
OVERVIEW In this chapter we give geometric definitions of parabolas, ellipses, and
hyperbolas and derive their standard equations. These curves are called conic sections, or
conics, and model the paths traveled by planets, satellites, and other bodies whose motions
are driven by inverse square forces. In Chapter 13 we will see that once the path of a mov-
ing body is known to be a conic, we immediately have information about the body’s veloc-
ity and the force that drives it. Planetary motion is best described with the help of polar co-
ordinates, so we also investigate curves, derivatives, and integrals in this new coordinate
system.
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CONIC SECTIONS

AND POLAR COORDINATES

C h a p t e r

10 

Conic Sections and Quadratic Equations

In Chapter 1 we defined a circle as the set of points in a plane whose distance from some
fixed center point is a constant radius value. If the center is (h, k) and the radius is a, the
standard equation for the circle is It is an example of a conic
section, which are the curves formed by cutting a double cone with a plane (Figure 10.1);
hence the name conic section.

We now describe parabolas, ellipses, and hyperbolas as the graphs of quadratic equa-
tions in the coordinate plane.

Parabolas

sx - hd2
+ s y - kd2

= a2 .

10.1

DEFINITIONS Parabola, Focus, Directrix
A set that consists of all the points in a plane equidistant from a given fixed point
and a given fixed line in the plane is a parabola. The fixed point is the focus of
the parabola. The fixed line is the directrix.

If the focus F lies on the directrix L, the parabola is the line through F perpendicular
to L. We consider this to be a degenerate case and assume henceforth that F does not lie
on L.

A parabola has its simplest equation when its focus and directrix straddle one of the
coordinate axes. For example, suppose that the focus lies at the point F(0, p) on the positive
y-axis and that the directrix is the line (Figure 10.2). In the notation of the figure,y = -p
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a point P(x, y) lies on the parabola if and only if From the distance formula,

When we equate these expressions, square, and simplify, we get

(1)

These equations reveal the parabola’s symmetry about the y-axis. We call the y-axis the
axis of the parabola (short for “axis of symmetry”).

The point where a parabola crosses its axis is the vertex. The vertex of the parabola
lies at the origin (Figure 10.2). The positive number p is the parabola’s focal length.x2

= 4py

y =

x2

4p
 or x2

= 4py .

 PQ = 2sx - xd2
+ ( y - s -pdd2

= 2s y + pd2 .

 PF = 2sx - 0d2
+ s y - pd2

= 2x2
+ s y - pd2

PF = PQ .
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Circle: plane perpendicular
to cone axis

Ellipse: plane oblique
to cone axis

Point: plane through
cone vertex only

Single line: plane
tangent to cone

Pair of intersecting lines

Parabola: plane parallel
to side of cone

Hyperbola: plane cuts
both halves of cone

(a)

(b)

FIGURE 10.1 The standard conic sections (a) are the curves in which a plane cuts a double cone. Hyperbolas come in two parts, called
branches. The point and lines obtained by passing the plane through the cone’s vertex (b) are degenerate conic sections.

Directrix: y � –p

The vertex lies
halfway between
directrix and focus.

Q(x, –p)

P(x, y)

F(0, p)
Focus

p

p

x2 � 4py

L

x

y

FIGURE 10.2 The standard form of the
parabola x2

= 4py, p 7 0.

Standard form
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If the parabola opens downward, with its focus at and its directrix the line
then Equations (1) become

(Figure 10.3). We obtain similar equations for parabolas opening to the right or to the left
(Figure 10.4 and Table 10.1).

y = -

x2

4p
 and x2

= -4py

y = p ,
s0, -pd
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x

y

Directrix: y � p

Vertex at origin

Focus (0, –p)x2 � –4py

FIGURE 10.3 The parabola
x2

= -4py, p 7 0.

Vertex

Directrix
x � –p

0

Focus

F(p, 0)

y2 � 4px

x

y

(a)

Directrix
x � p

0

Focus

F(–p, 0)

y2 � –4px

Vertex

x

y

(b)

FIGURE 10.4 (a) The parabola (b) The parabola
y2

= -4px .
y2

= 4px .

TABLE 10.1 Standard-form equations for parabolas with vertices at the origin

Equation Focus Directrix Axis Opens

(0, p) y-axis Up

y-axis Down

( p, 0) x-axis To the right

x-axis To the leftx = ps -p, 0dy2
= -4px

x = -py2
= 4px

y = ps0, -pdx2
= -4py

y = -px2
= 4py

sp 7 0d

EXAMPLE 1 Find the focus and directrix of the parabola 

Solution We find the value of p in the standard equation 

Then we find the focus and directrix for this value of p:

Directrix: x = -p or x = -

5
2

.

Focus: s p, 0d = a5
2

, 0b

4p = 10, so p =

10
4

=

5
2

.

y2
= 4px :

y2
= 10x .
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If the foci are and (Figure 10.7), and is denoted by 2a,
then the coordinates of a point P on the ellipse satisfy the equation

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(2)

Since is greater than the length (triangle inequality for triangle ),
the number 2a is greater than 2c. Accordingly, and the number in Equation
(2) is positive.

The algebraic steps leading to Equation (2) can be reversed to show that every point P
whose coordinates satisfy an equation of this form with also satisfies the equa-
tion A point therefore lies on the ellipse if and only if its coordinates
satisfy Equation (2).

If

(3)

then and Equation (2) takes the form

(4)
x2

a2 +

y2

b2 = 1.

a2
- c2

= b2

b = 2a2
- c2 ,

PF1 + PF2 = 2a .
0 6 c 6 a

a2
- c2a 7 c

PF1 F2F1 F2PF1 + PF2

x2

a2 +

y2

a2
- c2 = 1.

2sx + cd2
+ y2

+ 2sx - cd2
+ y2

= 2a .

PF1 + PF2F2sc, 0dF1s -c, 0d

The quickest way to construct an ellipse uses the definition. Put a loop of string
around two tacks and pull the string taut with a pencil point P, and move the pencil
around to trace a closed curve (Figure 10.5). The curve is an ellipse because the sum

being the length of the loop minus the distance between the tacks, remains
constant. The ellipse’s foci lie at and F2 .F1

PF1 + PF2 ,

F2 ,F1

F1 F2

P(x, y)
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FIGURE 10.5 One way to draw an ellipse
uses two tacks and a loop of string to guide
the pencil.

DEFINITIONS Focal Axis, Center, Vertices
The line through the foci of an ellipse is the ellipse’s focal axis. The point on the
axis halfway between the foci is the center. The points where the focal axis and
ellipse cross are the ellipse’s vertices (Figure 10.6).

The horizontal and vertical shift formulas in Section 1.5, can be applied to the
equations in Table 10.1 to give equations for a variety of parabolas in other locations
(see Exercises 39, 40, and 45–48).

Ellipses

Vertex VertexFocus FocusCenter

Focal axis

FIGURE 10.6 Points on the focal axis of
an ellipse.

x

y

Focus Focus

Center0F1(–c, 0)
F2(c, 0)

P(x, y)

a

b

FIGURE 10.7 The ellipse defined by the
equation is the graph of
the equation 
where b2

= a2
- c2.

sx2>a2d + s y2>b2d = 1,
PF1 + PF2 = 2a

DEFINITIONS Ellipse, Foci
An ellipse is the set of points in a plane whose distances from two fixed points
in the plane have a constant sum. The two fixed points are the foci of the
ellipse.
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Equation (4) reveals that this ellipse is symmetric with respect to the origin and both
coordinate axes. It lies inside the rectangle bounded by the lines and It
crosses the axes at the points and The tangents at these points are perpen-
dicular to the axes because

is zero if and infinite if 
The major axis of the ellipse in Equation (4) is the line segment of length 2a joining

the points The minor axis is the line segment of length 2b joining the points
The number a itself is the semimajor axis, the number b the semiminor axis.

The number c, found from Equation (3) as

is the center-to-focus distance of the ellipse.

EXAMPLE 2 Major Axis Horizontal

The ellipse

(5)

(Figure 10.8) has

EXAMPLE 3 Major Axis Vertical

The ellipse

(6)

obtained by interchanging x and y in Equation (5), has its major axis vertical instead of
horizontal (Figure 10.9). With still equal to 16 and equal to 9, we have

There is never any cause for confusion in analyzing Equations (5) and (6). We simply
find the intercepts on the coordinate axes; then we know which way the major axis runs
because it is the longer of the two axes. The center always lies at the origin and the foci and
vertices lie on the major axis.

Center: s0, 0d .

Vertices: s0, ;ad = s0, ;4d

Foci: s0, ;cd = A0, ;27 B
Center-to-focus distance: c = 216 - 9 = 27

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

b2a2

x2

9
+

y2

16
= 1,

Center: s0, 0d .

Vertices: s ;a, 0d = s ;4, 0d

Foci: s ;c, 0d = A ;27, 0 B
Center-to-focus distance: c = 216 - 9 = 27

Semimajor axis: a = 216 = 4, Semiminor axis: b = 29 = 3

x2

16
+

y2

9
= 1

c = 2a2
- b2 ,

s0, ;bd .
s ;a, 0d .

y = 0.x = 0

dy
dx

= -

b2x
a2y

s0, ;bd .s ;a, 0d
y = ;b .x = ;a
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Obtained from Equation (4)
by implicit differentiation

x

y

(0, 3)

(0, –3)

Vertex
(4, 0)

Vertex
(–4, 0)

Focus Focus

Center

0(–�7, 0) (�7, 0)

x2

16
y2

9
�      � 1

FIGURE 10.8 An ellipse with its major
axis horizontal (Example 2).

x

y

(0, 4) Vertex

(0, –4)Vertex

Focus

Focus

Center 0

(3, 0)(–3, 0)

(0, –�7)

(0, �7)

x2

9
y2

16
�      � 1

FIGURE 10.9 An ellipse with its major
axis vertical (Example 3).
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Hyperbolas

690 Chapter 10: Conic Sections and Polar Coordinates

If the foci are and (Figure 10.10) and the constant difference is 2a,
then a point (x, y) lies on the hyperbola if and only if

(7)

To simplify this equation, we move the second radical to the right-hand side, square, iso-
late the remaining radical, and square again, obtaining

(8)

So far, this looks just like the equation for an ellipse. But now is negative because
2a, being the difference of two sides of triangle is less than 2c, the third side.

The algebraic steps leading to Equation (8) can be reversed to show that every point
P whose coordinates satisfy an equation of this form with also satisfies Equa-
tion (7). A point therefore lies on the hyperbola if and only if its coordinates satisfy Equa-
tion (8).

If we let b denote the positive square root of 

(9)

then and Equation (8) takes the more compact form

(10)
x2

a2 -

y2

b2 = 1.

a2
- c2

= -b2

b = 2c2
- a2 ,

c2
- a2 ,

0 6 a 6 c

PF1 F2 ,
a2

- c2

x2

a2 +

y2

a2
- c2 = 1.

2sx + cd2
+ y2

- 2sx - cd2
+ y2

= ;2a .

F2sc, 0dF1s -c, 0d

x

y

0F1(–c, 0) F2(c, 0)

x � –a x � a

P(x, y)

FIGURE 10.10 Hyperbolas have two
branches. For points on the right-hand
branch of the hyperbola shown here,

For points on the left-
hand branch, We then
let b = 2c2

- a2.
PF2 - PF1 = 2a .

PF1 - PF2 = 2a .

DEFINITIONS Hyperbola, Foci
A hyperbola is the set of points in a plane whose distances from two fixed points
in the plane have a constant difference. The two fixed points are the foci of the
hyperbola.

Standard-Form Equations for Ellipses Centered at the Origin

In each case, a is the semimajor axis and b is the semiminor axis.

Vertices: s0, ;ad
Foci: s0, ;cd
Center-to-focus distance: c = 2a2

- b2

Foci on the y-axis: x2

b2 +

y2

a2 = 1 sa 7 bd

Vertices: s ;a, 0d
Foci: s ;c, 0d
Center-to-focus distance: c = 2a2

- b2

Foci on the x-axis: x2

a2 +

y2

b2 = 1 sa 7 bd
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The differences between Equation (10) and the equation for an ellipse (Equation 4) are the
minus sign and the new relation

From Equation (9)

Like the ellipse, the hyperbola is symmetric with respect to the origin and coordinate
axes. It crosses the x-axis at the points The tangents at these points are vertical
because

is infinite when The hyperbola has no y-intercepts; in fact, no part of the curve lies
between the lines and x = a .x = -a

y = 0.

dy
dx

=

b2x
a2y

s ;a, 0d .

c2
= a2

+ b2 .

10.1 Conic Sections and Quadratic Equations 691

DEFINITIONS Focal Axis, Center, Vertices
The line through the foci of a hyperbola is the focal axis. The point on the axis
halfway between the foci is the hyperbola’s center. The points where the focal
axis and hyperbola cross are the vertices (Figure 10.11).

Asymptotes of Hyperbolas and Graphing

If we solve Equation (10) for y we obtain

or, taking square roots,

As the factor approaches 1, and the factor is dominant.
Thus the lines

are the two asymptotes of the hyperbola defined by Equation (10). The asymptotes
give the guidance we need to graph hyperbolas quickly. The fastest way to find the
equations of the asymptotes is to replace the 1 in Equation (10) by 0 and solve the new
equation for y:

x2

a2 -

y2

b2 = 1 :  
x2

a2 -

y2

b2 = 0 :  y = ;

b
a x.

('')''* ('')''* (')'*

y = ;

b
a x

;sb>adx21 - a2>x2x : ; q ,

y = ;

b
a x B1 -

a2

x2 .

 =

b2

a2 x2 a1 -

a2

x2 b

 y2
= b2 ax2

a2 - 1b

Focus Focus

Center

Focal axis

Vertices

FIGURE 10.11 Points on the focal axis of
a hyperbola.

Obtained from Equation (10)
by implicit differentiation

hyperbola 0 for 1 asymptotes
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EXAMPLE 4 Foci on the x-axis

The equation

(11)

is Equation (10) with and (Figure 10.12). We have

EXAMPLE 5 Foci on the y-axis

The hyperbola

obtained by interchanging x and y in Equation (11), has its vertices on the y-axis instead of
the x-axis (Figure 10.13). With still equal to 4 and equal to 5, we have

Center: (0, 0)

Reflective Properties

The chief applications of parabolas involve their use as reflectors of light and radio
waves. Rays originating at a parabola’s focus are reflected out of the parabola parallel to
the parabola’s axis (Figure 10.14 and Exercise 90). Moreover, the time any ray takes from
the focus to a line parallel to the parabola’s directrix (thus perpendicular to its axis) is the
same for each of the rays. These properties are used by flashlight, headlight, and spotlight
reflectors and by microwave broadcast antennas.

Asymptotes: 
y2

4
-

x2

5 = 0 or y = ;
225

 x .

Foci: s0, ;cd = s0, ;3d, Vertices: s0, ;ad = s0, ;2d
Center-to-focus distance: c = 2a2

+ b2
= 24 + 5 = 3

b2a2

y2

4
-

x2

5 = 1,

Asymptotes: x2

4
-

y2

5 = 0 or y = ;

25
2

 x .

Center: s0, 0d
Foci: s ;c, 0d = s ;3, 0d, Vertices: s ;a, 0d = s ;2, 0d
Center-to-focus distance: c = 2a2

+ b2
= 24 + 5 = 3

b2
= 5a2

= 4

x2

4
-

y2

5 = 1
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Standard-Form Equations for Hyperbolas Centered at the Origin

Notice the difference in the asymptote equations (b a in the first, a b in the second).>>
 Asymptotes: x2

a2 -

y2

b2 = 0 or y = ;

b
a x

 Vertices: s ;a, 0d
 Foci: s ;c, 0d
 Center-to-focus distance: c = 2a2

+ b2

Foci on the x-axis: x2

a2 -

y2

b2 = 1

x

y

F(3, 0)F(–3, 0)

2–2

y � –       x�5
2

y �        x�5
2

x2

4
y2

5
�      � 1

FIGURE 10.12 The hyperbola and its
asymptotes in Example 4.

x

y

F(0, 3)

F(0, –3)

y � –       x
�5
2 y �        x

�5
2

y2

4
x2

5
�      � 1

2

–2

FIGURE 10.13 The hyperbola and its
asymptotes in Example 5.

 Asymptotes: 
y2

a2 -

x2

b2 = 0 or y = ;

a
b

 x

 Vertices: s0, ;ad
 Foci: s0, ;cd
 Center-to-focus distance: c = 2a2

+ b2

Foci on the y-axis: 
y2

a2 -

x2

b2 = 1
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Filament (point source)
at focus

Outgoing light
parallel to axisParabolic light

reflector

HEADLAMP

Parabolic radio
wave reflector

Incoming radio signals

concentrate at focus

RADIO TELESCOPE

FIGURE 10.14 Parabolic reflectors can generate a beam of light parallel to the parabola’s
axis from a source at the focus; or they can receive rays parallel to the axis and concentrate
them at the focus.

F1 F2

FIGURE 10.15 An elliptical mirror
(shown here in profile) reflects light from
one focus to the other.

Hyperbola

FH � FP

FE � FH

Ellipse

Parabola

Primary mirror

FE

FIGURE 10.16 Schematic drawing of a
reflecting telescope.

If an ellipse is revolved about its major axis to generate a surface (the surface is called
an ellipsoid ) and the interior is silvered to produce a mirror, light from one focus will be
reflected to the other focus (Figure 10.15). Ellipsoids reflect sound the same way, and this
property is used to construct whispering galleries, rooms in which a person standing at
one focus can hear a whisper from the other focus. (Statuary Hall in the U.S. Capitol build-
ing is a whispering gallery.)

Light directed toward one focus of a hyperbolic mirror is reflected toward the other
focus. This property of hyperbolas is combined with the reflective properties of parabolas
and ellipses in designing some modern telescopes. In Figure 10.16 starlight reflects off a
primary parabolic mirror toward the mirror’s focus It is then reflected by a small hy-
perbolic mirror, whose focus is toward the second focus of the hyperbola,

Since this focus is shared by an ellipse, the light is reflected by the elliptical
mirror to the ellipse’s second focus to be seen by an observer.
FE = FH .

FH = FP ,
FP .
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EXERCISES 10.1

Identifying Graphs
Match the parabolas in Exercises 1–4 with the following equations:

Then find the parabola’s focus and directrix.

1. 2.

x

y

x

y

x2
= 2y, x2

= -6y, y2
= 8x, y2

= -4x .

3. 4.

Match each conic section in Exercises 5–8 with one of these equations:

 
y2

4
- x2

= 1, x2

4
-

y2

9
= 1.

 
x2

4
+

y2

9
= 1, x2

2
+ y2

= 1, 

x

y

x

y
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694 Chapter 10: Conic Sections and Polar Coordinates

Then find the conic section’s foci and vertices. If the conic section is a
hyperbola, find its asymptotes as well.

5. 6.

7. 8.

Parabolas
Exercises 9–16 give equations of parabolas. Find each parabola’s fo-
cus and directrix. Then sketch the parabola. Include the focus and di-
rectrix in your sketch.

9. 10. 11.

12. 13. 14.

15. 16.

Ellipses
Exercises 17–24 give equations for ellipses. Put each equation in stan-
dard form. Then sketch the ellipse. Include the foci in your sketch.

17. 18.

19. 20.

21. 22.

23. 24.

Exercises 25 and 26 give information about the foci and vertices of
ellipses centered at the origin of the xy-plane. In each case, find the
ellipse’s standard-form equation from the given information.

25. Foci: 26. Foci:

Vertices: Vertices:

Hyperbolas
Exercises 27–34 give equations for hyperbolas. Put each equation in
standard form and find the hyperbola’s asymptotes. Then sketch the
hyperbola. Include the asymptotes and foci in your sketch.

27. 28. 9x2
- 16y2

= 144x2
- y2

= 1

s0, ;5ds ;2, 0d
s0, ;4dA ;22, 0 B

169x2
+ 25y2

= 42256x2
+ 9y2

= 54

9x2
+ 10y2

= 903x2
+ 2y2

= 6

2x2
+ y2

= 42x2
+ y2

= 2

7x2
+ 16y2

= 11216x2
+ 25y2

= 400

x = 2y2x = -3y2

y = -8x2y = 4x2y2
= -2x

x2
= -8yx2

= 6yy2
= 12x

x

y

x

y

x

y

x

y

29. 30.

