
INTEGRATION IN

VECTOR FIELDS

OVERVIEW This chapter treats integration in vector fields. It is the mathematics that
engineers and physicists use to describe fluid flow, design underwater transmission cables,
explain the flow of heat in stars, and put satellites in orbit. In particular, we define line
integrals, which are used to find the work done by a force field in moving an object along a
path through the field. We also define surface integrals so we can find the rate that a fluid
flows across a surface. Along the way we develop key concepts and results, such as con-
servative force fields and Green’s Theorem, to simplify our calculations of these new inte-
grals by connecting them to the single, double, and triple integrals we have already studied.
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Line Integrals

In Chapter 5 we defined the definite integral of a function over a finite closed interval [a, b]
on the x-axis. We used definite integrals to find the mass of a thin straight rod, or the work
done by a variable force directed along the x-axis. Now we would like to calculate the
masses of thin rods or wires lying along a curve in the plane or space, or to find the work
done by a variable force acting along such a curve. For these calculations we need a more
general notion of a “line” integral than integrating over a line segment on the x-axis. Instead
we need to integrate over a curve C in the plane or in space. These more general integrals
are called line integrals, although “curve” integrals might be more descriptive. We make
our definitions for space curves, remembering that curves in the xy-plane are just a special
case with z-coordinate identically zero.

Suppose that ƒ(x, y, z) is a real-valued function we wish to integrate over the curve
lying within the domain of ƒ. The values of ƒ

along the curve are given by the composite function ƒ(g(t), h(t), k(t)). We are going to inte-
grate this composite with respect to arc length from to To begin, we first
partition the curve into a finite number n of subarcs (Figure 16.1). The typical subarc has
length In each subarc we choose a point and form the sum

If ƒ is continuous and the functions g, h, and k have continuous first derivatives, then these
sums approach a limit as n increases and the lengths approach zero. We call this limit
the line integral of ƒ over the curve from a to b. If the curve is denoted by a single letter,
C for example, the notation for the integral is

(1)LC
 ƒsx, y, zd ds “The integral of ƒ over C”

¢sk

Sn = a
n

k = 1
ƒsxk, yk, zkd ¢sk .

sxk, yk, zkd¢sk.

t = b.t = a

rstd = gstdi + hstdj + kstdk, a … t … b,

16.1

z

y

x

r(t)

t � b

t � a

(xk, yk, zk)

�sk

FIGURE 16.1 The curve r(t) partitioned
into small arcs from to The
length of a typical subarc is ¢sk.

t = b.t = a
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If ƒ has the constant value 1, then the integral of ƒ over C gives the length of C.

EXAMPLE 1 Evaluating a Line Integral

Integrate over the line segment C joining the origin to the point
(1, 1, 1) (Figure 16.2).

Solution We choose the simplest parametrization we can think of:

The components have continuous first derivatives and 

is never 0, so the parametrization is smooth. The integral of ƒ
over C is

 = 23L
1

0
 s2t - 3t2d dt = 23 C t 2

- t3 D01 = 0.

 = L
1

0
 st - 3t 2

+ td23 dt

 LC
 ƒsx, y, zd ds = L

1

0
 ƒst, t, td A23 B  dt

212
+ 12

+ 12
= 23

ƒ i + j + k ƒ =ƒ vstd ƒ =

rstd = t i + tj + tk,  0 … t … 1.

ƒsx, y, zd = x - 3y2
+ z

If r(t) is smooth for ( is continuous and never 0), we can use the
equation

to express ds in Equation (1) as A theorem from advanced calculus says
that we can then evaluate the integral of ƒ over C as

Notice that the integral on the right side of this last equation is just an ordinary (single)
definite integral, as defined in Chapter 5, where we are integrating with respect to the
parameter t. The formula evaluates the line integral on the left side correctly no matter
what parametrization is used, as long as the parametrization is smooth.

LC
 ƒsx, y, zd ds = L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

ds = ƒ vstd ƒ  dt.

sstd = L
b

a
 ƒ vstd ƒ  dt

v = dr>dta … t … b
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Equation (3) of Section 13.3
with t0 = a

How to Evaluate a Line Integral
To integrate a continuous function ƒ(x, y, z) over a curve C:

1. Find a smooth parametrization of C,

2. Evaluate the integral as

(2)LC
 ƒsx, y, zd ds = L

b

a
 ƒsgstd, hstd, kstdd ƒ vstd ƒ  dt.

rstd = gstdi + hstdj + kstdk,  a … t … b

z

x

C

(1, 1, 0)

(1, 1, 1)

y

FIGURE 16.2 The integration path in
Example 1. Equation (2)
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Additivity

Line integrals have the useful property that if a curve C is made by joining a finite number
of curves end to end, then the integral of a function over C is the sum of the
integrals over the curves that make it up:

(3)

EXAMPLE 2 Line Integral for Two Joined Paths

Figure 16.3 shows another path from the origin to (1, 1, 1), the union of line segments 
and Integrate over 

Solution We choose the simplest parametrizations for and we can think of,
checking the lengths of the velocity vectors as we go along:

With these parametrizations we find that

Notice three things about the integrations in Examples 1 and 2. First, as soon as the
components of the appropriate curve were substituted into the formula for ƒ, the integra-
tion became a standard integration with respect to t. Second, the integral of ƒ over 
was obtained by integrating ƒ over each section of the path and adding the results. Third,
the integrals of ƒ over C and had different values. For most functions, the value of
the integral along a path joining two points changes if you change the path between them.
For some functions, however, the value remains the same, as we will see in Section 16.3.

Mass and Moment Calculations

We treat coil springs and wires like masses distributed along smooth curves in space. The
distribution is described by a continuous density function (mass per unit length).
The spring’s or wire’s mass, center of mass, and moments are then calculated with the for-
mulas in Table 16.1. The formulas also apply to thin rods.

dsx, y, zd

C1 ´ C2

C1 ´ C2

 = 22 ct 2

2
- t 3 d

0

1

+ ct 2

2
- 2t d

0

1

= -

22
2

-

3
2

.

 = L
1

0
 st - 3t 2

+ 0d22 dt + L
1

0
 s1 - 3 + tds1d dt

 = L
1

0
 ƒst, t, 0d22 dt + L

1

0
 ƒs1, 1, tds1d dt

 LC1´C2

 ƒsx, y, zd ds = LC1

 ƒsx, y, zd ds + LC2

 ƒsx, y, zd ds

 C2: rstd = i + j + tk, 0 … t … 1; ƒ v ƒ = 202
+ 02

+ 12
= 1.

 C1: rstd = ti + tj, 0 … t … 1; ƒ v ƒ = 212
+ 12

= 22

C2C1

C1 ´ C2.ƒsx, y, zd = x - 3y2
+ zC2.

C1

LC
 ƒ ds = LC1

 ƒ ds + LC2

 ƒ ds +
Á

+ LCn

 ƒ ds.

C1, C2, Á , Cn
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z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

C1

C2
y

FIGURE 16.3 The path of integration in
Example 2.

Equation (3)

Equation (2)
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EXAMPLE 3 Finding Mass, Center of Mass, Moment of Inertia, Radius of Gyration

A coil spring lies along the helix

The spring’s density is a constant, Find the spring’s mass and center of mass, and its
moment of inertia and radius of gyration about the z-axis.

Solution We sketch the spring (Figure 16.4). Because of the symmetries involved, the
center of mass lies at the point on the z-axis.

For the remaining calculations, we first find 

We then evaluate the formulas from Table 16.1 using Equation (2):

 Rz = 2Iz >M = 22p117>s2p117d = 1.

 = L
2p

0
217 dt = 2p217

 Iz = 3
Helix 

 sx 2
+ y 2dd ds = L

2p

0
scos2 4t + sin2 4tds1d217 dt

 M = 3
Helix 

 d ds = L
2p

0
s1d217 dt = 2p217

 = 2s -4 sin 4td2
+ s4 cos 4td2

+ 1 = 217 .

 ƒ vstd ƒ = B adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

ƒ vstd ƒ:
s0, 0, pd

d = 1.

rstd = scos 4tdi + ssin 4tdj + tk, 0 … t … 2p.
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TABLE 16.1 Mass and moment formulas for coil springs, thin rods, and wires lying
along a smooth curve C in space

density)

First moments about the coordinate planes:

Coordinates of the center of mass:

Moments of inertia about axes and other lines:

Radius of gyration about a line L: RL = 2IL >M
 rsx, y, zd = distance from the point sx, y, zd to line L

 Iz = LC
 sx 2

+ y 2d d ds, IL = LC
 r 2 d ds

 Ix = LC
 s y 2

+ z 2d d ds, Iy = LC
 sx 2

+ z 2d d ds

x = Myz >M, y = Mxz >M, z = Mxy >M

Myz = LC
 x d ds, Mxz = LC

 y d ds, Mxy = LC
 z d ds

Mass: M = LC
 dsx, y, zd ds  sd = d(x, y, z) =

y

z

x

(1, 0, 0)

c.m. (0, 0, �)

(1, 0, 2�)

2�

FIGURE 16.4 The helical spring in
Example 3.
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Notice that the radius of gyration about the z-axis is the radius of the cylinder around
which the helix winds.

EXAMPLE 4 Finding an Arch’s Center of Mass

A slender metal arch, denser at the bottom than top, lies along the semicircle
in the yz-plane (Figure 16.5). Find the center of the arch’s mass if the

density at the point (x, y, z) on the arch is 

Solution We know that and because the arch lies in the yz-plane with its
mass distributed symmetrically about the z-axis. To find we parametrize the circle as

For this parametrization,

The formulas in Table 16.1 then give

With to the nearest hundredth, the center of mass is (0, 0, 0.57).z

 z =

Mxy

M
=

8 - p
2

# 1
2p - 2

=

8 - p
4p - 4

L 0.57.

 = L
p

0
s2 sin t - sin2 td dt =

8 - p
2

 Mxy = LC
 zd ds = LC

 zs2 - zd ds = L
p

0
ssin tds2 - sin td dt

 M = LC
 d ds = LC

 s2 - zd ds = L
p

0
s2 - sin tds1d dt = 2p - 2

ƒ vstd ƒ = B adx
dt
b2

+ ady
dt
b2

+ adz
dt
b2

= 2s0d2
+ s -sin td2

+ scos td2
= 1.

rstd = scos tdj + ssin tdk,  0 … t … p.

z ,
y = 0x = 0

dsx, y, zd = 2 - z.
y2

+ z2
= 1, z Ú 0,
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z

y
x

1

1

c.m.

y2 � z2 � 1, z � 0

–1

FIGURE 16.5 Example 4 shows how to
find the center of mass of a circular arch of
variable density.
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EXERCISES 16.1

Graphs of Vector Equations
Match the vector equations in Exercises 1–8 with the graphs (a)–(h)
given here.
a. b.

y

z

x

2

1

y

z

x

1

–1

c. d.

y

z

x

2

2

(2, 2, 2)

y

z

x

1 1
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e. f.

g. h.

1.

2.

3.

4.

5.

6.

7.

8.

Evaluating Line Integrals over Space Curves
9. Evaluate where C is the straight-line segment

from (0, 1, 0) to (1, 0, 0).

10. Evaluate where C is the straight-line
segment from (0, 1, 1) to (1, 0, 1).

11. Evaluate along the curve 

12. Evaluate along the curve 

13. Find the line integral of over the straight-
line segment from (1, 2, 3) to 

14. Find the line integral of over
the curve 

15. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (Figure 16.6a) given by

 C2: rstd = i + j + tk,  0 … t … 1

 C1: rstd = ti + t 2j,  0 … t … 1

ƒsx, y, zd = x + 1y - z2

rstd = ti + tj + tk, 1 … t … q.
ƒsx, y, zd = 23>sx2

+ y2
+ z2d

s0, -1, 1d.
ƒsx, y, zd = x + y + z

s4 sin tdj + 3tk, -2p … t … 2p.
rstd = s4 cos tdi +1C 2x2

+ y2 ds

t j + s2 - 2tdk, 0 … t … 1.
rstd = 2ti +1C sxy + y + zd ds

x = t, y = s1 - td, z = 1,
1C sx - y + z - 2d ds

x = t, y = s1 - td, z = 0,
1C sx + yd ds

rstd = s2 cos tdi + s2 sin tdk,  0 … t … p

rstd = st2
- 1dj + 2tk,  -1 … t … 1

rstd = t j + s2 - 2tdk,  0 … t … 1

rstd = ti + tj + tk,  0 … t … 2

rstd = ti,  -1 … t … 1

rstd = s2 cos tdi + s2 sin tdj,  0 … t … 2p

rstd = i + j + tk,  -1 … t … 1

rstd = ti + s1 - tdj,  0 … t … 1

y

z

x

2

2

–2

y

z

x

2

2

y

z

x

2

–2

–1

y

z

x

1
1

(1, 1, 1)

(1, 1, –1)

16. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (Figure 16.6b) given by

17. Integrate over the path

18. Integrate over the circle

Line Integrals over Plane Curves
In Exercises 19–22, integrate ƒ over the given curve.

19.

20. from (1, 1 2) to
(0, 0)

21. in the first quadrant from
(2, 0) to (0, 2)

22. in the first quadrant from
(0, 2) to 

Mass and Moments
23. Mass of a wire Find the mass of a wire that lies along the curve

if the density is 

24. Center of mass of a curved wire A wire of density
lies along the curve 

Find its center of mass. Then sketch the curve
and center of mass together.

25. Mass of wire with variable density Find the mass of a thin
wire lying along the curve 

if the density is (a) and (b) d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

2tk, -1 … t … 1.
rstd = st2

- 1dj +dsx, y, zd = 152y + 2

d = s3>2dt.rstd = st2
- 1dj + 2tk, 0 … t … 1,

s12, 12d
ƒsx, yd = x2

- y, C: x2
+ y2

= 4

ƒsx, yd = x + y, C: x2
+ y2

= 4

>ƒsx, yd = sx + y2d>21 + x2, C: y = x2>2
ƒsx, yd = x3>y, C: y = x2>2, 0 … x … 2

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.

ƒsx, y, zd = -2x2
+ z2

rstd = ti + tj + tk, 0 6 a … t … b.
ƒsx, y, zd = sx + y + zd>sx2

+ y2
+ z2d

 C3: rstd = ti + j + k,  0 … t … 1

 C2: rstd = tj + k,  0 … t … 1

 C1: rstd = tk,  0 … t … 1

ƒsx, y, zd = x + 1y - z2
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z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y
x

(b)

(0, 0, 0)
(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

FIGURE 16.6 The paths of integration for Exercises 15 and 16.
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26. Center of mass of wire with variable density Find the center
of mass of a thin wire lying along the curve 

if the density is 

27. Moment of inertia and radius of gyration of wire hoop A
circular wire hoop of constant density lies along the circle

in the xy-plane. Find the hoop’s moment of inertia
and radius of gyration about the z-axis.

28. Inertia and radii of gyration of slender rod A slender rod of
constant density lies along the line segment 

in the yz-plane. Find the moments of iner-
tia and radii of gyration of the rod about the three coordinate axes.

29. Two springs of constant density A spring of constant density 
lies along the helix

a. Find and 

b. Suppose that you have another spring of constant density 
that is twice as long as the spring in part (a) and lies along the
helix for Do you expect and for the longer
spring to be the same as those for the shorter one, or should
they be different? Check your predictions by calculating 
and for the longer spring.

30. Wire of constant density A wire of constant density lies
along the curve

Find and 

31. The arch in Example 4 Find and for the arch in Example 4.RxIx

Rz.z, Iz,

rstd = st cos tdi + st sin tdj + A222>3 B t3>2k, 0 … t … 1.

d = 1

Rz

Iz

RzIz0 … t … 4p.

d

Rz.Iz

rstd = scos tdi + ssin tdj + tk, 0 … t … 2p.

d

s2 - 2tdk, 0 … t … 1,
rstd = tj +

x 2
+ y 2

= a 2
d

d = 315 + t.s2>3dt3>2k, 0 … t … 2,
rstd = ti + 2tj +

32. Center of mass, moments of inertia, and radii of gyration for
wire with variable density Find the center of mass, and the
moments of inertia and radii of gyration about the coordinate axes
of a thin wire lying along the curve

if the density is 

COMPUTER EXPLORATIONS

Evaluating Line Integrals Numerically
In Exercises 33–36, use a CAS to perform the following steps to eval-
uate the line integrals.

a. Find for the path 

b. Express the integrand as a function of
the parameter t.

c. Evaluate using Equation (2) in the text.

33.

34.

35.

36.

0 … t … 2pt5>2k, 

ƒsx, y, zd = a1 +

9
4

 z1>3b1>4
; rstd = scos 2tdi + ssin 2tdj +

0 … t … 2p
ƒsx, y, zd = x1y - 3z2 ; rstd = scos 2tdi + ssin 2tdj + 5tk,

0 … t … 2
ƒsx, y, zd = 21 + x3

+ 5y3 ; rstd = ti +

1
3

 t 2j + 1tk, 
0 … t … 2
ƒsx, y, zd = 21 + 30x2

+ 10y ; rstd = ti + t 2j + 3t 2k, 
1C  ƒ ds

ƒsgstd, hstd, kstdd ƒ vstd ƒ

kstdk.
rstd = gstdi + hstdj +ds = ƒ vstd ƒ  dt

d = 1>st + 1d

rstd = ti +

222
3

 t3>2j +

t2

2
 k, 0 … t … 2,

1149
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16.2 Vector Fields, Work, Circulation, and Flux 1149

Vector Fields, Work, Circulation, and Flux

When we study physical phenomena that are represented by vectors, we replace integrals
over closed intervals by integrals over paths through vector fields. We use such integrals
to find the work done in moving an object along a path against a variable force (such as a
vehicle sent into space against Earth’s gravitational field) or to find the work done by a
vector field in moving an object along a path through the field (such as the work done by
an accelerator in raising the energy of a particle). We also use line integrals to find the
rates at which fluids flow along and across curves.

Vector Fields

Suppose a region in the plane or in space is occupied by a moving fluid such as air or water.
Imagine that the fluid is made up of a very large number of particles, and that at any instant
of time a particle has a velocity v. If we take a picture of the velocities of some particles at

16.2
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different position points at the same instant, we would expect to find that these velocities
vary from position to position. We can think of a velocity vector as being attached to each
point of the fluid. Such a fluid flow exemplifies a vector field. For example, Figure 16.7
shows a velocity vector field obtained by attaching a velocity vector to each point of air
flowing around an airfoil in a wind tunnel. Figure 16.8 shows another vector field of veloc-
ity vectors along the streamlines of water moving through a contracting channel. In addition
to vector fields associated with fluid flows, there are vector force fields that are associated
with gravitational attraction (Figure 16.9), magnetic force fields, electric fields, and even
purely mathematical fields.

Generally, a vector field on a domain in the plane or in space is a function that assigns
a vector to each point in the domain. A field of three-dimensional vectors might have a
formula like

The field is continuous if the component functions M, N, and P are continuous,
differentiable if M, N, and P are differentiable, and so on. A field of two-dimensional vec-
tors might have a formula like

If we attach a projectile’s velocity vector to each point of the projectile’s trajectory in the
plane of motion, we have a two-dimensional field defined along the trajectory. If we attach
the gradient vector of a scalar function to each point of a level surface of the function, we
have a three-dimensional field on the surface. If we attach the velocity vector to each point
of a flowing fluid, we have a three-dimensional field defined on a region in space. These
and other fields are illustrated in Figures 16.10–16.15. Some of the illustrations give for-
mulas for the fields as well.

To sketch the fields that had formulas, we picked a representative selection of do-
main points and sketched the vectors attached to them. The arrows representing the vec-
tors are drawn with their tails, not their heads, at the points where the vector functions are

Fsx, yd = Msx, ydi + Nsx, ydj.

Fsx, y, zd = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk.

1150 Chapter 16: Integration in Vector Fields

FIGURE 16.8 Streamlines in a
contracting channel. The water speeds up
as the channel narrows and the velocity
vectors increase in length.

FIGURE 16.7 Velocity vectors of a flow
around an airfoil in a wind tunnel. The
streamlines were made visible by kerosene
smoke.

z

y

x

0

FIGURE 16.9 Vectors in a
gravitational field point toward
the center of mass that gives the
source of the field.

y

x
0

FIGURE 16.10 The
velocity vectors v(t) of a
projectile’s motion make a
vector field along the
trajectory.

f (x, y, z) � c

FIGURE 16.11 The field of
gradient vectors on a
surface ƒsx, y, zd = c.

§ƒ
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z

y

x

x2 � y2 �  a2

z � a2 � r2

0

FIGURE 16.12 The flow of fluid
in a long cylindrical pipe. The
vectors inside the
cylinder that have their bases in
the xy-plane have their tips on the
paraboloid z = a2

- r2.

v = sa2
- r2dk

y

x

FIGURE 16.13 The radial field
of position vectors of points in

the plane. Notice the convention that an
arrow is drawn with its tail, not its head, at
the point where F is evaluated.

F = xi + yj

x

y

FIGURE 16.14 The circumferential or
“spin” field of unit vectors

in the plane. The field is not defined at the
origin.

F = s -yi + xjd>sx2
+ y2d1>2

WIND SPEED, M/S

0 2 4 6 8 10 12 14 16+

FIGURE 16.15 NASA’s Seasat used radar to take 350,000 wind measurements over the
world’s oceans. The arrows show wind direction; their length and the color contouring
indicate speed. Notice the heavy storm south of Greenland.
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evaluated. This is different from the way we draw position vectors of planets and projec-
tiles, with their tails at the origin and their heads at the planet’s and projectile’s locations.

Gradient Fields

1152 Chapter 16: Integration in Vector Fields

DEFINITION Gradient Field
The gradient field of a differentiable function ƒ(x, y, z) is the field of gradient
vectors

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

EXAMPLE 1 Finding a Gradient Field

Find the gradient field of 

Solution The gradient field of ƒ is the field  

As we will see in Section 16.3, gradient fields are of special importance in engineering,
mathematics, and physics.

Work Done by a Force over a Curve in Space

Suppose that the vector field represents a
force throughout a region in space (it might be the force of gravity or an electromagnetic
force of some kind) and that

is a smooth curve in the region. Then the integral of the scalar component of F in the
direction of the curve’s unit tangent vector, over the curve is called the work done by F
over the curve from a to b (Figure 16.16).

F # T,

rstd = gstdi + hstdj + kstdk,  a … t … b,

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

F = §ƒ = yzi + xzj + xyk.

ƒsx, y, zd = xyz.

DEFINITION Work over a Smooth Curve
The work done by a force over a smooth curve r(t) from

to is

(1)W = L
t = b

t = a
 F # T ds.

t = bt = a
F = Mi + Nj + Pk

We motivate Equation (1) with the same kind of reasoning we used in Chapter 6 to
derive the formula for the work done by a continuous force of magnitude
F(x) directed along an interval of the x-axis. We divide the curve into short segments, apply
the (constant-force) formula for work to approximate the work over each
curved segment, add the results to approximate the work over the entire curve, and calculate

*  (distance)

W = 1b
a  F(x) dx

T        

F

A

B t � b

t � a

FIGURE 16.16 The work done by a force
F is the line integral of the scalar
component over the smooth curve
from A to B.

F # T
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the work as the limit of the approximating sums as the segments become shorter and more
numerous. To find exactly what the limiting integral should be, we partition the parameter
interval [a, b] in the usual way and choose a point in each subinterval The
partition of [a, b] determines (“induces,” we say) a partition of the curve, with the point 
being the tip of the position vector and being the length of the curve segment

(Figure 16.17).Pk Pk + 1

¢skrstkd
Pk

[tk, tk + 1].ck

16.2 Vector Fields, Work, Circulation, and Flux 1153

a btk

ck

tk � 1

t � a

Pk(g(tk), h(tk), k(tk))

Pk � 1(g(tk � 1), h(tk � 1), k(tk � 1))

t � ck

t � b

�sk

FIGURE 16.17 Each partition of [a, b] induces a partition of
the curve rstd = gstdi + hstdj + kstdk.

If the value of F at the point on the curve corresponding to and 
denotes the curve’s unit tangent vector at this point, then is the scalar component of
F in the direction of T at (Figure 16.18). The work done by F along the curve seg-
ment is approximately

The work done by F along the curve from to is approximately

As the norm of the partition of [a, b] approaches zero, the norm of the induced partition of
the curve approaches zero and these sums approach the line integral

The sign of the number we calculate with this integral depends on the direction in which
the curve is traversed as t increases. If we reverse the direction of motion, we reverse the
direction of T and change the sign of and its integral.

Table 16.2 shows six ways to write the work integral in Equation (1). Despite their va-
riety, the formulas in Table 16.2 are all evaluated the same way. In the table,

is a smooth curve, and

is its differential.

dr =

dr
dt

 dt = dgi + dhj + dkk

hstdj + kstdk = xi + yj + zk
rstd = gstdi +

F # T

L
t = b

t = a
 F # T ds.

a
n

k = 1
Fk

# Tk ¢sk.

t = bt = a

aForce component in
direction of motion

b * adistance
applied

b = Fk
# Tk ¢sk.

Pk Pk + 1

t = ck

Fk
# Tk

Tkt = ckFk denotes

t � ck

Pk

Tk

Fk . Tk

Fk
Pk�1

FIGURE 16.18 An enlarged view of the
curve segment in Figure 16.17,
showing the force and unit tangent vectors
at the point on the curve where t = ck.

Pk Pk + 1
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EXAMPLE 2 Finding Work Done by a Variable Force over a Space Curve

Find the work done by over the curve 
from (0, 0, 0) to (1, 1, 1) (Figure 16.19).

Solution First we evaluate F on the curve:

Then we find dr dt,

Finally, we find and integrate from to 

 = st3
- t4ds2td + st - t6ds3t2d = 2t4

- 2t5
+ 3t3

- 3t8 ,  

 F # dr
dt

= [st3
- t4dj + st - t6dk] # si + 2tj + 3t2kd

t = 1 :t = 0F # dr>dt

dr
dt

=

d
dt

 sti + t2j + t3kd = i + 2tj + 3t2k

>
(')'*

 = st2
- t2di + st3

- t4dj + st - t6dk

 F = s y - x2di + sz - y2dj + sx - z2dk

ti + t2j + t3k, 0 … t … 1,
rstd =F = sy - x2di + sz - y2dj + sx - z2dk

1154 Chapter 16: Integration in Vector Fields

Evaluating a Work Integral
To evaluate the work integral along a smooth curve r(t), take these steps:

1. Evaluate F on the curve as a function of the parameter t.

2. Find dr dt

3. Integrate from to t = b.t = aF # dr>dt

>

y

z

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)

r(t) � ti � t2j � t3k

FIGURE 16.19 The curve in Example 2.

TABLE 16.2 Six different ways to write the work integral

The definition

Compact differential form

Expanded to include dt; emphasizes
the parameter t and velocity vector dr dt

Emphasizes the component functions

Abbreviates the components of r

dt’s canceled; the most common form = L
b

a
 M dx + N dy + P dz

 = L
b

a
 aM 

dx
dt

+ N 
dy
dt

+ P 
dz
dt
b  dt

 = L
b

a
 aM 

dg
dt

+ N 
dh
dt

+ P 
dk
dt
b  dt

> = L
b

a
 F # dr

dt
 dt

 = L
t = b

t = a
 F # dr

 W = L
t = b

t = a
 F # T ds

0
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so

Flow Integrals and Circulation for Velocity Fields

Instead of being a force field, suppose that F represents the velocity field of a fluid flow-
ing through a region in space (a tidal basin or the turbine chamber of a hydroelectric gen-
erator, for example). Under these circumstances, the integral of along a curve in the
region gives the fluid’s flow along the curve.

F # T

 = c25 t 5
-

2
6

 t 6
+

3
4

 t 4
-

3
9

 t 9 d
0

1

=

29
60

.

