
Other infinite series do not have a finite sum, as with

The sum of the first few terms gets larger and larger as we add more and more terms. Tak-
ing enough terms makes these sums larger than any prechosen constant.

With some infinite series, such as the harmonic series

it is not obvious whether a finite sum exists. It is unclear whether adding more and more
terms gets us closer to some sum, or gives sums that grow without bound.

As we develop the theory of infinite sequences and series, an important application
gives a method of representing a differentiable function ƒ(x) as an infinite sum of powers
of x. With this method we can extend our knowledge of how to evaluate, differentiate, and
integrate polynomials to a class of functions much more general than polynomials. We
also investigate a method of representing a function as an infinite sum of sine and cosine
functions. This method will yield a powerful tool to study functions.

1 +
1
2

+
1
3

+
1
4

+
1
5 +

1
6

+
Á

1 + 2 + 3 + 4 + 5 +
Á .

INFINITE SEQUENCES

AND SERIES

OVERVIEW While everyone knows how to add together two numbers, or even several,
how to add together infinitely many numbers is not so clear. In this chapter we study such
questions, the subject of the theory of infinite series. Infinite series sometimes have a finite
sum, as in

This sum is represented geometrically by the areas of the repeatedly halved unit square
shown here. The areas of the small rectangles add together to give the area of the unit square,
which they fill. Adding together more and more terms gets us closer and closer to the total.

1
2

+
1
4

+
1
8

+
1
16

+
Á

= 1.
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DEFINITION Infinite Sequence
An infinite sequence of numbers is a function whose domain is the set of positive
integers.

The function associated to the sequence

sends 1 to 2 to and so on. The general behavior of this sequence is de-
scribed by the formula

We can equally well make the domain the integers larger than a given number and
we allow sequences of this type also.

The sequence

is described by the formula It can also be described by the simpler formula
where the index n starts at 6 and increases. To allow such simpler formulas, we

let the first index of the sequence be any integer. In the sequence above, starts with 
while starts with Order is important. The sequence is not the same as
the sequence 

Sequences can be described by writing rules that specify their terms, such as

 dn = s -1dn + 1

 cn =

n - 1
n ,

 bn = s -1dn + 1 
1
n ,

 an = 2n ,

2, 1, 3, 4 Á .
1, 2, 3, 4 Áb6 .5bn6

a15an6
bn = 2n ,

an = 10 + 2n .

12, 14, 16, 18, 20, 22 Á

n0 ,

an = 2n .

a2 = 4,a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

Sequences

A sequence is a list of numbers

in a given order. Each of and so on represents a number. These are the terms of
the sequence. For example the sequence

has first term second term and nth term The integer n is called
the index of and indicates where occurs in the list. We can think of the sequence

as a function that sends 1 to 2 to 3 to and in general sends the positive integer n
to the nth term This leads to the formal definition of a sequence.an .

a3 ,a2 ,a1 ,

a1, a2, a3, Á , an, Á

anan ,
an = 2n .a2 = 4a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

a1, a2, a3

a1, a2, a3, Á , an, Á

11.1

HISTORICAL ESSAY

Sequences and Series
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or by listing terms,

We also sometimes write

Figure 11.1 shows two ways to represent sequences graphically. The first marks the
first few points from on the real axis. The second method shows the
graph of the function defining the sequence. The function is defined only on integer
inputs, and the graph consists of some points in the xy-plane, located at 
s2, a2d, Á , sn, and, Á .

s1, a1d,

a1, a2, a3, Á , an, Á

5an6 = E2n Fn = 1

q

 . .

 5dn6 = 51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6 .

 5cn6 = e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 

n - 1
n , Á f

 5bn6 = e1, -
1
2

, 
1
3

, -
1
4

, Á , s -1dn + 1 
1
n, Á f

 5an6 = E21, 22, 23, Á , 2n, Á F
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0

an � �n

1 2

0

Diverges

1 32 4 5

1

3

2

1

Converges to 0

0 1 32 4 5

0

an �

1

0

1

Converges to 0

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an � (�1)n�1 1
n

FIGURE 11.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis n is the index number of the
term and the vertical axis is its value.an

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases.
This happens in the sequence

whose terms approach 0 as n gets large, and in the sequence

e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 1 -

1
n, Á f

e1, 
1
2

, 
1
3

, 
1
4

, Á , 
1
n, Á f
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11.1 Sequences 749

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends
to ( in Section 2.4). We will exploit this connection to calculate limits of
sequences.

EXAMPLE 1 Applying the Definition

Show that

(a) (b)

Solution

(a) Let be given. We must show that there exists an integer N such that for all n,

This implication will hold if or If N is any integer greater than
the implication will hold for all This proves that 

(b) Let be given. We must show that there exists an integer N such that for all n,

Since we can use any positive integer for N and the implication will hold.
This proves that for any constant k.limn:q k = k

k - k = 0,

n 7 N Q ƒ k - k ƒ 6 P .

P 7 0

limn:q s1>nd = 0.n 7 N .1>P ,
n 7 1>P .s1>nd 6 P

n 7 N Q ` 1n - 0 ` 6 P .

P 7 0

lim
n: q

 k = k sany constant kdlim
n: q

 
1
n = 0

limx:q ƒsxdq

whose terms approach 1. On the other hand, sequences like

have terms that get larger than any number as n increases, and sequences like

bounce back and forth between 1 and never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It
says that if we go far enough out in the sequence, by taking the index n to be larger then
some value N, the difference between and the limit of the sequence becomes less than
any preselected number P 7 0.

an

-1,

51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

E21, 22, 23, Á , 2n, Á F

DEFINITIONS Converges, Diverges, Limit
The sequence converges to the number L if to every positive number there
corresponds an integer N such that for all n,

If no such number L exists, we say that diverges.
If converges to L, we write or simply and call

L the limit of the sequence (Figure 11.2).
an : L ,limn:q an = L ,5an6

5an6
n 7 N Q ƒ an - L ƒ 6 P .

P5an6

aN

(N, aN)

0 1 32 N n

L

L � �

L � � L � �L

L � �

(n, an)

0 a2 a3 a1 an

n

an

FIGURE 11.2 if is a
horizontal asymptote of the sequence of
points In this figure, all the 
after lie within of L.PaN

an’s5sn, and6 .

y = Lan : L

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)
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EXAMPLE 2 A Divergent Sequence

Show that the sequence diverges.

Solution Suppose the sequence converges to some number L. By choosing in
the definition of the limit, all terms of the sequence with index n larger than some N
must lie within of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance of L. It
follows that or equivalently, Likewise, the number 
appears repeatedly in the sequence with arbitrarily high index. So we must also have that

or equivalently, But the number L cannot lie in
both of the intervals (1 2, 3 2) and because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number smaller than 1, not
just 1 2.

The sequence also diverges, but for a different reason. As n increases, its
terms become larger than any fixed number. We describe the behavior of this sequence
by writing

In writing infinity as the limit of a sequence, we are not saying that the differences between
the terms and become small as n increases. Nor are we asserting that there is some
number infinity that the sequence approaches. We are merely using a notation that captures
the idea that eventually gets and stays larger than any fixed number as n gets large.an

qan

lim
n: q

2n = q .

{1n}

> P

s -3>2, -1>2d>> -3>2 6 L 6 -1>2.ƒ L - s -1d ƒ 6 1>2,

-11>2 6 L 6 3>2.ƒ L - 1 ƒ 6 1>2,
P = 1>2P = 1>2 an

P = 1>2
51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

750 Chapter 11: Infinite Sequences and Series

DEFINITION Diverges to Infinity
The sequence diverges to infinity if for every number M there is an integer
N such that for all n larger than If this condition holds we write

Similarly if for every number m there is an integer N such that for all we
have then we say diverges to negative infinity and write

lim
n: q

 an = - q or an : - q .

5an6an 6 m ,
n 7 N

lim
n: q

 an = q or an : q .

N, an 7 M .
5an6

A sequence may diverge without diverging to infinity or negative infinity. We saw
this in Example 2, and the sequences and

are also examples of such divergence.

Calculating Limits of Sequences

If we always had to use the formal definition of the limit of a sequence, calculating with 
and N’s, then computing limits of sequences would be a formidable task. Fortunately we can
derive a few basic examples, and then use these to quickly analyze the limits of many more
sequences. We will need to understand how to combine and compare sequences. Since se-
quences are functions with domain restricted to the positive integers, it is not too surprising
that the theorems on limits of functions given in Chapter 2 have versions for sequences.

P’s

51, 0, 2, 0, 3, 0, Á 6 51, -2, 3, -4, 5, -6, 7, -8, Á 6
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11.1 Sequences 751

The proof is similar to that of Theorem 1 of Section 2.2, and is omitted.

EXAMPLE 3 Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a)

(b)

(c)

(d)

Be cautious in applying Theorem 1. It does not say, for example, that each of the
sequences and have limits if their sum has a limit. For instance,

and both diverge, but their sum
clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence
diverges. For suppose, to the contrary, that converges for some number 

Then, by taking in the Constant Multiple Rule in Theorem 1, we see that the
sequence

converges. Thus, cannot converge unless also converges. If does not con-
verge, then does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2.
You are asked to prove the theorem in Exercise 95.

5can6
5an65an65can6

e 1
c

# can f = 5an6

k = 1>c c Z 0.5can65an6
5an + bn6 = 50, 0, 0, Á 6 5bn6 = 5-1, -2, -3, Á 65an6 = 51, 2, 3, Á 6 5an + bn65bn65an6

lim
n: q

 
4 - 7n6

n6
+ 3

= lim
n: q

 
s4>n6d - 7

1 + s3>n6d
=

0 - 7
1 + 0

= -7.

lim
n: q

 
5
n2 = 5 # lim

n: q

 
1
n

# lim
n: q

 
1
n = 5 # 0 # 0 = 0

lim
n: q

 an - 1
n b = lim

n: q

 a1 -
1
n b = lim

n: q

1 - lim
n: q

 
1
n = 1 - 0 = 1

lim
n: q

 a- 1
n b = -1 # lim

n: q

 
1
n = -1 # 0 = 0

THEOREM 1
Let and be sequences of real numbers and let A and B be real numbers.
The following rules hold if and 

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule: limn:q  
an

bn
=

A
B
 if B Z 0

limn:q sk # bnd = k # B sAny number kd
limn:q san

# bnd = A # B

limn:q san - bnd = A - B

limn:q san + bnd = A + B

limn:q bn = B .limn:q an = A
5bn65an6

Constant Multiple Rule and Example 1a

Difference Rule
and Example 1a

Product Rule

Sum and Quotient Rules

THEOREM 2 The Sandwich Theorem for Sequences
Let and be sequences of real numbers. If holds
for all n beyond some index N, and if then

also.limn:q  bn = L
limn:q  an = limn:q  cn = L ,

an … bn … cn5cn65an6, 5bn6 ,
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An immediate consequence of Theorem 2 is that, if and then
because We use this fact in the next example.

EXAMPLE 4 Applying the Sandwich Theorem

Since we know that

(a)

(b)

(c)

The application of Theorems 1 and 2 is broadened by a theorem stating that applying
a continuous function to a convergent sequence produces a convergent sequence. We state
the theorem without proof (Exercise 96).

-
1
n … s -1dn 

1
n …

1
n .because s -1dn 

1
n : 0 

0 …
1
2n …

1
n ;because 1

2n : 0 
-

1
n …

cos n
n …

1
n ;because cos n

n : 0 
1>n : 0,

-cn … bn … cn .bn : 0
cn : 0,ƒ bn ƒ … cn
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THEOREM 3 The Continuous Function Theorem for Sequences
Let be a sequence of real numbers. If and if ƒ is a function that is
continuous at L and defined at all then ƒsand : ƒsLd .an ,

an : L5an6

EXAMPLE 5 Applying Theorem 3

Show that 

Solution We know that Taking and in Theorem 3
gives 

EXAMPLE 6 The Sequence 

The sequence converges to 0. By taking and in
Theorem 3, we see that The sequence converges
to 1 (Figure 11.3).

Using l’Hôpital’s Rule

The next theorem enables us to use l’Hôpital’s Rule to find the limits of some sequences.
It formalizes the connection between and limx:q ƒsxd .limn:q an

521>n621>n
= ƒs1>nd : ƒsLd = 20

= 1.
L = 0an = 1>n, ƒsxd = 2x ,51>n6

521>n6
1sn + 1d>n : 11 = 1.

L = 1ƒsxd = 1xsn + 1d>n : 1.

2sn + 1d>n : 1.

1
3

0

1

(1, 2)

y � 2x

1

2

, 21/3





, 21/2





1
3

1
2

1
2

x

y

FIGURE 11.3 As and
(Example 6).21>n : 20

n : q , 1>n : 0

THEOREM 4
Suppose that ƒ(x) is a function defined for all and that is a sequence
of real numbers such that for Then

lim
x: q

 ƒsxd = L Q lim
n: q

 an = L .

n Ú n0 .an = ƒsnd
5an6x Ú n0

Proof Suppose that Then for each positive number there is a num-
ber M such that for all x,

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

Plimx:q ƒsxd = L .

4100 AWL/Thomas_ch11p746-847  8/25/04  2:40 PM  Page 752

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce11.html?1_3_l
bounce11.html?1_4_l


11.1 Sequences 753

Let N be an integer greater than M and greater than or equal to Then

EXAMPLE 7 Applying L’Hôpital’s Rule

Show that

Solution The function is defined for all and agrees with the given
sequence at positive integers. Therefore, by Theorem 5, will equal

if the latter exists. A single application of l’Hôpital’s Rule shows that

We conclude that 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a
continuous real variable and differentiate directly with respect to n. This saves us from
having to rewrite the formula for as we did in Example 7.

EXAMPLE 8 Applying L’Hôpital’s Rule

Find

Solution By l’Hôpital’s Rule (differentiating with respect to n),

EXAMPLE 9 Applying L’Hôpital’s Rule to Determine Convergence

Does the sequence whose nth term is

converge? If so, find 

Solution The limit leads to the indeterminate form We can apply l’Hôpital’s Rule if
we first change the form to by taking the natural logarithm of 

 = n ln an + 1
n - 1

b .

 ln an = ln an + 1
n - 1

bn

an :q # 0
1q .

limn:q an .

an = an + 1
n - 1

bn

 = q .

 lim
n: q

 
2n

5n
= lim

n: q

 
2n # ln 2

5

lim
n: q

 
2n

5n
.

an

limn:q sln nd>n = 0.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

=

0
1

= 0.

limx:q sln xd>x limn:q sln nd>nx Ú 1sln xd>x

lim
n: q

 
ln n
n = 0.

n 7 N Q an = ƒsnd and ƒ an - L ƒ = ƒ ƒsnd - L ƒ 6 P .

n0 .
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Then,

Since and is continuous, Theorem 4 tells us that

The sequence converges to  

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

e2 .5an6
an = e ln an : e2 .

ƒsxd = exln an : 2

 = lim
n: q

 
2n2

n2
- 1

= 2 .

 = lim
n: q

 
-2>sn2

- 1d

-1>n2

 = lim
n: q

 

ln an + 1
n - 1

b
1>n

 lim
n: q

 ln an = lim
n: q

 n ln an + 1
n - 1

b

754 Chapter 11: Infinite Sequences and Series

l’Hôpital’s Rule

q # 0

0
0

THEOREM 5
The following six sequences converge to the limits listed below:

1.

2.

3.

4.

5.

6.

In Formulas (3) through (6), x remains fixed as n : q .

lim
n: q

 
xn

n!
= 0 sany xd

lim
n: q

 a1 +

x
n b

n

= ex sany xd

lim
n: q

 xn
= 0 s ƒ x ƒ 6 1d

lim
n: q

 x1>n
= 1 sx 7 0d

lim
n: q

2n n = 1

lim
n: q

 
ln n
n = 0

Proof The first limit was computed in Example 7. The next two can be proved by taking
logarithms and applying Theorem 4 (Exercises 93 and 94). The remaining proofs are given
in Appendix 3.

EXAMPLE 10 Applying Theorem 5

(a) Formula 1

(b) Formula 2

(c) Formula 3 with and Formula 2x = 32n 3n = 31>nsn1/nd : 1 # 1 = 1

2n n2
= n2>n

= sn1/nd2 : s1d2
= 1

ln sn2d
n =

2 ln n
n : 2 # 0 = 0

Factorial Notation
The notation n! (“n factorial”) means 
the product of the integers
from 1 to n. Notice that

Thus,
and

We
define 0! to be 1. Factorials grow even
faster than exponentials, as the table
suggests.

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
4! = 1 # 2 # 3 # 4 = 24
sn + 1d! = sn + 1d # n! .

1 # 2 # 3 Á n

n (rounded) n!

1 3 1

5 148 120

10 22,026 3,628,800

20 2.4 * 10184.9 * 108

en
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11.1 Sequences 755

(d) Formula 4 with

(e) Formula 5 with

(f) Formula 6 with

Recursive Definitions

So far, we have calculated each directly from the value of n. But sequences are often
defined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that pre-
cede it.

EXAMPLE 11 Sequences Constructed Recursively

(a) The statements and define the sequence of
positive integers. With we have and
so on.

(b) The statements and define the sequence 
of factorials. With we have 

and so on.

(c) The statements and define the sequence
of Fibonacci numbers. With and we have

and so on.

(d) As we can see by applying Newton’s method, the statements and
define a sequence that converges to a

solution of the equation 

Bounded Nondecreasing Sequences

The terms of a general sequence can bounce around, sometimes getting larger, sometimes
smaller. An important special kind of sequence is one for which each term is at least as
large as its predecessor.

sin x - x2
= 0.

xn + 1 = xn - [ssin xn - xn
2d>scos xn - 2xnd]

x0 = 1

a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5,
a2 = 1,a1 = 11, 1, 2, 3, 5, Á

an + 1 = an + an - 1a1 = 1, a2 = 1,

4 # a3 = 24,
a2 = 2 # a1 = 2, a3 = 3 # a2 = 6, a4 =a1 = 1,

1, 2, 6, 24, Á , n!, Áan = n # an - 1a1 = 1

a2 = a1 + 1 = 2, a3 = a2 + 1 = 3,a1 = 1,
1, 2, 3, Á , n, Áan = an - 1 + 1a1 = 1

an

x = 100
100n

n!
: 0

x = -2an - 2
n bn

= a1 +
-2
n b

n

: e-2

x = -

1
2

a- 1
2
bn

: 0

DEFINITION Nondecreasing Sequence
A sequence with the property that for all n is called a
nondecreasing sequence.

an … an + 15an6

EXAMPLE 12 Nondecreasing Sequences

(a) The sequence of natural numbers

(b) The sequence 

(c) The constant sequence 536
1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

1, 2, 3, Á , n, Á
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There are two kinds of nondecreasing sequences—those whose terms increase beyond any
finite bound and those whose terms do not.

756 Chapter 11: Infinite Sequences and Series

DEFINITIONS Bounded, Upper Bound, Least Upper Bound
A sequence is bounded from above if there exists a number M such that

for all n. The number M is an upper bound for If M is an upper
bound for but no number less than M is an upper bound for then M is
the least upper bound for 5an6 .

5an6 ,5an6
5an6 .an … M

5an6

EXAMPLE 13 Applying the Definition for Boundedness

(a) The sequence has no upper bound.

(b) The sequence is bounded above by 

No number less than 1 is an upper bound for the sequence, so 1 is the least upper
bound (Exercise 113).

A nondecreasing sequence that is bounded from above always has a least upper
bound. This is the completeness property of the real numbers, discussed in Appendix 4.
We will prove that if L is the least upper bound then the sequence converges to L.

Suppose we plot the points in the xy-plane. If M is an up-
per bound of the sequence, all these points will lie on or below the line (Figure 11.4).
The line is the lowest such line. None of the points lies above but some
do lie above any lower line if is a positive number. The sequence converges to
L because

(a) for all values of n and

(b) given any there exists at least one integer N for which 

The fact that is nondecreasing tells us further that

Thus, all the numbers beyond the Nth number lie within of L. This is precisely the
condition for L to be the limit of the sequence 

The facts for nondecreasing sequences are summarized in the following theorem. A
similar result holds for nonincreasing sequences (Exercise 107).

{an}.
Pan

an Ú aN 7 L - P for all n Ú N .

5an6
aN 7 L - P .P 7 0,

an … L

Py = L - P ,
y = L ,sn, andy = L

y = M
s1, a1d, s2, a2d, Á , sn, and, Á

M = 1.
1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

1, 2, 3, Á , n, Á

0 1 2 3 4

L

M

5

y � L

(8, a8)

6 7 8

y � M

(5, a5)

(1, a1)

x

y

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L … M .

THEOREM 6 The Nondecreasing Sequence Theorem
A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.

Theorem 6 implies that a nondecreasing sequence converges when it is bounded from
above. It diverges to infinity if it is not bounded from above.
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11.1 Sequences 757

EXERCISES 11.1

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term of a se-
quence Find the values of and 

1. 2.

3. 4.

5. 6.

Each of Exercises 7–12 gives the first term or two of a sequence along
with a recursion formula for the remaining terms. Write out the first
ten terms of the sequence.

7.

8.

9.

10.

11.

12.

Finding a Sequence’s Formula
In Exercises 13–22, find a formula for the nth term of the sequence.

13. The sequence 

14. The sequence 

15. The sequence 

16. The sequence 

17. The sequence 

18. The sequence 

19. The sequence 

20. The sequence 

21. The sequence 

22. The sequence 

Finding Limits
Which of the sequences in Exercises 23–84 converge, and which
diverge? Find the limit of each convergent sequence.

5an6

0, 1, 1, 2, 2, 3, 3, 4, Á

1, 0, 1, 0, 1, Á

2, 6, 10, 14, 18, Á

1, 5, 9, 13, 17, Á

-3, -2, -1, 0, 1, Á

0, 3, 8, 15, 24, Á

1, -
1
4

, 
1
9

, -
1

16
, 

1
25

, Á

1, -4, 9, -16, 25, Á

-1, 1, -1, 1, -1, Á

1, -1, 1, -1, 1, Á

a1 = 2, a2 = -1, an + 2 = an + 1>an

a1 = a2 = 1, an + 2 = an + 1 + an

a1 = -2, an + 1 = nan>sn + 1d
a1 = 2, an + 1 = s -1dn + 1an>2
a1 = 1, an + 1 = an>sn + 1d
a1 = 1, an + 1 = an + s1>2nd

an =

2n
- 1

2nan =

2n

2n + 1

an = 2 + s -1dnan =

s -1dn + 1

2n - 1

an =

1
n!

an =

1 - n

n2

a4 .a1, a2, a3 ,5an6 .
an

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. (Hint: Compare with 1 n.)>an =

n!
nn

an = 2n 32n + 1an = 2n 4nn

an = ln n - ln sn + 1dan =

ln n

n1>n

an = sn + 4d1>sn + 4dan = a3n b
1>n

an = 2n n2an = 2n 10n

an = a1 -

1
n b

n

an = a1 +

7
n b

n

an = s0.03d1>nan = 81>n

an =

ln n
ln 2n

an =

ln sn + 1d2n

an =

3n

n3an =

n
2n

an =

sin2 n
2nan =

sin n
n

an = np cos snpdan = sin ap
2

+

1
n b

an =

1
s0.9dnan = A 2n

n + 1

an = a- 1
2
bn

an =

s -1dn + 1

2n - 1

an = a2 -

1
2n b a3 +

1
2n ban = an + 1

2n
b a1 -

1
n b

an = s -1dn a1 -

1
n ban = 1 + s -1dn

an =

1 - n3

70 - 4n2an =

n2
- 2n + 1
n - 1

an =

n + 3
n2

+ 5n + 6
an =

1 - 5n4

n4
+ 8n3

an =

2n + 1

1 - 32n
an =

1 - 2n
1 + 2n

an =

n + s -1dn

nan = 2 + s0.1dn

Reciprocals of squares
of the positive integers,
with alternating signs

1’s with alternating signs

1’s with alternating signs

Squares of the positive
integers; with
alternating signs

Squares of the positive
integers diminished by 1

Integers beginning with
-3

Every other odd positive
integer

Every other even positive
integer

Alternating 1’s and 0’s

Each positive integer
repeated
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60. 61.

62. 63.

64. 65.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80. 81.

82.

83. 84.

Theory and Examples
85. The first term of a sequence is Each succeeding term is

the sum of all those that come before it:

Write out enough early terms of the sequence to deduce a general
formula for that holds for 

86. A sequence of rational numbers is described as follows:

.

Here the numerators form one sequence, the denominators form a
second sequence, and their ratios form a third sequence. Let 
and be, respectively, the numerator and the denominator of the
nth fraction 

a. Verify that and, more
generally, that if or then

respectively.

sa + 2bd2
- 2sa + bd2

= +1 or -1,

+1,a2
- 2b2

= -1
x1

2
- 2y1

2
= -1, x2

2
- 2y2

2
= +1

rn = xn>yn .
yn

xn

1
1

, 
3
2

, 
7
5

, 
17
12

, Á , 
a
b

, 
a + 2b
a + b

, Á

n Ú 2.xn

xn + 1 = x1 + x2 +
Á

+ xn .

x1 = 1.

an = L
n

1
 
1
xp dx, p 7 1an =

1
nL

n

1
 
1
x  dx

an =

12n2
- 1 - 2n2

+ n

an = n - 2n2
- nan =

sln nd52n

an =

sln nd200

nan = 2n n2
+ n

an = a1
3
bn

+

122n
an =

12n
 tan-1 n

an = tan-1 nan = n a1 - cos 
1
n b

an =

n2

2n - 1
 sin 

1
nan = sinh sln nd

an = tanh nan =

s10>11dn

s9/10dn
+ s11/12dn

an =

3n # 6n

2-n # n!
an = a1 -

1
n2 b

n

an = a xn

2n + 1
b1>n

, x 7 0an = a n
n + 1

bn

an = a3n + 1
3n - 1

bn

an = ln a1 +

1
n b

n

an = a1n b
1>sln nd

an =

n!
2n # 3n

an =

n!
106n

an =

s -4dn

n!
b. The fractions approach a limit as n increases.

What is that limit? (Hint: Use part (a) to show that
and that is not less than n.)

87. Newton’s method The following sequences come from the re-
cursion formula for Newton’s method,

Do the sequences converge? If so, to what value? In each case,
begin by identifying the function ƒ that generates the sequence.

a.

b.

c.

88. a. Suppose that ƒ(x) is differentiable for all x in [0, 1] and that
Define the sequence by the rule 

Show that 

Use the result in part (a) to find the limits of the following
sequences 

b. c.

d.

89. Pythagorean triples A triple of positive integers a, b, and c is
called a Pythagorean triple if Let a be an odd
positive integer and let

be, respectively, the integer floor and ceiling for 

a. Show that (Hint: Let and express
b and c in terms of n.)

a = 2n + 1a2
+ b2

= c2 .

a

 a2

2





a2

2

�

a2>2.

b = j a2

2
k and c = l a2

2
m

a2
+ b2

= c2 .

an = n ln a1 +

2
n b

an = nse1>n
- 1dan = n tan-1 

1
n

5an6 .

lim n:q an = ƒ¿s0d .nƒs1>nd .
an =5an6ƒs0d = 0.

x0 = 1, xn + 1 = xn - 1

x0 = 1, xn + 1 = xn -

tan xn - 1

sec2 xn

x0 = 1, xn + 1 = xn -

xn
2

- 2
2xn

=

xn

2
+

1
xn

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

ynrn
2

- 2 = ;s1>ynd2

rn = xn>yn
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11.1 Sequences 759

b. By direct calculation, or by appealing to the figure here, find

90. The nth root of n!

a. Show that and hence, using Stirling’s
approximation (Chapter 8, Additional Exercise 50a), that

b. Test the approximation in part (a) for as
far as your calculator will allow.

91. a. Assuming that if c is any positive con-
stant, show that

if c is any positive constant.

b. Prove that if c is any positive constant.
(Hint: If and how large should N be to
ensure that if )

92. The zipper theorem Prove the “zipper theorem” for se-
quences: If and both converge to L, then the sequence

converges to L.

93. Prove that 

94. Prove that 

95. Prove Theorem 2. 96. Prove Theorem 3.

In Exercises 97–100, determine if the sequence is nondecreasing and
if it is bounded from above.

97. 98.

99. 100.

Which of the sequences in Exercises 101–106 converge, and which di-
verge? Give reasons for your answers.

101. 102.

103. 104.

105. an = ss -1dn
+ 1d an + 1

n b
an =

2n
- 1

3nan =

2n
- 1

2n

an = n -

1
nan = 1 -

1
n

an = 2 -

2
n -

1
2nan =

2n3n

n!

an =

s2n + 3d!
sn + 1d!

an =

3n + 1
n + 1

limn:q x1>n
= 1, sx 7 0d .

limn:q2n n = 1.

a1, b1, a2 , b2 , Á , an , bn , Á

5bn65an6
n 7 N?ƒ 1>nc

- 0 ƒ 6 P

c = 0.04 ,P = 0.001
limn:q s1>ncd = 0

lim
n: q

 
ln n
nc = 0

limn:q s1>ncd = 0

n = 40, 50, 60, Á ,

2n n! L

n
e for large values of n .

limn:q s2npd1>s2nd
= 1

lim
a: q

 

j a2

2
k

l a2

2
m
.

106. The first term of a sequence is The next terms are
or cos (2), whichever is larger; and or cos (3),

whichever is larger (farther to the right). In general,

107. Nonincreasing sequences A sequence of numbers in
which for every n is called a nonincreasing sequence.
A sequence is bounded from below if there is a number M
with for every n. Such a number M is called a lower
bound for the sequence. Deduce from Theorem 6 that a nonin-
creasing sequence that is bounded from below converges and that
a nonincreasing sequence that is not bounded from below di-
verges.

(Continuation of Exercise 107.) Using the conclusion of Exercise 107,
determine which of the sequences in Exercises 108–112 converge and
which diverge.

108. 109.

110. 111.

112.

113. The sequence has a least upper bound of 1
Show that if M is a number less than 1, then the terms of

eventually exceed M. That is, if there is an
integer N such that whenever Since

for every n, this proves that 1 is a least upper
bound for 

114. Uniqueness of least upper bounds Show that if and 
are least upper bounds for the sequence then 
That is, a sequence cannot have two different least upper bounds.

115. Is it true that a sequence of positive numbers must con-
verge if it is bounded from above? Give reasons for your answer.

116. Prove that if is a convergent sequence, then to every pos-
itive number there corresponds an integer N such that for all
m and n,

117. Uniqueness of limits Prove that limits of sequences are
unique. That is, show that if and are numbers such that

and then 

118. Limits and subsequences If the terms of one sequence ap-
pear in another sequence in their given order, we call the first
sequence a subsequence of the second. Prove that if two sub-
sequences of a sequence have different limits 
then diverges.

119. For a sequence the terms of even index are denoted by 
and the terms of odd index by Prove that if and

then 

120. Prove that a sequence converges to 0 if and only if the se-
quence of absolute values converges to 0.5ƒ an ƒ6

5an6
an : L .a2k + 1 : L ,

a2k : La2k + 1 .
a2k5an6

5an6
L1 Z L2 ,5an6

L1 = L2 .an : L2 ,an : L1

L2L1

m 7 N and n 7 N Q  ƒ am - an ƒ 6 P .

