
OVERVIEW In studying a real-world phenomenon, a quantity being investigated usually
depends on two or more independent variables. So we need to extend the basic ideas of the
calculus of functions of a single variable to functions of several variables. Although the
calculus rules remain essentially the same, the calculus is even richer. The derivatives of
functions of several variables are more varied and more interesting because of the different
ways in which the variables can interact. Their integrals lead to a greater variety of appli-
cations. The studies of probability, statistics, fluid dynamics, and electricity, to mention
only a few, all lead in natural ways to functions of more than one variable.
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Functions of Several Variables

Many functions depend on more than one independent variable. The function 
calculates the volume of a right circular cylinder from its radius and height. The function

calculates the height of the paraboloid above the point
P(x, y) from the two coordinates of P. The temperature T of a point on Earth’s surface
depends on its latitude x and longitude y, expressed by writing In this sec-
tion, we define functions of more than one independent variable and discuss ways to
graph them.

Real-valued functions of several independent real variables are defined much the way
you would imagine from the single-variable case. The domains are sets of ordered pairs
(triples, quadruples, n-tuples) of real numbers, and the ranges are sets of real numbers of
the kind we have worked with all along.

T = ƒsx, yd.

z = x 2
+ y 2ƒsx, yd = x 2

+ y 2

V = pr 2h

14.1

DEFINITIONS Function of n Independent Variables
Suppose D is a set of n-tuples of real numbers A real-valued
function ƒ on D is a rule that assigns a unique (single) real number

to each element in D. The set D is the function’s domain. The set of w-values
taken on by ƒ is the function’s range. The symbol w is the dependent variable
of ƒ, and ƒ is said to be a function of the n independent variables to We
also call the ’s the function’s input variables and call w the function’s output
variable.

xj

xn.x1

w = ƒsx1, x2, Á , xnd

sx1, x2, Á , xnd.
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If ƒ is a function of two independent variables, we usually call the independent vari-
ables x and y and picture the domain of ƒ as a region in the xy-plane. If ƒ is a function of
three independent variables, we call the variables x, y, and z and picture the domain as a
region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To
say that the volume of a right circular cylinder is a function of its radius and height, we
might write To be more specific, we might replace the notation ƒ(r, h) by the
formula that calculates the value of V from the values of r and h, and write In
either case, r and h would be the independent variables and V the dependent variable of
the function.

As usual, we evaluate functions defined by formulas by substituting the values of the in-
dependent variables in the formula and calculating the corresponding value of the dependent
variable.

EXAMPLE 1 Evaluating a Function

The value of at the point (3, 0, 4) is

From Section 12.1, we recognize ƒ as the distance function from the origin to the point
(x, y, z) in Cartesian space coordinates.

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding
inputs that lead to complex numbers or division by zero. If cannot
be less than If cannot be zero. The domain of a function is as-
sumed to be the largest set for which the defining rule generates real numbers, unless the
domain is otherwise specified explicitly. The range consists of the set of output values for
the dependent variable.

EXAMPLE 2(a) Functions of Two Variables

Function Domain Range

Entire plane

(b) Functions of Three Variables

Function Domain Range

Entire space

Half-space s - q , q dz 7 0w = xy ln z

s0, q dsx, y, zd Z s0, 0, 0dw =
1

x 2
+ y 2

+ z 2

[0, q dw = 2x 2
+ y 2

+ z 2

[-1, 1]w = sin xy

s - q , 0d ´ s0, q dxy Z 0w =
1
xy

[0, q dy Ú x 2w = 2y - x 2

ƒsx, yd = 1>sxyd, xyx 2.
ƒsx, yd = 2y - x 2, y

ƒs3, 0, 4d = 2s3d2
+ s0d2

+ s4d2
= 225 = 5.

ƒsx, y, zd = 2x 2
+ y 2

+ z 2

V = pr 2h.
V = ƒsr, hd.
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Functions of Two Variables

Regions in the plane can have interior points and boundary points just like intervals on the
real line. Closed intervals [a, b] include their boundary points, open intervals (a, b) don’t
include their boundary points, and intervals such as [a, b) are neither open nor closed.

14.1 Functions of Several Variables 967

R

(a) Interior point

R

(b) Boundary point

(x0, y0)

(x0, y0)

FIGURE 14.1 Interior points and
boundary points of a plane region R. An
interior point is necessarily a point of R. A
boundary point of R need not belong to R.

DEFINITIONS Interior and Boundary Points, Open, Closed
A point in a region (set) R in the xy-plane is an interior point of R if it is
the center of a disk of positive radius that lies entirely in R (Figure 14.1). A point

is a boundary point of R if every disk centered at contains points
that lie outside of R as well as points that lie in R. (The boundary point itself need
not belong to R.)

The interior points of a region, as a set, make up the interior of the region.
The region’s boundary points make up its boundary. A region is open if it con-
sists entirely of interior points. A region is closed if it contains all its boundary
points (Figure 14.2).

sx0, y0dsx0, y0d

sx0, y0d

y

x
0

y

x
0

y

x
0

{(x, y) � x2 � y2 � 1}
Open unit disk.
Every point an
interior point.

{(x, y) � x2 � y2 � 1}
Boundary of unit
disk. (The unit
circle.)

{(x, y) � x2 � y2 � 1}
Closed unit disk.
Contains all
boundary points.

FIGURE 14.2 Interior points and boundary points of the unit disk in the plane.

DEFINITIONS Bounded and Unbounded Regions in the Plane
A region in the plane is bounded if it lies inside a disk of fixed radius. A region
is unbounded if it is not bounded.

As with intervals of real numbers, some regions in the plane are neither open nor
closed. If you start with the open disk in Figure 14.2 and add to it some of but not all its
boundary points, the resulting set is neither open nor closed. The boundary points that are
there keep the set from being open. The absence of the remaining boundary points keeps
the set from being closed.

Examples of bounded sets in the plane include line segments, triangles, interiors of
triangles, rectangles, circles, and disks. Examples of unbounded sets in the plane include
lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants,
half-planes, and the plane itself.
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EXAMPLE 3 Describing the Domain of a Function of Two Variables

Describe the domain of the function 

Solution Since ƒ is defined only where the domain is the closed,
unbounded region shown in Figure 14.3. The parabola is the boundary of the
domain. The points above the parabola make up the domain’s interior.

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function ƒ(x, y). One is to draw
and label curves in the domain on which ƒ has a constant value. The other is to sketch
the surface in space.z = ƒsx, yd

y = x 2
y - x2

Ú 0,

ƒsx, yd = 2y - x 2.
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y

x
0 1–1

1

Interior points,
where y � x2 � 0

The parabola
y � x2 � 0
is the boundary.

Outside,
y � x2 � 0

FIGURE 14.3 The domain of
consists of the shaded

region and its bounding parabola 
(Example 3).

y = x 2
ƒsx, yd = 2y - x 2

EXAMPLE 4 Graphing a Function of Two Variables

Graph and plot the level curves and
in the domain of ƒ in the plane.

Solution The domain of ƒ is the entire xy-plane, and the range of ƒ is the set of real
numbers less than or equal to 100. The graph is the paraboloid a por-
tion of which is shown in Figure 14.4.

The level curve is the set of points in the xy-plane at which

which is the circle of radius 10 centered at the origin. Similarly, the level curves
and (Figure 14.4) are the circles

The level curve consists of the origin alone. (It is still a level curve.)

The curve in space in which the plane cuts a surface is made up of the
points that represent the function value It is called the contour curve

to distinguish it from the level curve in the domain of ƒ. Figure 14.5
shows the contour curve on the surface defined by the
function The contour curve lies directly above the circle

which is the level curve in the function’s domain.
Not everyone makes this distinction, however, and you may wish to call both kinds of

curves by a single name and rely on context to convey which one you have in mind. On
most maps, for example, the curves that represent constant elevation (height above sea
level) are called contours, not level curves (Figure 14.6).

ƒsx, yd = 75x 2
+ y 2

= 25,
ƒsx, yd = 100 - x 2

- y 2.
z = 100 - x 2

- y 2ƒsx, yd = 75
ƒsx, yd = cƒsx, yd = c

ƒsx, yd = c.
z = ƒsx, ydz = c

ƒsx, yd = 100

 ƒsx, yd = 100 - x 2
- y 2

= 75, or x 2
+ y 2

= 25.

 ƒsx, yd = 100 - x 2
- y 2

= 51, or x 2
+ y 2

= 49

ƒsx, yd = 75ƒsx, yd = 51

ƒsx, yd = 100 - x 2
- y 2

= 0, or x 2
+ y 2

= 100,

ƒsx, yd = 0

z = 100 - x 2
- y 2,

ƒsx, yd = 75
ƒsx, yd = 0, ƒsx, yd = 51,ƒsx, yd = 100 - x 2

- y 2

y

z

x

10
10

100

f (x, y) � 75

f (x, y) � 0

f (x, y) � 51
(a typical
level curve in
the function’s
domain)

The surface
z � f (x, y)
  � 100 � x2 � y2

is the graph of f.

FIGURE 14.4 The graph and selected
level curves of the function

(Example 4).ƒsx, yd = 100 - x2
- y2

DEFINITIONS Level Curve, Graph, Surface
The set of points in the plane where a function ƒ(x, y) has a constant value

is called a level curve of ƒ. The set of all points (x, y, ƒ(x, y)) in
space, for (x, y) in the domain of ƒ, is called the graph of ƒ. The graph of ƒ is
also called the surface z � f sx, yd.

ƒsx, yd = c
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z

x

0

y

75

100

The contour curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the plane z � 75. 

Plane z � 75

The level curve f (x, y) � 100 � x2 � y2 � 75
is the circle x2 � y2 � 25 in the xy-plane.

z � 100 � x2 � y2

FIGURE 14.5 A plane parallel to
the xy-plane intersecting a surface

produces a contour curve.z = ƒsx, yd

z = c

DEFINITION Level Surface
The set of points (x, y, z) in space where a function of three independent variables
has a constant value is called a level surface of ƒ.ƒsx, y, zd = c

FIGURE 14.6 Contours on Mt. Washington in New Hampshire. (Reproduced by permission
from the Appalachian Mountain Club.)

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant
value make a curve in the function’s domain. In space, the points where a
function of three independent variables has a constant value make a surface
in the function’s domain.

ƒsx, y, zd = c
ƒsx, yd = c

Since the graphs of functions of three variables consist of points (x, y, z, ƒ(x, y, z)) lying
in a four-dimensional space, we cannot sketch them effectively in our three-dimensional
frame of reference. We can see how the function behaves, however, by looking at its three-
dimensional level surfaces.

EXAMPLE 5 Describing Level Surfaces of a Function of Three Variables

Describe the level surfaces of the function

ƒsx, y, zd = 2x 2
+ y 2

+ z 2 .
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Solution The value of ƒ is the distance from the origin to the point (x, y, z). Each level sur-

face is a sphere of radius c centered at the origin. Figure 14.7

shows a cutaway view of three of these spheres. The level surface 
consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the func-
tion’s domain. The level surfaces show how the function’s values change as we move
through its domain. If we remain on a sphere of radius c centered at the origin, the function
maintains a constant value, namely c. If we move from one sphere to another, the func-
tion’s value changes. It increases if we move away from the origin and decreases if we
move toward the origin. The way the values change depends on the direction we take. The
dependence of change on direction is important. We return to it in Section 14.5.

The definitions of interior, boundary, open, closed, bounded, and unbounded for re-
gions in space are similar to those for regions in the plane. To accommodate the extra di-
mension, we use solid balls of positive radius instead of disks.

2x 2
+ y 2

+ z 2
= 0

2x 2
+ y 2

+ z 2
= c, c 7 0 ,
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DEFINITIONS Interior and Boundary Points for Space Regions
A point in a region R in space is an interior point of R if it is the cen-
ter of a solid ball that lies entirely in R (Figure 14.8a). A point is a
boundary point of R if every sphere centered at encloses points that
lie outside of R as well as points that lie inside R (Figure 14.8b). The interior of
R is the set of interior points of R. The boundary of R is the set of boundary
points of R.

A region is open if it consists entirely of interior points. A region is closed if
it contains its entire boundary.

sx0 , y0 , z0d
sx0 , y0 , z0d

sx0 , y0 , z0d

x

y

z

(a) Interior point

x

y

z

(b) Boundary point

(x0, y0, z0)

(x0, y0, z0)

FIGURE 14.8 Interior points and
boundary points of a region in space.

Examples of open sets in space include the interior of a sphere, the open half-space
the first octant (where x, y, and z are all positive), and space itself.

Examples of closed sets in space include lines, planes, the closed half-space 
the first octant together with its bounding planes, and space itself (since it has no bound-
ary points).

A solid sphere with part of its boundary removed or a solid cube with a missing face,
edge, or corner point would be neither open nor closed.

Functions of more than three independent variables are also important. For example,
the temperature on a surface in space may depend not only on the location of the point
P(x, y, z) on the surface, but also on time t when it is visited, so we would write 

Computer Graphing

Three-dimensional graphing programs for computers and calculators make it possible to
graph functions of two variables with only a few keystrokes. We can often get information
more quickly from a graph than from a formula.

ƒsx, y, z, td.
T =

z Ú 0,
z 7 0,

x

y

z

1
2

3

�x2 � y2 � z2 � 3

�x2 � y2 � z2 � 2

�x2 � y2 � z2 � 1

FIGURE 14.7 The level surfaces of
are

concentric spheres (Example 5).
ƒsx, y, zd = 2x2

+ y2
+ z2
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EXAMPLE 6 Modeling Temperature Beneath Earth’s Surface

The temperature beneath the Earth’s surface is a function of the depth x beneath the sur-
face and the time t of the year. If we measure x in feet and t as the number of days elapsed
from the expected date of the yearly highest surface temperature, we can model the varia-
tion in temperature with the function

(The temperature at 0 ft is scaled to vary from to so that the variation at x feet can
be interpreted as a fraction of the variation at the surface.)

Figure 14.9 shows a computer-generated graph of the function. At a depth of 15 ft, the
variation (change in vertical amplitude in the figure) is about 5% of the surface variation.
At 30 ft, there is almost no variation during the year.

-1 ,+1

w = cos s1.7 * 10-2t - 0.2xde-0.2x.

14.1 Functions of Several Variables 971

Days

15
30

t
x

w

Depth, ft

T
em

pe
ra

tu
re

FIGURE 14.9 This computer-generated graph
of

shows the seasonal variation of the temperature
belowground as a fraction of surface
temperature. At the variation is only
5% of the variation at the surface. At 
the variation is less than 0.25% of the surface
variation (Example 6). (Adapted from art
provided by Norton Starr.)

x = 30 ft,
x = 15 ft,

w = cos s1.7 * 10-2t - 0.2xde-0.2x

The graph also shows that the temperature 15 ft below the surface is about half a
year out of phase with the surface temperature. When the temperature is lowest on the
surface (late January, say), it is at its highest 15 ft below. Fifteen feet below the ground,
the seasons are reversed.

Figure 14.10 shows computer-generated graphs of a number of functions of two variables
together with their level curves.
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z

y

x

(b)  z � sin x � 2 sin y

x

y

y

z

x

(c)  z � (4x2 � y2)e–x2�y2

x

y

x

z

y

(d)  z � xye–y2

x

y

FIGURE 14.10 Computer-generated graphs and level surfaces of typical functions
of two variables.

y

z

x

(a)  z � e – (x2 � y2)/8(sin x2 � cos y2)

x

y
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14.1 Functions of Several Variables 973

EXERCISES 14.1

Domain, Range, and Level Curves
In Exercises 1–12, (a) find the function’s domain, (b) find the func-
tion’s range, (c) describe the function’s level curves, (d) find the
boundary of the function’s domain, (e) determine if the domain is an
open region, a closed region, or neither, and (f ) decide if the domain is
bounded or unbounded.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Identifying Surfaces and Level Curves
Exercises 13–18 show level curves for the functions graphed in
(a)–(f). Match each set of curves with the appropriate function.

13. 14.

15. 16.

x

y

x

y

y

xx

y

ƒsx, yd = tan-1 ayx bƒsx, yd = sin-1 s y - xd

ƒsx, yd = e-sx2
+ y2dƒsx, yd = ln sx 2

+ y 2d

ƒsx, yd = 29 - x 2
- y 2ƒsx, yd =

1216 - x 2
- y 2

ƒsx, yd = y>x 2ƒsx, yd = xy

ƒsx, yd = x 2
- y 2ƒsx, yd = 4x 2

+ 9y 2

ƒsx, yd = 2y - xƒsx, yd = y - x

17. 18.

a.

b.

c.

z � 1
4x2 � y2

x y

z � –
xy2

x2 � y2

z

y
x

z � (cos x)(cos y) e –�x2 � y2 /4

z

y
x

x

y

x

y
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d.

e.

f.

Identifying Functions of Two Variables
Display the values of the functions in Exercises 19–28 in two ways:
(a) by sketching the surface and (b) by drawing an assort-
ment of level curves in the function’s domain. Label each level curve
with its function value.

19. 20.

21. 22.

23. 24. ƒsx, yd = 4 - x 2
- y 2ƒsx, yd = -sx 2

+ y 2d
ƒsx, yd = 2x 2

+ y 2ƒsx, yd = x 2
+ y 2

ƒsx, yd = 4 - y 2ƒsx, yd = y 2

z = ƒsx, yd

z � y2 � y4 � x2

z

x y

z �
xy(x2 � y2)

x2 � y2

z

x

y

z � e–y cos x
x

y

z 25. 26.

27. 28.

Finding a Level Curve
In Exercises 29–32, find an equation for the level curve of the func-
tion ƒ(x, y) that passes through the given point.

29.

30.

31.

32.

Sketching Level Surfaces
In Exercises 33–40, sketch a typical level surface for the function.

33. 34.

35. 36.

37. 38.

39.

40.

Finding a Level Surface
In Exercises 41–44, find an equation for the level surface of the func-
tion through the given point.

41.

42.

43.

44.

Theory and Examples
45. The maximum value of a function on a line in space Does the

function have a maximum value on the line
If so, what is it? Give reasons for

your answer. (Hint: Along the line, is a differen-
tiable function of t.)

46. The minimum value of a function on a line in space Does the
function have a minimum value on the line

If so, what is it? Give reasons
for your answer. (Hint: Along the line, is a differ-
entiable function of t.)

47. The Concorde’s sonic booms Sound waves from the Concorde
bend as the temperature changes above and below the altitude at
which the plane flies. The sonic boom carpet is the region on the

w = ƒsx, y, zd
x = t - 1, y = t - 2, z = t + 7?

ƒsx, y, zd = xy - z

w = ƒsx, y, zd
x = 20 - t, y = t, z = 20?

ƒsx, y, zd = xyz

gsx, y, zd = L
y

x
 

du21 - u2
+ L

z22
  

dt

t2t 2
- 1

, s0, 1>2, 2d

gsx, y, zd = a
q

n = 0
 
sx + ydn

n!z n , sln 2, ln 4, 3d

ƒsx, y, zd = ln sx 2
+ y + z 2d, s -1, 2, 1d

ƒsx, y, zd = 2x - y - ln z, s3, -1, 1d

ƒsx, y, zd = sx 2>25d + s y 2>16d + sz 2>9d
ƒsx, y, zd = z - x 2

- y 2

ƒsx, y, zd = y 2
+ z 2ƒsx, y, zd = x 2

+ y 2

ƒsx, y, zd = zƒsx, y, zd = x + z

ƒsx, y, zd = ln sx 2
+ y 2

+ z 2dƒsx, y, zd = x 2
+ y 2

+ z 2

ƒsx, yd = a
q

n = 0
 axy b

n

, s1, 2d

ƒsx, yd = L
y

x
 

dt

1 + t 2 , A -22, 22 B
ƒsx, yd = 2x 2

- 1, s1, 0d
ƒsx, yd = 16 - x 2

- y 2, A222, 22 B

ƒsx, yd = 1 - ƒ x ƒ - ƒ y ƒƒsx, yd = 1 - ƒ y ƒ

ƒsx, yd = 4x 2
+ y 2

+ 1ƒsx, yd = 4x 2
+ y 2
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ground that receives shock waves directly from the plane, not re-
flected from the atmosphere or diffracted along the ground. The
carpet is determined by the grazing rays striking the ground from
the point directly under the plane. (See accompanying figure.)

The width w of the region in which people on the ground hear the
Concorde’s sonic boom directly, not reflected from a layer in the
atmosphere, is a function of

The formula for w is

The Washington-bound Concorde approached the United
States from Europe on a course that took it south of Nantucket
Island at an altitude of 16.8 km. If the surface temperature is 290
K and the vertical temperature gradient is 5 K km, how many
kilometers south of Nantucket did the plane have to be flown to
keep its sonic boom carpet away from the island? (From “Con-
corde Sonic Booms as an Atmospheric Probe” by N. K. Bal-
achandra, W. L. Donn, and D. H. Rind, Science, Vol. 197 (July 1,
1977), pp. 47–49.)

48. As you know, the graph of a real-valued function of a single real
variable is a set in a two-coordinate space. The graph of a real-
valued function of two independent real variables is a set in a
three-coordinate space. The graph of a real-valued function of
three independent real variables is a set in a four-coordinate
space. How would you define the graph of a real-valued function

of four independent real variables? How would
you define the graph of a real-valued function 
of n independent real variables?

ƒsx1, x2, x3, Á , xnd
ƒsx1, x2, x3, x4d

>

w = 4 aTh
d
b1>2

.

 degrees Kelvin per kilometerd.
 d = the vertical temperature gradient stemperature drop in

 h = the Concorde’s altitude sin kilometersd
 T = air temperature at ground level sin degrees Kelvind

A B
w

Sonic boom carpet

COMPUTER EXPLORATIONS

Explicit Surfaces
Use a CAS to perform the following steps for each of the functions in
Exercises 49–52.

a. Plot the surface over the given rectangle.

b. Plot several level curves in the rectangle.

c. Plot the level curve of ƒ through the given point.

49.

50.

51.

52.

Implicit Surfaces
Use a CAS to plot the level surfaces in Exercises 53–56.

53. 54.

55.

56.

Parametrized Surfaces
Just as you describe curves in the plane parametrically with a pair of
equations defined on some parameter interval I,
you can sometimes describe surfaces in space with a triple of equa-
tions defined on some parame-
ter rectangle Many computer algebra sys-
tems permit you to plot such surfaces in parametric mode.
(Parametrized surfaces are discussed in detail in Section 16.6.) Use a
CAS to plot the surfaces in Exercises 57–60. Also plot several level
curves in the xy-plane.

57.

58.

59.

60.
0 … u … 2p, 0 … y … p

x = 2 cos u cos y, y = 2 cos u sin y, z = 2 sin u, 
0 … u … 2p, 0 … y … 2p
x = s2 + cos ud cos y, y = s2 + cos ud sin y, z = sin u, 
0 … y … 2p
x = u cos y, y = u sin y, z = y, 0 … u … 2, 
0 … y … 2p
x = u cos y, y = u sin y, z = u, 0 … u … 2, 

a … u … b, c … y … d.
x = ƒsu, yd, y = gsu, yd, z = hsu, yd

x = ƒstd, y = gstd

sin ax
2
b - scos yd2x 2

+ z 2
= 2

x + y 2
- 3z 2

= 1

x 2
+ z2

= 14 ln sx 2
+ y 2

+ z2d = 1

-2p … y … p, Psp, -pd
ƒsx, yd = e sx0.1

- yd sin sx 2
+ y 2d, 0 … x … 2p, 

-2p … y … 2p, Psp, pd
ƒsx, yd = sin sx + 2 cos yd, -2p … x … 2p, 
0 … y … 5p, Ps4p, 4pd
ƒsx, yd = ssin xdscos yde2x2

+ y2>8, 0 … x … 5p, 

Ps3p, 3pd

ƒsx, yd = x sin 
y

2
+ y sin 2x, 0 … x … 5p 0 … y … 5p, 

14.1 Functions of Several Variables 975
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976 Chapter 14: Partial Derivatives

Limits and Continuity in Higher Dimensions

This section treats limits and continuity for multivariable functions. The definition of the
limit of a function of two or three variables is similar to the definition of the limit of a
function of a single variable but with a crucial difference, as we now see.

Limits

If the values of ƒ(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) suf-
ficiently close to a point we say that ƒ approaches the limit L as (x, y) approaches

This is similar to the informal definition for the limit of a function of a single vari-
able. Notice, however, that if lies in the interior of ƒ’s domain, (x, y) can approach

from any direction. The direction of approach can be an issue, as in some of the
examples that follow.
sx0, y0d

sx0, y0d
sx0, y0d.

sx0, y0d,

14.2

DEFINITION Limit of a Function of Two Variables
We say that a function ƒ(x, y) approaches the limit L as (x, y) approaches 
and write

if, for every number there exists a corresponding number such that
for all (x, y) in the domain of ƒ,

ƒ ƒsx, yd - L ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.

d 7 0P 7 0,

lim
sx, yd: sx0, y0d

 ƒsx, yd = L

sx0, y0d,

The definition of limit says that the distance between ƒ(x, y) and L becomes arbitrarily
small whenever the distance from (x, y) to is made sufficiently small (but not 0).

The definition of limit applies to boundary points as well as interior points of
the domain of ƒ. The only requirement is that the point (x, y) remain in the domain at all
times. It can be shown, as for functions of a single variable, that

For example, in the first limit statement above, and Using the defini-
tion of limit, suppose that is chosen. If we let equal this we see that

implies

 ƒ ƒsx, yd - x0 ƒ 6 P

 ƒ x - x0 ƒ 6 P

 0 6 2sx - x0d2
6 P

0 6 2sx - x0d2
+ sy - y0d2

6 d = P

P,dP 7 0
L = x0.ƒsx, yd = x

 lim
sx, yd: sx0, y0d

 k = k sany number kd.

 lim
sx, yd: sx0, y0d

 y = y0

 lim
sx, yd: sx0, y0d

 x = x0

sx0, y0d
sx0, y0d

2a2
= ƒ a ƒ

x = ƒsx, yd
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That is,

So

It can also be shown that the limit of the sum of two functions is the sum of their lim-
its (when they both exist), with similar results for the limits of the differences, products,
constant multiples, quotients, and powers.

lim
sx, yd: sx0 , y0d

 ƒsx, yd = lim
sx, yd: sx0 , y0d

 x = x0.

ƒ ƒsx, yd - x0 ƒ 6 P whenever 0 6 2sx - x0d2
+ s y - y0d2

6 d.

14.2 Limits and Continuity in Higher Dimensions 977

THEOREM 1 Properties of Limits of Functions of Two Variables
The following rules hold if L, M, and k are real numbers and

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule:

6. Power Rule: If r and s are integers with no common factors, and 
then

provided is a real number. (If s is even, we assume that )L 7 0.Lr>s
lim

sx, yd: sx0 , y0d
sƒsx, yddr>s

= Lr>s

s Z 0,

lim
sx, yd: sx0 , y0d 

 
ƒsx, yd
gsx, yd

=
L
M
 M Z 0

lim
sx, yd: sx0 , y0d

 skƒsx, ydd = kL sany number kd

lim
sx, yd: sx0, y0d

 sƒsx, yd # gsx, ydd = L # M

lim
sx, yd: sx0 , y0d

(ƒsx, yd - gsx, ydd = L - M

lim
sx, yd: sx0 , y0d

(ƒsx, yd + gsx, ydd = L + M

lim
sx, yd: sx0, y0d

 ƒsx, yd = L and lim
sx, yd: sx0 , y0d

 gsx, yd = M.

While we won’t prove Theorem 1 here, we give an informal discussion of why it’s
true. If (x, y) is sufficiently close to then ƒ(x, y) is close to L and g(x, y) is close to
M (from the informal interpretation of limits). It is then reasonable that 
is close to is close to is close to LM;
kƒ(x, y) is close to kL; and that ƒ(x, y) g(x, y) is close to L M if 

When we apply Theorem 1 to polynomials and rational functions, we obtain the useful
result that the limits of these functions as can be calculated by evaluating the
functions at The only requirement is that the rational functions be defined at 

EXAMPLE 1 Calculating Limits

(a)

(b) lim
sx, yd: s3, -4d

2x 2
+ y 2

= 2s3d2
+ s -4d2

= 225 = 5

lim
sx, yd: s0,1d

  
x - xy + 3

x 2y + 5xy - y 3 =

0 - s0ds1d + 3

s0d2s1d + 5s0ds1d - s1d3 = -3

sx0 , y0d.sx0 , y0d.
sx, yd : sx0 , y0d

M Z 0.>> L - M; ƒsx, ydgsx, ydL + M; ƒsx, yd - gsx, yd
ƒsx, yd + gsx, yd

sx0 , y0d,
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EXAMPLE 2 Calculating Limits

Find

Solution Since the denominator approaches 0 as we can-
not use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by

however, we produce an equivalent fraction whose limit we can find:

We can cancel the factor because the path (along which ) is not
in the domain of the function

EXAMPLE 3 Applying the Limit Definition

Find if it exists.

Solution We first observe that along the line the function always has value 0
when Likewise, along the line the function has value 0 provided So
if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0. To see if
this is true, we apply the definition of limit.

Let be given, but arbitrary. We want to find a such that

or

Since we have that

4 ƒ x ƒ y 2

x 2
+ y 2 … 4 ƒ x ƒ = 42x 2

… 42x 2
+ y 2 .

y 2
… x 2

+ y 2

4 ƒ x ƒ y 2

x 2
+ y 2 6 P whenever 0 6 2x 2

+ y 2
6 d.

` 4xy 2

x 2
+ y 2 - 0 ` 6 P whenever 0 6 2x 2

+ y 2
6 d

d 7 0P 7 0

x Z 0.y = 0,y Z 0.
x = 0,

lim
sx, yd: s0,0d

 
4xy2

x 2
+ y 2

x 2
- xy2x - 2y

.

x - y = 0y = xsx - yd

 = 0 A20 + 20 B = 0

 = lim
sx, yd: s0,0d

 x A2x + 2y B
 = lim

sx, yd: s0,0d
 
x Ax - y B A2x + 2y B

x - y

 lim
sx, yd: s0,0d

 
x 2

- xy2x - 2y
= lim

sx, yd: s0,0d
 
Ax 2

- xy B A2x + 2y B
A2x - 2y B A2x + 2y B

2x + 2y,

sx, yd : s0, 0d,2x - 2y

lim
sx, yd: s0,0d

 
x2

- xy2x - 2y
.

978 Chapter 14: Partial Derivatives

Cancel the nonzero
factor sx - yd.

Algebra

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 978

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce14.html?1_4_l
bounce14.html?6_1_qt


So if we choose and let we get

It follows from the definition that

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

lim
sx, yd: s0,0d

 
4xy 2

x 2
+ y 2 = 0.

` 4xy 2

x 2
+ y 2 - 0 ` … 42x 2

+ y 2
6 4d = 4 aP

4
b = P.

0 6 2x2
+ y2

6 d,d = P>4

14.2 Limits and Continuity in Higher Dimensions 979

DEFINITION Continuous Function of Two Variables
A function ƒ(x, y) is continuous at the point if

1. ƒ is defined at 

2. exists,

3.

A function is continuous if it is continuous at every point of its domain.

lim
sx, yd: sx0, y0d

 ƒsx, yd = ƒsx0, y0d.

lim
sx, yd: sx0, y0d

 ƒsx, yd
sx0, y0d,

(x0, y0)

As with the definition of limit, the definition of continuity applies at boundary points
as well as interior points of the domain of ƒ. The only requirement is that the point (x, y)
remain in the domain at all times.

As you may have guessed, one of the consequences of Theorem 1 is that algebraic com-
binations of continuous functions are continuous at every point at which all the functions in-
volved are defined. This means that sums, differences, products, constant multiples, quotients,
and powers of continuous functions are continuous where defined. In particular, polynomials
and rational functions of two variables are continuous at every point at which they are defined.

EXAMPLE 4 A Function with a Single Point of Discontinuity

Show that

is continuous at every point except the origin (Figure 14.11).

Solution The function ƒ is continuous at any point because its values
are then given by a rational function of x and y.

At (0, 0), the value of ƒ is defined, but ƒ, we claim, has no limit as 
The reason is that different paths of approach to the origin can lead to different results, as
we now see.

sx, yd : s0, 0d.

sx, yd Z s0, 0d

ƒsx, yd = L 2xy

x 2
+ y 2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d

(a)

z

x

y

0

0.8

0.8

1

0

(b)

00.8

0.8

1

–y

–0.8

–1

–0.8

–0.8

–1

–0.8

x

FIGURE 14.11 (a) The graph of

The function is continuous at every point
except the origin. (b) The level curves of ƒ
(Example 4).

ƒsx, yd = L 2xy

x2
+ y2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d.
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For every value of m, the function ƒ has a constant value on the “punctured” line
because

Therefore, ƒ has this number as its limit as (x, y) approaches (0, 0) along the line:

This limit changes with m. There is therefore no single number we may call the limit of
ƒ as (x, y) approaches the origin. The limit fails to exist, and the function is not
continuous.

Example 4 illustrates an important point about limits of functions of two variables (or
even more variables, for that matter). For a limit to exist at a point, the limit must be the
same along every approach path. This result is analogous to the single-variable case where
both the left- and right-sided limits had to have the same value; therefore, for functions of
two or more variables, if we ever find paths with different limits, we know the function has
no limit at the point they approach.

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = mx
d =

2m
1 + m2 .

ƒsx, yd `
y = mx

=

2xy

x 2
+ y 2 `

y = mx
=

2xsmxd
x 2

+ smxd2 =

2mx 2

x 2
+ m2x 2 =

2m
1 + m2 .

y = mx, x Z 0,

980 Chapter 14: Partial Derivatives

Two-Path Test for Nonexistence of a Limit
If a function ƒ(x, y) has different limits along two different paths as (x, y) ap-
proaches then does not exist.limsx, yd:sx0, y0d ƒsx, ydsx0, y0d,

EXAMPLE 5 Applying the Two-Path Test

Show that the function

(Figure 14.12) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the form 0 0.
We examine the values of ƒ along curves that end at (0, 0). Along the curve 

the function has the constant value

Therefore,

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola
for instance, and the limit is 1. If (x, y) approaches (0, 0) along the x-axis,

and the limit is 0. By the two-path test, ƒ has no limit as (x, y) approaches (0, 0).
The language here may seem contradictory. You might well ask, “What do you

mean ƒ has no limit as (x, y) approaches the origin—it has lots of limits.” But that is

k = 0
k = 1y = x 2,

lim
sx, yd: s0,0d

 ƒsx, yd = lim
sx, yd: s0,0d

 cƒsx, yd `
y = k x2

d =

2k
1 + k2 .