31. 32.

33. 34.

Exercises 35–38 give information about the foci, vertices, and asymp-
totes of hyperbolas centered at the origin of the xy-plane. In each case,
find the hyperbola’s standard-form equation from the information given.

35. Foci: 36. Foci:

Asymptotes: Asymptotes:

37. Vertices: 38. Vertices:

Asymptotes: Asymptotes:

Shifting Conic Sections
39. The parabola is shifted down 2 units and right 1 unit to

generate the parabola 

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the
parabola.

40. The parabola is shifted left 1 unit and up 3 units to
generate the parabola 

a. Find the new parabola’s vertex, focus, and directrix.

b. Plot the new vertex, focus, and directrix, and sketch in the
parabola.

41. The ellipse is shifted 4 units to the right
and 3 units up to generate the ellipse

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new
ellipse.

42. The ellipse is shifted 3 units to the left and
2 units down to generate the ellipse

a. Find the foci, vertices, and center of the new ellipse.

b. Plot the new foci, vertices, and center, and sketch in the new
ellipse.

43. The hyperbola is shifted 2 units to the
right to generate the hyperbola

a. Find the center, foci, vertices, and asymptotes of the new
hyperbola.

sx - 2d2

16
-

y2

9
= 1.

sx2>16d - sy2>9d = 1

sx + 3d2

9
+

sy + 2d2

25
= 1.

sx2>9d + sy2>25d = 1

sx - 4d2

16
+

s y - 3d2

9
= 1.

sx2>16d + s y2>9d = 1

sx + 1d2
= -4sy - 3d .

x2
= -4y

s y + 2d2
= 8sx - 1d .

y2
= 8x

y = ;

1
2

 xy = ;

4
3

 x

s0, ;2ds ;3, 0d

y = ;

123
 xy = ;x

s ;2, 0dA0, ;22 B

64x2
- 36y2

= 23048y2
- 2x2

= 16

y2
- 3x2

= 38x2
- 2y2

= 16

y2
- x2

= 4y2
- x2

= 8
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b. Plot the new center, foci, vertices, and asymptotes, and sketch
in the hyperbola.

44. The hyperbola is shifted 2 units down to
generate the hyperbola

a. Find the center, foci, vertices, and asymptotes of the new
hyperbola.

b. Plot the new center, foci, vertices, and asymptotes, and sketch
in the hyperbola.

Exercises 45–48 give equations for parabolas and tell how many units
up or down and to the right or left each parabola is to be shifted. Find
an equation for the new parabola, and find the new vertex, focus, and
directrix.

45. down 3 46. up 3

47. down 7 48. down 2

Exercises 49–52 give equations for ellipses and tell how many units up
or down and to the right or left each ellipse is to be shifted. Find an
equation for the new ellipse, and find the new foci, vertices, and center.

49. left 2, down 1

50. right 3, up 4

51. right 2, up 3

52. left 4, down 5

Exercises 53–56 give equations for hyperbolas and tell how many
units up or down and to the right or left each hyperbola is to be shifted.
Find an equation for the new hyperbola, and find the new center, foci,
vertices, and asymptotes.

53. right 2, up 2

54. left 2, down 1

55. left 1, down 1

56. right 1, up 3

Find the center, foci, vertices, asymptotes, and radius, as appropriate,
of the conic sections in Exercises 57–68.

57.

58.

59. 60.

61. 62.

63. x2
+ 2y2

- 2x - 4y = -1

9x2
+ 6y2

+ 36y = 0x2
+ 5y2

+ 4x = 1

y2
- 4y - 8x - 12 = 0x2

+ 2x + 4y - 3 = 0

2x2
+ 2y2

- 28x + 12y + 114 = 0

x2
+ 4x + y2

= 12

y2

3
- x2

= 1,

y2
- x2

= 1,

x2

16
-

y2

9
= 1,

x2

4
-

y2

5
= 1,

x2

16
+

y2

25
= 1,

x2

3
+

y2

2
= 1,

x2

2
+ y2

= 1,

x2

6
+

y2

9
= 1,

x2
= 6y, left 3 ,x2

= 8y, right 1 ,

y2
= -12x, right 4 ,y2

= 4x, left 2 ,

sy + 2d2

4
-

x2

5
= 1.

s y2>4d - sx2>5d = 1

64.

65. 66.

67. 68.

Inequalities
Sketch the regions in the xy-plane whose coordinates satisfy the in-
equalities or pairs of inequalities in Exercises 69–74.

69.

70.

71.

72.

73. 74.

Theory and Examples
75. Archimedes’ formula for the volume of a parabolic solid The

region enclosed by the parabola and the line
is revolved about the y-axis to generate the solid shown

here. Show that the volume of the solid is 3 2 the volume of the
corresponding cone.

76. Suspension bridge cables hang in parabolas The suspension
bridge cable shown here supports a uniform load of w pounds per hor-
izontal foot. It can be shown that if H is the horizontal tension of the
cable at the origin, then the curve of the cable satisfies the equation

Show that the cable hangs in a parabola by solving this differen-
tial equation subject to the initial condition that when

x

y

Bridge cable

0

x = 0.
y = 0

dy

dx
=

w
H

 x .

h

0
b
2

y � x24h
b2

x

y







b
2

, h

>
y = h

y = s4h>b2dx2

ƒ x2
- y2

ƒ … 14y2
- x2

Ú 4

sx2
+ y2

- 4dsx2
+ 9y2

- 9d … 0

x2
+ 4y2

Ú 4 and 4x2
+ 9y2

… 36

x2
+ y2

Ú 1 and 4x2
+ y2

… 4

9x2
+ 16y2

… 144

y2
- 4x2

+ 16x = 242x2
- y2

+ 6y = 3

x2
- y2

+ 4x - 6y = 6x2
- y2

- 2x + 4y = 4

4x2
+ y2

+ 8x - 2y = -1
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77. Find an equation for the circle through the points (1, 0), (0, 1),
and (2, 2).

78. Find an equation for the circle through the points (2, 3), (3, 2),
and 

79. Find an equation for the circle centered at that passes
through the point (1, 3). Is the point (1.1, 2.8) inside, outside, or
on the circle?

80. Find equations for the tangents to the circle 
at the points where the circle crosses the coordinate axes. (Hint:

Use implicit differentiation.)

81. If lines are drawn parallel to the coordinate axes through a point P
on the parabola the parabola partitions the rec-
tangular region bounded by these lines and the coordinate axes
into two smaller regions, A and B.

a. If the two smaller regions are revolved about the y-axis, show
that they generate solids whose volumes have the ratio 4:1.

b. What is the ratio of the volumes generated by revolving the
regions about the x-axis?

82. Show that the tangents to the curve from any point on
the line are perpendicular.

83. Find the dimensions of the rectangle of largest area that can be in-
scribed in the ellipse with its sides parallel to the
coordinate axes. What is the area of the rectangle?

84. Find the volume of the solid generated by revolving the region en-
closed by the ellipse about the (a) x-axis, (b) y-axis.

85. The “triangular” region in the first quadrant bounded by the x-axis,
the line and the hyperbola is revolved
about the x-axis to generate a solid. Find the volume of the solid.

86. The region bounded on the left by the y-axis, on the right by the
hyperbola and above and below by the lines

is revolved about the y-axis to generate a solid. Find the
volume of the solid.

87. Find the centroid of the region that is bounded below by the x-axis
and above by the ellipse 

88. The curve which is part of the
upper branch of the hyperbola is revolved about
the x-axis to generate a surface. Find the area of the surface.

89. The circular waves in the photograph here were made by touching
the surface of a ripple tank, first at A and then at B. As the waves

y2
- x2

= 1,
y = 2x2

+ 1, 0 … x … 22,

sx2>9d + s y2>16d = 1.

y = ;3
x2

- y2
= 1,

9x2
- 4y2

= 36x = 4,

9x2
+ 4y2

= 36

x2
+ 4y2

= 4

x = -p
y2

= 4px

0
x

y

A

B

P

y2 � kx

y2
= kx, k 7 0,

5
sx - 2d2

+ sy - 1d2
=

s -2, 1d
s -4, 3d .

expanded, their point of intersection appeared to trace a hyper-
bola. Did it really do that? To find out, we can model the waves
with circles centered at A and B.

At time t, the point P is units from A and units
from B. Since the radii of the circles increase at a constant rate,
the rate at which the waves are traveling is

Conclude from this equation that has a constant value, so
that P must lie on a hyperbola with foci at A and B.

90. The reflective property of parabolas The figure here shows a
typical point on the parabola The line L is tan-
gent to the parabola at P. The parabola’s focus lies at F( p, 0). The
ray extending from P to the right is parallel to the x-axis. We
show that light from F to P will be reflected out along by show-
ing that equals Establish this equality by taking the following
steps.

a. Show that 

b. Show that 

c. Use the identity

to show that tan a = 2p>y0 .

tan a =

tan f - tan b

1 + tan f tan b

tan f = y0>sx0 - pd .

tan b = 2p>y0 .

a .b

L¿

L¿

y2
= 4px .Psx0 , y0d

rA - rB

drA

dt
=

drB

dt
.

rBstdrA std

A B

rA(t)
rB(t)

P(t)

696 Chapter 10: Conic Sections and Polar Coordinates

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 696

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Since and are both acute, implies 

91. How the astronomer Kepler used string to draw parabolas
Kepler’s method for drawing a parabola (with more modern tools)
requires a string the length of a T square and a table whose edge
can serve as the parabola’s directrix. Pin one end of the string to
the point where you want the focus to be and the other end to the
upper end of the T square. Then, holding the string taut against the
T square with a pencil, slide the T square along the table’s edge. As
the T square moves, the pencil will trace a parabola. Why?

Strin
g

F
Focus

Directrix

A

P

B

x

y

0 F( p, 0)

P(x0, y0)

�

�

�

�

L

L'

y0

y2 � 4px

b = a .tan b = tan aba 92. Construction of a hyperbola The following diagrams ap-
peared (unlabeled) in Ernest J. Eckert, “Constructions Without
Words,” Mathematics Magazine, Vol. 66, No. 2, Apr. 1993, p.
113. Explain the constructions by finding the coordinates of the
point P.

93. The width of a parabola at the focus Show that the number 4p
is the width of the parabola at the focus by
showing that the line cuts the parabola at points that are 4p
units apart.

94. The asymptotes of Show that the ver-
tical distance between the line and the upper half 

of the right-hand branch of the hyperbola
approaches 0 by showing that

Similar results hold for the remaining portions of the hyperbola
and the lines y = ;sb>adx .

lim
x: q

 aba x -

b
a2x2

- a2b =

b
a lim

x: q

 Ax - 2x2
- a2 B = 0.

sx2>a2d - s y2>b2d = 1
y = sb>ad2x2

- a2

y = sb>adx
sx2>a2d - s y2>b2d = 1

y = p
x2

= 4py s p 7 0d

x

y

x

y

O O

A P
A

C P

B

D(1, 0) D(1, 0)

1 1

(a) (b)
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10.2 Classifying Conic Sections by Eccentricity 697

Classifying Conic Sections by Eccentricity

We now show how to associate with each conic section a number called the conic section’s
eccentricity. The eccentricity reveals the conic section’s type (circle, ellipse, parabola, or
hyperbola) and, in the case of ellipses and hyperbolas, describes the conic section’s gen-
eral proportions.

Eccentricity

Although the center-to-focus distance c does not appear in the equation

for an ellipse, we can still determine c from the equation If we fix a and
vary c over the interval the resulting ellipses will vary in shape (Figure 10.17).
They are circles if (so that ) and flatten as c increases. If the foci and
vertices overlap and the ellipse degenerates into a line segment.

We use the ratio of c to a to describe the various shapes the ellipse can take. We call
this ratio the ellipse’s eccentricity.

c = a ,a = bc = 0
0 … c … a ,

c = 2a2
- b2 .

x2

a2 +

y2

b2 = 1, sa 7 bd

10.2
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The planets in the solar system revolve around the sun in (approximate) elliptical or-
bits with the sun at one focus. Most of the orbits are nearly circular, as can be seen from
the eccentricities in Table 10.2. Pluto has a fairly eccentric orbit, with as does
Mercury, with Other members of the solar system have orbits that are even
more eccentric. Icarus, an asteroid about 1 mile wide that revolves around the sun every
409 Earth days, has an orbital eccentricity of 0.83 (Figure 10.18).

EXAMPLE 1 Halley’s Comet

The orbit of Halley’s comet is an ellipse 36.18 astronomical units long by 9.12 astronomi-
cal units wide. (One astronomical unit [AU] is 149,597,870 km, the semimajor axis of
Earth’s orbit.) Its eccentricity is

Whereas a parabola has one focus and one directrix, each ellipse has two foci and two
directrices. These are the lines perpendicular to the major axis at distances from the
center. The parabola has the property that

(1)

for any point P on it, where F is the focus and D is the point nearest P on the directrix. For
an ellipse, it can be shown that the equations that replace Equation (1) are

(2)

Here, e is the eccentricity, P is any point on the ellipse, and are the foci, and and
are the points on the directrices nearest P (Figure 10.19).
In both Equations (2) the directrix and focus must correspond; that is, if we use the

distance from P to we must also use the distance from P to the directrix at the same
end of the ellipse. The directrix corresponds to and the directrix

corresponds to 
The eccentricity of a hyperbola is also only in this case c equals 

instead of In contrast to the eccentricity of an ellipse, the eccentricity of a hy-
perbola is always greater than 1.

2a2
- b2 .

2a2
+ b2e = c>a ,

F2sc, 0d .x = a>e F1s -c, 0d ,x = -a>eF1 ,

D2

D1F2F1

PF1 = e # PD1, PF2 = e # PD2 .

PF = 1 # PD

;a>e

e =

2a2
- b2

a =

2s36.18>2d2
- s9.12>2d2

s1>2ds36.18d
=

2s18.09d2
- s4.56d2

18.09
L 0.97.

e = 0.21.
e = 0.25,

698 Chapter 10: Conic Sections and Polar Coordinates

DEFINITION Eccentricity of an Ellipse
The eccentricity of the ellipse is

e =

c
a =

2a2
- b2

a .

sx2>a2d + s y2>b2d = 1 sa 7 bd

TABLE 10.2 Eccentricities of
planetary orbits

Mercury 0.21 Saturn 0.06

Venus 0.01 Uranus 0.05

Earth 0.02 Neptune 0.01

Mars 0.09 Pluto 0.25

Jupiter 0.05

Mars

Earth

Venus

Sun

Mercury

Icarus

FIGURE 10.18 The orbit of the asteroid
Icarus is highly eccentric. Earth’s orbit is so
nearly circular that its foci lie inside the sun.

HISTORICAL BIOGRAPHY

Edmund Halley
(1656–1742)

c � 0

F1 � F2

e � 0

c � a e � 1

F1

F1 F2

F2

c � 4a
5

e � 4
5

FIGURE 10.17 The ellipse changes from a circle to a line segment as c increases from 0 to a.

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 698

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce10.html?1_4_l
bounce10.html?4_5_a


In an ellipse, the foci are closer together than the vertices and the ratio is less than 1. In a
hyperbola, the foci are farther apart than the vertices and the ratio is greater than 1.

EXAMPLE 2 Finding the Vertices of an Ellipse

Locate the vertices of an ellipse of eccentricity 0.8 whose foci lie at the points 

Solution Since the vertices are the points where

or 

EXAMPLE 3 Eccentricity of a Hyperbola

Find the eccentricity of the hyperbola 

Solution We divide both sides of the hyperbola’s equation by 144 to put it in standard
form, obtaining

With and we find that so

As with the ellipse, it can be shown that the lines act as directrices for the
hyperbola and that

(3)

Here P is any point on the hyperbola, and are the foci, and and are the points
nearest P on the directrices (Figure 10.20).

To complete the picture, we define the eccentricity of a parabola to be Equa-
tions (1) to (3) then have the common form PF = e # PD .

e = 1.

D2D1F2F1

PF1 = e # PD1 and PF2 = e # PD2 .

x = ;a>e
e =

c
a =

5
4

.

c = 2a2
+ b2

= 216 + 9 = 5,b2
= 9,a2

= 16

9x2

144
-

16y2

144
= 1 and x2

16
-

y2

9
= 1.

9x2
- 16y2

= 144.

s0, ;8.75d .

a =

c
e =

7
0.8

= 8.75,

s0, ;ade = c>a ,

s0, ;7d .

In both ellipse and hyperbola, the eccentricity is the ratio of the distance between the
foci to the distance between the vertices (because ).c>a = 2c>2a

10.2 Classifying Conic Sections by Eccentricity 699

DEFINITION Eccentricity of a Hyperbola
The eccentricity of the hyperbola is

e =

c
a =

2a2
+ b2

a .

sx2>a2d - s y2>b2d = 1

Eccentricity =

distance between foci
distance between vertices

x

y
Directrix 1
x � – a

e

Directrix 2
x � a

eb

–b

0

a
c � ae

a
e

D1 D2
P(x, y)

F1(–c, 0) F2(c, 0)

FIGURE 10.19 The foci and directrices
of the ellipse 
Directrix 1 corresponds to focus and
directrix 2 to focus F2 .

F1 ,
sx2>a2d + s y2>b2d = 1.

Directrix 1
x � – a

e

Directrix 2
x � a

e

a

c � ae

a
e

F1(–c, 0) F2(c, 0)

D2D1
P(x, y)

x

y

0

FIGURE 10.20 The foci and directrices
of the hyperbola 
No matter where P lies on the hyperbola,

and PF2 = e # PD2 .PF1 = e # PD1

sx2>a2d - sy2>b2d = 1.
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The “focus–directrix” equation unites the parabola, ellipse, and hyperbola
in the following way. Suppose that the distance PF of a point P from a fixed point F (the
focus) is a constant multiple of its distance from a fixed line (the directrix). That is, suppose

PF = e # PD

700 Chapter 10: Conic Sections and Polar Coordinates

DEFINITION Eccentricity of a Parabola
The eccentricity of a parabola is e = 1.

(4)PF = e # PD ,

where e is the constant of proportionality. Then the path traced by P is

(a) a parabola if 

(b) an ellipse of eccentricity e if and

(c) a hyperbola of eccentricity e if 

There are no coordinates in Equation (4) and when we try to translate it into coordinate
form it translates in different ways, depending on the size of e. At least, that is what hap-
pens in Cartesian coordinates. However, in polar coordinates, as we will see in Section 10.8,
the equation translates into a single equation regardless of the value of e, an
equation so simple that it has been the equation of choice of astronomers and space scien-
tists for nearly 300 years.

Given the focus and corresponding directrix of a hyperbola centered at the origin and
with foci on the x-axis, we can use the dimensions shown in Figure 10.20 to find e. Know-
ing e, we can derive a Cartesian equation for the hyperbola from the equation

as in the next example. We can find equations for ellipses centered at the
origin and with foci on the x-axis in a similar way, using the dimensions shown in
Figure 10.19.

EXAMPLE 4 Cartesian Equation for a Hyperbola

Find a Cartesian equation for the hyperbola centered at the origin that has a focus at (3, 0)
and the line as the corresponding directrix.

Solution We first use the dimensions shown in Figure 10.20 to find the hyperbola’s ec-
centricity. The focus is

The directrix is the line

When combined with the equation that defines eccentricity, these results give

e =

c
a =

3
e , so e2

= 3 and e = 23.

e = c>a
x =

a
e = 1, so a = e .

sc, 0d = s3, 0d so c = 3.

x = 1

PF = e # PD ,

PF = e # PD

e 7 1.

e 6 1,

e = 1,
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Knowing e, we can now derive the equation we want from the equation 
In the notation of Figure 10.21, we have

Equation (4)

 
x2

3
-

y2

6
= 1.