 Work = L
1

0
 s2t 4

- 2t 5
+ 3t 3

- 3t 8d dt

16.2 Vector Fields, Work, Circulation, and Flux 1155

DEFINITIONS Flow Integral, Circulation
If r(t) is a smooth curve in the domain of a continuous velocity field F, the flow
along the curve from to is

(2)

The integral in this case is called a flow integral. If the curve is a closed loop, the
flow is called the circulation around the curve.

Flow = L
b

a
 F # T ds.

t = bt = a

We evaluate flow integrals the same way we evaluate work integrals.

EXAMPLE 3 Finding Flow Along a Helix

A fluid’s velocity field is Find the flow along the helix 

Solution We evaluate F on the curve,

and then find dr dt:

Then we integrate from to 

 = -sin t cos t + t cos t + sin t

 F #  
dr
dt

= scos tds -sin td + stdscos td + ssin tds1d

t =
p
2

:t = 0F # sdr>dtd

dr
dt

= s -sin tdi + scos tdj + k.

>
F = xi + zj + yk = scos tdi + tj + ssin tdk

ssin tdj + tk, 0 … t … p>2.
rstd = scos tdi +F = xi + zj + yk.
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so,

EXAMPLE 4 Finding Circulation Around a Circle

Find the circulation of the field around the circle 

Solution On the circle, and

Then

gives

Flux Across a Plane Curve

To find the rate at which a fluid is entering or leaving a region enclosed by a smooth curve
C in the xy-plane, we calculate the line integral over C of the scalar component of
the fluid’s velocity field in the direction of the curve’s outward-pointing normal vector.
The value of this integral is the flux of F across C. Flux is Latin for flow, but many flux
calculations involve no motion at all. If F were an electric field or a magnetic field, for in-
stance, the integral of would still be called the flux of the field across C.F # n

F # n ,

 = ct -

sin2 t
2
d

0

2p

= 2p .

 Circulation = L
2p

0
 F #  

dr
dt

 dt = L
2p

0
 s1 - sin t cos td dt

-sin t cos t + sin2 t + cos2 tF #  
dr
dt

=

dr
dt

= s -sin tdi + scos tdj .

F = sx - ydi + xj = scos t - sin tdi + scos tdj ,

ssin tdj, 0 … t … 2p.
rstd = scos tdi +F = sx - ydi + xj

 = ccos2 t
2

+ t sin t d
0

p>2
= a0 +

p
2
b - a1

2
+ 0b =

p
2

-
1
2

.

 Flow = L
t = b

t = a
 F #  

dr
dt

 dt = L
p>2

0
 s -sin t cos t + t cos t + sin td dt

1156 Chapter 16: Integration in Vector Fields

DEFINITION Flux Across a Closed Curve in the Plane
If C is a smooth closed curve in the domain of a continuous vector field

in the plane and if n is the outward-pointing unit nor-
mal vector on C, the flux of F across C is

(3)Flux of F across C = LC
 F # n ds.

F = Msx, ydi + Nsx, ydj

Notice the difference between flux and circulation. The flux of F across C is the line
integral with respect to arc length of the scalar component of F in the direction of theF # n,

1
(''')'''*
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�

outward normal. The circulation of F around C is the line integral with respect to arc
length of the scalar component of F in the direction of the unit tangent vector. Flux
is the integral of the normal component of F; circulation is the integral of the tangential
component of F.

To evaluate the integral in Equation (3), we begin with a smooth parametrization

that traces the curve C exactly once as t increases from a to b. We can find the outward
unit normal vector n by crossing the curve’s unit tangent vector T with the vector k. But
which order do we choose, or Which one points outward? It depends on
which way C is traversed as t increases. If the motion is clockwise, points outward;
if the motion is counterclockwise, points outward (Figure 16.20). The usual choice
is the choice that assumes counterclockwise motion. Thus, although the value
of the arc length integral in the definition of flux in Equation (3) does not depend on
which way C is traversed, the formulas we are about to derive for evaluating the integral in
Equation (3) will assume counterclockwise motion.

In terms of components,

If then

Hence,

We put a directed circle on the last integral as a reminder that the integration around
the closed curve C is to be in the counterclockwise direction. To evaluate this integral, we
express M, dy, N, and dx in terms of t and integrate from to We do not need
to know either n or ds to find the flux.

t = b .t = a

~

LC
 F # n ds = LC

 aM 
dy
ds

- N 
dx
ds
b  ds = FC 

 M dy - N dx.

F # n = Msx, yd 
dy
ds

- Nsx, yd 
dx
ds

.

F = Msx, ydi + Nsx, ydj,

n = T * k = adx
ds

 i +

dy
ds

 jb * k =

dy
ds

 i -

dx
ds

 j.

n = T * k,
T * k

k * T
k * T?T * k

x = gstd,  y = hstd,  a … t … b, 

F # T,

16.2 Vector Fields, Work, Circulation, and Flux 1157

T

z

y

x
k

C

T

z

y

x
k

C

For clockwise motion,
k � T points outward.

For counterclockwise
motion, T � k points
outward.

k � T

T � k

FIGURE 16.20 To find an outward unit
normal vector for a smooth curve C in the
xy-plane that is traversed counterclockwise
as t increases, we take For
clockwise motion, we take n = k * T.

n = T * k.

Calculating Flux Across a Smooth Closed Plane Curve

(4)

The integral can be evaluated from any smooth parametrization 
that traces C counterclockwise exactly once.a … t … b,

x = gstd, y = hstd, 

sFlux of F = Mi + Nj across Cd = FC 
 M dy - N dx

EXAMPLE 5 Finding Flux Across a Circle

Find the flux of across the circle in the xy-plane.x2
+ y2

= 1F = sx - ydi + xj
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Solution The parametrization traces the circle
counterclockwise exactly once. We can therefore use this parametrization in Equation (4). With

We find

The flux of F across the circle is Since the answer is positive, the net flow across the
curve is outward. A net inward flow would have given a negative flux.

p.

 = L
2p

0
 cos2 t dt = L

2p

0
 
1 + cos 2t

2
 dt = c t

2
+

sin 2t
4
d

0

2p

= p.

 Flux = LC
 M dy - N dx = L

2p

0
 scos2 t - sin t cos t + cos t sin td dt

 N = x = cos t,   dx = dscos td = -sin t dt, 

 M = x - y = cos t - sin t,   dy = dssin td = cos t dt

rstd = scos tdi + ssin tdj, 0 … t … 2p ,

1158 Chapter 16: Integration in Vector Fields

Equation (4)
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1158 Chapter 16: Integration in Vector Fields

EXERCISES 16.2

Vector and Gradient Fields
Find the gradient fields of the functions in Exercises 1–4.

1.

2.

3.

4.

5. Give a formula for the vector field in
the plane that has the property that F points toward the origin with
magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula for the vector field in
the plane that has the properties that at (0, 0) and that at
any other point (a, b), F is tangent to the circle 

and points in the clockwise direction with magnitude

Work
In Exercises 7–12, find the work done by force F from (0, 0, 0) to
(1, 1, 1) over each of the following paths (Figure 16.21):

a. The straight-line path 

b. The curved path 

c. The path consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. 8.

9. 10.

11.

12. F = s y + zdi + sz + xdj + sx + ydk
F = s3x2

- 3xdi + 3zj + k

F = xyi + yzj + xzkF = 1zi - 2xj + 1yk

F = [1>sx2
+ 1d]jF = 3yi + 2xj + 4zk

C3 ´ C4

rstd = ti + t2j + t4k,  0 … t … 1C2:

rstd = ti + tj + tk,  0 … t … 1C1:

ƒ F ƒ = 2a2
+ b2.

a2
+ b2

x 2
+ y 2

=

F = 0
F = Msx, ydi + Nsx, ydj

F = Msx, ydi + Nsx, ydj
gsx, y, zd = xy + yz + xz

gsx, y, zd = ez
- ln sx2

+ y2d
ƒsx, y, zd = ln2x2

+ y2
+ z2

ƒsx, y, zd = sx2
+ y2

+ z2d-1>2

In Exercises 13–16, find the work done by F over the curve in the
direction of increasing t.

13.

14.

15.

16.

Line Integrals and Vector Fields in the Plane
17. Evaluate along the curve from

to (2, 4).

18. Evaluate counterclockwise around
the triangle with vertices (0, 0), (1, 0), and (0, 1).

1C sx - yd dx + sx + yd dy

s -1, 1d
y = x21C  xy dx + sx + yd dy

rstd = ssin tdi + scos tdj + st>6dk,  0 … t … 2p
F = 6zi + y2j + 12xk 
rstd = ssin tdi + scos tdj + tk,  0 … t … 2p
F = zi + xj + yk 
rstd = scos tdi + ssin tdj + st>6dk,  0 … t … 2p
F = 2yi + 3xj + sx + ydk 
rstd = ti + t2j + tk,  0 … t … 1
F = xyi + yj - yzk

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

FIGURE 16.21 The paths from (0, 0, 0)
to (1, 1, 1).
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19. Evaluate for the vector field along the

curve from (4, 2) to 

20. Evaluate for the vector field counter-

clockwise along the unit circle from (1, 0) to (0, 1).

21. Work Find the work done by the force 
over the straight line from (1, 1) to (2, 3).

22. Work Find the work done by the gradient of 
counterclockwise around the circle from (2, 0) to
itself.

23. Circulation and flux Find the circulation and flux of the fields

around and across each of the following curves.

a. The circle 

b. The ellipse 

24. Flux across a circle Find the flux of the fields

across the circle

Circulation and Flux
In Exercises 25–28, find the circulation and flux of the field F around
and across the closed semicircular path that consists of the semicircu-
lar arch followed by the
line segment 

25. 26.

27. 28.

29. Flow integrals Find the flow of the velocity field 
along each of the following paths from

(1, 0) to in the xy-plane.

a. The upper half of the circle 

b. The line segment from (1, 0) to 

c. The line segment from (1, 0) to followed by the line
segment from to 

30. Flux across a triangle Find the flux of the field F in Exercise 29
outward across the triangle with vertices (1, 0), (0, 1), 

Sketching and Finding Fields in the Plane
31. Spin field Draw the spin field

(see Figure 16.14) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle
x2

+ y2
= 4.

F = -

y2x2
+ y2

 i +

x2x2
+ y2

 j

s -1, 0d.

s -1, 0d.s0, -1d
s0, -1d
s -1, 0d

x2
+ y2

= 1

s -1, 0d
sx2

+ y2djsx + ydi -

F =

F = -y2i + x2jF = -yi + xj

F = x2i + y2jF = xi + yj

r2std = ti, -a … t … a.
r1std = sa cos tdi + sa sin tdj, 0 … t … p,

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p.

F1 = 2xi - 3yj and F2 = 2xi + sx - ydj

rstd = scos tdi + s4 sin tdj,  0 … t … 2p

rstd = scos tdi + ssin tdj,  0 … t … 2p

F1 = xi + yj and F2 = -yi + xj

x2
+ y2

= 4
ƒsx, yd = sx + yd2

F = xyi + sy - xdj
x2

+ y2
= 1

F = yi - xj1C F # dr

s1, -1d .x = y2

F = x2i - yj1C F # T ds 32. Radial field Draw the radial field

(see Figure 16.13) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

33. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a vector of

magnitude tangent to the circle 
and pointing in the counterclockwise direction. (The field is
undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.14?

34. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a unit vector
tangent to the circle and pointing in the
clockwise direction.

b. How is G related to the spin field F in Figure 16.14?

35. Unit vectors pointing toward the origin Find a field 
in the xy-plane with the property that at each

point F is a unit vector pointing toward the ori-
gin. (The field is undefined at (0, 0).)

36. Two “central” fields Find a field in
the xy-plane with the property that at each point 
F points toward the origin and is (a) the distance from (x, y)
to the origin, (b) inversely proportional to the distance from (x, y)
to the origin. (The field is undefined at (0, 0).)

Flow Integrals in Space
In Exercises 37–40, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing t.

37.

38.

39.

40.

41. Circulation Find the circulation of 
around the closed path consisting of the following three curves
traversed in the direction of increasing t:

 C3: rstd = ti + s1 - tdj,  0 … t … 1

 C2: rstd = j + sp>2ds1 - tdk,  0 … t … 1

 C1: rstd = scos tdi + ssin tdj + tk, 0 … t … p>2

F = 2xi + 2zj + 2yk

0 … t … 2prstd = s -2 cos tdi + s2 sin tdj + 2tk,  
F = -yi + xj + 2k

rstd = scos tdi + ssin tdk,  0 … t … p

F = sx - zdi + xk 
rstd = 3tj + 4tk,  0 … t … 1

F = x2i + yzj + y2k 
rstd = ti + t2j + k,  0 … t … 2

F = -4xyi + 8yj + 2k 

ƒ F ƒ

sx, yd Z s0, 0d ,
F = Msx, ydi + Nsx, ydj

sx, yd Z s0, 0d ,

Msx, ydi + Nsx, ydj
F =

x2
+ y2

= a2
+ b2

sa, bd Z s0, 0d,
G = Psx, ydi + Qsx, ydj

x2
+ y2

= a2
+ b22a2

+ b2

sa, bd Z s0, 0d,
G = Psx, ydi + Qsx, ydj

x2
+ y2

= 1.

F = xi + yj

16.2 Vector Fields, Work, Circulation, and Flux 1159
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42. Zero circulation Let C be the ellipse in which the plane
meets the cylinder Show, with-

out evaluating either line integral directly, that the circulation of
the field around C in either direction is zero.

43. Flow along a curve The field is the
velocity field of a flow in space. Find the flow from (0, 0, 0) to 
(1, 1, 1) along the curve of intersection of the cylinder and
the plane (Hint: Use as the parameter.)

44. Flow of a gradient field Find the flow of the field 

a. Once around the curve C in Exercise 42, clockwise as viewed
from above

b. Along the line segment from (1, 1, 1) to 

Theory and Examples
45. Work and area Suppose that ƒ(t) is differentiable and positive for

Let C be the path and
Is there any relation between the value of the work integral

LC
 F # dr

F = yi.
a … t … b,rstd = ti + ƒstdj,a … t … b .

s2, 1, -1d,

F = §sxy2z3d:

y

z

x

(1, 1, 1)

y � x2

z � x

t = xz = x .
y = x2

F = xyi + yj - yzk

F = xi + yj + zk

x2
+ y2

= 12.2x + 3y - z = 0

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1 C2

C3







�
2

and the area of the region bounded by the t-axis, the graph of ƒ,
and the lines and Give reasons for your answer.

46. Work done by a radial force with constant magnitude A par-
ticle moves along the smooth curve from (a, ƒ(a)) to
(b, ƒ(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done
by the force is

COMPUTER EXPLORATIONS

Finding Work Numerically
In Exercises 47–52, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path 

b. Evaluate the force F along the path.

c. Evaluate 

47.

48.

49.

50.

51.

52.

0 … t … 2ps2 sin2 t - 1dk, 
F = sx2ydi +

1
3

 x3j + xyk; rstd = scos tdi + ssin tdj +

rstd = ssin tdi + scos tdj + ssin 2tdk, -p>2 … t … p>2
F = s2y + sin xdi + sz2

+ s1>3dcos ydj + x4 k; 
1 … t … 4
F = 2xyi - y2j + zex k; rstd = - ti + 1tj + 3tk, 
0 … t … 2p

rstd = (2 cos t)i + (3 sin t)j + k, sz + xy cos xyzdk; 
F = s y + yz cos xyzdi + sx2

+ xz cos xyzdj +

0 … t … p

F =

3
1 + x2 i +

2
1 + y2 j; rstd = scos tdi + ssin tdj, 

0 … t … 2p
F = xy6 i + 3xsxy5

+ 2dj; rstd = s2 cos tdi + ssin tdj, 
LC

 F # dr.

rstd = gstdi + hstdj + kstdk.

LC
 F # T ds = k C sb2

+ sƒsbdd2d1>2
- sa2

+ sƒsadd2d1>2 D .

y = ƒsxd

t = b?t = a
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1160 Chapter 16: Integration in Vector Fields

Path Independence, Potential Functions, and Conservative Fields

In gravitational and electric fields, the amount of work it takes to move a mass or a charge
from one point to another depends only on the object’s initial and final positions and not
on the path taken in between. This section discusses the notion of path independence of
work integrals and describes the properties of fields in which work integrals are path
independent. Work integrals are often easier to evaluate if they are path independent.

16.3
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Path Independence

If A and B are two points in an open region D in space, the work done in moving a
particle from A to B by a field F defined on D usually depends on the path taken. For some
special fields, however, the integral’s value is the same for all paths from A to B.

1  F # dr

16.3 Path Independence, Potential Functions, and Conservative Fields 1161

DEFINITIONS Path Independence, Conservative Field
Let F be a field defined on an open region D in space, and suppose that for any 

two points A and B in D the work done in moving from A to B is the 
same over all paths from A to B. Then the integral is path independent
in D and the field F is conservative on D.

1  F # dr
1B

A  F # dr

DEFINITION Potential Function
If F is a field defined on D and for some scalar function ƒ on D, then ƒ
is called a potential function for F.

F = §ƒ

The word conservative comes from physics, where it refers to fields in which the principle
of conservation of energy holds (it does, in conservative fields).

Under differentiability conditions normally met in practice, a field F is conservative if
and only if it is the gradient field of a scalar function ƒ; that is, if and only if for
some ƒ. The function ƒ then has a special name.

F = §ƒ

An electric potential is a scalar function whose gradient field is an electric field. A
gravitational potential is a scalar function whose gradient field is a gravitational field, and
so on. As we will see, once we have found a potential function ƒ for a field F, we can
evaluate all the work integrals in the domain of F over any path between A and B by

(1)

If you think of for functions of several variables as being something like the deriv-
ative for functions of a single variable, then you see that Equation (1) is the vector
calculus analogue of the Fundamental Theorem of Calculus formula

Conservative fields have other remarkable properties we will study as we go along.
For example, saying that F is conservative on D is equivalent to saying that the integral of
F around every closed path in D is zero. Naturally, certain conditions on the curves, fields,
and domains must be satisfied for Equation (1) to be valid. We discuss these conditions
below.

Assumptions in Effect from Now On: Connectivity
and Simple Connectivity

We assume that all curves are piecewise smooth, that is, made up of finitely many
smooth pieces connected end to end, as discussed in Section 13.1. We also assume that

L
b

a
 ƒ¿sxd dx = ƒsbd - ƒsad.

ƒ¿

§ƒ

L
B

A
 F # dr = L

B

A
 §ƒ # dr = ƒsBd - ƒsAd.
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the components of F have continuous first partial derivatives. When this
continuity requirement guarantees that the mixed second derivatives of the potential
function ƒ are equal, a result we will find revealing in studying conservative fields F.

We assume D to be an open region in space. This means that every point in D is the
center of an open ball that lies entirely in D. We assume D to be connected, which in an
open region means that every point can be connected to every other point by a smooth
curve that lies in the region. Finally, we assume D is simply connected, which means
every loop in D can be contracted to a point in D without ever leaving D. (If D consisted of
space with a line segment removed, for example, D would not be simply connected. There
would be no way to contract a loop around the line segment to a point without leaving D.)

Connectivity and simple connectivity are not the same, and neither implies the other.
Think of connected regions as being in “one piece” and simply connected regions as not
having any “holes that catch loops.” All of space itself is both connected and simply con-
nected. Some of the results in this chapter can fail to hold if applied to domains where
these conditions do not hold. For example, the component test for conservative fields,
given later in this section, is not valid on domains that are not simply connected.

Line Integrals in Conservative Fields

The following result provides a convenient way to evaluate a line integral in a conservative
field. The result establishes that the value of the integral depends only on the endpoints
and not on the specific path joining them.

F = §ƒ,

1162 Chapter 16: Integration in Vector Fields

THEOREM 1 The Fundamental Theorem of Line Integrals

1. Let be a vector field whose components are continu-
ous throughout an open connected region D in space. Then there exists a dif-
ferentiable function ƒ such that

if and only if for all points A and B in D the value of is independent
of the path joining A to B in D.

2. If the integral is independent of the path from A to B, its value is

L
B

A
 F # dr = ƒsBd - ƒsAd.

1B
A  F # dr

F = §ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

F = Mi + Nj + Pk

Proof that Implies Path Independence of the Integral Suppose that A and B
are two points in D and that is a smooth
curve in D joining A and B. Along the curve, ƒ is a differentiable function of t and

 = §ƒ # adx
dt

 i +

dy
dt

 j +

dz
dt

 kb = §ƒ # dr
dt

= F # dr
dt

.

 
dƒ
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

+

0ƒ
0z  

dz
dt

C: rstd = gstdi + hstdj + kstdk, a … t … b,
F = §ƒ

Chain Rule with 
y = hstd, z = kstd

x = gstd,

Because F = §ƒ
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Therefore,

Thus, the value of the work integral depends only on the values of ƒ at A and B and not on
the path in between. This proves Part 2 as well as the forward implication in Part 1. We
omit the more technical proof of the reverse implication.

EXAMPLE 1 Finding Work Done by a Conservative Field

Find the work done by the conservative field

along any smooth curve C joining the point A to B

Solution With we have

 = -24 + 27 = 3.

 = s1ds6ds -4d - s -1ds3ds9d

 = xyz ƒ s1,6, -4d - xyz ƒ s-1,3,9d

 = ƒsBd - ƒsAd

 L
B

A
 F # dr = L

B

A
 §ƒ # dr

ƒsx, y, zd = xyz,

s1, 6, -4d.s -1, 3, 9d

F = yzi + xzj + xyk = §sxyzd

 = ƒsgstd, hstd, kstdd d
a

b

= ƒsBd - ƒsAd.

 LC
 F # dr = L

t = b

t = a
 F # dr

dt
 dt = L

b

a
 
dƒ
dt

 dt

16.3 Path Independence, Potential Functions, and Conservative Fields 1163

F = §ƒ

Fundamental Theorem, Part 2

THEOREM 2 Closed-Loop Property of Conservative Fields
The following statements are equivalent.

1. around every closed loop in D.

2. The field F is conservative on D.

1  F # dr = 0

Proof that Part 1 Part 2 We want to show that for any two points A and B in D, the
integral of has the same value over any two paths and from A to B. We reverse
the direction on to make a path from B to A (Figure 16.22). Together, and 
make a closed loop C, and

Thus, the integrals over and give the same value. Note that the definition of line
integral shows that changing the direction along a curve reverses the sign of the line
integral.

C2C1

LC1

 F # dr - LC2

 F # dr = LC1

 F # dr + L-C2

 F # dr = LC
 F # dr = 0.

-C2C1-C2C2

C2C1F # dr
Q

A

B

A

B

C1
C1

C2

–C2

FIGURE 16.22 If we have two paths from
A to B, one of them can be reversed to
make a loop.
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Proof that Part 2 Part 1 We want to show that the integral of is zero over any
closed loop C. We pick two points A and B on C and use them to break C into two pieces:

from A to B followed by from B back to A (Figure 16.23). Then

The following diagram summarizes the results of Theorems 1 and 2.

Theorem 1 Theorem 2

Now that we see how convenient it is to evaluate line integrals in conservative fields,
two questions remain.

1. How do we know when a given field F is conservative?

2. If F is in fact conservative, how do we find a potential function ƒ (so that )?

Finding Potentials for Conservative Fields

The test for being conservative is the following. Keep in mind our assumption that the do-
main of F is connected and simply connected.

F = §f

F = §ƒ on D 3 F conservative 3 FC
F # dr = 0

on D
over any closed
path in D

FC
 F # dr = LC1

 F # dr + LC2

 F # dr = L
B

A
 F # dr - L

B

A
 F # dr = 0.

C2C1

F # drQ

1164 Chapter 16: Integration in Vector Fields

A

B

A

B

C2

C1

–C2

C1

FIGURE 16.23 If A and B lie on a loop,
we can reverse part of the loop to make
two paths from A to B.

Component Test for Conservative Fields
Let be a field whose component
functions have continuous first partial derivatives. Then, F is conservative if and
only if

(2)
0P
0y =

0N
0z ,  0M

0z =

0P
0x ,  and 0N

0x =

0M
0y .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

Proof that Equations (2) hold if F is conservative There is a potential function ƒ such
that

Hence,

The others in Equations (2) are proved similarly.

The second half of the proof, that Equations (2) imply that F is conservative, is a
consequence of Stokes’ Theorem, taken up in Section 16.7, and requires our assumption
that the domain of F be simply connected.

 =
0

0z a0ƒ
0y b =

0N
0z .

 =

0
2ƒ

0z 0y

 
0P
0y =

0

0y a0ƒ
0z b =

0
2ƒ

0y 0z

F = Mi + Nj + Pk =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

Continuity implies that the mixed
partial derivatives are equal.
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Once we know that F is conservative, we usually want to find a potential function for
F. This requires solving the equation or

for ƒ. We accomplish this by integrating the three equations

as illustrated in the next example.

EXAMPLE 2 Finding a Potential Function

Show that is conservative and find
a potential function for it.

Solution We apply the test in Equations (2) to

and calculate

Together, these equalities tell us that there is a function ƒ with 
We find ƒ by integrating the equations

(3)

We integrate the first equation with respect to x, holding y and z fixed, to get

We write the constant of integration as a function of y and z because its value may change
if y and z change. We then calculate from this equation and match it with the expres-
sion for in Equations (3). This gives

so Therefore, g is a function of z alone, and

We now calculate from this equation and match it to the formula for in
Equations (3). This gives

so

hszd =
z2

2
+ C.

xy +

dh
dz

= xy + z, or dh
dz

= z,

0ƒ>0z0ƒ>0z

ƒsx, y, zd = ex cos y + xyz + hszd.

0g>0y = 0.

-ex sin y + xz +

0g
0y = xz - ex sin y,

0ƒ>0y
0ƒ>0y

ƒsx, y, zd = ex cos y + xyz + gsy, zd.

0ƒ
0x = ex cos y + yz,  0ƒ

0y = xz - ex sin y,  0ƒ
0z = xy + z .

§ƒ = F.

0P
0y = x =

0N
0z ,  0M

0z = y =

0P
0x ,  0N

0x = -ex sin y + z =

0M
0y .

M = ex cos y + yz,  N = xz - ex sin y,  P = xy + z

F = sex cos y + yzdi + sxz - ex sin ydj + sxy + zdk

0ƒ
0x = M,  0ƒ

0y = N,  0ƒ
0z = P,

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k = Mi + Nj + Pk

§ƒ = F

16.3 Path Independence, Potential Functions, and Conservative Fields 1165
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Hence,

We have infinitely many potential functions of F, one for each value of C. 

EXAMPLE 3 Showing That a Field Is Not Conservative

Show that is not conservative.

Solution We apply the component test in Equations (2) and find immediately that

The two are unequal, so F is not conservative. No further testing is required. 

Exact Differential Forms

As we see in the next section and again later on, it is often convenient to express work and
circulation integrals in the “differential” form

mentioned in Section 16.2. Such integrals are relatively easy to evaluate if
is the total differential of a function ƒ. For then

Thus,

just as with differentiable functions of a single variable.

L
B

A
 df = ƒsBd - ƒsAd,

 = ƒsBd - ƒsAd.

 = L
B

A
 §ƒ # dr

 L
B

A
 M dx + N dy + P dz = L

B

A
 
0ƒ
0x  dx +

0ƒ
0y  dy +

0ƒ
0z  dz

M dx + N dy + P dz

L
B

A
 M dx + N dy + P dz

0P
0y =

0

0y scos zd = 0,  0N
0z =

0

0z s -zd = -1.

F = s2x - 3di - zj + scos zdk

ƒsx, y, zd = ex cos y + xyz +
z2

2
+ C.

1166 Chapter 16: Integration in Vector Fields

Theorem 1

DEFINITIONS Exact Differential Form
Any expression is a differential
form. A differential form is exact on a domain D in space if

for some scalar function ƒ throughout D.