ƒsx, yd `
y = kx2

=

2x 2y

x4
+ y 2 `

y = kx2
=

2x 2skx 2d
x4

+ skx 2d2 =

2kx4

x4
+ k 2x 4 =

2k
1 + k 2 .

kx2, x Z 0,
y =

>

ƒsx, yd =

2x 2y

x4
+ y 2

(a)

x

(b)

0

1

–1

y

1

–1

0

0

0

z

x

y

FIGURE 14.12 (a) The graph of
As the graph

suggests and the level-curve values in part
(b) confirm, does not
exist (Example 5).

limsx, yd:s0,0d ƒsx, yd

ƒsx, yd = 2x2y>sx4
+ y2d.

along y = mx

along y = kx2
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the point. There is no single path-independent limit, and therefore, by the definition,
does not exist.

Compositions of continuous functions are also continuous. The proof, omitted here,
is similar to that for functions of a single variable (Theorem 10 in Section 2.6).

limsx, yd:s0,0d ƒsx, yd

14.2 Limits and Continuity in Higher Dimensions 981

Continuity of Composites
If ƒ is continuous at and g is a single-variable function continuous at

then the composite function defined by 
is continuous at sx0, y0d.

hsx, yd = gsƒsx, yddh = g � fƒsx0, y0d,
sx0, y0d

For example, the composite functions 

are continuous at every point (x, y).
As with functions of a single variable, the general rule is that composites of continu-

ous functions are continuous. The only requirement is that each function be continuous
where it is applied.

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions
about limits and continuity for sums, products, quotients, powers, and composites all ex-
tend to functions of three or more variables. Functions like

are continuous throughout their domains, and limits like

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

We have seen that a function of a single variable that is continuous throughout a closed,
bounded interval [a, b] takes on an absolute maximum value and an absolute minimum
value at least once in [a, b]. The same is true of a function that is continuous
on a closed, bounded set R in the plane (like a line segment, a disk, or a filled-in triangle).
The function takes on an absolute maximum value at some point in R and an absolute min-
imum value at some point in R.

Theorems similar to these and other theorems of this section hold for functions of
three or more variables. A continuous function for example, must take on
absolute maximum and minimum values on any closed, bounded set (solid ball or cube,
spherical shell, rectangular solid) on which it is defined.

We learn how to find these extreme values in Section 14.7, but first we need to study
derivatives in higher dimensions. That is the topic of the next section.

w = ƒsx, y, zd,

z = ƒsx, yd

lim
P: s1,0,-1d

  
e x + z

z 2
+ cos 2xy

=

e1 - 1

s -1d2
+ cos 0

=
1
2

,

ln sx + y + zd and y sin z
x - 1

e x - y,  cos 
xy

x 2
+ 1

, ln s1 + x 2y 2d
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EXERCISES 14.2

Limits with Two Variables
Find the limits in Exercises 1–12.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Limits of Quotients
Find the limits in Exercises 13–20 by rewriting the fractions first.

13. 14.

15.

16.

17.

18. 19.

20.

Limits with Three Variables
Find the limits in Exercises 21–26.

21. 22.

23.

24. 25.

26. lim
P: s0, -2,0d

 ln2x 2
+ y 2

+ z 2

lim
P: sp,0,3d

 ze-2y cos 2xlim
P: s-1>4,p>2,2d

 tan-1 xyz

lim
P: s3,3,0d

 ssin2 x + cos2 y + sec2 zd

lim
P: s1,-1,-1d

  
2xy + yz

x 2
+ z 2lim

P: s1,3,4d
 a1x +

1
y +

1
z b

lim
sx, yd: s4,3d

 
2x - 2y + 1

x - y - 1

lim
sx, yd: s2,0d

 
22x - y - 2

2x - y - 4
lim

sx, yd: s2,2d
 

x + y - 42x + y - 2

lim
sx, yd: s0,0d

 
x - y + 22x - 22y2x - 2y

lim
sx, yd: s2, -4d

  
y + 4

x2y - xy + 4x 2
- 4x

lim
sx, yd: s1,1d

 
xy - y - 2x + 2

x - 1

lim
sx, yd: s1,1d

 
x 2

- y 2

x - ylim
sx, yd: s1,1d

  
x 2

- 2xy + y 2

x - y

lim
sx, yd: sp>2,0d

  
cos y + 1

y - sin x
lim

sx, yd: s1,0d
  

x sin y

x 2
+ 1

lim
sx, yd: s1,1d

 cos23  ƒ xy ƒ - 1lim
sx, yd: s0,0d

 
e y sin x

x

lim
sx, yd: s1,1d

 ln ƒ 1 + x 2 y 2
ƒlim

sx, yd: s0,ln 2d
 e x - y

lim
sx, yd: s0,0d

 cos 
x 2

+ y 3

x + y + 1
lim

sx, yd: s0,p>4d
 sec x tan y

lim
sx, yd: s2, -3d

 a1x +

1
y b

2

lim
sx, yd: s3,4d

2x 2
+ y 2

- 1

lim
sx, yd: s0,4d

 
x2y

lim
sx, yd: s0,0d

  
3x 2

- y 2
+ 5

x 2
+ y 2

+ 2

Continuity in the Plane
At what points (x, y) in the plane are the functions in Exercises 27–30
continuous?

27. a. b.

28. a. b.

29. a. b.

30. a. b.

Continuity in Space
At what points (x, y, z) in space are the functions in Exercises 31–34
continuous?

31. a.

b.

32. a. b.

33. a. b.

34. a. b.

No Limit at a Point
By considering different paths of approach, show that the functions in
Exercises 35–42 have no limit as 

35. 36.

37. 38.

39. 40.

41. 42. hsx, yd =

x 2

x 2
- y

hsx, yd =

x 2
+ y
y

g sx, yd =

x + y
x - ygsx, yd =

x - y
x + y

ƒsx, yd =

xy

ƒ xy ƒ

ƒsx, yd =

x4
- y 2

x4
+ y 2

z

yx

z

y

x

ƒsx, yd =

x4

x4
+ y 2ƒsx, yd = -

x2x 2
+ y 2

sx, yd : s0, 0d.

hsx, y, zd =

1
ƒ xy ƒ + ƒ z ƒ

hsx, y, zd =

1
ƒ y ƒ + ƒ z ƒ

hsx, y, zd =

1
x 2

+ z 2
- 1

hsx, y, zd = xy sin 
1
z

ƒsx, y, zd = e x + y cos zƒsx, y, zd = ln xyz

ƒsx, y, zd = 2x 2
+ y 2

- 1

ƒsx, y, zd = x 2
+ y 2

- 2z 2

g sx, yd =

1
x2

- y
g sx, yd =

x 2
+ y 2

x 2
- 3x + 2

g sx, yd =

x + y

2 + cos x
g sx, yd = sin  

1
xy

ƒsx, yd =

y

x 2
+ 1

ƒsx, yd =

x + y
x - y

ƒsx, yd = ln sx 2
+ y 2dƒsx, yd = sin sx + yd

x Z y

x Z y

x Z y

x Z 1

y Z -4, x Z x2

x + y Z 4 2x - y Z 4

x Z y + 1
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Theory and Examples
43. If must ƒ be defined at Give

reasons for your answer.

44. If what can you say about

if ƒ is continuous at If ƒ is not continuous at 
Give reasons for your answer.

The Sandwich Theorem for functions of two variables states that if
for all in a disk centered

at and if g and h have the same finite limit L as
then

Use this result to support your answers to the questions in Exercises
45–48.

45. Does knowing that

tell you anything about

Give reasons for your answer.

46. Does knowing that

tell you anything about

Give reasons for your answer.

47. Does knowing that tell you anything about

Give reasons for your answer.

48. Does knowing that tell you anything about

Give reasons for your answer.

49. (Continuation of Example 4.)

a. Reread Example 4. Then substitute into the formula

ƒsx, yd `
y = mx

=

2m

1 + m2

m = tan u

lim
sx, yd: s0,0d

 x cos 
1
y ?

ƒ cos s1>yd ƒ … 1

lim
sx, yd: s0,0d

 y sin 
1
x ?

ƒ sin s1>xd ƒ … 1

lim
sx, yd: s0,0d

 
4 - 4 cos 2ƒ xy ƒ

ƒ xy ƒ

?

2 ƒ xy ƒ -

x2y2

6
6 4 - 4 cos 2ƒ xy ƒ 6 2 ƒ xy ƒ

lim
sx, yd: s0,0d

 
tan-1 xy

xy ?

1 -

x 2y 2

3
6

tan-1 xy
xy 6 1

lim
sx, yd: sx0 , y0d

 ƒsx, yd = L.

sx, yd : sx0 , y0d,
sx0 , y0d

sx, yd Z sx0 , y0dgsx, yd … ƒsx, yd … hsx, yd

sx0 , y0d?sx0 , y0d?

lim
sx, yd: sx0 , y0d

 ƒsx, yd

ƒsx0 , y0d = 3,

sx0 , y0d?limsx, yd:sx0 , y0d ƒsx, yd = L,

and simplify the result to show how the value of ƒ varies with
the line’s angle of inclination.

b. Use the formula you obtained in part (a) to show that the limit
of ƒ as along the line varies from 
to 1 depending on the angle of approach.

50. Continuous extension Define ƒ(0, 0) in a way that extends

to be continuous at the origin.

Changing to Polar Coordinates
If you cannot make any headway with in rectan-
gular coordinates, try changing to polar coordinates. Substitute

and investigate the limit of the resulting ex-
pression as In other words, try to decide whether there exists a
number L satisfying the following criterion:

Given there exists a such that for all r and 

(1)

If such an L exists, then

For instance,

To verify the last of these equalities, we need to show that Equation (1)
is satisfied with and That is, we need to show
that given any there exists a such that for all r and 

Since

the implication holds for all r and if we take 
In contrast,

takes on all values from 0 to 1 regardless of how small is, so that
does not exist.

In each of these instances, the existence or nonexistence of the limit
as is fairly clear. Shifting to polar coordinates does not always
help, however, and may even tempt us to false conclusions. For example,
the limit may exist along every straight line (or ray) and
yet fail to exist in the broader sense. Example 4 illustrates this point. In
polar coordinates, becomes

ƒsr cos u, r sin ud =

r cos u sin 2u

r 2 cos4 u + sin2 u

ƒsx, yd = s2x 2yd>sx4
+ y 2d

u = constant

r : 0

limsx, yd:s0,0d x
2>sx 2

+ y 2d
ƒ r ƒ

x 2

x 2
+ y 2 =

r 2 cos2 u

r 2 = cos2 u

d = P.u

ƒ r cos3 u ƒ = ƒ r ƒ ƒ cos3 u ƒ … ƒ r ƒ
# 1 = ƒ r ƒ ,

ƒ r ƒ 6 d Q  ƒ r cos3 u - 0 ƒ 6 P.

u,d 7 0P 7 0
L = 0.ƒsr, ud = r cos3 u

lim
sx, yd: s0,0d

 
x3

x 2
+ y 2 = lim

r:0
 
r 3 cos3 u

r 2 = lim
r:0

 r cos3 u = 0.

lim
sx, yd: s0,0d

 ƒsx, yd = lim
r:0

 ƒsr, ud = L.

ƒ r ƒ 6 d Q  ƒ ƒsr, ud - L ƒ 6 P.

u,d 7 0P 7 0,

r : 0.
x = r cos u, y = r sin u,

limsx, yd:s0,0d ƒsx, yd

ƒsx, yd = xy 
x 2

- y 2

x 2
+ y 2

-1y = mxsx, yd : s0, 0d

14.2 Limits and Continuity in Higher Dimensions 983
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for If we hold constant and let the limit is 0. On the
path however, we have and

In Exercises 51–56, find the limit of ƒ as or show that
the limit does not exist.

51. 52.

53. 54.

55.

56.

In Exercises 57 and 58, define ƒ(0, 0) in a way that extends ƒ to
be continuous at the origin.

57.

58. ƒsx, yd =

3x 2y

x 2
+ y 2

ƒsx, yd = ln a3x 2
- x 2y 2

+ 3y 2

x 2
+ y 2 b

ƒsx, yd =

x 2
- y 2

x 2
+ y 2

ƒsx, yd = tan-1 a ƒ x ƒ + ƒ y ƒ

x 2
+ y 2 b

ƒsx, yd =

2x

x 2
+ x + y 2ƒsx, yd =

y 2

x 2
+ y 2

ƒsx, yd = cos a x 3
- y 3

x 2
+ y 2 bƒsx, yd =

x 3
- xy 2

x 2
+ y 2

sx, yd : s0, 0d

 =

2r cos2 u sin u

2r 2 cos4 u
=

r sin u

r 2 cos2 u
= 1.

 ƒsr cos u, r sin ud =

r cos u sin 2u

r 2 cos4 u + sr cos2 ud2

r sin u = r 2 cos2 uy = x 2,
r : 0,ur Z 0. Using the Definition

Each of Exercises 59–62 gives a function ƒ(x, y) and a positive num-
ber In each exercise, show that there exists a such that for all
(x, y),

59.

60.

61.

62.

Each of Exercises 63–66 gives a function ƒ(x, y, z) and a positive num-
ber In each exercise, show that there exists a such that for all
(x, y, z),

63.

64.

65.

66.

67. Show that is continuous at every point

68. Show that is continuous at the origin.ƒsx, y, zd = x 2
+ y 2

+ z 2

sx0 , y0 , z0d.
ƒsx, y, zd = x + y - z

ƒsx, y, zd = tan2 x + tan2 y + tan2 z, P = 0.03

ƒsx, y, zd =

x + y + z

x 2
+ y 2

+ z 2
+ 1

 , P = 0.015

ƒsx, y, zd = xyz, P = 0.008

ƒsx, y, zd = x 2
+ y 2

+ z 2, P = 0.015

2x 2
+ y 2

+ z 2
6 d Q  ƒ ƒsx, y, zd - ƒs0, 0, 0d ƒ 6 P.

d 7 0P.

ƒsx, yd = sx + yd>s2 + cos xd, P = 0.02

ƒsx, yd = sx + yd>sx2
+ 1d, P = 0.01

ƒsx, yd = y>sx2
+ 1d, P = 0.05

ƒsx, yd = x2
+ y2, P = 0.01

2x 2
+ y 2

6 d Q  ƒ ƒsx, yd - ƒs0, 0d ƒ 6 P.

d 7 0P.

d-P
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984 Chapter 14: Partial Derivatives

Partial Derivatives

The calculus of several variables is basically single-variable calculus applied to several
variables one at a time. When we hold all but one of the independent variables of a
function constant and differentiate with respect to that one variable, we get a “partial”
derivative. This section shows how partial derivatives are defined and interpreted geo-
metrically, and how to calculate them by applying the rules for differentiating functions
of a single variable.

Partial Derivatives of a Function of Two Variables

If is a point in the domain of a function ƒ(x, y), the vertical plane will cut
the surface in the curve (Figure 14.13). This curve is the graph
of the function in the plane The horizontal coordinate in this plane is
x; the vertical coordinate is z. The y-value is held constant at , so y is not a variable.

We define the partial derivative of ƒ with respect to x at the point as the ordi-
nary derivative of with respect to x at the point To distinguish partial de-
rivatives from ordinary derivatives we use the symbol rather than the d previously used.0

x = x0.ƒsx, y0d
sx0, y0d

y0

y = y0.z = ƒsx, y0d
z = ƒsx, y0dz = ƒsx, yd

y = y0sx0 , y0d

14.3
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An equivalent expression for the partial derivative is

The slope of the curve at the point in the plane 
is the value of the partial derivative of ƒ with respect to x at The tangent line to
the curve at P is the line in the plane that passes through P with this slope. The par-
tial derivative at gives the rate of change of ƒ with respect to x when y is held
fixed at the value This is the rate of change of ƒ in the direction of i at 

The notation for a partial derivative depends on what we want to emphasize:

or “Partial derivative of ƒ with respect to x at ” or “ƒ sub
x at ” Convenient for stressing the point 

“Partial derivative of z with respect to x at ”
Common in science and engineering when you are dealing
with variables and do not mention the function explicitly.

or “Partial derivative of ƒ (or z) with respect to x.” Convenient
when you regard the partial derivative as a function in its
own right.

0z
0xƒx, 

0ƒ
0x , zx,

sx0, y0d.0z
0x `

sx0, y0d

sx0, y0d.sx0, y0d.
sx0, y0dƒxsx0, y0d

0ƒ
0x  sx0, y0d

sx0, y0d.y0 .
sx0, y0d0ƒ>0x

y = y0

sx0, y0d.
y = y0Psx0, y0, ƒsx0, y0ddz = ƒsx, y0d

d
dx

 ƒ(x, y0) `
x = x0

.

14.3 Partial Derivatives 985

x
y

z

0

 

Tangent line

The curve z � f (x, y0)
in the plane y � y0

P(x0, y0, f (x0, y0))

Vertical axis in
the plane y � y0

z � f (x, y)

y0

x0

Horizontal axis in the plane y � y0

(x0 � h,  y0)
(x0, y0)

FIGURE 14.13 The intersection of the plane 
with the surface viewed from above the first
quadrant of the xy-plane.

z = ƒsx, yd,
y = y0

DEFINITION Partial Derivative with Respect to x
The partial derivative of ƒ(x, y) with respect to x at the point is

provided the limit exists.

0ƒ
0x  `

sx0, y0d
= lim

h:0
 
ƒsx0 + h, y0d - ƒsx0, y0d

h
,

sx0, y0d
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The slope of the curve at the point in the vertical plane
(Figure 14.14) is the partial derivative of ƒ with respect to y at The tangent

line to the curve at P is the line in the plane that passes through P with this slope.
The partial derivative gives the rate of change of ƒ with respect to y at when x is
held fixed at the value This is the rate of change of ƒ in the direction of j at 

The partial derivative with respect to y is denoted the same way as the partial deriva-
tive with respect to x:

Notice that we now have two tangent lines associated with the surface at
the point (Figure 14.15). Is the plane they determine tangent to the sur-
face at P? We will see that it is, but we have to learn more about partial derivatives before
we can find out why.

Psx0, y0, ƒsx0, y0dd
z = ƒsx, yd

0ƒ
0y  sx0, y0d, ƒysx0, y0d, 0ƒ

0y , ƒy .

sx0, y0d.x0.
sx0, y0d

x = x0

sx0, y0d.x = x0

Psx0, y0, ƒsx0, y0ddz = ƒsx0, yd

The definition of the partial derivative of ƒ(x, y) with respect to y at a point is
similar to the definition of the partial derivative of ƒ with respect to x. We hold x fixed at
the value and take the ordinary derivative of with respect to y at y0 .ƒsx0, ydx0

sx0, y0d

986 Chapter 14: Partial Derivatives

DEFINITION Partial Derivative with Respect to y
The partial derivative of ƒ(x, y) with respect to y at the point is

provided the limit exists.

0ƒ
0y  `

sx0, y0d
=

d
dy

 ƒsx0, yd `
y = y0

= lim
h:0

 
ƒsx0, y0 + hd - ƒsx0, y0d

h
,

sx0, y0d

x

z

y

P(x0, y0, f (x0, y0))

y0x0

(x0, y0)

(x0, y0 � k)

The curve z � f (x0, y)
in the plane

x � x0

Horizontal axis
in the plane x � x0

 z � f (x, y)

Tangent line

Vertical axis
in the plane

x � x0

0

FIGURE 14.14 The intersection of the
plane with the surface 
viewed from above the first quadrant of the
xy-plane.

z = ƒsx, yd,x = x0

x

y

z

This tangent line
has slope fy(x0, y0). This tangent line

has slope fx(x0, y0).

The curve z � f (x, y0)
in the plane y � y0

z �  f (x, y)

x � x0y � y0 (x0, y0)

The curve z � f (x0, y)
in the plane x � x0

 P(x0, y0, f (x0, y0))

FIGURE 14.15 Figures 14.13 and 14.14 combined. The tangent
lines at the point determine a plane that, in this
picture at least, appears to be tangent to the surface.

sx0, y0, ƒsx0, y0dd

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 986

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce14.html?2_1_l


Calculations

The definitions of and give us two different ways of differentiating ƒ at a
point: with respect to x in the usual way while treating y as a constant and with respect to y
in the usual way while treating x as constant. As the following examples show, the values
of these partial derivatives are usually different at a given point 

EXAMPLE 1 Finding Partial Derivatives at a Point

Find the values of and at the point if

Solution To find we treat y as a constant and differentiate with respect to x:

The value of at is 
To find we treat x as a constant and differentiate with respect to y:

The value of at is  

EXAMPLE 2 Finding a Partial Derivative as a Function

Find if 

Solution We treat x as a constant and ƒ as a product of y and sin xy:

 = s y cos xyd 
0

0y sxyd + sin xy = xy cos xy + sin xy.

 
0ƒ
0y =

0

0y s y sin xyd = y 
0

0y sin xy + ssin xyd 
0

0y s yd

ƒsx, yd = y sin xy.0ƒ>0y

3s4d + 1 = 13.s4, -5d0ƒ>0y

0ƒ
0y =

0

0y sx 2
+ 3xy + y - 1d = 0 + 3 # x # 1 + 1 - 0 = 3x + 1.

0ƒ>0y,
2s4d + 3s -5d = -7.s4, -5d0ƒ>0x

0ƒ
0x =

0

0x sx 2
+ 3xy + y - 1d = 2x + 3 # 1 # y + 0 - 0 = 2x + 3y.

0ƒ>0x,

ƒsx, yd = x2
+ 3xy + y - 1.

s4, -5d0ƒ>0y0ƒ>0x

sx0, y0d.

0ƒ>0y0ƒ>0x

14.3 Partial Derivatives 987

USING TECHNOLOGY Partial Differentiation

A simple grapher can support your calculations even in multiple dimensions. If you
specify the values of all but one independent variable, the grapher can calculate partial
derivatives and can plot traces with respect to that remaining variable. Typically, a CAS
can compute partial derivatives symbolically and numerically as easily as it can compute
simple derivatives. Most systems use the same command to differentiate a function,
regardless of the number of variables. (Simply specify the variable with which differenti-
ation is to take place).

EXAMPLE 3 Partial Derivatives May Be Different Functions

Find and if

ƒsx, yd =

2y
y + cos x .

ƒyƒx
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Solution We treat ƒ as a quotient. With y held constant, we get

With x held constant, we get

Implicit differentiation works for partial derivatives the way it works for ordinary
derivatives, as the next example illustrates.

EXAMPLE 4 Implicit Partial Differentiation

Find if the equation

defines z as a function of the two independent variables x and y and the partial derivative
exists.

Solution We differentiate both sides of the equation with respect to x, holding y con-
stant and treating z as a differentiable function of x:

EXAMPLE 5 Finding the Slope of a Surface in the y-Direction

The plane intersects the paraboloid in a parabola. Find the slope of the
tangent to the parabola at (1, 2, 5) (Figure 14.16).

Solution The slope is the value of the partial derivative at (1, 2):

0z
0y `

s1,2d
=

0

0y sx 2
+ y 2d `

s1,2d
= 2y `

s1,2d
= 2s2d = 4.

0z>0y

z = x 2
+ y 2x = 1

 
0z
0x =

z
yz - 1

.

 ay -
1
z b  

0z
0x = 1

 y 
0z
0x -

1
z  

0z
0x = 1 + 0

 
0

0x s yzd -

0

0x ln z =

0x
0x +

0y
0x

yz - ln z = x + y

0z>0x

 =

s y + cos xds2d - 2ys1d
s y + cos xd2 =

2 cos x
s y + cos xd2 .

ƒy =
0

0y a 2y
y + cos x b =

s y + cos xd 
0

0y s2yd - 2y 
0

dy
 s y + cos xd

s y + cos xd2

 =

s y + cos xds0d - 2ys -sin xd
s y + cos xd2 =

2y sin x

s y + cos xd2 .

 ƒx =
0

0x a 2y
y + cos x b =

s y + cos xd 
0

0x s2yd - 2y 
0

0x s y + cos xd

s y + cos xd2

988 Chapter 14: Partial Derivatives

With y constant,
0

0x
 s yzd = y 

0z
0x

.

x

y
1 2

(1, 2, 5)

z

Surface
z � x2 � y2

x � 1

Tangent
line

Plane
x � 1

FIGURE 14.16 The tangent to the curve
of intersection of the plane and
surface at the point (1, 2, 5)
(Example 5).

z = x 2
+ y 2

x = 1
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As a check, we can treat the parabola as the graph of the single-variable function
in the plane and ask for the slope at The slope,

calculated now as an ordinary derivative, is

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent
variables are like the definitions for functions of two variables. They are ordinary
derivatives with respect to one variable, taken while the other independent variables are
held constant.

EXAMPLE 6 A Function of Three Variables

If x, y, and z are independent variables and

then

EXAMPLE 7 Electrical Resistors in Parallel

If resistors of and ohms are connected in parallel to make an R-ohm resistor, the
value of R can be found from the equation

(Figure 14.17). Find the value of when and ohms.

Solution To find we treat and as constants and, using implicit differenti-
ation, differentiate both sides of the equation with respect to 

When and 

1
R

=
1
30

+
1
45

+
1
90

=

3 + 2 + 1
90

=

6
90

=
1

15
,

R3 = 90,R1 = 30, R2 = 45,

 
0R
0R2

=
R2

R2
2 = a R

R2
b2

.

 -
1

R2 
0R
0R2

= 0 -
1

R2
2 + 0

 
0

0R2
 a1

R
b =

0

0R2
 a 1

R1
+

1
R2

+
1
R3
b

R2 :
R3R10R>0R2,

R3 = 90R1 = 30, R2 = 45,0R>0R2

1
R

=
1
R1

+
1
R2

+
1
R3

R3R1, R2 ,

 = x cos s y + 3zd 
0

0z s y + 3zd = 3x cos s y + 3zd.

 
0ƒ
0z =

0

0z [x sin s y + 3zd] = x 
0

0z sin s y + 3zd

ƒsx, y, zd = x sin s y + 3zd,

dz
dy

 `
y = 2

=

d
dy

 s1 + y 2d `
y = 2

= 2y `
y = 2

= 4.

y = 2.x = 1z = s1d2
+ y 2

= 1 + y 2

14.3 Partial Derivatives 989

� �

R3

R2

R1

FIGURE 14.17 Resistors arranged this
way are said to be connected in parallel
(Example 7). Each resistor lets a portion of
the current through. Their equivalent
resistance R is calculated with the formula

1
R

=

1
R1

+

1
R2

+

1
R3

.
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so and

Partial Derivatives and Continuity

A function ƒ(x, y) can have partial derivatives with respect to both x and y at a point with-
out the function being continuous there. This is different from functions of a single vari-
able, where the existence of a derivative implies continuity. If the partial derivatives of
ƒ(x, y) exist and are continuous throughout a disk centered at however, then ƒ is
continuous at as we see at the end of this section.

EXAMPLE 8 Partials Exist, But ƒ Discontinuous

Let

(Figure 14.18).

(a) Find the limit of ƒ as (x, y) approaches (0, 0) along the line 

(b) Prove that ƒ is not continuous at the origin.

(c) Show that both partial derivatives and exist at the origin.

Solution

(a) Since ƒ(x, y) is constantly zero along the line (except at the origin), we have

(b) Since the limit in part (a) proves that ƒ is not continuous at (0, 0).

(c) To find at (0, 0), we hold y fixed at Then for all x, and the
graph of ƒ is the line in Figure 14.18. The slope of this line at any x is In
particular, at (0, 0). Similarly, is the slope of line at any y, so

at (0, 0).

Example 8 notwithstanding, it is still true in higher dimensions that differentiability at
a point implies continuity. What Example 8 suggests is that we need a stronger require-
ment for differentiability in higher dimensions than the mere existence of the partial deriv-
atives. We define differentiability for functions of two variables at the end of this section
and revisit the connection to continuity.

Second-Order Partial Derivatives

When we differentiate a function ƒ(x, y) twice, we produce its second-order derivatives.
These derivatives are usually denoted by

0
2ƒ

0y2 “d squared ƒdy squared” or  ƒyy “ƒ sub yy”

0
2ƒ

0x2 “d squared ƒdx squared” or ƒxx “ƒ sub xx”

0ƒ>0y = 0
L20ƒ>0y0ƒ>0x = 0

0ƒ>0x = 0.L1

ƒsx, yd = 1y = 0.0ƒ>0x

ƒs0, 0d = 1,

lim
sx, yd: s0,0d

 ƒsx, yd `
y = x

= lim
sx, yd: s0,0d

0 = 0.

y = x

0ƒ>0y0ƒ>0x

y = x.

ƒsx, yd = e0, xy Z 0

1, xy = 0

sx0, y0d,
sx0 , y0d,

0R
0R2

= a15
45
b2

= a1
3
b2

=
1
9

.

R = 15
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y

z

x

0

1

L1

L 2

z �
0,  xy � 0
1,  xy � 0

FIGURE 14.18 The graph of

consists of the lines and and the four
open quadrants of the xy-plane. The
function has partial derivatives at the
origin but is not continuous there
(Example 8).

L2L1

ƒsx, yd = e0, xy Z 0

1, xy = 0

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 990

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


The defining equations are

and so on. Notice the order in which the derivatives are taken:

EXAMPLE 9 Finding Second-Order Partial Derivatives

If find

Solution

So So

The Mixed Derivative Theorem

You may have noticed that the “mixed” second-order partial derivatives

in Example 9 were equal. This was not a coincidence. They must be equal whenever
and are continuous, as stated in the following theorem.ƒyxƒ, ƒx , ƒy , ƒxy ,

0
2ƒ

0y0x and 0
2ƒ

0x0y

 
0

2ƒ

0y2 =

0

0y a0ƒ
0y b = -x cos y. 

0
2ƒ

0x2 =

0

0x a0ƒ
0x b = ye x.

 
0

2ƒ
0x0y =

0

0x a0ƒ
0y b = -sin y + e x 

0
2ƒ

0y0x =

0

0y a0ƒ
0x b = -sin y + e x

 = -x sin y + e x = cos y + ye x

 
0ƒ
0y =

0

0y sx cos y + ye xd 
0ƒ
0x =

0

0x sx cos y + ye xd

0
2ƒ

0x2 , 0
2ƒ

0y0x , 0
2ƒ

0y2 , and 0
2ƒ

0x0y .

ƒsx, yd = x cos y + yex,

 ƒyx = sƒydx Means the same thing.

0
2ƒ

0x0y  Differentiate first with respect to y,  then with respect to x.

0
2ƒ

0x2 =
0

0x a0ƒ
0x b , 0

2ƒ
0x0y =

0

0x a0ƒ
0y b ,

0
2ƒ

0y0x “d squared ƒdy dx” or ƒxy “ƒ sub xy”

0
2ƒ

0x0y “d squared ƒdx dy” or ƒyx “ƒ sub yx”
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HISTORICAL BIOGRAPHY

Pierre-Simon Laplace
(1749–1827)

THEOREM 2 The Mixed Derivative Theorem
If ƒ(x, y) and its partial derivatives and are defined throughout an
open region containing a point (a, b) and are all continuous at (a, b), then

ƒxysa, bd = ƒyxsa, bd.

ƒyxƒx , ƒy , ƒxy ,
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Theorem 2 is also known as Clairaut’s Theorem, named after the French mathemati-
cian Alexis Clairaut who discovered it. A proof is given in Appendix 7. Theorem 2 says
that to calculate a mixed second-order derivative, we may differentiate in either order, pro-
vided the continuity conditions are satisfied. This can work to our advantage.

EXAMPLE 10 Choosing the Order of Differentiation

Find if

Solution The symbol tells us to differentiate first with respect to y and then
with respect to x. If we postpone the differentiation with respect to y and differentiate first
with respect to x, however, we get the answer more quickly. In two steps,

If we differentiate first with respect to y, we obtain  as well.

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because
these appear the most frequently in applications, there is no theoretical limit to how many
times we can differentiate a function as long as the derivatives involved exist. Thus, we get
third- and fourth-order derivatives denoted by symbols like

and so on. As with second-order derivatives, the order of differentiation is immaterial as
long as all the derivatives through the order in question are continuous.

EXAMPLE 11 Calculating a Partial Derivative of Fourth-Order

Find

Solution We first differentiate with respect to the variable y, then x, then y again, and
finally with respect to z:

 ƒyxyz = -4

 ƒyxy = -4z

 ƒyx = -4yz + 2x

 ƒy = -4xyz + x2

ƒyxyz if  ƒsx, y, zd = 1 - 2xy 2z + x 2y.

 
0

4ƒ

0x 2
0y 2 = ƒyyxx , 

 
0

3ƒ

0x0y 2 = ƒyyx

0
2w>0x0y = 1

0w
0x = y and 0

2w
0y0x = 1.

0
2w>0x0y

w = xy +

e y

y 2
+ 1

.

0
2w>0x0y
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HISTORICAL BIOGRAPHY

Alexis Clairaut
(1713–1765)
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Differentiability

The starting point for differentiability is not Fermat’s difference quotient but rather the
idea of increment. You may recall from our work with functions of a single variable in
Section 3.8 that if is differentiable at then the change in the value of ƒ
that results from changing x from to is given by an equation of the form

in which as For functions of two variables, the analogous property be-
comes the definition of differentiability. The Increment Theorem (from advanced calculus)
tells us when to expect the property to hold.

¢x : 0.P : 0

¢y = ƒ¿sx0d¢x + P¢x

x0 + ¢xx0

x = x0,y = ƒsxd

14.3 Partial Derivatives 993

THEOREM 3 The Increment Theorem for Functions of Two Variables
Suppose that the first partial derivatives of ƒ(x, y) are defined throughout an open
region R containing the point and that and are continuous at

Then the change

in the value of ƒ that results from moving from to another point 
in R satisfies an equation of the form

in which each of as both ¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

(x0 + ¢x, y0 + ¢yd
sx0, y0d

¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0, y0d

sx0, y0d.
ƒyƒxsx0, y0d

You can see where the epsilons come from in the proof in Appendix 7. You will also see
that similar results hold for functions of more than two independent variables.

DEFINITION Differentiable Function
A function is differentiable at if and 
exist and satisfies an equation of the form

in which each of as both We call ƒ differentiable if it is
differentiable at every point in its domain.

¢x, ¢y : 0.P1, P2 : 0

¢z = ƒxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

¢z
ƒysx0, y0dƒxsx0, y0dsx0, y0dz = ƒsx, yd

In light of this definition, we have the immediate corollary of Theorem 3 that a func-
tion is differentiable if its first partial derivatives are continuous.

COROLLARY OF THEOREM 3 Continuity of Partial Derivatives Implies
Differentiability

If the partial derivatives and of a function ƒ(x, y) are continuous throughout
an open region R, then ƒ is differentiable at every point of R.

ƒyƒx
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As we can see from Theorems 3 and 4, a function ƒ(x, y) must be continuous at a point
if and are continuous throughout an open region containing Remem-

ber, however, that it is still possible for a function of two variables to be discontinuous at a
point where its first partial derivatives exist, as we saw in Example 8. Existence alone of the
partial derivative at a point is not enough.

sx0 , y0d.ƒyƒxsx0 , y0d

994 Chapter 14: Partial Derivatives

If is differentiable, then the definition of differentiability assures that
approaches 0 as and approach 0. This tells

us that a function of two variables is continuous at every point where it is differentiable.
¢y¢x¢z = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d

z = ƒsx, yd

THEOREM 4 Differentiability Implies Continuity
If a function ƒ(x, y) is differentiable at then ƒ is continuous at sx0 , y0d.sx0 , y0d,
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EXERCISES 14.3

Calculating First-Order Partial Derivatives
In Exercises 1–22, find and 

1. 2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21.