 2x2
- y2

= 6

 x2
- 6x + 9 + y2

= 3sx2
- 2x + 1d

e = 23 2sx - 3d2
+ s y - 0d2

= 23 ƒ x - 1 ƒ

 PF = e # PD

PF = e # PD .
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0 1 F(3, 0)

D(1, y)

P(x, y)

x

x � 1

y

x2

3
y2

6�      � 1

FIGURE 10.21 The hyperbola and
directrix in Example 4.
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10.2 Classifying Conic Sections by Eccentricity 701

EXERCISES 10.2

Ellipses
In Exercises 1–8, find the eccentricity of the ellipse. Then find and
graph the ellipse’s foci and directrices.

1. 2.

3. 4.

5. 6.

7. 8.

Exercises 9–12 give the foci or vertices and the eccentricities of el-
lipses centered at the origin of the xy-plane. In each case, find the
ellipse’s standard-form equation.

9. Foci: 10. Foci:
Eccentricity: 0.5 Eccentricity: 0.2

11. Vertices: 12. Vertices:
Eccentricity: 0.1 Eccentricity: 0.24

Exercises 13–16 give foci and corresponding directrices of ellipses
centered at the origin of the xy-plane. In each case, use the dimensions
in Figure 10.19 to find the eccentricity of the ellipse. Then find the
ellipse’s standard-form equation.

13. Focus: 14. Focus: (4, 0)

Directrix: Directrix:

15. Focus: 16. Focus:

Directrix: Directrix:

17. Draw an ellipse of eccentricity 4 5. Explain your procedure.

18. Draw the orbit of Pluto (eccentricity 0.25) to scale. Explain your
procedure.

19. The endpoints of the major and minor axes of an ellipse are (1, 1),
(3, 4), (1, 7), and Sketch the ellipse, give its equation in
standard form, and find its foci, eccentricity, and directrices.

s -1, 4d .

>
x = -222x = -16

A -22, 0 Bs -4, 0d

x =

16
3

x =

925

A25, 0 B

s ;10, 0ds0, ;70d

s ;8, 0ds0, ;3d

169x2
+ 25y2

= 42256x2
+ 9y2

= 54

9x2
+ 10y2

= 903x2
+ 2y2

= 6

2x2
+ y2

= 42x2
+ y2

= 2

7x2
+ 16y2

= 11216x2
+ 25y2

= 400

20. Find an equation for the ellipse of eccentricity 2 3 that has the line
as a directrix and the point (4, 0) as the corresponding focus.

21. What values of the constants a, b, and c make the ellipse

lie tangent to the x-axis at the origin and pass through the point
What is the eccentricity of the ellipse?

22. The reflective property of ellipses An ellipse is revolved about
its major axis to generate an ellipsoid. The inner surface of the ellip-
soid is silvered to make a mirror. Show that a ray of light emanating
from one focus will be reflected to the other focus. Sound waves also
follow such paths, and this property is used in constructing “whisper-
ing galleries.” (Hint: Place the ellipse in standard position in the xy-
plane and show that the lines from a point P on the ellipse to the two
foci make congruent angles with the tangent to the ellipse at P.)

Hyperbolas
In Exercises 23–30, find the eccentricity of the hyperbola. Then find
and graph the hyperbola’s foci and directrices.

23. 24.

25. 26.

27. 28.

29. 30.

Exercises 31–34 give the eccentricities and the vertices or foci of hy-
perbolas centered at the origin of the xy-plane. In each case, find the
hyperbola’s standard-form equation.

31. Eccentricity: 3 32. Eccentricity: 2
Vertices: Vertices:

33. Eccentricity: 3 34. Eccentricity: 1.25
Foci: Foci: s0, ;5ds ;3, 0d

s ;2, 0ds0, ;1d

64x2
- 36y2

= 23048y2
- 2x2

= 16

y2
- 3x2

= 38x2
- 2y2

= 16

y2
- x2

= 4y2
- x2

= 8

9x2
- 16y2

= 144x2
- y2

= 1

s -1, 2d?

4x2
+ y2

+ ax + by + c = 0

x = 9
>
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Exercises 35–38 give foci and corresponding directrices of hyperbolas
centered at the origin of the xy-plane. In each case, find the hyper-
bola’s eccentricity. Then find the hyperbola’s standard-form equation.

35. Focus: (4, 0) 36. Focus:

Directrix: Directrix:

37. Focus: 38. Focus:

Directrix: Directrix:

39. A hyperbola of eccentricity 3 2 has one focus at The
corresponding directrix is the line Find an equation for
the hyperbola.

40. The effect of eccentricity on a hyperbola’s shape What hap-
pens to the graph of a hyperbola as its eccentricity increases? To
find out, rewrite the equation in terms of
a and e instead of a and b. Graph the hyperbola for various values
of e and describe what you find.

41. The reflective property of hyperbolas Show that a ray of light
directed toward one focus of a hyperbolic mirror, as in the accom-
panying figure, is reflected toward the other focus. (Hint: Show
that the tangent to the hyperbola at P bisects the angle made by
segments and )PF2 .PF1

sx2>a2d - sy2>b2d = 1

y = 2.
s1, -3d .>

x = -2x = -

1
2

s -6, 0ds -2, 0d
x = 22x = 2

A210, 0 B

42. A confocal ellipse and hyperbola Show that an ellipse and a
hyperbola that have the same foci A and B, as in the accompa-
nying figure, cross at right angles at their point of intersection.
(Hint: A ray of light from focus A that met the hyperbola at P
would be reflected from the hyperbola as if it came directly
from B (Exercise 41). The same ray would be reflected off the el-
lipse to pass through B (Exercise 22).)

A B

P

C

x

y

0

P(x, y)

F1(–c, 0) F2(c, 0)

702 Chapter 10: Conic Sections and Polar Coordinates

T

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 702

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu1002g.html
tcu1002g.html
tcu1002h.html
tcu1002h.html


702 Chapter 10: Conic Sections and Polar Coordinates

Quadratic Equations and Rotations

In this section, we examine the Cartesian graph of any equation

(1)

in which A, B, and C are not all zero, and show that it is nearly always a conic section. The
exceptions are the cases in which there is no graph at all or the graph consists of two parallel
lines. It is conventional to call all graphs of Equation (1), curved or not, quadratic curves.

The Cross Product Term

You may have noticed that the term Bxy did not appear in the equations for the conic sec-
tions in Section 10.1. This happened because the axes of the conic sections ran parallel to
(in fact, coincided with) the coordinate axes.

To see what happens when the parallelism is absent, let us write an equation for a hy-
perbola with and foci at and (Figure 10.22). The equation

becomes and

When we transpose one radical, square, solve for the radical that still appears, and square
again, the equation reduces to

(2)

a case of Equation (1) in which the cross product term is present. The asymptotes of the
hyperbola in Equation (2) are the x- and y-axes, and the focal axis makes an angle of p>4

2xy = 9,

2sx + 3d2
+ s y + 3d2

- 2sx - 3d2
+ s y - 3d2

= ;6.

ƒ PF1 - PF2 ƒ = 2s3d = 6ƒ PF1 - PF2 ƒ = 2a
F2s3, 3dF1s -3, -3da = 3

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0,

10.3

x

y

Foc
al

Axis
2xy � 9

P(x, y)

F2(3, 3)

F1(–3, –3)

0

��4

FIGURE 10.22 The focal axis of the
hyperbola makes an angle of 
radians with the positive x-axis.

p>42xy = 9
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radians with the positive x-axis. As in this example, the cross product term is present in
Equation (1) only when the axes of the conic are tilted.

To eliminate the xy-term from the equation of a conic, we rotate the coordinate axes to
eliminate the “tilt” in the axes of the conic. The equations for the rotations we use are de-
rived in the following way. In the notation of Figure 10.23, which shows a counterclock-
wise rotation about the origin through an angle 

(3)

Since

and

Equations (3) reduce to the following.

OP sin u = M¿P = y¿ ,

OP cos u = OM¿ = x¿

 y = MP = OP sin su + ad = OP cos u sin a + OP sin u cos a .

 x = OM = OP cos su + ad = OP cos u cos a - OP sin u sin a

a ,

10.3 Quadratic Equations and Rotations 703

O
x

y

M

M'

y'

x'

�
�

P(x, y) � (x', y' )

FIGURE 10.23 A counterclockwise
rotation through angle about the origin.a

Equations for Rotating Coordinate Axes

(4)
 y = x¿ sin a + y¿ cos a

 x = x¿ cos a - y¿ sin a

EXAMPLE 1 Finding an Equation for a Hyperbola

The x- and y-axes are rotated through an angle of radians about the origin. Find an
equation for the hyperbola in the new coordinates.

Solution Since we substitute

from Equations (4) into the equation and obtain

See Figure 10.24.

If we apply Equations (4) to the quadratic equation (1), we obtain a new quadratic
equation

(5)A¿x¿
2

+ B¿x¿y¿ + C¿y¿
2

+ D¿x¿ + E¿y¿ + F¿ = 0.

 
x¿

2

9
-

y¿
2

9
= 1.

 x¿
2

- y¿
2

= 9

 2 ax¿ - y¿22
b ax¿ + y¿22

b = 9

2xy = 9

x =

x¿ - y¿22
, y =

x¿ + y¿22

cos p>4 = sin p>4 = 1>22,

2xy = 9
p>4

x

y

y' x'

–3

3
2xy � 9

x'
2

9

y'
2

9
�

   
   

�
 1

��4

FIGURE 10.24 The hyperbola in
Example 1 ( and are the coordinates).y¿x¿
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The new and old coefficients are related by the equations

(6)

These equations show, among other things, that if we start with an equation for a
curve in which the cross product term is present we can find a rotation angle 
that produces an equation in which no cross product term appears To find we
set in the second equation in (6) and solve the resulting equation,

for In practice, this means determining from one of the two equationsaa .

B cos 2a + sC - Ad sin 2a = 0,

B¿ = 0
a ,sB¿ = 0d .
asB Z 0d ,

 F¿ = F .

 E¿ = -D sin a + E cos a

 D¿ = D cos a + E sin a

 C¿ = A sin2 a - B sin a cos a + C cos2 a

 B¿ = B cos 2a + sC - Ad sin 2a

 A¿ = A cos2 a + B cos a sin a + C sin2 a

704 Chapter 10: Conic Sections and Polar Coordinates

Angle of Rotation

(7)cot 2a =

A - C
B
 or tan 2a =

B
A - C

.

EXAMPLE 2 Finding the Angle of Rotation

The coordinate axes are to be rotated through an angle to produce an equation for the
curve

that has no cross product term. Find and the new equation. Identify the curve.

Solution The equation has and
We substitute these values into Equation (7) to find 

From the right triangle in Figure 10.25, we see that one appropriate choice of angle is
so we take Substituting 
and into Equations (6) gives

Equation (5) then gives

The curve is an ellipse with foci on the new (Figure 10.26).y¿-axis

5
2

 x¿
2

+
1
2

 y¿
2

- 10 = 0, or x¿
2

4
+

y¿
2

20
= 1.

A¿ =

5
2

, B¿ = 0, C¿ =
1
2

, D¿ = E¿ = 0, F¿ = -10.

F = -10D = E = 0,
C = 1, B = 23,A = 2,a = p>6,a = p>6.2a = p>3,

cot 2a =

A - C
B

=
2 - 123

=
123

.

a :C = 1.
A = 2, B = 23,2x2

+ 23 xy + y2
- 10 = 0

a

2x2
+ 23 xy + y2

- 10 = 0

a

�3
2

1
2�

FIGURE 10.25 This triangle identifies
as (Example 2).p>32a = cot-1(1>13)

x

y

� �
�
6

2

–2
–�5

–2�5

�5

�10

–�10

2x2 � �3 xy � y2 � 10 � 02�5
y'2

20
x'2

4
�    

   �
 1

y'

x'

FIGURE 10.26 The conic section in
Example 2.
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Possible Graphs of Quadratic Equations

We now return to the graph of the general quadratic equation.
Since axes can always be rotated to eliminate the cross product term, there is no loss

of generality in assuming that this has been done and that our equation has the form

(8)

Equation (8) represents

(a) a circle if (special cases: the graph is a point or there is no graph at all);

(b) a parabola if Equation (8) is quadratic in one variable and linear in the other;

(c) an ellipse if A and C are both positive or both negative (special cases: circles, a single
point, or no graph at all);

(d) a hyperbola if A and C have opposite signs (special case: a pair of intersecting lines);

(e) a straight line if A and C are zero and at least one of D and E is different from zero;

(f) one or two straight lines if the left-hand side of Equation (8) can be factored into the
product of two linear factors.

See Table 10.3 for examples.

A = C Z 0

Ax2
+ Cy2

+ Dx + Ey + F = 0.

10.3 Quadratic Equations and Rotations 705

TABLE 10.3 Examples of quadratic curves 

A B C D E F Equation Remarks

Circle 1 1

Parabola 1 Quadratic in y,
linear in x

Ellipse 4 9 A, C have same
sign, 

Hyperbola 1 A, C have opposite
signs

One line (still a 1 y-axis
conic section)

Intersecting lines 1 1 Factors to
(still a conic
section) so 

Parallel lines 1 2 Factors to
(not a conic
section) so 

Point 1 1 The origin

No graph 1 1 No graphx2
= -1

x2
+ y2

= 0

x = 1, x = 2
sx - 1dsx - 2d = 0,

x2
- 3x + 2 = 0-3

x = 1, y = -1
sx - 1ds y + 1d = 0,

xy + x - y - 1 = 0-1-1

x2
= 0

x2
- y2

= 1-1-1

A Z C; F 6 0
4x2

+ 9y2
= 36-36

y2
= 9x-9

A = C; F 6 0x2
+ y2

= 4-4

Ax2
+ Bxy + Cy 2

+ Dx + Ey + F = 0

The Discriminant Test

We do not need to eliminate the xy-term from the equation

(9)Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0
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to tell what kind of conic section the equation represents. If this is the only information we
want, we can apply the following test instead.

As we have seen, if then rotating the coordinate axes through an angle that
satisfies the equation

(10)

will change Equation (9) into an equivalent form

(11)

without a cross product term.
Now, the graph of Equation (11) is a (real or degenerate)

(a) parabola if or that is, if 

(b) ellipse if and have the same sign; that is, if 

(c) hyperbola if and have opposite signs; that is, if 

It can also be verified from Equations (6) that for any rotation of axes,

(12)

This means that the quantity is not changed by a rotation. But when we rotate
through the angle given by Equation (10), becomes zero, so

Since the curve is a parabola if an ellipse if and a hyperbola if
the curve must be a parabola if an ellipse if 

and a hyperbola if The number is called the discriminant of
Equation (9).

B2
- 4ACB2

- 4AC 7 0.
B2

- 4AC 6 0,B2
- 4AC = 0,A¿C¿ 6 0,

A¿C¿ 7 0,A¿C¿ = 0,

B2
- 4AC = -4A¿C¿ .

B¿a

B2
- 4AC

B2
- 4AC = B¿

2
- 4A¿C¿ .

A¿C¿ 6 0.C¿A¿

A¿C¿ 7 0;C¿A¿

A¿C¿ = 0;C¿ = 0;A¿

A¿x¿
2

+ C¿y¿
2

+ D¿x¿ + E¿y¿ + F¿ = 0

cot 2a =

A - C
B

aB Z 0,

706 Chapter 10: Conic Sections and Polar Coordinates

The Discriminant Test
With the understanding that occasional degenerate cases may arise, the quadratic
curve is

(a) a parabola if 
(b) an ellipse if 
(c) a hyperbola if B2

- 4AC 7 0.
B2

- 4AC 6 0,
B2

- 4AC = 0,

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

EXAMPLE 3 Applying the Discriminant Test

(a) represents a parabola because

(b) represents an ellipse because

(c) represents a hyperbola because

B2
- 4AC = s1d2

- 4s0ds -1d = 1 7 0.

xy - y2
- 5y + 1 = 0

B2
- 4AC = s1d2

- 4 # 1 # 1 =  -3 6 0.

x2
+ xy + y2

- 1 = 0

B2
- 4AC = s -6d2

- 4 # 3 # 3 = 36 - 36 = 0.

3x2
- 6xy + 3y2

+ 2x - 7 = 0

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 706

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce10.html?1_7_l
bounce10.html?1_8_l


10.3 Quadratic Equations and Rotations 707

USING TECHNOLOGY How Calculators Use Rotations to Evaluate Sines
and Cosines

Some calculators use rotations to calculate sines and cosines of arbitrary angles. The pro-
cedure goes something like this: The calculator has, stored,

1. ten angles or so, say

and

2. twenty numbers, the sines and cosines of the angles 

To calculate the sine and cosine of an arbitrary angle we enter (in radians) into the
calculator. The calculator subtracts or adds multiples of to to replace by the angle
between 0 and that has the same sine and cosine as (we continue to call the angle ).
The calculator then “writes” as a sum of multiples of (as many as possible without
overshooting) plus multiples of (again, as many as possible), and so on, working its
way to This gives

The calculator then rotates the point (1, 0) through copies of (through times
in succession), plus copies of and so on, finishing off with copies of 
(Figure 10.27). The coordinates of the final position of (1, 0) on the unit circle are the
values the calculator gives for scos u, sin ud .

a10m10a2 ,m2

a1, m1a1m1

u L m1a1 + m2a2 +
Á

+ m10a10 .

a10 .
a2

a1u

uu2p
uu2p

uu ,

a1, a2 , Á , a10 .

a1 = sin-1s10-1d, a2 = sin-1s10-2d, Á , a10 = sin-1s10-10d ,

NOT TO SCALE

x

1

10

(cos �, sin �)

�

(1, 0)

m3�3's

m2�2's

m1�1's

FIGURE 10.27 To calculate the sine and
cosine of an angle between 0 and the
calculator rotates the point (1, 0) to an
appropriate location on the unit circle and
displays the resulting coordinates.

2p ,u
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10.3 Quadratic Equations and Rotations 707

EXERCISES 10.3

Using the Discriminant
Use the discriminant to decide whether the equations in
Exercises 1–16 represent parabolas, ellipses, or hyperbolas.

1.

2.

3.

4.

5.

6.

7.

8. 9.

10.

11.

12.

13.

14.

15.

16. 3x2
+ 12xy + 12y2

+ 435x - 9y + 72 = 0

6x2
+ 3xy + 2y2

+ 17y + 2 = 0

25x2
+ 21xy + 4y2

- 350x = 0

x2
- 3xy + 3y2

+ 6y = 7

2x2
- 4.9xy + 3y2

- 4x = 7

3x2
- 5xy + 2y2

- 7x - 14y = -1

3x2
+ 6xy + 3y2

- 4x + 5y = 12

xy + y2
- 3x = 5x2

+ y2
+ 3x - 2y = 10

x2
+ 4xy + 4y2

- 3x = 6

2x2
- y2

+ 4xy - 2x + 3y = 6

x2
+ 2xy + y2

+ 2x - y + 2 = 0

2x2
- 215 xy + 2y2

+ x + y = 0

3x2
- 7xy + 217 y2

= 1

3x2
- 18xy + 27y2

- 5x + 7y = -4

x2
- 3xy + y2

- x = 0

B2
- 4AC

Rotating Coordinate Axes
In Exercises 17–26, rotate the coordinate axes to change the given
equation into an equation that has no cross product (xy) term. Then
identify the graph of the equation. (The new equations will vary with
the size and direction of the rotation you use.)

17. 18.

19.

20. 21.

22.

23.

24.

25.

26.

27. Find the sine and cosine of an angle in Quadrant I through which
the coordinate axes can be rotated to eliminate the cross product
term from the equation

Do not carry out the rotation.

14x2
+ 16xy + 2y2

- 10x + 26,370y - 17 = 0.

3x2
+ 423 xy - y2

= 7

3x2
+ 2xy + 3y2

= 19

xy - y - x + 1 = 0

22 x2
+ 222 xy + 22 y2

- 8x + 8y = 0

3x2
- 223 xy + y2

= 1

x2
- 2xy + y2

= 2x2
- 23 xy + 2y2

= 1

3x2
+ 223 xy + y2

- 8x + 823 y = 0

x2
+ xy + y2

= 1xy = 2
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28. Find the sine and cosine of an angle in Quadrant II through which
the coordinate axes can be rotated to eliminate the cross product
term from the equation

Do not carry out the rotation.

The conic sections in Exercises 17–26 were chosen to have rotation
angles that were “nice” in the sense that once we knew or

we could identify and find and from familiar tri-
angles.