M dx + N dy + P dz =

0f
0x dx +

0ƒ
0y  dy +

0ƒ
0z  dz = dƒ

Msx, y, zd dx + Nsx, y, zd dy + Psx, y, zd dz

Notice that if on D, then is the gra-
dient field of ƒ on D. Conversely, if then the form is exact.
The test for the form’s being exact is therefore the same as the test for F’s being conservative.

M dx + N dy + P dzF = §ƒ,
F = Mi + Nj + PkM dx + N dy + P dz = dƒ
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EXAMPLE 4 Showing That a Differential Form Is Exact

Show that is exact and evaluate the integral

over the line segment from (1, 1, 1) to 

Solution We let and apply the Test for Exactness:

These equalities tell us that is exact, so

for some function ƒ, and the integral’s value is 
We find ƒ up to a constant by integrating the equations

(4)

From the first equation we get

The second equation tells us that

Hence, g is a function of z alone, and

The third of Equations (4) tells us that

Therefore,

The value of the integral is

ƒs2, 3, -1d - ƒs1, 1, 1d = 2 + C - s5 + Cd = -3.

ƒsx, y, zd = xy + 4z + C.

0ƒ
0z = 0 +

dh
dz

= 4,  or hszd = 4z + C.

ƒsx, y, zd = xy + hszd.

0ƒ
0y = x +

0g
0y = x,  or 0g

0y = 0.

ƒsx, y, zd = xy + gsy, zd.

0ƒ
0x = y,  0ƒ

0y = x,  0ƒ
0z = 4.

ƒs2, 3, -1d - ƒs1, 1, 1d.

y dx + x dy + 4 dz = dƒ

y dx + x dy + 4 dz

0P
0y = 0 =

0N
0z ,  0M

0z  = 0 =

0P
0x ,  0N

0x = 1 =

0M
0y .

M = y, N = x, P = 4

s2, 3, -1d .

L
s2,3, -1d

s1,1,1d
y dx + x dy + 4 dz

y dx + x dy + 4 dz

16.3 Path Independence, Potential Functions, and Conservative Fields 1167

Component Test for Exactness of 
The differential form is exact if and only if

This is equivalent to saying that the field is conservative.F = Mi + Nj + Pk

0P
0y =

0N
0z ,  0M

0z =
0P
0x ,  and 0N

0x =
0M
0y .

M dx + N dy + P dz
M dx + N dy + P dz

4100 AWL/Thomas_ch16p1143-1228  8/27/04  7:26 AM  Page 1167

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce16.html?1_9_l


1168 Chapter 16: Integration in Vector Fields

EXERCISES 16.3

Testing for Conservative Fields
Which fields in Exercises 1–6 are conservative, and which are not?

1.

2.

3.

4.

5.

6.

Finding Potential Functions
In Exercises 7–12, find a potential function ƒ for the field F.

7.

8.

9.

10.

11.

12.

Evaluating Line Integrals
In Exercises 13–17, show that the differential forms in the integrals
are exact. Then evaluate the integrals.

13.

14.

15.

16.

17.

Although they are not defined on all of space the fields associated
with Exercises 18–22 are simply connected and the Component Test
can be used to show they are conservative. Find a potential function
for each field and evaluate the integrals as in Example 4.

18. L
s1,p>2,2d

s0,2,1d
 2 cos y dx + a1y - 2x sin yb  dy +

1
z  dz

R3,

L
s0,1,1d

s1,0,0d
 sin y cos x dx + cos y sin x dy + dz

L
s3,3,1d

s0,0,0d
 2x dx - y2 dy -

4
1 + z2 dz

L
s1,2,3d

s0,0,0d
 2xy dx + sx2

- z2d dy - 2yz dz

L
s3,5,0d

s1,1,2d
 yz dx + xz dy + xy dz

L
s2,3, -6d

s0,0,0d
 2x dx + 2y dy + 2z dz

a y21 - y2 z2
+

1
z bk

F =

y

1 + x2 y2 i + a x

1 + x2 y2 +

z21 - y2 z2
b j +

asec2sx + yd +

y

y2
+ z2 bj +

z
y2

+ z2 k

F = sln x + sec2sx + yddi +

F = s y sin zdi + sx sin zdj + sxy cos zdk
F = ey + 2zsi + xj + 2xkd
F = s y + zdi + sx + zdj + sx + ydk
F = 2xi + 3yj + 4zk

F = sex cos ydi - sex sin ydj + zk

F = sz + ydi + zj + sy + xdk
F = -yi + xj

F = yi + sx + zdj - yk

F = s y sin zdi + sx sin zdj + sxy cos zdk
F = yzi + xzj + xyk

19.

20.

21.

22.

23. Revisiting Example 4 Evaluate the integral

from Example 4 by finding parametric equations for the line seg-
ment from (1, 1, 1) to and evaluating the line integral
of along the segment. Since F is conservative,
the integral is independent of the path.

24. Evaluate

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Theory, Applications, and Examples
Independence of path Show that the values of the integrals in Exer-
cises 25 and 26 do not depend on the path taken from A to B.

25.

26.

In Exercises 27 and 28, find a potential function for F.

27.

28.

29. Work along different paths Find the work done by 
over the following paths from

(1, 0, 0) to (1, 0, 1).

a. The line segment 

b. The helix 

c. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola
from (0, 0, 0) to (1, 0, 1)

30. Work along different paths Find the work done by 
over the following

paths from (1, 0, 1) to s1, p>2, 0d.
e yzi + sxze yz

+ z cos ydj + sxye yz
+ sin ydk

F =

z = x2, y = 0

rstd = scos tdi + ssin tdj + st>2pdk, 0 … t … 2p

x = 1, y = 0, 0 … z … 1

sx2
+ ydi + s y2

+ xdj + zezk
F =

F = se x lnydi + ae x

y + sin zbj + s y cos zdk

F =

2x
y  i + a1 - x2

y2 b j

L
B

A
 
x dx + y dy + z dz2x2

+ y2
+ z2

L
B

A
 z2 dx + 2y dy + 2xz dz

LC
 x2 dx + yz dy + s y2>2d dz

F = yi + xj + 4k
s2, 3, -1d

L
s2,3, -1d

s1,1,1d
 y dx + x dy + 4 dz

L
s2,2,2d

s-1, -1, -1d
 
2x dx + 2y dy + 2z dz

x2
+ y2

+ z2

L
s2,2,2d

s1,1,1d
 
1
y  dx + a1z -

x

y2 b  dy -

y

z2 dz

L
s2,1,1d

s1,2,1d
 s2x ln y - yzd dx + ax2

y - xzb  dy - xy dz

L
s1,2,3d

s1,1,1d
 3x2 dx +

z2

y  dy + 2z ln y dz
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a. The line segment 

b. The line segment from (1, 0, 1) to the origin followed by the
line segment from the origin to 

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the
x-axis from (1, 0, 0) to the origin, followed by the parabola

from there to 

31. Evaluating a work integral two ways Let and let
C be the path in the xy-plane from to (1, 1) that consists
of the line segment from to (0, 0) followed by the line
segment from (0, 0) to (1, 1). Evaluate in two ways.

a. Find parametrizations for the segments that make up C and
evaluate the integral.

b. Using as a potential function for F.

32. Integral along different paths Evaluate 
along the following paths C in the xy-plane.

a. The parabola from (1, 0) to (0, 1)

b. The line segment from to (1, 0)

c. The x-axis from to (1, 0)

d. The astroid 
counterclockwise from (1, 0) back to (1, 0)

33. a. Exact differential form How are the constants a, b, and c
related if the following differential form is exact?

b. Gradient field For what values of b and c will

be a gradient field?

F = s y2
+ 2czxdi + ysbx + czdj + s y2

+ cx2dk

say2
+ 2czxd dx + ysbx + czd dy + say2

+ cx2d dz

rstd = scos3 tdi + ssin3 tdj, 0 … t … 2p,

s -1, 0d
s -1, pd

y = sx - 1d2

 sin y dy
1C 2x cos y dx - x2

ƒsx, yd = x3y2

1C F # dr
s -1, 1d

s -1, 1d
F = §sx3y2d

s1, p>2, 0dy = px2>2, z = 0

s1, p>2, 0d

x = 1, y = pt>2, z = 1 - t, 0 … t … 1 34. Gradient of a line integral Suppose that is a conserva-
tive vector field and

Show that 

35. Path of least work You have been asked to find the path along
which a force field F will perform the least work in moving a
particle between two locations. A quick calculation on your part
shows F to be conservative. How should you respond? Give
reasons for your answer.

36. A revealing experiment By experiment, you find that a force
field F performs only half as much work in moving an object
along path from A to B as it does in moving the object along
path from A to B. What can you conclude about F? Give
reasons for your answer.

37. Work by a constant force Show that the work done by a con-
stant force field in moving a particle along any

path from A to B is 

38. Gravitational field

a. Find a potential function for the gravitational field

b. Let and be points at distance and from the origin.
Show that the work done by the gravitational field in part (a)
in moving a particle from to is

GmM a 1
s2

-

1
s1
b .

P2P1

s2s1P2P1

F = -GmM 
xi + yj + zk

sx2
+ y2

+ z2d3>2 sG, m, and M are constantsd.

W = F # AB
1

.

F = ai + bj + ck

C2

C1

§g = F.

gsx, y, zd = L
sx,y,zd

s0,0,0d
 F # dr.

F = §ƒ
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16.4 Green’s Theorem in the Plane 1169

Green’s Theorem in the Plane

From Table 16.2 in Section 16.2, we know that every line integral can be

written as a flow integral If the integral is independent of path, so the field F
is conservative (over a domain satisfying the basic assumptions), we can evaluate the
integral easily from a potential function for the field. In this section we consider how to
evaluate the integral if it is not associated with a conservative vector field, but is a flow or
flux integral across a closed curve in the xy-plane. The means for doing so is a result
known as Green’s Theorem, which converts the line integral into a double integral over the
region enclosed by the path.

We frame our discussion in terms of velocity fields of fluid flows because they are
easy to picture. However, Green’s Theorem applies to any vector field satisfying certain
mathematical conditions. It does not depend for its validity on the field’s having a partic-
ular physical interpretation.

1b
a  F # T ds.

1C M dx + N dy

16.4
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Divergence

We need two new ideas for Green’s Theorem. The first is the idea of the divergence of a
vector field at a point, sometimes called the flux density of the vector field by physicists
and engineers. We obtain it in the following way.

Suppose that is the velocity field of a fluid flow in the
plane and that the first partial derivatives of M and N are continuous at each point of a
region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at (x, y)
that, along with its interior, lies entirely in R (Figure 16.24). The sides of the rectangle,
parallel to the coordinate axes, have lengths of and The rate at which fluid leaves
the rectangle across the bottom edge is approximately

This is the scalar component of the velocity at (x, y) in the direction of the outward normal
times the length of the segment. If the velocity is in meters per second, for example, the
exit rate will be in meters per second times meters or square meters per second. The rates
at which the fluid crosses the other three sides in the directions of their outward normals
can be estimated in a similar way. All told, we have

Exit Rates: Top:

Bottom:

Right:

Left:

Combining opposite pairs gives

Adding these last two equations gives

We now divide by to estimate the total flux per unit area or flux density for the
rectangle:

Finally, we let and approach zero to define what we call the flux density of F at the
point (x, y). In mathematics, we call the flux density the divergence of F. The symbol for it
is div F, pronounced “divergence of F” or “div F.”

¢y¢x

Flux across rectangle boundary
rectangle area

L a0M
0x +

0N
0y b .

¢x¢y

Flux across rectangle boundary L a0M
0x +

0N
0y b¢x¢y.

Top and bottom: sNsx, y + ¢yd - Nsx, ydd¢x L a0N
0y  ¢yb¢x

Right and left: sMsx + ¢x, yd - Msx, ydd¢y L a0M
0x  ¢xb¢y.

Fsx, yd # s - id ¢y = -Msx, yd¢y.

Fsx + ¢x, yd # i ¢y = Msx + ¢x, yd¢y

Fsx, yd # s -jd ¢x = -Nsx, yd¢x

Fsx, y + ¢yd # j ¢x = Nsx, y + ¢yd¢x

Fsx, yd # s -jd ¢x = -Nsx, yd¢x.

¢y.¢x

Fsx, yd = Msx, ydi + Nsx, ydj
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A

(x, y � �y) (x � �x, y � �y)
�x

�x

�y�y

(x, y) (x � �x, y)

FIGURE 16.24 The rectangle for
defining the divergence (flux density) 
of a vector field at a point (x, y).

DEFINITION Divergence (Flux Density)
The divergence (flux density) of a vector field at the point (x, y) is

(1)div F =
0M
0x +

0N
0y .

F = Mi + Nj
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Intuitively, if a gas is expanding at the point the lines of flow would diverge
there (hence the name) and, since the gas would be flowing out of a small rectangle about

the divergence of F at would be positive. If the gas were compressing in-
stead of expanding, the divergence would be negative (see Figure 16.25).

EXAMPLE 1 Finding Divergence

Find the divergence of 

Solution We use the formula in Equation (1):

Spin Around an Axis: The k-Component of Curl

The second idea we need for Green’s Theorem has to do with measuring how a paddle
wheel spins at a point in a fluid flowing in a plane region. This idea gives some sense of
how the fluid is circulating around axes located at different points and perpendicular to the
region. Physicists sometimes refer to this as the circulation density of a vector field F at a
point. To obtain it, we return to the velocity field

and the rectangle A. The rectangle is redrawn here as Figure 16.26.
The counterclockwise circulation of F around the boundary of A is the sum of flow

rates along the sides. For the bottom edge, the flow rate is approximately

This is the scalar component of the velocity F(x, y) in the direction of the tangent vector i
times the length of the segment. The rates of flow along the other sides in the counter-
clockwise direction are expressed in a similar way. In all, we have

We add opposite pairs to get

Top and bottom:

Right and left:

Adding these last two equations and dividing by gives an estimate of the circulation
density for the rectangle:

Circulation around rectangle
rectangle area

 L

0N
0x -

0M
0y .

¢x¢y

sNsx + ¢x, yd - Nsx, ydd¢y L a0N
0x  ¢xb¢y.

-sMsx, y + ¢yd - Msx, ydd¢x L - a0M
0y  ¢yb¢x

Top: Fsx, y + ¢yd # s - id ¢x = -Msx, y + ¢yd¢x

Bottom: Fsx, yd # i ¢x = Msx, yd¢x

Right: Fsx + ¢x, yd # j ¢y = Nsx + ¢x, yd¢y

Left: Fsx, yd # s -jd ¢y = -Nsx, yd¢y.

Fsx, yd # i ¢x = Msx, yd¢x.

Fsx, yd = Msx, ydi + Nsx, ydj

 = 2x + x - 2y = 3x - 2y.

 div F =
0M
0x +

0N
0y =

0

0x sx2
- yd +

0

0y sxy - y2d

Fsx, yd = sx2
- ydi + sxy - y2dj.

sx0, y0dsx0, y0d

sx0, y0),
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Source:

Sink:

div F (x0, y0) � 0

div F (x0, y0) � 0

A gas expanding
at the point (x0, y0).

A gas compressing
at the point (x0, y0).

FIGURE 16.25 If a gas is expanding at a
point the lines of flow have
positive divergence; if the gas is
compressing, the divergence is negative.

sx0, y0d,

A

(x, y � �y) (x � �x, y � �y)�x

�x

�y�y

(x, y) (x � �x, y)

FIGURE 16.26 The rectangle for
defining the curl (circulation density) of a
vector field at a point (x, y).
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If water is moving about a region in the xy-plane in a thin layer, then the k-component
of the circulation, or curl, at a point gives a way to measure how fast and in what
direction a small paddle wheel will spin if it is put into the water at with its axis
perpendicular to the plane, parallel to k (Figure 16.27).

EXAMPLE 2 Finding the k-Component of the Curl

Find the k-component of the curl for the vector field

Solution We use the formula in Equation (2):

Two Forms for Green’s Theorem

In one form, Green’s Theorem says that under suitable conditions the outward flux of a
vector field across a simple closed curve in the plane (Figure 16.28) equals the double
integral of the divergence of the field over the region enclosed by the curve. Recall the
formulas for flux in Equations (3) and (4) in Section 16.2.

scurl Fd # k =

0N
0x -

0M
0y =

0

0x sxy - y2d -

0

0y sx2
- yd = y + 1.

Fsx, yd = sx2
- ydi + sxy - y2dj.

sx0, y0d
sx0, y0d

We let and approach zero to define what we call the circulation density of F at the
point (x, y).

The positive orientation of the circulation density for the plane is the counter-
clockwise rotation around the vertical axis, looking downward on the xy-plane from the tip
of the (vertical) unit vector k (Figure 16.27). The circulation value is actually the k-
component of a more general circulation vector we define in Section 16.7, called the curl
of the vector field F. For Green’s Theorem, we need only this k-component.

¢y¢x
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k

k

Vertical axis

Vertical axis

(x0, y0)

(x0, y0)

Curl F (x0, y0) . k � 0
Counterclockwise circulation

Curl F (x0, y0) . k � 0
Clockwise circulation

FIGURE 16.27 In the flow of an
incompressible fluid over a plane region,
the k-component of the curl measures the
rate of the fluid’s rotation at a point. The k-
component of the curl is positive at points
where the rotation is counterclockwise and
negative where the rotation is clockwise.

DEFINITION k-Component of Curl (Circulation Density)
The k-component of the curl (circulation density) of a vector field

at the point (x, y) is the scalar

(2)scurl Fd # k =

0N
0x -

0M
0y .

F = Mi + Nj

Simple

Not simple

Simple

FIGURE 16.28 In proving Green’s
Theorem, we distinguish between two kinds
of closed curves, simple and not simple.
Simple curves do not cross themselves. A
circle is simple but a figure 8 is not.

THEOREM 3 Green’s Theorem (Flux-Divergence or Normal Form)
The outward flux of a field across a simple closed curve C equals
the double integral of div F over the region R enclosed by C.

(3)

Outward flux Divergence integral

F
C 

 F # n ds = F
C 

 M dy - N dx = 6
R

 a0M
0x +

0N
0y b  dx dy

F = Mi + Nj
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In another form, Green’s Theorem says that the counterclockwise circulation of a
vector field around a simple closed curve is the double integral of the k-component of the
curl of the field over the region enclosed by the curve. Recall the defining Equation (2)
for circulation in Section 16.2.

16.4 Green’s Theorem in the Plane 1173

THEOREM 4 Green’s Theorem (Circulation-Curl or Tangential Form)
The counterclockwise circulation of a field around a simple
closed curve C in the plane equals the double integral of over the re-
gion R enclosed by C.

(4)

Counterclockwise circulation Curl integral

F
C 

 F # T ds = F
C 

 M dx + N dy = 6
R

 a0N
0x -

0M
0y b  dx dy

scurl Fd # k
F = Mi + Nj

The two forms of Green’s Theorem are equivalent. Applying Equation (3) to the field
gives Equation (4), and applying Equation (4) to gives

Equation (3).

Mathematical Assumptions

We need two kinds of assumptions for Green’s Theorem to hold. First, we need conditions
on M and N to ensure the existence of the integrals. The usual assumptions are that M, N,
and their first partial derivatives are continuous at every point of some open region con-
taining C and R. Second, we need geometric conditions on the curve C. It must be simple,
closed, and made up of pieces along which we can integrate M and N. The usual assump-
tions are that C is piecewise smooth. The proof we give for Green’s Theorem, however,
assumes things about the shape of R as well. You can find proofs that are less restrictive in
more advanced texts. First let’s look at examples.

EXAMPLE 3 Supporting Green’s Theorem

Verify both forms of Green’s Theorem for the field

and the region R bounded by the unit circle

Solution We have

0M
0x = 1, 0M

0y = -1, 0N
0x = 1, 0N

0y = 0.

 N = cos t, dy = dssin td = cos t dt, 

 M = cos t - sin t, dx = dscos td = -sin t dt, 

C: rstd = scos tdi + ssin tdj, 0 … t … 2p.

Fsx, yd = sx - ydi + xj

G2 = -Ni + MjG1 = Ni - Mj
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The two sides of Equation (3) are

The two sides of Equation (4) are

Using Green’s Theorem to Evaluate Line Integrals

If we construct a closed curve C by piecing a number of different curves end to end, the
process of evaluating a line integral over C can be lengthy because there are so many different
integrals to evaluate. If C bounds a region R to which Green’s Theorem applies, however, we
can use Green’s Theorem to change the line integral around C into one double integral over R.

EXAMPLE 4 Evaluating a Line Integral Using Green’s Theorem

Evaluate the integral

where C is the square cut from the first quadrant by the lines and 

Solution We can use either form of Green’s Theorem to change the line integral into a
double integral over the square.

1. With the Normal Form Equation (3): Taking and C and R as the
square’s boundary and interior gives

 = L
1

0
 c3xy d

x = 0

x = 1

 dy = L
1

0
 3y dy =

3
2

 y2 d
0

1

=

3
2

.

 F
C 

 xy dy - y2 dx = 6
R

 sy + 2yd dx dy = L
1

0
 L

1

0
 3y dx dy

M = xy, N = y2,

y = 1.x = 1

F
C 

 xy dy - y2 dx,

 6
R

 a0N
0x -

0M
dy
b  dx dy = 6

R

 s1 - s -1dd dx dy = 26
R

 dx dy = 2p.

 = L
2p

0
 s -sin t cos t + 1d dt = 2p

 F
C 

 M dx + N dy = L
t = 2p

t = 0
 scos t - sin tds -sin t dtd + scos tdscos t dtd

 = 6
R

 dx dy = area inside the unit circle = p.

 6
R

 a0M
0x +

0N
0y b  dx dy = 6

R

 s1 + 0d dx dy

 = L
2p

0
 cos2 t dt = p

 F
C 

 M dy - N dx = L
t = 2p

t = 0
 scos t - sin tdscos t dtd - scos tds -sin t dtd
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2. With the Tangential Form Equation (4): Taking and gives the same
result:

EXAMPLE 5 Finding Outward Flux

Calculate the outward flux of the field across the square bounded by
the lines and 

Solution Calculating the flux with a line integral would take four integrations, one
for each side of the square. With Green’s Theorem, we can change the line integral to
one double integral. With C the square, and R the square’s interior, we
have

Proof of Green’s Theorem for Special Regions

Let C be a smooth simple closed curve in the xy-plane with the property that lines parallel
to the axes cut it in no more than two points. Let R be the region enclosed by C and
suppose that M, N, and their first partial derivatives are continuous at every point of some
open region containing C and R. We want to prove the circulation-curl form of Green’s
Theorem,

(5)

Figure 16.29 shows C made up of two directed parts:

For any x between a and b, we can integrate with respect to y from to
and obtain

L
ƒ2sxd

ƒ1sxd
 
0M
0y  dy = Msx, yd d

y = ƒ1sxd

y = ƒ2sxd

= Msx, ƒ2sxdd - Msx, ƒ1sxdd.

y = ƒ2sxd
y = ƒ1sxd0M>0y

C1: y = ƒ1sxd, a … x … b, C2: y = ƒ2sxd, b Ú x Ú a.

F
C 

 M dx + N dy = 6
R

 a0N
0x -

0M
0y b  dx dy.

 = L
1

-1
 s2 + 4yd dy = c2y + 2y2 d

-1

1

= 4.

 = L
1

-1
 L

1

-1
 s1 + 2yd dx dy = L

1

-1
 cx + 2xy d

x = -1

x = 1

 dy

 = 6
R

 a0M
0x +

0N
0y b  dx dy

 Flux = F
C 

 F # n ds = F
C 

 M dy - N dx

M = x, N = y2 ,

y = ;1 .x = ;1
Fsx, yd = xi + y2j

F
C 

- y2 dx + xy dy = 6
R

 s y - s -2ydd dx dy =

3
2

.

N = xyM = -y2

16.4 Green’s Theorem in the Plane 1175

Green’s Theorem

x

y

a0 x b

R

P2(x, f2(x))
C2:  y � f2(x)

C1:  y � f1(x)
P1(x, f1(x))

FIGURE 16.29 The boundary curve C is
made up of the graph of 
and the graph of y = ƒ2sxd.C2 ,

y = ƒ1sxd,C1 ,
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We can then integrate this with respect to x from a to b:

Therefore

(6)

Equation (6) is half the result we need for Equation (5). We derive the other half by integrat-
ing first with respect to x and then with respect to y, as suggested by Figure 16.30. This
shows the curve C of Figure 16.29 decomposed into the two directed parts 

and The result of this double integration is

(7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof.

Extending the Proof to Other Regions

The argument we just gave does not apply directly to the rectangular region in Figure 16.31
because the lines and meet the region’s boundary in more
than two points. If we divide the boundary C into four directed line segments, however,

we can modify the argument in the following way.
Proceeding as in the proof of Equation (7), we have

(8) = LC2

 N dy + LC4

 N dy.

 = L
d

c
 Nsb, yd dy + L

c

d
 Nsa, yd dy

 L
d

c
 L

b

a
 
0N
0x  dx dy = L

d

c
 sNsb, yd - Nsa, ydd dy

 C3: y = d,  b Ú x Ú a,  C4: x = a,  d Ú y Ú c, 

 C1: y = c,  a … x … b,  C2: x = b,  c … y … d

y = dx = a, x = b, y = c ,

F
C 

 N dy = 6
R

 
0N
0x  dx dy.

C œ

2: x = g2s yd, c … y … d.d Ú y Ú c
C œ

1: x = g1s yd, 
0N>0x

F
C 

 M dx = 6
R

 a- 0M
0y b  dx dy.

 = -F
C 

 M dx.

 = -LC2

 M dx - LC1

 M dx

 = -L
a

b
 Msx, ƒ2sxdd dx - L

b

a
 Msx, ƒ1sxdd dx

 L
b

a
 L

ƒ2sxd

ƒ1sxd
 
0M
0y  dy dx = L

b

a
 [Msx, ƒ2sxdd - Msx, ƒ1sxdd] dx

1176 Chapter 16: Integration in Vector Fields

R

x

y

c

0

y

d

C'2:  x � g2(y)

C'1:  x � g1(y)

Q2(g2( y), y)
Q1(g1( y), y)

FIGURE 16.30 The boundary curve C is
made up of the graph of 
and the graph of x = g2syd.C2

œ ,
x = g1syd,C1

œ ,

y

x
0 a b

c

d

R

C3: y � d

C2C4
x � a x � b

C1: y � c

FIGURE 16.31 To prove Green’s
Theorem for a rectangle, we divide the
boundary into four directed line segments.
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Because y is constant along and so we can add
to the right-hand side of Equation (8) without changing the equality.

Doing so, we have

(9)

Similarly, we can show that

(10)

Subtracting Equation (10) from Equation (9), we again arrive at

Regions like those in Figure 16.32 can be handled with no greater difficulty. Equation (5)
still applies. It also applies to the horseshoe-shaped region R shown in Figure 16.33, as we
see by putting together the regions and and their boundaries. Green’s Theorem ap-
plies to and to yielding

When we add these two equations, the line integral along the y-axis from b to a for 
cancels the integral over the same segment but in the opposite direction for Hence,

where C consists of the two segments of the x-axis from to and from a to b and of
the two semicircles, and where R is the region inside C.

The device of adding line integrals over separate boundaries to build up an integral over
a single boundary can be extended to any finite number of subregions. In Figure 16.34a let

be the boundary, oriented counterclockwise, of the region in the first quadrant.
Similarly, for the other three quadrants, is the boundary of the region By
Green’s Theorem,

(11)

We sum Equation (11) over and get (Figure 16.34b):

(12)F
r=b 

sM dx + N dyd + I
r=a 

sM dx + N dyd = 6hRi

 a0N
0x -

0M
0y b  dx dy.

i = 1, 2, 3, 4,

F
Ci 

 M dx + N dy = 6
Ri

 a0N
0x -

0M
0y b  dx dy.