22.

In Exercises 23–34, find and 

23. 24.

25.

26. ƒsx, y, zd = sx2
+ y2

+ z2d-1>2
ƒsx, y, zd = x - 2y2

+ z2

ƒsx, y, zd = xy + yz + xzƒsx, y, zd = 1 + xy2
- 2z2

ƒz.ƒx , ƒy ,

ƒsx, yd = a
q

n = 0
sxydn s ƒ xy ƒ 6 1d

ƒsx, yd = L
y

x
 g std dt sg continuous for all td

ƒsx, yd = logy xƒsx, yd = xy

ƒsx, yd = cos2 s3x - y2dƒsx, yd = sin2 sx - 3yd
ƒsx, yd = e xy ln yƒsx, yd = ln sx + yd
ƒsx, yd = e-x sin sx + ydƒsx, yd = e sx + y + 1d

ƒsx, yd = tan-1 s y>xdƒsx, yd = sx + yd>sxy - 1d
ƒsx, yd = x>sx2

+ y2dƒsx, yd = 1>sx + yd
ƒsx, yd = sx3

+ s y>2dd2>3ƒsx, yd = 2x2
+ y2

ƒsx, yd = s2x - 3yd3ƒsx, yd = sxy - 1d2

ƒsx, yd = 5xy - 7x 2
- y 2

+ 3x - 6y + 2

ƒsx, yd = sx2
- 1ds y + 2d

ƒsx, yd = x2
- xy + y2ƒsx, yd = 2x2

- 3y - 4

0ƒ>0y .0ƒ>0x

27. 28.

29.

30. 31.

32.

33.

34.

In Exercises 35–40, find the partial derivative of the function with
respect to each variable.

35. 36.

37. 38.

39. Work done by the heart (Section 3.8, Exercise 51)

40. Wilson lot size formula (Section 4.5, Exercise 45)

Calculating Second-Order Partial Derivatives
Find all the second-order partial derivatives of the functions in
Exercises 41–46.

41. 42. ƒsx, yd = sin xyƒsx, yd = x + y + xy

Asc, h, k, m, qd =

km
q + cm +

hq

2

WsP, V, d, y, gd = PV +

Vdy2

2g

g sr, u, zd = r s1 - cos ud - zhsr, f, ud = r sin f cos u

g su, yd = y2e s2u>ydƒst, ad = cos s2pt - ad

ƒsx, y, zd = sinh sxy - z 2d
ƒsx, y, zd = tanh sx + 2y + 3zd
ƒsx, y, zd = e-xyz

ƒsx, y, zd = e-sx2
+ y2

+ z2dƒsx, y, zd = yz ln sxyd
ƒsx, y, zd = ln sx + 2y + 3zd

ƒsx, y, zd = sec-1 sx + yzdƒsx, y, zd = sin-1 sxyzd
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43.

44. 45.

46.

Mixed Partial Derivatives
In Exercises 47–50, verify that 

47. 48.

49. 50.

51. Which order of differentiation will calculate faster: x first or y
first? Try to answer without writing anything down.

a.

b.

c.

d.

e.

f.

52. The fifth-order partial derivative is zero for each of
the following functions. To show this as quickly as possible,
which variable would you differentiate with respect to first: x or
y? Try to answer without writing anything down.

a.

b.

c.

d.

Using the Partial Derivative Definition
In Exercises 53 and 54, use the limit definition of partial derivative
to compute the partial derivatives of the functions at the specified
points.

53.

54.

55. Three variables Let be a function of three inde-
pendent variables and write the formal definition of the partial
derivative at Use this definition to find at
(1, 2, 3) for 

56. Three variables Let be a function of three inde-
pendent variables and write the formal definition of the partial
derivative at Use this definition to find at

for 

Differentiating Implicitly
57. Find the value of at the point (1, 1, 1) if the equation

xy + z3x - 2yz = 0

0z>0x

ƒsx, y, zd = -2xy2
+ yz2.s -1, 0, 3d

0ƒ>0ysx0 , y0 , z0d.0ƒ>0y

w = ƒsx, y, zd
ƒsx, y, zd = x2yz2.

0ƒ>0zsx0 , y0 , z0d.0ƒ>0z

w = ƒsx, y, zd

ƒsx, yd = 4 + 2x - 3y - xy 2, 
0ƒ
0x  and 

0ƒ
0y  at s -2, 1d

ƒsx, yd = 1 - x + y - 3x 2y, 
0ƒ
0x  and 

0ƒ
0y  at s1, 2d

ƒsx, yd = xe y2>2
ƒsx, yd = x2

+ 5xy + sin x + 7e x

ƒsx, yd = y2
+ yssin x - x4d

ƒsx, yd = y 2x4ex
+ 2

0
5ƒ>0x 2

0y3

ƒsx, yd = x ln xy

ƒsx, yd = x2
+ 5xy + sin x + 7e x

ƒsx, yd = y + x2y + 4y3
- ln s y2

+ 1d
ƒsx, yd = y + sx>yd
ƒsx, yd = 1>x
ƒsx, yd = x sin y + e y

fxy

w = x sin y + y sin x + xyw = xy2
+ x2y3

+ x3y4

w = e x
+ x ln y + y ln xw = ln s2x + 3yd

wxy = wyx .

ssx, yd = tan-1 s y>xd
r sx, yd = ln sx + ydhsx, yd = xe y

+ y + 1

g sx, yd = x 2y + cos y + y sin x defines z as a function of the two independent variables x and y
and the partial derivative exists.

58. Find the value of at the point if the equation

defines x as a function of the two independent variables y and z
and the partial derivative exists.

Exercises 59 and 60 are about the triangle shown here.

59. Express A implicitly as a function of a, b, and c and calculate
and 

60. Express a implicitly as a function of A, b, and B and calculate
and 

61. Two dependent variables Express in terms of u and y if the
equations and define u and y as functions
of the independent variables x and y, and if exists. (Hint: Dif-
ferentiate both equations with respect to x and solve for by
eliminating 

62. Two dependent variables Find and if the equa-
tions and define x and y as functions
of the independent variables u and y, and the partial derivatives
exist. (See the hint in Exercise 61.) Then let and
find 

Laplace Equations
The three-dimensional Laplace equation

is satisfied by steady-state temperature distributions in
space, by gravitational potentials, and by electrostatic potentials. The
two-dimensional Laplace equation

obtained by dropping the term from the previous equation, de-
scribes potentials and steady-state temperature distributions in a plane
(see the accompanying figure). The plane (a) may be treated as a thin
slice of the solid (b) perpendicular to the z-axis.

0
2ƒ>0z2

0
2ƒ

0x2 +

0
2ƒ

0y2 = 0,

T = ƒsx, y, zd

0
2ƒ

0x2 +

0
2ƒ

0y2 +

0
2ƒ

0z2 = 0

0s>0u.
s = x2

+ y2

y = x2
- yu = x2

- y2
0y>0u0x>0u

ux .)
yx

yx

y = u ln yx = y ln u
yx

0a>0B .0a>0A

0A>0b .0A>0a

c

B

C
A

a

b

xz + y ln x - x2
+ 4 = 0

s1, -1, -3d0x>0z
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Show that each function in Exercises 63–68 satisfies a Laplace
equation.

63.

64.

65.

66.

67.

68.

The Wave Equation
If we stand on an ocean shore and take a snapshot of the waves, the
picture shows a regular pattern of peaks and valleys in an instant of
time. We see periodic vertical motion in space, with respect to
distance. If we stand in the water, we can feel the rise and fall of the

ƒsx, y, zd = e3x + 4y cos 5z

ƒsx, y, zd = sx 2
+ y 2

+ z 2d-1>2
ƒsx, yd = ln2x 2

+ y 2

ƒsx, yd = e-2y cos 2x

ƒsx, y, zd = 2z 3
- 3sx 2

+ y 2dz
ƒsx, y, zd = x 2

+ y 2
- 2z 2

(a)

(b)

Boundary temperatures controlled

�       � 0
∂2f

∂x2

∂2f

∂y2

�       �       � 0
∂2f

∂x2

∂2f

∂y2

∂2f

∂z2

water as the waves go by. We see periodic vertical motion in time.
In physics, this beautiful symmetry is expressed by the one-dimen-
sional wave equation

where w is the wave height, x is the distance variable, t is the time vari-
able, and c is the velocity with which the waves are propagated.

In our example, x is the distance across the ocean’s surface, but in
other applications, x might be the distance along a vibrating string,
distance through air (sound waves), or distance through space (light
waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 69–75 are all solutions of
the wave equation.

69. 70.

71.

72. 73.

74.

75. where ƒ is a differentiable function of u, and 
where a is a constant

Continuous Partial Derivatives
76. Does a function ƒ(x, y) with continuous first partial derivatives

throughout an open region R have to be continuous on R? Give
reasons for your answer.

77. If a function ƒ(x, y) has continuous second partial derivatives
throughout an open region R, must the first-order partial deriva-
tives of ƒ be continuous on R? Give reasons for your answer.

asx + ctd,
u =w = ƒsud,

w = 5 cos s3x + 3ctd + e x + ct

w = tan s2x - 2ctdw = ln s2x + 2ctd
w = sin sx + ctd + cos s2x + 2ctd

w = cos s2x + 2ctdw = sin sx + ctd

w

x

x

0
2w

0t2
= c2 

0
2w

0x2 ,
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The Chain Rule

The Chain Rule for functions of a single variable studied in Section 3.5 said that when
was a differentiable function of x and was a differentiable function of t,

w became a differentiable function of t and dw dt could be calculated with the formula

dw
dt

=

dw
dx

 
dx
dt

.

> x = gstdw = ƒsxd

14.4
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For functions of two or more variables the Chain Rule has several forms. The form
depends on how many variables are involved but works like the Chain Rule in Section 3.5
once we account for the presence of additional variables.

Functions of Two Variables

The Chain Rule formula for a function when and are both
differentiable functions of t is given in the following theorem.

y = ystdx = xstdw = ƒsx, yd

14.4 The Chain Rule 997

THEOREM 5 Chain Rule for Functions of Two Independent Variables
If has continuous partial derivatives and and if
are differentiable functions of t, then the composite is a differ-
entiable function of t and

or

dw
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

.

dƒ
dt

= ƒxsxstd, ystdd # x¿std + ƒysxstd, ystdd # y¿std,

w = ƒsxstd, ystdd
x = xstd, y = ystdƒyƒxw = ƒsx, yd

Proof The proof consists of showing that if x and y are differentiable at then w is
differentiable at and

where The subscripts indicate where each of the derivatives are to be
evaluated.

Let and be the increments that result from changing t from to 
Since ƒ is differentiable (see the definition in Section 14.3),

where as To find dw dt, we divide this equation through by 
and let approach zero. The division gives

Letting approach zero gives

The tree diagram in the margin provides a convenient way to remember the Chain
Rule. From the diagram, you see that when the derivatives dx dt and dy dt are>>t = t0 ,

 = a0w
0x bP0

 adx
dt
b

t0

+ a0w
0y bP0

 ady
dt
b

t0

+ 0 # adx
dt
b

t0

+ 0 # ady
dt
b

t0

.

 adw
dt
b

t0

= lim
¢t:0

 
¢w
¢t

¢t

¢w
¢t

= a0w
0x bP0

 
¢x
¢t

+ a0w
0y bP0

 
¢y

¢t
+ P1 

¢x
¢t

+ P2 
¢y

¢t
.

¢t
¢t>¢x, ¢y : 0.P1, P2 : 0

¢w = a0w
0x bP0

 ¢x + a0w
0y bP0

 ¢y + P1¢x + P2¢y ,

t0 + ¢t.t0¢w¢x, ¢y,

P0 = sxst0d, yst0dd.

adw
dt
b

t0

= a0w
0x bP0

 adx
dt
b

t0

+ a0w
0y bP0

 ady
dt
b

t0

,

t0
t = t0 ,

To remember the Chain Rule picture the
diagram below. To find dw dt, start at w
and read down each route to t,
multiplying derivatives along the way.
Then add the products.

Chain Rule

t

yx

w � f (x, y)

0w
0y

0w
0x

dy
dt

dx
dt

dw
dt

0w
0x

dx
dt

0w
0y

dy
dt

� �

Intermediate
variables

Dependent
variable

Independent
variable

>
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evaluated at The value of then determines the value for the differentiable function x
and the value for the differentiable function y. The partial derivatives and 
(which are themselves functions of x and y) are evaluated at the point correspon-
ding to The “true” independent variable is t, whereas x and y are intermediate variables
(controlled by t) and w is the dependent variable.

A more precise notation for the Chain Rule shows how the various derivatives in The-
orem 5 are evaluated:

EXAMPLE 1 Applying the Chain Rule

Use the Chain Rule to find the derivative of

with respect to t along the path What is the derivative’s value at

Solution We apply the Chain Rule to find dw dt as follows:

In this example, we can check the result with a more direct calculation. As a
function of t,

so

In either case, at the given value of t,

Functions of Three Variables

You can probably predict the Chain Rule for functions of three variables, as it only in-
volves adding the expected third term to the two-variable formula.

adw
dt
b

t =p>2 = cos a2 # p
2
b = cos p = -1 .

dw
dt

=

d
dt

 a1
2

 sin 2tb =
1
2

 #  2 cos 2t = cos 2t .

w = xy = cos t sin t =
1
2

 sin 2t ,

 = cos 2t.

 = -sin2 t + cos2 t

 = ssin tds -sin td + scos tdscos td

 = s yds -sin td + sxdscos td

 =

0sxyd
0x  #  

d
dt

 scos td +

0sxyd
0y  #  

d
dt

 ssin td

 
dw
dt

=

0w
0x  

dx
dt

+

0w
0y  

dy
dt

>
t = p>2?

x = cos t, y = sin t.

w = xy

dw
dt

 st0d =

0ƒ
0x  sx0 , y0d # dx

dt
 st0d +

0ƒ
0y  sx0 , y0d #

dy
dt

 st0d.

t0.
P0sx0, y0d

0w>0y0w>0xy0

x0t0t0.
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Chain Rule

t

zyx

w � f (x, y, z)

0w
0z

0w
0x

0w
0y

dy
dt dz

dt
dx
dt

dw
dt

0w
0x

dx
dt

0w
0y

dy
dt� �

0w
0z

dz
dt�

Intermediate
variables

Dependent
variable

Independent
variable

The proof is identical with the proof of Theorem 5 except that there are now three
intermediate variables instead of two. The diagram we use for remembering the new
equation is similar as well, with three routes from w to t.

EXAMPLE 2 Changes in a Function’s Values Along a Helix

Find dw dt if

In this example the values of w are changing along the path of a helix (Section 13.1). What
is the derivative’s value at 

Solution

Here is a physical interpretation of change along a curve. If is the
temperature at each point (x, y, z) along a curve C with parametric equations

and then the composite function rep-
resents the temperature relative to t along the curve. The derivative dw dt is then the in-
stantaneous rate of change of temperature along the curve, as calculated in Theorem 6.

Functions Defined on Surfaces

If we are interested in the temperature at points (x, y, z) on a globe in space,
we might prefer to think of x, y, and z as functions of the variables r and s that give the
points’ longitudes and latitudes. If and we could then
express the temperature as a function of r and s with the composite function

Under the right conditions, w would have partial derivatives with respect to both r and s
that could be calculated in the following way.

w = ƒsgsr, sd, hsr, sd, ksr, sdd.

z = ksr, sd,x = gsr, sd, y = hsr, sd,

w = ƒsx, y, zd

>w = Tsxstd, ystd, zstddz = zstd,x = xstd, y = ystd,

w = Tsx, y, zd

 adw
dt
b

t = 0
= 1 + cos s0d = 2.

 = -sin2 t + cos2 t + 1 = 1 + cos 2t.

 = ssin tds -sin td + scos tdscos td + 1

 = s yds -sin td + sxdscos td + s1ds1d

 
dw
dt

=

0w
0x  

dx
dt

+

0w
0y  

dy
dt

+

0w
0z  

dz
dt

t = 0 ?

w = xy + z, x = cos t, y = sin t, z = t.

>

14.4 The Chain Rule 999

Here we have three routes from w to t
instead of two, but finding dw dt is still
the same. Read down each route,
multiplying derivatives along the way;
then add.

>

THEOREM 6 Chain Rule for Functions of Three Independent Variables
If is differentiable and x, y, and z are differentiable functions of t,
then w is a differentiable function of t and

dw
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

+

0ƒ
0z  

dz
dt

.

w = ƒsx, y, zd

Substitute for
the intermediate
variables.
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The first of these equations can be derived from the Chain Rule in Theorem 6 by hold-
ing s fixed and treating r as t. The second can be derived in the same way, holding r fixed
and treating s as t. The tree diagrams for both equations are shown in Figure 14.19.

1000 Chapter 14: Partial Derivatives

THEOREM 7 Chain Rule for Two Independent Variables and Three
Intermediate Variables

Suppose that and If all four
functions are differentiable, then w has partial derivatives with respect to r and s,
given by the formulas

0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s +

0w
0z  

0z
0s .

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r +

0w
0z  

0z
0r

z = ksr, sd.w = ƒsx, y, zd, x = gsr, sd, y = hsr, sd,

w

(a)

g h k

f

x y z

r, s

Dependent
variable

Independent
variables

Intermediate
variables

w � f ( g(r, s), h (r, s), k (r, s))

(b)

r

zx y

w � f (x, y, z)

0w
0x 0w

0y

0y
0r

0x
0r

0w
0z

0z
0r

0w
0r

0w
0x

0x
0r

0w
0y

0y
0r�

0w
0z

0z
0r��

s

zx y

(c)

0w
0x

0w
0y

0y
0s0x

0s

0w
0z

0z
0s

0w
0s

0w
0x

0x
0s

0w
0y

0y
0s�

0w
0z

0z
0s��

w � f (x, y, z)

FIGURE 14.19 Composite function and tree diagrams for Theorem 7.

EXAMPLE 3 Partial Derivatives Using Theorem 7

Express and in terms of r and s if

Solution

 = s1d a- r
s2 b + s2d a1s b + s2zds0d =

2
s -

r
s2

 
0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s +

0w
0z  

0z
0s

 =
1
s + 4r + s4rds2d =

1
s + 12r

 = s1d a1s b + s2ds2rd + s2zds2d

 
0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r +

0w
0z  

0z
0r

w = x + 2y + z2, x =
r
s , y = r2

+ ln s, z = 2r.

0w>0s0w>0r

Substitute for intermediate
variable z.
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If ƒ is a function of two variables instead of three, each equation in Theorem 7 be-
comes correspondingly one term shorter.

14.4 The Chain Rule 1001

If and then

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r and 0w

0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s .

y = hsr, sd,w = ƒsx, yd, x = gsr, sd,

Chain Rule

r

yx

 w � f (x, y)

0w
0x

0x
0r

0w
0y

0y
0r

0w
0r

0w
0x

0x
0r

0w
0y

0y
0r� �

FIGURE 14.20 Tree diagram for the
equation

0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r .

Figure 14.20 shows the tree diagram for the first of these equations. The diagram for
the second equation is similar; just replace r with s.

EXAMPLE 4 More Partial Derivatives

Express and in terms of r and s if

Solution

If ƒ is a function of x alone, our equations become even simpler.

 = 4r   = 4s

 = 2sr - sd + 2sr + sd   = -2sr - sd + 2sr + sd

 = s2xds1d + s2yds1d   = s2xds -1d + s2yds1d

 
0w
0r =

0w
0x  

0x
0r +

0w
0y  

0y
0r   

0w
0s =

0w
0x  

0x
0s +

0w
0y  

0y
0s

w = x2
+ y2, x = r - s, y = r + s .

0w>0s0w>0r

Substitute
for the
intermediate
variables.

If and then

0w
0r =

dw
dx

 
0x
0r and 0w

0s =

dw
dx

 
0x
0s .

x = gsr, sd,w = ƒsxd

Chain Rule

r

x

s

w � f (x)

dw
dx

0x
0r

0x
0s

0w
0r

dw
dx

0x
0r�

0w
0s

dw
dx

0x
0s�

FIGURE 14.21 Tree diagram for
differentiating ƒ as a composite function of
r and s with one intermediate variable.

In this case, we can use the ordinary (single-variable) derivative, dw dx. The tree diagram
is shown in Figure 14.21.

Implicit Differentiation Revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes most of the work
out of implicit differentiation. Suppose that

1. The function F(x, y) is differentiable and

2. The equation defines y implicitly as a differentiable function of x, say
y = hsxd.

Fsx, yd = 0

>
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Since the derivative dw dx must be zero. Computing the derivative from
the Chain Rule (tree diagram in Figure 14.22), we find

If we can solve this equation for dy dx to get

This relationship gives a surprisingly simple shortcut to finding derivatives of implicitly
defined functions, which we state here as a theorem.

dy
dx

= -

Fx

Fy
.

>Fy = 0w>0y Z 0,

 = Fx
# 1 + Fy

#
dy
dx

.

 0 =

dw
dx

= Fx 
dx
dx

+ Fy 
dy
dx

>w = Fsx, yd = 0,

1002 Chapter 14: Partial Derivatives

Theorem 5 with
and ƒ = F

t = x

x

x

w � F(x, y)

� Fx
0w
0x

dx
dx � 1

y � h(x)

Fy �
0w
0y

dy
dx � h'(x)

� Fx • 1 � Fy •
dw
dx

dy
dx

FIGURE 14.22 Tree diagram for
differentiating with respect to
x. Setting leads to a simple
computational formula for implicit
differentiation (Theorem 8).

dw>dx = 0
w = Fsx, yd

THEOREM 8 A Formula for Implicit Differentiation
Suppose that F(x, y) is differentiable and that the equation defines y
as a differentiable function of x. Then at any point where 

dy
dx

= -

Fx

Fy
.

Fy Z 0,
Fsx, yd = 0

EXAMPLE 5 Implicit Differentiation

Use Theorem 8 to find dy dx if 

Solution Take Then

This calculation is significantly shorter than the single-variable calculation with which we
found dy dx in Section 3.6, Example 3.

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but you do not have
to memorize them all if you can see them as special cases of the same general formula.
When solving particular problems, it may help to draw the appropriate tree diagram by
placing the dependent variable on top, the intermediate variables in the middle, and the
selected independent variable at the bottom. To find the derivative of the dependent vari-
able with respect to the selected independent variable, start at the dependent variable and
read down each route of the tree to the independent variable, calculating and multiplying
the derivatives along each route. Then add the products you found for the different routes.

>

 =

2x + y cos xy
2y - x cos xy

.

 
dy
dx

= -

Fx

Fy
= -

-2x - y cos xy
2y - x cos xy

Fsx, yd = y 2
- x 2

- sin xy.

y 2
- x 2

- sin xy = 0.>
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In general, suppose that is a differentiable function of the vari-
ables (a finite set) and the are differentiable functions of

(another finite set). Then w is a differentiable function of the variables p
through t and the partial derivatives of w with respect to these variables are given by
equations of the form

The other equations are obtained by replacing p by one at a time.
One way to remember this equation is to think of the right-hand side as the dot

product of two vectors with components

Derivatives of w with Derivatives of the intermediate
respect to the variables with respect to the

intermediate variables selected independent variable

('''')''''*('''')''''*

a0w
0x , 

0w
0y , Á , 

0w
0y
b and a0x

0p, 
0y
0p, Á , 

0y
0p b .

q, Á , t,

0w
0p =

0w
0x  

0x
0p +

0w
0y  

0y
0p +

Á
+

0w
0y

 
0y
0p .

p, q, Á , t
x, y, Á , yx, y, Á , y

w = ƒsx, y, Á , yd

14.4 The Chain Rule 1003
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14.4 The Chain Rule 1003

EXERCISES 14.4

Chain Rule: One Independent Variable
In Exercises 1–6, (a) express dw dt as a function of t, both by using
the Chain Rule and by expressing w in terms of t and differentiating
directly with respect to t. Then (b) evaluate dw dt at the given value
of t.

1.

2.

3.

4.

5.

6.

Chain Rule: Two and Three Independent Variables
In Exercises 7 and 8, (a) express and as functions of u and

both by using the Chain Rule and by expressing z directly in terms
of u and before differentiating. Then (b) evaluate and at
the given point 

7.

8.

In Exercises 9 and 10, (a) express and as functions of u
and y both by using the Chain Rule and by expressing w directly in

0w>0y0w>0u

su, yd = s1.3, p>6d
z = tan-1 sx>yd, x = u cos y, y = u sin y; 
su, yd = s2, p>4d
z = 4e x ln y, x = ln su cos yd, y = u sin y; 

su, yd.
0z>0y0z>0uy

y

0z>0y0z>0u

w = z - sin xy, x = t, y = ln t, z = et - 1 ; t = 1

t = 1
w = 2ye x

- ln z, x = ln st 2
+ 1d, y = tan-1 t, z = e t; 

t = 3
w = ln sx 2

+ y 2
+ z 2d, x = cos t, y = sin t, z = 42t ; 

w =

x
z +

y
z , x = cos2 t, y = sin2 t, z = 1>t; t = 3

w = x 2
+ y 2, x = cos t + sin t, y = cos t - sin t; t = 0

w = x 2
+ y 2, x = cos t, y = sin t; t = p

>
>

terms of u and y before differentiating. Then (b) evaluate and
at the given point (u, y).

9.

10.

In Exercises 11 and 12, (a) express and as functions
of x, y, and z both by using the Chain Rule and by expressing u di-
rectly in terms of x, y, and z before differentiating. Then (b) evaluate

and at the given point (x, y, z).

11.

12.

Using a Tree Diagram
In Exercises 13–24, draw a tree diagram and write a Chain Rule for-
mula for each derivative.

13.

14.

15.

z = ksu, yd

0w
0u  and 

0w
0y

 for w = hsx, y, zd, x = ƒsu, yd, y = gsu, yd, 

dz
dt

 for z = ƒsu, y, wd, u = gstd, y = hstd, w = kstd

dz
dt

 for z = ƒsx, yd, x = gstd, y = hstd

sx, y, zd = sp>4, 1>2, -1>2d
u = e qr sin-1 p, p = sin x, q = z 2 ln y, r = 1>z; 

sx, y, zd = A23, 2, 1 Br = x + y - z; 

u =

p - q
q - r , p = x + y + z, q = x - y + z, 

0u>0z0u>0x, 0u>0y,

0u>0z0u>0x, 0u>0y,

z = uey; su, yd = s -2, 0d
w = ln sx 2

+ y 2
+ z 2d, x = uey sin u, y = uey cos u, 

su, yd = s1>2, 1d
w = xy + yz + xz, x = u + y, y = u - y, z = uy; 

0w>0y 0w>0u
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16.

17.

18.

19.

20.

21.

22.

23.

24.

Implicit Differentiation
Assuming that the equations in Exercises 25–28 define y as a differen-
tiable function of x, use Theorem 8 to find the value of dy dx at the
given point.

25.

26.

27.

28.

Three-Variable Implicit Differentiation
Theorem 8 can be generalized to functions of three variables and even
more. The three-variable version goes like this: If the equation

determines z as a differentiable function of x and y,
then, at points where 

Use these equations to find the values of and at the
points in Exercises 29–32.

29.

30.

31.

32. xe y
+ ye z

+ 2 ln x - 2 - 3 ln 2 = 0, s1, ln 2, ln 3d
sin sx + yd + sin s y + zd + sin sx + zd = 0, sp, p, pd

1
x +

1
y +

1
z - 1 = 0, s2, 3, 6d

z3
- xy + yz + y 3

- 2 = 0, s1, 1, 1d

0z>0y0z>0x

0z
0x = -

Fx

Fz
 and 0z

0y = -

Fy

Fz
.

Fz Z 0,
Fsx, y, zd = 0

xe y
+ sin xy + y - ln 2 = 0, s0, ln 2d

x2
+ xy + y 2

- 7 = 0, s1, 2d
xy + y 2

- 3x - 3 = 0, s -1, 1d
x 3

- 2y 2
+ xy = 0, s1, 1d

>

0w
0s  for w = gsx, yd, x = hsr, s, td, y = ksr, s, td

0w
0r  and 

0w
0s  for w = ƒsx, yd, x = gsrd, y = hssd

z = js p, qd, y = ks p, qd

0w
0p  for w = ƒsx, y, z, yd, x = gs p, qd, y = hs p, qd, 

0w
0s  and 

0w
0t  for w = gsud, u = hss, td

0y
0r  for y = ƒsud, u = gsr, sd

0z
0t  and 

0z
0s for z = ƒsx, yd, x = gst, sd, y = hst, sd

0w
0x  and 

0w
0y  for w = gsu, yd, u = hsx, yd, y = ksx, yd

0w
0u  and 

0w
0y

 for w = gsx, yd, x = hsu, yd, y = ksu, yd

t = ksx, yd

0w
0x  and 

0w
0y  for w = ƒsr, s, td, r = gsx, yd, s = hsx, yd, Finding Specified Partial Derivatives

33. Find when if 

34. Find when if 

35. Find when if 

36. Find when if 

37. Find and when if and

38. Find and when and if and

Theory and Examples
39. Changing voltage in a circuit The voltage V in a circuit that

satisfies the law is slowly dropping as the battery wears
out. At the same time, the resistance R is increasing as the resistor
heats up. Use the equation

to find how the current is changing at the instant when 
and 

40. Changing dimensions in a box The lengths a, b, and c of the edges
of a rectangular box are changing with time. At the instant in ques-
tion, 
and At what rates are the box’s volume V and
surface area S changing at that instant? Are the box’s interior di-
agonals increasing in length or decreasing?

41. If ƒ(u, y, w) is differentiable and and
show that

42. Polar coordinates Suppose that we substitute polar coordinates
and in a differentiable function

w = ƒsx, yd.
y = r sin ux = r cos u

0ƒ
0x +

0ƒ
0y +

0ƒ
0z = 0.

w = z - x,
u = x - y, y = y - z,

dc>dt = -3 m>sec.
da>dt = db>dt = 1 m>sec,c = 3 m,b = 2 m,a = 1 m,

R

� �
V

I

Battery

-0.01 volt>sec.
dV>dt =dR>dt = 0.5 ohm>sec,I = 0.04 amp,600 ohms,

R =

dV
dt

=

0V
0I

 
dI
dt

+

0V
0R

 
dR
dt

V = IR

q = 1y + 3 tan-1 u.
z = ln qy = -2u = 10z>0y0z>0u

x = eu
+ ln y.

z = 5 tan-1 xu = ln 2, y = 10z>0y0z>0u

x = u2
+ y2, y = uy.

z = sin xy + x sin y,u = 0, y = 10z>0u

x = u - 2y + 1, y = 2u + y - 2.
w = x2

+ sy>xd,u = 0, y = 00w>0y
x = y2>u, y = u + y, z = cos u.

w = xy + ln z,u = -1, y = 20w>0y
y = cos sr + sd, z = sin sr + sd.x = r - s,

w = sx + y + zd2, r = 1, s = -10w>0r
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a. Show that

and

b. Solve the equations in part (a) to express and in terms of
and 

c. Show that

43. Laplace equations Show that if satisfies the
Laplace equation and if and

then w satisfies the Laplace equation 

44. Laplace equations Let where 

and and Show that w satisfies the Laplace
equation if all the necessary functions are differ-
entiable.

Changes in Functions Along Curves
45. Extreme values on a helix Suppose that the partial derivatives

of a function ƒ(x, y, z) at points on the helix 
are

At what points on the curve, if any, can ƒ take on extreme values?

46. A space curve Let Find the value of dw dt at
the point (1, ln 2, 0) on the curve 

47. Temperature on a circle Let be the temperature at
the point (x, y) on the circle 
and suppose that

a. Find where the maximum and minimum temperatures on the
circle occur by examining the derivatives dT dt and d 2T>dt 2.>

0T
0x = 8x - 4y, 0T

0y = 8y - 4x.

x = cos t, y = sin t, 0 … t … 2p
T = ƒsx, yd

z = t .x = cos t, y = ln st + 2d,
>w = x 2e 2y cos 3z .

ƒx = cos t, ƒy = sin t, ƒz = t 2
+ t - 2.

z = t
x = cos t, y = sin t,

wxx + wyy = 0
i = 2-1.y = x - iy

u = x + iyw = ƒsud + g syd,
wxx + wyy = 0.y = xy,

u = sx 2
- y 2d>2ƒuu + ƒyy = 0

w = ƒsu, yd

sƒxd2
+ sƒyd2

= a0w
0r b

2

+

1
r 2 a0w

0u
b2

.

0w>0u.0w>0r
ƒyƒx

1
r  

0w
0u

= -ƒx sin u + ƒy cos u .

0w
0r = ƒx cos u + ƒy sin u

b. Suppose that Find the maximum and
minimum values of T on the circle.

48. Temperature on an ellipse Let be the temperature
at the point (x, y) on the ellipse

and suppose that

a. Locate the maximum and minimum temperatures on the
ellipse by examining dT dt and 

b. Suppose that Find the maximum and minimum
values of T on the ellipse.

Differentiating Integrals
Under mild continuity restrictions, it is true that if

then Using this fact and the Chain Rule, we

can find the derivative of

by letting

where Find the derivatives of the functions in Exercises 49
and 50.

49.

50. Fsxd = L
1

x2
2t 3

+ x 2 dt

Fsxd = L
x2

0
2t 4

+ x 3 dt

u = ƒsxd.

Gsu, xd = L
u

a
 g st, xd dt,

Fsxd = L
ƒsxd

a
 g st, xd dt

F¿sxd = L
b

a
 gxst, xd dt.

Fsxd = L
b

a
 g st, xd dt,

T = xy - 2.

d2T>dt2.>

0T
0x = y, 0T

0y = x.

x = 222 cos t, y = 22 sin t, 0 … t … 2p,

T = g sx, yd

T = 4x 2
- 4xy + 4y 2.
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14.5 Directional Derivatives and Gradient Vectors 1005

Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.23) showing contours on the West Point Area along the
Hudson River in New York, you will notice that the tributary streams flow perpendicular to
the contours. The streams are following paths of steepest descent so the waters reach the
Hudson as quickly as possible. Therefore, the instantaneous rate of change in a stream’s

14.5
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Directional Derivatives in the Plane

We know from Section 14.4 that if ƒ(x, y) is differentiable, then the rate at which ƒ changes
with respect to t along a differentiable curve is

At any point this equation gives the rate of change of ƒ
with respect to increasing t and therefore depends, among other things, on the direction
of motion along the curve. If the curve is a straight line and t is the arc length parameter
along the line measured from in the direction of a given unit vector u, then dƒ dt is
the rate of change of ƒ with respect to distance in its domain in the direction of u. By
varying u, we find the rates at which ƒ changes with respect to distance as we move
through in different directions. We now define this idea more precisely.