In Exercises 29–34, use a calculator to find an angle through
which the coordinate axes can be rotated to change the given equation
into a quadratic equation that has no cross product term. Then find

and to two decimal places and use Equations (6) to find the
coefficients of the new equation to the nearest decimal place. In each
case, say whether the conic section is an ellipse, a hyperbola, or a
parabola.

29.

30.

31.

32.

33.

34.

Theory and Examples
35. What effect does a 90° rotation about the origin have on the equa-

tions of the following conic sections? Give the new equation in
each case.

a. The ellipse 

b. The hyperbola 

c. The circle 

d. The line e. The line 

36. What effect does a 180° rotation about the origin have on the
equations of the following conic sections? Give the new equation
in each case.

a. The ellipse 

b. The hyperbola 

c. The circle 

d. The line e. The line 

37. The hyperbola is one of many
hyperbolas of the form that appear in science and mathe-
matics.

a. Rotate the coordinate axes through an angle of 45° to change
the equation into an equation with no xy-term. What
is the new equation?

b. Do the same for the equation 

38. Find the eccentricity of the hyperbola xy = 2.

xy = a .

xy = 1

xy = a
xy = 1The Hyperbola xy = a

y = mx + by = mx

x2
+ y2

= a2

sx2>a2d = s y2>b2d = 1

sx2>a2d + s y2>b2d = 1 sa 7 bd

y = mx + by = mx

x2
+ y2

= a2

sx2>a2d = s y2>b2d = 1

sx2>a2d + s y2>b2d = 1 sa 7 bd

2x2
+ 7xy + 9y2

+ 20x - 86 = 0

3x2
+ 5xy + 2y2

- 8y - 1 = 0

2x2
- 12xy + 18y2

- 49 = 0

x2
- 4xy + 4y2

- 5 = 0

2x2
+ xy - 3y2

+ 3x - 7 = 0

x2
- xy + 3y2

+ x - y - 3 = 0

cos asin a

a

cos asin a2atan 2a
cot 2a

4x2
- 4xy + y2

- 825 x - 1625 y = 0.

39. Can anything be said about the graph of the equation 
if Give reasons for your

answer.

40. Degenerate conics Does any nondegenerate conic section
have all of the follow-

ing properties?

a. It is symmetric with respect to the origin.

b. It passes through the point (1, 0).

c. It is tangent to the line at the point 

Give reasons for your answer.

41. Show that the equation becomes 
for every choice of the angle in the rotation equations (4).

42. Show that rotating the axes through an angle of radians will
eliminate the xy-term from Equation (1) whenever 

43. a. Decide whether the equation

represents an ellipse, a parabola, or a hyperbola.

b. Show that the graph of the equation in part (a) is the line

44. a. Decide whether the conic section with equation

represents a parabola, an ellipse, or a hyperbola.

b. Show that the graph of the equation in part (a) is the line

45. a. What kind of conic section is the curve 

b. Solve the equation for y and sketch the
curve as the graph of a rational function of x.

c. Find equations for the lines parallel to the line that
are normal to the curve. Add the lines to your sketch.

46. Prove or find counterexamples to the following statements about
the graph of 

a. If the graph is an ellipse.

b. If the graph is a hyperbola.

c. If the graph is a hyperbola.

47. A nice area formula for ellipses When is negative,
the equation

represents an ellipse. If the ellipse’s semi-axes are a and b, its area
is (a standard formula). Show that the area is also given by
the formula (Hint: Rotate the coordinate axes
to eliminate the xy-term and apply Equation (12) to the new equa-
tion.)

48. Other invariants We describe the fact that equals
after a rotation about the origin by saying that the dis-

criminant of a quadratic equation is an invariant of the equation.
B2

- 4AC
B¿

2
- 4A¿C¿

2p>24AC - B2 .
pab

Ax2
+ Bxy + Cy2

= 1

B2
- 4AC

AC 6 0,

AC 7 0,

AC 7 0,

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0.

y = -2x

xy + 2x - y = 0

xy + 2x - y = 0?

y = -3x + 2.

9x2
+ 6xy + y2

- 12x - 4y + 4 = 0

2y = -x - 3.

x2
+ 4xy + 4y2

+ 6x + 12y + 9 = 0

A = C .
p>4

a

x¿
2

+ y¿
2

= a2x2
+ y2

= a2

s -2, 1d .y = 1

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

AC 6 0?Cy2
+ Dx + Ey + F = 0

Ax2
+ Bxy +
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Use Equations (6) to show that the numbers (a) and (b)
are also invariants, in the sense that

We can use these equalities to check against numerical errors
when we rotate axes.

A¿ + C¿ = A + C and D¿
2

+ E¿
2

= D2
+ E2 .

D2
+ E2

A + C

709

49. Use Equations (6) to
show that for any rotation of axes
about the origin.

B¿
2

- 4A¿C¿ = B2
- 4AC

A proof that B¿
2

- 4A¿C¿ = B2
- 4AC
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10.4 Conics and Parametric Equations; The Cycloid 709

Conics and Parametric Equations; The Cycloid

Curves in the Cartesian plane defined by parametric equations, and the calculation of their
derivatives, were introduced in Section 3.5. There we studied parametrizations of lines,
circles, and ellipses. In this section we discuss parametrization of parabolas, hyperbolas,
cycloids, brachistocrones, and tautocrones.

Parabolas and Hyperbolas

In Section 3.5 we used the parametrization

to describe the motion of a particle moving along the right branch of the parabola 
In the following example we obtain a parametrization of the entire parabola, not just its
right branch.

EXAMPLE 1 An Entire Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

Identify the particle’s path and describe the motion.

Solution We identify the path by eliminating t between the equations and
obtaining

The particle’s position coordinates satisfy the equation so the particle moves
along this curve.

In contrast to Example 10 in Section 3.5, the particle now traverses the entire
parabola. As t increases from to the particle comes down the left-hand side,
passes through the origin, and moves up the right-hand side (Figure 10.28).

As Example 1 illustrates, any curve has the parametrization 
This is so simple we usually do not use it, but the point of view is occasionally

helpful.

EXAMPLE 2 A Parametrization of the Right-hand Branch of the Hyperbola

Describe the motion of the particle whose position P(x, y) at time t is given by

x = sec t, y = tan t, -
p
2

6 t 6
p
2

.

x2
- y2

= 1

y = ƒstd .
x = t ,y = ƒsxd

q ,- q

y = x2 ,

y = std2
= x2 .

y = t2 ,
x = t

x = t, y = t2, - q 6 t 6 q .

y = x2 .

x = 2t, y = t, t 7 0

10.4

x

y

0

y � x2

(–2, 4)

(1, 1)

t � –2

t � 1

P(t, t 2)

FIGURE 10.28 The path defined by
is the

entire parabola (Example 1).y = x2
x = t, y = t2, - q 6 t 6 q
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Solution We find a Cartesian equation for the coordinates of P by eliminating t be-
tween the equations

We accomplish this with the identity which yields

Since the particle’s coordinates (x, y) satisfy the equation the motion takes
place somewhere on this hyperbola. As t runs between and remains
positive and runs between and so P traverses the hyperbola’s right-hand
branch. It comes in along the branch’s lower half as reaches (1, 0) at and
moves out into the first quadrant as t increases toward  (Figure 10.29).

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christiaan
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we de-
fine in Example 3. He hung the bob from a fine wire constrained by guards that caused it
to draw up as it swung away from center (Figure 10.30).

EXAMPLE 3 Parametrizing a Cycloid

A wheel of radius a rolls along a horizontal straight line. Find parametric equations for the
path traced by a point P on the wheel’s circumference. The path is called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t
through which the wheel turns, measured in radians. Figure 10.31 shows the wheel a short
while later, when its base lies at units from the origin. The wheel’s center C lies at (at, a)
and the coordinates of P are

To express in terms of t, we observe that in the figure, so that

This makes

The equations we seek are

These are usually written with the a factored out:

(1)

Figure 10.32 shows the first arch of the cycloid and part of the next.

x = ast - sin td, y = as1 - cos td .

x = at - a sin t, y = a - a cos t .

cos u = cos a3p
2

- tb = -sin t, sin u = sin a3p
2

- tb = -cos t .

u =

3p
2

- t .

t + u = 3p>2u

x = at + a cos u, y = a + a sin u .

p>2 t = 0,t : 0- ,
q ,- qy = tan t

p>2, x = sec t-p>2x2
- y2

= 1,

x2
- y2

= 1.

sec2 t - tan2 t = 1,

sec t = x, tan t = y .
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Branch not
traced

x

y
x2 � y2 � 1

P(sec t, tan t)

0 1

1
t � 0

–    � t � 0�
2

0 � t � 
�
2

FIGURE 10.29 The equations
and interval

describe the right-hand
branch of the hyperbola 
(Example 2).

x2
- y2

= 1
-p>2 6 t 6 p>2
x = sec t, y = tan t

HISTORICAL BIOGRAPHY

Christiaan Huygens
(1629–1695)

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 10.30 In Huygens’ pendulum
clock, the bob swings in a cycloid, so the
frequency is independent of the amplitude.

x

y

t
a
�

C(at, a)

M0 at

P(x, y) � (at � a cos �, a � a sin �)

FIGURE 10.31 The position of P(x, y) on
the rolling wheel at angle t (Example 3).
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Brachistochrones and Tautochrones

If we turn Figure 10.32 upside down, Equations (1) still apply and the resulting curve
(Figure 10.33) has two interesting physical properties. The first relates to the origin O and
the point B at the bottom of the first arch. Among all smooth curves joining these points,
the cycloid is the curve along which a frictionless bead, subject only to the force of
gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone
(“brah-kiss-toe-krone”), or shortest time curve for these points. The second property is
that even if you start the bead partway down the curve toward B, it will still take the bead
the same amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-
krone”), or same-time curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one?
We can formulate this as a mathematical question in the following way. At the start, the ki-
netic energy of the bead is zero, since its velocity is zero. The work done by gravity in
moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and this must
equal the change in kinetic energy. That is,

Thus, the velocity of the bead when it reaches (x, y) has to be

That is,

or

The time it takes the bead to slide along a particular path from O to 
is

(2)

What curves if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its velocity faster. With a higher velocity, the bead could travel a
longer path and still reach B first. Indeed, this is the right idea. The solution, from a branch
of mathematics known as the calculus of variations, is that the original cycloid from O to
B is the one and only brachistochrone for O and B.

While the solution of the brachistrochrone problem is beyond our present reach, we
can still show why the cycloid is a tautochrone. For the cycloid, Equation (2) takes the form

 = L
p

0 Aa
g dt = pAa

g .

 = L
t =p

t = 0 Ba2s2 - 2 cos td
2gas1 - cos td

 dt

 Tcycloid = L
x = ap

x = 0 Bdx2
+ dy2

2gy

y = ƒsxd ,

Tf = L
x = ap

x = 0 B1 + sdy>dxd2

2gy
 dx .

Bsap, 2ady = ƒsxdTf

dt =

ds22gy
=

21 + sdy>dxd2 dx22gy
.

ds
dt

= 22gy

y = 22gy .

mgy =
1
2

 my2
-

1
2

 ms0d2 .
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O
x

y

(x, y)

2�a

t
a

FIGURE 10.32 The cycloid
for

t Ú 0.
x = ast - sin td, y = as1 - cos td,

x

y

O a

a

2a

2a

2�a�a

P(at � a sin t, a � a cos t)

B(a�, 2a)

FIGURE 10.33 To study motion along an
upside-down cycloid under the influence
of gravity, we turn Figure 10.32 upside
down. This points the y-axis in the
direction of the gravitational force and
makes the downward y-coordinates
positive. The equations and parameter
interval for the cycloid are still

The arrow shows the direction of
increasing t.

 y = as1 - cos td, t Ú 0.
 x = ast - sin td, 

From Equations (1),

y = a s1 - cos td
dy = a sin t dt, and
dx = as1 - cos td dt ,

ds is the arc length differential
along the bead’s path.
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Thus, the amount of time it takes the frictionless bead to slide down the cycloid to B after
it is released from rest at O is 

Suppose that instead of starting the bead at O we start it at some lower point on the cy-
cloid, a point corresponding to the parameter value The bead’s velocity at
any later point (x, y) on the cycloid is

Accordingly, the time required for the bead to slide from down to B is

This is precisely the time it takes the bead to slide to B from O. It takes the bead the same
amount of time to reach B no matter where it starts. Beads starting simultaneously from O,
A, and C in Figure 10.34, for instance, will all reach B at the same time. This is the reason
that Huygens’ pendulum clock is independent of the amplitude of the swing.

 = 2Aa
g s -sin-1 0 + sin-1 1d = pAa

g .

 = 2Aa
g c-sin-1 

cos st>2d
cos st0>2d

d
t0

p

 = 2Aa
g c-sin-1 

u
c d

t = t0

t =p

 = Aa
gL

t =p

t = t0

 
-2 du2a2

- u2

 = Aa
gL

p

t0

 
sin st>2d dt2cos2 st0>2d - cos2 st>2d

 = Aa
gL

p

t0 B 2 sin2 st>2d

s2 cos2 st0>2d - 1d - s2 cos2 st>2d - 1d
  dt

 T = L
p

t0 B a2s2 - 2 cos td
2gascos t0 - cos td

 dt = Aa
gL

p

t0 A 1 - cos t
cos t0 - cos t  dt

sx0 , y0d

y = a s1 - cos tdy = 22g s y - y0d = 22ga scos t0 - cos td .

t0 7 0.sx0 , y0d

p2a>g .
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 c = cos st0>2d
-2 du = sin st>2d dt

 u = cos st>2d

O
x

y

A

B
C

FIGURE 10.34 Beads released
simultaneously on the cycloid at O, A, and
C will reach B at the same time.
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EXERCISES 10.4

Parametric Equations for Conics
Exercises 1–12 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

1.

2.

3.

4.

5.

6. x = sec2 t - 1, y = tan t; -p>2 6 t 6 p>2
x = t, y = 2t; t Ú 0

x = 4 sin t, y = 5 cos t; 0 … t … 2p

x = 4 cos t, y = 5 sin t; 0 … t … p

x = sin s2p s1 - tdd, y = cos s2p s1 - tdd; 0 … t … 1

x = cos t, y = sin t, 0 … t … p

7.

8.

9.

10.

11.

12.

13. Hypocycloids When a circle rolls on the inside of a fixed cir-
cle, any point P on the circumference of the rolling circle de-
scribes a hypocycloid. Let the fixed circle be let
the radius of the rolling circle be b, and let the initial position of
the tracing point P be A(a, 0). Find parametric equations for the
hypocycloid, using as the parameter the angle from the positive
x-axis to the line joining the circles’ centers. In particular, if

u

x2
+ y2

= a2 ,

x = 2 sinh t, y = 2 cosh t; - q 6 t 6 q

x = -cosh t, y = sinh t; - q 6 t 6 q

x = t2, y = 2t4
+ 1; t Ú 0

x = t, y = 24 - t2; 0 … t … 2

x = csc t, y = cot t; 0 6 t 6 p

x = -sec t, y = tan t; -p>2 6 t 6 p>2
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as in the accompanying figure, show that the hypocy-
cloid is the astroid

14. More about hypocycloids The accompanying figure shows a
circle of radius a tangent to the inside of a circle of radius 2a. The
point P, shown as the point of tangency in the figure, is attached
to the smaller circle. What path does P trace as the smaller circle
rolls around the inside of the larger circle?

15. As the point N moves along the line in the accompanying
figure, P moves in such a way that Find parametric
equations for the coordinates of P as functions of the angle t that
the line ON makes with the positive y-axis.

16. Trochoids A wheel of radius a rolls along a horizontal straight
line without slipping. Find parametric equations for the curve
traced out by a point P on a spoke of the wheel b units from its
center. As parameter, use the angle through which the wheel
turns. The curve is called a trochoid, which is a cycloid when

Distance Using Parametric Equations
17. Find the point on the parabola 

closest to the point (2, 1 2). (Hint: Minimize the square of the
distance as a function of t.)

> x = t, y = t2, - q 6 t 6 q ,

b = a .

u

x

y

N

M

A(0, a)

t

P

O

OP = MN .
y = a

a a
P

x

y

C

O
�

b

P
A(a, 0)

x = a cos3 u, y = a sin3 u .

b = a>4, 18. Find the point on the ellipse 
closest to the point (3 4, 0). (Hint: Minimize the square of the
distance as a function of t.)

GRAPHER EXPLORATIONS

If you have a parametric equation grapher, graph the following equa-
tions over the given intervals.

19. Ellipse

a. b.

c.

20. Hyperbola branch (enter as 1 cos (t)), (en-
ter as sin (t) cos (t)), over

a. b.

c.

21. Parabola

22. Cycloid

a. b.

c.

23. A nice curve (a deltoid)

What happens if you replace 2 with in the equations for x and
y? Graph the new equations and find out.

24. An even nicer curve

What happens if you replace 3 with in the equations for x and
y? Graph the new equations and find out.

25. Three beautiful curves

a. Epicycloid:

b. Hypocycloid:

c. Hypotrochoid:

26. More beautiful curves

a.

b.

c.

d.
0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t;

0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t; 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

-3

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

-2

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

p … t … 3p .

0 … t … 4p0 … t … 2p

x = t - sin t, y = 1 - cos t, over

x = 2t + 3, y = t2
- 1, -2 … t … 2

-0.1 … t … 0.1 .

-0.5 … t … 0.5-1.5 … t … 1.5

> y = tan t>x = sec t

-p>2 … t … p>2.

0 … t … p0 … t … 2p

x = 4 cos t, y = 2 sin t, over

> x = 2 cos t, y = sin t, 0 … t … 2p
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714 Chapter 10: Conic Sections and Polar Coordinates

Polar Coordinates

In this section, we study polar coordinates and their relation to Cartesian coordinates.
While a point in the plane has just one pair of Cartesian coordinates, it has infinitely many
pairs of polar coordinates. This has interesting consequences for graphing, as we will see
in the next section.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray
from O (Figure 10.35). Then each point P can be located by assigning to it a polar coordi-
nate pair in which r gives the directed distance from O to P and gives the directed
angle from the initial ray to ray OP.

usr, ud

10.5

Polar Coordinates

Psr, ud

Directed angle from
initial ray to OP

Directed distance
from O to P

As in trigonometry, is positive when measured counterclockwise and negative when
measured clockwise. The angle associated with a given point is not unique. For instance,
the point 2 units from the origin along the ray has polar coordinates 

It also has coordinates (Figure 10.36). There are occasions
when we wish to allow r to be negative. That is why we use directed distance in defining

The point can be reached by turning radians counterclockwise
from the initial ray and going forward 2 units (Figure 10.37). It can also be reached by turn-
ing radians counterclockwise from the initial ray and going backward 2 units. So the
point also has polar coordinates r = -2, u = p>6.
p>6

7p>6Ps2, 7p>6dPsr, ud .

r = 2, u = -11p>6u = p>6.
r = 2, u = p>6

u

O

r

Initial ray

Origin (pole)

x

P(r, �)

�

FIGURE 10.35 To define polar
coordinates for the plane, we start with an
origin, called the pole, and an initial ray.

O x
Initial ray

� � 0

� � ��6

–11�
6

P  2,       � P  2, –11�
6

�
6













FIGURE 10.36 Polar coordinates are not
unique.

O
x

� � 0

� � ��6

��6

7��6

P  2,        � P  –2, �
6

7�
6













7�
6

� �

FIGURE 10.37 Polar coordinates can have negative
r-values.
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EXAMPLE 1 Finding Polar Coordinates

Find all the polar coordinates of the point 

Solution We sketch the initial ray of the coordinate system, draw the ray from the ori-
gin that makes an angle of radians with the initial ray, and mark the point 
(Figure 10.38). We then find the angles for the other coordinate pairs of P in which 
and r = -2.

r = 2
s2, p>6dp>6

Ps2, p>6d .
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O

7��6

–5��6

  2,      �   –2, – 5�
6

�
6













�   –2, 7�
6







Initial ray
x

etc.�
6

FIGURE 10.38 The point has infinitely many
polar coordinate pairs (Example 1).

Ps2, p>6d

For the complete list of angles is

For the angles are

The corresponding coordinate pairs of P are

and

When the formulas give and When they give
and and so on.

