution (write the program) 20%
Test the program 50%

Phase II: Documentation
Because of inadequate documentation, so much work becomes useless or lost and many tasks
must be repeated, so documenting your work is one of the most important steps in problem
solving. Many critical documents are created during the analysis, design, coding, and testing
steps. Completing the documentation phase requires collecting these documents, adding
user-operating material, and presenting documentation in a form that’s most useful to you and
your organization.

Although not everybody classifies them in the same way, there are five main documents
for every problem solution:

Program description

Algorithm development and changes
Well-commented program listing
Sample test runs

Users’ manual

Putting yourself in the shoes of a person who might use your work—anyone from
secretaries to programmers/analysts and management—should help you strive to make the
content of important documentation clear. The documentation phase formally begins in the
development and design phase and continues into the maintenance phase.

Phase Ill: Maintenance

"This phase is concerned with the ongoing correction of problems, revisions to meet changing
needs, and addition of new features. Maintenance is often the major effort, the primary
source of revenue, and the longest lasting of the engineering phases. Development might
take days or months, but maintenance could continue for years or decades. The better the
documentation is, the more efficiently maintenance can be performed, and the happier
customers and end users will be.

20

Preliminaries

Backup
Although not part of the formal design process, making and keeping backup copies of the
program at each step of the programming and debugging process are critical. Deleting or
changing a program’s current working version beyond recognition is all too easy. With backup
copies, you can recover the last stage of work with little effort. The final working version of
a useful program should be backed up at least twice. In this regard, another useful
programming proverb is, “Backup is unimportant if you don’t mind starting over again.”
Many organizations keep at least one backup on site, where it can be retrieved easily, and
another backup copy in a fireproof safe or at a remote location.

EXERCISES 1.3

Note: In each of these exercises, a programming problem is given. Read the problem statement first,
and then answer the questions pertaining to the problem. Do not attempt to write a program to
solve the problems. Instead, simply answer the questions following the program specifications.

. (Electrical Eng.) You’ve been asked to write a C++ program to calculate the total resistance

of a series circuit. In this circuit, the total resistance is the sum of all individual resistance
values. The circuit consists of a number of 56-ohm, 33-ohm, and 15-ohm resistors.
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items. The number of
56-ohm resistors is 7, the number of 33-ohm resistors is 7, and the number of 15-ohm
resistors is p.

d. Test the formula written for Exercise 1c, using the following sample data: m = 17,
n =24, and p = 12.

. (Physics) You’ve been asked to write a program to calculate the value of distance, in

miles, given this relationship:

distance = rate x elapsed time

a. For this programming problem, how many outputs are required?
b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.
d

Test the formula written for Exercise 2c¢, using the following sample data: raze is 55
miles per hour and elapsed time is 2.5 hours.

e. How must the formula you determined in Exercise 2¢ be modified if the elapsed time
is given in minutes instead of hours?

Chapter 1 21

Preliminary Three: Software Development

3. (Electrical Eng.) You’ve been asked to write a program that outputs the following
specifications:
Voltage amplification: 35
Power output: 2.5 Watts
Bandwidth: 15 KHz
a. For this programming problem, how many lines of output are required?
b. How many inputs does this problem have?
Determine a formula for converting input items into output items.
4. (Physics) You've been asked to write a C++ program to determine how far a car has traveled

after 10 seconds, assuming the car is initially traveling at 60 mph and the driver applies the
brakes to decelerate at a uniform rate of 12 mi/sec®. Use the following formula:

distance = st - (1/2)d¢*

s is the initial speed of the car.

d 1s the deceleration.

¢ is the elapsed time.

For this programming problem, how many outputs are required?

How many inputs does this problem have?

A

Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 4c, using the data given in the problem.

5. (General Math) Consider the following programming problem: In 1627, Manhattan
Island was sold to Dutch settlers for $24. If the proceeds of that sale had been deposited
in a Dutch bank paying 5% interest, compounded annually, what would the principal bal-
ance be at the end of 2002? The following display is required: “Balance as of December
31, 2002 is: xxxxxx”; xxxxxx is the amount calculated by your program.

a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?

c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 5S¢, using the data given in the problem statement.
6. (Electrical Eng.) You’ve been asked to write a program that calculates and displays the

output voltages of two electrical circuits and the sum of the two voltages. The output

voltage for the first circuit is given by this formula:
150V

0.38 f
The output voltage for the second circuit is given by this formula:
230V

567 +(0.98 f)

V is the input voltage to the circuit.
fis the frequency in Hertz.

22

Preliminaries

For this programming problem, how many outputs are required?
How many inputs does this problem haver

Determine a formula for converting input items into output items.

SO

Test the formula written for Exercise 6c¢, using the following sample data: The first
circuit is operated with an input voltage of 1.2 volts at a frequency of 144 Hertz, and
the second circuit is operated with an input voltage of 2.3 volts at 100 Hertz.

. (Statistics) Consider the following programming problem: This is the formula for the

standard normal deviate, 2, used in statistical applications:
2 =(X-uo

X is a single value.
u refers to an average value.
o refers to a standard deviation.

Using this formula, you need to write a program that calculates and displays the value of
the standard normal deviate when X = 85.3, # = 80, and o = 4.
a. For this programming problem, how many outputs are required?

b. How many inputs does this problem have?
c. Determine a formula for converting input items into output items.

d. Test the formula written for Exercise 7c, using the data given in the problem.

. (Electrical Eng.) Read the following problem statement: The electrical resistance, 7, of a

metal wire, in ohms, is given by this formula:

ml

r=-—

a

m 1s the resistivity of the metal.
/ is the length of the wire in feet.
a is the cross-sectional area of the wire in circular mils.

Using this information, you need to write a C++ program to calculate the resistance of a
wire that’s 125 feet long, has a cross-sectional area of 500 circular mils, and is copper. The
resistivity of copper, 7, is 10.4.

a. Determine the outputs required of the program.

b. What inputs does the program require?

c. What is the formula for obtaining the outputs from the inputs?

1.4

Preliminary Four: Algorithms

Before a program is written, the programmer must clearly understand what data are to be
used, the desired result, and the procedure used to produce this result. As mentioned
previously, the procedure, or solution, selected is referred to as an algorithm. More precisely,
an algorithm is defined as a step-by-step sequence of instructions that must terminate and
that describe how the data is to be processed to produce the desired outputs. In essence, an
algorithm answers the question “What method will you use to solve this problem?”

Chapter 1 23
Preliminary Four: Algorithms

Only after you clearly understand the data you’ll be using and select an algorithm (the
specific steps required to produce the desired result) can you code the program. Seen in this
light, programming is the translation of a selected algorithm into a language the computer
can use.

To understand how an algorithm works, consider a simple problem: A program must
calculate the sum of all whole numbers from 1 through 100. Figure 1.5 illustrates three
methods you could use to find the required sum. Each method constitutes an algorithm.

Method 1 - Columns: Arrange the numbers from 1 to 100 in a column and add
them

A WON =

98
99
+100
5050

Method 2 - Groups: Arrange the numbers in groups that sum to 101 and multiply
the number of groups by 101

1+100=101)
2 +99=101
3 +98=101
4 +97=101 |50 groups

o (50 x 101=5050)
49 + 52=101
50 + 51=101

Method 3 - Formula: Use the formula

sum = N@+b)

where
n= number of terms to added (100)
a= first number to be added (1)
b= last number to be added (100)

~100(1 + 100)
2

sum = 5050

Figure 1.5 Summing the numbers 1 through 100

Clearly, most people wouldn’t bother to list the possible alternatives in a detailed step-by-
step manner, as shown in Figure 1.5, and then select one of the algorithms to solve the problem.
Most people, however, don’t think algorithmically; they tend to think heuristically. For example,

24

Preliminaries

if you have to change a flat tire on your car, you don’t think of all the steps required—ryou simply
change the tire or call someone else to do the job. This is an example of heuristic thinking,.

Unfortunately, computers don’t respond to heuristic commands. A general statement
such as “add the numbers from 1 to 100” means nothing to a computer because it can
respond only to algorithmic commands written in a language it understands, such as C++. To
program a computer successfully, you must understand this difference between algorithmic
and heuristic commands. A computer is an “algorithm-responding” machine; it’s not an
“heuristic-responding” machine. You can’t tell a computer to change a tire or to add the
numbers from 1 through 100. Instead, you must give the computer a detailed, step-by-step
set of instructions that collectively form an algorithm. For example, the following set of
instructions forms a detailed method, or algorithm, for determining the sum of the numbers
from 1 through 100:

Set n equal to 100
Seta=1

Set b equal to 100
Calculate sum = n(a + b)/2
Print the sum

These instructions are not a computer program. Unlike a program, which must be written in
a language the computer can respond to, an algorithm can be written or described in various
ways. When English-like phrases are used to describe the steps in an algorithm, as in this
example, the description is called pseudocode. When mathematical equations are used, the
description is called a formula. When diagrams with the symbols shown in Figure 1.6 are
used, the description is referred to as a flowchart. Figure 1.7 illustrates using these symbols
to depict an algorithm for determining the average of three numbers.

Symbol Name

ﬁ Terminal
Input/output
Process

'N Flow lines
: "L >

Decision
Loop

Predefined process

Connector

Report

Chapter 1

Preliminary Four: Algorithms

Description

Indicates the beginning or end of a program

Indicates an input or output operation

Indicates computation or data manipulation

Used to connect the other flowchart symbols
and indicate the logic flow

Indicates a program branch point

Indicates the initial, limit, and increment
values of a loop

Indicates a predefined process, as in calling
a function

Indicates an entry to, or exit from, another
part of the flowchart or a connection point

Indicates a written output report

Figure 1.6 Flowchart symbols

25

26

Preliminaries

Staﬁ
1

Input
three
values

1

Calculate
the
average

1

Display
the
average

1
Encﬁ

Figure 1.7 Flowchart for calculating the average of three numbers

Because flowcharts are cumbersome to revise and can support unstructured programming
practices easily, they have fallen out of favor by professional programmers. Using pseudocode
to express the logic of algorithms has gained increasing acceptance. Short English phrases are
used to describe an algorithm with pseudocode. Here’s an example of acceptable pseudocode
for describing the steps to compute the average of three numbers:

Input the three numbers into the computer’s memory
Calculate the average by adding the numbers and dividing the sum by three
Display the average

As stated previously, before you can write an algorithm by using computer-language
statements, you must select an algorithm and understand the required steps. Writing an
algorithm by using computer-language statements is called coding the algorithm, which is the
third step in the program development procedure shown in Figure 1.8. Most of Part One of
this book is devoted to showing you how to develop and code algorithms into C++.

Select an Translate the
. algorithm &, algorithm
Requirements (step-by-step into C++
procedure) (coding)

Figure 1.8 Coding an algorithm

Chapter 1 27
Preliminary Four: Algorithms

EXERCISES 1.4

Note: There's no one correct answer for each task. This exercise is designed is to give you practice
in converting heuristic commands into equivalent algorithms and making the shift between the
processes involved in these two types of thinking.

. (Practice) Determine a step-by-step procedure (list the steps) to do the following tasks:
a. Fix a flat tre.

b. Make a telephone call.
c. Log on to a computer.

d. Roast a turkey.

. (Practice) Are the procedures you developed for Exercise 1 algorithms? Discuss why or
why not.

. (Practice) Determine and write an algorithm (list the steps) to interchange the contents
of two cups of liquid. Assume that a third cup is available to hold the contents of either
cup temporarily. Each cup should be rinsed before any new liquid is poured into it.

. (Electrical Eng.) Write a detailed set of instructions in English to calculate the resis-
tance of the following resistors connected in series: # resistors, each having a resistance of
56 ohms; m resistors, each having a resistance of 33 ohms; and p resistors, each having a
resistance of 15 ohms. Note that the total resistance of resistors connected in series is the
sum of all individual resistances.

. (Numerical) Write a set of detailed, step-by-step instructions in English to find the
smallest number in a group of three integer numbers.

. (Numerical) a. Write a set of detailed, step-by-step instructions in English to calculate

the fewest number of dollar bills needed to pay a bill of amount TOTAL. For example,
if TOTAL is $97, the bills would consist of one $50 bill, two $20 bills, one $5 bill, and

two $1 bills. (For this exercise, assume that only $100, $50, $20, $10, $5, and $1 bills are
available.)

b. Repeat Exercise 6a, but assume the bill is to be paid only in $1 bills.

. (Data Processing) a. Write an algorithm to locate the first occurrence of the name

JEAN in a list of names arranged in random order.

b. Discuss how you could improve your algorithm for Exercise 7a if the list of names
were arranged in alphabetical order.

. (Data Processing) Determine and write an algorithm to determine the total occurrences
of the letter ¢ in any sentence.

. (Numerical) Determine and write an algorithm to sort four numbers into ascending
(from lowest to highest) order.

28

1.5

Preliminaries

A Closer Look: Software, Hardware, and Computer
Storage3

The process of writing a program, or software, is called programming, and the set of
instructions used to construct a program is called a programming language. Programming
languages come in a variety of forms and types.

Machine Language

At their most fundamental level, the only programs that can actually be used to operate a
computer are machine-language programs. These programs, also referred to as executable
programs (executables, for short), consist of a sequence of instructions composed of binary
numbers, such as:*

11000000 000000000001 000000000010
11110000 000000000010 000000000011

Machine-language instructions consist of two parts: an instruction and an address. The
instruction part, referred to as the opcode (short for operation code), is usually the leftmost set of
bits and tells the computer the operation to be performed, such as add, subtract, multiply, and
so on. The rightmost bits specify the memory addresses of the data to be used. For example,
assume that the eight leftmost bits of the first instruction contain the opcode to add, and the next
two groups of 12 bits are the addresses of the two operands to be added. This instruction would
be a command to “add the data in memory location 1 to the data in memory location 2.”
Similarly, assuming that the opcode 11110000 means multiply, the next instruction is a command
to “multiply the data in memory location 2 by the data in location 3.”

Assembly Languages

Because each class of computers—such as IBM, Apple, and Hewlett-Packard—has its own
particular machine language, writing machine-language programs is tedious and time
consuming.> One of the first advances in programming was substituting word-like symbols,
such as ADD, SUB, and MUL, for binary opcodes and using decimal numbers and labels for
memory addresses. Using these symbols and decimal values for memory addresses, the
previous two machine-language instructions can now be written as follows:

ADD 1, 2
MUL 2, 3

Programming languages using this type of symbolic notation are referred to as assembly
languages. Because computers can execute only machine-language programs, the instructions
in an assembly-language program must be translated into a machine-language program before
they can be executed on a computer (see Figure 1.9). Translator programs that perform this
function for assembly-language programs are known as assemblers.

3This topic can be omitted on first reading without loss of subject continuity.
*Converting binary to decimal numbers is explained at the end of this section.
5In actuality, the machine-level language is defined for the processor around which the computer is constructed.

Chapter 1 29
A Closer Look: Software, Hardware,
and Computer Storage

An assembly- Translation A machine-
language program > language
program (assembler) program

Figure 1.9 Assembly-language programs must be translated

Low- and High-Level Languages

Both machine-level and assembly languages are classified as low-level languages because they
use instructions that are tied to one type of computer. Therefore, an assembly-language
program is limited to being used only with the specific computer type for which it’s written.
These programs do, however, permit using special features of a particular computer type and
generally execute at the fastest level possible.

In contrast, a high-level language uses instructions resembling written languages, such as
English, and can be run on a variety of computer types. Visual Basic, C, C++, and Java are
examples of high-level languages. Using C++, an instruction to add two numbers and
multiply the sum by a third number can be written as follows:

result = (first + second) * third;

Programs written in a computer language (high- or low-level) are referred to as both
source programs and source code. Like a low-level assembly program, after a program is
written in a high-level language, it must be translated into the machine language of the
computer on which it will run. This translation can be done in two ways.

When each statement in a high-level source program is translated separately and
executed immediately after translation, the programming language is called an interpreted
language, and the program doing the translation is an interpreter.

When all statements in a high-level source program are translated as a complete unit
before any statement is executed, the programming language is called a compiled language.
In this case, the program doing the translation is a compiler. Both compiled and interpreted
versions of a language can exist, although one typically predominates. C++ is predominantly
a compiled language.

Figure 1.10 illustrates the relationship between a C++ source program and its compilation
into a machine-language executable program. As shown, the source program is entered by
using an editor program, which is a word-processing program that’s part of the development
environment the compiler supplies. Remember, however, that you can begin entering code
only after you have analyzed an application and planned the program’s design carefully.

Translating the C++ source program into a machine-language program begins with the
compiler. The output the compiler produces is called an object program, which is a
machine-language version of the source code. Source code almost always makes use of
existing preprogrammed code—code you have written previously or code the compiler
provides, such as mathematical code for finding a square root. Additionally, a large C++
program might be stored in two or more separate program files. Any additional code must be
combined with the object program before the program can be executed. It’s the task of the
linker to perform this step. The result of the linking process is a machine-language
(executable) program that contains all the code your program requires and is ready for
execution. The last step in the process is to load the machine-language program into the
computer’s main memory for actual execution.

30 Preliminaries

Type in

the C++ program

Procedural and Object Orientations
In addition to being classified as high- or low-level, programming

A languages are classified by orientation—procedural or object
oriented. In a procedural language, the instructions are used to create
Editor self—contair}ed units, referred to as procedures. The purpose of a
procedure is to accept data as input and transform the data in some
L manner to produce a specific result as an output. Until the 1990s,
most high-level programming languages were procedural.
The Currently, object orientation has taken center stage. One moti-
Cit vation for object-oriented languages was the development of graphical
source screens and support for graphical user interfaces (GUIs), capable of
program displaying windows containing both graphical shapes and text. In a
GUI environment, each window can be considered an object with
- L associated characteristics, such as color, position, and size. In an
object-oriented approach, a program must first define the objects it’s
Compiler manipulating. This .deﬁnition in.Cl.uqu a description of the 0bject§’
general characteristics, such as initial size, shape, and color. Addi-
g tionally, specific code must be supplied to manipulate each object,
such as changing its size and position, and transferring data between
The objects. Object-oriented languages have also become more promi-
Cit nent because they support reusing existing code more easily, which
object removes the 'neqd to rgv.alidate and retest new or modified code'.
program C++, which is classified as an object-oriented language, contains
features of both procedural and object-oriented languages. In this
~ - L book, you design and develop both types of code, which is how most
Other current C++ programs are written. Because object-oriented C++ code
object S Linker always contains some procedural code, and many simple C++ pro-
files m= grams are written entirely in procedural code, this type of code is
(library) == L presented in Part One of this book.
An . .
oxeciitlle Application and System Software
program Two logical categories of computer programs are application software

Figure 1.10 Creating an
executable C++ program

and system software. Application software consists of programs writ-
ten to perform particular tasks that users require. All the programs in
this book are examples of application software.

System software is the collection of programs that must be
readily available to any computer system for it to operate. In the

computer environments of the 1950s and 1960s, users had to load system software by hand
to prepare the computer to do anything at all. This software was loaded by using rows of
switches on a front panel, and the commands entered by hand were said to “boot” the
computer, an expression derived from “pulling yourself up by your bootstraps.” Today, the
so-called bootstrap loader is a permanent, automatically executed component of a computer’s
system software.

Collectively, the set of system programs used to operate and control a computer is called
the operating system (0S). Tasks handled by modern OSs include memory management;
allocation of CPU time; control of input and output units, such as keyboards, screens, and
printers; and management of secondary storage devices. Many OSs handle large programs as
well as multiple users concurrently by dividing programs into segments that are moved

Input
data

Chapter 1 31
A Closer Look: Software, Hardware,
and Computer Storage

between the disk and memory as needed. With these OSs, referred to as multiuser systems,
more than one user can run a program on the computer. Additionally, many OSs, including
most windowed environments, enable each user to run multiple programs and are called
multiprogrammed and multitasking systems.

The Development of C++

The purpose of most application programs is to process data to produce specific results. In

a procedural language, a program is constructed from sets of instructions, with each set

referred to as a procedure, as noted previously. Each procedure moves the data one step
closer to the final desired output along the path shown in Figure 1.11.

The programming process in Figure 1.11 mirrors

the input, processing, and output hardware units used

N Process s, Output to construct a computer (discussed later in “Computer
the results Hardware”). This mirroring isn’t accidental because
data early programming languages were designed to match

. . and to control corresponding hardware units.
Figure 1.11 Basic procedural The first procedural language, FORTRAN
operations (derived from FORmula TRANslation), was intro-

duced in 1957 and remained popular until the early
1970s. FORTRAN has algebra-like instructions that concentrate on the processing phase
shown in Figure 1.11. It was developed for scientific and engineering applications that
required high-precision numerical outputs, accurate to many decimal places. For example,
calculating a rocket’s trajectory or the bacterial concentration level in a polluted pond, as
illustrated in Figure 1.12, requires evaluating a mathematical equation to a high degree of
numerical accuracy and is typical of FORTRAN-based applications.

2N

Bacteria growth
in a polluted pond

Concentration level

N
Time

Figure 1.12 FORTRAN was developed for scientific and engineering applications

The next important high-level application language was COBOL (COmmon Business-
Oriented Language), which was introduced in the 1960s and remained a major procedural
language throughout the 1980s. This language had features geared toward business applica-
tions, which required simpler mathematical calculations than those for engineering
applications. One of COBOL’s main benefits was providing extensive output formats that
made it easy to create reports containing columns of neatly formatted monetary amounts, as

32

Preliminaries

illustrated in Figure 1.13. It forced programmers to construct well-defined, structured
procedures that followed a more consistent pattern than was required in FORTRAN.

Part No. Description Quantity Price
12225 #4 Nails, Common 25 boxes 1.09
12226 #6 Nails, Common 30 boxes 1.09
12227 #8 Nails, Common 65 boxes 1.29
12228 #10 Nails, Common 57 boxes 1.35
12229 #12 Nails, Common
12230 #1 i [o)

Figure 1.13 COBOL was developed for business applications

Another language, BASIC (Beginners All-purpose Symbolic Instruction Code), was
developed at Dartmouth College in the 1960s. BASIC was a scaled-down version of
FORTRAN intended as an introductory language for college students. It was a fairly
straightforward, easy-to-understand language that didn’t require detailed knowledge of a
specific application. Its main drawback was that it didn’t require or enforce a consistent,
structured approach to creating programs.

To remedy this drawback and make understanding and reusing code easier, the Pascal
language (named after the 17th-century mathematician Blaise Pascal) was developed in 1971.
It gave students a firmer foundation in structured programming design than early versions of
BASIC did.

Structured programs are created by using a set of well-defined structures organized into
separate programming sections. Each section performs a specific task that can be tested and
modified without disturbing other program sections. The Pascal language was so rigidly
structured, however, that escapes from the structured sections didn’t exist, even when
escapes would be useful. This limitation was unacceptable for many real-world projects and
is one of the reasons Pascal didn’t become widely accepted in scientific and engineering
fields. Instead, the C language became the dominant engineering applications language of
the 1980s. Ken Thompson, Dennis Ritchie, and Brian Kernighan of AT&T Bell Laboratories
developed this structured, procedural language in the 1970s. C’s extensive capabilities allow
writing programs in a high-level language yet still accessing a computer’s machine-level
features directly.

Finally, C++ was developed in the early 1980s, when Bjarne Stroustrup (also at AT&T)
used his simulation language background to create an object-oriented programming language.
A central feature of simulation languages is that they model real-life situations as objects.
This object orientation, which was ideal for graphical screen objects such as rectangles,
circles, and windows, was combined with existing C features to form the C++ language.
Therefore, C++ retained the extensive structured and procedural capabilities of C but added
its object orientation to become a true general-purpose programming language. C++ can be
used for everything from simple, interactive programs to sophisticated, complex engineering
and scientific programs, within the context of a truly object-oriented structure.

Chapter 1 33
A Closer Look: Software, Hardware,
and Computer Storage

Computer Hardware

All computers, from large supercomputers to desktop PCs, must be capable of at least the
following;:

Accepting input

Displaying output

Storing information in a logical, consistent format (traditionally binary)

Performing arithmetic and logic operations on input or stored data

Monitoring, controlling, and directing the computer’s overall operation and sequencing

Figure 1.14 illustrates the computer components that support these capabilities and
collectively form a computer’s hardware.

Central processing unit
(CPU)

Arithmetic
and
logic unit
(ALU)

N
A

Input l | > Control |\ Output

Secondary
storage

Memory

Figure 1.14 Basic hardware units of a computer

The arithmetic and logic unit (ALU) performs all arithmetic and logic functions, such as
addition and subtraction.

The control unit directs and monitors the computer’s overall operation. It keeps track of
the next instruction’s location in memory, issues the signals for reading data from and writing
data to other units, and controls execution of all instructions.

The memory unit stores information in a logical, consistent format. Typically, both
instructions and data are stored in memory, usually in separate areas.

The input and output (I/0) units provide the interface where peripheral devices, such as
keyboards, monitors, printers, and card readers, are attached.

Because memory in very large quantities is still expensive and volatile (meaning the
information is lost when power is turned off), it’s not practical as a permanent storage area for
programs and data. Secondary (or auxiliary) storage is used for this purpose. Media such as
punched cards were used in the past, but secondary storage is now on magnetic tape,
magnetic disks, USB/flash drives, and CDs/DVDs.

In the first commercially available computers of the 1950s, hardware units were built by
using relays and vacuum tubes. These computers were enormous pieces of equipment
capable of thousands of calculations per second and cost millions of dollars.

34

Preliminaries

The introduction of transistors in the 1960s reduced the size and cost of computer
hardware. The transistor’s small size—about one-twentieth the size of vacuum tubes—
allowed manufacturers to combine the ALLU with the control unit into a single unit called the
central processing unit (CPU). Combining the ALLU and control unit made sense because most
control signals that a program generates are directed to the ALU in response to arithmetic
and logic instructions in the program. Combining the ALU with the control unit also
simplified the interface between these two units and improved processing speed.

Integrated circuits (ICs) were introduced in the mid-1960s, which resulted in another
major reduction in the space required to produce a CPU. Initially, ICs were manufactured
with up to 100 transistors on a single square-centimeter chip of silicon and were called
small-scale integrated (SSI) circuits. Current versions of these chips, called very large-scale
integrated (VLSI) chips, can contain more than a million transistors. With VLSI chip
technology, the giant computers of the 1950s could be transformed into today’s desktop and
notebook PCs. Each unit required to form a computer (CPU, memory, and I/O) is now
manufactured on a single VLSI chip, and a single-chip CPU is referred to as a microprocessor.
Figure 1.15 illustrates how these chips are connected internally in current desktop PCs.

Microprocessor A A A

(CPU) Memory’ Input ’ Output

1

Figure 1.15 VLSI chip connections for a desktop PC

Concurrent with the remarkable reduction in hardware size has been a dramatic decrease
in cost and increase in processing speeds. Computer hardware that cost more than a million
dollars in 1950 can now be purchased for less than $100. If the same reductions occurred in
the automobile industry, for example, a Rolls Royce could now be purchased for $10!
Similarly, current computers’ processing speeds have increased by a factor of thousands over
their 1950s predecessors, with computational speeds now being measured in millions of
instructions per second (MIPS) and billions of instructions per second (BIPS).

Computer Storage

The physical components used in manufacturing a computer preclude using the same
symbols people use for numbers and letters. For example, the number 126 isn’t stored with
the symbols 1, 2, and 6, nor is the letter you recognize as an A stored with this symbol. In
this section, you see why and learn how computers store numbers. In Chapter 2, you see how
letters are stored.

Chapter 1 35
A Closer Look: Software, Hardware,
and Computer Storage

The smallest and most basic data item in a computer is called a bit. Physically, a bit is
actually a switch that can be open or closed. The convention followed in this book is that the
open position is represented as a 0, and the closed position is represented as a 1.°

A single bit that can represent the values 0 and 1 has limited usefulness. All computers,
therefore, group a set number of bits together for storage and transmission. Grouping 8 bits
to form a larger unit, called a byte, is an almost universal computer standard. A single byte
consisting of 8 bits, with each bit being a 0 or 1, can represent any one of 256 distinct
patterns. These patterns consist of 00000000 (all eight switches open) to 11111111 (all eight
switches closed) and all possible combinations of Os and 1s in between. Each pattern can be
used to represent a letter of the alphabet, a character (such as a dollar sign or comma), a single
digit, or a number containing more than one digit. The collection of patterns used to
represent letters, single digits, and other characters is called a character code. (One character
code, called ASCII, is discussed in Section 2.1.) The patterns used to store numbers are
called number codes, onc of which is explained in the next section.

Twos Complement Numbers 'The most common number code for storing integer values
in a computer is called the twos complement representation. Using this code, the integer
equivalent of any bit pattern, such as 10001101, is easy to determine and can be found for
positive or negative integers with no change in the conversion method. For convenience,
assume byte-sized bit patterns consisting of 8 bits each, although the procedure carries over
to larger bit patterns.

The easiest way to determine the integer each bit pattern represents is to construct a simple
device called a value box. Figure 1.16 shows a value box for a single byte. Mathematically, each
value in this box represents an increasing power of two. Because twos complement numbers
must be capable of representing both positive and negative integers, the leftmost position, in
addition to having the largest absolute magnitude, has a negative sign.

-128| 64 | 32 | 16 | 8| 4| 2| 1

Figure 1.16 An 8-bit value box

"To convert any binary number, such as 10001101, simply insert the bit pattern into the
value box and add the values having 1s under them. Therefore, as illustrated in Figure 1.17,
the bit pattern 10001101 represents the integer number -115.

-128 | 64 | 32 | 16 | 8 41 2| 1
e e et B B B B R

1| o| o] o] 1] 1] o] 1
-128+ 0+ 0+ 0+ 8+ 4+ 0+ 1= -115

Figure 1.17 Converting 10001101 to a base 10 number.

The value box can also be used in reverse to convert a base 10 integer number into its
equivalent binary bit pattern. Some conversions, in fact, can be made by inspection. For

®This convention, unfortunately, is rather arbitrary, and you often encounter the reverse, in which the open and closed positions are represented
as 1 and 0, respectively.

36

Preliminaries

example, the base 10 number -125 is obtained by adding 3 to -128. Therefore, the binary
representation of -125 is 10000011, which equals -128 + 2 + 1. Similarly, the twos complement
representation of the number 40 is 00101000, which is 32 + 8.

Although the value box conversion method is deceptively simple, it’s related to the
underlying mathematical basis of twos complement binary numbers. The original name of
the twos complement code was the weighted-sign code, which correlates to the value box. As
the name “weighted sign” implies, each bit position has a weight, or value, of two raised to
a power and a sign. The signs of all bits except the leftmost bit are positive, and the sign of
the leftmost bit is negative.

In reviewing the value box, you can see that any twos complement binary number with
a leading 1 represents a negative number, and any bit pattern with a leading 0 represents a
positive number. Using the value box, it’s easy to determine the most positive and negative
values capable of being stored. The most negative value that can be stored in a single byte
is the decimal number -128, which has the bit pattern 10000000. Any other non-zero bit
simply adds a positive amount to the number. Additionally, a positive number must have a
0 as its leftmost bit. From this, you can see that the largest positive 8-bit twos complement
number is 01111111, or 127.

Words and Addresses One or more bytes can be grouped into larger units, called words,
to facilitate faster and more extensive data access. For example, retrieving a word consisting
of 4 bytes from a computer’s memory results in more information than retrieving a word of
a single byte. This type of retrieval is also faster than four separate 1-byte retrievals.
Achieving this increase in speed and capacity, however, requires increasing the computer’s
cost and complexity.

Early personal computers, such as the Apple Ile and Commodore, stored and transmitted
words consisting of single bytes. The first IBM PCs used word sizes of 2 bytes, and more
current PCs store and process words of 4 to 16 bytes each.

The number of bytes in a word determines the maximum and minimum values the word
can represent. Table 1.4 lists these values for 1-, 2-; and 4-byte words (derived by using 8-,
16-, and 32-bit value boxes, respectively).

Table 1.4 Word Size and Integer Values

Word Size Maximum Integer Value Minimum Integer Value
1 byte 127 -128

2 bytes 32,767 -32,768

4 bytes 2,147,483,647 -2,147,483,648

In addition to representing integer values, computers must also store and transmit numbers
containing decimal points, which are mathematically referred to as real numbers. The codes for
real numbers, which are more complex than those for integers, are in Appendix C.

Chapter 1 37
Chapter Summary

1.6 Common Programming Errors

The most common errors associated with the material in this chapter are as follows:

1. Forgetting to check that all units for numerical values used in a calculation are
consistent.

2. Using an incorrect form of a conversion factor.

3. Rushing to write and run a program before fully understanding what’s required,
including the algorithms used to produce the required result. A symptom of this
haste to get a program entered into the computer is the lack of any documentation,
even a program outline or a written program. Many problems can be caught by
checking a written copy of the program or even checking a description of the
algorithm written in pseudocode.

4. Not backing up a program. Almost all new programmers make this mistake until they
lose a program that has taken considerable time to code.

5. Not understanding that computers respond only to explicitly defined algorithms.
Telling a computer to add a group of numbers is quite different from telling a friend
to add the numbers. The computer must be given precise instructions in a
programming language to perform the addition.

1.7 Chapter Summary

1.

For a calculation to produce a correct and useful numerical value, the units corresponding
to the numerical value must also be correct.

. To determine correct forms of a conversion factor, perform a unit analysis. This means

multiplying, dividing, and canceling units in the same manner as numerical values are
processed.

3. The programs used to operate a computer are also referred to as software.

4. A computer program is a self-contained unit of instructions and data used to operate a

computer to produce a specific result.

. As a discipline, software engineering is concerned with creating readable, efficient,

reliable, and maintainable programs and systems.

. The software development procedure consists of three phases: program development

and design, documentation, and maintenance.

. The program development and design phase consists of four well-defined steps:

¢ Analyze the problem.
e Develop a solution.
¢ (Code the solution (write the program).

e Test and correct the solution.

. An algorithm is a step-by-step procedure that must terminate; it describes how a

computation or task is to be performed.

38 Preliminaries

9. The four control structures used in coding a program are sequence, selection, iteration,
and invocation.

Preprogramming Projects for Chapter 1

1. (General Math) The volume of a sphere can be determined by using this formula:
V=4/37r

V' is the volume of the sphere.

7 is the dimensionless number (no units) having the value 3.1416, accurate to four
decimal places.

7 is the radius in centimeters (cm) of the sphere.
a. Determine the units of V by calculating the units resulting from the right side of the
formula. Check that your answer corresponds to the units for work listed in Table 1.1.
b. Determine the volume of a sphere having a radius of 4 cm.

c. If you were required to write a computer program to determine the volume of a
sphere, what inputs, outputs, and algorithm would you use?

2. (Civil Eng.) The stress placed on the fixed end of a symmetrical steel I-beam, shown
in Figure 1.18, can be determined by this formula:
Ldc
/

S:

§ is the stress.
L is weight, in lbs, of the load placed on the beam.
[is the beam’s rectangular moment of inertia in units of in*.

d is the distance, in inches, the load is placed from the fixed end of the beam
(technically referred to as the “moment arm”).

¢ 1s one half the height, in inches, of a symmetrical beam.

Figure 1.18 Determining the stress on an |-beam

Chapter 1 39
Preprogramming Projects

a. Determine the units of stress, §, by calculating the units resulting from the right side
of the formula.

b. For a steel beam having a rectangular moment of inertia of 21.4 in* and a height of 6
inches, determine the stress for a load of 700 Ibs placed 8 feet from the fixed end.

c. If you were required to write a computer program to determine the stress placed on
a symmetrical beam, what inputs, outputs, and algorithm would you use?

. (Physics) Typically, most objects that radiate heat do so at many different wavelengths
(see the Technical Note in Section 3.5 for a description of wavelength). The wavelength
at which an object emits its maximum heat energy can be found by using Wein’s Law:

Ny = WIT
N, o 18 the maximum wavelength.
T is the object’s temperature in °K.
W is Wein’s constant (2897 microns/°K).

a. Determine the units of A
the formula.

by calculating the units resulting from the right side of

max

b. Determine the maximum heat-radiating wavelength for the sun, assuming a tempera-
ture of 6000°K.

c. If you were required to write a computer program to determine the heat radiated from
a planet, what inputs, outputs, and algorithm would you use?
. (Physics) The energy, E, of a photon can be determined by using this formula:
he
E=—
A
E is the energy of the photon.
4 is known as Planck’s constant and has the value 6.6256 x 10* Joules/sec.
¢ is the speed of light, which is 299,792,458 m/s.
\ is the wavelength of the light in meters.
a. Determine the units of a photon’s energy, £, by calculating the units resulting from
the right side of the formula.
b. Determine the energy of violet light, which has a wavelength of 5.9 x 10°® meters.

c. If you were required to write a computer program to determine the energy of a photon
of different light wavelengths (such as red, green, and so forth), what inputs, outputs,
and algorithm would you use?

. (Eng. Mechanics) The minimum radius, 7, required of a cylindrical rod, such as that
used on a bicycle pedal (see Figure 1.19), to provide enough support for the pressure
exerted by the rider’s foot, yet not exceed the stress placed on the crank arm’s sprocket

attachment, is determined by this formula:
s dP
T8

r

r is the radius of the cylindrical rod in inches.

40

Preliminaries

d is the length of the crank arm in inches.
P is the weight placed on the pedal in Ibs.
S is the stress in Ibs/in®.

. Determine the value of 7 for a crank arm that’s 7 inches long, must accommodate a

maximum weight of 300 lbs, and be able to sustain a stress of 10,000 1bs/in?.

. If you were asked to write a computer program to determine the radius of the

cylindrical rod for a bicycle’s crank arm, what inputs, outputs, and algorithm would

your program require?
; d

s

Figure 1.19 Determining the radius of a bicycle’s crank arm

6. (Heat Transfer) The following formula is used to determine the heat transferred
through a flat substance, such as a wall, with its two sides maintained at different
temperatures:

T,-T
- p| 22

¢ is the heat transfer.

is the thermal conductivity of the substance in Watts/m°C.

T, is the higher temperature on one side of the substance in °C.
T, 1s the lower temperature on the other side of the wall in °C.
d 1s the thickness of the substance in meters.

. Determine the units of ¢ by calculating the units resulting from the right side of the

formula.

. For a glass window with a thickness of 0.5 centimeters, a thermal conductivity of 0.77

Watts/m°C, and outside and inside temperatures of 36.6°C and 22.2°C, respectively,
determine the value of ¢.

. If you were asked to write a computer program to determine the heat transfer through

a substance, what inputs, outputs, and algorithm would your program require?

Chapter 1 41
Preprogramming Projects

Engineering and Scientific Disciplines

Aeronautical/Aerospace Engineering

Among the youngest of the engineering fields, aeronautical/aerospace engineering is
concerned with all aspects of designing, producing, testing, and using vehicles or
devices that fly in air (aeronautical) or space (aerospace), from hang gliders to space
shuttles. Because the science and engineering principles involved are so broad,
aeroengineers usually specialize in a subarea that might overlap with other engineering
fields, such as mechanical, metallurgical/materials, chemical, civil, or electrical
engineering. These subareas include the following:

® Aerodynamics: The study of flight characteristics of various structures or
configurations. Typical considerations are the drag and lift associated with airplane
design or the onset of turbulent flow. A knowledge of fluid dynamics is essential.
Modeling and testing all forms of aircraft are part of this subarea.

e Structural design: Designing, producing, and testing aircraft and spacecraft to
withstand the wide range of in-flight demands on these vehicles, such as
underwater vessels, are in the structural engineer’s province.

® Propulsion systems: The design of internal combustion, jet, and liquid- and
solid-fuel rocket engines and their coordination in the vehicle's overall design.
Rocket engines, especially, require innovative engineering to accommodate the
extreme temperatures of storing, mixing, and burning fuels such as liquid oxygen.

® |nstrumentation and guidance: The aerospace industry has been a leader in
developing and using solid-state electronics in the form of microprocessors to
monitor and adjust the operations of hundreds of aircraft and spacecraft
functions. This field uses the expertise of both electrical engineers and
aeroengineers.

e Navigation: Computing orbits within and outside the atmosphere and determin-
ing the orientation of a vehicle with respect to points on Earth or in space.

This page intentionally left blank

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8

Chapter

Introduction to C++
Programming Style

Data Types Problem Solving
Arithmetic Operations Using C++
Variables and Declaration

Statements

A Case Study: Radar
Speed Traps

Common Programming Errors
Chapter Summary

No L

2.1

An integral part of a building’s design is its structure, and the same is true for a program. Constructing
well-designed C++ programs depends on careful planning and execution, if the final design is to ensure
that the completed program accomplishes its intended purpose. A central element of this planning is
using modular program design, which is explained in Section 2.1. In this chapter; you also learn about
different types of data and how to process them in the context of a complete C++ program.

Introduction to C++

A well-designed program is constructed by using a design philosophy similar to one for
constructing a well-designed building. It doesn’t just happen; it depends on careful planning
and execution, if the final design is to accomplish its intended purpose.

As with buildings, an integral part of designing a program is its structure. Programs with
a structure consisting of interrelated segments (called modules), arranged in a logical, easily
understandable order to form an integrated and complete unit, are referred to as modular

44

Problem Solving Using C++

programs (see Figure 2.1). Modular programs are easier to develop, correct, and modify than
programs constructed in some other manner.

Module 1

Module 2 Module 3

Module 4 Module 5 Module 6

Figure 2.1 A well-designed program is built by using modules

Each module is designed and developed to perform a specific task and is actually a small
subprogram. A complete C++ program is constructed by combining as many modules as
necessary to produce the desired result. The advantage of modular construction is that you
can develop the program’s overall design before writing any modules. After finalizing
requirements for each module, you can then program the modules and integrate them into
the overall program as they’re completed.

In C++, modules can be classes or functions. It helps to think of a function as a small
machine that transforms the data it receives into a finished product. For example, Figure 2.2
illustrates a function that accepts two numbers as inputs and multiplies the two numbers to
produce one output. The process of converting inputs to results is encapsulated and hidden
in the function. In this regard, the function can be thought of as a single unit providing a
special-purpose operation.

First Second
number number

i

M) Result

Figure 2.2 A multiplying function

Chapter 2 45
Introduction to C++

A similar analogy is suitable for a class, although it’s a more complicated unit because it
contains both data and functions for manipulating the data. Unlike a function, used to
encapsulate a set of operations, a class encapsulates both data and sets of operations. Each
class contains all the elements required for input, output, and processing its objects and can
be thought of as a small factory containing raw material (the data) and machines (the
functions). In the first part of this book, however, you’re focusing on the more basic function
module. Although you’ll also use capabilities provided by classes, it’s in Part 'Two that you
learn how to construct and program your own classes.

An important requirement for designing a good function is giving it a name that conveys
some idea of what the function does. The names allowed for functions are also used to name
other elements of the C++ language and are collectively referred to as identifiers. Identifiers
can be made up of any combination of letters, digits, or underscores (_) selected according
to the following rules:

1. The first character of the name must be a letter or an underscore.

2. Only letters, digits, or underscores can follow the first letter. Also, blank spaces aren’t
allowed to separate words in a function name; either use the underscore to separate
words, or capitalize the first letter of words after the first word.

3. A function name can’t be one of the keywords listed in Table 2.1. (A keyword is a
word the language sets aside for a special purpose and can be used only in a specified
manner.!)

4. The maximum number of characters in a function name is 1024.2

Table 2.1 Keywords in C++

auto delete goto public this
break do if register template
case double inline return typedef
catch else int short union
char enum long signed unsigned
class extern new sizeof virtual
const float overload static void
continue for private struct volatile
default friend protected switch while

Examples of valid C++ identifiers are the following:

degToRad intersect addNums slope
bessell multTwo findMax density

These are examples of invalid identifiers:

1AB3 Begins with a number, which violates rule 1.
E*6 Contains a special character, which violates rule 2.
while Consists of a keyword, which violates rule 3.

'Keywords in C++ are also reserved words, which means they must be used only for their specified purpose. Attempting to use them for any
other purpose generates an error message.
ZThe ANSI standard requires that C++ compilers provide at least this number of characters.

46

Problem Solving Using C++

In addition to conforming to C++’s identifier rules, a C++ function name must always be
followed by parentheses. Also, a good function name should be a mnemonic (pronounced
“knee-mon-ic”), which is a word designed as a memory aid. For example, the function name
degToRad () is a mnemonic for a function that converts degrees to radians. The name helps
identify what the function does. Function names that aren’t mnemonics should not be used
because they convey no information about what the function does. Here are some examples
of valid function names that aren’t mnemonics:

easy () c3po () r2d2 () theForce () mike ()

Function names can also consist of mixed uppercase and lowercase letters, as in
theForce (). This convention is becoming increasingly common in C++, although it’s not
necessary. Identifiers in all uppercase letters are usually reserved for symbolic constants,
covered in Section 3.5.

If you do mix uppercase and lowercase letters, be aware that C++ is a case-sensitive
language, meaning the compiler distinguishes between uppercase and lowercase letters.
Therefore, in C++, the names TOTAL, total, and TotalL are three different identifiers.

The main () Function

As mentioned, a distinct advantage of using functions—and, as you see in Part 'Two, classes—
is that you can plan the program’s overall structure in advance. You can also test and verify
each function’s operation separately to make sure it meets its objectives.

For functions to be placed and executed in an orderly fashion, each C++ program must have
one, and only one, function named main (). The main () function is referred to as a driver
function because it tells other functions the sequence in which they execute (see Figure 2.3).3

Figure 2.4 shows the main () function’s structure. The first line of the function—in this
case, int main () —is referred to as a function header. This line is always the first line of
a function and contains three pieces of information:

What type of data, if any, is returned from the function
¢ 'The name of the function
e What type of data, if any, is sent to the function

The keyword before the function name defines the type of value the function returns
when it has finished operating. When placed before the function’s name, the keyword int
(listed in Table 2.1) means the function returns an integer value. Similarly, when the
parentheses following the function name are empty, no data is transmitted to the function
when it runs. (Data transmitted to a function at runtime is referred to as arguments of the
function.) The braces, { and }, determine the beginning and end of the function body and
enclose the statements making up the function. The statements inside the braces determine
what the function does, and each statement must end with a semicolon (;).

You’ll be naming and writing many of your own C++ functions. In fact, the rest of Part One
is primarily about the statements required to construct useful functions and how to combine
functions and data into useful classes and programs. Each program, however, must have one and
only one main () function. Until you learn how to pass data to a function and return data from

3Functions executed from main () can, in turn, execute other functions. Each function, however, always returns to the function that initiated
its execution. This is true even for main (), which returns control to the operating system that was in effect when main () was initiated.

Chapter 2 47
Introduction to C++

main()
You go first
1st
: module
I’'m done
You go second
> 2nd
; module
I’'m done
You go third
> 3rd
! module
’ I'm done
You go last
) Last
" 'm done module

Figure 2.3 The main () function directs all other functions

The function name / An empty argument list

Type of returned value —> int main()

{

The function body program statements in here;

return 0;

}
Figure 2.4 The structure of a main () function

a function (the topics of Chapter 6), the function header shown in Figure 2.4 serves for all the
programs you need to write. For simple programs, the first two lines

int main()

{
simply designate that “the program begins here,” and the last two lines

return O;

}

designate the end of the program. Fortunately, many useful functions and classes have
already been written for you. Next, you see how to use an object created from one of these
classes to create your first working C++ program.

48 Problem Solving Using C++

The cout Object

One of the most versatile and commonly used C++ resources is an object named cout
(pronounced “see out” and derived from console ouzput).+ It’s an output object that sends data
it receives to the standard display device. For most systems, this display device is a computer
screen. For example, if the data Hello there world! is sent to cout, this data is
displayed on your screen. To send the data Hello there world! to the cout object,
enclose the text in quotation marks ("text in here") and place the insertion symbol, <<,
after the object’s name and before the message, as shown in this line:

cout << "Hello there world!";

Now you see how to put all this together into a working C++ program, Program 2.1, that
can be run on your computer.

Program 2.1

#include <iostream>
using namespace std;

int main()
{

cout << "Hello there world!";

return 0;

The first line of the program is a preprocessor command that uses the reserved word
include:

#include <iostream>

Preprocessor commands begin with a pound sign (#) and perform some action before the
compiler translates the source program into machine code. Specifically, the #include
preprocessor command causes the contents of the named file—in this case, iostream—to
be inserted wherever the #include command appears in the program. The iostream file
is part of the standard library that contains, among other code, two classes: istream and
ostream. These two classes provide data declarations and methods for data input and
output, respectively. The iostream file is called a header file because a reference to it is
always placed at the top, or head, of a C++ program by using the #include command. You
might be wondering what the 1ostream file has to do with this simple program. The answer
is that the cout object is created from the ostream class. Therefore, the 1ostream header
file must be included in all programs using cout. As shown in Program 2.1, preprocessor
commands don’t end with a semicolon.

“The cout object is formally created for the ostream class, which is described in detail in Chapter 8.

Chapter 2 49
Introduction to C++

Point of Information

What Is Syntax?

A programming language’s syntax is the set of rules for formulating statements that
are grammatically correct for the language. In practice, it means a C++ statement with
correct syntax has the proper form specified for the compiler. If statements are in the
proper form, the compiler accepts them and doesn’t generate an error message.

Note, however, that a statement or program can be syntactically correct yet logi-
cally incorrect. In other words, the statement or program is structured correctly but pro-
duces an incorrect result. It's similar to an English statement that's grammatically correct
but makes no sense, such as “The tree is a ragged cat.”

