
Beginning with C / 1

CHAPTER 1

INTRODUCTION TO FLOWCHARTING

1.0 Objectives
1.1 Introduction
1.2 Flowcharts
1.3 Types of Flowcharts

1.3.1 Types of flowchart
1.3.2 System flowcharts

1.4 Flowchart Symbols
1.5 Advantages of Flowcharts
1.6 Developing Flowcharts
1.7 Techniques

1.7.1 Flowcharts for computations
1.7.2 Flowcharts for decision making
1.7.3 Flowcharts for loops
1.7.4 Predefined process

1.8 Summary
1.9 Check Your Progress - Answers
1.10 Questions for Self-Study
1.11 Suggested Readings

1.0 OBJECTIVES
Friends,After studying this topic you will be able to -

• describe problem solving

• describe the meaning of flowcharts and flowcharts as a tool to represent
 program logic sequence.

• explain types of flowcharts and flowchart symbols.

• state uses of flowcharts and advantages of flowcharts

• describe develop flowcharts for problem solving.

• describe the advanced flowcharting techniques involved in flowcharts for
 computations, decision making, loops, predefined process etc.

1.1 INTRODUCTION
Computers are capable of handling various complex problems which are tedious and
routine in nature. In order that a computer solve a problem, a method for the solution
and a detailed procedure has to be prepared by the programmer. The problem solving
Involves :
- Detailed study of the problem

- Problem redefinition

- Identification of input data, output requirements and conditions and limitations

- Alternative methods of solution

- Selection of the most suitable method

- Preparation of a list of procedures and steps to obtain the solution

- Generating the output

C Programming / 2

The preparation of lists of procedures and steps to obtain the result introduces the
algorithmic approach to problem solving. The algorithm is a sequence of instructions
designed in such a way that if the instructions are executed in a specific sequence the
desired results will be obtained. The instructions should be precise and concise and the
result should be obtained after a finite execution of steps. This means that the algorithm
should not repeat one or more instructions infinitely. It should terminate at some point
and result in the desired output.
An algorithm should possess the following characteristics :
- Each and every instruction should be precise and clear

- Each instruction should be performed a finite number of times

- The algorithm should ultimately terminate

- When the algorithm terminates the desired result should be obtained.

1.2 FLOWCHARTS
Before you start coding a program it is necessary to plan the step by step

solution to the task your program will carry out. Such a plan can be symbolically
developed using a diagram. This diagram is then called a flowchart. Hence a flowchart
is a symbolic representation of a solution to a given task. A flowchart can be developed
for practically any job. Flowcharting is a tool that can help us to develop and represent
graphically program logic sequence. It also enables us to trace and detect any logical
or other errors before the programs are written.

1.3 TYPES OF FLOWCHARTS
Computer professionals use two types of flowcharts viz :

- Program Flowcharts.

- System Flowcharts

1.3.1 Program Flowcharts :

These are used by programmers. A program flowchart shows the program structure,
logic flow and operations performed. It also forms an important part of the documentation
of the system. It broadly includes the following:

- Program Structure.

- Program Logic.

- Data Inputs at various stages.

- Data Processing

- Computations and Calculations.

- Conditions on which decisions are based.

- Branching & Looping Sequences.

- Results.

- Various Outputs.

The emphasis in a program flowchart is on the logic.

1.3.2 System Flowcharts :

System flowcharts are used by system analyst to show various
processes, sub systems, outputs and operations on data in a system.

In this course material we will be discussing program flowcharts only.

Introduction to Flowcharting / 3

 1.2 & 1.3 Check Your Progress.
Answer in 1-2 sentences :

a) What is an algorithm?
..
..

b) What is a flowchart?
..
...

c) What are the types of flowcharts?
...
...

d) List any two steps involved in problem solving.
..
..

1.4 FLOWCHART SYMBOLS

Normally, an algorithm is expressed as a flowchart and then the flowchart is
converted into a program with the programming language. Flowcharts are independent
of the programming language being used. Hence one can fully concentrate on the logic
of the problem solving at this stage. A large number of programmers use flowcharts to
assist them in the development of computer programs. Once the flowchart is fully ready,
the programmer then write it in the programming language. At this stage he need not
concentrate on the logic but can give more attention to coding each instruction in the
box of the flowchart in terms of the statements of the programming language selected.

A flowchart can thus be described as the picture of the logic to be included in
the computer program. It is always recommended for a beginner, to draw flowcharts
prior to writing programs in the selected language. Flowcharts are very helpful during
the testing of the program as well as incorporating further modifications.

Flowcharting has many standard symbols. Flowcharts use boxes of different
shapes to denote different types of instructions. The actual instruction is written in the
box. These boxes are connected with solid lines which have arrowheads to indicate the
direction of flow of the flowchart. The boxes which are used in flowcharts are standardised
to have specific meanings. These flowchart symbols have been standardised by the
American National Standards Institute. (ANSI).

While using the flowchart symbols following points have to be kept in
mind:

- The shape of the symbol is important and must not be changed.

- The size can be changed as required.

- The symbol must be immediately recognizable.

- The details inside the symbol must be clearly legible.

- The flow lines, as far as possible, must not cross.

Terminal Symbol:

Every flowchart has a unique starting point and an ending point. The flowchart
begins at the start terminator and ends at the stop terminator. The Starting Point is
indicated with the word START inside the terminator symbol. The Ending Point is
indicated with the word STOP inside the terminator symbol. There can be only one

C Programming / 4

START and one STOP terminator in you entire flowchart. In case a program logic
involves a pause, it is also indicated with the terminal symbol.

Input/Output Symbol :

This symbol is used to denote any input/output function in the program. Thus
if there is any input to the program via an input device, like a keyboard, tape, card
reader etc. it will be indicated in the flowchart with the help of the Input/Output symbol.
Similarly, all output instructions, for output to devices like printers, plotters, magnetic
tapes, disk, monitors etc. are indicated in the Input/Output symbol.

Process Symbol :

A process symbol is used to represent arithmetic and data movement instructions
in the flowchart. All arithmetic processes of addition, subtraction, multiplication and
division are indicated in the process symbol. The logical process of data movement
form one memory location to another is also represented in the process box. If there
are more than one process instructions to be executed sequentially, they can be
placed in the same process box, one below the other in the sequence in which they
are to be executed.

Decision Symbol :

The decision symbol is used in a flowchart to indicate the point where a decision
is to be made and branching done upon the result of the decision to one or more
alternative paths. The criteria for decision making is written in the decision box. All the
possible paths should be accounted for. During execution, the appropriate path will be
followed depending upon the result of the decision.

Flowlines :

Flowlines are solid lines with arrowheads which indicate the flow of operation.
They show the exact sequence in which the instructions are to be executed. The
normal flow of the flowchart is depicted from top to bottom and left to right.

Connectors :

In situations, where the flowcharts becomes big, it may so happen that the
flowlines start crossing each other at many places causing confusion. This will also
result in making the flowchart difficult to understand. Also, the flowchart may not fit in
a single page for big programs. Thus whenever the flowchart becomes complex and
spreads over a number of pages connectors are used. The connector represents entry
from or exit to another part of the flowchart. A connector symbol is indicated by a circle
and a letter or a digit is placed in the circle. This letter or digit indicates a link. A pair
of such identically labelled connectors are used to indicate a continued flow in situations
where flowcharts are complex or spread over more than one page. Thus a connector
indicates an exit from some section in the flowchart and an entry into another section

Introduction to Flowcharting / 5

of the flowchart. If an arrow enters a flowchart but does not leave it, it means that it
is an exit point in the flowchart and program control is transferred to an identically
labelled connector which has an outlet. This connector will be connected to the further
program flow from the point where it has exited. Connectors do not represent any
operation in the flowchart. Their use is only for the purpose of increased convenience
and clarity.

1.4 Check Your Progress.
1. Answer in 1- 2 sentences
a) What is the use of decision box in flowcharts?

...
 ..

b) What do flowlines show?
..
..

2. Match the following :
Column A Column B
a) Connector (i) show the sequence of instructions execution
b) Input/Output (ii) represent arithmetic and data movement instructions
c) Process (iii) represents entry or exit to another part of flowchart.
d) Flow Lines (iv) denote any input/output function

1.5 ADVANTAGES OF FLOWCHARTS
There are a number of advantages when using flowcharts in problem solving.

They provide a very powerful tool to programmers to first represent their program logic
graphically and independent of the programming language.

- Developing the program logic and sequence. A macro flowchart can first be
designed to depict the main line of logic of the software. This model can then be broken
down into smaller detailed parts for further study and analysis.

- A flowchart being a pictorial representation of a program, makes it easier for
the programmer to explain the logic of the program to others rather than a program

- It shows the execution of logical steps without the syntax and language
complexities of a program.

- In real life programming situations a number of programmers are associated
with the development of a system and each programmer is assigned a specific task
of the entire system. Hence, each programmer can develop his own flowchart and later
on all the flowcharts can be combined for depicting the overall system. Any problems
related to linking of different modules can be detected at this stage itself and suitable
modifications carried out. Flowcharts can thus be used as working models in design
of new software systems.

- Flowcharts provide a strong documentation in the overall documentation of the
software system.

- Once the flowchart is complete, it becomes very easy for programmers to write
the program from the starting point to the ending point. Since the flowchart is a detailed
representation of the program logic no step is missed during the actual program writing
resulting in error free programs. Such programs can also be developed faster.

- A flowchart is very helpful in the process of debugging a program. The bugs can
be detected and corrected with the help of a flowchart in a systematic manner.- A
flowchart proves to be a very effective tool for testing. Different sets of data are fed as
input to program for the purpose

C Programming / 6

1.5 Check Your Progress.

1. Give any two advantages of flowcharts.

...

..

1.6 DEVELOPING FLOWCHARTS
In developing the flowcharts following points have to be considered:

- Defining the problem.
- Identify the various steps required to form a solution.
- Determine the required input and output parameters.
- Get expected input data values and output result.
- Determine the various computations and decisions involved.

With this background of flowcharts and flowchart symbols let us now draw some
sample flowcharts. First we shall write the steps to prepare the flowchart for a particular
task and then draw the flowchart.

Example : To prepare a flowchart to add two numbers. (Fig. 2a.)

The steps are :

1. Start.

2. Get two numbers N1 and N2.

3. Add them.

4. Print the result.

5. Stop.

Example : To prepare a flowchart to determine the greatest of two numbers.
Here we use the decision symbol. We also combine the two reads for numbers A and
B in one box.

The steps are :

1. Start

Introduction to Flowcharting / 7

2. Get two number A and B.

3. If A > B then print A else print B.

4. Stop.

Note that in the first example, we have used two separate input/output boxes to
read the numbers N1 and N2. In the second example, both the numbers a and b are
read in the same box. Thus if more than one instructions of the same kind follow one
another then they can be combined in the same box.

1.6 Check Your Progress.
1. Write the steps and draw the flowcharts for the following :
a) Find the average of three numbers a, b and c.
b) Find the area of a rectangle whose length and breadth are given.
2. Answer the following :
a) What are the points to be considered in developing flowcharts?

..
 ..

1.7 TECHNIQUES
In this section we shall cover the various flowcharting techniques viz.

- flowcharts for computations
- flowcharts for decision making
- flowcharts for loops
- Predefined Process

1.7.1 Flowcharts for Computations :

Computers are used to perform many calculations at high speed. When
you develop a program it also involves several calculations.

The general format of the flowcharting steps for computations is :

- Create memvars used in calculations and read operation.

- Get required data input using memvars.

- Perform the necessary calculations.

- Print the result.

Programming considerations while using computation techniques : Most
languages have provision for creating memvars. The exact syntax depends on the
language used. In most cases (but not all) your programs have to create and initialize
the memvars before you can use them.

The following examples show the usage of flowcharts in computations.
The flowcharts are shown in Fig.3a and Fig. 3b.

Example : Flowchart for a program that converts temperature in
degrees Celsius to degrees Fahrenheit.

First let us write the steps involved in this computation technique.

1. Start.

2. Create memvars F and C (for temperature in Fahrenheit and Celsius).

2. Read degrees Celsius into C.

3. Compute the degrees Fahrenheit into F.

4. Print result (F).

5. Stop.

C Programming / 8

Example : Flowchart for a program that converts inches to centimeters First let
us write the steps involved in this computation technique.

1. Start.

2. Create memvars C and I (for Centimeters and Inches respectively).

2. Read value of Inches into I

3. Compute the Centimeters into C.

4. Print result (C).

5. Stop.

1.7.2 Flowcharts for decision making :

Computers are used extensively for performing various types of analysis. The
decision symbol is used in flowcharts to indicate it.

The general format of steps for flowcharting is as follows:

- Perform the test of the condition.

- If condition evaluates true branch to Yes steps.

- If condition evaluates false branch to No steps.

Programming Considerations :

Most programming languages have commands for performing test and branching.
The exact commands and syntax depends on the language used. Some of the conditional
constructs available in programming languages for implementing decision making in
programs are as follows:

- If

- If - else - endif

- If - elseif - endif

Introduction to Flowcharting / 9

- Do case - endcase.
- Switch.
All languages do not support all of the above constructs.
The operators available for implementing the decision test are as follows:
- Relational Operators (which determine equality or inequality)
- Logical Operators, (useful for combining expressions)
The branching to another set of commands can be implemented by
using functions, procedures etc.

Example: Flowchart to get marks for 3 subjects and declare the result.
If the marks >= 35 in all the subjects the student passes else fails.

The steps involved in this process are :
1. Start.
2. Create memvars m1, m2, m3.
3. Read marks of three subjects m1, m2, m3.
4. If m1 >= 35 goto step 5 else goto step 7
5. If m2 >= 35 goto step 6 else goto step 7
6. If m3 >= 35 print Pass. Goto step 8
7. Print fail
8. Stop

The flowchart is shown in Fig. 4.

An alternative method is the one in which you can combine all the conditions

C Programming / 10

with the AND operator. The steps then would be :

1. Start
2. Create memvars m1, m2, m3.
3. Read marks of three subjects into m1, m2 and m3.
4. If m1 >= 35 and m2 >= 35 and m3 >= 35 print Pass. Otherwise

goto step 5.
5. Print Fail.
6. Stop

Developing this flowchart is left as an exercise to the student.

1.7.3 Flowcharts for loops

Looping refers to the repeated use of one or more steps. i.e. the statement or
block of statements within the loop are executed repeatedly. There are two types of
loops. One is known as the fixed loop where the operations are repeated a fixed
number of times. In this case, the values of the variables within the loop have no effect
on the number of times the loop is to be executed. In the other type which is known
as the variable loop, the operations are repeated until a specific condition is met. Here,
the number of times the loop is repeated can vary.

The loop process in general includes :

- Setting and initialising a counter

- execution of operations

- testing the completion of operations

- incrementing the counter

The test could either be to determine whether the loop has executed the specified
number of times, or whether a specified condition has been met.

Programming considerations :

Most of the programming languages have a number of loop constructs for efficiently
handling repetitive statements in a program. These include :

- do-while loop

- while loop

- for loop

- for-next loop

In most of the looping situations, we make use of counters. In situations where
the loop is to be repeated on the basis of conditions, relational operators are used to
check the conditions.

Example : To find the sum of first N numbers. This example illustrates the use of a
loop for a specific number of times. Fig. 5a.
The steps are :

1. Start

2. Create memvars S , N, I

3. Read N

4. Set S (sum) to 0

5. Set counter (I) to 1.

6. S = S + I

7. Increment I by 1.

8. Check if I is less than or equal to N. If no, go to step 6.

Introduction to Flowcharting / 11

The flowchart is shown in Figure 5a.

Example : To check whether character read from keyboard is Z. If it is Z then
print END, else read another character. This example shows the test which executes
till a particular condition is satisfied.

The steps are :
1. Start
2. Create memvar C
3. Read C,
4. Check if C = ‘Z’. If no goto step 3.
5. Print END
6. Stop

The flowchart is shown if figure 5b.

1.7.4 Predefined Process

In a large application, we use programs written by others. Also when we invoke
a library routine of a language, we are using predefined process. In a predefined
process the required inputs are known and the expected output. We do not know how
the routine handles the task. For us it is a like a black box. Predefined processes have

9. Print S

10. Stop

C Programming / 12

great use as they enable us to use programs written by others and save a lot of time.
It also permits the integration of various parts of the software into a single unit. The
predefined routine can be put at any place in the flowchart. It is a single symbol of
flowchart that represents an entire flowchart created elsewhere.

Programming Considerations:

Today structured and modular programming is accepted as the best way to
developed software applications. Each module treats the other module as a predefined
process. The development of the library routines also envisions the use of predefined
process. It prevents us from having to write separate programs again and again each
time to do the same task, in different applications.

1.7 Check Your Progress.
1. Write the programming considerations for the following :

a) Computations :

..

..

b) Decision making :

..

..

2. Draw the flowcharts for the following :

a) Printing the first five odd numbers.

b) Read age of a person. If age less than 60 then print “Not a senior citizen”
otherwise print “Senior Citizen”.

1.8 SUMMARY
In this chapter we learnt the concept of Algorithm & flowchart

" The algorithm is a sequence of Instructions designed in such a way that if the
instructions are executed in a specific sequence the desired result will be
obtained.

" A Flowchart is a symbolic representation of a solution to a given task.

" Program flowchart & System flowchart are two types of flowcharts

" Flowchart uses many symbols/shapes to denote different types of instructions.

" Flowchart symbols have been standardized by the American Standard Institute.

At the end we studied Flowcharts for Computation, Flowcharts for decision
making, flowcharts for loops and flowchart for predefined process.

 Source http://jayaram.com.np (e book)

1.9 CHECK YOUR PROGRESS - ANSWERS

1.2 & 1.3

1. a) An algorithm is a sequence of instructions designed in such a way that if the
instructions are executed in a specific sequence the desired results will be
obtained. The instructions should be precise and concise and the result should
be obtained after a finite execution of steps.

Introduction to Flowcharting / 13

b) A flowchart is a symbolic representation of a solution to a given task. Flowcharting
is a tool that can help us to develop and represent graphically program logic
sequence.

c) There are two types of flowcharts : Program Flowcharts which are used by the
programmers and which show the program structure, logic flow and operations
performed. It also forms an important part of the documentation of the system and
system flowcharts which are used by system analyst to show various processes,
sub systems, outputs and operations on data in a system.

d) Any two steps in problem solving are :
(i) Detailed study of the problem
(ii) Identification of input data, output requirements and conditions and limitations

1.4

1. a) The decision box is used in a flowchart to indicate the point where a decision
is to be made and branching done upon the result of the decision to one or
more alternative paths. The criteria for decision making is written in the decision
box. All the possible paths should be accounted for. During execution, the
appropriate path will be followed depending upon the result of the decision.

b) Flowlines are solid lines with arrowheads which are used to indicate the flow
of operation. They show the exact sequence in which the instructions are to
be executed.

2. a - (iii)
b - (iv)
c - (ii)
d - (i)

1.5

1. Advantages of Flowcharts :
(i) A flowchart shows the execution of logical steps without the syntax and language

complexities of a program.

(ii) In real life programming situations a number of programmers are associated with
the development of a system and each programmer is assigned a specific task
of the entire system. Hence, each programmer can develop his own flowchart and
later on all the flowcharts can be combined for depicting the overall system. Any
problems related to linking of different modules can be detected at this stage itself
and suitable modifications carried out. Flowcharts can thus be used as working
models in design of new software systems.

1.6
1. a) To find average of three numbers a, b ,c.

b) To find area of a rectangle whose length and breadth area read.

2. While developing flowcharts the points to be taken into consideration are :

C Programming / 14

(i) Defining the problem.

(ii) Identifying the various steps required to form a solution.

(iii) Determining the required input and output parameters.

(iv) Getting expected input data values and output result.

(v) Determining the various computations and decisions involved.

1.7

1.
a) Programming considerations for computation : Most languages have provision for

creating memvars. The exact syntax depends on the language used. In most cases
your programs have to create and initialize the memvars before you can use them.

b) Programming considerations for loops : Most programming languages have commands
for performing test and branch. Some of the conditional constructs available in
programming languages for implementing decision making in programs are as follows:
If, If - else - endif, If - elseif - endif, Do case - endcase, Switch.

Introduction to Flowcharting / 15

The operators available for implementing the decision test are as follows:

Relational Operators, logical Operators.

The branching to another set of commands can be implemented by using
functions, procedures etc

2.a) Flowchart for printing the first five odd numbers :

C Programming / 16

1.10 QUESTIONS FOR SELF-STUDY

1) Answer the following in 7-8 Sentences

a) What characteristics should an algorithm have?
b) State the important points to be considered when developing flowcharts.
c) What is meant by fixed loops and variable loops?

2) Write short note on the following in 10-12 lines

a) Flowcharts for loops
b) Flowcharts for decision making

3) Write the algorithm and draw flowcharts for the following :-

a) Convert distance entered in Km to Metres.
b) Find the product of the just n numbers.
c) Find the sum of digits of a three digit number.

1.11 SUGGESTED READINGS

The Spirit of C : Mullish cooper

Let us C : Yashwant kanitkar

The C programming Language: Kernigham & Ritchie

Introduction to Flowcharting / 17

NOTES

C Programming / 18

NOTES

Input/Output / 19

CHAPTER 2

BEGINNING WITH C

2.0 Objectives
2.1 Introduction
2.2 Introduction to C
2.3 The C Character Set
2.4 C Tokens

2.4.1 Keywords & Identifiers
2.4.2 Constants
2.4.3 Variables

2.5 Instructions in C
2.5.1 Type Declaration Instruction
2.5.2 Arithmetic Instruction

2.6 Operators in C
2.6.1 The Arithmetic Operators
2.6.2 Relational Operator
2.6.3 Logical Operator
2.6.4 Assignment Operators
2.6.5 Increment and Decrement
2.6.6 Conditional Operator
2.6.7 Bitwise Operators

2.7 Defining Symbolic Constants
2.8 Summary
2.9 Check Your Progress-Answers
2.10 Questions for Self-Study
2.11 Suggested Readings

2.0 OBJECTIVES
Friends, After studying the chapter you will be able to:
• state the development and background of C language
• explain how to create and run C programs
• begin learning the C language, its syntax and grammar
• explain what are C tokens and types of C tokens
• explain the various data types in C
• explain instruction in C and their types
• discuss what is meant by symbolic constants
• discuss to write simple program in C after having studied the above

2.1 INTRODUCTION
The chapter begins with the introduction of the C language. It describes the

history, development and features of the C language. This chapter will also begin the
actual learning of the C language. Whenever we learn a new language, we should first
learn what alphabets, symbols and numbers form a part of that language, We then use
these to construct keywords and variables and finally combine all of the above to form
meaningful instructions of that particular language.

A set of instructions written in order to execute a task is a program. These
instructions are formed by using certain symbols and words according to certain rules.

C Programming / 20

These rules are known as the syntax rules or grammar. Each language has its own
syntax rules. Every instruction in a program should strictly follow the syntax of the

particular language in which the program is being written. C language also has
its own vocabulary and grammar.

In this chapter we begin with the basics of the C language. We have already
learnt flowchart development in the previous chapter. We shall write the first few programs
by first developing the flowchart for the program and then writing the actual program for
the same. In the subsequent chapters however, the development of flowcharts for the
example programs is left an exercise to the student. In this chapter, we shall cover the
C tokens one by one. These include : Keywords, identifiers, constants, strings, special
symbols and operators. We shall learn how to define them, how to use them and what
are their types. Next we shall familiarise ourselves with the instructions in C and their
types. Out of these instructions, data type declarations form a part of this chapter. The
classification of data types is discussed out of which primary data types are covered.
C arithmetic on various data types, symbolic constants, their declaration and use are
also part of this chapter. When we learn this, it will be possible for us to write small
but meaningful and complete programs in C.

2.2 INTRODUCTION TO C
2.2.1 Features of C :

The C programming language was developed at AT&T’s Bell Laboratories in USA
in 1972. This language has been designed and written by Dennis Ritchie. C is a very
robust programming language and has a rich set of built in functions. C is simple to
learn and easy to use. C language is suitable for writing both system software and
application programs and business packages. The Unix operating system was also
developed at Bell laboratories around the same time. Thus C is strongly associated
with Unix. In fact, Unix is coded almost entirely in C.

As we have already seen, programming languages are catagorised as high
level programming languages and low level programming languages. C is
between these two catagories. The C compiler has the capabilities of the machine
language and the features of a high level language. Initially C was mainly used in
academic environments. But with its growing popularity C is now one of the most
popular high level programming language and is running under many operating systems.
C language is highly portable i.e. C programs written for one computer can be run on
another computer with very little or no modifications.

2.2.2 What is a C program ?

C has only 32 keywords but a number of built in functions. Thus a C program
is basically a collection of functions which are supported by the C library. We can make
efficient use of these functions in our programming tasks. One can also add new
functions to the library.

Before studying the language and its features in detail, let us begin by writing
and executing a sample program written in C. This will illustrate the method of entering,
editing, compiling the program.

Example : The first C program

main()

{

/* The First C program*/

printf(“\nMy first C program”);

/*end of program*/

}

The output of this program will be :

Beginning with C / 21

My first C program

Let us now study this program.

The first line of the program is main(). We have stated earlier that a C program
is a collection of functions. main() is also a function. This main() is a special function
in C. This is the line at which the execution of our program begins. Every program
should have this function main(). There is a pair of parenthesis after the function name
which is necessary.

The open brace bracket’{‘ indicates the beginning of the function main() and the
close brace bracket’}’ in the last line marks the end of the function. The statements
which are included within these braces make up the body of our function main(). Thus
the function body will contain the instructions to perform the given task. This means
that we should include the set of statements belonging to the function in a pair of
braces.

The lines beginning with the ‘/*’ and ending with ‘*/’ are called as comment
lines. Comment lines are not executable statements and anything written between /
* and */ is ignored by the compiler. We use the comments in a program to improve
its understanding. Comments in our programs will help users and other programmers
in understanding the programs easily. Debugging and testing also becomes easy when
helpful comments are inserted at appropriate places in our programs.

Important points to be noted about comments :

- Comments must be enclosed within /*and */

- You can have any number of comments in your program

- Comments can be inserted at any place in a program but they can’t be nested

- Comments can be written over more than one line.

printf is the next line of our program. This printf function is an executable
function. printf is a predefined function for printing the output from a program. A
predefined function means a function which has already been written and compiled.
Thus the printf function will produce the output:

My first C program

The printf line ends with a semicolon ‘;’. Every statement in C must end with
a semicolon. The ‘\n’ character is a special character which outputs the statement on
a new line. We shall learn about it subsequently.

Thus, we can see that our program is nothing but a set of separate statements.
However, one must write these statements in the order in which they are to be executed.
When writing a program in C the important points to remember include :

- You can insert blank spaces between two words to improve readability

- A statement can start from any position. There are no rules in C to
indicate the position at which a statement should be written

- Each statement must end with a semicolon.

Although programs can be entered in uppercase or lowercase, uppercase letters
are used only for symbolic constants. Hence one should make a habit of writing
programs in lowercase.

Executing the program :

Now that we have seen the set of statements of our program, let us see how
to execute this program. We shall use the MS DOS operating system and the C
compiler for DOS while executing the program on our PC. The following steps should
be carried out to execute the program :

- The program should be created and edited by using any word processing
application in the non document mode.

- You should save your program file with the .c extension.

C Programming / 22

- Once you have saved your file with the .c extension, you compile your program.
If any syntax errors are found during compilation they will be reported and the compilation
will not be completed. You then remove the errors and once again compile the corrected
program.

- Successful compilation will generate the object file of your program. This file
will have the .obj extension. You then link the file and the executable code of your
program will be generated. The executable file of the program has the .exe extension.

- This program can now be run at the DOS prompt by typing its name

Your C program has now been successfully written and compiled.

This was just a sample program to get started with C. We shall now commence
the study of the C language and its grammar from the following sections.

2.1 & 2.2 Check Your Progress.
1. Fill in the blanks :
a) The C language is written by

b) C language has keywords.
c) is the function in C where program execution begins.

d) lines are not an executable part of the C program.
e) Every statement in C should end with a
2. Answer in two sentences.
a) What are the features of the C language?

...
 ..

b) What are comment lines ?
...

 ..

c) Write in short about main ().
...

 ...

2.3 THE C CHARACTER SET
Now we shall study the characters, numbers and special symbols of C. A

character denotes any alphabet, digit or special symbol used to represent information.
The characters are then used to form words, numbers and expressions.

The C character set comprises of the following :

Letters or Alphabets : A, B, C,……X, Y, Z

a, b, c,…… x,y, z

Digits : 0,1, 2, 3, 4, 5, 6,7,8,9

Special Symbols : ,.;:?’”! | / \ ~ _ % & ^ *- + <> = (){}[]# @

White spaces : blanks, horizontal tabs, new line, form feed, carriage
return

Note : White spaces may be used to separate words and improve readability of
the program. But they cannot be used between the characters of keywords and identifiers.

Beginning with C / 23

2.4 C TOKENS
The next step after the definition of the character set is the formation of words,

keywords etc. The smallest individual units in a C program are called tokens. The
alphabets, numbers and special symbols are combined to forms these tokens. The
types of tokens in C are :

- Keywords
- Identifiers
- Constants
- Strings
- Special Symbols
- Operators

We shall study each of these tokens in detail.

2.4.1 Keywords and identifiers :

 Keywords :

Keywords are words whose meanings have already been defined and these
meanings cannot be changed. Keywords are also called as reserved words. Keywords
should not be used as variable names (though some compilers allow you to construct
variable names like keywords). All the keywords must be written in lowercase.

There are 32 keywords in C as given below :

auto double if static
break else int struct
case enum long switch
char extern near typedef
const float register union
continue far return unsigned
default for short void
do goto signed while

At this moment it is not necessary for you to learn all these keywords. The
detailed discussion of these keywords and their meanings shall be dealt with as and
when we shall study their usage.

Identifiers :

Identifiers are names given to variables, functions and arrays. These are the
names which are user defined. They are made up by a combination of letters and
digits. Normally an identifier should not be more than 8 characters long. The use of
underscore is also permitted in identifiers. However, it is imperative that identifiers
should begin with a letter.

Some examples of identifiers are : min1

Max-temp

temp() etc.

C does not permit use of blank spaces, tabs, commas or special characters in
identifiers. Thus:

mi n1

max*temp

12temp

are invalid identifiers in C.

C Programming / 24

2.4.2 Constants :

A constant in C is a fixed value which does not change during the execution
of a program. C supports several types of constants as under:

The basic classification of constants is :

Numeric Constants and Character constants

These are further classified as :

Numeric Constants Character Constants
Integer Real Single Character String
Constants constants constants constants

(i) Integer constants:

An integer constant is a sequence of digits. An integer constant must have at
least one digit and cannot have a decimal point. An integer constant can be positive
or negative. If there is no sign preceding the constant it is assumed to be positive.
Embedded spaces, commas and non digit characters are not permitted between the
digits of an integer constant.

There are three types of integers, decimal, octal and hexadecimal.

Valid examples of decimal integer constants are :

3543
-89022
0
+58
-332

The following are illegal constants since they make use of non digit characters,
embedded spaces etc. :

23,487

$550

3 333

An octal constant is a combination of digits from 0 to 7, with a leading 0.

For eg.

044

0558

0

A sequence of digits preceded by Ox or OX is a hexadecimal integer. It can
also include alphabets from A to F or a to f. As you have already studied, the letters
A to F represent the numbers form 10 to 15. Some examples of valid hexadecimal
integers :

0x450

0xA343

Ox

OxCDA

Octal and hexadecimal integers are very rarely used in programming. The largest
integer value that can be stored is machine dependent. On 16 bit computers the range
for integer constants is between -32,768 to + 32,767. On 32 bit processors the range
is much larger. It is also possible to store larger integer constants by making use of
qualifiers u (unsigned), L (long) and UL (unsigned long). We shall study these qualifiers
later.

Beginning with C / 25

(ii) Real Constants :

Real constants are also called as floating point constants. When it is necessary
to represent quantities which vary continuously like temperature, distance etc. it is
required that the number has a fractional part eg. 234.567. This is the fractional form
of a real constant. Thus when constructing a real constant it must have a decimal point.
A real constant shall have atleast one digit. It can be either positive or negative with
the default sign being positive. No commas, blank space or any other non digit characters
are allowed when constructing real constants. Some valid examples of real constants
are :

-0.987

35.89

1000.5434

+456.932

Another way of representing real constants is the exponential form. Exponential
form is also known as scientific notation. When representing a number in its exponential
form, the real constant is represented in two parts : the mantissa and the exponent.
The part of the number appearing before the alphabet e is the mantissa and the part
following e is the exponent. The general form of the number is thus :

mantissa e exponent

Thus while constructing a real constant in an exponential form :

- The mantissa and the exponent are separated by the letter e.

- The mantissa can be positive or negative with the default sign of the
mantissa being positive.

- The exponent should have atleast one digit which is a positive or
negative integer.

Some valid examples of exponential form of real constants are :

3.2e4 (e4 means multiply be 104)

4.8e-2 (e-2 means multiply by 10-2)

-43e+3 (e3 means multiply by 103)

(iii) Single character constants :

A single character constant is a single character enclosed in a pair of single
quotes. It can either be a single alphabet, a single digit or a single special symbol.
Some examples of character constants are :

‘4’ ‘A’ ‘̂ ’

Note here that the character constant 4 is not the same as the number 4.
Character constants have integer values which are known as their ASCII values.

Following are invalid character constants :

“pa”

“z”

“98”

(iv) String constants :

A string constant is a sequence of characters enclosed in double quotes. These
characters may be letters, digits, special characters as well as blank spaces. eg.

 “Good Morning”

“3456”

“*****”

C Programming / 26

are valid string constants in C.

It is important to remember that the single character constant eg. ‘w is not equal
to a character string constant “W”. Also a single character string constant does not
have an integer value as in the case of a character constant.

(v) Backslash character constants :

C supports some special backslash character constants which are used in
output functions. Some of these backslash character constants are given below. Note
that each one of them represents one character, although it actually consists of two
characters. These character combinations are known as escape sequences.

Constant Meaning

‘\a’ audible alert (bell)

‘\b’ back space

‘\f’ form feed

‘\n’ new line

‘\r’ carriage return

‘\t’ horizontal tab

‘\v’ vertical tab

‘\?’ question mark

‘\\’ backslash

‘\0’ null

2.4.3 Variables :

A variable is a data name used to store a data value. Variable names are
names given to locations in the memory where different constants are stored. Unlike
a constant which remains unchanged during the execution of a program, a variable can
take different values at different times during execution.

A variable name is a combination of alphabets, digits or underscores. The first
character however must be an alphabet. No commas, or blanks are allowed while
constructing variables. The variable name should not be a keyword. Variables are case
sensitive i.e. sum and SUM are two distinct variables. Some valid variable names are
:Max_length age xyz avg a1 T1

2.4.1 & 2.4.2 & 2.4.3 Check Your Progress.
1. Write 1-2 lines about:

a) Backslash character constants
 ..

..

b) Identifiers
...

 ..

c) Keywords
..

 ..

d) What is the difference between a variable and a constant?
..

 ..

Beginning with C / 27

e) What are octal integers?
..

 ..

f) What is the difference between a single character constant and a string
constant?
...

 ..

2. Match the following :
Column A Column B
(i) Constant a. Escape sequences
(ii) Identifier b. Fixed value
(iii) Keyword c. Octal constant
(iv) Real Constant d. Floating point constant
(v) Backslash character constant e. Reserved Word

f. User defined

3. State whether the following are True or False
a) “Welcome” is a string constant.
b) 29.85 is an integer constant.
c) 1.2e+10 is a floating point constant.
d) You_1 is a valid identifier.
e) An identifier must begin with a character.

4. Are the following valid variable names in C?
a) _pq
b) Min_temp
c) Max temp
d) 1a
e) add1

2.5 INSTRUCTIONS IN C
We have seen the different types of constants, variables and keywords in the

previous section. These are combined to form meaningful instructions and subsequently
our program. The four basic types of instructions in C are:

Type Declaration Instructions :

These instructions are used to declare the type of the variables in a C program.

Input/Output Instructions :

These instructions perform the function of supplying input data and obtain the
output results from the program.

Arithmetic Instructions:

These instructions are used to perform arithmetic on variables and constants.

Control Instructions :

The control instructions are used to control the sequence of execution of the
various statements in a C program.

C Programming / 28

Of these, let us attempt to study the type declaration and arithmetic
instructions in this section. The Input/Output instructions and control instructions shall
be studied in the following chapters.

2.5.1 Type Declaration Instructions:

Type declaration instructions are used to declare the type of the variables in a
C program. C supports a number of data types. These different data types allow the
user to select the data type according to the needs of the application. Let us first see
the data types supported by C and then the type declaration instructions.

The various data types supported by C are :
- Primary Data Types
- User defined Data Types
- Derived Data Types
- Empty data set

In this chapter, we shall discuss the primary data types. The derived data types
include arrays, functions, structures and pointers and shall be dealt with subsequently.

(i) Primary Data Types :

The four fundamental or primary data types are :
Integer (int)
Character (char)
Floating point (float)
double precision floating point (double)

These primary data types themselves are of many types. eg. integers could be
long or short, signed or unsigned etc. Here we take a look at the primary data
types :

a) Integer (int) Data Type :

The range of values of the int data type is between -32,768 to 32,767. Integers
are whole numbers. The range of values of integers is dependent upon the particular
machine being used. Integers generally occupy two bytes of memory storage. Therefore
for a 16-bit word length, the range of integer values is between -32,768 to 32,767. eg.
2809, -3888 , 0, 32, -18 are all valid integers.

Out of the two bytes used to store an integer, the sixteenth bit is used to store
the sign (+ or -) of the integer. This sixteenth bit is 0 if the number is positive and 1
if the number is negative.

b) Floating Point (float) Data Type :

In order to declare real numbers we make use of the floating point data type.
Floating point numbers are stored as 32 bits i.e. they occupy four bytes of memory,
with 6 digits of precision (on 16 bit as well as 32 bit machines). Six bit precision means
that there would be six digits after the decimal point. We use the float keyword to
declare variables of floating point type. eg. 78.22, -9012.5988, 0.00988, 356.8 are
examples of float data type.

c) Character Data Type :

A single character is defined as char type data. Characters are usually stored
in 8 bits i.e. one byte of internal storage. The signed or unsigned qualifiers may be
applied to char. By default, char is assumed to be signed and hence has a range of
values from -128 to 127. On the other hand, declaring unsigned char causes the range
of values to fall between 0 to 255, with all values being positive.

(ii) Type Declaration :

Let us now study the type declaration instructions of these primary data types.
The type declaration instruction declares the type of the variable being used. Any
variable being used in a program has to be declared first before using it. The type

Beginning with C / 29

declaration statements for all the variables appearing in the program are usually written
at the beginning of the C program.

The syntax for declaring the variables is thus :

data type v1, v2,vn ;

where data type indicates the type and v1, v2, ..., vn indicate the names of the
variables. If you are declaring multiple variables in the same type declaration, then they
should be separated by commas. The type declaration statement itself should end with
the semicolon.

Examples of declaring variables and their types :

int a;

char first;

float percent, avg;

Here in the first statement the variable a is declared to be of type int, percent
and avg are real variables whose type is declared as float, first is a character variable
whose type is declared as char. Note that multiple variables of the same type can be
declared in the type declaration statement of a specific type. Thus if you want to
declare a as int and b as float then both have to be declared separately as :

int a;

float b;

int a, b will declare both to be of type int.

(iii) Assigning values to variables :

Variables can be assigned values with the use of the assignment ‘=’ operator.
eg.

a = 12;

ch1 = ‘D’;

r1 = 13.85;

It is also possible to assign the value of an expression on the right to the variable
on the left. eg;

c = a + b;

z = p/q * r;

p = p + 10;

Here the expressions to the right are evaluated first and then the resultant value
is assigned to the variable on the left. It is important that before evaluating the expression
on the right, all the variables used in the expression are assigned values.

Variables can also be assigned values at the time of their declaration. The
following statements are valid in C :

int i = 10;

float pi = 3.14;

char ch1 = ‘Q’;

This process of giving initial values to variables is called initialisation. It is also
possible to initialise multiple variables using multiple assignment operators as :

a = b = c = 1;

x = y = z = 100;

C Programming / 30

2.5.1 Check Your Progress.
1. Answer the following in one- two lines
a) What are the different types of instructions in C?

...
 ..

b) What are the primary data types in C?
...

 ...

2. Write in short about :
a) Integer Data Type

..
 ..

b) Character data Type.
...

 ...

3. State whether the following declarations are valid :
a) int j = “PQ”;
b) p = 84.29 float;
c) int a, b, c;
d) int a = 10, b, c;
e) float p,q, int i;

2.5.2 Arithmetic Instructions :

The general syntax of an arithmetic expression in C is :

variable = expression;

This implies that an arithmetic instruction in C consists of a variable name on
the left hand of the ‘=’ sign, and a combination of variable names, constants and
operators on the right hand side of the ‘=’ sign. C can handle any complex mathematical
expression. The expression on the right hand side of the ‘=’ sign is evaluated and the
result thus obtained is assigned to the variable name on the left of the ‘=’ sign. (The
constants and the variables together are called operands. These are operated upon by
the arithmetic operators). All the variables which have been used in the expression on
the right of the arithmetic instruction have to be assigned values before the evaluation
of the expression.

Some examples of valid arithmetic instructions are :
c = a + b;
square = a x a;
x = axa + 2xb;

The variable to which the value is assigned after the evaluation of the expression
has to be on the left. Also remember that each and every operator has to be explicitly
written Thus the following are illegal statements :

p x q = a;
x + y-z = final;
p = qr;
a = bc(mn);

Arithmetic operations can be performed on ints, floats and chars. Thus the
following is perfectly valid :

Beginning with C / 31

char a, b;
int c;
a = ‘p’;
b = ‘m’;
c = a + b;

Note here that although a and b are char, their ASCII values are added in the
arithmetic expression. The ASCII chart for the various characters is given below for your
reference :

Characters ASCII values

0-9 48-57

A - Z 65-90

a-z 97-122

Special Symbols 0 -47, 58-64, 91 -96, 123-127

2.6 OPERATORS IN C
An operator is a symbol which tells the computer to perform certain mathematical

or logical manipulations. The operators are used in mathematical and logical expressions.

Operators in C are classified as under:
- Arithmetic operators

- Relational operators

- Logical operators

- Assignment operators

- Increment and decrement operators

- Conditional operators

- Bitwise operators

- Special operators

Let us study each of these operators.

2.6.1 Arithmetic Operators :

2.6.1.1 The arithmetic operators in C are :

+ Addition or unary plus

- Subtraction or unary minus

* Multiplication

/ Division

% Modulo Division

Hierarchy of Operations :

The precedence in which operations in an arithmetic statement are performed is
called the hierarchy of operations. An arithmetic expression is evaluated from left to
right according to priority of the operators. The hierarchy of operators is :

* / % High priority

+ - Low priority

C Programming / 32

= (Assignment) Last priority

Thus in an expression multiplication, division and modulo division get the highest
priority, the addition and subtraction operators come next and the assignment operator
gets the last priority.

eg. p = 10 + a * c/b;

Here * and / have same priority so first a * c will be calculated and then the
product will be divided by b. Next is the priority for +. Therefore the value obtained is
added to 10 and finally the assignment operator is used to assign the resultant value
to the variable p. We can make use of a pair of parenthesis to change the priority of
operations. If there are more than one set of parenthesis in a statement, the innermost
parenthesis will be evaluated first, then the operations of the second innermost parenthesis
will be performed and so on.

eg . val = a + b * c + d;

In this statement with the normal priority of operations the sequence of evaluation
will be :

b * c will be performed first and its product will be added to a and the total sum
then added to d. However, using a pair of parenthesis as follows :

(a + b) * (c + d) will first add a to b and c to d and then find the product of both
the sums. Thus depending upon what sequence of operations is to be followed be
careful to keep the priority of operations in mind and make correct use of parenthesis.