Polar Equations and Graphs

If we hold r fixed at a constant value the point will lie units from
the origin O. As varies over any interval of length P then traces a circle of radius 
centered at O (Figure 10.39).

If we hold fixed at a constant value and let r vary between and 
the point traces the line through O that makes an angle of measure with the
initial ray.

u0Psr, ud
q ,- qu = u0u

ƒ a ƒ2p ,u
ƒ a ƒPsr, udr = a Z 0,

s -2, 7p>6d ,s2, 13p>6d
n = 1,s -2, -5p>6d .s2, p>6dn = 0,

a-2, -
5p
6

+ 2npb , n = 0, ;1, ;2, Á .

a2, 
p
6

+ 2npb , n = 0, ;1, ;2, Á

-

5p
6

, -

5p
6

; 2p, -

5p
6

; 4p, -

5p
6

; 6p, Á .

r = -2,

p
6

, p
6

; 2p, p
6

; 4p, p
6

; 6p, Á .

r = 2,

x

�a�

r � a

O

FIGURE 10.39 The polar equation for a
circle is r = a .
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x

y

0 1

(a)

2

x

y

0
3

(b)

2

x

y

0

(c)

x

y

0

(d)

1 � r � 2, 0 � � �
�
2

� �    ,�
4

–3 � r � 2�
4

�
4

� �    ,�
4

r � 0

2�
3

5�
6

2�
3

5�
6� � �

FIGURE 10.40 The graphs of typical
inequalities in r and (Example 3).u

EXAMPLE 2 Finding Polar Equations for Graphs

(a) and are equations for the circle of radius 1 centered at O.

(b) and are equations for the line in Figure 10.38.

Equations of the form and can be combined to define regions, segments,
and rays.

EXAMPLE 3 Identifying Graphs

Graph the sets of points whose polar coordinates satisfy the following conditions.

(a)

(b)

(c)

(d)

Solution The graphs are shown in Figure 10.40.

Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane, we place the two origins to-
gether and take the initial polar ray as the positive x-axis. The ray be-
comes the positive y-axis (Figure 10.41). The two coordinate systems are then related by
the following equations.

u = p>2, r 7 0,

2p
3

… u …

5p
6
 sno restriction on rd

r … 0 and u =

p
4

-3 … r … 2 and u =

p
4

1 … r … 2 and 0 … u …

p
2

u = u0r = a

u = -5p>6u = p>6, u = 7p>6,

r = -1r = 1

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) � P(r, �)

� � 0, r � 0�

Ray � �
�
2

FIGURE 10.41 The usual way to relate
polar and Cartesian coordinates.

Equations Relating Polar and Cartesian Coordinates

x = r cos u, y = r sin u, x2
+ y2

= r2

Equation Graph

Circle radius centered at O

Line through O making an angle with the initial rayu0 u = u0

ƒ a ƒ r = a

The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and On the other hand, if x and y are given, the third equa-
tion gives two possible choices for r (a positive and a negative value). For each selection,
there is a unique satisfying the first two equations, each then giving a polar co-
ordinate representation of the Cartesian point (x, y). The other polar coordinate representa-
tions for the point can be determined from these two, as in Example 1.

u H [0, 2pd

u .
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EXAMPLE 4 Equivalent Equations

Polar equation Cartesian equivalent

With some curves, we are better off with polar coordinates; with others, we aren’t.

EXAMPLE 5 Converting Cartesian to Polar

Find a polar equation for the circle (Figure 10.42).

Solution

We will say more about polar equations of conic sections in Section 10.8.

EXAMPLE 6 Converting Polar to Cartesian

Replace the following polar equations by equivalent Cartesian equations, and identify
their graphs.

(a)

(b)

(c)

Solution We use the substitutions 

(a)

(b)

The graph: Circle, radius 2, center sh, kd = s2, 0d

The Cartesian equation: r2
= 4r cos u

x2
+ y2

= 4x

x2
- 4x + y2

= 0

x2
- 4x + 4 + y2

= 4

sx - 2d2
+ y2

= 4

r2
= 4r cos u

The graph: Vertical line through x = -4 on the x-axis

The Cartesian equation: r cos u = -4

x = -4

r cos u = -4

r cos u = x, r sin u = y, r2
= x2

+ y2 .

r =
4

2 cos u - sin u

r2
= 4r cos u

r cos u = -4

 r = 6 sin u

 r = 0 or r - 6 sin u = 0

 r2
- 6r sin u = 0

 x2
+ y2

- 6y = 0

 x2
+ y2

- 6y + 9 = 9

x2
+ sy - 3d2

= 9

x4
+ y4

+ 2x2y2
+ 2x3

+ 2xy2
- y2

= 0r = 1 - cos u

y2
- 3x2

- 4x - 1 = 0r = 1 + 2r cos u

x2
- y2

= 1r2 cos2 u - r2 sin2 u = 1

xy = 4r2 cos u sin u = 4

x = 2r cos u = 2

10.5 Polar Coordinates 717

x

y

(0, 3)

0

x2 � ( y � 3)2 � 9
or

r � 6 sin �

FIGURE 10.42 The circle in Example 5.

Expand sy - 3d2 .

The 9’s cancel.

x2
+ y2

= r2

Includes both possibilities

Completing the square
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(c)

The graph: Line, slope m = 2, y-intercept b = -4

The Cartesian equation: rs2 cos u - sin ud = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

r =
4

2 cos u - sin u

718 Chapter 10: Conic Sections and Polar Coordinates

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 718

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


718 Chapter 10: Conic Sections and Polar Coordinates

EXERCISES 10.5

Polar Coordinate Pairs
1. Which polar coordinate pairs label the same point?

a. (3, 0) b. c.

d. e. f.

g. h.

2. Which polar coordinate pairs label the same point?

a. b. c.

d. e. f.

g. h.

3. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a. b. (2, 0)

c. d.

4. Plot the following points (given in polar coordinates). Then find
all the polar coordinates of each point.

a. b.

c. d.

Polar to Cartesian Coordinates
5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in
polar coordinates).

a. b. (1, 0)

c. d.

e. f.

g. h.

Graphing Polar Equations and Inequalities
Graph the sets of points whose polar coordinates satisfy the equations
and inequalities in Exercises 7–22.

7. 8.

9. 10.

11. 12. u = 2p>3, r … -20 … u … p>6, r Ú 0

1 … r … 2r Ú 1

0 … r … 2r = 2

A223, 2p>3 Bs -1, 7pd
s5, tan-1 s4>3dds -3, 5p>6d
A -22, p>4 Bs0, p>2d

A22, p>4 B

s -3, -p>4ds3, -p>4d
s -3, p>4ds3, p>4d

s -2, 0ds -2, p>2d
s2, p>2d

s -2, 2p>3ds -r, u + pd
s2, -2p>3ds -r, udsr, u + pd
sr, uds2, -p>3ds -2, p>3d

s -2, -p>3ds -3, 2pd
s2, p>3ds -3, pds2, 7p>3d
s2, 2p>3ds -3, 0d

13. 14.

15. 16.

17. 18.

19.

20.

21.

22.

Polar to Cartesian Equations
Replace the polar equations in Exercises 23–48 by equivalent Carte-
sian equations. Then describe or identify the graph.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 49–62 by equivalent po-
lar equations.

49. 50. 51.

52. 53. 54.

55. 56. xy = 2
x2

9
+

y2

4
= 1

x2
- y2

= 1x2
+ y2

= 4x - y = 3

x = yy = 1x = 7

r sin a2p
3

- ub = 5r sin au +

p

6
b = 2

r = 2 cos u - sin ur = 2 cos u + 2 sin u

r = 3 cos ur = 8 sin u

r2
= -6r sin ur2

= -4r cos u

cos2 u = sin2 ur2
+ 2r2 cos u sin u = 1

r sin u = ln r + ln cos ur = csc u er cos u

r = 4 tan u sec ur = cot u csc u

r2 sin 2u = 2r =

5
sin u - 2 cos u

r2
= 4r sin ur2

= 1

r sin u = r cos ur cos u + r sin u = 1

r = -3 sec ur = 4 csc u

r cos u = 0r sin u = 0

r sin u = -1r cos u = 2

0 … u … p>2, 1 … ƒ r ƒ … 2

-p>2 … u … p>2, 1 … r … 2

-p>4 … u … p>4, -1 … r … 1

p>4 … u … 3p>4, 0 … r … 1

0 … u … p, r = -10 … u … p, r = 1

u = p>2, r … 0u = p>2, r Ú 0

u = 11p>4, r Ú -1u = p>3, -1 … r … 3
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57. 58.

59. 60.

61. 62.

Theory and Examples
63. Find all polar coordinates of the origin.

sx + 2d2
+ s y - 5d2

= 16sx - 3d2
+ s y + 1d2

= 4

sx - 5d2
+ y2

= 25x2
+ s y - 2d2

= 4

x2
+ xy + y2

= 1y2
= 4x 64. Vertical and horizontal lines

a. Show that every vertical line in the xy-plane has a polar
equation of the form 

b. Find the analogous polar equation for horizontal lines in the
xy-plane.

r = a sec u .

719
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10.6 Graphing in Polar Coordinates 719

Graphing in Polar Coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure 10.43 illustrates the standard polar coordinate tests for symmetry.

10.6

x

y

(r, �)

(r, –�)
or (–r, � � �)

0

(a)  About the x-axis

x

y

0 0

(b)  About the y-axis

(r, � � �)
or (–r, –�) (r, �)

x

y

(–r, �) or (r, � � �)

(c)  About the origin

(r, �)

FIGURE 10.43 Three tests for symmetry in polar coordinates.

Slope

The slope of a polar curve is given by dy dx, not by To see why,
think of the graph of ƒ as the graph of the parametric equations

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r¿ = dƒ>du .>r = ƒsud

Symmetry Tests for Polar Graphs

1. Symmetry about the x-axis: If the point lies on the graph, the point
or lies on the graph (Figure 10.43a).

2. Symmetry about the y-axis: If the point lies on the graph, the point
or lies on the graph (Figure 10.43b).

3. Symmetry about the origin: If the point lies on the graph, the point
or lies on the graph (Figure 10.43c).sr, u + pds -r, ud

sr, ud
s -r, -udsr, p - ud

sr, ud
s -r, p - udsr, -ud

sr, ud
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If ƒ is a differentiable function of then so are x and y and, when we can cal-
culate dy dx from the parametric formula

 =

df
du

 sin u + ƒsud cos u

df
du

 cos u - ƒsud sin u

 =

d
du

 sƒsud #  sin ud

d
du

 sƒsud #  cos ud

 
dy
dx

=

dy>du
dx>du

> dx>du Z 0,u ,

720 Chapter 10: Conic Sections and Polar Coordinates

Section 3.5, Equation (2)
with t = u

Product Rule for derivatives

Slope of the Curve 

provided at sr, ud .dx>du Z 0

dy
dx
`
sr, ud

=

ƒ¿sud sin u + ƒsud cos u

ƒ¿sud cos u - ƒsud sin u
,

r = ƒsud

If the curve passes through the origin at then and the slope
equation gives

If the graph of passes through the origin at the value the slope of the
curve there is tan The reason we say “slope at ” and not just “slope at the origin”
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different This is not the case in our first example, however.

EXAMPLE 1 A Cardioid

Graph the curve 

Solution The curve is symmetric about the x-axis because

As increases from 0 to decreases from 1 to and increases
from a minimum value of 0 to a maximum value of 2. As continues on from to

increases from back to 1 and r decreases from 2 back to 0. The curve starts to
repeat when because the cosine has period 

The curve leaves the origin with slope and returns to the origin with slope

We make a table of values from to plot the points, draw a smooth curve
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 10.44). The curve is called a cardioid because of its heart
shape. Cardioid shapes appear in the cams that direct the even layering of thread on bob-
bins and reels, and in the signal-strength pattern of certain radio antennas.

u = p ,u = 0
tan s2pd = 0.

tan s0d = 0
2p .u = 2p

-12p, cos u

pu

r = 1 - cos u-1,p, cos uu

 Q  sr, -ud on the graph.

 Q  r = 1 - cos s -ud
 sr, ud on the graph Q  r = 1 - cos u

r = 1 - cos u .

u-values.

s0, u0du0 .
u = u0 ,r = ƒsud

dy
dx
`
s0, u0d

=

ƒ¿su0d sin u0

ƒ¿su0d cos u0
= tan u0 .

ƒsu0d = 0,u = u0 ,r = ƒsud

� r � 1 � cos �

0 0

�

�
3
�
2

2�
3

1

1
2

2

3
2

(a)

�

�
3

�
2

2�
3

3
2

(b)

x

y

02

1

�

�
3

�
2

2�
3

(c)

y

x
02

1

�
3

–

r � 1 � cos �

FIGURE 10.44 The steps in graphing the
cardioid (Example 1). The
arrow shows the direction of increasing u .

r = 1 - cos u

cos u = cos s -ud
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EXAMPLE 2 Graph the Curve

Solution The equation requires so we get the entire graph by
running from to The curve is symmetric about the x-axis because

The curve is also symmetric about the origin because

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when and It has a vertical

tangent both times because is infinite.
For each value of in the interval between and the formula 

gives two values of r:

We make a short table of values, plot the corresponding points, and use information
about symmetry and tangents to guide us in connecting the points with a smooth curve
(Figure 10.45).

r = ;22cos u .

r2
= 4 cos up>2,-p>2u

tan u

u = p>2.u = -p>2
 Q  s -r, ud on the graph.

 Q  s -rd2
= 4 cos u

 sr, ud on the graph Q  r2
= 4 cos u

 Q  sr, -ud on the graph.

 Q  r2
= 4 cos s -ud

 sr, ud on the graph Q  r2
= 4 cos u

p>2.-p>2u

cos u Ú 0,r2
= 4 cos u

r2
= 4 cos u .

10.6 Graphing in Polar Coordinates 721

cos u = cos s -ud

� cos � r � �2 �cos �

0 1 �2 

�1.9 �
6

� �3
2

�1.7 �
4

�
�2
1

�1.4 

�

�

��
3

�
2
1

0 
�
2

� 0

(a)

(b)

x

y
r2 � 4 cos �

2 2
0

Loop for r � –2�cos �,

 � �  � �
2

�
2

–

Loop for r � 2�cos �,

 � �  � �
2

�
2

–

FIGURE 10.45 The graph of The arrows show the direction
of increasing The values of r in the table are rounded (Example 2).u .

r2
= 4 cos u .

A Technique for Graphing

One way to graph a polar equation is to make a table of plot the
corresponding points, and connect them in order of increasing This can work well if
enough points have been plotted to reveal all the loops and dimples in the graph. Another
method of graphing that is usually quicker and more reliable is to

1. first graph in the Cartesian

2. then use the Cartesian graph as a “table” and guide to sketch the polar coordinate graph.

ru-plane,r = ƒsud

u .
(r, u)-values,r = ƒsud
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This method is better than simple point plotting because the first Cartesian graph,
even when hastily drawn, shows at a glance where r is positive, negative, and nonexistent,
as well as where r is increasing and decreasing. Here’s an example.

EXAMPLE 3 A Lemniscate

Graph the curve

Solution Here we begin by plotting (not r) as a function of in the Cartesian
See Figure 10.46a. We pass from there to the graph of in the

(Figure 10.46b), and then draw the polar graph (Figure 10.46c). The graph in
Figure 10.46b “covers” the final polar graph in Figure 10.46c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The
double covering does no harm, however, and we actually learn a little more about the be-
havior of the function this way.

Finding Points Where Polar Graphs Intersect

The fact that we can represent a point in different ways in polar coordinates makes extra
care necessary in deciding when a point lies on the graph of a polar equation and in deter-
mining the points in which polar graphs intersect. The problem is that a point of intersec-
tion may satisfy the equation of one curve with polar coordinates that are different from
the ones with which it satisfies the equation of another curve. Thus, solving the equations
of two curves simultaneously may not identify all their points of intersection. One sure
way to identify all the points of intersection is to graph the equations.

EXAMPLE 4 Deceptive Polar Coordinates

Show that the point lies on the curve 

Solution It may seem at first that the point does not lie on the curve because
substituting the given coordinates into the equation gives

which is not a true equality. The magnitude is right, but the sign is wrong. This suggests
looking for a pair of coordinates for the same given point in which r is negative, for exam-
ple, If we try these in the equation we find

and the equation is satisfied. The point does lie on the curve.

EXAMPLE 5 Elusive Intersection Points

Find the points of intersection of the curves

r2
= 4 cos u and r = 1 - cos u .

s2, p>2d

-2 = 2 cos 2 a- p
2
b = 2s -1d = -2,

r = 2 cos 2u ,s -2, -sp>2dd .

2 = 2 cos 2 ap
2
b = 2 cos p = -2,

s2, p>2d

r = 2 cos 2u .s2, p>2d

ru-plane
r = ;2sin 2ur2u-plane.
ur2

r2
= sin 2u .
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–1

0

1

3�
2�2

�
4

�

�

2

r2 � sin 2�

(a)

(b)

(c)

–1

1

0

r � ��sin 2�

r � ��sin 2�

� �
2

3�
2

r2

�

�

r

No square roots of
negative numbers

� parts from
square roots

x

y

r2 � sin 2�

0

FIGURE 10.46 To plot in the
Cartesian in (b), we first plot

in the in (a) and then
ignore the values of for which is
negative. The radii from the sketch in (b)
cover the polar graph of the lemniscate in
(c) twice (Example 3).

sin 2uu

r2u-planer2
= sin 2u

ru-plane
r = ƒsud

4100 AWL/Thomas_ch10p685-745  8/25/04  2:35 PM  Page 722

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce10.html?3_2_l
bounce10.html?3_4_l
bounce10.html?4_7_a


Solution In Cartesian coordinates, we can always find the points where two curves
cross by solving their equations simultaneously. In polar coordinates, the story is different.
Simultaneous solution may reveal some intersection points without revealing others. In
this example, simultaneous solution reveals only two of the four intersection points. The
others are found by graphing. (Also, see Exercise 49.)

If we substitute in the equation we get

The value has too large an absolute value to belong to either curve.
The values of corresponding to are

We have thus identified two intersection points: 
If we graph the equations and together (Figure 10.47), as

we can now do by combining the graphs in Figures 10.44 and 10.45, we see that the curves
also intersect at the point and the origin. Why weren’t the r-values of these points
revealed by the simultaneous solution? The answer is that the points (0, 0) and are
not on the curves “simultaneously.” They are not reached at the same value of On the
curve the point is reached when On the curve 
it is reached when where it is identified not by the coordinates which do
not satisfy the equation, but by the coordinates which do. Similarly, the cardioid
reaches the origin when but the curve reaches the origin when
u = p>2.

r2
= 4 cos uu = 0,

s -2, 0d ,
s2, pd ,u = 0,

r2
= 4 cos u ,u = p .s2, pdr = 1 - cos u ,
u .
s2, pd

s2, pd

r = 1 - cos ur2
= 4 cos u

(r, u) = (212 - 2, ;80°) .

 = ;80°.

 = cos-1 A3 - 222 B
 = cos-1 A1 - A222 - 2 B B

 u = cos-1 s1 - rd

r = -2 + 222u

r = -2 - 222

 r = -2 ; 222.

  r2
+ 4r - 4 = 0

 4r = 4 - r 2

 r = 1 - cos u = 1 -
r 2

4

r = 1 - cos u ,cos u = r2>4
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HISTORICAL BIOGRAPHY

Johannes Kepler
(1571–1630)

Quadratic formula

x

y

r � 1 � cos �
r 2 � 4 cos �

A

B

DC 2 2

(2, �) � (–2, 0) (0, 0) �  0,





�
2

FIGURE 10.47 The four points of intersection of the
curves and (Example 5).
Only A and B were found by simultaneous solution.
The other two were disclosed by graphing.

r2
= 4 cos ur = 1 - cos u

From r = 1 - cos u

Set r = 222 - 2 .