Following the preprocessor #include command is a statement containing the reserved
word using. The following statement, for example, tells the compiler where to look to find
header files in the absence of an explicit designation:

using namespace std;

You can think of a namespace as a section of source code the compiler accesses when it’s
looking for prewritten classes or functions. Because the iostream header file is contained
in a namespace named std (for the standard library), the compiler automatically uses
iostream’s cout object from this namespace whenever cout is referenced. By using
namespaces, you can create your own classes and functions with the same names the standard
library provides and place them in differently named namespaces. You can then tell the
program which class or function to use by specifying the namespace where you want the
compiler to look for the class or function. In Chapter 9, you learn how to create your own
namespaces. For now, you’ll use the classes and functions provided by the std namespace.

The using statement is followed by the start of the program’s main () function, which
begins with the function header described previously. The body of the function, enclosed in
braces, consists of only two statements. The first statement in main () sends one message
to the cout object: the string "Hello there world!".

Because cout is an object of a prewritten class, you don’t have to create it; it’s available
for use just by activating it correctly. Like all C++ objects, cout can perform only certain
well-defined actions. For cout, the action is to assemble data for output display. When a
string of characters is sent to cout, the object makes sure the string is displayed onscreen
correctly, as shown in this output from Program 2.1:

Hello there world!

50 Problem Solving Using C++

Strings in C++ are any combination of letters, numbers, and special characters enclosed in
quotation marks ("string in here"). The quotation marks delimit (mark) the beginning
and ending of the string and aren’t considered part of the string. Therefore, the string of
characters making up the message sent to cout must be enclosed in quotation marks, as was
done in Program 2.1.

Now examine another program to understand cout’s versatility. Read Program 2.2 to
determine what it does.

Program 2.2

#include <iostream>
using namespace std;

int main()

{
cout << "Computers, computers everywhere";
cout << "\n as far as I can C";

return 0;

When Program 2.2 is run, the following is displayed:

Computers, computers everywhere
as far as I can C

You might be wondering why the \n didn’t appear in the output. The characters \ and
n, when used together, are called a newline escape sequence. They tell cout to send
instructions to the display device to move to the beginning of a new line. Otherwise, the
second cout statement would simply append its characters to the previous statement’s
characters; it doesn’t start on a new line by itself. In C++, the backslash (\) character provides
an “escape” from the normal interpretation of the character following it and alters its
meaning—in this case, the n. If the backslash were omitted from the second cout statement
in Program 2.2, the n would be printed as the letter “n” and the program would output the
following;:

Computers, computers everywheren as far as I can C

Newline escape sequences can be placed anywhere in the message sent to cout. See
whether you can determine the display Program 2.3 produces.

Chapter 2 51
Introduction to C++

Program 2.3

#include <iostream>
using namespace std;

int main()
{

cout << "Computers everywhere\n as far as\n\nI can see";

return O;

"This is the output for Program 2.3:

Computers everywhere
as far as

I can see

EXERCISES 2.1

1. (Practice) State whether the following are valid function names and if so, whether
they’re mnemonic names that convey some idea of the function’s purpose. If they are
invalid names, state why.

power density ml234 newamp 1234 abcd
total tangent absval computed b34a 34ab
voltss$ a2B3 while minval sine $sine
cosine speed netdistance sum return stack

2. (Practice) Assume the following functions have been written:

getLength (), getWidth(), calcArea(), displayArea()
a. From the functions’ names, what do you think each function might do?

b. In what order do you think a main () function might execute these functions (based
on their names)?

3. (Practice) Assume the following functions have been written:

speed (), distance(), acceleration()

From the functions’ names, what do you think each function might do?

52 Problem Solving Using C++

4. (Practice) Determine names for functions that do the following;
a. Find the average of a set of numbers.
b. Find the area of a rectangle.
c. Find the minimum value in a set of numbers.
d. Find the density of a steel door.
e. Sort a set of numbers from lowest to highest.
S. (Program) a. Using cout, write a C++ program that displays your name on one line,
your street address on a second line, and your city, state, and zip code on a third line.

b. Run the program you have written for Exercise 5a. (Noze: You must understand the
procedures for entering and running a C++ program on the particular computer instal-
lation you’re using.)

6. (Program) a. Write a C++ program to display the following output:

The cosecant of an angle
is equal to one over
the sine of the angle.

b. Compile and run the program you have written for Exercise 6a.

7. (Program) a. How many cout statements would you use to display the following output?

Degrees Radians
0 0.0000
90 1.5708
180 3.1416
270 4.7124
360 6.2832

b. What’s the minimum number of cout statements that could be used to print the out-
put in Exercise 7a?

c. Write a complete C++ program to produce the output shown in Exercise 7a.
d. Run the program you have written for Exercise 7c.

8. (Program) a. Assuming your compiler isn’t case sensitive, determine which of these pro-
gram unit names are equivalent:

AVERAG averag MODE BESSEL Mode
Total bessel TeMp Densty TEMP
denSTY MEAN total mean mode

b. Redo Exercise 8a, assuming a case-sensitive compiler.

Project Structuring Exercises

Most projects, both programming and nonprogramming, can usually be structured into smaller
subtasks or units of activity. These smaller subtasks can often be delegated to different
people so that when all the tasks are finished and integrated, the project or program is
completed. For Exercises 9 through 14, determine a set of subtasks that, performed together,
complete the project. Be aware that each exercise has many possible solutions. The only
requirement is that the set of subtasks, when performed together, complete the required task.

Chapter 2 53
Programming Style

Note: The purpose of these exercises is to have you consider the different ways that complex tasks
can be structured. Although there’s no one correct solution to these exercises, there are incorrect
solutions and solutions that are better than others. An incorrect solution is one that doesn’t fully
specify the task. One solution is better than another if it more clearly or easily identifies what must
be done.

9. (Practice) You’re given the task of wiring and installing lights in your attic. Determine a

10

11.

12.

13.

14.

2.2

set of subtasks to accomplish this task. (H:zz: The first subtask is determining the place-
ment of light fixtures.)

(Practice) You’re given the job of preparing a complete meal for five people next
weekend. Determine a set of subtasks to accomplish this task. (Hizz: One subtask, not
necessarily the first, is buying the food.)

(Practice) You’re a sophomore in college and are planning to go to graduate school for a

master’s degree in electrical engineering after you graduate. List a set of major objectives

you must fulfill to meet this goal. (Hinz: One subtask is “Determine the correct courses to
take.”)

(Practice) You're given the job of planting a vegetable garden. Determine a set of sub-
tasks to accomplish this task. (Hizr: One subtask is planning the garden’s layout.)

(Practice) You’re responsible for planning and arranging the family camping trip this
summer. List a set of subtasks to accomplish this task. (Hiz: One subtask is selecting the
campsite.)

(Data Processing) a. A national medical testing laboratory wants a new computer system
to analyze its test results. The system must be capable of processing each day’s results as
well as retrieving and outputting a printed report of all results meeting certain criteria,
such as all results for a particular doctor or for hospitals in a certain state. Determine
three or four major program units into which this system could be separated. (Hint: One
possible program unit is “Prepare Daily Results” to create each day’s reports.)

b. Suppose someone enters incorrect data for a test result, and the error is discovered
after the system has entered and stored the data. What program unit is needed to cor-
rect this problem? Discuss why such a program unit might or might not be required
by most systems.

c. Assume a program unit exists that allows users to change data that has been entered
and stored incorrectly. Discuss the need for including an “audit trail” that would allow
reconstructing the changes later as well as when they were made and who made them.

Programming Style

C++ programs start execution at the beginning of the main () function. Because a program
can have only one starting point, every C++ program must contain one and only one main ()
function. As you have seen, all the statements making up the main () function are then
included within the braces following the function name. Although the main () function must
be present in every C++ program, C++ doesn’t require placing the word main, the
parentheses, or the braces in any particular form. The form used in the previous section

54

Problem Solving Using C++

int main()
{

program statements in here;

return 0;

}

was chosen strictly for clarity and ease in reading the program but is not required. For
example, the following general form of a main () function would also work:

int main
(
) { first statement;second statement;
third statement; fourth
statement;
return 0;}

Notice that you can put more than one statement on a line or place a statement on more
than one line. Except for strings, quotation marks, identifiers, and keywords, C++ ignores all
white space. (White space refers to any combination of blank spaces, tabs, or new lines.) For
example, changing the white space in Program 2.1 and making sure not to split the string
Hello there world! across two lines results in the following valid program:

#include <iostream>

using namespace std;

int main

(

) {

cout <<

"Hello there world!";
return O;

Although this version of main () does work, it’s an example of poor programming style
because it’s difficult to read and understand. For readability, the main () function should
always be written in this standard form:

int main()
{

program statements in here;

return 0;

In this standard form, the function name starts at the left margin (call this column 1) and
is placed with the required parentheses on a line by itself. The opening brace of the function
body follows in column 1 on the next line, directly under the first letter of the line containing
the function’s name. Similarly, the closing function brace is placed by itself in column 1 (lined
up with the opening brace) as the last line of the function. This structure highlights the
function as a single unit.

Within the function, all program statements are indented at least two spaces. Indentation
is another sign of good programming practice, especially if the same indentation is used for
similar groups of statements. Review Program 2.2 to see that the same indentation was used
for both cout statements.

Chapter 2 55
Programming Style

As you progress in your understanding and mastery of C++, you’ll develop your own
indentation standards. Just keep in mind that the final form of your programs should be
consistent and always aid others in reading and understanding your programs.

Comments
Comments are explanatory remarks made in a program. When used carefully, comments can
be helpful in clarifying the overall program’s purpose, explaining what a group of statements
is meant to accomplish, or explaining what one line is intended to do. C++ supports two types
of comments: line and block. Both types can be placed anywhere in a program and have no
effect on program execution. The compiler ignores all comments—they are there strictly for
the convenience of anyone reading the program.

A line comment begins with two slashes (//) and continues to the end of the line. For
example, the following examples are line comments:

// this is a comment
// this program prints out a message
// this program calculates a square root

The symbols //, with no white space between them, designate the start of the line
comment. The end of the line on which the comment is written designates the end of the
comment. A line comment can be written on a line by itself or at the end of the line
containing a program statement. Program 2.4 shows using line comments in a program.

Program 2.4

// this program displays a message
#include <iostream>
using namespace std;

int main()
{

cout << "Hello there world!"; // this produces the display

return 0;

The first comment appears on a line by itself at the top of the program, and this location
is a good one for a comment describing the program’s purpose. If more comments are
required, they can be placed one per line, as with the comment after the cout statement.
When a comment is too long to be contained on one line, it can be separated into two or more
line comments, with each comment preceded by the // symbol. For example, the following
comment generates a C++ error message because the second line doesn’t start with the //
symbol:

// this comment is invalid because it
extends over two lines

56

Problem Solving Using C++

This comment is correct, written as follows:

// this comment is used to illustrate a
// comment that extends across two lines

Comments that span two or more lines are, however, more conveniently written as
C-type block comments, which begin with the symbols /* and end with the symbols */, as
in this example:

/* This is a block comment that
spans
three lines */

In C++, a program’s structure is intended to make it readable and understandable, so
extensive comments aren’t necessary. This guideline is reinforced by carefully selecting
function names to convey their purpose, as discussed previously. However, if the program
element’s purpose still isn’t clear from its structure, name, or context, include comments
where clarification is needed.

Obscure code with no comments is a sure sign of bad programming, especially when
other people must maintain or read the program. Similarly, excessive comments are a sign of
bad programming because not enough thought was given to making the code self-
explanatory. Typically, any program you write should begin with comments including a short
program description, your name, and the date the program was written or last modified. For
space considerations and because all programs in this book were written by the author, these
initial comments are used only for short program descriptions when they aren’t provided as
part of the accompanying text.

EXERCISES 2.2

(Debug) a. Will the following program work?

#include <iostream>
using namespace std;
int main() {cout << "Hello there world!"; return 0;}

b. Even if the program in Exercise 1a works, explain why it’s not a good program.

(Modify) Rewrite the following programs to conform to good programming practice and
correct syntax:

a. #include <iostream>
int main(
) {
cout <<
"The time has come"
; return 0;}

b. #include <iostream>
using namespace std; int main
() {cout << "Newark is a city\n";cout <<

C.

d.

Chapter 2 57
Programming Style

"In New Jersey\n"; cout <<
"It is also a city\n"

; cout << "In Delaware\n"
; return 0;}

#include <iostream>
using namespace std;
int main() {cout << Reading a program\n";cout <<
"is much easier\n"
; cout << "if a standard form for main is used\n")
; cout
<<"and each statement 1is written\n";cout
<< "on a line by itself\n")
; return 0;}

#include <iostream.h>
using namespace std;
int main
() { cout << "Every C++ program"
; cout
<<"\nmust have one and only one"
;
cout << "main function"

7

cout <<
"\n the escape sequence of characters")
; cout <<
"\nfor a newline can be placed anywhere"
; cout

<<"\n within the message passed to cout"
; return 0;}

3. (For Thought) a. When used in a message, the backslash character alters the meaning of
the character immediately following it. If you want to print the backslash character, you
have to tell cout to escape from the way it normally interprets the backslash. What char-
acter do you think is used to alter the way a single backslash character is interpreted?

b.

Using your answer to Exercise 3a, write the escape sequence for printing a backslash.

4. (For Thought) a. A token of a computer language is any sequence of characters, with
no intervening characters or white space, that taken as a unit has a unique meaning.
Using this definition of a token, determine whether escape sequences, function names,
and the keywords listed in Table 2.1 are tokens of the C++ language.

b.

Discuss whether adding white space to a message alters the message and whether
messages can be considered tokens of C++.

Using the definition of a token in Exercise 4a, determine whether the following state-
ment is true: “Except for tokens of the language, C++ ignores all white space.”

58

2.3

Problem Solving Using C++

Data Types

The objective of all programs is to process data, be it numerical, alphabetical, audio, or video.
Central to this objective is classifying data into specific types. For example, calculating a
rocket’s trajectory requ1rcs mathematical opcratlons on numerical data, and alphabetizing a
list of names rcqu1res comparison operations on character-based data. Additionally, some
operations aren’t applicable to certain types of data. For example, it makes no sense to add
names together. To prevent programmers from attempting to perform an inappropriate
operation, C++ allows performing only certain operations on certain data types.

The types of data permitted and the operations allowed for each type are referred to as
a data type. Formally, a data type is defined as a set of values and a set of operations that can
be applied to these values. For example, the set of all integer (whole) numbers constitutes
a set of values, as does the set of all real numbers (numbers containing a decimal point).
These two sets of numbers, however, don’t constitute a data type until a set of operations is
included—in these examples, mathematical and comparison operations. The combination of
a set of values plus operations becomes a true data type.

C++ categorizes data types in two basic groupings: class data types and built-in data
types. A class data type (referred to as a “class,” for short) is a programmer-created data type,
which means the programmer defines the acceptable values and operations, using C++ code.
This data type is discussed in Part Two.

A built-in data type is provided as part of the C++ compiler and requires no external C++
code. Therefore, a built-in data type can be used without supplementary additions, such as
the iostream header file for the cout object. Built-in data types, also referred to as
primitive types, consist of the basic numerical types shown in Figure 2.5 and the operations
listed in Table 2.2. As shown in this table, most operations for built-in data types are
designated as symbols. For class data types, most operations are provided as functions.

Numerical data types

Floating-point

Integer types types

Figure 2.5 Built-in data types

Table 2.2 Built-in Data Type Operations

Built-in Data Type Operations

Integer +, -, *, /, %, =, ==, 1=, <=, >=, sizeof(),
and bit operations (se hapter 15)

Floating point +, -, *, /, =, ==, 1=, <=, >=, sizeof()

"To introduce C++’s built-in data types, literals are used. A literal is an acceptable value for
a data type. The term “literal” in this context means the value identifies itself. (Another name
for a literal is a literal value or constant.) For example, all numbers, such as 2, 3.6, and -8.2, are
referred to as literal values because they literally display their values. Text, such as "Hello
World!", is also a literal value because the text is displayed. You have been using literal values

Chapter 2 59
Data Types

throughout your life but have known them as numbers and words. In Section 2.5, you see some
examples of non-literal values—those that don’t display themselves but are stored and accessed
by using identifiers.

Integer Data Types

C++ provides nine built-in integer data types, as shown in Figure 2.6. The essential
difference between these integer data types is the amount of storage used for each type,
which affects the range of values each type is capable of representing. The three most
important and common types used in most applications are int, char, and bool. The other
types were provided to accommodate special situations (such as a small or large range of
numbers) and have been retained for historical reasons. They enabled programmers to
maximize memory usage by selecting the data type using the smallest amount of memory,
consistent with an application’s requirements. When computer memories were small,
compared with today’s computers, and expensive, the amount of memory used was a major
concern. Although no longer a concern for most programs, these types still allow programmers
to optimize memory usage when necessary, typically in special-purpose digital control
systems used in home appliances and automobiles.

bool
char
short int
int

Integer data types long int
unsigned char
unsigned short int
unsigned int
unsigned long int

Figure 2.6 C++ integer data types

The int Data Type The values supported by the int data type are whole numbers,
mathematically known as integers. An integer value consists of digits only and can optionally
be preceded by a plus (+) or minus (-) sign. Therefore, an integer value can be the number
0 or any positive or negative number without a decimal point, as shown in these examples
of valid integers:

0 5 -10 +25 1000 253 -26351 +36

As these examples illustrate, integers can contain a sign. However, no commas, decimal
points, or special symbols, such as the dollar sign, are allowed, as in these examples of invalid
integers:

$255.62 2,523 3. 6,243,892 1,492.89 +6.0

Compilers differ in their internal limits on the largest (most positive) and smallest (most
negative) integer values that can be stored in each data type.® The most common storage

5The limits imposed by the compiler are found in the 1imits header file and defined as the hexadecimal constants int_max and int_min.

60

Problem Solving Using C++

allocation is 4 bytes for the int data type, which restricts the values used to represent
integers from -2,147,483,648 to 2,147,483,647.¢

The char Data Type 'The char data type is used to store single characters, including the
letters of the alphabet (uppercase and lowercase), the digits 0 through 9, and special symbols,
such as + $. , - and !. A character value is any single letter, digit, or special symbol
enclosed by single quotation marks, as shown in these examples:

AT |$| 'b! Al ly-l v M lql

Character values are typically stored in a computer by using ASCII or Unicode codes.
The ASCII (American Standard Code for Information Interchange, pronounced “as-key”)
code provides codes for the English-language character set plus codes for printer and display
control, such as newline and printer paper eject codes. Each character code is contained in
a single byte, which provides 256 distinct codes. Table 2.3 lists the ASCII byte codes for
uppercase letters.

Additionally, G++ provides for the newer Unicode code that uses 2 bytes per character
and can represent 65,536 characters. This code is used for international applications because
it includes character sets for other languages in addition to English. As the first 256 Unicode
codes have the same numerical value as the 256 ASCII codes (the additional byte is coded
with all 0s), you needn’t be concerned with which storage code to use with English-language
characters.

Table 2.3 The ASCIl Uppercase Letter Codes

Letter ASCIl Code Letter ASCIl Code
A 01000001 N 01001111
B 01000010 0 01001110
C 01000011 P 01010000
D 01000100 Q 01010001
E 01000101 R 01010010
F 01000110 S 01010011
G 01000111 T 01010100
H 01001000 u 01010101
| 01001001 V 01010110
J 01001010 W 01010111
K 01001011 X 01011000
L 01001100 Y 01011001
M 01001101 Z 01011010

Using Table 2.3, you can determine how the characters 'B', 'A', 'R', 'T', 'E', and
'R', for example, are stored in a computer by using ASCII codes. This sequence of six
characters requires 6 bytes of storage (1 byte for each letter) and is stored as illustrated in

Figure 2.7.

®The most negative number is always one higher than the most positive number. Effectively, the “lost” positive number is used for the number 0.
(See the twos complement method of integer storage, described in Section 1.6.)

Chapter 2 61
Data Types

01000010 r01000001 (01010010 r01010100 r01000101 (01010010 ’
B A R T E R

Figure 2.7 The letters BARTER stored in a computer

) 6 bytes of storage N

The Escape Character

As you’ve seen in Section 2.1, the backslash (\) has a special
meaning in C++ as the escape character. When a backslash is placed in front of a group of
characters, it tells the compiler to escape from the way these characters are normally
interpreted. The combination of a backslash and these characters is called an escape sequence.

Table 2.4 lists C++’s most common escape sequences.

Table 2.4 Escape Sequences

Escape Sequence

Character
Represented

Meaning

ASCIl Code

\n

Newline

Move to a new line

00001010

\t

Horizontal tab

Move to the next
horizontal tab
setting

00001001

\v

Vertical tab

Move to the next
vertical tab setting

00001011

\b

Backspace

Move back one
space

00001000

\r

Carriage return

Move the cursor to
the start of the
current line; used
for overprinting

00001101

\f

Form feed

Issue a form feed

00001100

\a

Alert

Issue an alert
(usually a bell
sound)

00000111

AR

Backslash

Insert a backslash
character (used to
place an actual
backslash character
in a string)

01011100

Question mark

Insert a question
mark character

00111111

Single quotation

Insert a single-
quote character
(used to place an
inner single quote
within a set of
outer single quotes)

00100111

62 Problem Solving Using C++

Table 2.4 Escape Sequences (continued)

Escape Sequence | Character Meaning ASCIl Code
Represented
\" Double quotation Insert a double- 00100010

guote character
(used to place an
inner double quote
within a set of
outer double
guotes)

\nnn Octal number Consider the Dependent on nnn
number nnn (n is a
digit) an octal
number

\xhhhh Hexadecimal Consider the Dependent on
number number hhhh (his | hhhh

a digit) a
hexadecimal
number

\ 0 Null character Insert the null 00000000
character, which is
defined as having
the value 0

Although each escape sequence in Table 2.4 is made up of two characters, the
combination of these characters, with no intervening white space, causes the compiler to
create the single ASCII code listed in the table.

The bool Data Type In C++, the bool data type is used to represent Boolean (logical)
data, so it’s restricted to one of two values: true or false. This data type is most useful
when a program must examine a condition and take a prescribed course of action, based on
whether the condition is true or false. For example, in a sales application, the condition being
examined might be “is the total purchase for $100 or more.” Only when this condition is true
is a discount applied. Because the bool data type uses an integer storage code, however, it
has useful implications that most professional C++ programmers utilize. The practical uses of
Boolean conditions are covered in Chapter 4, so the bool data type is discussed in more
detail in that chapter.

Determining Storage Size

A unique feature of C++ is that you can see where and how values are stored. As an example,
the C++ operator sizeof () provides the number of bytes used to store values for the data
type named in the parentheses. (Review Section 1.6 if you’re unfamiliar with the concept of
a byte.) This built-in operator doesn’t use an arithmetic symbol to perform its operation.
Program 2.5 uses this operator to determine the amount of storage reserved for the int,
char, and bool data types.

Chapter 2 63
Data Types

Point of Information

The Character ‘\n' and the String "\n"

The compiler recognizes both '\n' and "\n" as containing the newline character. The
difference is in the data type used. Formally, '\n" is a character literal, and "\n" is a
string literal. From a practical standpoint, both cause the same thing to happen: A new
line is forced in the output display. In encountering the character value '\n', however,
the compiler translates it by using the ASCII code 00001010 (see Table 2.4). In encoun-
tering the string value "\n", the compiler translates it by using the correct character
code but also adds an end-of-string character, which is *\0".

Good programming practice requires ending the last output display with a newline
escape sequence. This practice ensures that the first line of output from one program
doesn’t end up on the last line displayed by the previously executed program.

3 Program 2.5

#include <iostream>

using namespace std;

int main()

{

cout << "\nData Type Bytes"

<< "\n--------- -———- "
<< "\nint " << sizeof (int)
<< "\nchar " << sizeof (char)
<< "\nbool " << sizeof (bool)
<< '\n"';

return O;

In reviewing Program 2.5, notice that a single character value is inserted in the display
by cout by enclosing it in single quotation marks, as in the escape sequence '\n' at the
end of the cout statement. In the first five displayed lines, this character is included in each
output string. Each time the compiler encounters the newline escape sequence, as a single
character or as part of a string, it’s translated as a single character that forces the display to
start at the beginning of a new line. Although quotation marks can be used for the final
newline insertion, as "\n", they designate a string. When only a single character is being
transmitted, and to emphasize that single characters are designated by using single quotation
marks, '\n"' is used instead of "\n". From a practical standpoint, however, both notations
force a new line in the display.

64

Problem Solving Using C++

Point of Information

Object-Oriented and Procedural Programs

Except for the bool type, all of C++'s built-in data types are direct carryovers from the
C procedural language. Not surprisingly, programs using only built-in data types can't
be object-oriented programs. Instead, as in Program 2.5, they become procedural pro-
grams, those based primarily on procedures, such as main ().

Only when built-in data types are bundled together to form a packet of data,
which becomes an object, can an object-oriented program come into existence.

The output of Program 2.5 is compiler dependent, meaning each compiler reports the
amount of storage it provides for the data type under consideration. When run on a computer
using Microsoft’s current Visual C++ .NE'T compiler, for example, the following output is
produced:

Data Type Bytes

int 4
char 1
bool 1

For this output, which is the typical storage almost all current C++ compilers provide,
you can determine the range of values that can be stored in each data type. To do so,
however, requires understanding the difference between a signed and an unsigned data type,
discussed next.

Signed and Unsigned Data Types

A signed data type permits storing negative values in addition to 0 and positive values, so int
is a signed data type. An unsigned data type provides for only non-negative values (that is, 0
and positive values). Some applications require only unsigned numerical values. For example,
many date applications store dates in the numerical form yearmonthday (storing 12/25/2007
as 20071225, for example) and are concerned only with dates after 0 CE. For these
applications, which never require a negative value, an unsigned data type can be used.

All unsigned integer types, such as unsigned int, provide a range of positive values
that, for all practical purposes, is double the range for their signed counterparts. This extra
positive range is made available by using the negative range of its signed version for
additional positive numbers.

With an understanding of the difference between signed and unsigned data types, you
can use Table 2.5 to determine the range of integer values supported by current C++
compilers. As you can see, a long int uses the same amount of storage (4 bytes) as an int.
The only requirement of the ANSI C++ standard is that an int must provide at least as
much storage as a short int, and a long int must provide at least as much storage as
an int. On early desktop computers with a memory capacity limited to thousands of bytes,
a short int typically used 1 byte of storage, an int 2 bytes, and a long int 4 bytes.
"This storage limited the range of int values from -32,768 to +32,767 and unsigned int
values from 0 to 65,535, thus doubling the number of possible positive values, which was
significant. With the current range of int values in the -2 to +2 billion range, doubling

Chapter 2 65
Data Types

positive values is rarely a consideration. Additionally, a long int is unnecessary now
because it is uses the same storage capacity as an int.

Table 2.5 Integer Data Type Storage

Name of Data Type Storage Size Range of Values

char 1 256 characters

bool 1 true (considered as any positive
value) and false (which is a 0)

short int 2 -32,768 to +32,767

unsigned short int 2 0 to 65,535

int 4 -2,147,483,648 to

+2,147,483,647

unsigned int 4 0 to 4,294,967,295

long int 4 -2,147,483,648 to
+2,147,483,647

unsigned long int 4 0 to 4,294,967,295

Floating-Point Types

A floating-point number, more commonly known as a real number, can be the number 0 or any
positive or negative number containing a decimal point, as shown in these examples:

+10.625 5. -6.2 3251.92 0.0 0.33 -6.67 +2.

Therefore, the numbers 5., 0.0, and +2. are classified as floating-point values, but the same
numbers written without a decimal point (5, 0, +2) are integer values. As with integer values,
special symbols such as the dollar sign and comma aren’t permitted in real numbers, as shown
in these examples of invalid real numbers:

5,326.25 24 6,459 $10.29 7.007.645

C++ supports three floating-point data types: £loat, double, and long double. The
difference between these data types is the amount of storage the compiler uses. Most
compilers use twice the amount of storage for doubles as for £loats, which allows a
double to have approximately twice the precision of a float. For this reason, a float
value is sometimes referred to as a single-precision number and a double value as a
double-precision number. The actual storage allocation for each data type, however, depends
on the compiler. The ANSI C++ standard requires only that a double have at least the same
amount of precision as a float, and a long double have at least the same amount of
storage as a double. Currently, most C++ compilers allocate 4 bytes for £1oats and 8 bytes
for doubles and long doubles, which produces the range of numbers listed in Table 2.6.

Table 2.6 Floating-Point Data Types

Type Storage Absolute Range of Values (+ and -)

float 4 bytes 1.40129846432481707x10™* to
3.40282346638528860x10°®

double and long 8 bytes 4.94065645841246544x103% to

double 1.79769313486231570x103%®

66

Problem Solving Using C++

Point of Information

What Is Precision?

In numerical theory, the term precision typically refers to numerical accuracy. In this
context, the statement “This computation is accurate, or precise, to the fifth decimal
place” means the fifth digit after the decimal point has been rounded, and the number
is accurate to within £0.00005.

In computer programming, “precision” can refer to the accuracy of a number or
the amount of significant digits in the number; significant digits are defined as the
number of clearly correct digits plus 1. For example, if the number 12.6874 has been
rounded to the fourth decimal place, it's correct to say that this number is precise to
the fourth decimal place. In other words, all digits in the number are accurate except
the fourth decimal digit, which has been rounded. Similarly, this same number has a
precision of six digits, which means the first five digits are correct and the sixth digit
has been rounded. Another way of saying this is that the number 12.6874 has six sig-
nificant digits.

The significant digits in a number need not have any relation to the number of
displayed digits. For example, if the number 687.45678921 has five significant digits,
it's accurate only to the value 687.46; the last digit is assumed to be rounded. Similarly,
dollar values in large financial applications are often rounded to the nearest hundred
thousand dollars. In these applications, a displayed dollar value of $12,400,000, for
example, isn't accurate to the closest dollar. If this value is specified as having three
significant digits, it's accurate only to the hundred-thousand digit.

In compilers using the same amount of storage for double and long double numbers,
these two data types are identical. (The sizeof () operator in Program 2.5 can always be
used to determine the amount of storage your compiler reserves for these data types.) A
float literal is indicated by appending an f or F to the number, and a 1long double is
created by appending an | or L. to the number. In the absence of these suffixes, a

floating-point number defaults to a double. For example, take a look at the following:

9.234 indicates a double literal
9.234F indicates a float literal
9.234L indicates a 1long double literal

The only difference in these numbers is the amount of storage the computer can use for
them. Appendix C describes the binary storage format used for floating-point numbers and

its impact on number precision.

EXERCISES 2.3

1. (Practice) Determine data types appropriate for the following data:

a. The average of four grades

b. The number of days in a month

Chapter 2 67
Data Types

The length of the Golden Gate Bridge
The numbers in a state lottery
The distance from Brooklyn, N.Y. to Newark, N.J.

The single-character prefix that specifies a component type

2N I -V

2. (Practice) Compile and execute Program 2.5.

3. (Modify) Modify Program 2.5 to determine the storage your compiler uses for all the C++
integer data types.

4. (Practice) Show how the name KINGSLEY is stored in a computer that uses the ASCII
code by drawing a diagram similar to Figure 2.7, shown previously.

S. (Practice) Repeat Exercise 4 using the letters of your own last name.

6. (Modify) Modify Program 2.5 to determine how many bytes your compiler assigns to the
float, double, and long double data types.

7. (For Thought) Because computers use different representations for storing integer,
floating-point, double-precision, and character values, discuss how a program might alert
the computer to the data types of various values it will be using.

8. (For Thought) Although you have concentrated on operations involving integer and
floating-point numbers, C++ allows adding and subtracting characters and integers. (These
operations are possible with characters because they’re integer data types and are stored
by using integer codes.) Therefore, characters and integers can be mixed in arithmetic
expressions. For example, if your computer uses ASCII code, the expression 'a' + 1
equals 'b' and 'z' - 1 equals 'y' is valid. Similarly, 'A'" + 1 is 'B' and 'Z2' - 1
is 'Y'. With this information as background, determine the character results of the fol-
lowing expressions. (Assume all characters are stored by using ASCII codes.)

a. 'm' - 5

'm' + 5

'G' + 6

'G' - 6

b - 'a’
‘g - 'a' +
'G' - 'A' +

N

Note: To complete the following exercise, you need to understand basic computer storage
concepts. Specifically, if you're unfamiliar with the concepts of bytes and words, refer to
Section 1.6 before doing the next exercise.

9. (Practice) Although the total number of bytes varies from computer to computer, memory
sizes of 65,536 to more than several million bytes are common. In computer language, the
letter K represents the number 1024, which is 2 raised to the 10th power, and M represents
the number 1,048,576, which is 2 raised to the 20th power. Therefore, a memory size of
640 KB is really 640 times 1024 (655,360 bytes), and a memory size of 4 MB is really 4 times

68 Problem Solving Using C++

1,048,576 (4,194,304 bytes). Using this information, calculate the actual number of bytes in
the following:

a. A memory containing 512 MB

b. A memory consisting of 256 MB words, where each word consists of 2 bytes
A memory consisting of 256 MB words, where each word consists of 4 bytes
A thumb drive that specifies 2 MB

A disk that specifies 250 MB

A disk that specifies 8 GB (Hint: See Table 1.2.)

™o oo

2.4 Arithmetic Operations

The previous section presented the data values corresponding to C++’s built-in data types.
This section explains the arithmetic operations that can be applied to these values.

Integers and real numbers can be added, subtracted, multiplied, and divided. Although
it’s usually better not to mix integers and real numbers when performing arithmetic
operations, you can get predictable results when using different data types in the same
arithmetic expression. Surprisingly, you can add and subtract character data and mix it with
integer data to produce useful results. (For example, 'A' + 1 results in the character 'B'.)
These operations are possible because characters are stored by using integer codes.

The operators used for arithmetic operations are called arithmetic operators and are as

follows:

Operation Operator
Addition +
Subtraction -
Multiplication *
Division /
Modulus division? %

These operators are also called binary operators, which means the operator requires two
operands to produce a result. An operand can be a literal value or an identifier with an
associated value. A simple binary arithmetic expression consists of a binary operator connecting
two literal values in this form:

literalValue operator literalValue
Examples of simple binary arithmetic expressions are the following:

3+ 7

8 - 3
12.62 + 9.8
0.08 * 12.2
12.6 / 2

"Don’t be concerned at this stage if you do not understand the term “modulus division.” You learn more about this operator later in “Integer
Division.”

Chapter 2 69
Arithmetic Operations

The spaces around arithmetic operators in these examples are inserted strictly for clarity
and can be omitted without affecting the value of the expression. However, an expression in
C++ must be entered in a straight-line form, as shown in these examples. For example, the
C++expression equivalent to 12.6 divided by 2 must be entered as 12.6 / 2, not as the
algebraic expression shown here:

126
2

You can use cout to display the value of any arithmetic expression onscreen. 'To do this, the
value must be sent to the object. For example, the following statement yields the display 21:

cout << (6 + 15);

Strictly speaking, the parentheses surrounding the expression 6 + 15 aren’t required to
indicate that the value of the expression (that is, 21) is being displayed.® In addition to displaying
a numerical value, cout can display a string identifying the output, as was done in Section 2.1.
For example, the following statement sends two pieces of data, a string and a value, to cout:

cout << "The sum of 6 and 15 is " << (6 + 15);

Each set of data sent to cout must be preceded by its own insertion operator, <<. In the
preceding example, the first data sent for display is the string "The sum of 6 and 15
is ", and the second item sent is the value of the expression 6 + 15. This statement
produces the following display:

The sum of 6 and 15 is 21

The space between the word “is” and the number 21 is caused by the space in the string
sent to cout. As far as cout is concerned, its input is a set of characters sent to be displayed
in the order they’re received. Characters from the input are queued, one behind the other,
and sent to the screen for display. Placing a space in the input makes the space part of the
stream of characters that’s displayed. For example, the statement

cout << "The sum of 12.2 and 15.754 is " << (12.2 + 15.754);
yields the following display:
The sum of 12.2 and 15.754 is 27.954

When multiple insertions are sent to cout, the code can be spread across multiple lines.
Only one semicolon, however, must be used, which is placed after the last insertion and
terminates the complete statement. Therefore, the preceding display is also produced by the
following statement, which spans two lines:

cout << "The sum of 12.2 and 15.754 is "
<< (12.2 + 15.754);

However, when you allow a statement to span multiple lines, two rules must be followed:
A string contained in quotation marks can’t be split across lines, and the terminating
semicolon should appear only on the last line. You can always place multiple insertion
symbols in a line.

%The parentheses aren’t required because the + operator has a higher precedence than the << operator; therefore, the addition is performed
before the insertion.

70 Problem Solving Using C++

If floating-point numbers have six or fewer decimal digits, they’re displayed with enough
decimal places to accommodate the fractional part of the number. If the number has more
than six decimal digits, the fractional part is rounded to six decimal digits, and if the number
has no decimal digits, neither a decimal point nor any decimal digits are displayed.?

Program 2.6 illustrates using cout to display the results of arithmetic expressions in the
statements of a complete program.

Program 2.6

#include <iostream>
using namespace std;

int main()

{
cout << "15.0 plus 2.0 equals " << (15.0 + 2.0) << endl
<< "15.0 minus 2.0 equals " << (15.0 - 2.0) << endl
<< "15.0 times 2.0 equals " << (15.0 * 2.0) << endl
<< "15.0 divided by 2.0 equals " << (15.0 / 2.0) << endl;
return 0;

The output of Program 2.6 is the following:

15.0 plus 2.0 equals 17

15.0 minus 2.0 equals 13

15.0 times 2.0 equals 30

15.0 divided by 2.0 equals 7.5

The only new item used in Program 2.6 is the term endl, which is an example of a C++
manipulator. A manipulator is an item used to change how the output stream of characters is
displayed. In particular, the endl manipulator first causes a newline character (' \n") to be
inserted in the display, and then forces all current insertions to be displayed immediately,
instead of waiting for more data. (Section 3.2 lists the most commonly used manipulators.)

Expression Types

An expression is any combination of operators and operands that can be evaluated to yield a
value. An expression containing only integer values as operands is called an integer
expression, and the result of the expression is an integer value. Similarly, an expression
containing only floating-point values (single-precision and double-precision) as operands is
called a floating-point expression (also referred to as a “real expression”), and the result of the

“None of this output is defined as part of the C++ language. Rather, it’s defined by a set of classes and routines provided with each C++ compiler.

Chapter 2 71
Arithmetic Operations

Point of Information

The endl Manipulator

On many systems, the endl manipulator and the \n escape sequence are processed in
the same way and produce the same effect. The one exception is on systems where
output is accumulated internally until enough characters collect to make it advanta-
geous to display them all in one burst onscreen. In these systems, referred to as “buff-
ered,” the endl manipulator forces all accumulated output to be displayed
immediately, without waiting for additional characters to fill the buffer area before
being printed. As a practical matter, you wouldn’t notice a difference in the final
display. As a general rule, however, use the \n escape sequence whenever it can be
included in an existing string, and use the endl manipulator whenever a \n would
appear by itself or to formally signify the end of a specific group of output.

expression is a floating-point value. An expression containing integer and floating-point
values is called a mixed-mode expression. Although it’s usually better not to mix integer
andfloating-point values in an arithmetic operation, the data type of each operation is
determined by the following rules:

e If both operands are integers, the result of the operation is an integer.
e If one operand is a real value, the result of the operation is a double-precision value.

The result of an arithmetic expression is never a single-precision (£1loat) number. This
is because during execution, a C++ program temporarily converts all single-precision
numbers to double-precision numbers when an arithmetic expression is evaluated.

Integer Division

The division of two integer values can produce rather strange results for the unwary. For
example, the expression 15/2 yields the integer result 7. Because integers can’t contain a
fractional part, a value of 7.5 can’t be obtained. The fractional part resulting when two
integers are divided—the remainder—is always dropped (truncated). Therefore, the value of
9/4 is 2 and 20/3 is 6.

Often, however, you need to retain the remainder of an integer division. To do this, C++
provides the modulus operator (also referred to as the “remainder operator”), which has the
symbol %. This operator captures the remainder when an integer is divided by an integer;
using a non-integer value with the modulus operator results in a compiler error. The
following examples show how the modulus operator is used:

9 % 4is 1
17 % 3 is 2
15 % 4 is 3
14 % 2 is 0

—~

the remainder when 9 is divided by 4 is 1)

the remainder when 17 is divided by 3 is 2)
the remainder when 15 is divided by the 4 is 3)
the remainder when 14 is divided by 2 is 0)

—~ o~ o~

Negation
In addition to binary operators, C++ provides unary operators, which operate on a single
operand. One of these unary operators uses the same symbol as binary subtraction (-). With

Problem Solving Using C++

this unary operator, the minus sign in front of a single numerical value negates (reverses the
sign of) the number.

Table 2.7 summarizes the six arithmetic operations described so far and lists the data
type for the result each operator produces, based on the data type of the operands involved.

Table 2.7 Summary of Arithmetic Operators

Operation Operator Type Operand(s) Result
Symbol

Addition + Binary Both are integers Integer
One operand is not | Double-
an integer precision

Subtraction - Binary Both are integers Integer
One operand is not | Double-
an integer precision

Multiplication * Binary Both are integers Integer
One operand is not | Double-
an integer precision

Division / Binary Both are integers Integer
One operand is not | Double-
an integer precision

Modulus % Binary Both are integers Integer
One operand is not | Double-
an integer precision
Negation - Unary Integer or double Same as
operand

Operator Precedence and Associativity

In addition to simple expressions, such as 5 + 12 and .08 * 26.2, you can create more
complex arithmetic expressions. C++, like most other programming languages, requires following
certain rules when writing expressions containing more than one arithmetic operator:

® Two binary operator symbols must never be placed side by side. For example, 5 *
% 6 1s invalid because two operators, * and %, are placed next to each other.

e Parentheses can be used to form groupings, and all expressions enclosed in
parentheses are evaluated first. In this way, you can use parentheses to alter the
evaluation to any desired order. For example, in the expression (6 + 4) / (2 +
3), the 6 + 4 and 2 + 3 are evaluated first to yield 10 / 5. The 10 / 5 is then
evaluated to yield 2.

e Parentheses can be enclosed by other parentheses. For example, the expression (2 *
(3 +7)) / 5 is valid and evaluates to 4. When parentheses are included within
parentheses, expressions in the innermost parentheses are always evaluated first. The
evaluation continues from innermost to outermost parentheses until all expressions in
parentheses have been evaluated. The number of closing parentheses,), must always
equal the number of opening parentheses, (, so that no unpaired sets exist.

Chapter 2 73
Arithmetic Operations

e Parentheses can’t be used to indicate multiplication; instead, the multiplication
operator, *, must be used. For example, the expression (3 + 4) (5 + 1) is
invalid. The correct expression is (3 + 4) * (5 + 1).

Parentheses should specify logical groupings of operands and indicate clearly, to the
compiler and programmers, the intended order of arithmetic operations. Although expres-
sions in parentheses are always evaluated first, expressions containing multiple operators,
whether enclosed in parentheses or not, are evaluated by the priority, or precedence, of the
operators. There are three levels of precedence:

1. P1—All negations are done first.

2. P2—Muluplication, division, and modulus operations are computed next. Expres-
sions containing more than one multiplication, division, or modulus operator are
evaluated from left to right as each operator is encountered. For example, in the
expression 35 / 7 % 3 * 4, all operations have the same priority, so the operations
are performed from left to right as each operator is encountered. The division is done
first, yielding the expression 5 % 3 * 4. The modulus operation, 5 % 3, is
performed next, yielding a result of 2. Finally, the expression 2 * 4 is computed to
yield 8.

3. P3—Addition and subtraction are computed last. Expressions containing more than
one addition or subtraction are evaluated from left to right as each operator is
encountered.

In addition to precedence, operators have an associativity, which is the order in which
operators of the same precedence are evaluated, as described in rule P2. For example, does
the expression 6.0 * 6 / 4 yield 9.0, which is (6.0 * 6) / 4, or 6.0, which is 6.0 *
(6 / 4)? The answer is 9.0 because C++’s operators use the same associativity as in general
mathematics, which evaluates multiplication from left to right, as rule P2 indicates.

"Table 2.8 lists the precedence and associativity of the operators discussed in this section.
As you have seen, an operator’s precedence establishes its priority in relation to all other
operators. Operators at the top of Table 2.8 have a higher priority than operators at the
bottom of the table. In expressions with multiple operators of different precedence, the
operator with the higher precedence is used before an operator with lower precedence. For
example, in the expression 6 + 4 / 2 + 3, because the division operator has a higher
precedence (P2) than the addition operator, the division is done first, yielding an interme-
diate result of 6 + 2 + 3. The additions are then performed, left to right, to yield a final
result of 11.

Table 2.8 Operator Precedence and Associativity

Operator Associativity
Unary - Right to left
* /% Left to right
+ - Left to right

Finally, take a look at using Table 2.8 and the precedence rules to evaluate an expression
containing operators of different precedence, such as 8 + 5 * 7 % 2 * 4. Because the
multiplication and modulus operators have a higher precedence than the addition operator,

Problem Solving Using C++

these two operations are evaluated first (P2), using their left-to-right associativity, before the
addition is evaluated (P3). Therefore, the complete expression is evaluated as the following:

8 +5 * 7 %2 * 4 =
8 + 35 % 2 * 4 =
8 +1 * 4 =

8 + 4 = 12

EXERCISES 2.4

. (Practice) For the following correct algebraic expressions and corresponding incorrect
C++ expressions, find the errors and write corrected C++ expressions:

Algebra C++ Expression
a. (2)(3) + (4)(5) (2) (3) + (4)(5)
b, 6+18 6 + 18 / 2
2

c. 4.5 4.5 / 12.2 - 3.1

12.2 -3.1
d. 4.6 (3.0 + 14.9) 4.6 (3.0 + 14.9)
e. (12.1 + 18.9) (15.3 - 3.8) (12.1 + 18.9) (15.3 - 3.8)
. (Practice) Determine the values of the following integer expressions:
a. 3 + 4 * 6 f. 20 - 2 /7 6 + 3
b. 3 *4 /6 + 6 g. 20 - 2 / (6 + 3)
c. 2 3 /12 * 8 / 4 h. (20 - 2) / 6 + 3
d. 10 * (1 + 7 * 3) i (20 - 2) / (6 + 3)
e. 50 & 20 jo (10 + 3) % 4

. (Practice) Determine the value of the following floating-point expressions:
a. 3.0 + 4.0 * 6.0
b. 3.0 * 4.0 / 6.0 + 6.0

c. 2.0 * 3.0 / 12.0 * 8.0 / 4.0
d. 10.0 * (1.0 + 7.0 * 3.0)

e. 20.0 - 2.0 / 6.0 + 3.0

f. 20.0 - 2.0 / (6.0 + 3.0)

g. (20.0 - 2.0) / 6.0 + 3.0

h. (20.0 - 2.0) / (6.0 + 3.0)

. (Practice) Evaluate the following mixed-mode expressions and list the data type of the
result. In evaluating the expressions, be aware of the data types of all intermediate
calculations.

a. 10.0 + 15 /7 2 + 4.3

Chapter 2

Arithmetic Operations

10.0 + 15.0 /7 2 + 4.3
3.0 * 4/ 6 + 6
3 4.0/ 6 + 6
20.0 - 2 / 6 + 3
10 + 17 * 3 + 4
10 + 17 / 3. + 4
3.0 * 4 $ 6 + 6
10 + 17 % 3 + 4

N A

-

75

. (Practice) Assume that amount stores the integer value 1, m stores the integer value 50,

n stores the integer value 10, and p stores the integer value 5. Evaluate the following

expressions:

n/ p+ 3

m / p +n - 10 * amount
m - 3 *n + 4 * amount
amount / 5

18 / p

-p * n

-m / 20

(m + n) / (p + amount)

S oo oo oo

o
.

m+ n / p + amount

. (Practice) Repeat Exercise 5, assuming that amount stores the value 1.0, m stores the

value 50.0, n stores the value 10.0, and p stores the value 5.0.
. (Practice) Enter, compile, and run Program 2.6.
. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;
int main() // a program illustrating integer truncation
{
cout << "answerl is the integer " << 9/4;
cout << "\nanswer2 is the integer " << 17/3;

return O;

}
. (Desk Check) Determine the output of the following program:

#include <iostream>

using namespace std;

int main() // a program illustrating the % operator
{

cout << "The remainder of 9 divided by 4 is " << 9 % 4;
cout << "\nThe remainder of 17 divided by 3 is " << 17 % 3;

76

10.

11.

Problem Solving Using C++

return O;

}

(Program) Write a C++ program that displays the results of the expressions 3.0 * 5.0,
7.1 % 8.3 -2.2,and 3.2 / (6.1 * 5). Calculate the value of these expressions
manually to verify that the displayed values are correct.

(Program) Write a C++ program that displays the results of the expressions 15 / 4, 15
% 4,and 5 * 3 - (6 * 4). Calculate the value of these expressions manually to
verify that the displayed values are correct.

2.5

Variables and Declaration Statements

All integer, floating-point, and other values used in a program are stored and retrieved from
the computer’s memory. Conceptually, locations in memory are arranged like the rooms in a
large hotel. Like room numbers in a hotel, each memory location has a unique address.
Before high-level languages such as C++, memory locations were referenced by their
addresses. For example, storing the integer values 45 and 12 in the memory locations 1652
and 2548 (see Figure 2.8) required instructions equivalent to the following:

Put a 45 in location 1652
Put a 12 in location 2548

Storage for one integer Storage for one integer

f— f ———
as | 12
1652 2548

N N

Memory addresses

Figure 2.8 Enough storage for two integers

"To add the two numbers just stored and save the result in another memory location, such
as 3000, you need an instruction such as the following:

Add the contents of location 1652
to the contents of location 2548
and store the result in location 3000

Clearly, this method of storage and retrieval is cumbersome. In high-level languages such
as C++, symbolic names, called variables, arc used in place of memory addresses. A variable
is simply a name the programmer assigns to refer to computer storage locations. The term
“variable” is used because the value stored in the memory locations assigned to the variable
can change, or vary. For each name the programmer uses, the computer keeps track of the
memory address corresponding to that name. In the hotel room analogy, it’s equivalent to
putting a name on a room’s door and referring to the room by this name, such as calling it the
Blue Room instead of Room 205.