Equipped with this knowledge of C tokens and instructions, let us try to write
simple programs in C. Note that we have made the use of the assignment operator ‘=’
in all these programs to assign values to variables. Assignment operator is discussed
in subsequent sections.

Example :

/***/

/* Calculate sum of three numbers */

main()

{
int a, b, c, sum;
a = 30;
b = 50;
c = 85;
sum = a + b + c;
printf(“\nThe sum of a,b, c is :%d”, sum);

}

The output of the program

The sum of a,b, c is : 165

The flowchart for the program to add three numbers is given below :

Beginning with C / 33

This program defines three integer variables a, b and c and assigns them values 30,
50 and 80 respectively. The sum of these variables is evaluated and the result of the
evaluation is assigned to the variable sum. The statement printf(“\nThe sum of a,b,c is
:%d”, sum); prints the output i.e. the value of the variable sum. Note that printf is a
function used to print the value of the variable on the screen. The ‘\n’ backslash character
constant as we already know is for a new line.

The general form of the printf statement is

printf(“format string”, <list of variables>);

At this point it is sufficient to understand how to make use of the format string to
print int, float and char data types. The format string for these types is as under:

%f for printing float or real values

%d for printing integer values

%c for printing character values

Example :

/**/

I* Calculate the area of a rectangle given its length and breadth*/

main()

{

float len, breadth, area;

len = 4.5;

breadth = 2.8;

area = len * breadth;

printf(“\nThe area is :%f”, area);

}

C Programming / 34

The Output of the program will be:

The area is : 12.599999

Note here that for printing the value of the variable area, you use “%f”, since %f is used
to output floating values. Let us now modify the above program to output the length,
breadth and area all three to see how multiple values can be output with a single printf
statement

Example 3 :

/**/

/* Calculate the area of a rectangle given its length and breadth*/

main()

{

float len, breadth, area;

len = 4.5;

breadth = 2.8;

area = len * breadth;

printf(“\nLength = %f\nBreadth =%f\nArea = %f”, len, breadth,area);

}

The output of the program will be :

Length = 4.500000

Breadth = 2.800000

Beginning with C / 35

Area = 12.599999

In order to output the values on separate lines, we make use of the ‘\n’. \n as
we have already seen is a character constant to for new line.

All the above examples we have seen so far have assigned values to the variables
used in the program itself. But in most practical applications the user will provide the
input to the program variables. To supply input values from the keyboard we shall make
use of the scanf function and rewrite the above program with scanf function to provide
input to variables. The flowchart to accept user input and then compute the area is also
shown.

Example :

/*************************************/

/* Calculate the area of a rectangle given its length and breadth*/

main()

{

float len, breadth, area;

printf(“\nEnter values for length and breadth\n”);

scanf(“%f”,&len) ;

scanf(“%f”, &breadth);

area = len * breadth;

printf(“Length = %f Breadth =%f Area = %f”, len, breadth.area);

}

A sample Output:

Enter values for length and breadth

10.0

25.0

Length = 10.000000 Breadth = 25.000000 Area = 250.000000

The first printf statement will print the sentence :

Enter values for length and breadth

The scanf will read the values for the length first and then the breadth. When
you input multiple values, separate them by using a white space like a space, tab or
newline. Note that we have used the %f for reading floating point values. Area will then
be calculated and printed on the screen. The & symbol is to be used before the variable
name while reading data with the scanf. & is a pointer operator. Its meaning will be
studied in later chapters. For the time being remember to precede every variable with
& when using scanf to read the values of variables.

C Programming / 36

2.6 Check Your Progress
1. Choose the correct option.
a) The hierarchy decides :

(i) which operator is used first (ii) which operator is not to be used
(iii) which operator is the fastest (iv) none of the above

b) In the expression 3 x 5 + (8 + 3) / 5 which of the following will be executed
first?
(i) 3x5 (ii) 8 + 3
(iii) /5 (iv) 3 x5 and /5 together

c) The expression, z = 10*14-8 evaluates to :
(i) 60 (ii) 132
(iii)-8 (iv)0

d) 25 % 3 evaluates to :
(i) 8.33 (ii) 8
(iii) 1 (iv) .33

e) 20/7 evaluates to :
(i) 2.85 (ii) 2
(iii) 0.8 (iv) 8

2. Which of the following are valid ? (Put V for valid and I for invalid).
a) z = p + q * r;
b) 14 = b-8;
c) a + b = c - d;
d) r = c/b;
e) m = 100/q;
3. Write programs in C for the following :
a) Input the maximum and minimum temperature recorded in a day and calculate

the average temperature for the day.
b) Convert the distance entered in metres to kilometres.
c) Write a program in C to interchange two integer numbers a and b.

2.6.1.2 C Arithmetic:

Let us now see integer, float and mixed mode arithmetic.

(i) Integer arithmetic :

When the operands in a single arithmetic expression are integers or integer
constants, the expression is an integer expression. The operation on these operands
is called integer arithmetic. Integer arithmetic always yields an integer value.

eg. If p and q are declared as integer variables then assuming value of p = 10
and q = 4 the arithmetic will yield the results as follows :

p + q = 14

p - q = 6

p * q = 40

p / q = 2

(In this case the decimal part is truncated since the result is an integer value)

p % q = 5 (remainder obtained after carrying out division)

Also remember that a division like 4/7 evaluates to zero since 4 and 7 are both

Beginning with C / 37

integer constants and will return an integer value.

Let us make use of the above arithmetic to find the sum of digits of a 2 digit
number. We shall make use of the division and modulo division operators in this
example.

Example : Write a program to calculate the sum of the digits of a 2 digit number
with the help of the flowchart given below.

main()

{

/”Calculate sum of digits of a two digit number */

int a,b,c, sum;

printf(“\nEnter a two digit number:”);

scanf(“%d”, &a);

c = a/10;

b = a%10;

sum = c + b;

printf(“\nThe sum of digits is : %d”, sum);

}

A sample run of the program :

Enter a two digit number: 83

The sum of digits is : 11

Since the division is performed on int numbers a/10 will give the quotient and

C Programming / 38

a%10 will give the remainder. Thus we will be able to separate the digits of the number.
These are stored in c and b and then added to find the sum of the digits.

(ii) Real Arithmetic :

Real arithmetic involves real operands which means that all operands in the
expression are either real constants or real variables. Thus if p and q are real, and
values of p and q are 10.0 and 4.0 respectively then,

p + q = 14.0

p - q = 6.0

p/q = 2.5

The modulo (%) operator cannot be used with real operands.

(iii) Mixed mode arithmetic :

In mixed mode arithmetic some operands are integers and others are real.
Such an expression is called as mixed mode arithmetic expression. If any one of the
operand is real, then the expression always yields a real value.

eg. if a is declared an integer variable and b is declared float, an operation on
a and b will yield a real value. Thus,

- An arithmetic operation between an integer and integer will always yield an
 integer result

- An arithmetic operation between a real and real will always yield a real result

- An arithmetic operation between an integer and real will always yield a real
 result.

Let us further understand this with the help of the following table :

int a = 9; int a = 9
int b = 4; a/b 1 float b = 4.0 a/b 1.75

float a = 9.0 float a = 9.0 a/b 1.75
float b = 4.0 a/b 1.75 int b = 4

The following programs will demonstrate the arithmetic discussed so far:

Example : Calculate the simple interest using the formula :

simple interest= pnr/100, where p is the principal amount, n is the number of
years and r is the rate of interest.

main()

{

/*Program to calculate simple interest */

int n;

float p, r, interest;

printf(“\nEnter principal amount:”);

scanf(“%f”,&p);

printf(“\nEnter number of years :”);

scanf(“%d”,&n);

printf(“\nEnter rate of interest:”);

scanf(“%f”,&r);

interest = p * n * r/100;

printf(“\nThe simple interest is : %f”, interest);

}

Beginning with C / 39

A sample output:

Enter principal amount: 1000.0

Enter number of years : 2

Enter rate of interest :10.0

The simple interest is : 200.000000

Example 2 : Write a program to convert temperature from Fahrenheit
to Celsius :

main()

{

/*Temperature Conversion Program */

float faren, cel;

printf(“\nEnter temperature in Fahrenheit:”);

scanf(“%f”, &faren);

cel = (faren - 32.0)/ 9*5;

printf(“\nThe temperature in Celsius is : %f”, cel);

}

A sample output:

Enter temperature in Fahrenheit: 100.0

The temperature in Celsius is :37.777779

In the above program follow carefully the hierarchy of operations and the use of
parenthesis to achieve the desired result. Modify the above program to input temperature
in Celsius and convert it to Farenheit.

2.6.1 Check Your Progress.
1. What will be the output of the following ?
a) int a,b,c;

a = 4.3;
b = 2.1;
c = a*b;
printf(“%d”, c);

 ..
..

b) int a = 10;
float b = 24.5, c;
c = a + b;
printf(“%f”, c);

...

...
c) int a = 45, b, c;

b = a/10;
c=a%10;
printf(“%d%d”, b,c);
...

 ...

C Programming / 40

2. Answer in 1-2 sentences :
a) What is meant by integer arithmetic?

...
 ..

b) Describe briefly mixed mode arithmetic.
...

 ...

2.6.2 Relational Operators :

When we wish to compare any two values, we make use of relational operators.
eg. when we wish to compare prices, age etc. we make use of relational operators.
An expression which uses a relational operator is a relational expression. The value
of a relational expression is either zero or one. If it is one, then the specified relation
is true, if it is 0, then the relation is false. eg.

2<10 is true hence will return a value equal to 1

2>10 is false hence will return a value equal to 0

The relational operators in C are as under:

Operator Meaning

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

!= is not equal to

Arithmetic expression can be used on either side of a relational operator.eg.

p-q>a + b

In such a situation, both the arithmetic expressions are evaluated first and then
the results so obtained are compared. Thus arithmetic operators have a higher priority
as compared to relational operators. Extensive use of relational operators is made in
decision statements which will be discussed in later chapters.

2.6.3 Logical operators :

Logical operators are used when we want to test more than one condition and
then make decisions. C has the following logical operators :

&& logical AND

|| logical OR

! logical NOT

eg. if a < b && p+ q == 40

The above expression combines two relational expressions by the logical operator.
Such an expression is called as a logical expression or a compound relational
expression. The logical expression also yields a value zero or one. Thus, the above
expression will yield a value 1 only when a is less than b and p + q is equal to 40
i.e when both the conditions are true

Beginning with C / 41

Truth table for logical AND (&&)

Exp1 Exp2 Value of Exp1 && Exp2

Non-zero Non-zero 1

Non-zero 0 0

0 Non-zero 0

0 0 0

Truth table for logical OR (||)

Exp1 Exp2 Value of Exp1||Exp2

Non-zero Non-zero 1

Non-zero 0 1

0 Non-zero 1

0 0 0

We shall make use of these logical operators when we study decision control
statements.

2.6.4 Assignment Operators :

As we have already seen, assignment operators are used to assign the result
of an expression to a variable. The assignment operator in C is ‘=’.

2.6.2 2.6.3 2.6.4 Check Your Progress.
1. Fill in the blanks.
a) Relational operators have a priority as compared to

arithmetic operators.
b) The logical operators in C are................,.................and.........................
c) The relational operator not equal to is written as................................
d)operators are used to compare values.
e) If exp1 and exp2 both are non zero a||b will return.............................

2. Write in short about relational operators in C.

...
 ..

2.6.5 Increment and Decrement Operators :

C has ++ as the increment and — as the decrement operator. The increment
operator adds 1 to the operand and the decrement operator subtracts 1 from the
operand. Both are unary operators.

Form of the increment operator:

++a ; or a++;

which is equivalent to

a = a + 1;

Form of the decrement operator:

--a; or a--

C Programming / 42

which is equivalent to

a = a -1;

++a and a++ behave differently when they are used in expressions on the right
side of an assignment. Consider the following :

a = 5;

b = ++a;

Here the variable b will be assigned the value 6.

However

a = 5;

b = a++;

will assign the value 5 to b first and then the value of a will be incremented.

Thus the prefix operator will first increment the operand by 1 and then assign
the value to the variable on the left, whereas the postfix operator will first assign the
value to the variable on the left and then increment the value of the operand by 1.
Similarly in the case of the decrement operator, the prefix operator will first decrement
the value of the operand by 1 and then assign it to the variable on the left and the
postfix operator will be assign the value to the variable on the left and then decrement
the value of the operand by 1.

Example : Let us write a C program to demonstrate the use of the increment
and decrement operators :

main()

{

/* Program to illustrate the use of ++ and —) */

int a, b;

a = 10;

b = 20;

printf(“The value of a : %d”, a);

printf(“The value of b : %d, b);

a++;

b++;

printf(“The incremented value of a : %d”, a);

printf(“The incremented value of b : %d, b);

a--;

b--;

printf(“The decremented value of a : %d”, a);

printf(“The decremented value of b : %d, b);

}

The output of the program will be:

The value of a : 10
The value of b : 20
The incremented value of a : 11
The incremented value of b : 21
The decremented value of a : 10
The decremented value of b : 20

Beginning with C / 43

2.6.6 Conditional Operator:

C has one conditional operator. The syntax of the conditional operator
in C is

exp1 ? exp2 : exp3;

where exp1, exp2 and exp3 are expressions. Here, exp1 is evaluated first. If it
is true (non zero), then exp2 is evaluated and it becomes the value of the expression.
On the other hand if exp1 is false, then exp3 is evaluated and its value becomes the
value of the expression.

Thus if
a = 10;
b = 5;
z = (a >b)? a : b;
Here
exp1 is (a > b)
exp2 is a and
exp3 is b

First (a > b) is evaluated. Since in this case, a > b is false, exp3 is
evaluated. Therefore z is assigned the value of b.

2.6.5 & 2.6.6 Check Your Progress.
1. What values will the variables have in the following:
a) z = (a < b) ? a+b : a - b for a = 5 and b = 10 ?

z = ..
b) i = 10;

i++;
a = i + 10;
a = ...
i = __________________

c) z = (i + 10 < j) ? 100:10 for i = 10, j = 5
z = ...

2.6.7 Bitwise Operators :

Bitwise operators are used for manipulation of data at the bit (binary digit) level.
Bitwise operators cannot be applied for float or double. The use of bitwise operators
is for testing the bits, or shifting them to the right or left. The bitwise operators are as
follows :

Operator Meaning

& Bitwise AND

! Bitwise OR

^ Bitwise exclusive OR

<< shift left

>> shift right

~ One’s complement

C Programming / 44

2.6.8 Special Operators :

Special operators in C include the comma (,), sizeof, pointer operators (& and
*) and member selection operators (. and ->). We shall discuss only the , and sizeof
operators here.

The comma (,) operator is used for linking related expressions together. When
such expressions are linked by the comma operator, they are evaluated from left to
right and the value of the rightmost expression finally becomes the value of the combined
expression. Thus,

z = (a = 10, b = 2, a-b);

will first assign the value 10 to a, then the value 2 to b. It will then evaluate a
- b and assign the value of 8 to the variable z.

The sizeof operator is used to obtain the number of bytes that the operand
occupies in memory. The operand can be a variable, constant or a data type qualifier.

eg. z = sizeof(average);

This operator is normally used for determination of the lengths of arrays and
structures. It is also used to allocate memory dynamically to variables during the
execution of the program.

2.7 DEFINING SYMBOLIC CONSTANTS
There are numerous situations in programs where we are required to use certain

values repeatedly. eg. the value 3.14 is such a constant which we use in many
geometrical problems. While using such constants, it may so happen that we wish to
change the value for some reason or other. Under such conditions if we are making use
of such a value in our program severel times, we will have to modify this value at each
and every occurrence of it in the program. C provides a facility of assigning such
constants to a symbolic name. These constant values are assigned to symbolic
names, usually at the beginning of the program. Once these values have been assigned
symbolic names at the beginning, they are automatically substituted at the appropriate
places wherever the symbolic name appears.

The symbolic constants are defined as follows :

#define symbolic_name value of the constant

eg.

#define PI 3.14

#defineMIN 0

Note that symbolic constants are not variables, so they do not appear in
declarations.

- Usually, symbolic constants are written in upper case to differentiate them from
the variables.

- Symbolic constants can appear anywhere in a program, however they have to
be defined before they are referenced.

- There should be no space between # and define.

- There should be no semicolon after defining a symbolic constant

- Symbolic constants are not declared for their data types. The data type of a
symbolic constant depends upon its value.

Beginning with C / 45

2.6.7, 2.6.8 2.7 Check Your Progress.
Answer in 1-2 sentences :

a) What are Bitwise operators?

...
 ..

b) What is the comma operator?

...
 ..

c) What is the sizeof() operator?

...
 ..

d) What is meant by symbolic constants?

...
 ..

2.8 SUMMARY
In this chapter we studied different features of C programming Language.

- C is simple to learn and easy to understand

- C is a very robust programming language.

- C has rich set of built in functions.

- C is highly portable

- Suitable for system and application software both.

The C character set contains -

 - Letters or Alphabets - A - Z & a - z

 - Digits 0 - 9 and its combination

 - Special Symbols - { } , () , % $ etc

 - White Spaces : blanks , tabs, new line , form feed and carriage return.

C Tokens

 - Keywords - are words whose meanings have already been defined and
these meaning cannot be changes. Keywords are also called as reserves
words. There are 32 keywords in C

- Identifiers - are the name given to variables functions and array. They are
user defined.

- Constants - Fixed values which does not change during the execution of
program.

C Programming / 46

- Variables - are the data names used to store data values.

- Operators - Arithmetic operators (+ , - , * , / %)

- Relational operators (< , > , <=, >=, = =, !=)

 - Logical Operators (AND, OR, NOT)

 - Assignment operators (=)

- Increment and Decrement Operators (++a, a++, --a, a--)

- Conditional Operators (exp1 ? exp2 : exp3)

- Bitwise Operators(& - Bitwise AND, ! - Bitwise OR, ^
 Bitwise

 Exclusive OR , << shift left , >> Shift right, ~ one's
 complement)

2.9 CHECK YOUR PROGRESS - ANSWERS
2.1 & 2.2

1. a) Dennis Ritchie

b) 32

c) Comment

d) semicolon

2. a) The C programming language was developed at AT&T’s Bell Laboratories in USA
in 1972 by Dennis Ritchie. C is a very robust programming language and has
a rich set of built in functions. C is simple to learn and easy to use. C language
is suitable for writing both system software and application programs and business
packages. The C compiler has the capabilities of the machine language and the
features of a high level language. C is now one of the most popular high level
programming language and is running under many operating systems. C language
is highly portable i.e. C programs written for one computer can be run on another
computer with very little or no modifications.

b) Comment lines are not executable statements and are written between /* and
*/. They are ignored by the compiler. Comments in our programs will help users
and other programmers in understanding the programs easily. Debugging and
testing also becomes easy when helpful comments are inserted at appropriate
places in our programs. A program can have any number of comments and they
can be inserted at any place in a program. They can be more than one line.

c) main() is a special function in C. This is the line at which the execution of our
program begins. Every program should have this function main(). There is a pair
of parenthesis after main(). The open brace bracket ‘{‘ indicates the beginning of
the function main() and the close brace bracket ‘}’ in the last line marks the end
of the function. The statements which are included within these braces make up
the body of our function main() and form the executable code of our program.

2.4.1, 2.4.2 & 2.4.3

1 a) Backslash character constants: C supports some special backslash character
constants which are used in output functions. Each one of them represents one
character, although it actually consists of two characters. These character
combinations are known as escape sequences. eg.’\f’ - form feed, ‘\n’ - new line

b) Identifiers are names given to variables, functions and arrays. These are the
names which are user defined. They are made up by a combination of letters and
digits. Normally an identifier should not be more than 8 characters long. The use
of underscore is also permitted in identifiers. However, it is imperative that identifiers

Beginning with C / 47

should begin with a letter. eg. max, in_val.

c) Keywords are words whose meanings have already been defined and these
meanings cannot be changed. Keywords are also called as reserved words.
Keywords should not be used as variable names (though some compilers allow
you to construct variable names like keywords). All the keywords must be written
in lowercase. There are 32 keywords in C. eg. int, float.

d) A constant in C is a fixed value which does not change during the execution of
a program. C supports the constants viz.Numeric Constants which are further
classified as Integer and Real and Character constants which are further classified
as Single Character and String constant. A variable on the other hand is a data
name used to store a data value. Variable names are names given to locations
in the memory where different constants are stored. A variable can take different
values at different times during execution.

e) Integer constants are of decimal, octal and hexadecimal types. An octal constant
is a combination of digits from 0 to 7, with a leading 0. For eg. 044, 0558

f) A single character constant is a single character enclosed in a pair of single
quotes. It can either be a single alphabet, a single digit or a single special
symbol. eg. ‘a’, ‘}’, ‘5’. Character constants have integer values which are known
as their ASCII values. On the other hand a string constant is a sequence of
characters enclosed in double quotes. These characters may be letters, digits,
special characters as well as blank spaces. eg. “abc”, “example23” etc.

2 (i) -b
(ii) -f
(iii) -e
(iv) -d
(v) -a

3 a) True
b) False
c) True
d) True
e) True

4 a) Invalid
b) Valid
c) Invalid
d) Invalid
e) Valid

2.5.1

1 a) The four basic types of instructions in C are:

Type Declaration Instructions: used to declare the type of the variables. Input/
Output Instructions: These instructions perform the function of supplying input
data and obtain the output results from the program.

Arithmetic Instructions: used to perform arithmetic on variables and constants.
Control Instructions: used to control the sequence of execution of the various
statements in a C program.

b) The four fundamental or primary data types are : Integer (int), Character (char),
Floating point (float), double precision floating point (double). These primary data
types themselves are of many types.

2 a) Integer (int) Data Type: This is one of the primary data types in C. Integers are
whole numbers. The range of values of integers is dependent upon the particular

C Programming / 48

machine being used. Integers generally occupy two bytes of memory storage.
Therefore for a 16-bit word length, the range of integer values is between -32,768
to 32,767. Out of the two bytes used to store an integer, the sixteenth bit is used
to store the sign (+ or -) of the integer. This sixteenth bit is 0 if the number is
positive and 1 if the number is negative.

b) Character Data Type: This is one of the primary data types in C. A single
character is defined as char type data. Characters are usually stored in 8 bits
i.e. one byte of internal storage. The signed or unsigned qualifiers may be
applied to char. By default, char is assumed to be signed and hence has a range
of values from -128 to 127. On the other hand, declaring unsigned char causes
the range of values to fall between 0 to 255, with all values being positive.

3 a) Invalid
b) Invalid
c) Valid
d) Valid
e) Invalid

4. The type declaration instruction declares the type of the variable being used. Any
variable being used in a program has to be declared first before using it. The
syntax for declaring the variables for their types is:

data type v1, v2,vn ;

where data type indicates the type and v1, v2, ..., vn indicate the names of the
variables. When declaring multiple variables in the same type declaration, they
should be separated by commas. The type declaration statement should end
with the semicolon.

2.6

1 a) i) which operator is used first
b) ii) 8+3
c) ii) 132
d) iii) 1
e) ii) 2

2 a) V
b) l
c) I
d) V
e) V

3 a) main()

{
float max, min, avg;
printf(“Enter maximum temperature:”);
scanf(“%f’’, &max);
printf(“Enter minimum temperature :”);
scanf(“%f’’, &min);
avg = (max + min)/2;
printf(“\nThe average temperature of the day : %f”, avg);

}

b) main()
{

float metres, km;

Beginning with C / 49

printf(“Enter distance in metres :”);
scanf(“%f”, &metres);
km = metres/1000;
printf(“Distance in kilometres = %f”, km);

}

c) main()
{

int a,b, c;
printf(“Enter value of a :”);
scanf(“%d”, &a);
printf(“Enter value of b :”);
scanf(“%d”, &b);
c =a;
a = b;
b = c;
printf(“Value of a = %d\nValue of b= %d”, a, b);

}

2.6.1

1 a) 8

b) 34.500000

c) 4 5

2 a) When the operands in a single arithmetic expression are integers or integer
constants, then expression is an integer expression. The operation on these
operands is called integer arithmetic. Integer arithmetic always yields an integer
value. In case of integer division the decimal part is truncated since the result
is an integer value.

b) In mixed mode arithmetic some operands are integers and others are real. Such
an expression is called as mixed mode arithmetic expression. If any one of the
operand is real, then the expression always yields a real value. An arithmetic
operation between an integer and integer will always yield an integer result. An
arithmetic operation between a real and real will always yield a real result and
an arithmetic operation between an integer and real will always yield a real
result.

2.6.2, 2.6.3 & 2.6.4

1 a) lower
b) AND, OR, NOT
c) !=
d) Relational
e) 1

2. Relational operators are used when we wish to compare any two values. An
expression which uses a relational operator is called a relational expression. The
value of a relational expression is either zero or one. If it is one, then the
specified relation is true, if it is 0, then the relation is false. The relational
operators in C are :<, <= , >, >=, ==, !=.. An arithmetic expression can be used
on either side of a relational operator. Here both the arithmetic expressions are
evaluated first and then the results so obtained are compared. Thus arithmetic
operators have a higher priority as compared to relational operators.

C Programming / 50

2.6.5 & 2.6.6

1. a) 15

b) 21 11

c) 10

2.6.7 & 2.6.8 & 2.6.9

1. a) Bitwise operators are used for manipulation of data at the bit (binary digit) level.
Bitwise operators cannot be applied for float or double. The use of bitwise
operators is for testing the bits, or shifting them to the right or left. Some of the
bitwise operators in C are as & - Bitwise AND, ! – Bitwise OR.

b) The comma (,) operator is a special operator in C and is used for linking related
expressions together. When such expressions are linked by the comma operator,
they are evaluated from left to right and the value of the rightmost expression
finally becomes the value of the combined expression.

c) The sizeof operator is a special operator in C and is used to obtain the number
of bytes that the operand occupies in memory. The operand can be a variable,
constant or a data type qualifier. This operator is normally used for determination
of the lengths of arrays and structures. It is also used to allocate memory
dynamically to variables during the execution of the program.

2. C provides a facility of assigning constants to a symbolic name. These constant
values are assigned to symbolic names, usually at the beginning of the program.
Once these values have been assigned symbolic names at the beginning, they
are automatically substituted at the appropriate places wherever the symbolic
name appears. The symbolic constants are defined as follows :

#define symbolic_name value of the constant

Symbolic constants are not variables, so they do not appear in declarations.
Usually, symbolic constants are written in upper case to differentiate them from
the variables. They can appear anywhere in a program, however they have to be
defined before they are referenced. Symbolic constants are not declared for their
data types. The data type of a symbolic constant depends upon its value.

2.10 QUESTIONS FOR SELF-STUDY
1. What are the primary data types in C? Discuss them.

2. Write detailed notes on :

a) Relational and Logical Operators

b) Constants in C

c) C Arithmetic

d) Symbolic Constants

e) Type declaration of data type.

3. Answer the following in 7- 8 lines each

a) What is the conditional operator in C ?

b) What are keywords and identifiers?

c) Write a short note on the features of the C language.

4. Write the following programs in C.

a) Input the salary of a person. Calculate the dearness allowance as 15% of
the salary and house rent allowance as 5% of the salary. After this
determine the total salary.

b) Reverse the digits of a 4 digit number.

Beginning with C / 51

c) Find the sum of digits of a 4 digit number
d) Convert a distance entered in metres to kilometres.
e) Find the average of marks of 5 subjects

2.11 SUGGESTED READINGS

Programming in ANSI C : Balguruswamy

Exploring C : Yashwant Kanitkar

C for Beginners : Madhusudan Mothe

C Programming / 52

NOTES

Input/Output / 53

CHAPTER 3

INPUT/OUTPUT

3.0 Objectives
3.1 Introduction
3.2 Catagories of Input/Output
3.3 Console Input/Ouput

 3.3.1 Unformatted Console Input/Output
 3.3.2 Formatted Console Input/Output

3.4 Summary
3.5 Check Your Progress - Answers
3.6 Questions for Self Study
3.7 Suggested Readings

 3.0 OBJECTIVES
Friends after studying the chapter you will be able to

• state what is formatted and unformatted Input/Output

• explain the catagories of input/output

• discuss console input/output functions available in the standard C library

• make use of these input/output functions in all subsequent programs

3.1 INTRODUCTION
As we already know, programs take some data as input, process this data and

display the results as output. In the previous chapter, we have seen how to supply input
data to the C program, with the help of scanf. scanf reads the data from the terminal.
Similarly, we have seen the use of printf to output the results on the console. Thus
scanf and printf are functions used to input and output data from the C program. Most
high level languages have built in input/output statements. C however, does not have
any built in input/output statements as a part of its grammar. Therefore, all input and
output operations are to be carried out with the help of functions like printf and scanf.
Many functions have now become standard for input/output in C. These functions are
known as the standard I/O library. Most of the standard Input/Output functions are
included in the <stdio.h> (standard input-output header file). Therefore, for effecting
input/output functions, your C program must include the statement

#include <stdio.h>

This statement will tell the compiler to search for this file, and place its contents
at this point in the program. The contents of the header file will now become a part of
your program. It is to be noted however, that some functions like printf and scanf do
not require the inclusion of the standard input/output header file.

3.2 CATAGORIES OF INPUT/OUTPUT FUNCTIONS
The input/output functions available in the standard input/output file

stdio.h can be classified into three broad catagories :

Console Input/Output Functions :

In this category, input is supplied from the keyboard and output displayed
on the video display unit.

Disk Input/Output Functions :

These functions are useful to perform input/output operations on floppy

C Programming / 54

disks or hard disks i.e. secondary storage devices.

Port Input/Output Functions :

These functions are used to perform I/O operations on ports.

Out of these three catagories, console input/output form a part of this chapter.
File input/output is discussed in separate chapter “File management”. Port Input/Output
functions do not form a part of this study material.

3.1 & 3.2 Check Your Progress.

1. Fill in the blanks :

a) The function used to input data is

b) The function used to output data is

c) Most of the standard input/output operations are included in the
..............................file.

2. Answer in 1- 2 sentences :

a) How are input/output carried out in C?

...

 ..

b) What is meant by console input/output functions ?

...

 ..

3.3 CONSOLE INPUT/OUTPUT FUNCTIONS
Formatted and Unformatted Input/Output:

Input and Output can be read and printed in unformatted and formatted forms.
Formatted input/output allows us to read the input or display the output to be formatted
as per our requirements. Formatting implies specifying where you want the output to
appear on the screen, how many spaces do you wish to have between the various
outputs, the number of decimal places after the decimal point in case of float data etc.
Thus we input or output data which has been arranged in a particular format.

The simplest form of input/output functions is whereby you supply information
with the help of the keyboard and write it to the standard output device (the screen.)
Console Input/Output functions are further classified as formatted and unformatted
console input/output.

3.3.1 Unformatted Console Input/Output Functions :

(a) Character Input/Output:

Character input/output functions are useful for reading characters from
the keyboard and writing single characters to the monitor.

Reading a character:

In order to read a single character we use the getch(), getche() and getchar()
function. These functions return the character that has been most recently typed in.
getch() returns the character which is typed without echoing it on the screen. getche()
echoes (displays) the character that you typed on the screen. getchar() works similar

Input/Output / 55

to getche() but requires the user to hit the Enter key after the character is typed in.

When you use these function in the program you are able to input a single
character from the console. The following program will illustrate :

Example : To illustrate the use of getch(), getche()

main()

{

char ch1;

printf(“\n Enter a character:”);

getch(); /*getch() will not echo the character on the screen*/

printf(“\nEnter a character:”);

ch1 = getche(); /* will echo the character on the screen */

}

A sample output

Enter a character:

Entera character: A

The general form of the getchar() is :

variable_name = getchar();

Here variable name is a valid variable name. Its type declared has to be char.
When this statement is encountered, the computer system will wait for the user to type
any keyboard character and then will assign this character as the value of the getchar()
function. The character value of getchar() will be assigned to the variable_name specified
on the left. eg.

char ch1;

ch1 = getchar();

Here variable ch1 is defined to be of type char. With the getchar() function, a
character is read from the keyboard and assigned to the variable ch1.

The getchar() function echoes the character that you have typed on the screen.
This means that the character you typed will be displayed on the screen. You are
required to press the Enter key on the keyboard after you type the required character.

Writing a character:

We make use of the putch() and putchar() function for writing characters on the
terminal. The general form of the putchar() function is

putchar(variable_name);

where variable_name is a variable of type char which contains a character. This
function will display the character contained in variable_name on the screen.

eg.
char ch1;
ch1 = ‘A’;
putchar(ch1);

This set of statements will display the character A on the screen.

Let us illustrate the use of character input output in programs with the
help of the following programs.

Example : Character input/output

/*Program to illustrate the use of getche() and putch()*/

main()

C Programming / 56

{
char ch1;
printf(“\nlnput a character:”);
ch1 = getche(); /* Read a character*/
putch(ch1);

}
A sample output of the program :
Input a character: q
q

The getchar() function reads a character into ch1 and the putchar() outputs it
on the terminal.

Example : Use of getchar() and putchar()

#include “stdarg.h”
include “sdtio.h”
main()
{

char ch1, ch2;
printf(“\nEnter a character:);
ch1 = getchar();
printf(‘’\nEnter another character:”);
ch2 = getchar();
putchar(ch1);
putch(ch2);
putch(“A”);
putchar(“Z”);

}
A sample output:
Enter a character :P
Enter another character: O
POAZ

There are a number of character functions supported by C. These are contained
in the file <ctype.h>. Therefore, when you want to make use of these functions you will
have to include this file in your program as :

#include <ctype.h>

eg. isalpha(ch1): This function checks whether the character ch1 is an alpabet.If
it is, the function assumes a non-zero (TRUE) value, else it assumes 0 (FALSE). The
character test functions supported by C are :

Function Test
isalnum(ch1) to check whether ch1 is alphanumeric
isalpha(ch1) to check whether ch1 is an alphabet
isdigit(ch1) to check whether ch1 is a digit
islower(ch1) to check whether ch1 is a lowercase letter
isprint(ch1) to check whether ch1 is a printable character
ispunct(ch1) to check whether ch1 is a punctuation mark
isspace(ch1) to check whether ch1 is a whitespace character
isupper(ch1) to check whether ch1 is an uppercase letter

Input/Output / 57

In each of these functions, the functions returns a nonzero (TRUE) value if the
condition evaluates to true else it returns 0. We shall study the use of these functions
when we study conditional statements.

3.3.1 Check Your Progress.
1. Match the following :

Column A Column B
a) putch() (i) checks whether character is in uppercase
b) getche() (ii) does not echo character on screen
c) isupper() (iii) echoes the character on the screen
d) getch() (iv) Function to output characters
2. Answer in 1-2 sentences :
a) What is meant by formatted input/output ?

...
 ..

b) What is the difference between getche() and getchar()?

...
 ..

3.3.2 Formatted Console Input/Output:

After having dealt with unformatted console input/output let us study formatted
input/output. Formatted functions facilitate supplying input and providing output in fixed
formats.

Formatted Input/Output:

In order to input data we have seen a limited use of the scanf function. In this
section let us see this function in detail. The general form of the scanf is :

scanf(“format string”, list of variables);
The format string will specify the field format for the list of variables. Note the

comma between the format string and the list of variables.
The format string can contain

- format specifications which consist of the conversion specification (%) followed
by the data type character (which specifies the type of the data) and a number
(optional) which will specify the field width. %d and %f are examples of conversion
characters which we have already used to read int and float data types respectively.
The conversions characters for various data types are summarised in the following
table:

Data Type Conversion Character

Integer short signed %d or%i
short unsigned %u
long signed %ld
long unsigned %lu
unsigned hexadecimal %x
unsigned octal %o

Real float %f
double %lf

character signed %c
unsigned %c

string %s

C Programming / 58

Note: Strings are not a part of this chapter and will be covered subsequently.
Also the different variations of integer data types like long and short, of real data type
like float and characters shall be studied in the chapter Data Types and Storage
Classes. These are included here for the purpose of illustrating the complete table.

Additional specifiers which are optional in conversion specifications include :

Specifier Description

w specifies the field width

. decimal point which is used to separate the field width

- escape sequences (blanks, newline character, tabs). Escape sequences as we
have already seen begin with a ‘\’ sign.

In order to output data we have made a limited use of the printf function in the
previous chapter. printf helps us to produce outputs which can be formatted and
therefore become understandable and easy to use. printf can be used to align and
space the output on the screen. The general form of the printf is :

printf(“format string”, list of variables);

The format string contains :

- characters which will be printed on the screen as they are

- format specifications which begin with the % sign (which have been
shown in the above table)

- escape sequences like \n, \t, \b

The control string indicates the number of variables and their types which follow
in the list of variables. The variables in the variable list should match in number, order
and type with the format string. eg. if the printf statement is as follows :

printf(“%d%f%d”,a,b,c);

then there have to be three data items as specified in the format string, where
the first data item should be of type int, the second of type float and the third of type
int. Thus they match in number, type and order.

Let us see how to use the scanf and printf functions to read int, float
and char.

3.3.2.1 scanf for Integers :

The general form of the scanf function to input integers is

% w d

where % is the symbol which indicates that a conversion sequence follows, w
is the field width specified for the integer (this is optional) and d indicates that the data
type to be read is in the integer mode.

eg. scanf(“%3d %2d”, &n1, &n2);

Here the function will associate a field width of 3 with n1 and a field width of 2
with n2. When you supply the input

234 48

the value 234 will be assigned to n1 and 48 to n2. Here you have to take care
while specifying the field width. eg. if you supply information as :

48942 32

then n1 will be assigned a value 489 (since its field width is defined as 3) and
n2 will be assigned the value 42. The number 32 will not get assigned to n2. scanf
terminates reading of a value as soon as the number of characters specified by the field
width is reached. Therefore, to avoid errors, we can eliminate the field width specifications
and simply write the scanf function as :

Input/Output / 59

scanf(“%d %d”, &n1, &n2);

When you are inputting multiple data items with the use of the scanf, you must
separate them by spaces, tabs or newlines. In case you enter a float value for an int
data type, scanf may strip the fractional part and it may even skip reading further input.

printf for integers :

The format specification for printing an integer number is :

% w d

You already know that %d is the conversion character for integers and w indicates
. the field width. It is important to note here, that if a number is greater than the width
specified , it will be printed in full. The field width specification will be overriden. When
the number is printed, it is printed in a right justified manner. This means that there
will be leading blanks if required. eg. As shown below, in the first case no field width
is specified, in the second case a field width of 6 is specified and since the number
is only 4 digits two leading blanks will appear. In the last case, field width specified
is smaller than the actual number, hence it is overridden and the number is printed fully.

The following additional formatting features are available for int:

- If you want your output to be left justified you can put a minus “-” sign directly
after the % sign.

- You can also pad the leading blanks with 0s by placing a 0 before the field
width specifier and after the % sign.eg.

Let us write a program to illustrate the use of scanf and printf for integer types

Example : To make use of scanf and printf for integers

main()
{

int a;

printf(“\nEnter value for a:”);

scanf(“%d”, &a);

printf(“\nWithout specifying width :%d”, a);

printf(“\nTo demonstrate right justification :%8d”,a);

printf(“\nTo demonstrate left justification :%-6d”, a);

printf(“\nTo demonstrate leading zeroes :%08d”,a);

}

C Programming / 60

A sample run of the program :

Enter value for a :3680

Without specifying width :3680

To demonstrate right justification : 3680

To demonstrate left justification :3680

To demonstrate leading zeroes :00003680

3.3.2.2 Input/Output of Real numbers : Let us now study how to make use
of scanf and printf for formatted input and output of real numbers.

scanf for real numbers :

scanf uses %f specification for both, decimal point and exponential notation. To
read two numbers a and b both which have been declared type float we can use the
following method:

float a, b;

scanf(“%f %f”, &a, &b);

Values for variables a and b can be input in decimal or exponential
notation as :

876.323 876.323E-1

then the above statement will assign the value 876.323 to a and 87.6323 to b.

Example : To use scanf to read float numbers :
main()

{

float a,b;

printf(“\nEnter values for a in decimal form and b in exponential form
:\n”);

scanf(“%f%e”, &a, &b);

printf(“\nValue of a:%f\nValue of b :%f”, a, b);

}

A sample output:

Enter values for a in decimal form and b in exponential form :

367.9808 1.34e5

Value of a : 367.980800

Value of b : 134000.000000

printf for real numbers :

In the above example we have used printf to output real numbers in decimal
notation. Also it prints both the numbers with a precision of 6. In reality, we can use
printf to output real numbers in both decimal notation and exponential notation.

In order to print using the decimal notation the format specification is :

%w.pf

w is an integer which indicates the minimum number of positions to be used to
display the value, integer p indicates the number of digits to be displayed after the
decimal point (this is also known as precision). The value is rounded to p digits after
the decimal point when it is printed. The value is printed right justified as in the case
of int. The default precision for float is 6.

The format specification for exponential notation is :

Control Statements / 61

%w.pe

The integer p specifies the precision of the number of digits after the point. The
default precision is 6. The field width w should be large enough to satisfy the condition

w >= p + 7

The value is printed right justified in the field width w. Leading blanks will appear
if necessary. As in the case of int, you can also make use of 0 or - for printing leading
zeroes or left justification respectively.

Let us examine the output of the number a = 108.244 using different format
specifications :

Example : To print a float using various format specifications :

main()

{

float a = 108.244;

printf(“\nThe normal form : %f”, a);

printf(“\nWith format specifier :%10.4f”, a);

printf(“\nLeft justification :%10.4f”, a);

printf(“\nLeading zeroes : %010.4f”,a);

printf(“\nExponential notation : %10.2e”,a);

}

The output of the program :

The normal form : 108.244003

With format specifier : 108.2440

Left justification : 108.2440

Leading zeroes : 00108.2440

Exponential notation : 1.1e+02

3.3.2.1 & 3.3.2.2 Check Your Progress.
1. Fill in the blanks :

a) The conversion specification for integers is and for float
is

b) To print the output in left justif ied format we make use of the
........................... .

c) Leading zeroes can be printed using

d) The w specifier is used in the specification to specify

e) To separate multiple data items input through scanf you make use
of.................................., or

2. Answer in 1- 2 sentences :

a) Explain the format specification of printf for real numbers in decimal form.

...

 ..

C Programming / 62

b) Explain the format specification of printf for real numbers in exponential form.

...

 ..

c) How will you use scanf to read numbers in decimal and exponential form?

...

 ..

3.3.2.3 Input/Output of character strings :

Characters or strings (which is an array of characters) can also be input and
output using scanf and printf functions.

scanf for character and strings :

We have already seen the use of getchar() to read a single character from the
keyboard. We can use scanf function to achieve the same effect. The general form to
read a character string is

%wc or %ws

where w indicates the field width. %c can used to read a single character and
%s is used for a string of characters. It is important to note that the reading of the input
with the %s specifier terminates as soon as a blank space is encountered.

Example : The following example illustrates the use of scanf and printf for
characters and strings.

main()
{

char ch1;
char str1 [20], str2[30];
printf(“\nEnter a character :”);
scanf(“%c”, &ch1);
printf(“\nEnter a string :”);
scanf(“%s”, str1);
printf(“Enter a new string :”);
scanf(“%s”,str2);
printf(“\n%c”, ch1);
printf(“\n%s\n%s”, str1, str2);

}
A sample run:
Enter a character : s
Enter a string : High-Level-Language
Enter a new string : High Level Language
s
High-Level-Language
High

In the above example, the strings str1 and str2 are declared as character arrays.
This topic shall be covered in detail in the subsequent chapters. For the time being just
use it as has been shown and remember that a string is an array of characters. Note
that in the second example of string input only the first word has been read. Reading

Input/Output / 63

of input data terminates as soon as a blank space is encountered. However, this
limitation can be overcome by making use of the %[] specification, which enables
scanf to read input strings which contain blank spaces.

The %[] specifier : Some versions of scanf support the %[] specifier. It has
the following conversion specifications for strings :

- %[characters] : This means that only the characters specified in the brackets
are allowed in the input string. eg. %[a-z] will mean only lower case characters are
allowed. This implies that we can make use of the %[] specification to read strings
which have blank spaces in them.