P

5an6
5an6

M1 = M2 .5an6 ,
M2M1

5n>sn + 1d6 .
n>sn + 1d 6 1

n 7 N .n>sn + 1d 7 M
M 6 15n>sn + 1d6

5n>sn + 1d6
a1 = 1, an + 1 = 2an - 3

an =

4n + 1
+ 3n

4nan =

1 - 4n

2n

an =

1 + 22n2n
an =

n + 1
n

M … an

5an6
an Ú an + 1

5an6
xn + 1 = max 5xn , cos sn + 1d6 .

x3 = x2x2 = x1

x1 = cos s1d .

T
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Calculator Explorations of Limits
In Exercises 121–124, experiment with a calculator to find a value of
N that will make the inequality hold for all Assuming that the
inequality is the one from the formal definition of the limit of a se-
quence, what sequence is being considered in each case and what is its
limit?

121. 122.

123. 124.

125. Sequences generated by Newton’s method Newton’s
method, applied to a differentiable function ƒ(x), begins with a
starting value and constructs from it a sequence of numbers

that under favorable circumstances converges to a zero of
ƒ. The recursion formula for the sequence is

a. Show that the recursion formula for 
can be written as 

b. Starting with and calculate successive terms
of the sequence until the display begins to repeat. What num-
ber is being approximated? Explain.

126. (Continuation of Exercise 125.) Repeat part (b) of Exercise 125
with in place of 

127. A recursive definition of If you start with and
define the subsequent terms of by the rule

you generate a sequence that converges
rapidly to a. Try it. b. Use the accompanying figure to ex-
plain why the convergence is so rapid.

128. According to a front-page article in the December 15, 1992, is-
sue of the Wall Street Journal, Ford Motor Company used about

hours of labor to produce stampings for the average vehicle,
down from an estimated 15 hours in 1980. The Japanese needed
only about hours.

Ford’s improvement since 1980 represents an average de-
crease of 6% per year. If that rate continues, then n years from
1992 Ford will use about

hours of labor to produce stampings for the average vehicle. As-
suming that the Japanese continue to spend hours per vehicle,3 12

Sn = 7.25s0.94dn

3 12

7 14

10

cos xn � 11

xn � 1

xn � 1
x

y

p>2.
xn = xn - 1 + cos xn - 1 ,

5xn6
x1 = 1P/2

a = 3.a = 2

a = 3,x0 = 1

xn + 1 = sxn + a>xnd>2.
ƒsxd = x2

- a, a 7 0,

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

5xn6
x0

2n>n! 6 10-7s0.9dn
6 10-3

ƒ2n n - 1 ƒ 6 10-3
ƒ2n 0.5 - 1 ƒ 6 10-3

n 7 N .

how many more years will it take Ford to catch up? Find out two
ways:

a. Find the first term of the sequence that is less than or
equal to 3.5.

b. Graph and use Trace to find where the
graph crosses the line 

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the sequences in Exer-
cises 129–140.

a. Calculate and then plot the first 25 terms of the sequence. Does
the sequence appear to be bounded from above or below? Does it
appear to converge or diverge? If it does converge, what is the
limit L?

b. If the sequence converges, find an integer N such that
for How far in the sequence do you

have to get for the terms to lie within 0.0001 of L?

129. 130.

131.

132.

133. 134.

135. 136.

137. 138.

139. 140.

141. Compound interest, deposits, and withdrawals If you invest
an amount of money at a fixed annual interest rate r com-
pounded m times per year, and if the constant amount b is added
to the account at the end of each compounding period (or taken
from the account if ), then the amount you have after

compounding periods is

(1)

a. If and calculate
and plot the first 100 points How much money is in
your account at the end of 5 years? Does converge? Is

bounded?

b. Repeat part (a) with and

c. If you invest 5000 dollars in a certificate of deposit (CD) that
pays 4.5% annually, compounded quarterly, and you make no
further investments in the CD, approximately how many
years will it take before you have 20,000 dollars? What if the
CD earns 6.25%?

b = -50.
A0 = 5000, r = 0.0589, m = 12,

5An6
5An6

sn, And .
b = 50,A0 = 1000, r = 0.02015, m = 12,

An + 1 = a1 +

r
m bAn + b .

n + 1
b 6 0

A0

an =

n41

19nan =

8n

n!

an = 1234561>nan = s0.9999dn

an =

ln n
nan =

sin n
n

an = n sin 
1
nan = sin n

a1 = 1, an + 1 = an + s -2dn

a1 = 1, an + 1 = an +

1
5n

an = a1 +

0.5
n b

n

an = 2n n

n Ú N .ƒ an - L ƒ … 0.01

y = 3.5 .
ƒsxd = 7.25s0.94dx

5Sn6

760 Chapter 11: Infinite Sequences and Series
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761

d. It can be shown that for any the sequence defined re-
cursively by Equation (1) satisfies the relation

(2)

For the values of the constants r, m, and b given in part
(a), validate this assertion by comparing the values of the
first 50 terms of both sequences. Then show by direct substi-
tution that the terms in Equation (2) satisfy the recursion for-
mula in Equation (1).

142. Logistic difference equation The recursive relation

is called the logistic difference equation, and when the initial
value is given the equation defines the logistic sequence

Throughout this exercise we choose in the interval
say 

a. Choose Calculate and plot the points for the
first 100 terms in the sequence. Does it appear to converge?
What do you guess is the limit? Does the limit seem to de-
pend on your choice of 

b. Choose several values of r in the interval and re-
peat the procedures in part (a). Be sure to choose some points
near the endpoints of the interval. Describe the behavior of
the sequences you observe in your plots.

c. Now examine the behavior of the sequence for values of r
near the endpoints of the interval The transi-
tion value is called a bifurcation value and the new
behavior of the sequence in the interval is called an
attracting 2-cycle. Explain why this reasonably describes the
behavior.

r = 3
3 6 r 6 3.45 .

1 6 r 6 3

a0 ?

sn, andr = 3>4.

a0 = 0.3 .0 6 a0 6 1,
a05an6 .

a0

an + 1 = rans1 - and

A0 ,

Ak = a1 +

r
m b

k

 aA0 +

mb
r b -

mb
r .

k Ú 0, d. Next explore the behavior for r values near the endpoints
of each of the intervals and

Plot the first 200 terms of the sequences.
Describe in your own words the behavior observed in your
plots for each interval. Among how many values does the se-
quence appear to oscillate for each interval? The values

and (rounded to two decimal places) are
also called bifurcation values because the behavior of the se-
quence changes as r crosses over those values.

e. The situation gets even more interesting. There is actually an
increasing sequence of bifurcation values 

such that for the
logistic sequence eventually oscillates steadily among

values, called an attracting Moreover, the bifur-
cation sequence is bounded above by 3.57 (so it con-
verges). If you choose a value of you will observe a

of some sort. Choose and plot 300
points.

f. Let us see what happens when Choose 
and calculate and plot the first 300 terms of Observe
how the terms wander around in an unpredictable, chaotic
fashion. You cannot predict the value of from previous
values of the sequence.

g. For choose two starting values of that are close
together, say, and Calculate and plot
the first 300 values of the sequences determined by each
starting value. Compare the behaviors observed in your
plots. How far out do you go before the corresponding
terms of your two sequences appear to depart from each
other? Repeat the exploration for Can you see
how the plots look different depending on your choice of

We say that the logistic sequence is sensitive to the ini-
tial condition a0 .
a0 ?

r = 3.75 .

a0 = 0.301 .a0 = 0.3
a0r = 3.65

an + 1

5an6 .
r = 3.65r 7 3.57 .

r = 3.56952n-cycle
r 6 3.57

5cn6
2n-cycle.2n

5an6
cn 6 r 6 cn + 16

Á
6 cn 6 cn + 1

Á

3 6 3.45 6 3.54

r = 3.54r = 3.45

3.54 6 r 6 3.55 .
3.45 6 r 6 3.54
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11.2 Infinite Series 761

Infinite Series

An infinite series is the sum of an infinite sequence of numbers

The goal of this section is to understand the meaning of such an infinite sum and to de-
velop methods to calculate it. Since there are infinitely many terms to add in an infinite se-
ries, we cannot just keep adding to see what comes out. Instead we look at what we get by
summing the first n terms of the sequence and stopping. The sum of the first n terms

sn = a1 + a2 + a3 +
Á

+ an

a1 + a2 + a3 +
Á

+ an +
Á

11.2
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762 Chapter 11: Infinite Sequences and Series

is an ordinary finite sum and can be calculated by normal addition. It is called the nth par-
tial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting
value in the same sense that the terms of a sequence approach a limit, as discussed in
Section 11.1.

For example, to assign meaning to an expression like

We add the terms one at a time from the beginning and look for a pattern in how these par-
tial sums grow.

Suggestive
expression for

Partial sum partial sum Value

First: 1

Second:

Third:

nth: 

Indeed there is a pattern. The partial sums form a sequence whose nth term is

This sequence of partial sums converges to 2 because We say

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add
an infinite number of terms one by one? No. But we can still define their sum by defining
it to be the limit of the sequence of partial sums as in this case 2 (Figure 11.5).
Our knowledge of sequences and limits enables us to break away from the confines of
finite sums.

n : q ,

“the sum of the infinite series 1 +
1
2

+
1
4

+
Á

+
1

2n - 1 +
Á is 2.”

limn:q s1>2nd = 0.

sn = 2 -
1

2n - 1 .

2n
- 1

2n - 12 -
1

2n - 1 sn = 1 +
1
2

+
1
4

+
Á

+
1

2n - 1

ooo     o

7
4

2 -
1
4

 s3 = 1 +
1
2

+
1
4

3
2

2 -
1
2

 s2 = 1 +
1
2

2 - 1 s1 = 1

1 +
1
2

+
1
4

+
1
8

+
1
16

+
Á



0

1






1 21/2 1/8

1/4

FIGURE 11.5 As the lengths are added one by one, the sum
approaches 2.

1, 1�2, 1�4, 1�8, Á
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11.2 Infinite Series 763

When we begin to study a given series we might not know
whether it converges or diverges. In either case, it is convenient to use sigma notation to
write the series as

Geometric Series

Geometric series are series of the form

in which a and r are fixed real numbers and The series can also be written as
The ratio r can be positive, as in

or negative, as in

If the nth partial sum of the geometric series is

sn = a + as1d + as1d2
+

Á
+ as1dn - 1

= na ,

r = 1,

1 -
1
3

+
1
9

-
Á

+ a- 1
3
bn - 1

+
Á .

1 +
1
2

+
1
4

+
Á

+ a1
2
bn - 1

+
Á ,

gq

n=0 arn .
a Z 0.

a + ar + ar2
+

Á
+ arn - 1

+
Á

= a
q

n = 1
 arn - 1

a
q

n = 1
 an, a

q

k = 1
 ak, or a  an

a1 + a2 +
Á

+ an +
Á ,

DEFINITIONS Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers an expression of the form

is an infinite series. The number is the nth term of the series. The sequence
defined by

is the sequence of partial sums of the series, the number being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

a1 + a2 +
Á

+ an +
Á

= a
q

n = 1
 an = L .

sn

 o

sn = a1 + a2 +
Á

+ an = a
n

k = 1
 ak

 o

  s2 = a1 + a2

  s1 = a1

5sn6
an

a1 + a2 + a3 +
Á

+ an +
Á

5an6 ,

HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)

A useful shorthand
when summation
from 1 to is
understood

q
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If the geometric series converges
to 

If the series diverges.ƒ r ƒ Ú 1,

a
q

n = 1
 arn - 1

=

a
1 - r

, ƒ r ƒ 6 1.

a>s1 - rd :
a + ar + ar2

+
Á

+ arn - 1
+

Á
ƒ r ƒ 6 1,

and the series diverges because depending on the sign of a. If 
the series diverges because the nth partial sums alternate between a and 0. If we
can determine the convergence or divergence of the series in the following way:

If then as (as in Section 11.1) and If 
then and the series diverges.ƒ rn

ƒ : q

ƒ r ƒ 7 1,sn : a>s1 - rd .n : qrn : 0ƒ r ƒ 6 1,

 sn =

as1 - rnd
1 - r

, sr Z 1d .

 sns1 - rd = as1 - rnd
 sn - rsn = a - arn

 rsn = ar + ar2
+

Á
+ arn - 1

+ arn

 sn = a + ar + ar2
+

Á
+ arn - 1

ƒ r ƒ Z 1,
r = -1,limn:q sn = ; q ,

764 Chapter 11: Infinite Sequences and Series

Subtract from Most of
the terms on the right cancel.

sn .rsn

Factor.

We can solve for sn if r Z 1 .

Multiply by r.sn

We have determined when a geometric series converges or diverges, and to what
value. Often we can determine that a series converges without knowing the value to which
it converges, as we will see in the next several sections. The formula for the sum
of a geometric series applies only when the summation index begins with in the ex-
pression (or with the index if we write the series as ).

EXAMPLE 1 Index Starts with 

The geometric series with and is

EXAMPLE 2 Index Starts with 

The series

is a geometric series with and It converges to

EXAMPLE 3 A Bouncing Ball

You drop a ball from a meters above a flat surface. Each time the ball hits the surface after
falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the
total distance the ball travels up and down (Figure 11.6).

a
1 - r

=

5
1 + s1>4d

= 4.

r = -1>4.a = 5

a
q

n = 0
 
s -1dn5

4n = 5 -

5
4

+

5
16

-

5
64

+
Á

n = 0

1
9

+
1
27

+
1
81

+
Á

= a
q

n = 1
 
1
9

 a1
3
bn - 1

=

1>9
1 - s1>3d

=
1
6

.

r = 1>3a = 1>9
n = 1

gq

n=0 arnn = 0gq

n=1 arn - 1
n = 1

a>s1 - rd
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11.2 Infinite Series 765

Solution The total distance is

If and for instance, the distance is

EXAMPLE 4 Repeating Decimals

Express the repeating decimal as the ratio of two integers.

Solution

Unfortunately, formulas like the one for the sum of a convergent geometric series are rare
and we usually have to settle for an estimate of a series’ sum (more about this later). The
next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5 A Nongeometric but Telescoping Series

Find the sum of the series 

Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for The key observation is the partial fraction decomposition

so

and

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

sk = 1 -
1

k + 1
.

sk = a1
1

-
1
2
b + a1

2
-

1
3
b + a1

3
-

1
4
b +

Á
+ a1

k
-

1
k + 1

b .

a
k

n = 1
 

1
nsn + 1d

= a
k

n = 1
 a1n -

1
n + 1

b

1
nsn + 1d

=
1
n -

1
n + 1

,

sk .

a
q

n = 1
 

1
nsn + 1d

.

 = 5 +

23
100

 a 1
0.99
b = 5 +

23
99

=

518
99

1>s1 - 0.01d
('''''''')''''''''*

 = 5 +

23
100

 a1 +
1

100
+ a 1

100
b2

+
Á b

 5.232323 Á = 5 +

23
100

+

23
s100d2 +

23
s100d3 +

Á

5.232323 Á

s = 6 
1 + s2>3d
1 - s2>3d

= 6 a5>3
1>3 b = 30 m.

r = 2>3,a = 6 m

This sum is 2ar>s1 - rd.
(''''''')'''''''*

s = a + 2ar + 2ar2
+ 2ar3

+
Á

= a +

2ar
1 - r

= a 
1 + r
1 - r

.

r = 1>100
a = 1 ,

ar

ar2

ar3

(a)

a

FIGURE 11.6 (a) Example 3 shows how
to use a geometric series to calculate the
total vertical distance traveled by a
bouncing ball if the height of each rebound
is reduced by the factor r. (b) A
stroboscopic photo of a bouncing ball.

(b)
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We now see that as The series converges, and its sum is 1:

Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6 Partial Sums Outgrow Any Number

(a) The series

diverges because the partial sums grow beyond every number L. After the par-
tial sum is greater than 

(b) The series

diverges because the partial sums eventually outgrow every preassigned number. Each
term is greater than 1, so the sum of n terms is greater than n. 

The nth-Term Test for Divergence

Observe that must equal zero if the series converges. To see why, let S
represent the series’ sum and the nth partial sum. When n is
large, both and are close to S, so their difference, is close to zero. More formally,

This establishes the following theorem.

an = sn - sn - 1 :  S - S = 0.

an ,sn - 1sn

sn = a1 + a2 +
Á

+ an

gq

n=1 anlimn:q an

a
q

n = 1
 
n + 1

n =
2
1

+

3
2

+
4
3

+
Á

+

n + 1
n +

Á

n2 .sn = 1 + 4 + 9 +
Á

+ n2
n = 1,

a
q

n = 1
 n2

= 1 + 4 + 9 +
Á

+ n2
+

Á

a
q

n = 1
 

1
nsn + 1d

= 1.

k : q .sk : 1

766 Chapter 11: Infinite Sequences and Series

Difference Rule for
sequences

THEOREM 7

If converges, then an : 0.a
q

n = 1
 an

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

Caution
Theorem 7 does not say that 
converges if It is possible for a
series to diverge when an : 0.

an : 0.
gq

n=1 an

The nth-Term Test for Divergence

diverges if fails to exist or is different from zero.lim
n: q

 ana
q

n = 1
 an
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11.2 Infinite Series 767

EXAMPLE 7 Applying the nth-Term Test

(a) diverges because 

(b) diverges because 

(c) diverges because does not exist

(d) diverges because 

EXAMPLE 8 but the Series Diverges

The series

2 terms 4 terms

diverges because the terms are grouped into clusters that add to 1, so the partial sums
increase without bound. However, the terms of the series form a sequence that con-
verges to 0. Example 1 of Section 11.3 shows that the harmonic series also behaves in
this manner.

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them
term by term, or multiply them by constants to make new convergent series.

2n terms
(''''')'''''*('''')''''*(')'*

1 +
1
2

+
1
2

+
1
4

+
1
4

+
1
4

+
1
4

+
Á

+
1
2n +

1
2n +

Á
+

1
2n +

Á

an : 0

limn:q 
-n

2n + 5
= -

1
2

Z 0.a
q

n = 1
 

-n
2n + 5

limn:qs -1dn + 1a
q

n = 1
 s -1dn + 1

n + 1
n : 1a

q

n = 1
 
n + 1

n

n2 : qa
q

n = 1
 n2

THEOREM 8
If and are convergent series, then

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: gkan = kgan = kA sAny number kd .

gsan - bnd = gan - gbn = A - B

gsan + bnd = gan + gbn = A + B

gbn = Bgan = A

Proof The three rules for series follow from the analogous rules for sequences in
Theorem 1, Section 11.1. To prove the Sum Rule for series, let

Then the partial sums of are

 = An + Bn .

 = sa1 +
Á

+ and + sb1 +
Á

+ bnd
 sn = sa1 + b1d + sa2 + b2d +

Á
+ san + bnd

gsan + bnd

An = a1 + a2 +
Á

+ an, Bn = b1 + b2 +
Á

+ bn .
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Since and we have by the Sum Rule for sequences. The
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of 
form the sequence

which converges to kA by the Constant Multiple Rule for sequences.
As corollaries of Theorem 8, we have

1. Every nonzero constant multiple of a divergent series diverges.

2. If converges and diverges, then and both diverge.

We omit the proofs.

CAUTION Remember that can converge when and both diverge.
For example, and diverge,
whereas converges to 0.

EXAMPLE 9 Find the sums of the following series.

(a)

(b)

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without
altering the series’ convergence or divergence, although in the case of convergence this will
usually change the sum. If converges, then converges for any and

Conversely, if converges for any then converges. Thus,

a
q

n = 1
 
1
5n =

1
5 +

1
25

+
1

125
+ a

q

n = 4
 
1
5n

gq

n=1 ank 7 1,gq

n=k an

a
q

n = 1
 an = a1 + a2 +

Á
+ ak - 1 + a

q

n = k
 an .

k 7 1gq

n=k angq

n=1 an

 = 8

 = 4 a 1
1 - s1>2d

b

 a
q

n = 0
 
4
2n = 4a

q

n = 0
 
1
2n

 =
4
5

 = 2 -

6
5

 =
1

1 - s1>2d
-

1
1 - s1>6d

 = a
q

n = 1
 

1
2n - 1 - a

q

n = 1
 

1
6n - 1

 a
q

n = 1
 
3n - 1

- 1
6n - 1 = a

q

n = 1
 a 1

2n - 1 -
1

6n - 1 b

gsan + bnd = 0 + 0 + 0 +
Á

gbn = s -1d + s -1d + s -1d +
Ágan = 1 + 1 + 1 +

Á

gbngangsan + bnd

gsan - bndgsan + bndgbngan

sn = ka1 + ka2 +
Á

+ kan = ksa1 + a2 +
Á

+ and = kAn ,

gkan

sn : A + BBn : B ,An : A
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Difference Rule

Geometric series with a = 1 and r = 1>2, 1>6

Constant Multiple Rule

Geometric series with a = 1, r = 1>2
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11.2 Infinite Series 769

and

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its
convergence. To raise the starting value of the index h units, replace the n in the formula
for by 

To lower the starting value of the index h units, replace the n in the formula for by

It works like a horizontal shift. We saw this in starting a geometric series with the index
instead of the index but we can use any other starting index value as well.

We usually give preference to indexings that lead to simple expressions.

EXAMPLE 10 Reindexing a Geometric Series

We can write the geometric series

as

The partial sums remain the same no matter what indexing we choose.

a
q

n = 0
 
1
2n, a

q

n = 5
 

1
2n - 5, or even a

q

n = -4
 

1
2n + 4 .

a
q

n = 1
 

1
2n - 1 = 1 +

1
2

+
1
4

+
Á

n = 1,n = 0

a
q

n = 1
 an = a

q

n = 1 - h
 an + h = a1 + a2 + a3 +

Á .

n + h :
an

a
q

n = 1
 an = a

q

n = 1 + h
 an - h = a1 + a2 + a3 +

Á .

n - h :an

a
q

n = 4
 
1
5n = aa

q

n = 1
 
1
5n b -

1
5 -

1
25

-
1

125
.

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
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11.2 Infinite Series 769

EXERCISES 11.2

Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series
and use it to find the series’ sum if the series converges.

1.

2.

3.

4. 1 - 2 + 4 - 8 +
Á

+ s -1dn - 1 2n - 1
+

Á

1 -

1
2

+

1
4

-

1
8

+
Á

+ s -1dn - 1 
1

2n - 1 +
Á

9
100

+

9
1002 +

9
1003 +

Á
+

9
100n +

Á

2 +

2
3

+

2
9

+

2
27

+
Á

+

2
3n - 1 +

Á

5.

6.

Series with Geometric Terms
In Exercises 7–14, write out the first few terms of each series to show
how the series starts. Then find the sum of the series.

7. 8. a
q

n = 2
 
1
4na

q

n = 0
 
s -1dn

4n

5
1 # 2

+

5
2 # 3

+

5
3 # 4

+
Á

+

5
nsn + 1d

+
Á

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+
Á

+

1
sn + 1dsn + 2d

+
Á
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9. 10.

11. 12.

13. 14.

Telescoping Series
Use partial fractions to find the sum of each series in Exercises 15–22.

15. 16.

17. 18.

19. 20.

21.

22.

Convergence or Divergence
Which series in Exercises 23–40 converge, and which diverge? Give
reasons for your answers. If a series converges, find its sum.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Geometric Series
In each of the geometric series in Exercises 41–44, write out the first
few terms of the series to find a and r, and find the sum of the series.

a
q

n = 0
 
enp

pnea
q

n = 0
 a e
p b

n

a
q

n = 1
 ln a n

2n + 1
ba

q

n = 1
 ln a n

n + 1
b

a
q

n = 1
 
nn

n!a
q

n = 0
 

n!
1000n

a
q

n = 1
 a1 -

1
n b

n

a
q

n = 0
 
2n

- 1
3n

a
q

n = 0
 
1
xn , ƒ x ƒ 7 1a

q

n = 1
 

2
10n

a
q

n = 1
 ln 

1
na

q

n = 0
 e-2n

a
q

n = 0
 
cos np

5na
q

n = 0
 cos np

a
q

n = 1
s -1dn + 1na

q

n = 1
s -1dn + 1 

3
2n

a
q

n = 0
A22 Bna

q

n = 0
 a 122

bn

a
q

n = 1
stan-1 snd - tan-1 sn + 1dd

a
q

n = 1
 a 1

ln sn + 2d
-

1
ln sn + 1d

b
a
q

n = 1
 a 1

21>n -

1

21>sn + 1d
ba

q

n = 1
 a 12n

-

12n + 1
b

a
q

n = 1
 

2n + 1
n2sn + 1d2a

q

n = 1
 

40n

s2n - 1d2s2n + 1d2

a
q

n = 1
 

6
s2n - 1ds2n + 1da

q

n = 1
 

4
s4n - 3ds4n + 1d

a
q

n = 0
 a2n + 1

5n ba
q

n = 0
 a 1

2n +

s -1dn

5n b
a
q

n = 0
 a 5

2n -

1
3n ba

q

n = 0
 a 5

2n +

1
3n b

a
q

n = 0
s -1dn 

5
4na

q

n = 1
 
7
4n

Then express the inequality in terms of x and find the values
of x for which the inequality holds and the series converges.

41. 42.

43. 44.

In Exercises 45–50, find the values of x for which the given geometric
series converges. Also, find the sum of the series (as a function of x)
for those values of x.

45. 46.

47. 48.

49. 50.

Repeating Decimals
Express each of the numbers in Exercises 51–58 as the ratio of two
integers.

51.

52.

53.

54. d is a digit

55.

56.

57.

58.

Theory and Examples
59. The series in Exercise 5 can also be written as

Write it as a sum beginning with (a) (b)
(c)

60. The series in Exercise 6 can also be written as

Write it as a sum beginning with (a) (b)
(c)

61. Make up an infinite series of nonzero terms whose sum is

a. 1 b. c. 0.

62. (Continuation of Exercise 61.) Can you make an infinite series of
nonzero terms that converges to any number you want? Explain.

63. Show by example that may diverge even though 
and converge and no equals 0.bngbn

gangsan>bnd

-3

n = 20.
n = 3,n = -1,

a
q

n = 1
 

5
nsn + 1d

 and a
q

n = 0
 

5
sn + 1dsn + 2d

.

n = 5.
n = 0,n = -2,

a
q

n = 1
 

1
sn + 1dsn + 2d

 and a
q

n = -1
 

1
sn + 3dsn + 4d

.

3.142857 = 3.142857 142857 Á

1.24123 = 1.24 123 123 123 Á

1.414 = 1.414 414 414 Á

0.06 = 0.06666 Á

0.d = 0.dddd Á , where

0.7 = 0.7777 Á

0.234 = 0.234 234 234 Á

0.23 = 0.23 23 23 Á

a
q

n = 0
sln xdna

q

n = 0
 sinn x

a
q

n = 0
 a- 1

2
bn

sx - 3dna
q

n = 0
s -1dnsx + 1dn

a
q

n = 0
s -1dnx-2na

q

n = 0
2nxn

a
q

n = 0
 
s -1dn

2
 a 1

3 + sin x
bn

a
q

n = 0
3 ax - 1

2
bn

a
q

n = 0
s -1dnx2na

q

n = 0
s -1dnxn

ƒ r ƒ 6 1
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11.2 Infinite Series 771

64. Find convergent geometric series and that
illustrate the fact that may converge without being equal
to AB.

65. Show by example that may converge to something other
than A B even when and no equals 0.

66. If converges and for all n, can anything be said about
Give reasons for your answer.

67. What happens if you add a finite number of terms to a divergent
series or delete a finite number of terms from a divergent series?
Give reasons for your answer.

68. If converges and diverges, can anything be said about
their term-by-term sum Give reasons for your answer.

69. Make up a geometric series that converges to the number
5 if

a. b.

70. Find the value of b for which

71. For what values of r does the infinite series

converge? Find the sum of the series when it converges.

72. Show that the error obtained by replacing a convergent
geometric series with one of its partial sums is 

73. A ball is dropped from a height of 4 m. Each time it strikes the pave-
ment after falling from a height of h meters it rebounds to a height of
0.75h meters. Find the total distance the ball travels up and down.

74. (Continuation of Exercise 73.) Find the total number of seconds
the ball in Exercise 73 is traveling. (Hint: The formula 
gives )

75. The accompanying figure shows the first five of a sequence of
squares. The outermost square has an area of Each of the
other squares is obtained by joining the midpoints of the sides of
the squares before it. Find the sum of the areas of all the squares.

76. The accompanying figure shows the first three rows and part of
the fourth row of a sequence of rows of semicircles. There are 
semicircles in the nth row, each of radius Find the sum of
the areas of all the semicircles.

1>2n .
2n

4 m2 .

t = 2s>4.9 .
s = 4.9t2

arn>s1 - rd .sn

sL - snd

1 + 2r + r2
+ 2r3

+ r4
+ 2r5

+ r6
+

Á

1 + eb
+ e2b

+ e3b
+

Á
= 9.

a = 13>2.a = 2

garn - 1

gsan + bnd?
gbngan

gs1>and?
an 7 0gan

bnA = gan, B = gbn Z 0,> gsan>bnd

gan bn

B = gbnA = gan

77. Helga von Koch’s snowflake curve Helga von Koch’s snow-
flake is a curve of infinite length that encloses a region of finite
area. To see why this is so, suppose the curve is generated by
starting with an equilateral triangle whose sides have length 1.

a. Find the length of the nth curve and show that

b. Find the area of the region enclosed by and calculate

78. The accompanying figure provides an informal proof that
is less than 2. Explain what is going on. (Source:

“Convergence with Pictures” by P. J. Rippon, American Mathe-
matical Monthly, Vol. 93, No. 6, 1986, pp. 476–478.)

11

1 …

…

1
2

1
32

1
22

1
42

1
52

1
4

1
62

1
72

gq

n=1 s1>n2d

Curve 1

Curve 4Curve 3

Curve 2

limn:q An .
CnAn

limn:q Ln = q .
CnLn

1/2

1/4

1/8
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772 Chapter 11: Infinite Sequences and Series

The Integral Test

Given a series we have two questions:

1. Does the series converge?

2. If it converges, what is its sum?

Much of the rest of this chapter is devoted to the first question, and in this section we answer that
question by making a connection to the convergence of the improper integral How-
ever, as a practical matter the second question is also important, and we will return to it later.

In this section and the next two, we study series that do not have negative terms. The
reason for this restriction is that the partial sums of these series form nondecreasing
sequences, and nondecreasing sequences that are bounded from above always converge
(Theorem 6, Section 11.1). To show that a series of nonnegative terms converges, we need
only show that its partial sums are bounded from above.

It may at first seem to be a drawback that this approach establishes the fact of conver-
gence without producing the sum of the series in question. Surely it would be better to
compute sums of series directly from formulas for their partial sums. But in most cases
such formulas are not available, and in their absence we have to turn instead to the two-
step procedure of first establishing convergence and then approximating the sum.

