
VECTORS AND THE

GEOMETRY OF SPACE

OVERVIEW To apply calculus in many real-world situations and in higher mathematics,
we need a mathematical description of three-dimensional space. In this chapter we intro-
duce three-dimensional coordinate systems and vectors. Building on what we already
know about coordinates in the xy-plane, we establish coordinates in space by adding a
third axis that measures distance above and below the xy-plane. Vectors are used to study
the analytic geometry of space, where they give simple ways to describe lines, planes, sur-
faces, and curves in space. We use these geometric ideas in the rest of the book to study
motion in space and the calculus of functions of several variables, with their many impor-
tant applications in science, engineering, economics, and higher mathematics.

848

C h a p t e r

12

Three-Dimensional Coordinate Systems

To locate a point in space, we use three mutually perpendicular coordinate axes, arranged
as in Figure 12.1. The axes shown there make a right-handed coordinate frame. When you
hold your right hand so that the fingers curl from the positive x-axis toward the positive
y-axis, your thumb points along the positive z-axis. So when you look down on the xy-
plane from the positive direction of the z-axis, positive angles in the plane are measured
counterclockwise from the positive x-axis and around the positive z-axis. (In a left-handed
coordinate frame, the z-axis would point downward in Figure 12.1 and angles in the plane
would be positive when measured clockwise from the positive x-axis. This is not the con-
vention we have used for measuring angles in the xy-plane. Right-handed and left-handed
coordinate frames are not equivalent.)

The Cartesian coordinates (x, y, z) of a point P in space are the numbers at which the
planes through P perpendicular to the axes cut the axes. Cartesian coordinates for space
are also called rectangular coordinates because the axes that define them meet at right
angles. Points on the x-axis have y- and z-coordinates equal to zero. That is, they have co-
ordinates of the form (x, 0, 0). Similarly, points on the y-axis have coordinates of the form
(0, y, 0), and points on the z-axis have coordinates of the form (0, 0, z).

The planes determined by the coordinates axes are the xy-plane, whose standard
equation is the yz-plane, whose standard equation is and the xz-plane,
whose standard equation is They meet at the origin (0, 0, 0) (Figure 12.2). The
origin is also identified by simply 0 or sometimes the letter O.

The three coordinate planes and divide space into eight cells
called octants. The octant in which the point coordinates are all positive is called the first
octant; there is no conventional numbering for the other seven octants.

z = 0x = 0, y = 0,

y = 0.
x = 0;z = 0;

12.1

z

x

(x, 0, 0)

(x, y, 0)

(x, 0, z)

(0, 0, z)

(0, y, z)

(0, y, 0)

x = constant

y = constant

z = constant

y

P(x, y, z)0

FIGURE 12.1 The Cartesian coordinate
system is right-handed.
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12.1 Three-Dimensional Coordinate Systems 849

The points in a plane perpendicular to the x-axis all have the same x-coordinate, this
being the number at which that plane cuts the x-axis. The y- and z-coordinates can be any
numbers. Similarly, the points in a plane perpendicular to the y-axis have a common y-co-
ordinate and the points in a plane perpendicular to the z-axis have a common z-coordinate.
To write equations for these planes, we name the common coordinate’s value. The plane

is the plane perpendicular to the x-axis at The plane is the plane per-
pendicular to the y-axis at The plane is the plane perpendicular to the z-axis
at Figure 12.3 shows the planes and together with their inter-
section point (2, 3, 5).

z = 5,x = 2, y = 3,z = 5.
z = 5y = 3.

y = 3x = 2.x = 2

z

yz-plane: x � 0

xz-plane: y � 0

xy-plane: z � 0

y

x

(0, 0, 0)

Origin

FIGURE 12.2 The planes and divide
space into eight octants.

z = 0x = 0, y = 0,

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y � 3, z � 5

Line x � 2, z � 5

Plane y � 3

Line x � 2, y � 3

Plane z � 5

Plane x � 2

FIGURE 12.3 The planes and 
determine three lines through the point (2, 3, 5).

z = 5x = 2, y = 3,

The planes and in Figure 12.3 intersect in a line parallel to the z-axis.
This line is described by the pair of equations A point (x, y, z) lies on the
line if and only if and Similarly, the line of intersection of the planes 
and is described by the equation pair This line runs parallel to the x-
axis. The line of intersection of the planes and parallel to the y-axis, is de-
scribed by the equation pair 

In the following examples, we match coordinate equations and inequalities with the
sets of points they define in space.

EXAMPLE 1 Interpreting Equations and Inequalities Geometrically

(a) The half-space consisting of the points on and above the
xy-plane.

(b) The plane perpendicular to the x-axis at This
plane lies parallel to the yz-plane and 3 units behind it.

(c) The second quadrant of the xy-plane.

(d) The first octant.

(e) The slab between the planes and (planes
included).

(f) The line in which the planes and inter-
sect. Alternatively, the line through the point 
parallel to the x-axis.

s0, -2, 2d
z = 2y = -2y = -2, z = 2

y = 1y = -1-1 … y … 1

x Ú 0, y Ú 0, z Ú 0

z = 0, x … 0, y Ú 0

x = -3.x = -3

z Ú 0

x = 2, z = 5.
z = 5,x = 2

y = 3, z = 5.z = 5
y = 3y = 3.x = 2

x = 2, y = 3.
y = 3x = 2
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Proof We construct a rectangular box with faces parallel to the coordinate planes and the
points and at opposite corners of the box (Figure 12.5). If and

are the vertices of the box indicated in the figure, then the three box edges
and have lengths

Because triangles and are both right-angled, two applications of the
Pythagorean theorem give

(see Figure 12.5).
So

Therefore

EXAMPLE 3 Finding the Distance Between Two Points

The distance between and is

 = 245 L 6.708.

 = 216 + 4 + 25

 ƒ P1 P2 ƒ = 2s -2 - 2d2
+ s3 - 1d2

+ s0 - 5d2

P2s -2, 3, 0dP1s2, 1, 5d

ƒ P1 P2 ƒ = 2sx2 - x1d2
+ sy2 - y1d2

+ sz2 - z1d2

 = sx2 - x1d2
+ sy2 - y1d2

+ sz2 - z1d2

 = ƒ x2 - x1 ƒ
2

+ ƒ y2 - y1 ƒ
2

+ ƒ z2 - z1 ƒ
2

 = ƒ P1 A ƒ
2

+ ƒ AB ƒ
2

+ ƒ BP2 ƒ
2

 ƒ P1 P2 ƒ
2

= ƒ P1 B ƒ
2

+ ƒ BP2 ƒ
2

ƒ P1 P2 ƒ
2

= ƒ P1 B ƒ
2

+ ƒ BP2 ƒ
2 and ƒ P1 B ƒ

2
= ƒ P1 A ƒ

2
+ ƒ AB ƒ

2

P1 ABP1 BP2

ƒ P1 A ƒ = ƒ x2 - x1 ƒ ,  ƒ AB ƒ = ƒ y2 - y1 ƒ ,  ƒ BP2 ƒ = ƒ z2 - z1 ƒ .

BP2P1 A, AB ,
Bsx2 , y2 , z1d

Asx2 , y1 , z1dP2P1

EXAMPLE 2 Graphing Equations

What points P(x, y, z) satisfy the equations

Solution The points lie in the horizontal plane and, in this plane, make up the
circle We call this set of points “the circle in the plane ”
or, more simply, “the circle  ” (Figure 12.4).

Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.

x2
+ y2

= 4, z = 3
z = 3x2

+ y2
= 4x2

+ y2
= 4.

z = 3

x2
+ y2

= 4 and z = 3?

850 Chapter 12: Vectors and the Geometry of Space

x

z

(0, 2, 0)

y(2, 0, 0)

(2, 0, 3)
(0, 2, 3)

The circle
x2 � y2 � 4,  z � 3

The plane
z � 3

x2 � y2 � 4, z � 0

FIGURE 12.4 The circle in
the plane (Example 2).z = 3

x2
+ y2

= 4

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 12.5 We find the distance
between and by applying the
Pythagorean theorem to the right triangles

and P1 BP2 .P1 AB

P2P1

The Distance Between and is

ƒ P1 P2 ƒ = 2sx2 - x1d2
+ s y2 - y1d2

+ sz2 - z1d2

P2sx2 , y2 , z2dP1sx1 , y1 , z1d

Substitute
ƒ P1 B ƒ

2
= ƒ P1 A ƒ

2
+ ƒ AB ƒ

2 .
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12.1 Three-Dimensional Coordinate Systems 851

EXAMPLE 4 Finding the Center and Radius of a Sphere

Find the center and radius of the sphere

Solution We find the center and radius of a sphere the way we find the center and radius
of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each
quadratic as a squared linear expression. Then, from the equation in standard form, read
off the center and radius. For the sphere here, we have

From this standard form, we read that and The
center is The radius is 

EXAMPLE 5 Interpreting Equations and Inequalities

(a) The interior of the sphere 

(b) The solid ball bounded by the sphere 
Alternatively, the sphere 

together with its interior.

(c) The exterior of the sphere 

(d) The lower hemisphere cut from the sphere 
by the xy-plane (the plane ).

Just as polar coordinates give another way to locate points in the xy-plane (Section
10.5), alternative coordinate systems, different from the Cartesian coordinate system de-
veloped here, exist for three-dimensional space. We examine two of these coordinate sys-
tems in Section 15.6.

z = 0y2
+ z2

= 4
x2

+x2
+ y2

+ z2
= 4, z … 0

x2
+ y2

+ z2
= 4.x2

+ y2
+ z2

7 4

4
x2

+ y2
+ z2

=z2
= 4.

x2
+ y2

+x2
+ y2

+ z2
… 4

x2
+ y2

+ z2
= 4.x2

+ y2
+ z2

6 4

221>2.s -3>2, 0, 2d .
a = 221>2.x0 = -3>2, y0 = 0, z0 = 2,

 ax +

3
2
b2

+ y2
+ sz - 2d2

= -1 +

9
4

+ 4 =
21
4

.

 ax2
+ 3x + a3

2
b2b + y2

+ az2
- 4z + a-4

2
b2b = -1 + a3

2
b2

+ a-4
2
b2

 sx2
+ 3xd + y2

+ sz2
- 4zd = -1

 x2
+ y2

+ z2
+ 3x - 4z + 1 = 0

x2
+ y2

+ z2
+ 3x - 4z + 1 = 0.

We can use the distance formula to write equations for spheres in space (Figure 12.6).
A point P(x, y, z) lies on the sphere of radius a centered at precisely when

or

sx - x0d2
+ sy - y0d2

+ sz - z0d2
= a2 .

ƒ P0 P ƒ = a
P0sx0 , y0 , z0dP0(x0, y0, z0)

P(x, y, z)

a

y

z

0

x

FIGURE 12.6 The standard equation of
the sphere of radius a centered at the point

is

sx - x0d2
+ s y - y0d2

+ sz - z0d2
= a2 .

sx0 , y0 , z0d

The Standard Equation for the Sphere of Radius a and Center 

sx - x0d2
+ sy - y0d2

+ sz - z0d2
= a2

sx0 , y0 , z0d
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852 Chapter 12: Vectors and the Geometry of Space

EXERCISES 12.1

Sets, Equations, and Inequalities
In Exercises 1–12, give a geometric description of the set of points in
space whose coordinates satisfy the given pairs of equations.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

In Exercises 13–18, describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and
inequalities.

13. a. b.

14. a. b.

c.

15. a. b.

16. a. b.

c.

17. a.

b.

18. a. b.

In Exercises 19–28, describe the given set with a single equation or
with a pair of equations.

19. The plane perpendicular to the

a. x-axis at (3, 0, 0) b. y-axis at 

c. z-axis at 

20. The plane through the point perpendicular to the

a. x-axis b. y-axis c. z-axis

21. The plane through the point parallel to the

a. xy-plane b. yz-plane c. xz-plane

22. The circle of radius 2 centered at (0, 0, 0) and lying in the

a. xy-plane b. yz-plane c. xz-plane

23. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane b. yz-plane c. plane 

24. The circle of radius 1 centered at and lying in a plane
parallel to the

a. xy-plane b. yz-plane c. xz-plane

s -3, 4, 1d
y = 2

s3, -1, 1d

s3, -1, 2d
s0, 0, -2d

s0, -1, 0d

x = y, no restriction on zx = y, z = 0

x2
+ y2

+ z2
… 1, z Ú 0

x2
+ y2

+ z2
= 1, z Ú 0

x2
+ y2

… 1, no restriction on z

x2
+ y2

… 1, z = 3x2
+ y2

… 1, z = 0

x2
+ y2

+ z2
7 1x2

+ y2
+ z2

… 1

0 … x … 1, 0 … y … 1, 0 … z … 1

0 … x … 1, 0 … y … 10 … x … 1

x Ú 0, y … 0, z = 0x Ú 0, y Ú 0, z = 0

x2
+ s y - 1d2

+ z2
= 4, y = 0

x2
+ y2

+ sz + 3d2
= 25, z = 0

x2
+ y2

+ z2
= 25, y = -4

x2
+ y2

+ z2
= 1, x = 0

y2
+ z2

= 1, x = 0x2
+ z2

= 4, y = 0

x2
+ y2

= 4, z = -2x2
+ y2

= 4, z = 0

x = 1, y = 0y = 0, z = 0

x = -1, z = 0x = 2, y = 3

25. The line through the point parallel to the

a. x-axis b. y-axis c. z-axis

26. The set of points in space equidistant from the origin and the
point (0, 2, 0)

27. The circle in which the plane through the point (1, 1, 3) perpen-
dicular to the z-axis meets the sphere of radius 5 centered at the
origin

28. The set of points in space that lie 2 units from the point (0, 0, 1)
and, at the same time, 2 units from the point 

Write inequalities to describe the sets in Exercises 29–34.

29. The slab bounded by the planes and (planes in-
cluded)

30. The solid cube in the first octant bounded by the coordinate
planes and the planes and 

31. The half-space consisting of the points on and below the xy-plane

32. The upper hemisphere of the sphere of radius 1 centered at the origin

33. The (a) interior and (b) exterior of the sphere of radius 1 centered
at the point (1, 1, 1)

34. The closed region bounded by the spheres of radius 1 and radius 2
centered at the origin. (Closed means the spheres are to be in-
cluded. Had we wanted the spheres left out, we would have asked
for the open region bounded by the spheres. This is analogous to
the way we use closed and open to describe intervals: closed
means endpoints included, open means endpoints left out. Closed
sets include boundaries; open sets leave them out.)

Distance
In Exercises 35–40, find the distance between points and .

35.

36.

37.

38.

39.

40.

Spheres
Find the centers and radii of the spheres in Exercises 41–44.

41.

42.

43.

44. x2
+ ay +

1
3
b2

+ az -

1
3
b2

=

29
9

Ax - 22 B2 + Ay - 22 B2 + Az + 22 B2 = 2

ax +

1
2
b2

+ ay +

1
2
b2

+ az +

1
2
b2

=

21
4

sx + 2d2
+ y2

+ sz - 2d2
= 8

P2s0, 0, 0dP1s5, 3, -2d,
P2s2, -2, -2dP1s0, 0, 0d,
P2s2, 3, 4dP1s3, 4, 5d,
P2s4, -2, 7dP1s1, 4, 5d,
P2s2, 5, 0dP1s -1, 1, 5d,
P2s3, 3, 0dP1s1, 1, 1d,

P2P1

z = 2x = 2, y = 2,

z = 1z = 0

s0, 0, -1d

s1, 3, -1d
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853

Find equations for the spheres whose centers and radii are given in
Exercises 45–48.

Center Radius

45. (1, 2, 3)

46. 2

47.

48. 7

Find the centers and radii of the spheres in Exercises 49–52.

49.

50. x2
+ y2

+ z2
- 6y + 8z = 0

x2
+ y2

+ z2
+ 4x - 4z = 0

s0, -7, 0d
23s -2, 0, 0d

s0, -1, 5d
214

51.

52.

Theory and Examples
53. Find a formula for the distance from the point P(x, y, z) to the

a. x-axis b. y-axis c. z-axis

54. Find a formula for the distance from the point P(x, y, z) to the

a. xy-plane b. yz-plane c. xz-plane

55. Find the perimeter of the triangle with vertices 
and C(3, 4, 5).

56. Show that the point P(3, 1, 2) is equidistant from the points
and B(4, 3, 1).As2, -1, 3d

Bs1, -1, 3d ,
As -1, 2, 1d,

3x2
+ 3y2

+ 3z2
+ 2y - 2z = 9

2x2
+ 2y2

+ 2z2
+ x + y + z = 9
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12.2 Vectors 853

Vectors

Some of the things we measure are determined simply by their magnitudes. To record
mass, length, or time, for example, we need only write down a number and name an appro-
priate unit of measure. We need more information to describe a force, displacement, or ve-
locity. To describe a force, we need to record the direction in which it acts as well as how
large it is. To describe a body’s displacement, we have to say in what direction it moved as
well as how far. To describe a body’s velocity, we have to know where the body is headed
as well as how fast it is going.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by
a directed line segment (Figure 12.7). The arrow points in the direction of the action and
its length gives the magnitude of the action in terms of a suitably chosen unit. For exam-
ple, a force vector points in the direction in which the force acts; its length is a measure of
the force’s strength; a velocity vector points in the direction of motion and its length is the
speed of the moving object. Figure 12.8 displays the velocity vector v at a specific location
for a particle moving along a path in the plane or in space. (This application of vectors is
studied in Chapter 13.)

12.2

Initial
point

Terminal
point

A

B

AB

FIGURE 12.7 The directed line segment
AB
1

.

x

y

y

z

0
0

x

v v

(a)  two dimensions (b)  three dimensions

FIGURE 12.8 The velocity vector of a particle moving along a path
(a) in the plane (b) in space. The arrowhead on the path indicates the
direction of motion of the particle.
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The arrows we use when we draw vectors are understood to represent the same vector
if they have the same length, are parallel, and point in the same direction (Figure 12.9) re-
gardless of the initial point.

In textbooks, vectors are usually written in lowercase, boldface letters, for example u,
v, and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector.
In handwritten form, it is customary to draw small arrows above the letters, for example 

and 
We need a way to represent vectors algebraically so that we can be more precise about

the direction of a vector.
Let There is one directed line segment equal to whose initial point is the

origin (Figure 12.10). It is the representative of v in standard position and is the vector
we normally use to represent v. We can specify v by writing the coordinates of its terminal
point when v is in standard position. If v is a vector in the plane its terminal
point has two coordinates.sv1, v2d

sv1, v2 , v3d

PQ
1v = PQ

1
.

Fs .ws,ys,
us,

854 Chapter 12: Vectors and the Geometry of Space

DEFINITIONS Vector, Initial and Terminal Point, Length
A vector in the plane is a directed line segment. The directed line segment 
has initial point A and terminal point B; its length is denoted by Two
vectors are equal if they have the same length and direction.

ƒ AB
1

ƒ .
AB
1

x

y

O

A

P

D

C

F

E

B

FIGURE 12.9 The four arrows in the
plane (directed line segments) shown here
have the same length and direction. They
therefore represent the same vector, and we
write AB

1
= CD

1
= OP

1
= EF

1
.