- %[^character]: This implies that the characters specified after ^ are not allowed
in the input string. eg. %[^a] implies that character a is not allowed in the input string.

The following example demonstrates the use of the above conversion specifications
for strings :

Example :

main()

{

char str1[40], str2[40];

printf(“Enter string :”);

scanf(“%[A-Z a-z]”, str1);

printf(“\nThe string entered is : %s”, str1);

printf(“\nEnter new string :”);

scanf(“%[^A-Z]”,str2);

printf(“\nThe second string is : %s”, str2);

}

A sample output:

Enter string : High Level Language

The string entered is : High Level Language

Enter new string :small case Allowed

The second string is : small case

In the first format specification, it is specified that the string can contain lowercase
alphabets, uppercase alphabets and blanks, hence the input string is read correctly
and printed. In the second case, uppercase alphabets are not allowed, hence reading
of the string terminates as soon as the upper case alphabet A is entered. Follow the
program carefully and try it with different types of specifiers and inputs.

printf for characters and strings :

The format specification for printing a character is :

%wc

where w specifies the width in columns for the character. i.e. the character will
be displayed in a column width w. Default value for the width is 1. The output is right
justified. In order to make it left justified you can place the minus sign before the field
width.

The format specification for printing a string is :

%w.ps

where w is the field width for display and p implies that only the first p characters
of the string should be printed. The display is right justified and can be made left
justified by making use of the minus sign before the width specifier.

C Programming / 64

The following program demonstrates the use of printf to print characters and
strings in a formatted form :

Example :

main()

{

char a = ‘A’;

char str1 [30] =”Times of India”;

printf(“Character in different formats :\n”);

printf(“\n%c\n%3c\n%5c\n%3c\n%c”, a,a,a,a,a);

printf(“\nString in different formats :”);

printf(“\n%40s”, str1);

printf(“\n%30.8s”,str1);

printf(“\n%-40s”,str1);

}

The output of the program :

Character in different formats :

A

 A

 A

 A

A

String in different formats :

Times of India

Times of

Times of India

In the second string output only the first eight characters of the string are output
since the format specifies that only 8 characters be displayed. The last line is printed
left justified whereas the first one is displayed right justified in a width of 40 columns.

In most of the programming examples seen so far, we have seen that it has not
been necessary to make use of the standard input/ouput header file. This is because
the scanf and printf functions do not need the stdio.h file to be included in your
program. However, some functions like getchar() and putchar() may require that you
include the stdio.h file in your C program. While writing these programs, make sure
whether or not the inclusion of the header file is essential for the particular compiler
you are using.

Input/Output / 65

 3.3.2.3 Check Your Progress.
1. Write short notes on :
a) scanf for characters and strings :

...
 ..

b) the use of %[] specifier

...
 ..

c) The general form of printf for character and strings.

...
 ..

3.3.2.4 Input/Output of mixed data types :

You can also use scanf function to input data which may include mixed data
types like integers, floats and chars. The order and type specifications should be given
precisely in the scanf statement. If an attempt is made to read an item whose type
does not match, the function does not read anything further and returns the values read.

Thus the statement

scanf(“%d %f %c”, &int1, &float1, &char1);

will read the data in the sequence of an int followed by float followed by char.
In the event, the correct sequence of the data types is not followed scanf will terminate
further reading.

In the same manner like using scanf for reading, we can use the printf to output
mixed data types. The format string specifies the number of variables and their data
types, Hence the variable list should match the format string in number, type and order.

A program to read mixed data types with scanf and print them with printf :

Example :
main()
{

int i , j;
float a , b;
char ch = ‘Z’;
char str 1[20] = “Programming in C”;
printf(“\nEnter integers i and j and float a,b\n”);
scanf(“%d%d%f%e”, &i, &j, &a, &b);
printf(“Mixed mode formatted data output :\n”);
printf(“Integers a and b :%d%6d\nCharacter and string :%3c\t%
-30s\nfloats\n%f\t%e”, i, j, ch, str1, a, b);

}
A sample output:
Enter integers i and j and float a,b 100 200 88.99 6.75e2
Mixed mode formatted data output:
Integers a and b :100 200

C Programming / 66

Character and string : Z Programming in C
floats
88.998001 6.75898e+02

More about scanf:

When scanf completes reading the list of data items it returns a value which is
equal to the number of items that have been read successfully. This value can then be
used to determine whether any errors have occurred during data input.

eg. scanf(“%d%d%c”, &a,&b,&ch);

is supposed to read three values where a and b are int and ch is char. If you
enter the following values :

5 5 a

scanf will return 3 which implies that it has read all three data items correctly.
On the other hand if you input the data as follows :

5 a 5

scanf will return a value 1 which means that only one data item has been
successfully read.

- Remember that all the format specifications in the control string should match
the arguments in order, number and type.

- The data items which are input must be separated by spaces, tabs etc. scanf
will terminate reading further input if it encounters an invalid mismatch of data.

When using printf:

- When using printf make appropriate use of headings for variables names
wherever necessary.

- Space the output in such a form that it appears neat and easy to read.

- Output messages wherever required.

3.3.2.4 Check Your Progress.
Write true or false :

a) scanf returns an integer value.

b) printf cannot be used to output mixed data types.

c) Mixed data types can be input in any order using scanf.

d) Formatted data output is not possible with printf.

e) The variable list has to match the format string in type when using printf.

3.4 SUMMARY
In this chapter we studied different Input output functions. These functions are

known as the standard I/O library. Most of the standard Input/Output functions are
included in the <stdio.h> (standard input-output header file). Therefore, Every C program
must include the statement

#include <stdio.h>

This statement will tell the compiler to search for this file, and place its contents
at this point in the program. The contents of the header file will now become a part of
your program.

Catagories of Input/Output Functions : The input/output functions available in the
standard input/output file stdio.h can be classified into three broad catagories :

Input/Output / 67

Console Input/Output Functions where input is supplied from the keyboard and
output displayed on the video display unit.

Formatted and Unformatted Input/Output: Formatted input/output allows us to
read the input or display the output to be formatted as per our requirements.

Unformatted Console Input/Output Functions :

Character Input/Output: Character input/output functions are useful for reading
and writing single characters from the keyboard and to the monitor. To read a single
character we use the getch(), getche() and getchar() functions.

3.5 CHECK YOUR PROGRESS - ANSWERS

3.1 & 3.2

1. a) scanf

b) printf

c) stdio.h

2. a) C does not have any built in input/output statements as a part of its grammar.
Therefore, all input and output operations are to be carried out with the help of
functions like printf and scanf. Many functions have now become standard for
input output in C. These functions are known as the standard I/O library. Most
of the standard Input/Output functions are included in the <stdio.h> (standard
input-output header file). Therefore, for effecting input/output functions, a C program
must include the <stdio.h> file. Some functions like printf and scanf do not
require the inclusion of the standard input/output header file.

b) Console Input/Output is one of the catagories of input/output functions available
in the standard input/output file <stdio.h>. In this category, input is supplied from
the keyboard and output displayed on the video display unit.

3.3.1

1. a) - iv

b) - iii

c)- i

d) - ii

2. a) Formatted input/output allows us to read the input or display the output to be
formatted as per our requirements. Formatting implies specifying where you want
the output to appear on the screen, how many spaces do you wish to have
between the various outputs, the number of decimal places after the decimal
point in case of float data etc. Thus in formatted input/output we input or output
data which has been arranged in a particular format.

b) getche() and getchar() are both functions used to read a character. getche() and
getchar() both echo (display) the character that is typed on the screen. However
the difference between these is that getchar() requires the user to hit the Enter
key after the character is typed in and getche() does not.

3.3.2.1 & 3.3.2.2

1. a) %d %f

b) after the % sign

c) 0 after the % sign

C Programming / 68

d) field width

e) space, tab, newline

2.a) We can use printf to output real numbers in both decimal notation and exponential
notation. In order to use printf for the decimal notation the format specification
is :

%w.pf

w is an integer which indicates the minimum number of positions to be used to
display the value, integer p indicates the number of digits to be displayed after
the decimal point (this is also known as precision). The default precision is 6.
The value is rounded to p digits after the decimal point when it is printed. The
value is printed right justified.

b) printf can be used to output real numbers in the exponential form. The format
specification for exponential notation is :

%w.pe

The integer p specifies the precision of the number of digits after the point. The
default precision is 6. The field width w should be large enough to satisfy the
condition

w >= p + 7

The value is printed right justified in the field width w. Leading blanks will appear
if necessary. As in the case of int, you can also make use of 0 or - for printing
leading zeroes or left justification respectively.

c) In order to input real numbers we make use of scanf. scanf uses %f specification
for both, decimal point and exponential notation. Values for variables can be input
in either decimal notation or exponential notation.

3.3.2.3

1. a) The general form of scanf to read a character string is

%wc or %ws

where w indicates the field width. %c can used to read a single character and
%s is used for a string of characters. It is important to note that the reading of
the input with the %s specifier terminates as soon as a blank space is encountered.

b) The %[] specifier : Some versions of scanf support the %[] specifier.lt provides
additional features when used with scanf for strings. It has the following conversion
specifications for strings :

- %[characters] : This means that only the characters specified in the brackets
are allowed in the input string. We can thus make use of the %[] specification
to read a string which has blank spaces.

- %[^character] : This implies that the characters specified after ^ are not allowed
in the input string.

c) The general form of printf for characters and strings has the format specifications
as follows :

The format specification for printing a character is :

%wc

where w specifies the width in columns for the character. i.e. the character will
be displayed in a column width w. Default value for the width is 1. The output
is right justified. In order to make it left justified you can place the minus sign
before the field width.

The format specification for printing a string is :

%w.ps

Input/Output / 69

where w is the field width for display and p implies that only the first p characters
of the string should be printed. The display is right justified and can be made
left justified by making use of the minus sign before the width specifier.

3.3.2.4

1. a) True

b) False

c) False

d) False

e) True

3.6 QUESTIONS FOR SELF - STUDY
1. Write short notes on :

a) Catagories of Input/Output Functions in C
b) scanf and printf for Integers
c) Input/Output of real numbers

2. State and correct errors if any in the statements given below assuming
the following declaration in a program have been made:

int a, b;
float i,j;
char ch,ch1;
a) scanf(“%d%d%c), &a, b,ch);
b) scanf(“%f%f%c”, &i,&j,&a);
c) printf(“%6.2f%d%d”, &i,&a,&b);
d) printf(“%c%c%c”, ch,ch,ch1);

3. Given an input string “Formatted Input/Output” write a program to print
the following from this string :

a) Formatted
b) Formatted In

4. For the values of a = 600, b = 89.546 and ch = ‘A’ attempt the following
from this string :

a) print the value of a in :
(i) right justified manner
(ii) leading zeroes in a width of 8
(iii) left justified manner

b) print the value of b in :
(i) decimal format with leading zeroes and precision of 4
(ii) exponential format

c) print the value of ch :
(i) In a width of 10
(ii) in a width of 1
(iii) in a width of 10 all on different lines

C Programming / 70

5. Answer the following :

a) What is meant by formatted and unformatted input/output?
b) How will you use printf to print mixed mode data types? Explain with an

example.
c) How will you make use of scanf to determine whether the data input has

been correctly read or not? Explain with an example.
d) What are the formatting features available for printf?

3.7 SUGGESTED READINGS

The Spirit of C : Mullish cooper

Exploring c Yashwant Kanitkar

C for Beginners : Madhusudan Mothe

Input/Output / 71

NOTES

C Programming / 72

NOTES

Control Statements / 73

CHAPTER 4

CONTROL STATEMENTS

4.0 Objectives
4.1 Introduction
4.2 The If Statement

4.2.1 The simple if statement
4.2.2 If-else statement
4.2.3 Nested-if statement
4.2.4 The if-else ladder
4.2.5 Use of logical operation with if statement
4.2.6 Hierarchy of logical operators

4.3 The switch Statement
4.4 The conditional Operator
4.5 The goto Statement
4.6 Summary
4.7 Check Your Progress - Answers
4.8 Questions for Self - Study
4.9 Suggested Readings

4.0 OBJECTIVES
Friends, After studying this chapter you will be able

• explain what to do in programming situations involving branching depending upon
certain conditions

• discuss the control statements in C for this purpose which are : if, if-else, switch,
conditional operator and goto.

• state additional features like nested ifs, the if-else ladder

• be able to make use of logical operators with if statements for more structured
programming

• develop a number of programs using these various control statements.

4.1 INTRODUCTION
Decision Control:

While writing programs, it is often necessary to change the order of execution
of depending upon certain conditions. It is also required to execute an instruction or
a set of instructions until a specific condition is met. Thus, it is necessary to take
decisions and depending upon the result of the decision execute appropriate statements
i.e. we are required to execute a set of instructions in a particular situation and an
entirely different set of instructions in other situations.

The C language has the following decision making instructions :

- if statement

- switch statement

- conditional operator statement

- goto statement

This chapter will discuss in detail all the above control statements available in
C one by one starting with the simple if and progressing to more complex structures

C Programming / 74

like the nested if and if-else ladder. Having mastered this, you are sure to be able to
write numerous programs in C.

4.2 THE IF STATEMENT
The if statement is used to control the flow of the execution of statements in

a program. The general form of the if statement is

if (test condition)

The condition to be evaluated is placed in a pair of parenthesis immediately
following the keyword if. First, the test condition is evaluated. If it is true then the
statement (or set of statements) following if are executed. If the condition evaluates to
false, the statement (or set of statements) following if are skipped. Thus there is a two
way branching for the if statement: one for the true condition and the other for the false
condition. Thus the if condition is expressed as :

The test condition is generally expressed with the help of the relational operators
in C. We have already seen relational operators in the previous chapter. To revise :

Operator Meaning

< is less than

< = is less than or equal to

> is greater than

> = is greater than or equal to

= = is equal to

! = is not equal to

The test condition is first evaluated and then depending upon whether it is true
or false, the corresponding set of instructions are executed subsequently. C offers a
number of forms for the if statement. Let us now see the various forms of the if
statement:

4.2.1 The simple if statement:

The simple if statement takes the following form :

if (test condition)
{

statement block;
}

Control Statements / 75

statement -a;

The statement block can be a single statement or a set of statements which
are to be executed if the if condition evaluates to true. The statement block is to be
enclosed within a pair of braces or else the compiler will only execute a single statement
following

if. If the condition evaluates to false, then the block is skipped and statement-
a is executed. Here it is important to note that when the condition evaluates to true
the statement block is executed and then the statement-a is also executed. Fig.1
illustrates the flowchart of the simple if statement.

A few examples using the if statement will further elaborate this :

Example:

/* Program to illustrate a simple if statement */
main()
{

int a, b;
printf (“\nEnter values for a and b :”);
scanf(“%d%d”, &a,&b);
if(a >b)
{
printf(“\na is greater than b”);
}
printf(“\nEnd of example”);

}
A sample run of the program :
Enter values for a and b :10 20
End of example
Enter values for a and b :20 10
a is greater than b
End of example

C Programming / 76

When you run this program, and enter values for a and b, (in our case as 10
and 20 respectively) the test condition (a >b) is evaluated. Since a>b is false, the if
loop is skipped and the statement “End of example” is printed. In the second run of
the program the values of a and b are given as 20 and 10 respectively, a >b evaluates
to true and the statement “a is greater than b” is printed. The statement “End of
example” is also printed.

Example 2 :
/*Program to find whether the input number even */
main()
{

int num;
printf(“\nEnter any number:”);
scanf(“%d”, &num);
if (num % 2 == 0)
{
printf(“\nYou entered the number %d,” num);
printf(“\nThe number is even”);
}
printf(“\nEnd of example”);

}
Sample output :
Enter any number :20
The number is even
End of example
Enter any number :3
End of example
In the first run the input number entered is even, hence statement after if is

executed, in the second run the number input is odd, therefore if construct is skipped.
Note the use of braces after the if. When you want to execute multiple statements after
if then they must be enclosed within a pair of braces.

4.2.1 Check Your Progress.
1 What is the output of the following programs ?
a) main()

{
int a = 300, b = 0, c;
if(a >= 400)

b = 100;
c = 200;

printf(“\n a = %db = %d c = %d”, a,b,c); }
}
..

 ..

b) main()
{

int a = 600, b, c;
if(a >= 400)

b = 100;
c =20;

printf(“\n a = %db = %d c = %d”, a,b,c);
}

Control Statements / 77

..

..
2. The following is a program in C :

main()
{

int x = 10, y = 5, n;
if(n > 0)
x = x + 10;
y = y + 10;

}
What will be the values of x and y for n = 0 and n = 1 in the above
program?

..
 ...

 ...

3. Correct the errors if any and rewrite the statements given below :
a) main()

{
int i, j;
i = 10;
j = 5;
if(I >=j);

printf(“\ni is greater than j”);
}
..
..

b) main()
{

int i, j;
i = 10;
j = 10;
if(i=j)
printf(“\ni is equal to j”);

}
...

 ..

4.2.2 if-else statement :

There are situations where you may want to execute a statement (or a set of
statements) when the if condition evaluates to true and another statement (or a set of
statements) when the condition evaluates to false. In such cases we make use of the
if-else statement. The general form of the if-else statement is

C Programming / 78

if (test condition)
{

statement-block;
}
else
{

statement block;
}
statement-a;

The test condition is evaluated. if it is true the statement block following
if (called the if block) is executed, if it is false the statement block following
else (called the else block) is executed. The control is subsequently transferred
to statement-a. In any case only one statement block (either following if or
following else) is executed. Fig2 illustrates the flowchart of if-else.

We see the use of the if-else statement with the help of the following
programs :

Example :

/* Program to illustrate a if-else statement */
main()
{

int a, b;
printf (“\nEnter values for a and b :”);
scanf(“%d%d”, &a,&b);
if(a>b)
{

printf(“\na is greater than b”);
}
else
{
printf(“\na is less than or equal to b:’);
}
printf(‘\nEnd of example”);

}
A sample run of the program :

Control Statements / 79

Enter values for a and b :10 20
a is less than or equal to b
End of example
Enter values for a and b :20 10
a is greater than b
End of example

In the first sample run of the program the if condition evaluates to false, therefore
the else block is executed. In the second run if condition evaluates to true hence the
statement block after if is executed. In either case the statement “End of example”
is output.

Example : Modify the above program of even number using if-else to
print either the number is even or it is odd.

/*Program to find whether the input number is odd or even */
main()
{

int num;
printf(“\nEnter any number:”);
scanf(“%d”, &num);
if (num % 2 == 0)

printf(“\nThe number is even”);
else

printf(“\nThe number is odd”);
printf(“\nEnd of example”);

}
A sample output :
Enter any number :20
The number is even
End of example
Enter any number :3
The number is odd
End of example

Example 3:

/* Program to illustrate the use of if-else*/
main()
{

int marks;
printf(“Enter marks for student:”);
scanf(“%d”, &marks);
if(marks >= 40)
{

printf(“\nCongratulations ! You pass !!”);
}
else
{

printf(“\nSorry to say you fail”);
}
printf(“\nEnd of example”);

}

C Programming / 80

As the program illustrates, the condition is checked. If marks input are greater
than 40, the student is declared pass else declared fail. In either situation, only one
block is executed and the subsequent statement “End of example” is executed.

4.2.2 Check Your Progress.
1 What is the output of the following programs :
a) main()

{
int a = 300, b, c;
if(a >= 400)

b = 100;
else
{

b = 10;
c = 50;

}
printf(“\n a = %db = %d c = %d”, a,b,c);

}
...

b) main()
{

int x, y;
x = 1;
y = 1;
if (x ==y)

printf(“\nx and y are equal”);
else

printf(“\nx and y are not equal”);
}
...

2. The following is a program in C :

main()
{
int x, y, n;
x = 10;
y = 5;
if(n >0)

x = x + 10;
else

x = x + 20;
y = y + 20;
}
What will be the values of x and y for n = 0 and n = 1 in the above
program?
...

Control Statements / 81

4.2.3 Nested if - else statements :

It is possible to nest if-else statements in an if or else statement. i.e. we can
make use of more than one if-else statements by nesting them. There is not limit to
the number of if-else nesting. The general form of nested if-else is :

if (test condition 1)
{

if (test condition 2)
{

statement block-1
}
else
{
statement block-2;
}

else
{
statement block-3;
}

}
statement-a;

The flowchart in Fig3 shall explain the logic of these nested if-else statements.
If test condition 1 is true, then test condition 2 is evaluated. If true, statement block-
1 is executed otherwise statement block-2 is executed. If test condition has evaluated
to false, then statement block-3 is evaluated. Note that the second if-else construct
is nested in the outer if statement. You can nest any number of if-else blocks in a
program.

Let us see nested if-else with the help of the following examples :

Example 1 :

C Programming / 82

#include <ctype.h>
main()
{
char ch1;
printf(“\nEnter a character:);
ch1 = getchar();
if(isalpha(ch1) >0)

printf(“\nYou entered an alphabet”);
else

if(isdigit(ch1)>0)
printf(“\nYou entered a digit”);

else
printf(“You entered a character which is not alphanumeric”);

}
A sample output:
Enter a character :a
You entered an alphabet
Enter a character:%
You entered a character which is not alphanumeric

Note the first line of the program

#include <ctype.h>

This program has made use of the character functions isalpha and isdigit.
These functions are in the file cytpe.h and therefore this file should be included in the
program with the #include statement. In the first sample run the character entered is
a, hence isalpha is true. The else block is therefore skipped. In the second run
isalpha evaluates to false. Therefore the else block is entered. Here again there is a
if statement to check whether character is a digit. This condition evaluates to false so
the else block is executed. Follow the program sequence carefully with further sample
runs.

Example 2 :

/* Program to illustrate nested if-else */

main()

{

int marks;

printf(“Enter marks for student:”);

scanf(“%d”, &marks);

if (marks <75)

{

if (marks >= 60)

{

printf(“\nCongratulations ! You get a first class”);
}
else
{
printf(“\nYou get a second class”);
}

Control Statements / 83

}
else

{
printf(“\nHearty Congratulations ! You secure a distinction”);

}
printf(“\nEnd of example”);

}
The study of flow of this program is left to the student as a self study.

4.2.3 Check Your Progress.
1. Write programs in C for the following :

a) Enter the sex of a person as character ‘M’ for male and ‘F’ for female. If
person is female and age is less than 60 output “Not eligible for senior
citizen benefit” else output “Eligible for senior citizen benefit’. If person is
male and age is less than 65 output “Not eligible for senior citizen benefit”
else output “Eligible for senior citizen benefit”.

b) Input the cost price and selling price of an item. Check whether the sale has
effected a profit or a loss and by how much.

2. State if the following statements are true or false :

a) One if statement can have more than one else clause.

b) There have to be the same number of if statements are the number of else
statements in a program.

c) An if-else can be nested in an else.

d) if (a == b) is a valid expression of an if statement.

e) Every if should have a corresponding else.

4.2.4 The if-else ladder:

When multipath decisions are involved we make use of the if-else ladder. The
if-else ladder is a chain of ifs where each else has an associated if. The form of the
if-else ladder is :

if(condition_1)
statement_1;

else if(condition_2)
statement_2;

else if(condition_3)
statement_3;
———————
———————
else if(condition_n)
statement_n;
else
default;

statement-a;

In the if-else ladder the conditions are evaluated from the top down the ladder.
As soon as a condition is found true, the statement (statement block) associated with
it is executed and control goes out of the ladder to the statement-a. If all conditions
become false, the default statement in the final if statement is executed and subsequently

C Programming / 84

statement-a is executed.

Example :

The program makes use of the if-else ladder.

The percentage marks are entered and the grades are allotted as follows :
per >= 60 First Class
per >=50 and per <= 60 Second Class
per >= 40 and per <= 50 Pass Class
per < 40 Fail

main()

{

/* A program to print grades */

int per;

printf(“\nEnter percentage:”);

scanf(“%d”, &per);

if(per >= 60)

{

printf(“\nFirst class”);

}

else

{

if(per>=50)

{

printf(“\nSecond Class”);

}

else

{

if(per >=40)

printf(“\nPass Class”);

else

printf(“\nFail”);

}

printf(“\nEnd of Program”);

}

As you can see, the program becomes difficult to understand and debug with
such use of multiple if-else constructs. To overcome these difficulties we make use
of the logical operators with if-else. Let us see how to do this in the next section.

4.2.5 Use of Logical Operators with if statement:

We have already seen the logical operators of C in the previous chapter. Let us
see the use of these logical operators with the if statement. As we have noted before,
nested if-else statements and if-else ladders make programs difficult to read and
understand. They have also to be written carefully and debugging becomes difficult.
The corresponding if’s and else’s have to be matched correctly. In such situations, we
make use of logical operators and combine the if statements with the help of these
operators. The logical operators in C are :

Control Statements / 85

Operator Meaning

&& logical AND

|| logical OR

! logical NOT

These logical operators have already been introduced in the previous chapters.
Let us see how to make use of them with the help of the following program :

Input the percentage of marks obtained by a student.

If percent greater than or equal to 60 - First class

If percent between 50-59 - Second class

If percent between 40-49 - Pass class

If percent less than 40 - Fail

Example :

/* Program to illustrate the use of logical operators */
main()
{

int per;
printf(“\nEnter percentage :”);
scanf(“%d”,&per);
if(per>=60)

printf(“\nFlrst Class”);
if((per>=50)&&(per<60))

printf(“\nSecond Class”);
if((per>=40)&&(per<50))

printf(“\nPass Class”);
if(per<40)
printf(“\nFail”);

}

Here, we make use of the && operator to combine two conditions. If both the
conditions evaluate to true then the statement following the if will be executed. If either
of the condition evaluates to false, or if both evaluate to false then the statements
following if are skipped.

Example :

main()
{

/* Program to check greatest of three numbers a,b, c */
int a, b, c;
printf(“\nEnter value for a :”);
scanf(“%d”, &a);
printf(“\nEnter value for b :”);
scanf(“%d”, &b);
printf(“\nEnter value for c :”);
scanf(“%d”, &c);
if((a >b) && (a > c))

C Programming / 86

printf(“\na is the greatest number”);
else
{

if((b>a) && (b>c))
printf(“\nb is greatest”);

else
printf(“\nc is greatest”);

}
}
A sample output:
Enter value for a : 100
Enter value for b : 150
Enter value for c : 5
b is greatest

4.2.6 Hierarchy of Logical Operators :

When using logical operators, relational operators and arithmetic operators together
it is important to know in what sequence they will be evaluated. This is especially
important in situations when you are combining multiple expressions involving these
operators with the help of logical operators. The following table shows the hierarchy of
arithmetical and logical operators. The operator at the topmost position has the highest
priority and down the list the priority goes on decreasing.

Operator Type

! Logical NOT

* / % Arithmetic and modulus

+ - Arithmetic

< <= > >= = Relational

== != Relational

&& Logical AND

|| Logical OR

= Assignment

This table will be useful to you when you are combining number of expressions
while writing programs.

4.2.4, 4.2.5 & 4.2.6 Check Your Progress.
1. Correct the following set of statements and rewrite :
a) char ch1, a = ‘n’, b =’z’

if (ch1 = a or ch1 = b)
printf (“\n You entered the correct code”);

else
printf(“Enter again”);

..
 ..
 ..
 ..

Control Statements / 87

b) if(a<=10 and b = 5)
printf(“\nCorrect values)
..
..

c) int i = 5, j = 2;
if(i = 5 || j != 2)

printf(“Check again!”);
..
..

d) (a == b) && (!c) | b & c);
...

 ..

2. Write a program in C to determine whether a character entered from
the keyboard is:
a capital letter or a small letter or a digit or a special symbol
(Hint : Make use of the ascii values of characters as given in the previous
chapter)

3. Write a program to find the smallest of three numbers a, b and c.
(First check whether all three are equal. If they are do not attempt to check
further for the smallest.)

4.3 THE SWITCH STATEMENT
We have seen that we can make use of multiple if-else statements in our

programs to control selections. However, as the number of options goes on increasing
the complexity of programs also increases. The program becomes difficulty to read and
understand. C provides the switch statement to avoid the use of such series of if
statements. The general form of this switch control statement is :

switch (integer expression)
{

case constant-1:
statement block -1;
break;

case constant-2;
statement block-2;
break;

default:

default statement block;
break;

}
statement-a;

An integer expression is enclosed in a parenthesis following the switch keyword.
It is any C expression which will yield an integer value. The keyword case is followed
by an integer or character constant. Each constant in each case should be different
from all others. The switch statements works as follows :

C Programming / 88

- First, the integer expression following switch is evaluated. The expression
evaluates to an integer as we learnt.

- Then, the value of the expression is matched one after the other, with each
case constant. When a match is found, the statement block following that particular
case is executed. The break statement signifies the end of each case and causes
an exit from the switch statement and control is transferred to statement -a. The
default statement is optional. It will be executed if the value does not match any of
the case values.

Here care has to be taken to include the break statement. If a break statement
is not inserted in the case then the program not only executes the statements following
the case where the match has been met, but also all the following case statements
and the default statement as well.

Fig.4 shows the flowchart for the switch statement. Go through it carefully and

study it.

Control Statements / 89

We shall now see the use of the switch statement with the following example
:

Example 1:

/* Example to illustrate the use of the switch statement */
main()
{
int grade;
printf(“Enter code for grade :”);
scanf(“%d”, &grade);
switch(grade)
{

case 1:
printf(“\nDistinction”);
break;

case 2:
printf(“\nFirst Class”);
break;

case 3:
printf(“\nSecond Class”);
break;

case 4:
printf(“\nFail”);
break;

default:
printf(“\nResult Declared”);
break;

}
printf(“\nEnd of example”);

}
A sample output:
Enter code for grade : 4
Fail
End of example

The switch statement leads to a more structured approach as compared to the
multiple ifs. The switch statement is used often for menu selection. Let us make use
of the switch statement to learn how to use char values in case and switch :

Example :

main()
{
char ch1;
printf(“\n File”);
printf(“\n Edit”);
printf(“\n View”);
printf(‘\n Window”);
printf(‘\n Help”);

C Programming / 90

printf(“\n\nType the first alphabet of any menu item to select:”);
scanf(“%c”,&ch1);
switch (ch1)
{

case ‘F’:
case ‘f :

printf(“\nYou have selected File option”);
break;

case ‘E’:
case ‘e’:

printf(‘\nYou have selected Edit option”);
break;

case ‘V:
case v:

printf(“\nYou have selected View option”);
break;

case ‘W:
case ‘w’:

printf(“\nYou have selected Windows option”);
break;

case ‘H’:
case ‘h’:

printf(“\nYou have selected Help option”);
break;

default:
printf(‘\nNo option selected”);

}
}

Note in the above program that there are no statements after the case statements
following the capital alphabet eg. there are no case statements after case ‘F’ : or case
‘W’. In such situations, if you entered the character ‘F’ there are no statements after
‘F’. Hence control goes to the next case which is ‘f. The statements in this case
therefore get executed. (Since there is no break statement in the case after ‘F’). Thus
your program will work for both options of uppercase and lowercase alphabets of the
menu. Go through the program carefully and understand its working thoroughly. Such
programs have to be written with great care and the order of case statements is also
very important.

You can also mix char and int constants in a case eg.

switch(i)
{

case ‘a’ :
printf(“\nA char constant”);

case 5 :
printf(‘\nAn int constant”);

default:
printf(“\nMixinq of int and (+)(+)(+),

}

One more thing to remember about case : Even if you have to execute multiple
statements after case, it is not necessary to enclose them within a pair of braces.

Control Statements / 91

4.3 Check Your Progress.
1. State True or False.
a) A switch expression can be of any type.
b) Program execution stops when a break is encountered.
c) Every case statement need not have a statement after it.
d) Char values can be used in switch.
e) case (i <=20) is not valid in C.

2. Write a program to add, subtract, multiply, divide two numbers a and b using
the switch statement. Each case in switch should perform one of the above
operations. The default shall indicate that no operation has been performed.

3. Find the errors in the following statements and rewrite correctly.
a) switch (i)

case 1;
case 2 :
default
...

b) switch (m)
case ‘z’:

printf(“\nz”)
case ‘1’

printf(“\n1”);
default:

printf(“End”);
...

4.4 THE CONDITIONAL (?:) OPERATOR
We have seen the conditional operator in the previous chapter. C has one

conditional operator. The syntax of the conditional operator in C is

exp1 ? exp2 : exp3;

where exp1, exp2 and exp3 are expressions. Here, exp1 is evaluated first. If it is
true (non zero), then exp2 is evaluated and it becomes the value of the expression. On
the other hand if exp1 is false, then exp3 is evaluated and its value becomes the value
of the expression. The conditional operators need not be used only in arithmetic statements.

Let us now see the use of this conditional operator for making two way decisions
i.e. make use of the conditional operator like the if statement.

eg.
if (x==0)

y = 0;
else

y = 10;

In the above if-else statement, if x==0 is true then y is assigned a value 0 else y
is assigned a value 1. Now in place of the if-else you can make use of the conditional
operator as follows:

y = (x==0)?0:10 ;

Here also the value of the expression x == 0 is evaluated first. If it is true then y
is assigned the value of the first expression (i.e. the value 0) else y is assigned the value
of the second expression (i.e value 0).

C Programming / 92

Let us make the use of the conditional operator to write a program to calculate
the discount offered for purchase depending upon the following criteria :

purchases <= 1000 1% discount

purchases > 1000 and purchases < 2500 2% discount

Example 1 : To illustrate the use of the conditional operator

main()
{

/* Program to illustrate conditional operator */
int pur;
float dis, total;
printf(“\nEnter purchase value:”);
scanf(“%d”, &pur);
dis = (pur <= 1000) ? pur * 0.1 : pur * 0.2;
total = pur- dis;
printf(“\nThe discount is : %7.2f”, dis);
printf(“\nThe discounted price is : %8.2f”, total);

}

Nesting of Conditional Operators :

Conditional operators can be nested as in the case of if statements. The limitation
of the conditional operator is that you can have only one statement after the ? or the
: whereas with the use of if-else constructs you can have statement blocks after the
if or else statements.

We shall now modify the above program to illustrate the use of conditional
operator for nested if:

purchases >= 5000 5 % discount
purchases < 5000 and purchase>= 1000 2 % discount
purchase < 1000 1 % discount

Example 2 :

main()
{

/*Program to illustrate use of conditional operator for nested if*/
int pur;
float total, dis;
printf(‘\nEnter purchase value :”);
scanf(“%d”, &pur);

dis = (pur >= 5000) ? (pur * 0.05) : ((pur < 1000) ? (pur * 0.01) : (pur * 0.02));
total = pur- dis;
printf(“\nThe discount is : %7.2f”, dis);
printf(“\nThe discounted price is : %8.2f”, total);

}
Sample output for various test conditions :
Enter purchase value : 6000
The discount is : 300.00
The discounted price is : 5700.00
Enter purchase value : 900

Control Statements / 93

The discount is : 9.00
The discounted price is : 891.00
Enter purchase value : 4000
The discount is : 80.00
The discounted price is : 3920.00

4.4 Check Your Progress.

1. Rewrite the above program of the discount on purchase (Example 2) by
making use of nested if.

2. Make use of the conditional operator and write a program to find out the
salary on the basis of the following information :

salary = basic + 2 * basic for basic = 2000

salary = basic + 3 * basic for basic > 2000

salary = basic + basic for basic < 2000

4.5 THE GOTO STATEMENT
C supports the goto statement for unconditional branching from one point in the

program to another. The syntax for the goto statement is :

goto label;

label :
statement-1;
statement-2;

Thus, the goto statement requires a label. The label identifies the place in the
program where the program control is to be transferred when the goto is encountered.
The label is any valid variable name. The same label is to be placed before the
statement to which the control is to be transferred. At this point the label is to be
followed by a colon. The label can be placed anywhere in the program, either before
the goto or after the goto. Thus when a goto is encountered, the flow of control jumps
to the statement following the label unconditionally. The following example will illustrate
the use of the goto :

Example:

/* Program to illustrate the use of goto*/
main()
{

int i;
printf(Enter value for i:”);
scanf(“%d’, &i);
if (i < 0)

goto out;
else
{
printf(The number you entered is : %d”, i);

C Programming / 94

exit;
}
out:
printf(“You entered a negative number!”);

}

In this program, when you enter a negative value for i, the goto statement will
transfer control to the out label causing the printf to be executed. Note here that the
exit is a standard library function which terminates the execution of the program. We
have terminated the program in the else statement with the use of exit, since we do
not want to output the statement “You entered a negative number” after executing the
else loop.

A goto statement can be used to transfer the control to the beginning of the
program to read further input data. Another use of goto is in situations when control
is to be transferred out of a loop for peculiar conditions. However, one should try to
avoid the use of goto statement in programs. This is because the programs become
unreadable and difficult to debug when goto is used. Also, in most situations the
purpose of the goto can be served by making use of the more logical constructs like
if, for, while, switch.

Unconditional goto statements can cause a program to go into an infinite loop
and execute forever. You will have to specially terminate the loop. The following example
will illustrate :

Example :

main()
{

int x;
sq:
scanf(“%d”, x);
x = x * x;
printf(‘\nSquare of x : %d”, x);
goto sq;

}

In the above program, the square of integer value x will be computed and then
control will again go to scanf. This process will continue infinitely. Such infinite loops
should be avoided in programs.

4.5 Check Your Progress.
1. Write in short about the goto statement.

..

...

4.6 SUMMARY
While writing programs, it is often necessary to change the order of execution

of statements depending upon certain conditions. It is also required to execute an
instruction or a set of instructions until a specific condition is met. It is necessary to
take decisions and depending upon the result of the decision appropriate statements
are to be executed i.e. we are required to execute a set of instructions in a particular
situation and an entirely different set of instructions in other situations.

Control Statements / 95

The C language has the following decision making instructions :

- if statement

- If else statement

- Nested if else statement

- else if ladder

- switch statement

- conditional operator statement

- goto statement

4.7 CHECK YOUR PROGRESS - ANSWERS

4.2.1

1. a) a = 300 b = 0 c = 200

b) a = 600 b = 100 c = 20

2. x = 10y = 15

x = 20 y = 15

3. a) main()
{

int i, j;
i = 10;
j = 5;
if(i>=j)
printf(“\ni is greater than j”);

}

b) main()
{

int i, j;
i = 10;
j = 10; if(i==j)
printf(“\ni is equal to j”);

}

4.2.2

1. a) a = 300 b = 10 c = 50

b) x and y are equal

2. x = 30 y = 25

x = 20 y = 25

4.2.3

1. a) main()
{

char sexcode;
int age;
printf(“Enter sexcode (M for Male and F for Female”);

C Programming / 96

scanf(“%c”, &sexcode);
printf(“Enter age :”);
scanf(“%d”, &age);
if(sexcode == ‘F’)
{

if(age < 60)
printf(“Not eligible for senior citizen benefit”);

else
printf(“Eligible for senior citizen benefit”);

}
else
{

if(age < 65)
printf(“Not eligible for senior citizen benefit”);

else
printf(“Eligible for senior citizen benefit”);

}
}

b) main()
{

int cp, sp, pl;
printf(“Enter Cost Price of the item :”);
scanf(“%d”, &cp);
printf(“Enter selling Price of the item :”);
scanf(“%d”, &sp);
if(cp > sp)
{

pl = cp - sp;
printf(“The sale effected a loss of Rs. :”);
printf(“%d”, pl);

}
else
{

pl = sp - cp;
printf(“The sale effected a profit of Rs. :”);
printf(“%d”, pl);

}
}

2. a) False
b) False
c) True
d) True
e) False

4.2.3, 4.2.4 & 4.2.5

1. a) char ch1, a = ‘n’,b = ‘z’;
if (ch1 == a || ch1 == b)

printf (“\nYou entered the correct code”);
else

printf(“Enter again”);

Control Statements / 97

b) if(a<= 10&&b==5)
printf(“\nCorrect values”);

c) int i = 5, j = 2;
if(i==5||.j!=2)

printf(“Check again!”);

d) (a == b) && (!c) | b && c

2. main()
{

char ch;
printf(“Enter a character:”);
scanf(“%c”, &ch);
if(ch >= 65 && ch <= 90)

printf(“You entered an uppercase character”);
if(ch >= 97 && ch <= 122)

printf(“‘You entered a lowercase character”);
if(ch>= 48 && ch <= 57)

printf(“You entered a digit”);
if((ch >= 0 && ch <= 47) || (ch >= 58 && ch <= 64) || (ch >= 91 && ch
<= 96) ||
(ch>=123&&ch<= 127))

printf(“You entered a special symbol”);
}

3. main()

{
int a,b,c;
printf(“Enter values for a, b, c :”);
scanf(“%d%d%d”, &a, &b, &c);
if ((a == b) && (b == c))

printf(“AII a,b,c are equal”);
else
{

if(a < b)
{

printf(“The smallest number is a”);
}
else
{

if(b < c)
printf(“The smallest number is b “);

else
printf(“The smallest number is c”);

}
}

}

4.3

1. a) False

b) False

C Programming / 98

c) True

d) True

e) False

2. main()
{

int a,b;
char ch;
a = 100;
b = 25
printf(“Enter choice :”);
scanf(“%c”, &ch);
switch(ch)
{

case ‘A’:
case ‘a’: printf(“Addition is: %d”, a + b);

break;
case ‘S’:
case ‘s’: printf(“Difference is : %d”, a - b);

break;
case ‘M’:
case ‘m’ : printf(“Product is : %d”, a* b);

break;
case ‘D’:
case ‘d’: printf(“Quotient is : %d”, a/b);

break;
default: printf(“No operation has been performed”);
}

}

3. a) switch (i)

{

case 1:

case 2 :

default:

}

b) switch (m)
{

case ‘z’:
printf(“\nz”);

case 1 :
printf(“\n1”);

default:
printf(“End”);

Control Statements / 99

4.4

1. main()
{

int val;
float dis, total;
printf(“Enter value of purchases :”);
scanf(“%d”, &val);
if(val<1000)
{

dis = val * 0.01;
total = val - dis;

}
else
{
if(val < 5000)
{

dis = val * 0.02;
total = val - dis;

}
else
{

dis = val * 0.05;
total = val - dis;

}
}
printf(“\nThe discount is : %.2f”, dis);
printf(“\nThe discounted price is :%.2f, total);

}

2.

main()
{

int sal, newsal;
printf(“Enter Salary :”);
scanf(“%d”, &sal);
newsal = sal < 2000 ? sal * 2 :(sal > 2000 ? sal * 4 :sal * 3);
printf(“\nThe salary is : %d”, newsal);

}

4.5

1. The goto statement provides unconditional branching from one point in the
program to another. The syntax for the goto statement is :

goto label;

label :

statement-1;

statement-2;

C Programming / 100

The label identifies the place in the program where the program control is to be
transferred when the goto is encountered. When a goto is encountered, the flow
of control jumps to the statement following the label unconditionally. A goto
statement can be used to transfer the control to the beginning of the program
to read further input data. Another use of goto is in situations when control is
to be transferred out of a loop for peculiar conditions. However, one should try
to avoid the use of goto statement in programs. This is because the programs
become unreadable and difficult to debug when goto is used. Unconditional goto
statements can cause a program to go into an infinite loop and execute forever.

4.8 QUESTIONS FOR SELF STUDY
1. Explain the following with the flowchart :

a) The if-else statement.
b) The switch statement.

2. Write short notes on :

a) The conditional operator in C
b) The goto statement.
c) Use of logical operators with if statement.

3. Which are the decision making statements in C? Compare the multiple if-else
statement and the switch statement.

4. List the hierarchy of arithmetic relational and logical operators in C starting from
the highest.

4.9 SUGGESTED READINGS
Let us C : Yashwant kanitkar

The Spirit of C : Mullish cooper

Programming in ANSI C : Balguruswamy

Control Statements / 101

NOTES

C Programming / 102

NOTES

Loops / 103

CHAPTER 5

LOOPS

5.0 Objectives
5.1 Introduction
5.2 The while statement
5.3 The do-while statement

5.3.1 More about while and do
while

5.4 The for statement
5.4.1 More about for loops
5.4.2 Nesting of for loops

5.5 The break statement
5.6 The continue statement
5.7 Summary
5.8 Check Your Progress - Answers
5.9 Questions for Self-Study
5.10 Suggested Readings

5.0 OBJECTIVES
Friends,

after study this lesson you will be able to-

• state the meaning of loops

• explain the loop constructs in C - while, do-while and for

• use loop nesting

• use break and continue statements in loops

• write much more sophisticated and interesting programs in C.

