
OVERVIEW One of the great achievements of classical geometry was to obtain formulas
for the areas and volumes of triangles, spheres, and cones. In this chapter we study a
method to calculate the areas and volumes of these and other more general shapes. The
method we develop, called integration, is a tool for calculating much more than areas and
volumes. The integral has many applications in statistics, economics, the sciences, and
engineering. It allows us to calculate quantities ranging from probabilities and averages to
energy consumption and the forces against a dam’s floodgates.

The idea behind integration is that we can effectively compute many quantities by
breaking them into small pieces, and then summing the contributions from each small
part. We develop the theory of the integral in the setting of area, where it most clearly
reveals its nature. We begin with examples involving finite sums. These lead naturally to
the question of what happens when more and more terms are summed. Passing to the limit,
as the number of terms goes to infinity, then gives an integral. While integration and dif-
ferentiation are closely connected, we will not see the roles of the derivative and antideriv-
ative emerge until Section 5.4. The nature of their connection, contained in the Fundamen-
tal Theorem of Calculus, is one of the most important ideas in calculus.
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Estimating with Finite Sums

This section shows how area, average values, and the distance traveled by an object over
time can all be approximated by finite sums. Finite sums are the basis for defining the
integral in Section 5.3.

Area

The area of a region with a curved boundary can be approximated by summing the areas of
a collection of rectangles. Using more rectangles can increase the accuracy of the approxi-
mation.

EXAMPLE 1 Approximating Area

What is the area of the shaded region R that lies above the x-axis, below the graph of
and between the vertical lines and ? (See Figure 5.1.) An archi-

tect might want to know this area to calculate the weight of a custom window with a shape
described by R. Unfortunately, there is no simple geometric formula for calculating the
areas of shapes having curved boundaries like the region R.

x = 1x = 0y = 1 - x2 ,
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FIGURE 5.1 The area of the region
R cannot be found by a simple
geometry formula (Example 1).
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While we do not yet have a method for determining the exact area of R, we can ap-
proximate it in a simple way. Figure 5.2a shows two rectangles that together contain the re-
gion R. Each rectangle has width and they have heights 1 and moving from left to
right. The height of each rectangle is the maximum value of the function ƒ, obtained by
evaluating ƒ at the left endpoint of the subinterval of [0, 1] forming the base of the rectan-
gle. The total area of the two rectangles approximates the area A of the region R,

This estimate is larger than the true area A, since the two rectangles contain R. We say that
0.875 is an upper sum because it is obtained by taking the height of each rectangle as the
maximum (uppermost) value of ƒ(x) for x a point in the base interval of the rectangle. In
Figure 5.2b, we improve our estimate by using four thinner rectangles, each of width 
which taken together contain the region R. These four rectangles give the approximation

which is still greater than A since the four rectangles contain R.
Suppose instead we use four rectangles contained inside the region R to estimate the

area, as in Figure 5.3a. Each rectangle has width as before, but the rectangles are
shorter and lie entirely beneath the graph of ƒ. The function is decreasing
on [0, 1], so the height of each of these rectangles is given by the value of ƒ at the right
endpoint of the subinterval forming its base. The fourth rectangle has zero height and
therefore contributes no area. Summing these rectangles with heights equal to the mini-
mum value of ƒ(x) for x a point in each base subinterval, gives a lower sum approximation
to the area,

This estimate is smaller than the area A since the rectangles all lie inside of the region R.
The true value of A lies somewhere between these lower and upper sums:
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FIGURE 5.2 (a) We get an upper estimate of the area of R by using two
rectangles containing R. (b) Four rectangles give a better upper estimate. Both
estimates overshoot the true value for the area.
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By considering both lower and upper sum approximations we get not only estimates
for the area, but also a bound on the size of the possible error in these estimates since the
true value of the area lies somewhere between them. Here the error cannot be greater than
the difference 

Yet another estimate can be obtained by using rectangles whose heights are the values
of ƒ at the midpoints of their bases (Figure 5.3b). This method of estimation is called the
midpoint rule for approximating the area. The midpoint rule gives an estimate that is be-
tween a lower sum and an upper sum, but it is not clear whether it overestimates or under-
estimates the true area. With four rectangles of width as before, the midpoint rule esti-
mates the area of R to be

In each of our computed sums, the interval [a, b] over which the function ƒ is defined
was subdivided into n subintervals of equal width (also called length) 
and ƒ was evaluated at a point in each subinterval: in the first subinterval, in the sec-
ond subinterval, and so on. The finite sums then all take the form

By taking more and more rectangles, with each rectangle thinner than before, it appears
that these finite sums give better and better approximations to the true area of the region R.

Figure 5.4a shows a lower sum approximation for the area of R using 16 rectangles of
equal width. The sum of their areas is 0.634765625, which appears close to the true area,
but is still smaller since the rectangles lie inside R.

Figure 5.4b shows an upper sum approximation using 16 rectangles of equal width.
The sum of their areas is 0.697265625, which is somewhat larger than the true area be-
cause the rectangles taken together contain R. The midpoint rule for 16 rectangles gives a
total area approximation of 0.6669921875, but it is not immediately clear whether this es-
timate is larger or smaller than the true area.
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0.78125 - 0.53125 = 0.25.
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FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that undershoots
the true value. (b) The midpoint rule uses rectangles whose height is the value of 
at the midpoints of their bases.
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FIGURE 5.4 (a) A lower sum using 16
rectangles of equal width 
(b) An upper sum using 16 rectangles.

¢x = 1>16.
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Table 5.1 shows the values of upper and lower sum approximations to the area of R us-
ing up to 1000 rectangles. In Section 5.2 we will see how to get an exact value of the areas
of regions such as R by taking a limit as the base width of each rectangle goes to zero and
the number of rectangles goes to infinity. With the techniques developed there, we will be
able to show that the area of R is exactly  .

Distance Traveled

Suppose we know the velocity function y(t) of a car moving down a highway, without chang-
ing direction, and want to know how far it traveled between times and If we al-
ready know an antiderivative F(t) of y(t) we can find the car’s position function s(t) by setting

The distance traveled can then be found by calculating the change in po-
sition, (see Exercise 93, Section 4.8). If the velocity function is determined by
recording a speedometer reading at various times on the car, then we have no formula from
which to obtain an antiderivative function for velocity. So what do we do in this situation?

When we don’t know an antiderivative for the velocity function y(t), we can approxi-
mate the distance traveled in the following way. Subdivide the interval [a, b] into short
time intervals on each of which the velocity is considered to be fairly constant. Then ap-
proximate the distance traveled on each time subinterval with the usual distance formula

and add the results across [a, b].
Suppose the subdivided interval looks like

with the subintervals all of equal length Pick a number in the first interval. If is
so small that the velocity barely changes over a short time interval of duration then the
distance traveled in the first time interval is about If is a number in the second
interval, the distance traveled in the second time interval is about The sum of the
distances traveled over all the time intervals is

where n is the total number of subintervals.

D L yst1d ¢t + yst2d ¢t +
Á

+ ystnd ¢t ,

yst2d ¢t .
t2yst1d ¢t .

¢t ,
¢tt1¢t .

t (sec) ba

�t �t �t

t1 t2 t3

distance = velocity * time

ssbd - ssad
sstd = Fstd + C .

t = b .t = a

2>3
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TABLE 5.1 Finite approximations for the area of R

Number of
subintervals Lower sum Midpoint rule Upper sum

2 .375 .6875 .875

4 .53125 .671875 .78125

16 .634765625 .6669921875 .697265625

50 .6566 .6667 .6766

100 .66165 .666675 .67165

1000 .6661665 .66666675 .6671665

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 328

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


EXAMPLE 2 Estimating the Height of a Projectile

The velocity function of a projectile fired straight into the air is 
Use the summation technique just described to estimate how far the projectile rises during
the first 3 sec. How close do the sums come to the exact figure of 435.9 m?

Solution We explore the results for different numbers of intervals and different choices
of evaluation points. Notice that ƒ(t) is decreasing, so choosing left endpoints gives an up-
per sum estimate; choosing right endpoints gives a lower sum estimate.

(a) Three subintervals of length 1, with ƒ evaluated at left endpoints giving an upper sum:

With ƒ evaluated at and 2, we have

(b) Three subintervals of length 1, with ƒ evaluated at right endpoints giving a lower sum:

With ƒ evaluated at and 3, we have

(c) With six subintervals of length , we get

An upper sum using left endpoints: a lower sum using right endpoints:

These six-interval estimates are somewhat closer than the three-interval estimates.
The results improve as the subintervals get shorter.

As we can see in Table 5.2, the left-endpoint upper sums approach the true value
435.9 from above, whereas the right-endpoint lower sums approach it from below. The true

D L 428.55.
D L 443.25;

t 
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t 
0 1 2 3
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t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

1>2
 = 421.2.

 = [160 - 9.8s1d]s1d + [160 - 9.8s2d]s1d + [160 - 9.8s3d]s1d
 D L ƒst1d ¢t + ƒst2d ¢t + ƒst3d ¢t

t = 1, 2 ,
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value lies between these upper and lower sums. The magnitude of the error in the closest
entries is 0.23, a small percentage of the true value.

It would be reasonable to conclude from the table’s last entries that the projectile rose
about 436 m during its first 3 sec of flight.

Displacement Versus Distance Traveled

If a body with position function s(t) moves along a coordinate line without changing direc-
tion, we can calculate the total distance it travels from to by summing the dis-
tance traveled over small intervals, as in Example 2. If the body changes direction one or
more times during the trip, then we need to use the body’s speed which is the ab-
solute value of its velocity function, y(t), to find the total distance traveled. Using the ve-
locity itself, as in Example 2, only gives an estimate to the body’s displacement,

the difference between its initial and final positions.
To see why, partition the time interval [a, b] into small enough equal subintervals 

so that the body’s velocity does not change very much from time to Then 
gives a good approximation of the velocity throughout the interval. Accordingly, the
change in the body’s position coordinate during the time interval is about

The change is positive if is positive and negative if is negative.
In either case, the distance traveled during the subinterval is about

The total distance traveled is approximately the sum

ƒ yst1d ƒ  ¢t + ƒ yst2d ƒ ¢t +
Á

+ ƒ ystnd ƒ  ¢t .

ƒ ystkd ƒ  ¢t .

ystkdystkd

ystkd ¢t .

ystkdtk .tk - 1

¢t
ssbd - ssad ,

ƒ ystd ƒ ,

t = bt = a

 Error percentage =

0.23
435.9

L 0.05%.