DEFINITION Component Form
If v is a two-dimensional vector in the plane equal to the vector with initial point
at the origin and terminal point then the component form of v is

If v is a three-dimensional vector equal to the vector with initial point at the ori-
gin and terminal point then the component form of v is

v = 8v1, v2 , v39 .
sv1, v2, v3d ,

v = 8v1, v29 .
sv1, v2d ,

So a two-dimensional vector is an ordered pair of real numbers, and a
three-dimensional vector is an ordered triple of real numbers. The num-
bers and are called the components of v.

Observe that if is represented by the directed line segment where the
initial point is and the terminal point is then 

and (see Figure 12.10). Thus, and

are the components of 
In summary, given the points and the standard position

vector equal to is

If v is two-dimensional with and as points in the plane, then
There is no third component for planar vectors. With this under-

standing, we will develop the algebra of three-dimensional vectors and simply drop the
third component when the vector is two-dimensional (a planar vector).

v = 8x2 - x1, y2 - y19 .
Qsx2 , y2dPsx1, y1d

v = 8x2 - x1, y2 - y1, z2 , -z19 .
PQ
1v = 8v1, v2 , v39

Qsx2 , y2 , z2d ,Psx1, y1, z1d
PQ
1

.v3 = z2 - z1

v1 = x2 - x1, v2 = y2 - y1 ,z1 + v3 = z2v2 = y2 ,
x1 + v1 = x2 , y1 +Qsx2 , y2 , z2d ,Psx1, y1, z1d

PQ
1

,v = 8v1, v2 , v39
v3v1, v2 ,

v = 8v1, v2 , v39
v = 8v1, v29

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(v1, v2, v3)Position vector
of PQ

v � �v1, v2, v3�  v3

v1
v2

FIGURE 12.10 A vector in standard
position has its initial point at the origin.
The directed line segments and v are
parallel and have the same length.

PQ
1

PQ
1
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12.2 Vectors 855

The only vector with length 0 is the zero vector or This
vector is also the only vector with no specific direction.

EXAMPLE 1 Component Form and Length of a Vector

Find the (a) component form and (b) length of the vector with initial point and
terminal point 

Solution

(a) The standard position vector v representing has components

and

The component form of is

(b) The length or magnitude of is

EXAMPLE 2 Force Moving a Cart

A small cart is being pulled along a smooth horizontal floor with a 20-lb force F making a
45° angle to the floor (Figure 12.11). What is the effective force moving the cart forward?

Solution The effective force is the horizontal component of given by

Notice that F is a two-dimensional vector.

a = ƒ F ƒ  cos 45° = s20d a22
2
b L 14.14 lb .

F = 8a, b9 ,

ƒ v ƒ = 2s -2d2
+ s -2d2

+ s1d2
= 29 = 3.

v = PQ
1

v = 8-2, -2, 19 .
PQ
1

v3 = z2 - z1 = 2 - 1 = 1.

v1 = x2 - x1 = -5 - s -3d = -2,  v2 = y2 - y1 = 2 - 4 =  -2,

PQ
1

Qs -5, 2, 2d .
Ps -3, 4, 1d

0 = 80, 0, 09 .0 = 80, 09

Two vectors are equal if and only if their standard position vectors are identical. Thus
and are equal if and only if and 

The magnitude or length of the vector is the length of any of its equivalent di-
rected line segment representations. In particular, if is the 

standard position vector for then the distance formula gives the magnitude or length
of v, denoted by the symbol or ƒ ƒ v ƒ ƒ .ƒ v ƒ

PQ
1

,

v = 8x2 - x1, y2 - y1, z2 - z19
PQ
1

u3 = v3 .u1 = v1, u2 = v2 ,8v1, v2, v398u1, u2, u39

The magnitude or length of the vector is the nonnegative number

(See Figure 12.10.)

ƒ v ƒ = 2v1
2

+ v2
2

+ v3
2

= 2sx2 - x1d2
+ s y2 - y1d2

+ sz2 - z1d2

v = PQ
1

x

y

45°

F = �a, b� 

FIGURE 12.11 The force pulling the cart
forward is represented by the vector F of
magnitude 20 (pounds) making an angle of
45° with the horizontal ground (positive
x-axis) (Example 2).
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Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication.
A scalar is simply a real number, and is called such when we want to draw attention to its
differences from vectors. Scalars can be positive, negative, or zero.

856 Chapter 12: Vectors and the Geometry of Space

DEFINITIONS Vector Addition and Multiplication of a Vector by a Scalar
Let and be vectors with k a scalar.

Scalar multiplication: ku = 8ku1, ku2 , ku39
Addition:  u + v = 8u1 + v1, u2 + v2 , u3 + v39

v = 8v1, v2 , v39u = 8u1, u2 , u39

We add vectors by adding the corresponding components of the vectors. We multiply
a vector by a scalar by multiplying each component by the scalar. The definitions apply to
planar vectors except there are only two components, and 

The definition of vector addition is illustrated geometrically for planar vectors in Figure
12.12a, where the initial point of one vector is placed at the terminal point of the other. An-
other interpretation is shown in Figure 12.12b (called the parallelogram law of addition),
where the sum, called the resultant vector, is the diagonal of the parallelogram. In physics,
forces add vectorially as do velocities, accelerations, and so on. So the force acting on a par-
ticle subject to electric and gravitational forces is obtained by adding the two force vectors.

8v1, v29 .8u1, u29

�u1  �  v1, u2  �  v2� 

v2

v1

u2

u1

u

vu + v

x

y

(a)

u

v
u + v

x

y

(b)

0 0

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law of
vector addition.

Figure 12.13 displays a geometric interpretation of the product ku of the scalar k and
vector u. If then ku has the same direction as u; if then the direction of ku
is opposite to that of u. Comparing the lengths of u and ku, we see that

The length of ku is the absolute value of the scalar k times the length of u. The vector
has the same length as u but points in the opposite direction.s -1du = -u

 = 2k22u1
2

+ u2
2

+ u3
2

= ƒ k ƒ ƒ u ƒ .

 ƒ ku ƒ = 2sku1d2
+ sku2d2

+ sku3d2
= 2k2su1

2
+ u2

2
+ u3

2d

k 6 0,k 7 0,

u

1.5u

2u –2u

FIGURE 12.13 Scalar multiples of u.
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12.2 Vectors 857

By the of two vectors, we mean

If and then

.

Note that so adding the vector to v gives u (Figure 12.14a).
Figure 12.14b shows the difference as the sum 

EXAMPLE 3 Performing Operations on Vectors

Let and Find

(a) (b) (c)

Solution

(a)

(b)

(c)

Vector operations have many of the properties of ordinary arithmetic. These proper-
ties are readily verified using the definitions of vector addition and multiplication by a
scalar.

=
1
2

 211. ` 1
2

 u ` = ` h-
1
2

, 
3
2

, 
1
2
i ` = C a- 1

2
b2

+ a3
2
b2

+ a1
2
b2

= 8-1 - 4, 3 - 7, 1 - 09 = 8-5, -4, 19u - v = 8-1, 3, 19 - 84, 7, 09
= 8-2, 6, 29 + 812, 21, 09 = 810, 27, 29 2u + 3v = 28-1, 3, 19 + 384, 7, 09

` 1
2

 u ` .u - v2u + 3v

v = 84, 7, 09 .u = 8-1, 3, 19

u + s -vd .u - v
su - vdsu - vd + v = u ,

u - v = 8u1 - v1, u2 - v2, u3 - v39
v = 8v1, v2 , v39 ,u = 8u1, u2 , u39

u - v = u + s -vd .

difference u - v

u

v

u � v

(a)

u

v

–v

u � (–v)

(b)

FIGURE 12.14 (a) The vector 
when added to v, gives u.
(b) u - v = u + s -vd .

u - v,

Properties of Vector Operations

Let u, v, w be vectors and a, b be scalars.

1. 2.
3. 4.
5. 6.
7. 8.
9. sa + bdu = au + bu

asu + vd = au + avasbud = sabdu
1u = u0u = 0
u + s -ud = 0u + 0 = u
su + vd + w = u + sv + wdu + v = v + u

An important application of vectors occurs in navigation.

EXAMPLE 4 Finding Ground Speed and Direction

A Boeing® 767® airplane, flying due east at 500 mph in still air, encounters a 70-mph tail-
wind blowing in the direction 60° north of east. The airplane holds its compass heading
due east but, because of the wind, acquires a new ground speed and direction. What are
they?
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Solution If velocity of the airplane alone and velocity of the tailwind,
then (Figure 12.15). The velocity of the airplane with respect to
the ground is given by the magnitude and direction of the resultant vector If we let
the positive x-axis represent east and the positive y-axis represent north, then the compo-
nent forms of u and v are

Therefore,

and

Figure 12.15

The new ground speed of the airplane is about 538.4 mph, and its new direction is about
6.5° north of east.

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

Any vector can be written as a linear combination of the standard unit
vectors as follows:

We call the scalar (or number) the of the vector v, the
and the In component form, the vector from 

to is

(Figure 12.16).
Whenever its length is not zero and

That is, is a unit vector in the direction of v, called the direction of the nonzero vec-
tor v.

EXAMPLE 5 Finding a Vector’s Direction

Find a unit vector u in the direction of the vector from to P2s3, 2, 0d .P1s1, 0, 1d

v> ƒ v ƒ

` 1
ƒ v ƒ

 v ` =
1
ƒ v ƒ

 ƒ v ƒ = 1.

ƒ v ƒv Z 0,

P1 P2
1

= sx2 - x1di + s y2 - y1dj + sz2 - z1dk

P2sx2 , y2 , z2d
P1sx1, y1, z1dk-component .v3j-component ,

v2i-componentv1

 = v1 i + v2  j + v3 k .

 = v181, 0, 09 + v280, 1, 09 + v380, 0, 19
 v = 8v1, v2, v39 = 8v1, 0, 09 + 80, v2, 09 + 80, 0, v39

v = 8v1, v2 , v39
i = 81, 0, 09,  j = 80, 1, 09, and k = 80, 0, 19 .

u = tan-1 
3523

535
 L 6.5°.

 ƒ u + v ƒ = 25352
+ s3513d2

L 538.4

 u + v = 8535, 35239

u = 8500, 09 and v = 870 cos 60°, 70 sin 60°9 = 835, 35239 .

u + v .
ƒ u ƒ = 500 and ƒ v ƒ = 70

v = theu = the

858 Chapter 12: Vectors and the Geometry of Space

E

N

u

v
u � v30̊

70

500

NOT TO SCALE

�

FIGURE 12.15 Vectors representing the
velocities of the airplane u and tailwind v
in Example 4.

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 � x2i � y2 j � z2k

P1P2

P1(x1, y1, z1)

OP1 � x1i � y1j � z1k

FIGURE 12.16 The vector from to 
is 
sz2 - z1dk.

s y2 - y1dj +P1 P2
1

= sx2 - x1di +

P2P1
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12.2 Vectors 859

Solution We divide by its length:

The unit vector u is the direction of  

EXAMPLE 6 Expressing Velocity as Speed Times Direction

If is a velocity vector, express v as a product of its speed times a unit vector
in the direction of motion.

Solution Speed is the magnitude (length) of v:

The unit vector has the same direction as v:

So

In summary, we can express any nonzero vector v in terms of its two important features,

length and direction, by writing v = ƒ v ƒ

v
ƒ v ƒ

.

v = 3i - 4j = 5 a35 i -
4
5 jb

(')'*

.

v
ƒ v ƒ

=

3i - 4j
5 =

3
5 i -

4
5 j .

v> ƒ v ƒ

ƒ v ƒ = 2s3d2
+ s -4d2

= 29 + 16 = 5.

v = 3i - 4j

P1 P2
1

.

 u =

P1 P2
1

ƒ P1 P2
1

ƒ

=

2i + 2j - k
3

=
2
3

 i +
2
3

 j -
1
3

 k .

 ƒ P1 P2
1

ƒ = 2s2d2
+ s2d2

+ s -1d2
= 24 + 4 + 1 = 29 = 3

 P1 P2
1

= s3 - 1di + s2 - 0dj + s0 - 1dk = 2i + 2j - k

P1 P2
1

HISTORICAL BIOGRAPHY

Hermann Grassmann
(1809–1877)

Length
(speed)

Direction of motion

If then

1. is a unit vector in the direction of v;

2. the equation expresses v in terms of its length and direction.v = ƒ v ƒ

v
ƒ v ƒ

v
ƒ v ƒ

v Z 0,

EXAMPLE 7 A Force Vector

A force of 6 newtons is applied in the direction of the vector Express
the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction so

 = 6 a2
3

 i +
2
3

 j -
1
3

 kb .

 F = 6 
v
ƒ v ƒ

= 6 
2i + 2j - k222

+ 22
+ s -1d2

= 6 
2i + 2j - k

3

v
ƒ v ƒ

,

v = 2i + 2j - k .
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Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a
line segment are found by averaging.

860 Chapter 12: Vectors and the Geometry of Space

The midpoint M of the line segment joining points and
is the point

ax1 + x2

2
,  

y1 + y2

2
,  

z1 + z2

2
b .

sx2, y2, z2dP2

P1sx1, y1, z1d

To see why, observe (Figure 12.17) that

EXAMPLE 8 Finding Midpoints

The midpoint of the segment joining and is

a3 + 7
2

,  
-2 + 4

2
,  

0 + 4
2
b = s5, 1, 2d .

P2s7, 4, 4dP1s3, -2, 0d

 =

x1 + x2

2
 i +

y1 + y2

2
 j +

z1 + z2

2
 k .

 =
1
2

 sOP
1

1 + OP
1

2d

 OM
1

= OP
1

1 +
1
2

 sP1 P2
1 d = OP

1
1 +

1
2

 sOP
1

2 - OP
1

1d

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 � x2

2
z1 � z2

2
y1 � y2

2
, ,





FIGURE 12.17 The coordinates of the
midpoint are the averages of the
coordinates of and P2 .P1
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860 Chapter 12: Vectors and the Geometry of Space

EXERCISES 12.2

Vectors in the Plane
In Exercises 1–8, let and Find the (a) com-
ponent form and (b) magnitude (length) of the vector.

1. 3u 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, find the component form of the vector.

9. The vector where and 

10. The vector where O is the origin and P is the midpoint of seg-
ment RS, where and 

11. The vector from the point to the origin

12. The sum of and where 
and D = s -2, 2dC = s -1, 3d ,

A = s1, -1d, B = s2, 0d, CD
1

,AB
1

A = s2, 3d
S = s -4, 3dR = s2, -1d

OP
1

Q = s2, -1dP = s1, 3dPQ
1

,

-

5
13

 u +

12
13

 v
3
5

 u +

4
5

 v

-2u + 5v2u - 3v

u - vu + v

-2v

v = 8-2, 59 .u = 83, -29
13. The unit vector that makes an angle with the positive

x-axis

14. The unit vector that makes an angle with the positive
x-axis

15. The unit vector obtained by rotating the vector coun-
terclockwise about the origin

16. The unit vector obtained by rotating the vector coun-
terclockwise about the origin

Vectors in Space
In Exercises 17–22, express each vector in the form 

17. if is the point and is the point 

18. if is the point (1, 2, 0) and is the point 

19. if A is the point and B is the point 

20. if A is the point (1, 0, 3) and B is the point s -1, 4, 5dAB
1

s -10, 8, 1ds -7, -8, 1dAB
1

s -3, 0, 5dP2P1P1 P2
1

s2, 9, -2dP2s5, 7, -1dP1P1 P2
1

v2 j + v3 k .
v = v1 i +

81, 09 135°

80, 19 120°

u = -3p>4
u = 2p>3
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12.2 Vectors 861

21. if and 

22. if and 

Geometry and Calculation
In Exercises 23 and 24, copy vectors and w head to tail as needed
to sketch the indicated vector.

23.

a. b.

c. d.

24.

a. b.

c. d.

Length and Direction
In Exercises 25–30, express each vector as a product of its length and
direction.

25. 26.

27. 5k 28.

29. 30.

31. Find the vectors whose lengths and directions are given. Try to do
the calculations without writing.

Length Direction

a. 2 i

b.

c.

d. 7
6
7

 i -

2
7

 j +

3
7

 k

3
5

 j +

4
5

 k
1
2

-k23

i23
+

j23
+

k23

126
 i -

126
 j -

126
 k

3
5

 i +

4
5

 k

9i - 2j + 6k2i + j - 2k

u + v + w2u - v

u - v + wu - v

u - wu - v

u + v + wu + v

u, v,

v = 81, 1, 19u = 8-1, 0, 29-2u + 3v

v = 82, 0, 39u = 81, 1, -195u - v 32. Find the vectors whose lengths and directions are given. Try to do
the calculations without writing.

Length Direction

a. 7

b.

c.

d.

33. Find a vector of magnitude 7 in the direction of 

34. Find a vector of magnitude 3 in the direction opposite to the di-
rection of 

Vectors Determined by Points; Midpoints
In Exercises 35–38, find

a. the direction of and

b. the midpoint of line segment 

35.

36.

37.

38.

39. If and B is the point (5, 1, 3), find A.

40. If and A is the point find B.

Theory and Applications
41. Linear combination Let and 

Find scalars a and b such that 

42. Linear combination Let and 
Write where is parallel to v and is par-

allel to w. (See Exercise 41.)

43. Force vector You are pulling on a suitcase with a force F (pic-
tured here) whose magnitude is Find the i- and j-
components of F.

44. Force vector A kite string exerts a 12-lb pull on a
kite and makes a 45° angle with the horizontal. Find the horizon-
tal and vertical components of F.

s ƒ F ƒ = 12d

30°
F

ƒ F ƒ = 10 lb .

u2u1u = u1 + u2 ,i + j .
w =u = i - 2j , v = 2i + 3j ,

u = av + bw .i - j .
w =u = 2i + j, v = i + j ,

s -2, -3, 6d ,AB
1

= -7i + 3j + 8k

AB
1

= i + 4j - 2k

P2s2, -2, -2dP1s0, 0, 0d
P2s2, 3, 4dP1s3, 4, 5d
P2s4, -2, 7dP1s1, 4, 5d

P2s2, 5, 0dP1s -1, 1, 5d
P1 P2 .

P1 P2
1

v = s1>2di - s1>2dj - s1>2dk .

v = 12i - 5k .

122
 i +

123
 j -

126
 ka 7 0

3
13

 i -

4
13

 j -

12
13

 k
13
12

-

3
5

 i -

4
5

 k22

-j

4100 AWL/Thomas_ch12p848-905  9/2/04  11:02 AM  Page 861

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1202c.html
tcu1202c.html
tcu1202d.html
tcu1202d.html
tcu1202e.html
tcu1202e.html
tcu1202f.html
tcu1202f.html
tcu1202g.html
tcu1202g.html


45. Velocity An airplane is flying in the direction 25° west of north
at 800 km h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and
the positive y-axis represents due north.

46. Velocity An airplane is flying in the direction 10° east of south
at 600 km h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and
the positive y-axis represents due north.