5.1 INTRODUCTION
Uptil now, we have seen how to use the sequential and decision control structure

to write programs. In this chapter, we shall see the loop control structures in C. Loops
are used in order to execute an instruction or a set of instructions repeatedly until a
specific condition is met.

Thus, in looping, a sequence of statements will be executed until some condition
for the termination of the loop is satisfied or they will be executed for a specified
number of times. The first one is variable loop and the second from of loops is the fixed
loop.

A program loop has two segments :

- the body of the loop (It is the set of statements which are to be executed till
the condition is satisfied)

- the control statement

(The statement which will check the conditions and direct the program to execute
the body till the condition is true)

Fig. 1 illustrates the loop control structure.

In the logic depicted in Fig.1 a, the test condition is first checked and then the
body of the loop is executed if the condition is true. If the condition is not true the body

C Programming / 104

of the loop will not be executed. Such a loop is called as entry controlled loop. In
Fig. 1b, the body of the loop is executed without checking the condition for the first
time. Then, the test condition is checked. Such a structure is called as exit controlled
loop. Thus, in an exit controlled loop, the body of the loop will be executed at least
once (even if the test condition is false for the first time).

It is important that we state our test conditions for the loops with great care. The
loop should perform the desired number of executions only and then transfer control
outside the loop. If by mistake, we give an erroneous test condition, the body of the
loop may be executed over and over again infinite number of times. The control may
not be transferred out of the loops. Such situations set up infinite loops.

C language provides three types of loop constructs to repeat the body of the loop
a specified number of times or until a particular condition is met. They are :

- The while statement
- The do-while statement
- The for statement

5.2 THE WHILE STATEMENT
The general form of the while statement is

while (test condition)
{

body of the loop;
}

The while construct starts with the while keyword followed by the test condition
in the parenthesis. The body of the loop is included in the pair of braces. (The pair of
braces is not required if there is only one statement within the loop body. If there are
more than one statements, the braces are essential. It is a good idea to have the
braces anyway).

When the while keyword is encountered the test condition is checked. (This

Loops / 105

means that the while loop is an entry controlled loop construct). If it evaluates to true,
the body of the loop is executed. Then the control again goes back to while. The
condition is checked and again the body of the loop executed if true. Thus, the process
repeats until the condition in the while loop evaluates to true. When the condition finally
becomes false, the body of the loop is skipped and control is transferred to the
statement which immediately follows the body of the loop.

The following example will illustrate the use of the while statement:

Example:

/* Program to calculate the sum of first ten numbers */
main()
{

int i, sum;
sum = 0;
i = 1;
while(i<=10)
{

sum = sum + i;
 i = i ++;

}

C Programming / 106

printf(“\nThe sum is %d”, sum);
}
The output of the program :
The sum is 55
The flowchart of the above program is depicted in Fig.2

This program calculates the sum of the first ten numbers. Thus it will get
executed for the value of the variable i = 1, 2, 3, ... 10. When i becomes 11, the while
condition will become false and the body of the loop will not be executed. The control
will be transferred to the printf statement.

From the above example you can see that the while loop is useful in situations
where you want to execute a set of instructions for a specified number of times. Thus
a while loop in general will include the following steps :
- Initialise the counter (to execute the instructions for a specified number of times)

- Check the test condition
- Execute the body of the loop
- Increment the counter and again go back to checking the condition
The test condition in a while loop may use relational and logical operators. The
while loop must have a test condition in such a way that finally it has to become
false at some point, else it will fall in an infinite loop.
It may so happen that erroneous coding and initialisation results in a program
falling in a situation where it will never come out of a loop. The following code
is an example which will make the program fall in an infinite loop :

Loops / 107

Example:

main()
{

int i;
while (i<=10)

{
i =1
printf(“\nThe value of i %d”, i);
i = i ++;

}
}

Every time the program enters the body of the loop, it will reset the counter i
to 1. Therefore the test condition will always be true and the program control will never
fall out of the loop.

When using the counter, you can not only increment it, but also decrement it.
Further the counter need not be an integer type only. It can also be real, Let us
rewrite the above program by decrementing the counter:

Example:

/* Program to calculate the sum of first ten numbers */
main()
{

int i, sum;
sum = 0;
i = 10;
while(i>=1)
{

sum = sum + i;
i = i-1;

}
printf(“The sum is %d”, sum);

}

Here we initialise the counter variable i to 10 and decrement it in the body of the
loop. The loop gets executed till the value of i becomes 1 (i.e. decrements from 10 to
1)

In all the above examples we can make use of the increment/decrement operators
in place of statement like i = i + 1; or i = i - 1. We have studied these operators in
our previous chapters. To revise, let us see them again here :

C has ++ as the increment and - as the decrement operator. The increment
operator adds 1 to the operand and the decrement operator subtracts 1 frorn the
operand. Both are unary operators.

Form of the Increment operator:
++a ;

C Programming / 108

or
a++;
which is equivalent to
a = a + 1;
Form of the decrement operator:
--a;
or a--
which is equivalent to
a = a - 1;

Example :

The following example will illustrate the use of the while loop to read a character
and print it until the escape sequence “\n” is encountered :

/*Program to illustrate the use of getchar() and putchar() in a while loop*/
#include “stdio.h”
main()
{
char ch 1;
ch1 = getchar(); /* Read a character*/
while(ch1 != “\n”);
{

ch1 = getchar();
putchar(ch1);
}

}

The Odd Loop : (Variable Loop)

We have used the while loop so far to write programs where we knew the number
of times the loop was to be executed. But in actual practice, there may be numerous
situations where it is not known in advance how many times the loop is to be executed.
Such programming situation is demonstrated with the help of the following example :

Example :
/*Program to demonstrate the odd loop */
main()
{

char ans = ‘Y’, ch1;
while(ans == ‘Y’)
{

ch1 = getche();
printf(“\nYou entered : %c”, ch1);
printf(“Do you want to continue (Y/N) ?”);
scanf(“%c”, &ans);

}
}

In this program, you read a character from the keyboard using the getche()
function and print the same on the screen. You then prompt the user whether he wishes
to input another character. If the user enters ‘Y’, the while loop gets executed again.
This process will continue till you keep entering a ‘Y’ to enter more characters. The
moment you enter any character other than ‘Y’, the loop will terminate. Thus, it is
possible to execute such while loops as many times as desired.

Loops / 109

5.1 & 5.2 Check Your Progress
1. What will be the difference in the output, if any, in the examples

(i) and (ii) in each of the following :

a) (i) int a = 1;
while(a==1)
{

a = a - 1;
printf(“\n%c”, a);

}
(ii) int a = 1;

while(a==1)
a = a -1;

printf(“\n%d”, a);

b) (i) int a = 2;
while(a >=1)
{

a = a -1;
printf(“\n%d”, a);

}
 (ii) int a = 2;

while(a >= 1)
a = a -1;

printf(“\n%d”, a);

2. Which of the following statements are valid :

a) c = a ++ - b;

b) while(i = 10)

c) while(p <=q)

d) while(z!=10)

e) while(i > 10 && (j < 50 || k> 20))

3. Fill in the blanks :
a) In an controlled loop, the body of the loop will be

executed at least once.
b) A program loop has two segments and

...........................
c) The loop constructs which C provides are,

............................. and
d) The loop is used where it is not known in advance

how many times the loop is to be executed.

5.3 THE DO-WHILE STATEMENT
As we have seen in the previous section, the while loop checks the test

condition before executing the body of the loop i.e. it is an entry controlled loop.
Hence, if the test condition is false for the first time itself the loop may not get
executed at all.

C Programming / 110

Another form of loop control is the do-while. This loop construct is an exit
controlled loop i.e. it checks the test condition after executing the loop body. The body
of the loop thus gets executed at least once in a do-while loop. This is the only
difference between the while and do-while. Otherwise, while and do-while behave exactly
in the same way. There are very few programming situations in actual practice where
the do-while loop is required.

The general form of the do-while is :
do
{

body of the loop
}
while(test condition);

When the program encounters the do statement, it executes the body or the
loop first. It then checks the test condition and if true transfers the control back to the
first statement in the loop body. This process continues till the test condition is true.
When the condition becomes false, the subsequent statement is executed. Fig3.
shows the flowchart for the do-while construct.

We shall see the use of do-while with the following example :

Example:
/* Program to illustrate the use of the do-while*/
main()
{

int i, prod;
i=1
prod=1;

Loops / 111

do
{

prod = prod * i;
i++;

}
while(i<=10);
printf(“The product of the first 10 numbers is %d”, prod);

}

This program calculates the product of the first ten numbers 1,2,3... 10.

5.3.1 More about while and do-while :

- In the While and do-while loop constructs multiple expressions can be
combined with the help of logical operators.

eg. while((i<=10)&&(a>b))

Here the while loop will be executed only if both the expressions are true since they
are connected by the logical AND operator.
A few other examples :
while ((a< = b) || (z > 0))
while ((a< b) || (b > c) || (c >d)
- Nesting of while loops :
It is also possible to nest one while loop inside another. Let us see how to do this with
the help of the following example :
Example : The program illustrates nested while

main()
{

int i, j;
i = 1;
j = 1
while (i <=5)
{

j = 1;
while (j <=5)
{

printf(“*”);
j=j + 1;

}
printf(“\n”);
i = i + 1;

}
}
The output of the program is :

This program contains two nested do-while loops. The inner dowhile executes
five times for each iteration of the outer while. Note that when the inner loop is

C Programming / 112

executing it prints one * each time on the same line. After j becomes 6 this loop exits,
and the printf takes the cursor to the new line. i is incremented and the inner loop
again gets executed five times. Carefully follow the program through each step.

5.3 Check Your Progress.
1. Answer the following :
a) What is the difference between the while and the do-while?

...
 ...

b) What is meant by nesting of loops ?
...

 ..

c) How will you combine multiple expressions in a while loop ?
..

 ..

2. Determine how many times each of the following loops will be
executed.

a) x = 5;
while (x<= 10)
{

printf(“%d”, x);
}
...

 ...

b) i = 1;
do
{

printf(“\nExample of do-while”);
i = i + 1;

}
while (i <=1);
...
...

c) i = 1;
while (i <=1)
{

printf(“\nExample of while”);
i = i + 1;

}
...
...

3. Write a program to find ab by making use of while, (i.e a x a xa ..
b times)

..
 ..

Loops / 113

5.4 THE FOR STATEMENT
The for statement is probably the most frequently use loop construct. The for

statement provides initialisation of counter, test condition and counter increment all in
a single line. The general form of the for statement is :

for(initialisation; test-condition; increment)

{
body of the loop;

}

We specify the following things in the parenthesis following the for keyword :
- First is the initialisation of the loop counter. This is done with the use of

assignment operators as :
i = 1 or k = 1 or count = 0
- Second is the test condition which determines when the loop will exit. The body

of the loop is executed till the test condition is true. When it becomes false, the loop
is exited.

- Third is incrementing the value of the loop control variable (counter) after the
loop body has be executed. The new value of the counter is again checked to see if
it satisfies the loop condition.

Fig. 4 shows the flowchart for the for loop :

The for loop is an entry controlled loop construct. It first checks the test
condition and if it is true only then it executes the loop body. We shall see how to use
the for loop with the help of this example :

Example :

/* Program to illustrate the use of the for loop */
main()

C Programming / 114

{
int i;
for(i = 1; i <=5; i++)
{
printf(“The value of i %d\n”, i);
}

}

The program prints the values of i from 1 to 5.

It is clear from the above, that the value of the loop counter also called the
control variable is initialised to 1 in the for loop. The test condition (i <= 5) is then
checked. If it is true, the loop body is executed. The counter is then incremented and
the test condition checked again. This sequence continues till the test condition is true.
When it becomes false the loop body is exited. Note that the statements enclosed
within the parenthesis are separated by semicolons. There is no semicolon after the
increment statement and after the for statement.

5.4.1 More about for loops :

- As in the case of while, we can not only increment but also decrement the
value of the control variable in the for statement.

- You can also omit one or more sections of the for loop. eg.

main()
{

int i;
i = 1; for(;i<=10;)
{

printf(“%d\n”,i);
i = i++;

}
}

Here the initialisation of the counter variable is done before the for statement.
Also the counter is incremented within the for loop and not in the for statement. This
is allowed. However, the semicolons are a must although there are no statements
of initialisation and counter increment in the for statement itself. Be careful to
use them if you are trying to initialise or increment the counter outside of the for
statement. Note that if you do not set any test condition the for statement will fall in
an infinite loop.

- You can also initialise more than one variable in a for statement as follows :

k=1;
for (i = 1; i<=10 ; i++)
{
body of the loop
}
can also be written as
for(k=1, i=1; k=10, i++)
{
body of loop
}

Note that the initialisation section initialises the variable k and i. These variables
are separated by a comma.

- The increment section can also have more than one part where each part will

Loops / 115

be separated by a comma. eg.

for(i = 1; i<=10; i++, p=p+1)

is a valid for statement.

- It is also possible to increment and compare the counter in the same statement
eg. for (i = 0; ++i <=10;)

Here the counter is incremented and compared in the same statement ++i <=10.
Since the increment operator has a higher priority the counter will first be incremented
and then compared. Remember it is necessary to initialise i to 0. Also take a note of
the semicolon after ++i <= 10.

-The test condition need not be limited only to the loop control variable. It can
be a compound relation combining two or more arithmetic relations with logical relations
eg. for(i = 1; k=10 && sum <100;i++)

This loop will check both the test conditions (i <=10 and sum <100). If both are
true then the for loop will be executed. (Refer the truth table of logical operators in the
previous chapter).

Before proceeding to the next section carefully study all the above variations of
the for loop and practice them with various examples.

5.4.2 Nesting of for loops :

We have seen how if statements and while statements can be nested. Similarly
it is possible to nest for statements. The nesting of loops can be best demonstrated
with the help of an example :

Example : We shall use the same example of printing * which we have used
for demonstrating the nested while loop.

/* Program to illustrate nesting of for loops */
main()
{
int i, j.sum;
for(i=1 ;i<=5;i++)
{

for(j=1 ;j<=5;j++)
{
printf(“*”);
}
printf(“\n”);

}
}
The output of this program will be :

For each value of i (from i = 1 to i = 5) the inner loop (for j = 1 to j = 5) will
be executed five times. The variable j will take values from 1 to 5. When j is incremented
next time, its value becomes 6 and the inner for loop is exited. The printf(“\n”) will take
the cursor to the next line. Then the value of i (the control variable of the outer loop)
will be incremented. If the test condition is true, the program will enter the body of the
loop. The variable j will again be initialised to 1 and the loop will be executed five times.
This process will continue till the test condition becomes false.

C Programming / 116

5.4 Check Your Progress.
1. Correct the following statements and rewrite :
a) (for i == 1, i < 10, i++);

...

b) for (count = 0; count <= 5 && k > 2; count++;)
...

c) i = 0;
for (i < 5, i++)
...

2. Write the following program using for loop to generate the following
output:

**

*

3. Write a program to print the sum of the first five odd numbers using for
loop.

4. Write a program to print the first five odd numbers after any number input
from the keyboard.

5.5 THE BREAK STATEMENT
In some situations it may be required to jump out of the loop without going back

to the test conditions. For example, if you are checking a list of names and at the first
occurrence of a particular name you wish to exit the for loop or as soon as you
encounter the first even number in a list you wish to exit the for loop. In such situations
we make use of the break. We have seen the use of the break keyword when we
studied the case construct. break works in the same way in for and while loops as
it works in the case construct.

When the break statement is encountered in a loop, the loop is exited and the
control is transferred to the statement immediately following the loop.

The use of the break keyword for various loop constructs is illustrated below :

with the while statement as:

while(test condition)
{

if(condition)
break;

}
statement-a;
with a do statement as :

Loops / 117

do
{

if(condition)
break;

}while(--------)
statement-a;

with the for statement as :

for (--------)
{

if(condition)
break;

}

statement-a;

In the process of executing the loop in each of the above situations, when the
break is encountered the loop is exited. Thus in the above, if the condition in the
parenthesis after if is true, the loop is exited and control is transferred to statement-
a.

Let us use the break statement to write a program

Example : To illustrate the use of break

main()
{

char ch;
ch = getchar();
while(ch != ‘N’)
{

if(ch=’z’)
break;
printf(“%c”, char);
ch = getchar();

}
}

The program will read a character from the keyboard till the user inputs ‘N’.
Within the loop body if the character read is ‘z’ it will break from the while loop. Study
the program carefully and rewrite for various conditions.

5.6 THE CONTINUE STATEMENT
The continue statement passes the control to the beginning of the loop. Thus

when a continue is encountered in a loop, the following statements inside the body
of the loop are skipped and control is transferred to the beginning of the loop for the
next iteration.

C Programming / 118

Thus, the difference between the break and the continue is that break causes
the loop to be terminated whereas continue causes the following statements to be
skipped and continue with the next iteration.

The use of continue in loops is illustrated below :

in while
while(test condition)
{

if(condition)
continue;

}

in the do-while
do
{

if(condition)
continue;

} while (test condition)

in the for loop
for(initialisation;test condition;increment)
{

if(condition)
continue;

}

In the while and do while when the continue statement is encountered the
remaining statements in the loop body are skipped and the test condition is checked.
In the case of for statement, when the continue statement is encountered the remaining
statements in the body of the loop are skipped, the counter is incremented and then
the test condition is checked.

Let us see the use of the continue :

Example :
main()
{

int num = 1;
while(num != 0)
{

printf(“\nEnter number:”);

Loops / 119

scanf(“%d”, &num);
if(num%2 == 0)

continue;
printf(“\nNumber is %d”, num);

}
}
A sample output:
Enter number: 2
Enter number: 3
Number is 3
Enter number: 7
Number is 7
Enter number: 0

If a number entered is even then the remaining part of the loop is skipped with
the continue statement. On the other hand, if the number is odd the number is printed.
The user will be inputting numbers till he enters a 0. Upon entering a 0, the program
ends.

5.5 & 5.6 Check Your Progress.
1. Write in brief about 2/3 lines
a) The break statement:

...
 ...

b) The continue statement:
...

 ...

1. Select the correct option :

a. The break statement is used to exit from :

(i) an if statement
(ii) a for loop
(iii) main()
(iv) none of the above

b. The continue statement :

(i) continues program execution from the first line outside the loop construct
(ii) passes control to the beginning of the loop
(iii) cannot be used in a loop
(iv) is a substitute for break

c. A while statement :

(i) executes at least once
(ii) executes only if the condition is true
(iii) is exactly similar to the do-while
(iv) is an exit controlled loop construct

 d. In a for loop the statements in the bracket are:

(i) separated by commas
(ii) are separated by a semicolon
(iii) Multiple statements cannot be written at all
(iv) None of the above

C Programming / 120

5.7 SUMMARY
In this chapter we have seen different types of loop control structure.

Loops are used in order to execute an instruction or a set of instructions
repeatedly until a specific condition is met. In looping a sequence of statements will
be executed until some condition for the termination of the loop is satisfied or for a
specified number of times. A program loop has two segments :

C language provides three types of loop constructs to repeat the body of the loop
a specified number of times or until a particular condition is met. They are :

- The while statement

- The do-while statement

- The for statement

The for loop and while loop are the example entry controlled loop. It first checks
the test condition and if it is true only then it executes the loop body. Whereas do while
loop is the example of exit controlled loop. This loop constructs checks condition after
executing the loop body.

5.8 CHECK YOUR PROGRESS - ANSWERS

5.1 & 5.2

1. a) Output of (i) & (ii) is same i.e. 0.

b) Output of (i) is 1, 0 and output of (ii) is 0.

2. a) Invalid

b) Invalid

c) Valid

d) Valid

e) Valid

3. a) exit

b) the body of the loop, the control statement

c) while, do-while, for

d) odd

5.3

1. a) The while loop checks the test condition before executing the body of the loop
i.e. it is an entry controlled loop. Hence, if the test condition is false for the first
time itself the loop may not get executed at all. The do-while loop construct is
an exit controlled loop i.e. it checks the test condition after executing the loop
body. The body of the loop thus gets executed at least once in a do-while loop.
This is the only difference between the while and do-while.

 b) It is possible to nest one loop construct in another while or do-while loop
construct. In such a situation, the inner loop gets executed the specified number
of times for every iteration of the outer loop. Thus if an inner loop is to be
executed five times and the outer loop thrice, then for each iteration of the outer
loop the inner loop gets executed five times. The outer loop itself gets executed
three times.

 c) In the while and do-while loop constructs multiple expressions can be combined
with the help of logical operators. The logical operators are AND, OR and NOT.
The loop gets executed depending upon the evaluation of the expression connected

Loops / 121

by the logical operators. The program becomes easy to read and more structured
when the logical operators are used to combine multiple expression in one loop
construct.

2. a) Infinite

b) One

c) One

3. main()

{

int a, b, prod, count;

printf(“Enter value of a :”);

scanf(“%d”, &a);

printf(“Enter value of b :”);

scanf(“%d”, &b);

count = 1;

prod = 1;

while(count <= b)

{

prod = prod * a;

count = count + 1;

}

printf(“\na raised to b = %d”, prod);

}

5.4

1. a) (for i = 1; i < 10; i++)

b) for (count = 0; count <= 5 && k > 2; count++)

c) i = 0;

for (; i < 5; i++)

2. main()
{

Int i, j;
for(i = 5; i >= 0; i—)
{
for(j = 0; j <= i; j ++)
printf(“*’’)
printf(“\n’’);
}

}

3. main()
{

int i, sum;
sum = 0;
for(i = 1; i<= 10; i = i + 2)
sum = sum + i;

C Programming / 122

printf(“The sum of first five odd numbers is : %d, sum);
}

4. main()
{

int num, i, sum;
printf(“Enter a number:’’);
scanf(“%d’’, &num);
sum = 0;
if (num % 2 != 0)
{
for(i = num ; i < num + 10; i = i + 2)
sum = sum + i;
}
else
{
for(i = num + 1; i <= num + 10; i = i + 2)
sum = sum + i;
}
printf(“The sum is : %d’’, sum);

}

5.5 & 5.6

1. a) The break statement : In some situations it may be required to jump out of the
loop without going back to the test conditions. In such situations we make use
of the break. break works in the same way in for and while loops as it works
in the case construct. When the break statement is encountered in a loop, the
loop is exited and the control is transferred to the statement immediately following
the loop.

 b) The continue statement : This statement passes the control to the beginning of
the loop. Thus when a continue is encountered in a loop, the following statements
inside the body of the loop and skipped and control is transferred to the beginning
of the loop for the next iteration. In the while and do while when the continue
statement is encountered the remaining statements in the loop body and skipped
and the test condition is checked. In the case of for statement, when the
continue statement is encountered the remaining statements in the body of the
loop are skipped, the counter is incremented and then the test condition is
checked.

2. a) a for loop

b) Passes control to the beginning of the loop.

c) executes only if the condition is true.

d) are separated by a semicolon

5.9 QUESTIONS FOR SELF STUDY

1. Write short notes on :

a) Additional features of the for statement.
b) Entry controlled and exit controlled loops.
c) The break and continue statements.

Loops / 123

2. Write a program in C to find the first five numbers divisible by 7 between 101
to 200 and break as soon the numbers are found.

3. Write a program to find Armstrong numbers between 1 to 1000. A number is
an Armstrong number if the sum of the cubes of each digit of the number is the
number itself. eg. 153 = (1 * 1 * 1) + (5 * 5 * 5) + (3 * 3 * 3)

4. Write a program to print ascii values and their corresponding characters from
0 -255 making use of the while construct.

5. Explain in detail with the help of a flowchart :

a) The do-while loop construct
b) The for construct

5.10 SUGGESTED READINGS

Programming in ANSI C : Balguruswamy
Exploring C : Yashwant Kanitkar
Programming in ANSI C : Balguruswamy

C Programming / 124

NOTES

Arrays and Strings / 125

CHAPTER 6

ARRAYS AND STRINGS

6.0 Objectives
6.1 Introduction
6.2 One dimensional Arrays
6.3 Two dimensional Arrays
6.4 Multidimensional Arrays
6.5 Strings
6.6 Summary
6.7 Check Your Progress - Answers
6.8 Questions for Self-Study
6.9 Suggested Readings

6.0 OBJECTIVES
Friends, After studying this chapter you will be able to

• discuss how to group related data items together with the use of arrays.

• explain single dimension, two dimensional and multi-dimensional arrays

• state what are strings

• use various standard string library functions and in programs

• create a two dimensional array of strings

• develop a number of programs using arrays.

6.1 INTRODUCTION

In this chapter, we shall study what is an array, what are the various types of
arrays and what are strings. We shall learn how to define an array, what are array
elements, in what way can you access array elements etc.

What is an array ?

An array is a group of related data items which share a common name. For
example, we can define an array name to represent percentages of 100 students, or
salaries of 1000 employees etc. Here the quantities (data items) must be similar. The
complete set of values of such similar quantities is called an array, whereas each
indivisual value in the array is called an element. Array elements could be int, float,
char etc. In fact, arrays can be of any variable type. Array elements are stored in
contiguous memory locations.

Thus arrays enable us to represent a collection of similar data items. Each
indivisual element in an array (array element) is referred to by its position in the group.
A particular value is indicated by writing a number in brackets after the array name. This
number is called as the index number or the subscript.

eg. sal[3].

Here the array name is sal which is the array to represent salaries of employees.

3 is the subscript. Thus, sal[3] will represent the salary of the 4th employee.

(Remember that counting of elements begins with 0 and not 1 in the array. Thus
sal[0] represents the salary of the first employee, sal[1] of the second and so on).

C Programming / 126

6.2 ONE DIMENSIONAL ARRAY

A one dimensional array has only one subscript. Thus a list of items which is given
one variable name and uses only one subscript is called a single subscripted variable
or a one dimensional array.

Array Declaration :

The array has to be declared before it can be used in a program. The
general form of declaration of an array is :

type variable_name[size]

The type specifies the type of the elements that are to be stored in the array
like int, float etc. The variable_name is any valid variable name in C. The size
indicates the maximum number of elements that can be stored in the array.

eg. float per[50];

Here the array name is per, the array will hold elements of type float and the
maximum number of elements that it can store is 50. Note that the array elements are
stored in contiguous memory locations, i.e one after the other.

Another example of array declaration :

int marks[5];

This statement will declare an array of type int whose name is marks and which
can store upto 5 values.

Assigning values to array elements :

Let us consider the array int marks[5]. The values to the elements of this array
can be assigned as follows :

marks[0] = 82;

marks[1] = 50;

marks[2] = 75;

marks[3]= 68;

marks[4] = 90;

Accessing the elements of an array : In the above declared array the individual
elements can be accessed by writing the subscript in the brackets after the array
name. Thus marks[0] is the first element of the array, marks[1] is the second and so
on.

Entering data into array elements :

We can also enter data into array elements as the following code
illustrates :

for (i=0; i<10; i++)
{

scanf(“%d”, &marks[i]);
}

This code makes use of scanf to read elements into the array marks one by
one. Remember that the for loop should start with a 0, since the array subscripts begin
with 0. The for loop will execute until the value of i becomes 9.

It is also important to note here that C performs no bounds checking on arrays,
i.e. there is no check on whether the subscript has exceeded the size of the array.
Therefore it is our responsibility to ensure that we do not attempt to enter data
exceeding the bound of the array, otherwise this data will be simply placed in memory
outside the array and the results might be unpredictable.

Arrays and Strings / 127

Let us write a small program to see the use of one dimensional arrays:

Example :

/* Program to illustrate the use of array */
main()

{
int num[5];
int sum, i;
float avg;
for(i =0; i< 5;i++)

scanf(“%d”, &num[i]);
sum = 0;
for(i=0; i< 5; i++)

sum = sum + num[i];
avg = sum/5;
printf(“The average of numbers is %7.2’’, avg);

}

This example reads 5 elements in an array num which is of type int and then
calculates the average of these five elements. With the for loop we are inputting
elements in the array. These values will be stored as individual array elements num[0],
num[1] etc. The second for loop is used to access the indivisual elements of num one
by one add them and then calculate the average. The average of the elements is then
printed with printf. Here we have used i as the subscript variable. This variable takes
different values and it is used to access different elements in the array. The second for
loop which adds the values of the array element to the sum reads the array elements
one by one starting with i=0. So the first element read is num[0].

Let us summarise what we have learnt about arrays till now :

- An array is a collection of similar elements

- The individual values in the array are called as elements

- The first element in the array is numbered 0

- Each individual element in an array is accessed by its position in the array.
This position is called the array subscript or index number.

- The array has to be declared for type and dimension before it can be used

- All the elements in an array are stored in contiguous memory locations
Initialisation of arrays :

In the previous example we saw how to input values as array elements. We can
also initialise array elements in the same way as we initialise ordinary variables at the
time of its declaration.

The general form of initialisation of elements in an array is :

type array_name[size] = {val1, val2,....};

eg. int marks[5] = {40, 70, 32, 80, 76};

The above example declares an array marks which gets initialised as follows :
marks[0] = 40
marks[1] = 70

C Programming / 128

marks[2] = 32
marks[3] = 80
marks[4]= 76

Note that while initialising the array elements the individual values in the list
should be separated be commas. The declaration statement itself should be terminated
by a semicolon.

The size of the array may be omitted while initialising the array elements. The
compiler will automatically allocate space for all the elements in the initialisation list.

eg. float num[] = {43.8, 56.87, -12.98, 33.33, - 89.023};

is a valid example of array intialisation. It will automatically allocate enough
memory to the marks array to contain five elements of type float.

An array of type char can be declared as :

char name[] - {‘A’, ‘E’, ‘I’, ‘O’, ‘U’);

Note however, that while initialising an array at the time of declaring it there is
no convenient way to initialise only selected elements. We have to initialise all the
elements of the array.

When an array is declared, all the elements in the array are stored in contiguous
memory locations.

eg. int num[5];

will immediately allocated 10 bytes of memory to the array. This is because each
element occupies 2 bytes of memory since it is of type int.

The memory map for an array marks[5] of type int which has been initialised as
given below :

int marks[5] = {10, 20, 5, 2, 8};

could be depicted as shown in fig 1 :

Assuming that the first element of the array marks[5] is stored at memory
location

5000, the second element will be stored at 5002, the third at 5004 and so on.
This is so because all array elements are stored in contiguous memory locations, and
since the data type int occupies 2 bytes of memory, each element will be allocated
2 bytes.

If the array elements are not being initialised at the point of their declaration they
contain garbage values in the beginning. You can indivisually assign a value 0 to every
element using a loop :

for(i = 0; i< 10; i++)

mark[i] = 0;

Since the storage class of the array by default is of type auto the elements of
the array are not initialised to zero at the time of declaration. If the storage class is
declared to be static all the elements will have default initial value of 0. More about
storage classes will be discussed later in the next chapter. Therefore if you wish to
assign default initial values of array elements as 0 you may declare it as follows :

static int mark[10];

Arrays and Strings / 129

At this point, you may only remember that if you do not declare the storage
class of an array, the elements will contain garbage values till specific values are
assigned to them. One more thing about arrays is that you cannot assign one array
directly to another like an ordinary variable, i.e. if arr1 and arr2 are two arrays then :

arr1 = arr2 is not valid in C.

You have to explicitly assign individual elements of one array to the corresponding
elements of the other array.

Let us now write some programs to demonstrate the use of one dimensional
arrays:

Example 1 :

/*Program to input numbers into array a and then copy them to array b */

main()

{
int i, a[10], b[10];
for (i = 0; i< 10; i++)

{
printf(“Enter element:);
scanf(“%d”, & a[i]);
printf(“\n”);

}

for (i = 0; i< 10; i++)
b[i] = a[i];

for (i = 0; i< 10; i++)
printf(“%d\t%d\n”, a[i], b[i]);

}

In this example, we have entered 10 elements in array a and then copied those
elements one by one to array b. In the third for loop we have output the elements of
both array a and array b with the use of printf. Note the use of the backslash character
constant ‘\t’. Follow the working of the program carefully and modify the above program
to enter elements in both the arrays at the same time.

Example : To find the smallest number in an array

/* Program to find the smallest number in an array */
#define MAX 20
main()
{

int i, n, min, num[MAX];
printf(“\nHow many elements do you wish to enter ? :”);
scanf(“%d”, &n);
printf(“Enter elements of array :\n”);
for(i=0; i < n; i++)
scanf(“%d”, &num[i]);
min = num[0];
for (i = 1; i < n; i++)

C Programming / 130

 {
if(num[i] <min)
min = num[i];

 }
printf(“\nThe smallest element of the array is : %d”, min);

}

Here the number of elements in the array are also input by the user. We have
made use of the symbolic constant MAX with the #define MAX statement to define
the maximum elements that the array can store to be 25. The first element of the array
num is assumed to be smallest. Then the numbers from the second element are
compared with this min, and if an array element smaller than min is found, min is
assigned the value of that element.

Example : The sorting algorithm to sort elements of the array

/* Program to sort array elements in ascending order */
main()
{

int i, j, temp;
float num[5];
printf(“\nEnter elements of array :”);
for (i=0; i<5; i++)

scanf(“%f”, &num[i]);
for(i = 0; i< 4; i++)
{

for(j = i+1; j<5; j++)
{

if(num[i] > num[j])
{

temp = num[i];
num[i] = num[j];
num[j] = temp;}

}
}

}

printf(“\nThe sorted array :\n”);
for(i=0;i<5;i++)
printf(“%6.2f\n”, num[i]);

}

Follow the program carefully. It makes use of nested loops. In the first iteration
of the outer loop where the counter is 0; the remaining elements (beginning with num[1]
are compared with num[0]) in the inner loop. Wherever an element smaller than num[0]
is found the positions of the two elements are interchanged. Thus in the first iteration,
the smallest element of the array gets stored in num[0]. Then the process repeats for
i = 1 and in the second iteration the next smallest number gets stored in num[1] and
thus the comparison continues. Note that the outer loop is executed 4 times only
(number of array elements -1) since at the second last iteration itself the sorting gets
completed. The inner loop always starts execution from the value of i+1, since the ith
element is to be compared with the remaining elements.

Arrays and Strings / 131

6.1 & 6.2 Check Your Progress.
1. Fill in the blanks:
a) An array is a group of data items which have a common

name.
b) The individual elements of an array can be accessed by writing the

...................... in the brackets after the array name.
c) If the storage class of an array is declared to beall the

elements will have default intial value of 0.
d) While initialising the array elements the individual values in the list should

be separated by

2. Correct the following array declarations and rewrite :
a) int arr1 == [5,3,5]

..
b) int arr1 = {5, 3, 5},

..
c) char ch1[] = {“A”, “B”, “C”);

...
d) float num[0] = {40.45, 29.1. 90.21, 18.8};

..
3. Write C programs for the following :
a) Enter elements in an array of type int and sort them in descending order.

Assume the array contains 10 elements.
b) Enter elements into an array of type float. Determine how many of them are

positive and how many are negative. Assume an array size of 15.
c) Modify the above program and store all the positive numbers in a separate

array and all negative numbers in a different array. Print the sum of elements
of these new arrays.

6.3 TWO DIMENSIONAL ARRAYS

In the previous section we have studied one dimensional arrays. It is also
possible to declare arrays with two or more dimensions. A two dimensional array is also
called a matrix. Such a matrix or a table can be stored in a two dimensional array,
eg. we may have the following table :

Student_Id Sub1 Sub2 Sub3

1100 40 50 67
2100 80 34 56
1330 90 98 89
1331 76 76 76
1485 80 70 65

This table shows the data for five students, where marks of three subjects of
each student are listed. Thus, this table is made up of five rows and four columns. Each
row represents the marks obtained by a particular student in all the four subjects,
whereas each column represents the marks obtained by all the students in a particular

C Programming / 132

subject. We define tables of such type with the help of two dimensional arrays.

The two dimensional array can be declared as follows :

type array_name[row_size][col_size];

Thus the above table can be represented in a two dimensional array as :

int stud[5][4];

The elements in a two dimensional array are stored row wise. Each dimension
of the array is indexed from 0 onwards to its maximum size minus one. The first index
selects the row and the second index selects the column. Thus stud[3][1] will select
the second item from the fourth row, stud[0][2] will select the third item from the first
row etc. The way in which two dimensional arrays are stored in memory is shown
herewith with the help of the above example :

Column0 Column1 Column2 Column3

[0][0] [0][1] [0][2] [0][3]
RowO 1100 40 50 67

[1][0] [1][1] [1][2] [1][3]
Row1 2100 80 34 56

[2][0] [2][1] [2][2] [2][3]
Row2 1330 90 98 89

[3][0] [3][1] [3][2] [3][3]
Row3 1331 76 76 76

[4][0] [4][1] [4][2] [4][3]
Row4 1485 80 70 65

Note that the element of the first row and first column is stored first, then the
element of the first row and second column, then the element of the first row third
column and so on. When all the elements of the first row are complete, the elements
of the second row are stored and in the same way for all the rows.

Initialising Two Dimensional Arrays :

Two dimensional arrays can also be initialised like the one dimensional arrays
with their declaration followed by the list of values of the elements. This list is enclosed
in braces, with each element being separated by a comma. The elements are initialised
row wise.

 For example :

int arr[2][3] = {10,5,3,15,20,25};

This initialisation will intialise the array elements of array arr as follows:

arr[0][0] = 10

arr[0][1] = 5

arr[0][2] = 3

arr[1][0] = 15

arr[1][1] = 20

arr[1][2] = 25

Thus elements will be initialised row wise. There are three elements in each row
of the array.

Alternative methods for the above initialisation are :

Arrays and Strings / 133

int arr[2][3] = {{10, 5, 3}, {15, 20, 25}};
or
int arr[2][3] =

{
{10,5,3},
{15,20,25}

};

In this way each row can be separated by braces. Commas are necessary after
the closing of each row except the last row. Individual elements in a row are to be
separated by commas. The initialisation statement should end with a semicolon. The
following method may be used to initialise all the elements of a two dimensional array
to 0 :

int arr[2][3] = {{0},{0}, {0}};

This means that you use a single zero for all elements of a column. Hence, you
use 3 zeroes to initialise all elements of each of the three columns.

Another important point is that when initialising a two dimensional array the first
dimension i.e. the row is optional, however the second dimension the column is a
must. Thus the example illustrated above can also be declared as:

int arr[][3] = {10,5,3,15,20,25};
However the declaration
int arr[2][] = {10,5,3,15,20,25};
or
int arr[][] = {10,5,3,15,20,25};
is invalid.

Let us write C programs for demonstrating how to work with 2-dimensional
arrays.

Example :The following example stores elements in a 2 dimensional array.
/* Program to store elements in a 2 dimensional array */
#define ROWS 5
#define COLS 5
main()
{

int arr1 [ROWS][COLS], i, j, rows, cols;
printf(“\nEnter number of rows :”);
scanf(“%d”,&rows);
printf(“\nEnter number of columns :”);
scanf(“%d”, &cols);
for(i=0; i< rows; i++)

{
for(j = 0; j < cols; j++)
{
printf(“\nEnter value :”);
scanf(“%d”, &arr1[i][j]);
}

}
printf(“\nThe elements are”);

C Programming / 134

for(i=0; i< rows; i++)
{

for(j = 0; j < cols; j++)
{
printf(“%d\t”, arr1[i][j]);
}
printf(“\n”);

}
}
A sample output:
Enter number of rows :2
Enter number of columns :3
Enter value :10
Enter value :5
Enter value :10
Enter value :5
Enter value :10
Enter value :5
The elements are
10 5 10
5 10 5

The elements of array arr1[R0WS][C0LS] are entered rowwise. Note the symbolic
constants ROWS and COLS. The subscript i is used for rows and j for columns. For
each value of i i.e row all column values are read. The array is then output rowwise.

Example : Find the sum of elements of the rows in 2 dimensional array

/* Program to calculate sum of elements in rows of the array */
main()
#define ROWS 5
#define COLS 5
main()
{

int arr1[ROWS][COLS], i, J, rows, cols, sum;
printf(“\n Enter number of rows :”);
scanf(“%d”,&rows);
printf(“\nEnter number of columns :”);
scanf(“%d”, &cols);
for(i=0; i< rows; i++)

{
for(j = 0; j < cols; j++)
{
printf(“\nEnter value :”);
scanf(“%d”, &arr1[i][j]);
}

}
for(i=0; i< rows; i++)
{

Arrays and Strings / 135

sum = 0;
for(j = 0; j < cols; j++)

{
sum = sum + arr1[i][j];
printf(“%d\t”, arr1[i][j]);
}

printf(“%d\t”, sum);
printf(“\n”);

}
}

The working of the program and its output is left to the student as a part of self
exercise.

6.3 Check Your Progress.

1. Correct the following array declarations and rewrite :
a) int arr1[3][];

...
b) float num[1][2] = {1}{1};

...
c) int arr1[2][2] = {{2,2};{3,3};};

...
2. Answer in one sentences.
a) What is a string constant ?

...
b) Define an array.

..
c) What is meant by a subscript ?
 ..

d) What is a matrix ?

 ...

e) What is meant by String concatenation ?

 ..

3. Write programs in C for the following :
a) Write a program to find the sum of the elements of each column of an array

of size 5 rows and 4 columns. Print the array elements in the matrix form
and sum of the elements of the column under the corresponding column.

b) Input elements in two arrays arr1 and arr2 both of equal dimensions not
exceeding 5 rows and 5 columns. Write a program to find the sum of the
corresponding elements of both the arrays and store it in the third array.
Print both the arrays and the resultant array rowwise.

C Programming / 136

6.4 MULTIDIMENSIONAL ARRAYS
C allows arrays of more than 2 dimensions. Such arrays are multidimensional

arrays. The exact limit of the number of dimensions is dependant on the compiler.
Multidimensional arrays are rarely required. They are discussed here for the purpose
of illustration only.

The following examples declare multidimensional arrays :

int arr1 [2][3][4];

float arr2[4][3][2][2];

The first array of type integer will contain 24 elements whereas the second array
will contain 48 elements of type float. The elements of a multidimensional array can
be initialised as follows eg.

int arr1 [2][3][4] = {
{

{1, 1, 1, 1},
{2, 2, 2, 2},
{3, 3, 3, 3}

},
{

{5, 5, 5, 5},
{6, 6, 6, 6},
{7, 7, 7, 7},

}
};

Follow the example carefully. A three dimensional array can be considered to be
a two dimensional array in another array. The outermost array is an array which has
two elements where each element itself is a two dimensional array whose dimensions
are [3][4]. Note the way in which commas have been given in the initialisation.

Thus the above three dimensional array can be represented as a series of two
dimensional arrays as follows :

0th 2-D Array 1 1 1 1
[3][4] 2 2 2 2

3 3 3 3
1st 2-D Array 5 5 5 5
[3][4] 6 6 6 6

7 7 7 7

In memory array elements are stored in contiguous memory locations as ;

1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6 7 7 7 7

Thus the first element of the array can be referred to as arr1 [0][0][0]. The
counting of elements in the three dimensional array also begins with 0. We can refer
to the second element as arr1[0][0][1] and so on. Thus arr[1][2][1] will be 6.

Note that the above description of 3 dimensional arrays is for the purpose of
introduction of multidimensional arrays only.