Chapter 2 77
Variables and Declaration Statements

In C++, the selection of variable names is the programmer’s choice, as long as the rules
listed in Section 2.1 for selecting identifier names are observed. These rules are summarized
in the following list:

1. The variable name must begin with a letter or underscore (_) and can contain only
letters, underscores, or digits. It can’t contain blank spaces, commas, or special
symbols, such as () & , S # . I \ 2.

2. A variable name can’t be a keyword (see Table 2.1).

3. A variable name can’t consist of more than 1024 characters.

Additionally, variable names should be mnemonics that give some indication of the
variable’s purpose. For a variable used to store a value that’s the total of other values, a good
name is sum or total. Variable names giving no indication of the value stored, such as
r2d2, 1inda, and getum, shouldn’t be used. As with function names, variable names can
consist of uppercase and lowercase letters.

Assume the first memory location shown in Figure 2.9, which has the address 1652, is
given the name numl. The memory location 2548 is given the variable name num2, and
memory location 3000 is given the variable name total.

Variable names

JL JL JL
numl num2 total
as| 12| 57|
1652 2548 45

\ N

1 | |
Memory addresses

Figure 2.9 Naming storage locations

Using these variable names, the operation of storing 45 in location 1652, storing 12 in
location 2548, and adding the contents of these two locations is accomplished by these C++
statements:

numl = 45;
num2 = 12;
total = numl + num2;

Each of these statements is called an assignment statement because it tells the computer
to assign (store) a value in a variable. Assignment statements always have an equal sign (=)
and one variable name immediately to the left of the =. The value to the right of the equal
sign is determined first; this value is then assigned to the variable to the left of the equal sign.
The blank spaces in assignment statements are inserted for readability. Assignment state-
ments are explained in more detail in Chapter 3, but for now, just know that you can use
them to store values in variables.

A variable name is useful because it frees programmers from having to think about where
data is physically stored in the computer. You simply use the variable name and let the
compiler worry about where in memory the data is actually stored. Before storing a value in

78

Problem Solving Using C++

a variable, however, C++ requires clearly declaring the type of data to be stored in it. You
must tell the compiler, in advance, the names of variables used for characters, the names used
for integers, and the names used to store other C++ data types.

Declaration Statements

To name a variable and specify the data type that can be stored in it, you use declaration
statements, which have this general form

dataType variableName;

where dataType designates a valid C++ data type, and variableName is the name you
select for the variable. For example, variables used to hold integer values are declared by
using the keyword int to specify the data type and have this form:

int variableName;

Therefore, the following declaration statement declares sum as the name of a variable
capable of storing an integer value:

int sum;

In addition, the keyword long is used to specify a long integer.'® For example, the
statement

long datenum;

declares datenum as a variable used to store a 1long integer. When you’re using the long
qualifier, you can also include the keyword int, so the previous declaration can also be
written as follows:

long int datenum;

Variables used to hold single-precision values are declared by using the keyword float,
and variables used to hold double-precision values are declared by using the keyword
double. For example, the statement

float firstnum;

declares firstnum as a variable used to store a single-precision number. Similarly, the
statement

double secnum;

declares that the variable secnum is used to store a double-precision number.

Although declaration statements can be placed anywhere in a function, typically they’re
grouped together and placed after the function’s opening brace. However, a variable must
always be declared before using it, and like all C++ statements, declaration statements must

10Additionally, the keywords unsigned int are used to specify an integer that can store only non-negative numbers, and the keyword short
specifies a short integer.

Chapter 2 79
Variables and Declaration Statements

Point of Information

Atomic Data

Al the variables declared so far have been used to store atomic data values. An atomic
data value is considered a complete entity and can't be decomposed into a smaller data
type supported by the language. For example, although an integer can be decomposed
into individual digits, C++ doesn’t have a numerical digit type. Instead, each integer is
regarded as a complete value and, therefore, is considered atomic data. Because the inte-
ger data type supports only atomic data values, it's said to be an atomic data type. As
you might expect, doubles, chars, and bools are atomic data types, too.

end with a semicolon. A simple main () function containing declaration statements right
after the opening function brace has this general form:

#include <iostream>
using namespace std;

int main()
{
// declaration statements;

// other statements;

return O;

}

Program 2.7 uses this form in declaring and using four double-precision variables, with
the cout object used to display the contents of one of the variables.

80

Problem Solving Using C++

Program 2.7

#include <iostream>

using namespace std;

int main()

{

double gradel; // declare gradel as a double variable
double grade2; // declare grade2 as a double variable
double total; // declare total as a double variable

double average; // declare average as a double variable

gradel = 85.5;
grade2 = 97.0;

total = gradel + grade2;
average = total/2.0; // divide the total by 2.0
cout << "The average grade 1is " << average << endl;

return O;

The placement of the declaration statements in Program 2.7 is straightforward, although
you’ll see shortly that these four declarations can be combined into a single declaration.
When Program 2.7 runs, the following output is displayed:

The average grade is 91.25

Notice that when a variable name is inserted in a cout statement, the value stored in
the variable is placed on the output stream and displayed.

Just as integer and real (single-precision, double-precision, and long double) variables
must be declared before they can be used, a variable used to store a single character must also
be declared. Character variables are declared by using the keyword char. For example, the
following declaration specifies that ch is a character variable:

char ch;

Program 2.8 illustrates this declaration and the use of cout to display the value stored
in a character variable.

Chapter 2 81
Variables and Declaration Statements

Program 2.8

#include <iostream>

using namespace std;

int main()

{

char ch; // this declares a character variable

ch = 'a'; // store the letter a in ch

cout << "The character stored in ch is " << ch << endl;
ch = 'm'; // now store the letter m in ch

cout << "The character now stored in ch is "<< ch << endl;

return 0;

When Program 2.8 runs, this output is produced:

The character stored in ch is a
The character now stored in ch is m

Notice in Program 2.8 that the first letter stored in the variable ch is a and the second
letter stored is m. Because a variable can be used to store only one value at a time, assigning
m to the variable overwrites the a value automatically.

Multiple Declarations

Variables of the same data type can always be grouped together and declared by using a
single declaration statement, which has this common form:

dataType variableList;
For example, the four separate declarations used in Program 2.7

double gradel;
double grade2;
double total;
double average;

can be replaced with this single declaration statement:
double gradel, grade2, total, average;
Similarly, the two character declarations

char ch;
char key;

82

Problem Solving Using C++

can be replaced with this single declaration statement:
char ch, key;

Declaring multiple variables in a single declaration statement requires giving the data
type of variables only once, separating all variable names by commas, and using only one
semicolon to terminate the declaration. The space after each comma is inserted for
readability and isn’t required.

Declaration statements can also be used to store a value in declared variables. For
example, the declaration statement

int numl = 15;

both declares the variable numl as an integer variable and sets the value of 15 in the variable.
When a declaration statement is used to store a value in a variable, the variable is said to be
initialized. Therefore, in this example, it’s correct to say the variable numl has been initialized
to 15. Similarly, the declaration statements

|
[ee]
~J
o

double gradel = ;
double grade2 = 93.5;
double total;

declare three double-precision variables and initialize two of them. When initializations are
used, good programming practice dictates declaring each initialized variable on a line by
itself. Constants, expressions using only constants (such as 87.0 + 12 - 2), and
expressions using constants and previously initialized variables can be used as initializers for
variables declared within a function. For example, Program 2.7 with declaration initialization
becomes Program 2.7a.

Program 2.7a

#include <iostream>

using namespace std;

int main()

{

double gradel = 85.5;
double grade2 = 97.0;
double total, average;

total = gradel + grade2;
average = total/2.0; // divide the total by 2.0
cout << "The average grade i1s " << average << endl;

return 0;

Chapter 2 83
Variables and Declaration Statements

Notice the blank line after the last declaration statement. Inserting a blank line after
variable declarations placed at the top of a function body is a good programming practice. It
improves a program’s appearance and readability.

An interesting feature of C++ is that variable declarations can be intermixed and even
contained in other statements; the only requirement is that a variable must be declared
before its use. For example, the variable total in Program 2.7a could have been declared
when it was first used with the statement double total = gradel + grade2. In
restricted situations (such as debugging, described in Section 3.7, or in a for loop, described
in Section 5.4), declaring a variable at its first use can be helpful. In general, however, it’s
preferable not to spread out declarations; instead, group them as concisely and clearly as
possible at the top of each function.

Memory Allocation

The declaration statements you have seen so far have performed both software and hardware
tasks. From a software perspective, declaration statements always provide a list of variables
and their data types. In this software role, variable declarations also help control an otherwise
common and troublesome error caused by misspelling a variable’s name in a program. For
example, a variable named distance is declared and initialized by using this statement:

int distance = 26;
Later in the program, the variable is inadvertently misspelled in this statement:
mpg = distnce / gallons;

In languages that don’t require variable declarations, the program treats distnce as a
new variable and assigns it an initial value of 0 or uses whatever value happens to be in the
variable’s storage area. In either case, a value is calculated and assigned to mpg, and finding
the error or even knowing an error occurred could be difficult. These errors are impossible
in C++, however, because the compiler flags distnce as an undeclared variable. The
compiler can’t, of course, detect when one declared variable is mistakenly typed in place of
another declared variable.

In addition to their software role, declaration statements can also perform a hardware
task. Because each data type has its own storage requirements, the computer can allocate
enough storage for a variable only after knowing the variable’s data type. Variable declarations
provide this information, so they can be used to force the compiler to reserve enough physical
memory storage for each variable. Declaration statements used for this hardware task are also
called definition statements because they define or tell the compiler how much memory is
needed for data storage.

All the declaration statements you have encountered so far have also been definition
statements. Later, you’ll see declaration statements that don’t allocate storage and are used
simply to alert the program to the data types of variables created elsewhere in the program.

Figures 2.10a through 2.10d illustrate the operations set in motion by definition
statements. The figures show that definition statements (or declaration statements that also
allocate memory) “tag” the first byte of each set of reserved bytes with a name. This name
is, of course, the variable’s name, and the computer uses it to locate the starting point of a
variable’s reserved memory area.

After a variable has been declared in a program, typically a programmer uses it to refer
to the variable’s contents (its value). The value’s memory location is generally of little
concern to programmers. The compiler, however, must know where each value is stored and

84 Problem Solving Using C++

Tells the computer to

= B

Reserve enough room
for an integer number
int total; '

f 4 bytes

“Tag” the first byte of
Tells the computer to A\ reserved storage with
the name total

Figure 2.10a Defining the integer variable named total

Tells the computer to

Jl

Reserve enough room

for a single-precision number
float slope; ’

f 4 bytes

“Tag” the first byte of
Tells the computer to A\ reserved storage with
the name slope

Figure 2.10b Defining the floating-point variable named slope

Tells the computer to

= i

Reserve enough room
for a double-precision number
double thrust;
f 8 bytes ’

“Tag” the first byte of
Tells the computer to 4\ reserved storage with
the name thrust

Figure 2.10c Defining the double-precision variable named thrust

locate each variable correctly. For this task, the compiler uses the variable name to locate the
first byte of storage previously allocated to the variable. Knowing the variable’s data type
then allows the compiler to store or retrieve the correct number of bytes.

Chapter 2 85
Variables and Declaration Statements

Tells the computer to

= B

Reserve enough room
for a character

’1 byte ’
“Tag” the first byte of

Tells the computer to A\ reserved storage with
| the name key

char key;

Figure 2.10d Defining the character variable named key

Displaying a Variable’s Address?

Every variable has three major items associated with it: its data type, the value stored in it,
and its address. The value stored in the variable is referred to as the variable’s contents, and
the address of the first memory location used for the variable constitutes its address. The
number of locations actually used for the variable, as you have just seen, depends on the
variable’s data type. Figure 2.11 illustrates the relationship between these three items (type,
contents, and location).

One or more bytes in memory
———

Variable

contents
Variable address

Figure 2.11 A typical variable

Programmers are usually concerned only with the value assigned to a variable (its
contents) and give little attention to where the value is stored (its address). For example, take
a look at Program 2.9.

"This topic can be omitted on first reading without loss of subject continuity.

86 Problem Solving Using C++

Program 2.9

#include <iostream>
using namespace std;

int main()

{
int num;

num = 22;

cout << "The value stored in num is " << num << endl;

return O;

The following output is displayed when Program 2.9 is run:
The value stored in num is 22

Program 2.9 merely prints the value 22, which is the contents of the variable num. You
can go further, however, and ask “Where is the number 22 actually stored?” Although the
answer is “in num,” it’s only half the answer. The variable name num is simply a convenient
symbol for actual memory locations, as shown in Figure 2.12.

4 bytes of memory

e
” \

22
XX X X \

Address of first

byte used by num Contents of num

Figure 2.12 The variable num stored somewhere in memory

To determine the address of num, you can use C++’s address operator, &, which means
13 9 . . .
the address of.” Except when used in an expression, the address operator placed in front of
a variable’s name refers to the variable’s address.'? For example, &num means “the address
of num.” Program 2.10 shows you an example of using the address operator.

12When used in declaration statements that create a reference variable or reference argument (see Chapter 6), the ampersand refers to the data
type preceding it. Therefore, the declaration double &num is read as “num is the address of a double” or, more commonly, “num is a reference
to a double.”

Chapter 2 87
Variables and Declaration Statements

g Program 2.10

#include <iostream>
using namespace std;

int main()

{
int num;
num = 22;
cout << "The value stored in num 1is " << num << endl;
cout << "The address of num = " << &num << endl;
return 0;
}
"This is the output of Program 2.10:
The value stored in num is 22
The address of num = 0012FED4
Figure 2.13 illustrates the additional address information provided by Program 2.10’s output.
Clearly, the address output by Program 2.10 depends
4 bytes of memory on the computer used to run the program. Every time
p ~ . Program 2.10 runs, however, it displays the address of the
first memory location used to store num. As Program 2.10’s
output shows, the address display is in hexadecimal
2 notation. This display has no effect on how the program
0012FED4 \ uses addresses internally; it merely gives you a means of
. displaying addresses that’s helpful in understanding them.
Address of first , . . >
byte used by num Contents of num As you 11 see 1n.Chapters 6 gnd 123 using addresses, instead
of just displaying them, is an important and powerful
Figure 2.13 A more complete programming tool.

picture of the variable num

- EXERCISES 2.5

1. (Practice) State whether the following variable names are valid. If they are invalid, state

the reason.
prod_a cl234 abcd _c3 12345
newamp watts Stotal newSal alb2c3d4

9ab6 sum.of average voltsl finvolt

88

Problem Solving Using C++

(Practice) State whether the following variable names are valid. If they are invalid, state
the reason. Also, indicate which of the valid variable names shouldn’t be used because
they convey no information about the variable.

current az243 r2d2 firstnum cc_al
harry sue c3p0 total sum
maximum okay a awesome goforit
3sum for tot.al csfive netpower

(Practice) a. Write a declaration statement to declare that the variable count will be
used to store an integer.

b. Write a declaration statement to declare that the variable volt will be used to store a
floating-point number.

¢. Write a declaration statement to declare that the variable power will be used to store
a double-precision number.

d. Write a declaration statement to declare that the variable keychar will be used to
store a character.

(Practice) Write declaration statements for the following variables:

a. numl, num2, and num3 used to store integer number

b. ampsl, amps2, amps3, and amps4 used to store double-precision numbers

c. voltsl, volts2, and volts3 used to store double-precision numbers

d. codeA, codeB, codeC, codeD, and codeE used to store characters

(Practice) Write declaration statements for the following variables:
a. firstnum and secnum used to store integer
b. speed, acceleration, and distance used to store double-precision numbers

c. thrust used to store a double-precision number

(Modify) Rewrite each of these declaration statements as three separate declarations:
a. int month, day = 30, vyear;

b. double hours, volt, power = 15.62;

c. double price, amount, taxes;

d. char inKey, ch, choice = 'f';

(Desk Check) a. Determine what each statement causes to happen in the following
program:

#include <iostream>
using namespace std;

int main()
{

int numl, num2, total;

numl = 25;

Chapter 2 89
Variables and Declaration Statements

num?2 = 30;

total = numl + num2;

cout << "The total of " << numl << " and "
<< num2 << " is " << total << endl;

return O;

}

b. What output will be printed when the program in Exercise 7a runs?

8. (Practice) What are the three items associated with every variable?

Note for Exercises 9 to 11: Assume that a character requires 1 byte of storage, an integer requires
T 4 bytes, a single-precision number requires 4 bytes, and a double-precision number requires 8
bytes. Variables are assigned storage in the order they're declared. (Review Section 1.6 if you're
unfamiliar with the concept of a byte.) Refer to Figure 2.14 for these exercises.

Addresses

1 ™ 159 160 161 162 163 164 165 166

> 167 168 169 170

>N 175 176 177 178

N TN TN
R TR TR
N TN TN

> 183 184 185 186 187

Figure 2.14 Memory bytes for Exercises 9 to 11

9. (Practice) a. Using Figure 2.14 and assuming the variable name rate is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements. Also, fill in the correct number of bytes with the
initialization data included in the declaration statements. (Use letters for the characters,
not the computer codes that would actually be stored.)

float rate;

char chl = 'M', ch2 = 'E', ¢ch3 = 'LL', chd = 'T';
double taxes;
int num, count = 0;

b. Repeat Exercise 9a, but substitute the actual byte patterns that a computer using the
ASCII code would use to store characters in the variables chl, ch2, ch3, and ch4.
(Hinr. Use Appendix B.)

10. (Practice) a. Using Figure 2.14 and assuming the variable named cnl is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements. Also, fill in the correct number of bytes with the
initialization data included in the declaration statements. (Use letters for the characters,
not the computer codes that would actually be stored.)

90

11.

Problem Solving Using C++

char cnl = 'P', cn2 = 'E', cn3 = 'R', cn4d = 'F', cnb = 'E';
char cn6 = 'C', cn7 = 'T', key = '"\\', sch = '\'', inc = 'A';
char incl = 'T';

b. Repeat Exercise 10a, but substitute the actual byte patterns a computer using the ASCII
code would use to store characters in each of the declared variables. (Hinz: Use Table 2.3.)

(Practice) Using Figure 2.14 and assuming the variable name miles is assigned to the
byte at memory address 159, determine the addresses corresponding to each variable
declared in the following statements:

float miles;
int count, num;
double dist, temp;

2.6

A Case Study: Radar Speed Traps

In this section, the software development procedure explained in Section 1.3 is applied to a
specific programming problem. Although each problem you explore in the case studies in
Part One is different, you’ll see that this software development procedure works for all of
them to produce a complete program. It forms the foundation for all programs developed in
Part One of this book.

A highway-patrol speed detection radar emits a beam of microwaves at a frequency
designated as f.. The beam is reflected off an approaching car, and the radar unit picks up
and analyzes the reflected beam, f.. The reflected beam’s frequency is shifted slightly from
/. to f, because of the car’s motion. The relationship between the speed of the car, v, in miles
per hour (mph), and the two microwave frequencies is

v =(6.685 108)[%] mph

where the emitted waves have a frequency of £, = 2 x 10" sec™’. Using the given formula,
you’ll write a C++ program, using the software development procedure, to calculate and
display the speed corresponding to a received frequency of 2.000004 x 10" sec™.

Step 1 Analyze the Problem

For this problem, a single output is required: the speed of the car. The input items required
to solve for the speed are the emitted frequency, £, and the received frequency, f,.

Step 2 Develop a Solution

The algorithm for transforming the three input items into the required output item is given
by the formula v = 6.685 x 10°(f. - £.) | (f. + f.). Therefore, the complete algorithm for the
program solution is as follows:

Assign values to f. and f,
Calculate the speed using the formula v = 6.685 x 105(f, - f.) / (f, + f.)
Display the speed

Chapter 2 91
A Case Study: Radar Speed Traps

A hand calculation, using the data £, = 2 x 10" sec™ and £, = 2.000004 x 10'° sec’, yields
a speed of 66.85 mph.

Step 3 Code the Solution

Program 2.11 provides the necessary code.

g Program 2.11

#include <iostream>

using namespace std;

int main()

{

double speed, fe, fr;

fe
fr

2el0;
2.0000004el10;

speed = 6.685e8 * (fr - fe) / (fr + fe);
cout << "The speed is " << gpeed << " miles/hour " << endl;

return O;

Program 2.11 begins with an #include preprocessor command followed by a main ()
function. The main () function in Program 2.11 contains one declaration statement, three
assignment statements, and one output statement. The assignment statements fe = 2e10;
and fr = 2.0000004e10; are used to initialize the fe and fr variables. The assignment
statement

speed = 6.685e8 * (fr - fe) / (fr + fe);

calculates a value for the variable speed. When Program 2.11 is compiled and executed, the
following output is produced:

The speed is 66.85 miles/hour

Step 4 Test and Correct the Program

The last step in the development procedure is to test the output. Because the single calculation
and displayed value agree with the previous hand calculation, you have verified that the program
operates correctly. Now you can use the program for different values of received frequencies.
Note that if the parentheses weren’t placed correctly in the assignment statement that calculates
a value for speed, the displayed value wouldn’t agree with your previous hand calculation. This
would alert you to the fact that there’s an error in the program.

92 Problem Solving Using C++

EXERCISES 2.6

1. (Modify) a. Modify Program 2.11 to calculate the speed of a car whose received radar
frequency is 2.00000035 x 10" sec™.

b. Compile and execute the program written for Exercise 1a.

2. (Modify) a. Modify Program 2.11 to determine the frequency returned by a car traveling
at 55 mph. Your program should produce the following display (replacing the underlines
with the values your program calculates):

The returned frequency corresponding to 55 mph is

b. Compile and execute the program written for Exercise 2a. Make sure to do a hand
calculation so that you can verify the results your program produces.

c. After verifying the results of the program written in Exercise 2a, modify the program
to calculate the return frequency of a car traveling at 75 mph.

3. (Telephony) In a directly connected telephone network, all telephones are directly con-
nected and don’t require a central switching station to establish calls between two
telephones. The number of lines needed to maintain a directly connected network for 7
telephones is given by this formula:

n(n-1)

no. of lines needed =

For example, directly connecting four telephones requires six separate lines (see Figure 2.15).
Adding a fifth telephone to this network requires an additional 4 lines, for a total of 10 lines.

Telephone Telephone
#4 #3
-~ line 3 -~
line 4 line 2
<} v/
Wwe e 5
- -
line 1
Telephone Telephone
#1 #2

Figure 2.15 Directly connecting four telephones

Chapter 2 93
A Case Study: Radar Speed Traps

a. Using the given formula, write a C++ program that determines the number of lines
required for directly connecting 100 telephones. The input for this problem is the
number of telephones, denoted as # in the formula, and the output is the total num-
ber of lines required to directly connect the input number of telephones.

b. Compile and execute the program written for Exercise 3a.

. (Modify) Modify the program you wrote for Exercise 3 and include a new variable to
represent the additional number of telephones to be connected to an existing network,
and initialize this variable to 10. For this program, two outputs are required: the number
of direct lines for 100 telephones and the additional number of lines needed when 10
telephones are added to the existing network.

. (Conversion) a. Design, write, compile, and execute a C++ program to convert tempera-
ture in degrees Fahrenheit to degrees Celsius. This is the equation for this conversion:

Celsius = 5.0/9.0 (Fahrenheit - 32.0)

Have your program convert and display the Celsius temperature corresponding to 98.6
degrees Fahrenheit. Your program should produce the following display (replacing the
underlines with the correct values):

For a Fahrenheit temperature of degrees,
the equivalent Celsius temperature is degrees.

b. Check the values computed by your program by hand. After verifying that your pro-
gram is working correctly, modify it to convert 86.5 degrees Fahrenheit to its equiva-
lent Celsius value.

. (Electrical Eng.) a. Write, compile, and execute a C++ program to calculate the resis-
tance of a series circuit consisting of twelve 56-ohm, twenty 39-ohm, thirty-two 27-ohm,
and twenty-seven 15-ohm resistors. The total resistance of a series circuit is the sum of all
individual resistances. Your program should produce the following display (replacing the
xxxx with the actual resistance value your program calculates):

The total resistance, in ohms, 1s XXXX

b. Manually check the values computed by your program. After verifying that your pro-
gram is working correctly, modify it to calculate the resistance of a series circuit con-
sisting of seventeen 39-ohm resistors, nineteen 27-ohm resistors, and forty-two 15-ohm
resistors.

. (Thermodynamics) a. Design, write, compile, and execute a program that determines
the work performed by a piston engine providing a force of 1000 N over a distance of 15
centimeters. The following formula is used to determine the work, W, performed:
W=Fd

F is the force provided by the piston in Newtons.

d 1s the distance the piston moves in meters.

b. Manually check the values computed by your program. After verifying that your pro-
gram is working correctly, modify it to determine the work performed by six pistons,
each providing a force of 1500 N over a distance of 20 centimeters.

. (Civil Eng.) a. Design, write, compile, and execute a program that determines the stress on
a steel I-beam having a rectangular moment of inertia of 21.4 in*, and a height of 6 inches,

94

Problem Solving Using C++

when a load of 700 lbs is placed 8 feet from the fixed end. The stress placed on the fixed
end of a symmetrical steel I-beam, as shown in Figure 2.16, can be determined by this
formula:

Ldc
I

S is the stress in Ibs/in?.

§=

L is the weight, in lbs, of the load placed on the beam.
[is the beam’s rectangular moment of inertia in units of in®.

d is the distance in inches the load is placed from the fixed end of the beam (techni-
cally referred to as the “moment arm”).

¢ 1s one-half the height in inches of a symmetrical beam.

b. Check the values computed by your program by hand. After verifying that your pro-
gram is working correctly, modify it to determine the stress when the same load is
placed at the end of an 8-foot 2” x 4” wooden beam, with a rectangular moment of
inertia of 10.67 in®.

Figure 2.16 Determining the stress on a symmetrical I-beam

2.7

Common Programming Errors

Part of learning any programming language is making the elementary mistakes commonly
encountered when you begin using the language. These mistakes tend to be quite
frustratingbecause each language has its own set of common programming errors waiting for
the unwary. When you start programming in C++, common errors include the following.

1. Omitting the parentheses after main ().

2. Omitting or incorrectly typing the opening brace, {, that signifies the start of a
function body.

3. Omitting or incorrectly typing the closing brace, }, that signifies the end of a function.

4. Misspelling the name of an object or function, such as typing cot instead of cout.

5. Forgetting to enclose a string sent to cout with quotation marks.

2.8

Chapter 2 95
Chapter Summary

. Forgetting to separate data streams sent to cout with an insertion symbol, <<.
. Omitting the semicolon at the end of each C++ statement.
. Adding a semicolon at the end of the #include preprocessor command.
. Forgetting the \n to indicate a new line.
. Incorrectly typing the letter O for the number 0 or vice versa. Incorrectly typing the
letter 1 for the number 1 or vice versa.
11. Forgetting to declare all variables used in a program. The compiler detects this error,
and an error message is generated for all undeclared variables.
12. Storing an inappropriate data type in a declared variable. The compiler detects this error,
and the assigned value is converted to the data type of the variable it’s assigned to.
13. Using a variable in an expression before a value has been assigned to the variable.
T'he value that happens to be in the variable when the variable is used is the value
that’s used when the expression is evaluated. As such, the result of the expression is
meaningless.
14. Dividing integer values incorrectly. This error is usually hidden in a larger expression
and can be troublesome to detect. For example, the expression
3.425 + 2/3 + 7.9
yields the same result as the expression
3.425 + 7.9
because the integer division of 2/3 is 0.
15. Mixing data types in the same expression without clearly understanding the effect.
Because C++ allows expressions with “mixed” data types, understanding the order
of evaluation and the data type of all intermediate calculations is important. As a
general rule, it’s better never to mix data types in an expression unless you want a
specific effect.

SO X

Errors 3, 5, 7, 8, and 9 in this list are the most common with beginning programmers, and
even experienced programmers occasionally make error 10. A worthwhile practice is writing
a program and introducing each error, one at a time, to see what error messages, if any, your
compiler produces. When these error messages appear because of inadvertent mistakes,
you’ll have had experience in understanding the messages and correcting the errors.

A major error that all beginning programmers make is rushing to code and running a
program before fully understanding its requirements and the algorithms and procedures used
to produce the desired result. A symptom of this haste is the lack of a written program or
even a program outline. Many problems can be caught just by checking a copy of the program
(handwritten or onscreen) before it’s compiled.

Chapter Summary

1. A C++ program consists of one or more modules called functions. One of these functions
must be called main (). The main () function identifies the starting point of a C++
program.

2. The simplest C++ program consists of the single function main ().

96

Problem Solving Using C++

3. Following the function name, the body of a function has the following general form:

{

All C++ statements in here;

}
4. All C++ statements must be terminated by a semicolon.

S. Four types of data were introduced in this chapter: integer, floating-point, character, and
Boolean. C++ recognizes each of these data types, in addition to other types you learn
about in later chapters.

6. The cout object can be used to display all C++ data types.

7. When the cout object is used in a program, the preprocessor command #include
<iostream> and the statement using namespace std; must be placed at the top
of the program. The #include <iostream> preprocessor command does not end
with a semicolon.

8. Every variable in a C++ program must be declared and the type of value it can store must
be specified. Declaration statements can be placed anywhere in the function, although
a variable can be used only after it’s declared. Variables can also be initialized when they
are declared. Additionally, variables of the same type can be declared with a single
declaration statement. Variable declaration statements have this general form:

dataType variableName (s);
9. A simple C++ program containing declaration statements has this typical form:
#include <iostream>

using namespace std;

int main()

{
// declaration statements;
// other statements;

return 0;

}

10. Declaration statements always play the software role of informing the compiler of a

function’s valid variable names. When a variable declaration also causes the computer to

set aside memory locations for the variable, the declaration statement is called a

definition statement. (All declarations used in this chapter have also been definition

statements.)

11. The sizeof () operator can be used to determine the amount of storage reserved for

variables.

Programming Projects for Chapter 2

1. (General Math) a. Design, write, compile, and execute a C++ program that calculates
and displays the perimeter of a two-dimensional triangle with sides ¢ = 1 in, 4 = 1.5 in,
and ¢ = 2 in, as shown in Figure 2.17. The perimeter is given by this formula:

perimeter = a + b + ¢

Chapter 2 97
Programming Projects

N

f base i

Figure 2.17 A two-dimensional triangle

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the perimeter of a two-
dimensional triangle with sides ¢ = 1.62 in, 4 = 2.13 in, and ¢ = 3.2 in.

. (General Math) a. Design, write, compile, and execute a C++ program that calculates
and displays the area of a two-dimensional triangle, such as the one in Figure 2.17, with
a base of 1 in and a height of 1.5 in. The area is given by this formula:

Area = Yz (base) x (height)

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the area of a two-dimensional
triangle with a base of 2 in and a height of 1.67 in.

. (General Math) a. Design, write, compile, and execute a C++ program to calculate the
volume of a sphere with a radius, 7, of 3 in. The volume is given by this formula:

4xr’

Volume =

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the volume of a cube with a
radius of 1.67 in.

. (Physics) a. Design, write, compile, and execute a C++ program to calculate the elapsed
time it takes to make a 183.67 mile trip. This is the formula for computing elapsed time:

elapsed time = total distance | average speed
The average speed during the trip is 58 mph.

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the elapsed time it takes to make
a 372-mile trip at an average speed of 67 mph.

. (Numerical) a. Design, write, compile, and execute a C++ program to calculate the sum
of the integers from 1 to 100. This is the formula for calculating this sum:

sum = (nf2) (2 x a + (n - 1)d)

7 1s the number of integers to be added.
a is the first number.

d is the difference between each number.

98

Problem Solving Using C++

b. Manually check the values computed by your program. After verifying that your
program is working correctly, modify it to determine the sum of the integers from 100
to 1000.

. (Physics and Electrical) The energy, E, of a photon, in Joules, J, is provided by this

formula:
E=Pxf

P is 6.6256 x 10°* Joules/sec (known as Planck’s constant).
fis frequency in Hertz (Hz) of the photon.

a. Given that the photon frequency of visible light is in the 3.84 x 10'* Hz to 7.69 x 10'*
Hz range, design, write, compile, and execute a C++ program to calculate the energy

of light with a photon frequency of 5.7 x 10'*. Verify the result produced by your
program with a hand calculation.

b. After verifying that your program is working correctly, use it to determine the photon
energy output of a 60 Hz power line.

. (Physics) a. The weight of an object on Earth is a measurement of the downward force

on the object caused by Earth’s gravity. The formula for this force is determined by using
Newton’s Second Law:

F=Mx A,

I is the object’s weight.
M is the object’s mass.
A, is the acceleration caused by Earth’s gravity (32.2 ft/sec’ = 9.82 m/s?).

Given this information, design, write, compile, and execute a C++ program to calculate
the weight in Ibf of a person having a mass of 4 Ibm. Verify the result produced by your
program with a hand calculation.

b. After verifying that your program is working correctly, use it to determine the weight,
on Earth, of a person having a mass of 3.2 Ibm.

. (Physics) a. Rewrite the program you wrote for Exercise 7 to provide the mass of a

person as an output, given his or her weight as an input to the program. Use your program
to determine the mass of a person who weighs 140 Ibf on Earth.

b. Modify the program written for Exercise 7a to also output the person’s weight on Mars
and the moon. The pull of gravity on Mars is 12.54 ft/sec* = 3.728 m/s*, and on the
moon is 5.33 ft/sec’ = 1.625 m/s*.

. (Civil Eng.) The maximum load that can be placed at the end of a symmetrical wooden

beam, such as the rectangular beam shown in Figure 2.18, can be calculated as the following:

L:le
dXxc

L is the maximum weight in Ibs of the load placed on the beam.
S is the stress in lbs/in?.

[is the beam’s rectangular moment of inertia in units of in*.

10.

11.

Chapter 2 99
Programming Projects

d is the distance in inches that the load is placed from the fixed end of the beam (the
“moment arm”).

¢ 1s one-half the height in inches of the symmetrical beam.

h=4||

Figure 2.18 Calculating a symmetrical wooden beam’s maximum load

For a 2” x 4” wooden beam, the rectangular moment of inertia is given by this formula:

_base X height® 2 x 4°
12 12

¢c=%#41n) =2 in

1 =10.67

a. Using this information, design, write, compile, and execute a C++ program that
computes the maximum load in Ibs that can be placed at the end of an 8-foot 2” x 4”
wooden beam so that the stress on the fixed end is 3000 1b/in®.

b. Use the program developed in Exercise 9a to determine the maximum load in Ibs that
can be placed at the end of a 3” x 6” wooden beam so that the stress on the fixed end
is 3000 Ibs/in*.

(Civil Eng.) Modify the program written for Exercise 9 to determine the maximum load
that can be placed at the end of an 8-foot I-beam, shown in Figure 2.19, so that the stress
on the fixed end is 20,000 Ibs/in. Use the fact that this beam’s rectangular moment of
inertia is 21.4in* and the value of ¢ is 3 in.

(Mechanical Eng.) The minimum radius required for a cylindrical rod, such as one
supporting a bicycle pedal (see Figure 2.20), to provide enough support for the pressure

100 Problem Solving Using C++

Figure 2.19 Calculating an I-beam’s maximum load

exerted by the rider’s foot yet not exceed the stress placed on the crank arm’s sprocket
attachment, is provided by this formula:

; dXP
=
XS

7 is the radius of the cylindrical rod in inches.
d is the length of the crank arm in inches.

P is the weight placed on the pedal in Ibs.

S is the stress in Ibs/in®.

Figure 2.20 Determining the minimum radius of a bicycle’s crank arm

Using this information, design, write, compile, and execute a C++ program that computes
the value of 7 for a crank arm that is 7 inches long, accommodates a maximum weight of
300 Ibs, and is able to sustain a stress of 10,000 Ibs/in®.

Chapter 2 101
Programming Projects

Engineering and Scientific Disciplines

Thermal Science

Thermal science is the field of engineering that includes both thermodynamics and
heat transfer. Thermodynamics developed as a science, starting in the early 19th cen-
tury, in response to the development of steam engines at that time. The intent was to
understand the physical laws governing these engines in an effort to increase their
efficiency. This led to analyzing and understanding the effects of temperature, pressure,
and volume on steam engines and how heat moved from a hot boiler to a colder con-
denser and the maximum amount of work that could be generated from this flow. It
now constitutes a science that includes four basic laws, known as the Oth, 1st, 2nd,
and 3rd laws of thermodynamics.

Using these four laws, thermodynamics more broadly applies to large-scale systems,
such as a class of engines (diesel, gas turbine, jet, rocket, and so forth) or the complete
solar system. The central concept of these thermodynamic laws is energy, which is the
ability to do work, and the relationship between heat, energy, and work. The fields of
chemistry, chemical engineering, aerospace, mechanical engineering, biomedical engi-
neering, material science, fluid mechanics, and physics make use of thermodynamic
effects.

Heat transfer, a field derived from the 1st and 2nd laws of thermodynamics, is
technically defined as the movement of energy between substances of different
temperatures. Central to heat transfer is the concept of temperature, which is a mea-
surement of the motion of atoms and molecules in a substance. Temperature deter-
mines the direction of heat flow between two objects placed in contact. If no heat
flow occurs, the two objects have the same temperature (a consequence of the 1st
law); otherwise, heat flows from the hotter object to the colder object (a consequence
of the 2nd law). Heat transfer uses these three modes of transfer:

® Conduction is the transfer of heat through a substance caused by molecular
movement in the substance. Examples are the transfer of heat through a metal
rod if one side of the rod is at a higher temperature than the other, and heat loss
through a heated house when the outside temperature is colder than the inside.

® Convection is the transfer of heat by the motion of a heated fluid, such as water
or air. An example is the expansion of hot air into cooler air.

e Radiation is the transfer of heat away from an object emitting electromagnetic
waves. An example is the electromagnetic waves emitted by the sun.

Each transfer occurs over time, so heat transfer calculations are typically concerned
with determining the rate of transfer initially. Given the rate, the total amount of heat
transferred over a fixed interval of time can always be calculated.

This page intentionally left blank

Chapter

3.1 Assignment Operations
3.2 Formatting Numbers for
Program Output Assignment,
3.3 Using Mathematical Library Formatting, and
Functions Interactive Input
3.4 Program Input Using cin
3.5 Symbolic Constants
3.6 A Case Study: Acid Rain
3.7 A Closer Look: Programming
Errors
3.8 Common Programming Errors
3.9 Chapter Summary
L ,.
\\\In e
In Chapter 2, you explored how results are displayed with C++’s cout statement and how numerical
data is stored and processed by using variables and assignment statements. In this chapter, you complete
your introduction to C++ by learning about additional processing and input capabilities.
3.1 Assignment Operations

You learned about simple assignment statements in Chapter 2. An assignment statement is
the most basic C++ statement for assigning values to variables and performing computations.

This statement has the following syntax:

variable = expression;

104 Assignment, Formatting, and Interactive Input

The simplest expression in C++ is a single constant. In the following assignment
statements, the operand to the right of the equal sign is a constant:

length = 25;
width = 17.5;

In these assignment statements, the value of the constant to the right of the equal sign
is assigned to the variable on the left of the equal sign. Note that the equal sign in C++
doesn’t have the same meaning as an equal sign in algebra. The equal sign in an assignment
statement tells the computer first to determine the value of the operand to the right of the
equal sign, and then to store (or assign) that value in the locations associated with the variable
to the left of the equal sign. For example, the C++ statement length = 25; is read
“length is assigned the value 25.” The blank spaces in the assignment statement are
inserted for readability only.

Recall that a variable can be initialized when it’s declared. If an initialization isn’t done
in the declaration statement, the variable should be assigned a value with an assignment
statement or input operation before it’s used in any computation. Subsequent assignment
statements can, of course, be used to change the value assigned to a variable. For example,
assume the following statements are executed one after another, and slope wasn’t initialized
when it was declared:

|
w
~J

slope
slope = 6.28;

The first assignment statement assigns the value of 3.7 to the variable named slope.!
The next assignment statement causes the computer to assign a value of 6.28 to slope. The
3.7 that was in slope is overwritten with the new value of 6.28 because a variable can store
only one value at a time. Sometimes it’s useful to think of the variable to the left of the equal
sign as a temporary parking spot in a huge parking lot. Just as a parking spot can be used by
only one car at a time, each variable can store only one value at a time. “Parking” a new value
in a variable automatically causes the program to remove any value parked there previously.

In addition to being a constant, the operand to the right of the equal sign in an
assignment statement can be a variable or any other valid C++ expression. An expression is
any combination of constants, variables, and function calls that can be evaluated to yield a
result. Therefore, the expression in an assignment statement can be used to perform
calculations by using the arithmetic operators introduced in Section 2.4. The following are
examples of assignment statements using expressions containing these operators:

sum = 3 + 7;

diff = 15 - 6;

product = .05 * 14.6;
tally = count + 1;
newtotal = 18.3 + total;

taxes = .06 * amount;
totalWeight = factor * weight;
average = sum / items;

slope = (y2 - vyl) / (x2 - x1);

"Because it’s the first time a value is explicitly assigned to this variable, it’s often referred to as an “initialization.” This term stems from historical
usage that said a variable was initialized the first time a value was assigned to it. Under this usage, it’s correct to say that “slope is initialized
to 3.7.” From an implementation viewpoint, however, this statement is incorrect because the C++ compiler handles an assignment operation
differently from an initialization; an initialization can happen only when a variable is created by a declaration statement. This difference is
important only when using C++’s class features and is explained in detail in Section 10.1.

Chapter 3 105
Assignment Operations

As always in an assignment statement, the program first calculates the value of the
expression to the right of the equal sign, and then stores this value in the variable to the left
of the equal sign. For example, in the assignment statement totalWeight = factor *
weight;, the arithmetic expression factor * weight is evaluated first to yield a result.
This result, which is a number, is then stored in the variable totalWeight.

In writing assignment expressions, you must be aware of two important considerations.
Because the expression to the right of the equal sign is evaluated first, all variables used in
the expression must previously have been given valid values if the result is to make sense.
For example, the assignment statement totalWeight = factor * weight; causes a
valid number to be stored in totalWeight only if the programmer takes care to assign valid
numbers first to factor and then to weight. Therefore, the following sequence of
statements tells you the values used to obtain the result that will be stored in totalWeight:

factor = 1.06;
weight = 155.0;
totalWeight = factor * weight;

Figure 3.1 illustrates the values stored in the variables factor, weight, and
totalWeight.

factor weight totalWeight

1.06 ' 155.0 ' 164.30 ‘

Figure 3.1 Values stored in variables

The second consideration is that because the value of an expression is stored in the
variable to the left of the equal sign, only one variable can be listed in this position. For
example, the assignment statement

amount + 1892 = 1000 + 10 * 5;

is invalid. The expression on the right evaluates to the integer 1050, which can only be stored
in a variable. Because amount + 1892 isn’t a valid variable name, the compiler doesn’t
know where to store the calculated value.

Program 3.1 illustrates using assignment statements to calculate the volume of a cylinder.
As shown in Figure 3.2, the volume of a cylinder is determined by the formula volume = wrh,
where 7 is the radius of the cylinder, /4 is the height, and 7 is the constant 3.1416 (accurate
to four decimal places).

Figure 3.2 Determining the volume of a cylinder

106 Assignment, Formatting, and Interactive Input

Program 3.1

// this program calculates the volume of a cylinder,
// given its radius and height

#include <iostream>

using namespace std;

int main()

{
double radius, height, volume;
radius = 2.5;
height = 16.0;
volume = 3.1416 * radius * radius * height;
cout << "The volume of the cylinder is " << volume << endl;
return O;
}

When Program 3.1 is compiled and executed, this is the output:

The volume of the cylinder is 314.16

"Take a look at the flow of control the computer uses in executing Program 3.1. Program
execution begins with the first statement in the body of the main () function and continues
sequentially, statement by statement, until the closing brace of main () is encountered.

"This sequential flow of control is true for all programs. The computer works on one
statement at a time, executing that statement with no knowledge of what the next statement
will be. This sequential execution explains why all operands used in an expression must have
values assigned to them before the expression is evaluated. When the computer executes this
statement in Program 3.1,

volume = 3.1416 * radius * radius * height;

it uses whatever value is stored in the variables radius and height at the time the
assignment statement is executed.? If no values have been specifically assigned to these
variables before they’re used in the assignment statement, the computer uses whatever
values happen to occupy these variables when they are referenced. (Most C++ compilers
initialize all variables to zero automatically.) The computer doesn’t “look ahead” to see
whether you assign values to these variables later in the program.

In C++, the equal sign, =, used in assignment statements is an operator, which differs
from the way most other high-level languages process this symbol. In C++ (as in C), the =
symbol is called the assignment operator, and an expression using this operator, such as
interest = principal * rate, is an assignment expression. Because the assignment

2Because C++ doesn’t have an exponentiation operator, the square of the radius is obtained by the term radius * radius. Section 3.3
introduces C++’s power function pow (), which allows you to raise a number to a power.

Chapter 3 107
Assignment Operations

operator has a lower precedence than any other arithmetic operator, the value of any
expression to the right of the equal sign is evaluated first, before the assignment.

Like all expressions, an assignment expression has a value, which is the value assigned
to the variable on the left of the assignment operator. For example, the expression a = 5
assigns a value of 5 to the variable a and results in the expression also having a value of 5.
The expression’s value can always be verified by using a statement such as the following:

cout << "The value of the expression is " << (a = 5);

"This statement displays the value of the expression, not the contents of the variable a.
Although both the variable’s contents and the expression have the same value, it’s worth
realizing that you’re dealing with two distinct entities.

From a programming perspective, it’s the actual assignment of a value to a variable that’s
important in an assignment expression; the final value of the assignment expression is of little
consequence. However, the fact that assignment expressions have a value has implications
that must be considered when you learn about C++’s relational operators, which are explained
in the next chapter (Section 4.1).

Any expression terminated by a semicolon becomes a C++ statement. The most common
example is the assignment statement, which is simply an assignment expression terminated
with a semicolon. For example, terminating the assignment expression a = 33 with a
semicolon results in the assignment statement a = 33 ;, which can be used in a program on
a line by itself.

Because the equal sign is an operator in C++, multiple assignments are possible in the
same expression or its equivalent statement. For example, in the expression a = b = ¢ =
25, all the assignment operators have the same precedence. Because the assignment operator
has a right-to-left associativity, the final evaluation proceeds in this sequence:

c = 25
b =c¢c
a=>,b

This sequence of expressions, which has the effect of assigning the number 25 to each
variable, can be represented as:

a = (b = (c = 25))

Appending a semicolon to the original expression results in this multiple assignment
statement:

This statement assigns the value 25 to the three variables, equivalent to the following order:

c = 25;
b = 25;
a = 25;
Coercion

When working with assignment statements, keep in mind the data type assigned to values
on both sides of the expression because data type conversions occur across assignment
operators. In other words, the value of the expression to the right of the assignment operator
is converted to the data type of the variable to the left of the assignment operator. This type

108 Assignment, Formatting, and Interactive Input

Point of Information

lvalues and rvalues

The terms 1value and rvalue are often used in programming technology. These
terms are language independent and are used to designate the following: An 1value
can have a value assigned to it, but an rvalue can't.

In both C and C++, an 1value can appear on both the left and right sides of an
assignment operator, but an rvalue can appear only to the right of an assignment
operator. All the variables you have encountered can be an 1value or rvalue, but a
number can be only an rvalue. Not all variables, however, can be 1values and
rvalues. For example, an array type, introduced in Chapter 7, can’t be an 1value or
rvalue, but elements in an array can be both.

of conversion is called a coercion because the value assigned to the variable on the left side
of the assignment operator is forced into the data type of the variable to which it’s assigned.

An example of a coercion occurs when an integer value is assigned to a real variable; this
assignment causes the integer to be converted to a real value. Similarly, assigning a real value
to an integer variable forces conversion of the real value to an integer, which always results
in losing the fractional part of the number because of truncation. For example, if temp is an
integer variable, the assignment temp = 25.89 causes the integer value 25 to be stored in
the integer variable temp.3

A more complete example of data type conversions, which includes both mixed-mode
and assignment conversion, is the evaluation of the expression

a=>b *d

where a and b are integer variables and d is a single-precision variable. When the mixed-mode
expression b * d is evaluated,* the value of d used in the expression is converted to a
double-precision number for purposes of computation. (The value stored in d remains
a single-precision number.) Because one of the operands is a double-precision variable, the value
of the integer variable b is converted to a double-precision number for the computation. (Again,
the value stored in b remains an integer.) The resulting value of the expression b * d is a
double-precision number. Finally, data type conversion across the assignment operator comes
into play. Because the left side of the assignment operator is an integer variable, the double-
precision value of the expression (b * d) is truncated to an integer value and stored in the
variable a.

Assignment Variations

Although only one variable is allowed immediately to the left of the equal sign in an
assignment expression, the variable to the left of the equal sign can also be used to the right.
For example, the assignment expression sum = sum + 10 is valid. Clearly, as an algebraic
equation, sum could never be equal to itself plus 10. In C++, however, sum = sum + 10
IS 7ot an equation—it’s an expression evaluated in two major steps: First, the value of sum

3The correct integer portion is retained only when it’s within the range of integers the compiler allows.
“Review the precedence and associativity rules in Section 2.4 for the evaluation of mixed-mode expressions, if necessary.

