
OVERVIEW Functions can be classified into two broad groups (see Section 1.4). Polynomial
functions are called algebraic, as are functions obtained from them by addition, multiplication,
division, or taking powers and roots. Functions that are not algebraic are called transcendental.
The trigonometric, exponential, logarithmic, and hyperbolic functions are transcendental, as
are their inverses.

Transcendental functions occur frequently in many calculus settings and applications,
including growths of populations, vibrations and waves, efficiencies of computer algorithms,
and the stability of engineered structures. In this chapter we introduce several important tran-
scendental functions and investigate their graphs, properties, derivatives, and integrals.
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Inverse Functions and Their Derivatives

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ. Many
common functions, though not all, are paired with an inverse. Important inverse functions
often show up in formulas for antiderivatives and solutions of differential equations. Inverse
functions also play a key role in the development and properties of the logarithmic and
exponential functions, as we will see in Section 7.3.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion assigns the same value, 1, to both of the numbers and ; the sines of

and are both Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

13>2.2p>3p>3 +1-1ƒsxd = x2

7.1

DEFINITION One-to-One Function
A function ƒ(x) is one-to-one on a domain D if whenever 
in D.

x1 Z x2ƒsx1d Z ƒsx2d
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7.1 Inverse Functions and Their Derivatives 467

EXAMPLE 1 Domains of One-to-One Functions

(a) is one-to-one on any domain of nonnegative numbers because 
whenever 

(b) is not one-to-one on the interval because 
The sine is one-to-one on however, because it is a strictly increasing func-
tion on 

The graph of a one-to-one function can intersect a given horizontal line at
most once. If it intersects the line more than once, it assumes the same y-value more than
once, and is therefore not one-to-one (Figure 7.1).

y = ƒsxd

[0, p>2].
[0, p>2],

sin sp>6d = sin s5p>6d .[0, p]gsxd = sin x

x1 Z x2.1x2

1x1 Zƒsxd = 1x

x

y

y

y

0

y � x3

0

y � �x

x

y

x x
0

y � x2

Same y-value

–1 1

Same y-value

0.5

y � sin x

�
6

5�
6

One-to-one: Graph meets each
horizontal line at most once.

Not one-to-one: Graph meets one or
more horizontal lines more than once.

1

FIGURE 7.1 Using the horizontal line test, we
see that and are one-to-one on
their domains and but 
and are not one-to-one on their
domains s - q , q d .

y = sin x
y = x2[0, q d ,s - q , q d

y = 1xy = x3

The Horizontal Line Test for One-to-One Functions
A function is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

y = ƒsxd

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.
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The domains and ranges of ƒ and are interchanged. The symbol for the
inverse of ƒ is read “ƒ inverse.” The in is not an exponent: does not
mean 1 ƒ(x).

If we apply ƒ to send an input x to the output ƒ(x) and follow by applying to ƒ(x)
we get right back to x, just where we started. Similarly, if we take some number y in the
range of ƒ, apply to it, and then apply ƒ to the resulting value we get back the
value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

Only a one-to-one function can have an inverse. The reason is that if and
for two distinct inputs and then there is no way to assign a value to 

that satisfies both and 
A function that is increasing on an interval, satisfying when is

one-to-one and has an inverse. Decreasing functions also have an inverse (Exercise 39).
Functions that have positive derivatives at all x are increasing (Corollary 3 of the Mean
Value Theorem, Section 4.2), and so they have inverses. Similarly, functions with negative
derivatives at all x are decreasing and have inverses. Functions that are neither increasing
nor decreasing may still be one-to-one and have an inverse, as with the function in
Section 7.7.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a func-
tion from its graph, we start at a point x on the x-axis, go vertically to the graph, and
then move horizontally to the y-axis to read the value of y. The inverse function can be
read from the graph by reversing this process. Start with a point y on the y-axis, go
horizontally to the graph, and then move vertically to the x-axis to read the value of

(Figure 7.2).
We want to set up the graph of so that its input values lie along the x-axis, as is

usually done for functions, rather then on the y-axis. To achieve this we interchange the
x and y axes by reflecting across the 45° line After this reflection we have a new
graph that represents The value of can now be read from the graph in the
usual way, by starting with a point x on the x-axis, going vertically to the graph and
then horizontally to the y-axis to get the value of Figure 7.2 indicates the rela-
tion between the graphs of ƒ and The graphs are interchanged by reflection
through the line y = x .

ƒ-1.
ƒ-1sxd .

ƒ-1sxdƒ-1.
y = x .

ƒ-1
x = ƒ -1syd

sec-1 x

x2 7 x1,ƒsx2d 7 ƒsx1d
ƒ-1sƒsx2dd = x2.ƒ-1sƒsx1dd = x1

ƒ -1sydx2,x1ƒsx2d = y
ƒsx1d = y

 sƒ � ƒ -1dsyd = y, for all y in the domain of ƒ -1 sor range of ƒd

 sƒ -1 � ƒdsxd = x, for all x in the domain of f

ƒ -1syd ,ƒ-1

ƒ-1
> ƒ-1sxdƒ-1“-1”

ƒ-1ƒ-1
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DEFINITION Inverse Function
Suppose that ƒ is a one-to-one function on a domain D with range R. The inverse
function is defined by

The domain of is R and the range of is D.ƒ-1ƒ-1

ƒ -1sad = b if ƒsbd = a .

ƒ-1
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7.1 Inverse Functions and Their Derivatives 469

The process of passing from ƒ to can be summarized as a two-step process.

1. Solve the equation for x. This gives a formula where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula where is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 2 Finding an Inverse Function

Find the inverse of expressed as a function of x.

Solution

1. Solve for x in terms of y:

 x = 2y - 2.

 2y = x + 2

 y =
1
2

 x + 1

y =
1
2

 x + 1,

ƒ-1y = ƒ-1sxd

x = ƒ -1sydy = ƒsxd

ƒ-1

x

y

0 x

y

R
A

N
G

E
 O

F 
f

DOMAIN OF f

(a) To find the value of f at x, we start at x,
go up to the curve, and then over to the y-axis.

y � f (x)

x

y

0 x

y

D
O

M
A

IN
 O

F 
f

–1

RANGE OF f –1

x � f –1(y)

(b) The graph of f is already the graph of f –1,
but with x and y interchanged.  To find the x
that gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f –1 is the
range of f.  The range of f –1 is the domain of f.

y

x

0

(b, a)

(a, b)

y � x

x � f –1(y)

R
A

N
G

E
 O

F 
f

–1

DOMAIN OF f –1

(c) To draw the graph of f –1 in the
more usual way, we reflect the
system in the line y � x. 

x

y

0
DOMAIN OF f –1

R
A

N
G

E
 O

F 
f–1

y � f –1(x)

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f –1

as a function of x.

FIGURE 7.2 Determining the graph of from the graph of y = ƒsxd .y = ƒ -1sxd

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 469

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce07.html?1_1_l


2. Interchange x and y:

The inverse of the function is the function To
check, we verify that both composites give the identity function:

See Figure 7.3. 

EXAMPLE 3 Finding an Inverse Function

Find the inverse of the function expressed as a function of x.

Solution We first solve for x in terms of y:

We then interchange x and y, obtaining

The inverse of the function is the function (Figure 7.4).
Notice that, unlike the restricted function the unrestricted function

is not one-to-one and therefore has no inverse. 

Derivatives of Inverses of Differentiable Functions

If we calculate the derivatives of and its inverse 
from Example 2, we see that

The derivatives are reciprocals of one another. The graph of ƒ is the line 
and the graph of is the line (Figure 7.3). Their slopes are reciprocals of
one another.

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line always inverts the line’s slope. If the original line has slope (Figure 7.5),
the reflected line has slope 1 m (Exercise 36).

The reciprocal relationship between the slopes of ƒ and holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of

at the point (a, ƒ(a)) is and then the slope of at the
point (ƒ(a), a) is the reciprocal (Figure 7.6). If we set then

If has a horizontal tangent line at (a, ƒ(a)) then the inverse function has a
vertical tangent line at (ƒ(a), a), and this infinite slope implies that is not differentiableƒ-1

ƒ-1y = ƒsxd

sƒ-1d¿sbd =
1

ƒ¿sad
=

1
ƒ¿sƒ-1sbdd

.

b = ƒsad ,1>ƒ¿sad
y = ƒ-1sxdƒ¿sad Z 0,ƒ¿sady = ƒsxd

ƒ-1
> m Z 0y = x

y = 2x - 2ƒ-1
y = s1>2dx + 1,

 
d
dx

 ƒ -1sxd =

d
dx

 s2x - 2d = 2.

 
d
dx

 ƒsxd =

d
dx

 a1
2

 x + 1b =
1
2

ƒ-1sxd = 2x - 2ƒsxd = s1>2dx + 1

y = x2
y = x2, x Ú 0,

y = 1xy = x2, x Ú 0,

y = 1x .

ƒ x ƒ = x because x Ú 0 2y = 2x2
= ƒ x ƒ = x

 y = x2

y = x2, x Ú 0,

 ƒsƒ -1sxdd =
1
2

 s2x - 2d + 1 = x - 1 + 1 = x .

 ƒ -1sƒsxdd = 2 a1
2

 x + 1b - 2 = x + 2 - 2 = x

ƒ-1sxd = 2x - 2.ƒsxd = s1>2dx + 1

y = 2x - 2.
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x

y

–2

1

–2

1

y � 2x � 2
y � x

y � x � 11
2

FIGURE 7.3 Graphing
and 

together shows the graphs’ symmetry with
respect to the line The slopes are
reciprocals of each other (Example 2).

y = x .

ƒ -1sxd = 2x - 2ƒsxd = s1>2dx + 1

x

y

0

y � x2, x � 0

y � x

y � �x

FIGURE 7.4 The functions and
are inverses of one

another (Example 3).
y = x2, x Ú 0,

y = 1x

x

y

0

1
my � x � b

m

Slope � 1
m y � x

y � mx � b
Slope � m

FIGURE 7.5 The slopes of nonvertical
lines reflected through the line are
reciprocals of each other.

y = x
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7.1 Inverse Functions and Their Derivatives 471

x

y

0 a
x

y

0

b � f (a) (a,  b)

y � f (x)

(b, a)

y � f –1(x)

b

a � f –1(b)

The slopes are reciprocal: ( f –1)'(b) �          or ( f –1)'(b) �1
f'(a)

1
f '( f –1(b))

FIGURE 7.6 The graphs of inverse functions have reciprocal
slopes at corresponding points.

The proof of Theorem 1 is omitted, but here is another way to view it. When 
is differentiable at and we change x by a small amount dx, the corresponding change
in y is approximately

This means that y changes about times as fast as x when and that x changes
about times as fast as y when It is reasonable that the derivative of at b
is the reciprocal of the derivative of ƒ at a.

EXAMPLE 4 Applying Theorem 1

The function and its inverse have derivatives 

and sƒ -1d¿sxd = 1>s21xd .

ƒ¿sxd = 2xƒ-1sxd = 1xƒsxd = x2, x Ú 0

ƒ-1y = b.1>ƒ¿sad
x = aƒ¿sad

dy = ƒ¿sad dx .

x = a
y = ƒsxd

THEOREM 1 The Derivative Rule for Inverses
If ƒ has an interval I as domain and exists and is never zero on I, then is
differentiable at every point in its domain. The value of at a point b in the
domain of is the reciprocal of the value of at the point 

or

(1)
dƒ -1

dx
 `

x = b
=

1
dƒ
dx
`

 
 

x = ƒ -1sbd

sƒ-1d¿sbd =
1

ƒ¿sƒ-1sbdd

a = ƒ-1sbd:ƒ¿ƒ-1
sƒ-1d¿

ƒ-1ƒ¿sxd

at ƒ(a). Theorem 1 gives the conditions under which is differentiable in its domain,
which is the same as the range of ƒ.

ƒ-1
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Theorem 1 predicts that the derivative of is

Theorem 1 gives a derivative that agrees with our calculation using the Power Rule for the
derivative of the square root function.

Let’s examine Theorem 1 at a specific point. We pick (the number a) and
(the value b). Theorem 1 says that the derivative of ƒ at 2, and the

derivative of at ƒ(2), are reciprocals. It states that

See Figure 7.7. 

Equation (1) sometimes enables us to find specific values of without knowing a
formula for 

EXAMPLE 5 Finding a Value of the Inverse Derivative

Let Find the value of at without finding a formula
for 

Solution

Eq. (1)

See Figure 7.8. 

Parametrizing Inverse Functions

We can graph or represent any function parametrically as

Interchanging t and ƒ(t) produces parametric equations for the inverse:

(see Section 3.5).
For example, to graph the one-to-one function on a grapher to-

gether with its inverse and the line use the parametric graphing option with

Graph of ƒ : x1 = t, y1 = t2, t Ú 0

Graph of ƒ -1 : x2 = t2, y2 = t 
Graph of y = x : x3 = t, y3 = t 

y = x, x Ú 0,
ƒsxd = x2, x Ú 0,

x = ƒstd and y = t

x = t and y = ƒstd .

y = ƒsxd

 
dƒ -1

dx
 `

x = ƒs2d
=

1
dƒ
dx

 `
x = 2

=
1

12

 
dƒ
dx

 `
x = 2

= 3x2 `
x = 2

= 12

ƒ-1sxd .
x = 6 = ƒs2ddƒ -1>dxƒsxd = x3

- 2.

ƒ-1.
dƒ -1>dx

sƒ -1d¿s4d =
1

ƒ¿sƒ -1s4dd
=

1
ƒ¿s2d

=
1
2x
`
x = 2

=
1
4

 .

sƒ-1d¿s4d ,ƒ-1
ƒ¿s2d = 4,ƒs2d = 4

x = 2

 =
1

2s1xd
.

 =
1

2sƒ -1sxdd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd
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x

y

Slope

1

10

1–
4

Slope 4

2 3 4

2

3

4 (2, 4)

(4, 2)

y � x2, x � 0

y � �x

FIGURE 7.7 The derivative of
at the point (4, 2) is the

reciprocal of the derivative of at
(2, 4) (Example 4).

ƒsxd = x2
ƒ -1sxd = 1x

x

y

0

–2

–2 6

6 (2, 6)

Reciprocal slope:

(6, 2)

y � x3 � 2
Slope 3x2 � 3(2)2 � 12

1
12

FIGURE 7.8 The derivative of
at tells us the

derivative of at (Example 5).x = 6ƒ -1
x = 2ƒsxd = x3

- 2

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 472

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce07.html?1_3_l
bounce07.html?6_3


7.1 Inverse Functions and Their Derivatives 473

EXERCISES 7.1

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and
which are not?

1. 2.

3. 4.

5. 6.

Graphing Inverse Functions
Each of Exercises 7–10 shows the graph of a function Copy
the graph and draw in the line Then use symmetry with respect
to the line to add the graph of to your sketch. (It is not nec-
essary to find a formula for ) Identify the domain and range of

7. 8.

x

y

10

1
y � f (x) � 1 � , x � 01

x

x

y

10

1

y � f (x) � , x � 01
x2 � 1

ƒ-1 .
ƒ-1 .

ƒ-1y = x
y = x .

y = ƒsxd .

x

y

y � x1/3

x

y

0

y � 1
x

x

y

y � int x

y

x

y � 2�x�

x

y

0–1 1

y � x4 � x2

x

y

0

y � �3x3

9. 10.

11. a. Graph the function What
symmetry does the graph have?

b. Show that ƒ is its own inverse. (Remember that if
)

12. a. Graph the function What symmetry does the
graph have?

b. Show that ƒ is its own inverse.

Formulas for Inverse Functions
Each of Exercises 13–18 gives a formula for a function and
shows the graphs of ƒ and Find a formula for in each case.

13. 14.

15. 16.

x

y

1

10

y � f (x)

y � f –1(x)

x

y

1

1–1

–1

y � f (x)

y � f –1(x)

ƒsxd = x2
- 2x + 1, x Ú 1ƒsxd = x3

- 1

x

y

1

10

y � f –1(x)

y � f (x)

x

y

1

10

y � f (x)

y � f –1(x)

ƒsxd = x2, x … 0ƒsxd = x2
+ 1, x Ú 0

ƒ-1ƒ-1 .
y = ƒsxd

ƒsxd = 1>x .

x Ú 0.
2x2

= x

ƒsxd = 21 - x2, 0 … x … 1.

�
2

�
2

–

y � f (x) � tan x,

� x �

x

y

0 �
2

�
2

–x

y

0 �
2

�
2

–

1

–1

�
2

�
2

–

y � f (x) � sin x,

� x �
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17. 18.

Each of Exercises 19–24 gives a formula for a function In
each case, find and identify the domain and range of As a
check, show that 

19. 20.

21. 22.

23. 24.

Derivatives of Inverse Functions
In Exercises 25–28:

a. Find 

b. Graph ƒ and together.

c. Evaluate dƒ dx at and at to show that at
these points 

25. 26.

27. 28.

29. a. Show that and are inverses of one
another.

b. Graph ƒ and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and Be sure the
picture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs of ƒ and g at
(1, 1) and (four tangents in all).

d. What lines are tangent to the curves at the origin?

30. a. Show that and are inverses of one
another.

b. Graph h and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and Be sure the
picture shows the required symmetry about the line 

c. Find the slopes of the tangents to the graphs at h and k at
(2, 2) and 

d. What lines are tangent to the curves at the origin?

31. Let Find the value of at
the point 

32. Let Find the value of at
the point x = 0 = ƒs5d .

dƒ -1>dxƒsxd = x2
- 4x - 5, x 7 2.

x = -1 = ƒs3d .
dƒ -1>dxƒsxd = x3

- 3x2
- 1, x Ú 2.

s -2, -2d .

y = x .
s -2, -2d .

ksxd = s4xd1>3hsxd = x3>4

s -1, -1d

y = x .
s -1, -1d .

g sxd = 1 
3 xƒsxd = x3

ƒsxd = 2x2, x Ú 0, a = 5ƒsxd = 5 - 4x, a = 1>2
ƒsxd = s1>5dx + 7, a = -1ƒsxd = 2x + 3, a = -1

dƒ -1>dx = 1>sdƒ>dxd .
x = ƒsaddƒ -1>dxx = a>

ƒ-1

ƒ-1sxd .

ƒsxd = 1>x3, x Z 0ƒsxd = 1>x2, x 7 0

ƒsxd = s1>2dx - 7>2ƒsxd = x3
+ 1

ƒsxd = x4, x Ú 0ƒsxd = x5

ƒsƒ-1sxdd = ƒ-1sƒsxdd = x .
ƒ-1 .ƒ-1sxd

y = ƒsxd .

x

y

0

1

1

y � f –1(x)

y � f (x)

x

y

0

1

–1

1–1

y � f (x)

y � f –1(x)

ƒsxd = x2>3, x Ú 0ƒsxd = sx + 1d2, x Ú -1
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33. Suppose that the differentiable function has an inverse
and that the graph of ƒ passes through the point (2, 4) and has a
slope of 1 3 there. Find the value of at 

34. Suppose that the differentiable function has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of at the origin.

Inverses of Lines
35. a. Find the inverse of the function where m is a con-

stant different from zero.

b. What can you conclude about the inverse of a function
whose graph is a line through the origin with a

nonzero slope m?

36. Show that the graph of the inverse of where m
and b are constants and is a line with slope 1 m and y-
intercept 

37. a. Find the inverse of Graph ƒ and its inverse
together. Add the line to your sketch, drawing it with
dashes or dots for contrast.

b. Find the inverse of (b constant). How is the
graph of related to the graph of ƒ?

c. What can you conclude about the inverses of functions whose
graphs are lines parallel to the line 

38. a. Find the inverse of Graph the line
together with the line At what angle do

the lines intersect?

b. Find the inverse of (b constant). What angle
does the line make with the line 

c. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line 

Increasing and Decreasing Functions
39. As in Section 4.3, a function ƒ(x) increases on an interval I if for

any two points and in I,

Similarly, a function decreases on I if for any two points and 
in I,

Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any and in I, implies

Use the results of Exercise 39 to show that the functions in Exercises
40–44 have inverses over their domains. Find a formula for 
using Theorem 1.

40. 41.

42. 43.

44. ƒsxd = x5>3
ƒsxd = s1 - xd3ƒsxd = 1 - 8x3

ƒsxd = 27x3ƒsxd = s1>3dx + s5>6d

dƒ -1>dx

ƒsx2d Z ƒsx1d .
x2 Z x1x2x1

x2 7 x1 Q  ƒsx2d 6 ƒsx1d .

x2x1

x2 7 x1 Q  ƒsx2d 7 ƒsx1d .

x2x1

y = x?

y = x?y = -x + b
ƒsxd = -x + b

y = x .y = -x + 1
ƒsxd = -x + 1.

y = x?

ƒ-1
ƒsxd = x + b

y = x
ƒsxd = x + 1.

-b>m .
>m Z 0,

ƒsxd = mx + b ,

y = ƒsxd

ƒsxd = mx ,

g-1

y = gsxd
x = 4.dƒ -1>dx>

y = ƒsxd
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7.1 Inverse Functions and Their Derivatives 475

Theory and Applications
45. If ƒ(x) is one-to-one, can anything be said about 

Is it also one-to-one? Give reasons for your answer.

46. If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said
about Is it also one-to-one? Give reasons for your
answer.

47. Suppose that the range of g lies in the domain of ƒ so that the
composite is defined. If ƒ and g are one-to-one, can any-
thing be said about Give reasons for your answer.

48. If a composite is one-to-one, must g be one-to-one? Give
reasons for your answer.

49. Suppose ƒ(x) is positive, continuous, and increasing over the in-
terval [a, b]. By interpreting the graph of ƒ show that

50. Determine conditions on the constants a, b, c, and d so that the ra-
tional function

has an inverse.

51. If we write g(x) for Equation (1) can be written as

If we then write x for a, we get

The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that ƒ and g are differentiable functions that are in-
verses of one another, so that Differentiate both
sides of this equation with respect to x, using the Chain Rule to
express as a product of derivatives of g and ƒ. What
do you find? (This is not a proof of Theorem 1 because we as-
sume here the theorem’s conclusion that is differen-
tiable.)

52. Equivalence of the washer and shell methods for finding volume
Let ƒ be differentiable and increasing on the interval 
with and suppose that ƒ has a differentiable inverse, 
Revolve about the y-axis the region bounded by the graph of ƒ
and the lines and to generate a solid. Then the
values of the integrals given by the washer and shell methods for
the volume have identical values:

To prove this equality, define

 Sstd = L
t

a
 2pxsƒstd - ƒsxdd dx .

 Wstd = L
ƒstd

ƒsad
pssƒ -1sydd2

- a2d dy

L
ƒsbd

ƒsad
p ssƒ -1sydd2

- a2d dy = L
b

a
 2pxsƒsbd - ƒsxdd dx .

y = ƒsbdx = a

ƒ-1 .a 7 0,
a … x … b ,

g = ƒ-1

sg � ƒd¿sxd

sg � ƒdsxd = x .

g¿sƒsxdd # ƒ¿sxd = 1.

g¿sƒsadd =

1
ƒ¿sad

, or g¿sƒsadd # ƒ¿sad = 1.

ƒ-1sxd ,

ƒsxd =

ax + b
cx + d

L
b

a
 ƒsxd dx + L

ƒsbd

ƒsad
 ƒ-1syd dy = bƒsbd - aƒsad .

ƒ � g

ƒ � g?
ƒ � g

hsxd = 1>ƒsxd?

gsxd = -ƒsxd?

Then show that the functions W and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section 4.8,
Exercise 102, this will guarantee for all t in [a, b]. In
particular, (Source: “Disks and Shells Revisited,”
by Walter Carlip, American Mathematical Monthly, Vol. 98,
No. 2, Feb. 1991, pp. 154–156.)

COMPUTER EXPLORATIONS

In Exercises 53–60, you will explore some functions and their inverses
together with their derivatives and linear approximating functions at
specified points. Perform the following steps using your CAS:

a. Plot the function together with its derivative over the
given interval. Explain why you know that ƒ is one-to-one over
the interval.

b. Solve the equation for x as a function of y, and name
the resulting inverse function g.

c. Find the equation for the tangent line to ƒ at the specified point

d. Find the equation for the tangent line to g at the point 
located symmetrically across the 45° line (which is the
graph of the identity function). Use Theorem 1 to find the slope
of this tangent line.

e. Plot the functions ƒ and g, the identity, the two tangent lines, and
the line segment joining the points and 
Discuss the symmetries you see across the main diagonal.

53.

54.

55.

56.

57.

58.

59.

60.

In Exercises 61 and 62, repeat the steps above to solve for the func-
tions and defined implicitly by the given equa-
tions over the interval.

61.

62. cos y = x1>5, 0 … x … 1, x0 = 1>2
y1>3

- 1 = sx + 2d3, -5 … x … 5, x0 = -3>2
x = ƒ -1sydy = ƒsxd

y = sin x, -

p

2
… x …

p

2
, x0 = 1

y = ex, -3 … x … 5, x0 = 1

y = 2 - x - x3, -2 … x … 2, x0 =

3
2

y = x3
- 3x2

- 1, 2 … x … 5, x0 =

27
10

y =

x3

x2
+ 1

, -1 … x … 1, x0 = 1>2
y =

4x

x2
+ 1

, -1 … x … 1, x0 = 1>2
y =

3x + 2
2x - 11

, -2 … x … 2, x0 = 1>2
y = 23x - 2, 2

3
… x … 4, x0 = 3

sƒsx0d, x0d .sx0 , ƒsx0dd

y = x
sƒsx0d, x0d

sx0 , ƒsx0dd .

y = ƒsxd

y = ƒsxd

Wsbd = Ssbd .
Wstd = Sstd
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476 Chapter 7: Transcendental Functions

Natural Logarithms

For any positive number a, the function value is easy to define when x is an
integer or rational number. When x is irrational, the meaning of is not so clear.
Similarly, the definition of the logarithm the inverse function of is not
completely obvious. In this section we use integral calculus to define the natural loga-
rithm function, for which the number a is a particularly important value. This function al-
lows us to define and analyze general exponential and logarithmic functions, and

Logarithms originally played important roles in arithmetic computations. Historically,
considerable labor went into producing long tables of logarithms, correct to five, eight, or
even more, decimal places of accuracy. Prior to the modern age of electronic calculators
and computers, every engineer owned slide rules marked with logarithmic scales. Calcula-
tions with logarithms made possible the great seventeenth-century advances in offshore
navigation and celestial mechanics. Today we know such calculations are done using
calculators or computers, but the properties and numerous applications of logarithms are
as important as ever.