Suppose that the function ƒ(x, y) is defined throughout a region R in the xy-plane, that
is a point in R, and that is a unit vector. Then the equations

parametrize the line through parallel to u. If the parameter s measures arc length from
in the direction of u, we find the rate of change of ƒ at in the direction of u by calcu-

lating dƒ ds at (Figure 14.24).P0>
P0P0

P0

x = x0 + su1, y = y0 + su2

u = u1 i + u2 jP0sx0, y0d

P0

>P0

P0sx0, y0d = P0sgst0d, hst0dd,

dƒ
dt

=

0ƒ
0x  

dx
dt

+

0ƒ
0y  

dy
dt

.

x = gstd, y = hstd

1006 Chapter 14: Partial Derivatives

FIGURE 14.23 Contours of the West Point Area in New
York show streams, which follow paths of steepest
descent, running perpendicular to the contours.

x

y

0

R

Line x � x0 � su1, y � y0 � su2

u � u1i � u2 j

Direction of
increasing s

P0(x0, y0) 

FIGURE 14.24 The rate of change of ƒ in
the direction of u at a point is the rate at
which ƒ changes along this line at P0 .

P0

altitude above sea level has a particular direction. In this section, you see why this direc-
tion, called the “downhill” direction, is perpendicular to the contours.
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The directional derivative is also denoted by

EXAMPLE 1 Finding a Directional Derivative Using the Definition

Find the derivative of

at in the direction of the unit vector 

Solution

The rate of change of at in the direction 

is 

Interpretation of the Directional Derivative

The equation represents a surface S in space. If then the point
lies on S. The vertical plane that passes through P and parallel to uP0sx0, y0dPsx0, y0, z0d

z0 = ƒsx0, y0d,z = ƒsx, yd

5>12.A1>22 B j
u = A1>12 B i +P0s1, 2dƒsx, yd = x2

+ xy

 = lim
s:0

 

5s22
+ s2

s = lim
s:0

 ¢ 522
+ s≤ = ¢ 522

+ 0≤ =

522
.

 = lim
s:0

 

¢1 +

2s22
+

s2

2 ≤ + ¢2 +

3s22
+

s2

2 ≤ - 3

s

 = lim
s:0

 

¢1 +

s22
≤2

+ ¢1 +

s22
≤ ¢2 +

s22
≤ - s12

+ 1 # 2d

s

 = lim
s:0

 

ƒ¢1 + s # 122
, 2 + s # 122

≤ - ƒs1, 2d

s

 ¢dƒ
ds
≤

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s

u = A1>22 B i + A1>22 B j.P0s1, 2d

ƒsx, yd = x 2
+ xy

sDu ƒdP0.

14.5 Directional Derivatives and Gradient Vectors 1007

DEFINITION Directional Derivative
The derivative of ƒ at in the direction of the unit vector

is the number

(1)

provided the limit exists.

adƒ
ds
b

u,P0

= lim
s:0

 
ƒsx0 + su1, y0 + su2d - ƒsx0, y0d

s ,

u2j
u � u1i �P0(x0, y0)

“The derivative of ƒ at 
in the direction of u”

P0

Equation (1)
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intersects S in a curve C (Figure 14.25). The rate of change of ƒ in the direction of u is the
slope of the tangent to C at P.

When the directional derivative at is evaluated at When
the directional derivative at is evaluated at The directional deriv-

ative generalizes the two partial derivatives. We can now ask for the rate of change of ƒ in
any direction u, not just the directions i and j.

Here’s a physical interpretation of the directional derivative. Suppose that 
is the temperature at each point (x, y) over a region in the plane. Then is the tem-
perature at the point and is the instantaneous rate of change of the tem-
perature at stepping off in the direction u.

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differen-
tiable function ƒ. We begin with the line

(2)

through parametrized with the arc length parameter s increasing in the direc-
tion of the unit vector Then

(3)

Direction uGradient of ƒ at P0

('')''*(''''')'''''*

 = c a0ƒ
0x bP0

 i + a0ƒ
0y bP0

j d # cu1 i + u2 j d .

 = a0ƒ
0x bP0

# u1 + a0ƒ
0y bP0

# u2

 adƒ
ds
b

u,P0

= a0ƒ
0x bP0

 
dx
ds

+ a0ƒ
0y bP0

 
dy
ds

u = u1 i + u2 j.
P0sx0, y0d ,

x = x0 + su1 , y = y0 + su2 ,

P0

sDu ƒdP0P0sx0, y0d
ƒsx0, y0d

T = ƒsx, yd

sx0, y0d.0ƒ>0yP0u = j,
sx0, y0d.0ƒ>0xP0u = i,

1008 Chapter 14: Partial Derivatives





z

x

yC

Q

s

Surface S:
z � f (x, y)

f (x0 � su1, y0 � su2 ) � f (x0, y0)

Tangent line

P(x0, y0, z0)

P0(x0, y0) u � u1i � u2 j

(x0 � su1, y0 � su2)

FIGURE 14.25 The slope of curve C at
is slope (PQ); this is the 

directional derivative

adƒ

ds
b

u,P0

= sDu ƒdP0.

lim
Q:P

P0

Chain Rule for differentiable f

From Equations (2),
and dy>ds = u2dx>ds = u1

DEFINITION Gradient Vector
The gradient vector (gradient) of ƒ(x, y) at a point is the vector

obtained by evaluating the partial derivatives of ƒ at P0 .

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j

P0sx0, y0d

The notation is read “grad ƒ” as well as “gradient of ƒ” and “del ƒ.” The symbol 
by itself is read “del.” Another notation for the gradient is grad ƒ, read the way it is
written.

Equation (3) says that the derivative of a differentiable function ƒ in the direction of u
at is the dot product of u with the gradient of ƒ at P0 .P0

§§ƒ
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EXAMPLE 2 Finding the Directional Derivative Using the Gradient

Find the derivative of at the point (2, 0) in the direction of

Solution The direction of v is the unit vector obtained by dividing v by its length:

The partial derivatives of ƒ are everywhere continuous and at (2, 0) are given by

The gradient of ƒ at (2, 0) is

(Figure 14.26). The derivative of ƒ at (2, 0) in the direction of v is therefore

Evaluating the dot product in the formula

where is the angle between the vectors u and reveals the following properties.§ƒ,u

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ cos u = ƒ §ƒ ƒ cos u,

 = si + 2jd # a35 i -
4
5 jb =

3
5 -

8
5 = -1 .

 sDuƒd ƒ s2,0d = §ƒ ƒ s2,0d # u

§ƒ ƒ s2,0d = ƒxs2, 0di + ƒys2, 0dj = i + 2j

 ƒys2, 0d = sxe y
- x sin sxydds2,0d = 2e0

- 2 # 0 = 2.

 ƒxs2, 0d = se y
- y sin sxydds2,0d = e0

- 0 = 1

u =

v
ƒ v ƒ

=

v
5 =

3
5 i -

4
5 j.

v = 3i - 4j.
ƒsx, yd = xe y

+ cos sxyd

14.5 Directional Derivatives and Gradient Vectors 1009

THEOREM 9 The Directional Derivative Is a Dot Product
If ƒ(x, y) is differentiable in an open region containing then

(4)

the dot product of the gradient ƒ at and u.P0

adƒ
ds
b

u,P0

= s§ƒdP0
# u,

P0sx0 , y0d,

Equation (4)
x

y

0 1 3 4

–1

1

2
∇f � i � 2j

u �    i �    j3
5

4
5

P0(2, 0)

FIGURE 14.26 Picture as a vector 
in the domain of ƒ. In the case of

the domain 
is the entire plane. The rate at which ƒ
changes at (2, 0) in the direction

is 
(Example 2).

§ƒ # u = -1u = s3>5di - s4>5dj

ƒsx, yd = xe y
+ cos sxyd,

§ƒ

Properties of the Directional Derivative 

1. The function ƒ increases most rapidly when or when u is the
direction of That is, at each point P in its domain, ƒ increases most
rapidly in the direction of the gradient vector at P. The derivative in this
direction is

2. Similarly, ƒ decreases most rapidly in the direction of The derivative
in this direction is 

3. Any direction u orthogonal to a gradient is a direction of zero
change in ƒ because then equals and

Duƒ = ƒ §ƒ ƒ cos sp>2d = ƒ §ƒ ƒ
# 0 = 0.

p>2u

§f Z 0

Duƒ = ƒ §ƒ ƒ cos spd = - ƒ §ƒ ƒ .
- §ƒ.

Duƒ = ƒ §ƒ ƒ cos s0d = ƒ §ƒ ƒ .

§ƒ
§ƒ.

cos u = 1

Duƒ = §ƒ # u = ƒ §ƒ ƒ cos u
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As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3 Finding Directions of Maximal, Minimal, and Zero Change

Find the directions in which 

(a) Increases most rapidly at the point (1, 1)

(b) Decreases most rapidly at (1, 1).

(c) What are the directions of zero change in ƒ at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of at (1, 1). The gradient there
is

Its direction is

(b) The function decreases most rapidly in the direction of at (1, 1), which is

(c) The directions of zero change at (1, 1) are the directions orthogonal to 

See Figure 14.27.

Gradients and Tangents to Level Curves

If a differentiable function ƒ(x, y) has a constant value c along a smooth curve
(making the curve a level curve of ƒ), then Differenti-

ating both sides of this equation with respect to t leads to the equations

(5)

Equation (5) says that is normal to the tangent vector dr dt, so it is normal to the
curve.

>§ƒ

dr

dt
§ƒ

('')''*('')''*

 a0ƒ
0x  i +

0ƒ
0y  jb # adg

dt
 i +

dh
dt

 jb = 0.

 
0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

= 0

 
d
dt

 ƒsgstd, hstdd =

d
dt

 scd

ƒsgstd, hstdd = c.r = gstdi + hstdj

n = -
122

 i +
122

 j and -n =
122

 i -
122

 j.

§ƒ:

-u = -
122

 i -
122

 j.

- §ƒ

u =

i + j

ƒ i + j ƒ

=

i + j2s1d2
+ s1d2

=
122

 i +
122

 j.

s§ƒds1,1d = sxi + yjds1,1d = i + j .

§ƒ

ƒsx, yd = sx 2>2d + s y 2>2d

1010 Chapter 14: Partial Derivatives

z

x

y
1

1

(1, 1)

(1, 1, 1)

Most rapid
increase in f

Most rapid
decrease in f

∇f � i � j

Zero change
in f

–∇f

z � f (x, y)

�      �
2
x2

2
y2

FIGURE 14.27 The direction in which
increases most

rapidly at (1, 1) is the direction of
It corresponds to the

direction of steepest ascent on the surface
at (1, 1, 1) (Example 3).

§ƒ ƒ s1,1d = i + j.

ƒsx, yd = sx2>2d + s y2>2d

Chain Rule
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Equation (5) validates our observation that streams flow perpendicular to the contours
in topographical maps (see Figure 14.23). Since the downflowing stream will reach its
destination in the fastest way, it must flow in the direction of the negative gradient vectors
from Property 2 for the directional derivative. Equation (5) tells us these directions are
perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves.
They are the lines normal to the gradients. The line through a point normal to a
vector has the equation

(Exercise 35). If N is the gradient the equation is
the tangent line given by

(6)

EXAMPLE 4 Finding the Tangent Line to an Ellipse

Find an equation for the tangent to the ellipse

(Figure 14.29) at the point 

Solution The ellipse is a level curve of the function

The gradient of ƒ at is

The tangent is the line

If we know the gradients of two functions ƒ and g, we automatically know the gradients of
their constant multiples, sum, difference, product, and quotient. You are asked to establish
the following rules in Exercise 36. Notice that these rules have the same form as the corre-
sponding rules for derivatives of single-variable functions.

 x - 2y = -4.

 s -1dsx + 2d + s2ds y - 1d = 0

§ƒ ƒ s-2,1d = ax
2

 i + 2yjb
s-2,1d

= - i + 2j.

s -2, 1d

ƒsx, yd =

x 2

4
+ y 2.

s -2, 1d.

x 2

4
+ y 2

= 2

ƒxsx0, y0dsx - x0d + ƒysx0, y0dsy - y0d = 0.

s§ƒdsx0, y0d = ƒxsx0, y0di + ƒysx0, y0dj,

Asx - x0d + Bs y - y0d = 0

N = Ai + Bj
P0sx0, y0d

14.5 Directional Derivatives and Gradient Vectors 1011

At every point in the domain of a differentiable function ƒ(x, y), the gra-
dient of ƒ is normal to the level curve through (Figure 14.28).sx0, y0d

sx0, y0d
The level curve f (x, y) � f (x0, y0)

(x0, y0)

∇f (x0, y0)

FIGURE 14.28 The gradient of a
differentiable function of two variables at a
point is always normal to the function’s
level curve through that point.

Equation (6)

y

x
0–1–2

1

1 2

∇f (–2, 1) � – i � 2j x � 2y � –4

(–2, 1)

�2

2�2

� y2 � 2x2

4

FIGURE 14.29 We can find the tangent
to the ellipse by treating
the ellipse as a level curve of the function

(Example 4).ƒsx, yd = sx 2>4d + y 2

sx 2>4d + y 2
= 2
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EXAMPLE 5 Illustrating the Gradient Rules

We illustrate the rules with

We have

1.

2.

3.

4.

5.

Functions of Three Variables

For a differentiable function ƒ(x, y, z) and a unit vector in space, we
have

and

Duƒ = §ƒ # u =

0ƒ
0x  u1 +

0ƒ
0y  u2 +

0ƒ
0z  u3.

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

u = u1 i + u2 j + u3 k

 =

3ysi - jd - sx - yd3j

9y2 =

g§ƒ - ƒ§g

g2 .

 =

3yi - 3xj

9y2 =

3ysi - jd - s3x - 3ydj
9y2

 =
1
3y

 i -

x
3y2 j

 § aƒg b = § ax - y
3y
b = § a x

3y
-

1
3
b

 = 3ysi - jd + sx - yd3j = g§ƒ + ƒ§g

 = 3ysi - jd + s3x - 3ydj

 = 3ysi - jd + 3yj + s3x - 6ydj

 §sƒgd = §s3xy - 3y2d = 3yi + s3x - 6ydj

§sƒ - gd = §sx - 4yd = i - 4j = §ƒ - §g

§sƒ + gd = §sx + 2yd = i + 2j = §ƒ + §g

§s2ƒd = §s2x - 2yd = 2i - 2j = 2§ƒ

ƒsx, yd = x - y gsx, yd = 3y

§ƒ = i - j §g = 3j.

1012 Chapter 14: Partial Derivatives

Algebra Rules for Gradients

1. Constant Multiple Rule:

2. Sum Rule:

3. Difference Rule:

4. Product Rule:

5. Quotient Rule: § aƒg b =

g§ƒ - ƒ§g

g2

§sƒgd = ƒ§g + g§ƒ

§sƒ - gd = §ƒ - §g

§sƒ + gd = §ƒ + §g

§skƒd = k§ƒ sany number kd
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The directional derivative can once again be written in the form

so the properties listed earlier for functions of two variables continue to hold. At any given
point, ƒ increases most rapidly in the direction of and decreases most rapidly in the di-
rection of In any direction orthogonal to the derivative is zero.

EXAMPLE 6 Finding Directions of Maximal, Minimal, and Zero Change

(a) Find the derivative of at in the direction of

(b) In what directions does ƒ change most rapidly at and what are the rates of change
in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

The partial derivatives of ƒ at are

The gradient of ƒ at is

The derivative of ƒ at in the direction of v is therefore

(b) The function increases most rapidly in the direction of and de-
creases most rapidly in the direction of The rates of change in the directions are,
respectively,

ƒ §ƒ ƒ = 2s2d2
+ s -2d2

+ s -1d2
= 29 = 3 and - ƒ §ƒ ƒ = -3 .

- §ƒ.
§ƒ = 2i - 2j - k

 =
4
7 +

6
7 -

6
7 =

4
7 .

 sDuƒds1,1,0d = §ƒ ƒs1,1,0d # u = s2i - 2j - kd # a27 i -

3
7 j +

6
7 kb

P0

§ƒ ƒ s1,1,0d = 2i - 2j - k.

P0

ƒx = s3x2
- y2ds1,1,0d = 2, ƒy = -2xy ƒ s1,1,0d = -2, ƒz = -1 ƒ s1,1,0d = -1.

P0

 u =

v
ƒ v ƒ

=
2
7 i -

3
7 j +

6
7 k.

 ƒ v ƒ = 2s2d2
+ s -3d2

+ s6d2
= 249 = 7

P0,

v = 2i - 3j + 6k.
P0s1, 1, 0dƒsx, y, zd = x 3

- xy 2
- z

§ƒ,- §ƒ.
§ƒ

Duƒ = §ƒ # u = ƒ §ƒ ƒ ƒ u ƒ  cos u = ƒ §ƒ ƒ  cos u,

14.5 Directional Derivatives and Gradient Vectors 1013
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14.5 Directional Derivatives and Gradient Vectors 1013

EXERCISES 14.5

Calculating Gradients at Points
In Exercises 1–4, find the gradient of the function at the given point.
Then sketch the gradient together with the level curve that passes
through the point.

1. 2. ƒsx, yd = ln sx 2
+ y 2d, s1, 1dƒsx, yd = y - x, s2, 1d

3. 4.

In Exercises 5–8, find at the given point.

5.

6. ƒsx, y, zd = 2z3
- 3sx 2

+ y 2dz + tan-1 xz, s1, 1, 1d
ƒsx, y, zd = x 2

+ y 2
- 2z 2

+ z ln x, s1, 1, 1d
§f

gsx, yd =

x 2

2
-

y 2

2
, A22, 1 Bgsx, yd = y - x 2, s -1, 0d
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7.

8.

Finding Directional Derivatives
In Exercises 9–16, find the derivative of the function at in the
direction of A.

9.

10.

11.

12.

13.

14.

15.

16.

Directions of Most Rapid Increase and Decrease
In Exercises 17–22, find the directions in which the functions increase
and decrease most rapidly at Then find the derivatives of the func-
tions in these directions.

17.

18.

19.

20.

21.

22.

Tangent Lines to Curves
In Exercises 23–26, sketch the curve together with 
and the tangent line at the given point. Then write an equation for the
tangent line.

23. 24.

25. 26.

Theory and Examples
27. Zero directional derivative In what direction is the derivative

of at P(3, 2) equal to zero?

28. Zero directional derivative In what directions is the derivative
of at P(1, 1) equal to zero?

29. Is there a direction u in which the rate of change of 
at P(1, 2) equals 14? Give reasons for your answer.x2

- 3xy + 4y2
ƒsx, yd =

ƒsx, yd = sx2
- y2d>sx2

+ y2d

ƒsx, yd = xy + y2

x2
- xy + y2

= 7, s -1, 2dxy = -4, s2, -2d

x2
- y = 1, A22, 1 Bx2

+ y2
= 4, A22, 22 B

§fƒsx, yd = c

hsx, y, zd = ln sx2
+ y2

- 1d + y + 6z, P0s1, 1, 0d
ƒsx, y, zd = ln xy + ln yz + ln xz, P0s1, 1, 1d
gsx, y, zd = xe y

+ z2, P0s1, ln 2, 1>2d
ƒsx, y, zd = sx>yd - yz, P0s4, 1, 1d
ƒsx, yd = x2y + e xy sin y, P0s1, 0d
ƒsx, yd = x2

+ xy + y2, P0s -1, 1d

P0.

A = i + 2j + 2k
hsx, y, zd = cos xy + e yz

+ ln zx, P0s1, 0, 1>2d, 
gsx, y, zd = 3e x cos yz, P0s0, 0, 0d, A = 2i + j - 2k

ƒsx, y, zd = x 2
+ 2y 2

- 3z 2, P0s1, 1, 1d, A = i + j + k

ƒsx, y, zd = xy + yz + zx, P0s1, -1, 2d, A = 3i + 6j - 2k

A = 3i - 2j
hsx, yd = tan-1 sy>xd + 23 sin-1 sxy>2d, P0s1, 1d, 
A = 12i + 5j
gsx, yd = x - s y2>xd + 23 sec-1 s2xyd, P0s1, 1d, 

ƒsx, yd = 2x2
+ y2, P0s -1, 1d, A = 3i - 4j

ƒsx, yd = 2xy - 3y2, P0s5, 5d, A = 4i + 3j

P0

ƒsx, y, zd = e x + y cos z + s y + 1d sin-1 x, s0, 0, p>6d
ƒsx, y, zd = sx2

+ y2
+ z2d-1>2

+ ln sxyzd, s -1, 2, -2d 30. Changing temperature along a circle Is there a direction u in
which the rate of change of the temperature function 

(temperature in degrees Celsius, distance in feet) at
is Give reasons for your answer.

31. The derivative of ƒ(x, y) at in the direction of is
and in the direction of is What is the derivative of

ƒ in the direction of Give reasons for your answer.

32. The derivative of ƒ(x, y, z) at a point P is greatest in the direction
of In this direction, the value of the derivative is

a. What is at P ? Give reasons for your answer.

b. What is the derivative of ƒ at P in the direction of 

33. Directional derivatives and scalar components How is the
derivative of a differentiable function ƒ(x, y, z) at a point in the
direction of a unit vector u related to the scalar component of

in the direction of u? Give reasons for your answer.

34. Directional derivatives and partial derivatives Assuming that
the necessary derivatives of ƒ(x, y, z) are defined, how are 

and related to and Give reasons for your
answer.

35. Lines in the xy-plane Show that 
is an equation for the line in the xy-plane through the point

normal to the vector 

36. The algebra rules for gradients Given a constant k and the
gradients

and

use the scalar equations

and so on, to establish the following rules.

a.

b.

c.

d.

e. § aƒg b =

g§ƒ - ƒ§g

g2

§sƒgd = ƒ§g + g§ƒ

§sƒ - gd = §ƒ - §g

§sƒ + gd = §ƒ + §g

§skƒd = k§ƒ

 
0

0x sƒgd = ƒ 
0g
0x + g 

0ƒ
0x  , 0

0x aƒg b =

g 
0ƒ
0x - ƒ 

0g
0x

g2  , 

 
0

0x skƒd = k 
0ƒ
0x  , 0

0x sƒ ; gd =

0ƒ
0x ;

0g
0x  , 

§g =

0g
0x  i +

0g
0y  j +

0g
0z  k,

§ƒ =

0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  k

N = Ai + Bj.sx0 , y0d

Asx - x0d + Bsy - y0d = 0

ƒz?ƒx , ƒy,Dk ƒDj ƒ,
Di ƒ,

s§ƒdP0

P0

i + j?

§ƒ

213.
v = i + j - k.

- i - 2j?
-3 .-2j212

i + jP0s1, 2d
-3°C>ft ?Ps1, -1, 1d

2xy - yz
T sx, y, zd =

1014 Chapter 14: Partial Derivatives
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14.6 Tangent Planes and Differentials 1015

Tangent Planes and Differentials

In this section we define the tangent plane at a point on a smooth surface in space. We
calculate an equation of the tangent plane from the partial derivatives of the function
defining the surface. This idea is similar to the definition of the tangent line at a point on
a curve in the coordinate plane for single-variable functions (Section 2.7). We then study
the total differential and linearization of functions of several variables.

Tangent Planes and Normal Lines

If is a smooth curve on the level surface of a
differentiable function ƒ, then Differentiating both sides of this
equation with respect to t leads to

(1)

At every point along the curve, is orthogonal to the curve’s velocity vector.
Now let us restrict our attention to the curves that pass through (Figure 14.30).

All the velocity vectors at are orthogonal to at so the curves’ tangent lines all
lie in the plane through normal to We call this plane the tangent plane of the
surface at The line through perpendicular to the plane is the surface’s normal line
at P0.

P0P0.
§ƒ.P0

P0,§ƒP0

P0

§ƒ

dr>dt§ƒ

('''')''''*('''')''''*

 a0ƒ
0x  i +

0ƒ
0y  j +

0ƒ
0z  kb # adg

dt
 i +

dh
dt

 j +

dk
dt

 kb = 0.

 
0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

+

0ƒ
0z  

dk
dt

= 0

 
d
dt

 ƒsgstd, hstd, kstdd =

d
dt

 scd

ƒsgstd, hstd, kstdd = c.
ƒsx, y, zd = cr = gstdi + hstdj + kstdk

14.6

Chain Rule

∇f
v2

v1
P0

f (x, y, z) � c

FIGURE 14.30 The gradient is
orthogonal to the velocity vector of every
smooth curve in the surface through 
The velocity vectors at therefore lie in a
common plane, which we call the tangent
plane at P0.

P0

P0.

§ƒ

DEFINITIONS Tangent Plane, Normal Line

The tangent plane at the point on the level surface 
of a differentiable function ƒ is the plane through normal to 

The normal line of the surface at is the line through parallel to §ƒ ƒ P0.P0P0

§ƒ ƒ P0.P0

ƒsx, y, zd = cP0sx0 , y0 , z0d

Thus, from Section 12.5, the tangent plane and normal line have the following equations:

Tangent Plane to at 

(2)

Normal Line to at 

(3)x = x0 + ƒxsP0dt, y = y0 + ƒysP0dt, z = z0 + ƒzsP0dt

P0sx0 , y0 , z0dƒsx, y, zd = c

ƒxsP0dsx - x0d + ƒysP0dsy - y0d + ƒzsP0dsz - z0d = 0

P0sx0 , y0, z0dƒsx, y, zd = c
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EXAMPLE 1 Finding the Tangent Plane and Normal Line

Find the tangent plane and normal line of the surface

at the point 

Solution The surface is shown in Figure 14.31.
The tangent plane is the plane through perpendicular to the gradient of ƒ at 

The gradient is

The tangent plane is therefore the plane

The line normal to the surface at is

To find an equation for the plane tangent to a smooth surface at a point
where we first observe that the equation is equiv-

alent to The surface is therefore the zero level surface of the
function The partial derivatives of F are

The formula

for the plane tangent to the level surface at therefore reduces to

ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

P0

FxsP0dsx - x0d + FysP0dsy - y0d + FzsP0dsz - z0d = 0

 Fz =

0

0z sƒsx, yd - zd = 0 - 1 =  -1.

 Fy =

0

0y sƒsx, yd - zd = fy - 0 = fy

 Fx =

0

0x sƒsx, yd - zd = fx - 0 = fx

Fsx, y, zd = ƒsx, yd - z.
z = ƒsx, ydƒsx, yd - z = 0.

z = ƒsx, ydz0 = ƒsx0, y0d,P0sx0, y0, z0d
z = ƒsx, yd

x = 1 + 2t, y = 2 + 4t, z = 4 + t.

P0

2sx - 1d + 4s y - 2d + sz - 4d = 0, or 2x + 4y + z = 14.

§ƒ ƒ P0 = s2xi + 2yj + kds1,2,4d = 2i + 4j + k.

P0 .P0

P0s1, 2, 4d .

ƒsx, y, zd = x 2
+ y 2

+ z - 9 = 0

1016 Chapter 14: Partial Derivatives

A circular paraboloid

z

y

x

Normal line

21

Tangent plane

The surface
x2 � y2 � z � 9 � 0

P0(1, 2, 4)

FIGURE 14.31 The tangent plane 
and normal line to the surface

at 
(Example 1).

P0s1, 2, 4dx2
+ y2

+ z - 9 = 0

Plane Tangent to a Surface at 
The plane tangent to the surface of a differentiable function ƒ at the
point is

(4)ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d - sz - z0d = 0.

sx0 , y0 , ƒsx0 , y0ddP0sx0 , y0 , z0d =

z = ƒsx, yd
sx0, y0, ƒsx0, y0ddz = ƒsx, yd

EXAMPLE 2 Finding a Plane Tangent to a Surface 

Find the plane tangent to the surface at (0, 0, 0).z = x cos y - ye x

z = ƒsx, yd
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Solution We calculate the partial derivatives of and use
Equation (4):

The tangent plane is therefore

or

EXAMPLE 3 Tangent Line to the Curve of Intersection of Two Surfaces

The surfaces

and

meet in an ellipse E (Figure 14.32). Find parametric equations for the line tangent to E at
the point 

Solution The tangent line is orthogonal to both and at and therefore parallel
to The components of v and the coordinates of give us equations for the
line. We have

The tangent line is

Estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to
estimate how much the value of a function ƒ changes if we move a small distance ds from
a point to another point nearby. If ƒ were a function of a single variable, we would have

For a function of two or more variables, we use the formula

where u is the direction of the motion away from P0.

dƒ = s§ƒ ƒ P0
# ud ds,

dƒ = ƒ¿sP0d ds.

P0

x = 1 + 2t, y = 1 - 2t, z = 3 - 2t.

 v = s2i + 2jd * si + kd = 3 i j k

2 2 0

1 0 1

3 = 2i - 2j - 2k.

 §g ƒ s1,1,3d = si + kds1,1,3d = i + k

 §ƒ ƒ s1,1,3d = s2xi + 2yjds1,1,3d = 2i + 2j

P0v = §ƒ * §g.
P0,§g§ƒ

P0s1, 1, 3d .

gsx, y, zd = x + z - 4 = 0

ƒsx, y, zd = x 2
+ y 2

- 2 = 0

x - y - z = 0.

1 # sx - 0d - 1 # s y - 0d - sz - 0d = 0,

 ƒys0, 0d = s -x sin y - e xds0,0d = 0 - 1 =  -1.

 ƒxs0, 0d = scos y - ye xds0,0d = 1 - 0 # 1 = 1

ƒsx, yd = x cos y - yex

14.6 Tangent Planes and Differentials 1017

Equation (4)

A cylinder

A plane

Ordinary derivative * increment

Directional derivative * increment

z

y

x

∇g

(1, 1, 3)
∇f

The cylinder
x2 � y2 � 2 � 0

f (x, y, z)

∇f � ∇g

The plane
x � z � 4 � 0

g(x, y, z)

The ellipse E

FIGURE 14.32 The cylinder
and the

plane 
intersect in an ellipse E (Example 3).

gsx, y, zd = x + z - 4 = 0
ƒsx, y, zd = x 2

+ y 2
- 2 = 0
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EXAMPLE 4 Estimating Change in the Value of ƒ(x, y, z)

Estimate how much the value of

will change if the point P(x, y, z) moves 0.1 unit from straight toward

Solution We first find the derivative of ƒ at in the direction of the vector 
The direction of this vector is

The gradient of ƒ at is

Therefore,

The change dƒ in ƒ that results from moving unit away from in the direction
of u is approximately

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to replace them
with simpler ones that give the accuracy required for specific applications without being
so difficult to work with. We do this in a way that is similar to the way we find linear
replacements for functions of a single variable (Section 3.8).

Suppose the function we wish to replace is and that we want the
replacement to be effective near a point at which we know the values of and

and at which ƒ is differentiable. If we move from to any point (x, y) by increments
and then the definition of differentiability from Section 14.3

gives the change

ƒsx, yd - ƒsx0, y0d = fxsx0, y0d¢x + ƒysx0, y0d¢y + P1¢x + P2¢y,

¢y = y - y0,¢x = x - x0

sx0, y0dƒy

ƒ, ƒx,sx0, y0d
z = ƒsx, yd

dƒ = s§ƒ ƒ P0
# udsdsd = a- 2

3
bs0.1d L -0.067 unit.

P0ds = 0.1

§ƒ ƒ P0
# u = si + 2kd # a2

3
 i +

1
3

 j -
2
3

 kb =
2
3

-
4
3

= -
2
3

.

§ƒ ƒ s0,1,0d = ss y cos xdi + ssin x + 2zdj + 2ykdds0,1,0d = i + 2k.

P0

u =

P0 P1
1

ƒ P0 P1
1

ƒ

=

P0 P1
1

3
=

2
3

 i +
1
3

 j -
2
3

 k.

2i + j - 2k.
P0P1
1

=P0

P1s2, 2, -2d.
P0s0, 1, 0d

ƒsx, y, zd = y sin x + 2yz

1018 Chapter 14: Partial Derivatives

Estimating the Change in ƒ in a Direction u
To estimate the change in the value of a differentiable function ƒ when we move a
small distance ds from a point in a particular direction u, use the formula

Directional Distance
derivative increment

()*('')''*

dƒ = s§ƒ ƒ P0
# ud #  ds

P0
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where as If the increments and are small, the products
and will eventually be smaller still and we will have

In other words, as long as and are small, ƒ will have approximately the same value
as the linear function L. If ƒ is hard to use, and our work can tolerate the error involved, we
may approximate ƒ by L (Figure 14.33).

¢y¢x

Lsx, yd
(''''''''''''')'''''''''''''*

ƒsx, yd L ƒsx0 , y0d + fxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

P2¢yP1¢x
¢y¢x¢x, ¢y : 0.P1, P2 : 0

14.6 Tangent Planes and Differentials 1019

A point
near (x0, y0)

(x, y)

	y � y � y0

	x � x � x0
(x0, y0)

A point where
f is differentiable

FIGURE 14.33 If ƒ is differentiable at
then the value of ƒ at any point

(x, y) nearby is approximately
ƒsx0 , y0d + ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

sx0 , y0d,

DEFINITIONS Linearization, Standard Linear Approximation
The linearization of a function ƒ(x, y) at a point where ƒ is differentiable
is the function

(5)

The approximation

is the standard linear approximation of ƒ at sx0 , y0d.

ƒsx, yd L Lsx, yd

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d.

sx0, y0d

From Equation (4), we see that the plane is tangent to the surface
at the point Thus, the linearization of a function of two variables is

a tangent-plane approximation in the same way that the linearization of a function of a
single variable is a tangent-line approximation.

EXAMPLE 5 Finding a Linearization

Find the linearization of

at the point (3, 2).

Solution We first evaluate and at the point 

giving

The linearization of ƒ at (3, 2) is  Lsx, yd = 4x - y - 2.

 = 8 + s4dsx - 3d + s -1ds y - 2d = 4x - y - 2.

 Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d

 ƒys3, 2d =

0

0y ax 2
- xy +

1
2

 y 2
+ 3b

s3,2d
= s -x + yds3,2d = -1, 

 ƒxs3, 2d =

0

0x ax 2
- xy +

1
2

 y2
+ 3b

s3,2d
= s2x - yds3,2d = 4

 ƒs3, 2d = ax2
- xy +

1
2

 y2
+ 3b

s3,2d
= 8

sx0 , y0d = s3, 2d:ƒyƒ, ƒx ,

ƒsx, yd = x2
- xy +

1
2

 y2
+ 3

sx0 , y0d.z = ƒsx, yd
z = Lsx, yd
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When approximating a differentiable function ƒ(x, y) by its linearization L(x, y) at
an important question is how accurate the approximation might be.

If we can find a common upper bound M for and on a rectangle 
R centered at (Figure 14.34), then we can bound the error E throughout R by 
using a simple formula (derived in Section 14.10). The error is defined by 
ƒsx, yd - Lsx, yd.