Chapter 3 109
Assignment Operations

+ 10 is calculated, and second, the computed value is stored in sum. See whether you can
determine the output of Program 3.2.

Program 3.2

#include <iostream>

using namespace std;

int main()

{

int sum;

sum = 25;

cout << "The number stored in sum is " << sum << endl;

sum = sum + 10;

cout << "The number now stored in sum is " << sum << endl;

return 0;

In Program 3.2, the assignment statement sum = 25; tells the computer to store the
number 25 in sum, as shown in Figure 3.3.

sum

25 ’

Figure 3.3 The integer 25 is stored in sum

The first cout statement displays the value stored in sum with the message The number
stored in sum is 25. The second assignment statement, sum = sum + 10;, causes the
program to retrieve the 25 stored in sum and add 10 to this number, yielding 35. The number
35 is then stored in the variable to the left of the equal sign, which is the variable sum. The 25
that was in sum is simply overwritten with the new value of 35 (see Figure 3.4).

sum New value
Old value is d (35)
. \ 1
overwritten 257 oy ' is stored

Figure 3.4 sum = sum + 10; causes a new value to be stored in sum

110

Assignment, Formatting, and Interactive Input

Assignment expressions such as sum = sum + 25, which use the same variable on both
sides of the assignment operator, can be written by using the following shortcut assignment
operators:

+= —= * = /=

oe

For example, the expression sum = sum + 10 can be written as sum += 10. Similarly,
the expression price *= rate is equivalent to the expression price = price * rate.
In using these new assignment operators, note that the variable to the left of the assignment
operator is applied to the complete expression on the right. For example, the expression
price *= rate + 1 is equivalent to the expression price = price * (rate + 1),
not price = price * rate + 1.

Accumulating

Assignment expressions, such as sum += 10 or its equivalent, sum = sum + 10, are
common in programming. These expressions are required in accumulating subtotals when
data is entered one number at a time. For example, if you want to add the numbers 96, 70,
85, and 60 in calculator fashion, the following statements could be used:

Statement Value in sum
sum = 0; 0

sum = sum + 96; 96

sum = sum + 70; 166

sum = sum + 85; 251

sum = sum + 60; 311

The first statement initializes sum to 0, which removes any number stored in sum that
would invalidate the final total (a “garbage value”). As each number is added, the value
stored in sum is increased accordingly. After completion of the last statement, sum contains
the total of all the added numbers. Program 3.3 illustrates the effect of these statements by
displaying sum’s contents after each addition.

Program 3.3

#include <iostream>
using namespace std;

int main()

{
int sum;
sum = 0;
cout << "The value of
sum = sum + 96;
cout << " sum is now
sum = sum + 70;
cout << " sum is now
sum = sum + 85;
cout << " sum is now
sum = sum + 60;
cout << "

return 0;

sum is initially set to

"

Chapter

<< sum << endl;

<< sum << endl;

<< sum

The final sum is "

<< endl;

<< sum << endl;

3

Assignment Operations

<< sum << endl;

111

Program 3.3 displays this output:

The value of
sum is now
sum is now
sum 1s now
The

sum is initially set to O

96
166
251

final sum is 311

Although Program 3.3 isn’t a practical program (because adding the numbers by hand is
easier), it does illustrate the subtotaling effect of repeated use of statements having this form:

variable = variable + new\Value;

This type of statement is called an accumulation statement. You’ll find many uses for
accumulation statements when you become more familiar with the repetition statements
introduced in Chapter 5.

Counting

The counting statement, which is an assignment statement similar to the accumulating
statement, has the following form:

variable = variable + fixedNumber;

112 Assignment, Formatting, and Interactive Input

Examples of counting statements are as follows:

i =1+ 1;
n=n+1;
count = count + 1;
jo=3+2;

m=m + 2;
kk = kk + 3;

In these examples, the same variable is used on both sides of the equal sign. After the
statement is executed, the value of the variable is increased by a fixed amount. In the first
three examples, the variables i, n, and count have been increased by one. In the next two
examples, the variables have been increased by two, and in the final example, the variable
kk has been increased by three.

For the case in which a variable is increased or decreased by only one, C++ provides two
unary operators: increment and decrement operators. Using the increment operator,” ++, the
expression variable = variable + 1 can be replaced by the expression variable++
or the expression ++variable. Here are examples of the increment operator:

Expression Alternative
i =1+1 i++ or ++1
n=n+1 n++ Or ++n
count = count + 1 count++ Or ++count

Program 3.4 illustrates the use of the increment operator.

SAs a historical note, the ++ in C++’s name was inspired by the increment operator symbol. It was used to indicate that C++ was the next
increment to the C language.

Chapter 3 113
Assignment Operations

Program 3.4

#include <iostream>
using namespace std;

int main()
{

int count;

count = 0;

cout << "The initial value of count is " << count << endl;
count++;

cout << " count is now " << count << endl;

count++;

cout << " count is now " << count << endl;

count++;

cout << " count 1s now " << count << endl;

count++;

cout << " count is now " << count << endl;

return 0;

This is the output displayed by Program 3.4:

The initial value of count is 0
count is now 1
count is now 2
count 1is now 3
count is now 4

When the ++ operator appears before a variable, it’s called a prefix increment operator;
when it appears after a variable, it’s called a postfix increment operator. The distinction
between a prefix and postfix increment operator is important when the variable being
incremented is used in an assignment expression. For example, k = ++n, which uses a prefix
increment operator, does two things in one expression: The value of n is incremented by one,
and then the new value of n is assigned to the variable k. Therefore, the statement k =
++n; Is equivalent to these two statements:

n=n-+1; // increment n first
k n; // assign n's value to k

The assignment expression k = n++, which uses a postfix increment operator, reverses
this procedure. A postfix increment operator works after the assignment is completed.
Therefore,the statement k = n++; first assigns the current value of n to k, and then
increments the value of n by one. This process is equivalent to these two statements:

114

Assignment, Formatting, and Interactive Input

k = n; // assign n's value to k
n=n+1; // and then increment n
C++ also provides the decrement operator, -—, in prefix and postfix variations. As you

might expect, both the expressions variable-- and --variable are equivalent to the
expression variable = variable - 1. Here are examples of the decrement operator:

Expression Alternative
i =i -1 i--or --i
n=n-1 n-- or --n
count = count - 1 count-- or —-count
When the -- operator appears before a variable, it’s called a prefix decrement operator.

When this operator appears after a variable, it’s called a postfix decrement operator. For
example, both the expressions n-- and --n reduce the value of n by one and are equivalent
to the longer expression n = n - 1.

As with the increment operators, however, the prefix and postfix decrement operators
produce different results when used in assignment expressions. For example, the expression
k = --n first decrements the value of n by one before assigning the value of n to k, and
the expression k = n-- first assigns the current value of n to k, and then reduces the value
of n by one.

EXERCISES 3.1

(General Math) Write an assignment statement to calculate the circumference of a circle
having a radius of 3.3 inches. The formula for determining the circumference, ¢, of a
circle i1s ¢ = 2mr, where 7 is the radius and w equals 3.1416.

(General Math) Write an assignment statement to calculate the area of a circle. The for-
mula for determining the area, @, of a circle is @ = @74, where 7 is the radius and
m = 3.1416.

(Conversion) Write an assignment statement to convert temperature in degrees Fahrenheit
to degrees Celsius. The formula for this conversion is Celsius = 5/9 (Fahrenheit - 32).

(General Math) Write an assignment statement to calculate the round-trip distance, &, in
feet, of a trip that’s s miles long one way.

(Physics) Write an assignment statement to calculate the elapsed time, in minutes, it
takes to make a trip. The formula for computing elapsed time is elapsed time = total
distance | average speed. Assume the distance is in miles and the average speed is in miles
per hour (mph).

(Numerical) Write an assignment statement to calculate the #th term in an arithmetic
sequence. This is the formula for calculating the value, v, of the #th term:

v=a+ (n-1)d

Chapter 3 115
Assignment Operations

d is the difference between any two numbers in the sequence.
a 1s the first number in the sequence.

7. (Civil Eng.) Write an assignment statement to calculate the linear expansion in a steel beam

as a function of temperature increase. The formula for linear expansion, / is as follows:
I =10[1+a(Ty-T,)]

/y 1s the length of the beam at temperature 7,
a is the coefficient of linear expansion.
T% is the final temperature of the beam.

8. (Physics) Coulomb’s Law states that the force, F, acting between two electrically charged

10

spheres is given by this formula:

k4,49,

7'2

F=

¢, 1s the charge on the first sphere.

¢, 1s the charge on the second sphere.

7 is the distance between the centers of the two spheres.
is a proportionality constant.

Write an assignment statement to calculate the force, F.

. (Civil Eng.) Write an assignment statement to determine the maximum bending

moment, M, of a beam, given this formula:

X W(L-X)
B L

M

X is the distance from the end of the beam that a weight, W, is placed.
L is the length of the beam.

(Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main() // a program illustrating integer truncation
{
int numl, num2;
numl = 9/2;
num2 = 17/4;
cout << "the first integer displayed is " << numl << endl;

cout << "the second integer displayed is " << num2 << endl;
return 0;

116 Assignment, Formatting, and Interactive Input

11. (Debug) Determine and correct the errors in the following programs.

a. #include <iostream>
using namespace std;
int main()

{
width = 15
area = length * width;
cout << "The area is " << area

}

b. #include <iostream>
using namespace std;
int main()
{
int length, width, area;
area = length * width;
length = 20;

width = 15;
cout << "The area is " << area;
return O;

C. #include <iostream.h>

int main()

{
int length = 20; width = 15, area;
length * width = area;
cout << "The area is " , area;

return O;

}
12. (Debug) By mistake, a student reordered the statements in Program 3.3 as follows:

#include <iostream>
using namespace std;

int main()

{
int sum;
sum = 0;
sum = sum + 96;
sum = sum + 70;
sum = sum + 85;
sum = sum + 60;
cout << "The value of sum is initially set to " << sum << endl;
cout << " sum 1s now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " sum is now " << sum << endl;
cout << " The final sum is " << sum << endl;
return 0;
}

Determine the output this program produces.

13.

14.

15.

Chapter 3 117
Formatting Numbers for Program
Output

(General Math) Using Program 3.1, complete the following chart by determining the
volume of cylinders having these radii and heights:

Radius (in) Height (in) Volume
1.62 6.23

2.86 7.52

4.26 8.95

8.52 10.86

12.29 15.35

(General Math) The area of an ellipse (see Figure 3.5) is given by this formula:
Area = wa b

Using this formula, write a C++ program to calculate the area of an ellipse having a minor
axis, @, of 2.5 inches and a major axis, 4, of 6.4 inches.

A3

b

Figure 3.5 The minor axis, a, and the major axis, b, of an ellipse

(Modify) Modify Program 3.1 to calculate the weight, in pounds, of the steel cylinder
whose volume was determined in that program. This is the formula for determining the
weight:

weight = 0.28 (w)(r°)(h)

r 1s the radius (in inches).
/ is the height (in inches) of the cylinder.

3.2

Formatting Numbers for Program Output

Besides displaying correct results, a program should present its results attractively. Most
programs are judged on the perceived ease of data entry and the style and presentation of the
output. For example, displaying a monetary result as 1.897 isn’t in keeping with accepted
report conventions. The display should be $1.90 or $1.89, depending on whether rounding or
truncation is used.

118 Assignment, Formatting, and Interactive Input

To control the format of numbers displayed by cout, you can include field width
manipulators in an output stream. Table 3.1 lists the most common stream manipulators for

this purpose.®

Table 3.1 Commonly Used Stream Manipulators

Manipulator Action

setw(n) Set the field width to n.

setprecision(n) | Set the floating-point precision to n places. If the fixed
manipulator is designated, n specifies the total number of
displayed digits after the decimal point; otherwise, n specifies
the total number of significant digits displayed (integer plus
fractional digits).

setfill('x") Set the default leading fill character to x. (The default leading
fill character is a space, which is used to fill the beginning of an
output field when the field width is larger than the value being
displayed.)

setiosflags Set the format flags. (See Table 3.3 for flag settings.)

(flags)

scientific Set the output to display real numbers in scientific notation.

showbase Display the base used for numbers. A leading 0 is displayed for
octal numbers and a leading 0x for hexadecimal numbers.

showpoint Always display six digits total (combination of integer and
fractional parts). Fill with trailing zeros, if necessary. For larger
integer values, revert to scientific notation.

showpos Display all positive numbers with a leading + sign.

boolalpha Display Boolean values as true and false rather than 1 and 0.

dec Set the output for decimal display, which is the default.

endl Output a newline character and display all characters in the buffer.

fixed Always show a decimal point and use a default of six digits after
the decimal point. Fill with trailing zeros, if necessary.

flush Display all characters in the buffer.

left Left-justify all numbers.

hex Set the output for hexadecimal display.

oct Set the output for octal display.

uppercase Display hexadecimal digits and the exponent in scientific notation
in uppercase.

right Right-justify all numbers (the default).

noboolalpha Display Boolean values as 1 and 0 rather than true and false.

noshowbase Don't display octal numbers with a leading 0 and hexadecimal
numbers with a leading 0x.

®As noted in Chapter 2, the endl manipulator inserts a new line and then forces all current insertions to be displayed immediately, called

“flushing the stream.”

Chapter 3 119
Formatting Numbers for Program
Output
Table 3.1 Commonly Used Stream Manipulators (continued)

Manipulator Action

noshowpoint Don't use a decimal point for real numbers with no fractional
parts, don't display trailing zeros in the fractional part of a number,
and display a maximum of six decimal digits only.

noshowpos Don't display leading + signs (the default).
nouppercase Display hexadecimal digits and the exponent in scientific notation
in lowercase.

For example, the statement cout << "The sum of 6 and 15 is" << setw(3)
<< 21; creates this printout:

The sum of 6 and 15 is 21

The setw(3) field width manipulator included in the data stream sent to cout is used
to set the displayed field width. The 3 in this manipulator sets the default field width for the
next number in the stream to be three spaces. This field width setting causes the 21 to
beprinted in a field of three spaces, which includes one blank and the number 21. As shown
in this output, integers are right-justified in the specified field.

Field width manipulators are useful in printing columns of numbers so that the numbers
align correctly in each column. For example, Program 3.5 shows how a column of integers
aligns in the absence of field width manipulators.

g Program 3.5

#include <iostream>
using namespace std;

int main()
{
cout << 6 << endl
<< 18 << endl
<< 124 << endl
<< "---\n"
<< (6+18+124) << endl;

return 0;

120

Assignment, Formatting, and Interactive Input

The output of Program 3.5 is the following:

6
18
124

148

Because no field width manipulators are used in Program 3.5, cout allocates enough
space for each number as it’s received. Forcing numbers to align on the units digit requires
a field width wide enough for the largest displayed number, which is three for the numbers
in Program 3.5. Program 3.6 shows the use of this field width.

& Program 3.6

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

cout << setw(3

) << 6 << endl
<< setw(3) << 18 << endl
<< setw(3) << 124 << endl
<< "—---\n"

<< (6+18+124) << endl;

return 0;

The output of Program 3.6 is as follows:

6
18
124

148
The field width manipulator must be included for each occurrence of a number inserted
in the data stream sent to cout; the manipulator applies only to the next insertion of data
immediately following it, and the other manipulators remain in effect until they’re changed.
When a manipulator requiring an argument is used, the iomanip header file must be

included as part of the program. To do this, you use the preprocessor command #include
<iomanip>, which is the second line in Program 3.6.

Chapter 3 121

Formatting Numbers for Program
Output

Formatting floating-point numbers requires using three field width manipulators. The first
manipulator sets the total width of the display, the second manipulator forces the display of a
decimal point, and the third manipulator determines how many significant digits are displayed
to the right of the decimal point. (See the “Point of Information” box in Chapter 2 for a review
of significant digits.) For example, examine the following statement:

cout << "|" << setw(1l0) << fixed << setprecision(3) << 25.67 << "|";
It causes the following printout:
| 25.670]

The bar symbol, |, in this example is used to delimit (mark) the beginning and end of
the display field. The setw manipulator tells cout to display the number in a total field of
10. (With real numbers, the decimal point takes up one of these field locations.) The fixed
manipulator forces the display of a decimal point and specifies using the setprecision
manipulator to designate the number of digits displayed after the decimal point. In this case,
setprecision specifies a display of three digits after the decimal point. Without the
explicit designation of a decimal point (which can also be designated as
setiosflags (ios::fixed), explained shortly), the setprecision manipulator speci-
fies the total number of displayed digits, which includes the integer and fractional parts of the
number.

For all numbers (integers, single-precision, and double-precision), cout ignores the
setw manipulator specification if the total specified field width is too small, and it allocates
enough space for printing the integer part of the number. The fractional part of single-
precision and double-precision numbers is displayed up to the precision set with the
setprecision manipulator. (In the absence of setprecision, the default precision is
set to six decimal places.) If the fractional part of the number to be displayed contains more
digits than are called for in the setprecision manipulator, the number is rounded to the
indicated number of decimal places; if the fractional part contains fewer digits than specified,
the number is displayed with fewer digits. Table 3.2 shows the eftect of several format
manipulator combinations. For clarity, the bar symbol delimits the beginning and end of
output fields.

Table 3.2 Effect of Format Manipulators

Manipulators Number | Display Comments

setw(2) 3 | 3] Number fits in the field.

setw(2) 43 |43] Number fits in the field.

setw(2) 143 [143] Field width is ignored.

setw(2) 2.3 |2.3] Field width is ignored.

setw(5) fixed 2.366 | 2.37| Field width of five with two decimal

setprecision(2) digits.

setw(5) fixed 42.3 |42.30] Number fits in the field with the

setprecision(2) specified precision. Note that the
decimal point takes up one location
in the field width.

setw(5) 142.364 |1.4e+002| | Field width is ignored, and scientific

setprecision(2) notation is used with the
setprecision manipulator.

122 Assignment, Formatting, and Interactive Input

Table 3.2 Effect of Format Manipulators (continued)

Manipulators Number | Display Comments
setw(5) fixed 142.364 |142.36| Field width is ignored, but precision
setprecision(2) specification is used. The

setprecision manipulator
specifies the number of fractional

digits.
setw(5) fixed 142.366 |142.37| Field width is ignored, but precision
setprecision(2) specification used. The

setprecision manipulator
specifies the number of fractional
digits. (Note the rounding of the last

decimal digit.)
setw(5) fixed 142 | 142 Field width is used; fixed and
setprecision(2) setprecision manipulators are

irrelevant because the number is an
integer that specifies the total
number of significant digits (integer
plus fractional digits).

In addition to the setw and setprecision manipulators, a field justification manipu-
lator is available. As you have seen, numbers sent to cout are normally right-justified in the
display field, and strings are left-justified. To alter the default justification for a stream of
data, you use the setiosflags manipulator. For example, the statement

cout << "|" << setw(1l0) << setiosflags(ios::left) << 142 << "|";
causes the following left-justified display:
[142 |

Because data sent to cout can be continued across multiple lines, the previous display
is also produced by this statement:

cout << "|" << setw(10)
<< setiosflags(ios::left)
<< 142 << "|";

As always, the field width manipulator is in effect only for the next set of data displayed
by cout. To right-justify strings in a stream, you use the setiosflags (ios::right)
manipulator. The letters “ios” in the function name and the ios: :right argument come
from the first letters of the words “input output stream.”

In addition to the 1left and right flags that can be used with setiosflags (), other
flags can be used to affect output. Table 3.3 lists the most commonly used flags for this
manipulator function. The flags in this table provide another way of setting the manipulators
listed in Table 3.1.

Chapter 3 123

Formatting Numbers for Program
Output

Point of Information

What Is a Flag?

In current programming usage, the term flag refers to an item, such as a variable or
argument, that sets a condition usually considered active or nonactive. Although the
exact origin of this term in programming is unknown, it probably came from using real
flags to signal a condition, such as the Stop, Go, Caution, and Winner flags commonly
used at car races.

In a similar manner, each flag argument for the setiosflags () manipulator
function activates a specific condition. For example, the ios: :dec flag sets the display
format to decimal, and the ios: :oct flag activates the octal display format. Because
these conditions are mutually exclusive (only one can be active at a time), activating
this type of flag deactivates the other flags automatically.

Flags that aren’t mutually exclusive, such as ios: :dec, ios: : showpoint, and
ios::fixed, can be set simultaneously. You can do this by using three separate
setiosflag () calls or combining all arguments into one call as follows:

cout << setiosflags(ios::dec | ios::fixed | ios::showpoint);

Table 3.3 Format Flags for Use with setiosflags ()

Flag Meaning

ios::fixed Always show the decimal point with six digits after the
decimal point. Fill with trailing zeros after the decimal point,
if necessary. This flag takes precedence if it's set with the
ios: :showpoint flag.

ios::scientific Use exponential display in the output.

ios: :showpoint Always display a decimal point and six significant digits total
(combination of integer and fractional parts). Fill with trailing
zeros after the decimal point, if necessary. For larger integer
values, revert to scientific notation unless the ios: :fixed

flag is set.
ios: :showpos Display a leading + sign when the number is positive.
ios::left Left-justify the output.
ios::right Right-justify the output.

Because the flags in Table 3.3 are used as arguments to setiosflags () and the terms
“argument” and “parameter” are synonymous, another name for a manipulator method that
uses arguments is a parameterized manipulator. The following is an example of a parameter-
ized manipulator method:

cout << setiosflags(ios::showpoint) << setprecision(4);

"This statement forces all subsequent floating-point numbers sent to the output stream to
be displayed with a decimal point and four decimal digits. If the number has fewer than four
decimal digits, it’s padded with trailing zeros.

124 Assignment, Formatting, and Interactive Input

In addition to outputting integers in decimal notation, the oct and hex manipulators are
used for conversions to octal and hexadecimal; Program 3.7 uses these flags. Because decimal
is the default display, the dec manipulator isn’t required in the first output stream.

Program 3.7

// a program that illustrates output conversions
#include <iostream>

#include <iomanip>

using namespace std;

int main()
{
cout << "The decimal (base 10) value of 15 is " << 15 << endl;
cout << "The octal (base 8) value of 15 is "
<< showbase << oct << 15 <<endl;
cout << "The hexadecimal (base 16) value of 15 is "
<< showbase << hex << 15 << endl;

return 0;

The output produced by Program 3.7 is the following:

The decimal (base 10) wvalue of 15 is 15
The octal (base 8) value of 15 is 017
The hexadecimal (base 16) value of 15 is Oxf

The display of integer values in one of three possible number systems (decimal, octal,
and hexadecimal) doesn’t affect how the number is stored in a computer. All numbers
arestored by using the computer’s internal codes. The manipulators sent to cout tell the
object how to convert the internal code for output display purposes.

Besides displaying integers in octal or hexadecimal form, they can also be written in a
program in these forms. To designate an octal integer, the number must have a leading zero.
The number 023, for example, is an octal number in C++. Hexadecimal numbers are denoted
with a leading 0x. Program 3.8 shows how octal and hexadecimal integer numbers are used
and produces the following output:

The decimal value of 025 is 21
The decimal value of 0x37 is 55

Chapter 3 125
Formatting Numbers for Program
Output

Point of Information

Formatting cout Stream Data

Floating-point data in a cout output stream can be formatted in precise ways. For
example, a common format requirement is to display monetary amounts with two digits
after the decimal point, such as 123.45. You can do this with the following statement:

cout << setiosflags(ios::fixed)
<< gsetiosflags(ios::showpoint)
<< setprecision(2);

The first manipulator flag, ios: : fixed, forces all floating-point numbers in the
cout stream to be displayed in decimal notation. This flag also prevents using scientific
notation. The next flag, ios: : showpoint, tells the stream to always display a deci-
mal point. Finally, the setprecision manipulator tells the stream to always display
two digits after the decimal point. Instead of using manipulators, you can use the
cout stream methods setf () and precision (). For example, the previous format-
ting can also be accomplished with this code:

cout.setf (ios::fixed) ;
cout.setf (ios: :showpoint) ;
cout.precision(2) ;

Note the syntax: The name of the object, cout, is separated from the method
with a period. This format is the standard way of specifying a method and connecting
it to a specific object.

Additionally, the flags used in both the setf () method and the setiosflags ()
manipulator method can be combined by using the bitwise OR operator, | (explained
in Section 15.2). Using this operator, the following two statements are equivalent:

cout << setiosflags(ios::fixed | ios: :showpoint) ;
cout.setf (ios::fixed | ios::showpoint) ;

The statement you select is a matter of personal preference or a predefined imposed
standard.

3 Program 3.8

#include <iostream>
using namespace std;

int main()

{
cout << "The decimal value of 025 is " << 025 << endl
<< "The decimal value of 0x37 is "<< 0x37 << endl;

return 0;

126 Assignment, Formatting, and Interactive Input

The relationship between input, storage, and display of integers is illustrated in
Figure 3.6.

In r
tege s, convertan

with a octal number
leading O
Integer convert a
withno .~ decimal
leading O number
or 0X
Integer convert a
witha @ hexadecimal
leading 0X number LD
internal
number convert to
code
l octal > Octal
representation display
cout << oct
convert to)
decimal > Decimal
cout << dec representation display
convert to \H imal
hexadecimal exadecima
cout << hex representation display
Input is octal, decimal, Storage is always Display is octal, decimal,
or hexadecimal in binary or hexadecimal

Figure 3.6 Input, storage, and display of integers

Finally, you can set the manipulators listed in Tables 3.1 and 3.2 by using the ostream
class functions listed in Table 3.4.

Table 3.4 ostream Class Functions

Method Comment Example

precision (n) Equivalent to setprecision () cout.precision(2)

fi11('x") Equivalent to setfil11 () cout.fill('*")

setf (ios::fixed) | Equivalent to setiosflags(ios::
cout.setf (ios::fixed) fixed)

setf(ios:: Equivalent to setiosflags(ios::

showpoint) cout.setf (ios: :showpoint) showpoint)

setf (iof::left) Equivalent to 1eft cout.setf (ios::

left)

Chapter 3 127
Formatting Numbers for Program

Output
Table 3.4 ostream Class Functions (continued)
Method Comment Example
setf(ios::right) Equivalent to right cout.setf (ios::
right)
setf(ios::flush) | Equivalent to endl cout.setf(ios::
flush)

In the Example column of Table 3.4, the name of the object, cout, is separated from the
function with a period. As mentioned, this format is the standard way of calling a class function
and providing it with an object to operate on.

EXERCISES 3.2

1. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main() // a program illustrating integer truncation

{
cout << "answerl is the integer " << 9/4
<< "\nanswer2 is the integer " << 17/3 << endl;

return 0;

}
2. (Desk Check) Determine the output of the following program:

#include <iostream>
using namespace std;

int main() // a program illustrating the % operator
{
cout << "The remainder of 9 divided by 4 is " << 9 % 4
<< "\nThe remainder of 17 divided by 3 is " << 17 % 3 << endl;
return 0;
}

3. (Practice) Write a C++ program that displays the results of the expressions 3.0 * 5.0,
7.1 * 8.3 -2.2,and 3.2 / (6.1 * 5). Calculate the value of these expressions
manually to verify that the displayed values are correct.

4. (Practice) Write a C++ program that displays the results of the expressions 15 / 4, 15
% 4,and 5 * 3 - (6 * 4). Calculate the value of these expressions manually to
verify that the display your program produces is correct.

128 Assignment, Formatting, and Interactive Input

S. (Debug) Determine the errors in the following statements:

a. cout << "\n << " 15)
b. cout << "setw(4)" << 33;
C. cout << "setprecision(5)" << 526.768;
d. "Hello World!" >> cout;
€. cout << 47 << setw(6);
f. cout << set(10) << 526.768 << setprecision(2) ;
6. (Desk Check) Determine and write out the display produced by the following
statements:
a. cout << "|" << 5 <<"|";

|
b. cout << "|" << setw(4) << 5 << n|n,.
|

C. cout << "|" << setw(4) << 56829 << u|";

d. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.26 << "|";

e. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 5.267 << "|";

f. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 53.264 << "|";
(

g. cout << "|" << setw(5) << setiosflags

ios::fixed)
<< setprecision(2) << 534.264 << "|

h. cout << "|" << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 534. << "|";

7. (Desk Check) Write out the display produced by the following statements:

aA. cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;

cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;

cout << "The number is " << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;

b. cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "-—-—--- \n";
cout << setw(6) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;

Chapter 3 129

Formatting Numbers for Program
Output

C. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 26.27 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 682.3 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 1.968 << endl;
cout << "----- \n";
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2)
<< 26.27 + 682.3 + 1.968 << endl;

d. cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 36.164 << endl;
cout << setw(5) << setiosflags(ios::fixed)
<< setprecision(2) << 10.003 << endl;

cout << "-———- " << endl;

8. (Desk Check) The following chart lists the equivalent octal and hexadecimal representa-
tions for the decimal numbers 1 through 15:

Decimal: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Octal: 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadecimal: 1 2 3 4 5 6 7 8 9 a b c d e f

Using this chart, determine the output of the following program:

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
cout << "\nThe value of 14 in octal is " << oct << 14
<< "\nThe value of 14 in hexadecimal is " << hex << 14
<< "\nThe value of 0xA in decimal is " << dec << 0xA
<< "\nThe value of 0xA in octal is " << oct << 0xA
<< endl;
return O;
}

9. (Electrical Eng.) The combined resistance of three resistors connected in parallel, as
shown in Figure 3.7, is given by this formula:

1

(111)
R R R
Using this formula, write a C++ program to calculate and display the combined resistance

when the three resistors R, = 1000, R, = 1000, and R; = 1000 are connected in parallel.
The output should produce this display:

Combined resistance =

The combined resistance is xxxx.Xx ohms

The xxxx.xx denotes placing the calculated value in a field width of seven columns,
with two positions to the right of the decimal point.

130

10.

11.

12.

Assignment, Formatting, and Interactive Input

Figure 3.7 Three resistors connected in parallel

(General Math) Write a C++ program to calculate and display the value of the slope of
the line connecting two points with the coordinates (3,7) and (8,12). Use the fact that the
slope between two points at the coordinates (x;,y;) and (x,,y,) is slope = (y, - y;) / (%, -
x;). Your program should produce this display:

The value of the slope is xxx.XX

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

(General Math) Write a C++ program to calculate and display the midpoint coordinates
of the line connecting the two points with coordinates of (3,7) and (8,12). Use the fact
that the midpoint coordinates between two points with the coordinates (x;,y;) and (x,,y,)
are ((xy + X,)/2, (y1 + Y2)/2). Your program should produce this display:

The x coordinate of the midpoint is xxx.xx
The y coordinate of the midpoint is xxx.xxX

The xxx.xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

(Civil Eng.) Write a C++ program to calculate and display the maximum bending
moment, M, of a beam that’s supported on both ends (see Figure 3.8). The formula is /
= XW (L - X) /| L, where X is the distance from the end of the beam that a weight, W, is
placed, and L is the length of the beam. Your program should produce this display:

The maximum bending moment i1s XXXX.XXXX

The xxxx.xxxx denotes placing the calculated value in a field wide enough for four
places to the right and left of the decimal point. For your program, assign the values 1.2,
1.3, and 11.2 to X, W, and L.

< X—>|
W
A L A

Figure 3.8 Calculating the maximum bending moment

3.3

Chapter 3 131
Using Mathematical Library Functions

Using Mathematical Library Functions

As you have seen, assignment statements can be used to perform arithmetic computations.
For example, the following assignment statement multiplies the value in current by the
value in resistance and assigns the resulting value to volts:

volts = resistance * current;

Although addition, subtraction, multiplication, and division are accomplished easily with
C++’s arithmetic operators, no operators exist for raising a number to a power, finding a
number’s square root, or determining trigonometric values. To perform these calcula-
tions,C++ provides standard preprogrammed functions that can be included in a program.
Before using one of C++’s mathematical functions, you need to know the following:

The name of the mathematical function

What the mathematical function does

The type of data the mathematical function requires

The data type of the result the mathematical function returns
How to include the mathematical library

To illustrate the use of C++’s mathematical functions, take a look at the mathematical
function sqgrt (), which calculates a number’s square root and uses this form:

sgrt (number)

The function’s name, in this case sgrt, is followed by parentheses containing the number
for which the square root should be calculated. The purpose of the parentheses after the
function name is to provide a funnel through which data can be passed to the function (see
Figure 3.9). The items passed to the function through the parentheses are called arguments
of the function and constitute its input data. For example, the following expressions are used
to compute the square root of the arguments 4., 17.0, 25., 1043.29, and 6.4516:

sgrt(4.)
sqgqrt(17.0)
sgrt(25.)
sgrt (1043.29)
sgrt (6.4516)

sqrt (a value)

sqgrt () function
Figure 3.9 Passing data to the sgrt () function

Notice that the argument to the sgrt () function must be a real value, which is an
example of C++’s function overloading capabilities. Function overloading permits using the

132 Assignment, Formatting, and Interactive Input

same function name for arguments of different data types.” There are actually three functions
named sqgrt () —defined for £loat, double, and long double arguments. The correct
sgrt () function is called depending on the type of value passed to the function when the
call is made. When one of the functions named sqgrt () is called (again, the selection
isautomatic, based on the passed argument), the function determines the square root of its
argument and returns the result as a double. The previous expressions return these values:

Expression Value Returned
sqgqrt(4.) 2.

sgrt (17.0) 412311

sqgrt (25.) 5.

sgrt (1043.29) 32.2

sqgrt (6.4516) 2.54

In addition to the sgrt () function, Table 3.5 lists commonly used mathematical
functions provided in C++. Accessing these functions in a program requires including the
mathematical header file cmath, which contains declarations for mathematical functions. To
use this header file, place the following preprocessor statement at the top of any program
using a mathematical function:

#include <cmath>

Although some mathematical functions in Table 3.5 require more than one argument, all
functions, by definition, can return at most one value. Additionally, all the functions listed are
overloaded, which means the same function name can be used with integer and real arguments.
Table 3.6 shows the value returned by selected functions, using sample arguments.

Table 3.5 Common C++ Functions

Function Name Description Returned Value

abs (a) absolute value Same data type as
argument

pow(al,a2) al raised to the a2 power | Same data type as
argument al

sgrt(a) square root of a real Double-precision

number

sin(a) sine of a (a in radians) Double

cos (a) cosine of a (a in radians) Double

tan(a) tangent of a (a in radians) | Double

7If it weren’t for overloading, three separate square root functions, each with a different name, would have to be defined—one for each type of

argument.

Chapter 3 133
Using Mathematical Library Functions

Table 3.5 Common C++ Functions (continued)

Function Name Description Returned Value
log(a) natural logarithm of a Double
logl0 (a) common log (base 10) of a | Double
exp (a) e raised to the a power Double

Table 3.6 Selected Function Examples

Example Returned Value
abs (-7.362) 7.362

abs (-3) 3
pow(2.0,5.0) 32.

pow (10, 3) 1000
log(18.697) 2.92836
1logl0(18.697) 1.27177
exp(-3.2) 0.040762

Each time a mathematical function is used, it’s called into action by giving the name of
the function and passing to it any data in the parentheses following the function’s name (see
Figure 3.10).

function-name (data passed to the function);

This identifies This pasges data to
the called the function
function

Figure 3.10 Using and passing data to a function

The arguments passed to a function need not be single constants. Expressions can also
be arguments, provided the expression can be computed to yield a value of the required data
type. For example, the following arguments are valid for the given functions:

sgrt (4.0 + 5.3 * 4.0) abs (2.3 * 4.6)
sgrt(16.0 * 2.0 - 6.7) sin(theta - phi)
sgrt(x * v - z/3.2) cos (2.0 * omega)

The expressions in parentheses are evaluated first to yield a specific value. Therefore, values
have to be assigned to the variables theta, phi, %, v, z, and omega before their use in the
preceding expressions. After the value of the argument is calculated, it’s passed to the
function.

Functions can also be included as part of larger expressions, as shown in this example:

4 * sqgrt(4.5 * 10.0 - 9.0) - 2.0
= 4 * sgrt(36.0) - 2.0

= 4 * 6.0 - 2.0

= 24.0 - 2.0

22.0

134 Assignment, Formatting, and Interactive Input

The step-by-step evaluation of an expression such as
3.0 * sqgqrt(5 * 33 - 13.71) / 5

is as follows:

Step Result

1. Perform multiplication in the argument. | 3.0 * sqgrt (165 - 13.71) / 5
2. Complete the argument calculation. 3.0 * sqrt(151.29) / 5

3. Return a function value. 3.0 * 12.3 / 5

4. Perform the multiplication. 36.9 / 5

5. Perform the division. 7.38

Program 3.9 illustrates using the sqrt () function to determine the time it takes a ball
to hit the ground after it has been dropped from an 800-foot tower. This is the mathematical
formula for calculating the time in seconds it takes to fall a given distance in feet:

time = sqri(2 x distance | g)

where g is the gravitational constant, equal to 32.2 ft/sec’.

g Program 3.9

#include <iostream> // this line can be placed second instead of first
#include <cmath> // this line can be placed first instead of second
using namespace std;

int main()

{
int height;
double time;

height = 800;

time = sgrt(2 * height / 32.2);

cout << "It will take " << time << " seconds to fall "
<< height << " feet.\n";

return 0;

Program 3.9 produces this output:

It will take 7.04907 seconds to fall 800 feet.

Chapter 3 135
Using Mathematical Library Functions

As used in Program 3.9, the value the sgrt () function returns is assigned to the variable
time. In addition to assigning a function’s returned value to a variable, the returned value
can be included in a larger expression or even used as an argument to another function. For
example, the following expression is valid:

sgrt(sin(abs(theta)))

Because parentheses are present, the computation proceeds from the inner to outer pairs
of parentheses. Therefore, the absolute value of theta is computed first and used as
anargument to the sin () function. The value the sin () function returns is then used as
an argument to the sgrt () function.

Note that the arguments of all trigonometric functions (sin(), cos (), and so forth)
must be in radians. Therefore, to calculate the sine of an angle given in degrees, the angle
must be converted to radians first. You can do this easily by multiplying the angle by the term
(3.1416/180.). For example, to obtain the sine of 30 degrees, use the expression sin
(30 * 3.1416/180.).

Casts

You have already seen the conversion of an operand’s data type in mixed-mode arithmetic
expressions (Section 2.4) and with different operators (Section 3.1). In addition to the implicit
data type conversions made automatically in mixed-mode arithmetic and assignment expres-
sions, C++ provides for explicit user-specified type conversions. The operator used to force
converting a value to another type is the cast operator. C++ provides compile-time and
runtime cast operators. 'T'he compile-time cast is a unary operator with this syntax:

dataType (expression)

The dataType is the data type to which the expression in parentheses is converted. For
example, the following expression

int (a * b)

converts the value of the expression a * b to an integer value.®

With the introduction of the latest C++ standard, runtime casts are included. In this type
of cast, the requested type conversion is checked at runtime and applied if the conversion
results in a valid value. Although four types of runtime casts are available, the most
commonly used cast and the one corresponding to the compile-time cast has the following
syntax:

staticCast<data-type> (expression)

For example, the runtime cast staticCast<int>(a * b) is equivalent to the compile-
time cast int (a* b).

8The C type cast syntax, in this case (int) (a * b), also works in C++.

136 Assignment, Formatting, and Interactive Input

EXERCISES 3.3

1. (Practice) Write function calls to determine the following:
a. The square root of 6.37
b. The square root of x - y

The sine of 30 degrees

The sine of 60 degrees

© a0

The absolute value of a% - b?

f. The value of e raised to the third power

2. (Practice) For a = 10.6, b = 13.9, and ¢ = -3.42, determine the following

values:

a. int (a)

b. int (b)

Cc. int (c)

d. int (a + b)

e. int (a) + b + ¢

f. int (a + b) + ¢

g. int (a + b + ¢)

h. float (int (a)) + b

.
.

float (int (a + b))
abs (a) + abs(b)
sgrt (abs(a - b))

~ T

3. (Practice) Write C++ statements for the following:
a. b =sinx - cosx
b. 4 = sin® x - cos® x
Cc. area = (¢ x b x sin a)/2
d. ¢c= m
e. p=N|m-n|
alr” - 1)
ETT

4. (Numerical) Write, compile, and execute a C++ program that calculates and returns the
fourth root of the number 81.0, which is 3. After verifying that your program works cor-
rectly, use it to determine the fourth root of 1,728.896400. Your program should make use
of the sgrt () function.

Chapter 3 137
Using Mathematical Library Functions

S. (General Math) Write, compile, and execute a C++ program to calculate the distance
between two points with the coordinates (7, 12) and (3, 9). Use the fact that the distance
between two points with the coordinates (x;, y;) and (x,, y,) is given by this formula:

distance = (xz + yz)

After verifying that your program works correctly by calculating the distance between the
two points manually, use your program to determine the distance between the points (-12,
-15) and (22, 5).

6. (General Math) If a 20-foot ladder is placed on the side of a building at a 85-degree
angle, as shown in Figure 3.11, the height at which the ladder touches the building can
be calculated as /eight = 20 x sin 85°. Calculate this height by hand, and then write, com-
pile, and execute a C++ program that determines and displays the value of the height.
After verifying that your program works correctly, use it to determine the height of a
25-foot ladder placed at an angle of 85 degrees.

Figure 3.11 Calculating the height of a ladder against a building

7. (Physics) The maximum height reached by a ball thrown with an initial velocity, v, in
meters/sec, at an angle of 0 is given by this formula:

height = (.5 x v° x sin® 8) | 9.8

Using this formula, write, compile, and execute a C++ program that determines and dis-
plays the maximum height reached when the ball is thrown at 5 mph at an angle of

60 degrees. (Hint: Make sure to convert the initial velocity into the correct units. There
are 1609 meters in a mile.) Calculate the maximum height manually, and verify the result
your program produces. After verifying that your program works correctly, use it to deter-
mine the height reached by a ball thrown at 7 mph at an angle of 45 degrees.

138

10.

11.

12.

Assignment, Formatting, and Interactive Input

. (Numerical) For small values of x, the value of sin(x) can be approximated by this power

series:
x3 xS x7
X——t——
3! 50 7!

As with the sin () function, the value of x must be in radians. Using this power series,
write, compile, and execute a C++ program that approximates the sine of 180/3.1416 degrees,
which equals one radian. Additionally, have your program use the sin () function to calculate
the sine and display both calculated values and the absolute difference of the two results.
Manually verify the approximation your program produces. After verifying that your program
1s working correctly, use it to approximate the value of the sine of 62.2 degrees.

. (Conversion) The polar coordinates of a point consist of the distance, 7, from a specified

origin and an angle, 0, with respect to the x-axis. The point’s x and y coordinates are
related to its polar coordinates by these formulas:

X =7cos 0

y=rsin

Using these formulas, write a C++ program to calculate the x and y coordinates of a point
with the polar coordinates 7 = 10 and 6 = 30 degrees. Verify the results your program pro-
duces by calculating the results manually. After verifying that your program is working

correctly, use it to convert the polar coordinates 7 = 12.5 and 8 = 67.8 degrees into rectan-
gular coordinates.

(Ecology) A model of worldwide population growth, in billions of people, since 2000 is
given by this formula:

P()le/[linﬂ = 6.0 g().(?ZlYefzr - 2000]

Using this formula, write, compile, and execute a C++ program to estimate the worldwide
population in the year 2012. Verify the result your program produces by calculating the
answer manually. After verifying that your program is working correctly, use it to estimate
the world’s population in the year 2019.

(Physics) A model to estimate the number of grams of a radioactive isotope left after
¢ years is given by this formula:

. . . L 0.000121
remaining material = (original material) ¢%?"%

Using this formula, write, compile, and execute a C++ program to determine the amount of
radioactive material remaining after 1000 years, assuming an initial amount of 100 grams.
Verify the display your program produces by using a hand calculation. After verifying that
your program is working correctly, use it to determine the amount of radioactive material
remaining after 275 years, assuming an initial amount of 250 grams.

(Physics) The number of years it takes for an isotope of uranium to decay to one-half an
original amount is given by this formula, where A, the decay constant (which is equal to
the inverse of the mean lifetime), equals 0.00012:

half-life = In(2) | N

Using this formula, write, compile, and execute a C++ program that calculates and dis-
plays the half-life of this uranium isotope. Verify the result your program produces by

using a hand calculation. After verifying that your program is working correctly, use it to
determine the half-life of a uranium isotope with A = 0.00026.

Chapter 3 139
Program Input Using cin

3.4 Program Input Using cin

Data for programs that are going to be executed only once can be included in the program.
For example, if you want to multiply the numbers 30.0 and 0.05, you could use Program 3.10.

& Program 3.10

#include <iostream>

using namespace std;

int main()
{

double numl, num2, product;

numl = 30.0;
num2 = 0.05;
product = numl * num2;

cout << "30.0 times 0.05 is " << product << endl;

return 0;

Program 3.10 produces this output:
30.0 times 0.05 is 1.5

Program 3.10 can be shortened, as shown in Program 3.11. Both programs, however,
suffer from the same basic problem: They must be rewritten to multiply different numbers.
Both programs lack the capability to enter different numbers on which to operate.

3 Program 3.11

#include <iostream>

using namespace std;
int main()
{

cout << "30.0 times 0.05 is " << 30.0 * 0.05 << endl;

return O;

140

Assignment, Formatting, and Interactive Input

Except for the programming practice provided by writing, entering, and running the
program, programs that do the same calculation only once, on the same set of numbers,
clearly aren’t very useful. After all, using a calculator to multiply two numbers is simpler than
entering and running Program 3.10 or 3.11.

This section explains the cin statement, used to enter data in a program while it’s
running. Just as a cout statement displays the value stored in a variable, cin allows users
to enter a value at the keyboard (see Figure 3.12), and then the value is stored in a variable.

int main()

cin >>
cout <<

Keyboard }
Screen

Figure 3.12 cin is used to enter data; cout is used to display data

When a statement such as cin >> numl; is encountered, the computer stops program
execution and accepts data from the keyboard. When a data value is typed, cin causes the
value to be stored in the variable listed after the extraction (“get from”) operator, >>. The
program then continues execution with the next statement after the cin statement. To see
how cin works, take a look at Program 3.12.

Program 3.12

#include <iostream>

using namespace std;

int main()

{

cout << "Please type in another number: ;

double numl, num2, product;

cout << "Please type in a number: ";
cin >> numl;

cin >> num2;
product = numl * num2;
cout << numl << " times " << num2 << " is " << product << endl;

return 0;

The first cout statement in Program 3.12 displays a string that tells the person at the
keyboard what should be typed. When an output string is used in this manner, it’s called a
prompt. In this case, the prompt tells the user to type a number. The computer then executes

Chapter 3 141
Program Input Using cin

the next statement, which uses cin. The cin statement puts the computer in a temporary pause
(or wait) state while the user types a value. Then the user signals cin that data entry is finished
by pressing the Enter key. The entered value is stored in the variable to the right of the
extraction operator (numl), and the computer is taken out of its paused state.

Program execution proceeds with the next statement, which in Program 3.12 is another
cout statement that displays a prompt asking the user to type another number. The next
statement uses cin again to put the computer in a temporary wait state while the user types
a second value (stored in the variable num?2).

The following sample run was made using Program 3.12:

Please type in a number: 30
Please type in another number: 0.05
30 times 0.05 is 1.5

In Program 3.12, each time cin is invoked, it’s used to store one value in a variable. A
cin statement, however, can be used to enter and store as many values as there are
extraction operators and variables to hold the entered data. For example, the statement

cin >> numl >> num2;

results in two values being read from the keyboard and assigned to the variables numl and
num?2. If the data entered at the keyboard is

0.052 245.79

the variables numl and num2 contain the values 0.052 and 245.79, respectively. Notice that
there must be at least one space between numbers when they’re entered to clearly indicate
where one number ends and the next begins. Inserting more than one space between
numbers has no effect on cin.

The same spacing also applies to entering character data; the extraction operator skips
blank spaces and stores the next nonblank character in a character variable. For example, in
response to the statements,

char chl, ch2, ch3; // declare three character variables
cin >> chl >> ch2 >> ch3; // accept three characters

the input

a b c

causes the letter a to be stored in the variable chl, the letter b to be stored in the variable ch2,
and the letter ¢ to be stored in the variable ch3. Because a character variable can be used to store
only one character, however, the following input, without spaces, can also be used:

abc

You can use any number of cin statements in a program, and any number of values can
be entered with a single cin statement. Program 3.13 shows using a cin statement to input
three numbers from the keyboard. The program then calculates and displays the average of
the entered numbers.