 = ƒ 435.9 - 435.67 ƒ = 0.23.

 Error magnitude = ƒ true value - calculated value ƒ
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TABLE 5.2 Travel-distance estimates

Number of Length of each Upper Lower
subintervals subinterval sum sum

3 1 450.6 421.2

6 443.25 428.55

12 439.57 432.22

24 437.74 434.06

48 436.82 434.98

96 436.36 435.44

192 436.13 435.671>64

1>32

1>16

1>8
1>4
1>2
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Average Value of a Nonnegative Function

The average value of a collection of n numbers is obtained by adding them
together and dividing by n. But what is the average value of a continuous function ƒ on an
interval [a, b]? Such a function can assume infinitely many values. For example, the tem-
perature at a certain location in a town is a continuous function that goes up and down
each day. What does it mean to say that the average temperature in the town over the
course of a day is 73 degrees?

When a function is constant, this question is easy to answer. A function with constant
value c on an interval [a, b] has average value c. When c is positive, its graph over [a, b]
gives a rectangle of height c. The average value of the function can then be interpreted
geometrically as the area of this rectangle divided by its width (Figure 5.5a).

What if we want to find the average value of a nonconstant function, such as the func-
tion g in Figure 5.5b? We can think of this graph as a snapshot of the height of some water
that is sloshing around in a tank, between enclosing walls at and As the wa-
ter moves, its height over each point changes, but its average height remains the same. To
get the average height of the water, we let it settle down until it is level and its height is
constant. The resulting height c equals the area under the graph of g divided by We
are led to define the average value of a nonnegative function on an interval [a, b] to be the
area under its graph divided by For this definition to be valid, we need a precise
understanding of what is meant by the area under a graph. This will be obtained in Section
5.3, but for now we look at two simple examples.

EXAMPLE 3 The Average Value of a Linear Function

What is the average value of the function on the interval [0, 2]?

Solution The average equals the area under the graph divided by the width of the inter-
val. In this case we do not need finite approximation to estimate the area of the region un-
der the graph: a triangle of height 6 and base 2 has area 6 (Figure 5.6). The width of the
interval is The average value of the function is 

EXAMPLE 4 The Average Value of sin x

Estimate the average value of the function on the interval 

Solution Looking at the graph of sin x between 0 and in Figure 5.7, we can see
that its average height is somewhere between 0 and 1. To find the average we need to

p

[0, p] .ƒsxd = sin x

6>2 = 3.b - a = 2 - 0 = 2.

ƒsxd = 3x

b - a .

b - a .

x = b .x = a

b - a

x1, x2 , Á , xn
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[0, 2] is 3 (Example 3).
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calculate the area A under the graph and then divide this area by the length of the interval,

We do not have a simple way to determine the area, so we approximate it with finite
sums. To get an upper sum estimate, we add the areas of four rectangles of equal width

that together contain the region beneath the graph of and above the x-axis
on We choose the heights of the rectangles to be the largest value of sin x on each
subinterval. Over a particular subinterval, this largest value may occur at the left endpoint,
the right endpoint, or somewhere between them. We evaluate sin x at this point to get the
height of the rectangle for an upper sum. The sum of the rectangle areas then estimates the
total area (Figure 5.7a):

To estimate the average value of sin x we divide the estimated area by and obtain the ap-
proximation 

If we use eight rectangles of equal width all lying above the graph of 
(Figure 5.7b), we get the area estimate

Dividing this result by the length of the interval gives a more accurate estimate of 0.753
for the average. Since we used an upper sum to approximate the area, this estimate is still
greater than the actual average value of sin x over If we use more and more rectan-
gles, with each rectangle getting thinner and thinner, we get closer and closer to the true
average value. Using the techniques of Section 5.3, we will show that the true average
value is 

As before, we could just as well have used rectangles lying under the graph of
and calculated a lower sum approximation, or we could have used the midpoint

rule. In Section 5.3, we will see that it doesn’t matter whether our approximating rectan-
gles are chosen to give upper sums, lower sums, or a sum in between. In each case, the ap-
proximations are close to the true area if all the rectangles are sufficiently thin.
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FIGURE 5.7 Approximating the area under between 0 and 
to compute the average value of sin x over using (a) four rectangles;
(b) eight rectangles (Example 4).

[0, p] ,
pƒsxd = sin x
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Summary

The area under the graph of a positive function, the distance traveled by a moving object
that doesn’t change direction, and the average value of a nonnegative function over an in-
terval can all be approximated by finite sums. First we subdivide the interval into subinter-
vals, treating the appropriate function ƒ as if it were constant over each particular subinter-
val. Then we multiply the width of each subinterval by the value of ƒ at some point within
it, and add these products together. If the interval [a, b] is subdivided into n subintervals of
equal widths and if is the value of ƒ at the chosen point in the
k th subinterval, this process gives a finite sum of the form

The choices for the could maximize or minimize the value of ƒ in the k th subinterval, or
give some value in between. The true value lies somewhere between the approximations
given by upper sums and lower sums. The finite sum approximations we looked at im-
proved as we took more subintervals of thinner width.

ck

ƒsc1d ¢x + ƒsc2d ¢x + ƒsc3d ¢x +
Á

+ ƒscnd ¢x .

ckƒsckd¢x = sb - ad>n ,

5.1 Estimating with Finite Sums 333

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 333

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


5.1 Estimating with Finite Sums 333

EXERCISES 5.1

Area
In Exercises 1–4 use finite approximations to estimate the area under
the graph of the function using

a. a lower sum with two rectangles of equal width.

b. a lower sum with four rectangles of equal width.

c. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

1. between and 

2. between and 

3. between and 

4. between and 

Using rectangles whose height is given by the value of the func-
tion at the midpoint of the rectangle’s base (the midpoint rule) esti-
mate the area under the graphs of the following functions, using first
two and then four rectangles.

5. between and 

6. between and 

7. between and 

8. between and 

Distance
9. Distance traveled The accompanying table shows the velocity

of a model train engine moving along a track for 10 sec. Estimate
the distance traveled by the engine using 10 subintervals of length
1 with

a. left-endpoint values.

b. right-endpoint values.

x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

x = 2.x = -2ƒsxd = 4 - x2

x = 5.x = 1ƒsxd = 1>x
x = 1.x = 0ƒsxd = x3

x = 1.x = 0ƒsxd = x2

10. Distance traveled upstream You are sitting on the bank of a
tidal river watching the incoming tide carry a bottle upstream.
You record the velocity of the flow every 5 minutes for an hour,
with the results shown in the accompanying table. About how far
upstream did the bottle travel during that hour? Find an estimate
using 12 subintervals of length 5 with

a. left-endpoint values.

b. right-endpoint values.

Time Velocity Time Velocity
(sec) (in. sec) (sec) (in. sec)

0 0 6 11
1 12 7 6
2 22 8 2
3 10 9 6
4 5 10 0
5 13

//

Time Velocity Time Velocity
(min) (m sec) (min) (m sec)

0 1 35 1.2
5 1.2 40 1.0

10 1.7 45 1.8
15 2.0 50 1.5
20 1.8 55 1.2
25 1.6 60 0
30 1.4

//
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11. Length of a road You and a companion are about to drive a
twisty stretch of dirt road in a car whose speedometer works but
whose odometer (mileage counter) is broken. To find out how
long this particular stretch of road is, you record the car’s velocity
at 10-sec intervals, with the results shown in the accompanying
table. Estimate the length of the road using

a. left-endpoint values.

b. right-endpoint values.

a. Use rectangles to estimate how far the car traveled during the
36 sec it took to reach 142 mi h.

b. Roughly how many seconds did it take the car to reach the
halfway point? About how fast was the car going then?

Velocity and Distance
13. Free fall with air resistance An object is dropped straight

down from a helicopter. The object falls faster and faster but its
acceleration (rate of change of its velocity) decreases over time
because of air resistance. The acceleration is measured in 
and recorded every second after the drop for 5 sec, as shown:

ft>sec2

>
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Velocity Velocity
Time (converted to ft sec) Time (converted to ft sec)
(sec) (30 mi h � 44 ft sec) (sec) (30 mi h � 44 ft sec)

0 0 70 15
10 44 80 22
20 15 90 35
30 35 100 44
40 30 110 30
50 44 120 35
60 35

////
//

Time Velocity Time Velocity
(h) (mi h) (h) (mi h)

0.0 0 0.006 116
0.001 40 0.007 125
0.002 62 0.008 132
0.003 82 0.009 137
0.004 96 0.010 142
0.005 108

//

hours
0

20

0.01

40

60

80

100

120

140

160

0.0080.0060.0040.002

mi/hr

12. Distance from velocity data The accompanying table gives
data for the velocity of a vintage sports car accelerating from 0 to
142 mi h in 36 sec (10 thousandths of an hour).>

t 0 1 2 3 4 5

a 32.00 19.41 11.77 7.14 4.33 2.63

a. Find an upper estimate for the speed when 

b. Find a lower estimate for the speed when 

c. Find an upper estimate for the distance fallen when 

14. Distance traveled by a projectile An object is shot straight up-
ward from sea level with an initial velocity of 400 ft sec.

a. Assuming that gravity is the only force acting on the object,
give an upper estimate for its velocity after 5 sec have
elapsed. Use for the gravitational acceleration.

b. Find a lower estimate for the height attained after 5 sec.

Average Value of a Function
In Exercises 15–18, use a finite sum to estimate the average value of ƒ
on the given interval by partitioning the interval into four subintervals
of equal length and evaluating ƒ at the subinterval midpoints.

15. on [0, 2] 16. on [1, 9]

17. on [0, 2]

18. on [0, 4]

t

y

0 2 4

1

1 3

 cos




4

y � 1 � �t
4

ƒstd = 1 - acos 
pt
4
b4

1 2

0.5

0

1

1.5

t

y

y � � sin2 �t1
2

ƒstd = s1>2d + sin2 pt

ƒsxd = 1>xƒsxd = x3

g = 32 ft>sec2

>
t = 3.

t = 5.

t = 5.
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Pollution Control
19. Water pollution Oil is leaking out of a tanker damaged at sea.

The damage to the tanker is worsening as evidenced by the in-
creased leakage each hour, recorded in the following table.

a. Assuming a 30-day month and that new scrubbers allow only
0.05 ton day released, give an upper estimate of the total
tonnage of pollutants released by the end of June. What is a
lower estimate?

b. In the best case, approximately when will a total of 125 tons
of pollutants have been released into the atmosphere?