Ri, i = 2, 3, 4.Ci

R1C1

-a-b

F
C 

 M dx + N dy = 6
R

 a0N
0x -

0M
0y b  dx dy,

C2.
C1

 LC2

 M dx + N dy = 6
R2

 a0N
0x -

0M
0y b  dx dy.

 LC1

 M dx + N dy = 6
R1

 a0N
0x -

0M
0y b  dx dy

C2, R2,C1, R1

R2R1

F
C 

M dx + N dy = 6
R

 a0N
0x -

0M
0y b  dx dy.

L
b

a
 L

d

c
 
0M
0y  dy dx = -F

C 

M dx.

L
d

c
 L

b

a
 
0N
0x  dx dy = F

C 

N dy.

1C1 N dy = 1C3 N dy
C3, 1C1 N dy = 1C3 N dy = 0,C1
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y

x
0

R

(a)

C

y

x
0

R

(b)

C

a b

a

b

FIGURE 16.32 Other regions to which
Green’s Theorem applies.

y

x
0 a b

a

b

C2

C2

R2 R1

C1

C1C2

C1
C1C2

–a–b

FIGURE 16.33 A region R that combines
regions and R2.R1
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Equation (12) says that the double integral of over the annular ring R
equals the line integral of over the complete boundary of R in the direction
that keeps R on our left as we progress (Figure 16.34b).

EXAMPLE 6 Verifying Green’s Theorem for an Annular Ring

Verify the circulation form of Green’s Theorem (Equation 4) on the annular ring
(Figure 16.35), if

Solution The boundary of R consists of the circle

traversed counterclockwise as t increases, and the circle

traversed clockwise as increases. The functions M and N and their partial derivatives are
continuous throughout R. Moreover,

so

The integral of over the boundary of R is

The functions M and N in Example 6 are discontinuous at (0, 0), so we cannot apply
Green’s Theorem to the circle and the region inside it. We must exclude the origin. We
do so by excluding the points interior to 

We could replace the circle in Example 6 by an ellipse or any other simple closed
curve K surrounding (Figure 16.36). The result would still be

F
K 

 sM dx + N dyd + I
Ch 

 sM dx + N dyd = 6
R 

 a0N
0x -

0M
0y b  dy dx = 0,

Ch

C1

Ch.
C1

 = 2p - 2p = 0.

 = L
2p

0
 scos2 t + sin2 td dt - L

2p

0
 
h2scos2 u + sin2 ud

h2  du

 3
C 

 M dx + N dy = F
C1 

 
x dy - y dx

x2
+ y2 + I

Ch 

x dy - y dx

x2
+ y2

M dx + N dy

6
R

 a0N
0x -

0M
0y b  dx dy = 6

R

 0 dx dy = 0.

 =

y2
- x2

sx2
+ y2d2 =

0N
0x , 

 
0M
0y =

sx2
+ y2ds -1d + ys2yd

sx2
+ y2d2

u

Ch: x = h cos u,  y = -h sin u,  0 … u … 2p,

C1: x = cos t,  y = sin t,  0 … t … 2p,

M =

-y

x2
+ y2 ,  N =

x
x2

+ y2 .

R: h2
… x2

+ y2
… 1, 0 6 h 6 1

M dx + N dy
s0N>0xd - s0M>0yd
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x

y

a b

R

x

y

(a)

a b

Boundary
of R

(b)

C3

C3

C2

C3

C1

C4

R3 R4

R2 R1

C4

C4

C4C3

C1 C1

C1

C2

C2

C2

0

0

FIGURE 16.34 The annular region R
combines four smaller regions. In polar
coordinates, for the inner circle,

for the outer circle, and 
for the region itself.

a … r … br = b
r = a

x

y

h 1

R

Ch

C1

0

FIGURE 16.35 Green’s Theorem may 
be applied to the annular region R by
integrating along the boundaries as shown
(Example 6).
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which leads to the conclusion that

for any such curve K. We can explain this result by changing to polar coordinates. With

we have

and increases by as we traverse K once counterclockwise.2pu

x dy - y dx

x2
+ y2 =

r2scos2 u + sin2 ud du
r2 = du,

 dx = -r sin u du + cos u dr,   dy = r cos u du + sin u dr,

 x = r cos u,   y = r sin u,

F
K 

sM dx + N dyd = 2p
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x

y

K

Ch

�

0

FIGURE 16.36 The region bounded by
the circle and the curve K.Ch
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16.4 Green’s Theorem in the Plane 1179

EXERCISES 16.4

Verifying Green’s Theorem
In Exercises 1–4, verify the conclusion of Green’s Theorem by evalu-
ating both sides of Equations (3) and (4) for the field 
Take the domains of integration in each case to be the disk 

and its bounding circle 

1. 2.

3. 4.

Counterclockwise Circulation and Outward Flux
In Exercises 5–10, use Green’s Theorem to find the counterclockwise
circulation and outward flux for the field F and curve C.

5.

C: The square bounded by 

6.

C: The square bounded by 

7.

C: The triangle bounded by and 

8.

C: The triangle bounded by and 

9.

C: The right-hand loop of the lemniscate 

10.

C: The boundary of the region defined by the polar coordinate
inequalities 

11. Find the counterclockwise circulation and outward flux of the
field around and over the boundary of the region
enclosed by the curves and in the first quadrant.y = xy = x2

F = xyi + y2j

1 … r … 2, 0 … u … p

F = atan-1 
y
x b i + ln sx2

+ y2dj

r2
= cos 2u

F = sx + ex sin ydi + sx + ex cos ydj
y = xy = 0, x = 1 ,

F = sx + ydi - sx2
+ y2dj

y = xy = 0, x = 3 ,

F = s y2
- x2di + sx2

+ y2dj
x = 0, x = 1, y = 0, y = 1

F = sx2
+ 4ydi + sx + y2dj

x = 0, x = 1, y = 0, y = 1

F = sx - ydi + sy - xdj

F = -x2yi + xy2jF = 2xi - 3yj

F = yiF = -yi + xj

C: r = sa cos tdi + sa sin tdj, 0 … t … 2p.a2
R: x2

+ y2
…

F = Mi + Nj.

12. Find the counterclockwise circulation and the outward flux of the
field around and over the square cut
from the first quadrant by the lines and 

13. Find the outward flux of the field

across the cardioid 

14. Find the counterclockwise circulation of 
around the boundary of the region that is bounded above

by the curve and below by the curve 

Work
In Exercises 15 and 16, find the work done by F in moving a particle
once counterclockwise around the given curve.

15.

C: The boundary of the “triangular” region in the first quadrant
enclosed by the x-axis, the line and the curve 

16.

C: The circle 

Evaluating Line Integrals in the Plane
Apply Green’s Theorem to evaluate the integrals in Exercises 17–20.

17.

C: The triangle bounded by 

18.

C: The boundary of 0 … x … p, 0 … y …  sin x

F
C 

 s3y dx + 2x dyd

x = 0, x + y = 1, y = 0

F
C 

 sy2 dx + x2 dyd

sx - 2d2
+ s y - 2d2

= 4

F = s4x - 2ydi + s2x - 4ydj
y = x3x = 1 ,

F = 2xy3i + 4x2y2j

y = x4
+ 1.y = 3 - x2

sex>ydj
F = s y + ex ln ydi +

r = as1 + cos ud, a 7 0 .

F = a3xy -

x

1 + y2 b i + sex
+ tan-1 ydj

y = p>2 .x = p>2
F = s -sin ydi + sx cos ydj
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19.

C: The circle 

20.

C: Any simple closed curve in the plane for which Green’s Theorem
holds

Calculating Area with Green’s Theorem
If a simple closed curve C in the plane and the region R it encloses
satisfy the hypotheses of Green’s Theorem, the area of R is given by

F
C 

 s2x + y2d dx + s2xy + 3yd dy

sx - 2d2
+ sy - 3d2

= 4

F
C 

 s6y + xd dx + s y + 2xd dy Theory and Examples
25. Let C be the boundary of a region on which Green’s Theorem

holds. Use Green’s Theorem to calculate

a.

b.

26. Integral dependent only on area Show that the value of

around any square depends only on the area of the square and not
on its location in the plane.

27. What is special about the integral

Give reasons for your answer.

28. What is special about the integral

Give reasons for your answer.

29. Area as a line integral Show that if R is a region in the plane
bounded by a piecewise-smooth simple closed curve C, then

30. Definite integral as a line integral Suppose that a nonnegative
function has a continuous first derivative on [a, b]. Let
C be the boundary of the region in the xy-plane that is bounded
below by the x-axis, above by the graph of ƒ, and on the sides by
the lines and Show that

31. Area and the centroid Let A be the area and the x-coordinate
of the centroid of a region R that is bounded by a piecewise-
smooth simple closed curve C in the xy-plane. Show that

32. Moment of inertia Let be the moment of inertia about the
y-axis of the region in Exercise 31. Show that

1
3

 F
C 

 x3 dy = -F
C 

 x2y dx =

1
4

 F
C 

 x3 dy - x2y dx = Iy .

Iy

1
2

 F
C 

 x2 dy = -F
C 

 xy dx =

1
3

 F
C 

 x2 dy - xy dx = Ax.

x

L
b

a
 ƒsxd dx = -F

C 

 y dx.

x = b.x = a

y = ƒsxd

Area of R = F
C 

 x dy = -F
C 

 y dx.

F
C 

- y3 dy + x3 dx?

F
C 

 4x3y dx + x4 dy?

F
C 

 xy2 dx + sx2y + 2xd dy

F
C 

 ky dx + hx dy sk and h constantsd.

F
C 

 ƒsxd dx + gsyd dy
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Green’s Theorem Area Formula

(13)Area of R =

1
2F

C 

 x dy - y dx

The reason is that by Equation (3), run backward,

Use the Green’s Theorem area formula (Equation 13) to find the
areas of the regions enclosed by the curves in Exercises 21–24.

21. The circle 

22. The ellipse 

23. The astroid 

24. The curve (see
accompanying figure).

x

y

0

1

–1

1 2 4

t � 0

t � 0

t � ;�3

t � 0

rstd = t2i + sst3>3d - tdj,  -23 … t … 23

rstd = scos3 tdi + ssin3 tdj,  0 … t … 2p

rstd = sa cos tdi + sb sin tdj,  0 … t … 2p

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p

 = F
C 

 
1
2

 x dy -

1
2

 y dx .

 Area of R = 6
R

 dy dx = 6
R

 a1
2

+

1
2
b  dy dx
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33. Green’s Theorem and Laplace’s equation Assuming that all
the necessary derivatives exist and are continuous, show that if
ƒ(x, y) satisfies the Laplace equation

then

for all closed curves C to which Green’s Theorem applies. (The
converse is also true: If the line integral is always zero, then ƒ sat-
isfies the Laplace equation.)

34. Maximizing work Among all smooth simple closed curves in
the plane, oriented counterclockwise, find the one along which
the work done by

is greatest. (Hint: Where is positive?)

35. Regions with many holes Green’s Theorem holds for a region
R with any finite number of holes as long as the bounding curves
are smooth, simple, and closed and we integrate over each com-
ponent of the boundary in the direction that keeps R on our imme-
diate left as we go along (Figure 16.37).

scurl Fd # k

F = a1
4

 x2y +

1
3

 y3b i + xj

F
C 

 
0ƒ
0y  dx -

0ƒ
0x  dy = 0

0
2ƒ

0x2 +

0
2ƒ

0y2 = 0,

that does not pass through (0, 0). Use Green’s Theorem to
show that

has two possible values, depending on whether (0, 0) lies
inside K or outside K.

36. Bendixson’s criterion The streamlines of a planar fluid flow
are the smooth curves traced by the fluid’s individual particles.
The vectors of the flow’s velocity field
are the tangent vectors of the streamlines. Show that if the flow
takes place over a simply connected region R (no holes or miss-
ing points) and that if throughout R, then none of
the streamlines in R is closed. In other words, no particle of fluid
ever has a closed trajectory in R. The criterion is
called Bendixson’s criterion for the nonexistence of closed
trajectories.

37. Establish Equation (7) to finish the proof of the special case of
Green’s Theorem.

38. Establish Equation (10) to complete the argument for the exten-
sion of Green’s Theorem.

39. Curl component of conservative fields Can anything be said
about the curl component of a conservative two-dimensional vec-
tor field? Give reasons for your answer.

40. Circulation of conservative fields Does Green’s Theorem give
any information about the circulation of a conservative field?
Does this agree with anything else you know? Give reasons for
your answer.

COMPUTER EXPLORATIONS

Finding Circulation
In Exercises 41–44, use a CAS and Green’s Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve
C. Perform the following CAS steps.

a. Plot C in the xy-plane.

b. Determine the integrand for the curl
form of Green’s Theorem.

c. Determine the (double integral) limits of integration from
your plot in part (a) and evaluate the curl integral for the
circulation.

41. The ellipse 

42. The ellipse 

43.

C: The boundary of the region defined by (below)
and (above)

44.

C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

F = xe y i + 4x2 ln y j, 
y = 2

y = 1 + x4

F = x-1eyi + sey ln x + 2xdj, 

x2

4
+

y2

9
= 1F = s2x3

- y3di + sx3
+ y3dj, C:

x2
+ 4y2

= 4F = s2x - ydi + sx + 3ydj, C:

s0N>0xd - s0M>0yd

Mx + Ny Z 0

Mx + Ny Z 0

F = Msx, ydi + Nsx, ydj

F
K 

§ƒ # n ds

16.4 Green’s Theorem in the Plane 1181

FIGURE 16.37 Green’s
Theorem holds for
regions with more than
one hole (Exercise 35).

a. Let and let C be the circle
Evaluate the flux integral

b. Let K be an arbitrary smooth simple closed curve in the plane

F
C 

 §ƒ # n ds.

x2
+ y2

= a2 .
ƒsx, yd = ln sx2

+ y2d
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1182 Chapter 16: Integration in Vector Fields

Surface Area and Surface Integrals

We know how to integrate a function over a flat region in a plane, but what if the function
is defined over a curved surface? To evaluate one of these so-called surface integrals, we
rewrite it as a double integral over a region in a coordinate plane beneath the surface
(Figure 16.38). Surface integrals are used to compute quantities such as the flow of liquid
across a membrane or the upward force on a falling parachute.

Surface Area

Figure 16.39 shows a surface S lying above its “shadow” region R in a plane beneath it.
The surface is defined by the equation If the surface is smooth ( is con-
tinuous and never vanishes on S ), we can define and calculate its area as a double integral
over R. We assume that this projection of the surface onto its shadow R is one-to-one. That
is, each point in R corresponds to exactly one point (x, y, z) satisfying 

The first step in defining the area of S is to partition the region R into small rectangles
of the kind we would use if we were defining an integral over R. Directly above each
lies a patch of surface that we may approximate by a parallelogram in the

tangent plane to S at a point in This parallelogram in the tangent plane
projects directly onto To be specific, we choose the point lying directly
above the back corner of as shown in Figure 16.39. If the tangent plane is parallel
to R, then will be congruent to Otherwise, it will be a parallelogram whose area
is somewhat larger than the area of 

Figure 16.40 gives a magnified view of and showing the gradient vector
at and a unit vector p that is normal to R. The figure also shows the angle

between and p. The other vectors in the picture, and lie along the edges of the
patch in the tangent plane. Thus, both and are normal to the tangent plane.

We now need to know from advanced vector geometry that is the area
of the projection of the parallelogram determined by and onto any plane whose
normal is p. (A proof is given in Appendix 8.) In our case, this translates into the statement

To simplify the notation in the derivation that follows, we are now denoting the area of the
small rectangular region by as well. Likewise, will also denote the area of the
portion of the tangent plane directly above this small region. 

Now, itself is the area (standard fact about cross products) so this last
equation becomes

1 Same as because and
are both normal to the tangent plane

or

or

¢Pk =

¢Ak

ƒ cos gk ƒ

,

¢Pk ƒ cos gk ƒ = ¢Ak

uk * vk§ƒƒ cos gk ƒ¢Pk

('''''''')''''''''*()*('')'*

ƒ uk * vk ƒ  ƒ p ƒ  ƒ cos sangle between uk * vk and pd ƒ = ¢Ak

¢Pkƒ uk * vk ƒ

¢Pk¢Ak

ƒ suk * vkd # p ƒ = ¢Ak.

vkuk

ƒ suk * vkd # p ƒ

§ƒuk * vk¢Pk

vk,uk§ƒgk

Tk§ƒsxk, yk, zkd
¢Pk,¢sk

¢Ak.
¢Ak.¢Pk

¢Ak,Ck

Tksxk, yk, zkd¢Ak.
¢sk.Tksxk, yk, zkd

¢Pk¢sk¢Ak

¢Ak

ƒsx, y, zd = c.

§ƒƒsx, y, zd = c.

16.5

R

S

The vertical projection
or “shadow” of S on a
coordinate plane

Surface f (x, y,  z) � c

FIGURE 16.38 As we soon see, the
integral of a function g(x, y, z) over a
surface S in space can be calculated by
evaluating a related double integral over
the vertical projection or “shadow” of S
on a coordinate plane.

S

R

∆Pk

∆�k

f (x, y, z) � c

Tk(xk, yk, zk)

Ck

∆Ak

FIGURE 16.39 A surface S and its
vertical projection onto a plane beneath it.
You can think of R as the shadow of S on
the plane. The tangent plane 
approximates the surface patch 
above ¢Ak.

¢sk

¢Pk
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provided We will have as long as is not parallel to the ground
plane and 

Since the patches approximate the surface patches that fit together to make
S, the sum

(1)

looks like an approximation of what we might like to call the surface area of S. It also looks
as if the approximation would improve if we refined the partition of R. In fact, the sums on
the right-hand side of Equation (1) are approximating sums for the double integral

(2)

We therefore define the area of S to be the value of this integral whenever it exists. For any
surface we have so

This combines with Equation (2) to give a practical formula for surface area.

1
ƒ cos g ƒ

=

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

.

ƒ §ƒ # p ƒ = ƒ §ƒ ƒ ƒ p ƒ ƒ cos g ƒ ,ƒsx, y, zd = c,

6
R

 
1

ƒ cos g ƒ

 dA.

a¢Pk = a ¢Ak

ƒ cos gk ƒ

¢sk¢Pk

§ƒ # p Z 0.
§ƒcos gk Z 0cos gk Z 0.
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p

p

∆ Ak

Ck

vk

uk

Tk

�k�f (xk, yk, zk)

∆Pk

∆�k

FIGURE 16.40 Magnified view from the
preceding figure. The vector (not
shown) is parallel to the vector because
both vectors are normal to the plane of
¢Pk .

§ƒ
uk * vk

Formula for Surface Area
The area of the surface over a closed and bounded plane region R is

(3)

where p is a unit vector normal to R and §ƒ # p Z 0.

Surface area = 6
R

 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA,

ƒsx, y, zd = c

Thus, the area is the double integral over R of the magnitude of divided by the
magnitude of the scalar component of normal to R.

We reached Equation (3) under the assumption that throughout R and that
is continuous. Whenever the integral exists, however, we define its value to be the area

of the portion of the surface that lies over R. (Recall that the projection is as-
sumed to be one-to-one.)

In the exercises (see Equation 11), we show how Equation (3) simplifies if the surface
is defined by 

EXAMPLE 1 Finding Surface Area

Find the area of the surface cut from the bottom of the paraboloid by the
plane 

Solution We sketch the surface S and the region R below it in the xy-plane (Figure
16.41). The surface S is part of the level surface and R is
the disk in the xy-plane. To get a unit vector normal to the plane of R, we can
take p = k.

x2
+ y2

… 4
ƒsx, y, zd = x2

+ y2
- z = 0,

z = 4.
x2

+ y2
- z = 0

z = ƒsx, yd.

ƒsx, y, zd = c
§f

§ƒ # p Z 0
§ƒ

§ƒ
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At any point (x, y, z) on the surface, we have

In the region Therefore,

EXAMPLE 2 Finding Surface Area

Find the area of the cap cut from the hemisphere by the cylin-
der (Figure 16.42).

Solution The cap S is part of the level surface It pro-
jects one-to-one onto the disk in the xy-plane. The unit vector is
normal to the plane of R.

At any point on the surface,

Therefore,

(4)

What do we do about the z?
Since z is the z-coordinate of a point on the sphere, we can express it in terms of x and

y as

z = 22 - x2
- y2.

Surface area = 6
R

 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA = 6
R

 
222

2z
 dA = 226

R

 
dA
z .

 ƒ §ƒ # p ƒ = ƒ §ƒ # k ƒ = ƒ 2z ƒ = 2z .

 ƒ §ƒ ƒ = 22x2
+ y2

+ z2
= 222

 §ƒ = 2xi + 2yj + 2zk

 ƒsx, y, zd = x2
+ y2

+ z2

p = kR: x2
+ y2

… 1
ƒsx, y, zd = x2

+ y2
+ z2

= 2.

x2
+ y2

= 1
x2

+ y2
+ z2

= 2, z Ú 0,

 = L
2p

0
 

1
12

 s173>2
- 1d du =

p
6

 A17217 - 1 B .
 = L

2p

0
 c 1

12
 s4r2

+ 1d3>2 d
0

2

 du

 = L
2p

0
 L

2

0
 24r2

+ 1 r dr du

 =  6
x2

+y2
…4 

24x2
+ 4y2

+ 1 dx dy

 Surface area = 6
R

 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA

R, dA = dx dy.

 ƒ §ƒ # p ƒ = ƒ §ƒ # k ƒ = ƒ -1 ƒ = 1.

 = 24x2
+ 4y2

+ 1

 ƒ §ƒ ƒ = 2s2xd2
+ s2yd2

+ s -1d2

 §ƒ = 2xi + 2yj - k

 ƒsx, y, zd = x2
+ y2

- z
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y

z

x

4

S

R
0

z � x2 � y2

x2 � y2 � 4

FIGURE 16.41 The area of this parabolic
surface is calculated in Example 1.

Equation (3)

Polar coordinates

z

y

x

S

R
0

1
1

x2 � y2 � z2 � 2

x2 � y2 � 1

FIGURE 16.42 The cap cut from the
hemisphere by the cylinder projects
vertically onto the disk 
in the xy-plane (Example 2).

R: x2
+ y2

… 1

Because 
at points of Sz2

= 2
x2

+ y2
+
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We continue the work of Equation (4) with this substitution:

Surface Integrals

We now show how to integrate a function over a surface, using the ideas just developed for
calculating surface area.

Suppose, for example, that we have an electrical charge distributed over a surface
like the one shown in Figure 16.43 and that the function g(x, y, z) gives the

charge per unit area (charge density) at each point on S. Then we may calculate the total
charge on S as an integral in the following way.

We partition the shadow region R on the ground plane beneath the surface into
small rectangles of the kind we would use if we were defining the surface area of S.
Then directly above each lies a patch of surface that we approximate with a
parallelogram-shaped portion of tangent plane, (See Figure 16.43.)

Up to this point the construction proceeds as in the definition of surface area, but
now we take an additional step: We evaluate g at and approximate the total
charge on the surface path by the product The rationale is that
when the partition of R is sufficiently fine, the value of g throughout is nearly
constant and is nearly the same as The total charge over S is then approxi-
mated by the sum

If ƒ, the function defining the surface S, and its first partial derivatives are continuous,
and if g is continuous over S, then the sums on the right-hand side of the last equation ap-
proach the limit

(5)

as the partition of R is refined in the usual way. This limit is called the integral of g over
the surface S and is calculated as a double integral over R. The value of the integral is the
total charge on the surface S.

As you might expect, the formula in Equation (5) defines the integral of any function
g over the surface S as long as the integral exists.

6
R

 gsx, y, zd 
dA

ƒ cos g ƒ

= 6
R

 g sx, y, zd 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA

Total charge L ag sxk, yk, zkd ¢Pk = a g sxk, yk, zkd 
¢Ak

ƒ cos gk ƒ

.

¢sk.¢Pk

¢sk

g sxk, yk, zkd ¢Pk.¢sk

sxk, yk, zkd

¢Pk .
¢sk¢Ak

ƒsx, y, zd = c

 = 22L
2p

0
 A22 - 1 B  du = 2p A2 - 22 B .

 = 22L
2p

0
 c-s2 - r 2d1>2 d

r = 0

r = 1

 du

 = 22L
2p

0
 L

1

0
 

r dr du22 - r 2

 Surface area = 226
R

 
dA
z = 22 6

x2
+y2

…1 

 
dA22 - x2

- y2
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Polar coordinates

S

R

∆Pk

∆�k

f (x, y, z) � c

(xk, yk, zk)

∆Ak

FIGURE 16.43 If we know how an
electrical charge g(x, y, z) is distributed
over a surface, we can find the total charge
with a suitably modified surface integral.
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The integral in Equation (6) takes on different meanings in different applications. If g
has the constant value 1, the integral gives the area of S. If g gives the mass density of a
thin shell of material modeled by S, the integral gives the mass of the shell.

We can abbreviate the integral in Equation (6) by writing for s ƒ §ƒ ƒ > ƒ §ƒ # p ƒ d dA.ds

1186 Chapter 16: Integration in Vector Fields

DEFINITION Surface Integral
If R is the shadow region of a surface S defined by the equation 
and g is a continuous function defined at the points of S, then the integral of g
over S is the integral

(6)

where p is a unit vector normal to R and The integral itself is called a
surface integral.

§ƒ # p Z 0.

6
R

 gsx, y, zd 
ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA,

ƒsx, y, zd = c,

The Surface Area Differential and the Differential Form for Surface Integrals

(7)

Surface area Differential formula
differential for surface integrals

ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA  6
S

 g ds

Surface integrals behave like other double integrals, the integral of the sum of two
functions being the sum of their integrals and so on. The domain Additivity Property takes
the form

The idea is that if S is partitioned by smooth curves into a finite number of nonoverlapping
smooth patches (i.e., if S is piecewise smooth), then the integral over S is the sum of the
integrals over the patches. Thus, the integral of a function over the surface of a cube is the
sum of the integrals over the faces of the cube. We integrate over a turtle shell of welded
plates by integrating one plate at a time and adding the results.

EXAMPLE 3 Integrating Over a Surface

Integrate over the surface of the cube cut from the first octant by the
planes and (Figure 16.44).

Solution We integrate xyz over each of the six sides and add the results. Since on
the sides that lie in the coordinate planes, the integral over the surface of the cube reduces to

6
Cube

surface 

 xyz ds = 6
Side A 

 xyz ds + 6
Side B 

 xyz ds + 6
Side C 

 xyz ds.

xyz = 0

z = 1x = 1, y = 1,
g sx, y, zd = xyz

6
S

 g ds = 6
S1

 g ds + 6
S2

 g ds +
Á

+ 6
Sn

 g ds.

1

1

1

0

z

y

x
Side B

Side C

Side A

FIGURE 16.44 The cube in Example 3.
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Side A is the surface over the square region 
in the xy-plane. For this surface and region,

and

Symmetry tells us that the integrals of xyz over sides B and C are also 1 4. Hence,

Orientation

We call a smooth surface S orientable or two-sided if it is possible to define a field n of
unit normal vectors on S that varies continuously with position. Any patch or subportion of
an orientable surface is orientable. Spheres and other smooth closed surfaces in space
(smooth surfaces that enclose solids) are orientable. By convention, we choose n on a
closed surface to point outward.

Once n has been chosen, we say that we have oriented the surface, and we call the
surface together with its normal field an oriented surface. The vector n at any point is
called the positive direction at that point (Figure 16.45).

The Möbius band in Figure 16.46 is not orientable. No matter where you start to
construct a continuous-unit normal field (shown as the shaft of a thumbtack in the figure),
moving the vector continuously around the surface in the manner shown will return it to
the starting point with a direction opposite to the one it had when it started out. The vector
at that point cannot point both ways and yet it must if the field is to be continuous. We
conclude that no such field exists.

Surface Integral for Flux

Suppose that F is a continuous vector field defined over an oriented surface S and that n
is the chosen unit normal field on the surface. We call the integral of over S the flux
of F across S in the positive direction. Thus, the flux is the integral over S of the scalar
component of F in the direction of n.