Definition of the Natural Logarithm Function

One solid approach to defining and understanding logarithms begins with a study of the
natural logarithm function defined as an integral through the Fundamental Theorem of
Calculus. While this approach may seem indirect, it enables us to derive quickly the fa-
miliar properties of logarithmic and exponential functions. The functions we have studied
so far were analyzed using the techniques of calculus, but here we do something more
fundamental. We use calculus for the very definition of the logarithmic and exponential
functions.

The natural logarithm of a positive number x, written as ln x, is the value of an
integral.

y = loga x .
y = ax

ƒsxd = ax ,loga x ,
ax

ƒsxd = ax

7.2

DEFINITION The Natural Logarithm Function

ln x = L
x

1
 
1
t  dt, x 7 0

If then ln x is the area under the curve from to 
(Figure 7.9). For ln x gives the negative of the area under the curve from x to
1. The function is not defined for From the Zero Width Interval Rule for definite
integrals, we also have

ln 1 = L
1

1
 
1
t  dt = 0.

x … 0.
0 6 x 6 1,

t = xt = 1y = 1>tx 7 1,
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7.2 Natural Logarithms 477

x

y

0 x x1

1

1

1

y � ln x

y �
1
x

If x � 1, then ln x � dt � 0.1
t

gives the negative of this area.

x

1

1

x
If 0 � x � 1, then ln x � dt � �

1
t dt1

t

gives this area.

x

1

dtIf x � 1, then ln x �
1
t

y � ln x

L L

L

L

FIGURE 7.9 The graph of and its
relation to the function The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the
axis as x moves from 1 to the left.

y = 1>x, x 7 0.
y = ln x

Notice that we show the graph of in Figure 7.9 but use in the inte-
gral. Using x for everything would have us writing

with x meaning two different things. So we change the variable of integration to t.
By using rectangles to obtain finite approximations of the area under the graph of

and over the interval between and as in Section 5.1, we can
approximate the values of the function ln x. Several values are given in Table 7.1. There is
an important number whose natural logarithm equals 1.

t = x ,t = 1y = 1>t

ln x = L
x

1
 
1
x dx ,

y = 1>ty = 1>x

DEFINITION The Number e
The number e is that number in the domain of the natural logarithm satisfying

ln (e) = 1

TABLE 7.1 Typical 2-place
values of ln x

x ln x

0 undefined

0.05

0.5

1 0

2 0.69

3 1.10

4 1.39

10 2.30

-0.69

-3.00

Geometrically, the number e corresponds to the point on the x-axis for which the area
under the graph of and above the interval [1, e] is the exact area of the unit square.
The area of the region shaded blue in Figure 7.9 is 1 sq unit when x = e .

y = 1>t
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478 Chapter 7: Transcendental Functions

The Derivative of 

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

For every positive value of x, we have

d
dx

 ln x =

d
dx

 L
x

1
 
1
t  dt =

1
x .

y = ln x

d
dx

 ln x =
1
x .

Therefore, the function is a solution to the initial value problem 
with Notice that the derivative is always positive so the natural loga-

rithm is an increasing function, hence it is one-to-one and invertible. Its inverse is studied in
Section 7.3.

If u is a differentiable function of x whose values are positive, so that ln u is defined,
then applying the Chain Rule

to the function gives

d
dx

 ln u =

d
du

 ln u # du
dx

=
1
u

 
du
dx

 .

y = ln u

dy
dx

=

dy
du

 
du
dx

y s1d = 0.x 7 0,
dy>dx = 1>x,y = ln x

(1)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0

EXAMPLE 1 Derivatives of Natural Logarithms

(a)

(b) Equation (1) with gives

d
dx

 ln sx2
+ 3d =

1
x2

+ 3
# d
dx

 sx2
+ 3d =

1
x2

+ 3
# 2x =

2x
x2

+ 3
.

u = x2
+ 3

d
dx

 ln 2x =
1
2x

 
d
dx

 s2xd =
1
2x

 s2d =
1
x
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7.2 Natural Logarithms 479

Notice the remarkable occurrence in Example 1a. The function has the
same derivative as the function This is true of for any positive number a:

(2)

Since they have the same derivative, the functions and differ by a constant.

Properties of Logarithms

Logarithms were invented by John Napier and were the single most important improve-
ment in arithmetic calculation before the modern electronic computer. What made them
so useful is that the properties of logarithms enable multiplication of positive numbers by
addition of their logarithms, division of positive numbers by subtraction of their loga-
rithms, and exponentiation of a number by multiplying its logarithm by the exponent. We
summarize these properties as a series of rules in Theorem 2. For the moment, we restrict
the exponent r in Rule 4 to be a rational number; you will see why when we prove the rule.

y = ln xy = ln ax

d
dx

 ln ax =
1
ax

# d
dx

 saxd =
1
ax sad =

1
x  .

y = ln axy = ln x .
y = ln 2x

HISTORICAL BIOGRAPHY

John Napier
(1550–1617)

THEOREM 2 Properties of Logarithms
For any numbers and the natural logarithm satisfies the following
rules:

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule: Rule 2 with 

4. Power Rule: r rationalln xr
= r ln x

a = 1ln 
1
x = - ln x

ln 
a
x = ln a - ln x

ln ax = ln a + ln x

x 7 0,a 7 0

We illustrate how these rules apply.

EXAMPLE 2 Interpreting the Properties of Logarithms

(a) Product

(b) Quotient

(c) Reciprocal

Power

EXAMPLE 3 Applying the Properties to Function Formulas

(a) Product

(b) Quotientln 
x + 1
2x - 3

= ln sx + 1d - ln s2x - 3d

ln 4 + ln sin x = ln s4 sin xd

 = - ln 23
= -3 ln 2

 ln 
1
8

= - ln 8

ln 4 - ln 5 = ln 
4
5 = ln 0.8

ln 6 = ln s2 # 3d = ln 2 + ln 3
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(c) Reciprocal

(d) Power

We now give the proof of Theorem 2. The steps in the proof are similar to those used
in solving problems involving logarithms.

Proof that The argument is unusual—and elegant. It starts by ob-
serving that ln ax and ln x have the same derivative (Equation 2). According to Corollary 2
of the Mean Value Theorem, then, the functions must differ by a constant, which means
that

for some C.
Since this last equation holds for all positive values of x, it must hold for 

Hence,

By substituting we conclude,

Proof that (assuming r rational) We use the same-derivative argument
again. For all positive values of x,

Eq. (1) with 

Since and r ln x have the same derivative,

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.
You are asked to prove Rule 2 in Exercise 84. Rule 3 is a special case of Rule 2, obtained

by setting  and noting that  So we have established all cases of Theorem 2.

We have not yet proved Rule 4 for r irrational; we will return to this case in Section 7.3.
The rule does hold for all r, rational or irrational.

The Graph and Range of ln x

The derivative is positive for so ln x is an increasing function of
x. The second derivative, is negative, so the graph of ln x is concave down.-1>x2 ,

x 7 0,dsln xd>dx = 1>x

ln 1 = 0.a = 1

ln xr
= r ln x + C

ln xr

 = r # 1
x =

d
dx

 sr ln xd .

 =
1
xr rxr - 1

u = x r 
d
dx

 ln xr
=

1
xr 

d
dx

 sxrd

ln xr
= r ln x

ln ax = ln a + ln x .

 C = ln a .

ln 1 = 0 ln a = 0 + C

 ln sa # 1d = ln 1 + C

x = 1.

ln ax = ln x + C

ln ax = ln a + ln x

ln23 x + 1 = ln sx + 1d1>3
=

1
3

 ln sx + 1d

ln sec x = ln 
1

cos x = - ln cos x

480 Chapter 7: Transcendental Functions

Here is where we need r to be rational,
at least for now. We have proved the
Power Rule only for rational
exponents.
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7.2 Natural Logarithms 481

We can estimate the value of ln 2 by considering the area under the graph of 
and above the interval [1, 2]. In Figure 7.10 a rectangle of height 1 2 over the interval [1, 2]
fits under the graph. Therefore the area under the graph, which is ln 2, is greater than the
area, 1 2, of the rectangle. So Knowing this we have,

and

It follows that

We defined ln x for so the domain of ln x is the set of positive real numbers. The
above discussion and the Intermediate Value Theorem show that its range is the entire real
line giving the graph of shown in Figure 7.9.

The Integral 

Equation (1) leads to the integral formula

(3)

when u is a positive differentiable function, but what if u is negative? If u is negative, then
is positive and

Eq. (3) with u replaced by 

(4)

We can combine Equations (3) and (4) into a single formula by noticing that in each
case the expression on the right is In Equation (3), because

in Equation (4), because Whether u is positive or nega-
tive, the integral of (1 u) du is ln ƒ u ƒ + C.> u 6 0.ln s -ud = ln ƒ u ƒu 7 0;

ln u = ln ƒ u ƒln ƒ u ƒ + C.

 = ln s -ud + C .

-u L  
1
u du = L  

1
s -ud

 ds -ud

-u

L  
1
u du = ln u + C

1s1/ud du

y = ln x

x 7 0,

lim
x: q

 ln x = q and lim
x:0+

 ln x = - q .

ln 2-n
= -n ln 2 6 -n a1

2
b = -

n
2

.

ln 2n
= n ln 2 7 n a1

2
b =

n
2

ln 2 7 1>2.>
> y = 1>x

1 2

1

x

y

1
2

0

y � 1
x

FIGURE 7.10 The rectangle of height
fits beneath the graph of 

for the interval 1 … x … 2.
y = 1>xy = 1>2

If u is a differentiable function that is never zero,

(5)L  
1
u du = ln ƒ u ƒ + C .

Equation (5) applies anywhere on the domain of the points where 
We know that

L  un du =

un+ 1

n + 1
+ C, n Z -1 and rational

u Z 0.1>u,
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Equation (5) explains what to do when n equals Equation (5) says integrals of a certain
form lead to logarithms. If then and

So Equation (5) gives

whenever ƒ(x) is a differentiable function that maintains a constant sign on the domain
given for it.

EXAMPLE 4 Applying Equation (5)

(a)

(b)

Note that is always positive on so Equation (5) applies. 

The Integrals of tan x and cot x

Equation (5) tells us at last how to integrate the tangent and cotangent functions. For the
tangent function,

Reciprocal Rule

For the cotangent,

 = ln ƒ u ƒ + C = ln ƒ sin x ƒ + C = - ln ƒ csc x ƒ + C .

 L  cot x dx = L  
cos x dx

sin x
= L  

du
u

 = ln ƒ sec x ƒ + C .

 = - ln ƒ cos x ƒ + C = ln 
1

ƒ cos x ƒ

+ C

 = -L  
du
u = - ln ƒ u ƒ + C

 L  tan x dx = L  
sin x
cos x dx = L  

-du
u

[-p>2, p>2],u = 3 + 2 sin u

 = 2 ln ƒ 5 ƒ - 2 ln ƒ 1 ƒ = 2 ln 5

 = 2 ln ƒ u ƒ d
1

5

 L
p>2

-p>2
 

4 cos u
3 + 2 sin u

 du = L
5

1
 
2
u du

 = ln ƒ -1 ƒ - ln ƒ -5 ƒ = ln 1 - ln 5 = - ln 5

 L
2

0
 

2x
x2

- 5
 dx = L

-1

-5
 
du
u = ln ƒ u ƒ d

-5

-1

L  
ƒ¿sxd
ƒsxd

 dx = ln ƒ ƒsxd ƒ + C

L  
1
u du = L  

ƒ¿sxd
ƒsxd

 dx .

du = ƒ¿sxd dxu = ƒsxd ,
-1.

482 Chapter 7: Transcendental Functions

us2d = -1us0d = -5, 
du = 2x dx,u = x2

- 5,

us -p>2d = 1, usp>2d = 5

du = 2 cos u du,u = 3 + 2 sin u,

du = -sin x dx
u = cos x 7 0 on s -p>2, p>2d,

du = cos x dx

u = sin x,
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7.2 Natural Logarithms 483

EXAMPLE 5

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, and
powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formulas
before differentiating. The process, called logarithmic differentiation, is illustrated in the
next example.

EXAMPLE 6 Using Logarithmic Differentiation

Find dy dx if

Solution We take the natural logarithm of both sides and simplify the result with the
properties of logarithms:

Rule 2

Rule 1

Rule 3

We then take derivatives of both sides with respect to x, using Equation (1) on the left:

Next we solve for dy dx:

dy
dx

= y a 2x
x2

+ 1
+

1
2x + 6

-
1

x - 1
b .

>

1
y  

dy
dx

=
1

x2
+ 1

 # 2x +
1
2

 #  
1

x + 3
-

1
x - 1

.

 = ln sx2
+ 1d +

1
2

 ln sx + 3d - ln sx - 1d .

 = ln sx2
+ 1d + ln sx + 3d1>2

- ln sx - 1d

 = ln ssx2
+ 1dsx + 3d1>2d - ln sx - 1d

 ln y = ln 
sx2

+ 1dsx + 3d1>2
x - 1

y =

sx2
+ 1dsx + 3d1>2

x - 1
 , x 7 1.

>

 =
1
2

 ln ƒ sec u ƒ d
0

p>3
=

1
2

sln 2 - ln 1d =
1
2

 ln 2

 L
p>6

0
 tan 2x dx = L

p>3
0

 tan u # du
2

=
1
2L

p>3
0

 tan u du

L  cot u du = ln ƒ sin u ƒ + C = - ln ƒ csc x ƒ + C

L  tan u du = - ln ƒ cos u ƒ + C = ln ƒ sec u ƒ + C

usp>6d = p>3
us0d = 0,

dx = du>2,

Substitute u = 2x,
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Finally, we substitute for y:

A direct computation in Example 6, using the Quotient and Product Rules, would be much
longer.

dy
dx

=

sx2
+ 1dsx + 3d1>2

x - 1
 a 2x

x2
+ 1

+
1

2x + 6
-

1
x - 1

b .

484 Chapter 7: Transcendental Functions

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 484

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


484 Chapter 7: Transcendental Functions

EXERCISES 7.2

Using the Properties of Logarithms
1. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4 9) c. ln (1 2)

d. e. f.

2. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1 125) b. ln 9.8 c.

d. ln 1225 e. ln 0.056

f.

Use the properties of logarithms to simplify the expressions in
Exercises 3 and 4.

3. a. b.

c.

4. a. b.

c.

Derivatives of Logarithms
In Exercises 5–36, find the derivative of y with respect to x, t, or as
appropriate.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. y = ln sln sln xddy = ln sln xd

y =

x ln x
1 + ln x

y =

ln x
1 + ln x

y =

1 + ln t
ty =

ln t
t

y =

x3

3
 ln x -

x3

9
y =

x4

4
 ln x -

x4

16

y = t2ln ty = t sln td2

y = sln xd3y = ln x3

y = ln s2u + 2dy = ln su + 1d

y = ln 
10
xy = ln 

3
x

y = ln st3>2dy = ln st2d
y = ln kx, k constanty = ln 3x

u ,

3 ln23 t2
- 1 - ln st + 1d

ln s8x + 4d - 2 ln 2ln sec u + ln cos u

1
2

 ln s4t4d - ln 2

ln s3x2
- 9xd + ln a 1

3x
bln sin u - ln asin u

5
b

sln 35 + ln s1>7dd>sln 25d

ln 727>
ln 213.5ln 322ln23 9

>>

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Integration
Evaluate the integrals in Exercises 37–54.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54. L  
sec x dx2ln ssec x + tan xdL  

dx
21x + 2x

L
p>12

0
 6 tan 3x dxL

p

p>2
 2 cot 

u

3
 du

L
p>2
p>4

 cot t dtL
p>2

0
 tan 

x
2

 dx

L  
sec y tan y

2 + sec y
 dyL  

3 sec2 t
6 + 3 tan t

 dt

L
16

2
 

dx

2x2ln xL
4

2
 

dx

xsln xd2

L
4

2
 

dx
x ln xL

2

1
 
2 ln x

x  dx

L
p>3

0
 

4 sin u

1 - 4 cos u
 duL

p

0
 

sin t
2 - cos t

 dt

L  
8r dr

4r2
- 5L  

2y dy

y2
- 25

L
0

-1
 

3 dx
3x - 2L

-2

-3
 
dx
x

y = L
23 x2x

 ln t dty = L
x2

x2>2
 ln 2t dt

y = ln C sx + 1d5

sx + 2d20y = ln asx2
+ 1d521 - x

b

y = ln a2sin u cos u

1 + 2 ln u
by = ln ssec sln udd

y = 2ln 1ty =

1 + ln t
1 - ln t

y =

1
2

 ln 
1 + x
1 - x

y = ln 
1

x2x + 1

y = ln ssec u + tan ud
y = ussin sln ud + cos sln udd
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7.2 Natural Logarithms 485

Logarithmic Differentiation
In Exercises 55–68, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Theory and Applications
69. Locate and identify the absolute extreme values of

a. ln (cos x) on 

b. cos (ln x) on [1 2, 2].

70. a. Prove that is increasing for 

b. Using part (a), show that if 

71. Find the area between the curves and from
to 

72. Find the area between the curve and the x-axis from
to 

73. The region in the first quadrant bounded by the coordinate axes,

the line and the curve is revolved about
the y-axis to generate a solid. Find the volume of the solid.

74. The region between the curve and the x-axis from
to is revolved about the x-axis to generate a

solid. Find the volume of the solid.

75. The region between the curve and the x-axis from
to is revolved about the y-axis to generate a solid.

Find the volume of the solid.

76. In Section 6.2, Exercise 6, we revolved about the y-axis the region
between the curve and the x-axis from 
to to generate a solid of volume What volume do you
get if you revolve the region about the x-axis instead? (See
Section 6.2, Exercise 6, for a graph.)

77. Find the lengths of the following curves.

a.

b.

78. Find a curve through the point (1, 0) whose length from tox = 1

x = sy>4d2
- 2 ln sy>4d, 4 … y … 12

y = sx2>8d - ln x, 4 … x … 8

36p .x = 3
x = 0y = 9xN2x3

+ 9

x = 2x = 1>2
y = 1>x2

x = p>2x = p>6
y = 2cot x

x = 2N2y + 1y = 3,

x = p>3.x = -p>4
y = tan x

x = 5.x = 1
y = ln 2xy = ln x

x 7 1.ln x 6 x

x 7 1.ƒsxd = x - ln x

>
[-p>4, p>3] ,

y = B3 xsx + 1dsx - 2d
sx2

+ 1ds2x + 3d
y = B3 xsx - 2d

x2
+ 1

y = C sx + 1d10

s2x + 1d5y =

x2x2
+ 1

sx + 1d2>3

y =

u sin u2sec u
y =

u + 5
u cos u

y =

1
t st + 1dst + 2d

y = t st + 1dst + 2d

y = stan ud22u + 1y = 2u + 3 sin u

y = A 1
t st + 1d

y = A t
t + 1

y = 2sx2
+ 1dsx - 1d2y = 2xsx + 1d

is

79. a. Find the centroid of the region between the curve 
and the x-axis from to Give the coordinates to
two decimal places.

b. Sketch the region and show the centroid in your sketch.

80. a. Find the center of mass of a thin plate of constant density
covering the region between the curve and the x-
axis from to 

b. Find the center of mass if, instead of being constant, the
density function is 

Solve the initial value problems in Exercises 81 and 82.

81.

82.

83. Instead of approxi-
mating ln x near we approximate near 
We get a simpler formula this way.

a. Derive the linearization at 

b. Estimate to five decimal places the error involved in replacing
by x on the interval [0, 0.1].

c. Graph and x together for Use
different colors, if available. At what points does the
approximation of seem best? Least good? By
reading coordinates from the graphs, find as good an upper
bound for the error as your grapher will allow.

84. Use the same-derivative argument, as was done to prove Rules 1
and 4 of Theorem 2, to prove the Quotient Rule property of loga-
rithms.

Grapher Explorations
85. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) to-

gether for What is going on? Explain.

86. Graph in the window 
Explain what you see. How could you change the formula to turn
the arches upside down?

87. a. Graph and the curves for 
4, 8, 20, and 50 together for 

b. Why do the curves flatten as a increases? (Hint: Find an 
a-dependent upper bound for )

88. Does the graph of have an inflection
point? Try to answer the question (a) by graphing, (b) by using cal-
culus.

y = 1x - ln x,  x 7 0,

ƒ y¿ ƒ .

0 … x … 23.
a = 2,y = ln sa + sin xdy = sin x

0 … x … 22, -2 … y … 0.y = ln ƒ sin x ƒ

0 6 x … 10.

ln s1 + xd

0 … x … 0.5.ln s1 + xd
ln s1 + xd

x = 0.ln s1 + xd L x

x = 0.ln s1 + xdx = 1,
The linearization of ln s1 + xd at x = 0

d2y

dx2 = sec2 x, y s0d = 0 and y¿s0d = 1

dy

dx
= 1 +

1
x , y s1d = 3

dsxd = 4>1x .

x = 16.x = 1
y = 1>1x

x = 2.x = 1
y = 1>x

L = L
2

1 A1 +

1
x2 dx .

x = 2

T

T
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486 Chapter 7: Transcendental Functions

The Exponential Function

Having developed the theory of the function ln x, we introduce the exponential function
as the inverse of ln x. We study its properties and compute its derivative and in-

tegral. Knowing its derivative, we prove the power rule to differentiate when n is any
real number, rational or irrational.

The Inverse of ln x and the Number e

The function ln x, being an increasing function of x with domain and range
has an inverse with domain and range The graph of

is the graph of ln x reflected across the line As you can see in Figure 7.11,

The function is also denoted by exp x.
In Section 7.2 we defined the number e by the equation so

Although e is not a rational number, later in this section we see one
way to express it as a limit. In Chapter 11, we will calculate its value with a computer to as
many places of accuracy as we want with a different formula (Section 11.9, Example 6).
To 15 places,

The Function 

We can raise the number e to a rational power r in the usual way:

and so on. Since e is positive, is positive too. Thus, has a logarithm. When we take the
logarithm, we find that

Since ln x is one-to-one and this equation tells us that

(1)

We have not yet found a way to give an obvious meaning to for x irrational. But 
has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the
definition of to irrational values of x. The function is defined for all x, so we use it
to assign a value to at every point where had no previous definition.exex

ln-1 xex

ln-1 xex

er
= ln-1 r = exp r for r rational.

ln sln-1 rd = r ,

ln er
= r ln e = r # 1 = r .

erer

e2
= e # e, e-2

=
1
e2, e1>2

= 2e ,

y � ex

e = 2.718281828459045.

e = ln-1s1d = exp s1d .
ln sed = 1,

ln-1 x

lim
x: q

 ln-1 x = q and lim
x: - q

 ln-1 x = 0.

y = x .ln-1 x
s0, q d .s - q , q dln-1 xs - q , q d ,

s0, q d

xn
exp x = ex

7.3

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y � ln x

y � ln–1x
or

x � ln y

FIGURE 7.11 The graphs of and
The number e is

ln-1 1 = exp s1d .
y = ln-1 x = exp x .

y = ln x

DEFINITION The Natural Exponential Function
For every real number x, ex

= ln-1 x = exp x .

For the first time we have a precise meaning for an irrational exponent. Usually the
exponential function is denoted by rather than exp x. Since ln x and are inverses of
one another, we have

exex

Typical values of 

x (rounded)

0.37

0 1

1 2.72

2 7.39

10 22026

100 2.6881 * 1043

-1

ex

ex
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7.3 The Exponential Function 487

The domain of ln x is and its range is So the domain of is 
and its range is 

EXAMPLE 1 Using the Inverse Equations

(a)

(b)

(c)

(d)

(e)

(f )

(g) One way

(h) Another way

EXAMPLE 2 Solving for an Exponent

Find k if 

Solution Take the natural logarithm of both sides:

Eq. (3)

The General Exponential Function 
Since for any positive number a, we can think of as We there-
fore make the following definition.

se ln adx
= ex ln a .axa = eln a

ax

 k =
1
2

 ln 10.

 2k = ln 10

 ln e2k
= ln 10

 e2k
= 10

e2k
= 10.

e3 ln 2
= seln 2d3

= 23
= 8

e3 ln 2
= eln 23

= eln 8
= 8

eln sx2
+ 1d

= x2
+ 1

eln 2
= 2

ln esin x
= sin x

ln 2e =
1
2

ln e-1
= -1

ln e2
= 2

s0, q d .
s - q , q dexs - q , q d .s0, q d

Inverse Equations for and ln x

(2)

(3) ln sexd = x sall xd

 e ln x
= x sall x 7 0d

ex

DEFINITION General Exponential Functions
For any numbers and x, the exponential function with base a is

ax
= ex ln a .

a 7 0

When the definition gives ax
= ex ln a

= ex ln e
= ex # 1

= ex .a = e ,

Transcendental Numbers and
Transcendental Functions
Numbers that are solutions of polynomial
equations with rational coefficients are
called algebraic: is algebraic because
it satisfies the equation and 

is algebraic because it satisfies the
equation Numbers that are
not algebraic are called transcendental,
like e and In 1873, Charles Hermite
proved the transcendence of e in the
sense that we describe. In 1882, C.L.F.
Lindemann proved the transcendence 
of 

Today, we call a function 
algebraic if it satisfies an equation of the
form 

in which the P’s are polynomials in x
with rational coefficients. The function

is algebraic because 
it satisfies the equation

Here the
polynomials are 
and Functions that are not
algebraic are called transcendental.