47. Location A bird flies from its nest 5 km in the direction 60°
north of east, where it stops to rest on a tree. It then flies 10 km in
the direction due southeast and lands atop a telephone pole. Place
an xy-coordinate system so that the origin is the bird’s nest, the
x-axis points east, and the y-axis points north.

a. At what point is the tree located?

b. At what point is the telephone pole?

48. Use similar triangles to find the coordinates of the point Q that di-
vides the segment from to into two
lengths whose ratio is 

49. Medians of a triangle Suppose that A, B, and C are the corner
points of the thin triangular plate of constant density shown here.

a. Find the vector from C to the midpoint M of side AB.

b. Find the vector from C to the point that lies two-thirds of the
way from C to M on the median CM.

p>q = r .
P2sx2, y2, z2dP1sx1, y1, z1d

>

>

45°
F

c. Find the coordinates of the point in which the medians of
intersect. According to Exercise 29, Section 6.4, this

point is the plate’s center of mass. 

50. Find the vector from the origin to the point of intersection of the
medians of the triangle whose vertices are

51. Let ABCD be a general, not necessarily planar, quadrilateral in
space. Show that the two segments joining the midpoints of oppo-
site sides of ABCD bisect each other. (Hint: Show that the seg-
ments have the same midpoint.)

52. Vectors are drawn from the center of a regular n-sided polygon in
the plane to the vertices of the polygon. Show that the sum of the
vectors is zero. (Hint: What happens to the sum if you rotate the
polygon about its center?)

53. Suppose that A, B, and C are vertices of a triangle and that a, b,
and c are, respectively, the midpoints of the opposite sides. Show

that 

54. Unit vectors in the plane Show that a unit vector in the plane
can be expressed as obtained by rotating
i through an angle in the counterclockwise direction. Explain
why this form gives every unit vector in the plane.

u

u = scos udi + ssin udj ,

Aa
1

+ Bb
1

+ Cc
1

= 0.

As1, -1, 2d,  Bs2, 1, 3d,  and Cs -1, 2, -1d .

z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

¢ABC
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862 Chapter 12: Vectors and the Geometry of Space

The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at
the point where F is applied, then we want the magnitude of F in the direction of v. Figure
12.18 shows that the scalar quantity we seek is the length where is the angle
between the two vectors F and v.

In this section, we show how to calculate easily the angle between two vectors directly
from their components. A key part of the calculation is an expression called the dot prod-
uct. Dot products are also called inner or scalar products because the product results in a
scalar, not a vector. After investigating the dot product, we apply it to finding the projec-
tion of one vector onto another (as displayed in Figure 12.18) and to finding the work done
by a constant force acting through a displacement.

uƒ F ƒ  cos u ,

12.3

v

F

Length �  F  cos �

�

FIGURE 12.18 The magnitude of the force
F in the direction of vector v is the length

of the projection of F onto v.ƒ F ƒ  cos u
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12.3 The Dot Product 863

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an
angle of measure (Figure 12.19). If the vectors do not lie along the same
line, the angle is measured in the plane containing both of them. If they do lie along the
same line, the angle between them is 0 if they point in the same direction, and if they
point in opposite directions. The angle is the angle between u and v. Theorem 1 gives a
formula to determine this angle.

u

p

u

0 … u … pu

THEOREM 1 Angle Between Two Vectors
The angle between two nonzero vectors 

is given by

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b .

8v1, v2, v39
u = 8u1, u2, u39 and v =u

Before proving Theorem 1 (which is a consequence of the law of cosines), let’s focus
attention on the expression in the calculation for u .u1 v1 + u2 v2 + u3 v3

DEFINITION Dot Product
The dot product of vectors and 
is

u # v = u1 v1 + u2 v2 + u3 v3 .

v = 8v1, v2, v39u = 8u1, u2, u39u # v s“u dot v”d

u

v

�

FIGURE 12.19 The angle between u and v.

EXAMPLE 1 Finding Dot Products

(a)

(b)

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

Proof of Theorem 1 Applying the law of cosines (Equation (6), Section 1.6) to the tri-
angle in Figure 12.20, we find that

Law of cosines

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2 .

 ƒ w ƒ
2

= ƒ u ƒ
2

+ ƒ v ƒ
2

- 2 ƒ u ƒ ƒ v ƒ  cos u

8u1, u29 # 8v1, v29 = u1 v1 + u2 v2 .

a1
2

 i + 3j + kb # s4i - j + 2kd = a1
2
b s4d + s3ds -1d + s1ds2d = 1

 = -6 - 4 + 3 =  -7

 81, -2, -19 # 8-6, 2, -39 = s1ds -6d + s -2ds2d + s -1ds -3d

v

u

�

w

FIGURE 12.20 The parallelogram law of
addition of vectors gives w = u - v.
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Because the component form of w is So

and

Therefore,

So

With the notation of the dot product, the angle between two vectors u and v can be
written as

EXAMPLE 2 Finding the Angle Between Two Vectors in Space

Find the angle between and 

Solution We use the formula above:

The angle formula applies to two-dimensional vectors as well.

 = cos-1 a -4
s3ds7d

b L 1.76 radians.

 u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b
 ƒ v ƒ = 2s6d2

+ s3d2
+ s2d2

= 249 = 7

 ƒ u ƒ = 2s1d2
+ s -2d2

+ s -2d2
= 29 = 3

 u # v = s1ds6d + s -2ds3d + s -2ds2d = 6 - 6 - 4 = -4

v = 6 i + 3 j + 2k .u = i - 2 j - 2k

u = cos-1 a u # v
ƒ u ƒ ƒ v ƒ

b .

u = cos-1 au1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

b

 cos u =

u1 v1 + u2 v2 + u3 v3

ƒ u ƒ ƒ v ƒ

 ƒ u ƒ ƒ v ƒ  cos u = u1 v1 + u2 v2 + u3 v3

 2 ƒ u ƒ ƒ v ƒ  cos u = ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2 v2 + u3 v3d

ƒ u ƒ
2

+ ƒ v ƒ
2

- ƒ w ƒ
2

= 2su1 v1 + u2v2 + u3 v3) .

 = u1
2

- 2u1v1 + v1
2

+ u2
2

- 2u2v2 + v2
2

+ u3
2

- 2u3v3 + v3
2

 = su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2

 ƒ w ƒ
2

= A2su1 - v1d2
+ su2 - v2d2

+ su3 - v3d2 B2
 ƒ v ƒ

2
= A2v1

2
+ v2

2
+ v3

2 B2 = v1
2

+ v2
2

+ v3
2

 ƒ u ƒ
2

= A2u1
2

+ u2
2

+ u3
2 B2 = u1

2
+ u2

2
+ u3

2

8u1 - v1, u2 - v2 , u3 - v39 .w = u - v ,
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12.3 The Dot Product 865

EXAMPLE 3 Finding an Angle of a Triangle

Find the angle in the triangle ABC determined by the vertices 
and (Figure 12.21).

Solution The angle is the angle between the vectors and The component
forms of these two vectors are

First we calculate the dot product and magnitudes of these two vectors.

Then applying the angle formula, we have

Perpendicular (Orthogonal) Vectors

Two nonzero vectors u and v are perpendicular or orthogonal if the angle between them is
For such vectors, we have because The converse is also

true. If u and v are nonzero vectors with then and
u = cos-1 0 = p>2.

cos u = 0u # v = ƒ u ƒ ƒ v ƒ  cos u = 0,
cos sp>2d = 0.u # v = 0p>2.

 L 78.1° or 1.36 radians.

 = cos-1 £ 4

A229 B A213 B ≥
 u = cos-1 £ CA

1 # CB
1

ƒ CA
1

ƒ ƒ CB
1

ƒ

≥
 ƒ CB

1
ƒ = 2s -2d2

+ s3d2
= 213

 ƒ CA
1

ƒ = 2s -5d2
+ s -2d2

= 229

 CA
1 # CB

1
= s -5ds -2d + s -2ds3d = 4

CA
1

= 8-5, -29 and CB
1

= 8-2, 39 .
CB
1

.CA
1

u

C = s5, 2d
A = s0, 0d, B = s3, 5d ,u

x

y

A

�

B(3, 5)

C(5, 2)

1

1

FIGURE 12.21 The triangle in
Example 3.

DEFINITION Orthogonal Vectors
Vectors u and v are orthogonal (or perpendicular) if and only if u # v = 0.

EXAMPLE 4 Applying the Definition of Orthogonality

(a) and are orthogonal because 

(b) and are orthogonal because 

(c) 0 is orthogonal to every vector u since

 = 0.

 = s0dsu1d + s0dsu2d + s0dsu3d

 0 # u = 80, 0, 09 # 8u1, u2, u39

s -2ds2d + s1ds4d = 0.
u # v = s3ds0d +v = 2j + 4ku = 3i - 2j + k

u # v = s3ds4d + s -2ds6d = 0.v = 84, 69u = 83, -29
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Proofs of Properties 1 and 3 The properties are easy to prove using the definition. For
instance, here are the proofs of Properties 1 and 3.

1.

3.

We now return to the problem of projecting one vector onto another, posed in the
opening to this section. The vector projection of onto a nonzero vector 

(Figure 12.22) is the vector determined by dropping a perpendicular from Q to the line
PS. The notation for this vector is

If u represents a force, then represents the effective force in the direction of v
(Figure 12.23).

If the angle between u and v is acute, has length and direction
(Figure 12.24). If is obtuse, and has length and di-

rection In both cases,

 = au # v

ƒ v ƒ
2 bv.

ƒ u ƒ  cos u =

ƒ u ƒ ƒ v ƒ  cos u

ƒ v ƒ

=

u # v

ƒ v ƒ

 = au # v
ƒ v ƒ

b  
v
ƒ v ƒ

 projv u = s ƒ u ƒ  cos ud 
v
ƒ v ƒ

-v> ƒ v ƒ .
- ƒ u ƒ  cos uprojv ucos u 6 0uv> ƒ v ƒ

ƒ u ƒ  cos uprojv uu

projv u

projv u s“the vector projection of u onto v”d .

PR
1

v = PS
1u = PQ

1

 = u # v + u # w

 = su1 v1 + u2 v2 + u3 v3d + su1 w1 + u2 w2 + u3 w3d

 = u1 v1 + u1 w1 + u2 v2 + u2 w2 + u3 v3 + u3 w3

 = u1sv1 + w1d + u2sv2 + w2d + u3sv3 + w3d

 u # sv + wd = 8u1, u2 , u39 # 8v1 + w1, v2 + w2 , v3 + w39
u # v = u1 v1 + u2 v2 + u3 v3 = v1 u1 + v2 u2 + v3 u3 = v # u

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.22 The vector projection of
u onto v.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers
(scalars).

866 Chapter 12: Vectors and the Geometry of Space

Properties of the Dot Product
If u, v, and w are any vectors and c is a scalar, then

1.

2.

3.

4.

5. 0 # u = 0.

u # u = ƒ u ƒ
2

u # sv + wd = u # v + u # w

scud # v = u # scvd = csu # vd
u # v = v # u

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)

v

Force � u

FIGURE 12.23 If we pull on the box with
force u, the effective force moving the box
forward in the direction v is the projection
of u onto v.
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12.3 The Dot Product 867

The number is called the scalar component of u in the direction of v. To sum-
marize,

ƒ u ƒ  cos u

u

v

(b)

u

v 

(a)

�

�

projv u projv u

Length � �u� cos � Length � –�u� cos � 

FIGURE 12.24 The length of is (a) if and
(b) if cos u 6 0.- ƒ u ƒ  cos u

cos u Ú 0ƒ u ƒ  cos uprojv u

Vector projection of u onto v:

(1)

Scalar component of u in the direction of v:

(2)ƒ u ƒ  cos u =

u # v
ƒ v ƒ

= u # v
ƒ v ƒ

projv u = au # v

ƒ v ƒ
2 bv

Note that both the vector projection of u onto v and the scalar component of u onto v de-
pend only on the direction of the vector v and not its length (because we dot u with 
which is the direction of v).

EXAMPLE 5 Finding the Vector Projection

Find the vector projection of onto and the scalar
component of u in the direction of v.

Solution We find from Equation (1):

We find the scalar component of u in the direction of v from Equation (2):

Equations (1) and (2) also apply to two-dimensional vectors.

 = 2 - 2 -
4
3

= -
4
3

.

 ƒ u ƒ  cos u = u # v
ƒ v ƒ

= s6i + 3j + 2kd # a1
3

 i -
2
3

 j -
2
3

 kb

 = -
4
9

 si - 2j - 2kd = -
4
9

 i +

8
9

 j +

8
9

 k .

 projv u =

u # v
v # v  v =

6 - 6 - 4
1 + 4 + 4

 si - 2j - 2kd

projv u

v = i - 2j - 2ku = 6i + 3j + 2k

v> ƒ v ƒ ,
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EXAMPLE 6 Finding Vector Projections and Scalar Components

Find the vector projection of a force onto and the scalar compo-
nent of F in the direction of v.

Solution The vector projection is

The scalar component of F in the direction of v is

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving
an object through a distance d as That formula holds only if the force is directed
along the line of motion. If a force F moving an object through a displacement 
has some other direction, the work is performed by the component of F in the direction of
D. If is the angle between F and D (Figure 12.25), then

 =  F # D.

 =  s ƒ F ƒ  cos ud ƒ D ƒ

Work = ascalar component of F
in the direction of D b slength of Dd

u

D = PQ
1W = Fd .

ƒ F ƒ  cos u =

F # v
ƒ v ƒ

=

5 - 621 + 9
= -

1210
.

 = -
1
10

 i +

3
10

 j .

 =

5 - 6
1 + 9

 si - 3jd = -
1
10

 si - 3jd

 projv F = ¢F # v

ƒ v ƒ
2 ≤v

v = i - 3jF = 5i + 2j

868 Chapter 12: Vectors and the Geometry of Space

F

P QD

�F� cos �

�

FIGURE 12.25 The work done by a
constant force F during a displacement D
is s ƒ F ƒ  cos ud ƒ D ƒ .

DEFINITION Work by Constant Force
The work done by a constant force F acting through a displacement is

where is the angle between F and D.u

W = F # D = ƒ F ƒ ƒ D ƒ  cos u ,

D = PQ
1

EXAMPLE 7 Applying the Definition of Work

If (newtons), and the work done by F in acting from P
to Q is

Definition

Given values

 = 60 J s joulesd .

 = s120ds1>2d
 = s40ds3d cos 60°

 Work = ƒ F ƒ ƒ D ƒ  cos u

u = 60°,ƒ D ƒ = 3 m,ƒ F ƒ = 40 N
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12.3 The Dot Product 869

We encounter more challenging work problems in Chapter 16 when we learn to find
the work done by a variable force along a path in space.

Writing a Vector as a Sum of Orthogonal Vectors

We know one way to write a vector or as a sum of two or-
thogonal vectors:

(since ).
Sometimes, however, it is more informative to express u as a different sum. In me-

chanics, for instance, we often need to write a vector u as a sum of a vector parallel to a
given vector v and a vector orthogonal to v. As an example, in studying the motion of a
particle moving along a path in the plane (or space), it is desirable to know the components
of the acceleration vector in the direction of the tangent to the path (at a point) and of the
normal to the path. (These tangential and normal components of acceleration are investi-
gated in Section 13.4.) The acceleration vector can then be expressed as the sum of its
(vector) tangential and normal components (which reflect important geometric properties
about the nature of the path itself, such as curvature). Velocity and acceleration vectors are
studied in the next chapter.

Generally, for vectors u and v, it is easy to see from Figure 12.26 that the vector

is orthogonal to the projection vector (which has the same direction as v). The fol-
lowing calculation verifies this observation:

Equation (1)

cancels

So the equation

expresses u as a sum of orthogonal vectors.

u = projv u + su - projv ud

 = 0.

v # v = ƒ v ƒ
2 =

su # vd2

ƒ v ƒ
2 -

su # vd2

ƒ v ƒ
2

 = ¢u # v

ƒ v ƒ
2 ≤ su # vd - ¢u # v

ƒ v ƒ
2 ≤2

sv # vd

 su - projv ud # projv u = ¢u - ¢u # v

ƒ v ƒ
2 ≤v≤ # ¢u # v

ƒ v ƒ
2 ≤v

projv u

u - projv u

i # j = i # k = j # k = 0

u = u1 i + u2 j or u = u1 i + su2 j + u3 kd

u = 8u1, u2, u39u = 8u1, u29

u

v

projv u

u � projv u

FIGURE 12.26 Writing u as the sum of
vectors parallel and orthogonal to v.

Dot product properties
2 and 3

How to Write u as a Vector Parallel to v Plus a Vector Orthogonal to v

 = ¢u # v

ƒ v ƒ
2 ≤

(')'*

v + ¢u - ¢u # v

ƒ v ƒ
2 ≤v≤

('')''*

 u = projv u + su - projv ud

Parallel to v Orthogonal to v

4100 AWL/Thomas_ch12p848-905  8/25/04  2:43 PM  Page 869

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce12.html?2_1_l


EXAMPLE 8 Force on a Spacecraft

A force is applied to a spacecraft with velocity vector 
Express F as a sum of a vector parallel to v and a vector orthogonal to v.

Solution

The force is the effective force parallel to the velocity v. The force
is orthogonal to v. To check that this vector is orthogonal to v, we

find the dot product:

a1
2

 i +

3
2

 j - 3kb # s3i - jd =

3
2

-

3
2

= 0.

s1>2di + s3/2dj - 3k
s3>2di - s1/2dj

 = a3
2

 i -
1
2

 jb + a1
2

 i +

3
2

 j - 3kb .

 =

5
10

 s3i - jd + a2i + j - 3k -

5
10

 s3i - jdb

 = a6 - 1
9 + 1

bv + aF - a6 - 1
9 + 1

bvb

 =

F # v
v # v  v + aF -

F # v
v # v  vb

 F = projv F + sF - projv Fd

v = 3i - j .F = 2i + j - 3k

870 Chapter 12: Vectors and the Geometry of Space
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870 Chapter 12: Vectors and the Geometry of Space

EXERCISES 12.3

Dot Product and Projections
In Exercises 1–8, find

a.

b. the cosine of the angle between v and u

c. the scalar component of u in the direction of v

d. the vector 

1.

2.

3.

4.

5.

6.

7.

8. v = h 122
, 

123
i , u = h 122

, -
123
i

v = 5i + j, u = 2i + 217j

v = - i + j, u = 22i + 23j + 2k

v = 5j - 3k, u = i + j + k

v = 2i + 10j - 11k, u = 2i + 2j + k

v = 10i + 11j - 2k, u = 3j + 4k

v = s3>5di + s4>5dk, u = 5i + 12j

v = 2i - 4j + 25k, u = -2i + 4j - 25k

projv u .

v # u, ƒ v ƒ , ƒ u ƒ

Angles Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest
hundredth of a radian.

9.

10.

11.

12.