F # n

6
Cube

surface

 xyz ds =
1
4

+
1
4

+
1
4

=

3
4

.

>
6

Side A 

 xyz ds = 6
Rxy 

 xy dx dy = L
1

0
 L

1

0
 xy dx dy = L

1

0
 
y
2

 dy =
1
4

.

 xyz = xys1d = xy

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =
1
1

 dx dy = dx dy

 p = k, §ƒ = k, ƒ §ƒ ƒ = 1,  ƒ §ƒ # p ƒ = ƒ k # k ƒ = 1

0 … y … 1,
Rxy: 0 … x … 1, ƒsx, y, zd = z = 1
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n Positive
direction

FIGURE 16.45 Smooth closed surfaces
in space are orientable. The outward unit
normal vector defines the positive
direction at each point.

d c

a b
Start

Finish
d b

ca

FIGURE 16.46 To make a Möbius band,
take a rectangular strip of paper abcd, give
the end bc a single twist, and paste the
ends of the strip together to match a with c
and b with d. The Möbius band is a
nonorientable or one-sided surface.

DEFINITION Flux
The flux of a three-dimensional vector field F across an oriented surface S in the
direction of n is

(8)Flux = 6
S

 F # n ds.
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The definition is analogous to the flux of a two-dimensional field F across a plane
curve C. In the plane (Section 16.2), the flux is

the integral of the scalar component of F normal to the curve.
If F is the velocity field of a three-dimensional fluid flow, the flux of F across S is the

net rate at which fluid is crossing S in the chosen positive direction. We discuss such flows
in more detail in Section 16.7.

If S is part of a level surface then n may be taken to be one of the two
fields

(9)

depending on which one gives the preferred direction. The corresponding flux is

(8)

(10)

EXAMPLE 4 Finding Flux

Find the flux of outward through the surface S cut from the cylinder
by the planes and 

Solution The outward normal field on S (Figure 16.47) may be calculated from the
gradient of to be

With we also have

We can drop the absolute value bars because on S.
The value of on the surface is

Therefore, the flux of F outward through S is

6
S

 F # n ds = 6
S

 szd a1z  dAb = 6
Rxy

 dA = areasRxyd = 2.

 = z.

 = y 2z + z 3
= zs y 2

+ z 2d

 F # n = syzj + z2kd # s yj + zkd

F # n
z Ú 0

ds =

ƒ §g ƒ

ƒ §g # k ƒ

 dA =
2

ƒ 2z ƒ

 dA =
1
z  dA.

p = k,

n = +

§g

ƒ §g ƒ

=

2yj + 2zk24y2
+ 4z2

=

2yj + 2zk

221
= yj + zk.

gsx, y, zd = y2
+ z2

x = 1.x = 0y2
+ z2

= 1, z Ú 0,
F = yzj + z2k

 = 6
R

 F #
; §g

ƒ §g # p ƒ

 dA.

 = 6
R

 aF #
; §g

ƒ §g ƒ

b  
ƒ §g ƒ

ƒ §g # p ƒ

 dA

 Flux = 6
S

 F # n ds

n = ;

§g

ƒ §g ƒ

,

gsx, y, zd = c,

3
C 

 F # n ds,
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Equations (9) and (7)

y2
+ z2

= 1 on S

(1, 1, 0)
x

y

z

n

1

(1, –1, 0)

Rxy

y2 � z2 � 1

FIGURE 16.47 Calculating the flux of a
vector field outward through this surface.
The area of the shadow region is 2
(Example 4).

Rxy
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Moments and Masses of Thin Shells

Thin shells of material like bowls, metal drums, and domes are modeled with surfaces.
Their moments and masses are calculated with the formulas in Table 16.3.

16.5 Surface Area and Surface Integrals 1189

TABLE 16.3 Mass and moment formulas for very thin shells

Mass:

First moments about the coordinate planes:

Coordinates of center of mass:

Moments of inertia about coordinate axes:

Radius of gyration about a line L: RL = 2IL >M
rsx, y, zd = distance from point sx, y, zd to line L

Iz = 6
S

 sx2
+ y 2d d ds,  IL = 6

S

 r 2d ds,  

Ix = 6
S

 s y2
+ z2d d ds,  Iy = 6

S

 sx 2
+ z 2d d ds,  

x = Myz >M,  y = Mxz >M,  z = Mxy >M

Myz = 6
S

 x d ds,  Mxz = 6
S

 y d ds,  Mxy = 6
S

 z d ds

M = 6
S

 dsx, y, zd ds sdsx, y, zd = density at sx, y, zd,

EXAMPLE 5 Finding Center of Mass

Find the center of mass of a thin hemispherical shell of radius a and constant density 

Solution We model the shell with the hemisphere

(Figure 16.48). The symmetry of the surface about the z-axis tells us that It re-
mains only to find from the formula 

The mass of the shell is

To evaluate the integral for we take and calculate

 ds =

ƒ §ƒ ƒ

ƒ §ƒ # p ƒ

 dA =

a
z  dA.

 ƒ §ƒ # p ƒ = ƒ §ƒ # k ƒ = ƒ 2z ƒ = 2z

 ƒ §ƒ ƒ = ƒ 2xi + 2yj + 2zk ƒ = 22x2
+ y2

+ z2
= 2a

p = kMxy,

M = 6
S

 d ds = d6
S

 ds = sddsarea of Sd = 2pa2d.

z = Mxy >M.z
x = y = 0.

ƒsx, y, zd = x2
+ y2

+ z2
= a2,  z Ú 0

d.

z

x

y

c.m. S

R
a

a

x2 � y2 � z2 � a2

x2 � y2 � a2

0, 0,





a
2

FIGURE 16.48 The center of mass of a
thin hemispherical shell of constant density
lies on the axis of symmetry halfway from
the base to the top (Example 5).

mass per unit area)
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Then

The shell’s center of mass is the point (0, 0, a 2).>
 z =

Mxy

M
=

pa3d

2pa2d
=

a
2

.

 Mxy = 6
S

 zd ds = d6
R

 z 
a
z  dA = da6

R

 dA = daspa2d = dpa3
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1190 Chapter 16: Integration in Vector Fields

EXERCISES 16.5

Surface Area
1. Find the area of the surface cut from the paraboloid

by the plane 

2. Find the area of the band cut from the paraboloid 
by the planes and 

3. Find the area of the region cut from the plane 
by the cylinder whose walls are and 

4. Find the area of the portion of the surface that lies
above the triangle bounded by the lines and

in the xy-plane.

5. Find the area of the surface that lies above the
triangle bounded by the lines and in the xy-
plane.

6. Find the area of the cap cut from the sphere by

the cone 

7. Find the area of the ellipse cut from the plane (c a con-
stant) by the cylinder 

8. Find the area of the upper portion of the cylinder 
that lies between the planes and 

9. Find the area of the portion of the paraboloid 
that lies above the ring in the yz-plane.

10. Find the area of the surface cut from the paraboloid 
by the plane 

11. Find the area of the surface above
the square in the xy-plane.

12. Find the area of the surface above the
square in the xy-plane.

Surface Integrals
13. Integrate over the surface of the cube cut

from the first octant by the planes x = a, y = a, z = a.
gsx, y, zd = x + y + z

R: 0 … x … 1, 0 … y … 1,
2x3>2

+ 2y3>2
- 3z = 0

R: 1 … x … 2, 0 … y … 1,
x2

- 2 ln x + 215y - z = 0

y = 0.2
x2

+ y + z2
=

1 … y2
+ z2

… 4
x = 4 - y2

- z2

y = ;1>2.x = ;1>2
x2

+ z2
= 1

x2
+ y2

= 1.
z = cx

z = 2x2
+ y2.

x2
+ y2

+ z2
= 2

y = 3xx = 2, y = 0,
x2

- 2y - 2z = 0

y = x
x = 23, y = 0,
x2

- 2z = 0

x = 2 - y2.x = y2
x + 2y + 2z = 5

z = 6.z = 20
x2

+ y2
- z =

z = 2.0
x2

+ y2
- z =

14. Integrate over the surface of the wedge in the
first octant bounded by the coordinate planes and the planes

and 

15. Integrate over the surface of the rectangular solid
cut from the first octant by the planes and 

16. Integrate over the surface of the rectangular solid
bounded by the planes and 

17. Integrate over the portion of the plane
that lies in the first octant.

18. Integrate over the surface cut from the
parabolic cylinder by the planes 
and 

Flux Across a Surface
In Exercises 19 and 20, find the flux of the field F across the portion
of the given surface in the specified direction.

19.

S: rectangular surface
direction k

20.

S: rectangular surface
direction 

In Exercises 21–26, find the flux of the field F across the portion of
the sphere in the first octant in the direction away
from the origin.

21. 22.

23. 24.

25.

26. Fsx, y, zd =

xi + yj + zk2x2
+ y2

+ z2

Fsx, y, zd = xi + yj + zk

Fsx, y, zd = zxi + zyj + z2kFsx, y, zd = yi - xj + k

Fsx, y, zd = -yi + xjFsx, y, zd = zk

x2
+ y2

+ z2
= a2

-j
y = 0,  -1 … x … 2,  2 … z … 7,

Fsx, y, zd = yx2i - 2j + xzk

z = 0,  0 … x … 2,  0 … y … 3,

Fsx, y, zd = - i + 2j + 3k

z = 0.
x = 0, x = 1,y2

+ 4z = 16
gsx, y, zd = x2y2

+ 4

2x + 2y + z = 2
gsx, y, zd = x + y + z

z = ;c.x = ;a, y = ;b,
gsx, y, zd = xyz

z = c.x = a, y = b,
gsx, y, zd = xyz

y + z = 1.x = 2

gsx, y, zd = y + z
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27. Find the flux of the field outward
through the surface cut from the parabolic cylinder 
by the planes and 

28. Find the flux of the field outward
(away from the z-axis) through the surface cut from the bottom of
the paraboloid by the plane 

29. Let S be the portion of the cylinder in the first octant that
projects parallel to the x-axis onto the rectangle 

in the yz-plane (see the accompanying figure). Let n
be the unit vector normal to S that points away from the yz-plane.
Find the flux of the field across S
in the direction of n.

30. Let S be the portion of the cylinder in the first octant
whose projection parallel to the y-axis onto the xz-plane is the rec-
tangle Let n be the unit vector nor-
mal to S that points away from the xz-plane. Find the flux of

through S in the direction of n.

31. Find the outward flux of the field 
across the surface of the cube cut from the first octant by the
planes 

32. Find the outward flux of the field across the
surface of the upper cap cut from the solid sphere

by the plane 

Moments and Masses
33. Centroid Find the centroid of the portion of the sphere

that lies in the first octant.

34. Centroid Find the centroid of the surface cut from the cylinder
by the planes and (resembles

the surface in Example 4).

35. Thin shell of constant density Find the center of mass and the
moment of inertia and radius of gyration about the z-axis of a thin
shell of constant density cut from the cone 
by the planes and 

36. Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density cut from
the cone by the circular cylinder

(see the accompanying figure).x2
+ y2

= 2x
4x2

+ 4y2
- z2

= 0, z Ú 0,
d

z = 2,z = 1
x2

+ y2
- z2

= 0d

x = 3x = 0y2
+ z2

= 9, z Ú 0,

x2
+ y2

+ z2
= a2

z = 3.x2
+ y2

+ z2
… 25

F = xzi + yzj + k

x = a, y = a, z = a.

F = 2xyi + 2yzj + 2xzk

F = 2yj + zk

Rxz: 1 … x … e, 0 … z … 1.

y = ln x

z

yx

1

1

2
Sy � e x

Ryz

Fsx, y, zd = -2i + 2yj + zk

0 … z … 1
Ryz: 1 … y … 2, 

y = ex

z = 1.z = x2
+ y2

Fsx, y, zd = 4xi + 4yj + 2k

z = 0.x = 0, x = 1,
z = 4 - y2

Fsx, y, zd = z2i + xj - 3zk

37. Spherical shells

a. Find the moment of inertia about a diameter of a thin
spherical shell of radius a and constant density (Work with
a hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.5) and the result
in part (a) to find the moment of inertia about a line tangent
to the shell.

38. a. Cones with and without ice cream Find the centroid of the
lateral surface of a solid cone of base radius a and height h
(cone surface minus the base).

b. Use Pappus’s formula (Exercises 15.5) and the result in part
(a) to find the centroid of the complete surface of a solid cone
(side plus base).

c. A cone of radius a and height h is joined to a hemisphere of
radius a to make a surface S that resembles an ice cream
cone. Use Pappus’s formula and the results in part (a) and
Example 5 to find the centroid of S. How high does the cone
have to be to place the centroid in the plane shared by the
bases of the hemisphere and cone?

Special Formulas for Surface Area
If S is the surface defined by a function that has continu-
ous first partial derivatives throughout a region in the xy-plane
(Figure 16.49), then S is also the level surface of the
function Taking the unit normal to to be

then gives

and

(11)6
Rxy 

 
ƒ §F ƒ

ƒ §F # p ƒ

 dA = 6
Rxy 

 2ƒx
2

+ ƒy
2

+ 1 dx dy,

 ƒ §F # p ƒ = ƒ sƒxi + ƒy j - kd # k ƒ = ƒ -1 ƒ = 1

 ƒ §F ƒ = ƒ ƒxi + ƒy j - k ƒ = 2ƒx
2

+ ƒy
2

+ 1

p = k
RxyFsx, y, zd = ƒsx, yd - z .

Fsx, y, zd = 0
Rxy

z = ƒsx, yd

d .

z

y

x 2

4x2 � 4y2 � z2 � 0

z � 0

x2 � y2 � 2x
or

r � 2 cos �
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Similarly, the area of a smooth surface over a region in
the yz-plane is

(12)

and the area of a smooth over a region in the xz-plane
is

(13)

Use Equations (11)–(13) to find the area of the surfaces in Exercises
39–44.

39. The surface cut from the bottom of the paraboloid 
by the plane 

40. The surface cut from the “nose” of the paraboloid 
by the yz-plane

41. The portion of the cone that lies over the region
between the circle and the ellipse 
in the xy-plane. (Hint: Use formulas from geometry to find the
area of the region.)

42. The triangle cut from the plane by the bound-
ing planes of the first octant. Calculate the area three ways, once
with each area formula

2x + 6y + 3z = 6

9x2
+ 4y2

= 36x2
+ y2

= 1
z = 2x2

+ y2

x = 1 - y2
- z2

z = 3
z = x2

+ y2

A = 6
Rxz 

 2ƒx
2

+ ƒz
2

+ 1 dx dz.

Rxzy = ƒsx, zd

A = 6
Ryz 

 2ƒy
2

+ ƒz
2

+ 1 dy dz,

Ryzx = ƒsy, zd

43. The surface in the first octant cut from the cylinder 
by the planes and 

44. The portion of the plane that lies above the region cut
from the first quadrant of the xz-plane by the parabola
x = 4 - z2

y + z = 4

y = 16>3x = 1
y = s2>3dz3>2
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S

Surface z � f (x, y)

FIGURE 16.49 For a surface
the surface area

formula in Equation (3) takes 
the form

A = 6
Rxy

 2ƒx
2

+ ƒy
2

+ 1 dx dy.

z = ƒsx, yd,
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1192 Chapter 16: Integration in Vector Fields

Parametrized Surfaces

We have defined curves in the plane in three different ways:

Explicit form:

Implicit form:

Parametric vector form:

We have analogous definitions of surfaces in space:

Explicit form:

Implicit form:

There is also a parametric form that gives the position of a point on the surface as a vector
function of two variables. The present section extends the investigation of surface area and
surface integrals to surfaces described parametrically.

Parametrizations of Surfaces

Let
(1)

be a continuous vector function that is defined on a region R in the uy-plane and one-to-
one on the interior of R (Figure 16.50). We call the range of r the surface S defined or
traced by r. Equation (1) together with the domain R constitute a parametrization of
the surface. The variables u and y are the parameters, and R is the parameter domain.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk

Fsx, y, zd = 0.

z = ƒsx, yd

rstd = ƒstdi + gstdj,  a … t … b.

Fsx, yd = 0

y = ƒsxd

16.6
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To simplify our discussion, we take R to be a rectangle defined by inequalities of the form
The requirement that r be one-to-one on the interior of R ensures

that S does not cross itself. Notice that Equation (1) is the vector equivalent of three
parametric equations:

EXAMPLE 1 Parametrizing a Cone

Find a parametrization of the cone

Solution Here, cylindrical coordinates provide everything we need. A typical point

(x, y, z) on the cone (Figure 16.51) has and 
with and Taking and in Equation (1) gives the
parametrization

EXAMPLE 2 Parametrizing a Sphere

Find a parametrization of the sphere 

Solution Spherical coordinates provide what we need. A typical point (x, y, z) on the
sphere (Figure 16.52) has and 

Taking and in Equation (1) gives the
parametrization

EXAMPLE 3 Parametrizing a Cylinder

Find a parametrization of the cylinder

Solution In cylindrical coordinates, a point (x, y, z) has and
For points on the cylinder (Figure 16.53), the equation is the

same as the polar equation for the cylinder’s base in the xy-plane:

or

A typical point on the cylinder therefore has

 z = z.

 y = r sin u = 6 sin2 u

 x = r cos u = 6 sin u cos u = 3 sin 2u

r = 6 sin u,  0 … u … p.

 r2
- 6r sin u = 0

 x2
+ s y2

- 6y + 9d = 9

x2
+ s y - 3d2

= 9z = z.
x = r cos u, y = r sin u,

x2
+ sy - 3d2

= 9, 0 … z … 5.

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

y = uu = f0 … u … 2p.0 … f … p,
z = a cos f,x = a sin f cos u, y = a sin f sin u,

x2
+ y2

+ z2
= a2.

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.

y = uu = r0 … u … 2p .0 … r … 1
z = 2x2

+ y2
= r,x = r cos u, y = r sin u,

z = 2x2
+ y2,  0 … z … 1.

x = ƒsu, yd,  y = gsu, yd,  z = hsu, yd.

a … u … b, c … y … d.
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y

0
u

R

z

x

y

Parametrization

S P

u � constant

y � constant
(u, y)

Curve y � constant

Curve u � constant

r(u, y) � f (u, y)i � g(u, y)j � h(u, y)k,
Position vector to surface point

FIGURE 16.50 A parametrized surface S
expressed as a vector function of two
variables defined on a region R.

z

x y
r

1

(x, y, z) �
(r cos �, r sin �, r)

�

r(r, �) � (r cos �)i
� (r sin �) j � rk

Cone:
z � �x2 � y2

  � r

FIGURE 16.51 The cone in Example 1
can be parametrized using cylindrical
coordinates.
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Taking and in Equation (1) gives the parametrization

Surface Area

Our goal is to find a double integral for calculating the area of a curved surface S based on
the parametrization

We need S to be smooth for the construction we are about to carry out. The definition of
smoothness involves the partial derivatives of r with respect to u and y:

 ry =

0r
0y

=

0ƒ
0y

 i +

0g
0y

 j +

0h
0y

 k.

 ru =
0r
0u =

0ƒ
0u i +

0g
0u j +

0h
0u k

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,    a … u … b,  c … y … d.

rsu, zd = s3 sin 2udi + s6 sin2 udj + zk,  0 … u … p,  0 … z … 5.

y = zu = u

1194 Chapter 16: Integration in Vector Fields

z

x
y

a

a

�(�, �)

�

�

(x, y, z) � (a sin � cos �, a sin � sin �, a cos �)

FIGURE 16.52 The sphere in Example 2
can be parametrized using spherical
coordinates.

z

x

y

z

r � 6 sin �

�
(x, y, z)
�(3 sin 2�, 6 sin2 �, z)

r(�, z)

Cylinder: x2 � ( y � 3)2 � 9
or
r � 6 sin �

FIGURE 16.53 The cylinder in Example
3 can be parametrized using cylindrical
coordinates.

DEFINITION Smooth Parametrized Surface
A parametrized surface is smooth if

and are continuous and is never zero on the parameter domain.ru * ryryru

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk

The condition that is never the zero vector in the definition of smoothness
means that the two vectors and are nonzero and never lie along the same line, so they
always determine a plane tangent to the surface.

Now consider a small rectangle in R with sides on the lines 
and (Figure 16.54). Each side of maps to a curve on the sur-

face S, and together these four curves bound a “curved area element” In the notation
of the figure, the side maps to curve the side maps to and their
common vertex maps to P0.su0, y0d

C2,u = u0C1,y = y0

¢suy.
¢Auyy = y0 + ¢yy = y0

u = u0, u = u0 + ¢u,¢Auy

ryru

ru * ry

 

0
u

z

x

y

Parametrization

d

c

a b

R

S

u0 u0 � ∆u

∆Auy

y0 � ∆y

y0
u � u0 � ∆u

y � y0 � ∆y∆�uy

P0C1: y � y0 C2: u � u0

y

FIGURE 16.54 A rectangular area element in the uy-plane maps onto a curved
area element on S.¢suy

¢Auy
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Figure 16.55 shows an enlarged view of The vector is tangent to at
Likewise, is tangent to at The cross product is normal to the

surface at (Here is where we begin to use the assumption that S is smooth. We want to
be sure that )

We next approximate the surface element by the parallelogram on the tangent
plane whose sides are determined by the vectors and (Figure 16.56). The area
of this parallelogram is

(2)

A partition of the region R in the uy-plane by rectangular regions generates a partition
of the surface S into surface area elements We approximate the area of each surface
element by the parallelogram area in Equation (2) and sum these areas together to
obtain an approximation of the area of S:

(3)

As and approach zero independently, the continuity of and guarantees that the
sum in Equation (3) approaches the double integral This double
integral defines the area of the surface S and agrees with previous definitions of area,
though it is more general.

1d
c  1b

a  ƒ ru * ry ƒ  du dy.
ryru¢y¢u

a
u
a
y

ƒ ru * ry ƒ  ¢u ¢y.

¢suy

¢suy.
¢Auy

ƒ ¢uru * ¢yry ƒ = ƒ ru * ry ƒ  ¢u ¢y.

¢yry¢uru

¢suy

ru * ry Z 0.
P0.

ru * ryP0.C2rysu0, y0dP0.
C1rusu0, y0d¢suy.
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yx

z

ru � ry

ru ry

P0

C1: y � y0

∆�uy

C2: u � u0

FIGURE 16.55 A magnified view of a
surface area element ¢suy.

z

x y
∆�uy

C2

C1
∆yry

P0

∆uru

FIGURE 16.56 The parallelogram
determined by the vectors and 
approximates the surface area element
¢suy.

¢yry¢uru

DEFINITION Area of a Smooth Surface
The area of the smooth surface

is

(4)A = L
d

c
 L

b

a
 ƒ ru * ry ƒ  du dy.

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk,  a … u … b,  c … y … d

As in Section 16.5, we can abbreviate the integral in Equation (4) by writing for
ƒ ru * ry ƒ  du dy.

ds

Surface Area Differential and Differential Formula for Surface Area

(5)

Surface area Differential formula
differential for surface area

ds = ƒ ru * ry ƒ  du dy  6
S

 ds

EXAMPLE 4 Finding Surface Area (Cone)

Find the surface area of the cone in Example 1 (Figure 16.51).

Solution In Example 1, we found the parametrization

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 1,  0 … u … 2p.
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To apply Equation (4), we first find 

r

Thus, The area of the cone
is

EXAMPLE 5 Finding Surface Area (Sphere)

Find the surface area of a sphere of radius a.

Solution We use the parametrization from Example 2:

For we get

Thus,

since for Therefore, the area of the sphere is

This agrees with the well-known formula for the surface area of a sphere.

Surface Integrals

Having found a formula for calculating the area of a parametrized surface, we can now
integrate a function over the surface using the parametrized form.

 = L
2p

0
 c-a2 cos f d

0

p

 du = L
2p

0
 2a2 du = 4pa2 units squared.

 A = L
2p

0
 L
p

0
 a2 sin f df du

0 … f … p .sin f Ú 0

 = a22sin2 f = a2 sin f,

 = 2a4 sin4 f + a4 sin2 f cos2 f = 2a4 sin2 f ssin2 f + cos2 fd

 ƒ rf * ru ƒ = 2a4 sin4 f cos2 u + a4 sin4 f sin2 u + a4 sin2 f cos2 f

 = sa2 sin2 f cos udi + sa2 sin2 f sin udj + sa2 sin f cos fdk.

 rf * ru = 3 i j k

a cos f cos u a cos f sin u - a sin f

-a sin f sin u a sin f cos u 0

3rf * ru,

 0 … u … 2p.0 … f … p,

rsf, ud = sa sin f cos udi + sa sin f sin udj + sa cos fdk,

 = L
2p

0
 L

1

0
 22 r dr du = L

2p

0
 
22
2

 du =

22
2

 s2pd = p22 units squared.

 A = L
2p

0
 L

1

0
 ƒ rr * ru ƒ  dr du

ƒ rr * ru ƒ = 2r2 cos2 u + r2 sin2 u + r2
= 22r2

= 22r.

('''')''''*

 = -sr cos udi - sr sin udj + sr cos2 u + r sin2 udk.

 rr * ru = 3 i j k

cos u sin u 1

-r sin u r cos u 0

3rr * ru :

1196 Chapter 16: Integration in Vector Fields

Equation (4) with u = r, y = u
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EXAMPLE 6 Integrating Over a Surface Defined Parametrically

Integrate over the cone 

Solution Continuing the work in Examples 1 and 4, we have and

EXAMPLE 7 Finding Flux

Find the flux of outward through the parabolic cylinder 
(Figure 16.57).

Solution On the surface we have and so we automatically have
the parametrization The cross product
of tangent vectors is

The unit normal pointing outward from the surface is

On the surface, so the vector field there is

Thus,

 =

2x3z - x24x 2
+ 1

.

 F # n =
124x2

+ 1
 ssx2zds2xd + sxds -1d + s -z2ds0dd

F = yzi + xj - z2k = x2zi + xj - z2k.

y = x2 ,

n =

rx * rz

ƒ rx * rz ƒ

=

2x i - j24x2
+ 1

.

rx * rz = 3 i j k

1 2x 0

0 0 1

3 = 2x i - j.

rsx, zd = x i + x2j + zk, 0 … x … 1, 0 … z … 4.
z = z,x = x, y = x2,

0 … x … 1, 0 … z … 4
y = x2,F = yzi + xj - z2k

 =

22
4

 L
2p

0
 cos2 u du =

22
4

 cu
2

+
1
4

 sin 2u d
0

2p

=

p22
4

.

 = 22L
2p

0
 L

1

0
 r3 cos2 u dr du

6
S

 x2 ds = L
2p

0
 L

1

0
 Ar2 cos2 u B A22r B  dr du

ƒ rr * ru ƒ = 22r

z = 2x2
+ y2, 0 … z … 1.Gsx, y, zd = x2
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DEFINITION Parametric Surface Integral
If S is a smooth surface defined parametrically as 

and G(x, y, z) is a continuous function defined
on S, then the integral of G over S is

6
S

 Gsx, y, zd ds = L
d

c
 L

b

a
 Gsƒsu, yd, gsu, yd, hsu, ydd ƒ ru * ry ƒ  du dy.

hsu, ydk, a … u … b, c … y … d,
rsu, yd = ƒsu, ydi + gsu, ydj +

x = r cos u

z

x

y

n

1

1

4

(1, 0, 4) y � x2

FIGURE 16.57 Finding the flux through
the surface of a parabolic cylinder
(Example 7).
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The flux of F outward through the surface is

EXAMPLE 8 Finding a Center of Mass

Find the center of mass of a thin shell of constant density cut from the cone
by the planes and (Figure 16.58).

Solution The symmetry of the surface about the z-axis tells us that We
find Working as in Examples 1 and 4, we have

and

Therefore,

The shell’s center of mass is the point (0, 0, 14 9).>
 z =

Mxy

M
=

14pd22

3 A3pd22 B =
14
9

.