Area of a Circle
21. Inscribe a regular n-sided polygon inside a circle of radius 1 and

compute the area of the polygon for the following values of n:

a. 4 (square) b. 8 (octagon) c. 16

d. Compare the areas in parts (a), (b), and (c) with the area of
the circle.

22. (Continuation of Exercise 21)

a. Inscribe a regular n-sided polygon inside a circle of radius 1
and compute the area of one of the n congruent triangles
formed by drawing radii to the vertices of the polygon.

b. Compute the limit of the area of the inscribed polygon as

c. Repeat the computations in parts (a) and (b) for a circle of
radius r.

COMPUTER EXPLORATIONS

In Exercises 23–26, use a CAS to perform the following steps.

a. Plot the functions over the given interval.

b. Subdivide the interval into 200, and 1000
subintervals of equal length and evaluate the function at the
midpoint of each subinterval.

c. Compute the average value of the function values generated
in part (b).

d. Solve the equation for x using the
average value calculated in part (c) for the 
partitioning.

23. on 24. on

25. on

26. on cp
4

, p dƒsxd = x sin2 
1
x

cp
4

, p dƒsxd = x sin 
1
x

[0, p]ƒsxd = sin2 x[0, p]ƒsxd = sin x

n = 1000
ƒsxd = saverage valued

n = 100,

n : q .

>

335

Time (h) 0 1 2 3 4

Leakage (gal h) 50 70 97 136 190

Time (h) 5 6 7 8

Leakage (gal h) 265 369 516 720>

>

Month Jan Feb Mar Apr May Jun

Pollutant
Release rate 0.20 0.25 0.27 0.34 0.45 0.52
(tons day)>

Month Jul Aug Sep Oct Nov Dec

Pollutant
Release rate 0.63 0.70 0.81 0.85 0.89 0.95
(tons day)>

a. Give an upper and a lower estimate of the total quantity of oil
that has escaped after 5 hours.

b. Repeat part (a) for the quantity of oil that has escaped after 8
hours.

c. The tanker continues to leak 720 gal h after the first 8 hours.
If the tanker originally contained 25,000 gal of oil,
approximately how many more hours will elapse in the worst
case before all the oil has spilled? In the best case?

20. Air pollution A power plant generates electricity by burning
oil. Pollutants produced as a result of the burning process are re-
moved by scrubbers in the smokestacks. Over time, the scrubbers
become less efficient and eventually they must be replaced when
the amount of pollution released exceeds government standards.
Measurements are taken at the end of each month determining the
rate at which pollutants are released into the atmosphere,
recorded as follows.

>
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Sigma Notation and Limits of Finite Sums

In estimating with finite sums in Section 5.1, we often encountered sums with many terms
(up to 1000 in Table 5.1, for instance). In this section we introduce a notation to write
sums with a large number of terms. After describing the notation and stating several of its
properties, we look at what happens to a finite sum approximation as the number of terms
approaches infinity.

5.2 
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Finite Sums and Sigma Notation

Sigma notation enables us to write a sum with many terms in the compact form

The Greek letter (capital sigma, corresponding to our letter S), stands for “sum.” The
index of summation k tells us where the sum begins (at the number below the symbol)
and where it ends (at the number above ). Any letter can be used to denote the index, but
the letters i, j, and k are customary.

Thus we can write

and

The sigma notation used on the right side of these equations is much more compact than
the summation expressions on the left side.

EXAMPLE 1 Using Sigma Notation

ƒs1d + ƒs2d + ƒs3d +
Á

+ ƒs100d = a
100

i = 1
ƒsid .

12
+ 22

+ 32
+ 42

+ 52
+ 62

+ 72
+ 82

+ 92
+ 102

+ 112
= a

11

k = 1
k2 ,

�
k � 1

ak

n
The index k ends at k � n.

The index k starts at k � 1.

ak is a formula for the kth term.
The summation symbol
(Greek letter sigma)

©

©

©

a
n

k = 1
ak = a1 + a2 + a3 +

Á
+ an - 1 + an .

336 Chapter 5: Integration

The sum in The sum written out, one The value
sigma notation term for each value of k of the sum

15

16
3

+

25
4

=

139
12

42

4 - 1
+

52

5 - 1a
5

k = 4
 

k2

k - 1

1
2

+
2
3

=

7
6

1
1 + 1

+
2

2 + 1a
2

k = 1
 

k
k + 1

-1 + 2 - 3 = -2s -1d1s1d + s -1d2s2d + s -1d3s3da
3

k = 1
s -1dk k

1 + 2 + 3 + 4 + 5a
5

k = 1
k

The lower limit of summation does not have to be 1; it can be any integer.
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EXAMPLE 2 Using Different Index Starting Values

Express the sum in sigma notation.

Solution The formula generating the terms changes with the lower limit of summation,
but the terms generated remain the same. It is often simplest to start with or 

When we have a sum such as

we can rearrange its terms,

Regroup terms.

This illustrates a general rule for finite sums:

Four such rules are given below. A proof that they are valid can be obtained using mathe-
matical induction (see Appendix 1).

a
n

k = 1
sak + bkd = a

n

k = 1
ak + a

n

k = 1
bk

 = a
3

k = 1
 k + a

3

k = 1
 k

2

 = s1 + 2 + 3d + s12
+ 22

+ 32d

 a
3

k = 1
sk + k2d = s1 + 12d + s2 + 22d + s3 + 32d

a
3

k = 1
sk + k2d

 Starting with k = -3:  1 + 3 + 5 + 7 + 9 = a
1

k = -3
s2k + 7d

 Starting with k = 2:  1 + 3 + 5 + 7 + 9 = a
6

k = 2
s2k - 3d

 Starting with k = 1:  1 + 3 + 5 + 7 + 9 = a
5

k = 1
s2k - 1d

 Starting with k = 0:  1 + 3 + 5 + 7 + 9 = a
4

k = 0
s2k + 1d

k = 1.k = 0

1 + 3 + 5 + 7 + 9
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Algebra Rules for Finite Sums

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: (Any number c)

4. Constant Value Rule: (c is any constant value.)a
n

k = 1
c = n # c

a
n

k = 1
cak = c # a

n

k = 1
ak

a
n

k = 1
(ak - bk) = a

n

k = 1
ak - a

n

k = 1
bk

a
n

k = 1
(ak + bk) = a

n

k = 1
ak + a

n

k = 1
bk
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EXAMPLE 3 Using the Finite Sum Algebra Rules

(a)

(b)

(c) Sum Rule

(d)

Over the years people have discovered a variety of formulas for the values of finite sums. The
most famous of these are the formula for the sum of the first n integers (Gauss may have dis-
covered it at age 8) and the formulas for the sums of the squares and cubes of the first n integers.

EXAMPLE 4 The Sum of the First n Integers

Show that the sum of the first n integers is

Solution: The formula tells us that the sum of the first 4 integers is

Addition verifies this prediction:

To prove the formula in general, we write out the terms in the sum twice, once forward and
once backward.

If we add the two terms in the first column we get Similarly, if we add
the two terms in the second column we get The two terms in any
column sum to When we add the n columns together we get n terms, each equal to

for a total of Since this is twice the desired quantity, the sum of the first
n integers is 

Formulas for the sums of the squares and cubes of the first n integers are proved using
mathematical induction (see Appendix 1). We state them here.

sndsn + 1d>2.
nsn + 1d .n + 1,

n + 1.
2 + sn - 1d = n + 1.

1 + n = n + 1.

1 + 2 + 3 +
Á

+ n

n + sn - 1d + sn - 2d +
Á

+ 1

1 + 2 + 3 + 4 = 10.

s4ds5d
2

= 10.

a
n

k = 1
k =

nsn + 1d
2

.

a
n

k = 1
 
1
n = n # 1

n = 1

 = 6 + 12 = 18

 = s1 + 2 + 3d + s3 # 4d

 a
3

k = 1
sk + 4d = a

3

k = 1
k + a

3

k = 1
4

a
n

k = 1
s -akd = a

n

k = 1
s -1d # ak = -1 # a

n

k = 1
ak = -a

n

k = 1
ak

a
n

k = 1
s3k - k2d = 3a

n

k = 1
k - a

n

k = 1
k2
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Difference Rule
and Constant
Multiple Rule

Constant
Multiple Rule

Constant
Value Rule

Constant Value Rule
( is constant)1>n

 The first n cubes: a
n

k = 1
k3

= ansn + 1d
2

b2

The first n squares:   a
n

k = 1
k2

=

nsn + 1ds2n + 1d
6

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
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Limits of Finite Sums

The finite sum approximations we considered in Section 5.1 got more accurate as the
number of terms increased and the subinterval widths (lengths) became thinner. The next
example shows how to calculate a limiting value as the widths of the subintervals go to
zero and their number grows to infinity.

EXAMPLE 5 The Limit of Finite Approximations to an Area

Find the limiting value of lower sum approximations to the area of the region R below the
graph of and above the interval [0, 1] on the x-axis using equal width rectan-
gles whose widths approach zero and whose number approaches infinity. (See Figure 5.4a.)

Solution We compute a lower sum approximation using n rectangles of equal width
and then we see what happens as We start by subdividing

[0, 1] into n equal width subintervals

Each subinterval has width . The function is decreasing on [0, 1], and its small-
est value in a subinterval occurs at the subinterval’s right endpoint. So a lower sum is con-
structed with rectangles whose height over the subinterval is 

giving the sum

We write this in sigma notation and simplify,

Difference Rule

Sum of the First n Squares

Numerator expanded

We have obtained an expression for the lower sum that holds for any n. Taking the
limit of this expression as we see that the lower sums converge as the number of
subintervals increases and the subinterval widths approach zero:

The lower sum approximations converge to .A similar calculation shows that the up-
per sum approximations also converge to (Exercise 35). Any finite sum approximation,
in the sense of our summary at the end of Section 5.1, also converges to the same value

2>3 2>3
lim

n: q

a1 -

2n3
+ 3n2

+ n
6n3 b = 1 -

2
6

=
2
3

.

n : q ,

 = 1 -

2n3
+ 3n2

+ n
6n3 .