13. Triangle Find the measures of the angles of the triangle whose
vertices are and 

14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are 

and 

15. Direction angles and direction cosines The direction angles
and of a vector are defined as follows:

is the angle between v and the positive x-axis 

is the angle between v and the positive y-axis 

is the angle between v and the positive z-axis s0 … g … pd .g

s0 … b … pdb

s0 … a … pda

v = ai + bj + ckga, b ,

D = s4, 1d .C = s3, 4d ,
A = s1, 0d, B = s0, 3d,

C = s1, -2d .A = s -1, 0d, B = s2, 1d ,

u = i + 22j - 22k, v = - i + j + k

u = 23i - 7j, v = 23i + j - 2k

u = 2i - 2j + k, v = 3i + 4k

u = 2i + j, v = i + 2j - k

T
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12.3 The Dot Product 871

a. Show that

and These cosines are called
the direction cosines of v.

b. Unit vectors are built from direction cosines Show that if
is a unit vector, then a, b, and c are the

direction cosines of v.

16. Water main construction A water main is to be constructed
with a 20% grade in the north direction and a 10% grade in the
east direction. Determine the angle required in the water main
for the turn from north to east.

Decomposing Vectors
In Exercises 17–19, write u as the sum of a vector parallel to v and a
vector orthogonal to v.

17.

18.

19.

20. Sum of vectors is already the sum of a vector
parallel to i and a vector orthogonal to i. If you use in the de-
composition do you get 
and Try it and find out.

Geometry and Examples
21. Sums and differences In the accompanying figure, it looks as

if and are orthogonal. Is this mere coincidence,
or are there circumstances under which we may expect the sum of

v1 - v2v1 + v2

su - projv ud = j + k?
projv u = iu = projv u + su - projv ud ,

v = i ,
u = i + sj + kd

u = 8i + 4j - 12k, v = i + 2j - k

u = j + k, v = i + j

u = 3j + 4k, v = i + j

East

North

�

u

v = ai + bj + ck

cos2 a + cos2 b + cos2 g = 1.

cos a =

a
ƒ v ƒ

,  cos b =

b
ƒ v ƒ

,  cos g =

c
ƒ v ƒ

,

y

z

x

v

0
�

�

�

two vectors to be orthogonal to their difference? Give reasons for
your answer. 

22. Orthogonality on a circle Suppose that AB is the diameter of a
circle with center O and that C is a point on one of the two arcs
joining A and B. Show that and are orthogonal. 

23. Diagonals of a rhombus Show that the diagonals of a rhombus
(parallelogram with sides of equal length) are perpendicular.

24. Perpendicular diagonals Show that squares are the only rec-
tangles with perpendicular diagonals.

25. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length.
(This fact is often exploited by carpenters.)

26. Diagonal of parallelogram Show that the indicated diagonal of
the parallelogram determined by vectors u and v bisects the angle
between u and v if 

27. Projectile motion A gun with muzzle velocity of 1200 ft sec is
fired at an angle of 8° above the horizontal. Find the horizontal
and vertical components of the velocity.

28. Inclined plane Suppose that a box is being towed up an inclined
plane as shown in the figure. Find the force w needed to make the
component of the force parallel to the inclined plane equal to 2.5 lb. 

15˚

33˚

�

>

�

�

ƒ u ƒ = ƒ v ƒ .

B
O

v

A

C

u–u

CB
1

CA
1

v1 � v2

v1 � v2

v2

v1 –v2

4100 AWL/Thomas_ch12p848-905  8/25/04  2:43 PM  Page 871

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1203c.html
tcu1203c.html
tcu1203d.html
tcu1203d.html
tcu1203e.html
tcu1203e.html
tcu1203e.html


Theory and Examples
29. a. Cauchy-Schwartz inequality Use the fact that 

to show that the inequality 
holds for any vectors u and v.

b. Under what circumstances, if any, does equal 
Give reasons for your answer.

30. Copy the axes and vector shown here. Then shade in the points (x, y)
for which Justify your answer. 

31. Orthogonal unit vectors If and are orthogonal unit vec-
tors and find 

32. Cancellation in dot products In real-number multiplication, if
and we can cancel the u and conclude that

Does the same rule hold for the dot product: If
and can you conclude that Give

reasons for your answer.

Equations for Lines in the Plane
33. Line perpendicular to a vector Show that the vector 

is perpendicular to the line by establishing
that the slope of v is the negative reciprocal of the slope of the
given line.

34. Line parallel to a vector Show that the vector is
parallel to the line by establishing that the slope of
the line segment representing v is the same as the slope of the
given line.

In Exercises 35–38, use the result of Exercise 33 to find an equation
for the line through P perpendicular to v. Then sketch the line. Include
v in your sketch as a vector starting at the origin.

35.

36.

37.

38.

In Exercises 39–42, use the result of Exercise 34 to find an equation
for the line through P parallel to v. Then sketch the line. Include v in
your sketch as a vector starting at the origin.

39. 40.

41. 42. Ps1, 3d, v = 3i - 2jPs1, 2d, v = - i - 2j

Ps0, -2d, v = 2i + 3jPs -2, 1d, v = i - j

Ps11, 10d, v = 2i - 3j

Ps -2, -7d, v = -2i + j

Ps -1, 2d, v = -2i - j

Ps2, 1d, v = i + 2j

bx - ay = c
v = ai + bj

ax + by = cai + bj
v =

v1 = v2 ?u Z 0 ,u # v1 = u # v2

v1 = v2 .
u Z 0,uv1 = uv2

v # u1 .v = au1 + bu2 ,
u2u1

x

y

0

�

sxi + yjd # v … 0.

ƒ u ƒ ƒ v ƒ ?ƒ u # v ƒ

ƒ u # v ƒ … ƒ u ƒ ƒ v ƒƒ u ƒ ƒ v ƒ  cos u

u # v =

Work
43. Work along a line Find the work done by a force (mag-

nitude 5 N) in moving an object along the line from the origin to
the point (1, 1) (distance in meters).

44. Locomotive The union Pacific’s Big Boy locomotive could pull
6000-ton trains with a tractive effort (pull) of 602,148 N (135,375
lb). At this level of effort, about how much work did Big Boy do on
the (approximately straight) 605-km journey from San Francisco
to Los Angeles?

45. Inclined plane How much work does it take to slide a crate 
20 m along a loading dock by pulling on it with a 200 N force at
an angle of 30° from the horizontal?

46. Sailboat The wind passing over a boat’s sail exerted a 1000-lb
magnitude force F as shown here. How much work did the wind
perform in moving the boat forward 1 mi? Answer in foot-pounds. 

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right
angles is the same as the angle determined by vectors normal to the
lines or by the vectors parallel to the lines. 

Use this fact and the results of Exercise 33 or 34 to find the acute an-
gles between the lines in Exercises 47–52.

47.

48.

49.

50.

51.

52.

Angles Between Differentiable Curves
The angles between two differentiable curves at a point of intersection
are the angles between the curves’ tangent lines at these points. Find

12x + 5y = 1, 2x - 2y = 3

3x - 4y = 3, x - y = 7

x + 23y = 1, A1 - 23 Bx + A1 + 23 By = 8

23x - y = -2, x - 23y = 1

y = 23x - 1, y = -23x + 2

3x + y = 5, 2x - y = 4

�

�

�

n1
n2

L2

L2

L1

L1
v1

v2

F

60°
1000 lb
magnitude
force

F = 5i
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the angles between the curves in Exercises 53–56. Note that if
is a vector in the plane, then the vector has slope b a

provided 

53. y = s3>2d - x2, y = x2 stwo points of intersectiond
a Z 0.

>v = ai + bj
54.

55.

56. y = -x2, y = 1x stwo points of intersectiond
y = x3, x = y2 stwo points of intersectiond
x = s3>4d - y2, x = y2

- s3>4d stwo points of intersectiond
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12.4 The Cross Product 873

The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used
the notions of slope and angle of inclination. In space, we want a way to describe how a
plane is tilting. We accomplish this by multiplying two vectors in the plane together to get
a third vector perpendicular to the plane. The direction of this third vector tells us the “in-
clination” of the plane. The product we use to multiply the vectors together is the vector or
cross product, the second of the two vector multiplication methods we study in calculus.

Cross products are widely used to describe the effects of forces in studies of electric-
ity, magnetism, fluid flows, and orbital mechanics. This section presents the mathematical
properties that account for the use of cross products in these fields.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. If u and v are not parallel, they deter-
mine a plane. We select a unit vector n perpendicular to the plane by the right-hand rule.
This means that we choose n to be the unit (normal) vector that points the way your right
thumb points when your fingers curl through the angle from u to v (Figure 12.27). Then
the cross product (“u cross v”) is the vector defined as follows.u * v

u

12.4

DEFINITION Cross Product

u * v = s ƒ u ƒ ƒ v ƒ  sin ud n

Unlike the dot product, the cross product is a vector. For this reason it’s also called the
vector product of u and v, and applies only to vectors in space. The vector is or-
thogonal to both u and v because it is a scalar multiple of n.

Since the sines of 0 and are both zero, it makes sense to define the cross product of
two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define

to be zero. This way, the cross product of two vectors u and v is zero if and only if u
and v are parallel or one or both of them are zero.
u * v

p

u * v

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u * v = 0 .

The cross product obeys the following laws.

v

u

n
�

u � v

FIGURE 12.27 The construction of
u * v.
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874 Chapter 12: Vectors and the Geometry of Space

To visualize Property 4, for example, notice that when the fingers of a right hand curl
through the angle from v to u, the thumb points the opposite way and the unit vector we
choose in forming is the negative of the one we choose in forming (Figure
12.28).

Property 1 can be verified by applying the definition of cross product to both sides of
the equation and comparing the results. Property 2 is proved in Appendix 6. Property 3
follows by multiplying both sides of the equation in Property 2 by and reversing the
order of the products using Property 4. Property 5 is a definition. As a rule, cross product
multiplication is not associative so does not generally equal .
(See Additional Exercise 15.)

When we apply the definition to calculate the pairwise cross products of i, j, and k,
we find (Figure 12.29)

and

Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of isu * v

ƒ u * v ƒ

i * i = j * j = k * k = 0 .

 k * i = -si * kd = j

 j * k = -sk * jd = i

 i * j = -sj * id = k

u * sv * wdsu * vd * w

-1

u * vv * u
u

Properties of the Cross Product
If u, v, and w are any vectors and r, s are scalars, then

1.

2.

3.

4.

5. 0 * u = 0

v * u = -su * vd
sv + wd * u = v * u + w * u

u * sv + wd = u * v + u * w

srud * ssvd = srsdsu * vd

Diagram for recalling
these products

i

jk

ƒ u * v ƒ = ƒ u ƒ ƒ v ƒ  ƒ sin u ƒ ƒ n ƒ = ƒ u ƒ ƒ v ƒ  sin u .

This is the area of the parallelogram determined by u and v (Figure 12.30), being the
base of the parallelogram and the height.

Determinant Formula for 

Our next objective is to calculate from the components of u and v relative to a
Cartesian coordinate system.

u * v

u * v

ƒ v ƒ ƒ sin u ƒ

ƒ u ƒ

v

u

�–n

v � u

FIGURE 12.28 The construction of
v * u.

y

x

z

i

k � i � j � –( j � i)

–i
–j

–k

j � k � i � –(i � k)

i � j � k � –(k � j)

FIGURE 12.29 The pairwise cross
products of i, j, and k.

v

u

�

h � �v� �sin ��

Area � base ⋅ height  
� �u� ⋅ �v��sin ��

� �u × v�

FIGURE 12.30 The parallelogram
determined by u and v.
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12.4 The Cross Product 875

Suppose that

Then the distributive laws and the rules for multiplying i, j, and k tell us that

The terms in the last line are the same as the terms in the expansion of the symbolic
determinant

We therefore have the following rule.

3 i j k

u1 u2 u3

v1 v2 v3

3 .
 = su2 v3 - u3 v2d i - su1 v3 - u3 v1dj + su1 v2 - u2 v1dk.

+ u3 v1 k * i + u3 v2 k * j + u3 v3 k * k

+ u2 v1 j * i + u2 v2 j * j + u2 v3 j * k

 = u1 v1 i * i + u1 v2 i * j + u1 v3 i * k

u * v = su1 i + u2 j + u3 kd * sv1 i + v2  j + v3 kd

u = u1 i + u2  j + u3 k, v = v1 i + v2 j + v3 k.
Determinants

and determinants are
evaluated as follows:

EXAMPLE

EXAMPLE

(For more information, see the Web site
at www.aw-bc.com/thomas.)

 = 10 - 18 + 10 = 2
+ 1s6 + 4d

 = -5s1 - 3d - 3s2 + 4d

+ s1d ` 2 1

-4 3
`- s3d ` 2 1

-4 1
`

= s -5d ` 1 1

3 1
`3 -5 3 1

2 1 1

-4 3 1

3
- a2 ` b1 b3

c1 c3
` + a3 ` b1 b2

c1 c2
`

= a1 ` b2 b3

c2 c3
`3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3
 = 6 + 4 = 10

 ̀
2 1

-4 3
` = s2ds3d - s1ds -4d

` a b

c d
` = ad - bc

3 * 32 * 2

Calculating Cross Products Using Determinants

If and then

u * v = 3 i j k

u1 u2 u3

v1 v2 v3

3 .
v = v1 i + v2 j + v3 k,u = u1 i + u2 j + u3 k

EXAMPLE 1 Calculating Cross Products with Determinants

Find and if and 

Solution

EXAMPLE 2 Finding Vectors Perpendicular to a Plane

Find a vector perpendicular to the plane of and 
(Figure 12.31).

Rs -1, 1, 2dPs1, -1, 0d, Qs2, 1, -1d ,

 v * u = -su * vd = 2 i + 6 j - 10k

 = -2 i - 6 j + 10k

 u * v = 3 i j k

2 1 1

-4 3 1

3 = p 1 1

3 1
p i - p 2 1

-4 1
p j + p 2 1

-4 3
p k

v = -4 i + 3 j + k.u = 2 i + j + kv * uu * v

y

x

z

0

P(1, –1, 0)

Q(2, 1, –1)

R(–1, 1, 2)

FIGURE 12.31 The area of triangle PQR
is half of (Example 2).ƒ PQ

1
* PR

1
ƒ
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Solution The vector is perpendicular to the plane because it is perpendicular
to both vectors. In terms of components,

EXAMPLE 3 Finding the Area of a Triangle

Find the area of the triangle with vertices and 
(Figure 12.31).

Solution The area of the parallelogram determined by P, Q, and R is

Values from Example 2.

The triangle’s area is half of this, or  

EXAMPLE 4 Finding a Unit Normal to a Plane

Find a unit vector perpendicular to the plane of and

Solution Since is perpendicular to the plane, its direction n is a unit vector
perpendicular to the plane. Taking values from Examples 2 and 3, we have

For ease in calculating the cross product using determinants, we usually write vectors
in the form rather than as ordered triples 

Torque

When we turn a bolt by applying a force F to a wrench (Figure 12.32), the torque we pro-
duce acts along the axis of the bolt to drive the bolt forward. The magnitude of the torque
depends on how far out on the wrench the force is applied and on how much of the force is
perpendicular to the wrench at the point of application. The number we use to measure the
torque’s magnitude is the product of the length of the lever arm r and the scalar component
of F perpendicular to r. In the notation of Figure 12.32,

Magnitude of torque vector = ƒ r ƒ ƒ F ƒ  sin u ,

v = 8v1, v2, v39 .v = v1 i + v2 j + v3 k

n =

PQ
1

* PR
1

ƒ PQ
1

* PR
1

ƒ

=

6i + 6k

622
=

122
 i +

122
 k.

PQ
1

* PR
1

Rs -1, 1, 2d .
Ps1, -1, 0d, Qs2, 1, -1d ,

322.

 = 2s6d2
+ s6d2

= 22 # 36 = 622.

 ƒ PQ
1

* PR
1

ƒ = ƒ 6i + 6k ƒ

Rs -1, 1, 2dPs1, -1, 0d, Qs2, 1, -1d ,

 = 6i + 6k.

 PQ
1

* PR
1

= 3 i j k

1 2 -1

-2 2 2

3 = ` 2 -1

2 2
` i - ` 1 -1

-2 2
` j + ` 1 2

-2 2
` k

 PR
1

= s -1 - 1di + s1 + 1dj + s2 - 0dk = -2i + 2j + 2k

 PQ
1

= s2 - 1di + s1 + 1dj + s -1 - 0dk = i + 2j - k

PQ
1

* PR
1

876 Chapter 12: Vectors and the Geometry of Space

n

r

F
�

Torque

Component of F
perpendicular to r.
Its length is �F� sin �.

FIGURE 12.32 The torque vector
describes the tendency of the force F to
drive the bolt forward.
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12.4 The Cross Product 877

or If we let n be a unit vector along the axis of the bolt in the direction of the
torque, then a complete description of the torque vector is or

Recall that we defined to be 0 when u and v are parallel. This is consistent with the
torque interpretation as well. If the force F in Figure 12.32 is parallel to the wrench, mean-
ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s
handle, the torque produced is zero.

EXAMPLE 5 Finding the Magnitude of a Torque

The magnitude of the torque generated by force F at the pivot point P in Figure 12.33 is

Triple Scalar or Box Product

The product is called the triple scalar product of u, v, and w (in that order).
As you can see from the formula

the absolute value of the product is the volume of the parallelepiped (parallelogram-sided
box) determined by u, v, and w (Figure 12.34). The number is the area of the base
parallelogram. The number is the parallelepiped’s height. Because of this
geometry, is also called the box product of u, v, and w.su * vd # w

ƒ w ƒ ƒ cos u ƒ

ƒ u * v ƒ

ƒ su * vd # w ƒ = ƒ u * v ƒ ƒ w ƒ ƒ cos u ƒ ,

su * vd # w

 L 56.4 ft-lb .

 L s3ds20ds0.94d
 ƒ PQ

1
* F ƒ = ƒ PQ

1
ƒ ƒ F ƒ  sin 70°

u * v

Torque vector = s ƒ r ƒ ƒ F ƒ  sin ud n.

r * F,
ƒ r * F ƒ .

F

P Q
3 ft bar

20 lb
magnitude
force

70°

FIGURE 12.33 The magnitude of the
torque exerted by F at P is about 56.4 ft-lb
(Example 5).

v

w

u

�Height � �w� �cos ��

u � v

Area of base
� �u � v�

Volume � area of base · height
� �u � v� �w� �cos ��

� �(u � v) · w�

FIGURE 12.34 The number is the volume of a parallelepiped.ƒ su * vd # w ƒ

By treating the planes of v and w and of w and u as the base planes of the paral-
lelepiped determined by u, v, and w, we see that

Since the dot product is commutative, we also have

su * vd # w = u # sv * wd .

su * vd # w = sv * wd # u = sw * ud # v.

The dot and cross may be interchanged in
a triple scalar product without altering its
value.
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The triple scalar product can be evaluated as a determinant:

 = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3 .
 = w1 ` u2 u3

v2 v3
` - w2 ` u1 u3

v1 v3
` + w3 ` u1 u2

v1 v2
`

 su * vd # w = c ` u2 u3

v2 v3
` i - ` u1 u3

v1 v3
` j + ` u1 u2

v1 v2
` k d # w

878 Chapter 12: Vectors and the Geometry of Space

Calculating the Triple Scalar Product

su * vd # w = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3
EXAMPLE 6 Finding the Volume of a Parallelepiped

Find the volume of the box (parallelepiped) determined by 
and 

Solution Using the rule for calculating determinants, we find

The volume is ƒ su * vd # w ƒ = 23 units cubed.

su * vd # w = 3 1 2 -1

-2 0 3

0 7 -4

3 = -23.

w = 7j - 4k.3k,
v = -2i +u = i + 2j - k, 
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EXERCISES 12.4

Cross Product Calculations
In Exercises 1–8, find the length and direction (when defined) of

and 

1.