Esx, yd =

sx0, y0d
ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,

sx0 , y0d,

1020 Chapter 14: Partial Derivatives

The Error in the Standard Linear Approximation
If ƒ has continuous first and second partial derivatives throughout an open set
containing a rectangle R centered at and if M is any upper bound for the
values of and on R, then the error E(x, y) incurred in replacing
ƒ(x, y) on R by its linearization

satisfies the inequality

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

Lsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0dsy - y0d

ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,
sx0 , y0d

y

x
0

k
h

R

(x0, y0)

FIGURE 14.34 The rectangular region
in the

xy-plane.
R: ƒ x - x0 ƒ … h, ƒ y - y0 ƒ … k

To make small for a given M, we just make and small.

EXAMPLE 6 Bounding the Error in Example 5

Find an upper bound for the error in the approximation in Example 5
over the rectangle

Express the upper bound as a percentage of ƒ(3, 2), the value of ƒ at the center of the
rectangle.

Solution We use the inequality

To find a suitable value for M, we calculate and finding, after a routine
differentiation, that all three derivatives are constant, with values

The largest of these is 2, so we may safely take M to be 2. With we then
know that, throughout R,

Finally, since and on R, we have

As a percentage of the error is no greater than

0.04
8

* 100 = 0.5% .

ƒs3, 2d = 8,

ƒ Esx, yd ƒ … s0.1 + 0.1d2
= 0.04.

ƒ y - 2 ƒ … 0.1ƒ x - 3 ƒ … 0.1

ƒ Esx, yd ƒ …
1
2

 s2ds ƒ x - 3 ƒ + ƒ y - 2 ƒ d2
= s ƒ x - 3 ƒ + ƒ y - 2 ƒ d2.

sx0 , y0d = s3, 2d,

ƒ ƒxx ƒ = ƒ 2 ƒ = 2, ƒ ƒxy ƒ = ƒ -1 ƒ = 1, ƒ ƒyy ƒ = ƒ 1 ƒ = 1.

ƒyy,ƒxx, ƒxy,

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2 .

R: ƒ x - 3 ƒ … 0.1, ƒ y - 2 ƒ … 0.1 .

ƒsx, yd L Lsx, yd

ƒ y - y0 ƒƒ x - x0 ƒƒ Esx, yd ƒ
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Differentials

Recall from Section 3.8 that for a function of a single variable, we defined the
change in ƒ as x changes from a to by

and the differential of ƒ as

We now consider a function of two variables.
Suppose a differentiable function ƒ(x, y) and its partial derivatives exist at a point

If we move to a nearby point the change in ƒ is

A straightforward calculation from the definition of L(x, y), using the notation 
and shows that the corresponding change in L is

The differentials dx and dy are independent variables, so they can be assigned any values.
Often we take and We then have the following
definition of the differential or total differential of ƒ.

dy = ¢y = y - y0 .dx = ¢x = x - x0 ,

 = ƒxsx0 , y0d¢x + ƒysx0 , y0d¢y.

 ¢L = Lsx0 + ¢x, y0 + ¢yd - Lsx0 , y0d

y - y0 = ¢y,
x - x0 = ¢x

¢ƒ = ƒsx0 + ¢x, y0 + ¢yd - ƒsx0 , y0d.

sx0 + ¢x, y0 + ¢yd,sx0 , y0d.

dƒ = ƒ¿sad¢x.

¢ƒ = ƒsa + ¢xd - ƒsad

a + ¢x
y = ƒsxd,

14.6 Tangent Planes and Differentials 1021

DEFINITION Total Differential
If we move from to a point nearby, the resulting change

in the linearization of ƒ is called the total differential of ƒ.

dƒ = ƒxsx0 , y0d dx + ƒysx0 , y0d dy

sx0 + dx, y0 + dydsx0 , y0d

EXAMPLE 7 Estimating Change in Volume

Suppose that a cylindrical can is designed to have a radius of 1 in. and a height of 5 in., but
that the radius and height are off by the amounts and Estimate
the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in we use

With and we get

 = 0.3p - 0.1p = 0.2p L 0.63 in.3

 dV = 2pr0h0 dr + pr0
2 dh = 2ps1ds5ds0.03d + ps1d2s -0.1d

Vh = pr2,Vr = 2prh

¢V L dV = Vrsr0 , h0d dr + Vhsr0 , h0d dh.

V = pr2h,

dh = -0.1.dr = +0.03
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Instead of absolute change in the value of a function ƒ(x, y), we can estimate relative
change or percentage change by

respectively. In Example 7, the relative change is estimated by

giving 4% as an estimate of the percentage change.

EXAMPLE 8 Sensitivity to Change

Your company manufactures right circular cylindrical molasses storage tanks that are 25 ft
high with a radius of 5 ft. How sensitive are the tanks’ volumes to small variations in
height and radius?

Solution With we have the approximation for the change in volume as

Thus, a 1-unit change in r will change V by about A 1-unit change in h will
change V by about The tank’s volume is 10 times more sensitive to a small change
in r than it is to a small change of equal size in h. As a quality control engineer concerned
with being sure the tanks have the correct volume, you would want to pay special atten-
tion to their radii.

In contrast, if the values of r and h are reversed to make and then the
total differential in V becomes

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.35).
The general rule is that functions are most sensitive to small changes in the variables

that generate the largest partial derivatives.

EXAMPLE 9 Estimating Percentage Error

The volume of a right circular cylinder is to be calculated from measured values
of r and h. Suppose that r is measured with an error of no more than 2% and h with an
error of no more than 0.5%. Estimate the resulting possible percentage error in the
calculation of V.

Solution We are told that

Since

dV
V

=

2prh dr + pr 2 dh
pr 2h

=

2 dr
r +

dh
h

,

` dr
r * 100 ` … 2 and ` dh

h
* 100 ` … 0.5.

V = pr2h

dV = s2prhds25,5d dr + spr 2ds25,5d dh = 250p dr + 625p dh.

h = 5,r = 25

25p units.
250p units.

 = 250p dr + 25p dh.

 = s2prhds5,25d dr + spr 2ds5,25d dh

 dV = Vrs5, 25d dr + Vhs5, 25d dh

V = pr 2h,

dV
Vsr0, h0d

=

0.2p
pr0

2h0
=

0.2p
ps1d2s5d

= 0.04,

dƒ

ƒsx0, y0d
 and dƒ

ƒsx0, y0d
* 100,

1022 Chapter 14: Partial Derivatives

(a) (b)

r � 5

r � 25
h � 25

h � 5

FIGURE 14.35 The volume of cylinder
(a) is more sensitive to a small change in r
than it is to an equally small change in h.
The volume of cylinder (b) is more
sensitive to small changes in h than it 
is to small changes in r (Example 8).
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we have

We estimate the error in the volume calculation to be at most 4.5%.

Functions of More Than Two Variables

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of ƒ(x, y, z) at a point is

2. Suppose that R is a closed rectangular solid centered at and lying in an open region
on which the second partial derivatives of ƒ are continuous. Suppose also that

and are all less than or equal to M throughout R. Then
the error in the approximation of ƒ by L is
bounded throughout R by the inequality

3. If the second partial derivatives of ƒ are continuous and if x, y, and z change from
and by small amounts dx, dy, and dz, the total differential

gives a good approximation of the resulting change in ƒ.

EXAMPLE 10 Finding a Linear Approximation in 3-Space

Find the linearization L(x, y, z) of

at the point Find an upper bound for the error incurred in replac-
ing ƒ by L on the rectangle

Solution A routine evaluation gives

Thus,

Since

 ƒxy = -1,  ƒxz = 0,  ƒyz = 0, 

 ƒxx = 2,  ƒyy = 0,  ƒzz = -3 sin z, 

Lsx, y, zd = 2 + 3sx - 2d + s -2ds y - 1d + 3sz - 0d = 3x - 2y + 3z - 2.

ƒs2, 1, 0d = 2, ƒxs2, 1, 0d = 3, ƒys2, 1, 0d = -2, ƒzs2, 1, 0d = 3.

R: ƒ x - 2 ƒ … 0.01, ƒ y - 1 ƒ … 0.02, ƒ z ƒ … 0.01.

sx0 , y0 , z0d = s2, 1, 0d .

ƒsx, y, zd = x2
- xy + 3 sin z

dƒ = ƒxsP0d dx + ƒysP0d dy + ƒzsP0d dz

z0x0 , y0 ,

ƒ E ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ + ƒ z - z0 ƒ d2.

Esx, y, zd = ƒsx, y, zd - Lsx, y, zd
ƒ ƒyz ƒƒ ƒxx ƒ , ƒ ƒyy ƒ , ƒ ƒzz ƒ , ƒ ƒxy ƒ , ƒ ƒxz ƒ ,

P0

Lsx, y, zd = ƒsP0d + ƒxsP0dsx - x0d + ƒysP0ds y - y0d + ƒzsP0dsz - z0d.

P0sx0 , y0 , z0d

 … 2s0.02d + 0.005 = 0.045.

 … ` 2 
dr
r ` + ` dh

h
`

 ̀
dV
V
` = ` 2 

dr
r +

dh
h
`
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we may safely take M to be max Hence, the error incurred by replacing ƒ
by L on R satisfies

The error will be no greater than 0.0024.

ƒ E ƒ …
1
2

 s3ds0.01 + 0.02 + 0.01d2
= 0.0024 .

ƒ -3 sin z ƒ = 3.

1024 Chapter 14: Partial Derivatives
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EXERCISES 14.6

Tangent Planes and Normal Lines to Surfaces
In Exercises 1–8, find equations for the

(a) tangent plane and (b) normal line at the point on the given
surface.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, find an equation for the plane that is tangent to
the given surface at the given point.

9. 10.

11. 12.

Tangent Lines to Curves
In Exercises 13–18, find parametric equations for the line tangent to
the curve of intersection of the surfaces at the given point.

13. Surfaces:

Point:       (1, 1, 1)

14. Surfaces:

Point:       (1, 1, 1)

15. Surfaces:

Point:       (1, 1, 1 2)

16. Surfaces:

Point:       (1 2, 1, 1 2)

17. Surfaces:

Point: (1, 1, 3)

18. Surfaces:

Point:       A22, 22, 4 B
x 2

+ y 2
= 4, x 2

+ y 2
- z = 0

= 11
x 2

+ y 2
+ z 2x 3

+ 3x 2y 2
+ y 3

+ 4xy - z 2
= 0, 

>>
x + y 2

+ z = 2, y = 1

>
x 2

+ 2y + 2z = 4, y = 1

xyz = 1, x 2
+ 2y 2

+ 3z 2
= 6

x + y 2
+ 2z = 4, x = 1

z = 4x 2
+ y 2, s1, 1, 5dz = 2y - x, s1, 2, 1d

z = e-sx2
+ y2d, s0, 0, 1dz = ln sx 2

+ y 2d, s1, 0, 0d

x2
+ y2

- 2xy - x + 3y - z = -4, P0s2, -3, 18d
x + y + z = 1, P0s0, 1, 0d
x 2

- xy - y 2
- z = 0, P0s1, 1, -1d

cos px - x2y + e xz
+ yz = 4, P0s0, 1, 2d

x 2
+ 2xy - y 2

+ z 2
= 7, P0s1, -1, 3d

2z - x 2
= 0, P0s2, 0, 2d

x 2
+ y 2

- z 2
= 18, P0s3, 5, -4d

x 2
+ y 2

+ z 2
= 3, P0s1, 1, 1d

P0

Estimating Change
19. By about how much will

change if the point P(x, y, z) moves from a distance
of unit in the direction of 

20. By about how much will

change as the point P(x, y, z) moves from the origin a distance of
unit in the direction of 

21. By about how much will

change if the point P(x, y, z) moves from a distance
of unit toward the point 

22. By about how much will

change if the point P(x, y, z) moves from a dis-
tance of unit toward the origin?

23. Temperature change along a circle Suppose that the Celsius
temperature at the point (x, y) in the xy-plane is 
and that distance in the xy-plane is measured in meters. A particle
is moving clockwise around the circle of radius 1 m centered at
the origin at the constant rate of 2 m sec.

a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter at the point

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

24. Changing temperature along a space curve The Celsius tem-
perature in a region in space is given by 
A particle is moving in this region and its position at time t is
given by where time is measured in
seconds and distance in meters.

x = 2t2, y = 3t, z = - t2,

2x2
- xyz.T sx, y, zd =

P A1>2, 23>2 B?

>

T sx, yd = x sin 2y

ds = 0.1
P0s -1, -1, -1d

hsx, y, zd = cos spxyd + xz 2

P1s0, 1, 2)?ds = 0.2
P0s2, -1, 0d

gsx, y, zd = x + x cos z - y sin z + y

2i + 2j - 2k?ds = 0.1

ƒsx, y, zd = e x cos yz

3i + 6j - 2k?ds = 0.1
P0s3, 4, 12d

ƒsx, y, zd = ln2x 2
+ y 2

+ z 2
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a. How fast is the temperature experienced by the particle
changing in degrees Celsius per meter when the particle is at
the point 

b. How fast is the temperature experienced by the particle
changing in degrees Celsius per second at P?

Finding Linearizations
In Exercises 25–30, find the linearization L(x, y) of the function at
each point.

25. at a. (0, 0), b. (1, 1)

26. at a. (0, 0), b. (1, 2)

27. at a. (0, 0), b. (1, 1)

28. at a. (1, 1), b. (0, 0)

29. at a. (0, 0), b.

30. at a. (0, 0), b. (1, 2)

Upper Bounds for Errors in Linear Approximations
In Exercises 31–36, find the linearization L(x, y) of the function
ƒ(x, y) at Then find an upper bound for the magnitude of the
error in the approximation over the rectangle R.

31.

32.

33.

34.

35.

36.

Functions of Three Variables
Find the linearizations L(x, y, z) of the functions in Exercises 37–42
at the given points.

37.

a. (1, 1, 1) b. (1, 0, 0) c. (0, 0, 0)

38.

a. (1, 1, 1) b. (0, 1, 0) c. (1, 0, 0)

39. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 2, 2)

ƒsx, y, zd = 2x 2
+ y 2

+ z 2

ƒsx, y, zd = x 2
+ y 2

+ z 2 at

ƒsx, y, zd = xy + yz + xz at

R: ƒ x - 1 ƒ … 0.2, ƒ y - 1 ƒ … 0.2

ƒsx, yd = ln x + ln y at P0s1, 1d,
sUse ex

… 1.11 and ƒ cos y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.1, ƒ y ƒ … 0.1

ƒsx, yd = ex cos y at P0s0, 0d,
R: ƒ x - 1 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = xy2
+ y cos sx - 1d at P0s1, 2d,

sUse ƒ cos y ƒ … 1 and ƒ sin y ƒ … 1 in estimating E.d
R: ƒ x ƒ … 0.2, ƒ y ƒ … 0.2

ƒsx, yd = 1 + y + x cos y at P0s0, 0d,
R: ƒ x - 2 ƒ … 0.1, ƒ y - 2 ƒ … 0.1

ƒsx, yd = s1>2dx2
+ xy + s1>4dy2

+ 3x - 3y + 4 at P0s2, 2d,
R: ƒ x - 2 ƒ … 0.1, ƒ y - 1 ƒ … 0.1

ƒsx, yd = x2
- 3xy + 5 at P0s2, 1d,

ƒsx, yd L Lsx, yd
ƒ E ƒP0.

ƒsx, yd = e 2y - x

s0, p>2dƒsx, yd = e x cos y

ƒsx, yd = x3y4

ƒsx, yd = 3x - 4y + 5

ƒsx, yd = sx + y + 2d2

ƒsx, yd = x 2
+ y 2

+ 1

Ps8, 6, -4d?

40. at

a. b. (2, 0, 1)

41. at

a. (0, 0, 0) b. c.

42. at

a. (1, 0, 0) b. (1, 1, 0) c. (1, 1, 1)

In Exercises 43–46, find the linearization L(x, y, z) of the function
ƒ(x, y, z) at Then find an upper bound for the magnitude of the
error E in the approximation over the region R.

43.

44.

45.

46.

Estimating Error; Sensitivity to Change
47. Estimating maximum error Suppose that T is to be found

from the formula where x and y are found to
be 2 and ln 2 with maximum possible errors of and

Estimate the maximum possible error in the com-
puted value of T.

48. Estimating volume of a cylinder About how accurately may
be calculated from measurements of r and h that are in

error by 1%?

49. Maximum percentage error If and 
to the nearest millimeter, what should we expect the maximum
percentage error in calculating to be?

50. Variation in electrical resistance The resistance R produced
by wiring resistors of and ohms in parallel (see accompany-
ing figure) can be calculated from the formula

a. Show that

b. You have designed a two-resistor circuit like the one shown on
the next page to have resistances of and

but there is always some variation in
manufacturing and the resistors received by your firm will
probably not have these exact values. Will the value of R be

R2 = 400 ohms,
R1 = 100 ohms

dR = a R
R1
b2

 dR1 + a R
R2
b2

 dR2.

1
R

=

1
R1

+

1
R2

.

R2R1

V = pr 2h

h = 12.0 cmr = 5.0 cm

V = pr 2h

0.02.ƒ dy ƒ =

ƒ dx ƒ = 0.1
T = x se y

+ e-yd,

R: ƒ x ƒ … 0.01, ƒ y ƒ … 0.01, ƒ z - p>4 ƒ … 0.01

ƒsx, y, zd = 22 cos x sin s y + zd at P0s0, 0, p>4d

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z ƒ … 0.01

ƒsx, y, zd = xy + 2yz - 3xz at P0s1, 1, 0d
R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.08

ƒsx, y, zd = x 2
+ xy + yz + s1>4dz2 at P0s1, 1, 2d

R: ƒ x - 1 ƒ … 0.01, ƒ y - 1 ƒ … 0.01, ƒ z - 2 ƒ … 0.02

ƒsx, y, zd = xz - 3yz + 2 at P0s1, 1, 2d
ƒsx, y, zd L Lsx, y, zd

P0.

ƒsx, y, zd = tan-1 sxyzd

a0, 
p

4
, 
p

4
ba0, 

p

2
, 0b

ƒsx, y, zd = e x
+ cos s y + zd

sp>2, 1, 1d
ƒsx, y, zd = ssin xyd>z
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more sensitive to variation in or to variation in Give
reasons for your answer.

c. In another circuit like the one shown you plan to change 
from 20 to 20.1 ohms and from 25 to 24.9 ohms. By about
what percentage will this change R?

51. You plan to calculate the area of a long, thin rectangle from
measurements of its length and width. Which dimension should
you measure more carefully? Give reasons for your answer.

52. a. Around the point (1, 0), is more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

b. What ratio of dx to dy will make dƒ equal zero at (1, 0)?

53. Error carryover in coordinate changes

a. If and as shown here, with
approximately what accuracy can you calculate the polar
coordinates r and of the point P(x, y) from the formulas

and Express your estimates
as percentage changes of the values that r and have at the
point 

b. At the point are the values of r and more
sensitive to changes in x or to changes in y? Give reasons for
your answer.

54. Designing a soda can A standard 12-fl oz can of soda is essen-
tially a cylinder of radius and height 

a. At these dimensions, how sensitive is the can’s volume to a
small change in radius versus a small change in height?

b. Could you design a soda can that appears to hold more soda
but in fact holds the same 12-fl oz? What might its
dimensions be? (There is more than one correct answer.)

h = 5 in.r = 1 in.

usx0, y0d = s3, 4d,
sx0, y0d = s3, 4d.

u

u = tan-1 s y>xd?r 2
= x 2

+ y 2
u

y = 4 ; 0.01,x = 3 ; 0.01

y

x
0

4

3

r

�

P(3 ; 0.01, 4 ; 0.01)

ƒsx, yd = x 2s y + 1d

R2

R1

�

�
V R1 R2

R2?R1 55. Value of a determinant If is much greater than 
and to which of a, b, c, and d is the value of the determinant

most sensitive? Give reasons for your answer.

56. Estimating maximum error Suppose that 
and that x, y, and z can be measured with maximum possible er-
rors of and respectively. Estimate the max-
imum possible error in calculating u from the measured values

57. The Wilson lot size formula The Wilson lot size formula in
economics says that the most economical quantity Q of goods
(radios, shoes, brooms, whatever) for a store to order is given by
the formula where K is the cost of placing the
order, M is the number of items sold per week, and h is the
weekly holding cost for each item (cost of space, utilities,
security, and so on). To which of the variables K, M, and h is Q
most sensitive near the point Give
reasons for your answer.

58. Surveying a triangular field The area of a triangle is 
(1 2)ab sin C, where a and b are the lengths of two sides of the
triangle and C is the measure of the included angle. In surveying a
triangular plot, you have measured a, b, and C to be 150 ft, 200 ft,
and 60°, respectively. By about how much could your area calcu-
lation be in error if your values of a and b are off by half a foot
each and your measurement of C is off by 2°? See the accompa-
nying figure. Remember to use radians.

Theory and Examples
59. The linearization of ƒ(x, y) is a tangent-plane approximation

Show that the tangent plane at the point on
the surface defined by a differentiable function ƒ is
the plane

or

Thus, the tangent plane at is the graph of the linearization of ƒ
at (see accompanying figure).P0

P0

z = ƒsx0, y0d + ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d.

ƒxsx0, y0dsx - x0d + ƒysx0, y0ds y - y0d - sz - ƒsx0, y0dd = 0

z = ƒsx, yd
P0sx0, y0d, ƒsx0, y0dd

a � 150 ;    ft1
2

b � 200 ;    ft1
2

C � 60° ; 2°

>

sK0, M0, h0d = s2, 20, 0.05d?

Q = 22KM>h ,

x = 2,  y = ln 3,  z = p>2.

;p>180,;0.2, ;0.6,

u = xe y
+ y sin z

ƒsa, b, c, dd = ` a b

c d
`

ƒ d ƒ ,
ƒ b ƒ , ƒ c ƒ ,ƒ a ƒ2 : 2
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at the points where and The function ƒ gives
the square of the distance from a point P(x, y, z) on the helix to
the origin. The derivatives calculated here give the rates at which
the square of the distance is changing with respect to t as P moves
through the points where and 

62. Normal curves A smooth curve is normal to a surface
at a point of intersection if the curve’s velocity

vector is a nonzero scalar multiple of at the point.
Show that the curve

is normal to the surface when 

63. Tangent curves A smooth curve is tangent to the surface at a
point of intersection if its velocity vector is orthogonal to 
there.

Show that the curve

is tangent to the surface when t = 1.x 2
+ y 2

- z = 1

rstd = 2t i + 2t j + s2t - 1dk

§f

t = 1.x 2
+ y 2

- z = 3

rstd = 2t i + 2t j -

1
4

 st + 3dk

§ƒ
ƒsx, y, zd = c

p>4.t = -p>4, 0,

p>4.t = -p>4, 0,

1027

60. Change along the involute of a circle Find the derivative of
in the direction of the unit tangent vector of

the curve

61. Change along a helix Find the derivative of 
in the direction of the unit tangent vector of the

helix

rstd = scos tdi + ssin tdj + tk

x 2
+ y 2

+ z 2
ƒsx, y, zd =

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0.

ƒsx, yd = x 2
+ y 2

z

x

y

(x0,  y0)

z � L(x, y)

z � f (x, y)

(x0,  y0,  f (x0, y0))
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14.7 Extreme Values and Saddle Points 1027

Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded do-
mains (see Figures 14.36 and 14.37). We see in this section that we can narrow the search
for these extreme values by examining the functions’ first partial derivatives. A function of
two variables can assume extreme values only at domain boundary points or at interior do-
main points where both first partial derivatives are zero or where one or both of the first
partial derivatives fails to exist. However, the vanishing of derivatives at an interior point
(a, b) does not always signal the presence of an extreme value. The surface that is the
graph of the function might be shaped like a saddle right above (a, b) and cross its tangent
plane there.

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points
where the graph has a horizontal tangent line. At such points, we then look for local max-
ima, local minima, and points of inflection. For a function ƒ(x, y) of two variables, we look
for points where the surface has a horizontal tangent plane. At such points, we
then look for local maxima, local minima, and saddle points (more about saddle points in a
moment).

z = ƒsx, yd

14.7
z

yx

FIGURE 14.36 The function

has a maximum value of 1 and a minimum
value of about on the square
region ƒ x ƒ … 3p>2, ƒ y ƒ … 3p>2.

-0.067

z = scos xdscos yde-2x 2
+ y2
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Local maxima correspond to mountain peaks on the surface and local minima
correspond to valley bottoms (Figure 14.38). At such points the tangent planes, when they
exist, are horizontal. Local extrema are also called relative extrema.

As with functions of a single variable, the key to identifying the local extrema is a
first derivative test.

z = ƒsx, yd

1028 Chapter 14: Partial Derivatives

z

y
x

FIGURE 14.37 The “roof surface”

viewed from the point (10, 15, 20). The
defining function has a maximum value of
0 and a minimum value of on the
square region ƒ x ƒ … a, ƒ y ƒ … a .

-a

z =

1
2

 A ƒ  ƒ x ƒ - ƒ y ƒ ƒ - ƒ x ƒ - ƒ y ƒ B

DEFINITIONS Local Maximum, Local Minimum
Let ƒ(x, y) be defined on a region R containing the point (a, b). Then

1. ƒ(a, b) is a local maximum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

2. ƒ(a, b) is a local minimum value of ƒ if for all domain
points (x, y) in an open disk centered at (a, b).

ƒsa, bd … ƒsx, yd

ƒsa, bd Ú ƒsx, yd

y

x

0

z

a
b

(a, b, 0)

h(y) � f (a, y)

z � f (x, y)

� 0
0 f
0y

� 0
0f
0x

g(x) � f (x, b)

FIGURE 14.39 If a local maximum of ƒ
occurs at then the first
partial derivatives and are
both zero.

ƒysa, bdƒxsa, bd
x = a, y = b ,

Local maxima
(no greater value of f nearby)

Local minimum
(no smaller value
of f nearby)

FIGURE 14.38 A local maximum is a mountain peak and a local
minimum is a valley low.

THEOREM 10 First Derivative Test for Local Extreme Values
If ƒ(x, y) has a local maximum or minimum value at an interior point (a, b) of its
domain and if the first partial derivatives exist there, then and
ƒysa, bd = 0.

ƒxsa, bd = 0

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson
(1781–1840)

Proof If ƒ has a local extremum at (a, b), then the function has a local ex-
tremum at (Figure 14.39). Therefore, (Chapter 4, Theorem 2). Now

so A similar argument with the function 
shows that 

If we substitute the values and into the equation

for the tangent plane to the surface at (a, b), the equation reduces to

or

z = ƒsa, bd.

0 # sx - ad + 0 # s y - bd - z + ƒsa, bd = 0

z = ƒsx, yd

ƒxsa, bdsx - ad + ƒysa, bds y - bd - sz - ƒsa, bdd = 0

ƒysa, bd = 0ƒxsa, bd = 0

ƒysa, bd = 0.
hsyd = ƒsa, ydƒxsa, bd = 0.g¿sad = ƒxsa, bd,

g¿sad = 0x = a
gsxd = ƒsx, bd

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 1028

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce14.html?5_5_a


EXAMPLE 1 Finding Local Extreme Values

Find the local extreme values of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extreme values
can occur only where

The only possibility is the origin, where the value of ƒ is zero. Since ƒ is never negative,
we see that the origin gives a local minimum (Figure 14.41).

EXAMPLE 2 Identifying a Saddle Point

Find the local extreme values (if any) of 

Solution The domain of ƒ is the entire plane (so there are no boundary points) and the
partial derivatives and exist everywhere. Therefore, local extrema can
occur only at the origin (0, 0). Along the positive x-axis, however, ƒ has the value

along the positive y-axis, ƒ has the value There-
fore, every open disk in the xy-plane centered at (0, 0) contains points where the function
is positive and points where it is negative. The function has a saddle point at the origin
(Figure 14.42) instead of a local extreme value. We conclude that the function has no local
extreme values.

That at an interior point (a, b) of R does not guarantee ƒ has a local ex-
treme value there. If ƒ and its first and second partial derivatives are continuous on R, how-
ever, we may be able to learn more from the following theorem, proved in Section 14.10.

ƒx = ƒy = 0

ƒs0, yd = y2
7 0.ƒsx, 0d = -x2

6 0;

ƒy = 2yƒx = -2x

ƒsx, yd = y2
- x2.

ƒx = 2x = 0 and ƒy = 2y = 0.

ƒy = 2yƒx = 2x

ƒsx, yd = x2
+ y2.

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a lo-
cal extremum, provided there is a tangent plane there.

14.7 Extreme Values and Saddle Points 1029

DEFINITION Critical Point
An interior point of the domain of a function ƒ(x, y) where both and are zero
or where one or both of and do not exist is a critical point of ƒ.ƒyƒx

ƒyƒx

DEFINITION Saddle Point
A differentiable function ƒ(x, y) has a saddle point at a critical point (a, b) if in
every open disk centered at (a, b) there are domain points (x, y) where

and domain points where The corre-
sponding point (a, b, ƒ(a, b)) on the surface is called a saddle point of
the surface (Figure 14.40).

z = ƒsx, yd
ƒsx, yd 6 ƒsa, bd.sx, ydƒsx, yd 7 ƒsa, bd

x

z

y

x

z

y

z �
xy (x2 � y2)

x2 � y2

z � y2 � y4 � x2

FIGURE 14.40 Saddle points at the
origin.

z

y
x

z � x2 � y2

FIGURE 14.41 The graph of the function
is the paraboloid

The function has a local
minimum value of 0 at the origin
(Example 1).

z = x2
+ y2.

ƒsx, yd = x2
+ y2

Theorem 10 says that the only points where a function ƒ(x, y) can assume extreme val-
ues are critical points and boundary points. As with differentiable functions of a single
variable, not every critical point gives rise to a local extremum. A differentiable function
of a single variable might have a point of inflection. A differentiable function of two vari-
ables might have a saddle point.
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y

z

x

z � y2 � x2

FIGURE 14.42 The origin is a saddle
point of the function 
There are no local extreme values
(Example 2).

ƒsx, yd = y2
- x2.

THEOREM 11 Second Derivative Test for Local Extreme Values
Suppose that ƒ(x, y) and its first and second partial derivatives are continuous
throughout a disk centered at (a, b) and that Then

i. ƒ has a local maximum at (a, b) if and at (a, b).

ii. ƒ has a local minimum at (a, b) if and at (a, b).

iii. ƒ has a saddle point at (a, b) if at (a, b).

iv. The test is inconclusive at (a, b) if at (a, b). In this case,
we must find some other way to determine the behavior of ƒ at (a, b).

ƒxx ƒyy - ƒxy
2

= 0

ƒxx ƒyy - ƒxy
2

6 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

ƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0 .

The expression is called the discriminant or Hessian of ƒ. It is some-
times easier to remember it in determinant form,

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface
curves the same way in all directions: downward if giving rise to a local maxi-
mum, and upward if giving a local minimum. On the other hand, if the discrimi-
nant is negative at (a, b), then the surface curves up in some directions and down in others,
so we have a saddle point.

EXAMPLE 3 Finding Local Extreme Values

Find the local extreme values of the function

Solution The function is defined and differentiable for all x and y and its domain has
no boundary points. The function therefore has extreme values only at the points where 
and are simultaneously zero. This leads to

or

Therefore, the point is the only point where ƒ may take on an extreme value. To
see if it does so, we calculate

The discriminant of ƒ at is

The combination

tells us that ƒ has a local maximum at The value of ƒ at this point is
ƒs -2, -2d = 8.

s -2, -2d .

ƒxx 6 0 and ƒxx ƒyy - ƒxy
2

7 0

ƒxx ƒyy - ƒxy
2

= s -2ds -2d - s1d2
= 4 - 1 = 3.

sa, bd = s -2, -2d

ƒxx = -2, ƒyy = -2, ƒxy = 1.

s -2, -2d

x = y = -2.

ƒx = y - 2x - 2 = 0, ƒy = x - 2y - 2 = 0,

ƒy

ƒx

ƒsx, yd = xy - x2
- y2

- 2x - 2y + 4.

ƒxx 7 0,
ƒxx 6 0,

ƒxx ƒyy - ƒxy
2

= p ƒxx ƒxy

ƒxy ƒyy
p .

ƒxx ƒyy - ƒxy
2
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EXAMPLE 4 Searching for Local Extreme Values

Find the local extreme values of 

Solution Since ƒ is differentiable everywhere (Figure 14.43), it can assume extreme
values only where

Thus, the origin is the only point where ƒ might have an extreme value. To see what hap-
pens there, we calculate

The discriminant,

is negative. Therefore, the function has a saddle point at (0, 0). We conclude that
has no local extreme values.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function ƒ(x, y) on a
closed and bounded region R into three steps.

1. List the interior points of R where ƒ may have local maxima and minima and evaluate
ƒ at these points. These are the critical points of ƒ.

2. List the boundary points of R where ƒ has local maxima and minima and evaluate ƒ at
these points. We show how to do this shortly.

3. Look through the lists for the maximum and minimum values of ƒ. These will be the
absolute maximum and minimum values of ƒ on R. Since absolute maxima and min-
ima are also local maxima and minima, the absolute maximum and minimum values
of ƒ appear somewhere in the lists made in Steps 1 and 2.

EXAMPLE 5 Finding Absolute Extrema

Find the absolute maximum and minimum values of

on the triangular region in the first quadrant bounded by the lines 

Solution Since ƒ is differentiable, the only places where ƒ can assume these values are
points inside the triangle (Figure 14.44) where and points on the boundary.

(a) Interior points. For these we have

yielding the single point The value of ƒ there is

ƒs1, 1d = 4.

sx, yd = s1, 1d.

fx = 2 - 2x = 0, fy = 2 - 2y = 0,

ƒx = ƒy = 0

y = 9 - x .
x = 0, y = 0,

ƒsx, yd = 2 + 2x + 2y - x2
- y2

ƒsx, yd = xy

ƒxx ƒyy - ƒxy
2

= -1,

ƒxx = 0, ƒyy = 0, ƒxy = 1.

ƒx = y = 0 and ƒy = x = 0.

ƒsx, yd = xy.

14.7 Extreme Values and Saddle Points 1031

z y

x

z � xy

FIGURE 14.43 The surface has a
saddle point at the origin (Example 4).

z = xy

y

x
O

(1, 1)

x � 0

B(0, 9)

y � 9 � x

A(9, 0)y � 0







9
2

9
2

,

FIGURE 14.44 This triangular region is
the domain of the function in Example 5.
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(b) Boundary points. We take the triangle one side at a time:

(i) On the segment OA, The function

may now be regarded as a function of x defined on the closed interval Its
extreme values (we know from Chapter 4) may occur at the endpoints

and at the interior points where The only interior point where
is where

(ii) On the segment OB, and

We know from the symmetry of ƒ in x and y and from the analysis we just carried out
that the candidates on this segment are

(iii) We have already accounted for the values of ƒ at the endpoints of AB, so we need only
look at the interior points of AB. With we have

Setting gives

At this value of x,

Summary We list all the candidates: The maximum is 4, which ƒ
assumes at (1, 1). The minimum is which ƒ assumes at (0, 9) and (9, 0).