 = 1 - a 1
n3 b  

sndsn + 1ds2n + 1d
6

 = n # 1
n -

1
n3a

n

k = 1
k2

 = a
n

k = 1
 
1
n - a

n

k = 1
 
k2

n3

 = a
n

k = 1
 a1n -

k2

n3 b
 a

n

k = 1
ƒ ak

n b a1n b = a
n

k = 1
a1 - ak

n b
2b a1n b

ƒ a1n b a1n b + ƒ a2n b a1n b +
Á

+ ƒ ak
n b a1n b +

Á
+ ƒ ann b a1n b .

1 - sk>nd2 ,
ƒsk>nd =[sk - 1d>n, k>n]

1 - x21>n
c0, 

1
n d , c1n , 

2
n d , Á , cn - 1

n , n d .

n : q .¢x = s1 - 0d>n ,

y = 1 - x2
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Constant Value and
Constant Multiple Rules
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. This is because it is possible to show that any finite sum approximation is trapped be-
tween the lower and upper sum approximations. For this reason we are led to define the
area of the region R as this limiting value. In Section 5.3 we study the limits of such finite
approximations in their more general setting.

Riemann Sums

The theory of limits of finite approximations was made precise by the German mathemati-
cian Bernhard Riemann. We now introduce the notion of a Riemann sum, which underlies
the theory of the definite integral studied in the next section.

We begin with an arbitrary function ƒ defined on a closed interval [a, b]. Like the
function pictured in Figure 5.8, ƒ may have negative as well as positive values. We subdi-
vide the interval [a, b] into subintervals, not necessarily of equal widths (or lengths), and
form sums in the same way as for the finite approximations in Section 5.1. To do so, we
choose points between a and b and satisfying

To make the notation consistent, we denote a by and b by so that

The set

is called a partition of [a, b].
The partition P divides [a, b] into n closed subintervals

The first of these subintervals is the second is and the k th subinterval of
P is for k an integer between 1 and n.[xk - 1, xk] ,

[x1, x2] ,[x0 , x1] ,

[x0 , x1], [x1, x2], Á , [xn - 1, xn] .

P = 5x0 , x1, x2 , Á , xn - 1, xn6

a = x0 6 x1 6 x2 6
Á

6 xn - 1 6 xn = b .

xn ,x0

a 6 x1 6 x2 6
Á

6 xn - 1 6 b .

5x1, x2 , x3 , Á , xn - 16n - 1

2>3
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HISTORICAL BIOGRAPHY

Georg Friedrich
Bernhard Riemann
(1826–1866)

x

y

ba

y � f (x)

FIGURE 5.8 A typical continuous function over a closed interval [a, b].y = ƒsxd
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The width of the first subinterval is denoted the width of the second
is denoted and the width of the k th subinterval is If all n

subintervals have equal width, then the common width is equal to 

In each subinterval we select some point. The point chosen in the kth subinterval
is called Then on each subinterval we stand a vertical rectangle that stretches

from the x-axis to touch the curve at These rectangles can be above or below
the x-axis, depending on whether is positive or negative, or on it if (Figure
5.9).

On each subinterval we form the product This product is positive, nega-
tive or zero, depending on the sign of When the product is
the area of a rectangle with height and width When the product

is a negative number, the negative of the area of a rectangle of width that
drops from the x-axis to the negative number 

Finally we sum all these products to get

SP = a
n

k = 1
ƒsckd ¢xk .

ƒsckd .
¢xkƒsckd #

¢xk

ƒsckd 6 0,¢xk .ƒsckd
ƒsckd #

¢xkƒsckd 7 0,ƒsckd .
ƒsckd #

¢xk .

ƒsckd = 0ƒsckd
sck , ƒsckdd .

ck .[xk - 1, xk]

x
• • • • • •x0 � a x1 x2 xk�1 xk xn�1 xn � b

�xn�xk�x1 �x2

sb - ad>n .¢x
¢xk = xk - xk - 1 .¢x2 ,[x1, x2]

¢x1 ,[x0 , x1]

x

• • • • • •

kth subinterval

x0 � a xn � bx1 x2 xk�1 xn�1xk
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x

y

0

(c2,  f (c2))

(c1,  f (c1))

x0 � a x1 x2 xk�1 xk xn�1 xn � b

ck cn
c2c1

kth rectangle

(ck,  f (ck))

y � f (x)
(cn,  f (cn))

FIGURE 5.9 The rectangles approximate the region between the graph of the function
and the x-axis.y = ƒsxd
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The sum is called a Riemann sum for ƒ on the interval [a, b]. There are many such sums,
depending on the partition P we choose, and the choices of the points in the subintervals.

In Example 5, where the subintervals all had equal widths we could make
them thinner by simply increasing their number n. When a partition has subintervals of
varying widths, we can ensure they are all thin by controlling the width of a widest
(longest) subinterval. We define the norm of a partition P, written to be the largest of
all the subinterval widths. If is a small number, then all of the subintervals in the parti-
tion P have a small width. Let’s look at an example of these ideas.

EXAMPLE 6 Partitioning a Closed Interval

The set is a partition of [0, 2]. There are five subintervals of P:
[0, 0.2], [0.2, 0.6], [0.6, 1], [1, 1.5], and [1.5, 2]:

The lengths of the subintervals are and
The longest subinterval length is 0.5, so the norm of the partition is

In this example, there are two subintervals of this length.

Any Riemann sum associated with a partition of a closed interval [a, b] defines rec-
tangles that approximate the region between the graph of a continuous function ƒ and the
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.10. We will see in the
next section that if the function ƒ is continuous over the closed interval [a, b], then no mat-
ter how we choose the partition P and the points in its subintervals to construct a Rie-
mann sum, a single limiting value is approached as the subinterval widths, controlled by
the norm of the partition, approach zero.

ck

7P 7 = 0.5.
¢x5 = 0.5.

¢x1 = 0.2, ¢x2 = 0.4, ¢x3 = 0.4, ¢x4 = 0.5,

x 

�x1 �x2 �x3

0 0.2 0.6 1 1.5 2

�x4 �x5

P = {0, 0.2, 0.6, 1, 1.5, 2}

7P 7 7P 7 ,

¢x = 1>n ,
ck

SP
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(a)

(b)

x
0 ba

y

y

x
0 ba

y � f (x)

y � f (x)

FIGURE 5.10 The curve of Figure 5.9 with
rectangles from finer partitions of [a, b].
Finer partitions create collections of
rectangles with thinner bases that approx-
imate the region between the graph of ƒ and
the x-axis with increasing accuracy.
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EXERCISES 5.2

Sigma Notation
Write the sums in Exercises 1–6 without sigma notation. Then evalu-
ate them.

1. 2.

3. 4.

5. 6.

7. Which of the following express in
sigma notation?

a. b. c. a
4

k = -1
2k + 1a

5

k = 0
2ka

6

k = 1
2k - 1

1 + 2 + 4 + 8 + 16 + 32

a
4

k = 1
s -1dk cos kpa

3

k = 1
s -1dk + 1 sin 

p

k

a
5

k = 1
 sin kpa

4

k = 1
 cos kp

a
3

k = 1
 
k - 1

ka
2

k = 1
 

6k
k + 1

8. Which of the following express in
sigma notation?

a. b. c.

9. Which formula is not equivalent to the other two?

a. b. c.

10. Which formula is not equivalent to the other two?

a. b. c. a
-1

k = -3
k2a

3

k = -1
sk + 1d2a

4

k = 1
sk - 1d2

a
1

k = -1
 
s -1dk

k + 2a
2

k = 0
 
s -1dk

k + 1a
4

k = 2
 
s -1dk - 1

k - 1

a
3

k = -2
s -1dk + 1 2k + 2a

5

k = 0
s -1dk 2ka

6

k = 1
s -2dk - 1

1 - 2 + 4 - 8 + 16 - 32
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Express the sums in Exercises 11–16 in sigma notation. The form
of your answer will depend on your choice of the lower limit of
summation.

11. 12.

13. 14.

15. 16.

Values of Finite Sums

17. Suppose that and Find the values of

a. b. c.

d. e.

18. Suppose that and Find the values of

a. b.

c. d.

Evaluate the sums in Exercises 19–28.

19. a. b. c.

20. a. b. c.

21. 22.

23. 24. a
6

k = 1
sk2

- 5da
6

k = 1
s3 - k2d

a
5

k = 1
 
pk
15a

7

k = 1
s -2kd

a
13

k = 1
k3a

13

k = 1
k2a

13

k = 1
k

a
10

k = 1
k3a

10

k = 1
k2a

10

k = 1
k

a
n

k = 1
sbk - 1da

n

k = 1
sak + 1d

a
n

k = 1
250bka

n

k = 1
8ak

a
n

k = 1
bk = 1.a

n

k = 1
ak = 0

a
n

k = 1
sbk - 2akda

n

k = 1
sak - bkd

a
n

k = 1
sak + bkda

n

k = 1
 
bk

6a
n

k = 1
3ak

a
n

k = 1
bk = 6.a

n

k = 1
ak = -5

-

1
5

+

2
5

-

3
5

+

4
5

-

5
5

1 -

1
2

+

1
3

-

1
4

+

1
5

2 + 4 + 6 + 8 + 10
1
2

+

1
4

+

1
8

+

1
16

1 + 4 + 9 + 161 + 2 + 3 + 4 + 5 + 6

25. 26.

27. 28.

Rectangles for Riemann Sums
In Exercises 29–32, graph each function ƒ(x) over the given interval.
Partition the interval into four subintervals of equal length. Then add
to your sketch the rectangles associated with the Riemann sum

given that is the (a) left-hand endpoint, (b) right-
hand endpoint, (c) midpoint of the kth subinterval. (Make a separate
sketch for each set of rectangles.)

29.

30.

31.

32.

33. Find the norm of the partition 

34. Find the norm of the partition 

Limits of Upper Sums
For the functions in Exercises 35–40 find a formula for the upper sum
obtained by dividing the interval [a, b] into n equal subintervals. Then
take a limit of these sums as to calculate the area under the
curve over [a, b].

35. over the interval [0, 1].

36. over the interval [0, 3].

37. over the interval [0, 3].

38. over the interval [0, 1].

39. over the interval [0, 1].

40. over the interval [0, 1].ƒsxd = 3x + 2x2

ƒsxd = x + x2

ƒsxd = 3x2

ƒsxd = x2
+ 1

ƒsxd = 2x

ƒsxd = 1 - x2

n : q

P = 5-2, -1.6, -0.5, 0, 0.8, 16 .