2.

3.

4.

5.

6.

7.

8. u =

3
2

 i -

1
2

 j + k, v = i + j + 2k

u = -8i - 2j - 4k, v = 2i + 2j + k

u = i * j, v = j * k

u = 2i, v = -3j

u = i + j - k, v = 0

u = 2i - 2j + 4k, v = - i + j - 2k

u = 2i + 3j, v = - i + j

u = 2i - 2j - k, v = i - k

v * u.u * v

In Exercises 9–14, sketch the coordinate axes and then include the
vectors u, v and as vectors starting at the origin.

9.

10.

11.

12.

13.

14.

Triangles in Space
In Exercises 15–18,

a. Find the area of the triangle determined by the points P, Q, and R.

b. Find a unit vector perpendicular to plane PQR.

u = j + 2k, v = i

u = i + j, v = i - j

u = 2i - j, v = i + 2j

u = i - k, v = j + k

u = i - k, v = j

u = i, v = j

u * v
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12.4 The Cross Product 879

15.

16.

17.

18.

Triple Scalar Products
In Exercises 19–22, verify that 

and find the volume of the parallelepiped (box) deter-
mined by u, v, and w.

u v w

19. 2i 2j 2k

20.

21.

22.

Theory and Examples
23. Parallel and perpendicular vectors Let 

Which vectors, if any, are (a)
perpendicular? (b) Parallel? Give reasons for your answers.

24. Parallel and perpendicular vectors Let 

Which vectors, if any, are (a) perpendicular? (b) Parallel? Give
reasons for your answers.

In Exercises 39 and 40, find the magnitude of the torque exerted by F
on the bolt at P if and Answer in foot-
pounds.

25. 26.

27. Which of the following are always true, and which are not always
true? Give reasons for your answers.

a. b.

c. d.

e.

f.

g.

h.

28. Which of the following are always true, and which are not always
true? Give reasons for your answers.

a. b.

c. s -ud * v = -su * vd
u * v = -sv * udu # v = v # u

su * vd # w = u # sv * wd
su * vd # v = 0

u * sv + wd = u * v + u * w

u * v = v * u

u * s -ud = 0u * 0 = 0 * u = 0

u # u = ƒ u ƒƒ u ƒ = 2u # u

F
Q

P

135°
F

Q

P

60°

ƒ F ƒ = 30 lb .ƒ PQ
1

ƒ = 8 in .

r = - sp>2di - pj + sp>2dk.w = i + k,v = - i + j + k,
u = i + 2j - k,

j - 5k, w = -15i + 3j - 3k.
u = 5i - j + k, v =

2i + 4j - 2k- i - ki + j - 2k

i + 2k2i - j + k2i + j

- i + 2j - k2i + j - 2ki - j + k

sw * ud # v
su * vd # w = sv * wd # u =

Ps -2, 2, 0d, Qs0, 1, -1d, Rs -1, 2, -2d
Ps2, -2, 1d, Qs3, -1, 2d, Rs3, -1, 1d
Ps1, 1, 1d, Qs2, 1, 3d, Rs3, -1, 1d
Ps1, -1, 2d, Qs2, 0, -1d, Rs0, 2, 1d d.

e.

f. g.

h.

29. Given nonzero vectors u, v, and w, use dot product and cross
product notation, as appropriate, to describe the following.

a. The vector projection of u onto v

b. A vector orthogonal to u and v

c. A vector orthogonal to and w

d. The volume of the parallelepiped determined by u, v, and w

30. Given nonzero vectors u, v, and w, use dot product and cross
product notation to describe the following.

a. A vector orthogonal to and 

b. A vector orthogonal to and 

c. A vector of length in the direction of v

d. The area of the parallelogram determined by u and w

31. Let u, v, and w be vectors. Which of the following make sense,
and which do not? Give reasons for your answers.

a. b.

c. d.

32. Cross products of three vectors Show that except in degener-
ate cases, lies in the plane of u and v, whereas

lies in the plane of v and w. What are the degener-
ate cases?

33. Cancellation in cross products If and 
then does Give reasons for your answer.

34. Double cancellation If and if and
then does Give reasons for your answer.

Area in the Plane
Find the areas of the parallelograms whose vertices are given in
Exercises 35–38.

35.

36.

37.

38.

Find the areas of the triangles whose vertices are given in Exercises 39–42.

39.

40.

41.

42.

43. Triangle area Find a formula for the area of the triangle in the
xy-plane with vertices at and Explain
your work.

44. Triangle area Find a concise formula for the area of a triangle
with vertices and sc1, c2d .sa1, a2d, sb1, b2d ,

sb1, b2d .s0, 0d, sa1, a2d ,

As -6, 0d,  Bs10, -5d,  Cs -2, 4d
As -5, 3d,  Bs1, -2d,  Cs6, -2d
As -1, -1d,  Bs3, 3d,  Cs2, 1d
As0, 0d,  Bs -2, 3d,  Cs3, 1d

As -6, 0d,  Bs1, -4d,  Cs3, 1d,  Ds -4, 5d
As -1, 2d,  Bs2, 0d,  Cs7, 1d,  Ds4, 3d
As0, 0d,  Bs7, 3d,  Cs9, 8d,  Ds2, 5d
As1, 0d,  Bs0, 1d,  Cs -1, 0d,  Ds0, -1d

v = w?u # v = u # w,
u * v = u * wu Z 0

v = w?
u Z 0,u * v = u * w

u * sv * wd
su * vd * w

u # sv # wdu * sv * wd
u * sv # wdsu * vd # w

ƒ u ƒ

u - vu + v

u * wu * v

u * v

su * vd # u = v # su * vd
su * ud # u = 0u # u = ƒ u ƒ

2

csu * vd = scud * v = u * scvd sany number cd
scud # v = u # scvd = csu # vd sany number cd
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880 Chapter 12: Vectors and the Geometry of Space

Lines and Planes in Space

In the calculus of functions of a single variable, we used our knowledge of lines to study
curves in the plane. We investigated tangents and found that, when highly magnified, dif-
ferentiable curves were effectively linear.

To study the calculus of functions of more than one variable in the next chapter, we
start with planes and use our knowledge of planes to study the surfaces that are the graphs
of functions in space.

This section shows how to use scalar and vector products to write equations for lines,
line segments, and planes in space.

Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point parallel to a

vector Then L is the set of all points P(x, y, z) for which is

parallel to v (Figure 12.35). Thus, for some scalar parameter t. The value of t de-
pends on the location of the point P along the line, and the domain of t is The
expanded form of the equation is

which can be rewritten as

(1)

If r(t) is the position vector of a point P(x, y, z) on the line and is the position vector
of the point then Equation (1) gives the following vector form for the equa-
tion of a line in space.

P0sx0, y0, z0d ,
r0

xi + yj + zk = x0 i + y0 j + z0 k + tsv1 i + v2 j + v3 kd .

sx - x0di + s y - y0dj + sz - z0dk = tsv1 i + v2 j + v3 kd ,

P0 P
1

= tv
s - q , q d .

P0 P
1

= tv

P0 P
1v = v1 i + v2 j + v3 k.

P0sx0, y0, z0d

12.5

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 12.35 A point P lies on L
through parallel to v if and only if 
is a scalar multiple of v.

P0 P
1

P0

Vector Equation for a Line
A vector equation for the line L through parallel to v is

(2)

where r is the position vector of a point P(x, y, z) on L and is the position
vector of P0sx0, y0, z0d .

r0

rstd = r0 + tv, - q 6 t 6 q ,

P0sx0, y0, z0d

Equating the corresponding components of the two sides of Equation (1) gives three
scalar equations involving the parameter t:

These equations give us the standard parametrization of the line for the parameter interval
- q 6 t 6 q .

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3 .
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12.5 Lines and Planes in Space 881

EXAMPLE 1 Parametrizing a Line Through a Point Parallel to a Vector

Find parametric equations for the line through parallel to 
(Figure 12.36).

Solution With equal to and equal to
Equations (3) become

EXAMPLE 2 Parametrizing a Line Through Two Points

Find parametric equations for the line through and 

Solution The vector

is parallel to the line, and Equations (3) with give

We could have chosen as the “base point” and written

These equations serve as well as the first; they simply place you at a different point on the
line for a given value of t.

Notice that parametrizations are not unique. Not only can the “base point” change, but
so can the parameter. The equations and also
parametrize the line in Example 2.

To parametrize a line segment joining two points, we first parametrize the line
through the points. We then find the t-values for the endpoints and restrict t to lie in the
closed interval bounded by these values. The line equations together with this added re-
striction parametrize the segment.

EXAMPLE 3 Parametrizing a Line Segment

Parametrize the line segment joining the points and 
(Figure 12.37).

Solution We begin with equations for the line through P and Q, taking them, in this
case, from Example 2:

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t .

Qs1, -1, 4dPs -3, 2, -3d

z = -3 + 7t3x = -3 + 4t3, y = 2 - 3t3 ,

x = 1 + 4t, y = -1 - 3t, z = 4 + 7t .

Qs1, -1, 4d

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t .

sx0 , y0 , z0d = s -3, 2, -3d

 = 4i - 3j + 7k

 PQ
1

= s1 - s -3ddi + s -1 - 2dj + s4 - s -3ddk

Qs1, -1, 4d .Ps -3, 2, -3d

x = -2 + 2t,  y = 4t,  z = 4 - 2t .

2i + 4j - 2k,
v1 i + v2 j + v3 ks -2, 0, 4dP0sx0 , y0 , z0d

v = 2i + 4j - 2ks -2, 0, 4d
y

z

0

x

2 4

4

2

4

8

v � 2i � 4j � 2k

t � 2
P2(2, 8, 0)

P1(0, 4, 2)

t � 1

t � 0

P0(–2, 0, 4)

FIGURE 12.36 Selected points 
and parameter values on the line

The
arrows show the direction of increasing t
(Example 1).

x = -2 + 2t, y = 4t, z = 4 - 2t .

Parametric Equations for a Line
The standard parametrization of the line through parallel to

is

(3)x = x0 + tv1,  y = y0 + tv2,  z = z0 + tv3,  - q 6 t 6 q

v = v1 i + v2  j + v3 k
P0sx0 , y0 , z0d

y

z

0

x

1 2

–1

–3

t � 1

t � 0
P(–3, 2, –3)

Q(1, –1, 4)

FIGURE 12.37 Example 3 derives a
parametrization of line segment PQ. The
arrow shows the direction of increasing t.
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We observe that the point

on the line passes through at and at We add the re-
striction to parametrize the segment:

The vector form (Equation (2)) for a line in space is more revealing if we think of a
line as the path of a particle starting at position and moving in the direction
of vector v. Rewriting Equation (2), we have

(4)

In other words, the position of the particle at time t is its initial position plus its distance
moved in the direction of its straight-line motion.

EXAMPLE 4 Flight of a Helicopter

A helicopter is to fly directly from a helipad at the origin in the direction of the point (1, 1, 1)
at a speed of 60 ft sec. What is the position of the helicopter after 10 sec?

Solution We place the origin at the starting position (helipad) of the helicopter. Then
the unit vector

gives the flight direction of the helicopter. From Equation (4), the position of the helicop-
ter at any time t is

When 

After 10 sec of flight from the origin toward (1, 1, 1), the helicopter is located at the point

in space. It has traveled a distance of 
which is the length of the vector r(10). 600 ft ,

s60 ft>secds10 secd =s20023, 20023, 20023d

 = h20023, 20023, 20023i .

 rs10d = 20023 si + j + kd

t = 10 sec,

 = 2023tsi + j + kd .

 = 0 + ts60d¢ 123
 i +

123
 j +

123
 k≤rstd = r0 + tsspeeddu

u =
123

 i +
123

 j +
123

 k

>

v> ƒ v ƒsspeed * timed

 = r0 + t ƒ v ƒ  
v
ƒ v ƒ

.

 rstd = r0 + tv

P0sx0, y0, z0d

x = -3 + 4t,  y = 2 - 3t,  z = -3 + 7t,  0 … t … 1.

0 … t … 1
t = 1.Qs1, -1, 4dt = 0Ps -3, 2, -3d

sx, y, zd = s -3 + 4t, 2 - 3t, -3 + 7td

882 Chapter 12: Vectors and the Geometry of Space

Initial Time Speed Direction
position

æ æ æ æ
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12.5 Lines and Planes in Space 883

The Distance from a Point to a Line in Space

To find the distance from a point S to a line that passes through a point P parallel to a vec-
tor v, we find the absolute value of the scalar component of in the direction of a vector
normal to the line (Figure 12.38). In the notation of the figure, the absolute value of the

scalar component is, which is 
ƒ PS
1

* v ƒ

ƒ v ƒ

.ƒ PS
1

ƒ  sin u ,

PS
1

S

P
v

�

�PS� sin �

FIGURE 12.38 The distance from
S to the line through P parallel to v is

where is the angle between
and v.PS

1
uƒ PS

1
ƒ  sin u ,

Distance from a Point S to a Line Through P Parallel to v

(5)d =

ƒ PS
1

* v ƒ

ƒ v ƒ

EXAMPLE 5 Finding Distance from a Point to a Line

Find the distance from the point S (1, 1, 5) to the line

Solution We see from the equations for L that L passes through P(1, 3, 0) parallel to
With

and

Equation (5) gives

An Equation for a Plane in Space

A plane in space is determined by knowing a point on the plane and its “tilt” or orienta-
tion. This “tilt” is defined by specifying a vector that is perpendicular or normal to the
plane.

Suppose that plane M passes through a point and is normal to the
nonzero vector Then M is the set of all points P(x, y, z) for which

is orthogonal to n (Figure 12.39). Thus, the dot product This equation is
equivalent to

or

Asx - x0d + Bs y - y0d + Csz - z0d = 0.

sA i + Bj + Ckd # [sx - x0d i + s y - y0dj + sz - z0dk] = 0

n # P0 P
1

= 0.P0 P
1

n = A i + B j + Ck.
P0sx0 , y0 , z0d

d =

ƒ PS
1

* v ƒ

ƒ v ƒ

=

21 + 25 + 421 + 1 + 4
=

23026
= 25.

PS
1

* v = 3 i j k

0 -2 5

1 -1 2

3 = i + 5 j + 2k,

PS
1

= s1 - 1d i + s1 - 3dj + s5 - 0dk = -2 j + 5k

v = i - j + 2k.

L: x = 1 + t,  y = 3 - t,  z = 2t .

n

P0(x0, y0, z0)

Plane M

P(x, y, z)

FIGURE 12.39 The standard equation for
a plane in space is defined in terms of a
vector normal to the plane: A point P lies
in the plane through normal to n if and
only if n # P0P

1
= 0.

P0
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EXAMPLE 6 Finding an Equation for a Plane

Find an equation for the plane through perpendicular to 

Solution The component equation is

Simplifying, we obtain

Notice in Example 6 how the components of became the coeffi-
cients of x, y, and z in the equation The vector 
is normal to the plane 

EXAMPLE 7 Finding an Equation for a Plane Through Three Points

Find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0).

Solution We find a vector normal to the plane and use it with one of the points (it does
not matter which) to write an equation for the plane.

The cross product

is normal to the plane. We substitute the components of this vector and the coordinates of
A(0, 0, 1) into the component form of the equation to obtain

Lines of Intersection

Just as lines are parallel if and only if they have the same direction, two planes are parallel
if and only if their normals are parallel, or for some scalar k. Two planes that are
not parallel intersect in a line.

n1 = kn2

 3x + 2y + 6z = 6.

 3sx - 0d + 2s y - 0d + 6sz - 1d = 0

AB
1

* AC
1

= 3 i j k

2 0  -1

0 3  -1

3 = 3i + 2j + 6k

Ax + By + Cz = D .
n = Ai + Bj + Ck5x + 2y - z = -22.

n = 5i + 2j - k

 5x + 2y - z = -22.

 5x + 15 + 2y - z + 7 = 0

5sx - s -3dd + 2s y - 0d + s -1dsz - 7d = 0.

n = 5i + 2j - k.P0s -3, 0, 7d

884 Chapter 12: Vectors and the Geometry of Space

Equation for a Plane
The plane through normal to has

Vector equation: n # P0 P
1

= 0

Component equation: Asx - x0d + Bsy - y0d + Csz - z0d = 0

Component equation simplified: Ax + By + Cz = D, where

D = Ax0 + By0 + Cz0

n = Ai + Bj + CkP0sx0, y0, z0d
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12.5 Lines and Planes in Space 885

EXAMPLE 8 Finding a Vector Parallel to the Line of Intersection of Two Planes

Find a vector parallel to the line of intersection of the planes and

Solution The line of intersection of two planes is perpendicular to both planes’ normal
vectors and (Figure 12.40) and therefore parallel to Turning this around,

is a vector parallel to the planes’ line of intersection. In our case,

Any nonzero scalar multiple of will do as well.

EXAMPLE 9 Parametrizing the Line of Intersection of Two Planes

Find parametric equations for the line in which the planes and
intersect.

Solution We find a vector parallel to the line and a point on the line and use
Equations (3).

Example 8 identifies as a vector parallel to the line. To find a
point on the line, we can take any point common to the two planes. Substituting in
the plane equations and solving for x and y simultaneously identifies one of these points as

The line is

The choice is arbitrary and we could have chosen or just as well. Or
we could have let and solved for y and z. The different choices would simply give
different parametrizations of the same line.

Sometimes we want to know where a line and a plane intersect. For example, if we are
looking at a flat plate and a line segment passes through it, we may be interested in know-
ing what portion of the line segment is hidden from our view by the plate. This application
is used in computer graphics (Exercise 74).

EXAMPLE 10 Finding the Intersection of a Line and a Plane

Find the point where the line

intersects the plane 

Solution The point

a8
3

+ 2t, -2t, 1 + tb

3x + 2y + 6z = 6.

x =

8
3

+ 2t,  y = -2t, z = 1 + t

x = 0
z = -1z = 1z = 0

x = 3 + 14t,  y = -1 + 2t,  z = 15t .

s3, -1, 0d .

z = 0
v = 14i + 2j + 15k

2x + y - 2z = 5
3x - 6y - 2z = 15

n1 * n2

n1 * n2 = 3 i j k

3  -6  -2

2 1 -2

3 = 14i + 2j + 15k.

n1 * n2

n1 * n2 .n2n1

2x + y - 2z = 5.
3x - 6y - 2z = 15

PLANE 2

PLA
N

E 1

n1 � n2

n2

n1

FIGURE 12.40 How the line of
intersection of two planes is related to the
planes’ normal vectors (Example 8).
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lies in the plane if its coordinates satisfy the equation of the plane, that is, if

The point of intersection is

The Distance from a Point to a Plane

If P is a point on a plane with normal n, then the distance from any point S to the plane is
the length of the vector projection of onto n. That is, the distance from S to the plane is

(6)

where is normal to the plane.