Rounded to the nearest degree
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724 Chapter 10: Conic Sections and Polar Coordinates

USING TECHNOLOGY Graphing Polar Curves Parametrically

For complicated polar curves we may need to use a graphing calculator or computer to
graph the curve. If the device does not plot polar graphs directly, we can convert

into parametric form using the equations

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be
required to use the parameter t rather than for the graphing device.u

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u .

r = ƒsud
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724 Chapter 10: Conic Sections and Polar Coordinates

EXERCISES 10.6

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch
the curves.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

Graph the lemniscates in Exercises 13–16. What symmetries do these
curves have?

13. 14.

15. 16.

Slopes of Polar Curves
Find the slopes of the curves in Exercises 17–20 at the given points.
Sketch the curves along with their tangents at these points.

17. Cardioid

18. Cardioid

19. Four-leaved rose

20. Four-leaved rose

Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is
Old French for “snail.” You will understand the name when you graph
the limaçons in Exercise 21. Equations for limaçons have the form

or There are four basic shapes.

21. Limaçons with an inner loop

a. b.

22. Cardioids

a. b. r = -1 + sin ur = 1 - cos u

r =

1
2

+ sin ur =

1
2

+ cos u

r = a ; b sin u .r = a ; b cos u

r = cos 2u; u = 0, ;p>2, p

r = sin 2u; u = ;p>4, ;3p>4
r = -1 + sin u; u = 0, p

r = -1 + cos u; u = ;p>2

r2
= -cos 2ur2

= -sin 2u

r2
= 4 sin 2ur2

= 4 cos 2u

r2
= -cos ur2

= -sin u

r2
= sin ur2

= cos u

r = cos su>2dr = sin su>2d
r = 1 + 2 sin ur = 2 + sin u

r = 1 + sin ur = 1 - sin u

r = 2 - 2 cos ur = 1 + cos u

23. Dimpled limaçons

a. b.

24. Oval limaçons

a. b.

Graphing Polar Inequalities
25. Sketch the region defined by the inequalities and

26. Sketch the region defined by the inequalities 
and 

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 28.

Intersections
29. Show that the point lies on the curve 

30. Show that lies on the curve 

Find the points of intersection of the pairs of curves in Exercises 31–38.

31.

32.

33.

34.

35.

36.

37.

38.

Find the points of intersection of the pairs of curves in Exercises 39–42.

39.

40.

41. 42. r = 1, r2
= 2 sin 2ur = 1, r = 2 sin 2u

r = 1 + cos 
u

2
, r = 1 - sin 

u

2

r2
= sin 2u, r2

= cos 2u

r2
= 22 cos 2u, r2

= 22 sin 2u

r = 1, r2
= 2 sin 2u

r2
= 22 sin u, r2

= 22 cos u

r = 22, r2
= 4 sin u

r = cos u, r = 1 - cos u

r = 2 sin u, r = 2 sin 2u

r = 1 + sin u, r = 1 - sin u

r = 1 + cos u, r = 1 - cos u

r = -sin su>3d .s1>2, 3p>2d
r = 2 sin 2u .s2, 3p>4d

0 … r2
…  cos u0 … r … 2 - 2 cos u

-p>4 … u … p>4.
0 … r … 2 sec u

-p>2 … u … p>2.
-1 … r … 2

r = -2 + sin ur = 2 + cos u

r =

3
2

- sin ur =

3
2

+ cos u

T
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T Grapher Explorations
43. Which of the following has the same graph as 

a. b.

Confirm your answer with algebra.

44. Which of the following has the same graph as 

a. b.

Confirm your answer with algebra.

45. A rose within a rose Graph the equation 

46. The nephroid of Freeth Graph the nephroid of Freeth:

47. Roses Graph the roses for and 7.

48. Spirals Polar coordinates are just the thing for defining spirals.
Graph the following spirals.

a. b.

c. A logarithmic spiral:

d. A hyperbolic spiral:

e. An equilateral hyperbola:

(Use different colors for the two branches.)

Theory and Examples
49. (Continuation of Example 5.) The simultaneous solution of the

equations

(1)

(2) r = 1 - cos u

 r2
= 4 cos u

r = ;10>2ur = 8>u
r = eu>10

r = -ur = u

m = 1>3, 2, 3 ,r = cos mu

r = 1 + 2 sin 
u

2
.

r = 1 - 2 sin 3u .

r = -cos su>2dr = -sin s2u + p>2d
r = cos 2u?

r = 1 + cos ur = -1 - cos u

r = 1 - cos u?

in the text did not reveal the points (0, 0) and in which their
graphs intersected.

a. We could have found the point however, by replacing the
in Equation (1) by the equivalent to obtain

(3)

Solve Equations (2) and (3) simultaneously to show that
is a common solution. (This will still not reveal that the

graphs intersect at (0, 0).)

b. The origin is still a special case. (It often is.) Here is one way
to handle it: Set in Equations (1) and (2) and solve each
equation for a corresponding value of Since is the
origin for any this will show that both curves pass through
the origin even if they do so for different 

50. If a curve has any two of the symmetries listed at the beginning of
the section, can anything be said about its having or not having
the third symmetry? Give reasons for your answer.

51. Find the maximum width of the petal of the four-leaved rose
which lies along the x-axis.

52. Find the maximum height above the x-axis of the cardioid
r = 2s1 + cos ud .

r = cos 2u ,

u-values.
u ,

s0, udu .
r = 0

s2, pd

 r2
= -4 cos u .

  s -rd2
= 4 cos su + pd

 r2
= 4 cos u

s -r, u + pdsr, ud
s2, pd ,

s2, pd

*

*
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10.7 Areas and Lengths in Polar Coordinates 725

Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions, lengths of curves, and areas of
surfaces of revolution in polar coordinates.

Area in the Plane

The region OTS in Figure 10.48 is bounded by the rays and and the curve
We approximate the region with n nonoverlapping fan-shaped circular sectors

based on a partition P of angle TOS. The typical sector has radius and central
angle of radian measure Its area is times the area of a circle of radius or

The area of region OTS is approximately

a
n

k = 1
 Ak = a

n

k = 1
 
1
2

 Aƒsukd B2 ¢uk .

Ak =
1
2

 rk
2 ¢uk =

1
2

 Aƒsukd B2 ¢uk .

rk ,¢uk>2p¢uk .
rk = ƒsukd

r = ƒsud .
u = bu = a

10.7
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726 Chapter 10: Conic Sections and Polar Coordinates

If ƒ is continuous, we expect the approximations to improve as the norm of the partition
and we are led to the following formula for the region’s area:

 = L
b

a

 
1
2

 Aƒsud B2 du .

A = lim
‘ P ‘:0

 a
n

k = 1
 
1
2

 Aƒsukd B2 ¢uk

‘P ‘ : 0,

Area of the Fan-Shaped Region Between the Origin and the Curve

This is the integral of the area differential (Figure 10.49)

dA =
1
2

 r2 du =
1
2

 (ƒ(u))2 du .

A = L
b

a

 
1
2

 r2 du .

r = ƒsUd, A … U … B

x

y

O

S rn

rk

� � �

� � �r1

r2

�k

r � f (�)

( f (�k), �k)

��k

T

FIGURE 10.48 To derive a formula for
the area of region OTS, we approximate the
region with fan-shaped circular sectors.

EXAMPLE 1 Finding Area

Find the area of the region in the plane enclosed by the cardioid 

Solution We graph the cardioid (Figure 10.50) and determine that the radius OP
sweeps out the region exactly once as runs from 0 to The area is therefore

EXAMPLE 2 Finding Area

Find the area inside the smaller loop of the limaçon

Solution After sketching the curve (Figure 10.51), we see that the smaller loop is
traced out by the point as increases from to Since the curve
is symmetric about the x-axis (the equation is unaltered when we replace by ), we may
calculate the area of the shaded half of the inner loop by integrating from to

The area we seek will be twice the resulting integral:

A = 2L
p

2p>3
 
1
2

 r2 du = L
p

2p>3
 r2 du .

u = p .
u = 2p>3-uu

u = 4p>3.u = 2p>3usr, ud

r = 2 cos u + 1.

 = c3u + 4 sin u +

sin 2u
2
d

0

2p

= 6p - 0 = 6p .

 = L
2p

0
s3 + 4 cos u + cos 2ud du

 = L
2p

0
a2 + 4 cos u + 2 

1 + cos 2u
2

b  du

 = L
2p

0
2s1 + 2 cos u + cos2 ud du

 L
u= 2p

u= 0
 
1
2

 r 2 du = L
2p

0
 
1
2

# 4s1 + cos ud2 du

2p .u

r = 2s1 + cos ud .

x

y

2

O
4

r

r � 2(1 � cos �)

� � 0, 2�

P(r, �)

FIGURE 10.50 The cardioid in
Example 1.

O
x

y

P(r, �)

d�

�

r

dA �    r 2d�1
2

FIGURE 10.49 The area differential dA
for the curve n = ƒ(u).
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10.7 Areas and Lengths in Polar Coordinates 727

Since

we have

To find the area of a region like the one in Figure 10.52, which lies between two polar
curves and from to we subtract the integral of

from the integral of This leads to the following formula.s1>2dr2
2 du .s1>2dr1

2 du
u = b ,u = ar2 = r2sudr1 = r1sud

 = p -

323
2

.

 = s3pd - a2p -

23
2

+ 4 #
23
2
b

 = c3u + sin 2u + 4 sin u d
2p>3
p

 A = L
p

2p>3
s3 + 2 cos 2u + 4 cos ud du

 = 3 + 2 cos 2u + 4 cos u, 
 = 2 + 2 cos 2u + 4 cos u + 1

 = 4 # 1 + cos 2u
2

+ 4 cos u + 1

 r 2
= s2 cos u + 1d2

= 4 cos2 u + 4 cos u + 1

x

y

r � 2 cos � � 1

� � 0� � �

� � 4�
3

� � 2�
3

FIGURE 10.51 The limaçon in Example 2.
Limaçon (pronounced LEE-ma-sahn) is an
old French word for snail.

y

x
0

� � �

� � �

r2

r1

FIGURE 10.52 The area of the shaded
region is calculated by subtracting the area
of the region between and the origin
from the area of the region between and
the origin.

r2

r1

Area of the Region 

(1)A = L
b

a

 
1
2

 r2
2 du - L

b

a

 
1
2

 r1
2 du = L

b

a

 
1
2

 Ar2
2

- r1
2 B  du

0 … r1sUd … r … r2sUd, A … U … B

x

y

0

r2 � 1

r1 � 1 � cos � 

Upper limit
� � ��2

Lower limit
� � –��2

�

FIGURE 10.53 The region and limits of
integration in Example 3.

EXAMPLE 3 Finding Area Between Polar Curves

Find the area of the region that lies inside the circle and outside the cardioid

Solution We sketch the region to determine its boundaries and find the limits of inte-
gration (Figure 10.53). The outer curve is the inner curve is and 
runs from to The area, from Equation (1), is

 = c2 sin u -

u
2

-

sin 2u
4
d

0

p>2
= 2 -

p
4

.

 = L
p>2

0
s2 cos u - cos2 ud du = L

p>2
0
a2 cos u -

1 + cos 2u
2

b  du

 = L
p>2

0
s1 - s1 - 2 cos u + cos2 udd du

 = 2L
p>2

0
 
1
2

 Ar2
2

- r1
2 B  du

 A = L
p>2

-p>2
 
1
2

 Ar2
2

- r1
2 B  du

p>2.-p>2 ur1 = 1 - cos u ,r2 = 1,

r = 1 - cos u .
r = 1

Symmetry
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Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve 
by parametrizing the curve as

(2)

The parametric length formula, Equation (1) from Section 6.3, then gives the length as

This equation becomes

when Equations (2) are substituted for x and y (Exercise 33).

L = L
b

a Br2
+ adr

du
b2

 du

L = L
b

a B adx
du
b2

+ ady
du
b2

 du .

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u, a … u … b .

r = ƒsud, a … u … b ,

728 Chapter 10: Conic Sections and Polar Coordinates

EXAMPLE 4 Finding the Length of a Cardioid

Find the length of the cardioid 

Solution We sketch the cardioid to determine the limits of integration (Figure 10.54).
The point traces the curve once, counterclockwise as runs from 0 to so these
are the values we take for and 

With

we have

and

 = L
2p

0 A4 sin 2 
u
2

 du

 L = L
b

a Br2
+ adr

du
b2

 du = L
2p

0
22 - 2 cos u du

 = 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u
('')''*

1

 r2
+ adr

du
b2

= s1 - cos ud2
+ ssin ud2

r = 1 - cos u, dr
du

= sin u ,

b .a

2p ,uPsr, ud

r = 1 - cos u .

Length of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
length of the curve is

(3)L = L
b

a Br2
+ adr

du
b2

 du .

b ,aur = ƒsudPsr, ud
a … u … br = ƒsud

0

1

2

r

x

y

�

r � 1 � cos � 

P(r, �)

FIGURE 10.54 Calculating the length 
of a cardioid (Example 4).

1 - cos u = 2 sin2 
u

2
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Area of a Surface of Revolution

To derive polar coordinate formulas for the area of a surface of revolution, we parametrize
the curve with Equations (2) and apply the surface area equations
for parametrized curves in Section 6.5.

r = ƒsud, a … u … b ,

 = c-4 cos 
u
2
d

0

2p

= 4 + 4 = 8.

 = L
2p

0
2 sin 

u
2

 du

 = L
2p

0
2 ` sin 

u
2
` du

10.7 Areas and Lengths in Polar Coordinates 729

EXAMPLE 5 Finding Surface Area

Find the area of the surface generated by revolving the right-hand loop of the lemniscate
about the y-axis.

Solution We sketch the loop to determine the limits of integration (Figure 10.55a). The
point traces the curve once, counterclockwise as runs from to so
these are the values we take for and 

We evaluate the area integrand in Equation (5) in stages. First,

(6)

Next, so

 ar 
dr
du
b2

= sin2 2u .

 r 
dr
du

= -sin 2u

 2r 
dr
du

= -2 sin 2u

r2
= cos 2u ,

2pr cos u Br2
+ adr

du
b2

= 2p cos u Br4
+ ar 

dr
du
b2

.

b .a

p>4,-p>4uPsr, ud

r2
= cos 2u

sin 
u

2
Ú 0 for 0 … u … 2p

Area of a Surface of Revolution of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
areas of the surfaces generated by revolving the curve about the x- and y-axes are
given by the following formulas:

1. Revolution about the x-axis 

(4)

2. Revolution about the y-axis 

(5)S = L
b

a

2pr cos u Br2
+ adr

du
b2

 du

sx Ú 0d :

S = L
b

a

2pr sin u Br2
+ adr

du
b2

 du

s y Ú 0d :

b ,aur = ƒsudPsr, ud
a … u … br = ƒsud

x

y

r
�

r 2 � cos 2�

P (r, �)
� �

�
4

� � –�
4

(a)

(b)

y

x

FIGURE 10.55 The right-hand half of a
lemniscate (a) is revolved about the y-axis
to generate a surface (b), whose area is
calculated in Example 5.
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Finally, so the square root on the right-hand side of Equation (6)
simplifies to

All together, we have

Equation (5)

 = 2p c22
2

+

22
2
d = 2p22.

 = 2p csin u d
-p>4
p>4

 = L
p>4

-p>4
 2p cos u # s1d du

 S = L
b

a

2pr cos u Br2
+ adr

du
b2

 du

Br4
+ ar 

dr
du
b2

= 2cos2 2u + sin2 2u = 1.

r4
= sr2d2

= cos2 2u ,
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EXERCISES 10.7

Areas Inside Polar Curves
Find the areas of the regions in Exercises 1–6.

1. Inside the oval limaçon 

2. Inside the cardioid 

3. Inside one leaf of the four-leaved rose 

4. Inside the lemniscate 

5. Inside one loop of the lemniscate 

6. Inside the six-leaved rose 

Areas Shared by Polar Regions
Find the areas of the regions in Exercises 7–16.

7. Shared by the circles and 

8. Shared by the circles and 

9. Shared by the circle and the cardioid 

10. Shared by the cardioids and 

11. Inside the lemniscate and outside the circle 

12. Inside the circle and outside the cardioid 

13. Inside the circle and outside the circle 

14. a. Inside the outer loop of the limaçon 
(See Figure 10.51.)

r = 2 cos u + 1

r = 1r = -2 cos u

as1 + cos ud, a 7 0r =

r = 3a cos u

23r =

r2
= 6 cos 2u

r = 2s1 - cos udr = 2s1 + cos ud
r = 2s1 - cos udr = 2

r = 2 sin ur = 1

r = 2 sin ur = 2 cos u

r2
= 2 sin 3u

r2
= 4 sin 2u

r2
= 2a2 cos 2u, a 7 0

r = cos 2u

r = as1 + cos ud, a 7 0

r = 4 + 2 cos u

b. Inside the outer loop and outside the inner loop of the
limaçon 

15. Inside the circle above the line 

16. Inside the lemniscate to the right of the line

17. a. Find the area of the shaded region in the accompanying figure.

b. It looks as if the graph of 
could be asymptotic to the lines and Is it?
Give reasons for your answer.

18. The area of the region that lies inside the cardioid curve
and outside the circle is not

Why not? What is the area? Give reasons for your answers.

1
2L

2p

0
[scos u + 1d2

- cos2 u] du = p .

r = cos ur = cos u + 1

x = -1.x = 1
r = tan u, -p>2 6 u 6 p>2,

x

y

0 1–1

(1, ��4)

r � tan �

� � �
�
2

�
2

–

r � (�2�2) csc �

r = s3>2d sec u

r2
= 6 cos 2u

r = 3 csc ur = 6

r = 2 cos u + 1
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Lengths of Polar Curves
Find the lengths of the curves in Exercises 19–27.

19. The spiral 

20. The spiral 

21. The cardioid 

22. The curve 

23. The parabolic segment 

24. The parabolic segment 

25. The curve 

26. The curve 

27. The curve 

28. Circumferences of circles As usual, when faced with a new
formula, it is a good idea to try it on familiar objects to be sure it
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles 

a. b. c.

Surface Area
Find the areas of the surfaces generated by revolving the curves in Ex-
ercises 29–32 about the indicated axes.

29.

30.

31.

32.

Theory and Examples
33. The length of the curve Assuming that

the necessary derivatives are continuous, show how the substitu-
tions

(Equations 2 in the text) transform

into

34. Average value If ƒ is continuous, the average value of the polar
coordinate r over the curve with respect
to is given by the formula

rav =

1
b - a

 L
b

a

ƒsud du .

u

r = ƒsud, a … u … b ,

L = L
b

a Br2
+ adr

du
b2

 du .

L = L
b

a B adx
du
b2

+ ady

du
b2

 du

x = ƒsud cos u, y = ƒsud sin u

r = ƒsUd, A … U … B

r = 2a cos u, a 7 0, y-axis

r2
= cos 2u, x-axis

r = 22eu>2, 0 … u … p>2, x-axis

r = 2cos 2u, 0 … u … p>4, y-axis

r = a sin ur = a cos ur = a

sa 7 0d :

r = 21 + cos 2u, 0 … u … p22

r = 21 + sin 2u, 0 … u … p22

r = cos3 su>3d, 0 … u … p>4
r = 2>s1 - cos ud, p>2 … u … p

r = 6>s1 + cos ud, 0 … u … p>2
r = a sin2 su>2d, 0 … u … p, a 7 0

r = 1 + cos u

r = eu>22, 0 … u … p

r = u2, 0 … u … 25

Use this formula to find the average value of r with respect to 
over the following curves 

a. The cardioid 

b. The circle 

c. The circle 

35. Can anything be said about the relative
lengths of the curves and 

Give reasons for your answer.

36. The curves and
are revolved about the x-axis to generate

surfaces. Can anything be said about the relative areas of these
surfaces? Give reasons for your answer.

Centroids of Fan-Shaped Regions
Since the centroid of a triangle is located on each median, two-thirds
of the way from the vertex to the opposite base, the lever arm for the
moment about the x-axis of the thin triangular region in the accompa-
nying figure is about Similarly, the lever arm for the mo-
ment of the triangular region about the y-axis is about 
These approximations improve as and lead to the following
formulas for the coordinates of the centroid of region AOB:

with limits to on all integrals.