Nondecreasing Partial Sums

Suppose that is an infinite series with for all n. Then each partial sum is
greater than or equal to its predecessor because 

Since the partial sums form a nondecreasing sequence, the Nondecreasing Sequence The-
orem (Theorem 6, Section 11.1) tells us that the series will converge if and only if the par-
tial sums are bounded from above.

s1 … s2 … s3 …
Á

… sn … sn + 1 …
Á .

sn + 1 = sn + an :
an Ú 0gq

n=1 an

1q

1  ƒsxd dx .

gan ,

11.3

Corollary of Theorem 6
A series of nonnegative terms converges if and only if its partial sums
are bounded from above.

gq

n=1 an

EXAMPLE 1 The Harmonic Series

The series

is called the harmonic series. The harmonic series is divergent, but this doesn’t follow
from the nth-Term Test. The nth term 1 n does go to zero, but the series still diverges. The
reason it diverges is because there is no upper bound for its partial sums. To see why,
group the terms of the series in the following way:

7  8
16 =

1
27  48 =

1
27  24 =

1
2

('''''')''''''*(''''')'''''*('')''*

1 +
1
2

+ a1
3

+
1
4
b + a15 +

1
6

+
1
7 +

1
8
b + a1

9
+

1
10

+
Á

+
1
16
b +

Á.

>
a
q

n = 1
 
1
n = 1 +

1
2

+
1
3

+
Á

+
1
n +

Á
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11.3 The Integral Test 773

The sum of the first two terms is 1.5. The sum of the next two terms is which
is greater than The sum of the next four terms is 

which is greater than The sum of the next
eight terms is which is
greater than The sum of the next 16 terms is greater than and
so on. In general, the sum of terms ending with is greater than 
The sequence of partial sums is not bounded from above: If the partial sum is
greater than k 2. The harmonic series diverges.

The Integral Test

We introduce the Integral Test with a series that is related to the harmonic series, but
whose nth term is instead of 1 n.

EXAMPLE 2 Does the following series converge?

Solution We determine the convergence of by comparing it with
To carry out the comparison, we think of the terms of the series as values of

the function and interpret these values as the areas of rectangles under the
curve 

As Figure 11.7 shows,

Thus the partial sums of are bounded from above (by 2) and the series
converges. The sum of the series is known to be (See Exercise 16 in
Section 11.11.)

p2>6 L 1.64493.
gq

n=11>n2

 6 1 + 1 = 2.

 6 1 + L
q

1
 
1
x2 dx

 6 ƒs1d + L
n

1
 
1
x2 dx

 = ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒsnd

 sn =
1
12 +

1
22 +

1
32 +

Á
+

1
n2

y = 1>x2 .
ƒsxd = 1>x2

1q

1 s1>x2d dx .
gq

n=1s1>n2d

a
q

n = 1
 
1
n2 = 1 +

1
4

+
1
9

+
1
16

+
Á

+
1
n2 +

Á

>1>n2

> snn = 2k ,
2n>2n + 1

= 1>2.1>2n + 12n
16>32 = 1>2,8>16 = 1>2.

1>15 + 1>16,1>9 + 1>10 + 1>11 + 1>12 + 1>13 + 1>14 +

1>8 + 1>8 + 1>8 + 1>8 = 1>2.1>7 + 1>8,
1>5 + 1>6 +1>4 + 1>4 = 1>2.

1>3 + 1>4,

0 1

Graph of f(x) �

(1, f(1)) 

(2, f(2))

(3, f(3))
(n, f(n))

2 3 4 … n � 1 n …

1
x2

1
n2

1
22

1
12

1
32

1
42

x

y

FIGURE 11.7 The sum of the areas of the
rectangles under the graph of 
is less than the area under the graph
(Example 2).

f (x) = 1>x2

As in Section 8.8, Example 3,

1q

1 s1>x2d dx = 1 .

THEOREM 9 The Integral Test
Let be a sequence of positive terms. Suppose that where ƒ is a
continuous, positive, decreasing function of x for all (N a positive inte-
ger). Then the series and the integral both converge or both
diverge.

1q

N  ƒsxd dxgq

n=N an

x Ú N
an = ƒsnd ,5an6

Proof We establish the test for the case The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with for every

n. This leads us to observe that the rectangles in Figure 11.8a, which have areas
ƒsnd = an

N = 1.

Caution
The series and integral need not have the
same value in the convergent case. As we
noted in Example 2, 

while 1q

1 s1>x2d dx = 1.p2>6
gq

n=1s1>n2d =
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collectively enclose more area than that under the curve from
to That is,

In Figure 11.8b the rectangles have been faced to the left instead of to the right. If we mo-
mentarily disregard the first rectangle, of area we see that

If we include we have

Combining these results gives

These inequalities hold for each n, and continue to hold as 

If is finite, the right-hand inequality shows that is finite. If

is infinite, the left-hand inequality shows that is infinite. Hence the series

and the integral are both finite or both infinite.

EXAMPLE 3 The p-Series

Show that the p-series

( p a real constant) converges if and diverges if 

Solution If then is a positive decreasing function of x. Since

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
The series converges, but we don’t know the value it converges to.

If then and

The series diverges by the Integral Test.

L
q

1
 
1
xp dx =

1
1 - p

 lim
b: q

sb1 - p
- 1d = q .

1 - p 7 0p 6 1,
1>s p - 1d .

 =
1

1 - p
 s0 - 1d =

1
p - 1

,

 =
1

1 - p
 lim
b: q

 a 1
b p - 1 - 1b

 L
q

1
 
1
xp dx = L

q

1
 x-p dx = lim

b: q

 c x-p + 1

-p + 1
d

1

b

ƒsxd = 1>xpp 7 1,

p … 1.p 7 1,

a
q

n = 1
 
1
np =

1
1p +

1
2p +

1
3p +

Á
+

1
np +

Á

gan1q

1  ƒsxd dx

gan1q

1  ƒsxd dx

n : q .

L
n + 1

1
 ƒsxd dx … a1 + a2 +

Á
+ an … a1 + L

n

1
 ƒsxd dx .

a1 + a2 +
Á

+ an … a1 + L
n

1
 ƒsxd dx .

a1 ,

a2 + a3 +
Á

+ an … L
n

1
 ƒsxd dx .

a1 ,

L
n + 1

1
 ƒsxd dx … a1 + a2 +

Á
+ an .

x = n + 1.x = 1
y = ƒsxda1, a2, Á , an ,
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0 1 2 n3 n � 1

a1
a2

an

(a)

0 1 2 n3 n � 1

a1

a3
an

(b)

a2

x

y

x

y

y � f (x)

y � f (x)

FIGURE 11.8 Subject to the conditions of
the Integral Test, the series and
the integral both converge or
both diverge.

1q

1 ƒsxd dx
gq

n=1 an

because p - 1 7 0.
b p - 1 : q  as b : q
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11.3 The Integral Test 775

If we have the (divergent) harmonic series

We have convergence for but divergence for every other value of p.

The p-series with is the harmonic series (Example 1). The p-Series Test shows
that the harmonic series is just barely divergent; if we increase p to 1.000000001, for in-
stance, the series converges!

The slowness with which the partial sums of the harmonic series approaches infinity
is impressive. For instance, it takes about 178,482,301 terms of the harmonic series to
move the partial sums beyond 20. It would take your calculator several weeks to compute a
sum with this many terms. (See also Exercise 33b.)

EXAMPLE 4 A Convergent Series

The series

converges by the Integral Test. The function is positive, continuous,
and decreasing for and

Again we emphasize that is not the sum of the series. The series converges, but we do
not know the value of its sum.

Convergence of the series in Example 4 can also be verified by comparison with the
series Comparison tests are studied in the next section.g1>n2 .

p>4
 =

p
2

-

p
4

=

p
4

.

 = lim
b: q

[arctan b - arctan 1]

 L
q

1
 

1
x2

+ 1
 dx = lim

b: q

 Carctan x D1b
x Ú 1,

ƒsxd = 1>sx2
+ 1d

a
q

n = 1
 

1
n2

+ 1

p = 1

p 7 1

1 +
1
2

+
1
3

+
Á

+
1
n +

Á .

p = 1,

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 775

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


11.3 The Integral Test 775

EXERCISES 11.3

Determining Convergence or Divergence
Which of the series in Exercises 1–30 converge, and which diverge?
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’ con-
vergence or divergence.)

1. 2. 3.

4. 5. 6.

7. 8. 9. a
q

n = 2
 
ln n
na

q

n = 1
 
-8
na

q

n = 1
-

1
8n

a
q

n = 1
 

-2

n2n
a
q

n = 1
 

32n
a
q

n = 1
 

5
n + 1

a
q

n = 1
 

n
n + 1a

q

n = 1
 e-na

q

n = 1
 

1
10n

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20.

21. 22. a
q

n = 1
 

1
ns1 + ln2 nda

q

n = 3
 

s1>nd

sln nd2ln2 n - 1

a
q

n = 1
 

1
sln 3dna

q

n = 1
 

1
sln 2dn

a
q

n = 1
 a1 +

1
n b

n

a
q

n = 2
 
2n
ln na

q

n = 1
 

12n A2n + 1 B

a
q

n = 1
 

2n

n + 1a
q

n = 1
 

1
2n - 1a

q

n = 0
 

-2
n + 1

a
q

n = 1
 

5n

4n
+ 3a

q

n = 1
 
2n

3na
q

n = 2
 
ln n2n
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23. 24.

25. 26.

27. 28.

29. 30.

Theory and Examples
For what values of a, if any, do the series in Exercises 31 and 32
converge?

31. 32.

33. a. Draw illustrations like those in Figures 11.7 and 11.8 to show that
the partial sums of the harmonic series satisfy the inequalities

b. There is absolutely no empirical evidence for the divergence
of the harmonic series even though we know it diverges. The
partial sums just grow too slowly. To see what we mean,
suppose you had started with the day the universe was
formed, 13 billion years ago, and added a new term every
second. About how large would the partial sum be today,
assuming a 365-day year?

34. Are there any values of x for which converges?
Give reasons for your answer.

35. Is it true that if is a divergent series of positive numbers
then there is also a divergent series of positive numbers
with for every n? Is there a “smallest” divergent series of
positive numbers? Give reasons for your answers.

36. (Continuation of Exercise 35.) Is there a “largest” convergent se-
ries of positive numbers? Explain.

37. The Cauchy condensation test The Cauchy condensation test
says: Let be a nonincreasing sequence ( for all n)
of positive terms that converges to 0. Then converges if and
only if converges. For example, diverges because

diverges. Show why the test works.

38. Use the Cauchy condensation test from Exercise 37 to show that

a. diverges;

b. converges if and diverges if p … 1.p 7 1a
q

n = 1
 
1
np

a
q

n = 2
 

1
n ln n

g2n # s1>2nd = g1
gs1>ndg2na2n

gan

an Ú an + 15an6

bn 6 an

gq

n=1 bn

gq

n=1 an

gq

n=1s1>snxdd

sn

s1 = 1

 … 1 + L
n

1
 
1
x  dx = 1 + ln n .

 ln sn + 1d = L
n + 1

1
 
1
x  dx … 1 +

1
2

+
Á

+

1
n

a
q

n = 3
 a 1

n - 1
-

2a
n + 1

ba
q

n = 1
 a a

n + 2
-

1
n + 4

b

a
q

n = 1
 sech2 na

q

n = 1
 sech n

a
q

n = 1
 

n

n2
+ 1a

q

n = 1
 
8 tan-1 n

1 + n2

a
q

n = 1
 

2
1 + ena

q

n = 1
 

en

1 + e2n

a
q

n = 1
 n tan 

1
na

q

n = 1
 n sin 

1
n

39. Logarithmic p-series

a. Show that

converges if and only if 

b. What implications does the fact in part (a) have for the
convergence of the series

Give reasons for your answer.

40. (Continuation of Exercise 39.) Use the result in Exercise 39 to de-
termine which of the following series converge and which di-
verge. Support your answer in each case.

a. b.

c. d.

41. Euler’s constant Graphs like those in Figure 11.8 suggest that as
n increases there is little change in the difference between the sum

and the integral

To explore this idea, carry out the following steps.

a. By taking in the proof of Theorem 9, show that

or

Thus, the sequence

is bounded from below and from above.

b. Show that

and use this result to show that the sequence in part (a)
is decreasing.

5an6

1
n + 1

6 L
n + 1

n
 
1
x  dx = ln sn + 1d - ln n ,

an = 1 +

1
2

+
Á

+

1
n - ln n

0 6 ln sn + 1d - ln n … 1 +

1
2

+
Á

+

1
n - ln n … 1.

ln sn + 1d … 1 +

1
2

+
Á

+

1
n … 1 + ln n

ƒsxd = 1>x

ln n = L
n

1
 
1
x  dx .

1 +

1
2

+
Á

+

1
n

a
q

n = 2
 

1
nsln nd3a

q

n = 2
 

1
n ln sn3d

a
q

n = 2
 

1
nsln nd1.01a

q

n = 2
 

1
nsln nd

a
q

n = 2
 

1
nsln nd p ?

p 7 1.

L
q

2
 

dx
xsln xd p s p a positive constantd
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777

Since a decreasing sequence that is bounded from below con-
verges (Exercise 107 in Section 11.1), the numbers defined in
part (a) converge:

The number whose value is is called Euler’s con-
stant. In contrast to other special numbers like and e, no otherp

0.5772 Á ,g ,

1 +

1
2

+
Á

+

1
n - ln n : g .

an

expression with a simple law of formulation has ever been found
for 

42. Use the integral test to show that

converges.

a
q

n = 0
e-n2

g .
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11.4 Comparison Tests 777

Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few
others. We can test the convergence of many more series by comparing their terms to those
of a series whose convergence is known.

11.4

THEOREM 10 The Comparison Test
Let be a series with no negative terms.

(a) converges if there is a convergent series with for all
for some integer N.

(b) diverges if there is a divergent series of nonnegative terms with
for all for some integer N.n 7 N ,an Ú dn

gdngan

n 7 N ,
an … cngcngan

gan

Proof In Part (a), the partial sums of are bounded above by

They therefore form a nondecreasing sequence with a limit 
In Part (b), the partial sums of are not bounded from above. If they were, the par-

tial sums for would be bounded by

and would have to converge instead of diverge.

EXAMPLE 1 Applying the Comparison Test

(a) The series

diverges because its nth term

is greater than the nth term of the divergent harmonic series.

5
5n - 1

=
1

n -
1
5

7
1
n

a
q

n = 1
 

5
5n - 1

gdn

M*
= d1 + d2 +

Á
+ dN + a

q

n = N + 1
an

gdn

gan

L … M .

M = a1 + a2 +
Á

+ aN + a
q

n = N + 1
cn .

gan
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778 Chapter 11: Infinite Sequences and Series

(b) The series

converges because its terms are all positive and less than or equal to the correspon-
ding terms of

The geometric series on the left converges and we have

The fact that 3 is an upper bound for the partial sums of does not
mean that the series converges to 3. As we will see in Section 11.9, the series con-
verges to e.

(c) The series

converges. To see this, we ignore the first three terms and compare the remaining terms
with those of the convergent geometric series The term of
the truncated sequence is less than the corresponding term of the geometric se-
ries. We see that term by term we have the comparison,

So the truncated series and the original series converge by an application of the Com-
parison Test.

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which is a
rational function of n.

an

1 +
1

2 + 21
+

1

4 + 22
+

1

8 + 23
+

Á
… 1 +

1
2

+
1
4

+
1
8

+
Á

1>2n
1>s2n

+ 2ndgq

n=0 s1>2nd .

5 +
2
3

+
1
7 + 1 +

1

2 + 21
+

1

4 + 22
+

1

8 + 23
+

Á
+

1

2n
+ 2n

+
Á

gq

n=0 s1>n!d

1 + a
q

n = 0
 
1
2n = 1 +

1
1 - s1>2d

= 3.

1 + a
q

n = 0
 
1
2n = 1 + 1 +

1
2

+
1
22 +

Á .

a
q

n = 0
 
1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+
Á

THEOREM 11 Limit Comparison Test
Suppose that and for all (N an integer).

1. If then and both converge or both diverge.

2. If and converges, then converges.

3. If and diverges, then diverges.gangbnlim
n: q

 
an

bn
= q

gangbnlim
n: q

 
an

bn
= 0

gbnganlim
n: q

 
an

bn
= c 7 0,

n Ú Nbn 7 0an 7 0
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11.4 Comparison Tests 779

Proof We will prove Part 1. Parts 2 and 3 are left as Exercises 37(a) and (b).
Since there exists an integer N such that for all n

Thus, for 

If converges, then converges and converges by the Direct Compari-
son Test. If diverges, then diverges and diverges by the Direct Com-
parison Test.

EXAMPLE 2 Using the Limit Comparison Test

Which of the following series converge, and which diverge?

(a)

(b)

(c)

Solution

(a) Let For large n, we expect to behave like
since the leading terms dominate for large n, so we let Since

and

diverges by Part 1 of the Limit Comparison Test. We could just as well have
taken but 1 n is simpler.>bn = 2>n ,
gan

lim
n: q

 
an

bn
= lim

n: q

 
2n2

+ n
n2

+ 2n + 1
= 2,

a
q

n = 1
bn = a

q

n = 1
 
1
n diverges

bn = 1>n .2n>n2
= 2>n anan = s2n + 1d>sn2

+ 2n + 1d .

1 + 2 ln 2
9

+

1 + 3 ln 3
14

+
1 + 4 ln 4

21
+

Á
= a

q

n = 2
 
1 + n ln n

n2
+ 5

1
1

+
1
3

+
1
7 +

1
15

+
Á

= a
q

n = 1
 

1
2n

- 1

3
4

+

5
9

+

7
16

+

9
25

+
Á

= a
q

n = 1
 

2n + 1
sn + 1d2 = a

q

n = 1
 

2n + 1
n2

+ 2n + 1

gangsc>2dbngbn

gangs3c>2dbngbn

 ac
2
bbn 6 an 6 a3c

2
bbn .

 
c
2

6

an

bn
6

3c
2

,

 -
c
2

6

an

bn
- c 6

c
2

,

n 7 N ,

n 7 N Q  ` an

bn
- c ` 6

c
2

.

c>2 7 0,
Limit definition with

and
replaced by an>bnan

P = c>2, L = c ,
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(b) Let For large n, we expect to behave like so we let
Since

and

converges by Part 1 of the Limit Comparison Test.

(c) Let For large n, we expect to behave like
which is greater than 1 n for so we take 

Since

and

diverges by Part 3 of the Limit Comparison Test.

EXAMPLE 3 Does converge?

Solution Because ln n grows more slowly than for any positive constant c
(Section 11.1, Exercise 91), we would expect to have

for n sufficiently large. Indeed, taking and we have

Since (a p-series with ) converges, converges by Part 2 of
the Limit Comparison Test.

ganp 7 1gbn = gs1>n5>4d

 = lim
n: q

 
4

n1>4 = 0.

 = lim
n: q

 
1>n

s1>4dn-3>4

 lim
n: q

 
an

bn
= lim

n: q

 
ln n

n1>4

bn = 1>n5>4 ,an = sln nd>n3>2

ln n

n3>2 6

n1>4
n3>2 =

1
n5>4

nc

a
q

n = 1
 
ln n

n3>2

gan

 = q ,

 lim
n: q

 
an

bn
= lim

n: q

 
n + n2 ln n

n2
+ 5

a
q

n = 2
bn = a

q

n = 2
 
1
n  diverges

bn = 1>n .n Ú 3,>sn ln nd>n2
= sln nd>n ,

anan = s1 + n ln nd>sn2
+ 5d .

gan

 = 1,

 = lim
n: q

 
1

1 - s1>2nd

 lim
n: q

 
an

bn
= lim

n: q

 
2n

2n
- 1

a
q

n = 1
bn = a

q

n = 1
 
1
2n  converges

bn = 1>2n .
1>2n ,anan = 1>s2n

- 1d .
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l’Hôpital’s Rule
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781

EXERCISES 11.4

Determining Convergence or Divergence
Which of the series in Exercises 1–36 converge, and which diverge?
Give reasons for your answers.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

27. 28.

29. 30. 31.

32. 33. 34.

35. 36.

Theory and Examples
37. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

a
q

n = 1
 

1
1 + 22

+ 32
+

Á
+ n2a

q

n = 1
 

1
1 + 2 + 3 +

Á
+ n

a
q

n = 1
 
2n n

n2a
q

n = 1
 

1

n2n n
a
q

n = 1
 
tanh n

n2

a
q

n = 1
 
coth n

n2a
q

n = 1
 
sec-1 n

n1.3a
q

n = 1
 
tan-1 n

n1.1

a
q

n = 3
 

5n3
- 3n

n2sn - 2dsn2
+ 5da

q

n = 1
 

10n + 1
nsn + 1dsn + 2d

a
q

n = 1
 tan 

1
na

q

n = 1
 sin 

1
n

a
q

n = 1
 
3n - 1

+ 1
3na

q

n = 1
 

1
3n - 1

+ 1a
q

n = 1
 
n + 2n

n22n

a
q

n = 1
 
1 - n

n2na
q

n = 1
 
2n

n2
+ 1a

q

n = 2
 

1

n2n2
- 1

a
q

n = 1
 

1
s1 + ln2 nda

q

n = 2
 
ln sn + 1d

n + 1a
q

n = 1
 

1
s1 + ln nd2

a
q

n = 1
 

1
1 + ln na

q

n = 1
 
sln nd2

n3>2a
q

n = 2
 

12n ln n

a
q

n = 1
 
sln nd3

n3a
q

n = 1
 
sln nd2

n3a
q

n = 2
 

1
sln nd2

a
q

n = 3
 

1
ln sln nda

q

n = 1
 

12n3
+ 2

a
q

n = 1
 a n

3n + 1
bn

a
q

n = 1
 
n + 1

n22n
a
q

n = 1
 

2n
3n - 1a

q

n = 1
 
1 + cos n

n2

a
q

n = 1
 
sin2 n

2na
q

n = 1
 

3

n + 2n
a
q

n = 1
 

1

22n + 23 n

38. If is a convergent series of nonnegative numbers, can
anything be said about Explain.

39. Suppose that and for (N an integer). If
and converges, can anything be said

about Give reasons for your answer.

40. Prove that if is a convergent series of nonnegative terms,
then converges.

COMPUTER EXPLORATION

41. It is not yet known whether the series

converges or diverges. Use a CAS to explore the behavior of the
series by performing the following steps.

a. Define the sequence of partial sums

What happens when you try to find the limit of as 
Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points for the sequence of partial
sums. Do they appear to converge? What would you estimate
the limit to be?

c. Next plot the first 200 points Discuss the behavior in
your own words.

d. Plot the first 400 points What happens when
Calculate the number 355 113. Explain from your

calculation what happened at For what values of k
would you guess this behavior might occur again?

You will find an interesting discussion of this series in Chapter 72
of Mazes for the Mind by Clifford A. Pickover, St. Martin’s Press,
Inc., New York, 1992.

k = 355.
>k = 355?

sk, skd .

sk, skd .

sk, skd

k : q ?sk

sk = a
k

n = 1
 

1
n3 sin2 n

.

a
q

n = 1
 

1
n3 sin2 n

gan
2
gan

g bn ?
ganlim n:q san>bnd = q

n Ú Nbn 7 0an 7 0

gq

n=1san>nd?
gq

n=1 an
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11.5 The Ratio and Root Tests 781

The Ratio and Root Tests

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio
For a geometric series this rate is a constant and the

series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a
powerful rule extending that result. We prove it on the next page using the Comparison Test.

ssarn + 1d>sarnd = rd ,garn ,an + 1>an .

11.5
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Proof

(a) Let r be a number between and 1. Then the number is positive.
Since

must lie within of when n is large enough, say for all In particular

That is,

These inequalities show that the terms of our series, after the Nth term, approach zero
more rapidly than the terms in a geometric series with ratio More precisely,
consider the series where for and 

Now for all n, and

The geometric series converges because so con-
verges. Since also converges.

(b) From some index M on,

The terms of the series do not approach zero as n becomes infinite, and the series
diverges by the nth-Term Test.

an + 1
an

7 1  and  aM 6 aM + 1 6 aM + 2 6
Á .

1<R ◊ ˆ .

an … cn, gan

gcnƒ r ƒ 6 1,1 + r + r2
+

Á

 = a1 + a2 +
Á

+ aN - 1 + aN s1 + r + r2
+

Ád .

 a
q

n = 1
cn = a1 + a2 +

Á
+ aN - 1 + aN + raN + r2aN +

Á

an … cnr2aN, Á , cN + m = rmaN, Á .
cN + 1 = raN, cN + 2 =n = 1, 2, Á , Ncn = angcn ,

r 6 1.

 aN + m 6 raN + m - 1 6 r maN .

 o

 aN + 3 6 raN + 2 6 r 3aN ,

 aN + 2 6 raN + 1 6 r 2aN ,

 aN + 1 6 raN ,

an + 1
an

6 r + P = r, when n Ú N .

n Ú N .rPan + 1>an

an + 1
an

: r ,

P = r - rrR<1.

782 Chapter 11: Infinite Sequences and Series

THEOREM 12 The Ratio Test
Let be a series with positive terms and suppose that

Then

(a) the series converges if ,

(b) the series diverges if or is infinite,

(c) the test is inconclusive if r = 1.

rr 7 1

r 6 1

lim
n: q

 
an + 1
an

= r .

gan
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11.5 The Ratio and Root Tests 783

(c) The two series

show that some other test for convergence must be used when 

In both cases, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of ex-
pressions involving n or expressions raised to a power involving n.

EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

(a) (b) (c)

Solution

(a) For the series 

The series converges because is less than 1. This does not mean that 2 3 is
the sum of the series. In fact,

(b) If then and

The series diverges because is greater than 1.

(c) If then

 =

4sn + 1dsn + 1d
s2n + 2ds2n + 1d

=

2sn + 1d
2n + 1

: 1.

 
an + 1
an

=

4n + 1sn + 1d!sn + 1d!
s2n + 2ds2n + 1ds2nd!

#
s2nd!
4nn!n!

an = 4nn!n!>s2nd! ,

r = 4

 =

s2n + 2ds2n + 1d
sn + 1dsn + 1d

=

4n + 2
n + 1

: 4.

 
an + 1
an

=

n!n!s2n + 2ds2n + 1ds2nd!
sn + 1d!sn + 1d!s2nd!

an + 1 =

s2n + 2d!
sn + 1d!sn + 1d!

an =

s2nd!
n!n!

,

a
q

n = 0
 
2n

+ 5
3n = a

q

n = 0
 a2

3
bn

+ a
q

n = 0
 
5
3n =

1
1 - s2>3d

+

5
1 - s1>3d

=
21
2

.

>r = 2>3

an + 1
an

=

s2n + 1
+ 5d>3n + 1

s2n
+ 5d>3n =

1
3

 #  
2n + 1

+ 5
2n

+ 5
=

1
3

 # a2 + 5 # 2-n

1 + 5 # 2-n b : 1
3

# 2
1

=
2
3

.

gq

n=0 s2n
+ 5d>3n ,

a
q

n = 1
 
4nn!n!
s2nd!a

q

n = 1
 
s2nd!
n!n!a

q

n = 0
 
2n

+ 5
3n

r = 1,

For a
q

n = 1
 
1
n2: an + 1

an
=

1>sn + 1d2

1>n2 = a n
n + 1

b2

: 12
= 1.

For a
q

n = 1
 
1
n:  

an + 1
an

=

1>sn + 1d
1>n =

n
n + 1

: 1.

r = 1.

a
q

n = 1
 
1
n  and  a

q

n = 1
 
1
n2

R = 1.
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Because the limit is we cannot decide from the Ratio Test whether the series
converges. When we notice that we conclude that

is always greater than because is always greater than 1.
Therefore, all terms are greater than or equal to and the nth term does not ap-
proach zero as The series diverges.

The Root Test

The convergence tests we have so far for work best when the formula for is rela-
tively simple. But consider the following.

EXAMPLE 2 Let Does converge?

Solution We write out several terms of the series:

Clearly, this is not a geometric series. The nth term approaches zero as so we do
not know if the series diverges. The Integral Test does not look promising. The Ratio Test
produces

As the ratio is alternately small and large and has no limit.
A test that will answer the question (the series converges) is the Root Test.

n : q ,

an + 1
an

= d 1
2n

, n odd  

n + 1
2

, n even.

n : q ,

 =
1
2

+
1
4

+

3
8

+
1
16

+

5
32

+
1

64
+

7
128

+
Á .

 a
q

n = 1
an =

1
21 +

1
22 +

3
23 +

1
24 +

5
25 +

1
26 +

7
27 +

Á

ganan = en>2n, n odd

1>2n, n even.

angan

n : q .
a1 = 2,

s2n + 2d>s2n + 1danan + 1

an + 1>an = s2n + 2d>s2n + 1d ,
r = 1,

784 Chapter 11: Infinite Sequences and Series

THEOREM 13 The Root Test
Let be a series with for and suppose that

Then

(a) the series converges if 

(b) the series diverges if or is infinite,

(c) the test is inconclusive if r = 1.

rr 7 1

r 6 1,

lim
n: q

2n an = r .

n Ú N ,an Ú 0gan

Proof

(a) Choose an so small that Since the terms 
eventually get closer than to In other words, there exists an index such
that 2n an 6 r + P when n Ú M .

M Ú Nr .P

2n an2n an : r ,r + P 6 1.P 7 0R<1.
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11.5 The Ratio and Root Tests 785

Then it is also true that

Now, a geometric series with ratio converges. By
comparison, converges, from which it follows that

converges.

(b) For all indices beyond some integer M, we have so that
for The terms of the series do not converge to zero. The series di-

verges by the nth-Term Test.

(c) The series and show that the test is not conclusive
when The first series diverges and the second converges, but in both cases

EXAMPLE 3 Applying the Root Test

Which of the following series converges, and which diverges?

(a) (b) (c)

Solution

(a) converges because 

(b) diverges because 

(c) converges because 

EXAMPLE 2 Revisited

Let Does converge?

Solution We apply the Root Test, finding that

Therefore,

Since (Section 11.1, Theorem 5), we have by the Sandwich
Theorem. The limit is less than 1, so the series converges by the Root Test.

limn:q2n an = 1>22n n : 1

1
2

… 2n an …

2n n
2

.

2n an = e2n n>2, n odd 
1>2, n even.

ganan = en>2n, n odd

1>2n, n even.

Bn a 1
1 + n

bn

=
1

1 + n
 :  0 6 1.a

q

n = 1
 a 1

1 + n
bn

An 2n

n2 =
2

A2n n B2 :  
2
1

7 1.a
q

n = 1
 
2n

n2

Bn n2

2n =

2n n22n 2n
=

A2n n B2
2

 :  
1
2

6 1.a
q

n = 1
 
n2

2n

a
q

n = 1
 a 1

1 + n
bn

a
q

n = 1
 
2n

n2a
q

n = 1
 
n2

2n

2n an : 1.
r = 1.

gq

n=1 s1>n2dgq

n=1 s1>ndR = 1.

n 7 M .an 7 1
2n an 7 1,1<R ◊ ˆ .

a
q

n = 1
an = a1 +

Á
+ aM - 1 + a

q

n = M
an

gq

n=M an

sr + Pd 6 1,gq

n=M sr + Pdn ,

an 6 sr + Pdn for n Ú M .
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786 Chapter 11: Infinite Sequences and Series

EXERCISES 11.5

Determining Convergence or Divergence
Which of the series in Exercises 1–26 converge, and which diverge?
Give reasons for your answers. (When checking your answers, remem-
ber there may be more than one way to determine a series’ conver-
gence or divergence.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Which of the series defined by the formulas in Exercises
27–38 converge, and which diverge? Give reasons for your answers.