P = 50, 1.2, 1.5, 2.3, 2.6, 36 .

ƒsxd = sin x + 1, [-p, p]

ƒsxd = sin x, [-p, p]

ƒsxd = -x2, [0, 1]

ƒsxd = x2
- 1, [0, 2]

ck©
4
k = 1ƒsckd ¢xk ,

aa
7

k = 1
kb2

- a
7

k = 1
 
k3

4a
5

k = 1
 

k3

225
+ aa

5

k = 1
kb3

a
7

k = 1
ks2k + 1da

5

k = 1
ks3k + 5d
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5.3 The Definite Integral 343

The Definite Integral

In Section 5.2 we investigated the limit of a finite sum for a function defined over a closed
interval [a, b] using n subintervals of equal width (or length), In this section
we consider the limit of more general Riemann sums as the norm of the partitions of [a, b]
approaches zero. For general Riemann sums the subintervals of the partitions need not
have equal widths. The limiting process then leads to the definition of the definite integral
of a function over a closed interval [a, b].

Limits of Riemann Sums

The definition of the definite integral is based on the idea that for certain functions, as the
norm of the partitions of [a, b] approaches zero, the values of the corresponding Riemann

sb - ad>n .

5.3 
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sums approach a limiting value I. What we mean by this converging idea is that a Riemann
sum will be close to the number I provided that the norm of its partition is sufficiently
small (so that all of its subintervals have thin enough widths). We introduce the symbol 
as a small positive number that specifies how close to I the Riemann sum must be, and the
symbol as a second small positive number that specifies how small the norm of a parti-
tion must be in order for that to happen. Here is a precise formulation.

d

P

344 Chapter 5: Integration

DEFINITION The Definite Integral as a Limit of Riemann Sums
Let ƒ(x) be a function defined on a closed interval [a, b]. We say that a number I
is the definite integral of ƒ over [a, b] and that I is the limit of the Riemann
sums if the following condition is satisfied:

Given any number there is a corresponding number such that
for every partition of [a, b] with and any choice of

in we have

` a
n

k = 1
ƒsckd ¢xk - I ` 6 P .

[xk - 1, xk] ,ck

7P 7 6 dP = 5x0 , x1, Á , xn6
d 7 0P 7 0

gn
k = 1ƒsckd ¢xk

Leibniz introduced a notation for the definite integral that captures its construction as
a limit of Riemann sums. He envisioned the finite sums becoming an infi-
nite sum of function values ƒ(x) multiplied by “infinitesimal” subinterval widths dx. The
sum symbol is replaced in the limit by the integral symbol whose origin is in the
letter “S.” The function values are replaced by a continuous selection of function val-
ues ƒ(x). The subinterval widths become the differential dx. It is as if we are summing
all products of the form as x goes from a to b. While this notation captures the
process of constructing an integral, it is Riemann’s definition that gives a precise meaning
to the definite integral.

Notation and Existence of the Definite Integral

The symbol for the number I in the definition of the definite integral is

which is read as “the integral from a to b of ƒ of x dee x” or sometimes as “the integral
from a to b of ƒ of x with respect to x.” The component parts in the integral symbol also
have names:

⌠


⌡

      

The function is the integrand.

x is the variable of integration.

When you find the value
of the integral, you have
evaluated the integral.

Upper limit of integration

Integral sign

Lower limit of integration

Integral of f from a to b

a

b

f (x) dx

L
b

a
ƒsxd dx

ƒsxd # dx
¢xk

ƒsckd
1,a

gn
k = 1ƒsckd ¢xk
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When the definition is satisfied, we say the Riemann sums of ƒ on [a, b] converge to
the definite integral and that ƒ is integrable over [a, b]. We have many
choices for a partition P with norm going to zero, and many choices of points for each
partition. The definite integral exists when we always get the same limit I, no matter what
choices are made. When the limit exists we write it as the definite integral

When each partition has n equal subintervals, each of width we will
also write

The limit is always taken as the norm of the partitions approaches zero and the number of
subintervals goes to infinity.

The value of the definite integral of a function over any particular interval depends on
the function, not on the letter we choose to represent its independent variable. If we decide
to use t or u instead of x, we simply write the integral as

No matter how we write the integral, it is still the same number, defined as a limit of Rie-
mann sums. Since it does not matter what letter we use, the variable of integration is called
a dummy variable.

Since there are so many choices to be made in taking a limit of Riemann sums, it
might seem difficult to show that such a limit exists. It turns out, however, that no matter
what choices are made, the Riemann sums associated with a continuous function converge
to the same limit.

L
b

a
ƒstd dt or L

b

a
ƒsud du instead of L

b

a
ƒsxd dx .

lim
n: q

 a
n

k = 1
ƒsckd ¢x = I = L

b

a
ƒsxd dx .

¢x = sb - ad>n ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
ƒsckd ¢xk = I = L

b

a
ƒsxd dx .

ck

I = 1b
a ƒsxd dx
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THEOREM 1 The Existence of Definite Integrals
A continuous function is integrable. That is, if a function ƒ is continuous on an
interval [a, b], then its definite integral over [a, b] exists.

By the Extreme Value Theorem (Theorem 1, Section 4.1), when ƒ is continuous we
can choose so that gives the maximum value of ƒ on giving an upper
sum. We can choose to give the minimum value of ƒ on giving a lower sum.
We can pick to be the midpoint of the rightmost point or a random point.
We can take the partitions of equal or varying widths. In each case we get the same limit
for as  The idea behind Theorem 1 is that a Riemann sum asso-
ciated with a partition is no more than the upper sum of that partition and no less than the
lower sum. The upper and lower sums converge to the same value when All other
Riemann sums lie between the upper and lower sums and have the same limit. A proof
of Theorem 1 involves a careful analysis of functions, partitions, and limits along this
line of thinking and is left to a more advanced text. An indication of this proof is given in
Exercises 80 and 81.

7P 7 : 0.

7P 7 : 0.gn
k = 1ƒsckd ¢xk

xk ,[xk - 1, xk] ,ck

[xk - 1, xk] ,ck

[xk - 1, xk] ,ƒsckdck
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Theorem 1 says nothing about how to calculate definite integrals. A method of calcu-
lation will be developed in Section 5.4, through a connection to the process of taking anti-
derivatives.

Integrable and Nonintegrable Functions

Theorem 1 tells us that functions continuous over the interval [a, b] are integrable there.
Functions that are not continuous may or may not be integrable. Discontinuous functions
that are integrable include those that are increasing on [a, b] (Exercise 77), and the
piecewise-continuous functions defined in the Additional Exercises at the end of this chap-
ter. (The latter are continuous except at a finite number of points in [a, b].) For integrabil-
ity to fail, a function needs to be sufficiently discontinuous so that the region between its
graph and the x-axis cannot be approximated well by increasingly thin rectangles. Here is
an example of a function that is not integrable.

EXAMPLE 1 A Nonintegrable Function on [0, 1]

The function

has no Riemann integral over [0, 1]. Underlying this is the fact that between any two num-
bers there is both a rational number and an irrational number. Thus the function jumps
up and down too erratically over [0, 1] to allow the region beneath its graph and above the
x-axis to be approximated by rectangles, no matter how thin they are. We show, in fact, that
upper sum approximations and lower sum approximations converge to different limiting
values.

If we pick a partition P of [0, 1] and choose to be the maximum value for ƒ on
then the corresponding Riemann sum is

since each subinterval contains a rational number where Note that the
lengths of the intervals in the partition sum to 1, So each such Riemann
sum equals 1, and a limit of Riemann sums using these choices equals 1.

On the other hand, if we pick to be the minimum value for ƒ on then the
Riemann sum is

since each subinterval contains an irrational number where The
limit of Riemann sums using these choices equals zero. Since the limit depends on the
choices of the function ƒ is not integrable.

Properties of Definite Integrals

In defining as a limit of sums we moved from left to right
across the interval [a, b]. What would happen if we instead move right to left, starting with

and ending at Each in the Riemann sum would change its sign, with
now negative instead of positive. With the same choices of in each subinter-

val, the sign of any Riemann sum would change, as would the sign of the limit, the integral
ckxk - xk - 1

¢xkxn = a .x0 = b

gn
k = 1ƒsckd ¢xk ,1b

a ƒsxd dx

ck ,

ƒsckd = 0.ck[xk - 1, xk]

L = a
n

k = 1
 ƒsckd ¢xk = a

n

k = 1
s0d ¢xk = 0,

[xk - 1, xk] ,ck

gn
k = 1¢xk = 1.

ƒsckd = 1.[xk - 1, xk]

U = a
n

k = 1
ƒsckd ¢xk = a

n

k = 1
s1d ¢xk = 1,

[xk - 1, xk]
ck

ƒsxd = e1, if x is rational

0, if x is irrational
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Since we have not previously given a meaning to integrating backward, we are
led to define

Another extension of the integral is to an interval of zero width, when Since
is zero when the interval width , we define

Theorem 2 states seven properties of integrals, given as rules that they satisfy, includ-
ing the two above. These rules become very useful in the process of computing integrals.
We will refer to them repeatedly to simplify our calculations.

Rules 2 through 7 have geometric interpretations, shown in Figure 5.11. The graphs in
these figures are of positive functions, but the rules apply to general integrable functions.

L
a

a
ƒsxd dx = 0.

¢xk = 0ƒsckd ¢xk

a = b .

L
a

b
ƒsxd dx = -L

b

a
ƒsxd dx .

1a
b ƒsxd dx .

5.3 The Definite Integral 347

THEOREM 2
When ƒ and g are integrable, the definite integral satisfies Rules 1 to 7 in Table 5.3.

TABLE 5.3 Rules satisfied by definite integrals

1. Order of Integration: A Definition

2. Zero Width Interval: Also a Definition

3. Constant Multiple: Any Number k

4. Sum and Difference:

5. Additivity:

6. Max-Min Inequality: If ƒ has maximum value max ƒ and minimum value 
min ƒ on [a, b], then

7. Domination:

(Special Case)ƒsxd Ú 0 on [a, b] Q  L
b

a
ƒsxd dx Ú 0

ƒsxd Ú gsxd on [a, b] Q  L
b

a
ƒsxd dx Ú L

b

a
gsxd dx

min ƒ # sb - ad … L
b

a
ƒsxd dx …  max ƒ # sb - ad .