37. Find the centroid of the region enclosed by the cardioid 

38. Find the centroid of the semicircular region 
 0 … u … p .

0 … r … a, 

r = as1 + cos ud .

u = bu = a

 y =

L  
2
3

 r sin u # 1
2

 r2 du

L  
1
2

 r2 du

=

2
3Lr3 sin u du

Lr2 du

, 

 x =

L  
2
3

 r cos u # 1
2

 r2 du

L  
1
2

 r2 du

=

2
3Lr3 cos u du

Lr2 du

, 

x

y

O

� � �

� � �

A

B

�

��

P(r, �)

About    r sin �2
3

About    r cos �2
3

Centroid

r, �2
3





�

¢u: 0
s2>3dr cos u .

s2>3dr sin u .

r = 2ƒsud, a … u … b ,
r = ƒsud, a … u … b ,r = ƒsUd vs. r = 2ƒsUd

a … u … b ?
r = 2ƒsud, r = ƒsud, a … u … b ,

r = ƒsUd vs. r = 2ƒsUd
r = a cos u, -p>2 … u … p>2
r = a

r = as1 - cos ud
sa 7 0d .

u
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Conic Sections in Polar Coordinates

Polar coordinates are important in astronomy and astronautical engineering because the
ellipses, parabolas, and hyperbolas along which satellites, moons, planets, and comets
approximately move can all be described with a single relatively simple coordinate equa-
tion. We develop that equation here.

Lines

Suppose the perpendicular from the origin to line L meets L at the point with
(Figure 10.56). Then, if is any other point on L, the points and O are

the vertices of a right triangle, from which we can read the relation

r0 = r cos su - u0d .

P, P0 ,Psr, udr0 Ú 0
P0sr0, u0d ,

10.8

The Standard Polar Equation for Lines
If the point is the foot of the perpendicular from the origin to the line
L, and then an equation for L is

(1)r cos su - u0d = r0 .

r0 Ú 0,
P0sr0, u0d

x

y

O

�0

r0

�

r

L

P(r, �)

P0(r0 , �0)

FIGURE 10.56 We can obtain a polar
equation for line L by reading the relation

from the right triangle
OP0 P .
r0 = r cos su - u0d

EXAMPLE 1 Converting a Line’s Polar Equation to Cartesian Form

Use the identity to find a Cartesian equation for
the line in Figure 10.57.

Solution

Circles

To find a polar equation for the circle of radius a centered at we let be a
point on the circle and apply the Law of Cosines to triangle (Figure 10.58). This
gives

a2
= r0

2
+ r2

- 2r0 r cos su - u0d .

OP0 P
Psr, udP0sr0, u0d ,

 x + 23 y = 4

 
1
2

 x +

23
2

 y = 2

 
1
2

 r cos u +

23
2

 r sin u = 2

 r acos u cos 
p
3

+ sin u sin 
p
3
b = 2

 r cos au -

p
3
b = 2

cos sA - Bd = cos A cos B + sin A sin B

O
x

y

�0

r0
�

r

a

P(r, �)

P0(r0 , �0)

FIGURE 10.58 We can get a polar
equation for this circle by applying the
Law of Cosines to triangle OP0 P .

0
x

y

2

2, �
3







�
3

FIGURE 10.57 The standard polar
equation of this line converts to the
Cartesian equation 
(Example 1).

x + 23 y = 4
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If the circle passes through the origin, then and this equation simplifies to

If the circle’s center lies on the positive x-axis, and we get the further simplifica-
tion

(see Figure 10.59a).
If the center lies on the positive y-axis, and the

equation becomes

(see Figure 10.59b).

r = 2a sin u

r = 2a cos su - u0d
u = p>2, cos su - p>2d = sin u ,

r = 2a cos u

u0 = 0

 r = 2a cos su - u0d .

 r2
= 2ar cos su - u0d

 a2
= a2

+ r2
- 2ar cos su - u0d

r0 = a
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x

y

x

y

0 (a, 0)

r � 2a cos �
r � 2a sin �

0

a, �
2







(a) (b)

FIGURE 10.59 Polar equation of a circle of radius a through the
origin with center on (a) the positive x-axis, and (b) the positive
y-axis.

x

y

x

y

0

0

(–a, 0)

r � –2a cos �

r � –2a sin �

–a, �
2







(a) (b)

FIGURE 10.60 Polar equation of a circle of radius a through the
origin with center on (a) the negative x-axis, and (b) the negative
y-axis.

Equations for circles through the origin centered on the negative x- and y-axes can be
obtained by replacing r with in the above equations (Figure 10.60).-r
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EXAMPLE 2 Circles Through the Origin

Center Polar
Radius (polar coordinates) equation

3 (3, 0)

2

1 2

1

Ellipses, Parabolas, and Hyperbolas

To find polar equations for ellipses, parabolas, and hyperbolas, we place one focus at the
origin and the corresponding directrix to the right of the origin along the vertical line

(Figure 10.61). This makes

and

The conic’s focus–directrix equation then becomes

which can be solved for r to obtain

r = esk - r cos ud ,

PF = e # PD

PD = k - FB = k - r cos u .

PF = r

x = k

r = -2 sin us -1, p>2d
r = -cos us -1>2, 0d>
r = 4 sin us2, p>2d
r = 6 cos u

734 Chapter 10: Conic Sections and Polar Coordinates

This equation represents an ellipse if a parabola if and a hyperbola if
That is, ellipses, parabolas, and hyperbolas all have the same basic equation ex-

pressed in terms of eccentricity and location of the directrix.

EXAMPLE 3 Polar Equations of Some Conics

 e = 2 : hyperbola  r =

2k
1 + 2 cos u

 e = 1 : parabola  r =

k
1 + cos u

 e =
1
2

 : ellipse  r =

k
2 + cos u

e 7 1.
e = 1,0 6 e 6 1,

Conic section

P

F B

r

r cos �

Focus at
origin

D

x
k

x � k

Directrix

FIGURE 10.61 If a conic section is put in
the position with its focus placed at the
origin and a directrix perpendicular to the
initial ray and right of the origin, we can
find its polar equation from the conic’s
focus–directrix equation. Polar Equation for a Conic with Eccentricity e

(2)

where is the vertical directrix.x = k 7 0

r =

ke
1 + e cos u

,
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You may see variations of Equation (2) from time to time, depending on the location
of the directrix. If the directrix is the line to the left of the origin (the origin is still
a focus), we replace Equation (2) by

The denominator now has a instead of a If the directrix is either of the lines
or the equations have sines in them instead of cosines, as shown in

Figure 10.62.
y = -k ,y = k

s + d .s - d

r =

ke
1 - e cos u

.

x = -k

10.8 Conic Sections in Polar Coordinates 735

EXAMPLE 4 Polar Equation of a Hyperbola

Find an equation for the hyperbola with eccentricity 3 2 and directrix 

Solution We use Equation (2) with and 

EXAMPLE 5 Finding a Directrix

Find the directrix of the parabola

r =

25
10 + 10 cos u

.

r =

2s3>2d
1 + s3>2dcos u

 or r =

6
2 + 3 cos u

.

e = 3>2:k = 2

x = 2.>

Focus at origin

Directrix x � k

r � ke
1 � e cos �

x
Focus at origin

Directrix x � –k

r � ke
1 � e cos �

x

Directrix y � k

r � ke
1 � e sin �

y

Focus at
origin

Directrix y � –k

r � ke
1 � e sin �

y
Focus at origin

(a) (b)

(c) (d)

FIGURE 10.62 Equations for conic sections with
eccentricity but different locations of the
directrix. The graphs here show a parabola, so e = 1.

e 7 0,
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Notice that when Equation (3) becomes which represents a circle.
Equation (3) is the starting point for calculating planetary orbits.

EXAMPLE 6 The Planet Pluto’s Orbit

Find a polar equation for an ellipse with semimajor axis 39.44 AU (astronomical units)
and eccentricity 0.25. This is the approximate size of Pluto’s orbit around the sun.

Solution We use Equation (3) with and to find

At its point of closest approach (perihelion) where , Pluto is

from the sun. At its most distant point (aphelion) where , Pluto is

from the sun (Figure 10.64).

r =

147.9
4 - 1

= 49.3 AU

u = p

r =

147.9
4 + 1

= 29.58 AU

u = 0

r =

39.44s1 - s0.25d2d
1 + 0.25 cos u

=

147.9
4 + cos u

 .

e = 0.25a = 39.44

r = a ,e = 0,

Solution We divide the numerator and denominator by 10 to put the equation in stan-
dard form:

This is the equation

with and The equation of the directrix is  

From the ellipse diagram in Figure 10.63, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

From this, we find that Replacing ke in Equation (2) by gives
the standard polar equation for an ellipse.

as1 - e2dke = as1 - e2d .

k =

a
e - ea .

x = 5>2.e = 1.k = 5>2
r =

ke
1 + e cos u

r =

5>2
1 + cos u

 .
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Center
Focus at
origin

ea

a

a
e

x

Directrix
x � k

FIGURE 10.63 In an ellipse with
semimajor axis a, the focus–directrix
distance is so
ke = as1 - e2d .

k = sa>ed - ea ,

Aphelion
position
(49.3 AU
from sun)

Perihelion
position
(29.58 AU
from sun)

Pluto

Sun

�

a � 39.44

FIGURE 10.64 The orbit of Pluto
(Example 6).

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

(3)r =

as1 - e2d
1 + e cos u
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EXERCISES 10.8

Lines
Find polar and Cartesian equations for the lines in Exercises 1–4.

1. 2.

3. 4.

Sketch the lines in Exercises 5–8 and find Cartesian equations for
them.

5. 6.

7. 8.

Find a polar equation in the form for each of the
lines in Exercises 9–12.

9. 10.

11. 12.

Circles
Find polar equations for the circles in Exercises 13–16.

13. 14.

x

y

0

Radius � 1

x

y

0

Radius � 4

x = -4y = -5

23 x - y = 122 x + 22 y = 6

r cos su - u0d = r0

r cos au +

p

3
b = 2r cos au -

2p
3
b = 3

r cos au +

3p
4
b = 1r cos au -

p

4
b = 22

x

y

0

4

�
4

–
x

y

0

3

4�
3

x

y

0

2
3�
4

x

y

0

5
��6

15. 16.

Sketch the circles in Exercises 17–20. Give polar coordinates for their
centers and identify their radii.

17. 18.

19. 20.

Find polar equations for the circles in Exercises 21–28. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

21. 22.

23. 24.

25. 26.

27. 28.

Conic Sections from Eccentricities
and Directrices
Exercises 29–36 give the eccentricities of conic sections with one fo-
cus at the origin, along with the directrix corresponding to that focus.
Find a polar equation for each conic section.

29. 30.

31. 32.

33. 34.

35. 36.

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the direc-
trix that corresponds to the focus at the origin. Label the vertices with
appropriate polar coordinates. Label the centers of the ellipses as well.

37. 38.

39. 40.

41. 42.

43. 44. r =

4
2 - sin u

r =

8
2 - 2 sin u

r =

12
3 + 3 sin u

r =

400
16 + 8 sin u

r =

4
2 - 2 cos u

r =

25
10 - 5 cos u

r =

6
2 + cos u

r =

1
1 + cos u

e = 1>3, y = 6e = 1>5, y = -10

e = 1>4, x = -2e = 1>2, x = 1

e = 2, x = 4e = 5, y = -6

e = 1, y = 2e = 1, x = 2

x2
+ y2

-

4
3

 y = 0x2
+ y2

+ y = 0

x2
- 16x + y2

= 0x2
+ 2x + y2

= 0

x2
+ s y + 7d2

= 49x2
+ s y - 5d2

= 25

sx + 2d2
+ y2

= 4sx - 6d2
+ y2

= 36

r = -8 sin ur = -2 cos u

r = 6 sin ur = 4 cos u

x

y

0

Radius � 1
2

x

y

0

Radius � �2
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Graphing Inequalities
Sketch the regions defined by the inequalities in Exercises 45 and 46.

45. 46.

Grapher Explorations
Graph the lines and conic sections in Exercises 47–56.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

Theory and Examples
57. Perihelion and aphelion A planet travels about its sun in an

ellipse whose semimajor axis has length a. (See accompanying
figure.)

a. Show that when the planet is closest to the sun
and that when the planet is farthest from the sun.

b. Use the data in the table in Exercise 58 to find how close each
planet in our solar system comes to the sun and how far away
each planet gets from the sun.

58. Planetary orbits In Example 6, we found a polar equation for
the orbit of Pluto. Use the data in the table below to find polar
equations for the orbits of the other planets.

Semimajor axis
Planet (astronomical units) Eccentricity

Mercury 0.3871 0.2056

Venus 0.7233 0.0068

Earth 1.000 0.0167

Mars 1.524 0.0934

Jupiter 5.203 0.0484

Saturn 9.539 0.0543

Uranus 19.18 0.0460

Neptune 30.06 0.0082

Pluto 39.44 0.2481

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

�
a

r = as1 + ed
r = as1 - ed

r = 1>s1 + 2 cos udr = 1>s1 + 2 sin ud
r = 1>s1 + cos udr = 1>s1 - sin ud
r = 8>s4 + sin udr = 8>s4 + cos ud
r = -2 cos ur = 4 sin u

r = 4 sec su + p>6dr = 3 sec su - p>3d

-3 cos u … r … 00 … r … 2 cos u

59. a. Find Cartesian equations for the curves and

b. Sketch the curves together and label their points of
intersection in both Cartesian and polar coordinates.

60. Repeat Exercise 59 for and 

61. Find a polar equation for the parabola with focus (0, 0) and direc-
trix 

62. Find a polar equation for the parabola with focus (0, 0) and direc-
trix 

63. a. The space engineer’s formula for eccentricity The space
engineer’s formula for the eccentricity of an elliptical orbit is

where r is the distance from the space vehicle to the attracting
focus of the ellipse along which it travels. Why does the
formula work?

b. Drawing ellipses with string You have a string with a knot
in each end that can be pinned to a drawing board. The string
is 10 in. long from the center of one knot to the center of the
other. How far apart should the pins be to use the method
illustrated in Figure 10.5 (Section 10.1) to draw an ellipse of
eccentricity 0.2? The resulting ellipse would resemble the
orbit of Mercury.

64. Halley’s comet (See Section 10.2, Example 1.)

a. Write an equation for the orbit of Halley’s comet in a
coordinate system in which the sun lies at the origin and the
other focus lies on the negative x-axis, scaled in astronomical
units.

b. How close does the comet come to the sun in astronomical
units? In kilometers?

c. What is the farthest the comet gets from the sun in
astronomical units? In kilometers?

In Exercises 65–68, find a polar equation for the given curve. In each
case, sketch a typical curve.

65. 66.

67.

68.

COMPUTER EXPLORATIONS

69. Use a CAS to plot the polar equation

for various values of k and Answer the follow-
ing questions.

a. Take Describe what happens to the plots as you take
e to be 3 4, 1, and 5 4. Repeat for k = 2.>>k = -2.

e, -p … u … p .

r =

ke
1 + e cos u

sx2
+ y2d2

+ 2axsx2
+ y2d - a2y2

= 0

x cos a + y sin a = p sa, p constantd
y2

= 4ax + 4a2x2
+ y2

- 2ay = 0

e =

rmax - rmin

rmax + rmin
,

r cos su - p>2d = 2.

r cos u = 4.

r = 2 sec u .r = 8 cos u

r = 23 sec u .
r = 4 sin u
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b. Take Describe what happens to the plots as you take
e to be 7 6, 5 4, 4 3, 3 2, 2, 3, 5, 10, and 20. Repeat for

1 3, 1 4, 1 10, and 1 20.

c. Now keep fixed and describe what happens as you take
k to be and Be sure to look at graphs
for parabolas, ellipses, and hyperbolas.

-5.-1, -2, -3, -4,
e 7 0

>>>>e = 1>2,
>>>>k = -1. 70. Use a CAS to plot the polar ellipse

for various values of and 

a. Take Describe what happens to the plots as you let
a equal 1, 3 2, 2, 3, 5, and 10. Repeat with 

b. Take Describe what happens as you take e to be 9 10,
8 10, 7 10, 1 10, 1 20, and 1 50.>>>Á ,>> >a = 2.

e = 1>4.>e = 9>10.

0 6 e 6 1, -p … u … p .a 7 0

r =

as1 - e2d
1 + e cos u
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742 Chapter 10: Conic Sections and Polar Coordinates

Chapter 10 Additional and Advanced Exercises

Finding Conic Sections
1. Find an equation for the parabola with focus (4, 0) and directrix

Sketch the parabola together with its vertex, focus, and
directrix.

2. Find the vertex, focus, and directrix of the parabola

3. Find an equation for the curve traced by the point P(x, y) if the
distance from P to the vertex of the parabola is twice the
distance from P to the focus. Identify the curve.

4. A line segment of length runs from the x-axis to the y-axis.
The point P on the segment lies a units from one end and b units
from the other end. Show that P traces an ellipse as the ends of
the segment slide along the axes.

5. The vertices of an ellipse of eccentricity 0.5 lie at the points
Where do the foci lie?

6. Find an equation for the ellipse of eccentricity 2 3 that has the
line as a directrix and the point (4, 0) as the corresponding
focus.

7. One focus of a hyperbola lies at the point and the corre-
sponding directrix is the line Find an equation for the
hyperbola if its eccentricity is (a) 2, (b) 5.

8. Find an equation for the hyperbola with foci and (0, 2)
that passes through the point (12, 7).

9. a. Show that the line

is tangent to the ellipse at the point
on the ellipse.sx1, y1d

b2x2
+ a2y2

- a2b2
= 0

b2xx1 + a2yy1 - a2b2
= 0

s0, -2d

y = -1.
s0, -7d

x = 2
>

s0, ;2d .

a + b

x2
= 4y

x2
- 6x - 12y + 9 = 0.

x = 3.

b. Show that the line

is tangent to the hyperbola at the
point on the hyperbola.

10. Show that the tangent to the conic section

at a point on it has an equation that may be written in the
form

Equations and Inequalities
What points in the xy-plane satisfy the equations and inequalities in
Exercises 11–18? Draw a figure for each exercise.

11.

12.

13.

14.

15.

16.

17.

18. x2
+ xy + y2

6 3

x4
- sy2

- 9d2
= 0

s9x2
+ 4y2

- 36ds4x2
+ 9y2

- 16d 7 0

s9x2
+ 4y2

- 36ds4x2
+ 9y2

- 16d … 0

sx2>9d - sy2>16d … 1

sx2>9d + sy2>16d … 1

sx + ydsx2
+ y2

- 1d = 0

sx2
- y2

- 1dsx2
+ y2

- 25dsx2
+ 4y2

- 4d = 0

 + E ay + y1

2
b + F = 0.

 Axx1 + B ax1 y + xy1

2
b + Cyy1 + D ax + x1

2
b

sx1, y1d

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

sx1, y1d
b2x2

- a2y2
- a2b2

= 0

b2xx1 - a2yy1 - a2b2
= 0
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Chapter 10 Additional and Advanced Exercises 743

Parametric Equations and Cycloids
19. Epicycloids When a circle rolls externally along the circumfer-

ence of a second, fixed circle, any point P on the circumference
of the rolling circle describes an epicycloid, as shown here. Let
the fixed circle have its center at the origin O and have radius a.

Let the radius of the rolling circle be b and let the initial position
of the tracing point P be A(a, 0). Find parametric equations for
the epicycloid, using as the parameter the angle from the posi-
tive x-axis to the line through the circles’ centers.

20. a. Find the centroid of the region enclosed by the x-axis and the
cycloid arch

b. Find the first moments about the coordinate axes of the curve

Polar Coordinates
21. a. Find an equation in polar coordinates for the curve

b. Find the length of the curve from to 

22. Find the length of the curve in
the polar coordinate plane.

23. Find the area of the surface generated by revolving the first-
quadrant portion of the cardioid about the x-axis.
(Hint: Use the identities and 

to simplify the integral.)

24. Sketch the regions enclosed by the curves and
in the polar coordinate plane and find

the area of the portion of the plane they have in common.

Exercises 25–28 give the eccentricities of conic sections with one
focus at the origin of the polar coordinate plane, along with the direc-
trix for that focus. Find a polar equation for each conic section.

25. 26.

27. 28.