27.

28.

29.

30.

31. a1 = 2, an + 1 =

2
n an

a1 = 3, an + 1 =

n
n + 1

 an

a1 =

1
3

, an + 1 =

3n - 1
2n + 5

 an

a1 = 1, an + 1 =

1 + tan-1 n
n  an

a1 = 2, an + 1 =

1 + sin n
n  an

gq

n=1 an

a
q

n = 1
 

3n

n32na
q

n = 1
 

n! ln n
nsn + 2d!

a
q

n = 2
 

n

sln ndsn>2da
q

n = 2
 

n
sln ndn

a
q

n = 1
 
n!
nna

q

n = 1
 

n!
s2n + 1d!

a
q

n = 1
 
n2nsn + 1d!

3nn!a
q

n = 1
 
sn + 3d!

3!n!3n

a
q

n = 1
e-nsn3da

q

n = 1
 
sn + 1dsn + 2d

n!

a
q

n = 1
 
n ln n

2na
q

n = 1
 
ln n
n

a
q

n = 1
 a1n -

1
n2 b

n

a
q

n = 1
 a1n -

1
n2 b

a
q

n = 1
 
sln ndn

nna
q

n = 1
 
ln n

n3

a
q

n = 1
 a1 -

1
3n
bn

a
q

n = 1
 a1 -

3
n b

n

a
q

n = 1
 
s -2dn

3na
q

n = 1
 
2 + s -1dn

1.25n

a
q

n = 1
 an - 2

n bn

a
q

n = 1
 
n10

10n

a
q

n = 1
 

n!
10na

q

n = 1
n!e-n

a
q

n = 1
n2e-na

q

n = 1
 
n22

2n

32.

33.

34.

35.

36.

37.

38.

Which of the series in Exercises 39–44 converge, and which diverge?
Give reasons for your answers.

39. 40.

41. 42.

43.

44.

Theory and Examples
45. Neither the Ratio nor the Root Test helps with p-series. Try them

on

and show that both tests fail to provide information about conver-
gence.

46. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

47. Let 

Does converge? Give reasons for your answer.gan

an = en>2n, if n is a prime number

1>2n, otherwise.

a
q

n = 2
 

1
sln nd p s p constantd .

a
q

n = 1
 
1
np

a
q

n = 1
 

1 # 3 # Á # s2n - 1d
[2 # 4 # Á # s2nd]s3n

+ 1d

a
q

n = 1
 
1 # 3 # Á # s2n - 1d

4n2nn!

a
q

n = 1
 

nn

s2nd2a
q

n = 1
 

nn

2sn2d

a
q

n = 1
 
sn!dn

nsn2da
q

n = 1
 
sn!dn

snnd2

an =

s3nd!
n!sn + 1d!sn + 2d!

an =

2nn!n!
s2nd!

a1 =

1
2

, an + 1 = sandn + 1

a1 =

1
3

, an + 1 = 2n an

a1 =

1
2

, an + 1 =

n + ln n
n + 10

 an

a1 = 1, an + 1 =

1 + ln n
n  an

a1 = 5, an + 1 =

2n n
2

 an
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11.6 Alternating Series, Absolute and Conditional Convergence 787

Alternating Series, Absolute and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

(1)

(2)

(3)

Series (1), called the alternating harmonic series, converges, as we will see in a moment.
Series (2) a geometric series with ratio converges to 
Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternating
Series Test.

-4>3.-2>[1 + s1>2d] =r = -1>2,

1 - 2 + 3 - 4 + 5 - 6 +
Á

+ s -1dn + 1n +
Á

 -2 + 1 -
1
2

+
1
4

-
1
8

+
Á

+

s -1dn4
2n +

Á

1 -
1
2

+
1
3

-
1
4

+
1
5 -

Á
+

s -1dn + 1

n +
Á

11.6

THEOREM 14 The Alternating Series Test (Leibniz’s Theorem)
The series

converges if all three of the following conditions are satisfied:

1. The are all positive.

2. for all for some integer N.

3. un : 0.

n Ú N ,un Ú un + 1

un’s

a
q

n = 1
s -1dn + 1un = u1 - u2 + u3 - u4 +

Á

Proof If n is an even integer, say then the sum of the first n terms is

The first equality shows that is the sum of m nonnegative terms, since each term
in parentheses is positive or zero. Hence and the sequence is non-
decreasing. The second equality shows that Since is nondecreasing and
bounded from above, it has a limit, say

(4)

If n is an odd integer, say then the sum of the first n terms is
Since 

and, as 

(5)

Combining the results of Equations (4) and (5) gives (Section 11.1, Exer-

cise 119).

lim
n: q

 sn = L

s2m + 1 = s2m + u2m + 1 : L + 0 = L .

m : q ,

lim
m: q

 u2m + 1 = 0

un : 0,s2m + 1 = s2m + u2m + 1 .
n = 2m + 1,

lim
m: q

 s2m = L .

5s2m6s2m … u1 .
5s2m6s2m + 2 Ú s2m ,

s2m

 = u1 - su2 - u3d - su4 - u5d -
Á

- su2m - 2 - u2m - 1d - u2m .

 s2m = su1 - u2d + su3 - u4d +
Á

+ su2m - 1 - u2md

n = 2m ,
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788 Chapter 11: Infinite Sequences and Series

EXAMPLE 1 The alternating harmonic series

satisfies the three requirements of Theorem 14 with  it therefore converges.

A graphical interpretation of the partial sums (Figure 11.9) shows how an alternating
series converges to its limit L when the three conditions of Theorem 14 are satisfied with

(Exercise 63 asks you to picture the case ) Starting from the origin of the
x-axis, we lay off the positive distance To find the point corresponding to

we back up a distance equal to Since we do not back up any
farther than the origin. We continue in this seesaw fashion, backing up or going forward as
the signs in the series demand. But for each forward or backward step is shorter
than (or at most the same size as) the preceding step, because And since the
nth term approaches zero as n increases, the size of step we take forward or backward gets
smaller and smaller. We oscillate across the limit L, and the amplitude of oscillation ap-
proaches zero. The limit L lies between any two successive sums and and hence dif-
fers from by an amount less than 

Because

we can make useful estimates of the sums of convergent alternating series.

ƒ L - sn ƒ 6 un + 1 for n Ú N ,

un + 1 .sn

sn + 1sn

un + 1 … un .
n Ú N ,

u2 … u1 ,u2 .s2 = u1 - u2 ,
s1 = u1 .

N 7 1.N = 1.

N = 1;

a
q

n = 1
s -1dn + 1 

1
n = 1 -

1
2

+
1
3

-
1
4

+
Á

L0

�u1

�u2

�u3

�u4

s2 s4 s3 s1

x

FIGURE 11.9 The partial sums of an
alternating series that satisfies the
hypotheses of Theorem 14 for 
straddle the limit from the beginning.

N = 1

THEOREM 15 The Alternating Series Estimation Theorem
If the alternating series satisfies the three conditions of
Theorem 14, then for 

approximates the sum L of the series with an error whose absolute value is less
than the numerical value of the first unused term. Furthermore, the remain-
der, has the same sign as the first unused term.L - sn ,

un + 1 ,

sn = u1 - u2 +
Á

+ s -1dn + 1un

n Ú N ,
gq

n=1 s -1dn + 1un

We leave the verification of the sign of the remainder for Exercise 53.

EXAMPLE 2 We try Theorem 15 on a series whose sum we know:

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1 256. The sum of the first eight terms is 0.6640625. The sum
of the series is

The difference, is positive and less than
s1>256d = 0.00390625.

s2>3d - 0.6640625 = 0.0026041666 Á ,

1
1 - s -1>2d

=
1

3>2 =
2
3

.

>

a
q

n = 0
s -1dn 

1
2n = 1 -

1
2

+
1
4

-
1
8

+
1
16

-
1
32

+
1
64

-
1

128
  +

1
256

-
Á .

--
--

--
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11.6 Alternating Series, Absolute and Conditional Convergence 789

Absolute and Conditional Convergence

DEFINITION Absolutely Convergent
A series converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, converges.g ƒ an ƒ ,

gan

The geometric series

converges absolutely because the corresponding series of absolute values

converges. The alternating harmonic series does not converge absolutely. The corresponding
series of absolute values is the (divergent) harmonic series.

1 +
1
2

+
1
4

+
1
8

+
Á

1 -
1
2

+
1
4

-
1
8

+
Á

DEFINITION Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

THEOREM 16 The Absolute Convergence Test

If converges, then converges.a
q

n = 1
ana

q

n = 1
 ƒ an ƒ

The alternating harmonic series converges conditionally.
Absolute convergence is important for two reasons. First, we have good tests for con-

vergence of series of positive terms. Second, if a series converges absolutely, then it con-
verges. That is the thrust of the next theorem.

Proof For each n,

If converges, then converges and, by the Direct Comparison Test,
the nonnegative series converges. The equality 
now lets us express as the difference of two convergent series:

Therefore, converges.gq

n=1  an

a
q

n = 1
 an = a

q

n = 1
san + ƒ an ƒ - ƒ an ƒ d = a

q

n = 1
san + ƒ an ƒ d - a  

q

n = 1
ƒ an ƒ .

gq

n=1 an

an = san + ƒ an ƒ d - ƒ an ƒgq

n=1 san + ƒ an ƒ d
gq

n=1 2 ƒ an ƒgq

n=1 ƒ an ƒ

- ƒ an ƒ … an … ƒ an ƒ, so 0 … an + ƒ an ƒ … 2 ƒ an ƒ .
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CAUTION We can rephrase Theorem 16 to say that every absolutely convergent series
converges. However, the converse statement is false: Many convergent series do not con-
verge absolutely (such as the alternating harmonic series in Example 1).

EXAMPLE 3 Applying the Absolute Convergence Test

(a) For the corresponding series of absolute

values is the convergent series

The original series converges because it converges absolutely.

(b) For the corresponding series of absolute

values is

which converges by comparison with because for every n.
The original series converges absolutely; therefore it converges.

EXAMPLE 4 Alternating p-Series

If p is a positive constant, the sequence is a decreasing sequence with limit zero.
Therefore the alternating p-series

converges.
If the series converges absolutely. If the series converges condi-

tionally.

Rearranging Series

 Absolute convergence: 1 -
1

23>2 +
1

33>2 -
1

43>2 +
Á

 Conditional convergence: 1 -
122

+
123

-
124

+
Á

0 6 p … 1,p 7 1,

a
q

n = 1
 
s -1dn - 1

np = 1 -
1
2p +

1
3p -

1
4p +

Á , p 7 0

51>np6

ƒ sin n ƒ … 1gq

n=1 s1>n2d

a
q

n = 1
` sin n

n2 ` =

ƒ sin 1 ƒ

1
+

ƒ sin 2 ƒ

4
+

Á ,

a
q

n = 1
 
sin n
n2 =

sin 1
1

+

sin 2
4

+

sin 3
9

+
Á ,

a
q

n = 1
 
1
n2 = 1 +

1
4

+
1
9

+
1
16

+
Á .

a
q

n = 1
s -1dn + 1 

1
n2 = 1 -

1
4

+
1
9

-
1
16

+
Á ,

790 Chapter 11: Infinite Sequences and Series

THEOREM 17 The Rearrangement Theorem for Absolutely
Convergent Series

If converges absolutely, and is any arrangement of the
sequence then converges absolutely and

a
q

n = 1
bn = a

q

n = 1
an .

gbn5an6 ,
b1, b2 , Á , bn , Ágq

n=1 an

(For an outline of the proof, see Exercise 60.)
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11.6 Alternating Series, Absolute and Conditional Convergence 791

EXAMPLE 5 Applying the Rearrangement Theorem

As we saw in Example 3, the series

converges absolutely. A possible rearrangement of the terms of the series might start with
a positive term, then two negative terms, then three positive terms, then four negative
terms, and so on: After k terms of one sign, take terms of the opposite sign. The first
ten terms of such a series look like this:

The Rearrangement Theorem says that both series converge to the same value. In this ex-
ample, if we had the second series to begin with, we would probably be glad to exchange it
for the first, if we knew that we could. We can do even better: The sum of either series is
also equal to

(See Exercise 61.)

If we rearrange infinitely many terms of a conditionally convergent series, we can get
results that are far different from the sum of the original series. Here is an example.

EXAMPLE 6 Rearranging the Alternating Harmonic Series

The alternating harmonic series

can be rearranged to diverge or to reach any preassigned sum.

(a) Rearranging to diverge. The series of terms di-
verges to and the series of terms diverges to No matter how far
out in the sequence of odd-numbered terms we begin, we can always add enough pos-
itive terms to get an arbitrarily large sum. Similarly, with the negative terms, no matter
how far out we start, we can add enough consecutive even-numbered terms to get a
negative sum of arbitrarily large absolute value. If we wished to do so, we could start
adding odd-numbered terms until we had a sum greater than say, and then follow
that with enough consecutive negative terms to make the new total less than We
could then add enough positive terms to make the total greater than and follow
with consecutive unused negative terms to make a new total less than and so on.
In this way, we could make the swings arbitrarily large in either direction.

(b) Rearranging to converge to 1. Another possibility is to focus on a
particular limit. Suppose we try to get sums that converge to 1. We start with the first
term, 1 1, and then subtract 1 2. Next we add 1 3 and 1 5, which brings the total
back to 1 or above. Then we add consecutive negative terms until the total is less than
1. We continue in this manner: When the sum is less than 1, add positive terms until
the total is 1 or more; then subtract (add negative) terms until the total is again less
than 1. This process can be continued indefinitely. Because both the odd-numbered

>>>>
gq

n=1 s -1dn + 1>n
-6,
+5

-4.
+3,

- q .gs -1>2nd+ q

g[1>s2n - 1d]gq

n=1 s -1dn + 1>n

1
1

-
1
2

+
1
3

-
1
4

+
1
5 -

1
6

+
1
7 -

1
8

+
1
9

-
1
10

+
1
11

-
Á

a
q

n = 1
 

1
s2n - 1d2 - a

q

n = 1
 

1
s2nd2 .

1 -
1
4

-
1
16

+
1
9

+
1
25

+
1
49

-
1

36
-

1
64

-
1

100
-

1
144

+
Á .

k + 1

1 -
1
4

+
1
9

-
1
16

+
Á

+ s -1dn - 1 
1
n2 +

Á
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terms and the even-numbered terms of the original series approach zero as 
the amount by which our partial sums exceed 1 or fall below it approaches zero. So the
new series converges to 1. The rearranged series starts like this:

The kind of behavior illustrated by the series in Example 6 is typical of what can hap-
pen with any conditionally convergent series. Therefore we must always add the terms of a
conditionally convergent series in the order given.

We have now developed several tests for convergence and divergence of series. In
summary:

1
23

+
1

25
-

1
14

+
1
27

-
1
16

+
Á

+
1
19

+
1
21

-
1

12
+

1
6

+
1
11

+
1
13

-
1
8

+
1

15
+

1
17

-
1
10

1
1

-
1
2

+
1
3

+
1
5 -

1
4

+
1
7 +

1
9

-

n : q ,

792 Chapter 11: Infinite Sequences and Series

1. The nth-Term Test: Unless the series diverges.

2. Geometric series: converges if  otherwise it diverges.

3. p-series: converges if otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
Test. Try comparing to a known series with the Comparison Test.

5. Series with some negative terms: Does converge? If yes, so does
since absolute convergence implies convergence.

6. Alternating series: converges if the series satisfies the conditions of
the Alternating Series Test.

gan

gan ,
g  ƒ an ƒ

p 7 1;g1>np

ƒ r ƒ 6 1;garn

an : 0,
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792 Chapter 11: Infinite Sequences and Series

EXERCISES 11.6

Determining Convergence or Divergence
Which of the alternating series in Exercises 1–10 converge, and which
diverge? Give reasons for your answers.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Absolute Convergence
Which of the series in Exercises 11–44 converge absolutely, which
converge, and which diverge? Give reasons for your answers.

a
q

n = 1
s -1dn + 1 

32n + 12n + 1
a
q

n = 1
s -1dn + 1 

2n + 1
n + 1

a
q

n = 1
s -1dn ln a1 +

1
n ba

q

n = 2
s -1dn + 1 

ln n

ln n2

a
q

n = 1
s -1dn + 1 

ln n
na

q

n = 2
s -1dn + 1 

1
ln n

a
q

n = 1
s -1dn + 1 

10n

n10a
q

n = 1
s -1dn + 1 a n

10
bn

a
q

n = 1
s -1dn + 1 

1

n3>2a
q

n = 1
s -1dn + 1 

1
n2

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. a
q

n = 2
s -1dn + 1 

1
n ln na

q

n = 1
s -1dn 

tan-1 n

n2
+ 1

a
q

n = 1
s -1dn + 1 A2n 10 Ba

q

n = 1
s -1dnn2s2>3dn

a
q

n = 1
 
s -2dn + 1

n + 5na
q

n = 1
s -1dn + 1 

1 + n

n2

a
q

n = 2
s -1dn 

1
ln sn3da

q

n = 1
s -1dn + 1 

3 + n
5 + n

a
q

n = 1
s -1dn 

sin n

n2a
q

n = 1
s -1dn 

1
n + 3

a
q

n = 1
s -1dn + 1 

n!
2na

q

n = 1
s -1dn + 1 

n

n3
+ 1

a
q

n = 1
 

s -1dn

1 + 2n
a
q

n = 1
s -1dn 

12n

a
q

n = 1
s -1dn + 1 

s0.1dn

na
q

n = 1
s -1dn + 1s0.1dn
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11.6 Alternating Series, Absolute and Conditional Convergence 793

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42. 43.

44.

Error Estimation
In Exercises 45–48, estimate the magnitude of the error involved in
using the sum of the first four terms to approximate the sum of the en-
tire series.

45.

46.

47.

48.

Approximate the sums in Exercises 49 and 50 with an error of magni-
tude less than 

49.

50.

Theory and Examples
51. a. The series

does not meet one of the conditions of Theorem 14. Which one?

b. Find the sum of the series in part (a).

1
3

-

1
2

+

1
9

-

1
4

+

1
27

-

1
8

+
Á

+

1
3n -

1
2n +

Á

a
q

n = 0
s -1dn 

1
n!

a
q

n = 0
s -1dn 

1
s2nd!

5 * 10-6 .

1
1 + t

= a
q

n = 0
s -1dnt n, 0 6 t 6 1

a
q

n = 1
s -1dn + 1 

s0.01dn

n

a
q

n = 1
s -1dn + 1 

1
10n

a
q

n = 1
s -1dn + 1 

1
n

a
q

n = 1
s -1dn csch n

a
q

n = 1
s -1dn sech na

q

n = 1
 

s -1dn2n + 2n + 1

a
q

n = 1
s -1dn A2n + 1n - 2n B

a
q

n = 1
s -1dn A2n2

+ n - n Ba
q

n = 1
s -1dn A2n + 1 - 2n B

a
q

n = 1
s -1dn 

sn!d2 3n

s2n + 1d!a
q

n = 1
s -1dn 

s2nd!
2nn!n

a
q

n = 1
 
s -1dn + 1sn!d2

s2nd!a
q

n = 1
 
s -1dnsn + 1dn

s2ndn

a
q

n = 1
 
cos np

na
q

n = 1
 
cos np

n2n

a
q

n = 2
s -1dn a ln n

ln n2 b
n

a
q

n = 1
 

s -1dn - 1

n2
+ 2n + 1

a
q

n = 1
s -5d-na

q

n = 1
 
s -100dn

n!

a
q

n = 1
s -1dn 

ln n
n - ln na

q

n = 1
s -1dn 

n
n + 1

52. The limit L of an alternating series that satisfies the conditions of
Theorem 14 lies between the values of any two consecutive par-
tial sums. This suggests using the average

to estimate L. Compute

as an approximation to the sum of the alternating harmonic series.
The exact sum is 

53. The sign of the remainder of an alternating series that satisfies
the conditions of Theorem 14 Prove the assertion in Theorem
15 that whenever an alternating series satisfying the conditions of
Theorem 14 is approximated with one of its partial sums, then the
remainder (sum of the unused terms) has the same sign as the first
unused term. (Hint: Group the remainder’s terms in consecutive
pairs.)

54. Show that the sum of the first 2n terms of the series

is the same as the sum of the first n terms of the series

Do these series converge? What is the sum of the first 
terms of the first series? If the series converge, what is their sum?

55. Show that if diverges, then diverges.

56. Show that if converges absolutely, then

57. Show that if and both converge absolutely, then
so does

a. b.

c. (k any number)

58. Show by example that may diverge even if 
and both converge.

59. In Example 6, suppose the goal is to arrange the terms to get a
new series that converges to Start the new arrangement
with the first negative term, which is Whenever you have a
sum that is less than or equal to start introducing positive
terms, taken in order, until the new total is greater than 
Then add negative terms until the total is less than or equal to

again. Continue this process until your partial sums have-1>2
-1>2.

-1>2,
-1>2.

-1>2.

gq

n=1  bn

gq

n=1  angq

n=1 an bn

a
q

n = 1
 kan

a
q

n = 1
san - bnda

q

n = 1
san + bnd

gq

n=1 bngq

n=1  an

` a
q

n = 1
an ` … a

q

n = 1
 ƒ an ƒ .

gq

n=1  an

gq

n=1 ƒ an ƒgq

n=1 an

2n + 1

1
1 # 2

+

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+

1
5 # 6

+
Á .

1 -

1
2

+

1
2

-

1
3

+

1
3

-

1
4

+

1
4

-

1
5

+

1
5

-

1
6

+
Á

ln 2 = 0.6931. Á

s20 +

1
2

 #  
1
21

sn + sn + 1

2
= sn +

1
2

 s -1dn + 2an + 1

It can be shown that the sum is ln 2.

As you will see in Section 11.7, the
sum is ln (1.01).

As you will see in Section 11.9, the
sum is cos 1, the cosine of 1 radian.

As you will see in Section 11.9,
the sum is e-1 .

T

T

T
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been above the target at least three times and finish at or below it.
If is the sum of the first n terms of your new series, plot the
points to illustrate how the sums are behaving.

60. Outline of the proof of the Rearrangement Theorem (Theo-
rem 17)

a. Let be a positive real number, let and let
Show that for some index and for some

index 

Since all the terms appear somewhere in the
sequence there is an index such that if

then is at most a sum of terms 
with Therefore, if 

b. The argument in part (a) shows that if converges 

absolutely then converges and 

Now show that because converges, 

converges to 

61. Unzipping absolutely convergent series

a. Show that if converges and

then converges.

b. Use the results in part (a) to show likewise that if 
converges and

then converges.gq

n=1  cn

cn = e0, if an Ú 0

an, if an 6 0,

gq

n=1 ƒ an ƒ

gq

n=1 bn

bn = ean, if an Ú 0

0, if an 6 0,

gq

n=1 ƒ an ƒ

gq

n=1 ƒ an ƒ .

gq

n=1 ƒ bn ƒgq

n=1 ƒ an ƒ

gq

n=1 bn = gq

n=1 an .gq

n=1 bn

gq

n=1 an

 … a
q

k = N1

ƒ ak ƒ + ƒ sN2 - L ƒ 6 P .

 ̀ a
n

k = 1
bk - L ` … ` a

n

k = 1
bk - sN2 ` + ƒ sN2 - L ƒ

n Ú N3 ,m Ú N1 .
amAgn

k=1 bk B - sN2n Ú N3 ,
N3 Ú N25bn6 ,

a1, a2 , Á , aN2

a
q

n = N1

 ƒ an ƒ 6

P

2
 and ƒ sN2 - L ƒ 6

P

2
.

N2 Ú N1 ,
N1sk = gk

n=1 an .
L = gq

n=1 an ,P

sn, snd
sn

In other words, if a series converges absolutely, its pos-
itive terms form a convergent series, and so do its negative
terms. Furthermore,

because and 

62. What is wrong here?:

Multiply both sides of the alternating harmonic series

by 2 to get

Collect terms with the same denominator, as the arrows indicate,
to arrive at

The series on the right-hand side of this equation is the series
we started with. Therefore, and dividing by S gives 
(Source: “Riemann’s Rearrangement Theorem” by Stewart
Galanor, Mathematics Teacher, Vol. 80, No. 8, 1987, pp. 675–681.)

63. Draw a figure similar to Figure 11.9 to illustrate the convergence
of the series in Theorem 14 when N 7 1.

2 = 1.2S = S ,

2S = 1 -

1
2

+

1
3

-

1
4

+

1
5

-

1
6

+
Á .

 
2
3

-

1
2

+

2
5

-

1
3

+

2
7

-

1
4

+

2
9

-

1
5

+

2
11

-

1
6

+
Á .

 2S = 2 - 1 +

1
7

-

1
8

+

1
9

-

1
10

+

1
11

-

1
12

+
Á

S = 1 -

1
2

+

1
3

-

1
4

+

1
5

-

1
6

+

cn = san - ƒ an ƒ d>2.bn = san + ƒ an ƒ d>2
a
q

n = 1
an = a

q

n = 1
bn + a

q

n = 1
cn
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794 Chapter 11: Infinite Sequences and Series

Power Series

Now that we can test infinite series for convergence we can study the infinite polynomials
mentioned at the beginning of this chapter. We call these polynomials power series be-
cause they are defined as infinite series of powers of some variable, in our case x. Like
polynomials, power series can be added, subtracted, multiplied, differentiated, and inte-
grated to give new power series.

11.7
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11.7 Power Series 795

DEFINITIONS Power Series, Center, Coefficients
A power series about is a series of the form

(1)

A power series about is a series of the form

(2)

in which the center a and the coefficients are constants.c0, c1, c2, Á , cn, Á

a
q

n = 0
cnsx - adn

= c0 + c1sx - ad + c2sx - ad2
+

Á
+ cnsx - adn

+
Á

x � a

a
q

n = 0
cn xn

= c0 + c1 x + c2 x2
+

Á
+ cn xn

+
Á .

x � 0

Power Series and Convergence

We begin with the formal definition.

Equation (1) is the special case obtained by taking in Equation (2).

EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

This is the geometric series with first term 1 and ratio x. It converges to for
We express this fact by writing

(3)

Up to now, we have used Equation (3) as a formula for the sum of the series on the right.
We now change the focus: We think of the partial sums of the series on the right as polyno-
mials that approximate the function on the left. For values of x near zero, we need
take only a few terms of the series to get a good approximation. As we move toward

or we must take more terms. Figure 11.10 shows the graphs of
and the approximating polynomials for and 8.

The function is not continuous on intervals containing where it
has a vertical asymptote. The approximations do not apply when 

EXAMPLE 2 A Geometric Series

The power series

(4)

matches Equation (2) with This

is a geometric series with first term 1 and ratio The series converges forr = -

x - 2
2

.

a = 2, c0 = 1, c1 = -1>2, c2 = 1>4, Á , cn = s -1>2dn .

1 -
1
2

sx - 2d +
1
4

sx - 2d2
+

Á
+ a- 1

2
bn

sx - 2dn
+

Á

x Ú 1.
x = 1,ƒsxd = 1>s1 - xd

n = 0, 1, 2 ,yn = Pnsxdƒsxd = 1>s1 - xd ,
-1,x = 1,

Pnsxd

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á, -1 6 x 6 1.

ƒ x ƒ 6 1.
1>s1 - xd

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á .

a = 0
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or The sum is

so

Series (4) generates useful polynomial approximations of for values of x near 2:

and so on (Figure 11.11).

EXAMPLE 3 Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

(a)

(b)

(c)

(d) a
q

n = 0
n!xn

= 1 + x + 2!x2
+ 3!x3

+
Á

a
q

n = 0
 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

Á

a
q

n = 1
s -1dn - 1 

x2n - 1

2n - 1
= x -

x3

3
+

x5

5 -
Á

a
q

n = 1
s -1dn - 1 

xn

n = x -

x2

2
+

x3

3
-

Á

 P2sxd = 1 -
1
2

 sx - 2d +
1
4

 sx - 2d2
= 3 -

3x
2

+

x2

4
,

 P1sxd = 1 -
1
2

 sx - 2d = 2 -

x
2

 P0sxd = 1

ƒsxd = 2>x

2
x = 1 -

sx - 2d
2

+

sx - 2d2

4
-

Á
+ a- 1

2
bn

sx - 2dn
+

Á, 0 6 x 6 4.

1
1 - r

=
1

1 +

x - 2
2

=
2
x ,

0 6 x 6 4.` x - 2
2
` 6 1
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0

1

1–1

2

3

4

5

7

8

9

y2 � 1 � x � x2

y1 � 1 � x

y0 � 1

y � 1
1 � x

y8 � 1 � x � x2 � x3 � x4 � x5 � x6
 � x7 � x8

x

y

FIGURE 11.10 The graphs of and four of
its polynomial approximations (Example 1).

ƒsxd = 1>s1 - xd

0 2

1

1

y1 � 2 �

y2 � 3 �     �

y0 � 1

(2, 1) y �

3

2 3x
2

x2

4
2
x

x
2
x

y

FIGURE 11.11 The graphs of 
and its first three polynomial approxima-
tions (Example 2).

ƒsxd = 2>x
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11.7 Power Series 797

Solution Apply the Ratio Test to the series where is the nth term of the series
in question.

(a)

The series converges absolutely for It diverges if because the nth
term does not converge to zero. At we get the alternating harmonic series

which converges. At we get 
the negative of the harmonic series; it diverges. Series (a) con-

verges for and diverges elsewhere.

(b)

The series converges absolutely for It diverges for because the nth
term does not converge to zero. At the series becomes 

which converges by the Alternating Series Theorem. It also con-
verges at because it is again an alternating series that satisfies the conditions
for convergence. The value at is the negative of the value at Series (b)
converges for and diverges elsewhere.

(c)

The series converges absolutely for all x.

(d)

The series diverges for all values of x except 

Example 3 illustrates how we usually test a power series for convergence, and the
possible results.

0
x

x = 0.

` un + 1
un
` = ` sn + 1d!xn + 1

n!xn ` = sn + 1d ƒ x ƒ : q  unless x = 0.

0
x

` un + 1
un
` = ` xn + 1

sn + 1d!
# n!
xn ` =

ƒ x ƒ

n + 1
: 0 for every x .

–1 0 1
x

-1 … x … 1
x = 1.x = -1

x = -1
1>5 - 1>7 +

Á ,
1 - 1>3 +x = 1

x2
7 1x2

6 1.

` un + 1
un
` =

2n - 1
2n + 1

 x2 : x2 .

–1 0 1
x

-1 6 x … 1
1>3 - 1>4 -

Á ,
-1 - 1>2 -x = -11 - 1>2 + 1>3 - 1>4 +

Á ,
x = 1,

ƒ x ƒ 7 1ƒ x ƒ 6 1.