142 Assignment, Formatting, and Interactive Input

g Program 3.13

#include <iostream>
using namespace std;

int main()

{
int numl, num2, num3;
double average;

cout << "Enter three integer numbers: ";
cin >> numl >> num2 >> num3;

average = (numl + num2 + num3) / 3.0;
cout << "The average of the numbers is " << average << endl;
return 0;

The following sample run was made using Program 3.13:

Enter three integer numbers: 22 56 73
The average of the numbers is 50.3333

The data entered at the keyboard for this sample run consists of 22 56 73. In response
to this stream of input, Program 3.13 stores the value 22 in the variable numl, the value 56
in the variable num2, and the value 73 in the variable num3 (see Figure 3.13). Because the
average of three integer numbers can be a floating-point number, the variable average,
used to store the average of all entered numbers, is declared as a floating-point variable (a
double). Note also that parentheses are needed in the assignment statement average =
(numl + num2 + num3) /3.0;. Without the parentheses, the only value divided by 3
would be the integer in num3 (because division has a higher precedence than addition).

numl

\22’

num2

\56’

num3
[P ’

cin >> numl >> num2 >> num3;

A

22 56 73

Figure 3.13 Inputting data in the variables numl, num2, and num3

Chapter 3 143
Program Input Using cin

The extraction operator, >>, like the insertion operator, <<, is “clever” enough to make a
few data type conversions. For example, if an integer is entered instead of a double-precision
number, the integer is converted to the correct data type.® Similarly, if a double-precision number
is entered when an integer is expected, only the integer part of the number is used. For example,
assume the following numbers are typed in response to the statement cin >> numl >> num?2
>> num3 ;, where numl and num3 have been declared as double-precision variables and num?2
is an integer variable:

56 22.879 33.923

The 56 1s converted to 56.0 and stored in the variable numl. The extraction operation
continues, extracting data from the input stream and expecting an integer value. As far as the
<< operator is concerned, the decimal point in 22.879 indicates the end of an integer and the
start of a decimal number. Therefore, the number 22 is assigned to num2. Continuing to
process its input stream, the next << operator takes the .879 as the next floating-point
number and assigns it to num3. As far as cin is concerned, 33.923 is extra input and is
ignored. If, however, you don’t enter enough data initially, the insertion operator causes the
computer to pause, waiting until enough data has been entered.

A First Look at User-Input Validation

A well-constructed program should validate user input and ensure that a program doesn’t
crash or produce nonsensical output caused by unexpected input. The term validate means
checking that the entered value matches the data type of the variable it’s assigned to ina cin
statement and checking that the value is within an acceptable range for the application.
Programs that detect and respond effectively to unexpected user input are formally referred
to as robust programs and informally as “bulletproof” programs. One of your goals as a
programmer is to produce robust programs. As written, Programs 3.12 and 3.13 aren’t robust
programs, and in the following discussion, you see why.

The first problem with these programs becomes evident when a user enters a non-
numerical value. For example, examine the following sample run using Program 3.13:

Enter three integer numbers: 10 20.68 20
The average of the numbers is -2.86331e+008

This output occurs because the conversion of the second entered number results in
assigning the integer value 20 to num2 and the value -858993460 to num3.1° The -858993460
value results because an invalid character, the decimal point, is assigned to a variable that
expects an integer. The average of the numbers 10, 20, and -858993460 is computed correctly
as -286331143.3, which is displayed in scientific notation with six significant digits as
-2.86331e+008. Most users, however, would report this result as a program error.

This same problem occurs when a non-integer value is entered for either of the first two
inputs. (It doesn’t occur for any numerical value entered as the third input because the
integer part of the last input is accepted, and the remaining input ignored.) Your first
response might be “The program clearly asks you to enter integer values.” Programmers with
more experience, however, understand that their responsibility is to make sure a program

“Strictly speaking, what comes in from the keyboard isn’t any data type, such as an int or a double, but is simply a sequence of characters.
The extraction operation handles the conversion from the character sequence to a defined data type.

19Some C++ runtime systems accept the .68 as the third input and convert it to the integer value of zero. In all cases, the last value of 20 is
ignored.

144 Assignment, Formatting, and Interactive Input

anticipates and appropriately handles all inputs users might enter. To achieve this goal, think
about what can go wrong with your program as you develop it, and then have another person
or group test the program.

T'he basic approach to handling invalid data input is called user-input validation, which
means checking the entered data during or immediately after it has been entered, and then
giving users a way to reenter invalid data. User-input validation is an essential part of any
commercially viable program; if done correctly, it protects a program from attempting to
process data that can cause computational problems. You see how to do this type of validation
in Chapters 4 and 5, when you learn about C++’s selection and repetition statements.

BT
§ - EXERCISES 3.4

7,

1. (Practice) For the following declaration statements, write a cin statement that causes
the computer to pause while the user enters the appropriate data:

a. int firstnum;
b. double grade;
C. double secnum;
d. char keyval;
(S

int month, years;
double average;

f. char ch;
int numl, num2;
double gradel, grade2;

g. double interest, principal, capital;
double price, yield;

h. char ch, letterl, letter2;
int numl, num2, num3;

i. double templ, temp2, temp3;
double voltsl, wvolts2;
2. (Practice) a. Write a C++ program that first displays the following prompt:

Enter the temperature in degrees Celsius:

Have your program accept a value entered from the keyboard and convert the tempera-
ture entered to degrees Fahrenheit, using this formula:

Fahrenheir = (9.0 | 5.0) x Celsius + 32.0

Your program should then display the temperature in degrees Fahrenheit with an appro-
priate message.

Chapter 3 145
Program Input Using cin

b. Compile and execute the program written for Exercise 2a. To verify your program, use
the following test data and calculate the Fahrenheit equivalents by hand, and then use
your program to sec whether you get the same results:

Test data set 1: 0 degrees Celsius
Test data set 2: 50 degrees Celsius
Test data set 3: 100 degrees Celsius

When you’re sure your program is working correctly, use it to complete the following chart:

Celsius Fahrenheit
45
50
55
60
65
70

3. (Practice) Write, compile, and execute a C++ program that displays the following
prompt:

Enter the radius of a circle:

After accepting a value for the radius, your program should calculate and display the area
of the circle. (Hint: Area = 3.1416 x radius®.) For testing purposes, verify your program
byusing an input radius of 3 inches. After manually determining that your program’s result
is correct, use your program to complete the following chart:

Radius (in) Area (sq. in)
1.0
1.5
2.0
2.5
3.0
3.5

4. (Practice) a. Write, compile, and execute a C++ program that displays the following
prompts:

Enter the miles driven:
Enter the gallons of gas used:

After each prompt is displayed, your program should use a cin statement to accept data
from the keyboard for the displayed prompt. After the number for gallons of gas used has
been entered, your program should calculate and display the miles per gallon (mpg). This

146

Assignment, Formatting, and Interactive Input
value should be included in a message and calculated by using the formula miles per gallon
= miles | gallons used. Verify your program by using the following test data:

Test data set 1: miles = 276, gas
Test data set 2: miles = 200, gas

10 gallons

15.5 gallons

After finishing your verification, use your program to complete the following chart. (Make
sure to convert the miles driven to kilometers driven and gallons used to liters used, and
then compute the kilometers per liter.)

Miles Driven | Gallons Used MPG Km Liters Km/L
Driven Used

250 16.00

275 18.00

312 19.54

296 17.39

b. For the program written for Exercise 4a, determine how many verification runs are
required to make sure the program is working correctly, and give a reason to support
your answer.

. (Practice) a. Write, compile, and execute a C++ program that displays the following

prompts:

number :

second number:
third number:
fourth number:

Enter a
Enter a
Enter a
Enter a
After each prompt is displayed, your program should use a cin statement to accept a
number from the keyboard for the displayed prompt. After the fourth number has been
entered, your program should calculate and display the average of the numbers. The aver-
age should be included in an output message. Check the average your program calculates
by using the following test data:

Test data set 1: 100, 100, 100, 100
Test data set 2: 100, 0, 100, 0

After finishing your verification, use your program to complete the following chart:

Numbers

92, 98, 79, 85
86, 84, 75, 86
63, 85, 74, 82

Average

Chapter 3 147
Program Input Using cin

b. Repeat Exercise 5a, making sure you use the same variable name, number, for each
number input. Also, use the variable sum for the sum of the numbers. (Hinz: To do
this, you can use the statement sum = sum + number after each number is
accepted. Review the material on accumulating in Section 3.1.)

6. (General Math) a. Write, compile, and execute a C++ program to compute and display
the value of the second-order polynomial ax” + x + ¢ for any user-entered values of the
coefficients @, 4, and ¢ and the variable x. Have your program display a message first to
inform users what the program does, and then display suitable prompts to alert users to
enter the data. (Hint: Use a prompt such as Enter the coefficient of the
x-squared term:.)

b. Check the result of your program written for Exercise 6a by using the following
test data:

Test dataset 1: ¢ =0,0=0, c =22, x = 56
Test dataset 2: 2 =0,6=22,c=0,x=2
Test dataset 3: 2 =22,6=0,c=0,x=2
Test dataset4d:a=2,b=4,¢c=5,x=2

After finishing your verification, use your program to complete the following chart:

a b C X Polynomial Value
2.0 17.0 -12.0 1.3
3.2 2.0 15.0 2.5
3.2 2.0 15.0 -2.5
-2.0 10.0 0.0 2.0
-2.0 10.0 0.0 4.0
-2.0 10.0 0.0 5.0
-2.0 10.0 0.0 6.0
5.0 22.0 18.0 8.3
4.2 -16 -20 -5.2

7. (General Math) The roads of Kansas are laid out in a rectangular grid at exactly one-mile
intervals, as shown in Figure 3.14. Pete drives his pickup x miles east and y miles north to
get to his friend Joe’s farm. Both x and y are integer numbers. Using this information, write,
test, and run a C++ program that prompts the user for the values of x and y, and then uses
this formula to find the shortest driving distance across the fields to Joe’s farm:

distance = (x2 + yz)
Round the answer to the nearest integer value before it’s displayed.

8. (Numerical) Write, compile, and execute a program that calculates and displays the
square root value of a user-entered real number. Verify your program by calculating the
square roots of this test data: 25, 16, 0, and 2. After finishing your verification, use your
program to determine the square roots of 32.25, 42, 48, 55, 63, and 79.

148

9.

10.

Assignment, Formatting, and Interactive Input

N
Joels
/| farm
/
/
4
/
/7
v
4
Distance_~
oiotanc! ", _y
4
/
/
/
/
Pete’s
farm

Figure 3.14 lllustration for Exercise 7

(Numerical) Write, compile, and execute a program to calculate and display the fourth
root of a user-entered number. Recall from elementary algebra that you find the fourth
root of a number by raising the number to the 1/4 power. (Hint: Don’t use integer
division—can you see why?) Verify your program by calculating the fourth roots of this
test data: 81, 16, 1, and 0. When you’re finished, use your program to determine the
fourth roots of 42, 121, 256, 587, 1240, and 16,256.

(Electrical Eng.) For the series circuit shown in Figure 3.15, the voltage drop, V,, across
resistor R, and the power, P,, delivered to this resistor are given by the formulas V, = I R,
and P, =1V, where I = E / (R, + R,). Using these formulas, write, compile, and execute a
C++ program that prompts users for values of E, R,, and R,; calculates the voltage drop and-
power delivered to R,; and displays the results. Check your program by using the test data £
= 10 volts, R; = 100 ohms, and R, = 200 ohms. After finishing your verification, use your pro-
gram to complete the following chart:

E (Volts) R, (Ohms) | R, (Ohms) | Voltage Drop Power Delivered
(Volts) (Watts)
10 100 100
10 100 200
10 200 200
20 100 100
20 100 200
20 200 200

11.

12.

13.

14.

Chapter 3 149
Symbolic Constants

Figure 3.15 Calculating the voltage drop

(Data Processing) Program 3.12 prompts users to input two numbers; the first value
entered is stored in numl, and the second value is stored in num2. Using this program as
a starting point, write a program that swaps the values stored in the two variables.

(Data Processing) Write a C++ program that prompts users to enter a number. Have
your program accept the number as an integer and display the integer immediately by
using a cout statement. Run your program three times. The first time, enter a valid inte-
ger number; the second time, enter a double-precision number; and the third time, enter
a character. Using the output display, see what number your program actually accepted
from the data you entered.

(Data Processing) Repeat Exercise 12, but have your program declare the variable used to
store the number as a double-precision variable. Run the program three times. The first time,
enter an integer; the second time, enter a double-precision number; and the third time, enter
a character. Using the output display, keep track of what number your program actually
accepted from the data you entered. What happened, if anything, and why?

(For Thought) a. Why do you think successful programs contain extensive data-input
validity checks? (Hint: Review Exercises 12 and 13.)

b. What do you think is the difference between a data-type check and a data-
reasonableness check?

c. Assume that a program requests users to enter a month, day, and year. What are some
checks that could be made on the data entered?

3.5

Symbolic Constants

Certain constants used in a program have more general meanings that are recognized outside
the program’s context. Examples of these types of constants include the number 3.1416,
which is 1 accurate to four decimal places; 32.2 ft/sec®, which is the gravitational constant;

150 Assignment, Formatting, and Interactive Input

and the number 2.71828, which is Euler’s number accurate to five decimal places. The
following list shows other commonly used scientific and engineering constants:

Avagadro’s number = 6.02214179 x 10**/mole

Boltzmann’s constant = 1.3806 x 10%* Joules/K

Planck’s constant = 6.6256 x 107* Joule/sec
Stephan-Boltzmann’s constant = 5.6697 x 10® Watts/m*K*
Universal gas constant = 8.6314472 x 107 Joules/Kmole
Universal gravitational constant = 6.67428 x 10" N m?/kg?

Certain other constants in a program are defined in the context of the application being
programmed. For example, in a program determining the weight of different sized objects,
the density of an object’s material takes on a special significance. By themselves, density
numbers are quite ordinary, but in this application, they have a special meaning. Program-
mers sometimes refer to these types of numbers as magic numbers. When a magic number
appears repeatedly in a program, it becomes a potential source of error if it has to be changed.
If just one instance of the magic number is overlooked and not changed, when the program
runs the result will be incorrect, and the source of the error will be difficult to locate.

"To avoid the problem of having a magic number occur in many places in a program and
to identify universal constants, such as m, clearly, C++ enables programmers to give these
constants symbolic names. Then the symbolic name, instead of the magic number, can be
used throughout the program.

If the number ever has to be changed, the change need be made only once, where the
symbolic name is equated to the actual numerical value. To equate numbers to symbolic
names,you use the const declaration qualifier, which specifies that the declared identifier is
read-only after it’s initialized; it can’t be changed. Examples of using this qualifier are as follows:

const double PI = 3.1416;

const double PLANCK = 6.6256e-34;
const double DENSITY = 0.238;
const int MAXNUM = 100;

The first declaration statement creates a double-precision constant named PI and
initializes it to 3.1416, and the second declaration statement creates a double-precision
constant named PLANCK and initializes it to Planck’s constant (accurate to four decimal
places). The third declaration statement creates a constant named DENSITY and initializes
it to 0.238. Finally, the fourth declaration creates an integer constant named MAXNUM and
initializes it with the value 100.

After a const identifier is created and initialized, the value stored in it can’t be changed.
For all practical purposes, the name of the constant and its value are linked for the duration
of the program that declares them.

Although the const identifiers have been shown in uppercase letters, lowercase letters
could have been used. In C++, however, it’s common to use uppercase letters for const
identifiers to identify them easily. When programmers see uppercase letters in a program, they
know a symbolic name is being used, and its value can’t be changed later in the program.

Chapter 3 151
Symbolic Constants

After it’s declared, a const identifier can be used in any C++ statement in place of the
number it represents. For example, both these assignment statements are valid:

circum = 2 * PI * radius;
weight = DENSITY * volume;

These statements must, of course, appear after the declarations for all their variables.
Because a const declaration equates a constant value to an identifier, and the identifier can be
used as a replacement for its initializing constant, these identifiers are commonly referred to as
symbolic constants, named constants, or simply constants. These terms are used interchangeably
in this book.

Placement of Statements

At this stage, you have been introduced to a variety of statement types. The general rule in
C++ for statement placement is simply that a variable or symbolic constant must be declared
before it can be used. Although this rule permits placing both preprocessor directives and
declaration statements throughout a program, doing so results in a poor program structure.
For good programming form, the following statement ordering should be used:

preprocessor directives

int main()
{
// symbolic constants
// variable declarations

// other executable statements

return value;

As new statement types are introduced, this placement structure will be expanded to
accommodate them. Note that comment statements can be intermixed anywhere within this
basic structure. Program 3.14 illustrates this basic structure and uses a symbolic constant to
cal;:ulate ghe weight of a steel cylinder. The density of the steel is 0.284 1b/in® (= 7.738 x
10° kg/m™).

152 Assignment, Formatting, and Interactive Input

Program 3.14

// This program determines the weight of a steel cylinder

// by multiplying the volume of the cylinder times its density.

// The volume of the cylinder is given by the formula PI * pow(radius,2) * height.
#include <iostream>

#include <iomanip>

#include <cmath>

using namespace std;

int main()

{
const double PI = 3.1416;
const double DENSITY = 0.284;
double radius, height, weight;

cout << "Enter the radius of the cylinder (in inches): ;
cin >> radius;
cout << "Enter the height of the cylinder (in inches): ;
cin >> height;
weight = DENSITY * PI * pow(radius,2) * height;
cout << setiosflags(ios:: fixed)

<< setiosflags(ios::showpoint)

<< setprecision(4)

<< "The cylinder weighs " << weight << " pounds" << endl;

return O;

Notice in Program 3.14 that two symbolic constants have been defined: PI and
DENSITY. The following run was made to determine the weight of a cylinder with a radius
of 3 inches and a height of 12 inches.

Enter the radius of the cylinder (in inches): 3
Enter the height of the cylinder (in inches): 12
The cylinder weighs 96.3592 pounds

The advantage of using the named constant PI in Program 3.14 is that it clearly
identifies the value of 3.1416 in terms most people recognize. The advantage of using the
named constant DENSITY is that the programmer can change the value of the density for
another material without having to search through the program to see where DENSITY is
used. If, of course, many different materials are used, DENSITY should be changed from a
symbolic constant to a variable. A natural question, then, is asking what the difference is
between symbolic constants and variables.

Chapter 3 153
Symbolic Constants

A variable’s value can be altered anywhere in a program. By its nature, a named constant
is a fixed value that must not be altered after it’s defined. Naming a constant rather than
assigning the value to a variable ensures that the value in the constant can’t be altered later.
Whenever a named constant appears in an instruction, it has the same effect as the constant
it represents. Therefore, DENSITY in Program 3.14 is simply another way of representing the
number 0.284. Because DENSITY and the number 0.284 are equivalent, the value of
DENSITY can’t be subsequently changed in the program. After DENSITY has been defined
as a constant, an assignment statement such as

DENSITY = 0.156;

is meaningless and results in an error message because DENSITY is not a variable. Because
DENSITY is only a stand-in for the value 0.284, this statement is equivalent to writing the
invalid expression 0.284 = 0.156.

In addition to using a const statement to name constants, as in Program 3.14, you can
also use this statement to equate the value of a constant expression to a symbolic name. A
constant expression consists of operators and constants only. For example, the statement

const double DEG_TO_RAD = 3.1416/180.0;

equates the value of the constant expression 3.1416/180.0 to the symbolic name DEG_TO_RAD.

The symbolic name, as always, can be used in any statement following its definition. For
example, because the expression 3.1416/180.0 is required for converting degrees to radians,
the symbolic name for this conversion factor can be used conveniently whenever this
conversion is required. For example, in the assignment statement

height = distance * sin(angle * DEG_TO_RAD) ;

the symbolic constant DEG_TO_RAD is used to convert the value in angle to a radian
measure.

A previously defined named constant can also be used in a subsequent const statement.
For example, the following sequence of statements is valid:

const double PI = 3.1416;
const double DEG_TO_RAD = PI / 180.0;

Because the constant 3.1416 has been equated to the symbolic name PI, it can be used
legitimately in any subsequent definition, even in another const statement. Program 3.15
uses the named constant DEG_TO_RAD to convert a user-entered angle, in degrees, to its
equivalent radian measure for use by the sin () function.

154 Assignment, Formatting, and Interactive Input

Program 3.15

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main()

{
const double PI = 3.1416;
const double DEG_TO_RAD = PI/180.0;
double angle;

cout << "Enter the angle (in degrees): ";
cin >> angle;
cout << setiosflags(ios:: fixed)
<< setiosflags(ios::showpoint)
<< setprecision(4)
<< "The sine of the angle is " << sin(angle * DEG_TO_RAD)
<< endl;

return 0;

The following sample run was made using Program 3.15:

Enter the angle (in degrees): 30
The sine of the angle is 0.5000

Although the const qualifier has been used to construct symbolic constants, you’ll see
this qualifier again in Chapter 6, where you learn it’s useful as a function argument to make
sure the argument isn’t modified in the function.

Chapter 3 155
Symbolic Constants

Technical Note

Frequency, Period, and Wavelength

A wave is a repeating pattern in time and space. Examples are sound waves, ocean
waves, and light waves. Figure 3.16 shows a typical wave, which is usually described
with one of these related terms: frequency, period, or wavelength.

e T—>]

Amplitude

Time
Figure 3.16 A typical wave

In science and engineering fields, a wave's frequency is denoted by the letter f, its
period by the letter T, and its wavelength by the Greek letter 4 (lamda). The frequency
of a wave is the number of repetitions of the wave occurring in one second. For
example, the frequency of the musical note middle C on a piano is 261.64 repetitions
per second, typically denoted as 261.64 cycles/sec. In the SI measurement system, the
synonym for cycles/sec is Hertz (Hz). Therefore, 261.64 cycles/sec = 261.64 Hz, which
means there are 261.64 repetitions of the wave in one second. Audio, radio, and
power line waves are described in terms of their frequencies.

Extremely low frequency waves, such as ocean waves, are typically described by
their period, T, which is the inverse of the wave’s frequency. So mathematically, you
have the following:

T=1/f

Therefore, a wave's period is the time it takes to complete one cycle. For example,
an ocean surface wave with a period of 3 sec/cycle means it takes 3 seconds to com-
plete one wave cycle. What this means is that a person at a fixed location in the ocean
sees a wave crest pass by every 3 seconds. The corresponding frequency of this wave is
1/T, or 1/3 cycles per second, which equals 0.33 Hz.

Extremely high frequency waves, such as light and x-rays, are typically described by
their wavelength. Wavelength, A, and frequency, f, are related by this formula

\ = speed of the wave / f

where the speed of the wave is the wave's velocity in the medium through which it's
traveling. For light traveling in a vacuum, the speed of a light wave is 299,792,458 m/s ~
2.998 x 108 m/s. For sound waves traveling in air, the speed of the wave is 345 m/s.
continued...

156 Assignment, Formatting, and Interactive Input

Technical Note

Frequency, Period, and Wavelength (continued)
Following is a description of waves encountered in science and engineering fields:

Wave Type Frequency or Period Wavelength
Ocean waves Period = 1 to 5 Not used
seconds
European household 50 Hz 5.996 x 10° m
current
American household 60 Hz 4.996 x 10° m
current
Radio frequencies
Low frequency (LF) | 3 x 10% to 3 x 10° Hz 10*to 10° m
(30 to 300 kilohertz, KHz) | (10 to 1 km)
Medium 3 x 10°to 3 x 10° Hz 10° to 10° m
frequency (MF) (.3 to 3 megahertz, MHz) | (1 to .1 km)
High frequency (HF) | 3 x 10° to 3 x 107 Hz 100 to 10 m
(3 to 30 MHz)
Very high 3 x 10" to 3 x 10° Hz 10to 1 m
frequency (VHF) (30 to 300 MHz)
Ultra high 3 x 10°to 3 x 10"° Hz Tto.1Tm
frequency (UHF) (300 to 3000 MHz)
Body heat 3x 10" Hz 1 x 103 m (1 millimeter)
Infrared light 0.04 x 10" to 750 x 107 to
3 x 10" Hz 100 x 10 nm
(750 to 100 nanometers)
Red visible light 384 x 10'% to 78 x 107 to
482 x 10" Hz 62 x 10° nm
(78 to 62 nanometers)
Violet visible light 659 x 10'% to 45 x 107 to
769 x 10'? Hz 39.8 x 10° nm
(45 to 39 nanometers)
Ultraviolet light 1 x 10" to 300 x 10° to
1.5 x 10'° Hz 200 x 10° nm
(300 to 200 nanometers)
X-rays 30 x 10" to 9.9 x 10° to
30 x 10" Hz 99 x 10° m

Chapter 3 157
Symbolic Constants

EXERCISES 3.5

1.

(Practice) Modify Program 3.9 to use the named constant GRAV in place of the value
32.2 used in the program. Compile and execute your program to verify that it produces
the same result shown in the text.

(Modify) Rewrite the following program to use the named constant FACTOR in place of
the expression (5.0/9.0) used in the program:

#include <iostream>
using namespace std;

int main()

{
double fahren, celsius;
cout << "Enter a temperature in degrees Fahrenheit: ";
cin >> fahren;
celsius = (5.0/9.0) * (fahren - 32.0);
cout << "The equivalent Celsius temperature is "
<< celsius << endl;
return 0;
}

(Modify) Rewrite the following program to use the symbolic constant PRIME in place of
the value 0.04 used in the program:

#include <iostream>
using namespace std;

int main()
{
float prime, amount, interest;
prime = 0.04; // prime interest rate
cout << <Enter the amount: ";
cin >> amount;
interest = prime * amount;
cout << "The interest earned is"
<< interest << " dollars" << endl;

return 0;

}

. (Modify) Rewrite the following program so that the variable volts is changed to a sym-

bolic constant:

#include <iostream>
using namespace std;

int main()
{

double current, resistance, volts;

158

Assignment, Formatting, and Interactive Input

volts = 12;

cout << " Enter the resistance: ";

cin >> resistance;

current = volts / resistance;

cout << "The current is " << current << endl;

return 0;

}

S. (Heat Transfer) Typically, all objects radiating heat do so at many different wavelengths.

(See the Technical Note in Section 3.5 for a description of wavelength.) The wavelength
at which an object emits its maximum heat energy can be found by using Wein’s Law:

Ny T =W

max

N4 18 the maximum wavelength.
T is the object’s temperature in °K.

W is Wein’s constant = 2897 microns/°K.

a. Using Wein’s Law, write a C++ program that accepts an object’s temperature in
degrees Celsius and outputs the wavelength at which the object radiates its maximum
energy. Have your program declare Wein’s constant as the symbolic constant named
WEINCONSTANT.

b. After verifying that your program is working, use it to determine the maximum heat-
radiating wavelength for the sun, Earth, and Mars, with surface temperatures of 5727,
14, and 0.46 degrees Celsius, respectively.

3.6

A Case Study: Acid Rain

The use of coal as the major source of steam power began with the Industrial Revolution.
Currently, coal is one of the principal sources of electrical power generation in many
industrialized countries. Since the middle of the 19th century, it has been known that the
oxygen used in the burning process combines with the carbon and sulfur in coal to produce
carbon dioxide and sulfur dioxide. When these gases are released into the atmosphere, sulfur
dioxide combines with water and oxygen in the air to form sulfuric acid, which is transformed
into separate hydronium ions and sulfates (see Figure 3.17). The hydronium ions in the
atmosphere that fall to Earth as components of rain are what change the acidity levels of lakes
and forests.
The acid level of rain and lakes is measured on a pH scale by using this formula:

PH = - log,, (concentration of hydronium ions)

The concentration of hydronium ions is measured in units of moles/liter. A pH value of
7 indicates a neutral value (neither acidic nor alkaline), whereas levels below 7 indicate the
presence of an acid, and levels above 7 indicate the presence of an alkaline substance. For
example, sulfuric acid has a pH value of approximately 1, lye has a pH value of approximately
13, and distilled water typically has a pH value of 7. Marine life usually can’t survive in water
with a pH level below 4.

Chapter 3 159
A Case Study: Acid Rain

sulfur and carbon dioxide + water

and _ sulfuric — sulfates
oxygen acid — nydronium
in air jons
acid
rain

smokestack

Figure 3.17 The formation of acid rain

Using the formula for pH, you’ll write a C++ program, using the software development
procedure described in Chapter 2, that calculates the pH level of a substance based on a user
input value for the concentration of hydronium ions.

Step 1 Analyze the Problem
Although the problem statement provides technical information on the composition of acid

rain, from a programming viewpoint, this problem is rather simple. You have only one
required output (a pH level) and one input (the concentration of hydronium ions).

160

Assignment, Formatting, and Interactive Input

Step 2 Develop a Solution

The algorithm for transforming the input to the required output is a straightforward use of
the pH formula. The pseudocode representation of the algorithm for entering input data,
processing data to produce the required output, and displaying output is as follows:

Display a prompt to enter an ion concentration level.
Read a value for the concentration level.

Calculate a pH level, using the given formula.
Display the calculated value.

To make sure you understand the formula used in the algorithm, do a hand calculation.
You can then use the result of this calculation to verify the result the program produces.
Assuming a hydronium concentration of 0.0001 (although any value would do), the pH level
is calculated as -log,, 10™. Either by knowing that the logarithm of 10 raised to a power is
the power itself or by using a log table, the value of this expression is -(-4) = 4.

Step 3 Code the Solution

Program 3.16 shows using the algorithm in C++. The variable names were chosen to convey
the variables’ meanings in this application.

g Program 3.16

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

double hydron, pHlevel;

cout << "Enter the hydronium ion concentration: ";
cin >> hydron;

pHlevel = -1logl0 (hydron) ;

cout << "The pH level is " << pHlevel << endl;

return 0;

Program 3.16 begins with two #include preprocessor statements, followed by the
main () function. Within main (), a declaration statement declares two floating-point
variables, hydron and pHlevel. The program then displays a prompt requesting input data
from the user. After the prompt is displayed, a cin statement is used to store the entered

Chapter 3 161
A Case Study: Acid Rain

data in the variable hydron. Finally, a value for pHlevel is calculated, using the logarithmic
library function, and displayed. As always, the program is terminated with a closing brace.

Step 4 Test and Correct the Program
A test run using Program 3.16 produced the following:

Enter the hydronium ion concentration level: 0.0001
The pH level is 4

Because the program performs a single calculation, and the result of this test run agrees
with your previous hand calculation, the calculation portion of the program has been tested
completely. It can now be used to calculate the pH level of other hydronium concentrations
with confidence that the results produced are accurate.

EXERCISES 3.6

1. (Practice) Enter, compile, and run Program 3.16 on your computer system.

2. (General Math) The value of 7 can be approximated by this series:

4 1—l+l—l+....
3 57

Using this formula, write a program that calculates and displays the value of r, using 2, 3,
and 4 terms of the series.

3. (General Math) The exponential function e¢*, where e is known as Euler’s number (and
has the value 2.718281828459045 . . .) appears many times in descriptions of natural
phenomena. For example, radioactive decay, population growth, and the normal (bell-
shaped) curve used in statistical applications can be described by using this function. The
value of e* can be approximated by using this series:

xox x xt w o«
I+—+—+—+—+—+—+...

o2t 31 41 50 6!
Using this formula, write a program that calculates and displays the value of Euler’s num-
ber, using 1, 2, 3, and 4 terms of the series.

4. (General Math) The volume of oil stored in an underground 200-foot deep cylindrical
tank is determined by measuring the distance from the top of the tank to the surface of
the oil. Knowing this distance and the radius of the tank, the volume of oil in the tank
can be determined by using this formula:

volume = w radius® (200 - distance)

Using this information, write, compile, and execute a C++ program that accepts the radius
and distance measurements, calculates the volume of oil in the tank, and displays the two

162

Assignment, Formatting, and Interactive Input

input values and the calculated volume. Verify the results of your program by doing a
hand calculation using the following test data: radius = 10 feet and distance = 12 feet.

. (General Math) The circumference of an ellipse (review Figure 3.5) is given by this

formula:
Circumference = 1t (d+/7)2)
Using this formula, write a C++ program to calculate the circumference of an ellipse with

a minor radius, @, of 2.5 inches and a major radius, 4, of 6.4 inches. (Hint. The square root
can be taken by raising the quantity 2[a* + b?] to the 0.5 power.)

. (General Math) The perimeter, approximate surface area, and approximate volume of an

in-ground pool are given by the following formulas:

perimeter = 2(length + width)

volume = length x width x average depth

underground surface area = 2(length + width)average depth + length x width

Using these formulas as a basis, write a C++ program that accepts the length, width, and
average depth measurements, and then calculates the pool’s perimeter, volume, and
underground surface area. In writing your program, make these two calculations immedi-
ately after entering the input data: length x width and Jength + width. The results of these
two calculations should be used, as needed, in the assignment statements for determining
the perimeter, volume, and underground surface area without recalculating them for each
equation. Verify your program’s results by doing a hand calculation, using the following
test data: length = 25 feet, width = 15 feet, and average depth = 5.5 feet. After verifying that
your program is working, use it to complete the following chart:

Length | Width Depth Perimeter | Volume Underground
Surface Area

25 10 5.0

25 10 5.5

25 10 6.0

25 10 6.5

30 12 5.0

30 12 5.5

30 12 6.0

30 12 6.5

. (Heat Transfer) Radiation is the transfer of heat via electromagnetic wave propagation.

Examples of heat transfer are the heat radiated from the sun, the heat radiated from
Earth, and the heat given off in the evening by objects, such as cars and brick walls,
warmed by the sun during the day. The heat radiated by an object can be calculated by
using Stephan-Boltzmann’s Law:

E=c¢oT

Chapter 3 163
A Case Study: Acid Rain

E is the energy radiated per second per square meter of its surface.
¢ is the emissivity of the substance (a number between 0 and 1).

o is Stephan-Boltzmann’s constant (5.6697 x 10® Watts/m?K*).

T is the surface temperature in degrees Kelvin (°K = °C + 273).

An ideal radiator, such as the sun, has an emissivity of 1, and the heat generated from the
sun, with a surface temperature of approximately 6000°K, is as follows:

E = 5.6697 x 10°® Watts/m?K* (6 x 10°K*)
5.6697 x 108 Watts/m?K* (1296 x 10'?K*) = 7.3 x 107 Watts/m?
= 73,000,000 Watts/m?

Using the formula and this information, write a C++ program that accepts a planet’s tem-
perature (assuming an emissivity of 1) and provides the heat generated from the planet as
its output. After determining that your program is working correctly (make sure it produces
the correct radiation for the sun), use it to complete the following chart (make sure to use
correct units):

Planet Average Surface Heat Radiated
Temperature (°Celsius) (Watts/m?)

Mercury 270

Venus 462

Earth 14

Mars -46

Jupiter -108

Saturn -139

Uranus -197

Neptune -201

. (Heat Transfer) During the day, heat is absorbed by many objects, such as cars, roofs,
and brick walls. This heat is then radiated back into the environment during the cooler
evening hours. Using Stephan-Boltzmann’s Law, K = ¢ o T? (see Exercise 7), write a C++
program that determines the amount of radiation for the objects listed in the following
table. Your program should request the object’s average surface temperature and emissiv-
ity, and then calculate and display the heat radiated. Complete the following chart, mak-
ing three runs of the program:

Substance Average Surface Emissivity Heat Radiated
Temperature (Watts/m>?)
(°Celsius)

Automobile 47 3

Brick 45 .9

Commercial roof 48 .05

164

Assignment, Formatting, and Interactive Input

. (Electrical Eng.) a. Write, compile, and execute a C++ program that calculates and dis-

plays the voltage gain of a three-stage amplifier at a frequency of 1000 Hertz. The volt-
age gains of the stages are as follows:

Stage 1 gain: 23/[2.32 + (0.044)%]"2
Stage 2 gain: 12/[6.72 + (0.34/)°]""?
Stage 3 gain: 17/[1.92 + (0.45/)°]""?

fis the frequency in Hertz. The voltage gain of the amplifier is the product of the gains
of each stage.

b. Redo Exercise 9a, assuming the frequency will be entered when the program runs.

3.7

A Closer Look: Programming Errors

The ideal in programming is to produce readable, error-free programs that work correctly and can

be modified or changed with a minimum of testing. To achieve this ideal, keep in mind the

different types of errors that can occur, when they’re usually detected, and how to correct them.
You can detect an error at any of the following times:

Before a program is compiled

While the program is being compiled

While the program is running

After the program has been executed and the output is being examined

The method for detecting errors before a program is compiled is called desk checking
because you’re usually sitting at a desk with the code in front of you. It refers to the process
of examining the source code for mistakes immediately after you type it.

Errors detected while the program is being compiled are called compile-time errors, and
errors that occur while the program is running are called runtime errors. Other names for
compile-time errors are syntax errors and parse errors, terms that emphasize the type of error
the compiler detects.

By now, you have probably encountered numerous compile-time errors. Beginning
programmers tend to be frustrated by them, but experienced programmers understand the
compiler is doing a lot of valuable checking, and correcting errors the compiler does detect
is usually easy. Because these errors occur while the program is being developed, not while
a user is performing an important task, no one but the programmer ever knows they occurred.
You fix them, and they go away.

Runtime errors are more troubling because they occur while a user is running the
program; in most commercial systems, the user isn’t the programmer. Many error types can
cause a runtime error, such as a hardware failure. From a programming standpoint, however,
most runtime errors are referred to as logic errors or faulty logic, which encompasses not
analyzing what the program should do or not anticipating how users can make the program
fail. For example, if a user enters data that results in an attempt to divide a number by zero,
a runtime error occurs.

As a programmer, the only way to protect against runtime errors is to anticipate
everything a person might do to cause errors and submit your program to rigorous testing.
Beginning programmers tend to blame users for an error caused by entering incorrect data,

Chapter 3 165
A Closer Look: Programming Errors

but professionals don’t. They understand that a runtime error is a flaw that can damage the
reputation of the program and programmer.

"To prevent compile-time and runtime errors, it’s more fruitful to determine what causes
them. As mentioned, compile-time errors are also called syntax errors: mistakes in the
structure or spelling of a statement. For example, examine the following statements:

cout << "There are four syntax errors here\n
cot " Can you find tem";

They contain the following syntax errors:

1. A closing quotation mark is missing in line 1.

2. A terminating semicolon (;) is missing in line 1.
3. The keyword cout is misspelled in line 2.

4. The insertion operator, <<, is missing in line 2.

When the program is compiled, the compiler detects all these errors because they’re
syntax errors that violate the basic rules of C++. If they aren’t discovered by desk checking,
the compiler detects them and displays an error message.!! Sometimes the error message is
clear and the error is obvious; at other times, understanding the compiler’s error message
takes a little detective work. Because syntax errors are the only error type that can be
detected at compile time, the terms “compile-time errors” and “syntax errors” are used
interchangeably. Strictly speaking, however, compile-time refers to when the error is
detected, and syntax refers to the type of error detected.

The misspelling of “them” in the second statement isn’t a syntax error. Although this
spelling error results in displaying an undesirable output line, it’s not a violation of C++’s
syntax rules. It’s a typographical error, commonly referred to as a “typo.” The compiler
doesn’t catch this type of typographical error.!2

Another error the compiler doesn’t catch is a logic error, which can cause a runtime error
or produce incorrect results. These errors are characterized by erroneous, unexpected, or
unintentional output that’s a direct result of some flaw in the program’s logic. These errors
can be detected by desk checkmg, by program testing, by accident when a user gets
erroneous output while the program is executing, or not at all. If the error is detected while
the program is executing, a runtime error can occur that generates an error message, causes
premature program termination, or both.

The most serious logic error is caused by not fully understanding the program’s
requirements because the logic in a program reflects the logic on which it’s coded. For
example, if a program’s purpose is to calculate the load-bearing strength of a steel beam and
the programmer doesn’t fully understand how to make the calculation, what inputs are
needed to perform the calculation, or what special conditions exist (such as how temperature
affects the beam), a logic error occurs. Because the compiler doesn’t detect these errors and
they often go undetected at runtime, they are always more difficult to detect than syntax
errors.

"They might not, however, be detected at the same time. Frequently, one syntax error masks another error, and the second error is detected
after the first error is corrected.

12The misspelling of a C++ keyword or a declared variable name that results in an undeclared name is caught, however, because it results in a
syntax error or an undeclared variable.

166 Assignment, Formatting, and Interactive Input

If logic errors are detected, typically they’re revealed in one of two main ways. First, the
program executes to completion but produces incorrect results, such as the following:

® No outpur—This result is caused by omitting an output statement or using a
sequence of statements that inadvertently bypasses an output statement.

o Unappealing or misaligned outpur—This result is caused by an error in an output
statement.

o [ncorrect numerical results—This result is caused by assigning incorrect values to
variables in an expression, using an incorrect arithmetic expression, omitting a
statement, making a round-off error, or using an improper sequence of statements.

Second, a runtime error occurs. Examples of logic errors that cause this result are
attempts to divide by zero or take the square root of a negative number.

Plan your program testing carefully to maximize the possibility of locating errors. In
addition, remember that although a single test can reveal the presence of an error, it does nor
verify that another error isn’t lurking somewhere else in the program. Furthermore, the fact
that one test revealed no errors does nof mean there are no errors.

After you discover an error, however, you must locate where it occurs and fix it. In
computer jargon, a program error is referred to as a bug, and the process of isolating,
correcting, and verifying the correction is called debugging.

Although no hard-and-fast rules exist for isolating the cause of an error, some useful
techniques can be applied. The first is preventive. Often programmers introduce errors in the
rush to code and run a program before understanding what’s required and how to achieve the
result, as you learned in Chapter 2. Many errors can be eliminated by desk checking the
program before entering or compiling it.

A second useful technique is imitating the computer by executing each statement by
hand as the computer would. This technique, called program tracing, involves writing down
each variable, as it’s encountered in the program, and listing the value that should be stored
in the variable as each input and assignment statement is encountered. Doing this sharpens
your programming skills because it helps you understand what each statement in your
program causes to happen.

A third useful technique is including some temporary code in your program that displays
the values of selected variables. If the displayed values are incorrect, you can determine what
part of your program generated them and make the necessary corrections. You could also add
temporary code that displays the values of all input data. This technique, called echo printing,
is useful in establishing that the program is receiving and interpreting input data correctly.

The most powerful technique is using a special program called a debugger. A debugger
program can control the execution of a C++ program, interrupt the C++ program at any point
in its execution, and display the values of all variables at the point of interruption.

Finally, no discussion of debugging is complete without mentioning the main ingredient
needed for isolating and correcting errors successfully: the attitude you bring to the task.
After you write a program, you naturally assume it’s correct. Taking a step back to be
objective about testing and finding errors in your own software is difficult. As a programmer,
you must remind yourself that just because you think your program is correct doesn’t make
it so. Finding errors in your own programs is a sobering experience but one that helps you
become a better programmer. The process can be exciting and fun if you approach it as a
detection problem, with you as the master detective.

Chapter 3 167
Chapter Summary

3.8 Common Programming Errors

When using the material in this chapter, be aware of the following possible errors:

1. Forgetting to assign or initialize values for all variables before using them in an
expression. Values can be assigned by assignment statements, initialized in a
declaration statement, or assigned interactively by entering values with a cin
statement.

2. Using a mathematical library function without including the preprocessor statement
#include <cmath> (and on a UNIX-based system, forgetting to include the -1m
argument on the cc command line).

3. Using a library function without providing the correct number of arguments of the
proper data type.

4. Applying the increment or decrement operator to an expression. For example, the
expression (count + n)++ is incorrect. The increment and decrement operators
can be applied only to variables.

5. Forgetting to use the extraction operator, >>, to separate variables in a cin
statement.

6. A more unusual error occurs when increment and decrement operators are used with
variables appearing more than once in the same expression. This error occurs
because C++ doesn’t specify the order in which operands are accessed in an
expression. For example, the value assigned to result in the following statement
depends on the compiler:

result = 1 + i++;

If your compiler accesses the first operand (i) first, the preceding statement is
equivalent to

result = 2 * 1;

1+4+;

However, if your compiler accesses the second operand (i++) first, the value of
the first operand is altered before it’s used the second time, and the value 2i + 1
is assigned to result. As a general rule, don’t use the increment or decrement

operator in an expression when the variable it operates on appears more than once
in the expression.

7. Being unwilling to test a program in depth. Being objective about testing your own
software is difficult, but as a programmer, you must remind yourself that just because
you think your program is correct doesn’t make it so.

3.9 Chapter Summary

1. An expression is a sequence of one or more operands separated by operators. An operand
is a constant, a variable, or another expression. A value is associated with an expression.

2. Expressions are evaluated according to the precedence and associativity of the operators
used in the expression.

168 Assignment, Formatting, and Interactive Input

3. The assignment operator is the = symbol. Expressions using this operator assign a value

to a variable, and the expression also takes on a value. Because assignment is a C++
operation, the assignment operator can be used more than once in the same expression.

The increment operator, ++, adds one to a variable, and the decrement operator, —-,
subtracts one from a variable. Both operators can be used as prefixes or postfixes. In a prefix
operation, the variable is incremented (or decremented) before its value is used. In a postfix
operation, the variable is incremented (or decremented) after its value is used.

. C++ provides library functions for calculating square root, logarithmic, and other

mathematical computations. Programs using a mathematical function must include the
statement #include <cmath> or have a function declaration before calling the
mathematical function.

. Every mathematical library function operates on its arguments to calculate a single value.

To use a library function effectively, you must know the function name, what the
function does, the number and data types of arguments the function expects, and the
data type of the returned value.

7. Values passed to a function are called arguments of the function. Arguments are passed

to a library function by including each argument, separated by commas, in the
parentheses following the function’s name. Each function has its own requirements for
the number and data types of the arguments that must be provided.

8. Functions can be included in larger expressions.

10

11

12

A cin statement is used for data input. cin accepts a stream of data from the keyboard
and assigns the data to wvariables. This is the general form of a statement
using cin:

cin >> varl >> var2 . . . >> varn;

The extraction operator, >>, must be used to separate variable names in a cin
statement.

When a cin statement is encountered, the computer temporarily suspends further
execution until enough data has been entered for the number of variables in the cin
statement.

It’s a good programming practice to display a message before a cin statement that alerts
users to the type and number of data items to be entered. This message is called a
prompt. It’s even a better programming practice to permit only one input variable for
each cin statement.

Values can be equated to a single constant by using the const keyword. This keyword
creates a named constant that is read-only after it’s initialized in the declaration
statement. This declaration has the syntax

const dataType SymbolicName = initialValue;

and permits using the constant instead of the initialValue anywhere in the program
after the declaration.

Chapter 3 169
Programming Projects

Programming Projects for Chapter 3

1. (General Math) a. Write a C++ program to calculate and display the value of the slope of
the line connecting two points with the coordinates (3,7) and (8,12). Use the fact that the
slope between two points with the coordinates (x,y;) and (X,,5,) 18 (Y - V1) / (X, - X{).

b. How do you know the result your program produced is correct?

c. After verifying the output your program produces, modify it to determine the slope of
the line connecting the points (2,10) and (12,6).

d. What do you think will happen if you use the points (2,3) and (2,4), which results in
a division by zero? How do you think this situation can be handled?

e. If your program doesn’t already do so, change its output to this:
The value of the slope is xxxX.XX

The xxx .xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

2. (General Math) a. Write a C++ program to calculate and display the midpoint
coordinates of the line segment connecting the two endpoints given in Exercise la. Use
the fact that the coordinates of the midpoint between two points with the coordinates
(x1,¥7) and (x,,¥,) are ((X;+X,)/2, (y,+Y,)/2). Your program should produce the following
display (replacing the underscores with values your program calculates):

The x midpoint coordinate is
The y midpoint coordinate is

b. How do you know the midpoint values your program calculates are correct?

c. After verifying the output your program produces, modify it to determine the
midpoint coordinates of the line connecting the points (2,10) and (12,6).

d. If your program doesn’t already do so, change its output to this:

The x coordinate of the midpoint is xxx.xX
The y coordinate of the midpoint is xxx.xxX

The xxx .xx denotes placing the calculated value in a field wide enough for three places
to the left of the decimal point and two places to the right of it.

3. (General Math) Modify the program written for Exercise 2 so that it accepts the x and
y coordinates of two points. Have your program determine and display the midpoints of
the two points (use the formula given in Exercise 2). Verify your program by using the
following test data:

Test data set 1: Point 1 = (0,0) and Point 2 = (16,0)
Test data set 2: Point 1 = (0,0) and Point 2 = (0,16)
Test data set 3: Point 1 = (0,0) and Point 2 = (-16,0)
Test data set 4: Point 1 = (0,0) and Point 2 = (0,-16)
Test data set 5: Point 1 = (-5,-5) and Point 2 = (5,5)

170 Assignment, Formatting, and Interactive Input

When you have finished your verification, use your program to complete the following chart:

First Point Second Point Midpoint
(4, 6) (16, 18)

(22, 3) (8, 12)

(-10, 8) (14, 4)

(<12, 2) (14, 3.1)

(3.1,-6) (20, 16)

(3.1, -6) (-16, -18)

4. (Biology) The number of bacteria, B, in a culture that’s subject to refrigeration can be
approximated by this formula:

B = 300000 ¢
e i1s Euler’s number 2.71828 (rounded to five decimal places).
¢ is the time in hours the culture has been refrigerated.

Using this formula, write, compile, and execute a single C++ program that prompts the
user for a value of time, calculates the number of bacteria in the culture, and displays the
result. For testing purposes, check your program by using a test input of 10 hours. After
verifying your program, use it to determine the number of bacteria in the culture after
12, 18, 24, 36, 48, and 72 hours.

5. (Heat Transfer) The time it takes for a spherical object to cool from an initial
temperature of 7;,;, to a final temperature of 7%, caused entirely by radiation, is

provided by Kelvin’s cooling equation:

Nt |1 1
I = _—
2e0A| T3 T

init

¢ is the cooling time in years.

N is the number of atoms.

is Boltzmann’s constant = 1.38 x 10723 mzkg/szK (note that 1 Joule = 1 mzkg/sz).
e is emissivity of the object.

o is Stephan-Boltzmann’s constant = 5.6703 x 10™® Watts/m?K*.

A is the surface area.

T4, 1s the final temperature.