6.5 STRINGS
An array of characters is a string. Any group of characters within double quotation

marks is a constant string. Thus a string constant is a one dimensional array of
characters

eg. “Programming Techniques Using C”

Arrays and Strings / 137

Since the string is enclosed in double quotes if we wish to include double quotes
in our string we can implement it in the following way with the use of the backslash
(\) :

“\”Programming Techniques Using C\””

We use printf to print the above statement as follows :

printf(“\”Programming Techniques Using C\””);

and the output will be :

“Programming Techniques Using C”

A string variable is any valid C variable name and since a string is an array of
char we always declare a string as an array. The general form of a string variable is
:

char string_name[size];

The size determines the number of characters in the string_name. eg.

char name[20];

char address[25];

A string constant is an array of characters terminated by a null (‘\0’). A string
constant can be initialised as follows :

char str1[] = {‘P’, ‘R’, ‘O’, ‘G’ ‘R’ ‘A’, ‘M’ ‘\0’};

Each character in the array occupies one byte of memory. The last character is
always ‘\0’ (null character). When declaring the character array as above, the null
character is a must. The elements of a character array are also stored in contiguous
memory locations.

The above character string can also be initialised as follows :

char str1[] = “PROGRAM”;

In this declaration the ‘\0’ is not required. The null character is inserted
automatically.

Thus the difference in both the initialisation is that if you enter elements each
as a separate character then you enclose each character in single quotes, separate
the characters with a comma and terminate the string with the ‘\0’ In case of initialising
the complete string within double quotes the ‘0\’ is not required.

As you have seen in both the above examples, the number of characters (size
of the string) need not be specified while initialising. C will automatically determine the
size of the array on the basis of the number of elements initialised.

6.5.1 Reading and Writing Strings :

The scanf function can be used to read strings. The format specification used
to read strings as has already been introduced is ‘%s’. The scanf can be used as
follows :

Example : To read string with the help of scanf
main()
{

char name[15];
printf(“Enter your name :”);
scanf(“%s”, name);
printf(“Good Morning %s”, name);

}

In the above example, name is declared to be a character array of size 15. The
value of the name is read using scanf. Note that in the case of the character array the

C Programming / 138

& is not required before the variable name. When you type in characters and terminate
the input with the Enter key, scanf will automatically insert the null character at the
end.

A sample output of the above program :

Enter your name :

John

Good Morning John

Points to remember when using scanf

- Take care to ensure that you do not enter more characters than the size you
have defined while declaring the character array. C does not perform any bounds
checking on character arrays.

- Note that scanf terminates its input as soon as it encounters a white space.
A white space may be a blank space, a tab, carriage return, form feed, new line. This
means that scanf is not able to receive more than one word strings. For example if
you input the following string :

Hello there

in the above array name (with a space between Hello and there) only Hello will
be read in the array name, the blank space after Hello will terminate the string. So,
in the above program if you input the words :

John Smith to the string name then the output of the program will be

Good Morning John

(Smith will be ignored because of the blank space after John).

But C provides alternative functions to overcome this situation. C has the functions
gets and puts to read and output multiword strings. The use of gets() and puts() to
read multiword strings is illustrated below :

Example : Input and output multiword strings using gets() and puts()
/*Program to illustrate the use of gets and puts */
main()
{

char name[25];
printf(“Enter your name :”);
gets(name);
puts(“Good Morning”);
puts(name);

}
A sample run
Enter your name : John Smith
Good Morning
John Smith

gets() and puts() are capable of handling only one string at a time. Therefore we
were required to use two puts() in the above program to print the two strings Good
Morning and John Smith. Also, note that puts() automatically takes the cursor on the
next line. Hence the two strings are output on different lines.

Another way to read more than one word into a character array is by making use
of the getchar() function which we have seen earlier. The program given below illustrates
the use of getchar() to input a line of text :

Example : Program to make use of getchar() to read multiword input

Arrays and Strings / 139

#include “stdarg.h”

#include “stdio.h”

/* Program to read a line with the help of getchar()*/

main()
{

char ch1, line_1[81];
int i;
printf(“Enter a line of text. Press Enter to end\n”);
i = 0;
while ((ch1 = getchar()) != ‘\n’)
{

line_1[i] = ch1;
i = i + 1;

}
line_1 [i] = ‘\0’;
i = 0;
while((ch1 = line_1[i]) !=’\0')
{

putchar(ch1);
i++;

}

}

A sample run :
Enter a line of text. Press Enter to end
Program to demonstrate the use of getchar() to input a text line
Program to demonstrate the use of getchar() to input a text line

In this program we have declared line_1 to be a character array of size 81. This
is because a single line is assumed to be 80 characters wide and the last character
has to be the null character. Every time you enter a character it is checked to see
whether it is a newline character. If it is not, another character is read into line_1. As
soon as the Enter key is pressed the while loop is exited, the counter is decremented
by 1 and the null character is stored at that position in the array. The string is then
output using the printf.

Additional programs for string manipulation :

C has no provision for directly assigning one string to another. Thus the following
are invalid in C :

string = “STRING1”;

str1 = str2;

Example : In order to copy contents of one string into another we have to do
it character by character as the following example illustrates. It also prints the length
of the string i.e number of characters in the string :

/*Program to copy one string into another */

main()

C Programming / 140

{
char str1[20], str2[20];
int i;
printf(“Enter string :”);
scanf(“%s”, str1);
for(i = 0;str1[i] !=’\0'; i++)
str2[i] = str1[i];
str2[i] = ‘\0’;
printf(“\nThe copied string is %s”, str2);
printf(“\nThe length of the string is : %d”, i);

}

Example : The following example illustrates how to append one string at the end
of the other i.e. string concatenation :

/* String concatenation Program */

main()

{
char str1[50], str2[25];
int i, j ;
printf(“\nEnter first string :”);
scanf(“%s”,str1);
printf(“\nEnter second string :”);
scanf(“%s”, str2);
i = 0;
while(str1 [i] !=’\0')

i = i + 1;
for(j = 0; str2[j] != ‘\0’;j++)
{

str1[i] = str2[j];
i = i + 1;

}
str1[i) = ‘\0’;
printf(‘\nConcatenated string is %s”, str1);

}

A sample run:
Enter first string : Good
Enter second string : Morning
Concatenated string is : GoodMorning

Note in the above program, that first the end of str1 is determined with the while
condition. When the ‘\0’ is encountered, the new string is appended character by
character to str1 from that position. After the end of str2 is encountered the ‘\0’ is
inserted in str1 and the concatenated string is output.

Arithmetic operations on characters :

Whenever we use any character constant or character variable, it is automatically
converted into integer value by the system. Each character is assigned an integer

Arrays and Strings / 141

value, generally its ASCII value. Therefore it is possible for us to manipulate characters
like we manipulate numbers. eg.

char ch1;
ch1 = ‘A’;
printf(“%d”, ch1);

The above code will print the ASCII value of the character A and not the character
‘A’ because of the %d specifier.

Arithmetic operations can also be performed on character constants and variables:
eg. a = ‘p’+. ‘q’;

z = ‘x’ - a;
are valid expressions.
Similarly character constants can be used in relational expression like :
ch1 >= ‘A’
ch2 < ‘Z’ etc.

6.5 & 6.5.1 Check Your Progress.
1. Fill in the blanks :
a) A string is an array of
b) A string constant is terminated by a.............................character.
c) scanf terminates reading as soon as it encounters a
d) is used to read multiword strings.

2. Remove the errors in the following and rewrite :
a) ‘a’ + ‘100’

...
b) 7 - “p”

...
c) str1(10) = “Good”;

..
d) char str[10] = ‘One’

..
e) str1 = {‘a’, ‘s’ d, f, g, ‘\0’);

...

3. Write programs in C for the following :
a) Read a string of 25 characters and copy only the first ten characters of the

string into another string. Print out both the strings.
b) Determine the values of the following expressions with the help of a program

:
i = ‘a’ + 10; where i is an int
ch = ‘z’ - ‘c’ where ch is char
ch1 = 100 - Y and ch2 = 100 - ‘m’. Print the difference in the values of ch1
and ch2.
Incorporate all these expressions in the same program.

6.5.2 String Handling Functions :

We have written programs in the above section to perform a number of functions
on strings, like copying one string to another, finding the number of characters in a
string, concatenating strings etc. C provides a number of useful functions of these type
for handling strings. These functions are in the common string library functions which

C Programming / 142

are supported by most C compilers. You can directly use these functions in your programs.
Some of the most common string library functions supported by most C compilers
include :

Function Use
strcat() Appends one string at the end of the other
strncat() Appends first n characters of a string at the end of another
strcpy() copies one string into another
strncpy() copies the first n characters of one string into another
strcnp() compares two strings
strncmp() compares the first n characters of two strings
strcmpi()/
stricmp() compares two strings ignoring the case
strnicrnp() compares the first n characters of two strings without regard to

case
strdup() duplicates a string
strchr() finds the first occurence of a given character in a string
strrchr() find last occurence of a given character in a string
strstr() finds the first occurence of a given string in another string
strlen() Finds the length of a string
strlwr() converts a string to lowercase
strupr() converts a string to uppercase
strset() sets all the characters of a string to a given character
strnset() sets the first n characters of a string to a given character
strrev() reverses a string

Let us see how to make use of some of these standard string functions :

Example : strlen()

This function is useful to calculate the length of the string i.e. it counts the number
of characters in a string. It returns an integer value. eg.

/* To find the length of a string */
main()
{

char arr1[];
int len;
arr1[].= “C Programming”
len = strlen(arr1);
printf(“\nString = %s Length of the string is %d”, arr1, len);
len = strlen(“Library Functions”);

printf(“\nNew string = %s Length of new string is %d”, “Library Functions”, len);
}
And the output would be :
String = C Programming Length of the string is 13
New String = Library Functions Length of new string is 17
Note that while calculating the length of the string the \0 is not counted.

Example : To copy one string into another using strcpy():

This function copies the contents of one string into another.

The form of the strcpy() is :

strcpy(target, source);

Arrays and Strings / 143

The source string gets copied into the target string. Remember that the source
and target are strings i.e. character arrays. The following example will illustrate :

main()
{

char first[], second[];
first[] = “First String”;
strcpy(second, first);
printf(“\nString to copy %s”, first);
printf(“\nString to which copied %s”, second);

}
The output of the program :
String to copy First String
String to which copied First String

The source string gets copied into the target string character by character until
a null character is encountered. As C performs no bound checking on character arrays,
it is our responsibility to check that the target string is big enough to hold the source
string. Note the syntax of the strcpy() function.

Example : strcat():

The strcat() function concatenates two strings, i.e. it appends the target string
at the end of the source string. The strcat() function takes the following form :

strcat(string1, string2);

Here string1 and string2 are character arrays, string 2 gets appended at the end
of string 1. The null character at the end of string1 is removed and the string2 is
appended from that position. Note that string1 changes but string2 remains unchanged,
string1 has to be declared large enough to store the concatenation. Study the following
example :

/*Program to demonstrate concatenation */
main()
{

char str1[], str2[10];
str1 [] = “String Function”
str2[] = “Concatenation”;
strcat(str1,str2);
printf(‘\nString1 before concatenation :%s”, str1);
printf(“\nString2 before concatenation :%s”,str2);
printf(“\nConcatenated String : %s”, str1);
printf(“\nString2 is unchanged :%s”, str2);

}
and the output is :
String1 before concatenation :String Function
String2 before concatenation :Concatenation
Concatenated String : String Function Concatenation
String2 is unchanged :Concatenation
strcat() function can also be used to append a string constant to a string
variable.
eg. strcat(str1,”Hello”);
is a valid use of strcat(). which will append “Hello” to str1
strcat() can also be nested as :

C Programming / 144

strcat(strcat(str1 ,str2),str3);

The inner strcat() will concatenate str1 and str2 in str1. The outer strcat() will
concatenate the new str1 and str3 and the final string will be stored in str1.

Example : Compare two strings using strcmp():

The strcmp() functions compares two string to check if they are equal or not.
If both the strings are equal it returns a value 0. If they are not equal it returns a value
which is equal to the numeric difference between the ascii values of first non matching
characters.

The general form of the strcmp() is :
strcmp(string1, string2);
string1 and string2 can be string variables or string constants. eg.
strcmp(“Hello”, str2);
strcmp(str1, “Good Morning”);
strcmp(str1 ,str2);
strcmp(“Good”,”god”);

When the two strings are compared if a nonzero value is returned it means that
the strings are not identical. Since the function returns an integer value you can save
it in an integer variable and also use it as follows :

main()
{

char str1 [25] = “Good Morning”, str2[25] = “GoodMoming”;
char str3[25] = “Good Morning”;
int i, j;
i = strcmp(str1 ,str2);
printf(“\nResult of comparison is %d”,i);
j = strcmp(str1,str3);
printf(“\nResult of comparsion is %d”, j);

}
A sample run :
Result of comparison is -45
Result of comparison is 0

Note that in the above example str1 and str2 are not identical. Hence the first
comparison will return a non zero value. In the second comparison since str1 and str3
are identical the value of the comparison will evaluate to 0. The value returned if the
strings are not identical is actually the difference between the ascii values of the first
set of characters in both the strings which do not match.

Example :

To copy one string into another using strcpy():

This function is used to copy to contents of one string into another. The general
form of strcpy() is :

strcpy(string1 ,string2);

The contents of string2 will be copied to string1. string2 can be a character array
variable or a string constant. The size of string1 should be large enough to hold the
contents of string2. eg.

strcpy(str1, “Hello”);

strcpy(str1,str2);

The following example illustrates :

Arrays and Strings / 145

main()
{

char str1[40], str2[40];
printf(“\nEnter string :”);
gets(str1);
strcpy(str2, str1);
printf(“\nString into which copied:\n”);
puts(str2);

}
A sample output:
Enter string : A string copy program
String into which copied :
A string copy program

Thus making use of the standard string library functions, it is possible to write
many useful programs which otherwise would have to be written on character by
character basis as we saw in the previous section.

6.5.2 Check Your Progress.
1. Describe the use of the following string functions :
a) strlen()

...
b) strcat()

..
c) strset()

...
d) strstr()

...
2. Without making using of the standard string library functions write

the following programs in C :
a) Copy the contents of one string of size 25 characters into another with the

last character as the first character in the new string. i.e. in reverse order.
b) Replace the contents of a string of size 25 with the alphabet ‘a’.
3. Make use of the standard string library functions and write the following

programs :
a) Enter a string and convert it into uppercase.
b) Enter a string and reverse it.
c) Enter a string and set all its characters to Z
Write separate programs in C for all the above and print the result on the screen.

6.5.3 Two Dimensional Array of Characters :

We saw the use of a character array to represent strings. Now we can extend
this concept to a two dimensional array of characters. This array can be used to store
a list of names, places etc.

eg. Let us use a two dimensional array of characters to represent the following
list of names :

John
jack
jill
jane

C Programming / 146

jimmy

In the above list each name itself is an array of characters and all the names
together can be represented as a two dimensional array of characters as follows :

Each row represents a name. Five such names are there in this table. Hence
this array can be specified as

char name[5][7];

where 5 indicates that a total of five names may be stored in this array, where
each name can be upto seven characters long.

Initialising a 2-dimensional array of characters :

A 2-dimensional array of characters can be initialised as follows :

char city[4][10] =
{“Pune”, “Delhi”, “Chennai”, “Mumbai”};

or
char city[4][10]= {

“Pune”,
“Delhi”,
“Chennai”,
“Mumbai”
};

Each indivisual city name is enclosed in double quotes and individual cities are
separated by a comma.

Let us use the array of names declared as above to write a sample program to
check whether a name we enter as input is found in the list or not:

Example:

#define FOUND 1
#define NOTFOUND 0
main()
{
char name[5][7] = {“john”, “jack”, “jimmy”, “jill”, “jane”};
char str1[7];
int fl, z, i;
i = 0;
fl = NOTFOUND;
printf(“\nEnter your name :”);
scanf(“%s”, str1);
for(i =0; i<5; i++)
{
z = strcmp(&name[i][0], str1);
if(z ==0)
{

printf(“\Congratulations! Your name is in the list”);
fl = FOUND;
break;

}
}
if(fl==NOTFOUND)
printf(“\nSorry! Your name is not in the list”);

Arrays and Strings / 147

}
A sample run of the program :
Enter your name : jill
Congratulations! Your name is in the list
Enter your name :joseph;
Sorry! Your name is not in the list

In the two dimensional array of characters declared in the above program, note
that the first subscript gives the total number of names in the list and the second gives
the maximum number of characters of each element in the array. The symbolic constants
FOUND and NOTFOUND are set to 0 and 1 respectively. Initially a flag f1 is set to
NOTFOUND to indicate that we have not yet found a match. While comparing strings,
the & is used to pass the base address of the array. We have made use of the strcmp()
function to compare the string input with each of the names in the array. This function
returns a zero value if a match is found otherwise it returns a nonzero value. As soon
as a match is found the flaf fl is set to FOUND. The program also illustrates the use
of break, to exit the for loop as soon as a match is found. Follow the program carefully
for a thorough understanding.

6.5.3 Check Your Progress.
1. How will you declare the following lists as two dimensional arrays of

strings:
a. abc, pqr, Imn, rst, uvw

...
 ..

b. Blue, Green, Red, Yellow, Purple
..

 ..

2. Write programs in C to input the above lists in two dimensional arrays of
strings and print the lists.

 ...

..

6.6 SUMMARY
In this chapter we leant about the arrays of C.

An array is a group of related data items which share a common name. The
complete set of values of similar quantities is called an array, whereas each individual
value in the array is called an element. Array elements could be int, float, char etc.

Array Declaration : The array has to be declared before it can be used in a
program. The general form of declaration of an array is :

type variable_name[size]

Thus

- An array is a collection of similar elements

- The individual values in the array are called as elements

- The first element in the array is numbered 0

- Each individual element in an array is accessed by its position in the array.
This position is called the array subscript or index number.

C Programming / 148

- The array has to be declared for type and dimension before it can be used

- All the elements in an array are stored in contiguous memory locations

Strings : An array of characters is a string. Any group of characters within double
quotation marks is a constant string. Thus a string constant is a one dimensional array
of characters. A string variable is any valid C variable name and since a string is an
array of char we always declare a string as an array.

The general form of a string variable is :

char string_name[size];

6.7 CHECK YOUR PROGRESS - ANSWERS

6.1 & 6.2

1. a) similar
b) subscript
c) static
d) comma

2. a) int arr1 [3] = {5,3,5};
b) int arr1 [3] = {5, 3,5};
c) char ch1[3] = {‘A’, ‘B’, ‘C’);
d) float num[4] = {40.45, 29.1, 90.21, 18.8};

3. a) main()
{
int i, j, temp;
int num[10];
printf(“\nEnter elements of array :”);
for (i=0; i< 10; i++)

scanf(“%d”, &num[i]);
for(i = 0; i< 9; i++)
{

for(j = i+1;j< 10; j++)
{

if(num[i] < num[j])
{

temp = num[i];
num[i] = num[j];
num[j] = temp;

}
}

}
printf(“\nThe sorted array :\n”);
for(i=0;i<10;i++)
printf(“%d\t”, num[i]);
}

b. main()
{

Arrays and Strings / 149

float arr1 [15];
int pos = 0, neg = 0, i;
printf(“Enter array elements :”);
for(i = 0; i<15; i++)

scanf(“%f”, &arr1[i]);
for(i = 0; i < 15; i++)
{

if(arr1[i]<0)
neg = neg + 1;

else
pos = pos + 1;

}
printf(“\nNumber of positive elements = %d”, pos);
printf(“\nNumber of negative elements = %d”,neg); }

c. main()
{
float arr1[15], pos[15], neg[15];
int i,j, k;
float pos_sum, neg_sum;
printf(“Enter array elements :\n”);
for(i = 0; i<15; i++)

scanf(“%f’, &arr1 [i]);
i=0;
j = 0;
k = 0;
for(i = 0; i < 15; i ++)
{

if(arr1 [i] < 0)
{

neg[j]=arr1[i];
j++;

}
else
{

pos[k] = arr1 [i];
k++;

}
}
pos_sum = 0;
neg_sum =0;
printf(“\nArray of positive elements :\n”);
for(i = 0; i < k; i++)
{

printf(‘’%.2f\t”, pos[i]);
pos_sum = pos_sum+.pos[i];

}
printf(“\nSum of positive elements = %.2f”, pos_sum);

C Programming / 150

printf(“\nArray of negative elements :\n”);
for(i = 0; i < j; i ++)
{

printf(“%.2f\t”, neg[i]);
neg_sum = neg_sum + neg[i];

}
printf(“\nSum of negative elements = %.2f”, neg_sum);
}

6.3

1 a) int arr1[][3];
b) float num[1][2] = {1,1};
c) int arr1[2][2] = {{2,2}, {3,3}};

2.

a) A string constant is a group of characters or array of characters.

b) An array is a group of related data items which share a common name .
c) A particular element is indicated by writing a number in bracket after array name

This number is called as the index number .

d) Matrix is defined by rows & columns which can be easily represented by 2-dimentional
array.

e) String concatenation means appending one string at the end of the other.

3 a) main()
{

int arr1[5][4], i, j;
int cs[4] = {0, 0, 0, 0};
printf(“\nEnter elements of array :\n”);
for(i=0;i<5;i++)
{

for (j = 0; j < 4; j++)
scanf(“%d”, &arr1[i][i]);

}
for(i = 0; i < 4 ; i ++)
{

for (j = 0; j < 5; j++)
{
cs[i] = cs[i] + arr1[j][i];
}

}
for(i = 0; i < 5; i++)
{

for(j = 0; j < 4; j++)
printf(“%d\t”,arr1[i][j]);

printf(“\n”);
}
for(i = 0; i < 4; i++)

printf(“%d\t”, cs[i]);
}

Arrays and Strings / 151

b) #define ROWS 5
#define COLS 5
main()
{

int arr1[ROWS][COLS], arr2[ROWS][COLS], arr3[ROWS][COLS];
int i, j, rows, cols;

printf(“Enter number of rows :”);
scanf(“%d”, &rows);
printf(“Enter number of columns :”);
scanf(“%d”, &cols);

printf(“Enter elements of array 1\n”);
for(i = 0; i< rows; i++)
{

for(j = 0; j < cols; j++)
scanf(“%d”, &arr1[i][j]);

}
printf(“Enter elements of array 2 :\n”);
for(i = 0; i < rows; i++)
{

for(j = 0; j < cols; j++)
scanf(“%d”, &arr2[i][j]);

}
for(i = 0; i < rows; i++)
{

for(j = 0; j < cols; j++)
arr3[i][i] = arr1[i][j] + arr2[i][j];

}
printf(“Array1\t\tArray2\t\tArray3\n”);
for(i = 0; i < rows; i++)
{

for(j = 0;j < cols; j++)
printf(“%d “, arr1 [i][j]);

printf(“\t”);
for(j = 0;j < cols; j++)

printf(“%d “, arr2[i][j]); printf(“\t”);
for(j = 0;j < cols; j++)

printf(“%d “, arr3[i][j]);
printf(“\n”);
}

}

6.5 & 6.5.1

1 a) characters
b) ‘\0’ character
c) whitespace
d) gets

2. a) ‘a’+ 100
b) 7 - ‘p’

C Programming / 152

c) char str1 [10] = “Good”;
d) char str[10] = “One”
e) str1[5] = {‘a’, ‘s’, d, f, g, ‘\0’);

3. a) main()

{

char str1[25], str2[10];

int count;

puts(“Enter string :”);

gets(str1);

for(count = 0; count <10; count++)

str2[count] = str1 [count];

str2[6ount] = ‘\0’;

printf(“First string is :\n”);

puts(str1);

printf(“Copied string is :\n”);

puts(str2);

}

b) main()

{

 int i;

char ch, ch1, ch2,ch3;

 i = ‘a’ + 10;

ch = ‘z’-’c’;

ch1 = 100 -’r’;

ch2 = 100-’m’;

ch3 = ch1 - ch2;

printf(“i = %d\t”, i); printf(“ch = %c\n”, ch);

printf(“ch1 = %c\tch2 = %c\tch3 = %c\n”, ch1, ch2,ch3);

}

6.5.2
1. a) strlen() : This function is used to determine the length of a string. It returns the

length of the string as an integer value.
b) strcat(): Appends one string at the end of the other. It takes two parameters,both

of which are strings and appends one string at the end of another.
c) strset() : This function is used to set all the characters of a string to a given

character. Both the string and the character to which the string characters are
to be set are the parameters provided to this function.

d) strstr() : This function finds the first occurence of a given string in another string.
Thus it is useful to determine whether a string is a part of another string or not.

2. a) main()
{

char str1[25], str2[25];
int i, j, count;

Arrays and Strings / 153

printf(“Enter a string :\n”);
gets(str1);
count = 0;
i = 0;
while(str1 [i] != ‘\0’)
{
count = count + 1;
i = i + 1;
}
j = 0;
for(i = count-1; i >= 0; i—)
{
str2[j] = str1[i];
j++;
}
str2[j] = ‘\0’;
printf(“String is :\n”);
puts(str1);
printf(“The reverse string is :\n”);
puts(str2);

}
b) main()

{
char str1[25];
int count, i;
printf(“Enter a string :\n”);
gets(str1);
count = 0;
i = 0;
while(str1[i]!=’\0')
{
count = count + 1;
i =i + 1;
}
for(i = 0; i < count; i++)
str1[i] = ‘a’;
printf(“The replaced string is :\n”);
puts(str1);

}

3. a) main()
{

char str1[25];
printf(“Enter a string to convert to uppercase:\n”);
gets(str1);
strupr(str1);
printf(“The converted string :\n”);
puts(str1);

}

C Programming / 154

b) main()

{

char str1[25];

printf(“Enter string to reverse :\n”);

gets(str1);

strrev(str1);

printf(“The reversed string is :\n”);

puts(str1);

}

c) main()

{

char str1[25];

printf(“Enter a string :\n”);

gets(str1);

strset(str1 ,’Z’);

printf(“The set string is :\n”);

puts(str1);

}

6.5.3

1. a) char Iist1[5][3] = {“abc”, “pqr”, “Imn”, “rst”, “uvw”};

b) char colours[5][10] = {“Blue”, “Green”, “Red”, “Yellow”, “Purple”};

2. main()

{

char str1[5][10], str2[5][10]; int i;

printf(“Enter list of alphabets :\n”); for(i = 0; i< 5; i++)

scanf(“%s”, str1[i]);

printf(“Enter list of colours :\n”);

for(i= 0; i < 5; i++)

scanf(“%s”, str2[i]);

printf(“The list of alphabets :\n”);

for(i = 0; i < 5; i++)

printf(“%s\n”, str1 [i]);

printf(“The list of colours :\n”);

for(i = 0; i < 5; i++)

printf(“%s\n”, str2[i]);

}

6.8 QUESTIONS FOR SELF- STUDY

Arrays and Strings / 155

1. Describe with examples how you will declare the following :

a) a one dimensional array of int

b) a 2-dimensional array of float

c) a 2-dimensional array of characters

2. Describe with example how a 2-dimensional array of int is solved in
memory.

3. Write short notes on :

a) Any two standard string manipulation functions.

b) Arrays

c) Representation of a one dimensional array in memory.

d) Various methods of intializing strings.

4 Answer the following in 3-4 Sentences

 a. Describe with example the various ways to intilise 2 dimentional array.

 b. Describe how 2 -dimensonal arrays are stored in memory.

6.9 SUGGESTED READINGS

 Exploring C : Yashwant Kanitkar

C for Beginners : Madhusudan Mothe

C Programming / 156

NOTES

Data Types / 157

CHAPTER 7

DATA TYPES

7.0 Objectives
7.1 Introduction
7.2 Integer Data Types
7.3 Data Types
7.4 Char Data Types
7.5 Type Casting
7.6 Summary
7.7 Check Your Progress - Answers
7.8 Questions for Self - Study
7.9 Suggested Readings

7.0 OBJECTIVES

Friends, after studying this chapter you will be able to

• state the primary data types along with their variations

• discuss variations of primary data types

• explain typecasting of data

• discuss what is meant by storage classes

7.1 INTRODUCTION

In our previous discussion of primary data types in Chapter 2, we have seen the int,
float and char data types. We also know that these primary data types themselves
could be of several types. We shall study the variations of these primary data types
here.

Sometimes we are forced to direct the compiler to explicitly convert the value of
an expression to a particular data type. In such situations we are required to perform
what is known as typecasting. We shall attempt to study this feature. In our earlier
chapter, which introduced C tokens, we saw what are bitwise operators. Let us study
operations on data using bitwise operators in this chapter.

7.2 INTEGER DATA TYPES
We know how to declare and use the integer data type. We have already used

it in many of the programs written so far. There are further variations of the integer data
type. Let us now study these variations.

Integer data types are further classified as : Signed and Unsigned.

In both the signed and unsigned we have the short int and long int.

int (signed integer) unsigned int (unsigned integer)

short int (Plain) unsigned short int (Plain)

long int (Plain) unsigned long int (Plain)

Thus, C has three classes of integer storage : short int, int and long int in both

C Programming / 158

the signed and unsigned forms. We know that an int variable occupies 2 bytes i.e.
one word in memory. A signed integer uses 1 bit for assigning the sign and 15 bits for
the magnitude of the number. The highest order bit of the int is used to store the sign
of the number. If it is 1, then the number is negative and if it is 0 then the number is
positive. By default, the declaration of an integer assumes it to be a signed number.
Hence, the use of the qualifier signed when declaring an int is optional. The range of
integer values then lies between -32768 to + 32767 for the int data type.

On the other hand, if the integer is declared as unsigned, then it uses all the
bits for the magnitude of the number and no bit is reserved for the sign. Hence an
unsigned integer is always positive. The range of values then becomes double that of
the signed. Thus on a 16-bit machine the range of integer values for unsigned integers
is 0 to 65,535.

In C, bigger ranges for integer variables are available if you need them. This is
offered by a variation of the int type and is called the long int. The long int occupies
two words i.e. 4 bytes of memory as compared to the one word of the normal int i.e
they occupy double the space in memory than an ordinary int.

The long variables used to declare long integers are declared as follows :

long int a;

long int val1;

The range of values of long integers varies from -2147483648 to + 2147483647.

As in the case of int you can also have unsigned long int . unsigned long
int occupies four bytes in memory, has a range of values between 0 to 4294967295
and is always positive. Like the long int variation of int, we also have a short int
variation. Note that the interpretation of a qualified integer data type varies from one
compiler to another. Thus we may have a compiler where short int may require less
storage as compared to the ordinary int, or may require the same storage as the
ordinary int, but as a rule, its storage will never exceed the storage requirement of the
ordinary int. Similarly in case of long int, the long int may require the same amount
of memory or more memory as compared to the ordinary int but it will never require
less memory than the ordinary int.

We can declare short int as follows :

short int a;

short int val1;

As is the case with int and long int, short int can also be signed or
unsigned. By default, an int, long, or short is signed.

The following declarations are also valid in C :
short int a; can also be wriiten as short a;
long int p; can also be written as long b;
unsigned int i; can also be written as unsigned i;
unsigned long int z; can also be written as unsigned long z;
unsigned short int q; can also be written as unsigned short q;

C also allows the addition of a suffix ‘L’ or ‘l’ at the end of a number if we wish
to give it more storage than the normal int. This situation may occur where the
constant is small enough to be an int, but to give it additional storage of two bytes
we use the suffix ‘L’. eg. and int whose value is 50 will occupy two bytes in memory
whereas 50L will occupy four bytes in memory.

Example :

Let us write a small program to demonstrate the use of these int data types :

Data Types / 159

main()

{

unsigned int i;
short s;
long I;
unsigned long j;
printf(“\nEnter unsigned int:”);
scanf(“%u”, &i);
printf(“\nEnter short int:”);
scanf(“%d”, &s);
printf(“\nEnter signed long int:”);
scanf(“%ld”, &l);
printf(“\nEnter unsigned long int:”);
scanf(“%lu”, &j);
printf(“\nUnsigned int: %u”, i);
printf(“\nshort int: %d”, s);
printf(“\nsigned long int: %ld”,l);
printf(“\nUnsigned long int: %lu”, j);

}

Study the output of the above program for various integer values for the different
integer types and compare the results.

7.2 Check Your Progress.
1. Answer in 1- 2 lines
a) What is meant by long int?

...

...

b) How will you describe signed and unsigned int?
...
...

2. How will you declare the following ?
(i) a and b as short signed :

...
(ii) p as long unsigned

...
(iii) z as unsigned int

...

3. Write a program to enter a long unsigned int and a long signed int
from the keyboard and print the numbers in the following formats :

(i) Padded with leading zeroes
(ii) Left justified

(Using the formatting features studied in input/output)

C Programming / 160

7.3 FLOAT DATA TYPES
In our previous discussions, we learnt that float data type occupies four bytes

in memory and can have a range of values between -3.4e38 to +3.4e38. We also know
that the float data type has a precision of 6.

C offers a variation to float data type, which is double. double occupies 8
bytes in memory, and has a range of values between -1.7e308 to +1.7e308. A double
data type uses 64 bits with a precision of 14 bits. Such numbers are known as double
precision numbers.

A double type variable can be declared as :

double a;

double var1;

For even large real numbers C offers the long double data type. The long
double occupies ten bytes in memory and falls in the range between -1.7e4932 to
+1.7e4932. Declaring a long double data type yields still higher precision than the
double data type.

7.4 CHAR DATA TYPES
We already know that char data type occupies one byte in memory. By default

char is signed. A signed char has a range of values between -128 to + 127, unsigned
char on the other hand has a range from 0 to 255.

Let us see the results of unsigned char and signed char with the following :

Example:

main()
{

unsigned char ch1; char ch2;
ch1 = 224;
ch2 = 125;
printf(“Character ch1 = %c\tAscii value = %d”,ch1,ch1);
printf(“\nCharacter ch2 = %c\tAscii value = %d”,ch2,ch2);

}
The output of the program :
Character ch1 = Ascii value = 224
Character ch2 = } Ascii value = 125

In this example, we have declared char ch1 as unsigned hence it can take a
range of values between 0-255. char ch2 is signed and has range of values between
-128 to +127. Note that we use the format specification %c to print the character and
%d to print its Ascii value.

Example : Write a program to print the Ascii values and the corresponding
characters for signed char data type.

main()
{

unsigned char i;
for(i = 0; i< 255; i++)
{

printf(“Character = %c\tAscii value = %d\n”,i,i);
}

}

While writing the program be careful to specify the correct range of values for the

Data Types / 161

for loop. We have declared char i to be unsigned to print the characters and their
corresponding ASCII values.

The following table gives the format specifiers for the input and output of all the
various data types as well as their range and the number of bytes they occupy :

Data Type Range Bytes Format Specification

Integer
short signed -128 to +127 1 %d or %i
short unsigned 0 - 255 1 %u
int -32,768 to + 32767 2 %d
unsigned int 0 to 65535 2 %u
long signed -2,147,483,648 to

+2,147,483,647 4 %ld
long unsigned 0 to 4,294,967,295 4 %lu

Real
float 3.4e-38 to3.4e+38 4 %f
double 1.7e-308 to1.7e+308 8 %lf
long double -3.4e-4932 to 1.1e+4932 10 %Lf

character
signed -128 to+127 1 %c
unsigned 0 to 255 1 %c

Making use of the above format specifications, we can input and output these
various data types. We have illustrated the use of the int and char specifications in the
previous examples. The following example illustrates the use of float.

Example :

main()
{

float f;
double d;
long double Id;
printf(“\nEnter float f:”);
scanf(“%f”, &f);
printf(“Enter double d :”);
scanf(“%lf”, &d);
printf(“\nEnter long double Id :”);
scanf(“%Lf”, &ld);
printf(“\nFloat f = %f”, f);
printf(“\nDouble d = %lf,” d)
printf(“\nLong Double Id = %Lf’,ld);

}

Compile the program and test it with various sample data of type float, double
and long double.

C Programming / 162

7.3 & 7.4 Check Your Progress.
1. Answer in 1-2 lines.
a) What is the difference between float and double data type?

...

...

b) How will you describe signed and unsigned char data type?
...
...

2. Write the format specifications for the following :
a) unsigned char

...

b) long double
...

c) float
...

7.5 TYPE CASTING

7.5.1 Type Conversions in Expressions :

We already know that C allows mixing of variables of different types and constants
in expressions. While evaluating these expressions, certain rules are followed. When
performing an operation, the compiler considers two operands and the operator associated
with them. If the operands differ in type, then first the lower type is automatically
converted to the higher type and then the operation is performed. The result is of the
higher type. The final result of the expression is converted to the type of the variable
on the left side of the assignment operator, before the value is assigned to it. However,
you should take a note of the following :

- if the variable on the left of the assignment operator is an int and the result
 you have obtained is float, then the fractional part is truncated.

- if double has been converted to float, the digits are rounded

- in case of conversion of long int to int, while assigning to the variable to the

 left of the assignment operator, the excess higher order bits are dropped.

7.5.2 Type Casting :

In some situations, it becomes necessary to force a type conversion which is
different from the automatic conversion done by C. We are required to explicitly convert
a value of a particular expression to a specific data type. This is where, local conversion
of a data type is done which is known as type casting. The general form of casting
a value is:

(type-name) expression

type-name is one of the standard data types of C. The expression can be any
valid C expression viz., a constant, variable or expression. The parenthesis around the
type-name are essential. The value of the expression, undergoes the type conversion
due to type casting. Some examples of type casting :

a = (int) 9.2

Data Types / 163

With type casting the fractional part will be truncated and the result will be 9.
int i = 9, j = 2;
float p;
{

p = (float) i/j;
}

Here since i and j are both int, the integer division would yield a result 4 since
the fractional part will be truncated. However, when you cast the expression i/j to type
float, it will cause the variable i to be first converted to type float, before performing the
division.

Type casting is useful to round off values. It is always a good programming
practice to explicitly force type conversions. It is safer. Rules of automatic conversion
should never be assumed, when you are combining variables of different types.

Example : To use type casting

main()
{

int a;
float b;
b = 6.54;
a = (int) (b + 0.9);
printf(“Value of a = %d”, a);

}
The output of the program :
Value of a = 7

In this example, the value of the expression undergoes type conversion before
being assigned to a. Note that the expression being cast itself does not change.

7.5 Check Your Progress.
1. What will the following type casting result in ?

a) a = (int) 18.3

...

b) z = (int) 4.7 / (int) 2.3

...

c) z = (int) 12.8 + 13.7

...

2. Explain what action will take place in the following type casting
operations.

a) x = (int) 4.2 + (int)3.7

...

b) (float) (p/q)

...

c) 1/float(a);

...

C Programming / 164

7.6 SUMMARY
C language provides a variety of data types.

- There are basically four types of data in C. They are char , int, float and
double. The basic types can be further extended by applying different
qualifiers.

- Integer data type is further classified as short integer and long integer.

- Float is used for floating point number.

- Character data type can be signed characters or unsigned characters.

- Type casting does not permanently change the type of a variable. It only
temporarily presents the variable in the required data types.

7.7 CHECK YOUR PROGRESS - ANSWERS

7.2
1.a) Long int is a variation of the int type. The long int occupies two words i.e. 4 bytes

of memory as compared to the one word of the normal int i.e they occupy double
the space in memory than ordinary int. The range of values of long integers varies
from -2147483648 to + 2147483647. Long ints are of two types : unsigned long
int and signed long int. By default a long int is signed, unsigned long int has a
range of values between 0 to 4294967295 and is always positive.

b) A signed integer uses 1 bit for assigning the sign and 15 bits for the magnitude
of the number. The highest order bit of the int is used to store the sign of the
number. If it is 1, then the number is negative and if it is 0 then the number is
positive. By default, the declaration of an integer assumes it to be a signed
number. The range of integer values then lies between -32768 to + 32767 for the
int data type. On the other hand, if the integer is declared as unsigned, then it
uses all the bits for the magnitude of the number and no bit is reserved for the
sign. Hence an unsigned integer is always positive. The range of values then
becomes double that of the signed. Thus on a 16-bit machine the range of
integer values for unsigned integers is 0 to 65,535.

2. (i) short a, b;

(ii) unsigned p;

(iii) unsigned z;

3. main()

{

long unsigned u;

long I;

printf(“Enter value of unsigned long int :”);

scanf(“%lu”, &u);

printf(“\nEnter signed long int :”);

scanf(“%ld”, &l);

printf(“Unsigned long padded with leading zeroes and left justified :\n”);

printf(“%014lu\n%-14lu”, u, u);

printf(“\nSigned long padded with leading zeroes and left justified : \n”);
printf(“%014ld\n%-14ld”, I, I);

}

Data Types / 165

7.3 & 7.4

1. a) For representation of real numbers we make use of the float and double data
types. float data type occupies four bytes in memory and can have a range of
values between -3.4e38 to +3.4e38. The float data type has a precision of 6.
double is a variation to float data type, which occupies 8 bytes in memory, and
has a range of values between -1.7e308 to +1.7e308. A double data type uses
64 bits with a precision of 14 bits. Such numbers are known as double precision
numbers.

b) The char data type is used to represent a single character. This character can
be an alphabet, a digit or a special symbol. char data type occupies one byte
in memory. By default char is signed. A signed char has a range of values
between -128 to + 127, unsigned char on the other hand has a range from 0 to
255. We use the format specification %c to print the character both in the signed
and the unsigned form

2. a) %c

b) %Lf

c) %f

7.5

1. a) a = 18

b) z = 2

c) z = 25.7

2.

a) 4.2 will be converted to int and 3.7 will be converted to int and the expression
evaluated as 4/2.

b) The result of p/q will be converted to float.

c) a will be cast to float and the reciprocal will be determined.

7.8 QUESTIONS FOR SELF-STUDY

1. Answer in two-three sentence :

a) What is the classification of integer storage in C?
b) What is meant by double precision numbers?
c) What is type casting?
d) Which are the locations where variable values are generally stored?
e) What are local variables and global variables?

2. Write short notes on :

1) Type casting
2) Integer Data Types
3) float data types
4) Type Conversion in expressions.

7.9 SUGGESTED READINGS
Let us C : Yashwant kanitkar

Spirit of C : Mullish cooper

C Programming / 166

NOTES

Functions / 167

CHAPTER 8

FUNCTIONS

8.0 Objectives
8.1 Introduction
8.2 Writing User Defined Functions
8.3 Catagories Function

8.3.1 Functions with no arguments and no return
values

8.3.2 Functions with arguments and no return
values

8.3.3 Functions with arguments and return
values

8.3.4 Return value and their type
8.3.5 Scope Rules of functions

8.4 Advanced Features of Functions
8.4.1 Function declaration and proto types
8.4.2 Call by values and call by references
8.4.3 Recursion

8.5 Nesting of Functions
8.6 Passing Array as arguments to a Function
8.7 Summary
8.8 Check Your Progress - Answers
8.9 Questions for Self - Study
8.10 Suggested Readings

8.0 OBJECTIVES
Friends, the study of this chapter will help you to

• describe what are functions in C.
• start writing user defined functions.
• explain the form of a function and catagories of functions.

• state advanced features of function and function nesting.

• write much more sophisticated programs using functions.

8.1 INTRODUCTION
In the introduction of C language, we have said that a C program is nothing but

a collection of functions. A function is defined as a self contained block of statements
that perform a specific task of some kind. In all the programs we have written so far,
we have made use of functions. Some of the functions we have used so far are main,
printf, scanf etc. Functions are of two types : library functions and user defined
functions. Library functions are those functions which are not required to be written by
us. We can directly use them in our programs. User defined functions are functions
developed by the user while writing programs. Of course, a user defined function can
become a part of a library function later. We know that main() is a special type of
function in C. Every program must have a main(). This is the point where the execution
of a program starts. We can divide our program into smaller functional sub programs
where each subprogram may be independently coded, debugged and tested. These
subprograms can then be combined together into a single program. These subprograms
are nothing but functions.

C Programming / 168

Advantages of functions :

- Functions facilitate top-down modular programming. The overall problem is
 solved first and the details of the various lower levels are solved later.
- Functions reduce the length of the source program.
- Functions can be independently tested and debugged
- Functions can be used by many other programs. This means that it is not
 necessary to write functions which have already been written. They can be
 directly used in the programs.

Let us now begin our study of functions, their catagories and their features.

8.2 WRITING USER DEFINED FUNCTIONS
Let us now begin writing user defined functions. We shall write a C program

which makes use of a user defined function. With the help of this program we shall
study the various concepts related to functions.