 = d22L
2p

0
 
7
3

 du =
14
3

 pd22

 = d22L
2p

0
 L

2

1
 r 2 dr du = d22L

2p

0
 cr 3

3
d

1

2

 du

 Mxy = 6
S

 dz ds = L
2p

0
 L

2

1
 dr22r dr du

 = d22 c3u
2
d

0

2p

= 3pd22

 = d22L
2p

0
 cr 2

2
d

1

2

 du = d22L
2p

0
 a2 -

1
2
b  du

 M = 6
S

 d ds = L
2p

0
 L

2

1
 d22r dr du

ƒ rr * ru ƒ = 22r.

rsr, ud = r cos ui + r sin uj + rk,  1 … r … 2,  0 … u … 2p,

z = Mxy >M .
x = y = 0 .

z = 2z = 1z = 2x2
+ y2

d

 =
1
4

 s9d -
1
4

 s1d = 2.

 = L
4

0
 
1
2

 sz - 1d dz =
1
4

 sz - 1d2 d
0

4

 = L
4

0
 L

1

0
 s2x3z - xd dx dz = L

4

0
 c1

2
 x4z -

1
2

 x2 d
x = 0

x = 1

 dz

 = L
4

0
 L

1

0
 

2x3z - x24x2
+ 1
24x2

+ 1 dx dz

 6
S

 F # n ds = L
4

0
 L

1

0
 

2x3z - x24x2
+ 1

 ƒ rx * rz ƒ  dx dz
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y

z

x

1

2
z � �x2 � y2

FIGURE 16.58 The cone frustum formed
when the cone is cut by
the planes and (Example 8).z = 2z = 1

z = 2x2
+ y2
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16.6 Parametrized Surfaces 1199

EXERCISES 16.6

Finding Parametrizations for Surfaces
In Exercises 1–16, find a parametrization of the surface. (There are
many correct ways to do these, so your answers may not be the same
as those in the back of the book.)

1. The paraboloid 

2. The paraboloid 

3. Cone frustum The first-octant portion of the cone 
between the planes and 

4. Cone frustum The portion of the cone 
between the planes and 

5. Spherical cap The cap cut from the sphere 
by the cone 

6. Spherical cap The portion of the sphere in
the first octant between the xy-plane and the cone 

7. Spherical band The portion of the sphere 

between the planes and 

8. Spherical cap The upper portion cut from the sphere
by the plane 

9. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes and

10. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes and 

11. Circular cylinder band The portion of the cylinder 
between the planes and 

12. Circular cylinder band The portion of the cylinder 
above the xy-plane between the planes and 

13. Tilted plane inside cylinder The portion of the plane 

a. Inside the cylinder 

b. Inside the cylinder 

14. Tilted plane inside cylinder The portion of the plane

a. Inside the cylinder 

b. Inside the cylinder 

15. Circular cylinder band The portion of the cylinder 
between the planes and 

16. Circular cylinder band The portion of the cylinder 
between the planes and 

Areas of Parametrized Surfaces
In Exercises 17–26, use a parametrization to express the area of the
surface as a double integral. Then evaluate the integral. (There are

x = 10x = 0sz - 5d2
= 25

y2
+

y = 3y = 0z2
= 4

sx - 2d2
+

y2
+ z2

= 2

x2
+ z2

= 3

x - y + 2z = 2

y2
+ z2

= 9

x2
+ y2

= 9

z = 1
x + y +

y = 2y = -2
x2

+ z2
= 4

x = 3x = 0
y2

+ z2
= 9

y = 2z = 0, z = 3y = x2

z = 0
x = 0, x = 2 ,z = 4 - y2

z = -2x2
+ y2

+ z2
= 8

z = -23>2z = 23>2
x2

+ y2
+ z2

= 3

z = 2x2
+ y2

x2
+ y2

+ z2
= 4

z = 2x2
+ y2

x2
+ y2

+ z2
= 9

z = 4z = 2
z = 22x2

+ y2

z = 3z = 02x2
+ y2>2

z =

z = 9 - x2
- y2, z Ú 0

z = x2
+ y2, z … 4

many correct ways to set up the integrals, so your integrals may not be
the same as those in the back of the book. They should have the same
values, however.)

17. Titled plane inside cylinder The portion of the plane
inside the cylinder 

18. Plane inside cylinder The portion of the plane inside
the cylinder 

19. Cone frustum The portion of the cone 
between the planes and 

20. Cone frustum The portion of the cone 
between the planes and 

21. Circular cylinder band The portion of the cylinder 
between the planes and 

22. Circular cylinder band The portion of the cylinder 
between the planes and 

23. Parabolic cap The cap cut from the paraboloid 

by the cone 

24. Parabolic band The portion of the paraboloid 
between the planes and 

25. Sawed-off sphere The lower portion cut from the sphere
by the cone 

26. Spherical band The portion of the sphere 

between the planes and 

Integrals Over Parametrized Surfaces
In Exercises 27–34, integrate the given function over the given sur-
face.

27. Parabolic cylinder over the parabolic cylinder

28. Circular cylinder over the cylindrical surface

29. Sphere over the unit sphere 

30. Hemisphere over the hemisphere 

31. Portion of plane over the portion of the plane
that lies above the square 

in the xy-plane

32. Cone over the cone 

33. Parabolic dome over the parabolic
dome 

34. Spherical cap over the part of the sphere
that lies above the cone z = 2x2

+ y2x2
+ y2

+ z2
= 4

Hsx, y, zd = yz,

z = 1 - x2
- y2, z Ú 0
Hsx, y, zd = x225 - 4z,

0 … z … 1
z = 2x2

+ y2,Fsx, y, zd = z - x,

0 … y … 1,
0 … x … 1, x + y + z = 4

Fsx, y, zd = z,

z2
= a2, z Ú 0

x2
+ y2

+Gsx, y, zd = z2,

x2
+ y2

+ z2
= 1Gsx, y, zd = x2,

y2
+ z2

= 4, z Ú 0, 1 … x … 4
Gsx, y, zd = z,

y = x2, 0 … x … 2, 0 … z … 3
Gsx, y, zd = x,

z = 23z = -1

x2
+ y2

+ z2
= 4

z = 2x2
+ y2x2

+ y2
+ z2

= 2

z = 4z = 1
z = x2

+ y2

z = 2x2
+ y2

z = 2 - x2
- y2

y = 1y = -110
x2

+ z2
=

z = 4z = 1
x2

+ y2
= 1

z = 4>3z = 1
z = 2x2

+ y2>3
z = 6z = 2

z = 22x2
+ y2

x2
+ y2

= 4
z = -x

x2
+ y2

= 1y + 2z = 2
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Flux Across Parametrized Surfaces
In Exercises 35–44, use a parametrization to find the flux 
across the surface in the given direction.

35. Parabolic cylinder outward (normal away
from the x-axis) through the surface cut from the parabolic cylinder

by the planes and 

36. Parabolic cylinder outward (normal away
from the yz-plane) through the surface cut from the parabolic
cylinder by the planes and 

37. Sphere across the portion of the sphere 
in the first octant in the direction away from the origin

38. Sphere across the sphere 
in the direction away from the origin

39. Plane upward across the portion of
the plane that lies above the square

in the xy-plane

40. Cylinder outward through the portion of the
cylinder cut by the planes and 

41. Cone outward (normal away from the z-axis)
through the cone 

42. Cone outward (normal away from the z-
axis) through the cone 

43. Cone frustum outward (normal away 

from the z-axis) through the portion of the cone 
between the planes and 

44. Paraboloid outward (normal way from
the z-axis) through the surface cut from the bottom of the parabo-
loid by the plane 

Moments and Masses
45. Find the centroid of the portion of the sphere 

that lies in the first octant.

46. Find the center of mass and the moment of inertia and radius of
gyration about the z-axis of a thin shell of constant density cut
from the cone by the planes and 

47. Find the moment of inertia about the z-axis of a thin spherical
shell of constant density 

48. Find the moment of inertia about the z-axis of a thin conical shell
of constant density 

Planes Tangent to Parametrized Surfaces
The tangent plane at a point on a
parametrized surface is the
plane through normal to the vector the
cross product of the tangent vectors and In
Exercises 49–52, find an equation for the plane tangent to the surface
at Then find a Cartesian equation for the surface and sketch the
surface and tangent plane together.

P0.

rysu0, y0d at P0.rusu0, y0d
rusu0, y0d * rysu0, y0d,P0

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk
P0sƒsu0, y0d, gsu0, y0d, hsu0, y0dd

d.z = 2x2
+ y2, 0 … z … 1,

d.x2
+ y2

+ z2
= a2

z = 2.z = 1x2
+ y2

- z2
= 0

d

x2
+ y2

+ z2
= a2

z = 1z = x2
+ y2

F = 4xi + 4yj + 2k

z = 2z = 1
z = 2x2

+ y2

F = -xi - yj + z2k

z = 22x2
+ y2, 0 … z … 2

F = y2i + xzj - k

z = 2x2
+ y2, 0 … z … 1

F = xyi - zk

z = az = 0x2
+ y2

= 1
F = xi + yj + zk

0 … x … a, 0 … y … a ,
x + y + z = 2a

F = 2xyi + 2yzj + 2xzk

x2
+ y2

+ z2
= a2F = xi + yj + zk

z2
= a2

x2
+ y2

+F = zk

z = 2z = 0y = x2, -1 … x … 1 ,

F = x2j - xzk

z = 0x = 0, x = 1 ,z = 4 - y2

F = z2i + xj - 3zk

4S F # n ds

49. Cone The cone 
at the point corresponding to

50. Hemisphere The hemisphere surface 
at

the point corresponding to 

51. Circular cylinder The circular cylinder 
at the point 

corresponding to (See Example 3.)

52. Parabolic cylinder The parabolic cylinder surface 
at the point

corresponding to 

Further Examples of Parametrizations
53. a. A torus of revolution (doughnut) is obtained by rotating a circle

C in the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius and center (R, 0, 0), show
that a parametrization of the torus is

where and are the angles in the
figure.

b. Show that the surface area of the torus is 

x

z

0

C

ur

R

z

u
y

x

y

r(u, y)

A = 4p2Rr.

0 … y … 2p0 … u … 2p

+ ssR + r cos udsin ydj + sr sin udk,

 rsu, yd = ssR + r cos udcos ydi

r 7 0

sx, yd = s1, 2dP0s1, 2, -1d
xi + yj - x2k, - q 6 x 6 q , - q 6 y 6 q ,

rsx, yd =

su, zd = sp>3, 0d
P0 A323>2, 9>2, 0 Bs6 sin2 udj + zk, 0 … u … p,

rsu, zd = s3 sin 2udi +

sp>6, p>4d
sf, ud =P0 A22, 22, 223 B+ s4 sin f sin udj + s4 cos fdk, 0 … f … p>2, 0 … u … 2p,

rsf, ud = s4 sin f cos udi
sr, ud = s2, p>4d

P0 A22, 22, 2 B0 … u … 2p
rsr, ud = sr cos udi + sr sin udj + rk, r Ú 0,
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54. Parametrization of a surface of revolution Suppose that the
parametrized curve C: (ƒ(u), g(u)) is revolved about the x-axis,
where for 

a. Show that

is a parametrization of the resulting surface of revolution,
where is the angle from the xy-plane to the point
r(u, y) on the surface. (See the accompanying figure.) Notice
that ƒ(u) measures distance along the axis of revolution and
g(u) measures distance from the axis of revolution.

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

0 … y … 2p

rsu, yd = ƒsudi + sgsudcos ydj + sgsudsin ydk

a … u … b .gsud 7 0

b. Find a parametrization for the surface obtained by revolving
the curve about the x-axis.

55. a. Parametrization of an ellipsoid Recall the parametrization
for the ellipse

(Section 3.5, Example 13). Using the
angles and in spherical coordinates, show that

is a parametrization of the ellipsoid 

b. Write an integral for the surface area of the ellipsoid, but do
not evaluate the integral.

56. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet
in terms of the angle associated with 

the circle and the hyperbolic parameter u
associated with the hyperbolic function (See
Section 7.8, Exercise 84.)

b. Generalize the result in part (a) to the hyperboloid

57. (Continuation of Exercise 56.) Find a Cartesian equation for the
plane tangent to the hyperboloid at the point

where 

58. Hyperboloid of two sheets Find a parametrization of the
hyperboloid of two sheets sz2>c2d - sx2>a2d - sy2>b2d = 1.

x0
2

+ y0
2

= 25.sx0, y0, 0d,
x2

+ y2
- z2

= 25

sx2>a2d + sy2>b2d - sz2>c2d = 1.

r2
- z2

= 1.
x2

+ y2
= r2

ux2
+ y2

- z2
= 1

sz2>c2d = 1.
sx2>a2d + s y2>b2d +

rsu, fd = sa cos u cos fdi + sb sin u cos fdj + sc sin fdk

fu

sx2>a2d + sy2>b2d = 1
x = a cos u, y = b sin u, 0 … u … 2p

x = y2, y Ú 0 ,

1201
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16.7 Stokes’ Theorem 1201

Stokes’ Theorem

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional
field at a point (x, y) is described by the scalar quantity 
In three dimensions, the circulation around a point P in a plane is described with a vector.
This vector is normal to the plane of the circulation (Figure 16.59) and points in the
direction that gives it a right-hand relation to the circulation line. The length of the vector
gives the rate of the fluid’s rotation, which usually varies as the circulation plane is tilted
about P. It turns out that the vector of greatest circulation in a flow with velocity field

is the curl vector

(1)

We get this information from Stokes’ Theorem, the generalization of the circulation-curl
form of Green’s Theorem to space.

Notice that is consistent with our definition in
Section 16.4 when The formula for curl F in Equation (1) is
often written using the symbolic operator

(2)§ = i 
0

0x + j 
0

0y + k 
0

0z .

F = Msx, ydi + Nsx, ydj.
scurl Fd # k = s0N>0x - 0M>0yd

curl F = a0P
0y -

0N
0z b i + a0M

0z -

0P
0x b j + a0N

0x -

0M
0y bk.

F = Mi + Nj + Pk

s0N>0x - 0M>0yd.F = Mi + Nj

16.7

P

Curl F

FIGURE 16.59 The circulation vector at
a point P in a plane in a three-dimensional
fluid flow. Notice its right-hand relation to
the circulation line.
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(The symbol is pronounced “del.”) The curl of F is 

 = curl F.

 = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

 § * F = 4 i j k

0

0x
0

0y
0

0z

M N P

4
§ * F :§

1202 Chapter 16: Integration in Vector Fields

(3)curl F = § * F

EXAMPLE 1 Finding Curl F

Find the curl of

Solution

As we will see, the operator has a number of other applications. For instance, when
applied to a scalar function ƒ(x, y, z), it gives the gradient of ƒ:

This may now be read as “del ƒ” as well as “grad ƒ.”

Stokes’ Theorem

Stokes’ Theorem says that, under conditions normally met in practice, the circulation of a
vector field around the boundary of an oriented surface in space in the direction counter-
clockwise with respect to the surface’s unit normal vector field n (Figure 16.60) equals the
integral of the normal component of the curl of the field over the surface.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k.

§

 = -4i - 2xj + k

 = s0 - 4di - s2x - 0dj + s0 + 1dk

 + a 0

0x s4zd -

0

0y sx2
- ydbk

 = a 0

0y sx2d -

0

0z s4zdb i - a 0

0x sx2d -

0

0z sx2
- ydb j

 = 4 i j k

0

0x
0

0y
0

0z

x2
- y 4z x2

4
 curl F = § * F

F = sx2
- ydi + 4zj + x2k.

Equation (3)

nS

C

FIGURE 16.60 The orientation of the
bounding curve C gives it a right-handed
relation to the normal field n.
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Notice from Equation (4) that if two different oriented surfaces and have the
same boundary C, their curl integrals are equal:

Both curl integrals equal the counterclockwise circulation integral on the left side of
Equation (4) as long as the unit normal vectors and correctly orient the surfaces.

Naturally, we need some mathematical restrictions on F, C, and S to ensure the existence
of the integrals in Stokes’ equation. The usual restrictions are that all functions, vector fields,
and their derivatives be continuous.

If C is a curve in the xy-plane, oriented counterclockwise, and R is the region in the
xy-plane bounded by C, then and

Under these conditions, Stokes’ equation becomes

which is the circulation-curl form of the equation in Green’s Theorem. Conversely, by
reversing these steps we can rewrite the circulation-curl form of Green’s Theorem for
two-dimensional fields in del notation as

(5)

See Figure 16.61.

EXAMPLE 2 Verifying Stokes’ Equation for a Hemisphere

Evaluate Equation (4) for the hemisphere its bounding circle
and the field F = yi - xj.C: x2

+ y2
= 9, z = 0,

S: x2
+ y2

+ z2
= 9, z Ú 0,

F
C 

 F # dr = 6
R

 § * F # k dA.

F
C 

 F # dr = 6
R

 a0N
0x -

0M
0y b  dx dy,

s§ * Fd # n = s§ * Fd # k = a0N
0x -

0M
0y b .

ds = dx dy

n2n1

6
S1

 § * F # n1 ds = 6
S2

 § * F # n2 ds.

S2S1

16.7 Stokes’ Theorem 1203

THEOREM 5 Stokes’ Theorem
The circulation of a vector field around the boundary C of
an oriented surface S in the direction counterclockwise with respect to the sur-
face’s unit normal vector n equals the integral of over S.

(4)

Counterclockwise Curl integral
circulation

F
C 

 F # dr = 6
S

 § * F # n ds

§ * F # n

F = Mi + Nj + Pk

Circulation

Curl

Curl

k

n

S

R

Circulation

Green:

Stokes:

FIGURE 16.61 Comparison of Green’s
Theorem and Stokes’ Theorem.
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Solution We calculate the counterclockwise circulation around C (as viewed from
above) using the parametrization 

For the curl integral of F, we have

and

The circulation around the circle equals the integral of the curl over the hemisphere, as it
should.

EXAMPLE 3 Finding Circulation

Find the circulation of the field around the curve C in which 

the plane meets the cone counterclockwise as viewed from above
(Figure 16.62).

Solution Stokes’Theorem enables us to find the circulation by integrating over the surface
of the cone. Traversing C in the counterclockwise direction viewed from above corresponds
to taking the inner normal n to the cone, the normal with a positive z-component.

We parametrize the cone as

We then have

 =
122

 Q-scos udi - ssin udj + kR

 n =

rr * ru
ƒ rr * ru ƒ

=

-sr cos udi - sr sin udj + rk

r22

rsr, ud = sr cos udi + sr sin udj + rk,  0 … r … 2,  0 … u … 2p.

z = 2x2
+ y2 ,z = 2

F = sx2
- ydi + 4zj + x2k

6
S

 § * F # n ds = 6
x2

+y2
…9 

-2 dA = -18p.

 § * F # n ds = -
2z
3

 
3
z  dA = -2 dA

 ds =

3
z  dA

 n =

xi + yj + zk2x2
+ y2

+ z2
=

xi + yj + zk
3

 = s0 - 0di + s0 - 0dj + s -1 - 1dk = -2k

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

 F
C 

 F # dr = L
2p

0
-9 du = -18p.

 F # dr = -9 sin2 u du - 9 cos2 u du = -9 du

 F = yi - xj = s3 sin udi - s3 cos udj

 dr = s -3 sin u dudi + s3 cos u dudj

rsud = s3 cos udi + s3 sin udj, 0 … u … 2p:

1204 Chapter 16: Integration in Vector Fields

Outer unit normal

Section 16.5, Example 5,
with a = 3

y

z

x

n

S: r(t) � (r cos �)i � (r sin �) j � rk

C: x2 � y2 � 4,  z � 2

FIGURE 16.62 The curve C and cone S
in Example 3.

Section 16.6,
Example 4
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Accordingly,

and the circulation is

Paddle Wheel Interpretation of 

Suppose that v(x, y, z) is the velocity of a moving fluid whose density at (x, y, z) is
and let Then

is the circulation of the fluid around the closed curve C. By Stokes’Theorem, the circulation
is equal to the flux of through a surface S spanning C:

Suppose we fix a point Q in the domain of F and a direction u at Q. Let C be a circle of
radius with center at Q, whose plane is normal to u. If is continuous at Q, the
average value of the u-component of over the circular disk S bounded by C
approaches the u-component of at Q as 

If we replace the surface integral in this last equation by the circulation, we get

(6)

The left-hand side of Equation (6) has its maximum value when u is the direction of
When is small, the limit on the right-hand side of Equation (6) is approximately

1
pr2F

C 

 F # dr,

r§ * F.

s§ * F # udQ = lim
p:0

 
1
pr2F

C 

 F # dr.

s§ * F # udQ = lim
p:0

 
1
pr26

S

 § * F # u ds.

r: 0:§ * F
§ * F

§ * Fr ,

F
C 

 F # dr = 6
S

 § * F # n ds.

§ * F

F
C 

 F # dr

F = dv .dsx, y, zd

§ * F

 = L
2p

0
 L

2

0
 

122
 a4 cos u + r sin 2u + 1b Ar22 dr du B = 4p.

 F
C 

 F # dr = 6
S

 § * F # n ds

 =
122

 a4 cos u + r sin 2u + 1b
 § * F # n =

122
 a4 cos u + 2r cos u sin u + 1b

 = -4i - 2r cos uj + k.

 § * F = -4i - 2xj + k

 ds = r22 dr du

16.7 Stokes’ Theorem 1205

Section 16.6, Example 4

Example 1

x = r cos u

Stokes’ Theorem, Equation (4)
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which is the circulation around C divided by the area of the disk (circulation density).
Suppose that a small paddle wheel of radius is introduced into the fluid at Q, with its axle
directed along u. The circulation of the fluid around C will affect the rate of spin of the paddle
wheel. The wheel will spin fastest when the circulation integral is maximized; therefore it will
spin fastest when the axle of the paddle wheel points in the direction of (Figure 16.63).

EXAMPLE 4 Relating to Circulation Density

A fluid of constant density rotates around the z-axis with velocity 
where is a positive constant called the angular velocity of the rotation (Figure 16.64). If

find and relate it to the circulation density.

Solution With 

By Stokes’Theorem, the circulation of F around a circle C of radius bounding a disk S in
a plane normal to say the xy-plane, is

Thus,

consistent with Equation (6) when  

EXAMPLE 5 Applying Stokes’ Theorem

Use Stokes’ Theorem to evaluate if and C is the bound-
ary of the portion of the plane in the first octant, traversed counterclock-
wise as viewed from above (Figure 16.65).

Solution The plane is the level surface of the function 
The unit normal vector

is consistent with the counterclockwise motion around C. To apply Stokes’Theorem, we find

On the plane, z equals so

§ * F = sx - 3s2 - 2x - yddj + yk = s7x + 3y - 6dj + yk

2 - 2x - y,

curl F = § * F = 4 i j k

0

0x
0

0y
0

0z

xz xy 3xz

4 = sx - 3zdj + yk.

n =

§ƒ

ƒ §ƒ ƒ

=

s2i + j + kd
ƒ 2i + j + k ƒ

=
126

 a2i + j + kb
y + z.

ƒsx, y, zd = 2x +ƒsx, y, zd = 2

2x + y + z = 2
F = xzi + xyj + 3xzk1C F # dr,

u = k.

s§ * Fd # k = 2v =
1
pr2F

C 

 F # dr,

F
C 

 F # dr = 6
S

 § * F # n ds = 6
S

 2vk # k dx dy = s2vdspr2d.

§ * F ,
r

 = s0 - 0di + s0 - 0dj + sv - s -vddk = 2vk.

 § * F = a0P
0y -

0N
0z b i + a0M

0z -
0P
0x bj + a0N

0x -
0M
0y bk

F = v = -vyi + vxj,

§ * FF = v,
v

v = vs -yi + xjd,

§ * F

§ * F

r

1206 Chapter 16: Integration in Vector Fields

Q

Curl F

FIGURE 16.63 The paddle wheel
interpretation of curl F.

x

y

r

O

z

P(x, y, z)

�

P(x, y, 0)

v � �(–yi � xj)

FIGURE 16.64 A steady rotational flow
parallel to the xy-plane, with constant
angular velocity in the positive
(counterclockwise) direction (Example 4).

v
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and

The surface area element is

The circulation is

Proof of Stokes’ Theorem for Polyhedral Surfaces

Let S be a polyhedral surface consisting of a finite number of plane regions. (See Figure 16.66
for an example.) We apply Green’s Theorem to each separate panel of S. There are two types
of panels:

1. Those that are surrounded on all sides by other panels

2. Those that have one or more edges that are not adjacent to other panels.

The boundary of S consists of those edges of the type 2 panels that are not adjacent to
other panels. In Figure 16.66, the triangles EAB, BCE, and CDE represent a part of S, with
ABCD part of the boundary Applying Green’s Theorem to the three triangles in turn
and adding the results, we get

(7)

The three line integrals on the left-hand side of Equation (7) combine into a single line
integral taken around the periphery ABCDE because the integrals along interior segments
cancel in pairs. For example, the integral along segment BE in triangle ABE is opposite in
sign to the integral along the same segment in triangle EBC. The same holds for segment
CE. Hence, Equation (7) reduces to

When we apply Green’s Theorem to all the panels and add the results, we get

F
¢ 

F # dr = 6
S

 § * F # n ds.

 F
ABCDE

F # dr = 6
ABCDE 

 § * F # n ds.

£ F
EAB

+ F
BCE

+ F
CDE

≥F # dr = £6
EAB 

 + 6
BCE 

+ 6
CDE 

 ≥§ * F # n ds.

¢.

¢

 = L
1

0
 L

2 - 2x

0
 s7x + 4y - 6d dy dx = -1.

 = L
1

0
 L

2 - 2x

0
 

126
 a7x + 4y - 6b26 dy dx

 F
C 

 F # dr = 6
S

 § * F # n ds

ds =

ƒ §ƒ ƒ

ƒ §ƒ # k ƒ

 dA =

26
1

 dx dy.

§ * F # n =
126

 a7x + 3y - 6 + yb =
126

 a7x + 4y - 6b .
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y

z

x

R(1, 0, 0)

(0, 2, 0)

(0, 0, 2)

C

n

2x � y � z � 2

y � 2 � 2x

FIGURE 16.65 The planar surface in
Example 5.

Stokes’ Theorem, Equation (4)

A

B C

D

E

FIGURE 16.66 Part of a polyhedral
surface.
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This is Stokes’ Theorem for a polyhedral surface S. You can find proofs for more general
surfaces in advanced calculus texts.

Stokes’ Theorem for Surfaces with Holes

Stokes’ Theorem can be extended to an oriented surface S that has one or more holes
(Figure 16.67), in a way analogous to the extension of Green’s Theorem: The surface
integral over S of the normal component of equals the sum of the line integrals
around all the boundary curves of the tangential component of F, where the curves are to
be traced in the direction induced by the orientation of S.

An Important Identity

The following identity arises frequently in mathematics and the physical sciences.

§ * F

1208 Chapter 16: Integration in Vector Fields

S

n

FIGURE 16.67 Stokes’ Theorem also
holds for oriented surfaces with holes.

(8)curl grad ƒ = 0 or § * §f = 0

This identity holds for any function ƒ(x, y, z) whose second partial derivatives are
continuous. The proof goes like this:

If the second partial derivatives are continuous, the mixed second derivatives in parenthe-
ses are equal (Theorem 2, Section 14.3) and the vector is zero.

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F is conservative in an open region D in space is
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is
equivalent in simply connected open regions to saying that § * F = 0.

§ * §ƒ = 5 i j k

0

0x
0

0y
0

0z

0ƒ
0x

0ƒ
0y

0ƒ
0z

5 = sƒzy - ƒyzdi - sƒzx - ƒxzdj + sƒyx - ƒxydk.

THEOREM 6 Curl Related to the Closed-Loop Property
If at every point of a simply connected open region D in space, then
on any piecewise-smooth closed path C in D,

F
C 

 F # dr = 0.