T, ;. 1s the initial temperature.

init

Assuming an infinitely hot initial temperature, this formula reduces to

Nt
f=——
2eG AT},

Chapter 3 171
Programming Projects

Using this second formula, write a C++ program to determine the time it took Earth to cool
to its current surface temperature of 300°K from its initial infinitely hot state, assuming the
cooling is caused only by radiation. Use the information that the area of the Earth’s surface
is 5.15 x 10™*m?, its emissivity is 1, the number of atoms contained in the Earth is 1.1 x 10%°,
and the radius of the Earth is 6.4 x 10° meters. Additionally, use the relationship that a
sphere’s surface area is given by this formula:

Surface area of a sphere = 4 w 1

6. (Heat Transfer) The formula developed in Exercise 5 can be used to determine the
cooling time, #, caused only by radiation, of each planet in the solar system. For
convenience, this formula is repeated here (see Exercise 5 for a definition of each
symbol):

Nk
r=—r
200 AT},

A = surface area of a sphere = 4 7 1*

volume of the sphere

N = number of atoms =

volume of an atom

4 .
Volume of a sphere = 5 radius®

The volume of a single atom is approximately 1 x 10’m?®. Using this information and
the current temperatures and radii listed in the following chart, determine the time it
took each planet to cool to its current temperature, caused only by radiation.

Planet Current Average Radius (km) Cooling Time
Surface Temperature (years)
(°Celsius)

Mercury 270 2439

Venus 462 6051

Earth 14 6371

Mars -46 3396

Jupiter -108 7.1492 x 10*

Saturn -139 6.0268 x 10%

Uranus -197 2.5559 x 10%

Neptune -201 2.4764 x 10*

7. (Physics) When a particular rubber ball is dropped from a given height (in meters), its
impact speed (in meters/second) when it hits the ground is given by the formula

speed = \[2gh

where g is the acceleration caused by gravity and / is the height. The ball then rebounds
to 2/3 the height from which it last fell. Using this information, write, test, and run a C++
program that calculates and displays the impact speed of the first three bounces and the

172 Assignment, Formatting, and Interactive Input

rebound height of each bounce. Test your program by using an initial height of
2.0 meters. Run the program twice, and compare the results for dropping the ball on
Earth (g = 9.81 meters/sec’) and on the moon (g =167 meters/sec).

8. (Electrical Eng.) a. The voltage gain of an amplifier is given by this formula:

77
. 275
voltage gain = 23 0.5

fis the frequency in Hz.
7 is the number of stages in the amplifier.

Using this formula, write, compile, and execute a C++ program to determine the value
of the voltage gain for a four-stage amplifier operating at a frequency of 120 Hz. Your
program should produce the following display:

At a frequency of xxxxx Hertz, the voltage gain is yyyvy
Your program should replace xxxxx with the frequency and yyyyy with the voltage gain.

b. Manually check the value your program produces. After verifying that your program
is working correctly, modify it to determine the voltage gain of a 12-stage amplifier
operating at a frequency of 9500 Hz.

9. (Electrical Eng.) Write, compile, and execute a C++ program that calculates and
displays the value of the current flowing through an RC circuit (see Figure 3.18). The
circuit consists of a battery connected in a series to a switch, a resistor, and a capacitor.
When the switch is closed, the current, 7, flowing through the circuit is given by this
formula:

i = (E/R) ¢"R¢

E is the voltage of the battery in volts.

R is the value of the resistor in ohms.

C is the value of the capacitor in farads.

¢ is the time in seconds after the switch is closed.

e i1s Euler’s number, which is 2.71828 (rounded to five decimal places).

Using this formula, write, compile, and run a C++ program to determine the voltage
across the capacitor shown in Figure 3.18 when 7 is 0.31 seconds. (NVoze: The value of RC
is referred to as the system’s time constant.)

The program should prompt the user to enter appropriate values and use input
statements to accept the data. In constructing the prompts, use statements such as

Chapter

3

Programming Projects

Figure 3.18 A series RC circuit

173

“Enter the voltage of the battery.” Verify your program’s operation by calculating by hand
the current for the following test data:

Test data set 1: Voltage = 20 volts, R = 10 ohms, RC = 0.044, 7 = 0.023 seconds.
Test data set 2: Voltage = 35, R = 10 ohms, RC = 0.16, 7 = 0.067 seconds.

b. Check the value computed by your program by hand. After verifying that your program
is working correctly, use your program to complete the following chart:

Voltage V | Resistance R RC (Time Time t (sec) | Current i (amps)
(volts) (ohms) Constant)

35 10 0.16 0.11

35 10 0.16 0.44

35 10 0.16 0.83

15 10 0.55 0.11

15 10 0.55 0.44

15 10 0.55 0.067

6 1000 2.6 12.4

10. (Electrical Eng.) The amplification of electronic circuits is measured in units of
decibels, which is calculated as

10 LOG (P ,IP,)

where P, is the power of the output signal and P; is the power of the input signal. Using
this formula, write, compile, and execute a C++ program to calculate and display the
decibel amplification, in which the output power is 50 times the input power. Verify your
program’s result by using a hand calculation. After verifying that your program is working
correctly, use it to determine the amplification of a circuit, where output power is
4.639 Watts and input power is 1 Watt.

174 Assignment, Formatting, and Interactive Input

11.

12.

(Acoustics) The loudness of a sound is measured in units of decibels and is calculated
as shown:

10 LOG (SL/RL)

SL is the intensity of the sound being measured.
RL is a reference sound-intensity level.

Using this formula, write a C++ program that calculates and displays the decibel loudness
of a busy street having a sound intensity of 10,000,000 RL. Verify your program’s result
by using a hand calculation. After verifying that your program is working correctly, use
it to determine the sound level in decibels of the following sounds:

a. A whisper at sound intensity 200 RL
b. A rock band playing at sound intensity 1,000,000,000,000 R/
c. An airplane taking off at sound intensity 100,000,000,000,000 RL

(General Math) a. A balance has the following size weights: 100 1b, 50 1b, 10 Ib, 5 Ib,
and 1 lb. The number of 100 Ib and 50 lIb weights required to weigh an object weighing
WEIGHT pounds can be calculated by using the following C++ statements:

// Determine the number of 100 lb weights
wl00 = int (WEIGHT/100)

// Determine the number of 50 lb weights
w50 = int ((WEIGHT - wl00 * 100)/50)

Using these statements as a starting point, write a C++ program that calculates the
number of each type of weight needed to weigh a 789 Ib object.

b. Without compiling or executing your program, manually check the effect of each
statement in the program and determine what’s stored in cach variable as each
statement is encountered.

c. After verifying that your algorithm works correctly, compile and execute your program.
Verify that the results your program produces are correct. After verifying that your
program is working correctly, use it to determine the weights required to weigh a 626 1b
object.

Chapter 3 175
Programming Projects

Engineering and Scientific Disciplines

Electrical Engineering

Electrical engineering, the largest engineering field, deals with applying the principles of
electricity and electromagnetism to the manufacture of all forms of machines and
devices that use electricity or produce electrical energy. In the mid-1800s, this field was
concerned solely with generating electrical energy, but it has evolved into a broad field
encompassing the following areas, among others:

® Power: This area involves generation of electrical energy in large fossil-fuel,
nuclear, solar, and hydroelectric plants as well as efficient use of electrical energy
by means of motors or illumination devices. Also important are transmitting and
distributing electrical energy through overhead lines, microwaves, light pipes, and
superconducting lines.

® Solid-state electronics: Through modern physics and materials science, semicon-
ducting materials are developed and used to construct microcircuitry for moni-
toring and controlling the operations of all kinds of devices, from video games to
assembly-line robots. The improved reliability, rapidly shrinking size, and reduced
power requirements of modern miniaturized electrical components have created
limitless opportunities for applications.

e Communications: This area involves designing and constructing equipment used
to transmit information via electricity or electromagnetic waves (radio, light,
microwaves, and so on). This field used to include antenna characteristics and
radar, but using laser for communication is the current topic.

e Computers and robotics: Although electronics deals with principles associated
with the functions of components, computer engineers are concerned with
designing the complex circuitry that interweaves components into a computer.
Microprocessors, or small computers, are designed to constantly monitor and
control the operations of a piece of equipment, such as a lathe or an autopilot.

This page intentionally left blank

4.1
4.2
4.3
4.4
4.5

4.6

4.7
4.8

Chapter

Selection Criteria

The if-else Statement
Nested if Statements Selection Structures
The switch Statement

A Case Study: Solving
Quadratic Equations

A Closer Look: Program
Testing

Common Programming Errors
Chapter Summary

No L

The term “flow of control” refers to the order in which a program’s statements are executed. Unless
directed otherwise, the normal, default flow of control for all programs is sequential. This term means
Statements are executed in sequence, one after another; in the order in which they’re placed in a program.

In addition to sequential execution, all high-level languages provide three other control structures
10 alter the sequential flow of control in precisely defined ways. Here, the term “control structure” simply
means a construction that specifies the order in which statements are to be executed. The three additional
control structures are called selection, repetition, and invocation.

As you might have guessed by its name, a selection structure is used to select statements to be
performed next, and a repetition structure is used to force a repeat execution of a set of statements.
Invocation is a means of invoking, or forcing, a set of statements, which have previously been combined
into a separate function, to be executed ar a particular point in a program.

As any algorithm, no matter how complex, can be programmed by using one or more of the four
standardized flow of control structures (sequential, selection, repetition, and invocation), understanding
how each of these structures is constructed and operates is a primary requirement for all programmers.
This chapter discusses C++s selection control structures, and Chapters 5 and 6 cover repetition and
invocation control structures.

178

4.1

Selection Structures

Selection Criteria

In solving many problems, different actions must be taken, depending on the data’s value.
Examples of simple situations include calculating an area oz/y if the measurements are
positive, performing a division oz/y if the divisor isn’t zero, printing different messages
depending on the value of a grade received, and so on.

The if-else statement in C++ is used to implement such a decision structure in its
simplest form—choosing between two alternatives. The most commonly used pseudocode
syntax of this statement is as follows:

if (condition)

statement executed if the condition is true;
else

statement executed if the condition is false;

When a running program encounters the if statement, the condition is evaluated to determine
its numerical value, which is then interpreted as true or false. If the condition evaluates to
any positive or negative non-zero numerical value, the condition is considered a “true” condition
and the statement following the if is executed. If the condition evaluates to a zero numerical
value, the condition is considered a “false” condition and the statement following the else is
executed. The else part of the statement is optional and can be omitted.

Relational Operators

The condition used in an if statement can be any valid C++ expression (including, as you’ll
see, even an assignment expression). The most commonly used conditions, however, are
simple relational expressions. A simple relational expression consists of a relational operator
that compares two operands, as shown in Figure 4.1.

operand relational operand

\ opeiator /

watts < 15.2
e
expression

Figure 4.1 A simple relational expression

Although each operand in a relational expression can be a variable or a constant,
relational operators must be one of those listed in Table 4.1. These relational operators can
be used with integer, float, double, or character operands but must be typed exactly as shown
in Table 4.1. For example, although the following examples are all valid,

age > 40 length <= 50 temp > 98.6
3 < 4 flag == done idNum == 682
day != 5 2.0 > 3.3 hours > 40

Chapter

the following are invalid:

length =< 50 //

operator out of order

4 179

Selection Criteria

2.0 >> 3.3 // invalid operator
flag = = done // spaces are not allowed
Table 4.1 C++'s Relational Operators
Relational Operator Meaning Example
< Less than age < 30
> Greater than height > 6.2
<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6
== Equal to grade == 100
1= Not equal to number != 250

The terms relational expression and condition are frequently used as synonyms, and both
terms are used interchangeably in this book. Like all C++ expressions, relational expressions
are evaluated to yield a numerical result.! In a relational expression, the value of the
expression can be only the integer value 1 or 0. These values are interpreted as true and false,
respectively. Conversely, a relational expression that'’s true always evaluates to an integer value of
1, and a relational expression that’s false always evaluates to an integer value of 0.

For example, because the relationship 3 < 4 is always true, this expression has a value
of 1, and because the relationship 2.0 > 3.0 is always false, the value of the expression
itself is 0. This rule can be verified by the following statements,

cout << "The value of 3 < 4 is " << (3 < 4) << endl;

cout << "The value of 2.0 > 3.0 is " << (2.0 > 3.0) << endl;
cout << "The value of true is " << true << endl;

cout << "The value of false is " << false << endl;

which result in this display:
The
The
The
The

of
of
of
of

3 <4 is 1
2.0 > 3.0 is 0
true is 1
false is O

value
value
value
value

The value of a relational expression such as hours > 40 depends on the value stored
in the variable hours. In a C++ program, a relational expression’s value isn’t as important as
the interpretation C++ places on the value when the expression is used as part of a selection
statement. In these statements, which are explained in the next section, you'll see that C++
uses a zero value to represent a false condition and any non-zero value to represent a true
condition. The selection of which statement to execute next is then based on the value.

In addition to numerical operands, character data can be compared by using relational
operators. For these comparisons, the char values are coerced to int values automatically
for the comparison. For example, in Unicode, the letter 'A" is stored by using a code with
a lower numerical value than the letter 'B', the code for 'B' has a lower value than the

'In this regard, C++ differs from other high-level languages, which yield a Boolean (true or false) result.

180 Selection Structures

code for 'C', and so on. For character sets coded in this manner, the following conditions are
evaluated as shown:

Expression Value Interpretation
"A' > 'C!’ 0 false
'D' <= 'Z' 1 true
'E' == 'F 0 false
'g' >= 'm' 0 false
'b' 1= ¢! 1 true
'a' == 'A' 0 false
'B' < 'a' 1 true
'b' > 'z 1 true

Comparing letters is essential in alphabetizing names or using characters to select a
choice in decision-making situations. Strings of characters can also be compared, and two
string expressions can be compared by using relational operators or the string class’s
comparison methods (discussed in Section 9.3). In the ASCII character set, a blank precedes
(and is considered “less than”) all letters and numbers; the letters of the alphabet are stored
in order from A to Z; and digits are stored in order from 0 to 9. In this sequence, lowercase
letters come after (are considered “greater than”) uppercase letters, and letter codes come
after (are “greater than”) digit codes (see Appendix B).

When two strings are compared, their characters are compared one pair at a time (both
first characters, then both second characters, and so on). If no differences are found, the
strings are equal; if a difference is found, the string with the first lower character is considered
the smaller string. Following are examples of string comparisons:

Expression Value | Interpretation | Comment

"Hello" > "Good-bye" | 1 true The first H in Hello is greater
than the first G in Good-bye.

"SMITH" > "JONES" 1 true The first S in SMITH is greater
than the first J in JONES.

"123" > "1227" 1 true The third character in 123,

the 3, is greater than the third
character in 1227, the 2.
"Behop" > "Beehive" 1 true The third character in Behop,
the h, is greater than the third
character in Beehive, the

second e.
"He" == "She" 0 false The first H in He is not equal
to the first S in She.
"plant" < "planet" 0 false The t in plant is greater than

the e in planet.

Chapter 4 181
Selection Criteria

Logical Operators
In addition to using simple relational expressions as conditions, more complex conditions can
be created by using the logical operators AND, OR, and NOT. These operators are
represented by the symbols &&, | |, and !, respectively.

When the AND operator, &&, is used with two simple expressions, the condition is true
only if both expressions are true by themselves. Therefore, the logical condition

(voltage > 48) && (milliamp < 10)

is true only if voltage is greater than 48 and milliamp is less than 10. Because relational
operators have a higher precedence than logical operators, the parentheses in this logical
expression could have been omitted.

The logical OR operator, | |, is also used with two expressions. When using the OR
operator, the condition is satisfied if one or both of the two expressions are true. Therefore,
the condition

(voltage > 48) || (milliamp < 10)

is true if voltage is greater than 48, milliamp is less than 10, or both conditions are true.
Again, the parentheses surrounding the relational expressions are included to make the
statement easier to read. Because relational operators have a higher precedence than logical
operators, the same evaluation is made even if the parentheses are omitted.

For the declarations
int i, 3;
double a, b, complete;

the following are valid conditions:

a>>b
(1 ==3) || (a < b)

| | complete
(a/b > 5) && (i <= 20)

Before these conditions can be evaluated, the values of a, b, i, j, and complete must
be known. Assuming a = 12.0, b = 2.0, 1 = 15, j = 30, and complete = 0.0, the previous
expressions yield the following results:

Expression Value Interpretation
a >>b 1 true
(i == j) || (a < b) || complete 0 false
(a/b > 5) && (i <= 20) 1 true

The NOT operator, !, is used to change an expression to its opposite state; that is, if the
expression has a non-zero value (true), the statement ! expression produces a zero value
(false). If an expression is false to begin with (has a zero value), ! expression is true and
evaluates to 1. For example, if the number 26 is stored in the variable age, the expression
age > 40 has a value of 0 (false), and the expression ! (age > 40) has a value of 1
(true). Because the NOT operator is used with only one expression, it’s a unary operator.

182

Selection Structures

Relational and logical operators have a hierarchy of execution similar to arithmetic
operators. 'Table 4.2 lists the precedence of these operators in relation to the other operators

you have used.

Table 4.2 Operator Precedence and Associativity

Operator Associativity
! unary - ++ -- Right to left
* /% Left to right
+ - Left to right
< <= > >= Left to right
== = Left to right
&& Left to right
|| Left to right
= += -= *= /= Right to left

The following chart illustrates using an operator’s precedence and associativity to
evaluate relational expressions, assuming the following declarations:

char key = 'm';
int i =5, j =7, k
double x = 22.5;

12;

Expression Equivalent Expression Value | Interpretation
i+ 2 ==k -1 (i + 2) == (k - 1) 0 false
31 -3 < 22 (3 * 1) - j < 22 1 true
i+2* 3>k (i + (2 * §)) > k 1 true
k +3 <=-3+3*i|(k+3) <= ((-3) + (3*1)) |0 false
'a' + 1 == 'b' (‘a' + 1) == 'b' 1 true
key - 1 > 'p' (key - 1) > 'p' 0 false
key + 1 == 'n' (key + 1) == 'n' 1 true
25 >= x + 1.0 25 >= (x + 1.0) 1 true

As with all expressions, parentheses can be used to alter the assigned operator priority
and improve the readability of relational expressions. By evaluating the expressions in
parentheses first, the following compound condition is evaluated as shown:

(18

(6 * 3 36 /

(13 <3 * 3 +4) && !'(6 - 2 < 5)
(13 < 9 + 4) && (4 < 5)
13 < 13) && 11
0 && O
0

Chapter 4 183
Selection Criteria

A Numerical Accuracy Problem

In C++’s relational expressions, a subtle numerical accuracy problem related to single-
precision and double-precision numbers can occur. Because of the way computers store these
numbers, you should avoid testing for equality of single-precision and double-precision
values and variables by using the relational operator ==.

The reason is that many decimal numbers, such as 0.1, can’t be represented in binary
with a finite number of bits, so testing for exact equality for these numbers can fail. When
you want equality of noninteger values, it’s better to require that the absolute value ofthe
difference between operands be less than some extremely small value. Therefore, for
single-precision and double-precision operands, the general expression

operandOne == operandTwo
should be replaced by the condition
abs (operandOne - operandTwo) < 0.000001

where the value 0.000001 can be altered to any other acceptably small value. Therefore, if the
difference between the two operands is less than 0.000001 (or another user-selected amount),
the two operands are considered essentially equal. For example, if x and y are single-
precision variables, a condition such as

x/y == 0.35
should be programmed as the following:
abs(x/y - 0.35) < EPSILON

EPSILON can be a constant set to any acceptably small value, such as 0.000001.2 Not
requiring exact equivalence to zero ensures that slight inaccuracies in representing noninte-
ger numbers in binary don’t affect evaluation of the tested condition. Because all computers
have an exact binary representation of 0, comparisons for exact equality to 0 don’t have this
numerical accuracy problem.

EXERCISES 4.1

1. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2, ¢ = 4,
d=6,and e = 3:

a. a > b
b. a '= b
c. d b==c¢c%b
d a *c!=4d=*b
d* b ===c *e

#Using the abs () function requires including the cmath header file by placing the preprocessor command #include<cmath> before or after
#include<iostream>. UNIX-based systems also require including the math library with the -1m command-line argument.

184

Selection Structures

f. 1(a * b)
g. !'(a % b *)
h. '(c $ b * a)

. (Practice) Using parentheses, rewrite the following expressions to indicate their order of

evaluation correctly. Then evaluate each expression, assuming a = 5, b = 2, and ¢ = 4.
a. a 3 b *c & c % b * a

b.a b *c ||] ¢c%b*a
c. b % c*a &k a % c *b
d. b $c*al||] a%c*hb

. (Practice) Write relational expressions to express the following conditions (using variable

names of your choosing):

The distance is equal to 30 feet.

The ambient temperature is 86.4 degrees.

A speed is 55 mph.

The current month is 12 (December).

The letter input is K.

A length is greater than 2 feet and less than 3 feet.
The current day is the 15th day of the 1st month.

N -

The automobile’s speed is 35 mph and its acceleration is greater than 4 mph per second.

o
.

An automobile’s speed is greater than 50 mph and it has been moving for at least
5 hours.

j- The code is less than 500 characters and takes more than 2 microseconds to transmit.

. (Practice) Determine the value of the following expressions, assuming a = 5, b = 2,

c=4and d =5:

a. a == 5
b. b * d == ¢ * c
c.d%b*c>51]] c%b*rd<?7

4.2

The if-else Statement

The if-else structure directs the computer to select between two statements based on the
result of a comparison. For example, suppose you need to calculate the area of a circle, given
the radius as an input value. If the input is a negative number, you want to print a message,
using one cout statement, that the radius can’t be a negative value; otherwise, you calculate
and print the circle’s area, using a second cout statement. The if-else structure can be

Chapter 4 185
The if-else Statement

used in this situation to select the correct operation based on whether the radius is negative.
This is the general syntax of the 1 f-else statement:

if (expression) statementl;

else statement2;

The expression is evaluated first. If its value is non-zero, statementl is executed.
If its value is zero, the statement after the keyword else is executed. Therefore, one of the
two statements (statementl or statement2, but not both) is always executed, depending
on the expression’s value. Notice that the tested expression must be enclosed by parentheses
and a semicolon is placed after each statement.

For clarity, the if-else statement is typically written on four lines in this form:

if (expression) <% no semicolon here

statementl;

else < no semicolon here

Statement?2;

The form of the if-else statement that’s used typically depends on the length of
statementl and statement2. However, when using this four-line form, don’t put a
semicolon after the parentheses or the else keyword. The semicolons are placed only at the
ends of statements. Figure 4.2 shows the flowchart for the 1f-else statement.

As a specific example of an if-else structure, take a look at constructing a C++
program for determining a circle’s area by examining the value of the radius first. The
condition to be tested is whether the radius is less than 0, so the following is an appropriate
if-else statement for this situation:

if (radius < 0.0)
cout << "A negative radius 1is invalid" << endl;
else
cout << "The area of this circle is " << 3.1416 * pow(radius,2) << endl;

"The relational operator < is used to represent the condition “less than.” If the value of
radius is less than 0, the condition is true (has a value of 1) and the statement cout <<
"A negative radius is invalid"; is executed. If the condition is not true, the value
of the expression is 0, and the statement after the else keyword is executed. Program 4.1
shows using this statement in a complete program.

186 Selection Structures

ad

previous
statement

JL

is
condition
true?

_.I. yes

statement 1 ’ statement 2 ’
A

no (else part)

m—
)

JL

next
statement

JL

Figure 4.2 The if-else flowchart

Program 4.1

#include <iostream>
#include <cmath>
using namespace std;
int main()
{

double radius;

cout << "Please type in the radius: ";
cin >> radius;

if (radius < 0.0)

cout << "A negative radius is invalid" << endl;
else

cout << "The area of this circle is " << 3.1416 * pow(radius,2) << endl;

return O;

Chapter 4 187
The if-else Statement

A blank line is inserted before and after the if-else statement to highlight it in the
program. This format is used throughout the book to emphasize the statement being
discussed.

"To illustrate selection in action, Program 4.1 is run twice with different input data. These
are the results:

Please type in the radius: -2.5
A negative radius is invalid

and

Please type in the radius: 2.5
The area of this circle is 19.635

In reviewing this output, observe that the radius in the first run is less than 0, and the
if part of the if-else structure executes the cout statement correctly, telling the user
that a negative radius is invalid. In the second run, the radius isn’t negative, and the else
part of the if-else structure is used to yield this correct area computation:

3.1416 * (2.5)* = 19.635

Although any expression can be tested by an i f-else statement, relational expressions
are used most often. However, statements such as the following are valid:

if (num)

cout << "Bingo!";
else

cout << "You lose!";

Because num is a valid expression by itself, the message Bingo! is displayed if num has any
non-zero value, and the message You lose! is displayed if num has a value of zero.

Compound Statements

Although only a single statement is permitted in the 1f and else parts of the if-else
statement, each single statement can be a compound statement. A compound statement is a
sequence of single statements between braces, as shown in this example:

{
statementl;
statement?2;
statement3;

last statement;

188 Selection Structures

Using braces to enclose a set of statements creates a single block of statements, which
can be used anywhere in a C++ program in place of a single statement. The next example
shows using a compound statement in the general form of an if-else statement:

if (expression)

{
statementl; // as many statements as necessary
statement?2; // can be put inside the braces
statement3; // each statement must end with a ;
}
else
{
statement4;
statement5;

last statement;

}

Program 4.2 shows using a compound statement in an actual program.

Program 4.2 checks whether the value in tempType is £. If so, the compound statement
corresponding to the if part of the if-else statement is executed. Any other letter in
tempType results in execution of the compound statement corresponding to the else part.
A sample run of Program 4.2 follows:

Enter the temperature to be converted: 212

Enter an f if the temperature is in Fahrenheit
or a ¢ if the temperature is in Celsius: £

The equivalent Celsius temperature is 100.00

Chapter 4
The if-else

Program 4.2

#include <iostream>

#include <iomanip>

using namespace std;

// a temperature conversion program

int main()

{

char tempType;
double temp, fahren, celsius;

cout << "Enter the temperature to be converted: ";
cin >> temp;
cout << "Enter an f if the temperature is in Fahrenheit";
cout << "\n or a c¢ if the temperature is in Celsius: ";
cin >> tempType;
// set output formats
cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(2);

if (tempType == 'f')
{
celsius = (5.0 / 9.0) * (temp - 32.0);
cout << "\nThe equivalent Celsius temperature is "
<< celsius << endl;
}
else
{
fahren = (9.0 / 5.0) * temp + 32.0;
cout << "\nThe equivalent Fahrenheit temperature is "
<< fahren << endl;

return 0;

Statement

189

190 Selection Structures

Block Scope

All statements contained in a compound statement constitute a single block of code, and any
variable declared in this block has meaning only between its declaration and the closing
braces defining the block. For example, take a look at the following example, which consists
of two blocks of code:

{ // start of outer block
int a = 25;

int b = 17;

cout << "The value of a is " << a
<<" and b is " << b << endl;

{ // start of inner block

double a = 46.25;

int ¢ = 10;

cout << "a is now " << a
<< " b is now " << b
<< " and ¢ is " << ¢ << endl;
} // end of inner block
cout << "a is now " << a
<< " and b is " << b << endl;

} // end of outer block
"This section of code produces the following output:

The value of a is 25 and b is 17
a is now 46.25 b is now 17 and ¢ is 10
a is now 25 and b is 17

"This output is produced as follows: The first block of code defines two variables named
a and b, which can be used anywhere in this block after their declaration, including any block
inside this outer block. In the inner block, two new variables have been declared, named a
and c. The a defined in the inner block is stored in a different memory location than the a
defined in the outer block. Therefore, at this stage, four different variables have been
created, two with the same name. When a variable is referenced, the compiler attempts to
first access a variable with the correct name that has been declared in the block containing
the reference. If the referenced variable hasn’t been defined in the block, the compiler
attempts to access the variable declared in the next outer block, until a valid access results.

Chapter 4 191
The if-else Statement

Point of Information

Placement of Braces in a Compound Statement

A common practice for some C++ programmers is placing the opening brace of a com-
pound statement on the same line as the if and else statements. Using this conven-
tion, the if statement in Program 4.2 would look like the following example. (This
placement is a matter of style only—both styles are used, and both are acceptable.)

if (tempType == 'f') {
celsius = (5.0 / 9.0) * (temp - 32.0);
cout << "\nThe equivalent Celsius temperature is "
<< celsius << endl;
}
else {
fahren = (9.0 / 5.0) * temp + 32.0;
cout << "\nThe equivalent Fahrenheit temperature is "
<< fahren << endl;

Therefore, the values of the variables a and ¢ referenced in the inner block use the
values of the variables a and ¢ declared in that block. Because no variable named b was
declared in the inner block, the value of b displayed from within the inner block is obtained
from the outer block. Finally, the last cout statement, which is outside the inner block,
displays the value of the variable a declared in the outer block. If an attempt is made
todisplay thevalue of ¢ anywhere in the outer block, the compiler issues an error message
stating that c is an undefined symbol.

The area in a program where a variable can be used is formally referred to as the scope
of the variable, and you delve into this subject in Chapter 6.

One-Way Selection

A useful modification of the if-else statement involves omitting the else part of the
statement and has this shortened and often useful form:

if (expression)
statement;

The statement following 1f (expression) is executed only if the expression has a
non-zero value (a true condition). As before, the statement can be a compound statement.
Figure 4.3 shows the flowchart for this statement.

192

Selection Structures

J

previous
statement

Jd

is no
condition
true?

] |_yes

statement ’
pa

JL

next
statement

JL

Figure 4.3 A one-way if statement

"This modified form of the if statement is called a one-way if statement. Program 4.3 uses
this statement to display a message only for cars that have been driven more than 3000.0 miles.
"To see its one-way selection criteria in action, Program 4.3 was run twice, each time with
different input data. Only the input data for the first run causes the message Car 256 is

over the limit to be displayed.

Please type in car number and mileage:

Car 256 is over the limit.
End of program output.

and

Please type in car number and mileage:

End of program output.

256 3562.8

23 2562.3

Chapter 4 193
The if-else Statement

Program 4.3

#include <iostream>
using namespace std;

int main()

{
const double LIMIT = 3000.0;
int idNum;
double miles;

cout << "Please type in car number and mileage: ";
cin >> idNum >> miles;

if (miles > LIMIT)
cout << " Car " << 1dNum << " 1is over the limit.\n";

cout << "End of program output.\n";

return 0;

Problems Associated with the if-else Statement

"ITwo of the most common problems encountered in using C++’s 1f-else statement are the
following:

Misunderstanding the full implications of what an expression is
e Using the assignment operator, =, in place of the relational operator ==

Recall that an expression is any combination of operands and operators that yields a
result. This definition is much broader and more encompassing than is apparent at first. For
example, all the following are valid C++ expressions:

age + 5
age = 30
age == 40

Assuming the variables are declared correctly, each of the preceding expressions yields a
result. Program 4.4 uses cout statements to display the value of these expressions when
age = 18.

194 Selection Structures

Program 4.4

#include <iostream>

using namespace std;

int main()
{
int age = 18;

cout << "The value of the first expression is " << (age + 5) << endl;
cout << "The value of the second expression is " << (age = 30) << endl;
cout << "The value of the third expression is " << (age == 40) << endl;

return 0;

The display Program 4.4 produces is as follows:

The value of the first expression is 23
The value of the second expression is 30
The value of the third expression is 0

As the output of Program 4.4 shows, each expression has a value associated with it. The
value of the first expression is the sum of the variable age plus 5, which is 23. The value of
the second expression is 30, which is also assigned to the variable age. The value of the third
expression is 0 because age is not equal to 40, and a false condition is represented in C++

with a value of 0. If the value in age had been 40, the relational expression a == 40 would
be true and have a value of 1.
Now assume that the relational expression age == 40 was intended to be used in this

if statement,

if (age == 40)
cout << "Happy Birthday!";

but was mistyped as age = 40, resulting in the following:

if (age = 40)
cout << "Happy Birthday!";

Because the mistake results in a valid C++ expression, and any C++ expression can be
tested by an 1f statement, the resulting 1 £ statement is valid and causes the message Happy
Birthday! to be displayed regardless of what value was previously assigned to age. Can
you see why?

The condition tested by the if statement doesn’t compare the value in age to the
number 40. It assigns the number 40 to age. That is, the expression age = 40 is not a
relational expression at all; it’s an assignment expression. At the completion of the assign-
ment, the expression itself has a value of 40. Because C++ treats any non-zero value as true,

Chapter 4 195
The if-else Statement

Point of Information

The Boolean Data Type

Before the current ANSI/ISO C++ standard, C++ didnt have a built-in Boolean data
type with its two Boolean values, true and false. Because this data type wasn't
originally part of the language, a tested expression could not evaluate to a Boolean
value. Therefore, the syntax

if(Boolean expression is true)
execute this statement;

also wasn't built into C or C++. Instead, both C and C++ use the more encompassing
syntax,
if(expression)
execute this statement;

where expression is any expression that evaluates to a numeric value. If the value of
the tested expression is a non-zero value, it's considered true, and only a zero value is
considered false.

As the ANSI/ISO C++ standard specifies, C++ has a built-in Boolean data type con-
taining the values true and false. As you learned in Chapter 2, Boolean variables
are declared with the bool keyword. As currently implemented, the actual values that
the Boolean values true and false represent are the integer values 1 and O,
respectively. For example, examine the following program, which declares two Boolean
variables:

#include <iostream>
using namespace std;
int main()
{

bool tl, t2;

tl = true;
t2 = false;
cout <<"The value of tl is " << tl

<< "\nand the value of t2 is " << t2 << endl;

return 0;

}
This program produces the following output:
The value of tl is 1

and the value of t2 is 0)
continued...

196 Selection Structures

Point of Information

The Boolean Data Type (continued)

As shown by this output, the Boolean values true and false are represented by the
integer values 1 and 0 and have the following relationships:

ltrue= is false
lfalse= is true

Additionally, applying a postfix or prefix ++ operator to a variable of type bool sets
the Boolean value to true. The postfix and prefix —-- operators can't be applied to
Boolean variables.

Boolean values can also be compared, as shown in the following code:

if (tl == t2)

cout << "The values are equal" << endl;
else

cout << "The values are not equal" << endl;

Last, assigning any non-zero value to a Boolean variable results in the variable being
set to true (a value of 1), and assigning a zero value to a Boolean results in the vari-
able being set to false (a value of 0).

the cout statement is executed. Another way of looking at it is to realize that the if
statement is equivalent to the following two statements:

age = 40; // assign 40 to age
if (age) // test the value of age
cout << "Happy Birthday!";

Because a C++ compiler has no means of knowing that the expression being tested isn’t
the one you want, you must be especially careful when writing conditions.

EXERCISES 4.2

1. (Practice) Write appropriate if statements for the following conditions:

a. If an angle is equal to 90 degrees, print the message “The angle is a right angle”;
else, print the message “T'he angle is not a right angle.”

b. If the temperature is above 100 degrees, display the message “above the boiling point
of water”; else, display the message “below the boiling point of water.”

c. If the number is positive, add the number to the variable positivesum; else, add
the number to the variable negativesum.

d. If the slope is less than 0.5, set the variable £lag to zero; else, set £lag to one.

Chapter

4 197
The if-else Statement

If the difference between voltsl and volts2 is less than 0.001, set the variable
approx to zero; else, calculate approx as the quantity (voltsl - volts2) / 2.0.

If the frequency is above 60, display the message “The frequency is too high.”

If the difference between templ and temp2 exceeds 2.3, calculate the variable

error as (templ - temp?2)

* factor.

If x is greater than y and z is less than 20, request that the user input a value for the

variable p.

If distance is greater than 20 and less than 35, request that the user input a value for

the variable time.

. (Practice) Write if statements corresponding to the conditions illustrated in the follow-
ing flowcharts:

a.

a

ace<25

| true |
sum= count=
sum +a count+1
AL I
| —
)

a1

\ false

id>22

| |_true

factor=.7 |

K

.
)

J

b.

a

false
c==15

| |_true

volts=5 volts=16
pwr=10 pwr=25

AL I
I
)

J

a

false
count==10

] |_true

average
=sum/count

display
average

198

Selection Structures

. (Practice) Write a C++ program that asks the user to input two numbers. If the first

number entered is greater than the second number, the program should print the message
“The first number is greater”; else, it should print the message “The first number is
smaller.” Test your program by entering the numbers 5 and 8 and then using the num-
bers 11 and 2. What do you think your program will display if the two numbers entered
are equal? Test this case.

. (Practice) a. A certain waveform is 0 volts for time less than 2 seconds and 3 volts for

time equal to or greater than 2 seconds. (These waveforms are referred to as step
functions.) Write a C++ program that accepts time in the variable named time and dis-
plays the appropriate voltage, depending on the input value.

b. How many runs should you make for the program written in Exercise 4a to verify that
it’s operating correctly? What data should you input in each program run?

. (Practice) An insulation test for a wire requires that the insulation withstand at least 600

volts. Write a C++ program that accepts a test voltage and displays the message “PASSED
VOLTAGE TEST” or the message “FAILED VOLTAGE TEST,” as appropriate.

. (Practice) a. Write a C++ program to compute the value of pressure in pounds per square

inch (psi) of a waveform described as follows: For time, # equal to or less than 35 seconds,
the pressure is 0.467 psi, and for time greater than 35 seconds, the pressure is 0.197 + 9.45 psi.
The program should request the time as input and display the pressure as output.

b. How many runs should you make for the program written in Exercise 6a to verify that
it’s operating correctly? What data should you input in each program run?

. (Practice) a. Write a C++ program to display the message “PROCEED WITH TAKEOFE”

or “ABORT TAKEOFE” depending on the input. If the character g is entered in the vari-

able code, the first message should be displayed; otherwise, the second message should be

displayed.

b. How many runs should you make for the program written in Exercise 7a to verify that
it’s operating correctly? What data should you input in each program run?

. (Fluid Mechanics) A fluid particle flowing through a pipe can flow in a smooth, constant

manner, called laminar flow; in a chaotic manner, called turbulent flow; or in an interme-
diate transitional stage between smooth and turbulent flow. As a practical design param-
eter, the Reynolds number can be used to determine the type of flow. For a Reynolds
number below 2000, the flow is laminar, and for a Reynolds number above 3000, the flow
is turbulent. For a Reynolds number between 2000 and 3000, the flow is in transition
from laminar to turbulent. Using this information, write and execute a C++ program that
accepts a Reynolds number as user input; determines whether the flow is laminar, turbu-
lent, or in transition; and displays a message indicating the type of flow based on the
input Reynolds number.

. (Electrical Eng.) A small factory generates its own power with a 20-kilowatt generator and a

50-kilowatt generator. The plant manager indicates which generator is required by typing a
character code. Write a C++ program that accepts this code as input. If code s is typed, a
message directing the plant foreman to use the smaller generator should be displayed; other-
wise, a message directing the use of the larger generator should be displayed.

4.3

Chapter 4 199
Nested if Statements

Nested if Statements

As you have seen, an if-else statement can contain any valid C++ simple or compound
statements, including another if-else statement. Therefore, one or more if-else
statements can be included in either part of an i f-else statement. Including one or more
if statements inside an existing i f statement is called a nested if statement. For example,
substituting the one-way 1f statement

if (distance > 500)
cout << "snap";

for statementl in the following if statement

if (hours < 9)
statementl;
else
cout << "pop";

results in this nested 1if statement:

if (hours < 9)
{
if (distance > 500)
cout << "snap";

}
else
cout << "pop";

The braces around the inner one-way if statement are essential because in their
absence, C++ associates an else with the closest unpaired if. Therefore, without the
braces, the preceding statement is equivalent to the following:

if (hours < 9)
if (distance > 500)
cout << "snap";
else
cout << "pop";

In this example, the else is paired with the inner 1f, which destroys the meaning of the
original 1 f-else statement. Notice also that the indentation is irrelevant, as far as the compiler
is concerned. Whether the indentation exists or not, #e statement is compiled by associating the last
else with the closest unpaired 1 £, unless braces are used to alter the defaulr pairing. The process of
nesting 1f statements can be extended indefinitely, so the cout << "snap"; statement could
be replaced by a complete if-else statement or another one-way if statement.

200 Selection Structures

Figures 4.4a and 4.4b illustrate the general form of a nested if-else statement when
a second if-else statement is nested within a) the 1f part of an 1 f-else statement and
b) the else part of an if-else statement.

is no (else part)

expression-1
true?

] |_yes

is no (else part)
expression-2
true?

A ves

statement 1 ’ statement 2 ’ statement 3 ’
Al I

JL

1

JL

Figure 4.4a Nested within the if part

Chapter
is no (else part)
expression-1
true?
|| yes 4
statement 1 ’
is
expression-2
true?
|| Yes

statement 2

L

-

JL

PV -
N

JL

no

4 201

Nested if Statements

(else part)

statement 3 ’

Figure 4.4b Nested within the else part

The if-else Chain

In general, the nesting shown in Figure 4.4a tends to be confusing and is best avoided in
practice. However, a useful construction for the nesting in Figure 4.4b has this form:

if (expression_1)
statementl;
else

if (expression_2)
statement2;
else

statement3;

As with all C++ programs, because white space is ignored, this indentation isn’t required.
"Typically, the preceding construction is written in the following arrangement:

if (expression_1)

statementl;

else if (expression_2)
statement?2;

else

statement3;

202

Selection Structures

"This useful form of a nested 1f statement is called an if-else chain. Each condition
is evaluated in order, and if any condition is true, the corresponding statement is executed
and the remainder of the chain is terminated. The statement associated with the final else
is executed only if no previous condition is satisfied. This final else serves as a default or
catch-all case that’s useful for detecting an error condition or processing a condition that’s not
handled specifically by the previous conditions.

The chain can be continued indefinitely by repeatedly making the last statement
another i f-else statement. Therefore, the general form of an 1f-else chain is as follows:

if (expression_1)
statementl;

else if (expression_2)
statement?2;

else if (expression_3)
statement3;

else if (expression_n)
statement_n;

else
last_statement;

Each condition is evaluated in the order it appears in the statement. For the first
condition that’s true, the corresponding statement is executed, and the remainder of the
statements in the chain aren’t executed. Therefore, if expression_1 is true, only
statementl is executed; otherwise, expression_2 is tested. If expression_2 is true,
only statement? is executed; otherwise, expression_3 is tested, and so on. The final
else and its associated statement(s) in the chain are optional, and last_statement is
executed only if no previous expressions are true.

"To illustrate using an i f-else chain, Program 4.5 displays an item’s specification status
corresponding to a letter input. The following input codes are used:

Specification Status Input Code
Space exploration
Military grade
Commercial grade
Toy grade

—|m§m

Chapter 4 203
Nested if Statements

Program 4.5

#include <iostream>

using namespace std;

int main()

{

char code;

cout << "Enter a specification code: ";

7

cin >> code;

if (code == 'S")
cout << "The item is space exploration grade.";
else if (code == 'M')

cout << "The item is military grade.";
else if (code == 'C'")
cout << "The item is commercial grade.";
else if (code == 'T'")
cout << "The item is toy grade.";
else
cout << "An invalid code was entered.";

cout << endl;

return O;

As another example of an if-else chain, take a look at determining the output of a
digital converter unit by using the following input/output relationship:

Input Weight Output Reading
Greater than or equal to 90 Ibs 1111
Less than 90 Ibs but greater than or equal to 80 Ibs 1110
Less than 80 Ibs but greater than or equal to 70 Ibs 1101
Less than 70 lbs but greater than or equal to 60 Ibs 1100
Less than 60 Ibs 1011

The following statements can be used to determine the correct output corresponding to
the value input for the variable inlbs:

if (inlbs >= 90)
digout = 1111;
else if (inlbs >= 80)

204

Selection Structures

digout = 1110;

else if (inlbs >= 70)
digout = 1101;

else if (inlbs >= 60)
digout = 1100;

else

digout = 1011;

Notice that this example makes use of the chain stopping after a true condition is found
by checking for the highest input weight first. If the input value is less than 90, the 1f-else
chain continues checking for the next highest weight, and so on, until the correct weight
category is obtained. Program 4.6 uses an if-else chain to calculate and display the correct
output corresponding to the weight input in the cin statement.

Program 4.6

#include <iostream>

using namespace std;

int main()

{

int digout;
double inlbs;

cout <<

"Enter the input weight: ";

cin >> inlbs;

if (inlbs >= 90)

digout
else if
digout
else if
digout
else if
digout
else
digout

cout <<

return 0

= 1111;
(inlbs >= 80)
= 1110;
(inlbs >= 70)
= 1101;
(inlbs >= 60)
= 1100;

= 1011;

"The digital output is

7

" << digout <<

endl;

Chapter 4 205
Nested if Statements

The following is a sample run of Program 4.6:

Enter the input weight: 72.5
The digital output is 1101

As with all C++ statements, each statement in an if-else chain can be replaced by a
compound statement bounded by braces.

§ - EXERCISES 4.3

1. (Practice) Modify Program 4.5 to accept both lower and uppercase letters as codes. For
example, if a user enters an m or an M, the program should display the message “The
item is military grade.”

2. (Practice) Write nested if statements corresponding to the conditions illustrated in the
following flowcharts:

. b,
a a

A
sum=0 ’
is no L
AI

grade=='
is \ no
|| ves count <5
is \ no \ |_yes
weight >35
is no
1 yes grade <50
bin=1 ’ N Lyes
JL
=Y fail=
) fail+1
S L
-
t=s+a ’]
JL
o { L
r PV S
e —

JL .

206 Selection Structures

3. (Practice) An acute angle is less than 90 degrees, an obtuse angle is greater than 90
degrees, and a right angle is equal to 90 degrees. Using this information, write a C++ pro-
gram that accepts an angle, in degrees, and displays the type of angle corresponding to
the degrees entered.

4. (Data Processing) The grade level of undergraduate college students is typically deter-
mined according to the following schedule:

Number of Credits Completed Grade Level
Less than 32 Freshman

32 to 63 Sophomore
64 to 95 Junior

96 or more Senior

Using this information, write a C++ program that accepts the number of credits a student
has completed, determines the student’s grade level, and displays the grade level.

S. (Data Processing) A student’s letter grade is calculated according to the following schedule:

Numerical Grade Letter Grade

Greater than or equal to 90

Less than 90 but greater than or equal to 80

Less than 80 but greater than or equal to 70

Less than 70 but greater than or equal to 60

mo|N|®| >

Less than 60

Using this information, write a C++ program that accepts a student’s numerical grade,
converts the numerical grade to an equivalent letter grade, and displays the letter grade.

6. (Measurement) The tolerance of critical components in a system is determined accord-
ing to the following schedule:

Specification Status Tolerance

Space exploration Less than 0.1%

Military grade Greater than or equal to 0.1% and less than 1%
Commercial grade Greater than or equal to 1% and less than 10%
Toy grade Greater than or equal to 10%

Using this information, write a C++ program that accepts a component’s tolerance reading
and determines the specification that should be assigned to it.

7. (General Math) Write a C++ program that accepts a number followed by one space and
then a letter. If the letter following the number is f, the program is to treat the number
entered as a temperature in degrees Fahrenheit, convert the number to the equivalent
degrees Celsius, and display a suitable message. If the letter following the number is ¢, the

Chapter 4 207
Nested if Statements

program is to treat the number entered as a temperature in degrees Celsius, convert the
number to the equivalent degrees Fahrenheit, and display a suitable message. If the letter is
neither f nor ¢, the program is to display a message that the data entered is incorrect and
terminate. Use an 1f-else chain in your program and make use of these conversion
formulas:

Celsius = (5.0 | 9.0) x (Fahrenheir - 32.0)
Fahrenheit = (9.0 | 5.0) x Celsius + 32.0

. (Debugging) Using the relationships in Program 4.6, the following program calculates the
digital output:

int main()

{
int digout;
double inlbs;

cout << "Enter the input weight: ";
cin >> inlbs;

if (inlbs >= 90) digout = 1111;
if (inlbs >= 80) && (inlbs <= 90) digout = 1110;
if (inlbs >= 70) && (inlbs <= 80) digout = 1101;
if (inlbs >= 60) && (inlbs <= 70) digout = 1100;
if (inlbs < 1000) digout = 1011;

cout << "The digital output is " << digout << endl;

return 0;

}
a. Will this program produce the same output as Program 4.6?

b. Which program is better and why?
. (Debugging) The following program was written to produce the same result as Program 4.6:

int main()

{
int digout;
double inlbs;

cout << "Enter the input weight: ";
cin >> inlbs;

if (inlbs < 60)
digout = 1011;

else if (inlbs >= 60)
digout = 1100;

else if (inlbs >= 70)
digout = 1101;

else if (inlbs >= 80)
digout = 1110;

else if (inlbs >= 90)
digout = 1111;

208 Selection Structures

cout << "The digital output is " << digout << endl;

return 0;

}
a. Will this program run?

b. What does this program do?

c. For what values of input pounds does this program calculate the correct digital output?

4.4 The switch Statement

An if-else chain is used in programming applications when one set of instructions must
be selected from many possible alternatives. A switch statement is an alternative to the
if-else chain for situations when the condition involves comparing an integer expression
with a specific value. It has this general form:

switch (expression)
{ // start of compound statement
case value_1: // terminated with a colon
statementl;
statement?2;

break;

case value_2: // terminated with a colon
statementm;
statementn;

break;

case value_n: // terminated with a colon
statementw;
statementx;

break;

default: // terminated with a colon
statementaa;
statementbb;

} // end of switch and compound statement

The switch statement uses four new keywords: switch, case, break, and default.
The following discussion explains what each of these keywords does.

The switch keyword identifies the start of the switch statement. The expression in
parentheses after switch is then evaluated, and this expression must evaluate to an integer
result, or a compilation error results.