EXAMPLE 11 Finding the Distance from a Point to a Plane

Find the distance from S(1, 1, 3) to the plane 

Solution We find a point P in the plane and calculate the length of the vector projection
of onto a vector n normal to the plane (Figure 12.41). The coefficients in the equation

give

n = 3i + 2j + 6k.

3x + 2y + 6z = 6
PS
1

3x + 2y + 6z = 6.

n = Ai + Bj + Ck

d = ` PS
1 # n

ƒ n ƒ

`
PS
1

sx, y, zd ƒ t = -1 = a8
3

- 2, 2, 1 - 1b = a 2
3

, 2, 0b .

 t = -1.

 8t = -8

 8 + 6t - 4t + 6 + 6t = 6

 3 a8
3

+ 2tb + 2s -2td + 6s1 + td = 6

886 Chapter 12: Vectors and the Geometry of Space

(0, 0, 1)

(2, 0, 0)

0

y

x

z

n � 3i � 2j � 6k

Distance from
S to the plane

P(0, 3, 0)

3x � 2y � 6z � 6

S(1, 1, 3)

FIGURE 12.41 The distance from S to the plane is the
length of the vector projection of onto n (Example 11).PS

1
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12.5 Lines and Planes in Space 887

The points on the plane easiest to find from the plane’s equation are the intercepts. If
we take P to be the y-intercept (0, 3, 0), then

The distance from S to the plane is

Angles Between Planes

The angle between two intersecting planes is defined to be the (acute) angle determined by
their normal vectors (Figure 12.42).

EXAMPLE 12 Find the angle between the planes and

Solution The vectors

are normals to the planes. The angle between them is

About 79 deg L 1.38 radians.

 = cos-1 a 4
21
b

 u = cos-1 a n1
# n2

ƒ n1 ƒ ƒ n2 ƒ

b

n1 = 3i - 6j - 2k,  n2 = 2i + j - 2k

2x + y - 2z = 5.
3x - 6y - 2z = 15

 = ` 37 -
4
7 +

18
7 ` =

17
7 .

 = ` si - 2j + 3kd # a37 i +
2
7 j +

6
7 kb `

length of projn PS
1 d = ` PS

1 # n
ƒ n ƒ

`

 ƒ n ƒ = 2s3d2
+ s2d2

+ s6d2
= 249 = 7.

 = i - 2j + 3k,

 PS
1

= s1 - 0di + s1 - 3dj + s3 - 0dk

�

n2
n1

�

FIGURE 12.42 The angle between two
planes is obtained from the angle between
their normals.
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12.5 Lines and Planes in Space 887

EXERCISES 12.5

Lines and Line Segments
Find parametric equations for the lines in Exercises 1–12.

1. The line through the point parallel to the vector

2. The line through and 

3. The line through and 

4. The line through P(1, 2, 0) and Qs1, 1, -1d
Qs3, 5, -2dPs -2, 0, 3d
Qs -1, 0, 1dPs1, 2, -1d

i + j + k
Ps3, -4, -1d

5. The line through the origin parallel to the vector 

6. The line through the point parallel to the line

7. The line through (1, 1, 1) parallel to the z-axis

8. The line through (2, 4, 5) perpendicular to the plane

9. The line through perpendicular to the plane
x + 2y + 2z = 13

s0, -7, 0d
3x + 7y - 5z = 21

x = 1 + 2t, y = 2 - t, z = 3t
s3, -2, 1d

2j + k
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10. The line through (2, 3, 0) perpendicular to the vectors 
and 

11. The x-axis 12. The z-axis

Find parametrizations for the line segments joining the points in Exer-
cises 13–20. Draw coordinate axes and sketch each segment, indicat-
ing the direction of increasing t for your parametrization.

13. (0, 0, 0), (1, 1, 3 2) 14. (0, 0, 0), (1, 0, 0)

15. (1, 0, 0), (1, 1, 0) 16. (1, 1, 0), (1, 1, 1)

17. 18. (0, 2, 0), (3, 0, 0)

19. (2, 0, 2), (0, 2, 0) 20.

Planes
Find equations for the planes in Exercises 21–26.

21. The plane through normal to 

22. The plane through parallel to the plane

23. The plane through and 

24. The plane through (2, 4, 5), (1, 5, 7), and 

25. The plane through perpendicular to the line

26. The plane through perpendicular to the vector from
the origin to A

27. Find the point of intersection of the lines 
and 

and then find the plane determined by these lines.

28. Find the point of intersection of the lines 
and 

and then find the plane determined by these lines.

In Exercises 29 and 30, find the plane determined by the intersecting
lines.

29.

30.

31. Find a plane through and perpendicular to the line of
intersection of the planes 

32. Find a plane through the points and per-
pendicular to the plane 

Distances
In Exercises 33–38, find the distance from the point to the line.

33.

34.

35. s2, 1, 3d;  x = 2 + 2t,  y = 1 + 6t,  z = 3

s0, 0, 0d;  x = 5 + 3t,  y = 5 + 4t,  z = -3 - 5t

s0, 0, 12d;  x = 4t,  y = -2t,  z = 2t

4x - y + 2z = 7.
P1s1, 2, 3d, P2s3, 2, 1d

2x + y - z = 3, x + 2y + z = 2.
P0s2, 1, -1d

 L2:   x = 1 + s,  y = 4 + s,  z = -1 + s;  - q 6 s 6 q

 L1:  x = t,  y = 3 - 3t,  z = -2 - t;  - q 6 t 6 q

 L2:  x = 1 - 4s,  y = 1 + 2s,  z = 2 - 2s;  - q 6 s 6 q

 L1: x = -1 + t,  y = 2 + t,  z = 1 - t;  - q 6 t 6 q

x = 2s + 2, y = s + 3, z = 5s + 6,- t + 2, z = t + 1,
x = t, y =

-4s - 1,
x = s + 2, y = 2s + 4, z = y = 3t + 2, z = 4t + 3,

x = 2t + 1, 

As1, -2, 1d

x = 5 + t,  y = 1 + 3t,  z = 4t

P0s2, 4, 5d
s -1, 6, 8d

s0, -2, 1ds1, 1, -1d, s2, 0, 2d ,

3x + y + z = 7

s1, -1, 3d
n = 3i - 2j - kP0s0, 2, -1d

s1, 0, -1d, s0, 3, 0d
s0, 1, 1d, s0, -1, 1d

>

v = 3i + 4j + 5k2j + 3k
u = i + 36.

37.

38.

In Exercises 39–44, find the distance from the point to the plane.

39.

40.

41.

42.

43.

44.

45. Find the distance from the plane to the plane

46. Find the distance from the line 
to the plane 

Angles
Find the angles between the planes in Exercises 47 and 48.

47.

48.

Use a calculator to find the acute angles between the planes in Exer-
cises 49–52 to the nearest hundredth of a radian.

49.

50.

51.

52.

Intersecting Lines and Planes
In Exercises 53–56, find the point in which the line meets the plane.

53.

54.

55.

56.

Find parametrizations for the lines in which the planes in Exercises 57–60
intersect.

57.

58.

59.

60.

Given two lines in space, either they are parallel, or they intersect, or
they are skew (imagine, for example, the flight paths of two planes in
the sky). Exercises 61 and 62 each give three lines. In each exercise,
determine whether the lines, taken two at a time, are parallel, intersect,
or are skew. If they intersect, find the point of intersection.

5x - 2y = 11,  4y - 5z = -17

x - 2y + 4z = 2,  x + y - 2z = 5

3x - 6y - 2z = 3,  2x + y - 2z = 2

x + y + z = 1,  x + y = 2

x = -1 + 3t,  y = -2,  z = 5t;  2x - 3z = 7

x = 1 + 2t,  y = 1 + 5t,  z = 3t;  x + y + z = 2

x = 2,  y = 3 + 2t,  z = -2 - 2t;  6x + 3y - 4z = -12

x = 1 - t,  y = 3t,  z = 1 + t;  2x - y + 3z = 6

4y + 3z = -12,  3x + 2y + 6z = 6

2x + 2y - z = 3,  x + 2y + z = 2

x + y + z = 1,  z = 0 sthe xy-planed
2x + 2y + 2z = 3,  2x - 2y - z = 5

5x + y - z = 10,  x - 2y + 3z = -1

x + y = 1,  2x + y - 2z = 2

x + 2y + 6z = 10.z = -s1>2d - s1>2dt
x = 2 + t, y = 1 + t, 

x + 2y + 6z = 10.
x + 2y + 6z = 1

s1, 0, -1d,  -4x + y + z = 4

s0, -1, 0d,  2x + y + 2z = 4

s2, 2, 3d,  2x + y + 2z = 4

s0, 1, 1d,  4y + 3z = -12

s0, 0, 0d,  3x + 2y + 6z = 6

s2, -3, 4d,  x + 2y + 2z = 13

s -1, 4, 3d;  x = 10 + 4t,  y = -3,  z = 4t

s3, -1, 4d;  x = 4 - t,  y = 3 + 2t,  z = -5 + 3t

s2, 1, -1d;  x = 2t,  y = 1 + 2t,  z = 2t
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12.5 Lines and Planes in Space 889

61.

62.

Theory and Examples
63. Use Equations (3) to generate a parametrization of the line

through parallel to Then generate
another parametrization of the line using the point 
and the vector 

64. Use the component form to generate an equation for the plane
through normal to Then generate
another equation for the same plane using the point 
and the normal vector 

65. Find the points in which the line 
meets the coordinate planes. Describe the reasoning be-

hind your answer.

66. Find equations for the line in the plane that makes an angle
of rad with i and an angle of rad with j. Describe the rea-
soning behind your answer.

67. Is the line parallel to the plane
Give reasons for your answer.

68. How can you tell when two planes and
are parallel? Perpendicular? Give rea-

sons for your answer.

69. Find two different planes whose intersection is the line
Write equations for each

plane in the form 

70. Find a plane through the origin that meets the plane 
in a right angle. How do you know that your plane

is perpendicular to M?

71. For any nonzero numbers a, b, and c, the graph of 
is a plane. Which planes have an equation of

this form?
s y>bd + sz>cd = 1

sx>ad +

3y + z = 12
M: 2x +

Ax + By + Cz = D .
x = 1 + t, y = 2 - t, z = 3 + 2t .

A2 x + B2 y + C2 z = D2

A1 x + B1 y + C1 z = D1

2x + y - z = 8?
x = 1 - 2t, y = 2 + 5t, z = -3t

p>3p>6 z = 3

z = 3t
x = 1 + 2t, y = -1 - t, 

n2 = -22i + 222j - 22k .
P2s3, -2, 0d

n1 = i - 2j + k .P1s4, 1, 5d

v2 = - i + s1>2dj - s3>2dk .
P2s -2, -2, 1d

v1 = 2i - j + 3k .Ps2, -4, 7d

 L3:  x = 5 + 2r, y = 1 - r, z = 8 + 3r;  - q 6 r 6 q

 L2:  x = 2 - s,  y = 3s,  z = 1 + s;  - q 6 s 6 q

 L1:  x = 1 + 2t,  y = -1 - t,  z = 3t;  - q 6 t 6 q

 L3:  x = 3 + 2r,  y = 2 + r,  z = -2 + 2r;  - q 6 r 6 q

 L2:  x = 1 + 4s,  y = 1 + 2s,  z = -3 + 4s;  - q 6 s 6 q

 L1:  x = 3 + 2t,  y = -1 + 4t,  z = 2 - t;  - q 6 t 6 q 72. Suppose and are disjoint (nonintersecting) nonparallel lines.
Is it possible for a nonzero vector to be perpendicular to both 
and Give reasons for your answer.

Computer Graphics
73. Perspective in computer graphics In computer graphics and

perspective drawing, we need to represent objects seen by the eye
in space as images on a two-dimensional plane. Suppose that the
eye is at as shown here and that we want to represent a
point as a point on the yz-plane. We do this by pro-
jecting onto the plane with a ray from E. The point will be
portrayed as the point P(0, y, z). The problem for us as graphics
designers is to find y and z given E and 

a. Write a vector equation that holds between and Use
the equation to express y and z in terms of and 

b. Test the formulas obtained for y and z in part (a) by
investigating their behavior at and and by
seeing what happens as What do you find? 

74. Hidden lines Here is another typical problem in computer graph-
ics. Your eye is at (4, 0, 0). You are looking at a triangular plate
whose vertices are at (1, 0, 1), (1, 1, 0), and The line
segment from (1, 0, 0) to (0, 2, 2) passes through the plate. What
portion of the line segment is hidden from your view by the plate?
(This is an exercise in finding intersections of lines and planes.)

s -2, 2, 2d .

0 y

z

x

P(0, y, z)

P1(x1, y1, z1)

E(x0, 0, 0)

(x1, y1, 0)

x0 : q .
x1 = x0x1 = 0

z1 .x0, x1, y1 ,
EP
1

1 .EP
1

P1 .

P1P1

P1sx1, y1, z1d
Esx0, 0, 0d

L2 ?
L1

L2L1
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12.5 Lines and Planes in Space 889

Cylinders and Quadric Surfaces

Up to now, we have studied two special types of surfaces: spheres and planes. In this sec-
tion, we extend our inventory to include a variety of cylinders and quadric surfaces.
Quadric surfaces are surfaces defined by second-degree equations in x, y, and z. Spheres
are quadric surfaces, but there are others of equal interest.

Cylinders

A cylinder is a surface that is generated by moving a straight line along a given planar
curve while holding the line parallel to a given fixed line. The curve is called a generating
curve for the cylinder (Figure 12.43). In solid geometry, where cylinder means circular

12.6
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890 Chapter 12: Vectors and the Geometry of Space

cylinder, the generating curves are circles, but now we allow generating curves of any
kind. The cylinder in our first example is generated by a parabola.

When graphing a cylinder or other surface by hand or analyzing one generated by a
computer, it helps to look at the curves formed by intersecting the surface with planes par-
allel to the coordinate planes. These curves are called cross-sections or traces.

EXAMPLE 1 The Parabolic Cylinder 

Find an equation for the cylinder made by the lines parallel to the z-axis that pass through
the parabola (Figure 12.44).y = x2, z = 0

y = x2

y

z

x
Lines through
generating curve
parallel to x-axis

Generating curve
(in the yz-plane)

FIGURE 12.43 A cylinder and generating
curve.

x

z

y

Generating curve
y � x2, z � 0

FIGURE 12.44 The cylinder of lines
passing through the parabola in the
xy-plane parallel to the z-axis (Example 1).

y = x2

Solution Suppose that the point lies on the parabola in the xy-
plane. Then, for any value of z, the point will lie on the cylinder because it
lies on the line through parallel to the z-axis. Conversely, any point

whose y-coordinate is the square of its x-coordinate lies on the cylinder be-
cause it lies on the line through parallel to the z-axis (Figure 12.45).

Regardless of the value of z, therefore, the points on the surface are the points whose
coordinates satisfy the equation This makes an equation for the cylinder.
Because of this, we call the cylinder “the cylinder ”

As Example 1 suggests, any curve in the xy-plane defines a cylinder par-
allel to the z-axis whose equation is also The equation defines
the circular cylinder made by the lines parallel to the z-axis that pass through the circle

in the xy-plane. The equation defines the elliptical cylinder
made by the lines parallel to the z-axis that pass through the ellipse in the
xy-plane.

In a similar way, any curve in the xz-plane defines a cylinder parallel to
the y-axis whose space equation is also (Figure 12.46). Any curve hs y, zd = cg sx, zd = c

g sx, zd = c

x2
+ 4y2

= 9
x2

+ 4y2
= 9x2

+ y2
= 1

x2
+ y2

= 1ƒsx, yd = c .
ƒsx, yd = c

y = x2 .
y = x2y = x2 .

P0x = x0 , y = x0
2

Qsx0 , x0
2, zd

P0x = x0 , y = x0
2

Qsx0 , x0
2, zd

y = x2P0sx0 , x0
2, 0d

x

z

y

PA
RABOLA

0

y � x2

P0(x0, x0
2, 0)

Q0(x0, x0
2, z)

FIGURE 12.45 Every point of the
cylinder in Figure 12.44 has coordinates of
the form We call it “the
cylinder ”y = x2 .

sx0 , x0
2, zd .
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12.6 Cylinders and Quadric Surfaces 891

defines a cylinder parallel to the x-axis whose space equation is also (Figure
12.47). The axis of a cylinder need not be parallel to a coordinate axis, however.

hs y, zd = c

z

y

x

H
Y

PE
R

B
O

L
A

H
Y

B
ER

B
O

L
A

1

y

x

z

–1 1

Cross sections
perpendicular to x-axis

The generating hyperbola:
y2 � z2 � 1

y2 � z2 � 1

–1

FIGURE 12.47 The hyperbolic cylinder is made of lines parallel to the x-axis
and passing through the hyperbola in the yz-plane. The cross-sections of the
cylinder in planes perpendicular to the x-axis are hyperbolas congruent to the generating
hyperbola.

y2
- z2

= 1
y2

- z2
= 1

Quadric Surfaces

The next type of surface we examine is a quadric surface. These surfaces are the three-
dimensional analogues of ellipses, parabolas, and hyperbolas.

A quadric surface is the graph in space of a second-degree equation in x, y, and z.
The most general form is

where A, B, C, and so on are constants. However, this equation can be simplified by trans-
lation and rotation, as in the two-dimensional case. We will study only the simpler equa-
tions. Although defined differently, the cylinders in Figures 12.45 through 12.47 were also
examples of quadric surfaces. The basic quadric surfaces are ellipsoids, paraboloids, el-
liptical cones, and hyperboloids. (We think of spheres as special ellipsoids.) We now
present examples of each type.

EXAMPLE 2 Ellipsoids

The ellipsoid

(1)

(Figure 12.48) cuts the coordinate axes at and It lies
within the rectangular box defined by the inequalities and 
The surface is symmetric with respect to each of the coordinate planes because each vari-
able in the defining equation is squared.

ƒ z ƒ … c .ƒ x ƒ … a, ƒ y ƒ … b ,
s0, 0, ;  cd .s0, ;  b, 0d ,s ; a, 0, 0d ,

x2

a2 +

y2

b2 +
z2

c2 = 1

Ax2
+ By2

+ Cz2
+ Dxy + Eyz + Fxz + Gx + Hy + Jz + K = 0,

z

1

2

x

y

z

y

E
L

L
IP

SE –2

Generating ellipse:
x2 � 4z2 � 4

Elliptical trace
(cross-section)

–1

x2 � 4z2 � 4

x

FIGURE 12.46 The elliptical cylinder
is made of lines parallel to

the y-axis and passing through the ellipse
in the xz-plane. The cross-

sections or “traces” of the cylinder in
planes perpendicular to the y-axis are
ellipses congruent to the generating
ellipse. The cylinder extends along the
entire y-axis.

x2
+ 4z2

= 4

x2
+ 4z2

= 4
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The curves in which the three coordinate planes cut the surface are ellipses. For example,

The section cut from the surface by the plane is the ellipse

If any two of the semiaxes a, b, and c are equal, the surface is an ellipsoid of revolu-
tion. If all three are equal, the surface is a sphere.