` un + 1
un
` =

n
n + 1 ƒ x ƒ : ƒ x ƒ .

ung ƒ un ƒ ,

THEOREM 18 The Convergence Theorem for Power Series

If the power series converges for

then it converges absolutely for all x with If the series 
diverges for then it diverges for all x with ƒ x ƒ 7 ƒ d ƒ .x = d ,

ƒ x ƒ 6 ƒ c ƒ .x = c Z 0,

 a
q

n = 0
an xn

= a0 + a1 x + a2 x2
+

Á
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Proof Suppose the series converges. Then Hence, there is
an integer N such that for all That is,

(5)

Now take any x such that and consider

There are only a finite number of terms prior to and their sum is finite. Starting
with and beyond, the terms are less than

(6)

because of Inequality (5). But Series (6) is a geometric series with ratio which
is less than 1, since Hence Series (6) converges, so the original series converges
absolutely. This proves the first half of the theorem.

The second half of the theorem follows from the first. If the series diverges at 
and converges at a value with we may take in the first half of the the-
orem and conclude that the series converges absolutely at d. But the series cannot converge
absolutely and diverge at one and the same time. Hence, if it diverges at d, it diverges for
all x with 

To simplify the notation, Theorem 18 deals with the convergence of series of the form
For series of the form we can replace by and apply the re-

sults to the series 

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion
that a power series behaves in one of three possible ways. It might converge
only at or converge everywhere, or converge on some interval of radius R centered
at We prove this as a Corollary to Theorem 18.x = a .

x = a ,
gcnsx - adn

gansx¿dn .
x¿x - agansx - adngan xn .

ƒ x ƒ 7 ƒ d ƒ .

c = x0ƒ x0 ƒ 7 ƒ d ƒ ,x0

x = d

ƒ x ƒ 6 ƒ c ƒ .
r = ƒ x>c ƒ ,

` xc `
N

+ ` xc `
N + 1

+ ` xc `
N + 2

+
Á

ƒ aN xN
ƒ

ƒ aN xN
ƒ ,

ƒ a0 ƒ + ƒ a1 x ƒ +
Á

+ ƒ aN - 1x
N - 1

ƒ + ƒ aN xN
ƒ + ƒ aN + 1xN + 1

ƒ +
Á .

ƒ x ƒ 6 ƒ c ƒ

ƒ an ƒ 6
1

ƒ c ƒ
n for n Ú N .

n Ú N .ƒ an cn
ƒ 6 1

limn:q an cn
= 0.gq

n=0 an cn
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COROLLARY TO THEOREM 18
The convergence of the series is described by one of the following
three possibilities:

1. There is a positive number R such that the series diverges for x with
but converges absolutely for x with The series

may or may not converge at either of the endpoints and

2. The series converges absolutely for every 

3. The series converges at and diverges elsewhere sR = 0d .x = a

x sR = q d .

x = a + R .
x = a - R

ƒ x - a ƒ 6 R .ƒ x - a ƒ 7 R

gcnsx - adn
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11.7 Power Series 799

Proof We assume first that so that the power series is centered at 0. If the se-
ries converges everywhere we are in Case 2. If it converges only at we are in
Case 3. Otherwise there is a nonzero number d such that diverges. The set S of
values of x for which the series converges is nonempty because it contains 0
and a positive number p as well. By Theorem 18, the series diverges for all x with

so for all and S is a bounded set. By the Completeness Prop-
erty of the real numbers (see Appendix 4) a nonempty, bounded set has a least upper
bound R. (The least upper bound is the smallest number with the property that the ele-
ments satisfy ) If then so the series diverges. If

then is not an upper bound for S (because it’s smaller than the least upper
bound) so there is a number such that Since the series 
converges and therefore the series converges by Theorem 18. This proves the
Corollary for power series centered at 

For a power series centered at we set and repeat the argument
with Since when a radius R interval of convergence for cen-
tered at is the same as a radius R interval of convergence for centered
at This establishes the Corollary for the general case.

R is called the radius of convergence of the power series and the interval of radius R
centered at is called the interval of convergence. The interval of convergence may
be open, closed, or half-open, depending on the particular series. At points x with

the series converges absolutely. If the series converges for all values of x,
we say its radius of convergence is infinite. If it converges only at we say its radius
of convergence is zero.

x = a ,
ƒ x - a ƒ 6 R ,

x = a

x = a .
gcnsx - adnx¿ = 0

gcnsx¿dnx = a ,x¿ = 0x¿ .
x¿ = sx - ada Z 0,

a = 0.
gcn ƒ x ƒ

n
gcn bnb H S ,b 7 ƒ x ƒ .b H S

ƒ x ƒƒ x ƒ 6 R ,
gcn xnx x Sƒ x ƒ 7 R Ú p ,x … R .x H S

x H S ,ƒ x ƒ … ƒ d ƒƒ x ƒ 7 ƒ d ƒ ,

gcn xn
gcn dn

x = 0
a = 0,

How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is the series
diverges for (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.

ƒ x - a ƒ 7 R
a - R 6 x 6 a + R ,

ƒ x - a ƒ 6 R or a - R 6 x 6 a + R .

Term-by-Term Differentiation

A theorem from advanced calculus says that a power series can be differentiated term by
term at each interior point of its interval of convergence.
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EXAMPLE 4 Applying Term-by-Term Differentiation

Find series for and if

Solution

CAUTION Term-by-term differentiation might not work for other kinds of series. For ex-
ample, the trigonometric series

converges for all x. But if we differentiate term by term we get the series

which diverges for all x. This is not a power series, since it is not a sum of positive integer
powers of x.

a
q

n = 1
 
n!cos sn!xd

n2 ,

a
q

n = 1
 
sin sn!xd

n2

 = a
q

n = 2
nsn - 1dxn - 2, -1 6 x 6 1

 ƒ–sxd =
2

s1 - xd3 = 2 + 6x + 12x2
+

Á
+ nsn - 1dxn - 2

+
Á

 = a
q

n = 1
nxn - 1, -1 6 x 6 1

 ƒ¿sxd =
1

s1 - xd2 = 1 + 2x + 3x2
+ 4x3

+
Á

+ nxn - 1
+

Á

 = a
q

n = 0
xn, -1 6 x 6 1

 ƒsxd =
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

+ xn
+

Á

ƒ–sxdƒ¿sxd

800 Chapter 11: Infinite Sequences and Series

THEOREM 19 The Term-by-Term Differentiation Theorem
If converges for for some it defines
a function ƒ:

Such a function ƒ has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.

 ƒ–sxd = a
q

n = 2
nsn - 1dcnsx - adn - 2 ,

 ƒ¿sxd = a
q

n = 1
ncnsx - adn - 1

ƒsxd = a
q

n = 0
cnsx - adn, a - R 6 x 6 a + R .

R 7 0,a - R 6 x 6 a + Rgcnsx - adn
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11.7 Power Series 801

EXAMPLE 5 A Series for 

Identify the function

Solution We differentiate the original series term by term and get

This is a geometric series with first term 1 and ratio so

We can now integrate to get

The series for ƒ(x) is zero when so Hence

(7)

In Section 11.10, we will see that the series also converges to  at   x = ;1.tan-1 x

ƒsxd = x -

x3

3
+

x5

5 -

x7

7 +
Á

= tan-1 x, -1 6 x 6 1.

C = 0.x = 0,

Lƒ¿sxd dx = L  
dx

1 + x2 = tan-1 x + C .

ƒ¿sxd = 1>s1 + x2d

ƒ¿sxd =
1

1 - s -x2d
=

1
1 + x2 .

-x2 ,

ƒ¿sxd = 1 - x2
+ x4

- x6
+

Á, -1 6 x 6 1.

ƒsxd = x -

x3

3
+

x5

5 -
Á, -1 … x … 1.

tan-1 x, -1 … x … 1

THEOREM 20 The Term-by-Term Integration Theorem
Suppose that

converges for Then

converges for and

for a - R 6 x 6 a + R .

Lƒsxd dx = a
q

n = 0
cn 

sx - adn + 1

n + 1
+ C

a - R 6 x 6 a + R

a
q

n =0
cn 

(x - a)n+1

n + 1

a - R 6 x 6 a + R  sR 7 0d .

ƒsxd = a
q

n = 0
cnsx - adn

Term-by-Term Integration

Another advanced calculus theorem states that a power series can be integrated term by
term throughout its interval of convergence.
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USING TECHNOLOGY Study of Series

Series are in many ways analogous to integrals. Just as the number of functions with ex-
plicit antiderivatives in terms of elementary functions is small compared to the number
of integrable functions, the number of power series in x that agree with explicit elemen-
tary functions on x-intervals is small compared to the number of power series that con-
verge on some x-interval. Graphing utilities can aid in the study of such series in much
the same way that numerical integration aids in the study of definite integrals. The ability
to study power series at particular values of x is built into most Computer Algebra Sys-
tems.

If a series converges rapidly enough, CAS exploration might give us an idea of the
sum. For instance, in calculating the early partial sums of the series 
(Section 11.4, Example 2b), Maple returns for This
suggests that the sum of the series is 1.6066 95152 to 10 digits. Indeed,

The remainder after 200 terms is negligible.
However, CAS and calculator exploration cannot do much for us if the series con-

verges or diverges very slowly, and indeed can be downright misleading. For example,
try calculating the partial sums of the series The terms are tiny in
comparison to the numbers we normally work with and the partial sums, even for hun-
dreds of terms, are miniscule. We might well be fooled into thinking that the series con-
verges. In fact, it diverges, as we can see by writing it as a constant
times the harmonic series.

We will know better how to interpret numerical results after studying error estimates
in Section 11.9.

s1>1010dgq

k=1 s1>kd ,

gq

k=1 [1>s1010kd] .

a
q

k = 201
 

1
2k

- 1
= a

q

k = 201
 

1
2k - 1s2 - s1>2k - 1dd

6 a
q

k = 201
 

1
2k - 1 =

1
2199 6 1.25 * 10-60 .

31 … n … 200.Sn = 1.6066 95152
gq

k=1 [1>s2k - 1d]

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 20 can guarantee the convergence of the differ-
entiated series only inside the interval.

EXAMPLE 6 A Series for 

The series

converges on the open interval Therefore,

It can also be shown that the series converges at to the number ln 2, but that was not
guaranteed by the theorem.

x = 1

 = x -

x2

2
+

x3

3
-

x4

4
+

Á, -1 6 x 6 1.

 ln s1 + xd = L
x

0
 

1
1 + t

 dt = t -

t2

2
+

t3

3
-

t4

4
+

Á d
0

x

-1 6 t 6 1.

1
1 + t

= 1 - t + t2
- t3

+
Á

ln s1 + xd, -1 6 x … 1

Theorem 20
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11.7 Power Series 803

EXAMPLE 7 Multiply the geometric series

by itself to get a power series for for 

Solution Let

and

Then, by the Series Multiplication Theorem,

is the series for The series all converge absolutely for 
Notice that Example 4 gives the same answer because

d
dx

 a 1
1 - x

b =
1

s1 - xd2 .

ƒ x ƒ 6 1.1>s1 - xd2 .

 = 1 + 2x + 3x2
+ 4x3

+
Á

+ sn + 1dxn
+

Á

 Asxd # Bsxd = a
q

n = 0
cn xn

= a
q

n = 0
sn + 1dxn

n + 1 ones
('''')''''*

 = 1 + 1 +
Á

+ 1 = n + 1.

n + 1 terms
(''''''''''')''''''''''''*

cn = a0 bn + a1 bn - 1 +
Á

+ ak bn - k +
Á

+ an b0

 Bsxd = a
q

n = 0
bn xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

 Asxd = a
q

n = 0
an xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

ƒ x ƒ 6 1.1>s1 - xd2 ,

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á

=
1

1 - x
 , for ƒ x ƒ 6 1,

THEOREM 21 The Series Multiplication Theorem for Power Series
If and converge absolutely for 
and

then converges absolutely to A(x)B(x) for 

aa
q

n = 0
an xnb # aa

q

n = 0
bn xnb = a

q

n = 0
cn xn .

ƒ x ƒ 6 R :gq

n=0 cn xn

cn = a0 bn + a1 bn - 1 + a2 bn - 2 +
Á

+ an - 1b1 + an b0 = a
n

k = 0
ak bn - k ,

ƒ x ƒ 6 R ,Bsxd = gq

n=0 bn xnAsxd = gq

n=0 an xn

Multiplication of Power Series

Another theorem from advanced calculus states that absolutely converging power series
can be multiplied the way we multiply polynomials. We omit the proof.
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EXERCISES 11.7

Intervals of Convergence
In Exercises 1–32, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely,
(c) conditionally?

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32. a
q

n = 0
 
Ax - 22 B2n + 1

2na
q

n = 1
 
sx + pdn2n

a
q

n = 1
 
s3x + 1dn + 1

2n + 2a
q

n = 1
 
s4x - 5d2n + 1

n3>2

a
q

n = 2
 

xn

n ln n

a
q

n = 2
 

xn

nsln nd2

a
q

n = 0
s -2dnsn + 1dsx - 1dna

q

n = 1
 
s -1dn + 1sx + 2dn

n2n

a
q

n = 0
n!sx - 4dna

q

n = 1
nnxn

a
q

n = 1
sln ndxna

q

n = 1
 a1 +

1
n b

n

 xn

a
q

n = 1
2n ns2x + 5dna

q

n = 0
 
2nxn

3n

a
q

n = 0
 

nxn

4nsn2
+ 1da

q

n = 0
 
nsx + 3dn

5n

a
q

n = 0
 

s -1dnxn2n2
+ 3

a
q

n = 0
 

xn2n2
+ 3

a
q

n = 0
 
s2x + 3d2n + 1

n!a
q

n = 0
 
x2n + 1

n!

a
q

n = 0
 
3nxn

n!a
q

n = 0
 
s -1dnxn

n!

a
q

n = 1
 
sx - 1dn2n

a
q

n = 1
 

xn

n2n 3n

a
q

n = 1
 
s -1dnsx + 2dn

na
q

n = 0
 

nxn

n + 2

a
q

n = 0
s2xdna

q

n = 0
 
sx - 2dn

10n

a
q

n = 1
 
s3x - 2dn

na
q

n = 0
s -1dns4x + 1dn

a
q

n = 0
sx + 5dna

q

n = 0
xn

In Exercises 33–38, find the series’ interval of convergence and,
within this interval, the sum of the series as a function of x.

33. 34.

35. 36.

37. 38.

Theory and Examples
39. For what values of x does the series

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does
the new series converge? What is its sum?

40. If you integrate the series in Exercise 39 term by term, what new
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

41. The series

converges to sin x for all x.

a. Find the first six terms of a series for cos x. For what values
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that
converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate
the first six terms of a series for 2 sin x cos x. Compare your
answer with the answer in part (b).

42. The series

converges to for all x.

a. Find a series for Do you get the series for 
Explain your answer.

b. Find a series for Do you get the series for 
Explain your answer.

c. Replace x by in the series for to find a series that
converges to for all x. Then multiply the series for and

to find the first six terms of a series for e-x # ex .e-x
exe-x

ex
-x

ex ?1ex dx .

ex ?sd>dxdex .

ex

ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

Á

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

x11

11!
+

Á

1 -

1
2

 sx - 3d +

1
4

 sx - 3d2
+

Á
+ a- 1

2
bn

sx - 3dn
+

Á

a
q

n = 0
 ax2

- 1
2
bn

a
q

n = 0
 ax2

+ 1
3
bn

a
q

n = 0
sln xdna

q

n = 0
 a2x

2
- 1bn

a
q

n = 0
 
sx + 1d2n

9na
q

n = 0
 
sx - 1d2n

4n

Get the information you need about
from Section 11.3, 

Exercise 39.
a1>(n(ln n)2)

Get the information you need about
from Section 11.3, 

Exercise 38.
a1>(n ln n)
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43. The series

converges to tan x for 

a. Find the first five terms of the series for For what
values of x should the series converge?

b. Find the first five terms of the series for For what
values of x should this series converge?

c. Check your result in part (b) by squaring the series given for
sec x in Exercise 44.

44. The series

converges to sec x for 

a. Find the first five terms of a power series for the function
For what values of x should the series

converge?

b. Find the first four terms of a series for sec x tan x. For what
values of x should the series converge?

ln ƒ sec x + tan x ƒ .

-p>2 6 x 6 p>2.

sec x = 1 +

x2

2
+

5
24

 x4
+

61
720

 x6
+

277
8064

 x8
+

Á

sec2 x .

ln ƒ sec x ƒ .

-p>2 6 x 6 p>2.

tan x = x +

x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

Á

c. Check your result in part (b) by multiplying the series for sec x
by the series given for tan x in Exercise 43.

45. Uniqueness of convergent power series

a. Show that if two power series and are
convergent and equal for all values of x in an open interval

then for every n. (Hint: Let
Differentiate term by term

to show that and both equal )

b. Show that if for all x in an open interval
then for every n.

46. The sum of the series To find the sum of this se-
ries, express as a geometric series, differentiate both
sides of the resulting equation with respect to x, multiply both
sides of the result by x, differentiate again, multiply by x again,
and set x equal to 1 2. What do you get? (Source: David E.
Dobbs’ letter to the editor, Illinois Mathematics Teacher, Vol. 33,
Issue 4, 1982, p. 27.)

47. Convergence at endpoints Show by examples that the conver-
gence of a power series at an endpoint of its interval of conver-
gence may be either conditional or absolute.

48. Make up a power series whose interval of convergence is

a. b. c. (1, 5).s -2, 0ds -3, 3d

>

1>s1 - xd
gq

n=0 sn2>2nd
an = 0s -c, cd ,
gq

n=0 an xn
= 0

f snds0d>sn!d .bnan

ƒsxd = gq

n=0 an xn
= gq

n=0 bn xn .
an = bns -c, cd ,

gq

n=0 bn xngq

n=0 an xn
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11.8 Taylor and Maclaurin Series 805

Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series
called Taylor series. In many cases, these series can provide useful polynomial approxima-
tions of the generating functions.

Series Representations

We know from Theorem 19 that within its interval of convergence the sum of a power
series is a continuous function with derivatives of all orders. But what about the other way
around? If a function ƒ(x) has derivatives of all orders on an interval I, can it be expressed
as a power series on I? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power
series

with a positive radius of convergence. By repeated term-by-term differentiation within the
interval of convergence I we obtain

 ƒ‡sxd = 1 # 2 # 3a3 + 2 # 3 # 4a4sx - ad + 3 # 4 # 5a5sx - ad2
+

Á ,

 ƒ–sxd = 1 # 2a2 + 2 # 3a3sx - ad + 3 # 4a4sx - ad2
+

Á

 ƒ¿sxd = a1 + 2a2sx - ad + 3a3sx - ad2
+

Á
+ nansx - adn - 1

+
Á

 = a0 + a1sx - ad + a2sx - ad2
+

Á
+ ansx - adn

+
Á

 ƒsxd = a
q

n = 0
ansx - adn

11.8
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806 Chapter 11: Infinite Sequences and Series

with the nth derivative, for all n, being

Since these equations all hold at we have

and, in general,

These formulas reveal a pattern in the coefficients of any power series 
that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an
open question), then there is only one such series and its nth coefficient is

If ƒ has a series representation, then the series must be

(1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval I
centered at and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interior of I? The answer is maybe—for some functions it will
but for other functions it will not, as we will see.

Taylor and Maclaurin Series

x = a

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

an =

ƒsndsad
n!

.

gq

n=0 ansx - adn

ƒsndsad = n!an .

ƒ¿sad = a1,

ƒ–sad = 1 # 2a2,

ƒ‡sad = 1 # 2 # 3a3,

x = a ,

f sndsxd = n!an + a sum of terms with sx - ad as a factor .

DEFINITIONS Taylor Series, Maclaurin Series
Let ƒ be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by ƒ at is

The Maclaurin series generated by ƒ is

the Taylor series generated by ƒ at x = 0.

a
q

k = 0
 
ƒskds0d

k!
 xk

= ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á ,

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 a
q

k = 0
 
ƒskdsad

k!
 sx - adk

= ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

x = a

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.
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11.8 Taylor and Maclaurin Series 807

EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by at Where, if anywhere, does the
series converge to 1 x?

Solution We need to find Taking derivatives we get

The Taylor series is

This is a geometric series with first term 1 2 and ratio It converges ab-
solutely for and its sum is

In this example the Taylor series generated by at converges to 1 x for
or 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one
given by

In Section 3.8 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has
derivatives of higher order at a, then it has higher-order polynomial approximations as
well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of ƒ.

P1sxd = ƒsad + ƒ¿sadsx - ad .

0 6 x 6 4.ƒ x - 2 ƒ 6 2
>a = 2ƒsxd = 1>x

1>2
1 + sx - 2d>2 =

1
2 + sx - 2d

=
1
x .

ƒ x - 2 ƒ 6 2
r = -sx - 2d>2.>

 =
1
2

-

sx - 2d
22 +

sx - 2d2

23 -
Á

+ s -1dn 
sx - 2dn

2n + 1 +
Á .

 ƒs2d + ƒ¿s2dsx - 2d +

ƒ–s2d
2!

 sx - 2d2
+

Á
+

ƒsnds2d
n!

 sx - 2dn
+

Á

 ƒsndsxd = s -1dnn!x-sn + 1d,   
ƒsnds2d

n!
=

s -1dn

2n + 1 .

 o   o

 ƒ‡sxd = -3!x-4,   
ƒ‡s2d

3!
= -

1
24 ,

 ƒ–sxd = 2!x-3,   
ƒ–s2d

2!
= 2-3

=
1
23 ,

 ƒ¿sxd = -x-2,   ƒ¿s2d = -
1
22 ,

 ƒsxd = x-1,   ƒs2d = 2-1
=

1
2

,

ƒs2d, ƒ¿s2d, ƒ–s2d, Á .

> a = 2.ƒsxd = 1>x
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We speak of a Taylor polynomial of order n rather than degree n because may
be zero. The first two Taylor polynomials of at for example, are

and The first-order Taylor polynomial has degree zero, not one.
Just as the linearization of ƒ at provides the best linear approximation of ƒ in

the neighborhood of a, the higher-order Taylor polynomials provide the best polynomial
approximations of their respective degrees. (See Exercise 32.)

EXAMPLE 2 Finding Taylor Polynomials for 

Find the Taylor series and the Taylor polynomials generated by at 

Solution Since

we have

The Taylor series generated by ƒ at is

This is also the Maclaurin series for In Section 11.9 we will see that the series con-
verges to at every x.

The Taylor polynomial of order n at is

See Figure 11.12.

EXAMPLE 3 Finding Taylor Polynomials for cos x

Find the Taylor series and Taylor polynomials generated by at x = 0.ƒsxd = cos x

Pnsxd = 1 + x +

x2

2
+

Á
+

xn

n!
 .

x = 0
ex

ex .

 = a
q

k = 0
 
xk

k!
.

 = 1 + x +

x2

2
+

Á
+

xn

n!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0

ƒs0d = e0
= 1, ƒ¿s0d = 1, Á , ƒsnds0d = 1, . Á

ƒsxd = ex, ƒ¿sxd = ex, Á , ƒsndsxd = ex, Á ,

x = 0.ƒsxd = ex

ex

x = a
P1sxd = 1.P0sxd = 1

x = 0,ƒsxd = cos x
ƒsndsad

808 Chapter 11: Infinite Sequences and Series

DEFINITION Taylor Polynomial of Order n
Let ƒ be a function with derivatives of order k for in some inter-
val containing a as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by ƒ at is the polynomial

 +

ƒskdsad
k!

 sx - adk
+

Á
+

ƒsndsad
n!

 sx - adn .

 Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

x = a

k = 1, 2, Á , N

0.5

1.0

y � e x

0 0.5

1.5

2.0

2.5

3.0
y � P3(x)

y � P2(x)

y � P1(x)

1.0

x

y

–0.5

FIGURE 11.12 The graph of 
and its Taylor polynomials

Notice the very close agreement near the
center (Example 2).x = 0

 P3sxd = 1 + x + sx2>2!d + sx3>3!d .

 P2sxd = 1 + x + sx2>2!d
 P1sxd = 1 + x

ƒsxd = ex
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11.8 Taylor and Maclaurin Serie 809

Solution The cosine and its derivatives are

At the cosines are 1 and the sines are 0, so

The Taylor series generated by ƒ at 0 is

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.

Because the Taylor polynomials of orders 2n and are identical:

Figure 11.13 shows how well these polynomials approximate near 
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis.

x = 0.ƒsxd = cos x

P2nsxd = P2n + 1sxd = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
.

2n + 1ƒs2n + 1ds0d = 0,

= a
q

k = 0
 
s -1dkx2k

s2kd!
.

= 1 + 0 # x -

x2

2!
+ 0 # x3

+

x4

4!
+

Á
+ s -1dn 

x2n

s2nd!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

ƒ‡s0d
3!

 x3
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs2nds0d = s -1dn, ƒs2n + 1ds0d = 0.

x = 0,

sin x . ƒs2n + 1dsxd = s -1dn + 1 cos x, ƒs2ndsxd = s -1dn 

o  o

sin x, ƒs3dsxd = -cos x, ƒ–sxd = -sin x, ƒ¿sxd = cos x, ƒsxd = 

0 1

1
y � cos x

2

–1

–2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 11.13 The polynomials

converge to cos x as We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine
and its derivatives at (Example 3).x = 0

n : q .

P2nsxd = a
n

k = 0
 
s -1dkx2k

s2kd!
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EXAMPLE 4 A Function ƒ Whose Taylor Series Converges at Every x but Con-
verges to ƒ(x) Only at 

It can be shown (though not easily) that

(Figure 11.14) has derivatives of all orders at and that for all n. This
means that the Taylor series generated by ƒ at is

The series converges for every x (its sum is 0) but converges to ƒ(x) only at   x = 0.

 = 0 + 0 +
Á

+ 0 +
Á .

 = 0 + 0 # x + 0 # x2
+

Á
+ 0 # xn

+
Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0
ƒsnds0d = 0x = 0

ƒsxd = e0, x = 0

e-1>x2

, x Z 0

x = 0

810 Chapter 11: Infinite Sequences and Series





0 1 2 3 4

1

–1–2–3–4

y �
 e–1/x2

,  x � 0

0 ,       x � 0

x

y

FIGURE 11.14 The graph of the continuous extension of
is so flat at the origin that all of its derivatives there

are zero (Example 4).
y = e-1>x2

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

The answers are provided by a theorem of Taylor in the next section.
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810 Chapter 11: Infinite Sequences and Series

EXERCISES 11.8

Finding Taylor Polynomials
In Exercises 1–8, find the Taylor polynomials of orders 0, 1, 2, and 3
generated by ƒ at a.

1. 2.

3. 4.

5. 6.

7. 8. ƒsxd = 2x + 4, a = 0ƒsxd = 2x, a = 4

ƒsxd = cos x, a = p>4ƒsxd = sin x, a = p>4
ƒsxd = 1>sx + 2d, a = 0ƒsxd = 1>x, a = 2

ƒsxd = ln s1 + xd, a = 0ƒsxd = ln x, a = 1

Finding Taylor Series at 
(Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 9–20.

9. 10.

11. 12.

13. sin 3x 14. sin 
x
2

1
1 - x

1
1 + x

ex>2e-x

x = 0
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811

15. 16.

17. 18.

19. 20.

Finding Taylor Series
In Exercises 21–28, find the Taylor series generated by ƒ at 

21.

22.

23.

24.

25.

26.

27.

28.

Theory and Examples
29. Use the Taylor series generated by at to show that

30. (Continuation of Exercise 29.) Find the Taylor series generated by
at Compare your answer with the formula in Exercise 29.

31. Let ƒ(x) have derivatives through order n at Show that the
Taylor polynomial of order n and its first n derivatives have the
same values that ƒ and its first n derivatives have at x = a .

x = a .

x = 1.ex

ex
= ea c1 + sx - ad +

sx - ad2

2!
+

Á d .
x = aex

ƒsxd = 2x, a = 1

ƒsxd = ex, a = 2

ƒsxd = x>s1 - xd, a = 0

ƒsxd = 1>x2, a = 1

ƒsxd = 3x5
- x4

+ 2x3
+ x2

- 2, a = -1

ƒsxd = x4
+ x2

+ 1, a = -2

ƒsxd = 2x3
+ x2

+ 3x - 8, a = 1

ƒsxd = x3
- 2x + 4, a = 2

x = a .

sx + 1d2x4
- 2x3

- 5x + 4

sinh x =

ex
- e-x

2
cosh x =

ex
+ e-x

2

5 cos px7 cos s -xd 32. Of all polynomials of degree n, the Taylor polynomial of
order n gives the best approximation Suppose that ƒ(x) is dif-
ferentiable on an interval centered at and that 

is a polynomial of degree n
with constant coefficients Let 
Show that if we impose on g the conditions

a.

b.

then

Thus, the Taylor polynomial is the only polynomial of
degree less than or equal to n whose error is both zero at 
and negligible when compared with 

Quadratic Approximations
The Taylor polynomial of order 2 generated by a twice-differentiable
function ƒ(x) at is called the quadratic approximation of ƒ at

In Exercises 33–38, find the (a) linearization (Taylor polyno-
mial of order 1) and (b) quadratic approximation of ƒ at 

33. 34.

35. 36.

37. 38. ƒsxd = tan xƒsxd = sin x

ƒsxd = cosh xƒsxd = 1>21 - x2

ƒsxd = esin xƒsxd = ln scos xd
x = 0.

x = a .
x = a

sx - adn .
x = a

Pnsxd

 +

ƒsndsad
n!

 sx - adn .

 gsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

lim
x:a

 
Esxd

sx - adn = 0,

Esad = 0

ƒsxd - gsxd .Esxd =b0, Á , bn .
b0 + b1sx - ad +

Á
+ bnsx - adn

gsxd =x = a

◊

The approximation error is zero at x = a .

The error is negligible when
compared to sx - adn .
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11.9 Convergence of Taylor Series; Error Estimates 811

Convergence of Taylor Series; Error Estimates

This section addresses the two questions left unanswered by Section 11.8:

1. When does a Taylor series converge to its generating function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

Taylor’s Theorem

We answer these questions with the following theorem.

11.9
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812 Chapter 11: Infinite Sequences and Series

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 39). There is a
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an in-
dependent variable. Taylor’s formula is easier to use in circumstances like these if we
change b to x. Here is a version of the theorem with this change.

THEOREM 22 Taylor’s Theorem
If ƒ and its first n derivatives are continuous on the closed interval
between a and b, and is differentiable on the open interval between a and b,
then there exists a number c between a and b such that

 +

ƒsndsad
n!

 sb - adn
+

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

 ƒsbd = ƒsad + ƒ¿sadsb - ad +

ƒ–sad
2!

 sb - ad2
+

Á

ƒsnd
ƒ¿, ƒ–, Á , ƒsnd

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x in I,

(1)

where

(2)Rnsxd =

f sn + 1dscd
sn + 1d!

 sx - adn + 1 for some c between a and x .