Chapter 4 209
The switch Statement

In the switch statement, the case keyword identifies values that are compared with
the switch expression’s value. The case values are compared in the order in which they’re
listed until a match is found, and then execution begins with the statement following the
match. As illustrated in Figure 4.5, the switch expression’s value determines where
execution actually begins.

switch (expression) // evaluate expression

{
Start here if »case value_1:
expression equals value_1 .
break;
Start here if » case value_2:
expression equals value_2 .
break;
Start here if » case value 3:
expression equals value_3 .
break;
L]
]
[)
Start here if » case value n:
expression equals value_n .
break;
Start here if N0 —————» default:
previous match .
} // end of switch statement

Figure 4.5 The expression determines an entry point for execution

A switch statement can contain any number of case labels in any order. If the value
of the expression doesn’t match any of the case values, however, no statement is executed
unless the default keyword is encountered. (The default keyword is optional and
operates the same as the last else in an if-else chain.) If the value of the expression
doesn’t match any case value, program execution begins with the statement following the
default keyword.

After the switch statement has located an entry point, all further case value
evaluations are ignored. Execution continues through the end of the compound statement
unless the break keyword is encountered, which identifies the end of a case and causes
an immediate exit from the switch statement. Just as the case keyword identifies possible
entry points in the compound statement, the break keyword determines terminating points.

210

Selection Structures

If break statements are omitted, all cases following the matching case value, including the
default case, are executed.

When writing a switch statement, you can use multiple case values to refer to the
same set of statements; the default keyword is optional. For example, take a look at the
following;:

switch (number)
{
case 1:
cout << "Have a Good Morning\n";
break;
case 2:
cout << "Have a Happy Day\n";
break;
case 3:
case 4:
case 5:
cout << "Have a Nice Evening\n";

If the value stored in the variable number is 1, the message Have a Good Morning
is displayed. Similarly, if the value of number is 2, the second message is displayed. Finally,
if the value of number is 3, 4, or 5, the last message is displayed. Because the statement to
be executed for the last three cases is the same, the case statements for these values can
be “stacked together,” as shown in the example. Also, because there’s no default keyword,
no message is printed if the value of number isn’t one of the listed case values. Although
listing case values in increasing order is a good programming practice, it’s not required by
the switch statement. A switch statement can have any number of case values, in any
order; only the values you’re testing for must be listed.

Program 4.7 uses a switch statement to select the arithmetic operation (addition,
multiplication, or division) to perform on two numbers, depending on the value of the
opselect variable.

In the following two sample runs, the resulting display clearly identifies the case that
was selected:

Please type in two numbers: 12 3
Enter a select code:
1 for addition
2 for multiplication
3 for division : 2
The product of the numbers entered is 36

and

Please type in two numbers: 12 3
Enter a select code:
1 for addition
2 for multiplication
3 for division : 3
The first number divided by the second is 4

Chapter 4

The switch Statement

Program 4.7

#include <iostream>

using namespace std;

int ma

{

in()

int opselect;

double fnum,

cout
cin

cout
cout
cout
cout
cin

swit
{
ca

ca

ca

snum;

<< "Please type in two numbers: ";

>> fnum >> snum;

<< "Enter a select code: ";

<< "\n
<< "\n
<< "\n

1 for addition";
2 for multiplication";
3 for division : ";

>> opselect;

ch (opselect)

se 1:
cout <<
break;
se 2:
cout <<
break;
se 3:
cout <<
break;

"The sum of the numbers entered is " <<

"The product of the numbers entered is

n

fnum+snum;

<< fnum*snum;

"The first number divided by the second is "

// end of switch

cout << endl;

retu

rn 0;

<< fnum/snum;

211

In reviewing Program 4.7, notice the break statement in the last case. Although it’s not
necessary, terminating the last case in a switch statement with a break is a good
programming practice. It prevents a possible program error later if another case is added to
the switch statement. With the addition of a new case, the break keyword between cases
ensures that you won'’t forget to include the break at the time of the addition.

212 Selection Structures

Because character data types are always converted to integers in an expression, a switch
statement can also be used to “switch” based on the value of a character expression. For
example, assuming choice is a character variable, the following switch statement is valid:

switch (choice)
{
case 'a
case 'e
case 'i
case 'o
case 'u
cout << "The character in choice is a vowel\n";
break;
default:
cout << "The character in choice is not a vowel\n";
break; // this break is optional
} // end of switch statement

EXERCISES 4.4

1. (Practice) Rewrite the following if-else chain by using a switch statement:

if (letterGrade == 'A')

cout << "The numerical grade is between 90 and 100\n";
else if (letterGrade == 'B')

cout << "The numerical grade is between 80 and 89.9\n";
else if (letterGrade == 'C')

cout << "The numerical grade is between 70 and 79.9\n";
else if (letterGrade == 'D')

cout << "How are you going to explain this one?\n";
else
{

cout << "Of course I had nothing to do with my grade.\n";
cout << "It must have been the professor's fault.\n";

}

2. (Practice) Rewrite the following 1f-else chain by using a switch statement:

if (factor ==

pressure = 25.0;
else if (factor == 2)
pressure = 36.0;
else if (factor == 3)
pressure = 45.0;
else if (factor == 4) || (factor == 5) || (factor == 6)
pressure = 49.0;

Chapter 4 213
A Case Study: Solving Quadratic
Equations

3. (Data Processing) Each disk drive in a shipment is stamped with a code from 1 through

4 to indicate the manufacturer, as follows:

Code Disk Drive Manufacturer
1 3M Corporation

2 Maxell Corporation

3 Sony Corporation

4 Verbatim Corporation

Write a C++ program that accepts the code number as input and, based on the value
entered, displays the correct disk drive manufacturer.

. (Practice) Rewrite Program 4.5 by using a switch statement.

. (Debugging) Explain why the if-else chain in Program 4.6 can’t be replaced with a

switch statement.

. (Debugging) Rewrite Program 4.7 by using a character variable for the select code.

4.5

A Case Study: Solving Quadratic Equations

An important use of C++’s if statements is to validate data by checking for clearly invalid
cases. For example, a date such as 5/33/06 contains an obviously invalid day. Similarly, the
division of any number by zero in a program, such as 14/0, shouldn’t be allowed. Both
examples illustrate the need for a technique called defensive programming, in which the
program includes code to check for improper data before an attempt is made to process it
further. The defensive programming technique of checking user input data for erroneous or
unreasonable data is referred to as input data validation.

A second major use of selection statements is to determine the type of calculation to be
made based on the data. Both uses are shown in this case study, which illustrates a C++
program that determines the roots of a quadratic equation. A quadratic equation has the form
ax” + bx + ¢ = 0 or can be algebraically manipulated into this form. In this equation, x is the
unknown variable, and «, 4, and ¢ are known constants. Although the constants 4 and ¢ can
be any numbers, including 0, the value of the constant # can’t be 0. (If # is 0, the equation
would become a linear equation in x.) Here are examples of quadratic equations:

52+ 6x +2 =0
xX*-7x+20=0
34x* + 16 = 0

In the first equation, ¢ = 5, 4 = 6, and ¢ = 2; in the second equation, « = 1, 4 = -7, and
¢ = 20; and in the third equation, « = 34, 4 = 0, and ¢ = 16.

214 Selection Structures

"The real roots of a quadratic equation can be calculated by using these quadratic formulas:

-b+ b - dac

2a
and
-b-Nb* - dac
2a

Using these formulas, you’ll write a C++ program, following the software development
procedure, to solve for the roots of a quadratic equation.

Step 1 Analyze the Problem

The problem requires accepting three inputs—the coefficients @, 4, and ¢ of a quadratic
equation. The outputs are the roots of the equation, found by using the given formulas.

Step 2 Develop a Solution

A first attempt at a solution is using the user-entered values of «, 4, and ¢ to calculate a value
for each root, as described by the following pseudocode:

Display a program purpose message
Accept user-input values for a, b, and ¢
Calculate the two roots

Display the values of the calculated roots

However, this solution must be refined to account for possible input conditions. For
example, if a user enters a value of 0 for both # and 4, the equation is neither quadratic nor
linear and has no solution (referred to as a “degenerate case”). Another possibility is that the
user enters a zero for « and a non-zero value for 4. In this case, the equation becomes linear
with a single solution of -¢/4. A third possibility is that the value of the term 4% - 4ac, which
is called the discriminant, is negative. Because the square root of a negative number can’t be
taken, the equation has no real roots (referred to as the “imaginary roots case”). Finally, when
the discriminant is 0, both roots are the same (referred to as the “repeated roots case”).

Chapter 4 215
A Case Study: Solving Quadratic
Equations

Taking into account all four limiting cases, the following pseudocode shows a refined
solution for determining the roots of a quadratic equation correctly:

Display a program purpose message
Accept user-input values for a, b, and ¢
If a=0and b =0 then
display a message saying that the equation has no solution
Else if a = zero then
calculate the single root equal to -c/b
display the single root
Else
{
calculate the discriminant
If the discriminant > 0 then
solve for both roots using the given formulas
display the two roots
Else if the discriminant < 0 then
display a message that there are no real roots
Else
calculate the repeated root equal to -b/(2a)
display the repeated root
Endif
}
Endif

Notice that nested if-else statements are used. The outer if-else statement
validates the entered coefficients and determines whether you have a valid quadratic
equation. The inner if-else statement then determines whether the equation has two real
roots (discriminant > 0), two imaginary roots (discriminant < 0), or repeated roots
(discriminant = 0).

Step 3 Code the Solution

Program 4.8 lists the equivalent C++ code for the pseudocode solution.

216 Selection Structures

Program 4.8

#include <iostream>

#include <cmath>

using namespace std;

// this program solves for the roots of a quadratic equation

int main()

{

double a, b, ¢, disc, rootl, root2;

cout << "This program calculates the roots of a\n";

cout << " quadratic equation of the form\n";
cout << " 2\n";
cout << " ax + bx + ¢ = 0\n\n";

cout << "Please enter values for a, b, and c: ";
cin >> a >> b >> c;

if ((a == 0.0 & b == 0.0)
cout << "The equation is degenerate and has no roots.\n";
else if (a == 0.0)
cout << "The equation has the single root x = "
<< -c/b << endl;
else
{ //Start of compound statement for the outer else

disc = pow(b,2.0) - 4 * a * c; // calculate discriminant
if (disc > 0.0)
{

disc = sqgrt(disc);

rootl = (-b + disc) / (2 * a);

root2 = (-b - disc) / (2 * a);

cout << "The two real roots are "
<< rootl << " and " << root2 << endl;

}
else if (disc < 0.0)

cout << "Both roots are imaginary.\n";
else

cout << "Both roots are equal to " << -b / (2 * a) << endl;

} //end of compound statement for the outer else

return O;

Chapter 4

Step 4 Test and Correct the Program

217
A Case Study: Solving Quadratic
Equations

Test values should include values for @, 4, and ¢ that result in two real roots, plus limiting
values for ¢ and 4 that result in a linear equation (¢ = 0, 4 # 0), a degenerate equation
(@ =0, 6 =0), and a negative and a zero discriminant. Two test runs of Program 4.8 follow:

and

This program calculates the roots
quadratic equation of the form
2
ax + bx + ¢ =0
Please enter values for a, b, and

The two real roots are 5 and -7

This program calculates the roots
quadratic equation of the form
2u
ax + bx + ¢ =0

Please enter values for a, b, and

of a
c: 1 2 -35
of a
c: 0 0 16

The equation is degenerate and has no roots.

The first run solves the quadratic equation x° + 2x - 35 = 0, which has the real roots

x = 5 and x = -7. The input data for the second run results in the equation 0x* + Ox + 16 = 0.
Because it degenerates into the mathematical impossibility of 16 = 0, the program identifies it
correctly as a degenerate equation. As an exercise, you could create test data for the other limiting
cases the program checks for.

EXERCISES 4.5

1. (Data Processing) Write, compile, and execute a C++ program that accepts a user-

entered number and calculates the values of the following:

1

\/ user-entered number

user-entered number

Before calculating the square root, validate that the number is not negative, and before
calculating the reciprocal, check that the number is not zero. If either condition occurs,
display a message stating that the operation can’t be calculated.

2. (Data Processing) a. Write a program that accepts two real numbers and a select code from

a user. If the entered select code is 1, have the program add the two previously entered num-
bers and display the result; if the select code is 2, the numbers should be multiplied, and if
the select code is 3, the first number should be divided by the second number.

b. Determine what the program written in Exercise 2a does when the entered numbers

are 3 and 0 and the select code is 3.

218

Selection Structures

c. Modify the program written in Exercise 2a so that division by 0 is not allowed, and a
message is displayed when this division is attempted.

. (Data Processing) a. Write a program to display the following two prompts:

Enter a month (use a 1 for Jan, etc.):
Enter a day of the month:

Have your program accept and store a number in the variable month in response to the
first prompt and accept and store a number in the variable day in response to the second
prompt. If the month entered is not between 1 and 12, print a message informing the
user that an invalid month has been entered. If the day entered is not between 1 and 31,
print a message informing the user that an invalid day has been entered.

b. What will your program do if the user enters a number with a decimal point for the
month? How can you make sure your if statements check for an integer number?

c. In a non-leap year, February has 28 days; the months January, March, May, July, August,
October, and December have 31 days; and all other months have 30 days. Using this
information, modify the program written in Exercise 3a to display a message when an
invalid day is entered for a user-entered month. For this program, ignore leap years.

. (General Math) The quadrant in which a line drawn from the origin resides is deter-

mined by the angle the line makes with the positive x-axis, as follows:

Angle from the Positive X-Axis Quadrant
Between 0 and 90 degrees |
Between 90 and 180 degrees I
Between 180 and 270 degrees Il
Between 270 and 360 degrees \Y,

a. Using this information, write a C++ program that accepts the angle of the line as user
input and determines and displays the correct quadrant for the input data. (Note: If the
angle is exactly 0, 90, 180, or 270 degrees, the corresponding line doesn’t reside in any
quadrant but lies on an axis.)

b. Modify the program written for Exercise 4a to display a message that identifies an
angle of 0 degrees as the positive x-axis, an angle of 90 degrees as the positive y-axis,
an angle of 180 degrees as the negative x-axis, and an angle of 270 degrees as the
negative y-axis.

. (Data Processing) Years that are evenly divisible by 400 or are evenly divisible by 4 but

not by 100 are leap years. For example, because 1600 is evenly divisible by 400, 1600 was
a leap year. Similarly, because 1988 is evenly divisible by 4 but not by 100, it was also a
leap year. Using this information, write a C++ program that accepts the year as user input,
determines whether the year is a leap year, and displays a message telling the user
whether the entered year is or is not a leap year.

Chapter 4 219
A Case Study: Solving Quadratic
Equations

6. (Data Processing) Based on an automobile’s model year and weight, the state of New
Jersey determines the weight class and registration fee by using the following schedule:

Model Year Weight Weight Class | Registration
Fee

1970 or earlier Less than 2700 lbs 1 $16.50
2700 to 3800 Ibs 2 25.50
More than 3800 Ibs 3 46.50

1971 to 1979 Less than 2700 lbs 4 27.00
2700 to 3800 Ibs 5 30.50
More than 3800 Ibs 6 52.50

1980 or later Less than 3500 lbs 7 19.50
3500 or more lbs 8 52.50

Using this information, write a C++ program that accepts an automobile’s year and weight
and determines and displays its weight class and registration fee.

7. (Data Processing) Modify Program 4.8 so that the imaginary roots are calculated and
displayed when the discriminant is negative. For this case, the two roots of the equation
are the following:

-é+\/—(bz- dac) .
R
and

_ NG dae)

z 2a

where 7 is the imaginary number symbol for the square root of -1. (Hint. Calculate the
real and imaginary parts of each root separately.)

8. (Heat Transfer) The transfer of heat by the movement (currents) of a gas or liquid is
referred to as heat convection. The heat transferred per unit area of a substance is given
by this formula:

q=HtAT,-T,)

¢ 1s the heat transfer rate (Watts or Joules/sec).

/ is the convective heat transfer coefficient (BTU/hrft°F or Watts/m2°C).
A is the surface area (ft or m?).

T, 1s the surface temperature (°F or °C).

T, is the ambient (surrounding) temperature (°F or °C).

220 Selection Structures

a. Write, compile, and execute a C++ program that accepts a substance’s surface area, a
substance’s surface temperature, and the ambient air temperature as inputs and dis-
plays the heat transfer rate through air. Users should have three choices for entering
the surface area:

1. A rectangular area
2. An elliptical area
3. Other

If the user selects 1, the program should ask the user to enter the surface’s length and
width, and the program calculates surface area as length times width. If the user selects 2,
the program should ask the user to enter the surface’s major and minor axii, and the pro-
gram calculates the surface area as w(major axis)(minor axis). If the user selects 3 (Other),
the program should ask the user to enter the surface area. The heat transfer rate should
then be calculated and displayed, using the convective heat transfer coefficient of 8.7
Watts/m*°C, which should be defined as the symbolic constant ATRCONV.

b. After verifying that your program is working correctly, determine the heat transfer rate
away from a chip in a computer’s console. The chip has a surface temperature of
44°C, and the ambient temperature maintained by the console’s fan is 40°C. The rect-
angular chip has a length of 2 cm and a width of 2 cm.

4.6 A Closer Look: Program Testing3

In theory, a comprehensive set of test runs would reveal all possible program errors and
ensure that a program works correctly for any combination of input and computed data. In
practice, this level of testing requires checking all possible combinations of statement
execution. Because of the time and effort required, this goal is usually impossible except for
extremely simple programs. To see why this is so, take a look at Program 4.9.

3This topic can be omitted on first reading without loss of subject continuity.

Chapter 4 221
A Closer Look: Program Testing

Program 4.9

#include <iostream>
using namespace std;

int main()
{

int num;

cout << "Enter a number: ";
cin >> num;

if (num == 5)

cout << "Bingo!\n";
else

cout << "Bongo!\n";

return O;

Program 4.9 has two paths that can be traversed as the program progresses from its
opening brace to its closing brace. The first path, which is executed when the input number
is 5, is in this sequence:

cout << "Enter a number";
cin >> num;
cout << "Bingo!\n";

The second path, which is executed when any number except 5 is input, includes this
sequence of instructions:

cout << "Enter a number";
cin >> num;
cout << "Bongo!\n";

Testing each possible path through Program 4.9 requires two runs with a judicious
selection of test input data to make sure both paths of the if statement are exercised.
Adding one more if statement in the program increases the number of possible execution
paths by a factor of two and requires four (that is, 2°) runs for complete testing. Similarly, two
additional if statements increase the number of paths by a factor of four and require eight
(that is, 2°) runs for complete testing, and three additional if statements produce a program
that requires 16 (that is, 2%) test runs.

Now consider an application program consisting of only 10 modules, with each module
containing five if statements. Assuming the modules are always called in the same
sequence, there are 32 possible paths through each module (2°) and more than
1,000,000,000,000,000 (2°°, representing the number of modules multiplied by the number of
if statements per module) possible paths through the complete program (all modules
executed in sequence). The time needed to create test data to exercise each path and the

222

4.7

Selection Structures

actual computer runtime required to check each path make complete testing of this program
impossible.

The inability to test all combinations of statement execution sequences fully has led to
the programming proverb “There is no error-free program.” Any testing should be well
thought out to maximize the possibility of locating errors. At a minimum, test data should
include appropriate input values, illegal input values the program should reject, and limiting
values checked by selection statements in the program.

Common Programming Errors

ou ogramming €rrors are common wi ++’s selection statements:
Four progr rrors ar th C

1.

Using the assignment operator, =, in place of the relational operator ==. This error
can cause frustration because any expression can be tested by an if-else
statement, so it is not immediately obvious that an error is being made. For example,
the statement
if (opselect = 2)

cout << "Happy Birthday";
else

cout << "Good Day";

always results in the message Happy Birthday being displayed, regardless of the
initial value in the opselect variable. The reason is that the assignment expres-
sion opselect = 2 has a value of 2, which is considered a true value in C++.
The correct expression to determine the value in opselect is opselect ==

. Placing a semicolon immediately after the condition, as in this example:

if (condition) ;

statement;
The semicolon after (condition) is an error. It creates a null statement, which
causes the statement following the semicolon to be a stand-alone statement that’s

no longer part of the if statement. This stand-alone statement is always
executed, regardless of the condition tested by the if statement.

. Letting the i f-else statement appear to select an incorrect choice. In this typical

debugging problem, the programmer mistakenly concentrates on the tested condi-
tion as the source of the problem. For example, assume the following if-else
statement is part of your program:

if (key == 'F')
{
contemp = (5.0/9.0) * (intemp - 32.0);
cout << "Conversion to Celsius was done";
}
else

{

Chapter 4 223
Chapter Summary

contemp = (9.0/5.0) * intemp + 32.0;

cout << "Conversion to Fahrenheit was done";

}

This statement always displays Conversion to Celsius was done when the vari-
able key contains an F. Therefore, if this message is displayed when you believe key
doesn’t contain F, you should investigate key’s value. As a general rule, whenever a
selection statement doesn’t act as you think it should, test your assumptions about
the values assigned to the tested variables by displaying their values. If an unantici-
pated value is displayed, you have at least isolated the source of the problem to the
variables rather than the structure of the if-else statement. From there, you have
to determine where and how the incorrect value was produced.

4. Using nested if statements without including braces to indicate the structure.
Without braces, the compiler defaults to pairing elses with the closest unpaired
ifs, which sometimes destroys the selection statement’s original intent. To avoid
this problem and create code that’s adaptable to change, writing all if-else
statements as compound statements in this form is useful:

if (expression)

{

// one or more statements in here
}

else

{

// one or more statements in here

}

No matter how many statements are added later, this form maintains the if state-
ment’s original intent.

4.8 Chapter Summary

1. Relational expressions, also called conditions, are used to compare operands. If a
relational expression is true, the value of the expression is the integer 1. If the relational

expression is false, it has an integer value of 0. Relational expressions are created by
using the following relational operators:

Relational Meaning Example

Operator

< Less than age < 30

> Greater than height > 6.2

<= Less than or equal to taxable <= 20000
>= Greater than or equal to temp >= 98.6

== Equal to grade == 100

1= Not equal to number != 250

224 Selection Structures

2.

3.

4.

More complex conditions can be constructed from relational expressions by using C++’s
logical operators, && (AND), || (OR), and ! (NOT).

An if-else statement is used to select between two alternative statements based on
an expression’s value. Although relational expressions are usually used for the tested
expression, any valid expression can be used. In testing an expression, if-else
statements interpret a non-zero value as true and a zero value as false. The general form
of an if-else statement is as follows:

if (expression)
statementl;

else
statement?2;

This form is a two-way selection statement. If the expression has a non-zero value, it’s
considered true and statementl is executed; otherwise, statement?2 is executed.

An if-else statement can contain other if-else statements. In the absence of
braces, each else is associated with the closest preceding unpaired 1if.

. The if-else chain is a multiway selection statement with this general form:

if (expression_1)
statement_1;

else if (expression_2)
statement_2;

else if (expression_3)
statement_3;

else if (expression_m)
statement_m;

else
statement_n;

Each expression is evaluated in the order in which it appears in the chain. If an
expression is true (has a non-zero value), only the statement between this expression and
the next else if or else is executed, and no further expressions are tested. The final
else is optional, and the statement corresponding to the final else is executed only if
no previous expressions are true.

. A compound statement consists of any number of single statements enclosed by the

brace pair { and }. Compound statements are treated as a single unit and can be used
anywhere a single statement is used.

. The switch statement is a multiway selection statement with this general form:

switch (expression)

{ // start of compound statement
case value_1: // terminated with a colon
statementl;
statement?2;
break;

case value_2: // terminated with a colon

Chapter 4 225
Programming Projects

statementm;
statementn;

break;

case value_n: // terminated with a colon
statementw;
statementx;

break;

default: // terminated with a colon
statementaa;
statementbb;

} // end of switch and compound statement

For this statement, the value of an integer expression is compared with integer or
character constants or constant expressions. Program execution is transferred to the first
matching case and continues through the end of the switch statement, unless an
optional break statement is encountered. The case values in a switch statement can
appear in any order, and an optional default case can be included. The default case
is executed if no other cases are matched.

Programming Projects for Chapter 4

1. (Data Processing) Write C++ code sections to make the following decisions:

a. Ask for two integer temperatures. If their values are equal, display the temperature;
otherwise, do nothing.

b. Ask for character values letterl and letter?2, representing uppercase letters of
the alphabet, and display them in alphabetical order.

c. Ask for three integer values, numl, num2, and num3, and display them in decreasing
order.

2. (Data Processing) a. Write a program that displays the message I FEEL GREAT
TODAY! or I FEEL DOWN TODAY #$*!, depending on the input. If the character u
is entered in the variable code, the first message should be displayed; otherwise, the
second message should be displayed.

b. How many runs should you make for the program written in Exercise 2a to verify that
it’s operating correctly? What data should you input in each program run?

3. (Data Processing) a. A senior engineer is paid $1700 a week, and a junior engineer,
$900 a week. Write a C++ program that accepts as input an engineer’s status in the
character variable status. If status equals S, the senior engineer’s salary should be
displayed; otherwise, the junior engineer’s salary should be displayed.

226 Selection Structures

b. How many runs should you make for the program written in Exercise 3a to verify that
it is operating correctly? What data should you input in each program run?

4. (Data Processing) a. Write a C++ program to compute and display a person’s weekly
salary as determined by the following conditions: If the hours worked are less than or
equal to 40, the person receives $8.00 per hour; otherwise, the person receives $320.00
plus $12.00 for each hour worked over 40 hours. The program should request the hours
worked as input and display the salary as output.

b. How many runs should you make for the program written in Exercise 4a to verify that
it’s operating correctly? What data should you input in each program run?

5. (Structural Eng.) Three of the most commonly used beams in structural engineering
are the I-beam, rectangular beam, and cylindrical beam, shown in Figures 4.6 through
4.8. In determining the stress a given weight places on a symmetrical beam, an important
design parameter is the beam’s rectangular moment of inertia, 7, which is typically given
in units of in*. The computation of / depends on the beam’s geometry, and for the three
beam types shown, the values of [are calculated as follows:

BH® - ui’ .
For an I-beam: /=—————— where all measurements are in inches

12

b’
For a rectangular beam: 1=§

art

For a cylindrical beam: [=

Figures 4.6 through 4.8 show the variables 4, 4, B, H, and r. Using this information,
design, write, compile, and execute a C++ program that prompts the user for the type of
beam and the necessary data (based on the input), and then computes and displays the
beam’s rectangular moment of inertia.

L |
1

)y

Figure 4.6 An |-beam

Chapter 4 227
Programming Projects

b

Figure 4.7 A rectangular beam

Figure 4.8 A cylindrical beam

6. (Fluid Mechanics) A key parameter used to determine the type of fluid flow through
a pipe is the Reynolds number, which is given by this formula:

eV

0

Re is the Reynolds number (a dimensionless value).

V is the velocity (m/s or ft/sec).

d is the diameter of the pipe (m or ft).

v is the kinematic viscosity of the fluid (m/s* or ft/sec?).

The viscosity, v, is a measure of the fluid’s resistance to flow and stress. Except at
extremely high pressures, a liquid fluid’s kinematic viscosity is dependent on tempera-
ture and independent of pressure. The following chart provides the viscosity of water at
three different temperatures:

Temperature (°C)

Kinematic Viscosity (m/s?)

5 1.49 x 10°®
10 1.31 x 10°®
15 1.15 x 10°®

228 Selection Structures

10.

Using this information, write, compile, and execute a program that requests the velocity
of water flowing through a pipe, the pipe’s diameter, the water’s temperature, and the
water’s kinematic viscosity. Based on the input values, your program should calculate the
Reynolds number. When you have verified that your program is working, use it to
complete the following chart:

Velocity (m/s) Pipe Temperature (°C) Reynolds
Diameter (mm) Number

.01 10 5

.03 10 5

.04 10 5

.01 20 10

.03 20 10

.04 20 10

.01 30 15

.03 30 15

.04 30 15

. (Data Processing) Write a C++ program that accepts a character as input data and

determines whether the character is an uppercase letter. An uppercase letter is any
character that’s greater than or equal to “A” and less than or equal to “Z.” If the entered
character is an uppercase letter, display the message The character just entered
is an uppercase letter. If the entered letter isn’t uppercase, display the message
The character just entered is not an uppercase letter.

. (Data Processing) Repeat Exercise 7 to determine whether the character entered is a

lowercase letter. A lowercase letter is any character greater than or equal to “a” and less

«,,

than or equal to “z.

. (General Math) a. Write, run, and test a C++ program that accepts a user-input integer

number and determines whether it’s even or odd. Display the entered number and the
message Even or Odd.

b. Modify the program written for Exercise 9a to determine whether the entered number
is evenly divisible by a user-specified value, with no remainder. That is, is it evenly
divisible by 3, 7, 13, or any other user-specified value?

(Data Processing) As a part-time student, you took two courses last term. Write, run, and
test a C++ program that calculates and displays your grade point average (GPA) for the term.
Your program should prompt the user to enter the grade and credit hours for each course.
"This information should then be displayed with the lowest grade first, and the GPA for the
term should be calculated and displayed. A warning message should be printed if the GPA
is less than 2.0 and a congratulatory message if the GPA is 3.5 or above.

11.

12.

13.

Chapter 4 229
Programming Projects

(Debugging) The following program displays the message Hello there! regardless of
the letter input. Determine where the error is.

#include <iostream.h>
using namespace std;

int main()
{

char letter;

cout << "Enter a letter: ";
cin >> letter;

if (letter = 'm')
cout << "Hello there!\n";

return 0;
i}
(Data Processing) Write, execute, and verify a C++ program that accepts three numbers
as input, and then sorts the three numbers and displays them in ascending order, from
lowest to highest. For example, if the input values are 7 5 1, the program should display
them in the numerical order 1 5 7.

(Heat Transfer) The transfer of heat energy through matter, referred to as heat conduction,
is always from a region of higher temperature to one of lower temperature. It occurs by
transferring energy from atom to atom within a substance. With uniform temperatures on
either side of equal-sized surfaces, the rate of heat flow through a substance is provided by
Fourier’s law of heat conduction, which becomes the following formula:

KT~ 1)

@

0=

Q is heat per unit time per unit area (Watts/m? or BTU/hrft?).

is the thermal conductivity, which is a property of a substance that indicates its
capability to conduct heat (Watts/m°K or BTU/hrft°F).

T, is the hotter temperature (°F or °K).
T, is the cooler temperature (°F or °K).
@ 1s the width of the substance (ft or m).

a. Write, compile, and execute a C++ program that calculates and displays the heat
transfer through a substance. The inputs should be the substance’s thermal conduc-
tivity, its width, and temperatures on either side of it. Your program should determine
which unit system is used, item by item, and then convert units as necessary so that
a consistent unit system (SI or English Engineering) is used in the final determination
of Q. The output should display the value of O in both unit systems.

b. Verify that your program is working by hand-calculating the heat transfer through a
cement wall with a thermal conductivity of .29 Watts/m°K and a thickness of 15 cm.
One side of the wall is at a constant temperature of 32°C, and the other side is -7°C.

230 Selection Structures

c. After verifying that your program is working correctly, use the following chart of
thermal conductivities to determine the heat transfer rate for the following:

i. A pane of glass that’s 2 cm thick and has an inside temperature of 24°C and an
outside temperature of 15°C.

ii. A column of air 10 ¢cm thick that’s held between two walls, one with a temperature
of 23°C and the other of 14°C.

Substance Thermal Conductivity Thermal Conductivity
(Watts/m°K) (BTU/hrft°F)

Air .025 .0015

Cement .29 17

Glass 1.1 .645

Soil 1.5 .88

Wood, oak 17 .096

Wood, pine 12 .065

14. (General Math) In the game of blackjack, the cards 2 through 10 are counted as their
face values, regardless of suit; all face cards (jack, queen, and king) are counted as 10; and
an ace is counted as a 1 or an 11, depending on the total count of all cards in a player’s
hand. The ace is counted as 11 only if the resulting total value of all cards in a player’s
hand doesn’t exceed 21; otherwise, it’s counted as 1. Using this information, write a C++
program that accepts three card values as inputs (a 1 corresponding to an ace, a 2
corresponding to a two, and so on), calculates the total value of the hand, and displays
the value of the three cards.

Engineering and Scientific Disciplines

Civil Engineering

The field of civil engineering is concerned primarily with large-scale structures and sys-
tems used by a community. A civil engineer designs, constructs, and operates bridges,
dams, tunnels, buildings, airports, roads, and other large-scale public works. Civil engi-
neers are also responsible for the effects these large-scale systems have on society and
the environment, so they are involved in water resources, flood control, waste disposal,
and overall urban planning. The field can be subdivided into three categories:

® Structures: Design, construction, and operation of large-scale public works, such
as dams, buildings, and roads. The properties of materials, geology, soil mechan-
ics, and statics and dynamics are important elements of background training. For
example, determining a building’s maximum height before it buckles under its
own weight is a question involving all these subjects.

e Urban planning: Planning, designing, and constructing transportation systems
(roads, railroads, river development, airports) and general land use. Surveying and
mapmaking are necessary skills.

e Sanitation: Waste treatment, water supply, and sewage systems. Fluid mechanics,
hydrology, pollution control, irrigation, and economics are important areas of study.

5.1
5.2
5.3
54
5.5

5.6
5.7
5.8
5.9

Chapter

Basic Loop Structures
while Loops
Interactive while Loops Repetition
for Loops Statements

A Closer Look: Loop
Programming Techniques

Nested Loops

do while Loops

Common Programming Errors
Chapter Summary

No L

The programs you've examined so far have illustrated the programming concepts involved in input,
output, assignment, and selection capabilities. By this time, you should have gained enough experience
10 be comfortable with these concepts and the mechanics of implementing them in C++. Many problems,
however; require a repetition capability, in which the same calculation or sequence of instructions is
repeated, over and over, using different sets of data. Examples of this type of repetition include
continual checking of user data entries until an acceptable entry, such as a valid password, is entered;
counting and accumulating running totals; and constant acceptance of input data and recalculation of
output values that stop only at entry of a sentinel value.

This chapter explores the different methods used by programmers in constructing repeating sections
of code and explains how they can be implemented in C++. More commonly, a section of code that’s
repeated is referred to as a loop because after the last statement in the code is executed, the program
branches, or loops, back to the first statement and starts another repetition through the code. Fach
repetition is also referred to as an iteration or a pass through the loop.

232

Repetition Statements

Basic Loop Structures

"The real power of a program is realized when the same type of operation must be made over and
over. For example, in some programs the same set of instructions is repeated multiple times.
Retyping the same set of instructions in a program is tedious, time consuming, and subject to
error. It certainly would be convenient if you could type repeating instructions only once, and
then have a method of informing the program to repeat execution of these instructions three
times. This method is available by using repeating sections of code.

Constructing a repeating section of code requires using four clements. The first
necessary element is a repetition statement. A repetition statement both defines the
boundaries of the repeating section of code and controls whether the code will be executed.
In general, three different forms of repetition statements are provided in C++:

while
for
e do while

Each of these statements must include a condition to be evaluated, which is the second
required element for constructing repeating sections of code. Valid conditions are identical to
those used in selection statements. If the condition is true, the code is executed; otherwise,
it’s not.

The third required element is a statement that initially sets the condition. This
statement must always be placed before the condition is first evaluated to ensure correct loop
execution the first time the condition is evaluated.

Finally, there must be a statement in the repeating section of code that allows the
condition to become false. This statement is necessary to ensure that, at some point, the
repetitions stop.

Pretest and Posttest Loops

The condition being tested can be evaluated at the beginning or end of the repeating section
of code. Figure 5.1 illustrates the test occurring at the beginning of the loop. This type of
loop is referred to as a pretest loop because the condition is tested before any statements in
the loop are executed. If the condition is true, the executable statements in the loop are
executed. If the initial value of the condition is false, the executable statements in the loop
are never executed at all, and control transfers to the first statement after the loop. To avoid
infinite repetitions, the condition must be updated within the loop. Pretest loops are also
referred to as entrance-controlled loops. Both the while and for loop structures are examples
of these loops.

A loop that evaluates a condition at end of the repeating section of code, as illustrated
in Figure 5.2, is referred to as a posttest or exit-controlled loop. These loops always execute
the loop statements at least once before the condition is tested. Because the executable
statements in the loop are executed continuously until the condition becomes false, there
must always be a statement in the loop that updates the condition and permits it to become
false. The do while construct is an example of a posttest loop.

Chapter 5 233
Basic Loop Structures

1 1

previous previous
statement statement
L .
p I.)) I_)
loop
is the yes N - statements
condition P
true? statements i
I no
is the yes
next condition
true?
statement

1 Yno

next
statement

JL

Figure 5.1 A pretest loop Figure 5.2 A posttest loop

Fixed-Count Versus Variable-Condition Loops

In addition to classifying repeating sections of code according to where the condition is tested
(pretest or posttest), they are also classified by the type of condition being tested. In a
fixed-count loop, the condition is used to keep track of how many repetitions have occurred.
For example, you might want to produce a table of 10 numbers, including the numbers’
squares and cubes, or a fixed design, such as the following:

khkkkkkhkkkhkkhhkkhkhhkk rhkk kkkk xkkk*k%
R R R I S S R IR e
ER R I I I S S R I S S S

R R I R I b S b R IR I I

In these cases, a fixed number of calculations are performed or a fixed number of lines
are printed, at which point the repeating section of code is exited. All of C++’s repetition
statements can be used to produce fixed-count loops.

234 Repetition Statements

In many situations, the exact number of repetitions isn’t known in advance, or the items
are too numerous to count beforchand. For example, when entering a large amount of
experimental data, you might not want to take the time to count the number of actual data
items to be entered. In these cases, a variable-condition loop is used. In a variable-condition
loop, the tested condition doesn’t depend on a count being reached, but on a variable that
can change interactively with each pass through the loop. When a specified value is
encountered, regardless of how many iterations have occurred, repetitions stop. All of C++’s
repetition statements can be used to create variable-condition loops.! In this chapter, you
encounter examples of both fixed-count and variable-condition loops.

EXERCISES 5.1

1. (For Review) List the three repetition statements provided in C++.
2. (For Review) List the four elements that must be present in a repetition statement.
3

. (For Review) a. What is an entrance-controlled loop?

b. Which of C++’s repetition statements produce entrance-controlled loops?

4. (For Review) a. What is an exit-controlled loop?

b. Which of C++’s repetition statements produce exit-controlled loops?

S. (For Review) a. What is the difference between a pretest and posttest loop?

b. If the condition being tested in a pretest loop is false, how many times are statements
in the loop executed?

c. If the condition being tested in a posttest loop is false, how many times are state-
ments in the loop executed?

6. (For Review) What is the difference between a fixed-count and variable-condition loop?

5.2 while Loops

In C++, a while loop is constructed by using a while statement in the following syntax:

while (expression)
statement;

The expression in parentheses is the condition tested to determine whether the
statement following the parentheses is executed. The expression is evaluated in exactly the
same manner as one in an 1f-else statement; the difference is in how the expression is
used. As you have seen, when the expression in an if-else statement is true (has a non-zero
value), the statement following the expression is executed once. In a while statement, the

"In loop creation, both C and C++ differ from earlier high-level languages, in which the for statement could be used only to produce fixed-count
loops. C++’s for statement, as you see in Section 5.4, is virtually interchangeable with its while statement.

Chapter 5 235
while Loops

statement following the expression is executed repeatedly as long as the expression evaluates
to a non-zero value. Considering just the expression and the statement following the
parentheses, the computer uses this process in evaluating a while statement:

1. Test the expression
2. If the expression has a non-zero (true) value
a. execute the statement following the parentheses
b. go back to Step 1
else
exit the while statement and execute the next executable statement following the
while statement

Notice that Step 2b forces program control to be transferred back to Step 1. This transfer
of control back to the start of a while statement to reevaluate the expression is what forms
the program loop. The while statement literally loops back on itself to recheck the
expression until it evaluates to zero (becomes false). Naturally, this rechecking means that
somewhere in the loop must be a provision that permits altering the value of the tested
expression. As you’ll see, this provision is indeed made.

Figure 5.3 shows the looping process a while statement produces. A diamond shape is
used to show the two entry and two exit points required in the decision part of the while
statement.

To make this looping process more tangible, consider the relational expression count
<= 10 and the statement cout << count;. Using these elements, you can write the
following valid while statement:

while (count <= 10)
cout << count;

Although this statement is valid, the alert reader will realize that it creates a situation in
which the cout statement is either executed forever (or until you stop the program) or not
executed at all. Here’s why this happens: If count has a value less than or equal to 10 when
the expression is first evaluated, the cout statement is executed. The while statement
then automatically loops back on itself and retests the expression. Because you haven’t
changed the value stored in count, the expression is still true, and another execution of the
cout statement is made. This process continues forever, or until the program containing this
statement is stopped prematurely by the user. However, if count starts with a value greater
than 10, the expression is false to begin with, and the cout statement is never executed.

How do you set an initial value in count to control what the while statement does the
first time the expression is evaluated? The answer, of course, is to assign values to each
variable in the tested expression before the while statement is encountered. For example,
the following sequence of instructions is valid:

count = 1;
while (count <= 10)
cout << count;

Using this sequence of instructions ensures that count starts with a value of 1. You could
assign any value to count in the assignment statement. What’s important is to assign some
value. In practice, the assigned value depends on the application.

You must still change the value of count so that you can finally exit the while
statement. Doing this requires an expression such as count = count + 1 to increment
the value of count each time the while statement is executed. The fact that a while

236 Repetition Statements

enter the
while statement
< |. expression
evaluates
to zero
test N exit the
th i i
€ expression while statement

-~ (step 1) (a false condition)
> | expression
evaluates
to a non-zero
number
- L (atrue condition)

loop execute the
statement
after the
parentheses
(step 2a)

A

go back and
reevaluate the
expression
(step 2b)

Figure 5.3 Anatomy of a while loop
statement provides for repetition of a single statement doesn’t prevent including an

additional statement to change the value of count. All you have to do is replace the single
statement with a compound statement, as in this example:

count = 1; // initialize count
while (count <= 10)
{

cout << count;
count++; // increment count

Note that, for clarity, each statement in the compound statement is placed on a different line.
"This format is consistent with the convention adopted for compound statements in Chapter 4.

Now analyze the preceding sequence of instructions. The first assignment statement sets
count equal to 1. The while statement is then entered, and the expression is evaluated for
the first time. Because the value of count is less than or equal to 10, the expression is true,
and the compound statement is executed. The first statement in the compound statement
uses the cout object to display the value of count. The next statement adds 1 to the value
currently stored in count, making this value equal to 2. The while statement then loops

Chapter

5

while Loops

237

back to retest the expression. Because count is still less than or equal to 10, the compound
statement is executed again. This process continues until the value of count reaches 11.
Program 5.1 illustrates these statements in an actual program.

Program 5.1

#include <iostream>

using namespace std;

int main()

{

int count;

count = 1;
while (count <= 10)
{
cout << count << "
count++;

return 0;

// initialize count

"o,

I

// increment count

"This is the output for Program 5.1:

1 2 3 4

6 7 8 9 10

Note that there’s nothing special about the name count used in Program 5.1. Any valid
integer variable could have been used.

Before you look at other examples of the while statement, two comments on Program 5.1
are in order. First, the statement count++ can be replaced with any statement that changes
the value of count. A statement such as count = count + 2, for example, causes every
second integer to be displayed. Second, it’s the programmer’s responsibility to ensure that
count is changed in a way that leads to a normal exit from the while. For example, if you
replace the expression count++ with the expression count--, the value of count never
exceeds 10 and an infinite loop is created. An infinite loop is a loop that never ends; the program

just keeps displaying numbers until you realize it isn’t working as you expected.

Now that you have some familiarity with the while statement, see whether you can read
and determine the output of Program 5.2.

238 Repetition Statements

Program 5.2

#include <iostream>

using namespace std;

int main()

{

int 1i;

= 10;

while (i >= 1)

cout << 1 << " ";
i--; // subtract 1 from i

return O;

The assignment statement in Program 5.2 initially sets the int variable 1 to 10. The
while statement then checks to see whether the value of i is greater than or equal to 1.
While the expression is true, the value of i is displayed by the cout statement, and the
value of i is decremented by 1. When 1 finally reaches zero, the expression is false, and the
program exits the while statement. Therefore, Program 5.2 produces the following display
when it runs:

10 9 8 7 6 5 4 3 2 1

"To illustrate the power of the while statement, consider the task of printing a table of
numbers from 1 to 10 with the numbers’ squares and cubes. You can do this with a simple
while statement, as shown in Program 5.3.

When Program 5.3 runs, the following display is produced:

NUMBER SQUARE CUBE
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Chapter

Program 5.3

#include <iostream>
#include <iomanip>
using namespace std;

int main()

int num;
cout << "NUMBER SQUARE CUBE\n"
<< Mmmmm - ———-\n";

num = 1;
while (num < 11)
{
cout << setw(3) << num << "
<< setw(3) << num * num << "
<< setw(4) << num * num * num << endl;
num++; // increment num

return O;

5

while Loops

239

Note that the expression used in Program 5.3 is num < 11. For the integer variable num,
this expression is exactly equivalent to the expression num <= 10. The choice of which to

use is entirely up to you.

If you want to use Program 5.3 to produce a table of 1000 numbers, all you do is change
the expression in the while statement from num < 11 to num < 1001. Changing the 11
to 1001 produces a table of 1000 lines—not bad for a simple five-line while statement.

240

Repetition Statements

All the program examples of the while statement use fixed-count loops because the
tested condition is a counter that checks for a fixed number of repetitions. In a variation on
the fixed-count loop, the counter is not incremented by one each time through the loop but
by some other value. For example, suppose you have the task of producing a Celsius-to-
Fahrenheit temperature conversion table. Fahrenheit temperatures corresponding to Celsius
temperatures from 5 to 50 degrees are to be displayed in increments of 5 degrees, which can
be done with this series of statements:

celsius = 5; // starting Celsius value
while (celsius <= 50)
{
fahren = (9.0/5.0) * celsius + 32.0;
cout << celsius << " "
<< fahren;
celsius = celsius + 5;

}

As before, the while statement consists of everything from the word while through the
compound statement’s closing brace. Before the program enters the while loop, you must
make sure a value is assigned to the counter being evaluated, and there’s a statement to alter
the value of the counter in the loop (in increments of 5 degrees Celsius) to ensure an exit
from the while loop. Program 5.4 illustrates using similar code in a complete program.

"This is the display produced when Program 5.4 is executed:

DEGREES DEGREES
CELSIUS FAHRENHEIT

5 41.00
10 50.00
15 59.00
20 68.00
25 77.00
30 86.00
35 95.00
40 104.00
45 113.00

Chapter 5

while

Program 5.4

#include <iostream>

#include <iomanip>

using namespace std;

// a program to convert Celsius to Fahrenheit

int main()

{

const int MAX CELSIUS
const int START_VAL
const int STEP_SIZE =
int celsius;

50;

o Ul

double fahren;

cout << "DEGREES DEGREES\n"
<< "CELSIUS FAHRENHEIT\n"

<< Mmoo \n";

celsius = START_VAL;

// set output formats for floating point numbers only
cout << setiosflags(ios::showpoint)
<< setprecision(2);

while (celsius <= MAX_ CELSIUS)
{
fahren = (9.0/5.0) * celsius + 32.0;
cout << setw(4) << celsius << fixed
<< setw(1l3) << fahren << endl;
celsius = celsius + STEP_SIZE;

return O;

Loops

241

242 Repetition Statements

Technical Note

Fluid Mechanics

The field of fluid mechanics deals with fluids at rest and in motion. Fluids include
both liquids and gases and are defined as substances that conform to the shape of
their holding containers. These are the primary differences between gases and liquids:
® Gases are expandable and contractible and always expand or contract to fill all
space in the container holding them.
® Liquids occupy a definite volume and have a free surface if they don't fill the
container holding them.

Fluid statics is the science of fluids at rest, a major subdiscipline of fluid mechanics.
The most important property for fluids at rest is their weight. Fluid dynamics is the sci-
ence of fluids in motion, which is the second major subdiscipline of fluid mechanics and
includes aerodynamics, the study of gases in motion, and hydrodynamics, the study of lig-
uids in motion.

For flowing fluids, the two most important properties are density and viscosity.
Density is the measure of how tightly packed the fluid is (density = mass/volume).
Viscosity is the measure of a liquid's resistance to shear stress. A fluid begins to flow
when an applied force, known as a shear stress, is large enough to overcome the fluid’s
weight and internal friction, assuming the fluid isnt totally constrained in the direction of
the force. The three types of fluid flow patterns through a pipe or conduit are as follows:

e |aminar—All fluid particles flow in smooth, straight lines parallel to the
pipe’s wall.

e Turbulent—Fluid particle paths are irregular, but the average motion is in the
direction of the flow.

® |n transition—The fluid is between laminar and turbulent flow.

Laminar flow generally occurs only when the fluid’s viscosity is very high, as in
lubricating oils. Most flows, such as water flowing through pipes, are faster and
turbulent.

The Reynolds number provides a quick means of determining flow patterns and
can be calculated by using this formula:

e
u

Re = the Reynolds number

P = the fluid's density (kg/m?)

V = the fluid's average speed (m/s)
d = the pipe’s diameter (m)

u# = the fluid’s viscosity (kg/ms)

Re =

continued...

| 5]
4
=&

Chapter 5 243
while Loops

Technical Note

Fluid Mechanics (continued)
Essentially, the Reynolds number is equal to the ratio of
fluid speed
viscous forces

viscous forces predominate (they are retarding forces), the Reynolds number is lower,
and the fluid flow is slower. In a highly viscous fluid, such as heavy oil, all the fluid’s
particles tend to be kept in line, which is referred to as laminar flow. Critical Reynolds
number values for determining flow type are as follows:

A higher Reynolds number correlates with a higher fluid speed. However, when

® Re < 2000: Fluid flow is laminar (least common type of water flow).
® 2000 = Re = 3000: Fluid flow is in transition.
® Re > 3000: Fluid flow is turbulent (most common type of fluid flow).