L
b

a
ƒsxd dx + L

c

b
ƒsxd dx = L

c

a
ƒsxd dx

L
b

a
sƒsxd ; gsxdd dx = L

b

a
ƒsxd dx ; L

b

a
gsxd dx

k = -1L
b

a
 -ƒsxd dx = -L

b

a
ƒsxd dx

L
b

a
kƒsxd dx = kL

b

a
ƒsxd dx

L
a

a
ƒsxd dx = 0

L
a

b
ƒsxd dx = -L

b

a
ƒsxd dx
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While Rules 1 and 2 are definitions, Rules 3 to 7 of Table 5.3 must be proved. The
proofs are based on the definition of the definite integral as a limit of Riemann sums. The
following is a proof of one of these rules. Similar proofs can be given to verify the other
properties in Table 5.3.

Proof of Rule 6 Rule 6 says that the integral of ƒ over [a, b] is never smaller than the
minimum value of ƒ times the length of the interval and never larger than the maximum
value of ƒ times the length of the interval. The reason is that for every partition of [a, b]
and for every choice of the points 

Constant Multiple Rule

Constant Multiple Rule

 = max ƒ # sb - ad .

 = max ƒ # a
n

k = 1
 ¢xk

ƒsckd …  max f … a
n

k = 1
 max ƒ #

¢xk

min ƒ … ƒsckd … a
n

k = 1
ƒsckd ¢xk

 = a
n

k = 1
 min ƒ #

¢xk

a
n

k = 1
¢xk = b - a min ƒ # sb - ad = min ƒ # a

n

k = 1
 ¢xk

ck ,
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x

y

0 a

y � f (x)

x

y

0 a b

y � f (x)

y � 2 f (x)

x

y

0 a b

y � f (x)

y � f (x) � g(x)

y � g(x)

x

y

0 a cb

y � f (x)

b

a

f (x) dx
f (x) dx

L
c

bL
x

y

0 a b

y � f (x)

max f

min f

x

y

0 a b

y � f (x)

y � g(x)

FIGURE 5.11

(a) Zero Width Interval:

(The area over a point is 0.)

L
a

a
ƒsxd dx = 0.

(b) Constant Multiple:

(Shown for )k = 2.

L
b

a
 kƒsxd dx = kL

b

a
 ƒsxd dx .

(c) Sum:

(Areas add) 

L
b

a
sƒsxd + gsxdd dx = L

b

a
ƒsxd dx + L

b

a
gsxd dx

(d) Additivity for definite integrals:

L
b

a
ƒsxd dx + L

c

b
ƒsxd dx = L

c

a
ƒsxd dx

(e) Max-Min Inequality:

… max ƒ # sb - ad

min ƒ # sb - ad … L
b

a
 ƒsxd dx

(f ) Domination:

QL
b

a
 ƒsxd dx Ú L

b

a
 gsxd dx

ƒsxd Ú gsxd on [a, b]
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In short, all Riemann sums for ƒ on [a, b] satisfy the inequality

Hence their limit, the integral, does too.

EXAMPLE 2 Using the Rules for Definite Integrals

Suppose that

Then

1. Rule 1

2. Rules 3 and 4

3. Rule 5

EXAMPLE 3 Finding Bounds for an Integral

Show that the value of is less than .

Solution The Max-Min Inequality for definite integrals (Rule 6) says that 

is a lower bound for the value of and that is an upper bound. 

The maximum value of on [0, 1] is so

Since is bounded from above by (which is 1.414 ), the integral
is less than .

Area Under the Graph of a Nonnegative Function

We now make precise the notion of the area of a region with curved boundary, capturing
the idea of approximating a region by increasingly many rectangles. The area under the
graph of a nonnegative continuous function is defined to be a definite integral.

3>2 Á2211
0 21 + cos x dx

L
1

0
21 + cos x dx … 22 # s1 - 0d = 22.

21 + 1 = 22,21 + cos x

max ƒ # sb - ad1b
a ƒsxd dx

min ƒ # sb - ad

3>211
0 21 + cos x dx

L
4

-1
ƒsxd dx = L

1

-1
ƒsxd dx + L

4

1
ƒsxd dx = 5 + s -2d = 3

 = 2s5d + 3s7d = 31

 L
1

-1
[2ƒsxd + 3hsxd] dx = 2L

1

-1
ƒsxd dx + 3L

1

-1
hsxd dx

L
1

4
ƒsxd dx = -L

4

1
ƒsxd dx = -s -2d = 2

L
1

-1
ƒsxd dx = 5, L

4

1
ƒsxd dx = -2, L

1

-1
hsxd dx = 7.

min ƒ # sb - ad … a
n

k = 1
ƒsckd ¢xk …  max ƒ # sb - ad .

5.3 The Definite Integral 349

DEFINITION Area Under a Curve as a Definite Integral
If is nonnegative and integrable over a closed interval [a, b], then the
area under the curve over [a, b] is the integral of ƒ from a to b,

A = L
b

a
ƒsxd dx .

y = ƒsxd
y = ƒsxd
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For the first time we have a rigorous definition for the area of a region whose bound-
ary is the graph of any continuous function. We now apply this to a simple example, the
area under a straight line, where we can verify that our new definition agrees with our pre-
vious notion of area.

EXAMPLE 4 Area Under the Line 

Compute and find the area A under over the interval [0, b], 

Solution The region of interest is a triangle (Figure 5.12). We compute the area in two ways.

(a) To compute the definite integral as the limit of Riemann sums, we calculate
for partitions whose norms go to zero. Theorem 1 tells us that

it does not matter how we choose the partitions or the points as long as the norms
approach zero. All choices give the exact same limit. So we consider the partition P
that subdivides the interval [0, b] into n subintervals of equal width

and we choose to be the right endpoint in each subinterval. The partition is

and So

Constant Multiple Rule

Sum of First n Integers

As and this last expression on the right has the limit Therefore,

(b) Since the area equals the definite integral for a nonnegative function, we can quickly
derive the definite integral by using the formula for the area of a triangle having base
length b and height The area is Again we have

that 

Example 4 can be generalized to integrate over any closed interval

Rule 5

Rule 1

Example 4 = -

a2

2
+

b2

2
.

 = -L
a

0
x dx + L

b

0
x dx

 L
b

a
x dx = L

0

a
x dx + L

b

0
x dx

[a, b], 0 6 a 6 b .
ƒsxd = x

1b
0  x dx = b2>2.

A = s1>2d b # b = b2>2.y = b .

L
b

0
x dx =

b2

2
.

b2>2.7P 7 : 0,n : q

 =

b2

2
 s1 +

1
n d

 =

b2

n2 #  
nsn + 1d

2

 =

b2

n2 a
n

k = 1
k

 = a
n

k = 1
 
kb2

n2

ƒsckd = ck a
n

k = 1
ƒsckd ¢x = a

n

k = 1
 
kb
n

# b
n

ck =

kb
n .P = e0, 

b
n , 

2b
n , 

3b
n , Á , 

nb
n f

ckb>n ,
¢x = sb - 0d>n =

ck

lim
ƒ ƒP ƒ ƒ :0 gn

k = 1ƒsckd ¢xk

b 7 0.y = xL
b

0
x dx

y = x
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x

y

0

b

b

b

y � x

FIGURE 5.12 The region in
Example 4 is a triangle.
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In conclusion, we have the following rule for integrating f(x) = x:

5.3 The Definite Integral 351

(1)L
b

a
x dx =

b2

2
-

a2

2
, a 6 b

This computation gives the area of a trapezoid (Figure 5.13). Equation (1) remains valid
when a and b are negative. When the definite integral value is a
negative number, the negative of the area of a trapezoid dropping down to the line 
below the x-axis. When and Equation (1) is still valid and the definite inte-
gral gives the difference between two areas, the area under the graph and above [0, b]
minus the area below [a, 0] and over the graph.

The following results can also be established using a Riemann sum calculation similar
to that in Example 4 (Exercises 75 and 76).

b 7 0,a 6 0
y = x

sb2
- a2d>2a 6 b 6 0,

(2)

(3)L
b

a
x2 dx =

b3

3
-

a3

3
, a 6 b

L
b

a
c dx = csb - ad, c any constant

x

y

0

a

a

b

b

a

b

b � a

y � x

FIGURE 5.13 The area of
this trapezoidal region is
A = sb2

- a2d>2.

Average Value of a Continuous Function Revisited

In Section 5.1 we introduced informally the average value of a nonnegative continuous
function ƒ over an interval [a, b], leading us to define this average as the area under the
graph of divided by In integral notation we write this as

We can use this formula to give a precise definition of the average value of any continuous
(or integrable) function, whether positive, negative or both.

Alternately, we can use the following reasoning. We start with the idea from arith-
metic that the average of n numbers is their sum divided by n. A continuous function ƒ on
[a, b] may have infinitely many values, but we can still sample them in an orderly way. We
divide [a, b] into n subintervals of equal width and evaluate ƒ at a point

in each (Figure 5.14). The average of the n sampled values is

 =
1

b - a
 a

n

k = 1
ƒsckd ¢x

¢x =

b - a
n , so 1

n =

¢x
b - a

 =

¢x
b - a

 a
n

k = 1
 ƒsckd

 
ƒsc1d + ƒsc2d +

Á
+ ƒscnd

n =
1
n a

n

k = 1
 ƒsckd

ck

¢x = sb - ad>n

Average =
1

b - a
 L

b

a
ƒsxd dx .

b - a .y = ƒsxd

x

y

0

(ck, f (ck))

y � f (x)

xn � b
ckx0 � a

x1

FIGURE 5.14 A sample of values of a
function on an interval [a, b].

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 351

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


The average is obtained by dividing a Riemann sum for ƒ on [a, b] by As we
increase the size of the sample and let the norm of the partition approach zero, the average 

approaches Both points of view lead us to the following definition.(1>(b - a))1b
a ƒsxd dx .

sb - ad .

352 Chapter 5: Integration

DEFINITION The Average or Mean Value of a Function
If ƒ is integrable on [a, b], then its average value on [a, b], also called its mean
value, is

avsƒd =
1

b - a
 L

b

a
ƒsxd dx .

EXAMPLE 5 Finding an Average Value

Find the average value of on 

Solution We recognize as a function whose graph is the upper semi-
circle of radius 2 centered at the origin (Figure 5.15).