Solving extreme value problems with algebraic constraints on the variables usually re-
quires the method of Lagrange multipliers in the next section. But sometimes we can solve
such problems directly, as in the next example.

EXAMPLE 6 Solving a Volume Problem with a Constraint

A delivery company accepts only rectangular boxes the sum of whose length and girth
(perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an accept-
able box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box,
respectively. Then the girth is We want to maximize the volume of theV = xyz2y + 2z.

-61,
4, 2, -61, 3, -s41>2d.

y = 9 -

9
2

=

9
2
 and ƒsx, yd = ƒ a9

2
, 

9
2
b = -

41
2

.

x =

18
4

=

9
2

.

ƒ¿sx, 9 - xd = 18 - 4x = 0

ƒsx, yd = 2 + 2x + 2s9 - xd - x2
- s9 - xd2

= -61 + 18x - 2x2.

y = 9 - x,

ƒs0, 0d = 2, ƒs0, 9d = -61, ƒs0, 1d = 3.

ƒsx, yd = ƒs0, yd = 2 + 2y - y2.

x = 0

ƒsx, 0d = ƒs1, 0d = 3.

x = 1,ƒ¿sx, 0d = 0
ƒ¿sx, 0d = 2 - 2x = 0.

 x = 9 where ƒs9, 0d = 2 + 18 - 81 =  -61

 x = 0 where ƒs0, 0d = 2

0 … x … 9.

ƒsx, yd = ƒsx, 0d = 2 + 2x - x2

y = 0.

1032 Chapter 14: Partial Derivatives
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box (Figure 14.45) satisfying (the largest box accepted by the deliv-
ery company). Thus, we can write the volume of the box as a function of two variables.

Setting the first partial derivatives equal to zero,

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0),
(0, 54), (54, 0), which are not maximum values. At the point (18, 18), we apply the Second
Derivative Test (Theorem 11):

Then

Thus,

and

imply that (18, 18) gives a maximum volume. The dimensions of the package are
and The maximum volume is

or 

Despite the power of Theorem 10, we urge you to remember its limitations. It does not ap-
ply to boundary points of a function’s domain, where it is possible for a function to have
extreme values along with nonzero derivatives. Also, it does not apply to points where ei-
ther or fails to exist.ƒyƒx

6.75 ft3.V = s36ds18ds18d = 11,664 in.3 ,
z = 18 in.x = 108 - 2s18d - 2s18d = 36 in., y = 18 in.,

CVyy Vzz - V yz
2 D s18,18d = 16s18ds18d - 16s -9d2

7 0

Vyys18, 18d = -4s18d 6 0

Vyy Vzz - V yz
2

= 16yz - 16s27 - y - zd2.

Vyy = -4z, Vzz = -4y, Vyz = 108 - 4y - 4z.

 Vzs y, zd = 108y - 2y2
- 4yz = s108 - 2y - 4zdy = 0,

 Vys y, zd = 108z - 4yz - 2z2
= s108 - 4y - 2zdz = 0

 = 108yz - 2y2z - 2yz2

 Vs y, zd = s108 - 2y - 2zdyz

x + 2y + 2z = 108

14.7 Extreme Values and Saddle Points 1033

x y

z

Girth � distance
around here

FIGURE 14.45 The box in Example 6.

and
x = 108 - 2y - 2z
V = xyz

Summary of Max-Min Tests
The extreme values of ƒ(x, y) can occur only at

i. boundary points of the domain of ƒ

ii. critical points (interior points where or points where or 
fail to exist).

If the first- and second-order partial derivatives of ƒ are continuous throughout a
disk centered at a point (a, b) and the nature of ƒ(a, b)
can be tested with the Second Derivative Test:

i. and at 

ii. and at 

iii. at 

iv. at sa, bd  Q   test is inconclusive.ƒxx ƒyy - ƒxy
2

= 0

sa, bd  Q   saddle pointƒxx ƒyy - ƒxy
2

6 0

sa, bd  Q   local minimumƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

sa, bd  Q   local maximumƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxsa, bd = ƒysa, bd = 0,

ƒyƒxƒx = ƒy = 0
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EXERCISES 14.7

Finding Local Extrema
Find all the local maxima, local minima, and saddle points of the
functions in Exercises 1–30.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27. 28.

29. 30.

Finding Absolute Extrema
In Exercises 31–38, find the absolute maxima and minima of the func-
tions on the given domains.

31. on the closed triangular
plate bounded by the lines in the first
quadrant

32. on the closed triangular plate in the
first quadrant bounded by the lines x = 0, y = 4, y = x
Dsx, yd = x2

- xy + y2
+ 1

x = 0, y = 2, y = 2x
ƒsx, yd = 2x2

- 4x + y2
- 4y + 1

ƒsx, yd = e2x cos yƒsx, yd = y sin x

ƒsx, yd =

1
x + xy +

1
yƒsx, yd =

1
x2

+ y2
- 1

ƒsx, yd = x4
+ y4

+ 4xy

ƒsx, yd = 4xy - x4
- y4

ƒsx, yd = 2x3
+ 2y3

- 9x2
+ 3y2

- 12y

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

- 8

ƒsx, yd = 8x3
+ y3

+ 6xy

ƒsx, yd = 9x3
+ y3>3 - 4xy

ƒsx, yd = 3y2
- 2y3

- 3x2
+ 6xy

ƒsx, yd = 6x2
- 2x3

+ 3y2
+ 6xy

ƒsx, yd = x3
+ 3xy + y3

ƒsx, yd = x3
- y3

- 2xy + 6

ƒsx, yd = 3 + 2x + 2y - 2x2
- 2xy - y2

ƒsx, yd = x2
+ 2xy

ƒsx, yd = x2
- 2xy + 2y2

- 2x + 2y + 1

ƒsx, yd = x2
- y2

- 2x + 4y + 6

ƒsx, yd = 4x2
- 6xy + 5y2

- 20x + 26y

ƒsx, yd = 2x2
+ 3xy + 4y2

- 5x + 2y

ƒsx, yd = 3x2
+ 6xy + 7y2

- 2x + 4y

ƒsx, yd = x2
- 4xy + y2

+ 6y + 2

ƒsx, yd = 2xy - x2
- 2y2

+ 3x + 4

ƒsx, yd = 5xy - 7x2
+ 3x - 6y + 2

ƒsx, yd = y2
+ xy - 2x - 2y + 2

ƒsx, yd = x2
+ xy + 3x + 2y + 5

ƒsx, yd = 2xy - 5x2
- 2y2

+ 4x - 4

ƒsx, yd = 2xy - 5x2
- 2y2

+ 4x + 4y - 4

ƒsx, yd = x2
+ 3xy + 3y2

- 6x + 3y - 6

ƒsx, yd = x2
+ xy + y2

+ 3x - 3y + 4

33. on the closed triangular plate bounded by the
lines in the first quadrant

34. on the rectangular plate

35. on the rectangular plate

36. on the rectangular plate 

37. on the rectangular plate 
(see accompanying figure).

38. on the triangular plate bounded by
the lines in the first quadrant

39. Find two numbers a and b with such that

has its largest value.

40. Find two numbers a and b with such that

has its largest value.

41. Temperatures The flat circular plate in Figure 14.46 has the
shape of the region The plate, including the
boundary where is heated so that the temperature
at the point (x, y) is

Find the temperatures at the hottest and coldest points on the
plate.

Tsx, yd = x2
+ 2y2

- x.

x2
+ y2

= 1 ,
x2

+ y2
… 1.

L
b

a
s24 - 2x - x2d1>3 dx

a … b

L
b

a
s6 - x - x2d dx

a … b

x = 0, y = 0, x + y = 1
ƒsx, yd = 4x - 8xy + 2y + 1

z

y
x

z � (4x � x2) cos y

-p>4 … y … p>4 1 … x … 3, ƒsx, yd = s4x - x2d cos y

1, 0 … y … 10 … x …

ƒsx, yd = 48xy - 32x3
- 24y2

0 … x … 5, -3 … y … 0
Tsx, yd = x2

+ xy + y2
- 6x + 2

0 … x … 5, -3 … y … 3
Tsx, yd = x2

+ xy + y2
- 6x

x = 0, y = 0, y + 2x = 2
ƒsx, yd = x2

+ y2
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42. Find the critical point of

in the open first quadrant and show that ƒ takes
on a minimum there (Figure 14.47).

sx 7 0, y 7 0d

ƒsx, yd = xy + 2x - ln x2y

Theory and Examples
43. Find the maxima, minima, and saddle points of ƒ(x, y), if any,

given that

a.

b.

c.

Describe your reasoning in each case.

44. The discriminant is zero at the origin for each of the
following functions, so the Second Derivative Test fails there. De-
termine whether the function has a maximum, a minimum, or nei-
ther at the origin by imagining what the surface looks
like. Describe your reasoning in each case.

a. b.

c. d.

e. f.

45. Show that (0, 0) is a critical point of no
matter what value the constant k has. (Hint: Consider two cases:

and )

46. For what values of the constant k does the Second Derivative Test
guarantee that will have a saddle point
at (0, 0)? A local minimum at (0, 0)? For what values of k is the
Second Derivative Test inconclusive? Give reasons for your
answers.

47. If must ƒ have a local maximum or min-
imum value at (a, b)? Give reasons for your answer.

48. Can you conclude anything about ƒ(a, b) if ƒ and its first and sec-
ond partial derivatives are continuous throughout a disk centered
at (a, b) and and differ in sign? Give reasons for
your answer.

49. Among all the points on the graph of that lie
above the plane find the point farthest from
the plane.

50. Find the point on the graph of nearest the
plane 

51. The function fails to have an absolute maximum
value in the closed first quadrant and Does this
contradict the discussion on finding absolute extrema given in the
text? Give reasons for your answer.

52. Consider the function 
over the square and 

a. Show that ƒ has an absolute minimum along the line segment
in this square. What is the absolute minimum

value?

b. Find the absolute maximum value of ƒ over the square.

Extreme Values on Parametrized Curves
To find the extreme values of a function ƒ(x, y) on a curve

we treat ƒ as a function of the single variable t andx = xstd, y = ystd,

2x + 2y = 1

0 … y … 1.0 … x … 1
ƒsx, yd = x2

+ y2
+ 2xy - x - y + 1

y Ú 0.x Ú 0
ƒsx, yd = x + y

x + 2y - z = 0.
z = x2

+ y2
+ 10

x + 2y + 3z = 0,
z = 10 - x2

- y2

ƒyysa, bdƒxxsa, bd

ƒxsa, bd = ƒysa, bd = 0,

ƒsx, yd = x2
+ kxy + y2

k Z 0.k = 0

ƒsx, yd = x2
+ kxy + y2

ƒsx, yd = x4y4ƒsx, yd = x3y3

ƒsx, yd = x3y2ƒsx, yd = xy2

ƒsx, yd = 1 - x2y2ƒsx, yd = x2y2

z = ƒsx, yd

ƒxx ƒyy - ƒxy
2

ƒx = 9x2
- 9 and ƒy = 2y + 4

ƒx = 2x - 2 and ƒy = 2y - 4

ƒx = 2x - 4y and ƒy = 2y - 4x

14.7 Extreme Values and Saddle Points 1035

y

x
0

FIGURE 14.46 Curves of
constant temperature are 
called isotherms. The figure
shows isotherms of the
temperature function

on the
disk in the xy-
plane. Exercise 41 asks you to
locate the extreme
temperatures.

x2
+ y2

… 1
Tsx, yd = x2

+ 2y2
- x

y

0
x

FIGURE 14.47 The function

(selected level curves shown
here) takes on a minimum
value somewhere in the open
first quadrant 
(Exercise 42).

x 7 0, y 7 0

ƒsx, yd = xy + 2x - ln x2y
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EXAMPLE Find the least squares line for the points (0, 1),
(1, 3), (2, 2), (3, 4), (4, 5).

Solution We organize the calculations in a table:

k

1 0 1 0 0
2 1 3 1 3
3 2 2 4 4
4 3 4 9 12
5 4 5 16 20

10 15 30 39

Then we find

and use the value of m to find

The least squares line is (Figure 14.49). y = 0.9x + 1.2

b =

1
5

 A15 - A0.9 B A10 B B = 1.2 .

m =

s10ds15d - 5s39d
s10d2

- 5s30d
= 0.9

g

xk ykxk
2ykxk

use the Chain Rule to find where dƒ dt is zero. As in any other single-
variable case, the extreme values of ƒ are then found among the values
at the

a. critical points (points where dƒ dt is zero or fails to exist), and

b. endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following
functions on the given curves.

53. Functions:

a. b.

c.

Curves:

i. The semicircle 

ii. The quarter circle 

Use the parametric equations 

54. Functions:

a. b.

c.

Curves:

i. The semi-ellipse 

ii. The quarter ellipse 

Use the parametric equations 

55. Function: 

Curves:

i. The line 

ii. The line segment 

iii. The line segment 

56. Functions:

a. b.

Curves:

i. The line 

ii. The line segment 

Least Squares and Regression Lines
When we try to fit a line to a set of numerical data points

(Figure 14.48), we usually choose the
line that minimizes the sum of the squares of the vertical distances
from the points to the line. In theory, this means finding the values of
m and b that minimize the value of the function

(1)

The values of m and b that do this are found with the First and Second
Derivative Tests to be

(2) m =

aa xkb aa ykb - na xk yk

aa xkb2

- na xk
2

 , 

w = smx1 + b - y1d2
+

Á
+ smxn + b - ynd2 .

sx1, y1d, sx2 , y2d, Á , sxn , ynd
y = mx + b

x = t, y = 2 - 2t, 0 … t … 1

x = t, y = 2 - 2t

gsx, yd = 1>sx2
+ y2dƒsx, yd = x2

+ y2

x = 2t, y = t + 1, 0 … t … 1

x = 2t, y = t + 1, -1 … t … 0

x = 2t, y = t + 1

ƒsx, yd = xy

x = 3 cos t, y = 2 sin t .

sx2>9d + s y2>4d = 1, x Ú 0, y Ú 0

sx2>9d + s y2>4d = 1, y Ú 0

hsx, yd = x2
+ 3y2

gsx, yd = xyƒsx, yd = 2x + 3y

x = 2 cos t, y = 2 sin t .

x2
+ y2

= 4, x Ú 0, y Ú 0

x2
+ y2

= 4, y Ú 0

hsx, yd = 2x2
+ y2

gsx, yd = xyƒsx, yd = x + y

>

>
(3)

with all sums running from to Many scientific calcula-
tors have these formulas built in, enabling you to find m and b with
only a few key strokes after you have entered the data.

The line determined by these values of m and b is
called the least squares line, regression line, or trend line for the
data under study. Finding a least squares line lets you

1. summarize data with a simple expression,

2. predict values of y for other, experimentally untried values of x,

3. handle data analytically.

y = mx + b

k = n .k = 1

 b =

1
n aa yk - ma xkb , 
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y

x
0

P1(x1, y1)

P2(x2, y2)

Pn(xn, yn)

y � mx � b

FIGURE 14.48 To fit a line to
noncollinear points, we choose the line that
minimizes the sum of the squares of the
deviations.

Equation (2) with
and data

from the table
n = 5

Equation (3) with
n = 5, m = 0.9
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In Exercises 57–60, use Equations (2) and (3) to find the least squares
line for each set of data points. Then use the linear equation you obtain
to predict the value of y that would correspond to 

57. 58.

59. (0, 0), (1, 2), (2, 3) 60. (0, 1), (2, 2), (3, 2)

61. Write a linear equation for the effect of irrigation on the yield of
alfalfa by fitting a least squares line to the data in Table 14.1
(from the University of California Experimental Station, Bulletin
No. 450, p. 8). Plot the data and draw the line.

s -2, 0d, s0, 2d, s2, 3ds -1, 2d, s0, 1d, s3, -4d
x = 4.

63. Köchel numbers In 1862, the German musicologist Ludwig
von Köchel made a chronological list of the musical works of
Wolfgang Amadeus Mozart. This list is the source of the Köchel
numbers, or “K numbers,” that now accompany the titles of
Mozart’s pieces (Sinfonia Concertante in E-flat major, K.364, for
example). Table 14.3 gives the Köchel numbers and composition
dates (y) of ten of Mozart’s works.

a. Plot y vs. K to show that y is close to being a linear function of K.

b. Find a least squares line for the data and add
the line to your plot in part (a).

c. K.364 was composed in 1779. What date is predicted by the
least squares line?

y = mK + b

14.7 Extreme Values and Saddle Points 1037

x

y

0 1 2 3 4

1

2

3

4

5

P1(0, 1)

P3(2, 2)

P2(1, 3)

P4(3, 4)

P5(4, 5)

y � 0.9x � 1.2

FIGURE 14.49 The least
squares line for the data in the
example.

TABLE 14.1 Growth of alfalfa

x y
(total seasonal depth (average alfalfa
of water applied, in.) yield, tons/acre)

12 5.27

18 5.68

24 6.25

30 7.21

36 8.20

42 8.71

TABLE 14.2 Crater sizes on Mars

(for
Diameter in left value of
km, D class interval) Frequency, F

32–45 0.001 51

45–64 0.0005 22

64–90 0.00024 14

90–128 0.000123 4

1>D2

T

T

TABLE 14.3 Compositions by Mozart

Köchel number, Year composed,
K y

1 1761

75 1771

155 1772

219 1775

271 1777

351 1780

425 1783

503 1786

575 1789

626 1791

T

T

62. Craters of Mars One theory of crater formation suggests that
the frequency of large craters should fall off as the square of the
diameter (Marcus, Science, June 21, 1968, p. 1334). Pictures from
Mariner IV show the frequencies listed in Table 14.2. Fit a line of
the form to the data. Plot the data and draw
the line.

F = ms1>D2d + b

64. Submarine sinkings The data in Table 14.4 show the results of
a historical study of German submarines sunk by the U.S. Navy
during 16 consecutive months of World War II. The data given for
each month are the number of reported sinkings and the number
of actual sinkings. The number of submarines sunk was slightly
greater than the Navy’s reports implied. Find a least squares line
for estimating the number of actual sinkings from the number of
reported sinkings.
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COMPUTER EXPLORATIONS

Exploring Local Extrema at Critical Points
In Exercises 65–70, you will explore functions to identify their local
extrema. Use a CAS to perform the following steps:

a. Plot the function over the given rectangle.

b. Plot some level curves in the rectangle.

c. Calculate the function’s first partial derivatives and use the CAS
equation solver to find the critical points. How do the critical
points relate to the level curves plotted in part (b)? Which critical
points, if any, appear to give a saddle point? Give reasons for
your answer.

d. Calculate the function’s second partial derivatives and find the
discriminant 

e. Using the max-min tests, classify the critical points found in part
(c). Are your findings consistent with your discussion in part (c)?

65.

66.

67.

68.

69.

70.

-2 … x … 2, -2 … y … 2

ƒsx, yd = e x5 ln sx2
+ y2d, sx, yd Z s0, 0d

0, sx, yd = s0, 0d 
,

-4 … x … 3, -2 … y … 2

ƒsx, yd = 5x6
+ 18x5

- 30x4
+ 30xy2

- 120x3,

-3>2 … y … 3>2
ƒsx, yd = 2x4

+ y4
- 2x2

- 2y2
+ 3, -3>2 … x … 3>2,

-6 … y … 6

ƒsx, yd = x4
+ y2

- 8x2
- 6y + 16, -3 … x … 3,

ƒsx, yd = x3
- 3xy2

+ y2, -2 … x … 2, -2 … y … 2

ƒsx, yd = x2
+ y3

- 3xy, -5 … x … 5, -5 … y … 5

ƒxx ƒyy - ƒxy
2.

1038 Chapter 14: Partial Derivatives

TABLE 14.4 Sinkings of German submarines by U.S.
during 16 consecutive months of WWII

Guesses by U.S.
(reported sinkings) Actual number

Month x y

1 3 3

2 2 2

3 4 6

4 2 3

5 5 4

6 5 3

7 9 11

8 12 9

9 8 10

10 13 16

11 14 13

12 3 5

13 4 6

14 13 19

15 10 15

16 16 15

123 140
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1038 Chapter 14: Partial Derivatives

Lagrange Multipliers

Sometimes we need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane—a disk, for example, a closed triangular
region, or along a curve. In this section, we explore a powerful method for finding extreme
values of constrained functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

EXAMPLE 1 Finding a Minimum with Constraint

Find the point P(x, y, z) closest to the origin on the plane 

Solution The problem asks us to find the minimum value of the function

 = 2x2
+ y2

+ z2

 ƒ OP
1

ƒ = 2sx - 0d2
+ s y - 0d2

+ sz - 0d2

2x + y - z - 5 = 0.

14.8

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange
(1736–1813)
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subject to the constraint that

Since has a minimum value wherever the function

has a minimum value, we may solve the problem by finding the minimum value of ƒ(x, y, z)
subject to the constraint (thus avoiding square roots). If we regard x
and y as the independent variables in this equation and write z as

our problem reduces to one of finding the points (x, y) at which the function

has its minimum value or values. Since the domain of h is the entire xy-plane, the First
Derivative Test of Section 14.7 tells us that any minima that h might have must occur at
points where

This leads to

and the solution

We may apply a geometric argument together with the Second Derivative Test to show that
these values minimize h. The z-coordinate of the corresponding point on the plane

is

Therefore, the point we seek is

The distance from P to the origin is  

Attempts to solve a constrained maximum or minimum problem by substitution, as
we might call the method of Example 1, do not always go smoothly. This is one of the rea-
sons for learning the new method of this section.

EXAMPLE 2 Finding a Minimum with Constraint

Find the points closest to the origin on the hyperbolic cylinder 

Solution 1 The cylinder is shown in Figure 14.50. We seek the points on the cylinder
closest to the origin. These are the points whose coordinates minimize the value of the
function

Square of the distanceƒsx, y, zd = x2
+ y2

+ z2

x2
- z2

- 1 = 0.

5>26 L 2.04.

Closest point: P a5
3

, 
5
6

, -
5
6
b.

z = 2 a5
3
b +

5
6

- 5 =  -
5
6

.

z = 2x + y - 5

x =

5
3

, y =

5
6

.

10x + 4y = 20, 4x + 4y = 10,

hx = 2x + 2s2x + y - 5ds2d = 0, hy = 2y + 2s2x + y - 5d = 0.

hsx, yd = ƒsx, y, 2x + y - 5d = x2
+ y2

+ s2x + y - 5d2

z = 2x + y - 5,

2x + y - z - 5 = 0

ƒsx, y, zd = x2
+ y2

+ z2

ƒ OP
1

ƒ

2x + y - z - 5 = 0.

14.8 Lagrange Multipliers 1039

(1, 0, 0)

z

y

x

x2 � z2 � 1

(–1, 0, 0)

FIGURE 14.50 The hyperbolic cylinder
in Example 2.x2

- z2
- 1 = 0
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subject to the constraint that If we regard x and y as independent vari-
ables in the constraint equation, then

and the values of on the cylinder are given by the function

To find the points on the cylinder whose coordinates minimize ƒ, we look for the points in
the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are
zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point in
the domain of h where h has a minimum value. We, on the other hand, want the points on
the cylinder where h has a minimum value. Although the domain of h is the entire xy-
plane, the domain from which we can select the first two coordinates of the points (x, y, z)
on the cylinder is restricted to the “shadow” of the cylinder on the xy-plane; it does not in-
clude the band between the lines and (Figure 14.51).

We can avoid this problem if we treat y and z as independent variables (instead of x
and y) and express x in terms of y and z as

With this substitution, becomes

and we look for the points where k takes on its smallest value. The domain of k in the yz-
plane now matches the domain from which we select the y- and z-coordinates of the points
(x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corre-
sponding points on the cylinder. The smallest values of k occur where

or where This leads to

The corresponding points on the cylinder are We can see from the inequality

that the points give a minimum value for k. We can also see that the minimum
distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to
imagine a small sphere centered at the origin expanding like a soap bubble until it just
touches the cylinder (Figure 14.52). At each point of contact, the cylinder and sphere have
the same tangent plane and normal line. Therefore, if the sphere and cylinder are repre-
sented as the level surfaces obtained by setting

ƒsx, y, zd = x2
+ y2

+ z2
- a2 and gsx, y, zd = x2

- z2
- 1

s ;1, 0, 0d

ks y, zd = 1 + y2
+ 2z2

Ú 1

s ;1, 0, 0d.

x2
= z2

+ 1 = 1, x = ;1.

y = z = 0.

ky = 2y = 0 and kz = 4z = 0,

ks y, zd = sz2
+ 1d + y2

+ z2
= 1 + y2

+ 2z2

ƒsx, y, zd = x2
+ y2

+ z2

x2
= z2

+ 1.

x = 1x = -1

hx = 4x = 0 and hy = 2y = 0,

hsx, yd = x2
+ y2

+ sx2
- 1d = 2x2

+ y2
- 1.

ƒsx, y, zd = x2
+ y2

+ z2

z2
= x2

- 1

x2
- z2

- 1 = 0 .
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On this part, On this part,

x � �z2 � 1

x

z

–11

y
x � –1x � 1

The hyperbolic cylinder x2 � z2 � 1

x � –�z2 � 1

FIGURE 14.51 The region in the xy-
plane from which the first two coordinates
of the points (x, y, z) on the hyperbolic
cylinder are selected
excludes the band in the
xy-plane (Example 2).

-1 6 x 6 1
x2

- z2
= 1

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 1040

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


equal to 0, then the gradients and will be parallel where the surfaces touch. At any
point of contact, we should therefore be able to find a scalar (“lambda”) such that

or

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three
scalar equations

For what values of will a point (x, y, z) whose coordinates satisfy these scalar equa-
tions also lie on the surface To answer this question, we use our knowl-
edge that no point on the surface has a zero x-coordinate to conclude that Hence,

only if

For the equation becomes If this equation is to be satisfied
as well, z must be zero. Since also (from the equation ), we conclude that the
points we seek all have coordinates of the form

What points on the surface have coordinates of this form? The answer is the
points (x, 0, 0) for which

The points on the cylinder closest to the origin are the points  s ;1, 0, 0d.

x2
- s0d2

= 1, x2
= 1, or x = ;1.

x2
- z2

= 1

sx, 0, 0d.

2y = 0y = 0
2z = -2z.2z = -2lzl = 1,

2 = 2l, or l = 1.

2x = 2lx
x Z 0.

x2
- z2

- 1 = 0?
l

2x = 2lx, 2y = 0, 2z = -2lz.

2xi + 2yj + 2zk = ls2xi - 2zkd.

§ƒ = l§g,

l

§g§ƒ

14.8 Lagrange Multipliers 1041

z

y

x

x2 � y2 � z2 � a2 � 0

x2 � z2 � 1 � 0

FIGURE 14.52 A sphere expanding like a soap
bubble centered at the origin until it just touches
the hyperbolic cylinder 
(Example 2).

x2
- z2

- 1 = 0
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The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the method of Lagrange multipliers. The method
says that the extreme values of a function ƒ(x, y, z) whose variables are subject to a con-
straint are to be found on the surface at the points where

for some scalar (called a Lagrange multiplier).
To explore the method further and see why it works, we first make the following ob-

servation, which we state as a theorem.

l

§ƒ = l§g

g = 0gsx, y, zd = 0

1042 Chapter 14: Partial Derivatives

THEOREM 12 The Orthogonal Gradient Theorem
Suppose that ƒ(x, y, z) is differentiable in a region whose interior contains a
smooth curve

If is a point on C where ƒ has a local maximum or minimum relative to its val-
ues on C, then is orthogonal to C at P0 .§ƒ

P0

C: rstd = gstdi + hstdj + kstdk.

COROLLARY OF THEOREM 12
At the points on a smooth curve where a differentiable func-
tion ƒ(x, y) takes on its local maxima and minima relative to its values on the
curve, , where v = dr>dt.§ƒ # v = 0

rstd = gstdi + hstdj

Proof We show that is orthogonal to the curve’s velocity vector at The values of ƒ
on C are given by the composite ƒ(g(t), h(t), k(t)), whose derivative with respect to t is

At any point where ƒ has a local maximum or minimum relative to its values on the
curve, so

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two
variables.

§ƒ # v = 0.

dƒ>dt = 0,
P0

dƒ
dt

=

0ƒ
0x  

dg
dt

+

0ƒ
0y  

dh
dt

+

0ƒ
0z  

dk
dt

= §ƒ # v.

P0 .§ƒ

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that ƒ(x, y, z)
and g(x, y, z) are differentiable and that is a point on the surface where ƒ
has a local maximum or minimum value relative to its other values on the surface. Then ƒ
takes on a local maximum or minimum at relative to its values on every differentiable
curve through on the surface Therefore, is orthogonal to the velocity
vector of every such differentiable curve through So is moreover (because is
orthogonal to the level surface as we saw in Section 14.5). Therefore, at is
some scalar multiple of §g.l

P0, §ƒg = 0,
§g§g ,P0 .

§ƒgsx, y, zd = 0.P0

P0

gsx, y, zd = 0P0
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EXAMPLE 3 Using the Method of Lagrange Multipliers

Find the greatest and smallest values that the function

takes on the ellipse (Figure 14.53)

Solution We want the extreme values of subject to the constraint

To do so, we first find the values of x, y, and for which

The gradient equation in Equations (1) gives

from which we find

so that or We now consider these two cases.

Case 1: If then But (0, 0) is not on the ellipse. Hence, 
Case 2: If then and Substituting this in the equation

gives

The function therefore takes on its extreme values on the ellipse at the four
points The extreme values are and 

The Geometry of the Solution

The level curves of the function are the hyperbolas (Figure 14.54).
The farther the hyperbolas lie from the origin, the larger the absolute value of ƒ. We want

xy = cƒsx, yd = xy

xy = -2.xy = 2s ;2, 1d, s ;2, -1d.
ƒsx, yd = xy

s ;2yd2

8
+

y2

2
= 1, 4y2

+ 4y2
= 8 and y = ;1.

gsx, yd = 0
x = ;2y.l = ;2y Z 0,

y Z 0.x = y = 0.y = 0 ,

l = ;2.y = 0

y =

l
4

 x, x = ly, and y =

l
4

 slyd =

l2

4
 y,

yi + xj =

l
4

 xi + lyj,

§ƒ = l§g and gsx, yd = 0.

l

gsx, yd =

x2

8
+

y2

2
- 1 = 0.

ƒsx, yd = xy

x2

8
+

y2

2
= 1.

ƒsx, yd = xy
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The Method of Lagrange Multipliers
Suppose that ƒ(x, y, z) and g(x, y, z) are differentiable. To find the local maximum
and minimum values of ƒ subject to the constraint find the values
of x, y, z, and that simultaneously satisfy the equations

(1)

For functions of two independent variables, the condition is similar, but without
the variable z.

§ƒ = l§g and gsx, y, zd = 0.

l

gsx, y, zd = 0,

y

x
0 2�2

�2 �      � 1
x2

8
y2

2

FIGURE 14.53 Example 3 shows how to
find the largest and smallest values of the
product xy on this ellipse.
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to find the extreme values of ƒ(x, y), given that the point (x, y) also lies on the ellipse
Which hyperbolas intersecting the ellipse lie farthest from the origin? The

hyperbolas that just graze the ellipse, the ones that are tangent to it, are farthest. At these
points, any vector normal to the hyperbola is normal to the ellipse, so is a
multiple of At the point (2, 1), for example,

At the point 

EXAMPLE 4 Finding Extreme Function Values on a Circle

Find the maximum and minimum values of the function on the circle

Solution We model this as a Lagrange multiplier problem with

and look for the values of x, y, and that satisfy the equations

The gradient equation in Equations (1) implies that and gives

x =

3
2l

, y =
2
l

.

l Z 0

 gsx, yd = 0: x2
+ y2

- 1 = 0.

 §ƒ = l§g: 3i + 4j = 2xli + 2ylj

l

ƒsx, yd = 3x + 4y, gsx, yd = x2
+ y2

- 1

x2
+ y2

= 1.
ƒsx, yd = 3x + 4y

§ƒ = i - 2j, §g = -
1
2

 i + j, and §ƒ = -2§g.

s -2, 1d,

§ƒ = i + 2j, §g =
1
2

 i + j, and §ƒ = 2§g.

§g = sx>4di + yj.sl = ;2d
§ƒ = yi + xj

x2
+ 4y2

= 8.
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y

x
0 1

1

xy � –2
∇f � i � 2j

xy � 2

∇g �    i � j1
2

xy � –2xy � 2

�      � 1 � 0
2
y2

8
x2

FIGURE 14.54 When subjected to the
constraint 
the function takes on extreme
values at the four points These are
the points on the ellipse when (red) is a
scalar multiple of (blue) (Example 3).§g

§ƒ
s ;2, ;1d.

ƒsx, yd = xy
gsx, yd = x2>8 + y2>2 - 1 = 0,
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These equations tell us, among other things, that x and y have the same sign. With these
values for x and y, the equation gives

so

Thus,

and has extreme values at 
By calculating the value of at the points we see that its maxi-

mum and minimum values on the circle are

The Geometry of the Solution

The level curves of are the lines (Figure 14.55). The far-
ther the lines lie from the origin, the larger the absolute value of ƒ. We want to find the ex-
treme values of ƒ(x, y) given that the point (x, y) also lies on the circle 
Which lines intersecting the circle lie farthest from the origin? The lines tangent to the cir-
cle are farthest. At the points of tangency, any vector normal to the line is normal to the
circle, so the gradient is a multiple of the gradient

At the point (3 5, 4 5), for example,

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function ƒ(x, y, z)
whose variables are subject to two constraints. If the constraints are

and and are differentiable, with not parallel to we find the constrained local
maxima and minima of ƒ by introducing two Lagrange multipliers and (mu, pronounced
“mew”). That is, we locate the points P(x, y, z) where ƒ takes on its constrained extreme val-
ues by finding the values of and that simultaneously satisfy the equationsmx, y, z, l,

ml

§g2,§g1g2g1

g1sx, y, zd = 0 and g2sx, y, zd = 0

§ƒ = 3i + 4j, §g =

6
5 i +

8
5 j, and §ƒ =

5
2

 §g.

>>§g = 2xi + 2yj.
sl = ;5>2d§ƒ = 3i + 4j

x2
+ y2

= 1 .

3x + 4y = cƒsx, yd = 3x + 4y

3 a35 b + 4 a45 b =

25
5 = 5 and 3 a- 3

5 b + 4 a- 4
5 b = -

25
5 = -5.

x2
+ y2

= 1
;s3>5, 4>5d,3x + 4y

sx, yd = ;s3>5, 4>5d.ƒsx, yd = 3x + 4y

x =

3
2l

= ;

3
5, y =

2
l

= ;
4
5 ,

9
4l2 +

4
l2 = 1, 9 + 16 = 4l2, 4l2

= 25, and l = ;

5
2

.

a 3
2l
b2

+ a2
l
b2

- 1 = 0,

gsx, yd = 0
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y

x

3x � 4y � 5

3x � 4y � –5

x2 � y2 � 1 





3
5

4
5

,

∇f � 3i � 4j �    ∇g5
2

∇g �    i �    j6
5

8
5

FIGURE 14.55 The function 
takes on its largest value on the

unit circle at
the point (3 5, 4 5) and its smallest value
at the point (Example 4). 
At each of these points, is a scalar
multiple of The figure shows the
gradients at the first point but not the
second.