EXAMPLE 3 Paraboloids

The elliptical paraboloid

(2)

is symmetric with respect to the planes and (Figure 12.49). The only inter-
cept on the axes is the origin. Except for this point, the surface lies above (if ) or en-
tirely below (if ) the xy-plane, depending on the sign of c. The sections cut by the
coordinate planes are

 z = 0: the point s0, 0, 0d .

 y = 0: the parabola z =

c
a2 x2

 x = 0: the parabola z =

c
b2 y2

c 6 0
c 7 0

y = 0x = 0

x2

a2 +

y2

b2 =
z
c

x2

a2s1 - sz0>cd2d
+

y2

b2s1 - sz0>cd2d
= 1.

z = z0 , ƒ z0 ƒ 6 c ,

x2

a2 +

y2

b2 = 1 when z = 0.
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y

x

z

E
L

L
IP

S
E

c

z0

a

b y

x

z

E
L

L
IP

S
E

ELLIPSE

Elliptical cross-section
      in the plane z � z0

The ellipse       �      � 1

in the xy-plane

x2

a2

y2

b2

The ellipse       �      � 1

in the yz-plane

y2

b2
z2

c2

The ellipse

in the xz-plane

x2

a2
z2

c2�       � 1

FIGURE 12.48 The ellipsoid

in Example 2 has elliptical cross-sections in each of the three coordinate planes.

x2

a2 +

y2

b2 +

z2

c2 = 1
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12.6 Cylinders and Quadric Surfaces 893

Each plane above the xy-plane cuts the surface in the ellipse

EXAMPLE 4 Cones

The elliptical cone

(3)

is symmetric with respect to the three coordinate planes (Figure 12.50). The sections cut

x2

a2 +

y2

b2 =
z2

c2

x2

a2 +

y2

b2 =

z0
c .

z = z0

ba

z

x

y

P
A

R
A

B
O

L
A

ELLIPSE

The parabola z �     x2

in the xz-plane

c
a2

z � c

The ellipse       �      � 1

in the plane z � c

x2

a2

y2

b2

The parabola z �     y2

in the yz-plane

c
b2

z

y

x

FIGURE 12.49 The elliptical paraboloid in Example 3, shown for
The cross-sections perpendicular to the z-axis above the xy-plane are ellipses. The

cross-sections in the planes that contain the z-axis are parabolas.
c 7 0.

sx2>a2d + s y2>b2d = z>c

ELLIPSE

a b

x

y

z

z � c

The line z � –   y

in the yz-plane

c
b

The line z �    x

in the xz-plane

c
a

The ellipse      �      � 1

in the plane z � c

x2

a2

y2

b2

ELLIPSE

z

y

x

FIGURE 12.50 The elliptical cone 
in Example 4. Planes perpendicular to the z-axis cut the cone in
ellipses above and below the xy-plane. Vertical planes that contain
the z-axis cut it in pairs of intersecting lines.

sx2>a2d + sy2>b2d = sz2>c2d
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by the coordinate planes are

The sections cut by planes above and below the xy-plane are ellipses whose centers
lie on the z-axis and whose vertices lie on the lines given above.

If the cone is a right circular cone.

EXAMPLE 5 Hyperboloids

The hyperboloid of one sheet

(4)

is symmetric with respect to each of the three coordinate planes (Figure 12.51).

x2

a2 +

y2

b2 -
z2

c2 = 1

a = b ,

z = z0

 z = 0: the point s0, 0, 0d .

 y = 0: the lines z = ;  
c
a x

 x = 0: the lines z = ;  
c
b

 y
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H
Y

P
E

R
B

O
L

A

ELLIPSE

ELLIPSE

ELLIPSE

a

b

z

y

x

z � c

Part of the hyperbola        �      � 1 in the xz-planex2

a2
z2

c2

The ellipse      �      � 2

in the plane z � c

x2

a2

y2

b2

The ellipse      �      � 1

in the xy-plane

x2

a2

y2

b2

Part of the hyperbola        �      � 1

in the yz-plane

y2

b2
z2

c2

a�2

b�2

H
Y

P
E

R
B

O
L

A

z

y

x

FIGURE 12.51 The hyperboloid in Example 5.
Planes perpendicular to the z-axis cut it in ellipses. Vertical planes containing the z-axis
cut it in hyperbolas.

sx2>a2d + sy2>b2d - sz2>c2d = 1

The sections cut out by the coordinate planes are

 z = 0: the ellipse 
x2

a2 +

y2

b2 = 1.

 y = 0: the hyperbola 
x2

a2 -
z2

c2 = 1

 x = 0: the hyperbola 
y2

b2 -
z2

c2 = 1
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12.6 Cylinders and Quadric Surfaces 895

The plane cuts the surface in an ellipse with center on the z-axis and vertices on
one of the hyperbolic sections above.

The surface is connected, meaning that it is possible to travel from one point on it to
any other without leaving the surface. For this reason, it is said to have one sheet, in con-
trast to the hyperboloid in the next example, which has two sheets.

If the hyperboloid is a surface of revolution.

EXAMPLE 6 Hyperboloids

The hyperboloid of two sheets

(5)

is symmetric with respect to the three coordinate planes (Figure 12.52). The plane 
does not intersect the surface; in fact, for a horizontal plane to intersect the surface, we
must have The hyperbolic sections

have their vertices and foci on the z-axis. The surface is separated into two portions, one
above the plane and the other below the plane This accounts for its name.z = -c .z = c

 y = 0: z2

c2 -

x2

a2 = 1

 x = 0: z2

c2 -

y2

b2 = 1

ƒ z ƒ Ú c .

z = 0

z2

c2 -

x2

a2 -

y2

b2 = 1

a = b ,

z = z0

HY
PER

B
O

L
A

z

ELLIPSE

a b

0

y

x

H
Y

P
E

R
B

O
L

A

ELLIPSE

The ellipse      �      � 1

in the plane z � c�2

x2

a2

y2

b2

The hyperbola

      �      � 1

in the xz-plane

z2

c2
x2

a2

The hyperbola

      �      � 1

in the yz-plane

z2

c2

y2

b2

(0, 0, c)
Vertex

(0, 0, –c)
Vertex

H
Y

PERBOLA

z

y

x

FIGURE 12.52 The hyperboloid in Example 6.
Planes perpendicular to the z-axis above and below the vertices cut it in ellipses. Vertical
planes containing the z-axis cut it in hyperbolas.

sz2>c2d - sx2>a2d - sy2>b2d = 1
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Equations (4) and (5) have different numbers of negative terms. The number in each
case is the same as the number of sheets of the hyperboloid. If we replace the 1 on the right
side of either Equation (4) or Equation (5) by 0, we obtain the equation

for an elliptical cone (Equation 3). The hyperboloids are asymptotic to this cone
(Figure 12.53) in the same way that the hyperbolas

are asymptotic to the lines

in the xy-plane.

EXAMPLE 7 A Saddle Point

The hyperbolic paraboloid

(6)

has symmetry with respect to the planes and (Figure 12.54). The sections in
these planes are

(7)

(8) y = 0: the parabola z = -

c
a2 x2 .

 x = 0: the parabola z =

c
b2 y2 .

y = 0x = 0

y2

b2 -

x2

a2 =
z
c,  c 7 0

x2

a2 -

y2

b2 = 0

x2

a2 -

y2

b2 = ;1

x2

a2 +

y2

b2 =
z2

c2
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y

z

x y

z

x

The parabola z �     y2 in the yz-planec
b2

The parabola z � –     x2 

in the xz-plane

c
a2

Part of the hyperbola       �      � 1

in the plane z � c

y2

b2
x2

a2

Part of the hyperbola       �      � 1

in the plane z � –c

y2

b2
x2

a2

Saddle
point

HYPERBOLA

PARA B O LA

P
A

R
A

B
O

LA

FIGURE 12.54 The hyperbolic paraboloid The cross-sections in planes perpendicular to the
z-axis above and below the xy-plane are hyperbolas. The cross-sections in planes perpendicular to the other axes are parabolas.

sy2>b2d - sx2>a2d = z>c, c 7 0.

y

x

0

z

FIGURE 12.53 Both hyperboloids are
asymptotic to the cone (Example 6).
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12.6 Cylinders and Quadric Surfaces 897

In the plane the parabola opens upward from the origin. The parabola in the plane
opens downward.

If we cut the surface by a plane the section is a hyperbola,

with its focal axis parallel to the y-axis and its vertices on the parabola in Equation (7). If
is negative, the focal axis is parallel to the x-axis and the vertices lie on the parabola in

Equation (8).
Near the origin, the surface is shaped like a saddle or mountain pass. To a person trav-

eling along the surface in the yz-plane the origin looks like a minimum. To a person travel-
ing in the xz-plane the origin looks like a maximum. Such a point is called a saddle point
of a surface.

z0

y2

b2 -

x2

a2 =

z0
c ,

z = z0 7 0,
y = 0

x = 0,

USING TECHNOLOGY Visualizing in Space

A CAS or other graphing utility can help in visualizing surfaces in space. It can draw
traces in different planes, and many computer graphing systems can rotate a figure so
you can see it as if it were a physical model you could turn in your hand. Hidden-line al-
gorithms (see Exercise 74, Section 12.5) are used to block out portions of the surface that
you would not see from your current viewing angle. A system may require surfaces to be
entered in parametric form, as discussed in Section 16.6 (see also CAS Exercises 57
through 60 in Section 14.1). Sometimes you may have to manipulate the grid mesh to see
all portions of a surface.
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12.6 Cylinders and Quadric Surfaces 897

EXERCISES 12.6

Matching Equations with Surfaces
In Exercises 1–12, match the equation with the surface it defines.
Also, identify each surface by type (paraboloid, ellipsoid, etc.) The
surfaces are labeled (a)–(1).

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

a. b. z

y
x

z

y
x

9x2
+ 4y2

+ 2z2
= 36x2

+ 4z2
= y2

z = -4x2
- y2x = z2

- y2

z2
+ x2

- y2
= 1x2

+ 2z2
= 8

x = -y2
- z2x = y2

- z2

y2
+ z2

= x29y2
+ z2

= 16

z2
+ 4y2

- 4x2
= 4x2

+ y2
+ 4z2

= 10

c. d.

e. f. z

yx

z

y
x

z

yx

z

yx
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g. h.

i. j.

k. l.

Drawing
Sketch the surfaces in Exercises 13–76.

CYLINDERS

13. 14.

15. 16.

17. 18.

19. 20.

ELLIPSOIDS

21. 22.

23. 24.

PARABOLOIDS

25. 26.

27. 28.

29. 30.

CONES

31. 32.

33. 34.

HYPERBOLOIDS

35. 36. y2
+ z2

- x2
= 1x2

+ y2
- z2

= 1

9x2
+ 4y2

= 36z24x2
+ 9z2

= 9y2

y2
+ z2

= x2x2
+ y2

= z2

y = 1 - x2
- z2x = 4 - 4y2

- z2

z = 18 - x2
- 9y2z = 8 - x2

- y2

z = x2
+ 9y2z = x2

+ 4y2

9x2
+ 4y2

+ 36z2
= 364x2

+ 9y2
+ 4z2

= 36

4x2
+ 4y2

+ z2
= 169x2

+ y2
+ z2

= 9

yz = 1z2
- y2

= 1

4x2
+ y2

= 36x2
+ 4z2

= 16

x = y2z = y2
- 1

x2
+ z2

= 4x2
+ y2

= 4

z

y
x

z

x y

z

yx

z

y
x

z

yx

z

y
x

37.

38.

39. 40.

41. 42.

HYPERBOLIC PARABOLOIDS

43. 44.

ASSORTED

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

Theory and Examples
77. a. Express the area A of the cross-section cut from the ellipsoid

by the plane as a function of c. (The area of an ellipse
with semiaxes a and b is )

b. Use slices perpendicular to the z-axis to find the volume of
the ellipsoid in part (a).

c. Now find the volume of the ellipsoid

Does your formula give the volume of a sphere of radius a if

78. The barrel shown here is shaped like an ellipsoid with equal
pieces cut from the ends by planes perpendicular to the z-axis.
The cross-sections perpendicular to the z-axis are circular. The

a = b = c?

x2

a2 +

y2

b2 +

z2

c2 = 1.

pab .
z = c

x2
+

y2

4
+

z2

9
= 1

4z2
- x2

- y2
= 49x2

+ 16y2
= 4z2

36x2
+ 9y2

+ 4z2
= 36yz = 1

sx2>4d + y2
- z2

= 1x2
+ y2

= z

z = 1 - x24y2
+ z2

- 4x2
= 4

z = 4x2
+ y2

- 4x2
- 4y2

= 1

y2
- x2

- z2
= 1z = -sx2

+ y2d
z2

+ 4y2
= 9x2

+ y2
- 16z2

= 16

4x2
+ 9z2

= y29x2
+ 4y2

+ z2
= 36

z = x2
- y2

- 116y2
+ 9z2

= 4x2

4x2
+ 4y2

+ z2
= 4x2

+ z2
= 1

z2
- sx2>4d - y2

= 1x2
+ z2

= y

x = 4 - y2x2
+ y2

- z2
= 4

z = x2
+ y2

+ 116x2
+ 4y2

= 1

z2
- 4x2

- 4y2
= 4y = -sx2

+ z2d
y2

- z2
= 4z = 1 + y2

- x2

4x2
+ 4y2

= z2x2
+ y2

+ z2
= 4

x2
- y2

= zy2
- x2

= z

sx2>4d - y2
- sz2>4d = 1x2

- y2
- sz2>4d = 1

sy2>4d - sx2>4d - z2
= 1z2

- x2
- y2

= 1

sx2>4d + sy2>4d - sz2>9d = 1

sy2>4d + sz2>9d - sx2>4d = 1
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12.6 Cylinders and Quadric Surfaces 899

barrel is 2h units high, its midsection radius is R, and its end radii
are both r. Find a formula for the barrel’s volume. Then check two
things. First, suppose the sides of the barrel are straightened to
turn the barrel into a cylinder of radius R and height 2h. Does
your formula give the cylinder’s volume? Second, suppose 
and so the barrel is a sphere. Does your formula give the
sphere’s volume? 

79. Show that the volume of the segment cut from the paraboloid

by the plane equals half the segment’s base times its alti-
tude. (Figure 12.49 shows the segment for the special case )

80. a. Find the volume of the solid bounded by the hyperboloid

and the planes and 

b. Express your answer in part (a) in terms of h and the areas 
and of the regions cut by the hyperboloid from the planes

and 

c. Show that the volume in part (a) is also given by the formula

where is the area of the region cut by the hyperboloid
from the plane 

81. If the hyperbolic paraboloid is cut by
the plane the resulting curve is a parabola. Find its vertex
and focus.

y = y1 ,
sy2>b2d - sx2>a2d = z>c

z = h>2.
Am

V =

h
6

 sA0 + 4Am + Ahd ,

z = h .z = 0
Ah

A0

z = h, h 7 0.z = 0

x2

a2 +

y2

b2 -

z2

c2 = 1

h = c .
z = h

x2

a2 +

y2

b2 =

z
c

z

y

h r

–h

R

x r

h = R
r = 0

82. Suppose you set in the equation

to obtain a curve in the xy-plane. What will the curve be like?
Give reasons for your answer.

83. Every time we found the trace of a quadric surface in a plane par-
allel to one of the coordinate planes, it turned out to be a conic
section. Was this mere coincidence? Did it have to happen? Give
reasons for your answer.

84. Suppose you intersect a quadric surface with a plane that is not
parallel to one of the coordinate planes. What will the trace in the
plane be like? Give reasons for your answer.

Computer Grapher Explorations
Plot the surfaces in Exercises 85–88 over the indicated domains. If
you can, rotate the surface into different viewing positions.

85.

86.

87.

88.

a.

b.

c.

d.

COMPUTER EXPLORATIONS

Surface Plots
Use a CAS to plot the surfaces in Exercises 89–94. Identify the type of
quadric surface from your graph.

89. 90.

91. 92.

93. 94. y - 24 - z2
= 0

x2

9
- 1 =

y2

16
+

z2

2

y2

16
= 1 -

x2

9
+ z5x2

= z2
- 3y2

x2

9
-

z2

9
= 1 -

y2

16
x2

9
+

y2

36
= 1 -

z2

25

-2 … x … 2, -1 … y … 1

-2 … x … 2, -2 … y … 2

-1 … x … 1, -2 … y … 3

-3 … x … 3, -3 … y … 3

z = x2
+ 2y2 over

z = x2
+ y2, -3 … x … 3, -3 … y … 3

z = 1 - y2, -2 … x … 2, -2 … y … 2

z = y2, -2 … x … 2, -0.5 … y … 2

Fxz + Gx + Hy + Jz + K = 0
Ax2

+ By2
+ Cz2

+ Dxy + Eyz +

z = 0

T
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902 Chapter 12: Vectors and the Geometry of Space

Chapter 12 Additional and Advanced Exercises

1. Submarine hunting Two surface ships on maneuvers are trying
to determine a submarine’s course and speed to prepare for an air-
craft intercept. As shown here, ship A is located at (4, 0, 0),
whereas ship B is located at (0, 5, 0). All coordinates are given in
thousands of feet. Ship A locates the submarine in the direction of
the vector and ship B locates it in the direction
of the vector Four minutes ago, the submarine was
located at The aircraft is due in 20 min. Assuming
that the submarine moves in a straight line at a constant speed, to
what position should the surface ships direct the aircraft? 

z

y
x

(4, 0, 0)

Submarine

(0, 5, 0)
Ship A

Ship B

NOT TO SCALE

s2, -1, -1>3d .
18i - 6j - k.

2i + 3j - s1>3dk,

2. A helicopter rescue Two helicopters, and are traveling
together. At time they separate and follow different
straight-line paths given by

Time t is measured in hours and all coordinates are measured in
miles. Due to system malfunctions, stops its flight at (446, 13,
1) and, in a negligible amount of time, lands at (446, 13, 0). Two
hours later, is advised of this fact and heads toward at
150 mph. How long will it take to reach 

3. Torque The operator’s manual for the Toro® 21 in. lawnmower
says “tighten the spark plug to ” If you are
installing the plug with a 10.5-in. socket wrench that places the
center of your hand 9 in. from the axis of the spark plug, about
how hard should you pull? Answer in pounds. 

9 in.

15 ft-lb s20.4 N # md .

H2 ?H1

H2H1

H2

 H2: x = 6 + 110t,  y = -3 + 4t,  z = -3 + t .

 H1: x = 6 + 40t,  y = -3 + 10t,  z = -3 + 2t

t = 0,
H2 ,H1
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Chapter 12 Additional and Advanced Exercises 903

4. Rotating body The line through the origin and the point 
A(1, 1, 1) is the axis of rotation of a right body rotating with a
constant angular speed of 3 2 rad sec. The rotation appears to be
clockwise when we look toward the origin from A. Find the veloc-
ity v of the point of the body that is at the position B(1, 3, 2). 