Example :

/*Program to demonstrate the use of a function */
void drline ();
main()
{

drline();
printf(“The function prints stars on the terminal\n”);
drline();

}
void drline()
{

int i;
for (i=1;i<=50,i++)

printf(“*”);
printf(“\n”);

}
The output of this program is :

The function prints stars on the terminal
**

There are a number of things to be understood about functions. Let us study
them with the help of the above program. The program contains two functions :

main()

drline()

The execution of the program begins with main(). When executing the program,
the statement drline(); is encountered. drline() is nothing but a function which we have
written. At this point in the program, the control is transferred to the function drline().
The drline() function in itself is a complete block of statements. This function prints
* on the screen. When the function is executed, program control is again transferred
to main(). main() restarts program execution from the statement immediately following
the function call. After executing printf, control is again transferred to function drline()
since we have again called drline(). drline() draws one more line. The program control
again passes back to main(). Both the main() and drline() functions make use of
library function printf.

The main() function calls the drline() function. Here main() is the calling function
and drline() is the called function. Any function can call any function. Also, any
function can be called any number of times. A called function can also call functions.
There is no precedence, no rules of hierarchies for functions.

Functions / 169

Functions can be placed in any order. A called function can be placed before or
after a calling function. (However, in usual practice all the called functions are put at
the end.) It is however important to note, that a function cannot be defined in another
function.

Any C program will contain at least one function. If it contains only one function
then it must be main().

Let us further understand these points with the following examples :
Example: The example illustrates how two functions have been written and

called in main()
void drline ();
void drstar();
main()
{

drline();
drstar();
drline();

}
void drline()
{

int i;
for(i=1; i<=50; i++)
printf(“-”);
printf(“\n”);

}
void drstar()
{

int k;
for(k=1 ;k<=50;k++)
printf(“*”);
printf(“\n”);

}
Here drline() is called twice in the program. The functions drline() and drstar()

are written after the function main(). Their order of precedence is not important. We
could have first written drstar() and then drline() also.

Let us see how a called function itself can call other functions with the help of
the following example :

Example :
void fn1();
void fn2();
main()
{

printf(“\nCalling Functions”);
fn1();
fn2();

}
void fn1()
{

printf(“\nLeaming C”);
}
void fn2()
{

printf(“\nThis function calls function 1”);

C Programming / 170

fn1();
}
And the output of the program is :
Calling Functions
Learning C
This function calls function 1
Learning C
Note carefully the sequence of execution of this program. main() first calls fn1().

fn1() gets executed. Then fn2() is called through main(). fn2() itself calls fn1(). Here it
is not important whether fn 1 () is written first or fn2() is written first.
8.2.1 The general form of a C function ;

function_name(list of arguments) argument declaration;
{

local variable declaration;
statement_1;
statement_2;
:
:
return(expression);

}
In the general form of a C function there are many parts which are not a must

while writing a function. For example, the list of arguments and argument declaration
is optional. As we have already seen main() itself is a function for which there have
been no arguments or argument declaration so far. The function drline() which we have
written above also had no arguments. The method shown above is one method of
declaring arguments. Another method of declaring arguments is the one where the type
of the arguments are declared in the function header itself eg.

sum(a,b)
int a, b ;
is the first method.
In the second method the arguments are declared as follows :
sum(int a, int b);
The first method is known as the Kernighan & Ritchie (K&R) method. The

second method is more commonly used nowadays.
If a function is using variables, then they are declared. Local variables are

those variables which are used only by that particular function in which they are
declared. In our drline() function we have used the local variable i.

The executable statements of the function come next. A function can have any
number of executable statements. On the other hand, a function may not include any
executable statement either, i.e. we may have a function which does nothing and which
does not have any executable statements.

The return statement is optional. If any value is to be returned to the calling
function, it is returned with the help of the return statement. Thus a return statement
is used if any value from the called function is to be returned to the calling function.
We shall study the return statement in detail subsequently.

A few points to remember:
- The function name has to follow the same rules as those of the variable names

in C. Also care has to be taken to avoid assigning the library routine names or operating
system commands as function names.

- The argument list is the list of valid variable names separated by commas. The
argument list should be enclosed in a pair of parenthesis and should be placed

Functions / 171

immediately after the function name.
The use of the argument list : The argument list is used to pass values to the called
function from the calling function. Thus it provides a means of data communication
between the two functions, eg.

sq(a);
prod(a,b);
power(x.n);
All the variables in the argument list must be declared with their types immediately

after the function header (function header is the definition of the function name
followed by the declaration of the arguments) and before the opening braces of the
function body, eg.

sq(a);
float a;
{

}
Here the variable a is the argument of the function sq and is declared for its type

as float immediately after the function header.
power(x,n);
float x;
int n;
{

}

The function power has two arguments x and n where x is declared of type float
and n is declared to be of type int. Both the arguments are declared for their type
immediately after the function header.

8.1 & 8.2 Check Your Progress.
1. Answer the following :
a) What are the advantages of functions?

...

...
b) Describe the general form of a C function.

...

...
2. Fill in the blanks :
a)variables are those variables which are used only by that

particular function in which they are declared.
b) If a C program contains only one function then it must be.......................
c) A function......................... is the definition of the function name followed by

the declaration of the arguments.
d) The..........................statement is used if any value from the called function

is to be returned to the calling function.

C Programming / 172

8.3 FUNCTION CATAGORIES
We learnt the general form of a function, the meaning of argument list and return

statement. On the basis of these argument lists and return statement the functions
can be catagorised as:

- Functions with no arguments and no return values

- Functions with arguments but no return values

- Functions with arguments and return values.

Let us study the various catagories of functions.

8.3.1 Functions with no arguments and no return values :

As we have seen earlier, when a function has no arguments, no data is sent to
the function from the calling function. Also when the function is not returning any value,
the called function does not receive any data from the calling function, i.e. there is only
a transfer of control and not data. The general form of such a function which receives
no arguments from the calling function and returns no values :

fn1()
{

-------;
fn2();
-------;

}
fn2()
{

}

Here fn2() is called by fn1 (). However, no arguments are passed by fn1 () to
fn2(). Similarly fn2() also does not return any value to fn1 ().

Example : The following example will illustrate a function with no arguments and
no return values.

void add();
main()
{
printf(“\nFunction to add numbers”);
add();
}
void add()
{

int a, b, sum;
printf(“\nEnter value for a :”);
scanf(“%d”,&a);
printf(“\nEnter value for b :”);
scanf(“%d”,&b);
sum = a + b;
printf(“The sum is : %d”, sum);

}
A sample output:

Functions / 173

Function to add numbers
Enter value for a : 100
Enter value for b : 200
The sum is :300

main() calls the function add() which takes values for a and b. It sums a and
b and prints the sum. There is no return statement in the function. The return
statement is optional if the function does not return anything.

Example : The following function is called in main() to read a string and print
it.

void str_fn();

main()
{

char ch1=’Y’;
printf(“\nEnter a string :”);
while(ch1 = getch() != ‘N’)
{

str_fn();
printf(“Do you wish to enter another string (Y/N) ? :”);

}
}
void str_fn()

{
char str1[40];
printf(“\nEnter a string :”);
scanf(“%s”, str1);
printf(“%s”, str1);

}
A sample output:
Enter a string :CFunctions
CFunctions
Do you wish to enter another string (Y/N) ? :Y
Enter a string :Noarguments
Noarguments
Do you wish to enter another string (Y/N) ? :N

In the program main() calls str_fn(). This function reads a string and prints it.
The control again goes back to main(). Here the user types a ‘Y’ if he wants to enter
another string and a ‘N’ to stop. Thus the program will execute until the user enters
a ‘N’ and the function str_fn() will be called repeatedly by main(). This demonstates
how a function can be called by a calling function a number of times. However, no
arguments are passed to str_fn() and no return values to main() by str_fn().

8.3.2 Functions with arguments and no return values :

In calls to functions with arguments we can send the list of arguments from the
calling function to the called function.

The general form of a function with arguments but no return values :

fn1()
{

- - - - - -
- - - - - -

C Programming / 174

fn2(actual argument list);
- - - - -
- - - - -

}
fn2(formal argument list)
{

- - - - -
- - - - -

}

Example : Let us modify our above example of adding two numbers and send
the values of two numbers to the function to add(). This function will accept the
arguments but will not return any value.

void add(int, int);
main()
{

int i, j;
printf(“\nFunction to add numbers”);
printf(“\nEnter value for i :”);
scanf(“%d”,&i);
printf(“\nEnter value for j :”);
scanf(“%d”,&j);
add(i, j);

}
void add(int a, int b)
{

int sum;
sum = a + b;
printf(“The sum is : %d”, sum);

}
A sample output:
Function to add numbers
Enter value for a : 100
Enter value for b : 200
The sum is :300

Actual arguments and formal arguments :

In this program main() passes the values of i and j to the function add(). Note
that when the function add() is called from main(), i and j are mentioned in the
parenthesis (add(i,j)). These values are collected in the variable a and b in the function
add(). The variables i and j are called the actual arguments and a and b are called
formal arguments. Note that the type, order and number of actual arguments and
formal arguments in the calling and called functions must match. They are matched
one by one starting with the first argument. In such functions there is a one way
communication where the calling function sends arguments to the called function. The
called function however returns no data to the calling function. The use of the return
statement is therefore optional since the function does not return anything.

If actual arguments are more than the formal arguments they are ignored. On the
other hand if the actual arguments are less than the formal arguments then the unmatched
formal arguments may get initialised to garbage values. Remember that the compiler
will not generate any error message. It is our responsibility to ensure that the list of
actual arguments and formal arguments match in type, number and order.

Functions / 175

One more important point to remember is that when a function call is made only
a copy of the values of the actual arguments is passed into the called functions and
not the actual arguments. Whatever happens inside the function has no effect on the
values of the actual arguments. This means that if the values of the formal arguments
are changed in the called function, the corresponding change does not take place in
the actual arguments of the calling function.

Example : To illustrate that change in values of formal arguments has no effect
on the values of the actual arguments.

/* Program to illustrate actual and formal arguments */

void fn1 (int);
main()
{

int a;
a = 20;
fn1(a);
printf(“\nThe value of a is : %d”, a);

}
void fn1 (int i)
{

i = 100;
printf(“\nThe value of i is :%d”, i);

}
The output of the program will be
The value of i is 100
The value of a is 20

From the above example you can see that the value of the formal argument i is
changed in the function fn1(). The value of the actual argument a remains unchanged.

8.3.3 Functions with arguments and return values :

In the above examples, we saw that we could pass arguments to the function
but the called function itself did not return any values. But in more practical situations,
we may need the return values from the called functions for further processing. Since
a functions may be called by a number of other functions each function may require
the return values to be output in different forms also. Thus a self contained function
should be one which receives a predefined form of input and outputs a desired value.
This will effect a two way communication by way of passing values between functions.
The general form functions with arguments and return values could be depicted as:

fn1()
{

- - - - -
- - - - -
fn2(actual arguments list)
- - - - -

}
fn2(formal argument list)
{

- - - - - -
- - - - -
return(result);

C Programming / 176

Example : Let us modify the above example to send values of a and b to the
function sum() from main(). The function sum() shall return the value of the addition to
main().

int add(int, int);
main()
{

int i,j, sum;
printf(“\nEnter first number:”);
scanf(“%d”,&i);
printf(“\nEnter second number:”);
scanf(“%d”,&j);
sum = add(i,j);
printf(“\nThe sum is : %d”, sum);

}
int add(int a, int b)
{

int c;
c = a + b;
retum(c);

}
A sample run of the program :
Enter first number :10
Enter second number :40
The sum is : 50

The return statement is used to return a value to the calling function. The return
statement returns the value of the addition of the two numbers to main(). Note here
that the sum of the numbers is output from main() and not from the function add().

8.3.1, 8.3.2 & 8.3.3 Check Your Progress.
1. Write true or false :
a) Every function has a return statement.

b) A function can be called any number of times by another function.
c) You can write a function which has arguments but no return values.

d) Both the values of actual arguments and formal arguments change when the
function is executed.

e) In calls to functions with arguments we can send the list of arguments from
the calling function to the called function.

2. Write C programs for the following functions :
a) Enter a 5 digit number and find the sum of digits in a function.

b) Write a function to calculate the sum of n even numbers starting from the
number a (where n and a are input by the user).

c) Write a function to generate and print the first n elements of a Fibonacci
series and find their sum. In a Fibonacci series every number is the sum
of the preceding two numbers.
eg. 1 1 2 3 5 8 11 You may start with the first number of the series
as 1.

Functions / 177

8.3.4 Return Values and their types :

Now that we have introduced the return statement let us study it in more detail.
We have seen that the return statement is used to return a value to the calling
function.

The return statement can take one of the following forms :

return;

or

return(expression);

The first form of return does not return any value to the calling function. The
second form of return returns a value to the calling function. In both the cases, the
control is transferred back to the calling program when the return is encountered. Thus
the return statement

- on execution transfers control back to the calling function

- returns the value of the expression in the parenthesis to the calling
function.

eg, return(sum);
return (x + y +z);
retum(p);
return (a*b);

(i) A calling function can pass any number of values as arguments to the called
function. However, the called function can return only value per call to the calling
function.

Thus the statements

return(a, b);

or

return(a,10);

are not valid.

(ii) There can be more than one return statement in certain situations
eg.

if(x <0)
return(1);

else
return (0);

if (ch = ‘A)
return(a + b);

else
{

if(ch = ‘M’)
return(a *b);

else
return(a - b);

}

(iii) All functions be default return data of type int. If we want the function to
return a particular type of data other than int then we are required to specify the data
type in the function header:

C Programming / 178

eg. float prod(a,b);

double sq_rt(p);

We shall study how to make a function return a value other than int in the
section advanced features of functions.

8.3.5 Scope Rule of Functions :

This section includes a description on the scope of variables of a function. The
default scope of a variable is local to the function in which it is defined. This means
that the presence of a variable is known only to the function in which it is declared and
not to any other function. Thus if a variable a is defined in fn1(), then a is known only
to fn1() and not to any other function. Hence the scope of a is said to be local to fn1
().The following example will illustrate :

Example : To demonstrate scope rule of functions :

int sq(int);
main()
{

int i, z;
printf(“\nEnter number to square :”);
scanf(“%d”, &i);
z = sq(i);
printf(“\nThe square is %d”, z);

}
int sq(int p);
{

int q;
q = p * p;
return(q);

}

A sample run of the program :

Enter a number to square :5

The square is 25

Here the variables i and z are known only to the function main(). Similarly
variable q is local only to the function sq(). It is not known to main(). Thus the value
of i is not known to sq(). We send it as an argument to make it available to sq().

8.3.4 & 8.3.5 Check Your Progress.
1. What will the following functions return :
a) int i = 0, j = 5;

j = fn(i);
fn(a)
{

return(a);
}

..

b) int p,q;
q=fn(p);
fn(a)

Functions / 179

{
if(a < 0)

return(a * a);
else

return (0);
}
for the value of q = 0

...

2. Write true or false :

a) The scope of a variable is local to the function in which it is defined.

b) Every function has to return a value to the calling function.

c) return(a - b + c); is not a valid return statement.

d) Functions by default return a value of type int or float.

e) Functions can return only int values.

3. Write C programs for the following functions to return values as
expected :

a) Two numbers are input. The function returns whichever of the two is greater.

b) A 4 digit number is input. The function returns the number with the digits
reversed.

c) Write a function to return a 0 if a number is divisible by 3 and 1 otherwise.

8.4 ADVANCED FEATURES OF FUNCTIONS
8.4.1 Function Declaration and Prototypes :

We know by now that all functions be default return data of type int. If we want
the function to return a particular type of data other than int then we specify the data
type in the function header:

Example : Let us write a program to illustrate the use of return to return a value
other than int.

float fn1 (float, float);
main()
{

float fn1(); .
int i, j ;
float div;
printf(“\nEnter value of i:”);
scanf(“%d”, &i);
printf(“\nEnter value of j :”);
scanf(“%d”, &j);
div = fn1(i,j);
printf(“\nThe value of a/b is %f:”, div);

}
float fn1 (p, q)
{
float r;

C Programming / 180

r = p/q;
return(r);
}

Note here that the function fn1() is declared float in main(). The function header
is itself written as :

float fn1(),

which means that the function will return a float value.

In other situations it may be that we do not want the function to return any value.
To make this possible we make use of the keyword void in the function header. When
a function is declared void it means that the function will return nothing. eg.

Example : To illustrate void
void fn1();
main()
{

void fn1();
fn1();

}
void fn1()
{

printf(“\nFunctions in C”);
printf(“\nThe function to illustrate that it is void”);

}
The output of the program will be :

Functions in C

The function to illustrate that it is void

8.4.2 Call by Value and Call by reference :

We have studied that when we pass actual arguments to functions from calling
function, a copy of these arguments is collected in the formal arguments in the called
function. Uptil now we have seen several examples where we have passed values to
function in this manner.

Arguments are passed to functions in two ways :

- sending the values of the argurments

- sending the addresses of the arguments

In all the functions used so far we have always passed the values of the variables
(arguments) to the called functions. Such function calls are called ‘calls by value’.
The examples illustrated above are calls by value.

eg. sum(ij);

fn1(a,b);

Similarly, there is another method by which we can pass the address of the
variable to a function. (Variable address is the memory location of the variable). When
we pass the address of the variable to a function it is referred to as ‘call be reference’.
We have to make use of pointers for this purpose. Therefore we shall defer the discussion
of call by reference till we study pointers.

8.4.3 Recursion :

In C, it is possible for a function to call itself. If a statement in the body of a
function calls the function itself then the function is known as recursive function. We
shall study recursion with the help of the following program which calculates the

Functions / 181

factorial of a number.

The factorial of a number is the product of all integers from 1 through to the given
number. Thus factorial of 5 = 1x2x3x4x5

Example : First let us write a simple program using a function to calculate the
factorial :

/*Program to find the factorial */
int fact (int);
main()
{

int n, factorial;
printf(“\nEnter a number to find its factorial :”);
scanf(“%d”, &n);
factorial =fact(n);
printf(“\nThe factorial is : %d”, factorial);

}
int fact(int a)
{

int i, prod;
prod = 1;
for(i = a; i >= 1 ; i—)
{

prod = prod * i;
}
return(prod);

}
A sample run of the program :

Enter a number to find its factorial : 5

The factorial is : 120

Here the for loop executes from i = 5 to i = 1 by making use of the decrement
counter. The product is multiplied by the value of i everytime. Thus till i becomes 1,
we obtain 5 x 4 x 3 x 2 x 1 = 120. The value 120 is stored in prod and returned to
main(). The factorial value is then printed using printf().

Example : The same function can be written in a recursive way as follows :

/*Program to find the factorial using recursion */
int fact (int);
main()
{

int n, factorial;
printf(“\nEnter a number to find its factorial :”);
scanf(“%d”, &n);
factorial = fact(n);
printf(“\nThe factorial is : %d”, factorial);

}
int fact(int a)
{

 int i;
if(a==1)

return(1);

C Programming / 182

else
i = a*fact(a-1);

return(i);
}

A sample run of the program :

Enter a number to find its factorial: 4

The factorial is :24

Let us understand the working of the program carefully :

main() first reads a number to find its factorial. It is then passed to the function
fact(). If the number is 1, the value is returned as 1 else the statement i = a * fact(a-
1) again calls fact() by passing the value of a as 3. In the above example i = 4 x fact(3).
Since fact() is called again it executes in the same way and i = 4 x 3 x fact(2). The
next call is 2 x fact(1). fact(1) returns 1 and thus

i = 4 x fact(3)

= 4 x 3 x fact(2)

= 4 x 3 x 2 x fact(1)

= 4 x 3 x 2 x 1

Thus fact(4) returns 4 x fact(3)

which returns 3 x fact(2)

which returns 2 x fact(1)

which returns 1

While using recursive functions care has to be taken to have an if statement to
provide a way to make the function return without giving a recursive call, otherwise it
will fall in an infinite loop. An example of a recursive function falling in an infinite loop
is shown as follows :

Example :

main()

{

printf(“\nAn example of recursion”);

main();’

}

Here main() calls main() continuously and the printf statement will keep on
executing. The program will never come out of the loop. The execution will have to be
terminated abruptly. Such situations should be avoided while using recursion. Recursive
functions should have a if statement to force the function out of recursion.

8.4 Check Your Progress.
1. Answer the following :
a) How do you make a function return a value other than int?

...

...
b) What is a void function?

...

...

Functions / 183

c) What is meant by call by value and call by reference?
...
...

d) Explain recursion.
...
...

2. Write C programs for the following :
a) Use recursion to find the sum of the first n numbers.
b) Write a function to find the product of two float numbers and another function

tofind their quotient. Call both these functions from main and make them
return valuesof type float.

8.5 NESTING OF FUNCTIONS
C allows nesting of functions. This means that a function which is being called

can itself call another function, which itself may call another function and so on.

We have already made use of a number of standard library functions in our
functions. This means that the function which we are calling from another function is
itself calling other functions. Let us write a program to illustrate how a called function
itself calls other functions.

 The program converts a distance entered in km to cm. The function tom()
converts km to m, but tom() itself calls tocm() which converts the distance in metres
to cm.

Example : To convert distance entered in km to cm using nesting functions.

float tom(float);
float tocm(float);
main()
{

float km, cm ;
printf(“\nEnter distance :”);
scanf(“%f”, &km);
cm = tom(km);
printf(“\nThe distance in cm : %6.2f”, cm);

}
float tom(i)
{

float j, k;
j = i * 1000;
k = tocm(j);

return(k);
}
float tocm(a)
{

float b;
b = a * 100;
return(b);

}

A sample run :

Enter distance :34.585

C Programming / 184

The distance in cm :3458500.00

Note that both the functions tocm() and tom() return non integer values. Therefore
the word float is to be written before the function name in the function header. Also
both the functions have to be explicitly mentioned in the calling function main() as
functions whose return type is float. Follow the program carefully to understand how
the function tom() calls tocm() to convert the distance in metres to cm.

C also allows nesting of function calls. Thus add(add(a,b), c) is possible. Let us
see how to write a program to demonstrate nesting of function calls:

Example:

int add(int, int);
main()
{

int a, b, c, sum;
printf(“\nEnter value for a :”);
scanf(“%d”, &a);
printf(“\nEnter value for b :”);
scanf(“%d”, &b);
printf(“\nEnter value for c :”);
scanf(“%d”, &c);
sum = add(a, add(b,c));
printf(“\nThe sum is : %d”, sum);

}
int add(int i, int j)
{

int k;
k = i+j;
retum(k);

}
A sample output of the program :
Enter value for a :20
Enter value for b :40
Enter value for c :80
The sum is : 140

Here we have a function add() which adds two numbers. Now if we wish to use
the function add() to add three numbers we can do so as shown above by making use
of nesting function calls. We call the function add() with the values as a and the
secondargument as a function call to add() with the arguments b and c. add(b,c) is first
executed. It returns the value of a + b. This then is the second argument to the outer
add() which now adds the sum to a by calling add() and thus the three numbers get
added.

8.6 PASSING ARRAYS AS ARGUMENTS TO FUNCTIONS
Just as we can pass values of simple variables of type int, float etc to functions

it is also possible to pass values of an array to a function. The following form is used
to pass an array to a called function :

avg(num,n)

Here num is the array and n is the total number of elements in the array a. Note
that when passing an array as an argument, only the array name without any subscripts
is listed, followed by the size (number of elements) of the array. The called function
should also be appropriately defined.

Functions / 185

eg.

avg(num,n) is a function call to the function avg() which calculates the average
of the elements of the array num. Let us assume that the array num contains values
of type float. Then the called function will be defined as :

float avg(num, n)

float num[];

int n;

Thus avg takes two parameters (arguments) the array name and its size. The
declaration

float num[];

tells the compiler that num is an array of numbers of type float. Note that it is
not necessary to declare the size of the array here.

Having understood this let us now write an actual program to calculate the
average of the elements of the array.

Example:

float avg (float [], int);

main()

{

int j;

float average;

float num[5] = {8.2, 7.8, 3.3, 9.2, 8.1};

for(j = 0; j <5; j++)

printf(“\nNumber = %6.2f”, num[j]);

average = avg(num, 5);

printf(“\nAverage is : %6.2f”, average);

}

float avg(float num [], int n)

{

int i;

float sum = 0;

for (i = 0; i < n; i++)

sum += num[i];

sum = sum/n;

return(sum);

}

The output of the program will be :

Number = 8.2

C Programming / 186

Number = 7.8

Number = 3.3

Number = 9.2

Number = 8.1

Average is : 7.32

Follow carefully the working of the program. The array num[] is passed as an
argument to function avg(). Note that avg() returns a float value, hence its type has to
be explicitly declared in both the called and calling functions. The array is passed in
the specific format as explained above, and the function average is also appropriately
defined. The function first calculates the sum of all the elements of the array and then
averages it. The average is returned to the calling function main() and printed.

8.5 & 8.6 Check Your Progress.
1. Write C programs for the following :

a) Pass an array of int numbers to a function and find the smallest number of
the array and return it to the calling function.

b) Pass an array of characters to a function and print the elements of the array
in the reverse order in the function.

c) Write a function mul() to find the product of two numbers. Make use of
nesting of function calls to find the product of 4 numbers with the help of
mul().

d) Write a function to find the average of n numbers. This function should call
another function which will calculate the sum of these numbers. The calling
function will then calculate the average with the sum returned and return the
value to main.

8.7 SUMMARY
In this chapter we learnt about one of the most important aspects of Programming

- Function.

A function is defined as a self contained block of statements that perform a
specific task of some kind. Functions are bifurcated in to two types : library functions
and user defined functions. Library functions are those functions which are not required
to be written by user. We can directly use them in our programs. User defined functions
are functions developed by the user while writing programs.

Categories of Functions: On the basis of argument lists and return the functions
can be categorized as :

" Functions with no arguments and no return

" Functions with arguments and no return values

" Function with argument and return values

The call to the function can be by value or reference - Passing the value of the
variables to the called function implies that function calls are "call by value". When
we pass the address of the variable to the function the it is referred to as " call by
reference".

Recursion : If a statement in the body of a function calls the function itself then
the function is known as recursive function.

Functions / 187

8.8 CHECK YOUR PROGRESS - ANSWERS
8.1 & 8.2

1.a) There are a number of advantages of functions :

(i) Functions facilitate top-down modular programming. The overall problem is
solved first and the details of the various lower levels are solved later.

(ii) Functions reduce the length of the source program.
(iii) Functions can be independently tested and debugged
(iv) Functions can be used by many other programs. This means that it is not

necessary to write functions which have already been written. They can be
directly used in the programs.

b) The general form of a C function is :

function_name(list of arguments)
argument declaration;
{

local variable declaration;
statement_1;
statement_2;
:
return(expression);

}
The function name is followed by the list of arguments and argument declaration.
Arguments can also be declared in the function header itself. If a function is
using any variables, then they are declared in the function. The executable
statements of the function come next. A function can have any number of
executable statements. On the other hand, a function may not include any
executable statement either. The return statement is optional. A return statement
is used if any value from the called function is to be returned to the calling
function.

2. a) local

b) main

c) header

d) return

8.3.1, 8.3.2 & 8.3.3

1. a) False

b) True

c) True

d) False

e) True

2. a) void fn sum (int);
main()
{

int num;
printf(“Enter a five digit number:”);
scanf(“%d”, &num);
fnsum(num);

}

C Programming / 188

void fnsum(j)
{

int k, add;
add = 0;
for(k = 1; k <=5; k++)
{

add = add + j%10;
j=j/10;

}
printf(“\nThe sum is : %d”, add);

}

b) void fnsum (int, int);
main()
{

int n, a;
printf{“Enter first even number : “);
scanf(“%d”, &a);
printf(“ \nEnter total number of numbers :”);
scanf(“%d”, &n);
fnsum(a,n);

}
void fnsum(i,j)
{

int add, k;
add = 0;
for(k = i; k < (i + 2*j); k = k+2)
add = add + k;
printf(“The sum is : %d”, add);

}

c) void f1bo(int);
main()
{

int n;
printf(“Enter the value of n :”);
scanf(“%d”, &n);
fibo(n);

}
void fibo(num)
{

int i,n1,n2,no, add;
n1 = 1;
n2 = 1;
add = n1 + n2;
printf(“The Fibonacci Series\n%d\t%d\t”, n1, n2);
for(i= 3;i<=num; i++)
{

Functions / 189

no = n1 + n2;
add = add + no;
printf(“%d\t”’, no);
n1=n2;
n2= no;

}
printf(“\nThe sum is :%d”, add);

}

8.3.4

1. a) 0

b) 0

2. a) True

b) False

c) False

d) False

e) False

3. a) int fnbig(int, int);

main()

{
int n1, n2, big;
printf(“Enter values for n1 and n2 :”);
scanf(“%d%d”, &n1, &n2);
big = fnbig(n1,n2);
printf(“\nThe greater number is :%d”, big);

}
int fnbig(i,j)
int i, j;
{

if(i>j)
return(i);

else
return(j);

}

b) int fnrev (int);
main()
{

int num, newnum;
printf(“Enter a 4 digit num :”);
scanf(“%d”, &num);
newnum = fnrev(num);
printf(“The number reversed is : %d”,newnum);

}
int fnrev(int, n1)
{

C Programming / 190

int i,k, new;
i = 1000;
new = 0;
for(k = 1; k <= 4; k++)
{

new = new + n1%10 * i;
i = i/10;
n1 =n1/10;

}
return(new);

}

c) int fncheck (int);
main()
{
int n, result;
printf(“Enter a number:”);
scanf(“%d”, &n);
result = fncheck(n);
printf(“The value returned is : %d”, result);
if(result == 0)
printf(“\nThe number is divisible by 3”);
else

printf(“\nThe number is not divisible by 3”);
}
int fncheck(int, n1);
int n1;
{

if(n1%3==0)
return(0);

else
return(1);

}

8.4

1.a) If we want the function to return a particular type of data other than int then we
specify the data type in the function header eg. if we want a function to return
a data type of float we specify it as :

float fn1(),

which means that the function will return a float value.

b) A function when declared void means that it will return nothing.To make this
possible we make use of the keyword void in the function header, eg. void fn1
(); will not return anything to the calling function.

c) When we have pass the values of the variables (arguments) to the called functions
then such function calls are called ‘calls by value’.

eg. sum(i,j);

When we pass the address of the variable to a function it is referred to as ‘call
by reference’. (Variable address is the memory location of the variable). We
have to make use of pointers for this purpose.

Functions / 191

d) In C, it is possible for a function to call itself. If a statement in the body of a
function calls the function itself then the function is known as recursive function.
While using recursive functions care has to be taken to have an if statement to
provide a way to make the function return without giving a recursive call, otherwise
it will fall in an infinite loop. Recursive functions should have a if statement to
force the function out of recursion.

2. a) int fact (int);

main()

{

int n, sum;

printf(“Enter the value of n :”);

scanf(“%d”, &n);

sum = fact(n);

printf(“The sum is : %d”, sum);

}

int fact(int, n);

int n;

{

int add ;

add = n;

if(n==1)

return(1);

else

add = add+ fact(n -1);

return(add);

}

b) float mul(float, float);

float quo(float, float);

main()

{

float a, b, prod, div;

printf(“Enter values of a and b :”);

scanf(“%f%f”, &a, &b);

prod = mul(a,b);

div = quo(a,b);

printf(“\nThe product is : %.2f”, prod);

printf(“\nThe quotient is : %.2f”, div);

}

float mul(float p, float q);

{

float n;

C Programming / 192

n = p*q;

return(n);
}
float quo(float i, float j)
{

float k;
k = i/j;
return(k);

}

8.5 8.6
1. a) int fnsmall (int [], int);

main()
{

int arr1[10];
int i, j;
printf(“Enter elements of the array :”);
for(i = 0; i < 10; i++)

scanf(“%d”, &arr1 [i]);
j = fnsmall(arr1, 10);
printf(“\nThe smallest number is : %d”, j);

}
int fnsmall(int num [], int k)
{

int min,I;
min = num[0];
for(l = 1; I < k; I++)
{

if(min > num[l])
min = num[l];

}
return(min);
}

b) #include “stdarg.h”
#include “stdio.h”
void fnrev (char[], int);
main()
{

char arr1[25];
int i,k;
printf(“Enter elements of character array :\n”);
i = 0;
while((arr1[i] = getchar()) != ‘\n’)

i++;
arr1[i] = ‘\0’;
fnrev(arr1,i);

}

Functions / 193

fnrev(char, charr[], int);
char charr[];
int len;
{

int I;
for(l = len-1; l>= 0; I—)

putchar(charr[l]);
}

c) int mul (int, int);
main()
{

int a, b, c, d, prod;
printf(“\nEnter values of a,b,c,d :”);
scanf(“%d%d%d%d”, &a, &b, &c, &d);
prod = mul(a,mul(b, mul(c,d)));
printf(“\nThe product is : %d”, prod);

}
int mul(int p, int q)
{

return(p * q);
}

d) float fnsum (float [], int);
float fnavg (float [], int);
main()
{

float fnavg(), fnsum();
float num[10], avg;
int i;
printf(“Enter numbers to average :\n”);
for(i=0; i< 10; i++)

scanf(“%f”, &num[i]);
avg = fnavg(num, 10);
printf(“\nThe average is : %.2f”, avg);

}
float fnavg(n1 ,j)
float n1[];
int j;
{

float sum;
sum = fnsum(n1,j);
return(sum/j);

}
float fnsum(arr,k)
int k;
{

C Programming / 194

int I;
float z;
z = 0;
for(l = 0; l< k; I++)

z = z + arr[l];
return(z);

}

8.9 QUESTIONS FOR SELF-STUDY
1. Answer the following :

a) What is a function? What are the types of functions?
b) Describe the methods of declaring function arguments.
c) What is meant by a called function and a calling function? Explain with

example.
d) What are formal arguments and actual arguments?
e) What are the function catagories? Explain the general form of a function

with arguments and no return values.
2. Write short notes on :

a) The return values & their types
b) Scope rules of function
3. How can you pass array as arguments to functions?
4. What is meant by nesting of functions?
5. Describe the advanced features of functions.

3. Write C programs for the following :

a) Write a function to calculate the area of a circle and return it to the calling
function.

b) Pass an array of type int to a function which sets the positive and negative
elements in two separate arrays.

c) Write a function to print all numbers divisible by 3 between 300 to 400.
d) Write a function to find the length of a string and call it from main. The

function should return the length to main.

8.10 SUGGESTED READINGS

Programming in ANSI C : Balguruswamy

Exploring C : Yashwant Kanitkar

C for Beginners : Madhusudan Mothe

Functions / 195

NOTES

C Programming / 196

NOTES

Pointers / 197

CHAPTER 9

POINTERS

9.0 Objectives
9.1 Introduction
9.2 Pointer Arithmetic
9.3 Pointers and Functions

9.3.1 Call by reference
9.3.2 Pointers to function

9.4 Pointers and Arrays
9.4.1 Pointers to one dimensional array
9.4.2 Pointers to 2 dimensional array
9.4.3 Pointers and strings

9.5 Pointers to Pointers
9.6 Dynamic Memory Allocation
9.7 Summary
9.8 Check Your Progress - Answers
9.9 Questions for Self - Study
9.10 Suggested Readings

9.0 OBJECTIVES
Friends,

The study of this chapter will help you to

• state what pointers are

• explain how to declare pointers and their usage to access variable values

• state pointer arithmetic with examples

• describe the usage of pointers with functions, arrays and strings

• discuss pointers to pointers

• explain dynamic memory allocation and C functions related to dynamic
 memory allocation.

9.1 INTRODUCTION
Pointers Overview :

Pointers are an important feature of the C language. To understand pointers let
us revise certain points about computer memory. You already know that computers
store the data and instructions in memory. The computer’s memory is a sequential
collection of storage cells. Each cell is known as a byte of memory. Each cell also
has a unique address associated with it. This address is a number. Generally the
addresses given to memory locations are numbered sequentially.

Whenever a variable is declared in a program, the system allocates memory to
hold the value of the variable. Each byte has a unique memory address, therefore each
variable also has a unique address associated with it. eg.

int i = 10;

This declaration reserves space in memory to store the value of the variable i.
The name i gets associated with that particular memory address. The value 10 which
has been assigned to the variable i gets stored in that particular memory location. We
can represent the location of the variable in memory as follows :

C Programming / 198

Variable_name i

value 10

address 3245

Let us assume that the computer has allocated the address location 3245 to
store the value of the integer variable i. Thus, the variable i gets an address associated
with it to store its value. It is possible for us to determine the address of a variable in
memory. It can be done as follows :

Example : To determine the address of a variable in memory :

main()
{

int i = 10;
printf(“\nValue of I :”, i);
printf(“\nAddress of i:” &i);

}

The output is:
Value of I: 10

Address of i :3245

It is clear from the above example that the address of i is obtained with the
expression &i. We make use of the address operator (&) to determine the address
of the variable i. Thus the memory address of a variable is a number which is always
positive. Since the memory address is a number we can as well store it in memory
like any other variable. This is where pointers come into picture. In all the programs
we have written so far we have made use of the address operator & when using scanf
to read the values of the variables. The same address operator can be used to determine
the address of the corresponding variable in memory.

Thus, pointers are nothing but variables used to hold memory address. A pointer
is a variable which contains the address of another variable. It is therefore possible to
access the value of a variable either with the help of the variable name or with its
address.

Example : Let us write a program to further understand the concept
of pointers :

main()
{

int a;
char ch1;
float b;
a = 100;
ch1 = ‘Z’;
b = 40.85;
printf(“\nThe value of a is %d:”, a);
printf(“\nThe address of a is :”, &a);
printf(“\nThe value of ch1 is %c:”, ch1);
printf(“\nThe address of ch1 is :”, &ch1);
printf(“\nThe value of b is %f:”, b);
printf(“\nThe address of b is :”, &b);

}
The output of the program is :

Pointers / 199

The value of a is : 100
The address of a is : 6540
The value of ch1 is : Z
The address of ch1 is : 3400
The value of b is : 40.85
The address of b is : 5284

It is important to note here that the addresses of the variables that are output
here may not match with the output you get and that every time you run this program,
the compiler may assign different memory locations to the variables and you may get
different addresses. We can also make use of the %u operator to print addresses since
addresses are unsigned integers.

Since the address of a variable is a number we can as well store it in another
variable. Let us use a variable j to store the address of the variable i.

The address of i can be stored in j as

j = &i;

But every variable in C has to be declared before we can use it. Since we are
using j for the purpose of storing the address of i we make use of the operator ‘*’ to
declare it. This is called the value at address operator.

We declare j as follows :

int*j;

This declaration tells the compiler that j is a variable used to store the address
of an integer value. i.e. j points to an integer.

j itself is a variable and so will have its own unique address associated with it.
The value at j is the address of the variable i. This can be depicted as follows :

Variable i j

Value 10 3245

Address 3245 4000

Declaring a pointer variable :

The general form of declaring a pointer variable is as follows :

data type *pointer_name;
In this declaration -
the * means it is a pointer variable

pointer_name is the name given to the pointer variable and it being a variable
needs space in memory.

The data type indicates the type of the data to which the pointer variable points.

eg.
int *a;

This declares that the pointer variable points to an integer data type.

char *ch1;

Here the pointer variable points to a character data type.

float *p;

declares p as a pointer to a floating point variable.

When you declare a pointer variable you have to initialise it by assigning to it
the address of a variable eg.

int *p. i;
p = &i;

C Programming / 200

Thus p is initialised and now contains the address of i. Pointers should not be
used before they are initialised. When the type of a pointer is declared it will hold the
address of that data type only.

eg. int *i, j;
float p;
i = &p;

is invalid since p is declared float and the data type in the pointer declaration
is declared to be of type int.

A pointer variable can also be initialised at the time of declaration also as follows:

float a, *z = &a;

Here a is declared to be of type float. Pointer variable z is also declared to hold
address of data type float and hence can hold the address of a. (Note that a has to
be first declared before assigning its address to z i.e. the statement float *z = &a, a;
is invalid. Absolute value cannot be assigned to any pointer variable. Thus the following
is invalid :

int *p;
p = 100;

Having seen how to declare and initialise pointer variables let us now see how
to make use of the pointer variable to access the value of a variable.

Example : To determine the value of a variable using a pointer.

main()
{

int i, *ptr, val;
i = 100;
ptr = &i;
val = *ptr;
printf(“\nThe value of i is %d”, i);
printf(“\nThe value of i is %d”, *ptr);
printf(“\nThe value of i is %d”, *&ptr);
printf(“\nThe value of i is %d”, val);
printf(“\nThe address of i is %u”, &i);
printf(“\nThe address of i is %u”, ptr);

}
The output of the program will be :
The value of i is 100
The value of i is 100
The value of i is 100
The value of i is 100
The address of i is 65496
The address of i is 65496

The program demonstrates the various ways which can be used to determine the
value of a variable. The statement val = *ptr; returns the value of the variable whose
address is stored in ptr to val. Thus *ptr returns the value of the variable i.

ptr = &i;
val = *ptr;
can be combined and written as :
val = *&i;

Remember that val will have the same value as the value of the variable i. Study
thoroughly the concept of pointers before proceeding to the further topics.

Pointers / 201

9.1 Check Your Progress.
1. What will be the output of the following :
a) int i = 10, *j;

j = &i;
printf(“%d\t%u”, i, &i);
...
...

b) float f = 15.3, *ptr = &f;
printf(“%u\t%f”, &f, f);
...
...

2. Are the following valid ?
a) int *p;

p = 100;
...
...

b) float *j;
int i;
j = &i;
...
...

c) int i, *j = &i;
...
...

d) char ch1, *cptr;
int i;
cptr = i;
...
...

9.2 POINTER ARITHMETIC
Pointer variables can be used in expressions

eg.
float x, p, q, z, *ptr1, *ptr2;
ptr1 = &p;
ptr2 = &q;

Here ptr1 and ptr2 are pointer variables which point to variables of type float.
They are therefore initialised with the addresses of float variables p and q respectively.

then

(i) x = *ptr1/ *ptr2;
*ptr1 = *ptr2 – 10;
z = *ptr1 x 10;
are valid.
Example:
main()
{

float a, b, *p1 = &a, *p2 = &b;

C Programming / 202

float z;
a = 100;
b = 21.8;
printf(“\nThe value of a is %6.2f”, a);
a = *p1 * 10;
printf(“The new value of a is %6.2f”, a);
z = *p1/*p2;
printf(“The value of z is %6.2f”, z);
z = *p1-*p2;
printf(“The new value of z is %6.2f”, z);

}

The output of the program will be:
The value of a is 100.00
The new value of a is 1000.00
The value of z is 45.87
The new value of z is 978.20

Note : When using ‘/’ (division operator) in pointer arithmetic remember to have
a space between the/and * else /* will be mistaken as a comment. Thus write *ptr1/
*ptr2 and not *ptr1/*ptr2. With the above example it is clear that with the use of pointers
we have been able to manipulate the values of variables.

(ii) Pointers can also be incremented or decremented. Thus

ptr1 ++ or

ptr2 -- are valid in C.

In this case, it is important to understand what happens when pointers are
incremented or decremented. ptr++ will cause the pointer ptr1 to point to the next value
of its type. Thus if a is an integer and ptr1 is a pointer to a, then when ptr is
incremented its value will be incremented by 2 since an integer is stored in 2 bytes
of memory. Thus if the pointer ptr1 has an initial value 4820 then ptr++ will cause its
value to be 4822 i.e. its value is incremented by the length of the data type to which
it points. This length is called the scale factor.