P0 = -1.
P2 = x + 1, P1 = 0,

sx + 1dy2
- 1 = 0.

y = 1>2x + 1

Pn yn
+

Á
+ P1 y + P0 = 0

y = ƒsxd
p .

p.

x2
- 3 = 0.

23
x + 2 = 0,

-2
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EXAMPLE 3 Evaluating Exponential Functions

(a)

(b)

We study the calculus of general exponential functions and their inverses in the next
section. Here we need the definition in order to discuss the laws of exponents for 

Laws of Exponents

Even though is defined in a seemingly roundabout way as it obeys the familiar
laws of exponents from algebra. Theorem 3 shows us that these laws are consequences of
the definitions of ln x and ex .

ln-1 x ,ex

ex .

2p = ep ln 2
L e2.18

L 8.8

223
= e23 ln 2

L e1.20
L 3.32

488 Chapter 7: Transcendental Functions

HISTORICAL BIOGRAPHY

Siméon Denis Poisson
(1781–1840)

THEOREM 3 Laws of Exponents for 
For all numbers and the natural exponential obeys the following laws:

1.

2.

3.

4. sex1dx2
= ex1 x2

= sex2dx1

ex1

ex2
= ex1 - x2

e-x
=

1
ex

ex1 # ex2
= ex1 + x2

exx2,x, x1,

ex

Proof of Law 1 Let

(4)

Then

Product Rule for logarithms

Exponentiate.

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4 Applying the Exponent Laws

(a) Law 1

(b) Law 2

(c) Law 3

(d) Law 4se3dx
= e3x

= sexd3

e2x

e = e2x- 1

e-ln x
=

1
eln x =

1
x

ex+ ln 2
= ex # eln 2

= 2ex

 = ex1 ex2 .

e ln u
= u = y1 y2

 ex1 + x2
= e ln y1 y2

 = ln y1 y2

 x1 + x2 = ln y1 + ln y2

 x1 = ln y1 and x2 = ln y2

y1 = ex1 and y2 = ex2 .

Take logs of both
sides of Eqs. (4).
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7.3 The Exponential Function 489

Theorem 3 is also valid for the exponential function with base a. For example,

Definition of

Law 1

Factor ln a

Definition of

The Derivative and Integral of 

The exponential function is differentiable because it is the inverse of a differentiable func-
tion whose derivative is never zero (Theorem 1). We calculate its derivative using Theorem 1
and our knowledge of the derivative of ln x. Let

Then,

Theorem 1

That is, for we find that so the natural exponential function is its
own derivative. We will see in Section 7.5 that the only functions that behave this way are
constant multiples of In summary,ex .

exdy>dx = exy = ex ,

 = ex .

ƒ¿szd =

1
z  with z = ex =

1

a 1
ex b

ƒ -1sxd = ex =
1

ƒ¿sexd

 =
1

ƒ¿sƒ -1sxdd

 =

d
dx

 ƒ -1sxd

 
dy
dx

=

d
dx

 sexd =

d
dx

 ln-1 x

ƒsxd = ln x and y = ex
= ln-1 x = ƒ-1sxd .

ex

ax = ax1 + x2 .

 = e sx1 + x2dln a

 = ex1 ln a + x2 ln a

ax ax1 # ax2
= ex1 ln a # ex2 ln a

ax ,

(5)
d
dx

 ex
= ex

EXAMPLE 5 Differentiating an Exponential

The Chain Rule extends Equation (5) in the usual way to a more general form.

 = 5ex

 
d
dx

 s5exd = 5 
d
dx

 ex
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EXAMPLE 6 Applying the Chain Rule with Exponentials

(a) Eq. (6) with 

(b) Eq. (6) with 

The integral equivalent of Equation (6) is

u = sin x
d
dx

 esin x
= esin x 

d
dx

 ssin xd = esin x # cos x

u = -x
d
dx

 e-x
= e-x 

d
dx

 s -xd = e-xs -1d = -e-x

490 Chapter 7: Transcendental Functions

If u is any differentiable function of x, then

(6)
d
dx

 eu
= eu 

du
dx

.

L  eu du = eu
+ C .

EXAMPLE 7 Integrating Exponentials

(a)

(b) Antiderivative from Example 6

EXAMPLE 8 Solving an Initial Value Problem

Solve the initial value problem

Solution We integrate both sides of the differential equation with respect to x to obtain

e y
= x2

+ C .

e y 
dy
dx

= 2x, x 7 23; ys2d = 0.

 = e1
- e0

= e - 1

 L
p>2

0
 esin x cos x dx = esin x d

0

p>2

 =
1
3

 s8 - 1d =

7
3

 =
1
3

 eu d
0

ln 8

 =
1
3L

ln 8

0
 eu du

 L
ln 2

0
 e3x dx = L

ln 8

0
 eu # 1

3
 du usln 2d = 3 ln 2 = ln 23

= ln 8

u = 3x, 1
3

 du = dx, us0d = 0,
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7.3 The Exponential Function 491

We use the initial condition to determine C:

This completes the formula for 

To find y, we take logarithms of both sides:

Notice that the solution is valid for 
Let’s check the solution in the original equation.

The solution checks. 

The Number e Expressed as a Limit

We have defined the number e as the number for which or the value exp (1). We
see that e is an important constant for the logarithmic and exponential functions, but what
is its numerical value? The next theorem shows one way to calculate e as a limit.

ln e = 1,

 = 2x .

e ln y
= y = sx2

- 3d 
2x

x2
- 3

y = ln sx2
- 3d = e ln sx2

- 3d 
2x

x2
- 3

Derivative of ln sx2
- 3d = e y 

2x
x2

- 3

 e y 
dy
dx

= e y 
d
dx

 ln sx2
- 3d

x 7 23.

 y = ln sx2
- 3d .

 ln e y
= ln sx2

- 3d

e y
= x2

- 3.

e y :

 = 1 - 4 = -3.

 C = e0
- s2d2

ys2d = 0

THEOREM 4 The Number e as a Limit
The number e can be calculated as the limit

e = lim
x:0

 s1 + xd1>x .

Proof If then so But, by the definition of derivative,

ln is continuous. = lim
x:0

 ln s1 + xd1/x
= ln c lim

x:0
s1 + xd1/x d

ln 1 = 0 = lim
x:0

 
ln s1 + xd - ln 1

x = lim
x:0

  
1
x   ln s1 + xd

ƒ¿s1d = lim
h:0

 
ƒs1 + hd - ƒs1d

h
= lim

x:0
 
ƒs1 + xd - ƒs1d

x

ƒ¿s1d = 1.ƒ¿sxd = 1>x ,ƒsxd = ln x ,
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Because we have

Therefore,

By substituting we can also express the limit in Theorem 4 as

(7)

At the beginning of the section we noted that to 15 decimal
places.

The Power Rule (General Form)

We can now define for any and any real number n as Therefore, the n
in the equation no longer needs to be rational—it can be any number as long
as 

Together, the law and the definition enable us to establish
the Power Rule for differentiation in its final form. Differentiating with respect to x
gives

Definition of

Chain Rule for

The definition again

In short, as long as 

The Chain Rule extends this equation to the Power Rule’s general form.

d
dx

 xn
= nxn - 1 .

x 7 0,

 = nxn - 1 .

 = xn # n
x

eu = en ln x # d
dx

 sn ln xd

xn,  x 7 0 
d
dx

 xn
=

d
dx

 en ln x

xn
xn

= en ln xax>ay
= ax - y

ln eu
= u,  any u ln xn

= ln sen ln xd = n ln x

x 7 0:
ln xn

= n ln x
xn

= en ln x .x 7 0xn

e = 2.718281828459045

e = lim
y: q

 a1 +
1
y b

y

.

y = 1>x ,

ln e = 1 and ln is one-to-onelim
x:0

 s1 + xd1>x
= e

ln c lim
x:0

s1 + xd1>x d = 1

ƒ¿s1d = 1,

492 Chapter 7: Transcendental Functions

Power Rule (General Form)
If u is a positive differentiable function of x and n is any real number, then is a
differentiable function of x and

d
dx

 un
= nun - 1 

du
dx

.

un
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7.3 The Exponential Function 493

EXAMPLE 9 Using the Power Rule with Irrational Powers

(a)

(b)

 = 3ps2 + sin 3xdp- 1scos 3xd .

 
d
dx

 s2 + sin 3xdp = ps2 + sin 3xdp- 1scos 3xd # 3

d
dx

 x22
= 22x22- 1 sx 7 0d
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7.3 The Exponential Function 493

EXERCISES 7.3

Algebraic Calculations with the Exponential
and Logarithm
Find simpler expressions for the quantities in Exercises 1–4.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

Solving Equations with Logarithmic
or Exponential Terms
In Exercises 5–10, solve for y in terms of t or x, as appropriate.

5. 6.

7. 8.

9.

10.

In Exercises 11 and 12, solve for k.

11. a. b. c.

12. a. b. c.

In Exercises 13–16, solve for t.

13. a. b. c.

14. a. b. c.

15. 16.

Derivatives
In Exercises 17–36, find the derivative of y with respect to x, t, or as
appropriate.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. y = ln s3ue-udy = eussin u + cos ud
y = s9x2

- 6x + 2de3xy = sx2
- 2x + 2dex

y = s1 + 2xde-2xy = xex
- ex

y = e s41x + x2dy = e5- 7x

y = e2x>3y = e-5x

u ,

e sx2de s2x + 1d
= ete2t

= x2

esln 2dt
=

1
2

ekt
=

1
10

e-0.01t
= 1000

esln 0.2dt
= 0.4ekt

=

1
2

e-0.3t
= 27

esln 0.8dk
= 0.880ek

= 1e5k
=

1
4

ek>1000
= a100e10k

= 200e2k
= 4

ln sy2
- 1d - ln sy + 1d = ln ssin xd

ln sy - 1d - ln 2 = x + ln x

ln s1 - 2yd = tln sy - 40d = 5t

ln y = - t + 5ln y = 2t + 4

ln se2 ln xdln se sexddln sesec ud
ln se-x2

- y2

dln sln eed2 ln 2e

e ln px - ln 2e-ln 0.3e ln sx2
+ y2d

e ln x - ln ye-ln x2

e ln 7.2

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–40, find dy dx.

37. 38.

39. 40.

Integrals
Evaluate the integrals in Exercises 41–62.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57.

58. Lecsc sp+ td csc sp + td cot sp + td dt

Lesec pt sec pt tan pt dt

L
p>2
p>4

s1 + ecot ud csc2 u duL
p>4

0
s1 + e tan ud sec2 u du

L  
e-1>x2

x3  dxL  
e1>x
x2  dx

L t3e st 4d dtL  2t e-t 2

 dt

L  
e-2r2r

 drL  
e2r2r

 dr

L
ln 16

0
 ex>4 dxL

ln 9

ln 4
 ex>2 dx

L  2es2x- 1d dxL  8esx+ 1d dx

L
0

-ln 2
 e-x dxL

ln 3

ln 2
 ex dx

Ls2ex
- 3e-2xd dxLse3x

+ 5e-xd dx

tan y = ex
+ ln xe2x

= sin sx + 3yd
ln xy = ex+ yln y = ey sin x

>
y = L

e2x

e41x
 ln t dty = L

ln x

0
 sin et dt

y = esin tsln t2
+ 1dy = escos t+ ln td

y = ln a 2u
1 + 2u by = ln a eu

1 + eu
b

y = ln s2e-t sin tdy = ln s3te-td
y = u3e-2u cos 5uy = cos se-u2

d
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59. 60.

61. 62.

Initial Value Problems
Solve the initial value problems in Exercises 63–66.

63.

64.

65.

66.

Theory and Applications
67. Find the absolute maximum and minimum values of 

on [0, 1].

68. Where does the periodic function take on its ex-
treme values and what are these values?

69. Find the absolute maximum value of and say
where it is assumed.

70. Graph and its first derivative together. Com-
ment on the behavior of ƒ in relation to the signs and values of 
Identify significant points on the graphs with calculus, as neces-
sary.

71. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve below by the curve 
and on the right by the line 

72. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve below by the curve

and on the right by the line 

73. Find a curve through the origin in the xy-plane whose length from
to is

74. Find the area of the surface generated by revolving the curve
about the y-axis.x = sey

+ e-yd>2, 0 … y …  ln 2 ,

L = L
1

0 A1 +

1
4

 ex dx .

x = 1x = 0

x = 2 ln 2 .y = e-x>2 ,
y = ex>2 ,

x = ln 3 .
y = ex ,y = e2x ,

ƒ¿ .
ƒsxd = sx - 3d2ex

ƒsxd = x2 ln s1>xd

x

y

0

y � 2esin (x/2)

ƒsxd = 2esin sx>2d

ex
- 2x

ƒsxd =

d2y

dt2 = 1 - e2t, y s1d = -1 and y¿s1d = 0

d2y

dx2 = 2e-x, y s0d = 1 and y¿s0d = 0

dy

dt
= e-t sec2 spe-td, y sln 4d = 2>p

dy

dt
= et sin set

- 2d, y sln 2d = 0

L  
dx

1 + exL  
er

1 + er dr

L
2ln p

0
 2x ex2

 cos sex2

d dxL
ln sp>2d

ln sp>6d
 2ey cos ey dy

75. a. Show that 

b. Find the average value of ln x over [1, e].

76. Find the average value of on [1, 2].

77. The linearization of

a. Derive the linear approximation at 

b. Estimate to five decimal places the magnitude of the error
involved in replacing by on the interval [0, 0.2].

c. Graph and together for Use different
colors, if available. On what intervals does the approximation
appear to overestimate Underestimate 

78. Laws of Exponents

a. Starting with the equation derived in the text,
show that for any real number x. Then show that

for any numbers and 

b. Show that for any numbers and 

79. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation 

80. The inverse relation between and ln x Find out how good
your calculator is at evaluating the composites

81. Show that for any number 

(See accompanying figure.)

82. The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of is concave up over every interval of
x-values.

ex

x

y

10 a

ln a

y � ln x

L
a

1
 ln x dx + L

ln a

0
 e y dy = a ln a .

a 7 1

eln x and  ln sexd .

e x

ln x = 1.

x2 .x1sex1dx2
= ex1 x2

= sex2dx1

x2 .x1ex1>ex2
= ex1 - x2

e-x
= 1>ex

ex1ex2
= ex1 + x2 ,

ex?ex?

-2 … x … 2.1 + xex

1 + xex

x = 0.ex
L 1 + x

e x at x = 0

ƒsxd = 1>x

1  ln x dx = x ln x - x + C.

0

ln 2

1

x �
ey � e–y

2

x

y
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T

T

T

T
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b. Show, by reference to the accompanying figure, that if
then

c. Use the inequality in part (b) to conclude that

This inequality says that the geometric mean of two positive
numbers is less than their logarithmic mean, which in turn is
less than their arithmetic mean.

(For more about this inequality, see “The Geometric,
Logarithmic, and Arithmetic Mean Inequality” by Frank Burk,

2ab 6

b - a
ln b - ln a

6

a + b
2

.

e sln a + ln bd>2 # sln b - ln ad 6 L
ln b

ln a
 ex dx 6

e ln a
+ e ln b

2
# sln b - ln ad .

0 6 a 6 b
American Mathematical Monthly, Vol. 94, No. 6, June–July
1987, pp. 527–528.)

x

2

F

C

B

E

DA

M

NOT TO SCALE

y � ex

ln a � ln b ln bln a
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and 

We have defined general exponential functions such as and In this section we
compute their derivatives and integrals. We also define the general logarithmic functions
such as and and find their derivatives and integrals as well.

The Derivative of 

We start with the definition 

If then

With the Chain Rule, we get a more general form.

d
dx

 ax
= ax ln a.

a 7 0,

 = ax ln a .

d
dx

 eu
= eu 

du
dx

 
d
dx

 ax
=

d
dx

 ex ln a
= ex ln a # d

dx
 sx ln ad

ax
= ex ln a :

au

logp x ,log2 x, log10 x ,

px .2x, 10x ,

loga xax7.4

If and u is a differentiable function of x, then is a differentiable function
of x and

(1)
d
dx

 au
= au ln a  

du
dx

.

aua 7 0

These equations show why is the exponential function preferred in calculus. If 
then and the derivative of simplifies to

d
dx

 ex
= ex ln e = ex .

axln a = 1
a = e ,ex
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EXAMPLE 1 Differentiating General Exponential Functions

(a)

(b)

(c)

From Equation (1), we see that the derivative of is positive if or 
and negative if or Thus, is an increasing function of x if 
and a decreasing function of x if In each case, is one-to-one. The second
derivative

is positive for all x, so the graph of is concave up on every interval of the real line
(Figure 7.12).

Other Power Functions

The ability to raise positive numbers to arbitrary real powers makes it possible to define
functions like and for We find the derivatives of such functions by rewriting
the functions as powers of e.

EXAMPLE 2 Differentiating a General Power Function

Find 

Solution Write as a power of e:

Then differentiate as usual:

The Integral of 

If so that we can divide both sides of Equation (1) by ln a to obtain

au 
du
dx

=
1

ln a
 
d
dx

 saud .

ln a Z 0,a Z 1,

au

 = xx s1 + ln xd .

 = xx ax # 1
x + ln xb

 = ex ln x 
d
dx

 sx ln xd

 
dy
dx

=

d
dx

 ex ln x

ax with a = x .y = xx
= ex ln x .

xx

dy>dx if y = xx, x 7 0.

x 7 0.xln xxx

ax

d2

dx2 saxd =

d
dx

 sax ln ad = sln ad2 ax

ax0 6 a 6 1.
a 7 1ax0 6 a 6 1.ln a 6 0,

a 7 1,ln a 7 0,ax

d
dx

 3sin x
= 3sin xsln 3d 

d
dx

 ssin xd = 3sin x sln 3d cos x

d
dx

 3-x
= 3-xsln 3d 

d
dx

 s -xd = -3-x ln 3

d
dx

 3x
= 3x ln 3

496 Chapter 7: Transcendental Functions

x

y

0–1 1

1

x

y � 1x

y � 





1
2

x
y � 





1
3

x
y � 





1
10 y � 10x

y � 3x

y � 2x

FIGURE 7.12 Exponential functions
decrease if and increase if

As we have if
and if As

we have if 
and if a 7 1.ax : 0

0 6 a 6 1ax : qx : - q ,
a 7 1.ax : q0 6 a 6 1
ax : 0x : q ,a 7 1.

0 6 a 6 1
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7.4 and 497loga xax

Integrating with respect to x then gives

Writing the first integral in differential form gives

L  au  
du
dx

 dx = L  
1

ln a
 
d
dx

 saud dx =
1

ln aL  
d
dx

 saud dx =
1

ln a
 au

+ C .

(2)Lau du =

au

ln a
+ C .

EXAMPLE 3 Integrating General Exponential Functions

(a) Eq. (2) with

(b)

and Eq. (2)

u replaced by sin x

Logarithms with Base a

As we saw earlier, if a is any positive number other than 1, the function is one-to-one
and has a nonzero derivative at every point. It therefore has a differentiable inverse. We
call the inverse the logarithm of x with base a and denote it by loga x.

ax

=
2sin x

ln 2
+ C

u = sin x, du = cos x dx,= L  2u du =
2u

ln 2
+ C

L  2sin x cos x dx

a = 2, u = xL  2x dx =
2x

ln 2
+ C

DEFINITION
For any positive number 

is the inverse function of ax .loga x

a Z 1,

loga x

The graph of can be obtained by reflecting the graph of across the 45°
line (Figure 7.13). When we have of Since 
and are inverses of one another, composing them in either order gives the identity function.ax

loga xex
= ln x .loge x = inversea = e ,y = x

y = axy = loga x

Inverse Equations for and 

(3)

(4)loga saxd = x sall xd

a loga x
= x sx 7 0d

loga xax

x

y

1
2

0 1 2

y � log2x

y � 2x

y � x

FIGURE 7.13 The graph of and its
inverse, log 2 x .

2x

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 497

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce07.html?3_1_l


EXAMPLE 4 Applying the Inverse Equations

(a) (b)

(c) (d)

Evaluation of 

The evaluation of is simplified by the observation that is a numerical multiple
of ln x.

loga xloga x

loga x

10log10 s4d
= 42log2 s3d

= 3

log10 s10-7d = -7log2 s25d = 5

498 Chapter 7: Transcendental Functions

(5)loga x =
1

ln a
#  ln x =

ln x
ln a

We can derive this equation from Equation (3):

Eq. (3)

Take the natural logarithm of both sides.

The Power Rule in Theorem 2

Solve for

For example,

The arithmetic rules satisfied by are the same as the ones for ln x (Theorem 2).
These rules, given in Table 7.2, can be proved by dividing the corresponding rules for the
natural logarithm function by ln a. For example,

Rule 1 for natural logarithms

divided by ln a

gives Rule 1 for base a logarithms.

Derivatives and Integrals Involving 

To find derivatives or integrals involving base a logarithms, we convert them to natural
logarithms.

If u is a positive differentiable function of x, then

d
dx

 sloga ud =

d
dx

 aln u
ln a
b =

1
ln a

 
d
dx

 sln ud =
1

ln a
# 1
u

 
du
dx

.

loga x

Á loga xy = loga x + loga y .

ÁÁ 
ln xy
ln a

=

ln x
ln a

+

ln y
ln a

Á ln xy = ln x + ln y

loga x

log10 2 =
ln 2
ln 10

L

0.69315
2.30259

L 0.30103

loga x . loga x =

ln x
ln a

 loga sxd #  ln a = ln x

 ln a loga sxd
= ln x

 a loga sxd
= x

TABLE 7.2 Rules for base a
logarithms

For any numbers and

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule:

4. Power Rule:

loga xy
= y loga x

loga 
1
y = - loga y

loga 
x
y = loga x - loga y

loga xy = loga x + loga y

y 7 0,

x 7 0

d
dx

 sloga ud =
1

ln a
# 1
u

 
du
dx
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7.4 and 499loga xa x

EXAMPLE 5

(a)

(b)

Base 10 Logarithms

Base 10 logarithms, often called common logarithms, appear in many scientific formu-
las. For example, earthquake intensity is often reported on the logarithmic Richter scale.
Here the formula is

where a is the amplitude of the ground motion in microns at the receiving station, T is the pe-
riod of the seismic wave in seconds, and B is an empirical factor that accounts for the weak-
ening of the seismic wave with increasing distance from the epicenter of the earthquake.

EXAMPLE 6 Earthquake Intensity

For an earthquake 10,000 km from the receiving station, If the recorded vertical
ground motion is microns and the period is the earthquake’s magnitude
is

An earthquake of this magnitude can do great damage near its epicenter. 

The pH scale for measuring the acidity of a solution is a base 10 logarithmic scale.
The pH value (hydrogen potential) of the solution is the common logarithm of the recipro-
cal of the solution’s hydronium ion concentration, 

The hydronium ion concentration is measured in moles per liter. Vinegar has a pH of three,
distilled water a pH of 7, seawater a pH of 8.15, and household ammonia a pH of 12. The
total scale ranges from about 0.1 for normal hydrochloric acid to 14 for a normal solution
of sodium hydroxide.

Another example of the use of common logarithms is the decibel or dB (“dee bee”)
scale for measuring loudness. If I is the intensity of sound in watts per square meter, the
decibel level of the sound is

(6)Sound level = 10 log10 sI * 1012d dB.

pH = log10 
1

[H3 O+]
= - log10 [H3 O+] .

[H3 O+]:

R = log10 a10
1
b + 6.8 = 1 + 6.8 = 7.8.

T = 1 sec,a = 10
B = 6.8.

Magnitude R = log10 aa
T
b + B,

=
1

ln 2
 
u2

2
+ C =

1
ln 2

 
sln xd2

2
+ C =

sln xd2

2 ln 2
+ C

u = ln x, du =

1
x  dx=

1
ln 2

 Lu du

log2 x =

ln x
ln 2L  

log2 x
x  dx =

1
ln 2

 L  
ln x
x  dx

d
dx

 log10 s3x + 1d =
1

ln 10
 #  

1
3x + 1

 
d
dx

 s3x + 1d =

3
sln 10ds3x + 1d

Most foods are acidic 

Food pH Value

Bananas 4.5–4.7
Grapefruit 3.0–3.3
Oranges 3.0–4.0
Limes 1.8–2.0
Milk 6.3–6.6
Soft drinks 2.0–4.0
Spinach 5.1–5.7

spH 6 7d.
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If you ever wondered why doubling the power of your audio amplifier increases the sound
level by only a few decibels, Equation (6) provides the answer. As the following example
shows, doubling I adds only about 3 dB.

EXAMPLE 7 Sound Intensity

Doubling I in Equation (6) adds about 3 dB. Writing log for (a common practice), we
have

Eq. (6) with 2I for I

log10 2 L 0.30 L original sound level + 3.

 = original sound level + 10 log 2

 = 10 log 2 + 10 log sI * 1012d
 = 10 log s2 # I * 1012d

 Sound level with I doubled = 10 log s2I * 1012d

log10

500 Chapter 7: Transcendental Functions

Typical sound levels

Threshold of hearing 0 dB
Rustle of leaves 10 dB
Average whisper 20 dB
Quiet automobile 50 dB
Ordinary conversation 65 dB
Pneumatic drill 10 feet 90 dB

away
Threshold of pain 120 dB
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EXERCISES 7.4

Algebraic Calculations With and 
Simplify the expressions in Exercises 1–4.

1. a. b. c.

d. e. f.

2. a. b. c.

d. e. f.

3. a. b. c.