 +

ƒsndsad
n!

 sx - adn
+ Rnsxd ,

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

When we state Taylor’s theorem this way, it says that for each 

The function is determined by the value of the derivative at a point
c that depends on both a and x, and which lies somewhere between them. For any value of
n we want, the equation gives both a polynomial approximation of ƒ of that order and a
formula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function is called the remainder
of order n or the error term for the approximation of ƒ by over I. If as

for all we say that the Taylor series generated by ƒ at converges to ƒ
on I, and we write

Often we can estimate without knowing the value of c, as the following example illustrates.Rn

ƒsxd = a
q

k = 0
 
ƒskdsad

k!
 sx - adk .

x = ax H I,n : q

Rnsxd : 0Pnsxd
Rnsxd

ƒsn + 1dsn + 1dstRnsxd

ƒsxd = Pnsxd + Rnsxd .

x H I ,
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11.9 Convergence of Taylor Series; Error Estimates 813

EXAMPLE 1 The Taylor Series for Revisited

Show that the Taylor series generated by at converges to ƒ(x) for every
real value of x.

Solution The function has derivatives of all orders throughout the interval 
Equations (1) and (2) with and give

and

Since is an increasing function of lies between and When x is negative,
so is c, and When x is zero, and When x is positive, so is c, and

Thus,

and

Finally, because

and the series converges to for every x. Thus,

(3)

Estimating the Remainder

It is often possible to estimate as we did in Example 1. This method of estimation is
so convenient that we state it as a theorem for future reference.

Rnsxd

ex
= a

q

k = 0
 
xk

k!
= 1 + x +

x2

2!
+

Á
+

xk

k!
+

Á .

exlim
n: q

Rnsxd = 0,

lim
n: q

 
xn + 1

sn + 1d!
= 0 for every x ,

ƒ Rnsxd ƒ 6 ex 
xn + 1

sn + 1d!
 when x 7 0.

ƒ Rnsxd ƒ …

ƒ x ƒ
n + 1

sn + 1d!
 when x … 0,

ec
6 ex .

Rnsxd = 0.ex
= 1ec

6 1.
ex .e0

= 1x, ecex

Rnsxd =

ec

sn + 1d!
 xn + 1 for some c between 0 and x .

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+ Rnsxd

a = 0ƒsxd = exs - q , q d .
I =

x = 0ƒsxd = ex

ex

Polynomial from Section
11.8, Example 2

Section 11.1

THEOREM 23 The Remainder Estimation Theorem
If there is a positive constant M such that for all t between x and
a, inclusive, then the remainder term in Taylor’s Theorem satisfies the in-
equality

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by ƒ, then the series converges to ƒ(x).

ƒ Rnsxd ƒ … M 
ƒ x - a ƒ

n + 1

sn + 1d!
.

Rnsxd
ƒ ƒsn + 1dstd ƒ … M
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We are now ready to look at some examples of how the Remainder Estimation Theo-
rem and Taylor’s Theorem can be used together to settle questions of convergence. As you
will see, they can also be used to determine the accuracy with which a function is approxi-
mated by one of its Taylor polynomials.

EXAMPLE 2 The Taylor Series for sin x at 

Show that the Taylor series for sin x at converges for all x.

Solution The function and its derivatives are

so

The series has only odd-powered terms and, for Taylor’s Theorem gives

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the
Remainder Estimation Theorem with to obtain

Since as whatever the value of x, and the
Maclaurin series for sin x converges to sin x for every x. Thus,

(4)

EXAMPLE 3 The Taylor Series for cos x at Revisited

Show that the Taylor series for cos x at converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with 

cos x = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dk 

x2k

s2kd!
+ R2ksxd .

n = 2k :

x = 0

x = 0

sin x = a
q

k = 0
 
s -1dkx2k + 1

s2k + 1d!
= x -

x3

3!
+

x5

5!
-

x7

7!
+

Á .

R2k + 1sxd : 0,k : q ,s ƒ x ƒ
2k + 2>s2k + 2d!d : 0

ƒ R2k + 1sxd ƒ … 1 #
ƒ x ƒ

2k + 2

s2k + 2d!
.

M = 1

sin x = x -

x3

3!
+

x5

5!
-

Á
+

s -1dkx2k + 1

s2k + 1d!
+ R2k + 1sxd .

n = 2k + 1,

f s2kds0d = 0 and f s2k + 1ds0d = s -1dk .

ƒ(2k)sxd = s -1dk sin x,  o  ƒ–sxd =  ƒsxd =  
x = 0

x = 0

814 Chapter 11: Infinite Sequences and Series

ƒ(2k + 1)sxd = s -1dk cos x ,

   o

ƒ‡sxd = ƒ¿sxd = 
-  sin  x, -  cos  x,

sin  x, cos  x,
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11.9 Convergence of Taylor Series; Error Estimates 815

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with gives

For every value of x, as Therefore, the series converges to cos x for every
value of x. Thus,

(5)

EXAMPLE 4 Finding a Taylor Series by Substitution

Find the Taylor series for cos 2x at 

Solution We can find the Taylor series for cos 2x by substituting 2x for x in the Taylor
series for cos x:

Equation (5) holds for implying that it holds for so
the newly created series converges for all x. Exercise 45 explains why the series is in fact
the Taylor series for cos 2x.

EXAMPLE 5 Finding a Taylor Series by Multiplication

Find the Taylor series for x sin x at 

Solution We can find the Taylor series for x sin x by multiplying the Taylor series for
sin x (Equation 4) by x:

The new series converges for all x because the series for sin x converges for all x. Exer-
cise 45 explains why the series is the Taylor series for x sin x.

Truncation Error

The Taylor series for at converges to for all x. But we still need to decide how
many terms to use to approximate to a given degree of accuracy. We get this informa-
tion from the Remainder Estimation Theorem.

ex
exx = 0ex

 = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á .

 x sin x = x ax -

x3

3!
+

x5

5!
-

x7

7!
+

Áb

x = 0.

- q 6 2x 6 q ,- q 6 x 6 q ,

 = a
q

k = 0
s -1dk 

22kx2k

s2kd!
.

 = 1 -

22x2

2!
+

24x4

4!
-

26x6

6!
+

Á

 cos 2x = a
q

k = 0
 
s -1dks2xd2k

s2kd!
= 1 -

s2xd2

2!
+

s2xd4

4!
-

s2xd6

6!
+

Á

x = 0.

cos x = a
q

k = 0
 
s -1dkx2k

s2kd!
= 1 -

x2

2!
+

x4

4!
-

x6

6!
+

Á .

k : q .R2k : 0

ƒ R2ksxd ƒ … 1 #
ƒ x ƒ

2k + 1

s2k + 1d!
.

M = 1

Equation (5)
with 2x for x
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EXAMPLE 6 Calculate e with an error of less than 

Solution We can use the result of Example 1 with to write

with

For the purposes of this example, we assume that we know that Hence, we are
certain that

because for 
By experiment we find that while Thus we should take

to be at least 10, or n to be at least 9. With an error of less than 

EXAMPLE 7 For what values of x can we replace sin x by with an error of
magnitude no greater than 

Solution Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

after is no greater than

Therefore the error will be less than or equal to if

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate for sin x is an under-
estimate when x is positive because then is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-
proximating Taylor polynomials. The graph of is almost indistin-
guishable from the sine curve when -1 … x … 1.

P3sxd = x - sx3>3!d

x5>120
x - sx3>3!d

ƒ x ƒ
5

120
6 3 * 10-4 or ƒ x ƒ 6

52360 * 10-4
L 0.514.

3 * 10-4

` x5

5!
` =

ƒ x ƒ
5

120
.

sx3>3!d

sin x = x -

x3

3!
  +

x5

5!
-

Á

3 * 10-4?
x - sx3>3!d

e = 1 + 1 +
1
2

+
1
3!

+
Á

+
1
9!

L 2.718282.

10-6 ,sn + 1d
3>10! 6 10-6 .1>9! 7 10-6 ,

0 6 c 6 1.1 6 ec
6 3

1
sn + 1d!

6 Rns1d 6

3
sn + 1d!

e 6 3.

Rns1d = ec 
1

sn + 1d!

e = 1 + 1 +
1
2!

+
Á

+
1
n!

+ Rns1d ,

x = 1

10-6 .
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for some c between 0 and 1.

Rounded down,
to be safe

--
--

--
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11.9 Convergence of Taylor Series; Error Estimates 817

You might wonder how the estimate given by the Remainder Estimation Theorem com-
pares with the one just obtained from the Alternating Series Estimation Theorem. If we
write

then the Remainder Estimation Theorem gives

which is not as good. But if we recognize that 
is the Taylor polynomial of order 4 as well as of order 3, then

and the Remainder Estimation Theorem with gives

This is what we had from the Alternating Series Estimation Theorem.

Combining Taylor Series

On the intersection of their intervals of convergence, Taylor series can be added, subtracted,
and multiplied by constants, and the results are once again Taylor series. The Taylor series
for is the sum of the Taylor series for ƒ(x) and g(x) because the nth derivative
of is and so on. Thus we obtain the Taylor series for by
adding 1 to the Taylor series for cos 2x and dividing the combined results by 2, and the
Taylor series for is the term-by-term sum of the Taylor series for sin x and
cos x.

sin x + cos x

s1 + cos 2xd>2f snd
+ g snd ,f + g

ƒsxd + gsxd

ƒ R4 ƒ … 1 #  
ƒ x ƒ

5

5!
=

ƒ x ƒ
5

120
.

M = 1

sin x = x -

x3

3!
+ 0 + R4 ,

sx3/3!d + 0x4
x - sx3>3!d = 0 + x + 0x2

-

ƒ R3 ƒ … 1 #  
ƒ x ƒ

4

4!
=

ƒ x ƒ
4

24
,

sin x = x -

x3

3!
+ R3 ,

1

y � sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

–1

–2

x

y

FIGURE 11.15 The polynomials

converge to sin x as Notice how closely 
approximates the sine curve for (Example 7).x 6 1

P3sxdn : q .

P2n + 1sxd = a
n

k = 0
 
s -1dkx2k + 1

s2k + 1d!
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Euler’s Identity

As you may recall, a complex number is a number of the form where a and b are

real numbers and If we substitute ( real) in the Taylor series for and
use the relations

and so on, to simplify the result, we obtain

This does not prove that because we have not yet defined what it
means to raise e to an imaginary power. Rather, it says how to define to be consistent
with other things we know.

eiu
eiu

= cos u + i sin u

 = a1 -

u2

2!
+

u4

4!
-

u6

6!
+

Áb + i au -

u3

3!
+

u5

5!
-

Áb = cos u + i sin u .

 eiu
= 1 +

iu
1!

+

i2u2

2!
+

i3u3

3!
+

i4u4

4!
+

i5u5

5!
+

i6u6

6!
+

Á

i2
= -1, i3

= i2i = - i, i4
= i2i2

= 1, i5
= i4i = i ,

exux = iui = 2-1.

a + bi ,
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DEFINITION

(6)For any real number u, eiu
= cos u + i sin u .

Equation (6), called Euler’s identity, enables us to define to be for any
complex number One consequence of the identity is the equation

When written in the form this equation combines five of the most important
constants in mathematics.

A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming The proof for is nearly the same.
The Taylor polynomial

and its first n derivatives match the function ƒ and its first n derivatives at We do
not disturb that matching if we add another term of the form where K is any
constant, because such a term and its first n derivatives are all equal to zero at The
new function

and its first n derivatives still agree with ƒ and its first n derivatives at 
We now choose the particular value of K that makes the curve agree with

the original curve at In symbols,

(7)ƒsbd = Pnsbd + Ksb - adn + 1, or K =

ƒsbd - Pnsbd
sb - adn + 1 .

x = b .y = ƒsxd
y = fnsxd

x = a .

fnsxd = Pnsxd + Ksx - adn + 1

x = a .
Ksx - adn + 1 ,

x = a .

Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á
+

f sndsad
n!

 sx - adn

a 7 ba 6 b .

eip
+ 1 = 0,

eip
= -1.

a + bi .
ea # ebiea + bi
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11.9 Convergence of Taylor Series; Error Estimates 819

With K defined by Equation (7), the function

measures the difference between the original function ƒ and the approximating function 
for each x in [a, b].

We now use Rolle’s Theorem (Section 4.2). First, because and both
F and are continuous on [a, b], we know that

Next, because and both and are continuous on we know
that

Rolle’s Theorem, applied successively to implies the existence of

Finally, because is continuous on and differentiable on and
Rolle’s Theorem implies that there is a number in 

such that

(8)

If we differentiate a total of times, we get

(9)

Equations (8) and (9) together give

(10)

Equations (7) and (10) give

This concludes the proof.

ƒsbd = Pnsbd +

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

K =

ƒsn + 1dscd
sn + 1d!
 for some number c = cn + 1 in sa, bd .

F sn + 1dsxd = ƒsn + 1dsxd - 0 - sn + 1d!K .

n + 1Fsxd = ƒsxd - Pnsxd - Ksx - adn + 1

F sn + 1dscn + 1d = 0.

sa, cndcn + 1F sndsad = F sndscnd = 0,
sa, cnd ,[a, cn]F snd

cn in sa, cn - 1d such that F sndscnd = 0.

o

c4 in sa, c3d       such that F s4dsc4d = 0,

c3 in sa, c2d        such that F‡sc3d = 0,

F–, F‡, Á , F sn - 1d

F–sc2d = 0 for some c2 in sa, c1d .

[a, c1] ,F–F¿F¿sad = F¿sc1d = 0

F¿sc1d = 0 for some c1 in sa, bd .

F¿

Fsad = Fsbd = 0

fn

Fsxd = ƒsxd - fnsxd
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11.9 Convergence of Taylor Series; Error Estimates 819

EXERCISES 11.9

Taylor Series by Substitution
Use substitution (as in Example 4) to find the Taylor series at of
the functions in Exercises 1–6.

1. 2. 3.

4. 5. 6. cos Ax3>2>22 Bcos 2x + 1sin apx
2
b

5 sin s -xde-x>2e-5x

x = 0

More Taylor Series
Find Taylor series at for the functions in Exercises 7–18.

7. 8. 9.

10. 11. 12. x2 cos sx2dx cos pxsin x - x +

x3

3!

x2

2
- 1 + cos xx2 sin xxex

x = 0
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13. (Hint: )

14. 15. 16.

17. 18.

Error Estimates
19. For approximately what values of x can you replace sin x by

with an error of magnitude no greater than
Give reasons for your answer.

20. If cos x is replaced by and what estimate
can be made of the error? Does tend to be too large,
or too small? Give reasons for your answer.

21. How close is the approximation when For
which of these values of x is 

22. The estimate is used when x is small. Esti-
mate the error when 

23. The approximation is used when x is
small. Use the Remainder Estimation Theorem to estimate the
error when 

24. (Continuation of Exercise 23.) When the series for is an
alternating series. Use the Alternating Series Estimation Theorem
to estimate the error that results from replacing by

when Compare your estimate
with the one you obtained in Exercise 23.

25. Estimate the error in the approximation 
when (Hint: Use not )

26. When show that may be replaced by 
with an error of magnitude no greater than 0.6% of h. Use

27. For what positive values of x can you replace by x with
an error of magnitude no greater than 1% of the value of x?

28. You plan to estimate by evaluating the Maclaurin series for
at Use the Alternating Series Estimation Theorem

to determine how many terms of the series you would have to add
to be sure the estimate is good to two decimal places.

29. a. Use the Taylor series for sin x and the Alternating Series Esti-
mation Theorem to show that

b. Graph together with the functions
and for Comment on

the relationships among the graphs.

30. a. Use the Taylor series for cos x and the Alternating Series Esti-
mation Theorem to show that

(This is the inequality in Section 2.2, Exercise 52.)

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

, x Z 0.

-5 … x … 5.y = 1y = 1 - sx2>6d
ƒsxd = ssin xd>x

1 -

x2

6
6

sin x
x 6 1, x Z 0.

x = 1.tan-1 x
p>4

ln s1 + xd
e0.01

= 1.01 .

1 + heh0 … h … 0.01 ,

R3 .R4 ,ƒ x ƒ 6 0.5 .
sinh x = x + sx3>3!d

-0.1 6 x 6 0.1 + x + sx2>2d
ex

exx 6 0,

ƒ x ƒ 6 0.1 .

ex
= 1 + x + sx2>2d

ƒ x ƒ 6 0.01 .
21 + x = 1 + sx>2d

x 6 sin x?
ƒ x ƒ 6 10-3 ?sin x = x

1 - sx2>2d
ƒ x ƒ 6 0.5 ,1 - sx2>2d

5 * 10-4 ?
x - sx3>6d

2
s1 - xd3

1
s1 - xd2

x ln s1 + 2xdx2

1 - 2x
sin2 x

cos2 x = s1 + cos 2xd>2.cos2 x b. Graph together with
and for 

Comment on the relationships among the graphs.

Finding and Identifying Maclaurin Series
Recall that the Maclaurin series is just another name for the Taylor
series at Each of the series in Exercises 31–34 is the value of
the Maclaurin series of a function ƒ(x) at some point. What function
and what point? What is the sum of the series?

31.

32.

33.

34.

35. Multiply the Maclaurin series for and sin x together to find the
first five nonzero terms of the Maclaurin series for 

36. Multiply the Maclaurin series for and cos x together to find the
first five nonzero terms of the Maclaurin series for 

37. Use the identity to obtain the Maclaurin
series for Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x. Check that this is the series for
sin 2x.

38. (Continuation of Exercise 37.) Use the identity 
to obtain a power series for 

Theory and Examples
39. Taylor’s Theorem and the Mean Value Theorem Explain how

the Mean Value Theorem (Section 4.2, Theorem 4) is a special
case of Taylor’s Theorem.

40. Linearizations at inflection points Show that if the graph of a
twice-differentiable function ƒ(x) has an inflection point at

then the linearization of ƒ at is also the quadratic
approximation of ƒ at This explains why tangent lines fit
so well at inflection points.

41. The (second) second derivative test Use the equation

to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that Then

a. ƒ has a local maximum at a if throughout an interval
whose interior contains a;

b. ƒ has a local minimum at a if throughout an interval
whose interior contains a.

ƒ– Ú 0

ƒ– … 0

ƒ¿sad = 0.

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sc2d
2

 sx - ad2

x = a .
x = ax = a ,

cos2 x .cos 2x + sin2 x
cos2 x =

sin2 x .
sin2 x = s1 - cos 2xd>2

ex cos x .
ex

ex sin x .
ex

p -

p2

2
+

p3

3
-

Á
+ s -1dk - 1 

pk

k
+

Á

p

3
-

p3

33 # 3
+

p5

35 # 5
-

Á
+

s -1dkp2k + 1

32k + 1s2k + 1d
+

Á

1 -

p2

42 # 2!
+

p4

44 # 4!
-

Á
+

s -1dkspd2k

42k # s2k!d
+

Á

s0.1d -

s0.1d3

3!
+

s0.1d5

5!
-

Á
+

s -1dks0.1d2k + 1

s2k + 1d!
+

Á

x = 0.

-9 … x … 9.y = 1>2y = s1>2d - sx2>24d
ƒsxd = s1 - cos xd>x2
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T
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11.9 Convergence of Taylor Series; Error Estimates 821

42. A cubic approximation Use Taylor’s formula with and
to find the standard cubic approximation of 

at Give an upper bound for the magnitude of
the error in the approximation when 

43. a. Use Taylor’s formula with to find the quadratic approxi-
mation of at (k a constant).

b. If for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1 100?

44. Improving approximations to 

a. Let P be an approximation of accurate to n decimals. Show
that gives an approximation correct to 3n decimals.
(Hint: Let )

b. Try it with a calculator.

45. The Taylor series generated by is
A function defined by a power series 

with a radius of convergence has a Taylor series that con-
verges to the function at every point of Show this by
showing that the Taylor series generated by is
the series itself.

An immediate consequence of this is that series like

and

obtained by multiplying Taylor series by powers of x, as well as
series obtained by integration and differentiation of convergent
power series, are themselves the Taylor series generated by the
functions they represent.

46. Taylor series for even functions and odd functions (Continua-
tion of Section 11.7, Exercise 45.) Suppose that 
converges for all x in an open interval Show that

a. If ƒ is even, then i.e., the Taylor
series for ƒ at contains only even powers of x.

b. If ƒ is odd, then i.e., the Taylor
series for ƒ at contains only odd powers of x.

47. Taylor polynomials of periodic functions

a. Show that every continuous periodic function 
is bounded in magnitude by showing that

there exists a positive constant M such that for
all x.

b. Show that the graph of every Taylor polynomial of positive
degree generated by must eventually move away
from the graph of cos x as increases. You can see this in
Figure 11.13. The Taylor polynomials of sin x behave in a
similar way (Figure 11.15).

ƒ x ƒ

ƒsxd = cos x

ƒ ƒsxd ƒ … M

- q 6 x 6 q ,
ƒsxd,

x = 0
a0 = a2 = a4 =

Á
= 0,

x = 0
a1 = a3 = a5 =

Á
= 0,

s -c, cd .
ƒsxd = gq

n=0 an xn

x2ex
= x2

+ x3
+

x4

2!
+

x5

3!
+

Á ,

x sin x = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á

gq

n=0 an xn
ƒsxd = gq

n=0 an xn
s -c, cd .

c 7 0
gq

n=0 an xngq

n=0 an xn
ƒsxd = gq

n=0 an xn

P = p + x .
P + sin P

p

P

>
k = 3,

x = 0ƒsxd = s1 + xdk
n = 2

ƒ x ƒ … 0.1 .
x = 0.1>s1 - xd

ƒsxd =n = 3
a = 0 48. a. Graph the curves and 

together with the line 

b. Use a Taylor series to explain what you see. What is

Euler’s Identity
49. Use Equation (6) to write the following powers of e in the form

a. b. c.

50. Use Equation (6) to show that

51. Establish the equations in Exercise 50 by combining the formal
Taylor series for and 

52. Show that

a. b.

53. By multiplying the Taylor series for and sin x, find the terms
through of the Taylor series for This series is the imag-
inary part of the series for

Use this fact to check your answer. For what values of x should
the series for converge?

54. When a and b are real, we define with the equation

Differentiate the right-hand side of this equation to show that

Thus the familiar rule holds for k complex as
well as real.

55. Use the definition of to show that for any real numbers 
and 

a. b.

56. Two complex numbers and are equal if and only if
and Use this fact to evaluate

from

where is a complex constant of integration.C = C1 + iC2

Le sa + ibdx dx =

a - ib

a2
+ b2 e sa + ibdx

+ C ,

Le ax cos bx dx and Le ax sin bx dx

b = d .a = c
c + ida + ib

e-iu
= 1>eiu .eiu1eiu2

= eisu1 +u2d,

u2 ,
u, u1 ,eiu

sd>dxde kx
= ke kx

d
dx

 e sa + ibdx
= sa + ibde sa + ibdx .

e sa + ibdx
= eax # eibx

= eaxscos bx + i sin bxd .

e sa + ibdx

ex sin x

ex # eix
= e s1 + idx .

ex sin x .x5
ex

sinh iu = i sin u .cosh iu = cos u ,

e-iu .eiu

cos u =

eiu
+ e-iu

2
 and sin u =

eiu
- e-iu

2i
.

e-ip>2eip>4e-ip

a + bi .

lim
x:0

 
x - tan-1 x

x3  ?

y = 1>3.
y = sx - tan-1 xd>x3y = s1>3d - sx2d>5

T

T
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COMPUTER EXPLORATIONS
Linear, Quadratic, and Cubic Approximations
Taylor’s formula with and gives the linearization of a
function at With and we obtain the standard
quadratic and cubic approximations. In these exercises we explore the
errors associated with these approximations. We seek answers to two
questions:

a. For what values of x can the function be replaced by each
approximation with an error less than 

b. What is the maximum error we could expect if we replace the
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering
questions (a) and (b) for the functions and intervals in Exercises
57–62.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials and at

Step 3: Calculate the derivative associated
with the remainder term for each Taylor polynomial. Plot the de-
rivative as a function of c over the specified interval and estimate
its maximum absolute value, M.

ƒsn + 1dscdsn + 1dst

x = 0.
P3sxdP1sxd, P2sxd ,

10-2 ?

n = 3n = 2x = 0.
a = 0n = 1

Step 4: Calculate the remainder for each polynomial. Us-
ing the estimate M from Step 3 in place of plot 
over the specified interval. Then estimate the values of x that
answer question (a).

Step 5: Compare your estimated error with the actual error
by plotting over the specified in-

terval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approximations
together. Discuss the graphs in relation to the information discov-
ered in Steps 4 and 5.

57.

58.

59.

60.

61.

62. ƒsxd = ex>3 sin 2x, ƒ x ƒ … 2

ƒsxd = e-x cos 2x, ƒ x ƒ … 1

ƒsxd = scos xdssin 2xd, ƒ x ƒ … 2

ƒsxd =

x

x2
+ 1

, ƒ x ƒ … 2

ƒsxd = s1 + xd3>2, -

1
2

… x … 2

ƒsxd =

121 + x
, ƒ x ƒ …

3
4

EnsxdEnsxd = ƒ ƒsxd - Pnsxd ƒ

Rnsxdƒsn + 1dscd ,
Rnsxd
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822 Chapter 11: Infinite Sequences and Series

Applications of Power Series

This section introduces the binomial series for estimating powers and roots and shows how
series are sometimes used to approximate the solution of an initial value problem, to eval-
uate nonelementary integrals, and to evaluate limits that lead to indeterminate forms. We
provide a self-contained derivation of the Taylor series for and conclude with a ref-
erence table of frequently used series.

The Binomial Series for Powers and Roots

The Taylor series generated by when m is constant, is

(1)

This series, called the binomial series, converges absolutely for To derive theƒ x ƒ 6 1.

+

msm - 1dsm - 2d Á sm - k + 1d
k!

 xk
+

Á .

1 + mx +

msm - 1d
2!

 x2
+

msm - 1dsm - 2d
3!

 x3
+

Á

ƒsxd = s1 + xdm ,

tan-1 x

11.10
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11.10 Applications of Power Series 823

series, we first list the function and its derivatives:

We then evaluate these at and substitute into the Taylor series formula to obtain
Series (1).

If m is an integer greater than or equal to zero, the series stops after terms
because the coefficients from on are zero.

If m is not a positive integer or zero, the series is infinite and converges for 
To see why, let be the term involving Then apply the Ratio Test for absolute conver-
gence to see that

Our derivation of the binomial series shows only that it is generated by and
converges for The derivation does not show that the series converges to 
It does, but we omit the proof.

s1 + xdm .ƒ x ƒ 6 1.
s1 + xdm

` uk + 1
uk
` = ` m - k

k + 1
 x ` : ƒ x ƒ as k : q .

xk .uk

ƒ x ƒ 6 1.
k = m + 1

sm + 1d

x = 0

 ƒskdsxd = msm - 1dsm - 2d Á sm - k + 1ds1 + xdm - k .

 o

 ƒ‡sxd = msm - 1dsm - 2ds1 + xdm - 3

 ƒ–sxd = msm - 1ds1 + xdm - 2

 ƒ¿sxd = ms1 + xdm - 1

 ƒsxd = s1 + xdm

The Binomial Series

For 

where we define

and

am
k
b =

msm - 1dsm - 2d Á sm - k + 1d
k!

 for k Ú 3.

am
1
b = m, am

2
b =

msm - 1d
2!

,

s1 + xdm
= 1 + a

q

k = 1
 am

k
b  xk ,

-1 6 x 6 1,

EXAMPLE 1 Using the Binomial Series

If 

and

a-1

k
b =

-1s -2ds -3d Á s -1 - k + 1d
k!

= s -1dk ak!
k!
b = s -1dk .

a-1

1
b = -1, a-1

2
b =

-1s -2d
2!

= 1,

m = -1,
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With these coefficient values and with x replaced by the binomial series formula gives
the familiar geometric series

EXAMPLE 2 Using the Binomial Series

We know from Section 3.8, Example 1, that for small. With
the binomial series gives quadratic and higher-order approximations as well,

along with error estimates that come from the Alternating Series Estimation Theorem:

Substitution for x gives still other approximations. For example,

Power Series Solutions of Differential Equations
and Initial Value Problems

When we cannot find a relatively simple expression for the solution of an initial value prob-
lem or differential equation, we try to get information about the solution in other ways. One
way is to try to find a power series representation for the solution. If we can do so, we im-
mediately have a source of polynomial approximations of the solution, which may be all
that we really need. The first example (Example 3) deals with a first-order linear differen-
tial equation that could be solved with the methods of Section 9.2. The example shows how,
not knowing this, we can solve the equation with power series. The second example (Exam-
ple 4) deals with an equation that cannot be solved analytically by previous methods.

EXAMPLE 3 Series Solution of an Initial Value Problem

Solve the initial value problem

Solution We assume that there is a solution of the form

(2)y = a0 + a1 x + a2 x2
+

Á
+ an - 1x

n - 1
+ an xn

+
Á .

y¿ - y = x, ys0d = 1.

A1 -
1
x L 1 -

1
2x

-
1

8x2 for ` 1x `  small, that is,  ƒ x ƒ  large.

21 - x 2
L 1 -

x 2

2
-

x4

8
 for  ƒ x 2

ƒ  small

 = 1 +

x
2

-

x2

8
+

x3

16
-

5x4

128
+

Á .

+

a1
2
b a- 1

2
b a- 3

2
b a- 5

2
b

4!
 x4

+
Á

s1 + xd1>2
= 1 +

x
2

+

a1
2
b a- 1

2
b

2!
 x2

+

a1
2
b a- 1

2
b a- 3

2
b

3!
 x3

m = 1>2,
ƒ x ƒ21 + x L 1 + sx>2d

s1 + xd-1
= 1 + a

q

k = 1
s -1dkxk

= 1 - x + x2
- x3

+
Á

+ s -1dkxk
+

Á .

-x ,
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11.10 Applications of Power Series 825

Our goal is to find values for the coefficients that make the series and its first derivative

(3)

satisfy the given differential equation and initial condition. The series is the differ-
ence of the series in Equations (2) and (3):

(4)

If y is to satisfy the equation the series in Equation (4) must equal x. Since
power series representations are unique (Exercise 45 in Section 11.7), the coefficients in
Equation (4) must satisfy the equations

We can also see from Equation (2) that when so that (this being the
initial condition). Putting it all together, we have

Substituting these coefficient values into the equation for y (Equation (2)) gives

The solution of the initial value problem is 
As a check, we see that

and

EXAMPLE 4 Solving a Differential Equation

Find a power series solution for

(5)y– + x2y = 0.

y¿ - y = s2ex
- 1d - s2ex

- 1 - xd = x .

ys0d = 2e0
- 1 - 0 = 2 - 1 = 1

y = 2ex
- 1 - x .

 = 1 + x + 2sex
- 1 - xd = 2ex

- 1 - x .

 
= 1 + x + 2 ax2

2!
+

x3

3!
+

Á
+

xn

n!
+

Áb
('''''')''''''*

the Taylor series for ex
- 1 - x

 y = 1 + x + 2 # x2

2!
+ 2 # x3

3!
+

Á
+ 2 # xn

n!
+

Á

 a3 =

a2

3
=

2
3 # 2

=
2
3!

, Á , an =

an - 1
n =

2
n!