§g .
§ƒ

s -3>5, -4>5d
>>

gsx, yd = x2
+ y2

- 1 = 0
3x + 4y

ƒsx, yd =

C

g2 � 0

g1 � 0

∇f

∇g2

∇g1

FIGURE 14.56 The vectors and 
lie in a plane perpendicular to the curve C
because is normal to the surface

and is normal to the surface
g2 = 0.

§g2g1 = 0
§g1

§g2§g1

(2)§ƒ = l§g1 + m§g2, g1sx, y, zd = 0, g2sx, y, zd = 0

Equations (2) have a nice geometric interpretation. The surfaces and (usu-
ally) intersect in a smooth curve, say C (Figure 14.56). Along this curve we seek the points
where ƒ has local maximum and minimum values relative to its other values on the curve.

g2 = 0g1 = 0
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These are the points where is normal to C, as we saw in Theorem 12. But and 
are also normal to C at these points because C lies in the surfaces and 
Therefore, lies in the plane determined by and which means that

for some and Since the points we seek also lie in both surfaces,
their coordinates must satisfy the equations and which are
the remaining requirements in Equations (2).

EXAMPLE 5 Finding Extremes of Distance on an Ellipse

The plane cuts the cylinder in an ellipse (Figure 14.57). Find
the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

(the square of the distance from (x, y, z) to the origin) subject to the constraints

(3)

(4)

The gradient equation in Equations (2) then gives

or

(5)

The scalar equations in Equations (5) yield

(6)

Equations (6) are satisfied simultaneously if either and or and

If then solving Equations (3) and (4) simultaneously to find the corresponding
points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you
look at Figure 14.57.

If then Equations (3) and (4) give

The corresponding points on the ellipse are

P1 = a22
2

, 
22
2

, 1 - 22b and P2 = a- 22
2

, -
22
2

, 1 + 22b.

 x = ;

22
2
  z = 1 < 22.

 2x2
= 1  z = 1 - 2x

 x2
+ x2

- 1 = 0      x + x + z - 1 = 0

x = y,

z = 0,
x = y = z>s1 - ld.

l Z 1z = 0l = 1

 2y = 2ly + 2z Q s1 - ldy = z.

 2x = 2lx + 2z Q s1 - ldx = z, 

2x = 2lx + m, 2y = 2ly + m, 2z = m.

 2xi + 2yj + 2zk = s2lx + mdi + s2ly + mdj + mk

 2xi + 2yj + 2zk = ls2xi + 2yjd + msi + j + kd

 §ƒ = l§g1 + m§g2

g2sx, y, zd = x + y + z - 1 = 0.

g1sx, y, zd = x2
+ y2

- 1 = 0

ƒsx, y, zd = x2
+ y2

+ z2

x2
+ y2

= 1x + y + z = 1

g2sx, y, zd = 0,g1sx, y, zd = 0
m .l§ƒ = l§g1 + m§g2

§g2,§g1§ƒ
g2 = 0.g1 = 0

§g2§g1§ƒ
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Cylinder x2 � y2 � 1

Plane
x � y � z � 1

z

(0, 1, 0)
(1, 0, 0) y

x P1

P2

FIGURE 14.57 On the ellipse where the
plane and cylinder meet, what are the
points closest to and farthest from the
origin? (Example 5)
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Here we need to be careful, however. Although and both give local maxima of ƒ on
the ellipse, is farther from the origin than 

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on
the ellipse farthest from the origin is P2.

P1.P2

P2P1

14.8 Lagrange Multipliers 1047
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14.8 Lagrange Multipliers 1047

EXERCISES 14.8

Two Independent Variables with One Constraint
1. Extrema on an ellipse Find the points on the ellipse

where as its extreme values.

2. Extrema on a circle Find the extreme values of 
subject to the constraint 

3. Maximum on a line Find the maximum value of 
on the line .

4. Extrema on a line Find the local extreme values of
on the line 

5. Constrained minimum Find the points on the curve 
nearest the origin.

6. Constrained minimum Find the points on the curve 
nearest the origin.

7. Use the method of Lagrange multipliers to find

a. Minimum on a hyperbola The minimum value of 
subject to the constraints 

b. Maximum on a line The maximum value of xy, subject to
the constraint 

Comment on the geometry of each solution.

8. Extrema on a curve Find the points on the curve 
in the xy-plane that are nearest to and farthest from the

origin.

9. Minimum surface area with fixed volume Find the dimen-
sions of the closed right circular cylindrical can of smallest sur-
face area whose volume is 

10. Cylinder in a sphere Find the radius and height of the open
right circular cylinder of largest surface area that can be inscribed
in a sphere of radius a. What is the largest surface area?

11. Rectangle of greatest area in an ellipse Use the method of
Lagrange multipliers to find the dimensions of the rectangle 
of greatest area that can be inscribed in the ellipse

with sides parallel to the coordinate axes.

12. Rectangle of longest perimeter in an ellipse Find the dimen-
sions of the rectangle of largest perimeter that can be inscribed in
the ellipse with sides parallel to the coordi-
nate axes. What is the largest perimeter?

13. Extrema on a circle Find the maximum and minimum values
of subject to the constraint 

14. Extrema on a circle Find the maximum and minimum values
of subject to the constraint x2

+ y2
= 4.3x - y + 6

x2
- 2x + y2

- 4y = 0.x2
+ y2

x2>a2
+ y2>b2

= 1

x2>16 + y2>9 = 1

16p cm3 .

y2
= 1

x2
+ xy +

x + y = 16.

xy = 16, x 7 0, y 7 0
x + y,

x2y = 2

xy2
= 54

x + y = 3 .ƒsx, yd = x2y

x + 3y = 1049 - x2
- y2

ƒsx, yd =

gsx, yd = x2
+ y2

- 10 = 0.
ƒsx, yd = xy

ƒsx, yd = xyx2
+ 2y2

= 1

15. Ant on a metal plate The temperature at a point (x, y) on a
metal plate is An ant on the plate
walks around the circle of radius 5 centered at the origin. What
are the highest and lowest temperatures encountered by the ant?

16. Cheapest storage tank Your firm has been asked to design a
storage tank for liquid petroleum gas. The customer’s specifica-
tions call for a cylindrical tank with hemispherical ends, and the
tank is to hold of gas. The customer also wants to use the
smallest amount of material possible in building the tank. What
radius and height do you recommend for the cylindrical portion
of the tank?

Three Independent Variables
with One Constraint
17. Minimum distance to a point Find the point on the plane

closest to the point (1, 1, 1).

18. Maximum distance to a point Find the point on the sphere
farthest from the point 

19. Minimum distance to the origin Find the minimum distance
from the surface to the origin.

20. Minimum distance to the origin Find the point on the surface
nearest the origin.

21. Minimum distance to the origin Find the points on the surface
closest to the origin.

22. Minimum distance to the origin Find the point(s) on the sur-
face closest to the origin.

23. Extrema on a sphere Find the maximum and minimum values of

on the sphere 

24. Extrema on a sphere Find the points on the sphere
where has its

maximum and minimum values.

25. Minimizing a sum of squares Find three real numbers whose
sum is 9 and the sum of whose squares is as small as possible.

26. Maximizing a product Find the largest product the positive
numbers x, y, and z can have if 

27. Rectangular box of longest volume in a sphere Find the di-
mensions of the closed rectangular box with maximum volume
that can be inscribed in the unit sphere.

x + y + z2
= 16.

ƒsx, y, zd = x + 2y + 3zx2
+ y2

+ z2
= 25

x2
+ y2

+ z2
= 30.

ƒsx, y, zd = x - 2y + 5z

xyz = 1

z2
= xy + 4

z = xy + 1

x2
+ y2

- z2
= 1

s1, -1, 1d .x2
+ y2

+ z2
= 4

x + 2y + 3z = 13

8000 m3

Tsx, yd = 4x2
- 4xy + y2.
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28. Box with vertex on a plane Find the volume of the largest
closed rectangular box in the first octant having three faces in 
the coordinate planes and a vertex on the plane

where and 

29. Hottest point on a space probe A space probe in the shape of
the ellipsoid

enters Earth’s atmosphere and its surface begins to heat. After 1
hour, the temperature at the point (x, y, z) on the probe’s surface is

Find the hottest point on the probe’s surface.

30. Extreme temperatures on a sphere Suppose that the Celsius
temperature at the point (x, y, z) on the sphere 
is Locate the highest and lowest temperatures on
the sphere.

31. Maximizing a utility function: an example from economics
In economics, the usefulness or utility of amounts x and y of two
capital goods and is sometimes measured by a function
U(x, y). For example, and might be two chemicals a phar-
maceutical company needs to have on hand and U(x, y) the gain
from manufacturing a product whose synthesis requires different
amounts of the chemicals depending on the process used. If 
costs a dollars per kilogram, costs b dollars per kilogram, and
the total amount allocated for the purchase of and together
is c dollars, then the company’s managers want to maximize
U(x, y) given that Thus, they need to solve a typi-
cal Lagrange multiplier problem.

Suppose that

and that the equation simplifies to

Find the maximum value of U and the corresponding values of x
and y subject to this latter constraint.

32. Locating a radio telescope You are in charge of erecting a ra-
dio telescope on a newly discovered planet. To minimize interfer-
ence, you want to place it where the magnetic field of the planet is
weakest. The planet is spherical, with a radius of 6 units. Based
on a coordinate system whose origin is at the center of the planet,
the strength of the magnetic field is given by 

Where should you locate the radio tele-
scope?

Extreme Values Subject to Two Constraints
33. Maximize the function subject to the

constraints and 

34. Minimize the function subject to the
constraints and x + 3y + 9z = 9.x + 2y + 3z = 6

ƒsx, y, zd = x2
+ y2

+ z2

y + z = 0.2x - y = 0
ƒsx, y, zd = x2

+ 2y - z2

6x - y2
+ xz + 60.

Msx, y, zd =

2x + y = 30.

ax + by = c

Usx, yd = xy + 2x

ax + by = c .

G2G1

G2

G1

G2G1

G2G1

T = 400xyz2 .
x2

+ y2
+ z2

= 1

Tsx, y, zd = 8x2
+ 4yz - 16z + 600 .

4x2
+ y2

+ 4z2
= 16

c 7 0.a 7 0, b 7 0,x>a + y>b + z>c = 1,

35. Minimum distance to the origin Find the point closest to the
origin on the line of intersection of the planes and

36. Maximum value on line of intersection Find the maximum
value that can have on the line of in-
tersection of the planes and 

37. Extrema on a curve of intersection Find the extreme values of
on the intersection of the plane with

the sphere 

38. a. Maximum on line of intersection Find the maximum value
of on the line of intersection of the two planes

and 

b. Give a geometric argument to support your claim that you
have found a maximum, and not a minimum, value of w.

39. Extrema on a circle of intersection Find the extreme values of
the function on the circle in which the plane

intersects the sphere 

40. Minimum distance to the origin Find the point closest to the
origin on the curve of intersection of the plane and
the cone 

Theory and Examples
41. The condition is not sufficient Although 

is a necessary condition for the occurrence of an extreme value of
ƒ(x, y) subject to the condition it does not in itself
guarantee that one exists. As a case in point, try using the method
of Lagrange multipliers to find a maximum value of

subject to the constraint that The
method will identify the two points (4, 4) and as candi-
dates for the location of extreme values. Yet the sum has
no maximum value on the hyperbola The farther you go
from the origin on this hyperbola in the first quadrant, the larger
the sum becomes.

42. A least squares plane The plane is to be
“fitted” to the following points 

Find the values of A, B, and C that minimize

the sum of the squares of the deviations.

43. a. Maximum on a sphere Show that the maximum value of
on a sphere of radius r centered at the origin of a

Cartesian abc-coordinate system is 

b. Geometric and arithmetic means Using part (a), show
that for nonnegative numbers a, b, and c,

that is, the geometric mean of three nonnegative numbers is
less than or equal to their arithmetic mean.

sabcd1>3
…

a + b + c
3

;

sr2>3d3.
a2b2c2

a
4

k = 1
sAxk + Byk + C - zkd2 ,

s0, 0, 0d, s0, 1, 1d, s1, 1, 1d, s1, 0, -1d.

sxk, yk, zkd:
z = Ax + By + C

ƒsx, yd = x + y

xy = 16.
sx + yd

s -4, -4d
xy = 16.ƒsx, yd = x + y

gsx, yd = 0,

§ƒ = l§g§f = l§g

z2
= 4x2

+ 4y2.
2y + 4z = 5

x2
+ y2

+ z2
= 4.y - x = 0

ƒsx, y, zd = xy + z2

x + y - z = 0.x + y + z = 40
w = xyz

x2
+ y2

+ z2
= 10.

z = 1ƒsx, y, zd = x2yz + 1

y + z = 0.2x - y = 0
ƒsx, y, zd = x2

+ 2y - z2

x + y = 6.
y + 2z = 12

1048 Chapter 14: Partial Derivatives

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:53 PM  Page 1048

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1408b.html
tcu1408b.html
tcu1408c.html
tcu1408c.html
tcu1408c.html
tcu1408c.html


44. Sum of products Let be n positive numbers. Find
the maximum of subject to the constraint 

COMPUTER EXPLORATIONS

Implementing the Method
of Lagrange Multipliers
In Exercises 45–50, use a CAS to perform the following steps imple-
menting the method of Lagrange multipliers for finding constrained
extrema:

a. Form the function where ƒ is the
function to optimize subject to the constraints and

b. Determine all the first partial derivatives of h, including the
partials with respect to and and set them equal to 0.

c. Solve the system of equations found in part (b) for all the
unknowns, including and l2.l1

l2 ,l1

g2 = 0.
g1 = 0

h = ƒ - l1 g1 - l2 g2,

©i = 1
n  xi

2
= 1.©i = 1

n  ai xi

a1, a2 , Á , an d. Evaluate ƒ at each of the solution points found in part (c) and
select the extreme value subject to the constraints asked for in the
exercise.

45. Minimize subject to the constraints
and 

46. Minimize subject to the constraints
and 

47. Maximize subject to the constraints
and 

48. Minimize subject to the constraints
and 

49. Minimize subject to the con-
straints and 

50. Determine the distance from the line to the parabola
(Hint: Let (x, y) be a point on the line and (w, z) a point

on the parabola. You want to minimize )sx - wd2
+ sy - zd2.

y2
= x.

y = x + 1

x + y - z + w - 1 = 0.2x - y + z - w - 1 = 0
ƒsx, y, z, wd = x2

+ y2
+ z2

+ w2

x2
+ y2

- 1 = 0.x2
- xy + y2

- z2
- 1 = 0

ƒsx, y, zd = x2
+ y2

+ z2

4x2
+ 4y2

- z2
= 0.2y + 4z - 5 = 0

ƒsx, y, zd = x2
+ y2

+ z2

x - z = 0.x2
+ y2

- 1 = 0
ƒsx, y, zd = xyz

x2
+ z2

- 2 = 0.x2
+ y2

- 2 = 0
ƒsx, y, zd = xy + yz

1049
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14.9 Partial Derivatives with Constrained Variables 1049

Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like we have assumed x and y to be
independent. In many applications, however, this is not the case. For example, the internal
energy U of a gas may be expressed as a function of pressure P, volume V,
and temperature T. If the individual molecules of the gas do not interact, however, P, V,
and T obey (and are constrained by) the ideal gas law

and fail to be independent. In this section we learn how to find partial derivatives in situa-
tions like this, which you may encounter in studying economics, engineering, or physics.†

Decide Which Variables Are Dependent
and Which Are Independent

If the variables in a function are constrained by a relation like the one im-
posed on x, y, and z by the equation the geometric meanings and the numeri-
cal values of the partial derivatives of ƒ will depend on which variables are chosen to be
dependent and which are chosen to be independent. To see how this choice can affect the
outcome, we consider the calculation of when and 

EXAMPLE 1 Finding a Partial Derivative with Constrained
Independent Variables

Find if and z = x2
+ y2.w = x2

+ y2
+ z2

0w>0x

z = x2
+ y2.w = x2

+ y2
+ z2

0w>0x

z = x2
+ y2,

w = ƒsx, y, zd

PV = nRT sn and R constantd,

U = ƒsP, V, Td

w = ƒsx, yd ,

14.9

†This section is based on notes written for MIT by Arthur P. Mattuck.
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Solution We are given two equations in the four unknowns x, y, z, and w. Like many
such systems, this one can be solved for two of the unknowns (the dependent variables) in
terms of the others (the independent variables). In being asked for we are told that
w is to be a dependent variable and x an independent variable. The possible choices for the
other variables come down to

In either case, we can express w explicitly in terms of the selected independent variables.
We do this by using the second equation to eliminate the remaining depend-
ent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from the first
equation by replacing it by The resulting expression for w is

and

(1)

This is the formula for when x and y are the independent variables.
In the second case, where the independent variables are x and z and the remaining de-

pendent variable is y, we eliminate the dependent variable y in the expression for w by re-
placing in the second equation by This gives

and

(2)

This is the formula for when x and z are the independent variables.
The formulas for in Equations (1) and (2) are genuinely different. We cannot

change either formula into the other by using the relation There is not just
one there are two, and we see that the original instruction to find was in-
complete. Which we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equa-
tions differ. The function measures the square of the distance from the
point (x, y, z) to the origin. The condition says that the point (x, y, z) lies on
the paraboloid of revolution shown in Figure 14.58. What does it mean to calculate 
at a point P(x, y, z) that can move only on this surface? What is the value of when
the coordinates of P are, say, (1, 0, 1)?

If we take x and y to be independent, then we find by holding y fixed (at 
in this case) and letting x vary. Hence, P moves along the parabola in the xz-plane.
As P moves on this parabola, w, which is the square of the distance from P to the origin,
changes. We calculate in this case (our first solution above) to be

0w
0x = 2x + 4x3

+ 4xy2.

0w>0x

z = x2
y = 00w>0x

0w>0x
0w>0x

z = x2
+ y2

w = x2
+ y2

+ z2

0w>0x?
0w>0x0w>0x ,

z = x2
+ y2.

0w>0x
0w>0x

0w
0x = 0.

w = x2
+ y2

+ z2
= x2

+ sz - x2d + z2
= z + z2

z - x2 .y2

0w>0x

0w
0x = 2x + 4x3

+ 4xy2.

 = x2
+ y2

+ x4
+ 2x2y2

+ y4

 w = x2
+ y2

+ z2
= x2

+ y2
+ sx2

+ y2d2

x2
+ y2 .

z = x 2
+ y 2

Dependent Independent

w, z x, y

w, y x, z

0w>0x,

1050 Chapter 14: Partial Derivatives

y

z

x

0

(1, 0, 0)

P
(0, 0, 1)

z � x2, y � 0

z � x2 � y2

Circle x2 � y2 � 1
in the plane z � 1 

(1, 0, 1)

FIGURE 14.58 If P is constrained to 
lie on the paraboloid the
value of the partial derivative of

with respect to x at 
P depends on the direction of motion
(Example 1). (1) As x changes, with

P moves up or down the surface on
the parabola in the xz-plane with

(2) As x changes, 
with P moves on the circle

and 0w>0x = 0.x2
+ y2

= 1, z = 1,
z = 1,

0w>0x = 2x + 4x3.
z = x2

y = 0,

w = x2
+ y2

+ z2

z = x2
+ y2,
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At the point P(1, 0, 1), the value of this derivative is

If we take x and z to be independent, then we find by holding z fixed while x
varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane

As P moves along this circle, its distance from the origin remains constant, and w,
being the square of this distance, does not change. That is,

as we found in our second solution.

How to Find When the Variables in Are
Constrained by Another Equation

As we saw in Example 1, a typical routine for finding when the variables in the
function are related by another equation has three steps. These steps apply
to finding and as well.0w>0z0w>0y

w = ƒsx, y, zd
0w>0x

w = ƒsx, y, zd�w>�x

0w
0x = 0,

z = 1.

0w>0x

0w
0x = 2 + 4 + 0 = 6.

14.9 Partial Derivatives with Constrained Variables 1051

1. Decide which variables are to be dependent and which are to be indepen-
dent. (In practice, the decision is based on the physical or theoretical context
of our work. In the exercises at the end of this section, we say which vari-
ables are which.)

2. Eliminate the other dependent variable(s) in the expression for w.

3. Differentiate as usual.

If we cannot carry out Step 2 after deciding which variables are dependent, we differ-
entiate the equations as they are and try to solve for afterward. The next example
shows how this is done.

EXAMPLE 2 Finding a Partial Derivative with Identified Constrained
Independent Variables

Find at the point if

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differ-
entiate both equations implicitly with respect to x, treating x and y as independent vari-
ables and w and z as dependent variables. This gives

(3)
0w
0x = 2x + 2z 

0z
0x

w = x2
+ y2

+ z2, z3
- xy + yz + y3

= 1,

sx, y, zd = s2, -1, 1d0w>0x

0w>0x
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and

(4)

These equations may now be combined to express in terms of x, y, and z. We solve
Equation (4) for to get

and substitute into Equation (3) to get

The value of this derivative at is

Notation

To show what variables are assumed to be independent in calculating a derivative, we can
use the following notation:

EXAMPLE 3 Finding a Partial Derivative with Constrained Variables
Notationally Identified

Find 

Solution With x, y, z independent, we have

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow dia-
gram that shows how the variables and functions are related. If

w = x2
+ y - z + sin t and x + y = t

 = 2x + cos sx + yd.

 a0w
0x b y, z

= 2x + 0 - 0 + cos sx + yd 
0

0x sx + yd

 t = x + y, w = x2
+ y - z + sin sx + yd

s0w>0xdy, z if w = x2
+ y - z + sin t and x + y = t.

a0ƒ
0y b x, t
 0ƒ>0y with y, x and t independent

a0w
0x b y
  0w>0x with x and y independent

a0w
0x b s2,-1,1d

= 2s2d +

2s -1ds1d
-1 + 3s1d2 = 4 +

-2
2

= 3.

sx, y, zd = s2, -1, 1d

0w
0x = 2x +

2yz

y + 3z2 .

0z
0x =

y

y + 3z2

0z>0x
0w>0x

3z2 
0z
0x - y + y 

0z
0x + 0 = 0.

1052 Chapter 14: Partial Derivatives

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:54 PM  Page 1052

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce14.html?5_7_a


and we are asked to find when x, y, and z are independent, the appropriate diagram
is one like this:

(5)

To avoid confusion between the independent and intermediate variables with the same
symbolic names in the diagram, it is helpful to rename the intermediate variables (so they
are seen as functions of the independent variables). Thus, let and de-
note the renamed intermediate variables. With this notation, the arrow diagram becomes

(6)

The diagram shows the independent variables on the left, the intermediate variables and
their relation to the independent variables in the middle, and the dependent variable on the
right. The function w now becomes

where

To find we apply the four-variable form of the Chain Rule to w, guided by the
arrow diagram in Equation (6):

 = 2x + cos sx + yd .

 = 2u + cos t

 = s2uds1d + s1ds0d + s -1ds0d + scos tds1d

 
0w
0x =

0w
0u  

0u
0x +

0w
0y

 
0y
0x +

0w
0s  

0s
0x +

0w
0t  

0t
0x

0w>0x,

u = x, y = y, s = z, and t = x + y.

w = u2
+ y - s + sin t,

£x

y

z

≥  :  §u

y

s

t

¥  :  w

s = zu = x, y = y ,

£x

y

z

≥  : §x

y

z

t

¥  :  w

0w>0x

14.9 Partial Derivatives with Constrained Variables 1053

Independent Intermediate Dependent
variables variables and variable

relations

Independent Intermediate Dependent
variables variables variable

t = x + y
s = z
y = y
u = x

Substituting the original independent
variables and t = x + y.u = x
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14.9 Partial Derivatives with Constrained Variables 1053

EXERCISES 14.9

Finding Partial Derivatives with Constrained Variables
In Exercises 1–3, begin by drawing a diagram that shows the relations
among the variables.

1. If and find

a. b. c. a0w
0z b y

.a0w
0z b x

a0w
0y b z

z = x2
+ y2 ,w = x2

+ y2
+ z2

2. If and find

a. b. c.

d. e. f. a0w
0t b y, z

.a0w
0t b x, z

a0w
0z b y, t

a0w
0z b x, y

a0w
0y b z, t

a0w
0y b x, z

x + y = t ,w = x2
+ y - z + sin t
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3. Let be the internal energy of a gas that obeys the
ideal gas law (n and R constant). Find

a. b.

4. Find

a. b.

at the point if

5. Find

a. b.

at the point if

6. Find at the point if and

7. Suppose that and as in polar coordi-
nates. Find

8. Suppose that

Show that the equations

each give depending on which variables are chosen to be
dependent and which variables are chosen to be independent.
Identify the independent variables in each case.

0w>0x,

0w
0x = 2x - 1 and 0w

0x = 2x - 2

w = x2
- y2

+ 4z + t and x + 2z + t = 25.

a0x
0r bu and a0r

0x b y
.

x = r cos u,x2
+ y2

= r2

y = uy.
x = u2

+ y2su, yd = A22, 1 B ,s0u>0ydx

w = x2y2
+ yz - z3 and x2

+ y2
+ z2

= 6.

sw, x, y, zd = s4, 2, 1, -1d

a0w
0y b z

a0w
0y b x

w = x2
+ y2

+ z2 and y sin z + z sin x = 0.

sx, y, zd = s0, 1, pd

a0w
0z b y

a0w
0x b y

a0U
0T
b

V
.a0U

0P
b

V

PV = nRT
U = ƒsP, V, Td Partial Derivatives Without Specific Formulas

9. Establish the fact, widely used in hydrodynamics, that if
then

(Hint: Express all the derivatives in terms of the formal partial de-
rivatives and )

10. If where show that

11. Suppose that the equation determines z as a differ-
entiable function of the independent variables x and y and that

Show that

12. Suppose that and determine z
and w as differentiable functions of the independent variables x
and y, and suppose that

Show that

and

a0w
0y b x

= -

0ƒ
0z  

0g
0y -

0ƒ
0y  

0g
0z

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z

 .

a0z
0x b y

= -

0ƒ
0x  

0g
0w -

0ƒ
0w 

0g
0x

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z

0ƒ
0z  

0g
0w -

0ƒ
0w 

0g
0z Z 0.

g sx, y, z, wd = 0ƒsx, y, z, wd = 0

a0z
0y b x

= -

0g>0y

0g>0z
 .

gz Z 0.

gsx, y, zd = 0

x 
0z
0x - y 

0z
0y = x .

u = xy,z = x + ƒsud,
0ƒ>0z.0ƒ>0x, 0ƒ>0y,

a0x
0y b z

 a0y
0z b x

 a0z
0x b y

= -1.

ƒsx, y, zd = 0,
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1054 Chapter 14: Partial Derivatives

Taylor’s Formula for Two Variables

This section uses Taylor’s formula to derive the Second Derivative Test for local extreme
values (Section 14.7) and the error formula for linearizations of functions of two inde-
pendent variables (Section 14.6). The use of Taylor’s formula in these derivations leads to
an extension of the formula that provides polynomial approximations of all orders for
functions of two independent variables.

Derivation of the Second Derivative Test

Let ƒ(x, y) have continuous partial derivatives in an open region R containing a point P(a, b)
where (Figure 14.59). Let h and k be increments small enough to put theƒx = ƒy = 0

14.10
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point and the line segment joining it to P inside R. We parametrize the
segment PS as

If the Chain Rule gives

Since and are differentiable (they have continuous partial derivatives), is a
differentiable function of t and

Since F and are continuous on [0, 1] and is differentiable on (0, 1), we can apply
Taylor’s formula with and to obtain

(1)

for some c between 0 and 1. Writing Equation (1) in terms of ƒ gives

(2)

Since this reduces to

(3)

The presence of an extremum of ƒ at (a, b) is determined by the sign of
By Equation (3), this is the same as the sign of

Now, if the sign of Q(c) will be the same as the sign of Q(0) for suffi-
ciently small values of h and k. We can predict the sign of

(4)

from the signs of and at (a, b). Multiply both sides of Equation (4) by 
and rearrange the right-hand side to get

(5)

From Equation (5) we see that

1. If and at (a, b), then for all sufficiently small
nonzero values of h and k, and ƒ has a local maximum value at (a, b).

2. If and at (a, b), then for all sufficiently small
nonzero values of h and k and ƒ has a local minimum value at (a, b).

Qs0d 7 0ƒxx ƒyy - ƒxy
2

7 0ƒxx 7 0

Qs0d 6 0ƒxx ƒyy - ƒxy
2

7 0ƒxx 6 0

ƒxx Qs0d = shƒxx + kƒxyd2
+ sƒxx ƒyy - ƒxy

2dk2.

ƒxxƒxx ƒyy - ƒxy
2ƒxx

Qs0d = h2ƒxxsa, bd + 2hkƒxysa, bd + k2ƒyysa, bd

Qs0d Z 0 ,

Qscd = sh2ƒxx + 2hkƒxy + k2ƒyyd ƒ sa + ch,b + ckd .

ƒsa + h, b + kd - ƒsa, bd.

ƒsa + h, b + kd - ƒsa, bd =
1
2

 Ah2ƒxx + 2hkƒxy + k2ƒyy B `
sa + ch, b + ckd

.

ƒxsa, bd = ƒysa, bd = 0,

 +
1
2

 Ah2ƒxx + 2hkƒxy + k2ƒyy B `
sa + ch, b + ckd

.

 ƒsa + h, b + kd = ƒsa, bd + hƒxsa, bd + kƒysa, bd

 Fs1d = Fs0d + F¿s0d +
1
2

 F–scd

 Fs1d = Fs0d + F¿s0ds1 - 0d + F–scd 
s1 - 0d2

2

a = 0n = 2
F¿F¿

fxy = fyx = h2ƒxx + 2hkƒxy + k2ƒyy .

 F– =
0F¿

0x  
dx
dt

+
0F¿

0y  
dy
dt

=
0

0x shƒx + kƒyd # h +
0

0y shƒx + kƒyd # k

F¿ƒyƒx

F¿std = ƒx 
dx
dt

+ ƒy 
dy
dt

= hƒx + kƒy .

Fstd = ƒsa + th, b + tkd ,

x = a + th, y = b + tk, 0 … t … 1 .

Ssa + h, b + kd

14.10 Taylor’s Formula for Two Variables 1055

Part of open region R

(a � th, b � tk),
a typical point
on the segment

P(a, b)
t � 0

Parametrized
segment
in R

t � 1
S(a � h, b � k)

FIGURE 14.59 We begin the derivation
of the second derivative test at P(a, b) by
parametrizing a typical line segment from
P to a point S nearby.
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3. If at (a, b), there are combinations of arbitrarily small nonzero val-
ues of h and k for which and other values for which Arbitrarily
close to the point on the surface there are points above

and points below so ƒ has a saddle point at (a, b).

4. If another test is needed. The possibility that Q(0) equals zero pre-
vents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y), between the values of a function ƒ(x, y), and
its linearization L(x, y) at satisfies the inequality

The function ƒ is assumed to have continuous second partial derivatives throughout an
open set containing a closed rectangular region R centered at The number M is an
upper bound for and on R.

The inequality we want comes from Equation (2). We substitute and for a and b,
and and for h and k, respectively, and rearrange the result as

This equation reveals that

Hence, if M is an upper bound for the values of and on R,

Taylor’s Formula for Functions of Two Variables

The formulas derived earlier for and can be obtained by applying to ƒ(x, y) the oper-
ators

These are the first two instances of a more general formula,

(6)F sndstd =

dn

dtn Fstd = ah 
0

0x + k 
0

0y b
n

ƒsx, yd ,

ah 
0

0x + k 
0

0y b and ah 
0

0x + k 
0

0y b
2

= h2 
0

2

0x2 + 2hk 
0

2

0x 0y + k2 
0

2

0y2 .

F–F¿

 =
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

 ƒ E ƒ …
1
2

 A ƒ x - x0 ƒ
2 M + 2 ƒ x - x0 ƒ ƒ y - y0 ƒ M + ƒ y - y0 ƒ

2M B
ƒ ƒyy ƒƒ ƒxx ƒ , ƒ ƒxy ƒ ,

ƒ E ƒ …
1
2

 A ƒ x - x0 ƒ
2

ƒ ƒxx ƒ + 2 ƒ x - x0 ƒ ƒ y - y0 ƒ ƒ ƒxy ƒ + ƒ y - y0 ƒ
2

ƒ ƒyy ƒ B .

+
1
2

 A sx - x0d2ƒxx + 2sx - x0ds y - y0dƒxy + s y - y0d2ƒyy B ` sx0 +csx-x0d, y0 +cs y-y0dd.
 ('''''''''''''''')'''''''''''''''''*

error Esx, yd

ƒsx, yd = ƒsx0 , y0d + ƒxsx0 , y0dsx - x0d + ƒysx0 , y0ds y - y0d
('''''''')'''''''''''''*

linearization Lsx, yd

y - y0x - x0

y0x0

ƒ ƒxy ƒƒ ƒxx ƒ , ƒ ƒyy ƒ ,
sx0 , y0d.

ƒ Esx, yd ƒ …
1
2

 Ms ƒ x - x0 ƒ + ƒ y - y0 ƒ d2.

sx0 , y0d

ƒxx ƒyy - ƒxy
2

= 0,

P0 ,P0

z = ƒsx, ydP0sa, b, ƒsa, bdd
Qs0d 6 0.Qs0d 7 0,

ƒxx ƒyy - ƒxy
2

6 0
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which says that applying gives the same result as applying the operator

to ƒ(x, y) after expanding it by the Binomial Theorem.
If partial derivatives of ƒ through order are continuous throughout a rectangu-

lar region centered at (a, b), we may extend the Taylor formula for F(t) to

and take to obtain

When we replace the first n derivatives on the right of this last series by their equivalent
expressions from Equation (6) evaluated at and add the appropriate remainder term,
we arrive at the following formula.

t = 0

Fs1d = Fs0d + F¿s0d +

F–s0d
2!

+
Á

+

F snds0d
n!

+  remainder.

t = 1

Fstd = Fs0d + F¿s0dt +

F–s0d
2!

 t2
+

Á
+

F snds0d
n!

 t snd
+  remainder, 

n + 1

ah 
0

0x + k 
0

0y b
n

dn>dtn to Fstd

14.10 Taylor’s Formula for Two Variables 1057

Taylor’s Formula for ƒ(x, y) at the Point (a, b)
Suppose ƒ(x, y) and its partial derivatives through order are continuous throughout an open rectangular region R cen-
tered at a point (a, b). Then, throughout R,

(7)+
1

sn + 1d!
 ah 

0

0x + k 
0

0y b
n + 1

ƒ `
sa + ch,b + ckd

.