4. a. b. c.

Express the ratios in Exercises 5 and 6 as ratios of natural logarithms
and simplify.

5. a. b. c.

6. a. b. c.

Solve the equations in Exercises 7–10 for x.

7.

8.

9.

10.

Derivatives
In Exercises 11–38, find the derivative of y with respect to the given
independent variable.

11. 12.

13. 14.

15. 16. y = t1- ey = xp
y = 2ss2dy = 52s

y = 3-xy = 2x

ln e + 4-2 log4 sxd
=

1
x  log10 s100d

3log3 sx2d
= 5e ln x

- 3 # 10log10 s2d

8log8 s3d
- e ln 5

= x2
- 7log7 s3xd

3log3 s7d
+ 2log2 s5d

= 5log5 sxd

log a b

log b a

log210  x

log22  x

log 9 x

log 3 x

log x a

log x2 a

log 2 x

log 8 x

log 2 x

log 3 x

log4 s2ex sin xdloge sexd25log5 s3x2d

log2 se sln 2dssin xdd9log3 x2log4 x

log3 a1
9
blog121 11log11 121

plogp 710log10 s1>2d2log2 3

log4 a1
4
blog323log4 16

1.3log1.3 758log8225log5 7

loga xax
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Logarithmic Differentiation
In Exercises 39–46, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

39. 40.

41. 42.

43. 44.

45. 46.

Integration
Evaluate the integrals in Exercises 47–56.

47. 48. Ls1.3dx dxL  5x dx

y = sln xdln xy = xln x

y = xsin xy = ssin xdx

y = t2ty = s1tdt

y = xsx+ 1dy = sx + 1dx

y = t log 3 Ae ssin tdsln 3d By = log 2 s8t ln 2d
y = 3 log8 slog2 tdy = 3log2 t

y = log2 a x2e2

22x + 1
by = log5 ex

y = log7 asin u cos u

eu 2u
by = u sin slog7 ud

y = log5 B a 7x
3x + 2

b ln 5

y = log3 a ax + 1
x - 1

b ln 3b
y = log3 r # log9 ry = log2 r # log4 r

y = log25 ex
- log51xy = log4 x + log4 x2

y = log3s1 + u ln 3dy = log2 5u

y = 5-cos 2ty = 2sin 3t

y = 3tan u ln 3y = 7sec u ln 7

y = sln udpy = scos ud22

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 500

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
tcu0704a.html
tcu0704a.html
tcu0704b.html
tcu0704b.html
tcu0704c.html
tcu0704c.html
tcu0704d.html
tcu0704d.html
tcu0704d.html
tcu0704d.html
tcu0704e.html
tcu0704e.html
tcu0704f.html
tcu0704f.html


7.4 and 501loga xa x

49. 50.

51. 52.

53. 54.

55. 56.

Evaluate the integrals in Exercises 57–60.

57. 58.

59. 60.

Evaluate the integrals in Exercises 61–70.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Evaluate the integrals in Exercises 71–74.

71. 72.

73. 74.

Theory and Applications
75. Find the area of the region between the curve 

and the interval of the x-axis.

76. Find the area of the region between the curve and the in-
terval of the x-axis.

77. Blood pH The pH of human blood normally falls between 7.37
and 7.44. Find the corresponding bounds for 

78. Brain fluid pH The cerebrospinal fluid in the brain has a hy-
dronium ion concentration of about 
per liter. What is the pH?

79. Audio amplifiers By what factor k do you have to multiply the
intensity of I of the sound from your audio amplifier to add 10 dB
to the sound level?

80. Audio amplifiers You multiplied the intensity of the sound of
your audio system by a factor of 10. By how many decibels did
this increase the sound level?

[H3 O+] = 4.8 * 10-8 moles

[H3 O+] .

-1 … x … 1
y = 21- x

-2 … x … 2
y = 2x>s1 + x2d

1
ln a

 L
x

1
 
1
t  dt, x 7 0L

1>x
1

 
1
t  dt, x 7 0

L
e x

1
 
1
t  dtL

ln x

1
 
1
t  dt, x 7 1

L  
dx

xslog8 xd2L  
dx

x log10 x

L
3

2
 
2 log2 sx - 1d

x - 1
 dxL

9

0
 
2 log10 sx + 1d

x + 1
 dx

L
10

1>10
 
log10 s10xd

x  dxL
2

0
 
log2 sx + 2d

x + 2
 dx

L
e

1
 
2 ln 10 log10 x

x  dxL
4

1
 
ln 2 log2 x

x  dx

L
4

1
 
log2 x

x  dxL  
log10 x

x  dx

L
e

1
 xsln 2d - 1 dxL

3

0
s12 + 1dx12 dx

Lx22- 1 dxL  3x23 dx

L
2

1
 
2ln x

x  dxL
4

2
 x2xs1 + ln xd dx

L
p>4

0
 a1

3
b tan t

 sec2 t dtL
p>2

0
 7cos t sin t dt

L
4

1
 
21x1x

 dxL
22

1
 x2sx2d dx

L
0

-2
 5-u duL

1

0
 2-u du

81. In any solution, the product of the hydronium ion concentration
(moles L) and the hydroxyl ion concentration 

(moles L) is about 

a. What value of minimizes the sum of the concentrations,
(Hint: Change notation. Let

)

b. What is the pH of a solution in which S has this minimum
value?

c. What ratio of to minimizes S?

82. Could possibly equal Give reasons for your an-
swer.

83. The equation has three solutions: and one
other. Estimate the third solution as accurately as you can by
graphing.

84. Could possibly be the same as for Graph the two
functions and explain what you see.

85. The linearization of

a. Find the linearization of at Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
and 

86. The linearization of

a. Find the linearization of at Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
and 

Calculations with Other Bases
87. Most scientific calculators have keys for and ln x. To find

logarithms to other bases, we use the Equation (5), 

Find the following logarithms to five decimal places.

a. b.

c. d.

e. ln x, given that 

f. ln x, given that 

g. ln x, given that 

h. ln x, given that 

88. Conversion factors

a. Show that the equation for converting base 10 logarithms to
base 2 logarithms is

b. Show that the equation for converting base a logarithms to
base b logarithms is

logb x =

ln a
ln b

 loga x .

log2 x =

ln 10
ln 2

 log10 x .

log10 x = -0.7

log2 x = -1.5

log2 x = 1.4

log10 x = 2.3

log0.5 7log20 17

log7 0.5log3 8

sln xd>sln ad .
log a x =

log10 x

2 … x … 4.0 … x … 8

x = 3.ƒsxd = log3 x

log3 x

-1 … x … 1.-3 … x … 3

x = 0.ƒsxd = 2x

2x

x 7 0?2ln xxln 2

x = 2, x = 4,x2
= 2x

1>logb a?loga b

[OH-][H3 O+]

x = [H3 O+] .
S = [H3 O+] + [OH-]?

[H3 O+]

10-14 .> [OH-]>[H3 O+]

T

T

T

T

T
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89. Orthogonal families of curves Prove that all curves in the family

(k any constant) are perpendicular to all curves in the family
(c any constant) at their points of intersection. (See

the accompanying figure.)

90. The inverse relation between and ln x Find out how good
your calculator is at evaluating the composites

91. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation ln x = 1.

eln x and  ln sexd .

e x

y = ln x + c

y = -

1
2

 x2
+ k

92. Which is bigger, or Calculators have taken some of the
mystery out of this once-challenging question. (Go ahead and
check; you will see that it is a surprisingly close call.) You can an-
swer the question without a calculator, though.

a. Find an equation for the line through the origin tangent to the
graph of 

b. Give an argument based on the graphs of and the
tangent line to explain why for all positive 

c. Show that for all positive 

d. Conclude that for all positive 

e. So which is bigger, or ep?pe

x Z e .xe
6 ex

x Z e .ln sxed 6 x

x Z e .ln x 6 x>e
y = ln x

[–3, 6] by [–3, 3]

y = ln x .

ep?pe
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502 Chapter 7: Transcendental Functions

Exponential Growth and Decay

Exponential functions increase or decrease very rapidly with changes in the independent
variable. They describe growth or decay in a wide variety of natural and industrial situa-
tions. The variety of models based on these functions partly accounts for their importance.

The Law of Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the amount of a
decaying radioactive material, funds earning interest in a bank account, the size of a popu-
lation, and the temperature difference between a hot cup of coffee and the room in which it
sits. Such quantities change according to the law of exponential change, which we derive
in this section.

If the amount present at time is called then we can find y as a function of t
by solving the following initial value problem:

(1)

If y is positive and increasing, then k is positive, and we use Equation (1) to say that the
rate of growth is proportional to what has already been accumulated. If y is positive and
decreasing, then k is negative, and we use Equation (1) to say that the rate of decay is pro-
portional to the amount still left.

 Initial condition:  y = y0 when t = 0.

 Differential equation: dy
dt

= ky

y0,t = 0

7.5 
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7.5 Exponential Growth and Decay 503

We see right away that the constant function is a solution of Equation (1) if
To find the nonzero solutions, we divide Equation (1) by y:

Integrate with respect to t; 

Exponentiate.

If then 

By allowing A to take on the value 0 in addition to all possible values we can include
the solution in the formula.

We find the value of A for the initial value problem by solving for A when and

The solution of the initial value problem is therefore 
Quantities changing in this way are said to undergo exponential growth if and

exponential decay if k 6 0.
k 7 0,

y = y0 ekt .

y0 = Aek # 0
= A.

t = 0:
y = y0

y = 0
;eC ,

 y = Aekt .

y = ;r .ƒ y ƒ = r , y = ;eCekt

ea + b
= ea # eb ƒ y ƒ = eC # ekt

 ƒ y ƒ = ekt + C

1s1>ud du = ln ƒ u ƒ + C . ln ƒ y ƒ = kt + C

 L  
1
y  

dy
dt

 dt = Lk dt

 
1
y  #  

dy
dt

= k

y0 = 0.
y = 0

A is a shorter name for
;eC .

The Law of Exponential Change

(2)

The number k is the rate constant of the equation.

Growth: k 7 0 Decay: k 6 0

y = y0 ekt

The derivation of Equation (2) shows that the only functions that are their own deriva-
tives are constant multiples of the exponential function.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, foxes, or
bacteria, for example) is a discontinuous function of time because it takes on discrete val-
ues. However, when the number of individuals becomes large enough, the population can
be approximated by a continuous function. Differentiability of the approximating function
is another reasonable hypothesis in many settings, allowing for the use of calculus to
model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and as-
sume a constant fertility, then at any instant t the birth rate is proportional to the number
y(t) of individuals present. Let’s assume, too, that the death rate of the population is stable
and proportional to y(t). If, further, we neglect departures and arrivals, the growth rate
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dy dt is the birth rate minus the death rate, which is the difference of the two proportional-
ities under our assumptions. In other words, so that where is the
size of the population at time As with all kinds of growth, there may be limitations
imposed by the surrounding environment, but we will not go into these here. (This situa-
tion is analyzed in Section 9.5.)

In the following example we assume this population model to look at how the number
of individuals infected by a disease within a given population decreases as the disease is
appropriately treated.

EXAMPLE 1 Reducing the Cases of an Infectious Disease

One model for the way diseases die out when properly treated assumes that the rate dy dt
at which the number of infected people changes is proportional to the number y. The num-
ber of people cured is proportional to the number that have the disease. Suppose that in the
course of any given year the number of cases of a disease is reduced by 20%. If there are
10,000 cases today, how many years will it take to reduce the number to 1000?

Solution We use the equation There are three things to find: the value of 
the value of k, and the time t when 

The value of We are free to count time beginning anywhere we want. If we count
from today, then when so Our equation is now

(3)

The value of k. When the number of cases will be 80% of its present value,
or 8000. Hence,

Logs of both sides

At any given time t,

(4)

The value of t that makes We set y equal to 1000 in Equation (4) and solve
for t:

Logs of both sides

It will take a little more than 10 years to reduce the number of cases to 1000. 

Continuously Compounded Interest

If you invest an amount of money at a fixed annual interest rate r (expressed as a deci-
mal) and if interest is added to your account k times a year, the formula for the amount of
money you will have at the end of t years is

(5)At = A0 a1 +
r
k
b kt

.

A0

 t =

ln 0.1
ln 0.8

L 10.32 years .

 sln 0.8dt = ln 0.1

 e sln 0.8dt
= 0.1

 1000 = 10,000e sln 0.8dt

y = 1000.

y = 10,000e sln 0.8dt .

 k = ln 0.8 6 0.

 ln sekd = ln 0.8

 ek
= 0.8

 8000 = 10,000eks1d

t = 1 year,

y = 10,000ekt .

y0 = 10,000.t = 0,y = 10,000
y0.

y = 1000.
y0,y = y0 ekt .

>

t = 0.
y0y = y0 ekt ,dy>dt = ky ,

>
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Eq. (3) with
y = 8000

t = 1 and 
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7.5 Exponential Growth and Decay 505

The interest might be added (“compounded,” bankers say) monthly weekly
daily or even more frequently, say by the hour or by the minute. By

taking the limit as interest is compounded more and more often, we arrive at the following
formula for the amount after t years,

As

Substitute

Theorem 4

The resulting formula for the amount of money in your account after t years is

(6)

Interest paid according to this formula is said to be compounded continuously. The num-
ber r is called the continuous interest rate. The amount of money after t years is calcu-
lated with the law of exponential change given in Equation (6).

EXAMPLE 2 A Savings Account

Suppose you deposit $621 in a bank account that pays 6% compounded continuously. How
much money will you have 8 years later?

Solution We use Equation (6) with and 

Nearest cent

Had the bank paid interest quarterly ( in Equation 5), the amount in your ac-
count would have been $1000.01. Thus the effect of continuous compounding, as com-
pared with quarterly compounding, has been an addition of $3.57. A bank might decide it
would be worth this additional amount to be able to advertise, “We compound interest
every second, night and day—better yet, we compound the interest continuously.”

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is
called radioactive decay, and an element whose atoms go spontaneously through this
process is called radioactive. Sometimes when an atom emits some of its mass through
this process of radioactivity, the remainder of the atom re-forms to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element
decays (as measured by the number of nuclei that change per unit time) is approximately
proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive
element is described by the equation It is conventional to usedy>dt = -ky, k 7 0.

k = 4

As8d = 621es0.06ds8d
= 621e0.48

= 1003.58

t = 8:A0 = 621, r = 0.06,

Astd = A0 ert .

= A0 ert

x =

r
k

= A0 c lim
x:0

s1 + xd1/x d rt

k : q , 
r
k

: 0= A0 B lim
r
k :0

 a1 +
r
k
b

k
rR rt

= A0 lim
k: q

 a1 +
r
k
b

k
r 
# rt

lim
k: q

 At = lim
k: q

 A0 a1 +
r
k
b kt

sk = 365d ,sk = 52d ,
sk = 12d ,

For radon-222 gas, t is measured in days
and For radium-226, which
used to be painted on watch dials to
make them glow at night (a dangerous
practice), t is measured in years and
k = 4.3 * 10-4 .

k = 0.18 .
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here instead of to emphasize that y is decreasing. If is the number
of radioactive nuclei present at time zero, the number still present at any later time t will be

EXAMPLE 3 Half-Life of a Radioactive Element

The half-life of a radioactive element is the time required for half of the radioactive nuclei
present in a sample to decay. It is an interesting fact that the half-life is a constant that does
not depend on the number of radioactive nuclei initially present in the sample, but only on
the radioactive substance.

To see why, let be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time t will be We seek the value of t at
which the number of radioactive nuclei present equals half the original number:

This value of t is the half-life of the element. It depends only on the value of k; the number
does not enter in.

(7)

EXAMPLE 4 Half-Life of Polonium-210

The effective radioactive lifetime of polonium-210 is so short we measure it in days rather
than years. The number of radioactive atoms remaining after t days in a sample that starts
with radioactive atoms is

Find the element’s half-life.

Solution

Eq. (7)

EXAMPLE 5 Carbon-14 Dating

The decay of radioactive elements can sometimes be used to date events from the Earth’s
past. In a living organism, the ratio of radioactive carbon, carbon-14, to ordinary carbon
stays fairly constant during the lifetime of the organism, being approximately equal to the

 L 139 days

 =
ln 2

5 * 10-3

 Half-life =
ln 2
k

y = y0 e-5* 10-3 t .

y0

Half-life =
ln 2
k

y0

 t =
ln 2
k

 -kt = ln 
1
2

= - ln 2

 e-kt
=

1
2

 y0 e-kt
=

1
2

 y0

y = y0 e-kt .
y0

y = y0 e-kt, k 7 0.

y0ksk 6 0d-ksk 7 0d
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Reciprocal Rule for logarithms

The k from polonium’s decay equation
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7.5 Exponential Growth and Decay 507

ratio in the organism’s surroundings at the time. After the organism’s death, however, no
new carbon is ingested, and the proportion of carbon-14 in the organism’s remains de-
creases as the carbon-14 decays.

Scientists who do carbon-14 dating use a figure of 5700 years for its half-life (more
about carbon-14 dating in the exercises). Find the age of a sample in which 10% of the ra-
dioactive nuclei originally present have decayed.

Solution We use the decay equation There are two things to find: the value
of k and the value of t when y is (90% of the radioactive nuclei are still present). That
is, find t when or 

The value of k. We use the half-life Equation (7):

The value of t that makes

Logs of both sides

The sample is about 866 years old. 

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver ingot
immersed in a large tub of water cools to the temperature of the surrounding water. In sit-
uations like these, the rate at which an object’s temperature is changing at any given time is
roughly proportional to the difference between its temperature and the temperature of the
surrounding medium. This observation is called Newton’s law of cooling, although it ap-
plies to warming as well, and there is an equation for it.

If H is the temperature of the object at time t and is the constant surrounding tem-
perature, then the differential equation is

(8)

If we substitute y for then

Eq. (8)

H - HS = y. = -ky .

 = -ksH - HSd

 =

dH
dt

HS is a constant . =

dH
dt

- 0

 
dy
dt

=

d
dt

 sH - HSd =

dH
dt

-

d
dt

 sHSd

sH - HSd ,

dH
dt

= -ksH - HSd .

HS

 t = -

5700 ln 0.9
ln 2

L 866 years .

 -
ln 2

5700
 t = ln 0.9

 e-sln 2>5700dt
= 0.9

 e-kt
= 0.9

e-kt
= 0.9:

k =
ln 2

half-life
=

ln 2
5700
 sabout 1.2 * 10-4d

e-kt
= 0.9.y0 e-kt

= 0.9y0 ,
0.9y0

y = y0 e-kt .

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 507

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Now we know that the solution of is where Substi-
tuting for y, this says that

(9)

where is the temperature at This is the equation for Newton’s Law of Cooling.

EXAMPLE 6 Cooling a Hard-Boiled Egg

A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, the egg’s tempera-
ture is 38°C. Assuming that the water has not warmed appreciably, how much longer will
it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and sub-
tract the 5 min that have already elapsed. Using Equation (9) with and 
the egg’s temperature t min after it is put in the sink is

To find k, we use the information that when 

The egg’s temperature at time t is Now find the time t when

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool.
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C. 

 t =

ln 40
0.2 ln 4

L 13 min.

 -s0.2 ln 4dt = ln 
1
40

= - ln 40

 e-s0.2 ln 4dt
=

1
40

 80e-s0.2 ln 4dt
= 2

 20 = 18 + 80e-s0.2 ln 4dt

H = 20:
H = 18 + 80e-s0.2 ln 4dt .

k =
1
5 ln 4 = 0.2 ln 4 sabout 0.28d .

 -5k = ln 
1
4

= - ln 4

 e-5k
=

1
4

 38 = 18 + 80e-5k

t = 5:H = 38

H = 18 + s98 - 18de-kt
= 18 + 80e-kt .

H0 = 98,HS = 18

t = 0.H0

H - HS = sH0 - HSde-kt ,

sH - HSd
ys0d = y0.y = y0 e-kt ,dy>dt = -ky
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508 Chapter 7: Transcendental Functions

EXERCISES 7.5

The answers to most of the following exercises are in terms of loga-
rithms and exponentials. A calculator can be helpful, enabling you to
express the answers in decimal form.

1. Human evolution continues The analysis of tooth shrinkage
by C. Loring Brace and colleagues at the University of Michi-

gan’s Museum of Anthropology indicates that human tooth size is
continuing to decrease and that the evolutionary process did not
come to a halt some 30,000 years ago as many scientists contend.
In northern Europeans, for example, tooth size reduction now has
a rate of 1% per 1000 years.
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7.5 Exponential Growth and Decay 509

a. If t represents time in years and y represents tooth size, use
the condition that when to find the value
of k in the equation Then use this value of k to
answer the following questions.

b. In about how many years will human teeth be 90% of their
present size?

c. What will be our descendants’ tooth size 20,000 years from
now (as a percentage of our present tooth size)?

(Source: LSA Magazine, Spring 1989, Vol. 12, No. 2, p. 19, Ann
Arbor, MI.)

2. Atmospheric pressure The earth’s atmospheric pressure p is of-
ten modeled by assuming that the rate dp dh at which p changes
with the altitude h above sea level is proportional to p. Suppose
that the pressure at sea level is 1013 millibars (about 14.7 pounds
per square inch) and that the pressure at an altitude of 20 km is 90
millibars.

a. Solve the initial value problem

to express p in terms of h. Determine the values of and k
from the given altitude-pressure data.

b. What is the atmospheric pressure at 

c. At what altitude does the pressure equal 900 millibars?

3. First-order chemical reactions In some chemical reactions,
the rate at which the amount of a substance changes with time is
proportional to the amount present. For the change of 
lactone into gluconic acid, for example,

when t is measured in hours. If there are 100 grams of 
lactone present when how many grams will be left after the
first hour?

4. The inversion of sugar The processing of raw sugar has a step
called “inversion” that changes the sugar’s molecular structure.
Once the process has begun, the rate of change of the amount of
raw sugar is proportional to the amount of raw sugar remaining.
If 1000 kg of raw sugar reduces to 800 kg of raw sugar during
the first 10 hours, how much raw sugar will remain after another
14 hours?

5. Working underwater The intensity L(x) of light x feet beneath
the surface of the ocean satisfies the differential equation

As a diver, you know from experience that diving to 18 ft in the
Caribbean Sea cuts the intensity in half. You cannot work without
artificial light when the intensity falls below one-tenth of the sur-
face value. About how deep can you expect to work without artifi-
cial light?

dL
dx

= -kL .

t = 0,
d-glucono

dy

dt
= -0.6y

d-glucono

h = 50 km?

p0

Differential equation: dp>dh = kp sk a constantd
Initial condition: p = p0 when h = 0

>

y = y0 e kt .
t = 1000y = 0.99y0

6. Voltage in a discharging capacitor Suppose that electricity is
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if t is measured in seconds,

Solve this equation for V, using to denote the value of V when
How long will it take the voltage to drop to 10% of its

original value?

7. Cholera bacteria Suppose that the bacteria in a colony can
grow unchecked, by the law of exponential change. The colony
starts with 1 bacterium and doubles every half-hour. How many
bacteria will the colony contain at the end of 24 hours? (Under fa-
vorable laboratory conditions, the number of cholera bacteria can
double every 30 min. In an infected person, many bacteria are de-
stroyed, but this example helps explain why a person who feels
well in the morning may be dangerously ill by evening.)

8. Growth of bacteria A colony of bacteria is grown under ideal
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 hours there are 10,000 bacte-
ria. At the end of 5 hours there are 40,000. How many bacteria
were present initially?

9. The incidence of a disease (Continuation of Example 1.) Sup-
pose that in any given year the number of cases can be reduced by
25% instead of 20%.

a. How long will it take to reduce the number of cases to 1000?

b. How long will it take to eradicate the disease, that is, reduce
the number of cases to less than 1?

10. The U.S. population The Museum of Science in Boston dis-
plays a running total of the U.S. population. On May 11, 1993, the
total was increasing at the rate of 1 person every 14 sec. The dis-
played population figure for 3:45 P.M. that day was 257,313,431.

a. Assuming exponential growth at a constant rate, find the rate
constant for the population’s growth (people per 365-day
year).

b. At this rate, what will the U.S. population be at 3:45 P.M.
Boston time on May 11, 2008?

11. Oil depletion Suppose the amount of oil pumped from one of
the canyon wells in Whittier, California, decreases at the continu-
ous rate of 10% per year. When will the well’s output fall to one-
fifth of its present value?

12. Continuous price discounting To encourage buyers to place
100-unit orders, your firm’s sales department applies a continu-
ous discount that makes the unit price a function p(x) of the num-
ber of units x ordered. The discount decreases the price at the rate
of $0.01 per unit ordered. The price per unit for a 100-unit order
is 

a. Find p(x) by solving the following initial value problem:

Differential equation:
dp

dx
= -

1
100

 p

Initial condition: ps100d = 20.09.

ps100d = $20.09.

t = 0.
V0

dV
dt

= -

1
40

 V .
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b. Find the unit price p(10) for a 10-unit order and the unit price
p(90) for a 90-unit order.

c. The sales department has asked you to find out if it is
discounting so much that the firm’s revenue, 
will actually be less for a 100-unit order than, say, for a 90-
unit order. Reassure them by showing that r has its maximum
value at 

d. Graph the revenue function for 

13. Continuously compounded interest You have just placed 
dollars in a bank account that pays 4% interest, compounded con-
tinuously.

a. How much money will you have in the account in 5 years?

b. How long will it take your money to double? To triple?

14. John Napier’s question John Napier (1550–1617), the Scottish
laird who invented logarithms, was the first person to answer the
question, What happens if you invest an amount of money at
100% interest, compounded continuously?

a. What does happen?

b. How long does it take to triple your money?

c. How much can you earn in a year?

Give reasons for your answers.