The area between the semicircle and the x-axis from to 2 can be computed using
the geometry formula

Because ƒ is nonnegative, the area is also the value of the integral of ƒ from to 2,

Therefore, the average value of ƒ is

avsƒd =
1

2 - s -2d
 L

2

-2
24 - x2 dx =

1
4

 s2pd =

p
2

.

L
2

-2
24 - x2 dx = 2p .

-2

Area =
1
2

 #  pr2
=

1
2

 #  ps2d2
= 2p .

-2

ƒsxd = 24 - x2

[-2, 2] .ƒsxd = 24 - x2

–2 –1 1 2

1

2

x

y

f (x) � �4 � x2

y � �
2

FIGURE 5.15 The average value of
on is 

(Example 5).
p>2[-2, 2]ƒsxd = 24 - x2
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352 Chapter 5: Integration

EXERCISES 5.3

Expressing Limits as Integrals
Express the limits in Exercises 1–8 as definite integrals.

1. where P is a partition of [0, 2]

2. where P is a partition of 

3. where P is a partition of 

4. where P is a partition of [1, 4]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
a 1

ck
b  ¢xk ,

[-7, 5]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
sck

2
- 3ckd ¢xk ,

[-1, 0]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
2ck

3 ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
ck

2 ¢xk ,

5. where P is a partition of [2, 3]

6. where P is a partition of [0, 1]

7. where P is a partition of 

8. where P is a partition of [0, p>4]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
stan ckd ¢xk ,

[-p>4, 0]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
ssec ckd ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
24 - ck

2 ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
 

1
1 - ck

 ¢xk ,
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Using Properties and Known Values to Find
Other Integrals
9. Suppose that ƒ and g are integrable and that

Use the rules in Table 5.3 to find

a. b.

c. d.

e. f.

10. Suppose that ƒ and h are integrable and that

Use the rules in Table 5.3 to find

a. b.

c. d.

e. f.

11. Suppose that Find

a. b.

c. d.

12. Suppose that Find

a. b.

c. d.

13. Suppose that ƒ is integrable and that and 

Find

a. b.

14. Suppose that h is integrable and that and 

Find

a. b.

Using Area to Evaluate Definite Integrals
In Exercises 15–22, graph the integrands and use areas to evaluate the
integrals.

15. 16. L
3/2

1/2
s -2x + 4d dxL

4

-2
ax

2
+ 3b  dx

-L
1

3
hsud duL

3

1
hsrd dr

13
-1 hsrd dr = 6.

11
-1 hsrd dr = 0
L

3

4
ƒstd dtL

4

3
ƒszd dz

14
0  

ƒszd dz = 7.
13

0  ƒszd dz = 3
L

0

-3
 
g srd22

 drL
0

-3
[-g sxd] dx

L
0

-3
g sud duL

-3

0
g std dt

10
-3 g std dt = 22.

L
2

1
[-ƒsxd] dxL

1

2
ƒstd dt

L
2

1
23ƒszd dzL

2

1
ƒsud du

12
1 ƒsxd dx = 5.

L
7

9
[hsxd - ƒsxd] dxL

7

1
ƒsxd dx

L
1

9
ƒsxd dxL

9

7
[2ƒsxd - 3hsxd] dx

L
9

7
[ƒsxd + hsxd] dxL

9

1
 -2ƒsxd dx

L
9

1
ƒsxd dx = -1, L

9

7
ƒsxd dx = 5, L

9

7
hsxd dx = 4.

L
5

1
[4ƒsxd - g sxd] dxL

5

1
[ƒsxd - g sxd] dx

L
5

2
ƒsxd dxL

2

1
3ƒsxd dx

L
1

5
g sxd dxL

2

2
g sxd dx

L
2

1
ƒsxd dx = -4, L

5

1
ƒsxd dx = 6, L

5

1
g sxd dx = 8.

17. 18.

19. 20.

21. 22.

Use areas to evaluate the integrals in Exercises 23–26.

23. 24.

25. 26.

Evaluations
Use the results of Equations (1) and (3) to evaluate the integrals in
Exercises 27–38.

27. 28. 29.

30. 31. 32.

33. 34. 35.

36. 37. 38.

Use the rules in Table 5.3 and Equations (1)–(3) to evaluate the inte-
grals in Exercises 39–50.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Finding Area
In Exercises 51–54 use a definite integral to find the area of the region
between the given curve and the x-axis on the interval [0, b].

51. 52.

53. 54. y =

x
2

+ 1y = 2x

y = px2y = 3x2

L
0

1
s3x2

+ x - 5d dxL
2

0
s3x2

+ x - 5d dx

L
1

1/2
 24u2 duL

2

1
3u2 du

L
0

3
s2z - 3d dzL

1

2
a1 +

z
2
b  dz

L
22

0
A t - 22 B  dtL

2

0
s2t - 3d dt

L
5

3
 
x
8

 dxL
2

0
5x dx

L
-2

0
22 dxL

1

3
7 dx

L
3b

0
x2 dxL

23 b

0
x2 dxL

23a

a
x dx

L
2a

a
x dxL

p/2

0
u2 duL

1/2

0
t2 dt

L
0.3

0
s2 dsL

23 7

0
x2 dxL

52222
r dr

L
2p

p

u duL
2.5

0.5
x dxL

22

1
 x dx

L
b

a
3t dt, 0 6 a 6 bL

b

a
2s ds, 0 6 a 6 b

L
b

0
4x dx, b 7 0L

b

0
 
x
2

 dx, b 7 0

L
1

-1
A1 + 21 - x2 B  dxL

1

-1
s2 - ƒ x ƒ d dx

L
1

-1
s1 - ƒ x ƒ d dxL

1

-2
ƒ x ƒ  dx

L
0

-4
216 - x2 dxL

3

-3
29 - x2 dx
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Average Value
In Exercises 55–62, graph the function and find its average value over
the given interval.

55.

56. on [0, 3] 57. on [0, 1]

58. on [0, 1]

59. on [0, 3]

60. on

61. on a. b. [1, 3], and c.

62. on a. b. [0, 1], and c.

Theory and Examples
63. What values of a and b maximize the value of

(Hint: Where is the integrand positive?)

64. What values of a and b minimize the value of

65. Use the Max-Min Inequality to find upper and lower bounds for
the value of

66. (Continuation of Exercise 65) Use the Max-Min Inequality to
find upper and lower bounds for

Add these to arrive at an improved estimate of

67. Show that the value of cannot possibly be 2.

68. Show that the value of lies between 
and 3.

69. Integrals of nonnegative functions Use the Max-Min Inequal-
ity to show that if ƒ is integrable then

70. Integrals of nonpositive functions Show that if ƒ is integrable then

71. Use the inequality sin which holds for to find an
upper bound for the value of 11

0  sin x dx .
x Ú 0,x … x ,

ƒsxd … 0 on [a, b] Q  L
b

a
ƒsxd dx … 0.

ƒsxd Ú 0 on [a, b] Q  L
b

a
ƒsxd dx Ú 0.

222 L 2.810
1  2x + 8 dx

11
0  sinsx2d dx

L
1

0
 

1
1 + x2 dx .

L
0.5

0
 

1
1 + x2 dx and L

1

0.5
 

1
1 + x2 dx .

L
1

0
 

1
1 + x2 dx .

L
b

a
sx4

- 2x2d dx?

L
b

a
sx - x2d dx?

[-1, 1][-1, 0] ,hsxd = - ƒ x ƒ

[-1, 3][-1, 1] ,g sxd = ƒ x ƒ - 1

[-2, 1]ƒstd = t2
- t

ƒstd = st - 1d2

ƒsxd = 3x2
- 3

ƒsxd = -3x2
- 1ƒsxd = -

x2

2

ƒsxd = x2
- 1 on C0, 23 D

72. The inequality sec holds on Use it
to find a lower bound for the value of 

73. If av(ƒ) really is a typical value of the integrable function ƒ(x) on
[a, b], then the number av(ƒ) should have the same integral over
[a, b] that ƒ does. Does it? That is, does

Give reasons for your answer.

74. It would be nice if average values of integrable functions obeyed
the following rules on an interval [a, b].

a.

b.

c.

Do these rules ever hold? Give reasons for your answers.

75. Use limits of Riemann sums as in Example 4a to establish Equa-
tion (2).

76. Use limits of Riemann sums as in Example 4a to establish Equa-
tion (3).

77. Upper and lower sums for increasing functions

a. Suppose the graph of a continuous function ƒ(x) rises steadily
as x moves from left to right across an interval [a, b]. Let P
be a partition of [a, b] into n subintervals of length 

Show by referring to the accompanying figure that
the difference between the upper and lower sums for ƒ on this
partition can be represented graphically as the area of a
rectangle R whose dimensions are by 
(Hint: The difference is the sum of areas of rectangles
whose diagonals lie along the
curve. There is no overlapping when these rectangles are
shifted horizontally onto R.)

b. Suppose that instead of being equal, the lengths of the
subintervals of the partition of [a, b] vary in size. Show that

where is the norm of P, and hence that  

x

y

0 x0 � a xn � bx1

Q1

Q2

Q3

x2

y � f (x)

f (b) � f (a)

R

∆x

sU - Ld = 0.
lim

ƒ ƒP ƒ ƒ :0¢xmax

U - L … ƒ ƒsbd - ƒsad ƒ ¢xmax ,

¢xk

Q0 Q1, Q1 Q2 , Á , Qn - 1Qn

U - L
¢x .[ƒsbd - ƒsad]

sb - ad>n .
¢x =

avsƒd … avsgd if ƒsxd … g sxd on [a, b] .

avskƒd = k avsƒd sany number kd
avsƒ + gd = avsƒd + avsgd

L
b

a
 avsƒd dx = L

b

a
ƒsxd dx?

11
0  sec x dx .

s -p>2, p>2d .x Ú 1 + sx2>2d
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78. Upper and lower sums for decreasing functions (Continuation
of Exercise 77)

a. Draw a figure like the one in Exercise 77 for a continuous
function ƒ(x) whose values decrease steadily as x moves from
left to right across the interval [a, b]. Let P be a partition of
[a, b] into subintervals of equal length. Find an expression for

that is analogous to the one you found for in
Exercise 77a.

b. Suppose that instead of being equal, the lengths of the
subintervals of P vary in size. Show that the inequality

of Exercise 77b still holds and hence that  

79. Use the formula

to find the area under the curve from to 
in two steps:

a. Partition the interval into n subintervals of equal
length and calculate the corresponding upper sum U; then

b. Find the limit of U as and 

80. Suppose that ƒ is continuous and nonnegative over [a, b], as in the
figure at the right. By inserting points

as shown, divide [a, b] into n subintervals of lengths
which need not be equal.

a. If explain the
connection between the lower sum

and the shaded region in the first part of the figure.

b. If explain the
connection between the upper sum

and the shaded region in the second part of the figure.

c. Explain the connection between and the shaded
regions along the curve in the third part of the figure.