Theory and Examples
29. A rope with a ring in one end is looped over two pegs in a hori-

zontal line. The free end, after being passed through the ring, has
a weight suspended from it to make the rope hang taut. If the rope

e = 1>3, r sin u = -6e = 1>2, r sin u = 2

e = 1, r cos u = -4e = 2, r cos u = 2

r = 2a sin2 su>2d, a 7 0,
r = 2a cos2 su>2d

2 sin su>2d cos su>2d
sin u =1 + cos u = 2 cos2 su>2d

r = 1 + cos u

r = 2 sin3 su>3d, 0 … u … 3p ,

t = 2p .t = 0

x = e2t cos t, y = e2t sin t; - q 6 t 6 q .

x = s2>3dt3>2, y = 22t ; 0 … t … 23.

x = ast - sin td, y = as1 - cos td; 0 … t … 2p .

u

x

y

O

�

b
C

P

A(a, 0)

slips freely over the pegs and through the ring, the weight will de-
scend as far as possible. Assume that the length of the rope is at
least four times as great as the distance between the pegs and that
the configuration of the rope is symmetric with respect to the line
of the vertical part of the rope.

a. Find the angle A formed at the bottom of the loop in the
accompanying figure.

b. Show that for each fixed position of the ring on the rope, the
possible locations of the ring in space lie on an ellipse with
foci at the pegs.

c. Justify the original symmetry assumption by combining the
result in part (b) with the assumption that the rope and weight
will take a rest position of minimal potential energy.

30. Two radar stations lie 20 km apart along an east–west line. A
low-flying plane traveling from west to east is known to have a
speed of At a signal is sent from the station at

bounces off the plane, and is received at (10, 0) 30 c
seconds later (c is the velocity of the signal). When 
another signal is sent out from the station at reflects
off the plane, and is once again received 30 c seconds later by
the other station. Find the position of the plane when it reflects
the second signal under the assumption that is much less
than c.

31. A comet moves in a parabolic orbit with the sun at the focus.
When the comet is miles from the sun, the line from the
comet to the sun makes a 60° angle with the orbit’s axis, as shown
here. How close will the comet come to the sun?

32. Find the points on the parabola 
closest to the point (0, 3).

33. Find the eccentricity of the ellipse to the near-
est hundredth.

x2
+ xy + y2

= 1

x = 2t, y = t2, - q 6 t 6 q ,

Sun

Comet

60°

4 * 107

y0

>
s -10, 0d ,

t = 10>y0 ,
>s -10, 0d ,

t = 0y0 km>sec .

Weight

Pegs

Ring

A
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34. Find the eccentricity of the hyperbola 

35. Is the curve part of a conic section? If so, what
kind of conic section? If not, why not?

36. Show that the curve is a hyperbola. Find
the hyperbola’s center, vertices, foci, axes, and asymptotes.

37. Find a polar coordinate equation for

a. the parabola with focus at the origin and vertex at 

b. the ellipse with foci at the origin and (2, 0) and one vertex at
(4, 0);

c. the hyperbola with one focus at the origin, center at 
and a vertex at 

38. Any line through the origin will intersect the ellipse
in two points and Let be the distance

between and the origin and let be the distance between 
and the origin. Compute 

39. Generating a cardioid with circles Cardioids are special
epicycloids (Exercise 18). Show that if you roll a circle of radius
a about another circle of radius a in the polar coordinate plane, as
in the accompanying figure, the original point of contact P will
trace a cardioid. (Hint: Start by showing that angles OBC and
PAD both have measure )

40. A bifold closet door A bifold closet door consists of two 1-ft-
wide panels, hinged at point P. The outside bottom corner of one
panel rests on a pivot at O (see the accompanying figure). The
outside bottom corner of the other panel, denoted by Q, slides
along a straight track, shown in the figure as a portion of the x-
axis. Assume that as Q moves back and forth, the bottom of the
door rubs against a thick carpet. What shape will the door sweep
out on the surface of the carpet?

x

y

O

P hinge

Shape

Q

Cardioid

Rolling circle

Fixed circle

B

C
T

D

A

r P(r, �)
�

� � 0O

u .

s1>d1d + s1>d2d .
P2d2P1

d1P2 .P1r = 3>s2 + cos ud

s1, p>2d .
s2, p>2d ,

sa, p>4d ;

2xy - 22 y + 2 = 0

2x + 2y = 1

xy = 1. The Angle Between the Radius Vector and the
Tangent Line to a Polar Coordinate Curve
In Cartesian coordinates, when we want to discuss the direction of a curve
at a point, we use the angle measured counterclockwise from the positive
x-axis to the tangent line. In polar coordinates, it is more convenient to cal-
culate the angle from the radius vector to the tangent line (see the ac-
companying figure). The angle can then be calculated from the relation

(1)

which comes from applying the Exterior Angle Theorem to the trian-
gle in the accompanying figure.

Suppose the equation of the curve is given in the form 
where is a differentiable function of Then

(2)

are differentiable functions of with

(3)

Since from (1),

Furthermore,

because is the slope of the curve at P. Also,

Hence

(4) =

x 
dy

du
- y 

dx
du

x 
dx
du

+ y 
dy

du

. tan c =

dy>du
dx>du -

y
x

1 +

y
x 

dy>du
dx>du

tan u =

y
x .

tan f

tan f =

dy

dx
=

dy>du
dx>du

tan c = tan sf - ud =

tan f - tan u

1 + tan f tan u
 .

c = f - u

 
dy

du
= r cos u + sin u 

dr
du

 .

 
dx
du

= -r sin u + cos u 
dr
du

 , 

u

x = r cos u and y = r sin u

u .ƒsud
r = ƒsud ,

x

y

0
� �

�

r

r � f (�)

P(r, �)

f = u + c ,

f

c

f
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Chapter 10 Additional and Advanced Exercises 745

The numerator in the last expression in Equation (4) is found from
Equations (2) and (3) to be

Similarly, the denominator is

When we substitute these into Equation (4), we obtain

(5)

This is the equation we use for finding as a function of 

41. Show, by reference to a figure, that the angle between the tangents
to two curves at a point of intersection may be found from the formula

(6)

When will the two curves intersect at right angles?

42. Find the value of for the curve 

43. Find the angle between the radius vector to the curve 
and its tangent when 

44. a. Graph the hyperbolic spiral What appears to happen
to as the spiral winds in around the origin?

b. Confirm your finding in part (a) analytically.

45. The circles and intersect at the point
Show that their tangents are perpendicular there.

46. Sketch the cardioid and circle in
one diagram and find the angle between their tangents at the point
of intersection that lies in the first quadrant.

47. Find the points of intersection of the parabolas

and the angles between their tangents at these points.

r =

1
1 - cos u

 and r =

3
1 + cos u

r = 3a cos ur = as1 + cos ud
s13>2, p>3d .

r = sin ur = 23 cos u

c

ru = 1.

u = p>6.
r = 2a sin 3u

r = sin4 su>4d .tan c

tan b =

tan c2 - tan c1

1 + tan c2 tan c1
.

b

u .c

tan c =

r
dr>du .

x 
dx
du

+ y 
dy

du
= r 

dr
du

.

x 
dy

du
- y 

dx
du

= r2 .

48. Find points on the cardioid where the tangent
line is (a) horizontal, (b) vertical.

49. Show that parabolas and 
are orthogonal at each point of intersection 

50. Find the angle at which the cardioid crosses the
ray 

51. Find the angle between the line and the cardioid
at one of their intersections.

52. Find the slope of the tangent line to the curve at

53. Find the angle at which the parabolas and
intersect in the first quadrant.

54. The equation represents a curve in polar coordi-
nates.

a. Sketch the curve.

b. Find an equivalent Cartesian equation for the curve.

c. Find the angle at which the curve intersects the ray 

55. Suppose that the angle from the radius vector to the tangent line
of the curve has the constant value 

a. Show that the area bounded by the curve and two rays
is proportional to where 

and are polar coordinates of the ends of the arc of the
curve between these rays. Find the factor of proportionality.

b. Show that the length of the arc of the curve in part (a) is
proportional to and find the proportionality constant.

56. Let P be a point on the hyperbola Show that the
triangle formed by OP, the tangent at P, and the initial line is
isosceles.

r2 sin 2u = 2a2 .

r2 - r1 ,

sr2, u2d
sr1,  u1dr2

2
- r1

2 ,u = u1,  u = u2 ,

a .r = ƒsud
c

u = p>4.

r2
= 2 csc 2u

r = 1>s1 - sin ud
r = 1>s1 - cos ud

u = p>2.
r = a tan su>2d

r = 4s1 + cos ud
r = 3 sec u

u = p>2.
r = as1 - cos ud

sab Z 0d .
r = b>s1 - cos udr = a>s1 + cos ud

r = as1 + cos ud

T
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Chapter 10 Practice Exercises

Graphing Conic Sections
Sketch the parabolas in Exercises 1–4. Include the focus and directrix
in each sketch.

1. 2.

3. 4. y2
= -s8>3dxy2

= 3x

x2
= 2yx2

= -4y

Find the eccentricities of the ellipses and hyperbolas in Exercises 5–8.
Sketch each conic section. Include the foci, vertices, and asymptotes
(as appropriate) in your sketch.

5. 6.

7. 8. 5y2
- 4x2

= 203x2
- y2

= 3

x2
+ 2y2

= 416x2
+ 7y2

= 112
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Shifting Conic Sections
Exercises 9–14 give equations for conic sections and tell how many
units up or down and to the right or left each curve is to be shifted. Find
an equation for the new conic section and find the new foci, vertices,
centers, and asymptotes, as appropriate. If the curve is a parabola, find
the new directrix as well.

9.

10.

11.

12.

13.

14.

Identifying Conic Sections
Identify the conic sections in Exercises 15–22 and find their foci, ver-
tices, centers, and asymptotes (as appropriate). If the curve is a parabola,
find its directrix as well.

15. 16.

17. 18.

19.

20.

21. 22.

Using the Discriminant
What conic sections or degenerate cases do the equations in Exercises
23–28 represent? Give a reason for your answer in each case.

23.

24.

25.

26.

27. 28.

Rotating Conic Sections
Identify the conic sections in Exercises 29–32. Then rotate the coordi-
nate axes to find a new equation for the conic section that has no cross
product term. (The new equations will vary with the size and direction
of the rotations used.)

29. 30.

31. 32.

Identifying Parametric Equations in the Plane
Exercises 33–36 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by

x2
- 3xy + y2

= 5x2
+ 223 xy - y2

+ 4 = 0

3x2
+ 2xy + 3y2

= 192x2
+ xy + 2y2

- 15 = 0

x2
- 3xy + 4y2

= 0x2
- 2xy + y2

= 0

x2
+ 2xy - 2y2

+ x + y + 1 = 0

x2
+ 3xy + 2y2

+ x + y + 1 = 0

x2
+ 4xy + 4y2

+ x + y + 1 = 0

x2
+ xy + y2

+ x + y + 1 = 0

x2
+ y2

+ 4x + 2y = 1x2
+ y2

- 2x - 2y = 0

25x2
+ 9y2

- 100x + 54y = 44

9x2
+ 16y2

+ 54x - 64y = -1

x2
- 2x + 8y = -17y2

- 2y + 16x = -49

4x2
- y2

+ 4y = 8x2
- 4x - 4y2

= 0

x2

36
-

y2

64
= 1, left 10, down 3

y2

8
-

x2

2
= 1, right 2, up 222

x2

169
+

y2

144
= 1, right 5, up 12

x2

9
+

y2

25
= 1, left 3, down 5

y2
= 10x, left 1>2, down 1

x2
= -12y, right 2, up 3

finding a Cartesian equation for it. Graph the Cartesian equation and
indicate the direction of motion and the portion traced by the particle.

33.

34.

35.

36.

Graphs in the Polar Plane
Sketch the regions defined by the polar coordinate inequalities in
Exercises 37 and 38.

37. 38.

Match each graph in Exercises 39–46 with the appropriate equation
(a)–(1). There are more equations than graphs, so some equations will
not be matched.

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

39. Four-leaved rose 40. Spiral

41. Limaçon 42. Lemniscate

43. Circle 44. Cardioid

x

y

x

y

x

y

x

y

x

y

x

y

r = 2 cos u + 1r = -sin u

r2
= sin 2ur =

2
1 - cos u

r = 1 - sin ur = 1 + cos u

r2
= cos 2ur = u

r = sin 2ur =

6
1 - 2 cos u

r cos u = 1r = cos 2u

-4 sin u … r … 00 … r … 6 cos u

x = 4 cos t, y = 9 sin t; 0 … t … 2p

x = -cos t, y = cos2 t; 0 … t … p

x = -2 cos t, y = 2 sin t; 0 … t … p

x = s1>2d tan t, y = s1>2d sec t; -p>2 6 t 6 p>2
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Chapter 10 Practice Exercises 741

45. Parabola 46. Lemniscate

Intersections of Graphs in the Polar Plane
Find the points of intersection of the curves given by the polar coordi-
nate equations in Exercises 47–54.

47. 48.

49.

50.

51.

52.

53. 54.

Polar to Cartesian Equations
Sketch the lines in Exercises 55–60. Also, find a Cartesian equation
for each line.

55. 56.

57. 58.

59. 60.

Find Cartesian equations for the circles in Exercises 61–64. Sketch
each circle in the coordinate plane and label it with both its Cartesian
and polar equations.

61. 62.

63. 64.

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 65–68. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

65. 66.

67. 68.

Conic Sections in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given
in Exercises 69–72. Give polar coordinates for the vertices and,  in the
case of ellipses, for the centers as well.

69. 70.

71. 72. r =

12
3 + sin u

r =

6
1 - 2 cos u

r =

8
2 + cos u

r =

2
1 + cos u

x2
+ y2

+ 4x = 0x2
+ y2

- 3x = 0

x2
+ y2

- 2y = 0x2
+ y2

+ 5y = 0

r = -6 cos ur = 222 cos u

r = 323 sin ur = -4 sin u

r = A323 B  csc ur = -s3>2d csc u

r = -22 sec ur = 2 sec u

r cos au -

3p
4
b =

22
2

r cos au +

p

3
b = 223

r = -2 csc u, r = -4 cos ur = sec u, r = 2 sin u

r = 1 + cos u, r = -1 + cos u

r = 1 + sin u, r = -1 + sin u

r = 1 + sin u, r = 1 - sin u

r = 1 + cos u, r = 1 - cos u

r = cos u, r = 1 - cos ur = sin u, r = 1 + sin u

x

y

x

y

Exercises 73–76 give the eccentricities of conic sections with one fo-
cus at the origin of the polar coordinate plane, along with the directrix
for that focus. Find a polar equation for each conic section.

73. 74.

75. 76.

Area, Length, and Surface Area in the Polar Plane
Find the areas of the regions in the polar coordinate plane described in
Exercises 77–80.

77. Enclosed by the limaçon 

78. Enclosed by one leaf of the three-leaved rose 

79. Inside the “figure eight” and outside the circle

80. Inside the cardioid and outside the circle

Find the lengths of the curves given by the polar coordinate equations
in Exercises 81–84.

81.

82.

83.

84.

Find the areas of the surfaces generated by revolving the polar coordi-
nate curves in Exercises 85 and 86 about the indicated axes.

85.

86.

Theory and Examples
87. Find the volume of the solid generated by revolving the region en-

closed by the ellipse about (a) the x-axis, (b) the
y-axis.

88. The “triangular” region in the first quadrant bounded by the
x-axis, the line and the hyperbola is re-
volved about the x-axis to generate a solid. Find the volume of the
solid.

89. A ripple tank is made by bending a strip of tin around the perime-
ter of an ellipse for the wall of the tank and soldering a flat bot-
tom onto this. An inch or two of water is put in the tank and you
drop a marble into it, right at one focus of the ellipse. Ripples ra-
diate outward through the water, reflect from the strip around the
edge of the tank, and a few seconds later a drop of water spurts up
at the second focus. Why?

90. LORAN A radio signal was sent simultaneously from towers
A and B, located several hundred miles apart on the northern
California coast. A ship offshore received the signal from A 1400
microseconds before receiving the signal from B. Assuming that
the signals traveled at the rate of 980 ft microsecond, what can be
said about the location of the ship relative to the two towers?

>

9x2
- 4y2

= 36x = 4,

9x2
+ 4y2

= 36

r2
= sin 2u, y-axis

r = 2cos 2u, 0 … u … p>4, x-axis

r = 21 + cos 2u, -p>2 … u … p>2
r = 8 sin3 su>3d, 0 … u … p>4
r = 2 sin u + 2 cos u, 0 … u … p>2
r = -1 + cos u

r = 2 sin u

r = 2s1 + sin ud
r = 1

r = 1 + cos 2u

r = sin 3u

r = 2 - cos u

e = 1>3, r sin u = -6e = 1>2, r sin u = 2

e = 1, r cos u = -4e = 2, r cos u = 2
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91. On a level plane, at the same instant, you hear the sound of a rifle
and that of the bullet hitting the target. What can be said about
your location relative to the rifle and target?

92. Archimedes spirals The graph of an equation of the form
where a is a nonzero constant, is called an Archimedes

spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

93. a. Show that the equations transform the
polar equation

into the Cartesian equation

s1 - e2dx2
+ y2

+ 2kex - k2
= 0.

r =

k
1 + e cos u

x = r cos u, y = r sin u

r = au ,

b. Then apply the criteria of Section 10.3 to show that

94. A satellite orbit A satellite is in an orbit that passes over the
North and South Poles of the earth. When it is over the South Pole
it is at the highest point of its orbit, 1000 miles above the earth’s
surface. Above the North Pole it is at the lowest point of its orbit,
300 miles above the earth’s surface.

a. Assuming that the orbit is an ellipse with one focus at the
center of the earth, find its eccentricity. (Take the diameter of
the earth to be 8000 miles.)

b. Using the north–south axis of the earth as the x-axis and the
center of the earth as origin, find a polar equation for the orbit.

 e 7 1 Q  hyperbola .
 e = 1 Q  parabola .

 0 6 e 6 1 Q  ellipse.
 e = 0 Q  circle .
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Chapter 10 Questions to Guide Your Review

1. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a
parabola from its equation?

2. What is an ellipse? What are the Cartesian equations for ellipses
centered at the origin with foci on one of the coordinate axes?
How can you find the foci, vertices, and directrices of such an el-
lipse from its equation?

3. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate
axes? How can you find the foci, vertices, and directrices of such
an ellipse from its equation?

4. What is the eccentricity of a conic section? How can you classify
conic sections by eccentricity? How are an ellipse’s shape and ec-
centricity related?

5. Explain the equation 

6. What is a quadratic curve in the xy-plane? Give examples of de-
generate and nondegenerate quadratic curves.

7. How can you find a Cartesian coordinate system in which the new
equation for a conic section in the plane has no xy-term? Give an
example.

8. How can you tell what kind of graph to expect from a quadratic
equation in x and y? Give examples.

PF = e # PD .

9. What are some typical parametrizations for conic sections?

10. What is a cycloid? What are typical parametric equations for cy-
cloids? What physical properties account for the importance of
cycloids?

11. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change
from one coordinate system to the other?

12. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

13. How do you graph equations in polar coordinates? Include in
your discussion symmetry, slope, behavior at the origin, and the
use of Cartesian graphs. Give examples.

14. How do you find the area of a region 
in the polar coordinate plane? Give examples.

15. Under what conditions can you find the length of a curve
in the polar coordinate plane? Give an ex-

ample of a typical calculation.

16. Under what conditions can you find the area of the surface gener-
ated by revolving a curve about the x-
axis? The y-axis? Give examples of typical calculations.

17. What are the standard equations for lines and conic sections in
polar coordinates? Give examples.

r = ƒsud, a … u … b ,

r = ƒsud, a … u … b ,

a … u … b ,
0 … r1sud … r … r2sud, 
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Chapter 10 745

Chapter 10 Technology Application Projects

Mathematica Maple Module
Radar Tracking of a Moving Object
Part I: Convert from polar to Cartesian coordinates.

Mathematica Maple Module
Parametric and Polar Equations with a Figure Skater
Part I: Visualize position, velocity, and acceleration to analyze motion defined by parametric equations.
Part II: Find and analyze the equations of motion for a figure skater tracing a polar plot.

/

/
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