For the purpose of revising let us once again see the various data types and the
number of bytes they occupy in memory

int 2 bytes
char 1 byte
float 4 bytes
long int 4 bytes
double 8 bytes

Example : To demonstrate increment and decrement of pointers

main()
{

int a, *ptr1;
float b, *ptr2;
ptr1 = &a;
printf(“\nptr1 is : %u”, ptr1);
ptr1++;
printf(“\nnew ptr1 is %u”, ptr1);
ptr2 = &b;
printf(“\nptr2 is : %u”, ptr2);

Pointers / 203

ptr2—;
printf(“\nnew ptr2 is %u”, ptr2);

}

The output of the program is :
ptr1 is : 65492
new ptr1 is : 65494
ptr2 is : 65494
new ptr2 is : 65490

In this program ptr1 points to an integer variable whereas ptr2 points to a float
variable. Incrementing ptr1 causes its value to increase by 2 (since int occupies 2 bytes
in memory). Decrementing ptr2 causes its value to be decremented by 4 since a float
occupies 4 bytes in memory.

(iii) Point (ii) can be extended as follows :

C also allows us to add integers to pointers. eg.
ptr2 + 4
ptr1+10
C also allows to subtract integers form pointers :
ptr1 -10
ptr2 - 2
Subtraction of pointers is allowed in C
p1-p2

Example : To add and subtract integers from pointers :

main()
{

int a, b, *ptr1 = &a, *ptr2 = &b; int q = 10, b = 20;
printf(“\nThe value of ptr1 is %d”, ptr1);
*ptr1 = *ptr1 + 10;
printf(“\nThe new value of ptr1 is %d”, *ptr1);
printf(“\nThe value of ptr2 is %d”, *ptr2);
*ptr2 = *ptr2 - 40;
printf(“\nThe new value of ptr2 is %d”, *ptr2);
*ptr2 = ptr2 - ptr1;
printf(“The new value of ptr2 is %d”, *ptr2);

}

Check the output of this program and study what happens to the values of ptr1
and ptr2 when integers are added to and subtracted from them.

(iv) Pointers can also be compared as :
ptr1 > ptr2
ptr2 < ptr1
ptr1 == ptr2
ptr1 != ptr2 and so on. It is however important to note that pointer variables can

be compared provided both variables point to objects of same data type.

(v) Remember that you cannot -

- add two pointers
ptr1 + ptr2 is invalid

- use pointers in multiplication

C Programming / 204

ptr1 * ptr2 is invalid
ptr2 * 10 is invalid

- use pointers in division
ptr1/20 is invalid
ptr2/ptr1 is invalid

9.2 Check Your Progress.
1. Write True or False :
a) Pointers cannot be used in expressions.
b) Pointers can be added to integers.
c) Multiplication of pointers is valid in C.
d) Pointers can be assigned negative values.

2. Answer in 1-2 sentences :
a) What cannot be done with pointers in pointer arithmetic?

...

...
b) What happens when pointers are incremented?

...

...

9.3 POINTER AND FUNCTIONS
Having obtained an overview of pointers and learnt pointer arithmetic let us now

learn the use of pointers in functions. We had deferred our discussion of call be
reference in functions till we studied pointers. Let us now see this aspect of functions.

Example : Program to exchange the values of i and j:

Let us write the program to swap the values of i and j first by using the call by
value method and then study the call by reference method :

Call by value:

main()
{

int i,j;
i = 10;
j = 50;
printf(“\ni = %d\tj = %d”, i, j);
swap(i,j);
printf(“\ni = %d\t j = %d”, i,j);

}
swap(int a, int b)
{

int z;
z = a;
a = b;
b = z;
printf(“\na = %d\t b = %d”, a, b);

Pointers / 205

}
The output of the program is :
i = 10 j = 50
a = 50 b = 10
i = 10 j = 50

Note that in this function the values of i and j remain unchanged, only the values
of a and b get interchanged. As we have already studied, the values of the actual
arguments merely get copied into the corresponding formal arguments of the called
function. Thus changes made to the formal arguments have no effect on the values of
the actual arguments.Thus even though you manipulate the formal arguments the
actual arguments remain unchanged.

9.3.1 Call by reference :

In call by reference we pass not the values but the addresses of the actual
arguments to the formal arguments of the called functions. The formal arguments are
declared to be pointer variables to accept the actual arguments. This implies that with
these addresses of the actual arguments we can have access to the actual arguments
and be able to manipulate them. We can thus change the values of the actual variables
with this technique. The following example rewrites the above program by making use
of call by reference and thus actually changing the values of i and j. It illustrates how
to pass the addresses as arguments to the called function :

Example : To actually swap i and j using call by reference

void swap(int *, int *)
main()

{
int i,j;
i = 10;
j = 50;
printf(“\ni = %d\tj = %d”, i, j);
swap(&i,&j);
printf(“\ni = %d\t ,j = %d”, i, j);

}
void swap(int *ptr1, int *ptr2)
{

int k;
k = *ptr1;
*ptr1 = *ptr2;
*ptr2 =k;

}
The output of the program willbe :
i = 10 j = 50
i = 50 j = 10

Here, the addresses of the variables i and j are copied into the formal arguments
*ptr1 and *ptr2 of the called function. With the help of these addresses we have access
to the actual values of i and j. Thus the values of i and j are exchanged.

Another example is given below which changes the actual value of a variable.
Study it carefully.

Example : /* Program to demonstrate call by reference */
main()
{

int i;

C Programming / 206

i = 10;

printf(“\nValue of i is :%d”, i);
fn1(&i);
printf(“\nNew value of i is : %d”, i);

}

void fn1(p)
int *p;
{

*p = *p + 10;
}
The output of the program is :
Value of i is :10
New value of i is :20

In this example, when the function fn1() is called the address of i (and not the
value of i) is passed to fn1(). In the function fn1() the variable ptr is a pointer variable
which points to data type int and so it receives the address of i.

*p =*p +10;

means that 10 gets added to the value which stored at the address p. Hence
10 gets added to i. This means that call by reference actually allowed you to change
the values of the variables of the calling functions.

We have studied that the return statement can return only one value from the
called function. However we can make a function return more than one value by making
use of call be reference method. Let us see how this can be done :

Example : To make a function return more than one value :

void fn1(int, int, int *, int *);
main()
{

int a, b, sum, prod;
printf(“\nEnter a :”);
scanf(“%d”, &a);
printf(“\nEnter b:”);
scanf(“%d”, &b);
fn1(a,b, &prod, &sum);
printf(“\nThe product of a and b is %d”, prod);
printf(“\nThe sum of a and b is %d”, sum);

}
void fn1(int i, int ,j, int *p, int *s)

{
*p = i*j;
*s = i + j;

}
A sample output:
Enter a : 50
Enter b : 10

Pointers / 207

The product of a and b is : 500
The sum of a and b is : 60

The above example makes efficient use of passing addresses to functions so
that the function returns the sum and product of the numbers a and b. We pass the
addresses of the variables prod and sum as parameters to fn1(). fn1() collects these
addresses in the pointer variables p and s. The values at these variables are then
calculated as the product and sum respectively and are then available in the calling
function. Thus two values are returned to the calling function from the called function.

Example : To make a function return more than one value :
void fn1 (int, float*, float*);
main()
{

int radius;
float circum, area;
printf(“\nEnter radius :”);
scanf(“%d”, &radius);
fn1 (radius, &area, &circum);
printf(“\nArea is : %6.2f”, area);
printf(“\nCircumference is : %6.2f”, circum);

}
void fn1(int r, float *a, float *c)
{

*a = 3.14*r*r;
*c = 2*3.14*r;

}
A sample run of the program :
Enter radius : 7
Area is : 153.86
Circumference is : 43.96
In this example, our function calculates both the area and circumference of the

circle. We are passing the radius and along with it the addresses of the variables area
and circum to the function fn1 (). Therefore area and circum are calculated and their
values can be obtained with the help of their addresses.

9.3.1 Check Your Progress.
1. Answer the following 1- 2 lines

a) Compare call by value and call by reference.

...

...
2. Write C programs for the following :

a) Use call be reference method to calculate the sum, product, difference and
quotient of two numbers a and b and make the function return all these
values.

b) Use call by reference method to write a function to calculate the value of ab.
Print the value from main().

9.3.2 Pointers to Functions :

Functions also have an address location in memory. Hence, we can declare a
pointer to a function. A pointer to a function is declared as follows:

type (*fnptr)();

C Programming / 208

fnptr is a pointer to a function which returns a value of type. The pointer is to
be enclosed in a pair of parenthesis.

A function pointer can be used to point to the specific function by assigning the
name of the function to the pointer.

eg.

float (*fnptr)();

float add();

fnptr = add;

will declare fnptr as a function pointer and intialised it to point to function add.
Now we can use fnptr to call the function add as :

(*fnptr)(a, b);

(Note that there is a parenthesis around *fnptr).

This is as good as calling function add():

add(a,b);

9.3.2 Check Your Progress.
1. Write in short on pointers to functions.

...

...

9.4 POINTERS AND ARRAYS
We have already seen that when we declare an array the elements of the array

are stored in contiguous memory locations. In pointers we have studied that whenever
we increment a pointer it points to the next memory location of its type. Using this,
let us now study pointers and arrays.

When an array is declared, the compiler immediately allocates a base address
and sufficient memory to hold all the elements of the array in contiguous memory
locations. The base address is the address of the first element (i.e. 0th index) of the
array. The compiler also defines the array name as a constant pointer to the first
element of the array.

9.4.1 Pointers to one dimensional arrays :

Let us study about pointers and one dimensional arrays with the help of the
following example:

Suppose you declare an array as follows :

int arr[5] = { 10, 20, 30, 40, 50};

arr is an array of type int whose size is five and the elements of the array are
initialised in the declaration. Let us assume that the base address of arr is 2400. Then
since each element of the array is of type int and there are five elements in the array
the five elements will be stored as follows

 :

arr is a constant pointer which points to the first element arr[0]. Thus the address
of arr[0] in our example is 2400.

Pointers / 209

We can declare an int pointer ptr to point to the array arr as

ptr = arr;
or
ptr = &arr[0];

We already know that when we use the increment operator with the pointer, its
value gets increased by the length of the data type to which it points. Here ptr points
to data type int, therefore incrementing ptr will cause its value to increase by 2 and
hence it will point to the next element of the array which is arr[1]. Thus it is possible
to obtain the addresses of all the elements of arr[] as follows :

ptr =&arr[0] =2400
ptr + 1 =&arr[1] =2402
ptr + 2 =&arr[2] =2404
ptr + 3 =&arr[3] =2406
ptr + 4 =&arr[4] =24

Thus you can obtain the address of the element as :
address of nth element = base address + (n x scale factor of data type)
In our case we can determine the address of the 4th element as :
address of the 4th element = 2400 + (4 x scale factor of int)

= 2400 + (4 x 2)
= 2408

We can use pointers to access the elements of an array. Thus we can access
arr[3] as *(ptr+3), arr[2] as *(ptr + 2) and so on. The pointer accessing method is very
fast as compared to accessing by the index number as arr[2], arr[4] etc.

Example : A program to obtain the addresses of all elements in the array:

main()
{

int arr[5] = {10,20, 30, 40, 50};
int i, *ptr;
ptr = &arr[0];
for (i = 0; i <5; i++)
{

printf(“Element: %d\tAddress : %u”, *ptr, ptr);
ptr++;

}
}
A sample run would give the following :
Element: 10 Address : 65488
Element: 20 Address : 65490
Element: 30 Address : 65492
Element: 40 Address : 65494
Element: 50 Address : 65496

In the above program note that we have not used indexing to access the elements
of the array. Instead we have incremented the pointer ptr everytime so that it points to
the next memory location of its type. Accessing array elements with pointers is always
faster as compared to accessing them by subscripts. This method can be very effectively
used if the elements are to be accessed in a fixed order according to some definite
logic. If elements are to be accessed randomly, then using subscripts would be easier
though not as fast as accessing them using pointers.

C Programming / 210

9.4.2 Pointers to 2 dimensional arrays :

We already know that elements of a two dimensional array are stored row wise.
Thus the base address of a two dimensional array arr[] is the address of the arr[0][0]tn

element which will be obtained as &arr[0][0]. The compiler then allocates contiguous
memory locations to the array elements row wise i.e first all the elements of row 1 are
stored then all elements of row 2 and so on. Let us see this representation with the
help of the following example :

int arr[2][5] = {(1,2,3,4,5),

(6,7,8,9,10)

};

The elements will be stored in memory rowwise as :

If we want to access the element arr[1][2] we can do it as :

arr[1][2] = *(ptr + 5 x1 +2)

= *(ptr + 7)

= 8

where ptr points to the base address of the array.

Thus to access an element arr[i][j] the formula would be :

a[i][j] = *(ptr + no. of cols x i + j)

Hence it is essential to define the number of columns i.e. size of each row when
declaring a two dimensional array so that the compiler can determine the storage
mapping for the array elements.

9.4.3 Pointers and strings :

A string is an array of characters which is terminated by the null character “\0'.
Thus the concept of pointers and one dimensional arrays can be extended to array of
characters. Let us write a program to determine the values of the elements of the
character array with the help of pointers.

Example : To access elements of a string with pointers

main()

{

char str1[25] = “Pointers”;

char *cp;

cp = &str1[0];

while(*cp != ‘\0’)

{

printf(“\nCharacter :%c\tAddress : %u”, *cp, cp);

cp++;

}

}

The output of the program will be :

Pointers / 211

Character: P Address : 65472

Character: o Address : 65473

Character: i Address : 65474

Character: n Address : 65475

Character: t Address : 65476

Character: e Address : 65477

Character: r Address : 65478

Character: s Address : 65479

Since characters require one byte of storage in memory, incrementing pointer cp
will increment its value by 1 and it will point to the next character in the string.

The concept of single dimension array of characters i.e. string can be extended
to the table of strings. When we declare a two dimensional array of strings, each string
will be allocated equal length as specified in its declaration. However, in practice the
all strings of the table are rarely equal in length. Hence instead of making each row
of a fixed number of characters we can make each row a pointer to a string of varying
lengths.

eg. char *name[3] =
{

“Jimmy”;
“Jill”;
“Joseph”

};

The above declaration declares name to be an array of three pointers where each
pointer points to the particular name. This can be shown as follows :

name[0]----------> Jimmy

name[1]----------> Jill

name[2]----------> Joseph

Had we declared name to be a two dimensional array of strings as name[3][10]
it would have reserved 30 bytes for the array name, where each name would be
allocated 10 bytes. But when we declare name to be an array of pointers, where each
element points to a name, the total memory allocated would be 18 bytes as follows

:

In order to access the jth character of the ith row :

*(name[i] + j) would be useful. Note that we first select the row, then the jth
element of that particular row and then determine value at address.

We can print the names in the array as shown in the following example:

Example : To demonstrate an array of pointers to strings.

main()
{

C Programming / 212

int i;
char *name[3] = {

“Jimmy”,
“Jill”,
“Joseph”

};
printf(“\nNames in the array :”);
for(i=0; i<3; i++)

printf(“\n%s”, name[i]);
}

9.4 Check Your Progress.
1. Write the formulae for accessing the following with pointers:
a) The nth element of a one dimensional array of float:

...

...
b) The ith character of a string

...

...
c) The a[i][j]th element of the array two dimensional array a[][].

...

...

2. Write programs in C for the following using pointers :
a) Find the average of elements of array a[5] of type int.
b) Reverse the string “Pointers&Arrays” using pointers to strings.
c) Write a program using pointers to input elements to an integer array and

print them in the reverse order.

9.5 POINTERS TO POINTERS
We know that a pointer variable contains the address of a data type. Since the
addresses are always whole numbers the pointers will always contain whole numbers.
The declaration char *ch does not imply that ch contains a data type char. It implies
that ch is a pointer to a data type char, i.e ch contains the address of a char variable,
i.e. the value pointed to by ch is of type-char.
The concept of pointers can thus be extended further. A pointer contains the address
of a variable. This variable itself can be a pointer. We can have a pointer to contain the
address of another pointer.

eg.
int. i, *j,**k;
j = &i;
k = &j;

i is an int data type and j is a pointer to i. k is a pointer variable which points
to the integer pointer j. The value at k will be the address of j. In principle, there is no
limit how far you can extend the concept of pointers to pointers. You can further have
another pointer to point to k and so on.

Example : Let us write a small program to illustrate pointers to pointers:

main()

Pointers / 213

{
char ch, *ch_ptr;
int **ptr;
ch = ‘A’;
ch_ptr = &ch;
ptr = &ch_ptr;
printf(“\nCharacter is : %c :”, ch);
printf(“\nAddress of ch is : %u”, ch_ptr);
printf(“\nValue of ch_ptr is : %u”, ch_ptr);
printf(“\nAddress of ch_ptr is : %u”, ptr);
printf(“\nValue of ptr is : %u”, ptr);
printf(“\nCharacter is :%c”, *ch_ptr);
printf(“\nCharacter is :%c”, **ptr);

}

Carefully follow the program to see how to obtain addresses and values at addresses
with the help of the above program. Also note that although ch is of type char and
ch_ptr is a pointer to ch, the pointer ptr to ch_ptr is declared of type int, since it is
going to hold the address of ch_ptr which is always going to be a whole number.

9.5 Check Your Progress.
1. Write the declaration and initialisation for the following :
a) A pointer to contain the address of a data type float:

...

...
b) A pointer to contain the address of a data type int and another to contain

the address of this pointer:
...
...

c) A pointer to contain the address of a data of type char.
...
...

9.6 DYNAMIC MEMORY ALLOCATION
In real life programming situations, many times it so happens that the number

of data items keeps on changing during program execution, eg. if you are processing
a list of travellers, new passengers may get added to the list as also passengers may
be cancelled. Such data which is subject to change during program execution is said
to be dynamic in nature. In order to handle such type of data efficiently and easily we
make use of dynamic memory management. Structures which are dynamic in nature
provide flexibility to add, delete and rearrange data items at run time. They make is
possible to free unwanted memory and allocate new memory as and when required.
This section will introduce the dynamic storage management functions in C.

The process of allocating memory to data items during run time is called as
dynamic memory allocation. C has four library routines which are useful for allocating
and releasing memory during the program execution. These functions make intelligent
use of memory. These functions are :

C Programming / 214

Function Use

malloc() - Allocates required memory in bytes and returns a pointer to
the first byte of the space allocated.

calloc() - Allocates space for an array of elements, initialises them to
zero and returns the pointer of the first byte of memory.

free - frees previously allocated memory

realloc - modifies the size of the previously allocated memory.

The following figure shows how a C program is stored in memory :

From the figure, it is understood that the global variables and the C program
instructions are stored in what is known as the permanent storage area. The local
variables are stored in an area called the stack. In between these two, free memory
available is called as the heap. This is the area which is used for dynamic memory
allocation. The heap size keeps on changing during program execution. When local
variables are created and they die, the memory is occupied and gets freed respectively.

If it so happens that the heap becomes full then the memory allocation functions
return NULL.

Let us now study these functions one-by one :

malloc():
Memory can be allocated using the malloc() function.
The general form of malloc() is :
ptr = (cast-type*)malloc(bytes);

malloc() reserves a size of memory equal to bytes and returns a pointer of type
void i.e. we can assign this pointer to any type of pointer. Thus ptr is a pointer of cast-
type, eg.

ptr1 = (int*)malloc(25 * sizeof(int));

This declaration will allocate a memory equivalent to twenty five times the size
of int in bytes, ptr1 is a pointer of type int and the address of the first byte of memory
allocated will be assigned to ptr1.

ch_ptr = (char*)malloc(10);

will allocate 10 bytes of space for the pointer ch_ptr of type char.

The storage which is allocated dynamically has no name, hence it can be
accessed only through pointers. malloc() can be used not only for simple data types
but also complex data types like structures.

malloc() allocates contiguous bytes of memory. In the event there is not enough
memory, it returns a NULL. Care should therefore be taken during program writing to
ensure whether enough memory is available or not.

Example:

Let us write a program to dynamically allocate memory to a list of integers.

main()

Pointers / 215

{
int *ptr, *p, n;
printf(“\nEnter number of elements :”);
scanf(“%d”, &n);
ptr = (int*)malloc(n * sizeof(int));
if (ptr == NULL)
{

printf(“Not enough memory to allocate”);
exit(1);

}
printf (“Enter values :”);
for(p = ptr; p< ptr + n; p++)
scanf(“%d”, p);
printf(“\nThe values input are :\n”);
for(p = ptr; p<ptr + n; p++)
printf(“Value = %d\tAddress = %u\n”, *p, p);

}
A sample run:
Enter number of elements ; 3
Enter values :
100
200
300
The values input are :
Value = 100 Address = 2456
Value = 200 Address = 2458
Value = 300 Address = 2460

The for loop in the above program initialises pointer p to the address of the first
element of the list and accepts elements till the number specified. Another for loop
prints the elements of the list and their corresponding addresses.

calloc():

This function is generally used to allocate memory for derived data types like
arrays and structures. calloc() allocates multiple blocks of storage, each of the same
size. It then sets all the bytes to zero.

The general form of calloc() :
ptr = (cast-type*) calloc(n, element-size);

With this declaration, n contiguous blocks each of size element-size are allocated
and all the bytes are set to zero. If there is not enough memory, a NULL pointer is
returned.

eg.
int arr1[10];
int *ptr;
ptr = (arr1*)calloc(10, sizeof(arr1));

Here we have defined an array arr1 having ten elements of type int. We use the
calloc() function to reserve 10 blocks of size each equal to the size of arr1. The pointer
is returned to ptr of type int. It is important to check whether space has been made
available or not before further execution.

C Programming / 216

eg.
if (ptr == NULL)
{

printf(“\nInsufficient Memory”);
exit();

}

free():

To release the used space in dynamic memory allocation, when it is not required
can be done with the free() function. When we release the block of memory which we
have allocated dynamically and no longer need it, it can become available for future
use.

The general form of free() is :
free(ptr);

where ptr is a pointer to the memory block which has been dynamically allocated
using malloc() or calloc().

realloc():

In situations, where the previously allocated memory is not sufficient and there
is additional memory requirement, it is possible to reallocate memory for more data.
Alternatively, it is also possible, that the memory allocated is much larger than required
and we need to make free the excess memory which has been dynamically allocated
previously. realloc() helps us to alter the original allocation of memory.

The form of realloc() is :
ptr = malloc(size);

is the statement with which we have dynamically allocated memory. To reallocate
this memory we use the realloc as follows :

ptr = realloc(ptr, newsize);

Remember that realloc() will also return a pointer to the first byte of the reallocated
memory block. The newsize will be the memory space allocated to the pointer. newsize
may be larger or smaller. Also, it is important to note that the new block may or may
not begin at the same place as the old block. If contiguous additional space is not
available, then realloc() will create an entirely new memory space and move the
contents of the old block to the new block. A NULL will be returned if the function fails
to locate additional space and the original block is lost.

Example : To first allocate memory for five integers in a list and then use
realloc() to make additional space for 3 more integers :

#include “stdlib.h”

main()
{

int *ptr, *p;
ptr = (int*)malloc(5 * sizeof(int));
if (ptr == NULL)
{

printf(“No space”);
exit(1);

}
printf(“Enter values :”);
for(p = ptr; p< ptr + 5; p++)

scanf(“%d”, p);
for(p = ptr; p < ptr+5; p++)

printf(“Value = %d\tAddress = %u\n”, *p, p);

Pointers / 217

ptr = (int*) realloc(ptr, 8 *sizeof(int));
if (ptr == NULL)
{

printf(“Reallocation Failed”);
exit(1);

}
printf(“New block reallocated succesfully”);
printf(“\nNew block contains :\n”);

for(p = ptr; p < ptr+5; p++)
printf(“Value = %d\tAddress = %u\n”, *p, p);

printf(“‘Enter new values for the reallocated block”);
for(p = ptr; p < ptr + 8; p++)

scanf(“%d”, p);
printf(“New values in the list \n”);
for(p = ptr; p< ptr + 8; p++)
printf(“Value = %d\tAddress = %u\n”, *p, p);

}
First we make use of malloc() to dynamically allocate memory for a list of

integers which contains 5 values. If the function fails it will return NULL and the program
will exit. On the other hand, if it is able to allocate memory it will prompt the user to
input the list of five integers. We have made use of the integer pointer p to read the
elements of the list. We then print the elements and their corresponding addresses.
Now we make use of realloc() to allocate memory to hold such 8 data items. If
reallocation is successful, the old data will remain intact and we print it. If reallocation
fails it returns NULL and the program is exited and data lost. We can now read in new
values in the newly reallocated block. These are then entered and printed. Remember
that you can allocate more memory or less memory using realloc(). Test the program
for various sample data items.

9.6 Check Your Progress.
1. Write the use of the following functions :
a) realloc():

...

...
b) free():

...

...

2. Write True or False :
a) There is no way of knowing whether malloc() has allocated memory or not.

......................................
b) malloc() and realloc() both allocate memory dynamically.

......................................
c) The free() function is used to release memory allocated dynamically when

it is no longer required.
......................................

d) A dynamically allocated storage can be given a name.
......................................

e) Dynamically allocated storage need not store data in contiguous memory
locations.
......................................

C Programming / 218

9.7 SUMMARY
In this chapter we studied the new and powerful concept of pointer. Pointers are

particularly important in system programming.

Pointers is contains the addresses of another variable. It is therefore possible to
access the value of a variable either with the help of variable name or with its addresses.

Pointers can be used in all places where arrays are used.

We can invoke functions using pointers

Dynamic allocation is allocating memory to data items during run time. C has
four library functions which are useful for allocating memory. They are malloc() ,
calloc(), free(), realloc(). These functions make intelligent use of memory.

9.8 CHECK YOUR PROGRESS - ANSWERS

9.1

1. a) 10 65486

b) 65388 15.3

(Note : You may get different addresses than the above ones.)

2. a) Invalid

b) Invalid

c) Valid

d) Invalid

9.2

1. a) False

b) True

c) False

d) False

2. a) In pointer arithmetic it is not possible to
(i) add two pointers
(ii) use pointers in multiplication
(iii) use pointers in division

b) When a pointer is incremented the pointer points to the next value of its
type i.e. its value is incremented by the length of the data type to which it points.
This length is called the scale factor.

9.3.1

1. a) In call by value, we pass the values of the arguments to the called function
from the calling function. Here the values of the actual arguments merely get
copied into the corresponding formal arguments of the called function. The changes
made to the formal arguments have no effect on the values of the actual
arguments.Thus even though you manipulate the formal arguments the actual
arguments remain unchanged.

In call by reference we pass not the values but the addresses of the actual
arguments to the formal arguments of the called functions. The formal arguments
are declared to be pointer variables to accept the actual arguments. The implies
that with these addresses of the actual arguments we can have access to the
actual arguments and be able to manipulate them. We can thus change the
values of the actual variables with this technique.

2. a) main()

Pointers / 219

{
int a, b;
float add, mul, div, diff;
printf(“Enter value of a :”);
scanf(“%d”, &a);
printf(“\nEnter value of b :”);
scanf(“%d”, &b);
fn1(a, b, &add, &mul, &div, &diff);
printf(“\nThe sum is : %.2f, add);
printf(“\nThe product is : %.2f”, mul);
printf(“\nThe quotient is : %.2f”, div);
printf(“\nThe difference is : %.2f”, diff);

}
fn1(int i, int j, float *sum, float *prod, float *quo, float *sub)
{

printf(“i = %d\tj = %d\n”, i, j);
*sum = i + j;
*prod = i * j;
*quo = i/j;
*sub = i - j;
printf(“\nsum = %.2f”, *sum);

}
b) main()

{
int a, b;
int z;
printf(“Enter value of a :”);
scanf(“%d”, &a);
printf(“Enter value of b :”);
scanf(“%d”, &b);
power(a,b,&z);
printf(“The value of a to the power b is : %d”, z);

}
power(int a, int b, int *p)
{

int i,j;
j = 1;
for(i = 1; i<=b; i++)
j = j * a;
*p = j;

}

9.3.2

1. Functions have an address location in memory. Hence, it is possible to declare
a pointer to a function. A pointer to a function is declared as follows :

type (*fnptr)();

where fnptr is a pointer to a function which returns a value of type. The pointer
is to be enclosed in a pair of parenthesis. A function pointer can be used to point

C Programming / 220

to the specific function by assigning the name of the function to the pointer.

eg. float (*fnptr)();

float add();

fnptr = add;

will declare fnptr as a function pointer and intialised it to point to function add.
Now fnptr can be used to call the function add() with the following statement:

(*fnptr)(a, b);

9.4

1. a) nth element = *(base address + (n * scale factor of float))

b) ith character of a string = *(base address + (i * 1));

c) value at a[i][j] = *(base address + no. of columns * i + j)

2. a) main()
{

int arr1[5], *ptr, sum, i;
float avg;
printf(“Enter elements of array :”);
for(i = 0; i< 5; i++)

scanf(“%d”, &arr1[i]);
sum = 0;
ptr = &arr1;
for(i= 0; i < 5; i++)
{

sum = sum + *ptr;
ptr++;

}
avg = (float)sum/5;
printf(“The average is :%.2f”, avg);

}
b) main()

{
char str1[25],*p = &str1;
strcpy(str1, “Pointers And Arrays”);
p = p + strlen(str1);
printf(“\nReverse string :\n”);
while (p >= &str1)
{
printf(“%c”, *p);
p—;
}

}
c) main()

{
int num[5], *p= &num, count;
printf(“\nEnter array elements :”);
count = 0;
while(count < 5)
{

Pointers / 221

scanf(“%d”,&num[count]);
count++;
P++;

}
p—;
while(p >= &num)
{

printf(“%d\t”, *p);
p—;

}
}

9.5

1. a) float f, *p;
P = &f;

b) int i, *p, **k;
P= &i;
k = &p;

c) char ch, *ptr;
ptr = &ch;

9.6

1. a) The use of realloc() is in situations, where the previously allocated
memory is not sufficient and there is additional memory requirement. Alternatively,
it is also possible, that the memory allocated is much larger than required and
we need to make free the excess memory” which has been dynamically allocated
previously. realloc() can also be used in such situations. Thus realloc() helps us
to alter the original allocation of memory.

b) To release the used space in dynamic memory allocation, when it is not
required we can use the free() function. Thus, when we no longer need the
block of memory which we have allocated dynamically we can release if with the
function free() and it can become available for future use.

2. a) False

b) True

c) True

d) False

e) False

9.9 QUESTIONS FOR SELF-STUDY
1. Answer in 3-4 sentences:

a) What is a pointer?
b) What is the value at address operator?
c) What happens when a pointer is decremented?
d) What type of data does a pointer hold?
e) What is the base address of an array?
f) What does calloc() do?
g) What is dynamic memory allocation?

C Programming / 222

2. Write short notes on :

a) Pointers and strings
b) malloc()
c) Call by reference
d) Pointer arithmetic

9.10 SUGGESTED READINGS

Spirit of C : Mullish cooper

Exploring C : Yashwant Kanetkar

The C Programming language : Kernigham & Ritche

Pointers / 223

NOTES

C Programming / 224

NOTES

Structures / 225

CHAPTER 10

STRUCTURES

10.0 Objectives
10.1 Introduction
10.2 Defining a Structure

10.2.1 Intialising structures
10.2.2 Accessing structure elements
10.2.3 Assigning values to individual members of

the structure
10.3 Array of Structures
10.4 Assigning values of one structure variable to

another
10.5 Nesting of structures
10.6 Passing a structure variable to a function
10.7 Pointers and Structures
10.8 Summary
10.9 Check Your Progress - Answers
10.10 Questions for Self - Study
10.11 Suggested Readings

10.0 OBJECTIVES
After, the study of this chapter you will be able to

• describe structures

• state the structure template to create arrays of structures

• expalin the use of structures with functions

• describe the use of pointers with structures

• explain the user defined data types in C

10.1 INTRODUCTION

We have seen that arrays can be used to store elements of the same data type
such as int or float. If we wish to represent data items of different types arrays are
not useful. This is where structures come into picture. Structures are derived data
types. We make use of structures to represent a collection of data items of different
types. Structures are useful for handling logically related data items. For example, the
personal data of people like names, addresses, phone numbers etc., or data of students
like their roll numbers, names, marks, grades etc.

We shall study how to define and use structures. An array of structures provides
a very useful tool to maintain records. We can also pass structures as arguments to
functions. These features shall also be studied with examples. How to handle structures
with the help of pointers is also discussed.

10.2 DEFINING A STRUCTURE
A structure contains a number of data types grouped together. The data types

can be similar or of different types. The structure definition and creation of the structure
variable will be best understood with the help of an example. Let us consider an
example of a database of students academic record. This database will consist of the

C Programming / 226

student roll no, his name, his marks out of 2 subjects and his percentage. A structure
to represent this information can be declared as follows :

struct stud
{

int roll;
char name[30];
int marks1;
int marks2;
float per;

};

The keyword struct declares the structure with the name stud. This name is
called the structure tag. The structure stud is declared to consist of five fields the roll
number of type int, the name of type array of char, marks1 and marks2 of type int
and per of type float. These fields are called as structure members or structure
elements. As you can see from the above declaration the members can be of different
data types.

Thus the general form of a structure definition is

struct tag_name
{

data_type member_1;
data_type member_2;
:
:

};

Note that this declaration of a structure simply describes a format or a template
of the structure. Once you have defined this structure data type you can declare one
or more variables to be of that type. Thus we can now declare a structure variable or
structure variables for the stud structure type as follows :

struct stud_db1, stud_db2, stud_db3;

This declaration will declare stud_db1, stud_db2, stud_db3 as three variables of
data type struct stud. Each of these variables will have four members as specified in
the template. Thus the entire declaration of a structure is represented as :

struct stud
{

int roll;
char name[30];
int marks1;
int marks2;
float per;

};
struct stud stud_db1, stud_db2, stud_db3;

Another method is to combine the structure type declaration and structure variables
in a single statement as shown below :

struct stud
{

int roll;
char name[30];

Structures / 227

int marks1;
int marks2;
float per;

} stud_db1, stud_db2, stud_db3;

or

struct
{

int roll;
char name[30];
int marks1;
int marks2;
float per;

} stud_db1, stud_db2,stud_db3;

In the first declaration we have given a tag to the structure viz. stud, in the
second declaration the tag has not been given to the structure; the variables are
declared directly in the same statement as the declaration. This means that the use
of the tag name is optional in structure declaration.

It is important to remember that the structures members themselves are not
variables. The structure declaration does not tell the compiler to allocate any memory.
It merely defines the form of the structure.

When we declare variables of type struct, the compiler allocates memory to
each individual member. All the members are stored in contiguous memory locations.
In the following declaration :

struct num
{

int i; char ch;
float f;

};

struct num num1

7 bytes of storage space will be made available to hold the structure members
: 2 bytes for i, 1 byte for ch and 4 bytes for f.

When declaring a structure :

- The declaration is enclosed within a pair of braces and the closing brace must
be followed by a semicolon.

- Each member has to be declared independently for its type and name in a
separate statement in the structure template.

- The tag name of the structure is then used to declare structure variables in the
program.

Usually in practice if structures are being used they are declared at the beginning
of a program before even defining any variables or functions. They can also be declared
outside main(). This makes the structure definition global and it can then be used by
other functions also.

10.2.1 Initialising Structures :

Like the primary variables and arrays, structure variables too can be initialised
at the time of declaration. We can initialise structure variables as follows :

struct stud
{

C Programming / 228

int roll;
char name[30]
int marks1;
int marks2;
float per;

};
struct stud stud_db1 = {101, “John”, 60, 50, 55.0};
struct stud_db2 = {102, “Jane”, 80, 60, 70.0};

Let us determine the addresses of these structure elements (since we have
studied that structure members are stored in contiguous memory locations) with the
help of the following program :

Example:

main()

{

struct stud

{

int roll;

char name[30];

int marks1;

int marks2;

float per;

};

struct stud stud_db1 = {101, “John”, 60, 50, 55.0};

printf(“\nAddress of roll number: %u”, &stud_db1 .roll);

printf(“\nAddress of name : %u”, &stud_db1.name);

printf(“\nAddress of marks1 : %u”, &stud_db1.marks1);

printf(“\nAddress of marks2 : %u”, &stud_db1 .marks2);

printf(“\nAddress of percentage : %u”, &stud_db1 .per);

}

A sample output of the program :

Address of roll number: 65456

Address of name : 65458

Address of marks1 : 65488

Address of marks2 : 65490

Address of per: 65492

Depending upon the number of bytes required for each data type the structure
elements will be stored. Follow the output of the program carefully.

10.2.2 Accessing Structure Elements :

How to access the elements of a structure? In order to do this, we make use
of the dot operator or a period operator (.).

eg. if we wish to refer to marks 1 of stud_db1 we do so as :

Structures / 229

stud_db1 .marks

Similarly we access the name of stud_db2 as :

stud_db2.name

Note the syntax for accessing the structure elements. The structure variable
should be followed by the dot and then the structure element.

struct_ var.struc_ele

10.2.3 Assigning values to individual members of the structure :

Individual structure members can also be assigned values as :

stud_db1 .roll = 101;

strcpy(stud_db1 .name, “Johnny”);

stud_db1 .per = 87.5

stud_db1 .marks1 = 80;

stud_db1 .marks2 = 95;

stud_db.marks2 represents the marks2 of stud_db1.

Thus we have given values to the members of structure variables stud_db1. We
can also make use of scant to read values for structure variables through the keyboard.
The following example will illustrate :

Example : To read values to members of a structure variable

main()

{

struct person

{

char name[30];

float sal;

};

struct person per_1;

printf(“\nEnter values for name and salary :”);

scanf(“%s%f”, &per_1 .name, &per_1 .sal);

printf(“\nName = %s \tSalary = %.2f”, per_1 .name, per_1 .sal);

}

A sample run of the program :

Enter values for name and salary Joseph 3500.80

Name = Joseph Salary = 3500.80

In this example, we have declared a structure person and a structure variable
per_1. Through the keyboard we input the values of the structure variables of per_1 and
then output them on the screen.

C Programming / 230

10.1 & 10.2 Check Your Progress.
1. Fill in the blanks:
a) The elements of a structure can be accessed using theoperator.
b) The keyword struct declares the structure with a name which is called the

.....................
c) Declaration of a structure simply describes a..................... of the structure.
d) The fields of a structure are called as structure

2. Write True or False :
a) Every structure member has to be declared separately for its type.
b) Structures have to initialised at the time of declaration.
c) There is no way to access structure members separately.
d) Structures can hold data of different types.
e) When a structure is declared a compiler immediately allocates memory for

the structure.
f) The use of the tag name is optional in structure declaration.

3. Declare the following structures and intialise them with sample data
:

a) Structure to hold the data of books in a library, which consist of the book
code, book title, number of copies, number of copies issued.
...
...

b) Structure of a personal record which includes name, telephone number and
email.
...
...

c) Structure of a record of hospital doctors which indicate their name, registration
number, area of specialisation and visiting hours.
...
...

10.3 ARRAY OF STRUCTURES
In the above examples, we have declared a number of structure variables for a

particular structure. But in actual practice when we are required to handle a large data
for such structures, then we would have to declare numerous structure variables for the
same structure, eg. if we wish to use the above structure for representing marks of 100
students then we will have to declare 100 structure variables of that type. A more
convenient way of doing this is to declare an array of structures. Each element of the
array will represent a structure variable. This can be done as illustrated in the following
declaration :

struct stud student[100];

Here we have declared an array student of structure type stud. Each element of
the array represents a structure variable. Each element will of the type stud. Thus
taking the structure template of stud of our previous example we can declare an array
of structure type stud as :

struct stud
{

Structures / 231

int roll;
char name[30];
int marks1 ;
int marks2;
float per;

};
struct stud stud_db1 [2];

Each element of the array will be a structure element of type stud. The elements
of the array will be referenced using subscripts as :

stud_db1[0].name
stud_db1[1].marks1
stud_db1[0].marks2 and so on.

In an array of structures all the elements of the array are stored in contiguous
memory locations. Each element of the array is a structure and structures are also
stored in contiguous memory locations.

Example : Declaring an array of structures :

main()
{

struct student
{

char name[30];
float sal;

};
struct student stud_db[10];
int i;
for (i = 0; i < 10; i++)
{

printf(“\nEnter values for name and salary :”);
scanf(“%s%f”, &stud_db[i].name, &stud_db[i].sal);

}
printf(“\nName\tSalary\n”);
for (i = 0; i < 10; i++)
{

printf(“ %s\t %.2f\n”, stud_db[i].name, stud_db[i].sal);
}

}

The above program declares an array stud_db of structure type student. Note the
use of the subscript and dot operator to read the values of the structure members in
the array. Run the program for sample values of data items.

Arrays within structures :

It is possible to use arrays within a structure. We have already seen this when
we defined char array in the above examples. In a similar way we can use single or
multidimensional arrays of type int or float within structures, eg. We may use a
separate array for storing the marks obtained in various subjects by a student and then
include this array in the structure declaration as shown below :

struct stud
{

char name[25];

C Programming / 232

int marks[3];
};

Here the structure contains two elements name and marks. name is an array
of characters whereas marks is an array of type int. The individual elements should be
accessed using appropriate subscripts eg. If stud_1 and stud_2 are structure variable
of type stud then you can access the elements as :

stud_1.marks[2];
stud_2.marks[1] etc.
Also if you have defined an array student of type stud as
struct stud student[10];
then you can refer the structure elements as :.
student[2].marks[0];
student[3],marks[1] etc.

Example : To demonstrate use of arrays within an array of structure:

main()
{

struct stud
{
char name[25]; int
marks[5];
};
struct stud st[2];
int i, j;
printf(“\nEnter name and marks\n”);
for(i = 0; i< 10; i ++)
{

scanf(“%s”, st[i].name[i]);
for (j = 0; j < 5; j ++)
{

scanf(“%d”, &st[i].marks[j]);
}
printf(\^nName\tMarks1\tMarks2\tMarks3\tMarks4\tMarks5\t\n”);
for(i = 0; i< 10; i ++)
{

printf(“%s”, st[i].name[i]);
for (j = 0; j < 5; j ++)
{

printf(“\t%d”, st[i].marks[i]);
}
printf(“\n”);

}
}

Carefully follow the program and see how the structure members are accessed.
The marks are input in an array of integers where the subscript j is used. The name
is a string which uses the same subscript i as that of the structure array.

The sizeof operator: In order to determine the size of the structure we can use
the sizeof operator as :

sizeof(struct struc1)

Structures / 233

This operator will determine the number of bytes required to hold all the members
of the struct struc1. eg.

if struc_1 is a variable of type struct then

sixed1(struc_1)

will give the size of the structure in bytes.

On the other hand if struc_1 is an array of structures then

sizeof(struc_1) would give the total number of bytes the array struc_1 requires.

Example : Determine the size of a structure variable :

main()
{

struct stud
{

int roll;
char name[20];

};
struct stud st, std[5];
int i j;
i = sizeof(st);
j = sizeof(std);
printf(“\nSize of structure st = %d\nSize of array std of structure = %d”);
}
The output of the program will be :
Size of structure st = 22
Size of array std of structure = 110

10.3 Check Your Progress.
1. Declare the following structures as arrays and illustrate how their

sizes can be determined using the sizeof operator.
a) Structure to hold the data of books in a library, which consist of the book

code, book title, number of copies, number of copies issued.
...
...

b) Structure of a record of hospital doctors which indicate his name, registration
number, area of specialisation and visiting hours.
...
...

10.4 ASSIGNING VALUES OF ONE STRUCTURE
VARIABLE TO ANOTHER

The values of a structure variable can be assigned to another structure variable
of the same type using the assignment operator (=).

Example : The following example will illustrate assignment of values of one
structure variable to another.

main()
{

struct stud
{

C Programming / 234

char name[25];

int marks1;

int marks2;

};

struct stud stud_1 = {“John”, 75, 82};

struct stud stud_2, stud_3;

stud_2 = stud_1;

stud_3 = stud_1;

printf(“\nElements of stud_1 :%s\t%d\t%d”,

stud_1 .name, stud_1 .marks1, stud_1 .marks2);

printf(“\nElements of stud_2 :%s\t%d\t%d”,

stud_2.name, stud_2.marks1, stud_2.marks2);

printf(“\nElements of stud_3 :%s\t%d\t%d”,

stud_3.name, stud_3.marks1, stud_3.marks2);

}

The output of the program would be :

Elements of stud_1 John 75 82

Elements of stud_1 John 75 82

Elements of stud_1 John 75 82

Thus the elements of structure stud_1 are copied to stud_2 and stud_3,

An alternative method to copy structure elements is shown below :

strcpy(stud_2.name,stud_1.name);

stud_2.marks1 = stud_1 .marks1;

stud_2.marks2 = stud_1.marks2;

As you can see in this method we are copying individual structure members to
the corresponding members of the other structure. The first method is much easier to
use as compared to the second one. Use the second method and rewrite the above
program to copy the structure members one by one.