, Á

 a0 = 1, a1 = a0 = 1,  a2 =

1 + a1

2
=

1 + 1
2

=
2
2

,

a0 = 1x = 0,y = a0

 o

 nan - an - 1 = 0

 o

 3a3 - a2 = 0

 2a2 - a1 = 1

 a1 - a0 = 0

y¿ - y = x ,

 + snan - an - 1dxn - 1
+

Á .

 y¿ - y = sa1 - a0d + s2a2 - a1dx + s3a3 - a2dx2
+

Á

y¿ - y

y¿ = a1 + 2a2 x + 3a3 x2
+

Á
+ nan xn - 1

+
Á

ak

Constant terms

Coefficients of x

Coefficients of x2

o

Coefficients of xn - 1

o
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Solution We assume that there is a solution of the form

(6)

and find what the coefficients have to be to make the series and its second derivative

(7)

satisfy Equation (5). The series for is times the right-hand side of Equation (6):

(8)

The series for is the sum of the series in Equations (7) and (8):

(9)

Notice that the coefficient of in Equation (8) is If y and its second derivative 
are to satisfy Equation (5), the coefficients of the individual powers of x on the right-hand
side of Equation (9) must all be zero:

(10)

and for all 

(11)

We can see from Equation (6) that

In other words, the first two coefficients of the series are the values of y and at 
Equations in (10) and the recursion formula in Equation (11) enable us to evaluate all the
other coefficients in terms of and 

The first two of Equations (10) give

Equation (11) shows that if then so we conclude that

and whenever or is zero. For the other coefficients we have

so that

and

 a13 =

-a9

12 # 13
=

-a1

4 # 5 # 8 # 9 # 12 # 13
.

 a5 =

-a1

5 # 4
, a9 =

-a5

9 # 8
=

a1

4 # 5 # 8 # 9

 a12 =

-a8

11 # 12
=

-a0

3 # 4 # 7 # 8 # 11 # 12

 a4 =

-a0

4 # 3
, a8 =

-a4

8 # 7
=

a0

3 # 4 # 7 # 8

an =

-an - 4

nsn - 1d

4k + 3, ann = 4k + 2

a6 = 0, a7 = 0, a10 = 0, a11 = 0,

an = 0;an - 4 = 0,

a2 = 0, a3 = 0.

a1 .a0

x = 0.y¿

a0 = ys0d, a1 = y¿s0d .

nsn - 1dan + an - 4 = 0.

n Ú 4,

2a2 = 0, 6a3 = 0, 12a4 + a0 = 0, 20a5 + a1 = 0,

y–an - 4 .xn - 2

 +
Á

+ snsn - 1dan + an - 4dxn - 2
+

Á .

 y– + x2y = 2a2 + 6a3 x + s12a4 + a0dx2
+ s20a5 + a1dx3

y– + x2y

x2y = a0 x2
+ a1 x3

+ a2 x4
+

Á
+ an xn + 2

+
Á .

x2x2y

y– = 2a2 + 3 # 2a3 x +
Á

+ nsn - 1dan xn - 2
+

Á

ak

y = a0 + a1 x + a2 x2
+

Á
+ an xn

+
Á ,
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11.10 Applications of Power Series 827

The answer is best expressed as the sum of two separate series—one multiplied by the
other by 

Both series converge absolutely for all x, as is readily seen by the Ratio Test.

Evaluating Nonelementary Integrals

Taylor series can be used to express nonelementary integrals in terms of series. Integrals
like arise in the study of the diffraction of light.

EXAMPLE 5 Express as a power series.

Solution From the series for sin x we obtain

Therefore,

EXAMPLE 6 Estimating a Definite Integral

Estimate with an error of less than 0.001.

Solution From the indefinite integral in Example 5,

The series alternates, and we find by experiment that

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

With two more terms we could estimate

with an error of less than With only one term beyond that we have

L
1

0
 sin x2 dx L

1
3

-
1
42

+
1

1320
-

1
75600

+
1

6894720
L 0.310268303,

10-6 .

L
1

0
 sin x2 dx L 0.310268

L
1

0
 sin x2 dx L

1
3

-
1
42

L 0.310.

1
11 # 5!

L 0.00076

L
1

0
 sin x2 dx =

1
3

-
1

7 # 3!
+

1
11 # 5!

-
1

15 # 7!
+

1
19 # 9!

-
Á .

11
0  sin x2 dx

L  sin x2 dx = C +

x3

3
-

x7

7 # 3!
+

x11

11 # 5!
-

x15

15 # 7!
+

x10

19 # 9!
-

Á .

sin x2
= x2

-

x6

3!
+

x10

5!
-

x14

7!
+

x18

9!
-

Á .

1  sin x2 dx

1  sin x2 dx

 + a1 ax -

x5

4 # 5
+

x9

4 # 5 # 8 # 9
-

x13

4 # 5 # 8 # 9 # 12 # 13
+

Áb .

y = a0 a1 -

x4

3 # 4
+

x8

3 # 4 # 7 # 8
-

x12

3 # 4 # 7 # 8 # 11 # 12
+

Áb
a1 :

a0 ,
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with an error of about To guarantee this accuracy with the error formula for
the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 11.7, Example 5, we found a series for by differentiating to get

and integrating to get

However, we did not prove the term-by-term integration theorem on which this conclusion
depended. We now derive the series again by integrating both sides of the finite formula

(12)

in which the last term comes from adding the remaining terms as a geometric series with
first term and ratio Integrating both sides of Equation (12)
from to gives

where

The denominator of the integrand is greater than or equal to 1; hence

If the right side of this inequality approaches zero as Therefore
if and

(13)

We take this route instead of finding the Taylor series directly because the formulas for the
higher-order derivatives of are unmanageable. When we put in Equation (13),
we get Leibniz’s formula:

Because this series converges very slowly, it is not used in approximating to many deci-
mal places. The series for converges most rapidly when x is near zero. For that rea-
son, people who use the series for to compute use various trigonometric identities.ptan-1 x

tan-1 x
p

p
4

= 1 -
1
3

+
1
5 -

1
7 +

1
9

-
Á

+

s -1dn

2n + 1
+

Á .

x = 1tan-1 x

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á , ƒ x ƒ … 1

tan-1 x = a
q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1.

ƒ x ƒ … 1limn:q Rnsxd = 0
n : q .ƒ x ƒ … 1,

ƒ Rnsxd ƒ … L
ƒ x ƒ

0
t2n + 2 dt =

ƒ x ƒ
2n + 3

2n + 3
.

Rnsxd = L
x

0
 
s -1dn + 1t2n + 2

1 + t2  dt .

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á

+ s -1dn 
x2n + 1

2n + 1
+ Rnsxd ,

t = xt = 0
r = - t2 .a = s -1dn + 1t2n + 2

1
1 + t2 = 1 - t2

+ t4
- t6

+
Á

+ s -1dnt2n
+

s -1dn + 1t2n + 2

1 + t2 ,

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á .

d
dx

 tan-1 x =
1

1 + x2 = 1 - x2
+ x4

- x6
+

Á

tan-1 x

1.08 * 10-9 .
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11.10 Applications of Power Series 829

For example, if

then

and

Now Equation (13) may be used with to evaluate and with to
give The sum of these results, multiplied by 4, gives 

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as
Taylor series.

EXAMPLE 7 Limits Using Power Series

Evaluate

Solution We represent ln x as a Taylor series in powers of This can be accom-
plished by calculating the Taylor series generated by ln x at directly or by replacing
x by in the series for in Section 11.7, Example 6. Either way, we obtain

from which we find that

EXAMPLE 8 Limits Using Power Series

Evaluate

lim
x:0

 
sin x - tan x

x3 .

lim 
x:1

 
ln x

x - 1
= lim

x:1
 a1 -

1
2

 sx - 1d +
Áb = 1.

ln x = sx - 1d -
1
2

 sx - 1d2
+

Á ,

ln (1 + x)x - 1
x = 1

x - 1.

lim
x:1

 
ln x

x - 1
.

p .tan-1 (1>3).
x = 1>3tan-1 (1>2)x = 1>2

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

tan sa + b d =

tan a + tan b

1 - tan a tan b
=

1
2 +

1
3

1 -
1
6

= 1 = tan 
p
4

a = tan-1 
1
2
 and b = tan-1 

1
3

,
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Solution The Taylor series for sin x and tan x, to terms in are

Hence,

and

If we apply series to calculate we not only find the limit suc-
cessfully but also discover an approximation formula for csc x.

EXAMPLE 9 Approximation Formula for csc x

Find 

Solution

Therefore,

From the quotient on the right, we can see that if is small, then

1
sin x

-
1
x L x # 1

3!
=

x
6
 or csc x L

1
x +

x
6

.

 ƒ x ƒ 

lim
x:0

 a 1
sin x

-
1
x b = lim

x:0
 §x 

1
3!

-

x2

5!
+

Á

1 -

x2

3!
+

Á

¥ = 0.

 =

x3 a 1
3!

-

x2

5!
+

Áb
x2 a1 -

x2

3!
+

Áb
= x 

1
3!

-

x2

5!
+

Á

1 -

x2

3!
+

Á

.

 
1

sin x
-

1
x =

x - sin x
x sin x

=

x - ax -

x3

3!
+

x5

5!
-

Áb
x # ax -

x3

3!
+

x5

5!
-

Áb

lim
x:0

 a 1
sin x

-
1
x b .

limx:0 ss1>sin xd - s1/xdd ,

 = -
1
2

.

 lim
x:0

 
sin x - tan x

x3 = lim
x:0

 a- 1
2

-

x2

8
-

Áb

sin x - tan x = -

x3

2
-

x5

8
-

Á
= x3 a- 1

2
-

x2

8
-

Áb

sin x = x -

x3

3!
+

x5

5!
-

Á, tan x = x +

x3

3
+

2x5

15
+

Á .

x5 ,
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11.10 Applications of Power Series 831

TABLE 11.1 Frequently used Taylor series

Binomial Series

where

Note: To write the binomial series compactly, it is customary to define to be 1 and to take (even in the usually

excluded case where ), yielding If m is a positive integer, the series terminates at and the

result converges for all x.

xms1 + xdm
= gq

k=0 am
k
bxk .x = 0

x0
= 1am

0
b

am
1
b = m, am

2
b =

msm - 1d
2!

, am
k
b =

msm - 1d Á sm - k + 1d
k!

 for k Ú 3.

 = 1 + a
q

k = 1
 am

k
bxk, ƒ x ƒ 6 1,

 s1 + xdm
= 1 + mx +

msm - 1dx2

2!
+

msm - 1dsm - 2dx3

3!
+

Á
+

msm - 1dsm - 2d Á sm - k + 1dxk

k!
+

Á

tan-1 x = x -

x3

3
+

x5

5 -
Á

+ s -1dn 
x2n + 1

2n + 1
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1

ln 
1 + x
1 - x

= 2 tanh-1 x = 2 ax +

x3

3
+

x5

5 +
Á

+

x2n + 1

2n + 1
+

Áb = 2a
q

n = 0
 

x2n + 1

2n + 1
, ƒ x ƒ 6 1

ln s1 + xd = x -

x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a
q

n = 1
 
s -1dn - 1xn

n , -1 6 x … 1

cos x = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n

s2nd!
, ƒ x ƒ 6 q

sin x = x -

x3

3!
+

x5

5!
-

Á
+ s -1dn 

x2n + 1

s2n + 1d!
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

s2n + 1d!
, ƒ x ƒ 6 q

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+

Á
= a

q

n = 0
 
xn

n!
, ƒ x ƒ 6 q

1
1 + x

= 1 - x + x2
-

Á
+ s -xdn

+
Á

= a
q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

= a
q

n = 0
xn, ƒ x ƒ 6 1
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11.10 Applications of Power Series 831

EXERCISES 11.10

Binomial Series
Find the first four terms of the binomial series for the functions in Ex-
ercises 1–10.

1. 2. 3.

4. 5. 6. a1 -

x
2
b-2a1 +

x
2
b-2

s1 - 2xd1>2
s1 - xd-1>2s1 + xd1>3s1 + xd1>2

7. 8.

9. 10.

Find the binomial series for the functions in Exercises 11–14.

11. 12. s1 + x2d3s1 + xd4

a1 -

2
x b

1>3a1 +

1
x b

1>2
s1 + x2d-1>3s1 + x3d-1>2
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13. 14.

Initial Value Problems
Find series solutions for the initial value problems in Exercises 15–32.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. and 

26. and 

27. and 

28. and 

29. and 

30. and 

31. and 

32. and 

Approximations and Nonelementary Integrals
In Exercises 33–36, use series to estimate the integrals’ values with an
error of magnitude less than (The answer section gives the inte-
grals’ values rounded to five decimal places.)

33. 34.

35. 36.

Use series to approximate the values of the integrals in Exercises
37–40 with an error of magnitude less than 

37. 38.

39. 40.

41. Estimate the error if is approximated by in the

integral 

42. Estimate the error if is approximated by 

in the integral 

In Exercises 43–46, find a polynomial that will approximate F(x)
throughout the given interval with an error of magnitude less than

43. Fsxd = L
x

0
 sin t2 dt, [0, 1]

10-3 .

11
0  cos 2t dt .

1 -

t
2

+

t2

4!
-

t3

6!
cos 2t

11
0  cos t2 dt .

1 -

t4

2
+

t8

4!
cos t2

L
1

0
 
1 - cos x

x2  dxL
0.1

0
21 + x4 dx

L
0.1

0
e-x2

 dxL
0.1

0
 
sin x

x  dx

10-8 .

L
0.25

0
23 1 + x2 dxL

0.1

0
 

121 + x4
 dx

L
0.2

0
 
e-x

- 1
x  dxL

0.2

0
 sin x2 dx

10-3 .

y s0d = 0y– - 2y¿ + y = 0, y¿s0d = 1

y s0d = ay– + x2y = x, y¿s0d = b

y s0d = ay– - x2y = 0, y¿s0d = b

y s2d = 0y– - y = -x, y¿s2d = -2

y s0d = -1y– - y = x, y¿s0d = 2

y s0d = 2y– + y = x, y¿s0d = 1

y s0d = 1y– + y = 0, y¿s0d = 0

y s0d = 0y– - y = 0, y¿s0d = 1

s1 + x2dy¿ + 2xy = 0, y s0d = 3

s1 - xdy¿ - y = 0, y s0d = 2

y¿ - x2y = 0, y s0d = 1y¿ - xy = 0, y s0d = 1

y¿ + y = 2x, y s0d = -1y¿ - y = x, y s0d = 0

y¿ + y = 1, y s0d = 2y¿ - y = 1, y s0d = 0

y¿ - 2y = 0, y s0d = 1y¿ + y = 0, y s0d = 1

a1 -

x
2
b4

s1 - 2xd3 44.

45. (a) [0, 0.5] (b) [0, 1]

46. (a) [0, 0.5] (b) [0, 1]

Indeterminate Forms
Use series to evaluate the limits in Exercises 47–56.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

Theory and Examples
57. Replace x by in the Taylor series for to obtain a se-

ries for Then subtract this from the Taylor series for
to show that for 

58. How many terms of the Taylor series for should you
add to be sure of calculating ln (1.1) with an error of magnitude
less than Give reasons for your answer.

59. According to the Alternating Series Estimation Theorem, how
many terms of the Taylor series for would you have to add
to be sure of finding with an error of magnitude less than

Give reasons for your answer.

60. Show that the Taylor series for diverges for

61. Estimating Pi About how many terms of the Taylor series for
would you have to use to evaluate each term on the right-

hand side of the equation

with an error of magnitude less than In contrast, the con-
vergence of to is so slow that even 50 terms
will not yield two-place accuracy.

62. Integrate the first three nonzero terms of the Taylor series for tan t
from 0 to x to obtain the first three nonzero terms of the Taylor
series for ln sec x.

p2>6gq

n=1s1>n2d
10-6 ?

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

tan-1 x

ƒ x ƒ 7 1.
ƒsxd = tan-1 x

10-3 ?
p>4

tan-1 1

10-8 ?

ln s1 + xd

ln 
1 + x
1 - x

= 2 ax +

x3

3
+

x5

5
+

Á b .

ƒ x ƒ 6 1,ln s1 + xd
ln s1 - xd .

ln s1 + xd-x

lim
x:2

 
x2

- 4
ln sx - 1d

lim
x:0

 
ln s1 + x2d
1 - cos x

lim
x: q

 sx + 1d sin 
1

x + 1
lim

x: q 
x2se-1>x2

- 1d

lim
y:0

 
tan-1 y - sin y

y3 cos y
lim
y:0

 
y - tan-1 y

y3

lim
u:0

 
sin u - u + su3>6d

u5lim
t:0

 
1 - cos t - st2>2d

t4

lim
x:0

 
ex

- e-x

xlim
x:0

 
ex

- s1 + xd
x2

Fsxd = L
x

0
 
ln s1 + td

t  dt,

Fsxd = L
x

0
 tan-1 t dt,

Fsxd = L
x

0
t2e-t2

 dt, [0, 1]
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833

63. a. Use the binomial series and the fact that

to generate the first four nonzero terms of the Taylor series
for What is the radius of convergence?

b. Series for Use your result in part (a) to find the first
five nonzero terms of the Taylor series for 

64. a. Series for Find the first four nonzero terms of the
Taylor series for

b. Use the first three terms of the series in part (a) to estimate
Give an upper bound for the magnitude of the

estimation error.

65. Obtain the Taylor series for from the series for

66. Use the Taylor series for to obtain a series for

67. Estimating Pi The English mathematician Wallis discovered
the formula

Find to two decimal places with this formula.

68. Construct a table of natural logarithms for 
by using the formula in Exercise 57, but taking advan-

tage of the relationships 
and to reduce

the job to the calculation of relatively few logarithms by series.
Start by using the following values for x in Exercise 57:

1
3

, 1
5

, 1
9

, 1
13

.

ln 10 = ln 2 + ln 5ln 8 = 3 ln 2, ln 9 = 2 ln 3 ,
ln 4 = 2 ln 2, ln 6 = ln 2 + ln 3, 

3, Á , 10
n = 1, 2, ln n

p

p

4
=

2 # 4 # 4 # 6 # 6 # 8 # Á

3 # 3 # 5 # 5 # 7 # 7 # Á
.

2x>s1 - x2d2 .
1>s1 - x2d

-1>s1 + xd .
1>s1 + xd2

sinh-1 0.25 .

sinh-1 x = L
x

0
 

dt21 + t2
.

sinh-1 x

cos-1 x .
cos-1 x

sin-1 x .

d
dx

 sin-1 x = s1 - x2d-1>2
69. Series for Integrate the binomial series for 

to show that for 

70. Series for for Derive the series

by integrating the series

in the first case from x to and in the second case from 
to x.

71. The value of

a. Use the formula for the tangent of the difference of two
angles to show that

b. Show that

c. Find the value of gq

n=1 tan-1 
2
n2 .

a
N

n = 1
 tan-1 

2
n2 = tan-1 sN + 1d + tan-1 N -

p

4
.

tan stan-1 sn + 1d - tan-1 sn - 1dd =

2
n2

gq

n=1 tan-1s2>n2d

- qq

1
1 + t2 =

1
t2 #  

1
1 + s1>t2d

=

1
t2 -

1
t4 +

1
t6 -

1
t8 +

Á

 tan-1 x = -

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 6 -1,

 tan-1 x =

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 7 1

ƒ x ƒ 7 1tan-1 x

sin-1 x = x + a
q

n = 1
 
1 # 3 # 5 # Á # s2n - 1d

2 # 4 # 6 # Á # s2nd
 

x2n + 1

2n + 1
.

ƒ x ƒ 6 1,
s1 - x2d-1>2sin-1 x

T

T

T
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11.11 Fourier Series 833

Fourier Series

We have seen how Taylor series can be used to approximate a function ƒ by polynomials.
The Taylor polynomials give a close fit to ƒ near a particular point but the error in
the approximation can be large at points that are far away. There is another method that
often gives good approximations on wide intervals, and often works with discontinuous
functions for which Taylor polynomials fail. Introduced by Joseph Fourier, this method ap-
proximates functions with sums of sine and cosine functions. It is well suited for analyzing
periodic functions, such as radio signals and alternating currents, for solving heat transfer
problems, and for many other problems in science and engineering.

x = a ,

11.11

HISTORICAL BIOGRAPHY

Jean-Baptiste Joseph Fourier

(1766–1830)
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Suppose we wish to approximate a function ƒ on the interval by a sum of sine
and cosine functions,

or, in sigma notation,

(1)

We would like to choose values for the constants and that
make a “best possible” approximation to ƒ(x). The notion of “best possible” is
defined as follows:

1. and ƒ(x) give the same value when integrated from 0 to 

2. and ƒ(x) cos kx give the same value when integrated from 0 to

3. and ƒ(x) sin kx give the same value when integrated from 0 to

Altogether we impose conditions on 

It is possible to choose and so that all these conditions are
satisfied, by proceeding as follows. Integrating both sides of Equation (1) from 0 to 
gives

since the integral over of cos kx equals zero when as does the integral of
sin kx. Only the constant term contributes to the integral of over A similar
calculation applies with each of the other terms. If we multiply both sides of Equation (1)
by cos x and integrate from 0 to then we obtain

This follows from the fact that

and

L
2p

0
 cos px cos qx dx = L

2p

0
 cos px sin mx dx = L

2p

0
 sin px sin qx dx = 0

L
2p

0
 cos px cos px dx = p

L
2p

0
ƒnsxd cos x dx = pa1 .

2p

[0, 2p] .ƒna0

k Ú 1,[0, 2p]

L
2p

0
ƒnsxd dx = 2pa0

2p
b1, b2, Á , bna0, a1, a2, Á an

 L
2p

0
ƒnsxd sin kx dx = L

2p

0
ƒsxd sin kx dx, k = 1, Á , n .

 L
2p

0
ƒnsxd cos kx dx = L

2p

0
ƒsxd cos kx dx, k = 1, Á , n ,

 L
2p

0
ƒnsxd dx = L

2p

0
ƒsxd dx ,

ƒn :2n + 1

2p sk = 1, Á , nd .
ƒnsxd sin kx

2p sk = 1, Á , nd .
ƒnsxd cos kx

2p .ƒnsxd

ƒnsxd
b1, b2, Á , bna0, a1, a2, Á an

ƒnsxd = a0 + a
n

k = 1
sak cos kx + bk sin kxd .

 + san cos nx + bn sin nxd

ƒnsxd = a0 + sa1 cos x + b1 sin xd + sa2 cos 2x + b2 sin 2xd +
Á

[0, 2p]

834 Chapter 11: Infinite Sequences and Series
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11.11 Fourier Series 835

whenever p, q and m are integers and p is not equal to q (Exercises 9–13). If we multiply
Equation (1) by sin x and integrate from 0 to we obtain

Proceeding in a similar fashion with

we obtain only one nonzero term each time, the term with a sine-squared or cosine-
squared term. To summarize,

We chose so that the integrals on the left remain the same when is replaced by ƒ, so
we can use these equations to find and from ƒ:

(2)

(3)

(4)

The only condition needed to find these coefficients is that the integrals above must exist.
If we let and use these rules to get the coefficients of an infinite series, then the re-
sulting sum is called the Fourier series for ƒ(x),

(5)

EXAMPLE 1 Finding a Fourier Series Expansion

Fourier series can be used to represent some functions that cannot be represented by Taylor
series; for example, the step function ƒ shown in Figure 11.16a.

ƒsxd = e1, if 0 … x … p

2, if p 6 x … 2p .

a0 + a
q

k = 1
sak cos kx + bk sin kxd .

n : q

bk =
1
pL

2p

0
ƒsxd sin kx dx, k = 1, Á , n

ak =
1
pL

2p

0
ƒsxd cos kx dx, k = 1, Á , n

a0 =
1

2pL
2p

0
ƒsxd dx

b1, b2, Á , bna0, a1, a2, Á an

ƒnƒn

 L
2p

0
ƒnsxd sin kx dx = pbk, k = 1, Á , n

 L
2p

0
ƒnsxd cos kx dx = pak, k = 1, Á , n

 L
2p

0
ƒnsxd dx = 2pa0

cos 2x, sin 2x, Á , cos nx, sin nx

L
2p

0
ƒnsxd sin x dx = pb1 .

2p
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The coefficients of the Fourier series of ƒ are computed using Equations (2), (3), and (4).

So

a0 =

3
2

, a1 = a2 =
Á

= 0,

 =

cos kp - 1
kp

=

s -1dk
- 1

kp
.

 =
1
p a c- cos kx

k
d

0

p

+ c- 2 cos kx
k

d
p

2pb

 =
1
p aL

p

0
 sin kx dx + L

2p

p

2 sin kx dxb

 bk =
1
pL

2p

0
ƒsxd sin kx dx

 =
1
p a csin kx

k
d

0

p

+ c2 sin kx
k
d
p

2pb = 0, k Ú 1

 =
1
p aL

p

0
 cos kx dx + L

2p

p

2 cos kx dxb

 ak =
1
pL

2p

0
ƒsxd cos kx dx

 =
1

2p
 aL

p

0
1 dx + L

2p

p

2 dxb =

3
2

 a0 =
1

2pL
2p

0
ƒsxd dx
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x

y

0 � 2�

1

2

(a)

x

y

0 �–�–2� 2� 3� 4�

1

2

(b)

FIGURE 11.16 (a) The step function

(b) The graph of the Fourier series for ƒ is periodic and has the value at each point of
discontinuity (Example 1).

3>2
ƒsxd = e1, 0 … x … p

2, p 6 x … 2p
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11.11 Fourier Series 837

and

The Fourier series is

Notice that at where the function ƒ(x) jumps from 1 to 2, all the sine terms vanish,
leaving 3 2 as the value of the series. This is not the value of ƒ at since The
Fourier series also sums to 3 2 at and In fact, all terms in the Fourier se-
ries are periodic, of period and the value of the series at is the same as its
value at x. The series we obtained represents the periodic function graphed in Figure
11.16b, with domain the entire real line and a pattern that repeats over every interval of
width The function jumps discontinuously at and at
these points has value 3 2, the average value of the one-sided limits from each side. The
convergence of the Fourier series of ƒ is indicated in Figure 11.17.

> x = np, n = 0, ;1, ;2, Á2p .

x + 2p2p ,
x = 2p .x = 0> ƒspd = 1.p ,> x = p ,

3
2

-
2
p asin x +

sin 3x
3

+

sin 5x
5 +

Áb .

b1 = -
2
p, b2 = 0, b3 = -

2
3p

, b4 = 0, b5 = -
2

5p, b6 = 0, Á

1

0

1.5

2

x

y

2��

f

f1

f

f3

f

f5

(a)

0 2��

(b)

1

1.5

2

x

y

0 2��

(c)

x

y

1

1.5

2

f

f9

0
x

y

2��

(d)

1

1.5

2 f

f15

0
x

y

2��

(e)

1

1.5

2

FIGURE 11.17 The Fourier approximation functions and of the function in Example 1.ƒsxd = e1, 0 … x … p

2, p 6 x … 2p
ƒ15ƒ1, ƒ3, ƒ5, ƒ9 ,
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Convergence of Fourier Series

Taylor series are computed from the value of a function and its derivatives at a single point
and cannot reflect the behavior of a discontinuous function such as ƒ in Example 1

past a discontinuity. The reason that a Fourier series can be used to represent such functions
is that the Fourier series of a function depends on the existence of certain integrals, whereas
the Taylor series depends on derivatives of a function near a single point. A function can be
fairly “rough,” even discontinuous, and still be integrable.

The coefficients used to construct Fourier series are precisely those one should choose
to minimize the integral of the square of the error in approximating ƒ by That is,

is minimized by choosing and as we did. While Taylor series
are useful to approximate a function and its derivatives near a point, Fourier series mini-
mize an error which is distributed over an interval.

We state without proof a result concerning the convergence of Fourier series. A func-
tion is piecewise continuous over an interval I if it has finitely many discontinuities on the
interval, and at these discontinuities one-sided limits exist from each side. (See Chapter 5,
Additional Exercises 11–18.)

b1, b2, Á , bna0, a1, a2, Á an

L
2p

0
[ƒsxd - ƒnsxd]2 dx

ƒn .

x = a ,

838 Chapter 11: Infinite Sequences and Series

THEOREM 24 Let ƒ(x) be a function such that ƒ and are piecewise contin-
uous on the interval Then ƒ is equal to its Fourier series at all points
where ƒ is continuous. At a point c where ƒ has a discontinuity, the Fourier series
converges to

where and are the right- and left-hand limits of ƒ at c.ƒsc-dƒsc + d

ƒsc + d + ƒsc-d
2

[0, 2p] .
ƒ¿
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EXERCISES 11.11

Finding Fourier Series
In Exercises 1–8, find the Fourier series associated with the given
functions. Sketch each function.

1.

2.

3.

4.

5. ƒsxd = ex 0 … x … 2p .

ƒsxd = e x2, 0 … x … p

0, p 6 x … 2p

ƒsxd = e x, 0 … x … p

x - 2p, p 6 x … 2p

ƒsxd = e1, 0 … x … p

-1, p 6 x … 2p

ƒsxd = 1 0 … x … 2p .

6.

7.

8.

Theory and Examples
Establish the results in Exercises 9–13, where p and q are positive
integers.

9. L
2p

0
 cos px dx = 0 for all p .

ƒsxd = e2, 0 … x … p

-x, p 6 x … 2p

ƒsxd = e cos x, 0 … x … p

0, p 6 x … 2p

ƒsxd = e ex, 0 … x … p

0, p 6 x … 2p
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11.11 Fourier Series 839

10.

11.

12.

13.

sHint: sin A cos B = s1>2d[sin sA + Bd + sin sA - Bd].d
L

2p

0
 sin px cos qx dx = 0 for all p and q .

sHint: sin A sin B = s1>2d[cos sA - Bd - cos sA + Bd].d
L

2p

0
 sin px sin qx dx = e0, if p Z q

p, if p = q
.

sHint: cos A cos B = s1>2d[cossA + Bd + cossA - Bd].d
L

2p

0
 cos px cos qx dx = e0, if p Z q

p, if p = q
.

L
2p

0
 sin px dx = 0 for all p .

14. Fourier series of sums of functions If ƒ and g both satisfy the
conditions of Theorem 24, is the Fourier series of on

the sum of the Fourier series of ƒ and the Fourier series of
g? Give reasons for your answer.

15. Term-by-term differentiation

a. Use Theorem 24 to verify that the Fourier series for in
Exercise 3 converges to 

b. Although show that the series obtained by term-
by-term differentiation of the Fourier series in part (a)
diverges.

16. Use Theorem 24 to find the Value of the Fourier series determined

in Exercise 4 and show that
p

6

2

= a
q

n = 1
 
1
n2 .

ƒ¿sxd = 1,

ƒsxd for 0 6 x 6 2p .
ƒsxd

[0, 2p]
ƒ + g

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 839

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1111a.html
tcu1111a.html


Chapter 11 Additional and Advanced Exercises 843

Convergence or Divergence
Which of the series defined by the formulas in Exercises 1–4
converge, and which diverge? Give reasons for your answers.

1. 2.

3. 4.

Which of the series defined by the formulas in Exercises 5–8
converge, and which diverge? Give reasons for your answers.

5.

(Hint: Write out several terms, see which factors cancel, and then
generalize.)

6.

7.

8. if n is odd, if n is even

Choosing Centers for Taylor Series
Taylor’s formula

expresses the value of ƒ at x in terms of the values of ƒ and its deriva-
tives at In numerical computations, we therefore need a to be a
point where we know the values of ƒ and its derivatives. We also need
a to be close enough to the values of ƒ we are interested in to make

so small we can neglect the remainder.
In Exercises 9–14, what Taylor series would you choose to repre-

sent the function near the given value of x? (There may be more than
one good answer.) Write out the first four nonzero terms of the series
you choose.