§ * F = 0

F = 0

Sketch of a Proof Theorem 6 is usually proved in two steps. The first step is for simple
closed curves. A theorem from topology, a branch of advanced mathematics, states that
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every differentiable simple closed curve C in a simply connected open region D is the
boundary of a smooth two-sided surface S that also lies in D. Hence, by Stokes’ Theorem,

The second step is for curves that cross themselves, like the one in Figure 16.68. The
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’
Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on
connected, simply connected open regions.

F
C 

 F # dr = 6
S

 § * F # n ds = 0.

16.7 Stokes’ Theorem 1209

FIGURE 16.68 In a simply connected
open region in space, differentiable curves
that cross themselves can be divided into
loops to which Stokes’ Theorem applies.

Theorem 1,
Section 16.3

Theorem 6
Domain's simple
connectivity and
Stokes' theorem

over any closed
path in D

F � �f on D
F conservative
on D

� � F � 0 throughout DEC 
F • dr � 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 2,
Section 13.3

�

�

�

�

���
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16.7 Stokes’ Theorem 1209

EXERCISES 16.7

Using Stokes’ Theorem to Calculate Circulation
In Exercises 1–6, use the surface integral in Stokes’ Theorem to
calculate the circulation of the field F around the curve C in the
indicated direction.

1.

C: The ellipse in the xy-plane, counterclockwise
when viewed from above

2.

C: The circle in the xy-plane, counterclockwise
when viewed from above

3.

C: The boundary of the triangle cut from the plane 
by the first octant, counterclockwise when viewed from above

4.

C: The boundary of the triangle cut from the plane
by the first octant, counterclockwise when

viewed from above

5.

C: The square bounded by the lines and in the
xy-plane, counterclockwise when viewed from above

y = ;1x = ;1

F = s y2
+ z2di + sx2

+ y2dj + sx2
+ y2dk

x + y + z = 1

F = sy2
+ z2di + sx2

+ z2dj + sx2
+ y2dk

z = 1x + y +

F = yi + xzj + x2k

x2
+ y2

= 9

F = 2yi + 3xj - z2k

4x2
+ y2

= 4

F = x2i + 2xj + z2k

6.

C: The intersection of the cylinder and the
hemisphere , counterclockwise
when viewed from above.

Flux of the Curl
7. Let n be the outer unit normal of the elliptical shell

and let

Find the value of

(Hint: One parametrization of the ellipse at the base of the shell is
)

8. Let n be the outer unit normal (normal away from the origin) of
the parabolic shell

S: 4x2
+ y + z2

= 4,  y Ú 0,

x = 3 cos t, y = 2 sin t, 0 … t … 2p.

6
S

 § * F # n ds.

F = yi + x2j + sx2
+ y4d3>2 sin e2xyz k.

S: 4x2
+ 9y2

+ 36z2
= 36,  z Ú 0,

x2
+ y2

+ z2
= 16, z Ú 0

x2
+ y2

= 4

F = x2y3i + j + zk
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and let

Find the value of

9. Let S be the cylinder together with its
top, Let Use Stokes’
Theorem to find the flux of outward through S.

10. Evaluate

where S is the hemisphere 

11. Flux of curl F Show that

has the same value for all oriented surfaces S that span C and that
induce the same positive direction on C.

12. Let F be a differentiable vector field defined on a region containing
a smooth closed oriented surface S and its interior. Let n be the unit
normal vector field on S. Suppose that S is the union of two
surfaces and joined along a smooth simple closed curve C.
Can anything be said about

Give reasons for your answer.

Stokes’ Theorem for Parametrized Surfaces
In Exercises 13–18, use the surface integral in Stokes’ Theorem to
calculate the flux of the curl of the field F across the surface S in the
direction of the outward unit normal n.

13.

14.

15.

16.

0 … r … 5, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s5 - rdk,  
F = sx - ydi + s y - zdj + sz - xdk
0 … r … 1, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + rk,  
F = x2yi + 2y3zj + 3zk

0 … r … 3, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s9 - r2dk,  
F = sy - zdi + sz - xdj + sx + zdk
0 … r … 2, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s4 - r2dk,  
F = 2zi + 3xj + 5yk

6
S

 § * F # n ds?

S2S1

6
S

 § * F # n ds

x2
+ y2

+ z2
= 1, z Ú 0.

6
S

 § * s yid # n ds,

§ * F
F = -yi + xj + x2k.x2

+ y2
… a2, z = h.

x2
+ y2

= a2, 0 … z … h,

6
S

 § * F # n ds.

F = a-z +

1
2 + x

b i + stan-1 ydj + ax +

1
4 + z

bk.

17.

18.

Theory and Examples
19. Zero circulation Use the identity (Equation (8) in

the text) and Stokes’ Theorem to show that the circulations of the
following fields around the boundary of any smooth orientable
surface in space are zero.

a.

b.

c.

d.

20. Zero circulation Let Show
that the clockwise circulation of the field around the
circle in the xy-plane is zero

a. by taking and
integrating over the circle.

b. by applying Stokes’ Theorem.

21. Let C be a simple closed smooth curve in the plane
oriented as shown here. Show that

depends only on the area of the region enclosed by C and not on
the position or shape of C.

22. Show that if then 

23. Find a vector field with twice-differentiable components whose
curl is or prove that no such field exists.

24. Does Stokes’ Theorem say anything special about circulation in a
field whose curl is zero? Give reasons for your answer.

25. Let R be a region in the xy-plane that is bounded by a piecewise-
smooth simple closed curve C and suppose that the moments of

xi + yj + zk

§ * F = 0.F = xi + yj + zk,

y

z

O a

x

C

1
1

2
2x � 2y � z � 2

F
C 

 2y dx + 3z dy - x dz

2x + 2y + z = 2 ,

F # dr
r = sa cos tdi + sa sin tdj, 0 … t … 2p,

x2
+ y2

= a2
F = §ƒ

ƒsx, y, zd = sx2
+ y2

+ z2d-1>2.
F = §ƒ

F = § * sxi + yj + zkd
F = §sxy2z3d
F = 2xi + 2yj + 2zk

§ * §ƒ = 0

0 … f … p>2,  0 … u … 2p
S: rsf, ud = s2 sin f cos udi + s2 sin f sin udj + s2 cos fdk,

F = y2i + z2j + xk

0 … f … p>2,  0 … u … 2pA23 cos f Bk,  
S: rsf, ud = A23 sin f cos u B i + A23 sin f sin u B j +

F = 3yi + s5 - 2xdj + sz2
- 2dk
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inertia of R about the x- and y-axes are known to be and 
Evaluate the integral

where in terms of and 

26. Zero curl, yet field not conservative Show that the curl of

F =

-y

x2
+ y2 i +

x

x2
+ y2 j + zk

Iy.Ixr = 2x2
+ y2,

F
C 

 §sr4d # n ds,

Iy.Ix is zero but that

is not zero if C is the circle in the xy-plane. (Theo-
rem 6 does not apply here because the domain of F is not simply
connected. The field F is not defined along the z-axis so there is
no way to contract C to a point without leaving the domain of F.)

x2
+ y2

= 1

F
C 

 F # dr

1211
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16.8 The Divergence Theorem and a Unified Theory 1211

The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a
vector field across a simple closed curve can be calculated by integrating the divergence of
the field over the region enclosed by the curve. The corresponding theorem in three
dimensions, called the Divergence Theorem, states that the net outward flux of a vector field
across a closed surface in space can be calculated by integrating the divergence of the field
over the region enclosed by the surface. In this section, we prove the Divergence Theorem
and show how it simplifies the calculation of flux. We also derive Gauss’s law for flux in an
electric field and the continuity equation of hydrodynamics. Finally, we unify the chapter’s
vector integral theorems into a single fundamental theorem.

Divergence in Three Dimensions

The divergence of a vector field is the scalar
function

(1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation is read “del
dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F
is the velocity field of a fluid flow, the value of div F at a point (x, y, z) is the rate at which
fluid is being piped in or drained away at (x, y, z). The divergence is the flux per unit volume
or flux density at the point.

EXAMPLE 1 Finding Divergence

Find the divergence of 

Solution The divergence of F is

§
# F =

0

0x s2xzd +

0

0y s -xyd +

0

0z s -zd = 2z - x - 1.

F = 2xzi - xyj - zk.

§
# F

div F = §
# F =

0M
0x +

0N
0y +

0P
0z .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

16.8
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Divergence Theorem

The Divergence Theorem says that under suitable conditions, the outward flux of a vector
field across a closed surface (oriented outward) equals the triple integral of the divergence
of the field over the region enclosed by the surface.

1212 Chapter 16: Integration in Vector Fields

THEOREM 7 Divergence Theorem
The flux of a vector field F across a closed oriented surface S in the direction of
the surface’s outward unit normal field n equals the integral of over the
region D enclosed by the surface:

(2)

Outward Divergence
flux integral

6
S

 F # n ds = 9
D

§
# F dV.

§
# F

EXAMPLE 2 Supporting the Divergence Theorem

Evaluate both sides of Equation (2) for the field over the sphere

Solution The outer unit normal to S, calculated from the gradient of 
is

Hence,

because on the surface. Therefore,

The divergence of F is

so

EXAMPLE 3 Finding Flux

Find the flux of outward through the surface of the cube cut from
the first octant by the planes and z = 1.x = 1, y = 1,

F = xyi + yzj + xzk

9
D

 
§

# F dV = 9
D

 
3 dV = 3 a4

3
 pa3b = 4pa3.

§
# F =

0

0x sxd +

0

0y s yd +

0

0z szd = 3,

6
S

 F # n ds = 6
S

 a ds = a6
S

 ds = as4pa2d = 4pa3.

x2
+ y2

+ z2
= a2

F # n ds =

x2
+ y2

+ z2

a  ds =

a2

a  ds = a ds

n =

2sxi + yj + zkd24sx2
+ y2

+ z2d
=

xi + yj + zk
a .

y2
+ z2

- a2,
ƒsx, y, zd = x2

+

x2
+ y2

+ z2
= a2.

F = xi + yj + zk
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Solution Instead of calculating the flux as a sum of six separate integrals, one for each
face of the cube, we can calculate the flux by integrating the divergence

over the cube’s interior:

Proof of the Divergence Theorem for Special Regions

To prove the Divergence Theorem, we assume that the components of F have continuous
first partial derivatives. We also assume that D is a convex region with no holes or bubbles,
such as a solid sphere, cube, or ellipsoid, and that S is a piecewise smooth surface. In
addition, we assume that any line perpendicular to the xy-plane at an interior point of the
region that is the projection of D on the xy-plane intersects the surface S in exactly two
points, producing surfaces

with We make similar assumptions about the projection of D onto the other
coordinate planes. See Figure 16.69.

The components of the unit normal vector are the cosines of
the angles and that n makes with i, j, and k (Figure 16.70). This is true because all
the vectors involved are unit vectors. We have

Thus,

and

In component form, the Divergence Theorem states that

6
S

 sM cos a + N cos b + P cos gd ds = 9
D

a0M
0x +

0N
0y +

0P
0z b  dx dy dz.

F # n = M cos a + N cos b + P cos g.

n = scos adi + scos b dj + scos gdk

 n3 = n # k = ƒ n ƒ ƒ k ƒ cos g = cos g

 n2 = n # j = ƒ n ƒ ƒ j ƒ cos b = cos b

 n1 = n # i = ƒ n ƒ ƒ i ƒ  cos a = cos a

ga, b,
n = n1i + n2j + n3k

ƒ1 … ƒ2.

 S2: z = ƒ2sx, yd, sx, yd in Rxy,

 S1: z = ƒ1sx, yd, sx, yd in Rxy

Rxy

 = L
1

0
 L

1

0
 L

1

0
 sx + y + zd dx dy dz =

3
2

.

 Flux = 6
Cube

surface

 F # n ds = 9
Cube

interior

 
§

# F dV

§
# F =

0

0x sxyd +
0

0y s yzd +
0

0z sxzd = y + z + x

16.8 The Divergence Theorem and a Unified Theory 1213

The Divergence
Theorem

Routine integration

y

z

x

D

Rxy

S2

S1

RyzRxz

FIGURE 16.69 We first prove the
Divergence Theorem for the kind of three-
dimensional region shown here. We then
extend the theorem to other regions.

y

z

x

n

k

j
i

n3

n2n1

�

�

�

(n1, n2, n3)

FIGURE 16.70 The scalar components of
the unit normal vector n are the cosines of
the angles and that it makes with i,
j, and k.

ga, b,
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We prove the theorem by proving the three following equalities:

(3)

(4)

(5)

Proof of Equation (5) We prove Equation (5) by converting the surface integral on the
left to a double integral over the projection of D on the xy-plane (Figure 16.71). The
surface S consists of an upper part whose equation is and a lower part 
whose equation is On the outer normal n has a positive k-component
and

See Figure 16.72. On the outer normal n has a negative k-component and

Therefore,

This proves Equation (5).

The proofs for Equations (3) and (4) follow the same pattern; or just permute
in order, and get those results from Equation (5).

Divergence Theorem for Other Regions

The Divergence Theorem can be extended to regions that can be partitioned into a finite
number of simple regions of the type just discussed and to regions that can be defined as
limits of simpler regions in certain ways. For example, suppose that D is the region
between two concentric spheres and that F has continuously differentiable components
throughout D and on the bounding surfaces. Split D by an equatorial plane and apply the

x, y, z; M, N, P; a, b, g,

 = 6
Rxy

 cL
ƒ2sx,yd

ƒ1sx,yd
 
0P
0z  dz d  dx dy = 9

D

 
0P
0z  dz dx dy.

 = 6
Rxy

 [Psx, y, ƒ2sx, ydd - Psx, y, ƒ1sx, ydd] dx dy

 = 6
Rxy

 Psx, y, ƒ2sx, ydd dx dy - 6
Rxy

 Psx, y, ƒ1sx, ydd dx dy

 6
S

 P cos g ds = 6
S2

P cos g ds + 6
S1

 P cos g ds

cos g ds = -dx dy.

S1,

cos g ds = dx dy because ds =

dA
ƒ cos g ƒ

=

dx dy
cos g.

S2,z = ƒ1sx, yd.
S1z = ƒ2sx, ydS2

Rxy

6
S

 P cos g ds = 9 

D

0P
0z  dx dy dz

6
S

 N cos b ds = 9 

D

0N
0y  dx dy dz

6
S

 M cos a ds = 9 

D

0M
0x  dx dy dz
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y

z

x

O n

d�

d�

n
D z � f2(x, y)

S2

S1

z � f1(x, y)

dA � dx dy

Rxy

FIGURE 16.71 The three-dimensional
region D enclosed by the surfaces and 
shown here projects vertically onto a two-
dimensional region in the xy-plane.Rxy

S2S1

dx
dy

n

k

n

k

Here � is acute, so
d� � dx dy/cos �.

Here � is obtuse, 
so d� � –dx dy/cos �.

�

�

FIGURE 16.72 An enlarged view of 
the area patches in Figure 16.71. The
relations are derived
in Section 16.5.

ds = ;dx dy>cos g
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Divergence Theorem to each half separately. The bottom half, is shown in Figure 16.73.
The surface that bounds consists of an outer hemisphere, a plane washer-shaped base,
and an inner hemisphere. The Divergence Theorem says that

(6)

The unit normal that points outward from points away from the origin along the
outer surface, equals k along the flat base, and points toward the origin along the inner sur-
face. Next apply the Divergence Theorem to and its surface (Figure 16.74):

(7)

As we follow over pointing outward from we see that equals along the
washer-shaped base in the xy-plane, points away from the origin on the outer sphere, and
points toward the origin on the inner sphere. When we add Equations (6) and (7), the inte-
grals over the flat base cancel because of the opposite signs of and We thus arrive at
the result

with D the region between the spheres, S the boundary of D consisting of two spheres, and
n the unit normal to S directed outward from D.

EXAMPLE 4 Finding Outward Flux

Find the net outward flux of the field

across the boundary of the region .

Solution The flux can be calculated by integrating over D. We have

and

Similarly,

Hence,

div F =

3
r3 -

3
r5 sx2

+ y2
+ z2d =

3
r3 -

3r2

r5 = 0

0N
0y =

1
r3 -

3y2

r5 and 0P
0z =

1
r3 -

3z2

r5 .

0M
0x =

0

0x sxr-3d = r-3
- 3xr-4 

0r

0x =
1
r3 -

3x2

r5 .

0r

0x =
1
2

 sx2
+ y2

+ z2d-1>2s2xd =

x
r

§
# F

D: 0 6 a2
… x2

+ y2
+ z2

… b2

F =

xi + yj + zk

r3 ,  r = 2x2
+ y2

+ z2

6
S

 F # n ds = 9
D

 § # F dV,

n2 .n1

-kn2D2 ,S2 ,n2

6
S2

 F # n2 ds2 = 9
D2

 § # F dV2 .

S2D2,

D1n1

6
S1

 F # n1 ds1 = 9
D1

 § # F dV1 .

D1S1

D1,
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z

x

y

k

O

n1D1

FIGURE 16.73 The lower half of the
solid region between two concentric
spheres.

z

x

y

D2

n2

–k

FIGURE 16.74 The upper half of the
solid region between two concentric
spheres.
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and

So the integral of over D is zero and the net outward flux across the boundary of
D is zero. There is more to learn from this example, though. The flux leaving D across the
inner sphere is the negative of the flux leaving D across the outer sphere (because
the sum of these fluxes is zero). Hence, the flux of F across in the direction away from
the origin equals the flux of F across in the direction away from the origin. Thus, the
flux of F across a sphere centered at the origin is independent of the radius of the sphere.
What is this flux?

To find it, we evaluate the flux integral directly. The outward unit normal on the
sphere of radius a is

Hence, on the sphere,

and

The outward flux of F across any sphere centered at the origin is   

Gauss’s Law: One of the Four Great Laws
of Electromagnetic Theory

There is still more to be learned from Example 4. In electromagnetic theory, the electric
field created by a point charge q located at the origin is

where is a physical constant, r is the position vector of the point (x, y, z), and
In the notation of Example 4,

The calculations in Example 4 show that the outward flux of E across any sphere
centered at the origin is but this result is not confined to spheres. The outward flux
of E across any closed surface S that encloses the origin (and to which the Divergence
Theorem applies) is also To see why, we have only to imagine a large sphere 
centered at the origin and enclosing the surface S. Since

§
# E = §

#
q

4pP0
 F =

q
4pP0

§
# F = 0

Saq>P0.

q>P0,

E =

q
4pP0

 F.

r = ƒ r ƒ = 2x2
+ y2

+ z2.
P0

Esx, y, zd =
1

4pP0
 

q

ƒ r ƒ
2 a r

ƒ r ƒ

b =

q
4pP0

 
r

ƒ r ƒ
3 =

q
4pP0

 
xi + yj + zk

r3 ,

4p.

6
Sa

 F # n ds =
1
a26

Sa

 ds =
1
a2 s4pa2d = 4p.

F # n =

xi + yj + zk

a3
#
xi + yj + zk

a =

x2
+ y2

+ z2

a4 =

a2

a4 =
1
a2

n =

xi + yj + zk2x2
+ y2

+ z2
=

xi + yj + zk
a .

Sb

Sa

SbSa

§
# F

9
D

 § # F dV = 0.
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when the integral of over the region D between S and is zero. Hence, by
the Divergence Theorem,

and the flux of E across S in the direction away from the origin must be the same as the
flux of E across in the direction away from the origin, which is This statement,
called Gauss’s Law, also applies to charge distributions that are more general than the one
assumed here, as you will see in nearly any physics text.

Continuity Equation of Hydrodynamics

Let D be a region in space bounded by a closed oriented surface S. If v(x, y, z) is the velocity
field of a fluid flowing smoothly through is the fluid’s density at (x, y, z)
at time t, and then the continuity equation of hydrodynamics states that

If the functions involved have continuous first partial derivatives, the equation evolves
naturally from the Divergence Theorem, as we now see.

First, the integral

is the rate at which mass leaves D across S (leaves because n is the outer normal). To see
why, consider a patch of area on the surface (Figure 16.75). In a short time interval 
the volume of fluid that flows across the patch is approximately equal to the volume of
a cylinder with base area and height where v is a velocity vector rooted at a
point of the patch:

The mass of this volume of fluid is about

so the rate at which mass is flowing out of D across the patch is about

This leads to the approximation

a¢m

¢t
L adv # n ¢s

¢m
¢t

L dv # n ¢s.

¢m L dv # n ¢s ¢t,

¢V L v # n ¢s ¢t.

sv¢td # n,¢s

¢V
¢t,¢s

6
S

 F # n ds

§
# F +

0d
0t = 0.

F = dv,
D, d = dst, x, y, zd

Gauss’s law: 6
S

 E # n ds =

q
P0

q>P0.Sa

6
Boundary

of D

 E # n ds = 0,

Sa§
# Er 7 0 ,
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n

S

h � (v ∆ t) . n
v ∆ t

��

FIGURE 16.75 The fluid that flows
upward through the patch in a short
time fills a “cylinder” whose volume is
approximately 
v # n ¢s ¢t.

base * height =

¢t
¢s
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as an estimate of the average rate at which mass flows across S. Finally, letting 
and gives the instantaneous rate at which mass leaves D across S as

which for our particular flow is

Now let B be a solid sphere centered at a point Q in the flow. The average value of
over B is

It is a consequence of the continuity of the divergence that actually takes on this
value at some point P in B. Thus,

(8)

The fraction on the right describes decrease in mass per unit volume.
Now let the radius of B approach zero while the center Q stays fixed. The left side of

Equation (8) converges to the right side to The equality of these two
limits is the continuity equation

The continuity equation “explains” The divergence of F at a point is the rate at
which the density of the fluid is decreasing there.

The Divergence Theorem

now says that the net decrease in density of the fluid in region D is accounted for by the
mass transported across the surface S. So, the theorem is a statement about conservation of
mass (Exercise 31).

Unifying the Integral Theorems

If we think of a two-dimensional field as a three-dimensional
field whose k-component is zero, then and the normal form
of Green’s Theorem can be written as

F
C 

 F # n ds = 6
R

 a0M
0x +

0N
0y b  dx dy = 6

R

 § # F dA.

§
# F = s0M>0xd + s0N>0yd

F = Msx, ydi + Nsx, ydj

6
S

 F # n ds = 9
D

 § # F dV

§
# F:

§
# F = -

0d
0t .

s -0d>0tdQ.s§
# FdQ,

 =

rate at which mass leaves B across its surface  S
volume of B

 s§
# FdP =

1
volume of B

 9
B

 § # F dV =

6
S

 F # n ds

volume of B

§
# F

1
volume of B

 9
B

 § # F dV.

§
# F

dm
dt

= 6
S

 F # n ds.

dm
dt

= 6
S

 dv # n ds,

¢t : 0
¢s: 0
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Similarly, so the tangential form of Green’s Theorem
can be written as

With the equations of Green’s Theorem now in del notation, we can see their relationships
to the equations in Stokes’ Theorem and the Divergence Theorem.

F
C 

 F # dr = 6
R

 a0N
0x -

0M
0y b  dx dy = 6

R

 § * F # k dA.

§ * F # k = s0N>0xd - s0M>0yd,

16.8 The Divergence Theorem and a Unified Theory 1219

Green’s Theorem and Its Generalization to Three Dimensions

Normal form of Green’s Theorem:

Divergence Theorem:

Tangential form of Green’s Theorem:

Stokes’Theorem: F
C 

 F # dr = 6
S

 § * F # n ds

F
C 

 F # dr = 6
R

 § * F # k dA

6
S

 F # n ds = 9
D

 § # F dV

F
C 

 F # n ds = 6
R

 § # F dA

Notice how Stokes’Theorem generalizes the tangential (curl) form of Green’s Theorem
from a flat surface in the plane to a surface in three-dimensional space. In each case, the
integral of the normal component of curl F over the interior of the surface equals the circu-
lation of F around the boundary.

Likewise, the Divergence Theorem generalizes the normal (flux) form of Green’s
Theorem from a two-dimensional region in the plane to a three-dimensional region in
space. In each case, the integral of over the interior of the region equals the total
flux of the field across the boundary.

There is still more to be learned here. All these results can be thought of as forms of a
single fundamental theorem. Think back to the Fundamental Theorem of Calculus in
Section 5.3. It says that if ƒ(x) is differentiable on (a, b) and continuous on [a, b], then

If we let throughout [a, b], then If we define the unit vector
field n normal to the boundary of [a, b] to be i at b and at a (Figure 16.76), then

The Fundamental Theorem now says that

Fsbd # n + Fsad # n = 3
[a,b] 

 § # F dx.

 = total outward flux of F across the boundary of [a, b].

 = Fsbd # n + Fsad # n

 ƒsbd - ƒsad = ƒsbdi # sid + ƒsadi # s - id

- i
sdƒ>dxd = §

# F.F = ƒsxdi

L
b

a
 
dƒ
dx

 dx = ƒsbd - ƒsad.

§
# F

x
a b

n � –i n � i

FIGURE 16.76 The outward unit normals
at the boundary of [a, b] in one-dimensional
space.
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The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the Di-
vergence Theorem all say that the integral of the differential operator operating on a
field F over a region equals the sum of the normal field components over the boundary of
the region. (Here we are interpreting the line integral in Green’s Theorem and the surface
integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things
are properly oriented, the integral of the normal component of the curl operating on a field
equals the sum of the tangential field components on the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle,
which we might state as follows.

§
#

1220 Chapter 16: Integration in Vector Fields

The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the
region.
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1220 Chapter 16: Integration in Vector Fields

EXERCISES 16.8

Calculating Divergence
In Exercises 1–4, find the divergence of the field.

1. The spin field in Figure 16.14.

2. The radial field in Figure 16.13.

3. The gravitational field in Figure 16.9.

4. The velocity field in Figure 16.12.

Using the Divergence Theorem to Calculate
Outward Flux
In Exercises 5–16, use the Divergence Theorem to find the outward
flux of F across the boundary of the region D.

5. Cube

D: The cube bounded by the planes and

6.

a. Cube D: The cube cut from the first octant by the planes
and 

b. Cube D: The cube bounded by the planes 
and 

c. Cylindrical can D: The region cut from the solid cylinder
by the planes and

7. Cylinder and paraboloid

D: The region inside the solid cylinder between the
plane and the paraboloid z = x2

+ y2z = 0
x2

+ y2
… 4

F = yi + xyj - zk

z = 1
z = 0x2

+ y2
… 4

z = ;1y = ;1 ,
x = ;1,

z = 1x = 1, y = 1 ,

F = x2i + y2j + z2k

z = ;1
x = ;1, y = ;1 ,

F = s y - xdi + sz - ydj + s y - xdk

8. Sphere

D: The solid sphere 

9. Portion of sphere

D: The region cut from the first octant by the sphere 

10. Cylindrical can

D: The region cut from the first octant by the cylinder 
and the plane 

11. Wedge

D: The wedge cut from the first octant by the plane 
and the elliptical cylinder 

12. Sphere

D: The solid sphere 

13. Thick sphere

D: The region 

14. Thick sphere

D: The region 

15. Thick sphere

D: The solid region between the spheres and

16. Thick cylinder

D: The thick-walled cylinder 1 … x2
+ y2

… 2,  -1 … z … 2

z2x 2
+ y 2 k

F = ln sx 2
+ y 2di - a2z

x  tan-1 
y
x b j +

x2
+ y2

+ z2
= 2

x2
+ y2

+ z2
= 1

s5z3
+ e y cos zdk

F = s5x3
+ 12xy2di + s y3

+ ey sin zdj +

1 … x2
+ y2

+ z2
… 4

F = sxi + yj + zkd>2x2
+ y2

+ z2

1 … x2
+ y2

+ z2
… 2

F = 2x2
+ y2

+ z2 sxi + yj + zkd
x2

+ y2
+ z2

… a2

F = x3i + y3j + z3k

4x2
+ y2

= 16
y + z = 4

F = 2xzi - xyj - z2k

z = 34
x2

+ y2
=

F = s6x2
+ 2xydi + s2y + x2zdj + 4x2y3k

z2
= 4

x2
+ y2

+

F = x2i - 2xyj + 3xzk

x2
+ y2

+ z2
… 4

F = x2i + xzj + 3zk
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Properties of Curl and Divergence
17. div (curl G ) is zero

a. Show that if the necessary partial derivatives of the compo-
nents of the field are continuous, then

b. What, if anything, can you conclude about the flux of the
field across a closed surface? Give reasons for your
answer.