15. Benjamin Franklin’s will The Franklin Technical Institute of
Boston owes its existence to a provision in a codicil to Benjamin
Franklin’s will. In part the codicil reads:

I wish to be useful even after my Death, if possible, in form-
ing and advancing other young men that may be serviceable
to their Country in both Boston and Philadelphia. To this end
I devote Two thousand Pounds Sterling, which I give, one
thousand thereof to the Inhabitants of the Town of Boston in
Massachusetts, and the other thousand to the inhabitants of
the City of Philadelphia, in Trust and for the Uses, Interests
and Purposes hereinafter mentioned and declared.

Franklin’s plan was to lend money to young apprentices at 5% inter-
est with the provision that each borrower should pay each year along

with the yearly Interest, one tenth part of the Principal,
which sums of Principal and Interest shall be again let to fresh
Borrowers. If this plan is executed and succeeds as pro-
jected without interruption for one hundred Years, the Sum
will then be one hundred and thirty-one thousand Pounds of
which I would have the Managers of the Donation to the In-
habitants of the Town of Boston, then lay out at their discretion
one hundred thousand Pounds in Public Works. The re-
maining thirty-one thousand Pounds, I would have continued
to be let out on Interest in the manner above directed for an-
other hundred Years. At the end of this second term if no
unfortunate accident has prevented the operation the sum will
be Four Millions and Sixty-one Thousand Pounds.

Á

Á

Á

Á

A0

0 … x … 200.rsxd = xpsxd
x = 100.

rsxd = x # psxd ,

It was not always possible to find as many borrowers as
Franklin had planned, but the managers of the trust did the best
they could. At the end of 100 years from the reception of the
Franklin gift, in January 1894, the fund had grown from 1000
pounds to almost exactly 90,000 pounds. In 100 years the original
capital had multiplied about 90 times instead of the 131 times
Franklin had imagined.

What rate of interest, compounded continuously for 100 years,
would have multiplied Benjamin Franklin’s original capital by
90?

16. (Continuation of Exercise 15.) In Benjamin Franklin’s estimate
that the original 1000 pounds would grow to 131,000 in 100 years,
he was using an annual rate of 5% and compounding once each
year. What rate of interest per year when compounded continu-
ously for 100 years would multiply the original amount by 131?

17. Radon-222 The decay equation for radon-222 gas is known to
be with t in days. About how long will it take the
radon in a sealed sample of air to fall to 90% of its original value?

18. Polonium-210 The half-life of polonium is 139 days, but your
sample will not be useful to you after 95% of the radioactive nu-
clei present on the day the sample arrives has disintegrated. For
about how many days after the sample arrives will you be able to
use the polonium?

19. The mean life of a radioactive nucleus Physicists using the ra-
dioactivity equation call the number 1 k the mean life
of a radioactive nucleus. The mean life of a radon nucleus is about

The mean life of a carbon-14 nucleus is more
than 8000 years. Show that 95% of the radioactive nuclei originally
present in a sample will disintegrate within three mean lifetimes,
i.e., by time Thus, the mean life of a nucleus gives a quick
way to estimate how long the radioactivity of a sample will last.

20. Californium-252 What costs $27 million per gram and can be
used to treat brain cancer, analyze coal for its sulfur content, and
detect explosives in luggage? The answer is californium-252, a
radioactive isotope so rare that only 8 g of it have been made in
the western world since its discovery by Glenn Seaborg in 1950.
The half-life of the isotope is 2.645 years—long enough for a
useful service life and short enough to have a high radioactivity
per unit mass. One microgram of the isotope releases 170 million
neutrons per second.

a. What is the value of k in the decay equation for this isotope?

b. What is the isotope’s mean life? (See Exercise 19.)

c. How long will it take 95% of a sample’s radioactive nuclei to
disintegrate?

21. Cooling soup Suppose that a cup of soup cooled from 90°C to
60°C after 10 min in a room whose temperature was 20°C. Use
Newton’s law of cooling to answer the following questions.

a. How much longer would it take the soup to cool to 35°C?

b. Instead of being left to stand in the room, the cup of 90°C
soup is put in a freezer whose temperature is How
long will it take the soup to cool from 90°C to 35°C?

-15°C.

t = 3>k .

1>0.18 = 5.6 days .

>y = y0 e-kt

y = y0 e-0.18t ,
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22. A beam of unknown temperature An aluminum beam was
brought from the outside cold into a machine shop where the tem-
perature was held at 65°F. After 10 min, the beam warmed to 35°F
and after another 10 min it was 50°F. Use Newton’s law of cooling
to estimate the beam’s initial temperature.

23. Surrounding medium of unknown temperature A pan of
warm water (46°C) was put in a refrigerator. Ten minutes later,
the water’s temperature was 39°C; 10 min after that, it was 33°C.
Use Newton’s law of cooling to estimate how cold the refrigerator
was.

24. Silver cooling in air The temperature of an ingot of silver is
60°C above room temperature right now. Twenty minutes ago, it
was 70°C above room temperature. How far above room tempera-
ture will the silver be

a. 15 min from now?

b. 2 hours from now?

c. When will the silver be 10°C above room temperature?

25. The age of Crater Lake The charcoal from a tree killed in the
volcanic eruption that formed Crater Lake in Oregon contained
44.5% of the carbon-14 found in living matter. About how old is
Crater Lake?

26. The sensitivity of carbon-14 dating to measurement To see
the effect of a relatively small error in the estimate of the amount
of carbon-14 in a sample being dated, consider this hypothetical
situation:

a. A fossilized bone found in central Illinois in the year A.D.
2000 contains 17% of its original carbon-14 content. Estimate
the year the animal died.

b. Repeat part (a) assuming 18% instead of 17%.

c. Repeat part (a) assuming 16% instead of 17%.

27. Art forgery A painting attributed to Vermeer (1632–1675),
which should contain no more than 96.2% of its original carbon-
14, contains 99.5% instead. About how old is the forgery?
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7.6 Relative Rates of Growth 511

Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the
rates at which functions of x grow as x becomes large. Exponential functions are important
in these comparisons because of their very fast growth, and logarithmic functions because
of their very slow growth. In this section we introduce the little-oh and big-oh notation
used to describe the results of these comparisons. We restrict our attention to functions
whose values eventually become and remain positive as 

Growth Rates of Functions

You may have noticed that exponential functions like and seem to grow more rapidly
as x gets large than do polynomials and rational functions. These exponentials certainly
grow more rapidly than x itself, and you can see outgrowing as x increases in Figure
7.14. In fact, as the functions and grow faster than any power of x, even

(Exercise 19).
To get a feeling for how rapidly the values of grow with increasing x, think of

graphing the function on a large blackboard, with the axes scaled in centimeters. At
the graph is above the x-axis. At the graph is

high (it is about to go through the ceiling if it hasn’t done so already).
At the graph is high, higher than most buildings.
At the graph is more than halfway to the moon, and at from the ori-
gin, the graph is high enough to reach past the sun’s closest stellar neighbor, the red dwarf
star Proxima Centauri:

 L 5.0 light-years

 L 1.58 * 108 light-seconds

 = 4.73 * 1013 km

 e43
L 4.73 * 1018 cm

x = 43 cmx = 24 cm,
e10

L 22,026 cm L 220 mx = 10 cm,
e6

L 403 cm L 4 m
x = 6 cm,e1

L 3 cmx = 1 cm,

y = ex
x1,000,000

ex2xx : q ,
x22x

ex2x

x : q .

7.6 

In a vacuum, light travels
at 300,000 km sec.>

x

y

0 1 2 3 4 5 6 7

20

40

60

80

100

120

140

160
y � ex

y � 2x

y � x2

FIGURE 7.14 The graphs of 
and x2 .

ex, 2x ,
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512 Chapter 7: Transcendental Functions

The distance to Proxima Centauri is about 4.22 light-years. Yet with from the
origin, the graph is still less than 2 feet to the right of the y-axis.

In contrast, logarithmic functions like and grow more slowly as
than any positive power of x (Exercise 21). With axes scaled in centimeters, you

have to go nearly 5 light-years out on the x-axis to find a point where the graph of 
is even high. See Figure 7.15.

These important comparisons of exponential, polynomial, and logarithmic functions
can be made precise by defining what it means for a function ƒ(x) to grow faster than an-
other function g(x) as x : q .

y = 43 cm
y = ln x

x : q

y = ln xy = log2 x

x = 43 cm

DEFINITION Rates of Growth as 
Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as if

or, equivalently, if

We also say that g grows slower than ƒ as 

2. ƒ and g grow at the same rate as if

where L is finite and positive.

lim
x: q

  
ƒsxd
gsxd

= L

x : q

x : q .

lim
x: q

  
gsxd
ƒsxd

= 0.

lim
x: q

  
ƒsxd
gsxd

= q

x : q

x : q

According to these definitions, does not grow faster than The two
functions grow at the same rate because

which is a finite, nonzero limit. The reason for this apparent disregard of common sense is
that we want “ƒ grows faster than g” to mean that for large x-values g is negligible when
compared with ƒ.

EXAMPLE 1 Several Useful Comparisons of Growth Rates

(a) grows faster than as because

Using l’Hôpital’s Rule twice

(b) grows faster than as because

lim
x: q

 
3x

2x = lim
x: q

 a3
2
b x

= q .

x : q2x3x

lim
x: q

 ex

x2 = lim
x: q

 ex

2x
= lim

x: q

 ex

2
= q .

(')'* (')'*

x : qx2ex

lim
x: q

 
2x
x = lim

x: q

 2 = 2,

y = x .y = 2x

0 10 20 30 40 50 60

10

20

30

40

50

60

70

x

y

y � ex

y � ln x

FIGURE 7.15 Scale drawings of the
graphs of and ln x.ex

q > qq > q
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7.6 Relative Rates of Growth 513

(c) grows faster than ln x as because

l’Hôpital’s Rule

(d) ln x grows slower than x as because

l’Hôpital’s Rule

EXAMPLE 2 Exponential and Logarithmic Functions with Different Bases

(a) As Example 1b suggests, exponential functions with different bases never grow at the
same rate as If then grows faster than Since 

(b) In contrast to exponential functions, logarithmic functions with different bases a and
b always grow at the same rate as 

The limiting ratio is always finite and never zero. 

If ƒ grows at the same rate as g as and g grows at the same rate as h as
then ƒ grows at the same rate as h as The reason is that

together imply

If and are finite and nonzero, then so is 

EXAMPLE 3 Functions Growing at the Same Rate

Show that and grow at the same rate as 

Solution We show that the functions grow at the same rate by showing that they both
grow at the same rate as the function 

 lim
x: q

 
(21x - 1)2

x = lim
x: q

 a21x - 11x
b2

= lim
x: q

 a2 -
11x
b2

= 4.

 lim
x: q

 
2x2

+ 5
x = lim

x: qA1 +

5
x2 = 1, 

g sxd = x :

x : q .s21x - 1d22x2
+ 5

L1 L2.L2L1

lim
x: q

 
ƒ
h

= lim
x: q

 
ƒ
g #  

g
h

= L1 L2 .

lim
x: q

 
ƒ
g = L1 and lim

x: q

 
g
h

= L2

x : q .x : q ,
x : q ,

lim
x: q

 
loga x
logb x

= lim
x: q

 
ln x>ln a

ln x>ln b
=

ln b
ln a

.

x : q :

lim
x: q

 
ax

bx = lim
x: q

 aa
b
b x

= q .

sa>bd 7 1,bx .axa 7 b 7 0,x : q .

= lim
x: q

 
1
x = 0.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

x : q

lim
x: q

 
x2

ln x
= lim

x: q

 
2x
1>x = lim

x: q

 2x2
= q .

x : q ,x2
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Order and Oh-Notation

Here we introduce the “little-oh” and “big-oh” notation invented by number theorists a
hundred years ago and now commonplace in mathematical analysis and computer science.

514 Chapter 7: Transcendental Functions

DEFINITION Little-oh

A function ƒ is of smaller order than g as if We indi-

cate this by writing (“ƒ is little-oh of g”).ƒ � osgd

lim
x: q

 
ƒsxd
gsxd

= 0.x : q

Notice that saying as is another way to say that ƒ grows slower than g as

EXAMPLE 4 Using Little-oh Notation

(a)

(b) x2
= osx3

+ 1d as x : q because lim
x: q

 
x2

x3
+ 1

= 0

ln x = osxd as x : q because lim
x: q

 
ln x
x = 0

x : q .
x : qf = osgd

DEFINITION Big-oh
Let ƒ(x) and g (x) be positive for x sufficiently large. Then ƒ is of at most the
order of g as if there is a positive integer M for which

for x sufficiently large. We indicate this by writing (“ƒ is big-oh of g”).ƒ � Osgd

ƒsxd
gsxd

… M ,

x : q

EXAMPLE 5 Using Big-oh Notation

(a)

(b)

(c)

If you look at the definitions again, you will see that implies for func-
tions that are positive for x sufficiently large. Also, if ƒ and g grow at the same rate, then

and (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number
of steps a computer must take to execute the algorithm. There can be significant differences

g = Osƒdƒ = Osgd

ƒ = Osgdƒ = osgd

x = Osexd as x : q because x
ex : 0 as x : q .

ex
+ x2

= Osexd as x : q because ex
+ x2

ex : 1 as x : q .

x + sin x = Osxd as x : q because x + sin x
x … 2 for x sufficiently large.
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7.6 Relative Rates of Growth 515

in how efficiently algorithms perform, even if they are designed to accomplish the same
task. These differences are often described in big-oh notation. Here is an example.

Webster’s Third New International Dictionary lists about 26,000 words that begin with
the letter a. One way to look up a word, or to learn if it is not there, is to read through the
list one word at a time until you either find the word or determine that it is not there. This
method, called sequential search, makes no particular use of the words’ alphabetical
arrangement. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle
of the list (give or take a few words). If you do not find the word, then go to the middle of
the half that contains it and forget about the half that does not. (You know which half con-
tains it because you know the list is ordered alphabetically.) This method eliminates
roughly 13,000 words in a single step. If you do not find the word on the second try, then
jump to the middle of the half that contains it. Continue this way until you have either
found the word or divided the list in half so many times there are no words left. How many
times do you have to divide the list to find the word or learn that it is not there? At most
15, because

That certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to

find a word or determine that it is not in the list. A binary search, as the second algorithm
is called, takes on the order of steps. The reason is that if then

and the number of bisections required to narrow the list to one
word will be at most the integer ceiling for 

Big-oh notation provides a compact way to say all this. The number of steps in a se-
quential search of an ordered list is O(n); the number of steps in a binary search is

In our example, there is a big difference between the two (26,000 vs. 15), and
the difference can only increase with n because n grows faster than as (as in
Example 1d).

n : qlog2 n
Oslog2 nd .

log2 n .m = < log2 n= ,
m - 1 6 log2 n … m ,

2m - 1
6 n … 2m ,log2 n

s26,000>215d 6 1.
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EXERCISES 7.6

Comparisons with the Exponential 
1. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h.

2. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. ex - 1ecos x

xexe-x

s5>2dx21 + x4

x ln x - x10x4
+ 30x + 1

ex ?
ex as x : q ?

log10 xex>2
ex>2s3>2dx

4x1x

x3
+ sin2 xx + 3

ex ?
ex as x : q ?

ex Comparisons with the Power 
3. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. x ln x f.

g. h.

4. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. x2
+ 100xs1.1dx

s1>10dxx3
- x2

log10 sx2dx2e-x

10x2x2
+ 1x

x2 ?
x2 as x : q ?

8x2x3e-x

2x

sx + 3d22x4
+ x3

x5
- x2x2

+ 4x

x2 ?
x2 as x : q ?

x2
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Comparisons with the Logarithm ln x
5. Which of the following functions grow faster than 

Which grow at the same rate as ln x? Which grow
slower?

a. b. ln 2x

c. d.

e. x f. 5 ln x

g. 1 x h.

6. Which of the following functions grow faster than 
Which grow at the same rate as ln x? Which grow

slower?

a. b.

c. d.

e. f.

g. ln (ln x) h.

Ordering Functions by Growth Rates
7. Order the following functions from slowest growing to fastest

growing as 

a. b.

c. d.

8. Order the following functions from slowest growing to fastest
growing as 

a. b.

c. d.

Big-oh and Little-oh; Order
9. True, or false? As 

a. b.

c. d.

e. f.

g. h.

10. True, or false? As 

a. b.

c. d.

e. f.

g. h.

11. Show that if positive functions ƒ(x) and g(x) grow at the same rate
as then and 

12. When is a polynomial ƒ(x) of smaller order than a polynomial
g (x) as Give reasons for your answer.

13. When is a polynomial ƒ(x) of at most the order of a polynomial
g (x) as Give reasons for your answer.x : q ?

x : q ?

g = Osƒd .f = Osgdx : q ,

ln sxd = osln sx2
+ 1ddln sln xd = Osln xd

x ln x = osx2dex
+ x = Osexd

2 + cos x = Os2d1
x -

1
x2 = o a1x b

1
x +

1
x2 = O a1x b1

x + 3
= O a1x b

x : q ,

2x2
+ 5 = Osxdln x = osln 2xd

x + ln x = Osxdex
= ose2xd

x = Os2xdx = Osx + 5d
x = osx + 5dx = osxd

x : q ,

exsln 2dx

x22x

x : q .

ex>2sln xdx

xxex

x : q .

ln s2x + 5d
e-xx - 2 ln x

1>x21>1x

log10 10xlog2 sx2d

x : q ?
ln x as 

ex>
1xln 1x

log3 x

x : q ?
ln x as 

14. What do the conclusions we drew in Section 2.4 about the limits
of rational functions tell us about the relative growth of polynomi-
als as 

Other Comparisons
15. Investigate

Then use l’Hôpital’s Rule to explain what you find.

16. (Continuation of Exercise 15.) Show that the value of

is the same no matter what value you assign to the constant a.
What does this say about the relative rates at which the functions

and grow?

17. Show that grow at the same rate as
by showing that they both grow at the same rate as as

18. Show that grow at the same rate as
by showing that they both grow at the same rate as as

19. Show that grows faster as than for any positive inte-
ger n, even (Hint: What is the nth derivative of )

20. The function outgrows any polynomial Show that grows
faster as than any polynomial

21. a. Show that ln x grows slower as than for any posi-
tive integer n, even 

b. Although the values of eventually overtake the
values of ln x, you have to go way out on the x-axis before
this happens. Find a value of x greater than 1 for which

You might start by observing that when
the equation is equivalent to the

equation 

c. Even takes a long time to overtake ln x. Experiment with
a calculator to find the value of x at which the graphs of 
and ln x cross, or, equivalently, at which 
Bracket the crossing point between powers of 10 and then
close in by successive halving.

d. (Continuation of part (c).) The value of x at which
is too far out for some graphers and root

finders to identify. Try it on the equipment available to you
and see what happens.

22. The function ln x grows slower than any polynomial Show that
ln x grows slower as than any nonconstant polynomial.x : q

ln x = 10 ln sln xd

ln x = 10 ln sln xd .
x1>10

x1>10

ln sln xd = sln xd>1,000,000 .
ln x = x1>1,000,000x 7 1

x1>1,000,000
7 ln x .

x1>1,000,000

x1>1,000,000 .
x1>nx : q

an xn
+ an - 1 x

n - 1
+

Á
+ a1 x + a0 .

x : q

exe x

xn ?x1,000,000 .
xnx : qex

x : q .
x2x : q

2x4
+ x and 2x4

- x3

x : q .
1xx : q

210x + 1 and 2x + 1

g sxd = ln xƒsxd = ln sx + ad

lim
x: q

 
ln sx + ad

ln x

lim
x: q

 
ln sx + 1d

ln x
 and lim

x: q

 
ln sx + 999d

ln x
.

x : q ?
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Algorithms and Searches
23. a. Suppose you have three different algorithms for solving the

same problem and each algorithm takes a number of steps that
is of the order of one of the functions listed here:

Which of the algorithms is the most efficient in the long run?
Give reasons for your answer.

b. Graph the functions in part (a) together to get a sense of how
rapidly each one grows.

n log2 n, n3>2, nslog2 nd2 .

24. Repeat Exercise 23 for the functions

25. Suppose you are looking for an item in an ordered list one million
items long. How many steps might it take to find that item with a
sequential search? A binary search?

26. You are looking for an item in an ordered list 450,000 items long
(the length of Webster’s Third New International Dictionary).
How many steps might it take to find the item with a sequential
search? A binary search?

n, 2n log2 n, slog2 nd2 .

T

T

T
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Inverse Trigonometric Functions

Inverse trigonometric functions arise when we want to calculate angles from side measure-
ments in triangles. They also provide useful antiderivatives and appear frequently in the
solutions of differential equations. This section shows how these functions are defined,
graphed, and evaluated, how their derivatives are computed, and why they appear as im-
portant antiderivatives.

Defining the Inverses

The six basic trigonometric functions are not one-to-one (their values repeat periodically).
However we can restrict their domains to intervals on which they are one-to-one. The sine
function increases from at to at By restricting its domain to
the interval we make it one-to-one, so that it has an inverse 
(Figure 7.16). Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

Function Domain Range

sin x

cos x

0 � �
2

cos x

x

y[-1, 1][0, p]

x

y

0 �
2

�
2

–

sin x[-1, 1][-p>2, p>2]

sin-1 x[-p>2, p>2]
x = p>2.+1x = -p>2-1

7.7 

Domain:
Range:

x

y

1–1

x � sin y

�
2

�
2

–

y � sin–1x
–1 � x � 1

–�/2 � y � �/2

FIGURE 7.16 The graph of .y = sin-1 x
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518 Chapter 7: Transcendental Functions

tan x

cot x

sec x

csc x

Since these restricted functions are now one-to-one, they have inverses, which we de-
note by

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

 y = csc-1 x or y = arccsc x

 y = sec-1 x or y = arcsec x

 y = cot-1 x or y = arccot x

 y = tan-1 x or y = arctan x

 y = cos-1 x or y = arccos x

 y = sin-1 x or y = arcsin x

0

1

�
2

– �
2

csc x

x

ys - q , -1] ´ [1, q d[-p>2, 0d ´ s0, p>2]

0

1

��
2

sec x

x

ys - q , -1] ´ [1, q d[0, p>2d ´ sp>2, p]

0 � �
2

cot x

x

ys - q , q ds0, pd

tan x

x

y

0 �
2

�
2

–

s - q , q ds -p>2, p>2d
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7.7 Inverse Trigonometric Functions 519

CAUTION The in the expressions for the inverse means “inverse.” It does not mean
reciprocal. For example, the reciprocal of sin x is 

The graphs of the six inverse trigonometric functions are shown in Figure 7.17. We
can obtain these graphs by reflecting the graphs of the restricted trigonometric functions
through the line as in Section 7.1. We now take a closer look at these functions and
their derivatives.

y = x ,

ssin xd-1
= 1>sin x = csc x .

-1

x

y

x

y

x

y

x

y

x

y

x

y

�
2

�

�

2

�
2

–

1–1

1–1

(a)

(c) (d)

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

Domain:
Range: 0 � y � �

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

y � sin–1x y � cos–1x

(e) (f)

1–1–2 2

1–1–2 2

�
2

�
2

–

y � tan–1x y � sec–1x

�

�
2

�

�
21–1–2 2

1–1–2 2

�
2

�
2

–

y � csc–1x
y � cot–1x

–∞ � x � ∞

�
2

FIGURE 7.17 Graphs of the six basic inverse trigonometric
functions.

The Arcsine and Arccosine Functions

The arcsine of x is the angle in whose sine is x. The arccosine is an angle in
whose cosine is x.[0, p]

[-p>2, p>2]
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Arc whose sine is x

Arc whose
cosine is x

x2 � y2 � 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1

DEFINITION Arcsine and Arccosine Functions

 y � cos�1 x is the number in [0, p]  for which cos y = x .

 y � sin�1 x is the number in [-p>2, p>2]  for which  sin y = x .

x

y

1

–1
0

(a)

�
2

�
2

–

y � sin x, �
2

�
2

– � x �

Domain:
Range:

[–�/2, �/2]
[–1, 1] 

FIGURE 7.18 The graphs of (a) and (b) its inverse,
The graph of obtained by reflection across the line is a

portion of the curve x = sin y .
y = x ,sin-1 x ,y = sin-1 x .

y = sin x, -p>2 … x … p>2,

x

y

0 1–1

(b)

�
2

�
2

–

x � sin y

y � sin–1x
Domain:
Range:

[–1, 1] 
[–�/2, �/2]

x

y

0 � �
2

y � cos x, 0 � x � �

Domain:
Range:

[0, �]
[–1, 1] 1

–1

(a)

FIGURE 7.19 The graphs of (a) and (b) its
inverse, The graph of obtained by reflection across
the line is a portion of the curve x = cos y .y = x ,

cos-1 x ,y = cos-1 x .
y = cos x, 0 … x … p ,

x

y

y � cos–1x
Domain:
Range:

[–1, 1] 
[0, �]

(b)

�

�

2

0–1 1

x � cos y

Known values of sin x and cos x can be inverted to find values of and cos-1 x .sin-1 x

520 Chapter 7: Transcendental Functions

The graph of (Figure 7.18) is symmetric about the origin (it lies along the
graph of ). The arcsine is therefore an odd function:

(1)

The graph of (Figure 7.19) has no such symmetry.y = cos-1 x

sin-1s -xd = -sin-1 x .

x = sin y
y = sin-1 x

The “Arc” in Arc Sine and
Arc Cosine
The accompanying figure gives a
geometric interpretation of 
and for radian angles in the
first quadrant. For a unit circle, the
equation becomes so
central angles and the arcs they subtend
have the same measure. If 
then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc
whose sine is x.”

x = sin y ,

s = u ,s = ru

y = cos-1 x
y = sin-1 x
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7.7 Inverse Trigonometric Functions 521

x

1 2

-p>3-23>2
-p>4-22>2
-p>6-1>2
p>6>
p>422>2
p>323>2

sin-1 x

x

1 2

5p>6-23>2
3p>4-22>2
2p>3-1>2
p>3>
p>422>2
p>623>2

cos-1 x

x

y

x

y

�
3

0 1 0

2 �3

�2

�
3

sin �
�3
2

�
4

–
–1

1

–

�
4

–sin � – 1
�2













�
3

sin–1 �
�3
2

�
4

sin–1 1
�2

–

2

�2� sin–1 � –

The angles come from the first and fourth quadrants because the range of is

EXAMPLE 2 Common Values of cos-1 x

[-p>2, p>2].
sin-1 x

0 1 0–1
x

y

x

y

�
4

2�2
�3

�
4

cos �
�2
1

1

�2
�
4

cos–1 � cos–11 �2
2 �

2
�

3
2

�
3
2–





cos–1 1
2

�

�
3
2cos � –1

2






The angles come from the first and second quadrants because the range of is

Identities Involving Arcsine and Arccosine

As we can see from Figure 7.20, the arccosine of x satisfies the identity

(2)

or

(3)

Also, we can see from the triangle in Figure 7.21 that for 

(4)

Equation (4) holds for the other values of x in as well, but we cannot conclude this
from the triangle in Figure 7.21. It is, however, a consequence of Equations (1) and (3)
(Exercise 131).