10.4.1 Comparison of Structure variables :

We have seen that it is possible to assign the values of one structure variable
to another. Similarly, structure variables of the same type can be compared for equality
or inequality.

eg. If book1 and book2 are two structure variables of type book then the following
operations are valid :

book1 == book2

compare all members of book1 and book2. It returns a value 1 if all members
are equal else returns 0.

book1 != book2

will compare all members of book1 and book2. Returns a 1 if the members are
not equal else returns a 0.

It may be noted that all compilers may not support this feature of comparison
although indivisual members can be compared.

Structures / 235

10.4 Check Your Progress.
1. What values will the following return for the structure variables

declared as shown below :
a) i = Iib1.sr_no == Iib2.sr_no

...

...
b) j = Iib1 .author != Iib2.author;

...

...
c) k = ((Iib3.author == Iib4.author) && (Iib1 .sr_no == Iib2.sr_no));

...

...
d) i = Iib3.copies == Iib4.copies;

...

...

struct library
{

int sr_no;
char author[30];
int copies;

};
struct library Iib1 = {2,”abc”, 5}, Iib2 = {2, “abc”, 5};
struct libr
{

int sr_no;
char name[25];
char author[25];
int copies;

};
struct libr Iib3 = {100, “abc”, “Imn”, 4}, Iib4 = {100, “Imn”, “abc”, 4};

10.5 NESTING OF STRUCTURES
One structure can be nested in another structure. This means that you can have

a structure within a structure. Let us see how to nest a structure within another
structure with the example given below :

We have a structure emp which contains the information about an employee
like his name, department, age, basic salary, dearness allowance and house rent
allowance. A single structure to represent this information can be declared as :

struct emp
{

char name[25];
char dept[20];
int age;
float basic_sal;
float da;
float hra;

} emp_rec;

On the other hand we can declare the items related to the salary part in another

C Programming / 236

substructure as:

struc

{
float basic_sal;
float da;
float hra;

} salary;
and then nest this substructure within the outer structure as :
struct emp
{

char name[25];
char dept[20];
int age;
struct
{

float basic_sal;
float da;
float hra;

} salary;
} emp_rec;
The emp structure contains a member salary which itself is a structure. The

members of the inner structure variable salary can be accessed as :

emp_rec.salary.da
emp_rec.salary.basic_sal
emp_rec.salary. hra

Thus to access the innermost member in a nested structure all the structure
variables must be chained from the outermost to innermost variables with the dot
operator.

Structures can also be nested by making use of structure tags. The above
declaration can also be done in the following manner:

struct sal
{

float basic_sal;
float da;
float hra;

};
struct emp
{

char name[25];
char dept[20];
int age;
struct sal salary;

};

The template sal is defined outside the emp template. Then it is used to define
the structure salary within the emp template.

The concept of structure nesting can be extended to nest more than one type
of structure within a structure.

Example : To use structure nesting :

Structures / 237

main()
{

struct sal
{

float basic_sal;
float da;
float hra;

} ;
struct emp
{

char name[25];
char dept[20];
int age;
struct sal salary;

};
struct emp emp_1;
printf(“Enter members of emp_1\n”);
printf(“Enter name :”);
scanf(“%s”, emp_1.name);
printf(“\nEnter department:”);
scanf(“%s”, emp_1.dept);
printf(“\nEnter age:”);
scanf(“%d”, &emp_1.age);
printf(“\nEnter Basic Salary :”);
scanf(“%f”, &emp_1 .salary.basic_sal);
printf(“\nEnter Dearness Allowance :”);
scanf(“%f”, &emp_1 .salary.da):
printf(“\nAn Enter House Rent Allowance :”);
scanf(“%f”, &emp_1 .salary.hra);
printf(“\nAn Data for emp_1”);
printf(“\nName\tDepartment\tAge\n”);
printf(“%s\t%s\t%d\n”, emp_1.name, emp_1.dept, emp_1.age);
printf(“\nBasicSal\tDearness\tHouse Rent\n”);
printf(“%.2f\t%.2f\t%.2f\n”, emp_1 .salary.basic_sal, emp_1 .salary.da, emp_1
.salary.hra);

}

10.5 Check Your Progress.

1. Write C program for the following :

a) A database of a library where the outer structure will hold the code and
name of the book and the inner structure will contain the fields viz. the name
of the author, the number of copies, the number of copies issued and year
and month of latest edition (as string). Make use of structure nesting. In the
first part of the program declare the structure and define an array of structures
to hold the data for 50 such books. Input a sample data of 4-5 books in this
data base.

Then access records from this structure and print them in a properly formatted
manner.

C Programming / 238

10.6 PASSING A STRUCTURE VARIABLE TO A FUNCTION
C supports passing of structure values as arguments to functions. The following

methods are used to pass structure variables to a function :

- Passing each member of the structure as an actual argument when calling a
function. In this method, as the number of structure elements goes on increasing, the
method becomes unmanageable and also cumbersome to use.

Example : To pass individual elements of a structure to a function.
void (char*, int);
main()
{

struct emp
{

char name[25];
int age;

};
struct emp e1 = {“Jimmy”, 35};
fn1(e1.name, e1.age);

}
fn1(char *ch, int a)
{

printf(“\nName is : %s\nAge is : %d\n”, ch, a);
}

The output of the program :
Name is : Jimmy
Age is : 35

In this example, since name is an array of characters we have to pass the base
address to the called function. On the other hand since age is of type int we pass its
value. Thus this example illustrates use of call by value and call by reference both.

- In the second method, we pass a copy of the structure to the called function.
We have already learnt that though the formal arguments may-change in the called
function, it has no effect on the actual arguments of the calling function. Hence when
the structure is passed in this manner, any changes to the structure members will not
be effected to the members in the calling function. This means that we will have to
return the entire structure back to the calling function. This method of passing an entire
structure as an argument to the called function may not be supported by all compilers.

- Alternatively we can use pointers to pass the address of the structure to the
called function. Using pointers proves to be much more efficient as compared to the
above method. We shall study this method in the next section.

Let us now study how to pass a structure to the called function :

Passing a structure variable to a function :

The general form for passing a structure variable to the function is :

function_name(structure variable name)

It is important to note the following points when passing a structure variable to
a function :

- The function must be declared for its type depending upon the data type it is
supposed to return. If the function is supposed to return the entire structure then it has
to be declared as type struct with the appropriate tag name.

- Both the structure variables used as the actual and formal arguments must be

Structures / 239

of the same struct type.

- If the function is going to return a structure then the calling function should
declare an identical type to accept the value returned.

Example : To pass a structure variable to a function
void fn1(struct emp);
struct emp
{

char name[25];
int age;

};
main()
{

struct emp e1 = {“Jimmy”, 35};
fn1(e1);

}

fn1 (struct emp emp_1)

{

printf(“\nName is : %s\nAge is : %d\n”, emp_1 .name, emp_1 .age);

}

This program will produce the same output as the previous example. Here we
have declared the structure outside main() so that it becomes available to both main()
and fn1(). In this program we have not made the called function return anything to the
calling function. Let us write another example for the same.

Example : To demonstrate passing a structure variable to a function and making
the function return a structure.

struct num

{

float a;

float b;

float mul;

float cliff;

float sum;

};

struct num num1;

struct num fn();

main()

{

printf(“\nEnter value for a :”);

scanf(“%f”, &num1 .a);

printf(“Enter value for b :”);

scanf(“%f”, &num1 .b);

num1 =fn(num1, num1.a, num1.b);

C Programming / 240

printf(“The sum is : %.2f”, num1 .sum);

printf(“\nThe difference is : %.2f”, num1.diff);

printf(“\nThe product is :%.2f”, num1.mul);

printf(“\nThe quotient is :%.2f”, num1.quo);

}

struct num fn(no, i,j)

struct num no;

float i;

float j;

{

no.sum = i + j;

no.diff = i - j;

no.mul = i *j;

no.quo = i/j;

return(no);

}

In the above example we have used function fn() to calculate the sum, difference,
product and quotient of two numbers a and b. The structure num1 stores the two
numbers and all these four values.W send the structure and the values of a and b as
parameters to the function fn(). The function calculates the values and returns the data
of type struct num back to the calling function. These values are assigned to the
structure variable num1 in the calling function. Note that the structure num is declared
outside main() to make it globally accessible to all the functions.

10.6 Check Your Progress.
1. Write in about 5-6 sentences the various methods to pass structure variables

to functions.
...
...
...
...

2. Write true or false :
a) It is possible to pass structure members as arguments to a function.
b) When a structure is passed as an argument to a function the function

cannot return anything.
c) It is possible to pass the entire structure to a function and to make the

function return a data of type struct.

10.7 POINTERS AND STRUCTURES
In the above example, we have used the call by value method to pass arguments.

Another way to do the same is by using the call by reference method of functions.
This method as you know makes use of pointers. Therefore before using the call by
reference method with structures let us first study a few basic concepts about pointers
and structures :

We can declare a pointer to data objects of type structure eg.

Structures / 241

struct stud
{

char name[25];
int roll;
float per;

} st, *ptr;

Here, st is a structure variable structure type stud and pointer ptr is a pointer
to point to data object of structure type stud.

When we initialise the pointer as :
ptr = st;

it will assign the address of the first member of st to ptr. When using pointers
we cannot make use of the (.) dot operator to access the elements of the structure
variable, since the pointer is not a structure variable but a pointer to the structure.
Therefore C provides the arrow operator ‘->’ to refer to the structure elements. To
access the elements of st using pointers we have to write it as follows :

ptr->name
ptr->roll
ptr->per

Thus we can modify the above program and pass the address of the structure
to a function.

Example : This method will be best discussed with an example :

struct num
{

int a;
int b;
float mul;
float quo;
int diff;
int sum;

};
struct num num1;
fn1();

main()
{

printf(“\nEnter value for a :”);
scanf(“%d”, &num1 .a);
printf(“Enter value for b :”);
scanf(“%d”, &num1.b);
fn1(&num1);
printf(“\nSum = %d, Prod = %.2f Diff = %d, Quotient = %.2f”,
num1.sum, num1.mul, num1.diff, num1.quo);

}
fn1 (struct num *no)
{

no->mul = no->a * no->b;
no->quo = no->a/no->b;
no->sum = no->a + no->b;
no->diff = no->a - no->b;

C Programming / 242

}

In this program we have been able to compute all the operations in one function.
We make use of the arrow operator ‘->’ to assign the values of the results to the
corresponding members of the structure. Follow the program carefully.

Using pointers with array of structures : When we have declared an array of
structures how do we use pointers? Let us see how this is done with the help of the
following example :

struct stud
{

char name[25];
int roll;
float per;

} st[5], *ptr;

Here we define st as an array of 5 elements each of type struct stud. When we
assign the pointer ptr as :

ptr = st;

the address of the zeroeth element of st is assigned to ptr. Thus ptr Will now
point to st[0]. Then we can access the members as :

ptr->name
ptr->roll
ptr->per

Here when the pointer ptr is incremented by one it will point to st[1] i.e. the next
element of the array st[]. We can access the individual members of all the elements
of the array st[5] as :

for(ptr = st; ptr < st + 5; ptr++)
printf(“%s\t%d\t%f\n”, ptr->name, ptr->roll, ptr->per);

Alternatively we can also use the notation :
(*ptr).name
(*ptr).roll
(*ptr).per

to access the members. Note the syntax for accessing the members. Parenthesis
are essential around *ptr because the . operator has a higher precedence then the
operator.

10.7 Check Your Progress.
1. Fill in the blanks :

a) C provides the to refer to the structure elements when
using pointers.

b) * operator has a precedence than the . (dot) operator.
c) We can pass the of a structure to a function using pointers.

2. Write a C program for the following :
a) Declare an array of structures which holds the length and breadths of 10

rectangles. Pass this using pointers to a function which computes the areas
and perimeters of these rectangles.

10.8 SUMMARY
Structure is a collection of data items of different data-types under single name

for convenient handling.

Structures / 243

Structures are derived data types.

Structures are defined at a global level.

The array of structures is the most convenient way of handling the large amount
of data.

Nested structures means C allows us to define a structure within a structure.

Structures also can be passed to a function as a parameter and can also return
from function.

When large structures are to be passed to function it is to pass pointers to
structures.

10.9 CHECK YOUR PROGRESS - ANSWERS

10.1 & 10.2

1. a) dot
b) structure tag
c) template
d) members

2. a) True
b) False
c) False
d) True
e) False
f) True

3. a) struct lib
{

int code;
char name[20];
int copies;
 int issued;

};
struct lib bk1 = {“101, “CProgramming”, 10, 7};

b) struct per
{

char name[20];
long unsigned ph;
char email[25];

};
struct per p1 = {“John”, 7908352, “mymail@yahoo.corn”};

c) struct doc
{

char name[20];
int regno;
char special;
char hrs[20];

};

C Programming / 244

struct doc d1 = {“Dr.Stevens”, 1204, “Surgery”, “2.00to5.00”};

10.3

1 a) struct lib

{

int code; char

name[20];

int copies;

int issued;

};

struct lib bk1 [10];

int i;

i = sizeof(bk1);

b) struct doc

{

char name[20];

int regno;

char special;

char hrs[20];

};

struct doc d1 [50];

int i;

i = sizeof(d1);

10.4 1. a) 1

b) 1

c) 0

d) 1

10 5

1. #include “stdarg.h”
#include “stdio.h”
main()
{

struct bk
{

char author[25];
int copies;
int issued;
char edition[20];

};
struct book

Structures / 245

{
int code;
char name[30];
struct bk b1;

};
struct book b[50];
int i;
printf(“Enter book data :\n”);
for(i = 0; i< 5; i++)
{

printf(“Enter code :”);
scanf(“%d”, &b[i].code);
fflush(stdin);
printf(“Enter name:”);
scanf(“%s”, b[i].name);
printf(“Enter author:”);
scanf(“%s”, b[i].b1.author);
printf(“Enter copies :”);
scanf(“%d”, &b[i].b1 .copies);
printf(“Cppies issued:”);
scanf(“%d”, &b[i].b1 .issued);
printf(“Enter latest edition :”);
scanf(“%s”, b[i].b1 .edition);

}
printf(“\nCode\tName\t\tAuthor\t\tCopies\tlssued\tLatest Edition\n”);
for(i = 0; k 5; i++)
printf (“%d\t%s\t%s\t%d\t%d\t%s\n”, b[i].code, b[i].name,
b[i].b1.author,
b[i].b1 .copies, b[i].b1 .issued, b[i].b1 .edition);
 }

10.6

1. C supports passing of structure values as arguments to functions. The following
methods are used to pass structure variables to a function:

(i) Passing each member of the structure as an actual argument when calling
a function. In this method, as the number of structure elements goes on increasing,
the method becomes unmanageable and also cumbersome to use.

(ii) Passing a copy of the structure to the called functioh.ln this method
however, when the structure is passed to a function, any changes to the structure
members will not be effected to the members in the calling function. Therefore
we will have to return the entire structure back to the calling function. This
method of passing an entire structure as an argument to the called function may
not be supported by all compilers.

(iii) In the third method, we can use pointers to pass the address of the
structure to the called function. Using pointers proves to be much more efficient
as compared to the above method.

2. a) True
b) False
c) True

C Programming / 246

10.7

1. a) arrow operator
b) lower
c) address

2. struct rect

{
float len;
float breadth;
float area;
float peri;

};
main()
{

struct rect r[10];
int i;
for(i= 0; i< 5; i++)

{
printf(“Enter length and breadth :”);
scanf(“%f%f”, &r[i].len, &r[i].breadth);

}
fn(&r);
}
fn(r1)
struct rect *r1;
{

struct rect *ptr;
ptr = r1 ;
while(ptr < r1 +5)

{
ptr->area = ptr->len * ptr->breadth;
ptr->peri = 2 * (ptr->len + ptr->breadth);
printf(“Area = %.2f\tPerimeter = %.2f\n”, ptr->area, ptr->peri);
ptr++;
}

}

10.10 QUESTIONS FOR SELF - STUDY

1. What are structures? Describe the terms structure tag, structure members.
Explain with an example how to define a structure.

2. Why are arrays of structures used? Describe with example how to declare an
array of structures.

3. Write short notes on passing a structure variable to a function.

4. Write a note on Pointers and Structures.

Structures / 247

10.11 SUGGESTED READINGS

Let us C : Yashwant Kanitkar

C for Beginners : Madhusudan Mothe

C Programming / 248

NOTES

File Manipulation / 249

CHAPTER 11

FILE MANIPULATION

11.0 Objectives
11.1 Introduction
11.2 High Level Input/Output Functions

11.2.1 Unformatted high level file input output
(text mode)
11.2.2 Formatted Disk I/O functions.

11.3 Random File Access
11.4 Command Line Arguments
11.5 Summary

 11.6 Check Your Progress - Answers
 11.7 Questions for Self - Study
 11.8 Suggested Readings

11.0 OBJECTIVES
Friends, the study of this chapter will help you to

• state high level and low level File Input/Output Operations

• learn the purpose of opening of files viz. read, write, append etc.

• discuess how to open, close a file

• write programs to perform formatted high level file Input/Output using the standard
library functions in C

• explian what is random file access and the functions available for random
access

• Cover what are command line arguments and write programs for the same

• explain how to take care of errors during file input/output

• discuss what is the C preprocessor and learn the preprocessor directives
viz. macro substitution and file inclusion.

11.1 INTRODUCTION
Uptil now we have studied console input and output functions for input and output

and written a number of programs with the help of these functions. However, in real life
applications data volumes to be handled are very large and console input/output does
not become a convenient method. This is where we make use of files to store data on
disksand read it from the disks whenever required. Thus a file is a place on a disk
where related data is stored. C has a number of standard library functions to perform
basic file operations.

These functions include :
- opening a file
- reading data from a file
- writing to a file
- closing a file
- naming a file.

Functions to perform input/output operations on files are broadly classified
as :

C Programming / 250

- Low level File I/O functions also called as System Input/Output functions.

- High Level File I/O functions also called as standard or stream Input/Output
functions. The standard I/O library of C has a number of functions to perform high level
file I/O. High level I/O functions are much more easier to use than low level disk I/O.
However low level disk I/O functions are much more efficient in terms of operation and
amount of memory used by the program.

The high level disk input/output operations are further classified as text and
binary. The basic difference between these two modes lies in the way in which a file
is opened. In both these modes we have both the formatted and unformatted functions.
Text and binary files handle the following areas in different ways :

- How new lines are handled
- How end of file is represented
- How numbers are stored
- Handling of new lines

In this chapter our primary focus will be on high level disk input/output operations
in the text mode.

11.2 HIGH LEVEL INPUT/OUTPUT FUNCTIONS
Before we study the high level input/output functions on files in detail, let us first

know a few things related to opening, closing and purpose of opening the file.

Opening a File :

Before reading from a file or writing to it the first thing to be accomplished is to
open the file. Once a file is opened a link is established between the operating system
and the program. The operating system has to know certain things about the file viz
:

File name : File name is a string which makes a valid filename depending upon
the operating system, eg. hello.c, abc.out etc.

Data Structure : The data structure of the file is defined as FILE in the standard
I/O function definition. This structure has been defined in the header file stdio.h (standard
input/output header file). This header file is always required to be included in our
programs when we wish to perform operations on files. All files should therefore be
declared of type FILE before they are used. FILE is a defined data type.

Purpose : When we open the file we have to mention the purpose of opening
the file i.e whether we want to read a file, write to an already existing file, append new
contents at the end of a file etc.

Declaring and Opening a File :

Every file which we open has its own FILE structure which contains information
about the file like its size, its current location in memory etc. The FILE structure
contains a character pointer which points to the first character that is about to be read.

The format for declaring and opening a file is :

FILE *fp;

fp = fopen(“filename”, “mode”);

fp is declared to be a pointer to the data type FILE. fp contains the address of
the structure FILE which has been defined in the standard I/O header file stdio.h. The
second statement opens the file whose name is filename. Note that both the filename
and mode are strings and therefore enclosed in double quotes. The mode indicates the
purpose of opening the file. The mode can be one of the following :

File Manipulation / 251

“r” searches for the file. If it exists, it is loaded in memory and the pointer
is set to the first character in the file. If the file does not exist it returns
NULL.

reading from file is possible.

“w” searches for the file. If it exists, its contents are overwritten. If the file
does not exist, a new file is created. If the file cannot be opened
returns NULL.

writing to the file can be done.

“a” searches a file. If it exists, it is loaded in memory and a pointer is set
to point to the first character in the file. If it does not exist, a new file
is created. If unable to open a file returns NULL.

appending new contents at the end of the file is possible

“r+” Searches for the file. If its exists it is loaded into memory and a pointer
is set to point to the first character in the file. If the file does not exist
returns NULL.

It is possible to read, write new contents, modify existing contents

“w+” Searches for file. If found its contents are destroyed. If the file is not
found a new file is created. If unable to open file returns NULL.

writing new contents, reading them back, and modifying existing contents
is possible

“a+” Searches for file. If it exists it gets loaded into memory and a pointer
is set to point to the first character in the file. If it does not exist, a
new file is created. Returns NULL if unable to open the file.

reading existing contents, appending new contents is possible. Cannot
modify existing contents

Multiple files can be opened and used at a given time. The exact number
however is dependent on the system which we are using.

Closing a File :

When we have finished the operations on a file, the file must be closed. This
ensures that all the outstanding information associated with the file is removed from the
buffers and all links to the file are broken. There are a number of other reasons for which
the file has to be closed. They include:

- Misuse of the file is prevented.

- We might also be required to close a file in order to open it in some other mode

- There is a limit to the number of files that can be kept open at a particular time.

In such cases, unwanted files may be closed.

The function to close a file is :

fclose(filepointer);

This function will close the file associated with the FILE Pointer file pointer.
Closing a file deactivate the file and the file is no longer accessible. As soon as a file
is closed, the file pointer associated with it may be used for another file.

C Programming / 252

11.1 & 11.2 Check Your Progress.
1. Answer in one sentence :
a) What is a file?

...

...
b) What is the first thing to be done when handling file input/output?

...

...
c) Give any one reason why a file should be closed?

...

...
d) What are the different purposes for which a file should be opened?

...

...
2. Describe the following file opening modes.
a) “r” -

...

...
b) “w” -

...

...

11.2.1 Unformatted High Level File Input Output (Text Mode):

fgetc and fputc functions :

The simplest file Input/Output functions from the standard I/O routines are fgetc
and fputc. These functions can handle one character at a time.

If a file is opened in the “r” mode with the file pointer fp, then
fgetc(fp);
reads a character from the file whose pointer is fp.
If a file is opened in the “w” mode, with the file pointer fp, then
fputc(ch, fp);
will write the character contained in ch to the file associated with FILE pointer
fp.
fgetc and fputc make the file pointer move ahead by one character for every

operation. The reading of the file should be stopped when the EOF (end of file is
encountered).

Let us write a program to open a file and display its contents on the monitor to
illustrate the use of the fgetc.

Example : To read a file and display its contents

#include “stdarg.h”
#include “stdio.h”
main()
{

FILE *fp;
char i;
fp = fopen(“array1.c”, “r”);
if(fp == NULL)

File Manipulation / 253

{
printf(“Cannot open source file”);
exit();

}
i = fgetc(fp);
while((i = fgetc(fp)) != (char)EOF)

printf(“%c”, i);
printf(“%c”, i);
fclose(fp);

}

In the above example, if the file cannot be opened successfully print the message
“Cannot open source file” is printed and the program is exited. If the file has been
successfully opened the data in the file will be read character by character till end of
file is encountered. Every time we read a character we display it on the screen. Once
the entire file has been read, the file should be closed with fclose.

fgetc and fputc can be used together in order to copy contents of one file to
another. The following example will illustrate the use of the fgetc and fputc to read
characters from a file and write them to a new file.

Example : To read a file and copy its contents to another file

#include “stdarg.h”
#include “stdio.h”
main()
{

FILE *fp, *fp1;
char ch;
fp = fopen(“myfile”, “r”);
fp1 = fopen(“copyfile”, “w”)
if(fp == NULL)
{

printf(“Cannot open source file”);
exit();

}
if(fp1 == NULL)
{

printf(“Cannot open target file”);
exit();

}

ch = fgetc(fp);
while((ch = fgetc(fp)) != (char)EOF)
{

fputc(ch, fp1);
}
fclose(fp);
fclose(fp1);
printf(“File copying successful!”);

}

In this example, we have opened myfile in the read mode to copy its contents
to the copyfile. Remember that copyfile is to be opened in the w mode. If the source

C Programming / 254

file (myfile in our case) is not found it returns NULL. Once the file has been successfully
openend the contents of myfile are copied to copyfile character by character till EOF
of myfile occurs. Remember that when copyfile is opened in w mode, if the file does
not exist a new file is created to write, but if the file does exist its contents are
overwritten.

The getw and putw functions :

getw and putw are similar to fgetc and fputc. They are used to read integer
values. These functions are useful when you are dealing with only integer data. The
general form of putw is :

putw(integer, fp);
to put an integer into the file and
getw(fp);
to read an integer from the file.

Example : To illustrate getw and putw

#include “stdarg.h”
#include “stdio.h”
main()
{

int i;
FILE *fp;
fp = fopen(“lntfile”, “w”);
if (fp == NULL)
{

printf(“Unable to open file”);
exit(1);

}
printf(“Enter integer values to file (-1) to finish :\n”);
whi!e(i!=-1)
{ scanf(“%d”, &i);

putw(i.fp);
}
fclose(fp);
fp = fopen(“lntfile”,”r”);
while((i = getw(fp)) != EOF)

printf(“%d\t”,i);
fclose(fp);

}

The program reads in integer values till you enter -1 to indicate end of data entry
and prints them again on the screen by retrieving them from the Intfile using getw.

String I/O in Files :

In this section, let us study the functions that are capable of handling strings.
The functions to read and write strings from and to a file are fgets() and fputs().

Let us write a program to write strings to a file by making use of the functionfputs()
and to display them on the screen by opening the file and using fgets().

Example : To write strings to a file and read them back
#include “stdarg.h”
#include “stdio.h”
main()

File Manipulation / 255

{

FILE *fp;

char str1[80];

fp = fopen(“Sample.txt”, “w”);

if (fp == NULL)

{

printf(“\nUnable to open file”);

exit();

}

printf(“\nEnter strings for file :\n”);

while(strlen(gets(str1)) >0)

{

fputs(str1, fp);

fputs(“\n”, fp);

}

fclose(fp);

printf(“\nLet us write strings back from the file :\n”);

fp = fopen(“Sample.txt”, “r”);

while(fgets(str1,79,fp) != NULL)

printf(“%s”,str1);

fclose(fp);

}

A sample output:
Enter strings for file :
Mary had a little lamb
Its fleece was white as snow
Let us write strings back from the file :
Mary had a little lamb
Its fleece was white as snow

There are a number of things to note in this program. str1 is defined as an array
of characters i.e. a string of size 80 (width of the screen). The function fputs() writes
the contents of str1 to the file pointed to by fp. The file is opened in the “w” mode to
write. Once again note that “w” will create a new file if it does not exist and will overwrite
the file

if it does exist. fputs() does not automatically insert a new line character at the
end of the line. Therefore, the second fputs() is used to enter a newline character to
the file after every string input. When inputting strings, each string input is terminated
by pressing the Enter key. In order to terminate entering strings press Enter as the first
character on a new line. This implies that the string is of zero length and the condition
strlen(gets(str1) >0) will become false. The file is then closed.

The second part of the program now opens the file in the read mode to read its
contents and display them. For this purpose we make use of the fgets() function.
fgets() takes three arguments, the first is the address where the string is stored,
second the maximum length of the string and third is the pointer to the structure FILE.
A NULL will be returned by fgets() when all the lines have been read and the program
will end.

C Programming / 256

11.2.1 Check Your Progress.
1. Write True or false :
a) fgetc(fp) is used to write a character to a file whose file pointer is fp.
b) We make use of fputc() function for inputting strings to a file.
c) To read from a file it has to be opened in the “r” mode.
2. Explain the following functions :
a) fgets():

...

...
b) fputc():

...

...
c) fputs():

...

...
3. Write a program to write characters to a file using fputc(). Terminate

input by typing Z’. Read the characters back from the file and print
them on screen.

11.2.2 Formatted Disk I/O Functions :

The two functions for formatted disk I/O to write characters, strings, integers,
floats are the fscanf() and the fprintf(). fscanf() and fprintf() are identical to printf and
scanf except that they work on files.

The general form of the fprintf() is :
fprintf(fp, “control string”, list);

Here fp is the file pointer associated with the file to which we are writing. The
control string contains the output specifications for the items in the list as in the case
of printf. The list can include variables, constants and strings.

The general form of fscanf() is
fscanf(fp, “control string”, list);

where fp is the file pointer associated to the file from which we are reading. The
control string contains the specifications for reading the items from the list.

Let us see how to make use of the formatted disk I/O functions with the help
of the following program: :

Example : To use fscanf() and fprintf() for formatted file Input/Output

#include “stdarg.h”
#include “stdio.h”
main()
{

FILE *fp;
char name[20], email[20];
long unsigned ph;
char more;

fp = fopen(“Person”, “w”)
if (fp== NULL)
{

printf(“Cannot open file”);

File Manipulation / 257

exit();
}
more = ‘y’;
while (more == ‘y’)
{

printf(“Enter name, email, phone:\n”);
scanf(“%s %s %lu”, name, email, &ph)
fprintf(fp, “%s\n%s\n%lu\n”, name, email, ph);
printf(“\nEnter more data :”);
fflush(stdin);
scanf(“%c”, &more);
}

fclose(fp);

fp = fopen(“Person”, “r”);
while(fscanf(fp, “%s %s %lu”, name, email, &ph) != EOF)

printf(“%s %s %lu\n”, name, email, ph);
fclose(fp);

}

In this program we have made use of the fflush() function. The fflush() function
removes any data remaining in the buffer. The argument that fflush() takes is the buffer
which we want to flush out. Here our buffer is the stdin which is the buffer related to
the standard input device which in this case is the keyboard.

The fflush() is required in this program, because you prompt the user with the
statement “Enter more data :” But the user has typed the Enter key after completing
his entries of the previous name, email and ph and the program takes the Enter key
as an answer to Enter more data ? and hence will stop reading further. To avoid this
we first empty the buffer and then ask the user whether he wishes to enter more data.

This program has been used to write and read dissimilar data types to a file.
Therefore we can make efficient use of structures while reading and writing such
records to a file. This program illustrates how to make use of structures for formatted
file I/O.

Example :
#include “stdarg.h”
#include “stdio.h”
main()
{

FILE *fp;
struct per
{

char name[20];
char email[20];
long unsigned ph;

};
struct per person;
char more = ‘Y’;
fp = fopen(“Person.dat”, “w”);
if(fp == NULL)

C Programming / 258

{
printf(“\nCannot open file”);
exit();

}
while(more == ‘Y’)

{
printf(“\nEnter name, email and phone :\n”);
scanf(“%s %s %lu”, person.name, person.email, &person.ph);
fprintf(fp, “%s\n%s\n%lu\n”, person.name, person.email, person.ph);
printf(“\nEnter another record (Y/N) ?”);
fflush(stdin);
more = getche();

}
printf(“\n”);
fclose(fp);
fp = fopen(“person.dat”, “r”);
if(fp == NULL)
{

printf(“\nCannot open file\n”);
exit();

}
while(fscanf(fp, “%s %s %lu”, person.name, person.email, person.ph)

!= EOF)
printf(“%s %s %lu\n”, person.name, person.email, person.ph);
fclose(fp);

}

11.2.2 Check Your Progress.
1. Write a program using the formatted file input/output functions to input

data to an inventory file. The data consists of the following elements : the
itemcode, the item name, unit price and quantity. Make use of a structure
to store the data. Enter data for 10 such items to the file and print out the
same.

11.3 RANDOM FILE ACCESS
In our above discussion we have seen the various methods by which we can

access data sequentially for reading and writing. However, in practical usage there are
numerous situations when we are interested in accessing a particular part of a file and
not the other parts. The standard C library provides functions for such random access.
These functions are fseek, ftell and rewind.

ftell: This function takes a file pointer as its argument. It returns a long integer
value which corresponds to the current position in the file. This function is useful to save
current position of the file for later use. The ftell takes the following form :

n = ftell(fp);

where n is a long integer, n gives the relative offset from the current position (in
bytes) which implies that n bytes have been read (or written) so far.

rewind : rewind takes the file pointer as its argument and resets the position

File Manipulation / 259

to the start of the file. eg. rewind(fp);

will set the file position to the beginning of the file.The first byte in the file is
numbered 0, the second 1 and so on. We can use rewind to read or write to file again,
without having to close and reopen it.

fseek is a function which is used to move the file position to the required
location. The form of fseek is :

fseek(filepointer, offset, position);

where filepointer is a pointer to the file, offset is the value of type long and the
position is an integer. The offset specifies the number of bytes to be moved from the
location specified in position. Position can take one of the following three values :

Position Value
0 Beginning of file
1 Current position
2 End of file

If the offset is positive, the position is moved forward, if it is negative, the position
is moved backward. eg.

fseek(fp, m, 1); will move the position forward by m bytes from current
position

fseek(fp, -m, 2); will move the position backward by m bytes from end
of file

fseekfp, m, 0) will move forward by m bytes starting from beginning
of file.

If the operation is successful fseek returns a zero. In the event that we attempt
to read beyond the limits of the file, fseek returns a value -1 and an error occurs.
Always be sure to check for errors when using fseek.

Let us create a file in a sample program to make use of these functions:

Example :

#include “stdarg.h”
#include “stdio.h”
main()
{
int ch;

FILE *fp;

fp = fopen(“charfile”, “w”);
printf(“\nEnter characters for file “);
while ((ch = getche()) != ‘Z’)
{

fputc(ch, fp);
printf(“%c”, ch);

}
fclose(fp);
fp = fopen(charfile”, “r”);
fseek(fp,2,0);
printf(“\nPosition of character : %ld\tCharacter is : %c”, ftell(fp), fgetc(fp));
fseek(fp, -6, 2);
printf(“\nPosition of character : %ld\tCharacter is : %c”, ftell(fp), fgetc(fp));
printf(“\nCurrent position %ld”, ftell(fp)); rewind(fp);

C Programming / 260

printf(“\nThe first position is %ld\tCharacter is :&c”, ftell(fp), fgetc(fp));
}

The program uses the random file access function to determine the character at
various positions by going forward, rewinding etc. Follow the program carefully and try
to seek more characters using the random file access functions.

11.3 Check Your Progress.
1. Explain the following functions :
a) ftell:

...

...
b) rewind :

...

...
2. What will be the result of the following ?
a) fseek(fp, 8, 0):

...

...
b) fseek(fp, -16, 2):

...

...
c) fseek(fp, 10, 1) :

...

...

11.4 COMMAND LINE ARGUMENTS
A command line argument is a parameter which is supplied to a program when

the particular program is invoked eg. it may be a filename of a file which is to be
processed by that command.

Let us understand command line arguments by using the example of creating
a file to copy the source file to the target file. So if you want to copy a file named
source to a file named target then we may use a command like:

C>flcopy source target

where flcopy is the program which is the executable file (An executable file is
one which has the .exe extension and can be executed as the DOS prompt).

How do we send the source and target filenames as parameters to flcopy? It is
possible for us to pass the source filename and the target filename to main() to make

these parameters available to the program. Up till now, we have been using
main() in all our programs and this is the place where our program execution starts.
However, we have not yet passed any parameters to main(). Actually main() can take
two parameters argc and argv. Information contained in the command line is passed
to the program through these two arguments argc and argv whenever main() is
invoked.

argc is an int which counts the number of arguments on the command line.
argv is an array of pointers to strings(which are the command line arguments). Thus
argc is an integer whose value is equal to the number of strings to which argv points.
When the program is executed, the strings on the command line are passed to main().
argv is an array called the argument vector. It is an array of character pointers that

File Manipulation / 261

points to the command line arguments. Thus in our example

flcopy source target

the value of argc is 3 (which is the number of arguments on the command line)
and the array of character pointers to strings (argv) is :

argv[0] contains the base address of the string “flcopy”
argv[1] contains the base address of the string “source”
argv[2] contains the base address of the string “target”

When the command line arguments are to be passed to main(), we have to
declare the main() function as follows :

main(argc, argv)
int argc;
char *argv[];
or
main(int argc, char *argv[]);

Note the order of arguments in passing them to main(). It is is argc and then
argv. The first parameter in the command line is always the program name. This
implies that argv[0] is always the name of the program.

Having understood this, let us make use of the command line arguments to write
a program to copy the source file to the target file.

Example : Use command line arguments to copy source to target. #include
“stdarg.h”

#include “stdio.h”
main(int argc, char *argv[])
{

int i;
FILE *fs, *ft;
if(argc !=3)
{

printf(“Incorrect arguments”);
exit();

}
fs = fopen(argv[1], “r”);
if (fs == NULL)
{

printf(“Unable to open source file”);
exit();

}
ft = fopen(argv[2], “w”);
if (ft == NULL)
{

printf(“Unabkle to open target file”);
exit();

}
while (i = fgetc(fs)) != EOF)

fputc(i,ft);
fclose(fs);
fclose(ft);

}

C Programming / 262

Here we have used the same logic of copying source to target as in our previous
program. Save this file with the name flcopy.c. After successful compilation the exe file
flcopy.exe will be generated. This file can now be executed at the command prompt.

Now you can run the flcopy file at the command prompt as :

c> flcopy myfile yourfile

This program will copy the contents of myfile to yourfile. You have now successfully
created a program that will copy the source file to the target file at the DOS prompt.

Advantages of using argc and argv :

The advantages of using argc and argv are :

- we can execute this program at the command prompt, there is no need to
compile the program every time we want to run it.

- In our previous program we had to either specify the filename of source and
target in the program itself or prompt the user the every time to enter the filenames
during execution.

11.4 Check Your Progress
1. Answer the following in 1-2 lines
a) What is meant by argc and argv?

...

...
b) What are the advantages of using argc and argv?

...

...
c) What is a command line argument?

...

...

11.5 SUMMARY
A file is a permanent place on a disk where related data is stored. C provides

number of functions for opening a file , reading data from a file, writing to a file, closing
a file.

File can be bifurcated on the basis of the way it is opened i. e Binary mode or
text mode.

Random file- Random files read the records Randomly. One can modify, Update,
delete files directly without accessing all the records.

Arguments can also be passed to function main, using special parameters.
Since we pass the arguments to main at the command prompt they are called command
line parameters.

11.6 CHECK YOUR PROGRESS - ANSWERS

11.1 & 11.2

1. a) A file is a place on a disk where related data is stored.

b) The first thing to be done while handling input/output to files is to open the
file.

File Manipulation / 263

c) We might be required to open the file in some other mode and therefore
the file should be closed.

d) The different purposes for which a file should be opened are reading a file,
writing to an already existing file, appending new contents at the end
of a file.

2. a) r - This mode searches for the file. If it exists, it is loaded in memory and
the pointer is set to the first character in the file. If the file does not exist it
returns NULL. It is possible to read from the file.

b) w - This mode searches for the file. If it exists, its contents are over
written. If the file does not exist, a new file is created. If the file cannot be opened
returns NULL. It is possible to write to the file.

11.2.1

1. a) False

b) False

c) True

2. a) fgets() is a standard C library function to read strings from a file.
It takes three arguments, the first is the address where the string is stored,
second the maximum length of the string and third is the pointer to the structure
FILE.

b) fgetc is a standard input/output function capable of reading one character
at a time. These functions handle one character at a time. When you open a
file in the “r” mode fgetc(fp); reads a character from the file whose pointer is fp.
fgetc makes the file pointer move ahead by one character for every operation.

c) The function fputs() writes the contents of a string t6 the file pointed to by
fp. The file is opened in the “w” mode to write. fputs() function does not automatically
insert a new line character at the end of the line.

3. #include “stdarg.h”
#include “stdio.h”
main()
{

FILE *fp;
char ch1;
int i;
fp = fopen(“newfile”, “w”);
printf(“\nEnter contents for file :”);
‘while((ch1 = getche()) != ‘Z’)

fputc(ch1, fp);
fputc(ch1, fp);
printf(“\n”);
fclose(fp);
fp = fopen(“newfile”, “r”);
if(fp == NULL)
{

printf(“\nCannot open file”);
exit();

}
while((ch1 = fgetc(fp)) != ‘Z’)

putchar(ch1);

}

C Programming / 264

11.2.2

1. #include “stdarg.h”
#include “stdio.h”;
main()
{

struct inventory
{

int cd;
char name[20];
float unit;
 int qty;

};
struct inventory in;
FILE *fp;
int i;
fp = fopen(“lnvent.dat”, “w”);
if(fp == NULL)
{

printf(“Unable to open file”);
exit();

}
printf(“\nEnter item code, name, unit price, qty\n”);
for(i = 0; i < 2; i++)
{

scanf(“%d %s %f %d”, &in.cd, in.name, &in.unit, &in.qty);
fprintf(fp, “%d\n%s\n%f\n%d\n”, in.cd, in.name, in.unit, in.qty);

}
fclose(fp);
fp = fopen(“lnvent.dat”, “r”);
if(fp == NULL)
{

printf(“Cannot open file”);
exit();

}
printf(“ltem Code Name Unit Price Quantity\n”);
while(fscanf(fp, “%d %s %f %d”, &in.cd, in.name, &in.unit, &in.qty) !=
EOF)

printf(“%d %s %f %d\n”, in.cd, in.name, in.unit, in.qty); fclose(fp);
}

11.3

1. a) ftell: This function is useful to save the current position of the file
This function, takes a file pointer as its argument and returns a long integer value
corresponding to the current position in the file, ftell takes the following form :

n = ftell(fp);

where n is a long integer, n gives the relative offset from the current position (in
. bytes) which implies that n bytes have been read (or written) so far.

b) rewind : rewind takes the file pointer as its argument and resets
the position to the start of the file. eg. rewind(fp);

File Manipulation / 265

will set the file position to the beginning of the file.The first byte in the file is
numbered 0, the second 1 and so on. We can use rewind to read or write to
file again, without having to close and reopen it.

2. a) Will move the position forward by 8 bytes starting from the
beginning of the file.

b) Will move the position backward by 16 bytes from the end of the file.

c) Will move the position forward by 10 bytes starting from the current position.

11.4

1. a) The function main() can take two parameters argc and argv.
These two arguments are used to pass the information contained i n t h e
command line whenever main() is invoked. argc is an int which counts the
number of arguments on the command line, argv is an array of pointers to
strings(which are the command line arguments). Thus argc is an integer whose
value is equal to the number of strings to which argv points, argv is an array
called the argument vector. It is an array of character pointers that points to
the command line arguments.

b) The advantages of using argc and argv are :

- we can execute a program at the command prompt, there is no need to
compile the program every time we want to run it.

-It is not necessary to either specially the filenames (parameters) every time in
the program and prompt the user to input them during execution. They can be
passed directly at the command prompt.

c) A command line argument is a parameter which is supplied to a program
when the particular program is invoked eg. it may be a filename of a file which
is to be processed by that command.

11.7 QUESTIONS FOR SELF - STUDY
1. Describe the various file opening modes.

2. What happens when a file is closed? What are the reasons for closing a file?

3. Describe the unformatted high level file I/O functions?

4. Which are the functions provided in the standard C library for random file access?

5. Describe argc & argv with example.

11.8 SUGGESTED READINGS

Lets us C : Yashwant Kanitkar

The C Programming Language : Kernighan & ritche

C Programming / 266

NOTES

	c programming - 1
	c programming - 2