18. Let and be differentiable vector fields and let a and b be
arbitrary real constants. Verify the following identities.

a.

b.

c.

19. Let F be a differentiable vector field and let g(x, y, z) be a differ-
entiable scalar function. Verify the following identities.

a.

b.

20. If is a differentiable vector field, we define
the notation to mean

For differentiable vector fields and verify the following
identities.

a.

b.

Theory and Examples
21. Let F be a field whose components have continuous first partial

derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S. If can any
bound be placed on the size of

Give reasons for your answer.

22. The base of the closed cubelike surface shown here is the unit
square in the xy-plane. The four sides lie in the planes

and The top is an arbitrary smooth
surface whose identity is unknown. Let 
and suppose the outward flux of F through side A is 1 and through
side B is Can you conclude anything about the outward flux
through the top? Give reasons for your answer.

-3 .

F = xi - 2yj + sz + 3dk
y = 1 .x = 0, x = 1, y = 0 ,

9
D

 § # F dV ?

ƒ F ƒ … 1 ,

F2 * s§ * F1d
§sF1

# F2d = sF1
#
§dF2 + sF2

#
§dF1 + F1 * s§ * F2d +

s§
# F1dF2

s§
# F2dF1 -§ * sF1 * F2d = sF2

#
§dF1 - sF1

#
§dF2 +

F2 ,F1

M 
0

0x + N 
0

0y + P 
0

0z .

F #
§

F = Mi + Nj + Pk

§ * sgFd = g§ * F + §g * F

§
# sgFd = g§

# F + §g # F

§
# sF1 * F2d = F2

#
§ * F1 - F1

#
§ * F2

§ * saF1 + bF2d = a§ * F1 + b§ * F2

§
# saF1 + bF2d = a§

# F1 + b§
# F2

F2F1

§ * G

§
#
§ * G = 0 .

G = Mi + Nj + Pk

23. a. Show that the flux of the position vector field 
outward through a smooth closed surface S is

three times the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector field on S. Show that
it is not possible for F to be orthogonal to n at every point of
S.

24. Maximum flux Among all rectangular solids defined by the
inequalities find the one
for which the total flux of 
outward through the six sides is greatest. What is the greatest
flux?

25. Volume of a solid region Let and suppose
that the surface S and region D satisfy the hypotheses of the
Divergence Theorem. Show that the volume of D is given by the
formula

26. Flux of a constant field Show that the outward flux of a
constant vector field across any closed surface to which
the Divergence Theorem applies is zero.

27. Harmonic functions A function ƒ(x, y, z) is said to be har-
monic in a region D in space if it satisfies the Laplace equation

throughout D.

a. Suppose that ƒ is harmonic throughout a bounded region D
enclosed by a smooth surface S and that n is the chosen unit
normal vector on S. Show that the integral over S of 
the derivative of ƒ in the direction of n, is zero.

b. Show that if ƒ is harmonic on D, then

6
S

 ƒ §ƒ # n ds = 9
D

 ƒ §ƒ ƒ
2 dV.

§ƒ # n,

§
2ƒ = §

#
§ƒ =

0
2ƒ

0x2 +

0
2ƒ

0y2 +

0
2ƒ

0z2 = 0

F = C

Volume of D =

1
3

 6
S

 F # n ds.

F = xi + yj + zk

F = s -x2
- 4xydi - 6yzj + 12zk

0 … x … a, 0 … y … b, 0 … z … 1 ,

xi + yj + zk
F =

z

x

y

(1, 1, 0)

1

1

Top

Side B
Side A
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28. Flux of a gradient field Let S be the surface of the portion of
the solid sphere that lies in the first octant
and let Calculate

( is the derivative of ƒ in the direction of n.)

29. Green’s first formula Suppose that ƒ and g are scalar functions
with continuous first- and second-order partial derivatives
throughout a region D that is bounded by a closed piecewise-
smooth surface S. Show that

(9)

Equation (9) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field )

30. Green’s second formula (Continuation of Exercise 29.) Inter-
change ƒ and g in Equation (9) to obtain a similar formula. Then
subtract this formula from Equation (9) to show that

(10)

This equation is Green’s second formula.

31. Conservation of mass Let v(t, x, y, z) be a continuously differ-
entiable vector field over the region D in space and let p(t, x, y, z)
be a continuously differentiable scalar function. The variable t
represents the time domain. The Law of Conservation of Mass
asserts that

where S is the surface enclosing D.

d
dt

 9
D

 pst, x, y, zd dV = -6
S

 pv # n ds,

6
S

 sƒ §g - g§ƒd # n ds = 9
D

 sƒ §2g - g§
2ƒd dV.

F = ƒ §g.

6
S

 ƒ §g # n ds = 9
D

 sƒ §2g + §ƒ #
§gd dV.

§ƒ # n

6
S

 §ƒ # n ds.

ƒsx, y, zd = ln2x2
+ y2

+ z2.
x2

+ y2
+ z2

… a2
a. Give a physical interpretation of the conservation of mass law

if v is a velocity flow field and p represents the density of the
fluid at point (x, y, z) at time t.

b. Use the Divergence Theorem and Leibniz’s Rule,

to show that the Law of Conservation of Mass is equivalent to the
continuity equation,

(In the first term the variable t is held fixed, and in the
second term it is assumed that the point (x, y, z) in D is
held fixed.)

32. The heat diffusion equation Let T(t, x, y, z) be a function with
continuous second derivatives giving the temperature at time t at
the point (x, y, z) of a solid occupying a region D in space. If the
solid’s heat capacity and mass density are denoted by the con-
stants c and respectively, the quantity is called the solid’s
heat energy per unit volume.

a. Explain why points in the direction of heat flow.

b. Let denote the energy flux vector. (Here the constant
k is called the conductivity.) Assuming the Law of
Conservation of Mass with and in
Exercise 31, derive the diffusion (heat) equation

where is the diffusivity constant. (Notice
that if T(t, x) represents the temperature at time t at position x
in a uniform conducting rod with perfectly insulated sides,
then and the diffusion equation reduces to the
one-dimensional heat equation in Chapter 14’s Additional
Exercises.)

§
2T = 0

2T>0x2

K = k>scrd 7 0

0T
0t = K§

2T,

crT = p-k§T = v

-k§T

- §T

crTr ,

0p>0t ,
§

# pv,

§
# pv +

0p
0t = 0.

d
dt

 9
D

 pst, x, y, zd dV = 9
D

 
0p
0t  dV,

1222 Chapter 16: Integration in Vector Fields

4100 AWL/Thomas_ch16p1143-1228  8/27/04  7:27 AM  Page 1222

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
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Chapter 16 Additional and Advanced Exercises

Finding Areas with Green’s Theorem
Use the Green’s Theorem area formula, Equation (13) in Exercises 16.4,
to find the areas of the regions enclosed by the curves in Exercises 1–4.

1. The limaçon 

2. The deltoid 

y

x
0 3

t … 2p0 …

y = 2 sin t - sin 2t,x = 2 cos t + cos 2t,

y

x
0 1

t … 2p0 …

y = 2 sin t - sin 2t,x = 2 cos t - cos 2t,

3. The eight curve (one loop)

4. The teardrop 

Theory and Applications
5. a. Give an example of a vector field F (x, y, z) that has value 0

at only one point and such that curl F is nonzero everywhere.
Be sure to identify the point and compute the curl.

y

x
0

b

2a

x = 2a cos t - a sin 2t, y = b sin t, 0 … t … 2p

y

x

1

�1

0

x = s1>2d sin 2t, y = sin t, 0 … t … p
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b. Give an example of a vector field F (x, y, z) that has value 0
on precisely one line and such that curl F is nonzero
everywhere. Be sure to identify the line and compute the curl.

c. Give an example of a vector field F (x, y, z) that has value 0
on a surface and such that curl F is nonzero everywhere. Be
sure to identify the surface and compute the curl.

6. Find all points (a, b, c) on the sphere where
the vector field is normal to the
surface and 

7. Find the mass of a spherical shell of radius R such that at each
point (x, y, z) on the surface the mass density is its
distance to some fixed point (a, b, c) of the surface.

8. Find the mass of a helicoid

if the density function is 

See Practice Exercise 27 for a figure.

9. Among all rectangular regions find the
one for which the total outward flux of 
across the four sides is least. What is the least flux?

10. Find an equation for the plane through the origin such that the cir-
culation of the flow field around the circle of
intersection of the plane with the sphere is a
maximum.

11. A string lies along the circle from (2, 0) to (0, 2) in
the first quadrant. The density of the string is 

a. Partition the string into a finite number of subarcs to show
that the work done by gravity to move the string straight
down to the x-axis is given by

where g is the gravitational constant.

b. Find the total work done by evaluating the line integral in part
(a).

c. Show that the total work done equals the work required to
move the string’s center of mass straight down to the
x-axis.

12. A thin sheet lies along the portion of the plane in
the first octant. The density of the sheet is 

a. Partition the sheet into a finite number of subpieces to show
that the work done by gravity to move the sheet straight down
to the xy-plane is given by

where g is the gravitational constant.

b. Find the total work done by evaluating the surface integral in
part (a).

Work = lim
n: q

 a
n

k = 1
 g xk yk zk ¢sk = 6

S

 g xyz ds,

d sx, y, zd = xy .
x + y + z = 1

sx, yd

Work = lim
n: q

 a
n

k = 1
 g xk yk

2
¢sk = LC

 g xy2 ds,

r sx, yd = xy
x2

+ y2
= 4

x2
+ y2

+ z2
= 4

F = zi + xj + yk

F = sx2
+ 4xydi - 6yj

0 … x … a, 0 … y … b ,

22x 2
+ y 2.

dsx, y, zd =0 … r … 1, 0 … u … 2p ,

rsr, ud = sr cos udi + sr sin udj + uk,

dsx, y, zd

Fsa, b, cd Z 0.
F = yz2i + xz2j + 2xyzk

x2
+ y2

+ z2
= R2

c. Show that the total work done equals the work required to move
the sheet’s center of mass straight down to the xy-plane.

13. Archimedes’ principle If an object such as a ball is placed in a
liquid, it will either sink to the bottom, float, or sink a certain dis-
tance and remain suspended in the liquid. Suppose a fluid has
constant weight density w and that the fluid’s surface coincides
with the plane A spherical ball remains suspended in the
fluid and occupies the region 

a. Show that the surface integral giving the magnitude of the
total force on the ball due to the fluid’s pressure is

b. Since the ball is not moving, it is being held up by the
buoyant force of the liquid. Show that the magnitude of the
buoyant force on the sphere is

where n is the outer unit normal at (x, y, z). This illustrates
Archimedes’ principle that the magnitude of the buoyant force
on a submerged solid equals the weight of the displaced fluid.

c. Use the Divergence Theorem to find the magnitude of the
buoyant force in part (b).

14. Fluid force on a curved surface A cone in the shape of the
surface is filled with a liquid of
constant weight density w. Assuming the xy-plane is “ground
level,” show that the total force on the portion of the cone from

to due to liquid pressure is the surface integral

Evaluate the integral.

15. Faraday’s Law If E(t, x, y, z) and B(t, x, y, z) represent the
electric and magnetic fields at point (x, y, z) at time t, a basic
principle of electromagnetic theory says that 
In this expression is computed with t held fixed and

is calculated with (x, y, z) fixed. Use Stokes’ Theorem to
derive Faraday’s Law

where C represents a wire loop through which current flows
counterclockwise with respect to the surface’s unit normal n,
giving rise to the voltage

around C. The surface integral on the right side of the equation is
called the magnetic flux, and S is any oriented surface with
boundary C.

FC
E # dr

FC
E # dr = -

0

0t 6
S

 B # n ds,

0B>0t
§ * E

§ * E = -0B>0t.

F = 6
S

 ws2 - zd ds.

z = 2z = 1

z = 2x2
+ y2, 0 … z … 2

Buoyant force = 6
S

 wsz - 4dk # n ds,

Force = lim
n: q a

n

k = 1
ws4 - zkd ¢sk = 6

S

 ws4 - zd ds.

x2
+ y2

+ sz - 2d2
… 1.

z = 4 .

sx, y, zd
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16. Let

be the gravitational force field defined for Use Gauss’s
Law in Section 16.8 to show that there is no continuously differ-
entiable vector field H satisfying 

17. If ƒ(x, y, z) and g(x, y, z) are continuously differentiable scalar
functions defined over the oriented surface S with boundary curve
C, prove that

18. Suppose that and over a
region D enclosed by the oriented surface S with outward unit
normal n and that on S. Prove that 
throughout D.

F1 = F2F1
# n = F2

# n

§ * F1 = § * F2§
# F1 = §

# F2

6
S

 s§ƒ * §gd # n ds = FC
 ƒ §g # dr.

F = § * H.

r Z 0.

F = -

GmM

ƒ r ƒ
3  r

19. Prove or disprove that if and then 

20. Let S be an oriented surface parametrized by r(u, y). Define the
notation so that is a vector normal to the
surface. Also, the magnitude is the element of
surface area (by Equation 5 in Section 16.6). Derive the identity

where

21. Show that the volume V of a region D in space enclosed by the
oriented surface S with outward normal n satisfies the identity

where r is the position vector of the point (x, y, z) in D.

V =

1
3

 6
S

 r # n ds,

E = ƒ ru ƒ
2,  F = ru

# ry ,  and G = ƒ ry ƒ
2.

ds = sEG - F2d1>2 du dy

ds = ƒ dS ƒ

dSdS = ru du * ry dy

F = 0.§ * F = 0,§
# F = 0
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Chapter 16 Practice Exercises 1223

Chapter 16 Practice Exercises

Evaluating Line Integrals
1. The accompanying figure shows two polygonal paths in space

joining the origin to the point (1, 1, 1). Integrate 
over each path.

2. The accompanying figure shows three polygonal paths joining the
origin to the point (1, 1, 1). Integrate 
over each path.

3. Integrate over the circle

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.

ƒsx, y, zd = 2x2
+ z2

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

(1, 0, 0)

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

z

y

x

(0, 0, 0)
(1, 1, 1)

(0, 1, 1)
(0, 0, 1) C6

C5 C7

C2

C1 C3 C3
C4

ƒsx, y, zd = x2
+ y - z

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2

3y2
- 2z + 3

ƒsx, y, zd = 2x -

4. Integrate over the involute curve

Evaluate the integrals in Exercises 5 and 6.

5.

6.

7. Integrate around the
circle cut from the sphere by the plane

clockwise as viewed from above.

8. Integrate around the circle cut
from the sphere by the plane 

Evaluate the integrals in Exercises 9 and 10.

9.

C is the square cut from the first quadrant by the lines 
and 

10.

C is the circle 

Evaluating Surface Integrals
11. Area of an elliptical region Find the area of the elliptical

region cut from the plane by the cylinder

12. Area of a parabolic cap Find the area of the cap cut from the
paraboloid by the plane 

13. Area of a spherical cap Find the area of the cap cut from the
top of the sphere by the plane z = 22>2.x2

+ y2
+ z2

= 1

x = 1.y2
+ z2

= 3x

x2
+ y2

= 1.
x + y + z = 1

x2
+ y2

= 4.
LC

 y2 dx + x2 dy

y = p>2 .
x = p>2

LC
 8x sin y dx - 8y cos x dy

x = 2.x2
+ y2

+ z2
= 9

F = 3x2yi + sx3
+ 1dj + 9z2k

z = -1,
x2

+ y2
+ z2

= 5
F = -s y sin zdi + sx sin zdj + sxy cos zdk

L
s10,3,3d

s1,1,1d
 dx - A z

y dy - Ay
z  dz

L
s4,-3,0d

s-1,1,1d
 
dx + dy + dz2x + y + z

rstd = scos t + t sin tdi + ssin t - t cos tdj,  0 … t … 23.

ƒsx, y, zd = 2x2
+ y2
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14. a. Hemisphere cut by cylinder Find the area of the surface
cut from the hemisphere by the
cylinder 

b. Find the area of the portion of the cylinder that lies inside the
hemisphere. (Hint: Project onto the xz-plane. Or evaluate the
integral where h is the altitude of the cylinder and ds
is the element of arc length on the circle in the
xy-plane.)

15. Area of a triangle Find the area of the triangle in which the
plane intersects the
first octant. Check your answer with an appropriate vector calcula-
tion.

16. Parabolic cylinder cut by planes Integrate

a. b.

over the surface cut from the parabolic cylinder by
the planes and 

17. Circular cylinder cut by planes Integrate 
over the portion of the cylinder that

lies in the first octant between the planes and and
above the plane 

18. Area of Wyoming The state of Wyoming is bounded by the
meridians and west longitude and by the circles
41° and 45° north latitude. Assuming that Earth is a sphere of ra-
dius find the area of Wyoming.

Parametrized Surfaces
Find the parametrizations for the surfaces in Exercises 19–24. (There
are many ways to do these, so your answers may not be the same as
those in the back of the book.)

19. Spherical band The portion of the sphere 
between the planes and 

20. Parabolic cap The portion of the paraboloid 
above the plane z = -2

-sx2
+ y2d>2z =

z = 323z = -3
x2

+ y2
+ z2

= 36

R = 3959 mi,

104°3¿111°3¿

z = 3.
x = 1x = 0

y2
+ z2

= 25x4ysy2
+ z2d

gsx, y, zd =

z = 0.x = 0, x = 3 ,
y2

- z = 1

gsx, y, zd =

z24y2
+ 1

gsx, y, zd =

yz24y2
+ 1

sx>ad + sy>bd + sz>cd = 1 sa, b, c 7 0d

z

x

yCylinder r � 2 cos �

Hemisphere

z � �4 � r2

0

x2
+ y2

= 2x
1h ds,

x2
+ y2

= 2x.
x2

+ y2
+ z2

= 4, z Ú 0,
21. Cone The cone 

22. Plane above square The portion of the plane 
that lies above the square in the first

quadrant

23. Portion of paraboloid The portion of the paraboloid 
that lies above the xy-plane

24. Portion of hemisphere The portion of the hemisphere 
in the first octant

25. Surface area Find the area of the surface

26. Surface integral Integrate over the
surface in Exercise 25.

27. Area of a helicoid Find the surface area of the helicoid

in the accompanying figure.

28. Surface integral Evaluate the integral 
where S is the helicoid in Exercise 27.

Conservative Fields
Which of the fields in Exercises 29–32 are conservative, and which
are not?

29.

30.

31.

32.

Find potential functions for the fields in Exercises 33 and 34.

33.

34.

Work and Circulation
In Exercises 35 and 36, find the work done by each field along the
paths from (0, 0, 0) to (1, 1, 1) in Exercise 1.

F = sz cos xzdi + eyj + sx cos xzdk
F = 2i + s2y + zdj + sy + 1dk

F = si + zj + ykd>sx + yzd
F = xeyi + yezj + zexk

F = sxi + yj + zkd>sx2
+ y2

+ z2d3>2
F = xi + yj + zk

4S 2x2
+ y2

+ 1 ds,

y

z

x

(1, 0, 0)

(1, 0, 2�)

2�

rsr, ud = (r cos u)i + (r sin u)j + uk,  0 … u … 2p,  0 … r … 1,

ƒsx, y, zd = xy - z2

0 … y … 1.0 … u … 1,  
rsu, yd = su + ydi + su - ydj + yk, 

z2
= 10, y Ú 0,

x2
+ y2

+

y … 2,2sx2
+ z2d, 

y =

0 … x … 2, 0 … y … 212
4x + 2y + 4z =

z = 1 + 2x2
+ y2, z … 3
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35. 36.

37. Finding work in two ways Find the work done by

over the plane curve from the point
(1, 0) to the point in two ways:

a. By using the parametrization of the curve to evaluate the
work integral

b. By evaluating a potential function for F.

38. Flow along different paths Find the flow of the field 

a. Once around the ellipse C in which the plane 
intersects the cylinder clockwise as viewed
from the positive y-axis

b. Along the curved boundary of the helicoid in Exercise 27
from (1, 0, 0) to 

In Exercises 39 and 40, use the surface integral in Stokes’ Theorem to
find the circulation of the field F around the curve C in the indicated
direction.

39. Circulation around an ellipse

C: The ellipse in which the plane meets the
cylinder counterclockwise as viewed from above

40. Circulation around a circle

C: The circle in which the plane meets the sphere
counterclockwise as viewed from above

Mass and Moments
41. Wire with different densities Find the mass of a thin wire

lying along the curve 
if the density at t is (a) and (b)

42. Wire with variable density Find the center of mass of a thin wire
lying along the curve 
if the density at t is 

43. Wire with variable density Find the center of mass and the
moments of inertia and radii of gyration about the coordinate axes
of a thin wire lying along the curve

if the density at t is 

44. Center of mass of an arch A slender metal arch lies along the
semicircle in the xy-plane. The density at the point
(x, y) on the arch is Find the center of mass.

45. Wire with constant density A wire of constant density 
lies along the curve 

Find and Rz.z, Iz,ln 2.t …

0 …rstd = set cos tdi + set sin tdj + et k,
d = 1

dsx, yd = 2a - y.
y = 2a2

- x2

d = 1>st + 1d .

rstd = ti +

222
3

 t3>2j +

t2

2
 k,  0 … t … 2,

d = 325 + t .
rstd = ti + 2tj + s2>3dt3>2k, 0 … t … 2 ,

d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

x2
+ y2

+ z2
= 4,

z = -y

s4y2
- zdk

F = sx2
+ ydi + sx + ydj +

x2
+ y2

= 1,
2x + 6y - 3z = 6

F = y2i - yj + 3z2k

s1, 0, 2pd.

x2
+ z2

= 25,
x + y + z = 1

§sx2zeyd
F =

se2p, 0d
rstd = set cos tdi + set sin tdj

F =

xi + yj

sx2
+ y2d3>2

F = 2xyi + x2j + kF = 2xyi + j + x2k 46. Helical wire with constant density Find the mass and center of
mass of a wire of constant density that lies along the helix

47. Inertia, radius of gyration, center of mass of a shell Find
and the center of mass of a thin shell of density

cut from the upper portion of the sphere
by the plane 

48. Moment of inertia of a cube Find the moment of inertia
about the z-axis of the surface of the cube cut from the first
octant by the planes and if the density is

Flux Across a Plane Curve or Surface
Use Green’s Theorem to find the counterclockwise circulation and
outward flux for the fields and curves in Exercises 49 and 50.

49. Square

C: The square bounded by 

50. Triangle

C: The triangle made by the lines and 

51. Zero line integral Show that

for any closed curve C to which Green’s Theorem applies.

52. a. Outward flux and area Show that the outward flux of the
position vector field across any closed curve to
which Green’s Theorem applies is twice the area of the region
enclosed by the curve.

b. Let n be the outward unit normal vector to a closed curve
to which Green’s Theorem applies. Show that it is not
possible for to be orthogonal to n at every
point of C.

In Exercises 53–56, find the outward flux of F across the boundary
of D.

53. Cube

D: The cube cut from the first octant by the planes 

54. Spherical cap

D: The entire surface of the upper cap cut from the solid sphere
by the plane 

55. Spherical cap

D: The upper region cut from the solid sphere 
by the paraboloid 

56. Cone and cylinder

D: The region in the first octant bounded by the cone

the cylinder and the coordinate
planes

x2
+ y2

= 1,z = 2x2
+ y2,

F = s6x + ydi - sx + zdj + 4yzk

z = x2
+ y2

z2
… 2x2

+ y2
+

F = -2xi - 3yj + zk

z = 3x2
+ y2

+ z2
… 25

F = xzi + yzj + k

z = 1
x = 1, y = 1, 

F = 2xyi + 2yzj + 2xzk

F = xi + yj

F = xi + yj

F
C 

 ln x sin y dy -

cos y
x  dx = 0

x = 1y = 0, y = x ,

F = sy - 6x2di + sx + y2dj
x = 0, x = 1, y = 0, y = 1

F = s2xy + xdi + sxy - ydj

d = 1.
z = 1x = 1, y = 1,

z = 3.x2
+ y2

+ z2
= 25

dsx, y, zd = z
Iz, Rz,

rstd = s2 sin tdi + s2 cos tdj + 3tk, 0 … t … 2p.
d
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57. Hemisphere, cylinder, and plane Let S be the surface that is
bounded on the left by the hemisphere 
in the middle by the cylinder and on
the right by the plane Find the flux of 
outward across S.

58. Cylinder and planes Find the outward flux of the field
across the surface of the solid in the first

octant that is bounded by the cylinder and the
planes and z = 0.y = 2z, x = 0 ,

x2
+ 4y2

= 16
F = 3xz2i + yj - z3k

F = yi + zj + xky = a.
x2

+ z2
= a2, 0 … y … a,

x2
+ y2

+ z2
= a2, y … 0,

59. Cylindrical can Use the Divergence Theorem to find the flux
of outward through the surface of the
region enclosed by the cylinder and the planes

and 

60. Hemisphere Find the flux of upward across the
hemisphere (a) with the Divergence
Theorem and (b) by evaluating the flux integral directly.

x2
+ y2

+ z2
= a2, z Ú 0

F = s3z + 1dk
z = -1.z = 1

x2
+ y2

= 1
F = xy2i + x2yj + yk
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1222 Chapter 16: Integration in Vector Fields

Chapter 16 Questions to Guide Your Review

1. What are line integrals? How are they evaluated? Give examples.

2. How can you use line integrals to find the centers of mass of
springs? Explain.

3. What is a vector field? A gradient field? Give examples.

4. How do you calculate the work done by a force in moving a particle
along a curve? Give an example.

5. What are flow, circulation, and flux?

6. What is special about path independent fields?

7. How can you tell when a field is conservative?

8. What is a potential function? Show by example how to find a po-
tential function for a conservative field.

9. What is a differential form? What does it mean for such a form to
be exact? How do you test for exactness? Give examples.

10. What is the divergence of a vector field? How can you interpret it?

11. What is the curl of a vector field? How can you interpret it?

12. What is Green’s theorem? How can you interpret it?

13. How do you calculate the area of a curved surface in space? Give
an example.
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14. What is an oriented surface? How do you calculate the flux of a
three-dimensional vector field across an oriented surface? Give
an example.

15. What are surface integrals? What can you calculate with them?
Give an example.

16. What is a parametrized surface? How do you find the area of such
a surface? Give examples.

17. How do you integrate a function over a parametrized surface?
Give an example.

18. What is Stokes’ Theorem? How can you interpret it?

19. Summarize the chapter’s results on conservative fields.

20. What is the Divergence Theorem? How can you interpret it?

21. How does the Divergence Theorem generalize Green’s Theorem?

22. How does Stokes’ Theorem generalize Green’s Theorem?

23. How can Green’s Theorem, Stokes’ Theorem, and the Divergence
Theorem be thought of as forms of a single fundamental theorem?

Chapter 16 1223
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1228 Chapter 16: Integration in Vector Fields

Chapter 16 Technology Application Projects

Mathematica Maple Module
Work in Conservative and Nonconservative Force Fields
Explore integration over vector fields and experiment with conservative and nonconservative force functions along different paths in the field.

Mathematica Maple Module
How Can You Visualize Green’s Theorem?
Explore integration over vector fields and use parametrizations to compute line integrals. Both forms of Green’s Theorem are explored.

Mathematica Maple Module
Visualizing and Interpreting the Divergence Theorem
Verify the Divergence Theorem by formulating and evaluating certain divergence and surface integrals.

/

/

/
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