+
1
3!

 sh3ƒxxx + 3h2kƒxxy + 3hk2ƒxyy + k3ƒyyyd ƒ sa,bd +
Á

+
1
n!

 ah 
0

0x + k 
0

0y b
n

ƒ `
sa,bd

ƒsa + h, b + kd = ƒsa, bd + shƒx + kƒyd ƒ sa,bd +
1
2!

 sh2ƒxx + 2hkƒxy + k2ƒyyd ƒ sa,bd

n + 1

Taylor’s Formula for ƒ(x, y) at the Origin

(8)+
1

sn + 1d!
 ax 

0

0x + y 
0

0y b
n + 1

ƒ `
scx,cyd

+
1
3!

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyyd +
Á

+
1
n!

 ax 
0

0x + y 
0

0y b
n

ƒ

ƒsx, yd = ƒs0, 0d + xƒx + yƒy +
1
2!

 sx2ƒxx + 2xyƒxy + y2ƒyyd

The first n derivative terms are evaluated at (a, b). The last term is evaluated at some point
on the line segment joining (a, b) and 

If and we treat h and k as independent variables (denoting them now
by x and y), then Equation (7) assumes the following simpler form.

sa, bd = s0, 0d
sa + h, b + kd.sa + ch, b + ckd
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The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a point on
the line segment joining the origin and (x, y).

Taylor’s formula provides polynomial approximations of two-variable functions. The
first n derivative terms give the polynomial; the last term gives the approximation error.
The first three terms of Taylor’s formula give the function’s linearization. To improve on
the linearization, we add higher power terms.

EXAMPLE 1 Finding a Quadratic Approximation

Find a quadratic approximation to near the origin. How accurate is the
approximation if and 

Solution We take in Equation (8):

with

we have

The error in the approximation is

The third derivatives never exceed 1 in absolute value because they are products of sines
and cosines. Also, and Hence

(rounded up). The error will not exceed 0.00134 if   and   ƒ y ƒ … 0.1.ƒ x ƒ … 0.1

ƒ Esx, yd ƒ …
1
6

 ss0.1d3
+ 3s0.1d3

+ 3s0.1d3
+ s0.1d3d =

8
6

 s0.1d3
… 0.00134

ƒ y ƒ … 0.1.ƒ x ƒ … 0.1

Esx, yd =
1
6

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyyd ƒ scx,cyd .

 sin x sin y L xy.

 sin x sin y L 0 + 0 + 0 +
1
2

 sx2s0d + 2xys1d + y2s0dd, 

 ƒys0, 0d = sin x cos y ƒ s0,0d = 0, ƒyys0, 0d = -sin x sin y ƒ s0,0d = 0, 

 ƒxs0, 0d = cos x sin y ƒ s0,0d = 0, ƒxys0, 0d = cos x cos y ƒ s0,0d = 1, 

 ƒs0, 0d = sin x sin y ƒ s0,0d = 0, ƒxxs0, 0d = -sin x sin y ƒ s0,0d = 0, 

+
1
6

 sx3ƒxxx + 3x2yƒxxy + 3xy2ƒxyy + y3ƒyyydscx,cyd

ƒsx, yd = ƒs0, 0d + sxƒx + yƒyd +
1
2

 sx2ƒxx + 2xyƒxy + y2ƒyyd

n = 2

 ƒ y ƒ … 0.1? ƒ x ƒ … 0.1
ƒsx, yd = sin x sin y

1058 Chapter 14: Partial Derivatives

4100 AWL/Thomas_ch14p965-1066  8/25/04  2:54 PM  Page 1058

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce14.html?5_1_l
bounce14.html?5_2_l


1058 Chapter 14: Partial Derivatives

EXERCISES 14.10

Finding Quadratic and Cubic Approximations
In Exercises 1–10, use Taylor’s formula for ƒ(x, y) at the origin to find
quadratic and cubic approximations of ƒ near the origin.

1. 2. ƒsx, yd = ex cos yƒsx, yd = xey

3. 4.

5. 6.

7. 8. ƒsx, yd = cos sx2
+ y2dƒsx, yd = sin sx2

+ y2d
ƒsx, yd = ln s2x + y + 1dƒsx, yd = ex ln s1 + yd
ƒsx, yd = sin x cos yƒsx, yd = y sin x
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9. 10.

11. Use Taylor’s formula to find a quadratic approximation of
at the origin. Estimate the error in the ap-

proximation if  and  ƒ y ƒ … 0.1.ƒ x ƒ … 0.1
ƒsx, yd = cos x cos y

ƒsx, yd =

1
1 - x - y + xy

ƒsx, yd =

1
1 - x - y

12. Use Taylor’s formula to find a quadratic approximation of 
at the origin. Estimate the error in the approximation if  
and  ƒ y ƒ … 0.1.

ƒ x ƒ … 0.1
ex sin y
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Chapter 14 Additional and Advanced Exercises

Partial Derivatives
1. Function with saddle at the origin If you did Exercise 50 in

Section 14.2, you know that the function

ƒsx, yd = L xy 
x2

- y2

x2
+ y2 , sx, yd Z s0, 0d

0, sx, yd = s0, 0d

(see the accompanying figure) is continuous at (0, 0). Find
and 

z

y

x

ƒyxs0, 0d.ƒxys0, 0d
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2. Finding a function from second partials Find a function
whose first partial derivatives are 

and and whose value at the point
(ln 2, 0) is ln 2.

3. A proof of Leibniz’s Rule Leibniz’s Rule says that if ƒ is con-
tinuous on [a, b] and if u(x) and y(x) are differentiable functions
of x whose values lie in [a, b], then

Prove the rule by setting

and calculating dg dx with the Chain Rule.

4. Finding a function with constrained second partials Suppose
that ƒ is a twice-differentiable function of r, that

and that

Show that for some constants a and b,

5. Homogeneous functions A function ƒ(x, y) is homogeneous of
degree n (n a nonnegative integer) if for all t,
x, and y. For such a function (sufficiently differentiable), prove
that

a.

b.

6. Surface in polar coordinates Let

where r and are polar coordinates. Find

a. b. c.

z � f (r, �)

ƒusr, ud, r Z 0.ƒrs0, 0dlim
r:0

 ƒsr, ud
u

ƒsr, ud = L sin 6r
6r

 , r Z 0

1, r = 0,

x2 a02ƒ

0x2 b + 2xy a 0
2ƒ

0x0y b + y2 a0
2ƒ

0y2 b = nsn - 1dƒ.

x 
0ƒ
0x + y 

0ƒ
0y = nƒsx, yd

ƒstx, tyd = t nƒsx, yd

ƒsrd =

a
r + b.

ƒxx + ƒyy + ƒzz = 0.

r = 2x2
+ y2

+ z2 ,

>
gsu, yd = L

y

u
 ƒstd dt, u = usxd, y = ysxd

d
dxL

ysxd

usxd
 ƒstd dt = ƒsysxdd 

dy
dx

- ƒsusxdd 
du
dx

.

0w>0y = 2y - ex sin yex cos y
0w>0x = 1 +w = ƒsx, yd

Gradients and Tangents
7. Properties of position vectors Let and let

a. Show that 

b. Show that 

c. Find a function whose gradient equals r.

d. Show that 

e. Show that for any constant vector A.

8. Gradient orthogonal to tangent Suppose that a differentiable
function ƒ(x, y) has the constant value c along the differentiable
curve that is

for all values of t. Differentiate both sides of this equation with re-
spect to t to show that is orthogonal to the curve’s tangent vec-
tor at every point on the curve.

9. Curve tangent to a surface Show that the curve

is tangent to the surface

at (0, 0, 1).

10. Curve tangent to a surface Show that the curve

is tangent to the surface

at 

Extreme Values
11. Extrema on a surface Show that the only possible maxima and

minima of z on the surface occur at
(0, 0) and (3, 3). Show that neither a maximum nor a minimum
occurs at (0, 0). Determine whether z has a maximum or a mini-
mum at (3, 3).

12. Maximum in closed first quadrant Find the maximum value
of in the closed first quadrant (includes the
nonnegative axes).

13. Minimum volume cut from first octant Find the minimum
volume for a region bounded by the planes 
and a plane tangent to the ellipsoid

at a point in the first octant.

x2

a2 +

y2

b2 +

z2

c2 = 1

x = 0, y = 0, z = 0

ƒsx, yd = 6xye-s2x + 3yd

z = x3
+ y3

- 9xy + 27

s0, -1, 1d.

x3
+ y3

+ z3
- xyz = 0

rstd = at3

4
- 2b i + a4t - 3bj + cos st - 2dk

xz2
- yz + cos xy = 1

rstd = sln tdi + st ln tdj + tk

§ƒ

ƒsgstd, hstdd = c

x = gstd, y = hstd;

§sA # rd = A

r # dr = r dr.

§srnd = nrn - 2r.

§r = r>r.

r = ƒ r ƒ .
r = xi + yj + zk
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14. Minimum distance from line to parabola in xy-plane By
minimizing the function 
subject to the constraints and find the mini-
mum distance in the xy-plane from the line to the
parabola 

Theory and Examples
15. Boundedness of first partials implies continuity Prove the

following theorem: If ƒ(x, y) is defined in an open region R of the
xy-plane and if and are bounded on R, then ƒ(x, y) is contin-
uous on R. (The assumption of boundedness is essential.)

16. Suppose that is a smooth curve in
the domain of a differentiable function ƒ(x, y, z). Describe the re-
lation between dƒ dt, and What can be said about

and v at interior points of the curve where ƒ has extreme val-
ues relative to its other values on the curve? Give reasons for your
answer.

17. Finding functions from partial derivatives Suppose that ƒ
and g are functions of x and y such that

and suppose that

Find ƒ(x, y) and g(x, y).

18. Rate of change of the rate of change We know that if ƒ(x, y) is
a function of two variables and if is a unit vector, then

is the rate of change of ƒ(x, y)
at (x, y) in the direction of u. Give a similar formula for the rate of
change of the rate of change of ƒ(x, y) at (x, y) in the direction u.

19. Path of a heat-seeking particle A heat-seeking particle has the
property that at any point (x, y) in the plane it moves in the direc-
tion of maximum temperature increase. If the temperature at (x, y)
is find an equation for the path
of a heat-seeking particle at the point 

20. Velocity after a ricochet A particle traveling in a straight line
with constant velocity passes through the point 
(0, 0, 30) and hits the surface The particle rico-
chets off the surface, the angle of reflection being equal to the
angle of incidence. Assuming no loss of speed, what is the veloc-
ity of the particle after the ricochet? Simplify your answer.

21. Directional derivatives tangent to a surface Let S be the sur-
face that is the graph of Suppose that
the temperature in space at each point (x, y, z) is

a. Among all the possible directions tangential to the surface S
at the point (0, 0, 10), which direction will make the rate of
change of temperature at (0, 0, 10) a maximum?

y2z + 4x + 14y + z.Tsx, y, zd = x2y +

ƒsx, yd = 10 - x2
- y2 .

z = 2x2
+ 3y2 .

i + j - 5k

sp>4, 0d.
y = ƒsxdTsx, yd = -e-2y cos x,

Du ƒsx, yd = ƒxsx, yda + ƒysx, ydb
u = ai + bj

0ƒ
0x = 0, ƒs1, 2d = gs1, 2d = 5 and ƒs0, 0d = 4.

0ƒ
0y =

0g
0x and 0ƒ

0x =

0g
0y ,

§ƒ
v = dr>dt.§ƒ ,>

rstd = gstdi + hstdj + kstdk

ƒyƒx

y2
= x.

y = x + 1
u = y2,y = x + 1

ƒsx, y, u, yd = sx - ud2
+ sy - yd2

b. Which direction tangential to S at the point (1, 1, 8) will make
the rate of change of temperature a maximum?

22. Drilling another borehole On a flat surface of land, geologists
drilled a borehole straight down and hit a mineral deposit at 1000
ft. They drilled a second borehole 100 ft to the north of the first
and hit the mineral deposit at 950 ft. A third borehole 100 ft east
of the first borehole struck the mineral deposit at 1025 ft. The ge-
ologists have reasons to believe that the mineral deposit is in the
shape of a dome, and for the sake of economy, they would like to
find where the deposit is closest to the surface. Assuming the sur-
face to be the xy-plane, in what direction from the first borehole
would you suggest the geologists drill their fourth borehole?

The One-Dimensional Heat Equation
If w(x, t) represents the temperature at position x at time t in a uniform
conducting rod with perfectly insulated sides (see the accompanying
figure), then the partial derivatives and satisfy a differential
equation of the form

This equation is called the one-dimensional heat equation. The value
of the positive constant is determined by the material from which
the rod is made. It has been determined experimentally for a broad
range of materials. For a given application, one finds the appropriate
value in a table. For dry soil, for example, 

In chemistry and biochemistry, the heat equation is known as the
diffusion equation. In this context, w(x, t) represents the concentra-
tion of a dissolved substance, a salt for instance, diffusing along a tube
filled with liquid. The value of w(x, t) is the concentration at point x at
time t. In other applications, w(x, t) represents the diffusion of a gas
down a long, thin pipe.

In electrical engineering, the heat equation appears in the forms

and

ixx = RCit .

yxx = RCyt

x

x

x � 0

w(x, t) is the temperature
here at time t.

c2
= 0.19 ft2>day.

c2

wxx =

1
c2 wt .

wtwxx
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These equations describe the voltage y and the flow of current i in a
coaxial cable or in any other cable in which leakage and inductance
are negligible. The functions and constants in these equations are

 isx, td = current at point x at time t.

 C = capacitance to ground per unit of cable length

 R = resistance per unit length

 ysx, td = voltage at point x at time t

23. Find all solutions of the one-dimensional heat equation of the
form where r is a constant.

24. Find all solutions of the one-dimensional heat equation that have
the form and satisfy the conditions that 
and What happens to these solutions as t : q?wsL, td = 0.

ws0, td = 0w = ert sin kx

w = ert sin px,
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1060 Chapter 14: Partial Derivatives

Chapter 14 Practice Exercises

Domain, Range, and Level Curves
In Exercises 1–4, find the domain and range of the given function and
identify its level curves. Sketch a typical level curve.

1. 2.

3. 4.

In Exercises 5–8, find the domain and range of the given function and
identify its level surfaces. Sketch a typical level surface.

5. 6.

7.

8.

Evaluating Limits
Find the limits in Exercises 9–14.

9. 10.

11. 12.

13. 14.

By considering different paths of approach, show that the limits in Ex-
ercises 15 and 16 do not exist.

15. 16.

17. Continuous extension Let for
Is it possible to define ƒ(0, 0) in a way that

makes ƒ continuous at the origin? Why?

18. Continuous extension Let

Is ƒ continuous at the origin? Why?

Partial Derivatives
In Exercises 19–24, find the partial derivative of the function with
respect to each variable.

19.

20.

21.

22. hsx, y, zd = sin s2px + y - 3zd

ƒsR1, R2, R3d =

1
R1

+

1
R2

+

1
R3

ƒsx, yd =

1
2

 ln sx2
+ y2d + tan-1  

y
x

gsr, ud = r cos u + r sin u

ƒsx, yd = L sin sx - yd
ƒ x ƒ + ƒ y ƒ

, ƒ x ƒ + ƒ y ƒ Z 0

0, sx, yd = s0, 0d.

sx, yd Z s0, 0d .
ƒsx, yd = sx2

- y2d>sx2
+ y2d

lim
sx,yd : s0,0d

xy Z 0

 
x2

+ y2

xylim
sx,yd : s0,0d

y Z x2

 
y

x2
- y

lim
P: s1,-1,-1d

 tan-1 sx + y + zdlim
P: s1, -1, ed

 ln ƒ x + y + z ƒ

lim
sx,yd: s1,1d

 
x3y3

- 1

xy - 1
lim

sx,yd: s1,1d
 

x - y

x2
- y2

lim
sx,yd: s0,0d

  
2 + y

x + cos ylim
sx,yd: sp, ln 2d

 ey cos x

ksx, y, zd =

1
x2

+ y2
+ z2

+ 1

hsx, y, zd =

1
x2

+ y2
+ z2

gsx, y, zd = x2
+ 4y2

+ 9z2ƒsx, y, zd = x2
+ y2

- z

gsx, yd = 2x2
- ygsx, yd = 1>xy

ƒsx, yd = ex + yƒsx, yd = 9x2
+ y2

23. (the ideal gas law)

24.

Second-Order Partials
Find the second-order partial derivatives of the functions in Exercises
25–28.

25. 26.

27.

28.

Chain Rule Calculations
29. Find dw dt at if and 

30. Find dw dt at if 
and 

31. Find and when and if 

32. Find and when if 

and 

33. Find the value of the derivative of with
respect to t on the curve at 

34. Show that if is any differentiable function of s and if
then

Implicit Differentiation
Assuming that the equations in Exercises 35 and 36 define y as a dif-
ferentiable function of x, find the value of dy dx at point P.

35.

36.

Directional Derivatives
In Exercises 37–40, find the directions in which ƒ increases and de-
creases most rapidly at and find the derivative of ƒ in each direc-
tion. Also, find the derivative of ƒ at in the direction of the vector v.

37.

38.

39.

v = 2i + 3j + 6k

ƒsx, y, zd = ln s2x + 3y + 6zd, P0s -1, -1, 1d,
ƒsx, yd = x2e-2y, P0s1, 0d, v = i + j

ƒsx, yd = cos x cos y, P0sp>4, p>4d, v = 3i + 4j

P0

P0

2xy + ex + y
- 2 = 0, Ps0, ln 2d

1 - x - y2
- sin xy = 0, Ps0, 1d

>

0w
0x - 5 

0w
0y = 0.

s = y + 5x ,
w = ƒssd

t = 1 .x = cos t, y = sin t, z = cos 2t
ƒsx, y, zd = xy + yz + xz

x = 2eu cos y.ln21 + x2
- tan-1 x

w =u = y = 00w>0y0w>0u

x = r + sin s, y = rs.
w = sin s2x - yd, s = 0r = p0w>0s0w>0r

z = pt.y = t - 1 + ln t ,
w = xey

+ y sin z - cos z, x = 22t, t = 1>
ln st + 1d.

y =w = sin sxy + pd, x = et ,t = 0>

ƒsx, yd = y2
- 3xy + cos y + 7ey

ƒsx, yd = x + xy - 5x3
+ ln sx2

+ 1d

gsx, yd = ex
+ y sin xgsx, yd = y +

x
y

ƒsr, l, T, wd =

1
2rl

 A T
pw

Psn, R, T, Vd =

nRT
V
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40.

41. Derivative in velocity direction Find the derivative of
in the direction of the velocity vector of the helix

at 

42. Maximum directional derivative What is the largest value that
the directional derivative of can have at the point
(1, 1, 1)?

43. Directional derivatives with given values At the point (1, 2),
the function ƒ(x, y) has a derivative of 2 in the direction toward 
(2, 2) and a derivative of in the direction toward (1, 1).
a. Find and 

b. Find the derivative of ƒ at (1, 2) in the direction toward the
point (4, 6).

44. Which of the following statements are true if ƒ(x, y) is differen-
tiable at Give reasons for your answers.

a. If u is a unit vector, the derivative of ƒ at in the
direction of u is 

b. The derivative of ƒ at in the direction of u is a vector.

c. The directional derivative of ƒ at has its greatest value
in the direction of 

d. At vector is normal to the curve

Gradients, Tangent Planes, and Normal Lines
In Exercises 45 and 46, sketch the surface together with

at the given points.

45.

46.

In Exercises 47 and 48, find an equation for the plane tangent to the
level surface at the point Also, find parametric
equations for the line that is normal to the surface at 

47.

48.

In Exercises 49 and 50, find an equation for the plane tangent to the
surface at the given point.

49.

50.

In Exercises 51 and 52, find equations for the lines that are tangent
and normal to the level curve at the point Then sketch
the lines and level curve together with at 

51. 52.
y2

2
-

x2

2
=

3
2

, P0s1, 2dy - sin x = 1, P0sp, 1d

P0 .§ƒ
P0 .ƒsx, yd = c

z = 1>sx2
+ y2d, s1, 1, 1>2d

z = ln sx2
+ y2d, s0, 1, 0d

z = ƒsx, yd

x2
+ y2

+ z = 4, P0s1, 1, 2d
x2

- y - 5z = 0, P0s2, -1, 1d
P0 .

P0 .ƒsx, y, zd = c

y2
+ z2

= 4; s2, ;2, 0d, s2, 0, ;2d
x2

+ y + z2
= 0; s0, -1, ;1d, s0, 0, 0d

§ƒ
ƒsx, y, zd = c

ƒsx, yd = ƒsx0 , y0d.
§ƒsx0 , y0d ,

§ƒ .
sx0 , y0d

sx0 , y0d
sƒxsx0 , y0di + ƒysx0 , y0djd # u.

sx0 , y0d
sx0 , y0d ?

ƒys1, 2d .ƒxs1, 2d
-2

ƒsx, y, zd = xyz

t = p>3.

rstd = scos 3tdi + ssin 3tdj + 3tk

ƒsx, y, zd = xyz

v = i + j + k

ƒsx, y, zd = x2
+ 3xy - z2

+ 2y + z + 4, P0s0, 0, 0d, Tangent Lines to Curves
In Exercises 53 and 54, find parametric equations for the line that is
tangent to the curve of intersection of the surfaces at the given point.

53. Surfaces:

Point:       (1, 1, 1 2)

54. Surfaces:

Point:       (1 2, 1, 1 2)

Linearizations
In Exercises 55 and 56, find the linearization L(x, y) of the function
ƒ(x, y) at the point Then find an upper bound for the magnitude of
the error E in the approximation over the rectangle R.

55.

56.

Find the linearizations of the functions in Exercises 57 and 58 at the
given points.

57. at (1, 0, 0) and (1, 1, 0)

58. at and 

Estimates and Sensitivity to Change
59. Measuring the volume of a pipeline You plan to calculate the

volume inside a stretch of pipeline that is about 36 in. in diameter
and 1 mile long. With which measurement should you be more
careful, the length or the diameter? Why?

60. Sensitivity to change Near the point (1, 2), is 
more sensitive to changes in x or to changes

in y? How do you know?

61. Change in an electrical circuit Suppose that the current I (am-
peres) in an electrical circuit is related to the voltage V (volts) and
the resistance R (ohms) by the equation If the voltage
drops from 24 to 23 volts and the resistance drops from 100 to
80 ohms, will I increase or decrease? By about how much? Is the
change in I more sensitive to change in the voltage or to change in
the resistance? How do you know?

62. Maximum error in estimating the area of an ellipse If
and to the nearest millimeter, what should

you expect the maximum percentage error to be in the calculated
area of the ellipse 

63. Error in estimating a product Let and 
where u and y are positive independent variables.

a. If u is measured with an error of 2% and y with an error of 3%,
about what is the percentage error in the calculated value of y ?

z = u + y,y = uy

x2>a2
+ y2>b2

= 1?A = pab

b = 16 cma = 10 cm

I = V>R .

x2
- xy + y2

- 3
ƒsx, yd =

p>4, 0dsp>4,s0, 0, p>4dƒsx, y, zd = 22 cos x sin s y + zd
ƒsx, y, zd = xy + 2yz - 3xz

R: ƒ x - 1 ƒ … 0.1, ƒ y - 1 ƒ … 0.2

ƒsx, yd = xy - 3y2
+ 2, P0s1, 1d

R: ` x -

p

4
` … 0.1, ` y -

p

4
` … 0.1

ƒsx, yd = sin x cos y, P0sp>4, p>4d
ƒsx, yd L Lsx, yd

P0 .

>>
x + y2

+ z = 2, y = 1

>
x2

+ 2y + 2z = 4, y = 1
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b. Show that the percentage error in the calculated value of z is
less than the percentage error in the value of y.

64. Cardiac index To make different people comparable in studies
of cardiac output (Section 3.7, Exercise 25), researchers divide
the measured cardiac output by the body surface area to find the
cardiac index C:

The body surface area B of a person with weight w and height h is
approximated by the formula

which gives B in square centimeters when w is measured in kilo-
grams and h in centimeters. You are about to calculate the cardiac
index of a person with the following measurements:

Which will have a greater effect on the calculation, a 1-kg error in
measuring the weight or a 1-cm error in measuring the height?

Local Extrema
Test the functions in Exercises 65–70 for local maxima and minima
and saddle points. Find each function’s value at these points.

65.

66.

67.

68.

69.

70.

Absolute Extrema
In Exercises 71–78, find the absolute maximum and minimum values
of ƒ on the region R.

71.

R: The triangular region cut from the first quadrant by the line

72.

R: The rectangular region in the first quadrant bounded by the co-
ordinate axes and the lines and 

73.

R: The square region enclosed by the lines and 

74.

R: The square region bounded by the coordinate axes and the lines
in the first quadrantx = 2, y = 2

ƒsx, yd = 2x + 2y - x2
- y2

y = ;2x = ;2

ƒsx, yd = y2
- xy - 3y + 2x

y = 2x = 4

ƒsx, yd = x2
- y2

- 2x + 4y + 1

x + y = 4

ƒsx, yd = x2
+ xy + y2

- 3x + 3y

ƒsx, yd = x4
- 8x2

+ 3y2
- 6y

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

ƒsx, yd = x3
+ y3

- 3xy + 15

ƒsx, yd = 2x3
+ 3xy + 2y3

ƒsx, yd = 5x2
+ 4xy - 2y2

+ 4x - 4y

ƒsx, yd = x2
- xy + y2

+ 2x + 2y - 4

Cardiac output: 7 L>min

Weight: 70 kg

Height: 180 cm

B = 71.84w0.425h0.725 ,

C =

cardiac output

body surface area
.

75.

R: The triangular region bounded below by the x-axis, above by
the line and on the right by the line 

76.

R: The triangular region bounded below by the line 
above by the line and on the right by the line 

77.

R: The square region enclosed by the lines and 

78.

R: The square region enclosed by the lines and 

Lagrange Multipliers
79. Extrema on a circle Find the extreme values of 

on the circle 

80. Extrema on a circle Find the extreme values of on
the circle 

81. Extrema in a disk Find the extreme values of 
on the unit disk 

82. Extrema in a disk Find the extreme values of 
on the disk 

83. Extrema on a sphere Find the extreme values of 
on the unit sphere 

84. Minimum distance to origin Find the points on the surface
closest to the origin.

85. Minimizing cost of a box A closed rectangular box is to have
volume The cost of the material used in the box is

for top and bottom, for front and back,
and for the remaining sides. What dimensions mini-
mize the total cost of materials?

86. Least volume Find the plane that passes
through the point (2, 1, 2) and cuts off the least volume from the
first octant.

87. Extrema on curve of intersecting surfaces Find the extreme
values of on the curve of intersection of the
right circular cylinder and the hyperbolic cylinder

88. Minimum distance to origin on curve of intersecting plane
and cone Find the point closest to the origin on the curve of in-
tersection of the plane and the cone 

Partial Derivatives with Constrained Variables
In Exercises 89 and 90, begin by drawing a diagram that shows the
relations among the variables.

89. If and find

a. b. c. a0w
0z b y

.a0w
0z b x

a0w
0y b z

z = x2
- y2w = x2eyz

2x2
+ 2y2.

z2
=x + y + z = 1

xz = 1.
x2

+ y2
= 1

ƒsx, y, zd = xs y + zd

x>a + y>b + z>c = 1

c cents>cm2
b cents>cm2a cents>cm2

V cm3.

z2
- xy = 4

x2
+ y2

+ z2
= 1.x - y + z

ƒsx, y, zd =

x2
+ y2

… 9.x2
+ y2

- 3x - xy
ƒsx, yd =

x2
+ y2

… 1.x2
+ 3y2

+ 2y
ƒsx, yd =

x2
+ y2

= 1.
ƒsx, yd = xy

x2
+ y2

= 1.x3
+ y2

ƒsx, yd =

y = ;1x = ;1

ƒsx, yd = x3
+ 3xy + y3

+ 1

y = ;1x = ;1

ƒsx, yd = x3
+ y3

+ 3x2
- 3y2

x = 2y = x,
y = -2,

ƒsx, yd = 4xy - x4
- y4

+ 16

x = 2y = x + 2,

ƒsx, yd = x2
- y2

- 2x + 4y
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90. Let be the internal energy of a gas that obeys the
ideal gas law (n and R constant). Find

a. b.

Theory and Examples
91. Let and Find

and and express your answers in terms of r and 

92. Let and Express 
and in terms of and the constants a and b.

93. If a and b are constants, and 
show that

94. Using the Chain Rule If 
and find and by the Chain Rule. Then

check your answer another way.

95. Angle between vectors The equations and
define u and as differentiable functions of x

and y. Show that the angle between the vectors

is constant.

96. Polar coordinates and second derivatives Introducing polar
coordinates and changes ƒ(x, y) to 
Find the value of at the point given that

at that point.

0ƒ
0x =

0ƒ
0y =

0
2ƒ

0x2 =

0
2ƒ

0y2 = 1

sr, ud = s2, p>2d,0
2g>0u2

gsr, ud.y = r sin ux = r cos u

0u
0x  i +

0u
0y  j and 0y

0x  i +

0y
0y  j

yeu sin y - y = 0
eu cos y - x = 0

wswrz = 2rs, y = r - s,
 x = r + s,w = ln sx2

+ y2
+ 2zd, 

a 
0w
0y = b 

0w
0x .

ax + by,
u =w = u3

+ tanh u + cos u,

fu , fy ,zy

zxy = ax - by .z = ƒsu, yd, u = ax + by,

u .0w>0y0w>0x
u = tan-1 sy>xd .w = ƒsr, ud, r = 2x2

+ y2 ,

a0U
0V
b

T
.a0U

0T
b

P

PV = nRT
U = ƒsP, V, T d 97. Normal line parallel to a plane Find the points on the surface

where the normal line is parallel to the yz-plane.

98. Tangent plane parallel to xy-plane Find the points on the sur-
face

where the tangent plane is parallel to the xy-plane.

99. When gradient is parallel to position vector Suppose that
is always parallel to the position vector

Show that for any a.

100. Directional derivative in all directions, but no gradient
Show that the directional derivative of

at the origin equals 1 in any direction but that ƒ has no gradient
vector at the origin.

101. Normal line through origin Show that the line normal to the
surface at the point (1, 1, 1) passes through the origin.

102. Tangent plane and normal line

a. Sketch the surface 

b. Find a vector normal to the surface at Add the
vector to your sketch.

c. Find equations for the tangent plane and normal line at
s2, -3, 3d.

s2, -3, 3d.
x2

- y2
+ z2

= 4.

xy + z = 2

ƒsx, y, zd = 2x2
+ y2

+ z2

ƒs0, 0, ad = ƒs0, 0, -adxi + yj + zk.
§ƒsx, y, zd

xy + yz + zx - x - z2
= 0

sy + zd2
+ sz - xd2

= 16
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Chapter 14 Questions to Guide Your Review

1. What is a real-valued function of two independent variables?
Three independent variables? Give examples.

2. What does it mean for sets in the plane or in space to be open?
Closed? Give examples. Give examples of sets that are neither
open nor closed.

3. How can you display the values of a function ƒ(x, y) of two inde-
pendent variables graphically? How do you do the same for a
function ƒ(x, y, z) of three independent variables?

4. What does it mean for a function ƒ(x, y) to have limit L as
What are the basic properties of limits of func-

tions of two independent variables?

5. When is a function of two (three) independent variables continu-
ous at a point in its domain? Give examples of functions that are
continuous at some points but not others.

6. What can be said about algebraic combinations and composites of
continuous functions?

7. Explain the two-path test for nonexistence of limits.

8. How are the partial derivatives and of a function
ƒ(x, y) defined? How are they interpreted and calculated?

9. How does the relation between first partial derivatives and conti-
nuity of functions of two independent variables differ from the re-
lation between first derivatives and continuity for real-valued
functions of a single independent variable? Give an example.

10. What is the Mixed Derivative Theorem for mixed second-order
partial derivatives? How can it help in calculating partial deriva-
tives of second and higher orders? Give examples.

11. What does it mean for a function ƒ(x, y) to be differentiable?
What does the Increment Theorem say about differentiability?

12. How can you sometimes decide from examining and that a
function ƒ(x, y) is differentiable? What is the relation between the
differentiability of ƒ and the continuity of ƒ at a point?

13. What is the Chain Rule? What form does it take for functions of
two independent variables? Three independent variables? Func-
tions defined on surfaces? How do you diagram these different
forms? Give examples. What pattern enables one to remember all
the different forms?

ƒyƒx

0ƒ>0y0ƒ>0x

sx, yd : sx0, y0d ?

14. What is the derivative of a function ƒ(x, y) at a point in the di-
rection of a unit vector u? What rate does it describe? What geo-
metric interpretation does it have? Give examples.

15. What is the gradient vector of a differentiable function ƒ(x, y)?
How is it related to the function’s directional derivatives? State
the analogous results for functions of three independent variables.

16. How do you find the tangent line at a point on a level curve of a
differentiable function ƒ(x, y)? How do you find the tangent plane
and normal line at a point on a level surface of a differentiable
function ƒ(x, y, z)? Give examples.

17. How can you use directional derivatives to estimate change?

18. How do you linearize a function ƒ(x, y) of two independent vari-
ables at a point Why might you want to do this? How do
you linearize a function of three independent variables?

19. What can you say about the accuracy of linear approximations of
functions of two (three) independent variables?

20. If (x, y) moves from to a point nearby,
how can you estimate the resulting change in the value of a differ-
entiable function ƒ(x, y)? Give an example.

21. How do you define local maxima, local minima, and saddle
points for a differentiable function ƒ(x, y)? Give examples.

22. What derivative tests are available for determining the local ex-
treme values of a function ƒ(x, y)? How do they enable you to nar-
row your search for these values? Give examples.

23. How do you find the extrema of a continuous function ƒ(x, y) on a
closed bounded region of the xy-plane? Give an example.

24. Describe the method of Lagrange multipliers and give examples.

25. If where the variables x, y, and z are constrained
by an equation what is the meaning of the nota-
tion How can an arrow diagram help you calculate this
partial derivative with constrained variables? Give examples.

26. How does Taylor’s formula for a function ƒ(x, y) generate polyno-
mial approximations and error estimates?

s0w>0xdy ?
gsx, y, zd = 0 ,

w = ƒsx, y, zd ,

sx0 + dx, y0 + dydsx0, y0d

sx0, y0d ?

P0
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Chapter 14 Technology Application Projects

Mathematica Maple Module
Plotting Surfaces
Efficiently generate plots of surfaces, contours, and level curves.

Mathematica Maple Module
Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative
The path of a skateboarder is introduced, first on a level plane, then on a ramp, and finally on a paraboloid. Compute, plot, and analyze the
directional derivative in terms of the skateboarder.

Mathematica Maple Module
Looking for Patterns and Applying the Method of Least Squares to Real Data
Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to
the line.

Mathematica Maple Module
Lagrange Goes Skateboarding: How High Does He Go?
Revisit and analyze the skateboarders’ adventures for maximum and minimum heights from both a graphical and analytic perspective using
Lagrange multipliers.

/

/

/

/
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