Inverses of tan x, cot x, sec x, and csc x

The arctangent of x is an angle whose tangent is x. The arccotangent of x is an angle whose
cotangent is x.

[-1, 1]

sin-1 x + cos-1 x = p>2.

x 7 0,

cos-1 s -xd = p - cos-1 x .

cos-1 x + cos-1s -xd = p ,

[0, p] .
cos-1 x

x

y

0–x x–1 1

cos–1x

cos–1(–x)

FIGURE 7.20 and are
supplementary angles (so their sum is ).p

cos-1s -xdcos-1 x

1
x

cos–1x

sin–1x

FIGURE 7.21 and are
complementary angles (so their sum is ).p>2

cos-1 xsin-1 x

EXAMPLE 1 Common Values of sin-1 x
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We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 7.22). Algebraically this means
that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 7.23).

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 7.24 and 7.25.

CAUTION There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 7.26). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(5)

by applying Equation (4).

sec-1 x = cos-1 a1x b =

p
2

 -  sin-1 a1x b
sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

522 Chapter 7: Transcendental Functions

DEFINITION Arctangent and Arccotangent Functions

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which  tan y = x .

y � tan–1x
Domain:
Range:

(–∞, ∞) 
(–�/2, �/2)

x

y

�
2

�
2

–

0

FIGURE 7.22 The graph of y = tan-1 x .

0

y � cot–1x
Domain:
Range:

(–∞, ∞)
(0, �)

�

�

2

x

y

FIGURE 7.23 The graph of y = cot-1 x .

x

y

�x� � 1Domain:
Range: [–�/2, 0) � (0, �/2] 

y � csc–1x

0–1 1

�
2

�
2

–

FIGURE 7.25 The graph of
y = csc-1 x .

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 7.26 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

y

0 1–1

�

�x� � 1Domain:
Range: [0, �/2) � (�/2, �] 

y � sec–1x

�
2

FIGURE 7.24 The graph of y = sec-1 x .
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x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3





tan           � –�3�

3
–

�
3

–

� tan–1 � � –





The angles come from the first and fourth quadrants because the range of is

EXAMPLE 4 Find and if

Solution This equation says that We picture as an angle in a right trian-
gle with opposite side 2 and hypotenuse 3 (Figure 7.27). The length of the remaining side is

Pythagorean theorem

We add this information to the figure and then read the values we want from the completed
triangle:

EXAMPLE 5 Find 

Solution We let (to give the angle a name) and picture in a right trian-
gle with

The length of the triangle’s hypotenuse is2x2
+ 32

= 2x2
+ 9.

tan u = opposite>adjacent = x>3.

uu = tan-1 sx>3d

sec A tan-1 
x
3 B .

cos a =

25
3

, tan a =
225

,  sec a =

325
, csc a =

3
2

, cot a =

25
2

.

2s3d2
- s2d2

= 29 - 4 = 25.

asin a = 2>3.

a = sin-1 
2
3

.

cot acos a, tan a, sec a, csc a ,

s -p>2, p>2d .
tan-1 x

�

3
2

�5

FIGURE 7.27 If then
the values of the other basic trigonometric
functions of can be read from this
triangle (Example 4).

a

a = sin-1 s2/3d ,

� �

3 3

x x
tan � � x

3
sec � � 

�x2 � 9
3�x2 � 9

Thus,

sec u =

hypotenuse

adjacent
 =

2x2
+ 9

3
.

 sec atan-1 
x
3
b = sec u

EXAMPLE 3 Common Values of tan-1 x
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EXAMPLE 6 Drift Correction

During an airplane flight from Chicago to St. Louis the navigator determines that the
plane is 12 mi off course, as shown in Figure 7.28. Find the angle a for a course parallel to
the original, correct course, the angle b, and the correction angle 

Solution

The Derivative of 

We know that the function is differentiable in the interval 
and that its derivative, the cosine, is positive there. Theorem 1 in Section 7.1 therefore as-
sures us that the inverse function is differentiable throughout the interval

We cannot expect it to be differentiable at or because the
tangents to the graph are vertical at these points (see Figure 7.29).

We find the derivative of by applying Theorem 1 with and

Theorem 1

Alternate Derivation: Instead of applying Theorem 1 directly, we can find the derivative
of using implicit differentiation as follows:

Derivative of both sides with respect to x

Chain Rule

cos y = 21 - sin2 y =
121 - x2

 
dy
dx

=
1

cos y

 cos y  
dy
dx

= 1

 
d
dx

 ssin yd = 1

y = sin-1 x 3 sin y = x sin y = x

y = sin-1 x

sin ssin-1 xd = x =
121 - x2

cos u = 21 - sin2 u =
121 - sin2 ssin-1 xd

ƒ¿sud = cos u =
1

cos ssin-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd = sin-1 x .
ƒsxd = sin xy = sin-1 x

x = -1x = 1-1 6 x 6 1.
y = sin-1 x

-p>2 6 y 6 p>2x = sin y

y = sin-1 u

 c = a + b L 15°.

 b = sin-1 
12
62

L 0.195 radian L 11.2°

 a = sin-1 
12
180

L 0.067 radian L 3.8°

c = a + b .

524 Chapter 7: Transcendental Functions

Chicago

Springfield

Plane
St. Louis

62
61 12

180

179

a

b

c

FIGURE 7.28 Diagram for drift
correction (Example 6), with distances
rounded to the nearest mile (drawing not to
scale).

We can divide because
for -p>2 6 y 6 p>2.

cos y 7 0

y

1–1
x

y � sin–1x
Domain:
Range:

– �
2

�
2 –1 � x � 1

–�/2 � y � �/2

FIGURE 7.29 The graph of y = sin-1 x .
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7.7 Inverse Trigonometric Functions 525

No matter which derivation we use, we have that the derivative of with re-
spect to x is

If u is a differentiable function of x with we apply the Chain Rule to getƒ u ƒ 6 1,

d
dx

 ssin-1 xd =
121 - x2

 .

y = sin-1 x

d
dx

 ssin-1 ud =
121 - u2

 
du
dx

 , ƒ u ƒ 6 1.

d
dx

  stan-1 ud =
1

1 + u2 
du
dx

.

EXAMPLE 7 Applying the Derivative Formula

The Derivative of 

We find the derivative of by applying Theorem 1 with and
Theorem 1 can be applied because the derivative of tan x is positive for

Theorem 1

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

tan stan-1 xd = x =
1

1 + x2

sec2 u = 1 + tan2 u =
1

1 + tan2 stan-1 xd

ƒ¿sud = sec2 u =
1

sec2 stan-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

-p>2 6 x 6 p>2.
ƒ -1sxd = tan-1 x .

ƒsxd = tan xy = tan-1 x

y = tan-1 u

d
dx

 ssin-1 x2d =
121 - sx2d2

 #  
d
dx

 sx2d =

2x21 - x4

EXAMPLE 8 A Moving Particle

A particle moves along the x-axis so that its position at any time is 
What is the velocity of the particle when 

Solution

ystd =

d
dt

 tan-11t =
1

1 + (1t)2 #  
d
dt

 1t =
1

1 + t
 #  

1
21t

t = 16?
xstd = tan-12t .t Ú 0
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When the velocity is

The Derivative of 

Since the derivative of sec x is positive for and Theorem 1
says that the inverse function is differentiable. Instead of applying the formula
in Theorem 1 directly, we find the derivative of using implicit dif-
ferentiation and the Chain Rule as follows:

Inverse function relationship

Differentiate both sides.

Chain Rule

To express the result in terms of x, we use the relationships

to get

Can we do anything about the sign? A glance at Figure 7.30 shows that the slope of the
graph is always positive. Thus,

With the absolute value symbol, we can write a single expression that eliminates the 
ambiguity:

If u is a differentiable function of x with we have the formulaƒ u ƒ 7 1,

d
dx

 sec-1 x =
1

ƒ x ƒ2x2
- 1

 .

“;”

d
dx

 sec-1 x = d +  
1

x2x2
- 1

if x 7 1

-  
1

x2x2
- 1

if x 6 -1.

y = sec-1 x
;

dy
dx

= ;  
1

x2x2
- 1

 .

sec y = x and tan y = ;2sec2 y - 1 = ;2x2
- 1

 
dy
dx

=
1

sec y tan y

 sec y tan y 
dy
dx

= 1

 
d
dx

 ssec yd =

d
dx

 x

 sec y = x

 y = sec-1 x

y = sec-1 x, ƒ x ƒ 7 1,
y = sec-1 x

p>2 6 x 6 p ,0 6 x 6 p/2

y = sec-1 u

ys16d =
1

1 + 16
 #  

1

2216
=

1
136

.

t = 16,

526 Chapter 7: Transcendental Functions

Since lies in
and

sec y tan y Z 0.
s0, p>2d ´ sp>2, pd

ƒ x ƒ 7 1, y

d
dx

 ssec-1 ud =
1

ƒ u ƒ2u2
- 1

 
du
dx

 , ƒ u ƒ 7 1.

x

y

0

�

1–1

y � sec–1x

�
2

FIGURE 7.30 The slope of the curve
is positive for both 

and x 7 1.
x 6 -1y = sec-1 x
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7.7 Inverse Trigonometric Functions 527

EXAMPLE 9 Using the Formula

Derivatives of the Other Three

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is a much easier
way, thanks to the following identities.

 =
4

x225x8
- 1

5x4
7 0 =

1

5x4225x8
- 1

 s20x3d

 
d
dx

 sec-1 s5x4d =
1

ƒ5x4
ƒ2s5x4d2

- 1
 
d
dx

 s5x4d

Inverse Function–Inverse Cofunction Identities

 csc-1 x = p>2 - sec-1 x

 cot-1 x = p>2 - tan-1 x

 cos-1 x = p>2 - sin-1 x

We saw the first of these identities in Equation (4). The others are derived in a similar
way. It follows easily that the derivatives of the inverse cofunctions are the negatives of the
derivatives of the corresponding inverse functions. For example, the derivative of 
is calculated as follows:

Identity

Derivative of arcsine

EXAMPLE 10 A Tangent Line to the Arccotangent Curve

Find an equation for the line tangent to the graph of at 

Solution First we note that

The slope of the tangent line is

so the tangent line has equation y - 3p>4 = s -1>2dsx + 1d .

dy
dx

 `
x = -1

= -
1

1 + x2 `
x = -1

= -
1

1 + s -1d2 = -
1
2

,

cot-1 s -1d = p>2 - tan-1 s -1d = p>2 - s -p>4d = 3p>4.

x = -1.y = cot-1 x

 = -
121 - x2

 = -

d
dx

 (sin-1 x)

 
d
dx

 (cos-1 x) =

d
dx

 ap
2

- sin-1 xb

cos-1 x
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The derivatives of the inverse trigonometric functions are summarized in Table 7.3.

528 Chapter 7: Transcendental Functions

TABLE 7.3 Derivatives of the inverse trigonometric functions

1.

2.

3.

4.

5.

6.
dscsc-1 ud

dx
=

-du>dx

ƒ u ƒ2u2
- 1

 , ƒ u ƒ 7 1

dssec-1 ud
dx

=

du>dx

ƒ u ƒ2u2
- 1

 , ƒ u ƒ 7 1

dscot-1 ud
dx

= -

du>dx

1 + u2

dstan-1 ud
dx

=

du>dx

1 + u2

dscos-1 ud
dx

= -

du>dx21 - u2
 ,  ƒ u ƒ 6 1

dssin-1 ud
dx

=

du>dx21 - u2
 ,  ƒ u ƒ 6 1

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant 

1. (Valid for )

2. (Valid for all u)

3. (Valid for )ƒ u ƒ 7 a 7 0L  
du

u2u2
- a2

=
1
a sec-1

ƒ  
u
a ƒ + C

L  
du

a2
+ u2 =

1
a tan-1 aua b + C

u2
6 a2

L  
du2a2

- u2
= sin-1 aua b + C

a Z 0.

The derivative formulas in Table 7.3 have but in most integrations and
the formulas in Table 7.4 are more useful.

EXAMPLE 11 Using the Integral Formulas

(a)

 = sin-1 a23
2
b - sin-1 a22

2
b =

p
3

-
p
4

=
p
12

 L
23>222>2

 
dx21 - x2

= sin-1 x d22>2
23>2

a Z 1,a = 1,

Integration Formulas

The derivative formulas in Table 7.3 yield three useful integration formulas in Table 7.4.
The formulas are readily verified by differentiating the functions on the right-hand sides.

4100 AWL/Thomas_ch07p466-552  8/20/04  10:03 AM  Page 528

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


7.7 Inverse Trigonometric Functions 529

(b)

(c)

EXAMPLE 12 Using Substitution and Table 7.4

(a)

(b)

Formula 1

EXAMPLE 13 Completing the Square

Evaluate

Solution The expression does not match any of the formulas in Table 7.4,
so we first rewrite by completing the square:

Then we substitute and to get

Table 7.4, Formula 1

EXAMPLE 14 Completing the Square

Evaluate

L  
dx

4x2
+ 4x + 2

.

 = sin-1 ax - 2
2
b + C

 = sin-1 aua b + C

a = 2, u = x - 2, and du = dx = L  
du2a2

- u2

 L  
dx24x - x2

= L  
dx24 - sx - 2d2

du = dxa = 2, u = x - 2,

4x - x2
= -sx2

- 4xd = -sx2
- 4x + 4d + 4 = 4 - sx - 2d2 .

4x - x2
24x - x2

L  
dx24x - x2

 .

 =
1
2

 sin-1 a 2x23
b + C

 =
1
2

 sin-1 aua b + C

a = 23, u = 2x, and du>2 = dx L  
dx23 - 4x2

=
1
2L  

du2a2
- u2

L  
dx29 - x2

= L  
dx2s3d2

- x2
= sin-1 ax

3
b + C

L
22

2>23
  

dx

x2x2
- 1

= sec-1 x d
2>23

22

=
p
4

-
p
6

=
p
12

L
1

0
 

dx
1 + x2 = tan-1 x d

0

1

= tan-1 s1d - tan-1 s0d =
p
4

- 0 =
p
4

Table 7.4 Formula 1,
with a = 3, u = x
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Solution We complete the square on the binomial 

Then,

Table 7.4, Formula 2

EXAMPLE 15 Using Substitution

Evaluate

Solution

Table 7.4, Formula 3

 =
126

 sec-1 a ex26
b + C

 =
1
a sec-1

ƒ  
u
a ƒ + C

 = L  
du

u2u2
- a2

 L  
dx2e2x

- 6
= L  

du>u2u2
- a2

L  
dx2e2x

- 6
 .

a = 1, u = 2x + 1 =
1
2

 tan-1 s2x + 1d + C

 =
1
2

 #  
1
a

 tan-1 aua b + C

 L  
dx

4x2
+ 4x + 2

= L  
dx

s2x + 1d2
+ 1

=
1
2L  

du
u2

+ a2

 = 4 ax +
1
2
b2

+ 1 = s2x + 1d2
+ 1.

 4x2
+ 4x + 2 = 4sx2

+ xd + 2 = 4 ax2
+ x +

1
4
b + 2 -

4
4

4x2
+ 4x :

530 Chapter 7: Transcendental Functions

and du>2 = dx
a = 1, u = 2x + 1,

 a = 16
dx = du>ex

= du>u, 
u = ex, du = ex dx, 
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530 Chapter 7: Transcendental Functions

EXERCISES 7.7

Common Values of Inverse Trignonometric
Functions
Use reference triangles like those in Examples 1–3 to find the angles
in Exercises 1–12.

1. a. b. c.

2. a. b. c. tan-1 a -123
btan-123tan-1s -1d

tan-1 a 123
btan-1s -13dtan-1 1

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c. cos-1 a-23
2
bcos-1 a 122

bcos-1 a-1
2
b

cos-1 a23
2
bcos-1 a -122

bcos-1 a1
2
b

sin-1 a23
2
bsin-1 a -122

bsin-1 a1
2
b

sin-1 a-23
2
bsin-1 a 122

bsin-1 a-1
2
b
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7.7 Inverse Trigonometric Functionss 531

7. a. b. c.

8. a. b. c.

9. a. b. c.

10. a. b. c.

11. a. b. c.

12. a. b. c.

Trigonometric Function Values
13. Given that find 

and 

14. Given that find 
and 

15. Given that find 
and 

16. Given that find 
and 

Evaluating Trigonometric and Inverse
Trigonometric Terms
Find the values in Exercises 17–28.

17. 18.

19. 20.

21.

22.

23.

24.

25. 26.

27.

28.

Finding Trigonometric Expressions
Evaluate the expressions in Exercises 29–40.

29. 30. sec stan-1 2xdsec atan-1 
x
2
b

cot-1 acot a- p
4
b b sThe answer is not -p>4.d

sec-1 asec a- p
6
b b sThe answer is not -p>6.d

sec scot-1 13 + csc-1s -1ddsec stan-1 1 + csc-1 1d

cot asin-1 a- 1
2
b - sec-1 2b

sin asin-1 a- 1
2
b + cos-1 a- 1

2
b b

tan ssec-1 1d + sin scsc-1s -2dd
csc ssec-1 2d + cos stan-1 s -13dd

cot asin-1 a- 23
2
b btan asin-1 a- 1

2
b b

sec acos-1 
1
2
bsin acos-1 a22

2
b b

cot a .
csc a ,tan a,cos a,sin a,a = sec-1 s -113>2d ,

cot a .
csc a ,tan a,cos a,sin a,a = sec-1 s -15d ,

cot a .
csc a ,sec a,cos a, sin a,a = tan-1 s4>3d ,

cot a .
csc a ,sec a,tan a,cos a,a = sin-1 s5>13d ,

cot-1 a 123
bcot-1 s -13dcot-1 (1)

cot-1 a -123
bcot-1 s13dcot-1 s -1d

csc-1 s -2dcsc-1 a 223
bcsc-1 s -12d

csc-1 2csc-1 a -223
bcsc-1 22

sec-1 2sec-1 a -223
bsec-122

sec-1s -2dsec-1 a 223
bsec-1s -12d 31. 32.

33. 34.

35.

36. 37.

38. 39.

40.

Limits
Find the limits in Exercises 41–48. (If in doubt, look at the function’s
graph.)

41. 42.

43. 44.

45. 46.

47. 48.

Finding Derivatives
In Exercises 49–70, find the derivative of y with respect to the appro-
priate variable.

49. 50.

51. 52.

53. 54.

55.

56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68. 69.

70.

Evaluating Integrals
Evaluate the integrals in Exercises 71–94.

71. 72. L  
dx21 - 4x2L  

dx29 - x2

y = ln sx2
+ 4d - x tan-1 ax

2
b

y = x sin-1 x + 21 - x2y = cot-1 
1
x - tan-1 x

y = tan-12x2
- 1 + csc-1 x, x 7 1

y = 2s2
- 1 - sec-1 sy = s21 - s2

+ cos-1 s

y = cos-1 se-tdy = csc-1 setd
y = tan-1 sln xdy = ln stan-1 xd
y = cot-1 2t - 1y = cot-1 2t

y = sin-1 
3
t2y = sec-1 

1
t , 0 6 t 6 1

y = csc-1 
x
2

y = csc-1 sx2
+ 1d, x 7 0

y = sec-1 5sy = sec-1 s2s + 1d
y = sin-1 s1 - tdy = sin-122 t

y = cos-1 s1/xdy = cos-1 sx2d

lim
x: -q

 csc-1 xlim
x: q

 csc-1 x

lim
x: -q

 sec-1 xlim
x: q

 sec-1 x

lim
x: -q

 tan-1 xlim
x: q

 tan-1 x

lim
x: -1+

 cos-1 xlim
x:1-

 sin-1 x

sin sec-1 a2x2
+ 4

x b
sin asec-1 

x
4
bcos asin-1 

y

5
b

cos asin-1 
2y

3
bsin atan-1 

x2x2
+ 1
b

sin stan-11x2
- 2xd, x Ú 2

tan scos-1 xdcos ssin-1 xd

tan asec-1 
y

5
btan ssec-1 3yd
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73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87.

88.

89. 90.

91. 92.

93. 94.

Evaluate the integrals in Exercises 95–104.

95. 96.

97. 98.

99. 100.

101. 102.

103. 104.

Evaluate the integrals in Exercises 105–112.

105. 106.

107. 108.

109. 110.

111. 112. L
2

2>23
 
cos ssec-1 xd dx

x2x2
- 1L

222
 
sec2 ssec-1 xd dx

x2x2
- 1

L  
dy

ssin-1 yd21 - y2L  
dy

stan-1 yds1 + y2d

L  
2tan-1 x dx

1 + x2L  
ssin-1 xd2 dx21 - x2

L  
ecos-1 x dx21 - x2L  

esin-1 x dx21 - x2

L  
dx

sx - 2d2x2
- 4x + 3L  

dx

sx + 1d2x2
+ 2x

L
4

2
 

2 dx

x2
- 6x + 10L

2

1
 

8 dx

x2
- 2x + 2

L  
dy

y2
+ 6y + 10L  

dy

y2
- 2y + 5

L
1

1>2
 

6 dt23 + 4t - 4t2L
0

-1
 

6 dt23 - 2t - t2

L  
dx22x - x2L  

dx2-x2
+ 4x - 3

L  
sec2 y dy21 - tan2 yL  

y dy21 - y4

L
ep>4

1
 

4 dt

ts1 + ln2 tdL
ln 23

0
 

ex dx

1 + e2x

L
p>4
p>6

 
csc2 x dx

1 + scot xd2L
p>2

-p>2
 

2 cos u du

1 + ssin ud2

L  
dx

sx + 3d2sx + 3d2
- 25

L  
dx

s2x - 1d2s2x - 1d2
- 4

L  
dx

1 + s3x + 1d2L  
dx

2 + sx - 1d2

L  
6 dr24 - sr + 1d2L  

3 dr21 - 4sr - 1d2

L
-22>3

-2>3
 

dy

y29y2
- 1L

-22>2
-1

 
dy

y24y2
- 1

L
2

-2
 

dt

4 + 3t2L
2

0
 

dt

8 + 2t2

L
322>4

0
 

ds29 - 4s2L
1

0
 

4 ds24 - s2

L  
dx

x25x2
- 4L  

dx

x225x2
- 2

L  
dx

9 + 3x2L  
dx

17 + x2
Limits
Find the limits in Exercises 113–116.

113. 114.

115. 116.

Integration Formulas
Verify the integration formulas in Exercises 117–120.

117.

118.

119.

120.

Initial Value Problems
Solve the initial value problems in Exercises 121–124.

121.

122.

123.

124.

Applications and Theory
125. You are sitting in a classroom next to the wall looking at the

blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that
your viewing angle is

if you are x ft from the front wall.

B
la

ck
bo

ar
d

12'

3'
Wall

You
�

x

a = cot-1 
x

15
- cot-1 

x
3

dy

dx
=

1
1 + x2 -

221 - x2
, y s0d = 2

dy

dx
=

1

x2x2
- 1

, x 7 1; y s2d = p

dy

dx
=

1
x2

+ 1
- 1, y s0d = 1

dy

dx
=

121 - x2
, y s0d = 0

L  ln sa2
+ x2d dx = x ln sa2

+ x2d - 2x + 2a tan-1 
x
a + C

Lssin-1 xd2 dx = xssin-1 xd2
- 2x + 221 - x2 sin-1 x + C

Lx3 cos-1 5x dx =

x4

4
 cos-1 5x +

5
4L  

x4 dx21 - 25x2

L  
tan-1 x

x2  dx = ln x -

1
2

 ln s1 + x2d -

tan-1 x
x + C

lim
x:0

 
2 tan-1 3x2

7x2lim
x: q

 x tan-1 
2
x

lim
x:1+

 
2x2

- 1

sec-1 x
lim
x:0

 
sin-1 5x

x
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7.7 Inverse Trigonometric Functions 533

126. The region between the curve and the x-axis from
to (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

127. The slant height of the cone shown here is 3 m. How large
should the indicated angle be to maximize the cone’s volume?

128. Find the angle 

129. Here is an informal proof that 
Explain what is going on.

130. Two derivations of the identity

a. (Geometric) Here is a pictorial proof that 
See if you can tell what is going on.p - sec-1 x .

sec-1 s -xd =

sec-1 s -xd = P - sec-1 x

tan-1 1 + tan-1 2 + tan-1 3 = p .

65°

21

50
�

�

a .

What angle here
gives the largest
volume?