5. Determinants and planes
a. Show that

is an equation for the plane through the three noncollinear
points and 

b. What set of points in space is described by the equation

6. Determinants and lines Show that the lines

and

intersect or are parallel if and only if

7. Parallelogram The accompanying figure shows parallelogram
ABCD and the midpoint P of diagonal BD.

a. Express in terms of and 

b. Express in terms of and 

c. Prove that P is also the midpoint of diagonal AC. 

B

A

C

D

P

AD
1

.AB
1

AP
1

AD
1

.AB
1

BD
1

3 a1 c1 b1 - d1

a2 c2 b2 - d2

a3 c3 b3 - d3

3 = 0.

x = c1 t + d1, y = c2 t + d2, z = c3 t + d3, - q 6 t 6 q ,

x = a1 s + b1, y = a2 s + b2, z = a3 s + b3, - q 6 s 6 q ,

4 x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

4 = 0?

P3sx3, y3, z3d .P1sx1, y1, z1d, P2sx2, y2, z2d ,

3 x1 - x y1 - y z1 - z

x2 - x y2 - y z2 - z

x3 - x y3 - y z3 - z

3 = 0

y

z

O

x

1

1

3
v

B(1, 3, 2)A(1, 1, 1)

>>
8. In the figure here, D is the midpoint of side AB of triangle ABC,

and E is one-third of the way between C and B. Use vectors to
prove that F is the midpoint of line segment CD. 

9. Use vectors to show that the distance from to the line
is

10. a. Use vectors to show that the distance from to the
plane is

b. Find an equation for the sphere that is tangent to the planes
and if the planes 

and pass through the center of the sphere.

11. a. Show that the distance between the parallel planes
and is

b. Find the distance between the planes and

c. Find an equation for the plane parallel to the plane
if the point is equidistant from

the two planes.

d. Write equations for the planes that lie parallel to and 5 units
away from the plane 

12. Prove that four points A, B, C, and D are coplanar (lie in a com-
mon plane) if and only if 

13. The projection of a vector on a plane Let P be a plane in
space and let v be a vector. The vector projection of v onto the
plane P, can be defined informally as follows. Suppose
the sun is shining so that its rays are normal to the plane P. Then

is the “shadow” of v onto P. If P is the plane
and find 

14. The accompanying figure shows nonzero vectors v, w, and z,
with z orthogonal to the line L, and v and w making equal angles

with L. Assuming find w in terms of v and z.

v w

z

L
��

ƒ v ƒ = ƒ w ƒ ,b

projP v.v = i + j + k,x + 2y + 6z = 6
projP v

projP v,

AD
1 # sAB

1
* BC

1 d = 0.

x - 2y + z = 3.

s3, 2, -1d2x - y + 2z = -4

2x + 3y - z = 12.
2x + 3y - z = 6

d =

ƒ D1 - D2 ƒ

ƒ Ai + Bj + Ck ƒ

.

Ax + By + Cz = D2Ax + By + Cz = D1

3x - z = 0
2x - y = 0x + y + z = 9x + y + z = 3

d =

ƒ Ax1 + By1 + Cz1 - D ƒ2A2
+ B2

+ C2
.

Ax + By + Cz = D
P1sx1, y1, z1d

d =

ƒ ax1 + by1 - c ƒ2a2
+ b2

.

ax + by = c
P1sx1, y1d

C

A B

E

F

D
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15. Triple vector products The triple vector products
and are usually not equal, although the formulas
for evaluating them from components are similar:

Verify each formula for the following vectors by evaluating its
two sides and comparing the results.

u v w

a. 2i 2j 2k

b.

c.

d.

16. Cross and dot products Show that if u, v, w, and r are any vec-
tors, then

a.

b.

c.

17. Cross and dot products Prove or disprove the formula

18. By forming the cross product of two appropriate vectors, derive
the trigonometric identity

19. Use vectors to prove that

for any four numbers a, b, c, and d. (Hint: Let and
)

20. Suppose that vectors u and v are not parallel and that 
where w is parallel to v and r is orthogonal to v. Express w and r
in terms of u and v.

21. Show that for any vectors u and v.

22. Show that bisects the angle between u and v.

23. Show that and are orthogonal.

24. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that 
for every vector u and that if and only if 

25. Point masses and gravitation In physics, the law of gravitation
says that if P and Q are (point) masses with mass M and m, re-
spectively, then P is attracted to Q by the force

F =

GMmr

ƒ r ƒ
3 ,

u = 0.u # u = 0
u # u Ú 0

ƒ v ƒ u - ƒ u ƒ vƒ v ƒ u + ƒ u ƒ v

w = ƒ v ƒ u + ƒ u ƒ v

ƒ u + v ƒ … ƒ u ƒ + ƒ v ƒ

u = w + r,

v = ci + dj.
u = ai + bj

sa2
+ b2dsc2

+ d2d Ú sac + bdd2

sin sA - Bd = sin A cos B - cos A sin B .

u * su * su * vdd # w = - ƒ u ƒ
2u # v * w.

su * vd # sw * rd = ` u # w v # w

u # r v # r
` .

u * v = su # v * idi + su # v * jdj + su # v * kdk
u * sv * wd + v * sw * ud + w * su * vd = 0

2i + 4j - 2k- i - ki + j - 2k

i + 2k2i - j + k2i + j

- i + 2j - k2i + j - 2ki - j + k

 u * sv * wd = su # wdv - su # vdw.

 su * vd * w = su # wdv - sv # wdu.

u * sv * wd
su * vd * w where r is the vector from P to Q and G is the universal gravita-

tional constant. Moreover, if are (point) masses with
mass respectively, then the force on P due to all the

is

where is the vector from P to 

a. Let point P with mass M be located at the point (0, d), 
in the coordinate plane. For 

let be located at the point (id, 0) and have mass
mi. Find the magnitude of the gravitational force on P due to
all the 

b. Is the limit as of the magnitude of the force on P
finite? Why, or why not?

26. Relativistic sums Einstein’s special theory of relativity roughly
says that with respect to a reference frame (coordinate system) no
material object can travel as fast as c, the speed of light. So, if 
and are two velocities such that and then the
relativistic sum of and must have length less than c.
Einstein’s special theory of relativity says that

where

It can be shown that if and then 
This exercise deals with two special cases.

a. Prove that if and are orthogonal, then

b. Prove that if and are parallel, then

c. Compute limc:q x
!

{ y
!

.

ƒ xs { ys ƒ 6 c .
ƒ xs ƒ 6 c, ƒ ys ƒ 6 c ,ysxs

ƒ xs { ys ƒ 6 c .
ƒ xs ƒ 6 c, ƒ ys ƒ 6 c ,ysxs

ƒ xs { ys ƒ 6 c .ƒ ys ƒ 6 c ,ƒ xs ƒ 6 c

gx =

1B1 -

xs # xs
c2

.

xs { ys =

xs + ys

1 +

xs # ys

c2

+

1
c2

#
gx

gx + 1
#

xs * sxs * ysd

1 +

xs # ys

c2

,

ysxsxs { ys
ƒ ys ƒ 6 c ,ƒ xs ƒ 6 cys

xs

n : q

Qi’s.

Qi1, Á , n ,
i = -n, -n + 1, Á , -1, 0, 

d 7 0,

…
x

y

d–d–2d–nd …0

P(0, d )

2d nd

Q–n Q–2 Q–1 Q0 Q1 Q2 Qn

Qi .ri

F = a
k

i = 1
 
GMmi

ƒ ri ƒ
3  ri ,

Qi’s
m1, Á , mk ,

Q1, Á , Qk
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900 Chapter 12: Vectors and the Geometry of Space

Chapter 12 Practice Exercises

Vector Calculations in Two Dimensions
In Exercises 1–4, let and Find (a) the com-
ponent form of the vector and (b) its magnitude.

1. 2.

3. 4. 5v

In Exercises 5–8, find the component form of the vector.

5. The vector obtained by rotating through an angle of 
radians

6. The unit vector that makes an angle of radian with the posi-
tive x-axis

7. The vector 2 units long in the direction 

8. The vector 5 units long in the direction opposite to the direction
of 

Express the vectors in Exercises 9–12 in terms of their lengths and di-
rections.

9. 10.

11. Velocity vector when 

12. Velocity vector 
when .

Vector Calculations in Three Dimensions
Express the vectors in Exercises 13 and 14 in terms of their lengths
and directions.

13. 14.

15. Find a vector 2 units long in the direction of v = 4i - j + 4k.

i + 2j - k2i - 3j + 6k

t = ln 2
set sin t + et cos tdjv = set cos t - et sin tdi +

t = p>2.v = s -2 sin tdi + s2 cos tdj
- i - j22i + 22j

s3>5di + s4>5dj

4i - j

p>6
2p>380, 19

-2u

u + v3u - 4v

v = 82, -59 .u = 8-3, 49
16. Find a vector 5 units long in the direction opposite to the direction

of 

In Exercises 17 and 18, find 
the angle between v and u, the scalar component of u in the

direction of v, and the vector projection of u onto v.

17. 18.

In Exercises 19 and 20, write u as the sum of a vector parallel to v and
a vector orthogonal to v.

19. 20.

In Exercises 21 and 22, draw coordinate axes and then sketch u, v, and
as vectors at the origin.

21. 22.

23. If and the angle between v and w is find

24. For what value or values of a will the vectors 
and be parallel?

In Exercises 25 and 26, find (a) the area of the parallelogram deter-
mined by vectors u and v and (b) the volume of the parallelepiped de-
termined by the vectors u, v, and w.

25.

26. u = i + j, v = j, w = i + j + k

u = i + j - k, v = 2i + j + k, w = - i - 2j + 3k

v = -4i - 8j + ak
u = 2i + 4j - 5k

ƒ v - 2w ƒ .
p>3,ƒ v ƒ = 2, ƒ w ƒ = 3,

u = i - j, v = i + ju = i, v = i + j

u * v

 v = i + j + k u = i + j - 5k

 u = i - 2j v = 2i + j - k

 u = - i - k u = 2i + j - 2k

 v = i + j + 2k v = i + j

ƒ v * u ƒ ,
ƒ v ƒ , ƒ u ƒ , v # u, u # v, v * u, u * v, 

v = s3>5di + s4>5dk.
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Chapter 12 Practice Exercises 901

Lines, Planes, and Distances
27. Suppose that n is normal to a plane and that v is parallel to the

plane. Describe how you would find a vector n that is both per-
pendicular to v and parallel to the plane.

28. Find a vector in the plane parallel to the line 

In Exercises 29 and 30, find the distance from the point to the line.

29. (2, 2, 0);

30. (0, 4, 1);

31. Parametrize the line that passes through the point (1, 2, 3) parallel
to the vector 

32. Parametrize the line segment joining the points P(1, 2, 0) and

In Exercises 33 and 34, find the distance from the point to the plane.

33.

34.

35. Find an equation for the plane that passes through the point
normal to the vector 

36. Find an equation for the plane that passes through the point
perpendicular to the line 

In Exercises 37 and 38, find an equation for the plane through points
P, Q, and R.

37.

38.

39. Find the points in which the line 
meets the three coordinate planes.

40. Find the point in which the line through the origin perpendicular
to the plane meets the plane 

41. Find the acute angle between the planes and 

42. Find the acute angle between the planes and

43. Find parametric equations for the line in which the planes
and intersect.

44. Show that the line in which the planes

intersect is parallel to the line

45. The planes and intersect in a
line.

a. Show that the planes are orthogonal.

b. Find equations for the line of intersection.

46. Find an equation for the plane that passes through the point (1, 2, 3)
parallel to and v = i - j + 2k.u = 2i + 3j + k

2x + 2y - z = 33x + 6z = 1

x = -3 + 2t, y = 3t, z = 1 + 4t .

x + 2y - 2z = 5 and 5x - 2y - z = 0

x - y + 2z = -8x + 2y + z = 1

1.y + z =

x + y = 1

22z = -3.
x + y +x = 7

2z = 6.3x - 5y +2x - y - z = 4

z = 3t
x = 1 + 2t, y = -1 - t, 

Ps1, 0, 0d, Qs0, 1, 0d, Rs0, 0, 1d
Ps1, -1, 2d, Qs2, 1, 3d, Rs -1, 2, -1d

z = 3t .
x = -1 + t, y = 6 - 2t,s -1, 6, 0d

n = 2i + j + k.s3, -2, 1d

s3, 0, 10d, 2x + 3y + z = 2

s6, 0, -6d, x - y = 4

Qs1, 3, -1d .

v = -3i + 7k.

x = 2 + t, y = 2 + t, z = t

x = - t, y = t, z = -1 + t

ax + by = c .

47. Is related in any special way to the plane
Give reasons for your answer.

48. The equation represents the plane through normal
to n. What set does the inequality represent?

49. Find the distance from the point P(1, 4, 0) to the plane through
A(0, 0, 0), and 

50. Find the distance from the point (2, 2, 3) to the plane

51. Find a vector parallel to the plane and orthogo-
nal to 

52. Find a unit vector orthogonal to A in the plane of B and C if
and 

53. Find a vector of magnitude 2 parallel to the line of intersection of
the planes and 

54. Find the point in which the line through the origin perpendicular
to the plane meets the plane 

55. Find the point in which the line through P(3, 2, 1) normal to the
plane meets the plane.

56. What angle does the line of intersection of the planes
and make with the positive 

x-axis?

57. The line

intersects the plane in a point P. Find the co-
ordinates of P and find equations for the line in the plane through
P perpendicular to L.

58. Show that for every real number k the plane

contains the line of intersection of the planes

59. Find an equation for the plane through and
that lies parallel to the line through

and 

60. Is the line related in any
way to the plane Give reasons for your
answer.

61. Which of the following are equations for the plane through the
points Q(3, 0, 2), and 

a.

b.

c.

d.

e.

62. The parallelogram shown on page 902 has vertices at 
and D. FindBs1, 0, -1d, Cs1, 2, 3d ,

As2, -1, 4d,
=  0

+ s y - 1dj + zkds2i - j + 3kd * s -3i + kd # ssx + 2di
s2i - 3j + 3kd * ssx + 2di + s y - 1dj + zkd = 0

sx + 2d + 11s y - 1d = 3z

x = 3 - t,  y = -11t,  z = 2 - 3t

s2i - 3j + 3kd # ssx + 2di + s y - 1dj + zkd = 0

Rs -2, 1, 0d?Ps1, 1, -1d ,

-4x - 6y + 10z = 9?
x = 1 + 2t, y = -2 + 3t, z = -5t

Ds16>5, -13>5, 0d .Cs -2, -13>5, 26>5d
Bs1, -2, 1d

As -2, 0, -3d

x - 2y + z + 3 = 0 and 2x - y - z + 1 = 0.

x - 2y + z + 3 + k s2x - y - z + 1d = 0

x + 3y - z = -4

L: x = 3 + 2t,  y = 2t,  z = t

x + y + 2z = 02x + y - z = 0

2x - y + 2z = -2

2z = 6.3x - 5y +2x - y - z = 4

x - y + 2z + 7 = 0.x + 2y + z - 1 = 0

C = i + j - 2k.A = 2i - j + k, B = i + 2j + k,

i + j + k.
2x - y - z = 4

2x + 3y + 5z = 0.

Cs2, -1, 0d .Bs2, 0, -1d

n # P0 P
1

7 0
P0n # P0 P

1
= 0

2x + y = 5?
v = 2i - 4j + k
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a. the coordinates of D,

b. the cosine of the interior angle at B,

c. the vector projection of onto 

d. the area of the parallelogram,

e. an equation for the plane of the parallelogram,

BC
1

,BA
1

z

y

x

D

C(1, 2, 3)

A(2, –1, 4)

B(1, 0, –1)

f. the areas of the orthogonal projections of the parallelogram
on the three coordinate planes.

63. Distance between lines Find the distance between the line 
through the points and and the line 
through the points and The distance is to
be measured along the line perpendicular to the two lines. First find
a vector n perpendicular to both lines. Then project onto n.

64. (Continuation of Exercise 63.) Find the distance between the line
through A(4, 0, 2) and B(2, 4, 1) and the line through C(1, 3, 2)
and D(2, 2, 4).

Quadric Surfaces
Identify and sketch the surfaces in Exercises 65–76.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76. z2
- x2

- y2
= 1y2

- x2
- z2

= 1

4y2
+ z2

- 4x2
= 4x2

+ y2
- z2

= 4

x2
+ z2

= y2x2
+ y2

= z2

y = -sx2
+ z2dz = -sx2

+ y2d
36x2

+ 9y2
+ 4z2

= 364x2
+ 4y2

+ z2
= 4

x2
+ s y - 1d2

+ z2
= 1x2

+ y2
+ z2

= 4

AC
1

Ds4, 5, -2d .Cs3, 1, -1d
L2Bs -1, 1, 0dAs1, 0, -1d
L1
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899

Chapter 12 Questions to Guide Your Review

1. When do directed line segments in the plane represent the same
vector?

2. How are vectors added and subtracted geometrically? Alge-
braically?

3. How do you find a vector’s magnitude and direction?

4. If a vector is multiplied by a positive scalar, how is the result re-
lated to the original vector? What if the scalar is zero? Negative?
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5. Define the dot product (scalar product) of two vectors. Which al-
gebraic laws are satisfied by dot products? Give examples. When
is the dot product of two vectors equal to zero?

6. What geometric interpretation does the dot product have? Give
examples.

7. What is the vector projection of a vector u onto a vector v? How
do you write u as the sum of a vector parallel to v and a vector
orthogonal to v?

8. Define the cross product (vector product) of two vectors. Which
algebraic laws are satisfied by cross products, and which are not?
Give examples. When is the cross product of two vectors equal to
zero?

9. What geometric or physical interpretations do cross products
have? Give examples.

10. What is the determinant formula for calculating the cross product
of two vectors relative to the Cartesian i, j, k-coordinate system?
Use it in an example.

11. How do you find equations for lines, line segments, and planes in
space? Give examples. Can you express a line in space by a single
equation? A plane?

12. How do you find the distance from a point to a line in space?
From a point to a plane? Give examples.

13. What are box products? What significance do they have? How are
they evaluated? Give an example.

14. How do you find equations for spheres in space? Give examples.

15. How do you find the intersection of two lines in space? A line and
a plane? Two planes? Give examples.

16. What is a cylinder? Give examples of equations that define cylin-
ders in Cartesian coordinates.

17. What are quadric surfaces? Give examples of different kinds of
ellipsoids, paraboloids, cones, and hyperboloids (equations and
sketches).

900 Chapter 12: Vectors and the Geometry of Space
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Chapter 12 905

Chapter 12 Technology Application Projects

Mathematica Maple Module
Using Vectors to Represent Lines and Find Distances

Parts I and II: Learn the advantages of interpreting lines as vectors.

Part III: Use vectors to find the distance from a point to a line.

Mathematica Maple Module
Putting a Scene in Three Dimensions onto a Two-Dimensional Canvas
Use the concept of planes in space to obtain a two-dimensional image.

Mathematica Maple Module
Getting Started in Plotting in 3D

Part I: Use the vector definition of lines and planes to generate graphs and equations, and to compare different forms for the equations of a 
single line.

Part II: Plot functions that are defined implicitly.

/

/

/
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