EXERCISES 5.2

1. (Practice) Rewrite Program 5.1 to print the numbers 2 to 10 in increments of two. The
output of your program should be the following:

2 4

6 8 10

2. (Practice) Rewrite Program 5.4 to produce a table starting at a Celsius value of -10 and
ending with a Celsius value of 60, in increments of 10 degrees.

3. (Desk Checking) a. For the following program, determine the total number of items
displayed as well as the first and last numbers printed:

#include <iostream>
using namespace std;

int main()

{

}

int num = 0;
while (num <= 20)
{
num++ ;
cout << num << " ";

}

return O;

Enter and run the program from Exercise 3a on a computer to verify your answers to

the exercise.

244

Repetition Statements

c. How would the output be affected if the two statements in the compound statement
were reversed (that is, if the cout statement came before the num++ statement)?

. (Conversions) Write a C++ program that converts gallons to liters. The program should

display gallons from 10 to 20 in one-gallon increments and the corresponding liter
equivalents. Use the relationship that 1 gallon = 3.785 liters.

. (Conversions) Write a C++ program that converts feet to meters. The program should

display feet from 3 to 30 in 3-foot increments and the corresponding meter equivalents.
Use the relationship that 1 meter = 3.28 feet.

. (Practice) An automobile travels at an average speed of 55 mph for four hours. Write a

C++ program that displays the distance, in miles, the car has traveled after 1, 2, and so on
hours until the end of the trip.

. (Fluid Mechanics) The maximum laminar flow speed is the speed at which a fluid

begins to change from a smooth, straight flow to turbulent flow within a pipe. It can be
determined by using this formula:

Maximum laminar flow speed = (2000 x pipe diameter x density)fviscosity

Using this formula, write a C++ program that used a fixed-count repetition loop of four.
For each pass through the loop, the program should accept a fluid’s density, its viscosity,
and a pipe diameter as input, and then calculate and output the maximum laminar flow
rate through the pipe. Use the results your program outputs to complete the last column
in this chart:

Fluid Viscosity at 40°C Density (kg/m3) | Pipe Maximum
= 77°F (kg/ms) Diameter | Laminar
(m) Flow

Speed
(m/s)

Gasoline 4466 x 1073 7186 x 103 0.4

Medium 2.9922 x 1073 8496 x 103 0.4

fuel oil

Medium 87.0736 x 1073 8865 x 103 0.4

lubricating oil

Water 8975 x 1073 9973 x 10° 0.4

verting Fahrenheit to Celsius temperatures:
Celsius = (Fahrenheit - 30) | 2

Using this formula, and starting with a Fahrenheit temperature of 0 degrees, write a C++
program that determines when the approximate equivalent Celsius temperature differs
from the exact equivalent value by more than four degrees. (Hint: Use a while loop that
terminates when the difference between approximate and exact Celsius equivalents

exceeds 4 degrees.)

. (Numerical Analysis) a. The following is an approximate conversion formula for con-

9.

10.

Chapter 5 245
Interactive while Loops

b. Using the approximate Celsius conversion formula given in Exercise 8a, write a C++
program that produces a table of Fahrenheit temperatures, exact Celsius equivalent
temperatures, approximate Celsius equivalent temperatures, and the difference
between the exact and approximate equivalent Celsius values. The table should begin
at 0 degrees Fahrenheit, use 2-degree Fahrenheit increments, and terminate when the
difference between exact and approximate values is more than 4 degrees.

(Numerical Analysis) The value of Euler’s number, ¢, can be approximated by using
this formula:

1 1 1 1 1
1 21 30 4! 5!

Using this formula, write a C++ program that approximates the value of ¢, using a while
loop that terminates when the difference between two successive approximations is less
than 10e-9.

(Numerical Analysis) The value of sin x can be approximated by using this formula:

. x0T X W

sin(x) =x - —+— - —+—...

3t 50 71 9l

Using this formula, determine how many terms are needed to approximate the value
returned by the intrinsic sin () function with an error less than le-6, when x = 30
degrees. (Hinzs: Use a while loop that terminates when the difference between the value
returned by the intrinsic sin () function and the approximation is less than 1le-6. Also,
note that x must first be converted to radian measure, and the alternating sign in the
approximating series can be determined as (-1) x (# + 1), where # is the number of terms
used in the approximation.)

5.3

Interactive while Loops

Combining interactive data entry with the repetition capabilities of the while statement
produces adaptable and powerful programs. To understand the concept, take a look at
Program 5.5, where a while statement is used to accept and then display four user-entered
numbers, one at a time. Although the program uses a simple idea, it highlights the flow of
control concepts needed to produce more useful programs.

The following is a sample run of Program 5.5:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The number entered is 26.2
Enter a number: 5

The number entered is 5

Enter a number: 103.456

The number entered is 103.456
Enter a number: 1267.89

The number entered is 1267.89

246 Repetition Statements

Program 5.5

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{

const int MAXNUMS = 4;
int count;

double num;

cout << "\nThis program will ask you to enter "

<< MAXNUMS << " numbers.\n";

count = 1;
while (count <= MAXNUMS)

{

}

cout << "\nEnter a number: ";

cin >> num;

cout << "The number entered is " << num;
count++;

cout << endl;

return 0;

Review the program so that you understand clearly how the output was produced. The
first message displayed is caused by execution of the first cout statement. This statement
is outside and before the while statement, so it’s executed once before any statement in the
while loop.

After the while loop is entered, the statements in the compound statement are
executed while the tested condition is true. The first time through the compound statement,
the message Enter a number: is displayed. The program then executes the cin
statement, which forces the computer to wait for a number to be entered at the keyboard.
After a number is typed and the Enter key is pressed, the cout statement displays the
number. The variable count is then incremented by one. This process continues until four
passes through the loop have been made and the value of count is 5. Each pass causes the
message Enter a number: to be displayed, causes one cin statement to be executed, and
causes the message The number entered is to be displayed. Figure 5.4 illustrates this
flow of control.

Instead of simply displaying the entered numbers, Program 5.5 can be modified to use
the entered data. For example, you can add the numbers entered and display the total. To
do this, you must be careful about how you add the numbers because the same variable, num,
is used for each number entered. For this reason, the entry of a new number in Program 5.5

Chapter 5 247
Interactive while Loops

stan ’

print a
message

set count
equal to 1

is count no
less than or) stm
equal to (condition is false)
4?
3 yes
Ja (condltlon is true)

\‘ print the

message

end of program

number

loop accept a these statements
number are executed

using Cln each time the loop
is traversed

print value
of number

go back and
retest count

Figure 5.4 Flow of control diagram for Program 5.5

automatically causes the previous number stored in num to be lost. Therefore, each number
entered must be added to the total before another number is entered. This is the required
sequence:

Enter a number
Add the number to the total

248 Repetition Statements

How do you add a single number to a total? A statement such as total = total + num
does the job perfectly. It’s the accumulation statement introduced in Section 3.1. After each
number is entered, the accumulating statement adds the number to the total, as shown in

Figure 5.5.

The complete flow of control for adding the numbers is illustrated in Figure 5.6. In
reviewing Figure 5.6, observe that a provision has been made for initially setting the total to
zero before the while loop is entered. If you cleared the total inside the while loop, it
would be set to zero each time the loop was executed, and any value stored previously would

be erased.

accept a new

new number
cin
the variable num L
new number
goes in here
the variable total L num

total A

>
| Ltotal =

N new
total

Figure 5.5 Accepting and adding
a number to a total

number

total + num

sart)
A

set count
to one

1

set total
to zero

1

no

S S print total /

|
stoﬁ

is count
< 42

‘ i®

yes
accept a
num

=

add num ‘

to total
JL

add 1 to
count
JL
J

Figure 5.6 Accumulation flow of
control

Program 5.6 incorporates the necessary modifications to Program 5.5 to total the numbers
entered. As shown, the statement total = total + num; is placed immediately after the
cin statement. Putting the accumulating statement at this point in the program ensures that
the entered number is “captured” immediately into the total.

Chapter 5

Program 5.6

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 4;
int count;

double num, total;

Interactive while Loops

cout << "\nThis program will ask you to enter "
<< MAXNUMS << " numbers.\n";
count = 1;
total = 0;
while (count <= MAXNUMS)
{
cout << "\nEnter a number: ";
cin >> num;
total = total + num;
cout << "The total is now " << setprecision(7) << total;
count++;
}
cout << "\nThe final total is " << setprecision(7) << total << endl;

return 0;

249

To make sure you understand, review Program 5.6. The variable total was created to
store the total of the numbers entered. Before entering the while statement, the value of
total is set to zero to make sure any previous value in the storage location(s) assigned to
the variable total is erased. Inside the while loop, the statement total = total +
num; is used to add the value of the entered number to total. As each value is entered,
it’s added to the existing total to create a new total. Therefore, total becomes a running
subtotal of all the values entered. Only after all numbers are entered does total contain the
final sum of all the numbers. After the while loop is finished, a cout statement is used to
display this sum.

250 Repetition Statements

Using the same data entered in the sample run for Program 5.5, the following sample run
of Program 5.6 was made:

This program will ask you to enter 4 numbers.

Enter a number: 26.2

The total is now 26.2

Enter a number: 5

The total is now 31.2

Enter a number: 103.456

The total is now 134.656
Enter a number: 1267.89

The total is now 1402.546
The final total is 1402.546

Having used an accumulating assignment statement to add the numbers entered, you can
go further and calculate the average of the numbers. Where do you calculate the average—
inside the while loop or outside it?

In the case at hand, calculating an average requires that both a final sum and the number
of items in that sum be available. The average is then computed by dividing the final sum
by the number of items. At this point, you must ask, “At what point in the program is the
correct sum available, and at what point is the number of items available?”

In reviewing Program 5.6, you can see that the correct sum needed for calculating the
average is available after the while loop is finished. In fact, the whole purpose of the while
loop is to ensure that the numbers are entered and added correctly to produce a correct sum.
After the loop is finished, you also have a count of the number of items used in the sum.
However, because of the way the while loop was constructed, the number in count (5)
when the loop is finished is one more than the number of items (four) used to obtain the
total. Knowing this, you simply subtract one from count before using it to determine the
average. With this information as background, take a look at Program 5.7.

Program 5.7 is almost identical to Program 5.6, except for the calculation of the average.
The constant display of the total inside and after the while loop has also been removed.
The loop in Program 5.7 is used to enter and add four numbers. Immediately after the loop
is exited, the average is computed and displayed. A sample run of Program 5.7 follows:

This program will ask you to enter 4 numbers.
Enter a number: 26.2

a number: 5
Enter a number: 103.456

a number: 1267.89

Enter

Enter

The average of the numbers is 350.637

Chapter 5 251
Interactive while Loops

Program 5.7

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAXNUMS = 4;
int count;

double num, total, average;

cout << "\nThis program will ask you to enter "

<< MAXNUMS << " numbers.\n";

count = 1;
total = 0;
while (count <= MAXNUMS)

{

cout << "Enter a number: ";
cin >> num;

total = total + num;
count++;

count--;

average = total / count;

cout << "\nThe average of the numbers is " << average << endl;

return 0;

Sentinels

All the loops created so far have been examples of fixed-count loops, in which a counter is used
to control the number of loop iterations. By means of a while statement, variable-condition
loops can also be constructed. For example, when entering grades, you might not want to count
the number of grades that will be entered. Instead, you prefer to enter the grades continuously,
and at the end, type in a special data value to signal the end of data input.

In computer programming, data values used to signal the start or end of a data series are
called sentinels. Sentinel values must, of course, be selected so as not to conflict with
legitimate data values. For example, if you’re constructing a program to process a student’s
grades, and assuming no extra credit is given that could produce a grade higher than 100, you
could use any grade higher than 100 as a sentinel value. Program 5.8 illustrates this concept:
Data is requested and accepted continuously until a number larger than 100 is entered. Entry

252

Repetition Statements

of a number higher than 100 alerts the program to exit the while loop and display the sum
of the numbers entered.

Program 5.8

#include <iostream>

using namespace std;

int main()

{

const int HIGHGRADE = 100;
double grade, total;

grade = 0;

total 0;

cout << "\nTo stop entering grades, type in any number";
cout << "\n greater than 100.\n\n";

while (grade <= HIGHGRADE)

{
total = total + grade;
cout << "Enter a grade: ";
cin >> grade;

cout << "\nThe total of the grades is " << total << endl;
return O;

The following lines show a sample run of Program 5.8. As long as grades less than or
equal to 100 are entered, the program continues to request and accept additional data. When
a number less than or equal to 100 is entered, the program adds this number to the total.
When a number greater than 100 is entered, the loop is exited, and the sum of the grades that
were entered is displayed.

To stop entering grades, type in any number
greater than 100.

Enter a grade: 95
Enter a grade: 100
Enter a grade: 82
Enter a grade: 101

The total of the grades is 277

Chapter 5 253
Interactive while Loops

break and continue Statements

"Two useful statements in connection with repetition statements are the break and continue
statements. You encountered the break statement in Section 4.4 when learning about the
switch statement. This is the format of the break statement:

break;

A break statement, as its name implies, forces an immediate break, or exit, from the
switch, while, for, and do-while statements (discussed in the next sections). For
example, execution of the following while loop is terminated immediately if a number
greater than 76 is entered:

while (count <= 10)

{
cout << "Enter a number: ";
cin >> num;
if (num > 76)

{

cout << "You lose!\n";

break; // break out of the loop
}
else

cout << "Keep on trucking!\n";
count++

}
// break jumps to here

The break statement violates structured programming principles because it provides a
second, nonstandard exit from a loop. Nevertheless, the break statement is extremely useful
for breaking out of loops when an unusual condition is detected. The break statement is
also used to exit from a switch statement when the matching case value has been
detected and processed.

The continue statement is similar to the break statement but applies only to loops
created with while, do-while, and for statements. This is the general format of a
continue statement:

continue;

When continue is encountered in a loop, the next iteration of the loop begins
immediately. For while loops, this means execution is transferred automatically to the top of the
loop, and reevaluation of the tested expression is initiated. Although the continue statement
has no direct effect on a switch statement, it can be included in a switch statement, which
is contained in a loop. The effect of continue is the same: The next loop iteration begins.

As a general rule, the continue statement is less useful than the break statement, but
it’s convenient for skipping over data that shouldn’t be processed while remaining in a loop.

254 Repetition Statements

For example, invalid grades are simply ignored in the following section of code, and only
valid grades are added to the total:?

while (count < 30)

{
cout << "Enter a grade: ";
cin >> grade
if(grade < 0 || grade > 100)

continue;

total = total + grade;
count++;

The Null Statement

All statements must be terminated by a semicolon. A semicolon with nothing preceding it is
also a valid statement, called the null statement, as shown:

It’s a do-nothing statement used where a statement is required syntactically, but no
action is called for. Typically, null statements are used with while or for statements.
Program 5.10c in Section 5.4 shows an example of a for statement using a null statement.

I
=

1. (Practice) Rewrite Program 5.6 to compute the total of eight numbers.

EXERCISES 5.3

7

2. (Practice) Rewrite Program 5.6 to display this prompt:

Please type in the total number of data values to be added:

In response to this prompt, the program should accept a user-entered number, and then
use this number to control the number of times the while loop is executed. So if the
user enters 5 in response to the prompt, the program should request the input of five
numbers and display the total after five numbers have been entered.

3. (Practice) Rewrite Program 5.7 to compute the average of 10 numbers.
4. (Practice) Rewrite Program 5.7 to display the following prompt:

Please type in the total number of data values to be averaged:

®The continue statement is not essential, however, and the selection could have been written as follows:
if (grade= 0 && grade = 100)
{
total = total + grade;
count++;

}

Chapter 5 255
Interactive while Loops

In response to this prompt, the program should accept a user-entered number, and then
use this number to control the number of times the while loop is executed. So if the
user enters 6 in response to the prompt, the program should request an input of six num-
bers and display the average of the next six numbers entered.

(Debugging) By mistake, a programmer puts the statement average = total /
count; in the while loop immediately after the statement total = total + num;
in Program 5.7. As a result, the while loop becomes the following:

while (count <= MAXNUMS)

{
cout << "Enter a number: ";
cin >> num;

total = total + num;
average = total / count;
count++;

}
a. Will the program vyield the correct result with this while loop?

b. From a programming perspective, which while loop is better to use and why?

(Conversions) a. Write a C++ program to convert meters to feet. The program should
request the starting meter value, the number of conversions to be made, and the increment
between metric values. The display should have appropriate headings and list the meters and
the corresponding feet value. If the number of iterations is greater than 10, have your pro-
gram substitute a default increment of 10. Use the relationship that 1 meter = 3.281 feet.

b. Run the program written in Exercise 6a on a computer. Verify that your program
begins at the correct starting meter value and contains the exact number of conver-
sions specified in your input data.

(Conversions) a. Modify the program written in Exercise 6a to request the starting

meter value, the ending meter value, and the increment. Instead of the condition check-

ing for a fixed count, the condition checks for the ending meter value. If the number of

iterations is greater than 20, have your program substitute a default increment of (ending

value - starting value) | 19.

b. Run the program written in Exercise 7a on a computer. Verify that your output starts
at the correct beginning value and ends at the correct ending value.

(Numerical Analysis) An arithmetic series is defined by the following:

a+@+d)+(a@+2d)+(a+3d)+ " +[(a+ (n-1)d)

a is the first term.
d is the “common difference.”
7 1s the number of terms to be added.

Using this information, write a C++ program that uses a while loop to display each term
and determine the sum of the arithmetic series having ¢ = 1, 4 = 3, and # = 100. Make
sure your program displays the value it has calculated.

(Numerical Analysis) A geometric series is defined by the following:

a+var+ar®+ar’+ v ar” !

256

10.

Repetition Statements

a 1s the first term.
7 is the “common ratio.”
2 1s the number of terms in the series.

Using this information, write a C++ program that uses a while loop to both display each
term and determine the sum of a geometric series having ¢ = 1, 7 = .5, and » = 10. Make
sure your program displays the value it has calculated.

(Misc. Application) a. The data in the following chart was collected on a recent auto-
mobile trip:

Mileage Gallons
22,495 Full tank
22,841 12.2
23,185 11.3
23,400 10.5
23,772 11.0
24,055 12.2
24,434 14.7
24,804 14.3
25,276 15.2

Write a C++ program that accepts a mileage and gallons value and calculates the miles
per gallon (mpg) for that segment of the trip. The mpg is obtained as the difference in
mileage between fill-ups divided by the number of gallons of gasoline used in the fill-up.

b. Modify the program written for Exercise 10a to also compute and display the cumula-
tive mpg after each fill-up. The cumulative mpg is calculated as the difference
between the mileage at each fill-up and the mileage at the start of the trip divided by
the sum of gallons used to that point in the trip.

54

for Loops

In C++, a for loop is constructed by using a for statement. This statement performs the
same functions as the while statement but uses a different form. In many situations,
especially those using a fixed-count condition, the for statement format is easier to use than
its while statement equivalent. This is the syntax of the for statement:

for (initializing list; expression, altering list)
statement;

Although the for statement looks a little complicated, it’s really quite simple if you
consider each part separately. Inside the parentheses of the for statement are three items,
separated by semicolons. Each item is optional and can be described separately, but the
semicolons must always be present, even if you don’t use the items. In the for statement’s
most common form, the initializing 1ist consists of a single statement used to set
the starting (initial) value of a counter, the expression (also called the “condition”)

Chapter 5 257
for Loops

contains the maximum or minimum value the counter can have and determines when the
loop is finished, and the altering list provides the increment value that’s added to or
subtracted from the counter each time the loop is executed. Here are two examples of simple
for statements having this form:

for (count = 1; count < 10; count = count + 1)
cout << count;

and

for (1 = 5; 1 <= 15; 1 = 1 + 2)
cout << 1i;

In the first for statement, the counter variable is named count, the initial value
assigned to count is 1, the loop continues as long as the value in count is less than 10, and
the value of count is incremented by 1 each time through the loop.

In the next for statement, the counter variable is named i, the initial value assigned to
i is 5, the loop continues as long as i’s value is less than or equal to 15, and the value of 1
is incremented by 2 each time through the loop. In both examples, a cout statement is used
to display the value of the counter. Program 5.9 shows another example of a for loop.

Program 5.9

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main()

{
const int MAXCOUNT = 5;
int count;

cout << "NUMBER SQUARE ROOT\n";
cout << "------ —-mm———— - \n";

cout << setiosflags(ios::showpoint);
for (count = 1; count <= MAXCOUNT; count++)
cout << setw(4) << count
<< setw(1l5) << sgrt(double(count)) << endl;

return O;

258 Repetition Statements

When Program 5.9 is executed, the following display is produced:

NUMBER SQUARE ROOT
1 1.00000
2 1.41421
3 1.73205
4 2.00000
5 2.23607

"The first two lines of this output are produced by the two cout statements placed before
the for statement. The remaining output is produced by the for loop, which begins with
the for statement and is executed as follows: The initial value assigned to the counter
variable count is 1. Because the value in count doesn’t exceed the final value of 5, the
execution of the cout statement in the loop produces this display:

1 1.00000

Control is then transferred back to the for statement, which increments the value in
count to 2, and the loop is repeated, producing this display:

2 1.41421

"This process continues until the value in count exceeds the final value of 5, producing
the complete output table.
For comparison purposes, a while loop equivalent to the for loop in Program 5.9 is as

follows:

count = 1

while (count <= MAXCOUNT)
{

cout << setw(4) << count
<< setw(1l5) << sgrt(count) << endl;
count++;

}

As you can see in this example, the difference between the for and while loops is the
placement of the initialization, condition being tested, and incrementing items. Grouping
these items in the for statement is convenient when you must construct fixed-count loops.
See whether you can determine the output Program 5.10 produces.

Chapter 5 259
for Loops

Program 5.10

#include <iostream>
using namespace std;

int main()
{

int count;

for (count = 2; count <= 20; count = count + 2)
cout << count << " ",

return 0;

Did you figure it out? The loop starts with count initialized to 2, stops when count
exceeds 20, and increments count in steps of 2. This is the output of Program 5.10:

2 4 6 8 10 12 14 16 18 20

As mentioned, the for statement doesn’t require having an initializing or altering list
inside for’s parentheses; however, the two semicolons must be included in these
parentheses. For example, the construction for (; count <= 20 ;) is valid.

If the initializing list is missing, the initialization step is omitted when the for statement is
executed. Therefore, the programmer must provide the required initializations before the for
statement is encountered. Similarly, if the altering list is missing, any expressions needed to alter
the evaluation of the tested expression must be included in the statement part of the loop. The
for statement only ensures that all expressions in the initializing list are executed once, before
evaluation of the tested expression, and all expressions in the altering list are executed at the end
of the loop, before the tested expression is rechecked. Program 5.10 can be rewritten in any of
the three ways shown in Programs 5.10a, 5.10b, and 5.10c.

Program 5.10a

#include <iostream>
using namespace std;
int main()
{
int count;
count = 2; // initializer outside the for statement
for (; count <= 20; count = count + 2)
cout << count << " "
return 0;

260 Repetition Statements

Program 5.10b

#include <iostream>
using namespace std;
int main()

{

int count;

count = 2; // initializer outside the for loop
for(; count <= 20;)
{

cout << count << " "

count = count + 2; // alteration statement
}

return O;

Program 5.10c

#include <iostream>

using namespace std;

int main() // all expressions inside for's parentheses
{

int count;

for (count = 2; count <= 20; cout << count << " ", count = count + 2);
return 0;

In Program 5.10a, count is initialized outside the for statement, and the first list inside
the parentheses is left blank. In Program 5.10b, both the initializing list and the altering list
are outside the parentheses. Program 5.10b also uses a compound statement in the for loop,
with the expression-altering statement included in the compound statement. Finally,
Program 5.10c has included all items inside the parentheses, so there’s no need for any useful
statement following the parentheses. In this example, the null statement satisfies the
syntactical requirement of one statement to follow for’s parentheses.

Also, observe in Program 5.10c that the altering list (the last set of items in parentheses)
consists of two items, and a comma has been used to separate these items. Using commas to
separate items in both the initializing and altering lists is required if ecither of these lists
contains more than one item.

Chapter 5 261
for Loops

Point of Information

Where to Place the Opening Braces

When the for loop contains a compound statement, professional C++ programmers use
two styles of writing for loops. The style used in this book takes the following form:

for (expression)

compound statement in here

}

An equally acceptable style places the compound statement’s opening brace on the
first line. Using this style, a £or loop looks like the following:

for (expression) {
compound statement in here

}

The advantage of the first style is that the braces line up under one another, making it
easier to locate brace pairs. The advantage of the second style is that it makes the code
more compact and saves a line, so more code can be viewed in the same display area.
Both styles are used but are almost never intermixed. Select whichever style appeals to you
and be consistent in its use. As always, the indentation you use in the compound state-
ment (two or four spaces or a tab) should also be consistent throughout all your programs.
The combination of styles you select becomes a “signature” for your programming work.

Last, note that Programs 5.10a, 5.10b, and 5.10c are all inferior to Program 5.10, and
although you might encounter them in your programming carcer, you shouldn’t use them.
Adding items other than loop control variables and their updating conditions in the for
statement tends to make it confusing to read and can result in unwanted effects. Keeping the
loop control structure “clean,” as in Program 5.10, is important and a good programming
practice.

Although the initializing and altering lists can be omitted from a for statement, omitting
the tested expression results in an infinite loop. For example, this statement creates an
infinite loop:

for (count = 2; ; count = count + 1)
cout << count;

As with the while statement, both break and continue statements can be used in
a for loop. A break forces an immediate exit from the for loop, as it does in the while
loop. A continue, however, forces control to be passed to the altering list in a for
statement, after which the tested expression is reevaluated. This action differs from
continue’s action in a while statement, where control is passed directly to reevaluation of
the tested expression.

Figure 5.7 illustrates the internal workings of a for loop. As shown, when the for loop
is completed, control is transferred to the first executable statement following the loop. To
avoid having to illustrate every step, you can use a simplified set of flowchart symbols to
describe for loops. If you use the following flowchart symbol to represent a for statement,

262

Repetition Statements

for
statement

you can then illustrate a complete for loop, as shown in Figure 5.8.

enter the
for statement

initializing
statements

A1

expression’s value

is zero .
A, exit the
for statement

evaluate
the
tested
expression

(false condition)

expression’s value

\| is non-zero

(true condition)

execute the
statement
after the
parentheses

|

execute the
altering list

loop

go back and
retest the condition

Figure 5.7 A for loop flowchart

Chapter 5 263

for Loops

Point of Information

Do You Use a for or while Loop?

Beginning programmers often ask which loop structure they should use—a for or
while loop. It's a good question because both loop structures are pretest loops that,
in C++, can be used to construct fixed-count and variable-condition loops.

In most other computer languages, including Visual Basic and Pascal, the answer is
straightforward because the for statement can be used only to construct fixed-count
loops. In these languages, then, for statements are used to construct fixed-count
loops, and while statements are generally used only for variable-condition loops.

In C++, this easy distinction doesn’t hold because both statements can be used to
create both types of loops. The answer is more a matter of style. Because a for and
while loop are interchangeable in C++, either loop is appropriate. Some professional
programmers always use a for statement for pretest loops and almost never use a
while statement; others always use a while statement and rarely use a for
statement. Still a third group tends to retain the convention used in other languages—a
for loop is generally used to create fixed-count loops, and a while loop is used to
create variable-condition loops. In C++, it's a matter of style, and you'll encounter all
three styles in your programming career.

enter the for

statement
S expression’s value
N for ' IS zero A, exit the for
(expression) statement

(false condition)

[expression’s value is non-zero
< (true condition)

{

statement 1
through
statement n

¥

Figure 5.8 A simplified for loop flowchart

"To understand the enormous power of for loops, consider the task of printing a table of
numbers from 1 to 10, including their squares and cubes, by using a for statement. This
table was produced previously by using a while loop in Program 5.3. You might want to
review Program 5.3 and compare it to Program 5.11 to get a better sense of the equivalence

between for and while loops.

264 Repetition Statements

Program 5.11

#include <iostream>
#include <iomanip>
using namespace std;

int main()

{
const int MAXNUMS = 10;
int num;
cout << "NUMBER SQUARE CUBE\n"
<< "———--=- ————— -——-=-\n";
for (num = 1; num <= MAXNUMS; num++)
cout << setw(3) << num << " "
<< setw(3) << num * num << " "
<< setw(4) << num * num * num << endl;
return 0;
}

When Program 5.11 runs, this is the display produced:

NUMBER SQUARE CUBE
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

Simply changing the number 10 in the for statement of Program 5.11 to 1000 creates
a loop that’s executed 1000 times and produces a table of numbers from 1 to 1000. As with
the while statement, this small change produces an immense increase in the program’s
processing and output. Notice also that the expression num++ was used in the altering list in
place of the usual num = num + 1.

Chapter 5 265
for Loops

EXERCISES 5.4

1. (Practice) Write a for statement for each of the following cases:

a. Use a counter named 1 that has an initial value of 1, a final value of 20, and an incre-
ment of 1.

b. Use a counter named icount that has an initial value of 1, a final value of 20, and an
increment of 2.

c. Use a counter named j that has an initial value of 1, a final value of 100, and an
increment of 5.

d. Use a counter named icount that has an initial value of 20, a final value of 1, and an
increment of -1.

e. Use a counter named icount that has an inital value of 20, a final value of 1, and an
increment of -2.

f. Use a counter named count that has an initial value of 1.0, a final value of 16.2, and
an increment of 0.2.

8. Use a counter named xcnt that has an initial value of 20.0, a final value of 10.0, and
an increment of -0.5.

2. (Desk Checking) Determine the number of times each for loop is executed for the
for statements written for Exercise 1.

3. (Desk Checking) Determine the value in total after each of the following loops is
executed:

a. total = 0;
for (i = 1; 1 <= 10; 1 =1 + 1)
total = total + 1;
b. total = 1;
for (count = 1; count <= 10; count = count + 1)
total = total * 2;

C. total =0
for (i = 10; 1 <= 15; 1 =1 + 1)
total = total + 1i;
d. total = 50
for (1 = 1; 1 <=10; 1 = 1 + 1)
total = total - 1i;
€. total =1
for (icnt = 1; icnt <= 8; ++icnt)
total = total * icnt;
f. total = 1.0
for (j = 1; j <= 5; ++3)
total = total / 2.0;

266

10.

Repetition Statements

. (Desk Checking) Determine the output of the following program:

#include <iostream>
using namespace std;

int main()
{

int 1i;

for (1 = 20; 1 >=0; 1 =1 - 4)
cout << 1 << " ";

return 0;

}

. (Modify) Modify Program 5.11 to produce a table of the numbers 0 through 20 in incre-

ments of 2, with their squares and cubes.

. (Modify) Modify Program 5.11 to produce a table of numbers from 10 to 1, instead of 1

to 10, as it currently does.

. (Conversions) Write a C++ program to convert kilometers/hr to miles/hr. The program

should produce a table of 10 conversions, starting at 60 km/hr and incremented by 5 km/hr.
The display should have appropriate headings and list each km/hr and its equivalent miles/hr
value. Use the relationship that 1 kilometer = 0.6241 miles.

. (Practice) Write sections of C++ code to do the following:

a. Display the multiples of 3 backward from 33 to 3, inclusive.

b. Display the uppercase letters of the alphabet backward from Z to A.

. (Practice) Write, run, and test a C++ program to find the value of 2" by using a for

loop, where # is an integer value the user enters at the keyboard. (Hinz: Initialize result
= 1. Accumulate result = 2 * result.)

(Fluid Dynamics) Write a C++ program that uses a fixed-count loop of four. For each

pass through the loop, enter a fluid’s viscosity and density from the following chart. Your
program should then determine the kinematic viscosity for each fluid, using the following
formula (see the Technical Note in Section 5.2 for a description of density and viscosity):

Kinematic viscosity = viscosity | density
Use the results output by your program to complete the last column in this chart:

Fluid Viscosity at 40°C = | Density (kg/m3) | Kinematic
77°F (kg/ms) Viscosity (m?/s)
Gasoline 4466 x 107 7186 x 10°
Medium fuel oil 2.9922 x 1073 8496 x 10°
Medium 87.0736 x 107 8865 x 10°
lubricating oil
Water 8975 x 1073 9973 x 103

Chapter 5 267
for Loops

11. (Fluid Dynamics) Write a C++ program that calculates the Reynolds number for a pipe

12.

having a diameter of 0.1 meters, in which fluid flows at an average rate of .09 m/s. Your
program should have a fixed-count loop of four and display both the calculated Reynolds
number and the type of fluid flow—Ilaminar, in-transition, or turbulent—for each fluid
listed in the following chart, using the information provided after the chart. Use the
results your program outputs to fill in the last two columns of this chart:

Fluid Kinematic Pipe Avg. | Reynolds | Type of Flow
Viscosity Diameter (m) | Fluid | Number
(m?/s) at Speed
40°C (m/s)

Gasoline 6.215 x 107 | 0.1 .09

Medium 3.523 x 10° 0.1 .09

fuel oil

Medium 9.822 x 10™ 0.1 .09

lubricating oil

Water 8.999 x 10° | 0.1 .09

The Reynolds number can be calculated by using this formula:
Vd

1%

Re

Re is the Reynolds number.

V is the average speed of the fluid (ft/sec or m/s).

d is the pipe diameter (ft or m).

v is the kinematic viscosity (fé%/sec or m?/sec).
For the determination of flow type, use these facts:

Re < 2000: Fluid flow is smooth (laminar).

2000 = Re = 3000: Fluid flow is in transition.

Re > 3000: Fluid flow is turbulent.

(Structural Eng.) The expansion of a steel bridge as it’s heated to a final Celsius tem-
perature, 7}, from an initial Celsius temperature, 7;, can be approximated by using this
formula:

Increase in length = a x L x (Ty - 1)
a is the coefficient of expansion (which for steel is 11.7 x 107©).
L is the length of the bridge at temperature 7,

Using this formula, write a C++ program that displays a table of expansion lengths for a
steel bridge that’s 7365 meters long at 0 degrees Celsius, as the temperature increases to
40 degrees in 5-degree increments.

268

5.5

Repetition Statements

A Closer Look: Loop Programming Techniques

"This section discusses four common programming techniques associated with pretest (for and
while) loops. All these techniques are common knowledge to experienced programmers.

Technique 1: Interactive Input in a Loop

In Section 5.2, you saw the effect of including a cin statement in a while loop. Entering
data interactively in a loop is a general technique that’s equally applicable to for loops. For
example, in Program 5.12, a cin statement is used to allow a user to interactively input a set
of numbers. As each number is input, it’s added to a total. When the for loop is exited, the
average is calculated and displayed.

The for statement in Program 5.12 creates a loop that’s executed four times. The user
is prompted to enter a number each time through the loop. After each number is entered, it’s
added to the total immediately. Notice that total is initialized to 0 before the initializing
list of the for statement is executed. The loop in Program 5.12 is executed as long as the
value in count is less than 4 and is terminated when count becomes 4. (The increment to
4, in fact, is what causes the loop to end.) The output produced by Program 5.12 is essentially
the same as Program 5.7.

Program 5.12

#include <iostream>

using namespace std;

// This program calculates the average of MAXCOUNT user-entered numbers
int main()

{

const int MAXCOUNT = 4;
int count;

double num, total, average;
total = 0.0;
for (count = 0; count < MAXCOUNT; count++)

{

cout << "Enter a number: ";

}

cin >> num;
total = total + num;

average = total / MAXCOUNT;
cout << "The average of the data entered is "

<< average << endl;

return 0;

Chapter 5 269

A Closer Look: Loop Programming
Techniques

Technique 2: Selection in a Loop

Another common programming technique is to use a for or while loop to cycle through a set
of numbers and select numbers meeting one or more criteria. For example, assume you want to
find both the positive and negative sum of a set of numbers. The criterion is whether the number
is positive or negative, and the logic for implementing this program is given by this pseudocode:

While the loop condition is true
Enter a number
If the number is greater than zero
add the number to the positive sum
Else

add the number to the negative sum
Endif
Endwhile

Program 5.13 describes this algorithm in C++ for a fixed-count loop in which five
numbers are to be entered.

Program 5.13

#include <iostream>
using namespace std;

// This program computes the positive and negative sums of a set
// of MAXNUMS user-entered numbers
int main()
{
const int MAXNUMS = 5;
int 1i;

double usenum, positiveSum, negativeSum;

positiveSum = 0; // this initialization can be done in the declaration
negativeSum

0; // this initialization can be done in the declaration

for (i = 1; 1 <
{

cout << "Enter a number (positive or negative) : ";

MAXNUMS; i++)

cin >> usenum;
if (usenum > 0)

positiveSum = positiveSum + usenum;
else

negativeSum = negativeSum + usenum;

270 Repetition Statements

cout << "The positive total is " << positiveSum << endl;
cout << "The negative total is " << negativeSum << endl;
return O;

The following is a sample run of Program 5.13:

Enter a number (positive or negative) : 10
Enter a number (positive or negative) : -10
Enter a number (positive or negative) : 5

Enter a number (positive or negative) : -7
Enter a number (positive or negative) : 11

The positive total is 26
The negative total is -17

Technique 3: Evaluating Functions of One Variable

Loops can be constructed to give you a way to determine and display the values of a single
variable mathematical function for a set of values over any specified interval. For example,
you want to know the values of the following function for x between 2 and 6:

y=10x" + 3x - 2

Assuming x has been declared as an integer variable, the following for loop can be used
to calculate the required values:

for (x = 2; X <= 6; X++)
{
vy = 10 * pow(x,2.0) + 3 * x — 2;
cout << setw(4) << x
<< setw(ll) << y << endl;

In this loop, the variable x is used as both the counter variable and the unknown
(independent variable) in the function. For each value of x from 2 to 6, a new value of v is
calculated and displayed. This for loop is used in Program 5.14, which also prints headings
for the displayed values.

Chapter 5 271
A Closer Look: Loop Programming
Techniques

Program 5.14

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main()
{

int x, vy;

cout << "x value y value\n"

<< W ________ \n"

for (x = 2; x <= 6; xX++)

{
y = 10 * pow(x,2.0) + 3 * x - 2;
cout << setw(4) << x

<< setw(ll) << y << endl;

return 0;

The following is displayed when Program 5.14 is executed:

2

3 97
4 170
5 263
6 376

Two items are important here. First, any equation with one unknown can be evaluated
by using a single for or an equivalent while loop. This method requires substituting your
equation in the loop in place of the equation used in Program 5.14 and adjusting the counter
values to match the solution range you want.

Second, you’re not constrained to using integer values for the counter variable. For
example, by specifying a non-integer increment, solutions for fractional values can be
obtained. This technique is shown in Program 5.15, where the equation y = 70x° + 3x - 2 is
evaluated in the range x = 2 to ¥ = 6 in increments of 0.5.

272 Repetition Statements

Program 5.15

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main()

{
double x, vy;
cout << "x value vy value\n";
<< "o \n"
cout << setiosflags(ios::fixed)
<< setiosflags(ios::showpoint)
<< setprecision(5);
for (x = 2.0; x <= 6.0; x = x + 0.5)
{
v = 10.0 * pow(x,2.0) + 3.0 * x - 2.0;
cout << setw(7) << x
<< setw(1l4) << y << endl;
}
return O;
}

Notice that x and y have been declared as floating-point variables in Program 5.15 to
allow these variables to take on fractional values. The following is the output this program
produces:

o Ul Ul W W NN
o
o
o
o
o
=
-
o
o
o
o
o
o

Chapter 5 273
A Closer Look: Loop Programming
Techniques

Technique 4: Interactive Loop Control

Values used to control a loop can be set by using variables rather than constant values. For
example, these four statements

i =5;
j = 10;
k =1;
for (count = i; count <= j; count = count + k)

produce the same effect as this single statement:
for (count = 5; count <= 10; count++)

Similarly, these statements

i=075;
j = 10;
k = 1;
count = 1i;

while (count <= j)
count = count + k;

produce the same effect as the following while loop:

count = 5;
while (count <= 10)
count++;

The advantage of using variables in the initialization, condition, and altering expressions
is that it allows you to assign values for these expressions outside the for or while
statement. This method is especially useful when a cin statement is used to set the actual
values. To make this technique a little more tangible, take a look at Program 5.16.

274 Repetition Statements

Program 5.16

#include <iostream>
#include <iomanip>
using namespace std;

// this program displays a table of numbers with their squares and cubes,
// starting from the number 1. The final number in the table is
// input by the user.

int main()
{

int num, final;

cout << "Enter the final number for the table: ";
cin >> final;

cout << "NUMBER SQUARE CUBE\n";
cout << M"-----m oo ----\n";

for (num = 1; num <= final; num++)

cout << setw(3) << num
<< setw(8) << num*num
<< setw(7) << num*num*num << endl;
return O;

In Program 5.16, a variable is used in the for statement to control the condition (middle)
expression. A cin statement has been placed before the loop to allow the user to decide what
the final value should be. Notice that this arrangement permits the user to set the table’s
size at runtime, instead of having the programmer set the table size at compile time. This
arrangement also makes the program more general because it can be used to create a variety
of tables without the need for reprogramming and recompiling.

EXERCISES 5.5

1. (cin within a loop) Write and run a C++ program that accepts six Fahrenheit tempera-
tures, one at a time, and converts each value entered to its Celsius equivalent before the
next value is requested. Use a for loop in your program. The conversion required is
Celsius = (5.019.0) x (Fahrenheir - 32).

10.

11.

Chapter 5 275
A Closer Look: Loop Programming
Techniques

. (cin within a loop) Write and run a C++ program that accepts 10 values of gallons, one

at a time, and converts each value entered to its liter equivalent before the next value is
requested. Use a for loop in your program. Use the fact that 1 gallon = 3.785 liters.

. (Interactive Loop Control) Modify the program written for Exercise 2 to initially

request the number of data items to be entered and converted.

. (Interactive Loop Control) Modify Program 5.13 so that the number of entries to be

input is specified by the user when the program is executed.

. (Selection) Modify Program 5.13 so that it displays the average of the positive and nega-

tive numbers. (Hint: Be careful not to count the number 0 as a negative number.) Test
your program by entering the numbers 17, -10, 19, 0, and -4. The positive average your
program displays should be 18, and the negative average should be -7.

. (Selection) a. Write a C++ program that selects and displays the maximum value of five

numbers to be entered when the program is executed. (Hint: Use a for loop with both a
cin and if statement inside the loop.)

b. Modify the program written for Exercise 6a so that it displays both the maximum
value and the position in the input set of numbers where the maximum occurs.

. (Selection) Write a C++ program that selects and displays the first 20 integer numbers

[¢

that are evenly divisible by 3. (Hint: Use the modulus operator, %.)

. (Selection) A child’s parents promised to give the child $10 on her 12th birthday and

double the gift on every subsequent birthday until the annual gift exceeded $1000. Write
a C++ program to determine how old the child will be when the last amount is given and
the total amount the child will have received.

. (Mathematical Functions) Modify Program 5.15 to produce a table of y values for the

following;:
a. y = 3x° - 2x> + x for x between 5 and 10 in increments of 0.2
2 3 4
b. y=1+x+7+7+;—4 for x between 1 and 3 in increments of 0.1

c. y = 2% for 7 between 4 and 10 in increments of 0.2

(Mathematical Functions) A model of worldwide population, in billions of people, is

given by this formula
0.02t

Population = 6.0¢

where 7 is the time in years (# = 0 represents January 2000 and 7 = 1 represents January
2001). Using this formula, write a C++ program that displays a yearly population table for
the years January 2005 though January 2010.

(Mathematical Functions) The x and y coordinates, as a function of time, #, of a projec-
tile fired with an initial velocity, v, at an angle of 6 with respect to the ground, are given
by these formulas:

x =90 tcos(0)
y =otsin(8)

276

Repetition Statements

Using these formulas, write a C++ program that displays a table of x and y values for a
projectile fired with an initial velocity of 500 ft/sec at an angle of 22.8 degrees. (Hint:
Remember to convert to radian measure.) The table should contain values corresponding
to the time interval 0 to 10 seconds in increments of %2 seconds.

5.6

Nested Loops

In many situations, using a loop within another loop, called a nested loop, is convenient.
Here’s a simple example of a nested loop:

for(i = 1; 1 <= 5; i++) // start of outer loop
{
cout << "\ni is now " << i << endl;
for(j = 1; J <= 4; Jj++) // start of inner loop
cout << " J = " << J; // end of inner loop
} // end of outer loop

The first loop, controlled by the value of i, is called the outer loop. The second loop,
controlled by the value of j, is called the inner loop. Notice that all statements in the inner loop
are contained in the boundaries of the outer loop, and a different variable is used to control each
loop. For each trip through the outer loop, the inner loop runs through its entire sequence.
Therefore, each time the i counter increases by one, the inner for loop executes completely,
and goes through four values (j takes on the values 1 to 4), as shown in Figure 5.9. Program 5.17
includes this type of loop in a working program.

Chapter 5
Nested Loops

Figure 5.9 For each i, 5 loops

This is the output of a sample run of Program 5.17:

i

is now
j=1
is now
j =1
is now
j=1
is now
j=1
is now
j=1

1
3
2
3
3
3
4
3
5
3

277

278 Repetition Statements

g Program 5.17

#include <iostream>

using namespace std;

int main()

{

const int MAXI = 5;
const int MAXJ = 4;

int i, 7;
for(i = 1; 1 <= MAXI; i++) // start of outer loop <----+
{ // |
cout << "\ni is now " << i << endl; // |
/7 |
for(j = 1; j <= MAXJ; Jj++) // start of inner loop |
cout << " j = " << j; // end of inner loop |
} // end of outer loop <----- +

cout << endl;

return 0;

"To understand the usefulness of a nested loop, take a look at using one to compute the
average grade for each student in a class of 20 students. Each student has taken four exams
during the semester. The final grade is calculated as the average of these exam grades. The
pseudocode describing how to compute this average is as follows:

for 20 times
set the student grade total to zero
for 4 times
input a grade
add the grade to the total
endfor // end of inner for loop
calculate student’s average grade
print the student’s average grade
endfor // end of outer for loop

As described by the pseudocode, an outer loop consisting of 20 passes is used to compute
the average grade for each student. The inner loop consists of four passes, and one
examination grade is entered in each inner loop pass. As each grade is entered, it’s added to
the total for the student, and at the end of the loop, the average is calculated and displayed.
Because both the outer and inner loops are fixed-count loops of 20 and 4, respectively, for
statements are used to create these loops. Program 5.18 shows the C++ code corresponding
to the pseudocode.

Chapter 5 279
Nested Loops

Program 5.18

#include <iostream>
using namespace std;

int main()

{
const int NUMGRADES = 4;
const int NUMSTUDENTS = 20;
int i, J;
double grade, total, average;

for (i = 1; i <= NUMSTUDENTS; i++) // start of outer loop

{
total = 0; // clear the total for this student
for (j = 1; j <= NUMGRADES; j++) // start of inner loop
{
cout << "Enter an examination grade for this student: ";
cin >> grade;
total = total + grade; // add the grade to the total
} // end of the inner for loop
average = total / NUMGRADES; // calculate the average
cout << "\nThe average for student " << i
<< " 1s " << average << "\n\n";
} // end of the outer for loop
return O;

In reviewing Program 5.18, pay particular attention to the initialization of total in the
outer loop, before the inner loop is entered: total is initialized 20 times, once for each
student. Also, notice that the average is calculated and displayed immediately after the inner
loop is finished. Because the statements that compute and display the average are also in the
outer loop, 20 averages are calculated and displayed. The entry and addition of each grade
in the inner loop uses techniques you have seen before and should be familiar with now.

EXERCISES 5.6

1. (Misc. Application) Four experiments are performed, and each experiment has six test
results. The results for each experiment are given in the following list. Write a program
using a nested loop to compute and display the average of the test results for each
experiment.

280 Repetition Statements

Ist experiment results: 23.2 31 16.9 27 25.4 28.6
2nd experiment results: 34.8 45.2 27.9 36.8 33.4 39.4
3rd experiment results: 19.4 16.8 10.2 20.8 18.9 13.4
4th experiment results: 36.9 39 49.2 45.1 42.7 50.6

2. (Modify) a. Modify the program written for Exercise 1 so that the number of test results
for each experiment is entered by the user. Write your program so that a different num-
ber of test results can be entered for each experiment.

b. Rewrite the program written for Exercise 2a to eliminate the inner loop.

3. (Electrical Eng.) a. An electrical manufacturer tests five generators by measuring their
output voltages at three different times. Write a C++ program that uses a nested loop to
enter each generator’s test results, and then computes and displays the average voltage for
each generator. Assume the following generator test results:

Ist generator: 122.5 122.7 123.0
2nd generator: 120.2 127.0 125.1
3rd generator: 121.7 124.9 126.0
4th generator: 122.9 123.8 126.7
5th generator: 121.5 124.7 122.6

b. Modify the program written for Exercise 3a to calculate and display the average volt-
age for all the generators. (Hint: Use a second variable to store the total of all the gen-
erator’s voltages.)

4. (Modify) Rewrite the program written for Exercise 3a to eliminate the inner loop. To do
this, you have to input three voltages for each generator instead of entering one at a time.
Each voltage must be stored in its own variable before the average is calculated.

S. (Mathematical Functions) Write a program that calculates and displays values for
y when
y=uxz/(x-23)
Your program should calculate y for values of x ranging between 1 and 5 and values of =
ranging between 2 and 6. The x variable should control the outer loop and be incre-

mented in steps of 1, and z should be incremented in steps of 1. Your program should
also display the message Function Und