3
h

r

y � sec–1 x

x

y

210

�
3

x = 2x = 1
y = sec-1 x

b. (Algebraic) Derive the identity by
combining the following two equations from the text:

Eq. (3)

Eq. (5)

131. The identity Figure 7.21 establishes
the identity for To establish it for the rest of

verify by direct calculation that it holds for 0,
and Then, for values of x in let 
and apply Eqs. (1) and (3) to the sum 

132. Show that the sum is constant.

Which of the expressions in Exercises 133–136 are defined, and
which are not? Give reasons for your answers.

133. a. b.

134. a. b.

135. a. b.

136. a. b.

137. (Continuation of Exercise 125.) You want to position your chair
along the wall to maximize your viewing angle How far from
the front of the room should you sit?

138. What value of x maximizes the angle shown here? How large is
at that point? Begin by showing that 

139. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.

140. Can the integrations in (a) and (b) both be correct? Explain.

a. L  
dx21 - x2

= -L-

dx21 - x2
= -cos-1 x + C

L  
dx21 - x2

= -L-

dx21 - x2
= -cos-1 x + C

L  
dx21 - x2

= sin-1 x + C

x

y

1

20 x

�

-  cot-1 s2 - xd .
u = p - cot-1 xu

u

a .

cos-1 s -5dcot-1 s- 1>2d
sin-122sec-1 0

csc-1 2csc-1 (1>2)

cos-1 2tan-1 2

tan-1 x + tan-1 s1>xd
sin-1s -ad + cos-1s -ad .

x = -a, a 7 0,s -1, 0d ,-1.
x = 1,[-1, 1] ,

0 6 x 6 1.
sin-1 x + cos-1 x = p>2

sec-1 x = cos-1 s1>xd

cos-1 s -xd = p - cos-1 x

sec-1 s -xd = p - sec-1 x

x

y

0

�

1 x–1–x

y � sec–1x

�
2
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b.

141. Use the identity

to derive the formula for the derivative of in Table 7.3
from the formula for the derivative of 

142. Derive the formula

for the derivative of by differentiating both sides of
the equivalent equation 

143. Use the Derivative Rule in Section 7.1, Theorem 1, to derive

144. Use the identity

to derive the formula for the derivative of in Table 7.3
from the formula for the derivative of 

145. What is special about the functions

Explain.

146. What is special about the functions

Explain.

147. Find the volume of the solid of revolution shown here.

x

y

�3

–�3
3 y � 1

�1 � x2

ƒsxd = sin-1 
12x2

+ 1
 and g sxd = tan-1 

1
x ?

ƒsxd = sin-1  
x - 1
x + 1

, x Ú 0, and g sxd = 2 tan-11x?

tan-1 u .
cot-1 u

cot-1 u =

p

2
- tan-1 u

d
dx

 sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1.

tan y = x .
y = tan-1 x

dy

dx
=

1
1 + x2

sec-1 u .
csc-1 u

csc-1 u =

p

2
- sec-1 u

u = -x = cos-1 s -xd + C

 = cos-1 u + C

 = L  
-du21 - u2

 L  
dx21 - x2

= L  
-du21 - s -ud2

148. Arc length Find the length of the curve 

Volumes by Slicing
Find the volumes of the solids in Exercises 149 and 150.

149. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular to the 

x-axis are
a. circles whose diameters stretch from the curve 

to the curve 

b. vertical squares whose base edges run from the curve 
to the curve 

150. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular

to the x-axis are
a. circles whose diameters stretch from the x-axis to the curve 

b. squares whose diagonals stretch from the x-axis to the curve 

Calculator and Grapher Explorations
151. Find the values of

a. b. c.

152. Find the values of

a. b. c.

In Exercises 153–155, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

153. a. b.

154. a. b.

155. a. b.

156. Graph Explain what you
see.

157. Newton’s serpentine Graph Newton’s serpentine, 
Then graph in the same

graphing window. What do you see? Explain.

158. Graph the rational function Then graph 
in the same graphing window. What do you see?

Explain.

159. Graph together with its first two derivatives.
Comment on the behavior of ƒ and the shape of its graph in rela-
tion to the signs and values of and 

160. Graph together with its first two derivatives.
Comment on the behavior of ƒ and the shape of its graph in rela-
tion to the signs and values of and ƒ– .ƒ¿

ƒsxd = tan-1 x

ƒ– .ƒ¿

ƒsxd = sin-1 x

cos s2 sec-1 xd
y =y = s2 - x2d>x2 .

y = 2 sin s2 tan-1 xd4x>sx2
+ 1d .

y =

y = sec ssec-1 xd = sec scos-1s1>xdd .

y = cos scos-1 xdy = cos-1 scos xd
y = sin ssin-1 xdy = sin-1 ssin xd
y = tan stan-1 xdy = tan-1 stan xd

cot-1 s -2dcsc-1 1.7sec-1s -3d

cot-1 2csc-1 s -1.5dsec-1 1.5

y = 2> 4   21 - x2 .

y = 2> 4   21 - x2 .

x = 22>2.x = -22>2

y = 1>21 + x2 .-1>21 + x2
y =

y = 1>21 + x2 .-1>21 + x2
y =

x = 1.x = -1

 -1>2 … x … 1>2.
y = 21 - x2, 
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T

dx = -du
x = -u,
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Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions and The hyperbolic functions simplify many mathematical expressions and
they are important in applications. For instance, they are used in problems such as comput-
ing the tension in a cable suspended by its two ends, as in an electric transmission line.
They also play an important role in finding solutions to differential equations. In this sec-
tion, we give a brief introduction to hyperbolic functions, their graphs, how their deriva-
tives are calculated, and why they appear as important antiderivatives.

Even and Odd Parts of the Exponential Function

Recall the definitions of even and odd functions from Section 1.4, and the symmetries of
their graphs. An even function ƒ satisfies while an odd function satisfies

Every function ƒ that is defined on an interval centered at the origin can
be written in a unique way as the sum of one even function and one odd function. The de-
composition is

If we write this way, we get

The even and odd parts of called the hyperbolic cosine and hyperbolic sine of x, re-
spectively, are useful in their own right. They describe the motions of waves in elastic
solids and the temperature distributions in metal cooling fins. The centerline of the Gate-
way Arch to the West in St. Louis is a weighted hyperbolic cosine curve.

Definitions and Identities

The hyperbolic cosine and hyperbolic sine functions are defined by the first two equations
in Table 7.5. The table also lists the definitions of the hyperbolic tangent, cotangent, se-
cant, and cosecant. As we will see, the hyperbolic functions bear a number of similarities
to the trigonometric functions after which they are named. (See Exercise 84 as well.)

The notation cosh x is often read “kosh x,” rhyming with “gosh x,” and sinh x is pro-
nounced as if spelled “cinch x,” rhyming with “pinch x.”

Hyperbolic functions satisfy the identities in Table 7.6. Except for differences in sign,
these resemble identities we already know for trigonometric functions.

The second equation is obtained as follows:

 = sinh 2x .

 =

e2x
- e-2x

2

 2 sinh x cosh x = 2 aex
- e-x

2
b aex

+ e-x

2
b

ex ,

ex
=

ex
+ e-x

2
+

ex
- e-x

2 .
(')'* (')'*

even part odd part

ex

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.
('')''* ('')''*

even part odd part

ƒs -xd = -ƒsxd .
ƒs -xd = ƒsxd ,

e-x .ex

7.8 
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536 Chapter 7: Transcendental Functions

TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

Hyperbolic sine of x:          

Hyperbolic cosine of x:      

Hyperbolic tangent:

Hyperbolic cotangent:

Hyperbolic secant:

Hyperbolic cosecant:

x

y

1–1 2–2

2

1

–1

(e)

y � csch x

csch x =
1

sinh x
=

2
ex

- e-x

x

y

1–1 0 2–2

2

(d)

y � sech x

y � 1

sech x =
1

cosh x
=

2
ex

+ e-x

coth x =

cosh x
sinh x

=

ex
+ e-x

ex
- e-x

x

y

2

1–1 2–2

–2

(c)

y � coth x

y � tanh x

y � coth x

y � 1

y � –1

tanh x =

sinh x
cosh x

=

ex
- e-x

ex
+ e-x

x

y

1–1 2 3–2–3

(b)

y � cosh x

y �
ex

2
y �

e–x

2 1
2
3

cosh x =

ex
+ e-x

2

x

y

1

–1
1

2
3

–2
–3

2 3–2 –1–3

(a)

y � sinh xy �
ex

2

y � – e–x

2

sinh x =

ex
- e-x

2

TABLE 7.6 Identities for
hyperbolic functions

coth2 x = 1 + csch2 x

tanh2 x = 1 - sech2 x

sinh2 x =

cosh 2x - 1
2

cosh2 x =

cosh 2x + 1
2

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 sinh x cosh x

cosh2 x - sinh2 x = 1
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7.8 Hyperbolic Functions 537

The other identities are obtained similarly, by substituting in the definitions of the hy-
perbolic functions and using algebra. Like many standard functions, hyperbolic functions
and their inverses are easily evaluated with calculators, which have special keys or key-
stroke sequences for that purpose.

Derivatives and Integrals

The six hyperbolic functions, being rational combinations of the differentiable functions
and have derivatives at every point at which they are defined (Table 7.7). Again,

there are similarities with trigonometric functions. The derivative formulas in Table 7.7
lead to the integral formulas in Table 7.8.

e-x ,ex

TABLE 7.7 Derivatives of
hyperbolic functions

d
dx

 scsch ud = -csch u coth u 
du
dx

d
dx

 ssech ud = -sech u tanh u 
du
dx

d
dx

 scoth ud = -csch2 u 
du
dx

d
dx

 stanh ud = sech2 u 
du
dx

d
dx

 scosh ud = sinh u 
du
dx

d
dx

 ssinh ud = cosh u 
du
dx

TABLE 7.8 Integral formulas for
hyperbolic functions

L  csch u coth u du = -csch u + C

L  sech u tanh u du = -sech u + C

L  csch2 u du = -coth u + C

L  sech2 u du = tanh u + C

L  cosh u du = sinh u + C

L  sinh u du = cosh u + C

The derivative formulas are derived from the derivative of 

Definition of sinh u

Derivative of

Definition of cosh u

This gives the first derivative formula. The calculation

Definition of csch u

Quotient Rule

Rearrange terms.

Definitions of csch u and coth u

gives the last formula. The others are obtained similarly.

 = -csch u coth u 
du
dx

 = -
1

sinh u
 
cosh u
sinh u

 
du
dx

 = -

cosh u
sinh2 u

 
du
dx

 
d
dx

 scsch ud =

d
dx

 a 1
sinh u

b

 = cosh u 
du
dx

eu =

eu du>dx + e-u du>dx

2

 
d
dx

 ssinh ud =

d
dx

 aeu
- e-u

2
b

eu :
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EXAMPLE 1 Finding Derivatives and Integrals

(a)

(b)

(c) Table 7.6

(d)

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration. Since
the hyperbolic sine is an increasing function of x. We denote

its inverse by

For every value of x in the interval the value of is the num-
ber whose hyperbolic sine is x. The graphs of and are shown in
Figure 7.32a.

The function is not one-to-one, as we can see from the graph in
Figure 7.31b. The restricted function however, is one-to-one and
therefore has an inverse, denoted by

For every value of is the number in the interval whose
hyperbolic cosine is x. The graphs of and are shown in
Figure 7.32b.

Like the function fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

For every value of x in the interval is the nonnegative number whose
hyperbolic secant is x. The graphs of and are shown in
Figure 7.32c.

y = sech-1 xy = sech x, x Ú 0,
s0, 1], y = sech-1 x

y = sech-1 x .

y = sech x = 1>cosh xy = cosh x ,

y = cosh-1 xy = cosh x, x Ú 0,
0 … y 6 qx Ú 1, y = cosh-1 x

y = cosh-1 x .

y = cosh x, x Ú 0,
y = cosh x

y = sinh-1 xy = sinh x
y = sinh-1 x- q 6 x 6 q ,

y = sinh-1 x .

dssinh xd>dx = cosh x 7 0,

 L 1.6137

 = 4 - 2 ln 2 - 1

 = Ce2x
- 2x D0ln 2

= se2 ln 2
- 2 ln 2d - s1 - 0d

 L
ln 2

0
 4ex sinh x dx = L

ln 2

0
 4ex  

ex
- e-x

2
 dx = L

ln 2

0
 s2e2x

- 2d dx

 =

sinh 2
4

-
1
2

L 0.40672

 =
1
2L

1

0
 scosh 2x - 1d dx =

1
2

 csinh 2x
2

- x d
0

1

 L
1

0
 sinh2 x dx = L

1

0
 
cosh 2x - 1

2
 dx

 =
1
5 ln ƒ u ƒ + C =

1
5 ln ƒ sinh 5x ƒ + C

 L  coth 5x dx = L  
cosh 5x
sinh 5x

 dx =
1
5L  

du
u

 =

t21 + t2
 sech2 21 + t2

 
d
dt

 A tanh 21 + t2 B = sech2 21 = t2 # d
dt

 A21 + t2 B

538 Chapter 7: Transcendental Functions

Evaluate with
a calculator

du = 5 cosh 5x dx
u = sinh 5x ,
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7.8 Hyperbolic Functions 539

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

These functions are graphed in Figure 7.33.

y = tanh-1 x, y = coth-1 x, y = csch-1 x .

x

y

1
2

2 4 6–6 –4 –2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a)

(b) (c)

y � sinh x y � x

y � sinh–1 x
(x � sinh y)

y � cosh x,
x � 0

y � sech x
x � 0

y � x y � x

y � cosh–1 x
(x � cosh y, y � 0)

y � sech–1 x
(x � sech y,
  y � 0)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x .

x

y

0–1 1

(a)

x

y

0–1 1

(b)

x

y

0

(c)

x � tanh y
y � tanh–1x

 x � coth y
y � coth–1x

 x � csch y
y � csch–1x

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

Useful Identities

We use the identities in Table 7.9 to calculate the values of and 
on calculators that give only and These identities are direct
consequences of the definitions. For example, if then

sech acosh-1 a1x b b =
1

cosh acosh-1 a1x b b
=

1

a1x b
= x

0 6 x … 1,
tanh-1 x .cosh-1 x, sinh-1 x ,

coth-1 xsech-1 x, csch-1 x ,

TABLE 7.9 Identities for inverse
hyperbolic functions

coth-1 x = tanh-1 
1
x

csch-1 x = sinh-1 
1
x

sech-1 x = cosh-1 
1
x
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so

since the hyperbolic secant is one-to-one on 

Derivatives and Integrals

The chief use of inverse hyperbolic functions lies in integrations that reverse the derivative
formulas in Table 7.10.

s0, 1].

cosh-1 a1x b = sech-1 x

540 Chapter 7: Transcendental Functions

TABLE 7.10 Derivatives of inverse hyperbolic functions

dscsch-1 ud
dx

=

-du>dx

ƒ u ƒ21 + u2
 , u Z 0

dssech-1 ud
dx

=

-du>dx

u21 - u2
 ,  0 6 u 6 1

dscoth-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 7 1

dstanh-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 6 1

dscosh-1 ud
dx

=
12u2

- 1
 
du
dx

 ,      u 7 1

dssinh-1 ud
dx

=
121 + u2

 
du
dx

The restrictions and on the derivative formulas for and
come from the natural restrictions on the values of these functions. (See

Figure 7.33a and b.) The distinction between and becomes important
when we convert the derivative formulas into integral formulas. If the integral of

is If the integral is 
We illustrate how the derivatives of the inverse hyperbolic functions are found in

Example 2, where we calculate The other derivatives are obtained by sim-
ilar calculations.

EXAMPLE 2 Derivative of the Inverse Hyperbolic Cosine

Show that if u is a differentiable function of x whose values are greater than 1, then

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

dscosh-1 ud>dx .

coth-1 u + C .ƒ u ƒ 7 1,tanh-1 u + C .1>s1 - u2d
ƒ u ƒ 6 1,

ƒ u ƒ 7 1ƒ u ƒ 6 1
coth-1 u

tanh-1 uƒ u ƒ 7 1ƒ u ƒ 6 1

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
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7.8 Hyperbolic Functions 541

Solution First we find the derivative of for by applying Theorem 1
with and Theorem 1 can be applied because the deriva-
tive of cosh x is positive for 

Theorem 1

In short,

The Chain Rule gives the final result:

Instead of applying Theorem 1 directly, as in Example 2, we could also find the derivative
of using implicit differentiation and the Chain Rule:

Equivalent equation

With appropriate substitutions, the derivative formulas in Table 7.10 lead to the inte-
gration formulas in Table 7.11. Each of the formulas in Table 7.11 can be verified by dif-
ferentiating the expression on the right-hand side.

EXAMPLE 3 Using Table 7.11

Evaluate

L
1

0
 

2 dx23 + 4x2
.

cosh y = x =
12x2

- 1
.

 
dy
dx

=
1

sinh y
=

12cosh2 y - 1

 1 = sinh y 
dy
dx

 x = cosh y

 y = cosh-1 x

y = cosh-1 x, x 7 1,

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

d
dx

 scosh-1 xd =
12x2

- 1
.

cosh scosh-1 xd = x =
12x2

- 1

 =
12cosh2 scosh-1 xd - 1

ƒ¿sud = sinh u =
1

sinh scosh-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1 sxdd

0 6 x .
ƒ -1sxd = cosh-1 x .ƒsxd = cosh x

x 7 1y = cosh-1 x

2cosh2 u - 1sinh u =

cosh2 u - sinh2 u = 1,

Implicit differentiation
with respect to x, and
the Chain Rule

Since 
and sinh y 7 0

x 7 1, y 7 0

4100 AWL/Thomas_ch07p466-552  8/20/04  10:03 AM  Page 541

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html
bounce07.html?5_5_l


Solution The indefinite integral is

Formula from Table 7.11

Therefore,

 = sinh-1 a 2

3
b - 0 L 0.98665.

 L
1

0
 

2 dx23 + 4x2
= sinh-1 a 2x23

b d
0

1

= sinh-1 a 223
b - sinh-1 s0d

 = sinh-1 a 2x23
b + C .

 = sinh-1 aua b + C

u = 2x, du = 2 dx, a = 23 L  
2 dx23 + 4x2

= L  
du2a2

+ u2

542 Chapter 7: Transcendental Functions

TABLE 7.11 Integrals leading to inverse hyperbolic functions

1.

2.

3.

4.

5. and a 7 0L  
du

u2a2
+ u2

= -
1
a csch-1 

ƒ  
u
a ƒ + C,   u Z 0

L  
du

u2a2
- u2

= -
1
a sech-1 aua b + C,  0 6 u 6 a

L  
du

a2
- u2 = d 1

a tanh-1 aua b + C  if u2
6 a2

1
a coth-1 aua b + C,  if u2

7 a2

L  
du2u2

- a2
= cosh-1 aua b + C,      u 7 a 7 0

L  
du2a2

+ u2
= sinh-1 aua b + C,      a 7 0
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542 Chapter 7: Transcendental Functions

EXERCISES 7.8

Hyperbolic Function Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity to find the values of the
remaining five hyperbolic functions.

1. 2.

3. 4. cosh x =

13
5

, x 7 0cosh x =

17
15

, x 7 0

sinh x =

4
3

sinh x = -

3
4

cosh2 x - sinh2 x = 1

Rewrite the expressions in Exercises 5–10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)

7. 8.

9.

10. ln scosh x + sinh xd + ln scosh x - sinh xd
ssinh x + cosh xd4

cosh 3x - sinh 3xcosh 5x + sinh 5x
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7.8 Hyperbolic Functions 543

11. Use the identities

to show that

a.

b.

12. Use the definitions of cosh x and sinh x to show that

Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

(Hint: Before differentiating, express in terms of exponentials
and simplify.)

24.

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.

b.

38.

39. L  x coth-1 x dx =

x2
- 1
2

 coth-1 x +

x
2

+ C

L  x sech-1 x dx =

x2

2
 sech-1 x -

1
2
21 - x2

+ C

L  sech x dx = sin-1 stanh xd + C

L  sech x dx = tan-1 ssinh xd + C

y = cosh-1 ssec xd, 0 6 x 6 p>2
y = sinh-1 stan xd

y = csch-1 2uy = csch-1 a1
2
bu

y = ln x + 21 - x2 sech-1 xy = cos-1 x - x sech-1 x

y = s1 - t2d coth-1 ty = s1 - td coth-1 2t

y = su2
+ 2ud tanh-1 su + 1dy = s1 - ud tanh-1 u

y = cosh-1 22x + 1y = sinh-1 1x

y = s4x2
- 1d csch sln 2xd

y = sx2
+ 1d sech sln xd

y = ln sinh y -

1
2

 coth2 yy = ln cosh y -

1
2

 tanh2 y

y = csch us1 - ln csch udy = sech us1 - ln sech ud
y = ln scosh zdy = ln ssinh zd
y = t2 tanh 

1
ty = 22t tanh 2t

y =

1
2

 sinh s2x + 1dy = 6 sinh 
x
3

cosh2 x - sinh2 x = 1.

cosh 2x = cosh2 x + sinh2 x .

sinh 2x = 2 sinh x cosh x

 cosh sx + yd = cosh x cosh y + sinh x sinh y

 sinh sx + yd = sinh x cosh y + cosh x sinh y
40.

Indefinite Integrals
Evaluate the integrals in Exercises 41–50.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Definite Integrals
Evaluate the integrals in Exercises 51–60.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

Evaluating Inverse Hyperbolic Functions
and Related Integrals
When hyperbolic function keys are not available on a calculator, it is
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

L
ln 10

0
 4 sinh2 ax

2
b  dxL

0

-ln 2
 cosh2 ax

2
b  dx

L
4

1
 
8 cosh 1x1x

 dxL
2

1
 
cosh sln td

t  dt

L
p>2

0
 2 sinh ssin ud cos u duL

p>4
-p>4

 cosh stan ud sec2 u du

L
ln 2

0
 4e-u sinh u duL

-ln 2

-ln 4
 2eu cosh u du

L
ln 2

0
 tanh 2x dxL

ln 4

ln 2
 coth x dx

L  
csch sln td coth sln td dt

tL  
sech 2t tanh 2t dt2t

L  csch2 s5 - xd dxL  sech2 ax -

1
2
b  dx

L  coth 
u23

 duL  tanh 
x
7

 dx

L  4 cosh s3x - ln 2d dxL  6 cosh ax
2

- ln 3b  dx

L  sinh 
x
5

 dxL  sinh 2x dx

L  tanh-1 x dx = x tanh-1 x +

1
2

 ln s1 - x2d + C

 coth-1 x =

1
2

 ln 
x + 1
x - 1

 ,          ƒ x ƒ 7 1

 csch-1 x = ln a1x +

21 + x2

ƒ x ƒ

b , x Z 0

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x
1 - x

 ,          ƒ x ƒ 6 1

 cosh-1 x = ln Ax + 2x2
+ 1 B , x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B , - q 6 x 6 q
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Use the formulas in the box here to express the numbers in Exercises
61–66 in terms of natural logarithms.

61. 62.

63. 64.

65. 66.

Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.

b. natural logarithms.

67. 68.

69. 70.

71. 72.

73. 74.

Applications and Theory
75. a. Show that if a function ƒ is defined on an interval symmetric

about the origin (so that ƒ is defined at whenever it is de-
fined at x), then

(1)

Then show that is even and that
is odd.

b. Equation (1) simplifies considerably if ƒ itself is (i) even or
(ii) odd. What are the new equations? Give reasons for your
answers.

76. Derive the formula 

Explain in your derivation why the plus sign is used with
the square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the
action of gravity encounters an air resistance proportional to the
square of the velocity, then the body’s velocity t sec into the fall
satisfies the differential equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not af-
fect the outcome significantly.)

a. Show that

y = Amg

k
 tanh aAgk

m  tb

m 
dy
dt

= mg - ky2 ,

q .6  

- q 6 xsinh-1 x = ln Ax + 2x2
+ 1 B ,

sƒsxd - ƒs -xdd>2
sƒsxd + ƒs -xdd>2

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.

-x

L
e

1
 

dx

x21 + sln xd2L
p

0
 

cos x dx21 + sin2 x

L
2

1
 

dx

x24 + x2L
3>13

1>5
 

dx

x21 - 16x2

L
1>2

0
 

dx

1 - x2L
2

5>4
 

dx

1 - x2

L
1>3

0
 

6 dx21 + 9x2L
223

0
 

dx24 + x2

csch-1 s -1>13dsech-1 s3>5d

coth-1 s5>4dtanh-1 s -1>2d

cosh-1 s5>3dsinh-1 s -5>12d

satisfies the differential equation and the initial condition that
when 

b. Find the body’s limiting velocity, 

c. For a 160-lb skydiver with time in seconds and
distance in feet, a typical value for k is 0.005. What is the
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a.

b.

Show in both cases that the acceleration is proportional to
s but that in the first case it is directed toward the origin, whereas
in the second case it is directed away from the origin.

79. Tractor trailers and the tractrix When a tractor trailer turns
into a cross street or driveway, its rear wheels follow a curve like
the one shown here. (This is why the rear wheels sometimes ride
up over the curb.) We can find an equation for the curve if we pic-
ture the rear wheels as a mass M at the point (1, 0) on the x-axis
attached by a rod of unit length to a point P representing the cab
at the origin. As the point P moves up the y-axis, it drags M along
behind it. The curve traced by M—called a tractrix from the
Latin word tractum, for “drag”—can be shown to be the graph of
the function that solves the initial value problem

Solve the initial value problem to find an equation for the curve.
(You need an inverse hyperbolic function.)