9. 10.

11. 12.

13. 14.

Theory and Examples
15. Let a and b be constants with Does the sequence

converge? If it does converge, what is the limit?5san
+ bnd1>n6

0 6 a 6 b .

tan-1 x near x = 2cos x near x = 69

ln x near x = 1.3ex near x = 0.4

sin x near x = 6.3cos x near x = 1

sx - adn + 1

x = a .

 +

ƒsndsad
n!

 sx - adn
+

ƒsn + 1dscd
sn + 1d!

 sx - adn + 1

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

an = n>3nan = 1>3n

a1 = a2 = 1, an + 1 =

1
1 + an

 if n Ú 2

a1 = a2 = 7, an + 1 =

n
sn - 1dsn + 1d

 an if n Ú 2

a1 = 1, an + 1 =

nsn + 1d
sn + 2dsn + 3d

 an

gq

n=1 an

a
q

n = 2
 
logn sn!d

n3a
q

n = 1
s -1dn tanh n

a
q

n = 1
 
stan-1 nd2

n2
+ 1a

q

n = 1
 

1

s3n - 2dn + s1>2d

gq

n=1 an

Chapter 11 Additional and Advanced Exercises

16. Find the sum of the infinite series

17. Evaluate

18. Find all values of x for which

converges absolutely.

19. Generalizing Euler’s constant The accompanying figure
shows the graph of a positive twice-differentiable decreasing
function ƒ whose second derivative is positive on For
each n, the number is the area of the lunar region between 
the curve and the line segment joining the points (n, ƒ(n)) and

a. Use the figure to show that 

b. Then show the existence of

c. Then show the existence of

If the limit in part (c) is Euler’s constant
(Section 11.3, Exercise 41). (Source: “Convergence with Pic-
tures” by P. J. Rippon, American Mathematical Monthly, Vol. 93,
No. 6, 1986, pp. 476–478.)

ƒsxd = 1>x ,

lim
n: q

 c a
n

k= 1
 ƒskd - L

n

1
ƒsxd dx d .

lim
n: q

 c a
n

k= 1
 ƒskd -

1
2

 sƒs1d + ƒsndd - L
n

1
ƒsxd dx d .

gq

n=1 An 6 s1>2dsƒs1d - ƒs2dd .

ƒsn + 1dd .sn + 1, 

An

s0, q d .

a
q

n = 1
 

nxn

sn + 1ds2x + 1dn

a
q

n = 0
 L

n + 1

n
 

1
1 + x2 dx .

 +

3
108 +

7
109 +

Á .

1 +

2
10

+

3
102 +

7
103 +

2
104 +

3
105 +

7
106 +

2
107
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20. This exercise refers to the “right side up” equilateral triangle with
sides of length 2b in the accompanying figure. “Upside down”
equilateral triangles are removed from the original triangle as the
sequence of pictures suggests. The sum of the areas removed from
the original triangle forms an infinite series.

a. Find this infinite series.

b. Find the sum of this infinite series and hence find the total
area removed from the original triangle.

c. Is every point on the original triangle removed? Explain why
or why not.

21. a. Does the value of

appear to depend on the value of a? If so, how?

b. Does the value of

appear to depend on the value of b? If so, how?

c. Use calculus to confirm your findings in parts (a) and (b).

22. Show that if converges, then

converges.

a
q

n = 1
 a1 + sin sand

2
bn

gq

n=1 an

lim
n: q

 a1 -

cos sa>nd
bn

bn

, a and b constant, b Z 0,

lim
n: q

 a1 -

cos sa>nd
n bn

, a constant ,

2b

2b 2b

2b

2b 2b

2b

2b 2b • • •

f(4)

1

y � f(x)

0 2 3 4 5

f(3)

f(2)

f(1)

…

A1

A2

A2

A3

A3

…

x

y
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T

23. Find a value for the constant b that will make the radius of con-
vergence of the power series

equal to 5.

24. How do you know that the functions sin x, ln x, and are not
polynomials? Give reasons for your answer.

25. Find the value of a for which the limit

is finite and evaluate the limit.

26. Find values of a and b for which

27. Raabe’s (or Gauss’s) test The following test, which we state
without proof, is an extension of the Ratio Test.

Raabe’s test: If is a series of positive constants and
there exist constants C, K, and N such that

(1)

where for then converges if 
and diverges if 

Show that the results of Raabe’s test agree with what you
know about the series and 

28. (Continuation of Exercise 27.) Suppose that the terms of 
are defined recursively by the formulas

Apply Raabe’s test to determine whether the series converges.

29. If converges, and if and for all n,

a. Show that converges.

b. Does converge? Explain.

30. (Continuation of Exercise 29.) If converges, and if
for all n, show that converges.

(Hint: First show that )

31. Nicole Oresme’s Theorem Prove Nicole Oresme’s Theorem that

(Hint: Differentiate both sides of the equation 
)1 + gq

n=1 xn .
1>s1 - xd =

1 +

1
2

 #  2 +

1
4

 #  3 +
Á

+

n

2n - 1 +
Á

= 4.

ƒ ln s1 - and ƒ … an>s1 - and .

gq

n=1 ln s1 - and1 7 an 7 0
gq

n=1 an

gq

n=1  an>s1 - and
gq

n=1  an
2

an 7 0an Z 1gq

n=1  an

u1 = 1, un + 1 =

s2n - 1d2

s2nds2n + 1d
 un .

gq

n=1  un

gq

n=1 s1>nd .gq

n=1 s1>n2d

C … 1.
C 7 1gq

n=1 unn Ú N ,ƒ ƒsnd ƒ 6 K

un
un + 1

= 1 +

C
n +

ƒsnd

n2 ,

gq

n=1 un

lim
x:0

 
cos saxd - b

2x2 = -1.

lim
x:0

 
sin saxd - sin x - x

x3

ex

a
q

n = 2
 
bnxn

ln n
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32. a. Show that

for by differentiating the identity

twice, multiplying the result by x, and then replacing x by
1 x.

b. Use part (a) to find the real solution greater than 1 of the
equation

33. A fast estimate of As you saw if you did Exercise 127 in
Section 11.1, the sequence generated by starting with and
applying the recursion formula converges
rapidly to To explain the speed of the convergence, let

(See the accompanying figure.) Then

Use this equality to show that

34. If is a convergent series of positive numbers, can any-
thing be said about the convergence of Give
reasons for your answer.

35. Quality control

a. Differentiate the series

to obtain a series for 1>s1 - xd2 .

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

gq

n=1 ln s1 + and?
gq

n=1  an

1

cosxn

0

1

xn

xn

�n

x

y

0 6 Pn + 1 6

1
6

 sPnd3 .

 =

1
3!

 APn B3 -

1
5!

 APn B5 +
Á .

 = Pn - sin Pn

 = Pn - cos ap
2

- Pnb
 Pn + 1 =

p

2
- xn - cos xn

Pn = sp>2d - xn .
p>2.

xn + 1 = xn + cos xn

x0 = 1
P/2

x = a
q

n = 1
 
nsn + 1d

xn .

>

a
q

n = 1
 x

n + 1
=

x2

1 - x

ƒ x ƒ 7 1

a
q

n = 1
 
nsn + 1d

xn =

2x2

sx - 1d3

b. In one throw of two dice, the probability of getting a roll of 7
is If you throw the dice repeatedly, the probability
that a 7 will appear for the first time at the nth throw is

where The expected number of
throws until a 7 first appears is Find the sum of
this series.

c. As an engineer applying statistical control to an industrial
operation, you inspect items taken at random from the
assembly line. You classify each sampled item as either
“good” or “bad.” If the probability of an item’s being good is
p and of an item’s being bad is the probability
that the first bad item found is the nth one inspected is 
The average number inspected up to and including the first
bad item found is Evaluate this sum, assuming

36. Expected value Suppose that a random variable X may assume
the values 1, 2, 3, with probabilities where 
is the probability that X equals Suppose also
that and that The expected value of X, de-
noted by E(X), is the number provided the series con-
verges. In each of the following cases, show that 
and find E(X) if it exists. (Hint: See Exercise 35.)

a. b.

c.

37. Safe and effective dosage The concentration in the blood re-
sulting from a single dose of a drug normally decreases with time
as the drug is eliminated from the body. Doses may therefore
need to be repeated periodically to keep the concentration from
dropping below some particular level. One model for the effect of
repeated doses gives the residual concentration just before the

dose as

where change in concentration achievable by a single
dose (mg mL), elimination constant and 
between doses (h). See the accompanying figure.

a. Write in closed form as a single fraction, and find
R = limn:q Rn .

Rn

t0

C0

0

Time (h)

C
on

ce
nt

ra
tio

n 
(m

g/
m

L
)

C1 � C0 � C0e–k t0

R1 � C0e–k t0

R2
R3

Rn

Cn�1
C2

t

C

t0 = timesh-1d ,k = the>C0 = the

Rn = C0 e-kt0
+ C0 e-2k t0

+
Á

+ C0 e-nk t0 ,

sn + 1dst

pk =

1
ksk + 1d

=

1
k

-

1
k + 1

pk =

5k - 1

6k
pk = 2-k

gq

k=1 pk = 1
gq

k=1 kpk ,
gq

k=1  pk = 1.pk Ú 0
k sk = 1, 2, 3, Á d .

pkp1, p2, p3, Á ,Á ,

0 6 p 6 1.
gq

n=1 npn - 1q .

pn - 1q .
q = 1 - p ,

gq

n=1 nqn - 1p .
q = 1 - p = 5>6.qn - 1p ,

p = 1>6.

T
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b. Calculate and for and
How good an estimate of R is 

c. If and find the smallest n such that

(Source: Prescribing Safe and Effective Dosage, B. Horelick and
S. Koont, COMAP, Inc., Lexington, MA.)

38. Time between drug doses (Continuation of Exercise 37.) If a
drug is known to be ineffective below a concentration and
harmful above some higher concentration one needs to find
values of and that will produce a concentration that is safe
(not above ) but effective (not below ). See the accompany-
ing figure. We therefore want to find values for and for
which

Thus When these values are substituted in the
equation for R obtained in part (a) of Exercise 37, the resulting
equation simplifies to

To reach an effective level rapidly, one might administer a “load-
ing” dose that would produce a concentration of This
could be followed every hours by a dose that raises the concen-
tration by 

a. Verify the preceding equation for 

b. If and the highest safe concentration is e times
the lowest effective concentration, find the length of time
between doses that will assure safe and effective
concentrations.

c. Given and 
determine a scheme for administering the drug.

d. Suppose that and that the smallest effective
concentration is 0.03 mg mL. A single dose that produces a
concentration of 0.1 mg mL is administered. About how long
will the drug remain effective?

39. An infinite product The infinite product

q
q

n = 1
s1 + and = s1 + a1ds1 + a2ds1 + a3d Á

>>
k = 0.2 h-1

k = 0.02 h-1 ,CH = 2 mg>mL, CL = 0.5 mg/mL,

k = 0.05 h-1

t0 .

C0 = CH - CL mg>mL.
t0

CH mg>mL.

t0 =

1
k

 ln 
CH

CL
.

C0 = CH - CL .

t0

CL

0 Time

C
on

ce
nt

ra
tio

n 
in

 b
lo

od

C0

Highest safe level
CH

Lowest effective level

t

C

R = CL and C0 + R = CH .

t0C0

CLCH

t0C0

CH ,
CL

Rn 7 s1>2dR .
t0 = 10 h ,k = 0.01 h-1

R10 ?t0 = 10 h .
C0 = 1 mg>mL, k = 0.1 h-1 ,R10R1 is said to converge if the series

obtained by taking the natural logarithm of the product, con-
verges. Prove that the product converges if for every n
and if converges. (Hint: Show that

when )

40. If p is a constant, show that the series

a. converges if b. diverges if In general, if
and n takes on the values

we find that and
so on. If then

converges if and diverges if 

41. a. Prove the following theorem: If is a sequence of numbers
such that every sum is bounded, then the series

converges and is equal to 

Outline of proof: Replace by and by 

for If show that

Because for some constant M, the series

converges absolutely and has a limit as 

Finally, if then 
approaches zero as because

Hence the sequence of
partial sums of the series converges and the limit is
gq

k=1 tk>sk sk + 1dd .
gck>k

ƒ c2n + 1 ƒ = ƒ t2n + 1 - t2n ƒ 6 2M .
n : qc2n + 1>s2n + 1d

s2n + 1 - s2n =s2n = g2n
k=1  ck>k ,

n : q .s2n + 1

a
q

k = 1
 

tk
k sk + 1d

ƒ tk ƒ 6 M

 = a
2n

k = 1
 

tk
k sk + 1d

+

t2n + 1

2n + 1
.

 +
Á

+ t2n a 1
2n

-

1
2n + 1

b +

t2n + 1

2n + 1

 s2n + 1 = t1 a1 -

1
2
b + t2 a1

2
-

1
3
b

s2n + 1 = g2n+1
k=1 ck>k ,n Ú 2.

tn - tn - 1cnt1c1

gq

n=1 tn>(n(n + 1)) .gq

n=1 cn>n
tn = gn

k=1  ck

5cn6
p … 1.p 7 1

L
q

a
 

dx
ƒ1sxdƒ2sxd Á ƒnsxdsƒn + 1sxddp

ƒnsad 7 1,
ƒ2sxd = ln x, ƒ3sxd = ln sln xd ,1, 2, 3, Á ,

ƒ1sxd = x, ƒn + 1sxd = ln sƒnsxdd ,
p … 1.p 7 1,

1 + a
q

n = 3
 

1
n # ln n # [ln sln nd]p

ƒ an ƒ 6 1>2.

ƒ ln s1 + and ƒ …

ƒ an ƒ

1 - ƒ an ƒ

… 2 ƒ an ƒ

gq

n=1  ƒ an ƒ

an 7 -1

a
q

n = 1
 ln s1 + and ,
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b. Show how the foregoing theorem applies to the alternating
harmonic series

c. Show that the series

converges. (After the first term, the signs are two negative,
two positive, two negative, two positive, and so on in that
pattern.)

42. The convergence of for

a. Show by long division or otherwise that

b. By integrating the equation of part (a) with respect to t from 0
to x, show that

where

Rn + 1 = s -1dn + 1

L
x

0
 

t n + 1

1 + t
 dt .

 + s -1dn 
xn + 1

n + 1
+ Rn + 1

ln s1 + xd = x -

x2

2
+

x3

3
-

x4

4
+

Á

1
1 + t

= 1 - t + t2
- t3

+
Á

+ s -1dnt n
+

s -1dn + 1t n + 1

1 + t
.

-1 6 x … 1
gq

n=1 [s -1dn - 1xn]>n  to  ln s1 + xd

1 -

1
2

-

1
3

+

1
4

+

1
5

-

1
6

-

1
7

+
Á .

1 -

1
2

+

1
3

-

1
4

+

1
5

-

1
6

+
Á .

c. If show that

Hint: As t varies from 0 to x,

and

d. If show that

Hint: If then and

e. Use the foregoing results to prove that the series

converges to for -1 6 x … 1.ln s1 + xd

x -

x2

2
+

x3

3
-

x4

4
+

Á
+

s -1dnxn + 1

n + 1
+

Á

` t n + 1

1 + t
` …

ƒ t ƒ
n + 1

1 - ƒ x ƒ

.b

ƒ 1 + t ƒ Ú 1 - ƒ x ƒx 6 t … 0,a

ƒRn + 1 ƒ … `L
x

0
 

t n + 1

1 - ƒ x ƒ

 dt ` =

ƒ x ƒ
n + 2

sn + 2ds1 - ƒ x ƒd
.

-1 6 x 6 0,

`L
x

0
ƒstd dt ` … L

x

0
ƒƒstd ƒ dt.b

1 + t Ú 1 and t n + 1>s1 + td … t n + 1 ,

a

ƒ Rn + 1 ƒ … L
x

0
t n + 1 dt =

xn + 2

n + 2
.

x Ú 0,
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Chapter 11 Practice Exercises

Convergent or Divergent Sequences
Which of the sequences whose nth terms appear in Exercises 1–18
converge, and which diverge? Find the limit of each convergent se-
quence.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Convergent Series
Find the sums of the series in Exercises 19–24.

19. 20.

21. 22.

23. 24. a
q

n = 1
s -1dn 

3
4na

q

n = 0
e-n

a
q

n = 3
 

-8
s4n - 3ds4n + 1da

q

n = 1
 

9
s3n - 1ds3n + 2d

a
q

n = 2
 

-2
nsn + 1da

q

n = 3
 

1
s2n - 3ds2n - 1d

an =

s -4dn

n!
an =

sn + 1d!
n!

an = 2n 2n + 1an = ns21>n
- 1d

an = a3n b
1>n

an = An 3n

n

an = a1 +

1
n b

-n

an = an - 5
n bn

an =

ln s2n3
+ 1d

nan =

n + ln n
n

an =

ln s2n + 1d
nan =

ln sn2d
n

an = sin npan = sin 
np
2

an = 1 + s0.9dnan =

1 - 2n

2n

an =

1 - s -1dn2n
an = 1 +

s -1dn

n

Convergent or Divergent Series
Which of the series in Exercises 25–40 converge absolutely, which
converge conditionally, and which diverge? Give reasons for your
answers.

25. 26. 27.

28. 29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Power Series
In Exercises 41–50, (a) find the series’ radius and interval of conver-
gence. Then identify the values of x for which the series converges (b)
absolutely and (c) conditionally.

41. 42.

43. 44.

45. 46. a
q

n = 1
 

xn2n
a
q

n = 1
 
xn

nn

a
q

n = 0
 
sn + 1ds2x + 1dn

s2n + 1d2na
q

n = 1
 
s -1dn - 1s3x - 1dn

n2

a
q

n = 1
 
sx - 1d2n - 2

s2n - 1d!a
q

n = 1
 
sx + 4dn

n3n

a
q

n = 2
 

1

n2n2
- 1

a
q

n = 1
 

12nsn + 1dsn + 2d

a
q

n = 1
 
2n 3n

nna
q

n = 1
 
s -3dn

n!

a
q

n = 1
 
s -1dnsn2

+ 1d
2n2

+ n - 1a
q

n = 1
 
n + 1

n!

a
q

n = 1
 
s -1dn 3n2

n3
+ 1a

q

n = 1
 

s -1dn

n2n2
+ 1

a
q

n = 3
 

ln n
ln sln nda

q

n = 1
 
ln n

n3

a
q

n = 2
 

1
n sln nd2a

q

n = 1
 

s -1dn

ln sn + 1da
q

n = 1
 

1
2n3

a
q

n = 1
 
s -1dn2n

a
q

n = 1
 
-5
na

q

n = 1
 

12n
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Chapter 11 Practice Exercises 841

47. 48.

49. 50.

Maclaurin Series
Each of the series in Exercises 51–56 is the value of the Taylor series
at of a function ƒ(x) at a particular point. What function and
what point? What is the sum of the series?

51.

52.

53.

54.

55.

56.

Find Taylor series at for the functions in Exercises 57–64.

57. 58.

59. 60.

61. 62.

63. 64.

Taylor Series
In Exercises 65–68, find the first four nonzero terms of the Taylor
series generated by ƒ at 

65.

66.

67.

68.

Initial Value Problems
Use power series to solve the initial value problems in Exercises 69–76.

69. 70.

71. 72.

73. 74.

75. 76. y¿ - y = -x, ys0d = 2y¿ - y = x, ys0d = 1

y¿ + y = x, ys0d = 0y¿ - y = 3x, ys0d = -1

y¿ + y = 1, ys0d = 0y¿ + 2y = 0, ys0d = 3

y¿ - y = 0, ys0d = -3y¿ + y = 0, ys0d = -1

ƒsxd = 1>x at x = a 7 0

ƒsxd = 1>sx + 1d at x = 3

ƒsxd = 1>s1 - xd at x = 2

ƒsxd = 23 + x2 at x = -1

x = a .

e-x2

e spx>2d

cos 25xcos sx5>2d

sin 
2x
3

sin px

1
1 + x3

1
1 - 2x

x = 0

 + s -1dn - 1 
1

s2n - 1d A23 B2n - 1
+

Á

123
-

1

923
+

1

4523
-

Á

1 + ln 2 +

sln 2d2

2!
+

Á
+

sln 2dn

n!
+

Á

1 -

p2

9 # 2!
+

p4

81 # 4!
-

Á
+ s -1dn 

p2n

32ns2nd!
+

Á

p -

p3

3!
+

p5

5!
-

Á
+ s -1dn 

p2n + 1

s2n + 1d!
+

Á

2
3

-

4
18

+

8
81

-
Á

+ s -1dn - 1 
2n

n3n +
Á

1 -

1
4

+

1
16

-
Á

+ s -1dn 
1
4n +

Á

x = 0

a
q

n = 1
scoth ndxna

q

n = 1
scsch ndxn

a
q

n = 0
 
s -1dnsx - 1d2n + 1

2n + 1a
q

n = 0
 
sn + 1dx2n - 1

3n
Nonelementary Integrals
Use series to approximate the values of the integrals in Exercises
77–80 with an error of magnitude less than (The answer section
gives the integrals’ values rounded to 10 decimal places.)

77. 78.

79. 80.

Indeterminate Forms
In Exercises 81–86:

a. Use power series to evaluate the limit.

b. Then use a grapher to support your calculation.

81. 82.

83. 84.

85. 86.

87. Use a series representation of sin 3x to find values of r and s for
which

88. a. Show that the approximation in Section
11.10, Example 9, leads to the approximation 

b. Compare the accuracies of the approximations 
and by comparing the graphs of

and 
Describe what you find.

Theory and Examples
89. a. Show that the series

converges.

b. Estimate the magnitude of the error involved in using the sum
of the sines through to approximate the sum of the
series. Is the approximation too large, or too small? Give
reasons for your answer.

90. a. Show that the series converges.

b. Estimate the magnitude of the error in using the sum of the
tangents through to approximate the sum of the
series. Is the approximation too large, or too small? Give
reasons for your answer.

- tan s1>41d

a
q

n = 1
 atan 

1
2n

- tan 
1

2n + 1
b

n = 20

a
q

n = 1
 asin 

1
2n

- sin 
1

2n + 1
b

gsxd = sin x - s6x>s6 + x2dd .ƒsxd = sin x - x
sin x L 6x>s6 + x2d

sin x L x

6x>s6 + x2d .
sin x L

csc x L 1>x + x>6
lim
x:0

 asin 3x

x3 +

r
x2 + sb = 0.

lim
y:0

 
y2

cos y - cosh y
lim
z :0 

 
1 - cos2 z

ln s1 - zd + sin z

lim
h:0

 
ssin hd>h - cos h

h2lim
t:0

 a 1
2 - 2 cos t

-

1
t2 b

lim
u:0

 
eu - e-u

- 2u
u - sin u

lim
x:0

 
7 sin x

e2x
- 1

L
1>64

0
 
tan-1 x2x

 dxL
1>2

0
 
tan-1 x

x  dx

L
1

0
x sin sx3d dxL

1>2
0

e-x3

 dx

10-8 .

T

T

T

T
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91. Find the radius of convergence of the series

92. Find the radius of convergence of the series

93. Find a closed-form formula for the nth partial sum of the series
and use it to determine the convergence

or divergence of the series.

94. Evaluate by finding the limits as of
the series’ nth partial sum.

95. a. Find the interval of convergence of the series

b. Show that the function defined by the series satisfies a differ-
ential equation of the form

and find the values of the constants a and b.

96. a. Find the Maclaurin series for the function 

b. Does the series converge at Explain.

97. If and are convergent series of nonnegative
numbers, can anything be said about Give reasons
for your answer.

98. If and are divergent series of nonnegative
numbers, can anything be said about Give reasons
for your answer.

99. Prove that the sequence and the series 
both converge or both diverge.

100. Prove that converges if for all n and
converges.

101. (Continuation of Section 4.7, Exercise 27.) If you did Exercise
27 in Section 4.7, you saw that in practice Newton’s method
stopped too far from the root of to give a use-
ful estimate of its value, Prove that nevertheless, for any
starting value the sequence of ap-
proximations generated by Newton’s method really does con-
verge to 1.

102. Suppose that are positive numbers satisfying
the following conditions:

i.

ii. the series diverges.a2 + a4 + a8 + a16 +
Á

a1 Ú a2 Ú a3 Ú
Á ;

a1, a2, a3, Á , an

x0, x1, x2, Á , xn, Áx0 Z 1,
x = 1.

ƒsxd = sx - 1d40

gq

n=1 an

an 7 0gq

n=1 san>s1 + andd

gq

k=1 sxk+ 1 - xkd5xn6
gq

n=1 an bn ?
gq

n=1 bngq

n=1 an

gq

n=1 an bn ?
gq

n=1 bngq

n=1 an

x = 1?

x2>s1 + xd .

d2y

dx2 = xay + b

 +

1 # 4 # 7 # Á # s3n - 2d
s3nd!

 x3n
+

Á .

y = 1 +

1
6

 x3
+

1
180

 x6
+

Á

n : qgq

k=2 s1>sk2
- 1dd

gq

n=2 ln s1 - s1>n2dd

a
q

n = 1
 

3 # 5 # 7 # Á # s2n + 1d
4 # 9 # 14 # Á # s5n - 1d

 sx - 1dn .

a
q

n = 1
 
2 # 5 # 8 # Á # s3n - 1d

2 # 4 # 6 # Á # s2nd
 xn .

Show that the series

diverges.

103. Use the result in Exercise 102 to show that

diverges.

104. Suppose you wish to obtain a quick estimate for the value of

There are several ways to do this.

a. Use the Trapezoidal Rule with to estimate 

b. Write out the first three nonzero terms of the Taylor series at
for to obtain the fourth Taylor polynomial P(x)

for Use to obtain another estimate for

c. The second derivative of is positive for all
Explain why this enables you to conclude that the

Trapezoidal Rule estimate obtained in part (a) is too large.
(Hint: What does the second derivative tell you about the
graph of a function? How does this relate to the trapezoidal
approximation of the area under this graph?)

d. All the derivatives of are positive for Ex-
plain why this enables you to conclude that all Maclaurin
polynomial approximations to ƒ(x) for x in [0, 1] will be too
small. (Hint: )

e. Use integration by parts to evaluate 

Fourier Series
Find the Fourier series for the functions in Exercises 105–108. Sketch
each function.

105.

106.

107.

108. ƒsxd = ƒ sin x ƒ , 0 … x … 2p

ƒsxd = ep - x, 0 … x … p

x - 2p, p 6 x … 2p

ƒsxd = e x, 0 … x … p

1, p 6 x … 2p

ƒsxd = e0, 0 … x … p

1, p 6 x … 2p

11
0  

x2ex dx .

ƒsxd = Pnsxd + Rnsxd .

x 7 0.ƒsxd = x2ex

x 7 0.
ƒsxd = x2ex

11
0  

x2ex dx .
11

0  
Psxd dxx2ex .

x2exx = 0

11
0  

x2ex dx .n = 2
11

0  
x2ex dx .

1 + a
q

n = 2
 

1
n ln n

a1

1
+

a2

2
+

a3

3
+

Á
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839

Chapter 11 Questions to Guide Your Review

1. What is an infinite sequence? What does it mean for such a se-
quence to converge? To diverge? Give examples.

2. What is a nondecreasing sequence? Under what circumstances
does such a sequence have a limit? Give examples.

3. What theorems are available for calculating limits of sequences?
Give examples.

4. What theorem sometimes enables us to use l’Hôpital’s Rule to
calculate the limit of a sequence? Give an example.

5. What six sequence limits are likely to arise when you work with
sequences and series?

6. What is an infinite series? What does it mean for such a series to
converge? To diverge? Give examples.

7. What is a geometric series? When does such a series converge?
Diverge? When it does converge, what is its sum? Give examples.

8. Besides geometric series, what other convergent and divergent se-
ries do you know?

9. What is the nth-Term Test for Divergence? What is the idea be-
hind the test?

10. What can be said about term-by-term sums and differences of
convergent series? About constant multiples of convergent and di-
vergent series?

11. What happens if you add a finite number of terms to a convergent
series? A divergent series? What happens if you delete a finite
number of terms from a convergent series? A divergent series?

12. How do you reindex a series? Why might you want to do this?

13. Under what circumstances will an infinite series of nonnegative
terms converge? Diverge? Why study series of nonnegative
terms?

14. What is the Integral Test? What is the reasoning behind it? Give
an example of its use.

15. When do p-series converge? Diverge? How do you know? Give
examples of convergent and divergent p-series.

16. What are the Direct Comparison Test and the Limit Comparison
Test? What is the reasoning behind these tests? Give examples of
their use.

17. What are the Ratio and Root Tests? Do they always give you the
information you need to determine convergence or divergence?
Give examples.

18. What is an alternating series? What theorem is available for deter-
mining the convergence of such a series?

19. How can you estimate the error involved in approximating the
sum of an alternating series with one of the series’ partial sums?
What is the reasoning behind the estimate?

20. What is absolute convergence? Conditional convergence? How
are the two related?

21. What do you know about rearranging the terms of an absolutely
convergent series? Of a conditionally convergent series? Give
examples.

22. What is a power series? How do you test a power series for con-
vergence? What are the possible outcomes?

23. What are the basic facts about

a. term-by-term differentiation of power series?

b. term-by-term integration of power series?

c. multiplication of power series?

Give examples.

24. What is the Taylor series generated by a function ƒ(x) at a point
What information do you need about ƒ to construct the

series? Give an example.

25. What is a Maclaurin series?

x = a?
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840 Chapter 11: Infinite Sequences and Series

26. Does a Taylor series always converge to its generating function?
Explain.

27. What are Taylor polynomials? Of what use are they?

28. What is Taylor’s formula? What does it say about the errors in-
volved in using Taylor polynomials to approximate functions? In
particular, what does Taylor’s formula say about the error in a lin-
earization? A quadratic approximation?

29. What is the binomial series? On what interval does it converge?
How is it used?

30. How can you sometimes use power series to solve initial value
problems?

31. How can you sometimes use power series to estimate the values
of nonelementary definite integrals?

32. What are the Taylor series for 
and How do

you estimate the errors involved in replacing these series with
their partial sums?

33. What is a Fourier series? How do you calculate the Fourier coeffi-
cients and for a function ƒ(x) defined on
the interval 

34. State the theorem on convergence of the Fourier series for ƒ(x)
when ƒ and are piecewise continuous on [0, 2p] .ƒ¿

[0, 2p]?
b1, b2, Áa0, a1, a2, Á

tan-1 x?cos x, ln s1 + xd, ln [s1 + xd>s1 - xd] ,
1>s1 - xd, 1>s1 + xd, ex, sin x,
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Chapter 11 847

Chapter 11 Technology Application Projects

Mathematica Maple Module
Bouncing Ball
The model predicts the height of a bouncing ball, and the time until it stops bouncing.

Mathematica Maple Module
Taylor Polynomial Approximations of a Function
A graphical animation shows the convergence of the Taylor polynomials to functions having derivatives of all orders over an interval in their
domains.

/

/
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