80. Area Show that the area of the region in the first quadrant en-
closed by the curve the coordinate axes, and
the line is the same as the area of a rectangle of height 1 a
and length s, where s is the length of the curve from to

(See accompanying figure.)x = b .
x = 0

>x = b
y = s1>ad cosh ax ,

x

y

0 (1, 0)

P

M(x, y)

y � f (x)

Differential equation:  
dy

dx
= -

1

x21 - x2
+

x21 - x2

Initial condition: y = 0 when x = 1.

y = ƒsxd

d2s>dt2

s = a cosh kt + b sinh kt .

s = a cos kt + b sin kt

smg = 160d ,

limt:q y .

t = 0.y = 0
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7.8 Hyperbolic Functions 545

81. Volume A region in the first quadrant is bounded above by the
curve below by the curve and on the left
and right by the y-axis and the line respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

82. Volume The region enclosed by the curve the

x-axis, and the lines is revolved about the x-axis to
generate a solid. Find the volume of the solid.

83. Arc length Find the length of the segment of the curve 

from to 

84. The hyperbolic in hyperbolic functions In case you are won-
dering where the name hyperbolic comes from, here is the an-
swer: Just as and are identified with points
(x, y) on the unit circle, the functions and 
are identified with points (x, y) on the right-hand branch of the
unit hyperbola, 

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola is
twice the area of the sector AOP pictured in the accompanying
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

Asud =

1
2

 cosh u sinh u - L
cosh u

1
2x2

- 1 dx .

x2
- y2

= 1

x

y

1

10

u→
−∞

–1

u→
∞

P(cosh u, sinh u)
u � 0

x2 � y2 � 1

x2
- y2

= 1.

y = sinh ux = cosh u
y = sin ux = cos u

x = ln 25.x = 0s1>2d cosh 2x

y =

x = ;  ln 23

y = sech x ,

x = 2,
y = sinh x ,y = cosh x ,

x

y

0 sb

s

1
a

y �     cosh ax1
a

b. Differentiate both sides of the equation in part (a) with
respect to u to show that

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your
solution? With C determined, what does your solution say
about the relationship of u to A(u)?

85. A minimal surface Find the area of the surface swept out by re-
volving about the x-axis the curve 

It can be shown that, of all continuously differentiable curves
joining points A and B in the figure, the curve 
generates the surface of least area. If you made a rigid wire frame
of the end-circles through A and B and dipped them in a soap-film
solution, the surface spanning the circles would be the one gener-
ated by the curve.

86. a. Find the centroid of the curve 

b. Evaluate the coordinates to two decimal places. Then sketch
the curve and plot the centroid to show its relation to the
curve.

y = cosh x, - ln 2 … x …  ln 2 .

y = 4 cosh sx>4d

x

y

–ln 16 ln 810

4
A(–ln 16, 5)

B(ln 81, 6.67)

y � 4 cosh (x /4)

- ln 16 … x …  ln 81 .
y = 4 cosh sx>4d, 

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 � y2 � 1
x2 � y2 � 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u � 0
u � 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)

A¿sud =

1
2

.

T

Since the point
(cosh u, sinh u) lies on the right-hand
branch of the hyperbola 
for every value of u (Exercise 84).

x2
- y2

= 1

cosh2 u - sinh2 u = 1,

One of the analogies between hyperbolic and circular
functions is revealed by these two diagrams (Exercise 84).
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Hanging Cables
87. Imagine a cable, like a telephone line or TV cable, strung from

one support to another and hanging freely. The cable’s weight per
unit length is w and the horizontal tension at its lowest point is a
vector of length H. If we choose a coordinate system for the plane
of the cable in which the x-axis is horizontal, the force of gravity
is straight down, the positive y-axis points straight up, and the
lowest point of the cable lies at the point on the y-axis
(see accompanying figure), then it can be shown that the cable
lies along the graph of the hyperbolic cosine

Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next
accompanying figure displays the tension at P as a vector of
length (magnitude) T, as well as the tension H at the lowest
point A. Show that the cable’s slope at P is

b. Using the result from part (a) and the fact that the horizontal
tension at P must equal H (the cable is not moving), show that

Hence, the magnitude of the tension at P(x, y) is
exactly equal to the weight of y units of cable.
T = wy .

tan f =

dy

dx
= sinh 

w
H

 x .

x

y

0

H

Hanging
cable

H
w

y �      cosh     xH
w

w
H

y =

H
w  cosh 

w
H

 x .

y = H>w

88. (Continuation of Exercise 87.) The length of arc AP in the Exer-
cise 87 figure is where Show that
the coordinates of P may be expressed in terms of s as

89. The sag and horizontal tension in a cable The ends of a cable
32 ft long and weighing 2 lb ft are fastened at the same level to
posts 30 ft apart.

a. Model the cable with the equation

Use information from Exercise 88 to show that a satisfies the
equation

(2)

b. Solve Equation (2) graphically by estimating the coordinates
of the points where the graphs of the equations and

intersect in the ay-plane.

c. Solve Equation (2) for a numerically. Compare your solution
with the value you found in part (b).

d. Estimate the horizontal tension in the cable at the cable’s
lowest point.

e. Using the value found for a in part (c), graph the catenary

over the interval Estimate the sag in the
cable at its center.

-15 … x … 15.

y =

1
a cosh ax

y = sinh 15a
y = 16a

16a = sinh 15a .

y =

1
a cosh ax, -15 … x … 15.

>

x =

1
a sinh-1 as, y = As2

+

1
a2 .

a = w>H .s = s1>ad sinh ax ,

x

y

0

H

T

T cos �

�
P(x, y)

y �      cosh     xH
w

w
H







H
wA  0, 
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Chapter 7 Additional and Advanced Exercises

Limits
Find the limits in Exercises 1–6.

1. 2.

3. 4.

5.

6.

7. Let A(t) be the area of the region in the first quadrant enclosed by
the coordinate axes, the curve and the vertical line

Let V(t) be the volume of the solid generated by re-
volving the region about the x-axis. Find the following limits.

a. b. c.

8. Varying a logarithm’s base

a. Find as and 

b. Graph as a function of a over the interval

Theory and Examples
9. Find the areas between the curves and 

and the x-axis from to What is the ratio
of the larger area to the smaller?

10. Graph for Then use
calculus to explain what you see. How would you expect ƒ to be-
have beyond the interval Give reasons for your answer.

11. For what does Give reasons for your
answer.

x sxxd
= sxxdx ?x 7 0

[-5, 5]?

-5 … x … 5.ƒsxd = tan-1 x + tan-1s1>xd

x = e .x = 12slog4 xd>x
y =y = 2slog2 xd>x

0 6 a … 4.
y = loga 2

q .a : 0+, 1-, 1+ ,lim loga 2

lim
t:0+

 Vstd>Astdlim
t: q

 Vstd>Astdlim
t: q

 Astd

x = t, t 7 0.
y = e-x ,

lim
n: q

 
1
n Ae1>n

+ e2>n
+

Á
+ e sn - 1d>n

+ en>n B
lim

n: q

 a 1
n + 1

+

1
n + 2

+
Á

+

1
2n
b

lim
x: q

sx + exd2>xlim
x:0+

scos 1xd1>x

lim
x: q

 
1
xL

x

0
 tan-1 t dtlim

b:1-L
b

0
 

dx21 - x2

12. Graph over Explain what you see.

13. Find if and 

14. a. Find df dx if

b. Find ƒ(0).

c. What can you conclude about the graph of ƒ? Give reasons
for your answer.

15. The figure here shows an informal proof that

How does the argument go? (Source: “Behold! Sums of Arctan,”
by Edward M. Harris, College Mathematics Journal, Vol. 18,
No. 2, Mar. 1987, p. 141.)

16.

a. Why does the accompanying figure “prove” that 
(Source: “Proof Without Words,” by Fouad Nakhil,
Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 165.)

b. The accompanying figure assumes that has an
absolute maximum value at How do you know it does?x = e .

ƒsxd = sln xd>x

pe
6 ep?

Pe<eP

C

B

EA

D

tan-1 
1
2

+ tan-1 
1
3

=

p

4
.

ƒsxd = L
ex

1
 
2 ln t

t  dt .

>
g sxd = L

x

2
 

t

1 + t4 dt .ƒsxd = egsxdƒ¿s2d

[0, 3p] .ƒsxd = ssin xdsin x

T

T
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17. Use the accompanying figure to show that

18. Napier’s inequality Here are two pictorial proofs that

Explain what is going on in each case.

a.

b.

(Source: Roger B. Nelson, College Mathematics Journal, Vol. 24,
No. 2, March 1993, p. 165.)

x

y

0 a b

y � 1
x

x

y

0 a b

L1

L2

L3

y � ln x

b 7 a 7 0 Q  1
b

6

ln b - ln a
b - a

6

1
a .

0 1

1

�
2

�
2

y � sin x

y � sin–1 x

x

y

L
p>2

0
 sin x dx =

p

2
- L

1

0
 sin-1 x dx .

x

y

0 1 e �

NOT TO SCALE

y �
ln x

x

ln e
e

ln �
�

19. Even-odd decompositions

a. Suppose that g is an even function of x and h is an odd
function of x. Show that if for all x then

for all x and for all x.

b. Use the result in part (a) to show that if 
is the sum of an even function and an

odd function then

c. What is the significance of the result in part (b)?

20. Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties:

i. for all real numbers x, y, and

in the domain of g.

ii.

iii.

a. Show that 

b. Show that 

c. Find g (x) by solving the differential equation in part (b).

Applications
21. Center of mass Find the center of mass of a thin plate of con-

stant density covering the region in the first and fourth quadrants
enclosed by the curves and 
and by the lines and 

22. Solid of revolution The region between the curve
and the x-axis from to is revolved

about the x-axis to generate a solid.

a. Find the volume of the solid.

b. Find the centroid of the region.

23. The Rule of 70 If you use the approximation (in
place of ), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5%
will double in about If you want it to double in
10 years instead, you have to invest it at Show how
the Rule of 70 is derived. (A similar “Rule of 72” uses 72 instead
of 70, because 72 has more integer factors.)

24. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as a
body that had fallen 10 ft. And besides, none of the instruments in
use at the time were accurate enough to prove otherwise. Today
we can see just how far off Albert of Saxony’s model was by

70>10 = 7%.
70>5 = 14 years .

0.69314 Á

ln 2 L 0.70

x = 4x = 1>4y = 1>s21xd

x = 1.x = 0
y = -1>s1 + x2dy = 1>s1 + x2d

g¿sxd = 1 + [g sxd]2 .

gs0d = 0.

lim
h:0

 
g shd

h
= 1

lim
h:0

 g shd = 0

x + y

g sx + yd =

g sxd + g syd
1 - g sxdg syd

ƒE sxd = sƒsxd + ƒs -xdd>2 and ƒO sxd = sƒsxd - ƒs -xdd>2.

ƒO sxd ,
ƒE sxdƒE sxd + ƒO sxd

ƒsxd =

hsxd = 0g sxd = 0
g sxd + h sxd = 0
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solving the initial value problem implicit in his model. Solve the
problem and compare your solution graphically with the equation

You will see that it describes a motion that starts too
slowly at first and then becomes too fast too soon to be realistic.

25. The best branching angles for blood vessels and pipes When
a smaller pipe branches off from a larger one in a flow system, we
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy
loss due to friction be minimized along the section AOB shown in
the accompanying figure. In this diagram, B is a given point to be
reached by the smaller pipe, A is a point in the larger pipe up-
stream from B, and O is the point where the branching occurs. A
law due to Poiseuille states that the loss of energy due to friction
in nonturbulent flow is proportional to the length of the path and
inversely proportional to the fourth power of the radius. Thus, the
loss along AO is and along OB is where k is a
constant, is the length of AO, is the length of OB, R is the ra-
dius of the larger pipe, and r is the radius of the smaller pipe. The
angle is to be chosen to minimize the sum of these two losses:

In our model, we assume that and are fixed.
Thus we have the relations

so that

d1 = a - d2 cos u = a - b cot u .

d2 = b csc u ,

d1 + d2 cos u = a d2 sin u = b ,

BC = bAC = a

a

C

B

O

A

d1

d2

d2 cos �

b � d2 sin �

�

L = k 
d1

R4 + k 
d2

r4 .

u

d2d1

skd2d>r4 ,skd1d>R4

s = 16t2 .

We can express the total loss L as a function of 

a. Show that the critical value of for which equals zero
is

b. If the ratio of the pipe radii is estimate to the
nearest degree the optimal branching angle given in part (a).

The mathematical analysis described here is also used to explain
the angles at which arteries branch in an animal’s body. (See In-
troduction to Mathematics for Life Scientists, Second Edition, by
E. Batschelet [New York: Springer-Verlag, 1976].)

26. Group blood testing During World War II it was necessary to
administer blood tests to large numbers of recruits. There are two
standard ways to administer a blood test to N people. In method 1,
each person is tested separately. In method 2, the blood samples
of x people are pooled and tested as one large sample. If the test is
negative, this one test is enough for all x people. If the test is pos-
itive, then each of the x people is tested separately, requiring a to-
tal of tests. Using the second method and some probability
theory it can be shown that, on the average, the total number of
tests y will be

With and find the integer value of x that
minimizes y. Also find the integer value of x that maximizes y.
(This second result is not important to the real-life situation.) The
group testing method was used in World War II with a savings of
80% over the individual testing method, but not with the given
value of q.

N = 1000,q = 0.99

y = N a1 - qx
+

1
x b .

x + 1

r>R = 5>6,

uc = cos-1 
r4

R4 .

dL>duu

L = k aa - b cot u

R4 +

b csc u

r4 b .

u :
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Chapter 7 Practice Exercises

Differentiation
In Exercises 1–24, find the derivative of y with respect to the appropri-
ate variable.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16. 17.

18.

19.

20. y = s1 + t2d cot-1 2t

y = t tan-1 t -

1
2

 ln t

y = z cos-1 z - 21 - z2

y = ln cos-1 xy = sin-1 a 12y b , y 7 1

y = sin-121 - u2, 0 6 u 6 1

y = 2sln xdx>2y = sx + 2dx + 2

y = 22x-22y = 5x3.6

y = 92ty = 8-t

y = log5 s3x - 7dy = log2 sx2>2d
y = ln ssec2 udy = ln ssin2 ud

y = x2e-2>xy =

1
4

 xe4x
-

1
16

 e4x

y = 22e22xy = 10e-x>5

21.

22.

23.

24.

Logarithmic Differentiation
In Exercises 25–30, use logarithmic differentiation to find the deriva-
tive of y with respect to the appropriate variable.

25. 26.

27.

28.

29. 30.

Integration
Evaluate the integrals in Exercises 31–78.

31. 32. Let cos s3et
- 2d dtLex sin sexd dx

y = sln xd1>sln xdy = ssin ud2uy =

2u2u2u2
+ 1

y = ast + 1dst - 1d
st - 2dst + 3d

b5

, t 7 2

y =
10A3x + 4

2x - 4
y =

2sx2
+ 1d2cos 2x

y = s1 + x2de tan-1 x

y = csc-1 ssec ud, 0 6 u 6 p>2
y = 22x - 1  sec-11x

y = z sec-1 z - 2z2
- 1, z 7 1
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33.

34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74. L  
dx2-x2
+ 4x - 1L  

dx2-2x - x2

L
-26>25

-2>25
 

dy

ƒ y ƒ25y2
- 3L

2>322>3
 

dy

ƒ y ƒ29y2
- 1

L  
24 dy

y2y2
- 16L  

dy

y24y2
- 1

L
323

 
dt

3 + t2L
2

-2
 

3 dt

4 + 3t2

L
1>5

-1>5
 

6 dx24 - 25x2L
3>4

-3>4
 

6 dx29 - 4x2

L
e

1
 
8 ln 3 log3 u

u
 duL

8

1
 
log4 u

u
 du

L
4

2
s1 + ln tdt ln t dtL

3

1
 
sln sy + 1dd2

y + 1
 dy

L
e2

e
 

1

x2ln x
 dxL

e

1
 
1
x  s1 + 7 ln xd-1>3 dx

L
ln 9

0
 euseu - 1d1>2 duL

ln 5

0
 ers3er

+ 1d-3>2 dr

L
0

-ln 2
 e2w dwL

-1

-2
 e-sx + 1d dx

L
8

1
 a 2

3x
-

8
x2 b  dxL

4

1
 ax

8
+

1
2x
b  dx

L
32

1
 
1
5x

 dxL
7

1
 
3
x  dx

L  2tan x sec2 x dxLx3x2

 dx

L  
cos s1 - ln yd

y  dyL  
1
r  csc2 s1 + ln rd dr

L  
ln sx - 5d

x - 5
 dxL  

sln xd-3

x  dx

L  
dy
y ln yL  

tan sln yd
y  dy

L
p>6

-p>2
 

cos t
1 - sin t

 dtL
4

0
 

2t

t2
- 25

 dt

L
1>4

1>6
 2 cot px dxL

p

0
 tan 

x
3

 dx

L
e

1
 
2ln x

x  dxL
1

-1
 

dx
3x - 4

L  csc2 x ecot x dxL  sec2 sxde tan x dx

Ley csc sey
+ 1d cot sey

+ 1d dy

Lex sec2 sex
- 7d dx 75. 76.

77. 78.

Solving Equations with Logarithmic
or Exponential Terms
In Exercises 79–84, solve for y.

79. 80.

81. 82.

83. 84.

Evaluating Limits
Find the limits in Exercises 85–96.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

Comparing Growth Rates of Functions
97. Does ƒ grow faster, slower, or at the same rate as g as 

Give reasons for your answers.

a.

b.

c.

d.

e.

f.

98. Does ƒ grow faster, slower, or at the same rate as g as 
Give reasons for your answers.

a.

b.

c.

d.

e.

f. gsxd = e-xƒsxd = sech x,

gsxd = 1>x2ƒsxd = sin-1s1>xd,
gsxd = 1>xƒsxd = tan-1s1>xd,
gsxd = exƒsxd = 10x3

+ 2x2,

gsxd = ln x2ƒsxd = ln 2x,

gsxd = 2-xƒsxd = 3-x,

x : q ?

gsxd = exƒsxd = sinh x,

gsxd = 1>xƒsxd = csc-1 x,

gsxd = tan-1 xƒsxd = x,

gsxd = xe-xƒsxd = x>100,

gsxd = x +

1
xƒsxd = x,

gsxd = log3 xƒsxd = log2 x,

x : q ?

lim
x:0+

 a1 +

3
x b

x

lim
x: q

 a1 +

3
x b

x

lim
y:0+

 e-1>y ln ylim
t:0+

 aet

t -

1
t b

lim
x:4

 
sin2 spxd

ex - 4
+ 3 - x

lim
t:0+

 
t - ln s1 + 2td

t2

lim
x:0

 
4 - 4ex

xexlim
x:0

 
5 - 5 cos x
ex

- x - 1

lim
x:0

 
2-sin x

- 1
ex

- 1
lim
x:0

 
2sin x

- 1
ex

- 1

lim
u:0

 
3u - 1
u

lim
x:0

 
10x

- 1
x

ln s10 ln yd = ln 5xln sy - 1d = x + ln y

3y
= 3 ln x9e2y

= x2

4-y
= 3y + 23y

= 2y + 1

L  
dt

s3t + 1d29t2
+ 6tL  

dt

st + 1d2t2
+ 2t - 8

L
1

-1
 

3 dy
4y2

+ 4y + 4L
-1

-2
 

2 dy
y2

+ 4y + 5
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99. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f.

100. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f.

Theory and Applications
101. The function being differentiable and one-to-

one, has a differentiable inverse Find the value of
at the point ƒ(ln 2).

102. Find the inverse of the function Then
show that and that

In Exercises 103 and 104, find the absolute maximum and minimum
values of each function on the given interval.

103.

104.

105. Area Find the area between the curve and the x-
axis from to 

106. Area

a. Show that the area between the curve and the x-axis
from to is the same as the area between the
curve and the x-axis from to 

b. Show that the area between the curve and the x-axis
from ka to kb is the same as the area between the curve and
the x-axis from to 

107. A particle is traveling upward and to the right along the curve
Its x-coordinate is increasing at the rate 
At what rate is the y-coordinate changing at the point

108. A girl is sliding down a slide shaped like the curve 
Her y-coordinate is changing at the rate 

At approximately what rate is her x-coordinate changing
when she reaches the bottom of the slide at (Take to
be 20 and round your answer to the nearest ft sec.)

109. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle its
largest area, and what is that area?

y = e-x2

.

> e3x = 9 ft?
ft>sec .

s -1>4d29 - ydy>dt =

y = 9e-x>3 .

se2, 2d?
1x m>sec .

sdx>dtd =y = ln x .

x = b s0 6 a 6 b, k 7 0d .x = a

y = 1>x
x = 2.x = 1

x = 20x = 10
y = 1>x

x = e .x = 1
y = 2sln xd/x

y = 10xs2 - ln xd, s0, e2]

y = x ln 2x - x, c 1
2e

, 
e
2
d

dƒ -1

dx
 `

ƒsxd
=

1
ƒ¿sxd

.

ƒ -1sƒsxdd = ƒsƒ -1sxdd = x
ƒsxd = 1 + s1>xd, x Z 0.

dƒ -1>dx
ƒ -1sxd .

ƒsxd = ex
+ x ,

sinh x = Osexdsec-1 x = Os1d
ln 2x = Osln xdln x = osx + 1d

1
x4 = o a 1

x2 +

1
x4b1

x4 = O a 1
x2 +

1
x4b

cosh x = Osexdtan-1 x = Os1d
ln sln xd = osln xdx = osx + ln xd

1
x2 +

1
x4 = O a 1

x4b1
x2 +

1
x4 = O a 1

x2b

110. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle
its largest area, and what is that area?

111. The functions and differ by a con-
stant. What constant? Give reasons for your answer.

112. a. If must 

b. If must 

Give reasons for your answers.

113. The quotient has a constant value. What value?
Give reasons for your answer.

114. vs. How does compare with
Here is one way to find out.

a. Use the equation to express ƒ(x) and
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in re-
lation to the signs and values of g.

115. Graph the following functions and use what you see to locate
and estimate the extreme values, identify the coordinates of the
inflection points, and identify the intervals on which the graphs
are concave up and concave down. Then confirm your estimates
by working with the functions’ derivatives.

a. b. c.

116. Graph Does the function appear to have an ab-
solute minimum value? Confirm your answer with calculus.

117. What is the age of a sample of charcoal in which 90% of the car-
bon-14 originally present has decayed?

118. Cooling a pie A deep-dish apple pie, whose internal tempera-
ture was 220°F when removed from the oven, was set out on a
breezy 40°F porch to cool. Fifteen minutes later, the pie’s inter-
nal temperature was 180°F. How long did it take the pie to cool
from there to 70°F?

119. Locating a solar station You are under contract to build a so-
lar station at ground level on the east–west line between the two
buildings shown here. How far from the taller building should
you place the station to maximize the number of hours it will be

ƒsxd = x ln x .

y = s1 + xde-xy = e-x2

y = sln xd>1x

loga b = sln bd>sln ad
gsxd = log2 sxd?

ƒsxd = logx s2dlog2 sxdlogx s2d

slog4 xd>slog2 xd

x = 1>2?sln xd>x = -2 ln 2 ,

x = 2?sln xd>x = sln 2d>2,

gsxd = ln 3xƒsxd = ln 5x

x

y

0

0.2 y � 

1

0.1
x2

ln x

y = sln xd>x2 .

x

y

0

1 y � e–x2

T

T

T
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in the sun on a day when the sun passes directly overhead? Begin
by observing that

Then find the value of x that maximizes 

x
50 m0

60 m

�
30 m

x

u .

u = p - cot-1 
x

60
- cot-1 

50 - x
30

.

120. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes
the ratio of the radius of the core to the thickness of the insula-
tion, it is known that the speed of the transmission signal is given
by the equation If the radius of the core is 1 cm,
what insulation thickness h will allow the greatest transmission
speed?

Insulation

x � r
h

h
r

Core

y = x2 ln s1>xd .

550 Chapter 7: Transcendental Functions
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546 Chapter 7: Transcendental Functions

Chapter 7 Questions to Guide Your Review

1. What functions have inverses? How do you know if two functions
ƒ and g are inverses of one another? Give examples of functions
that are (are not) inverses of one another.

2. How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

3. How can you sometimes express the inverse of a function of x as a
function of x?

4. Under what circumstances can you be sure that the inverse of a
function ƒ is differentiable? How are the derivatives of ƒ and 
related?

ƒ -1
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Chapter 7 547

5. What is the natural logarithm function? What are its domain,
range, and derivative? What arithmetic properties does it have?
Comment on its graph.

6. What is logarithmic differentiation? Give an example.

7. What integrals lead to logarithms? Give examples. What are the
integrals of tan x and cot x?

8. How is the exponential function defined? What are its domain,
range, and derivative? What laws of exponents does it obey?
Comment on its graph.

9. How are the functions and defined? Are there any re-
strictions on a? How is the graph of related to the graph of
ln x? What truth is there in the statement that there is really only
one exponential function and one logarithmic function?

10. Describe some of the applications of base 10 logarithms.

11. What is the law of exponential change? How can it be derived
from an initial value problem? What are some of the applications
of the law?

12. How do you compare the growth rates of positive functions as

13. What roles do the functions and ln x play in growth compar-
isons?

14. Describe big-oh and little-oh notation. Give examples.

ex

x : q ?

loga x
loga xax

ex

15. Which is more efficient—a sequential search or a binary search?
Explain.

16. How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

17. What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

18. What integrals lead to inverse trigonometric functions? How do
substitution and completing the square broaden the application of
these integrals?

19. What are the six basic hyperbolic functions? Comment on their
domains, ranges, and graphs. What are some of the identities re-
lating them?

20. What are the derivatives of the six basic hyperbolic functions?
What are the corresponding integral formulas? What similarities
do you see here with the six basic trigonometric functions?

21. How are the inverse hyperbolic functions defined? Comment on
their domains, ranges, and graphs. How can you find values of

and using a calculator’s keys for
and 

22. What integrals lead naturally to inverse hyperbolic functions?

tanh-1 x?cosh-1 x, sinh-1 x ,
coth-1 xsech-1 x, csch-1 x ,
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