81. We say ƒ is uniformly continuous on [a, b] if given any 
there is a such that if are in [a, b] and 
then It can be shown that a continuous
function on [a, b] is uniformly continuous. Use this and the figure
at the right to show that if ƒ is continuous and is given, it is
possible to make by making the largest of
the sufficiently small.

82. If you average 30 mi h on a 150-mi trip and then return over the
same 150 mi at the rate of 50 mi h, what is your average speed for
the trip? Give reasons for your answer. (Source: David H.

>>
¢xk’s

U - L … P
# sb - ad

P 7 0

ƒ ƒsx1d - ƒsx2d ƒ 6 P .
ƒ x1 - x2 ƒ 6 dx1, x2d 7 0

P 7 0

U - L

U = M1 ¢x1 + M2 ¢x2 +
Á

+ Mn ¢xn

Mk = max 5ƒsxd for x in the k th subinterval6 ,

L = m1 ¢x1 + m2 ¢x2 +
Á

+ mn ¢xn

mk = min 5ƒsxd for x in the k th subinterval6 ,

¢x2 = x2 - x1, Á , ¢xn = b - xn - 1 ,
¢x1 = x1 - a,

x1, x2 , Á , xk - 1, xk , Á , xn - 1

¢x = sb - ad>n : 0.n : q

[0, p>2]

x = p>2x = 0y = sin x

=

cos sh>2d - cos ssm + s1>2ddhd
2 sin sh>2d

sin h + sin 2h + sin 3h +
Á

+ sin mh

sU - Ld = 0.
lim

ƒ ƒP ƒ ƒ :0

U - L … ƒ ƒsbd - ƒsad ƒ  ¢xmax

¢xk

U - LU - L

Pleacher, The Mathematics Teacher, Vol. 85, No. 6, pp. 445–446,
September 1992.)

COMPUTER EXPLORATIONS

Finding Riemann Sums
If your CAS can draw rectangles associated with Riemann sums, use it
to draw rectangles associated with Riemann sums that converge to the
integrals in Exercises 83–88. Use 10, 20, and 50 subintervals
of equal length in each case.

83. 84. L
1

0
sx2

+ 1d dx =

4
3L

1

0
s1 - xd dx =

1
2

n = 4,
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x

y

0 a bx1 x2 x3 xk�1 xn�1xk

y � f (x)

x

y

0 a bxk�1xk

x

y

0 a bxk�1xk

b � a

�
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85. 86.

87.

88. (The integral’s value is about 0.693.)

Average Value
In Exercises 89–92, use a CAS to perform the following steps:

a. Plot the functions over the given interval.

b. Partition the interval into 200, and 1000 subintervals
of equal length, and evaluate the function at the midpoint of each
subinterval.

n = 100,

L
2

1
 
1
x  dx

L
1

-1
ƒ x ƒ  dx = 1

L
p/4

0
 sec2 x dx = 1L

p

-p

 cos x dx = 0
c. Compute the average value of the function values generated in

part (b).

d. Solve the equation for x using the
average value calculated in part (c) for the 
partitioning.

89.

90.

91.

92. ƒsxd = x sin2 
1
x on cp

4
, p d

ƒsxd = x sin 
1
x on cp

4
, p d

ƒsxd = sin2 x on [0, p]

ƒsxd = sin x on [0, p]

n = 1000
ƒsxd = saverage valued
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356 Chapter 5: Integration

The Fundamental Theorem of Calculus

In this section we present the Fundamental Theorem of Calculus, which is the central the-
orem of integral calculus. It connects integration and differentiation, enabling us to com-
pute integrals using an antiderivative of the integrand function rather than by taking limits
of Riemann sums as we did in Section 5.3. Leibniz and Newton exploited this relationship
and started mathematical developments that fueled the scientific revolution for the next
200 years.

Along the way, we present the integral version of the Mean Value Theorem, which is an-
other important theorem of integral calculus and used to prove the Fundamental Theorem.

Mean Value Theorem for Definite Integrals

In the previous section, we defined the average value of a continuous function over a
closed interval [a, b] as the definite integral divided by the length or width

of the interval. The Mean Value Theorem for Definite Integrals asserts that this av-
erage value is always taken on at least once by the function ƒ in the interval.

The graph in Figure 5.16 shows a positive continuous function defined over
the interval [a, b]. Geometrically, the Mean Value Theorem says that there is a number c in
[a, b] such that the rectangle with height equal to the average value ƒ(c) of the function
and base width has exactly the same area as the region beneath the graph of ƒ from
a to b.

b - a

y = ƒsxd

b - a
1b

a ƒsxd dx

5.4 

HISTORICAL BIOGRAPHY

Sir Isaac Newton
(1642–1727)

y

x
a b0 c

y � f (x)

f (c), 

b � a

average
height

FIGURE 5.16 The value ƒ(c) in the
Mean Value Theorem is, in a sense, the
average (or mean) height of ƒ on [a, b].
When the area of the rectangle
is the area under the graph of ƒ from a
to b,

ƒscdsb - ad = L
b

a
 ƒsxd dx .

ƒ Ú 0,

THEOREM 3 The Mean Value Theorem for Definite Integrals
If ƒ is continuous on [a, b], then at some point c in [a, b],

ƒscd =
1

b - a
 L

b

a
ƒsxd dx .
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Proof If we divide both sides of the Max-Min Inequality (Table 5.3, Rule 6) by 
we obtain

Since ƒ is continuous, the Intermediate Value Theorem for Continuous Functions (Section
2.6) says that ƒ must assume every value between min ƒ and max ƒ. It must therefore as-

sume the value at some point c in [a, b].

The continuity of ƒ is important here. It is possible that a discontinuous function never
equals its average value (Figure 5.17).

EXAMPLE 1 Applying the Mean Value Theorem for Integrals

Find the average value of on [0, 3] and where ƒ actually takes on this value
at some point in the given domain.

Solution

Section 5.3, Eqs. (1) and (2)

The average value of over [0, 3] is . The function assumes this value
when or (Figure 5.18)

In Example 1, we actually found a point c where ƒ assumed its average value by set-
ting ƒ(x) equal to the calculated average value and solving for x. It’s not always possible to
solve easily for the value c. What else can we learn from the Mean Value Theorem for inte-
grals? Here’s an example.

EXAMPLE 2 Show that if ƒ is continuous on and if

then at least once in [a, b].

Solution The average value of ƒ on [a, b] is

By the Mean Value Theorem, ƒ assumes this value at some point c H  [a, b] .

avsƒd =
1

b - a
 L

b

a
ƒsxd dx =

1
b - a

 #  0 = 0.

ƒsxd = 0

L
b

a
ƒsxd dx = 0,

[a, b], a Z b ,

x = 3>2.4 - x = 5>2 5>2ƒsxd = 4 - x

 = 4 -

3
2

=

5
2

.

 =
1
3

 a4s3 - 0d - a32

2
-

02

2
b b

 =
1

3 - 0
 L

3

0
s4 - xd dx =

1
3

 aL
3

0
4 dx - L

3

0
x dxb

 avsƒd =
1

b - a
 L

b

a
ƒsxd dx

ƒsxd = 4 - x

s1>sb - add1b
a ƒsxd dx

min ƒ …
1

b - a
 L

b

a
ƒsxd dx … max ƒ.

sb - ad ,
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x

y

0

1

1 2

Average value 1/2
not assumed

y � f (x)

1
2

FIGURE 5.17 A discontinuous function
need not assume its average value.

y � 4 � x

5
2

3
2

y

x
0 1 2 3 4

1

4

FIGURE 5.18 The area of the rectangle
with base [0, 3] and height (the average
value of the function ) is
equal to the area between the graph of ƒ
and the x-axis from 0 to 3 (Example 1).

ƒsxd = 4 - x
5>2
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Fundamental Theorem, Part 1

If ƒ(t) is an integrable function over a finite interval I, then the integral from any fixed
number to another number defines a new function F whose value at x is

(1)

For example, if ƒ is nonnegative and x lies to the right of a, then F(x) is the area under the
graph from a to x (Figure 5.19). The variable x is the upper limit of integration of an inte-
gral, but F is just like any other real-valued function of a real variable. For each value of
the input x, there is a well-defined numerical output, in this case the definite integral of ƒ
from a to x.

Equation (1) gives a way to define new functions, but its importance now is the con-
nection it makes between integrals and derivatives. If ƒ is any continuous function, then
the Fundamental Theorem asserts that F is a differentiable function of x whose derivative
is ƒ itself. At every value of x,

To gain some insight into why this result holds, we look at the geometry behind it.
If on [a, b], then the computation of from the definition of the derivative

means taking the limit as of the difference quotient

For the numerator is obtained by subtracting two areas, so it is the area under the
graph of ƒ from x to (Figure 5.20). If h is small, this area is approximately equal to
the area of the rectangle of height ƒ(x) and width h, which can be seen from Figure 5.20.
That is,

Dividing both sides of this approximation by h and letting it is reasonable to expect
that

This result is true even if the function ƒ is not positive, and it forms the first part of the
Fundamental Theorem of Calculus.

F¿sxd = lim
h:0

 
Fsx + hd - Fsxd

h
= ƒsxd .

h : 0,

Fsx + hd - Fsxd L hƒsxd .

x + h
h 7 0,

Fsx + hd - Fsxd
h

.

h : 0
F¿sxdƒ Ú 0

d
dx

 Fsxd =

d
dxL

x

a
ƒstd dt = ƒsxd .

Fsxd = L
x

a
ƒstd dt .

x H  Ia H  I
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t

y

0 a x b

area � F(x)

y � f (t)

FIGURE 5.19 The function F(x) defined
by Equation (1) gives the area under the
graph of ƒ from a to x when ƒ is
nonnegative and x 7 a .

y � f (t)

t

y

0 a x x � h b

f (x)

FIGURE 5.20 In Equation (1), F(x) is
the area to the left of x. Also, is
the area to the left of The
difference quotient 
is then approximately equal to ƒ(x), the
height of the rectangle shown here.

[Fsx + hd - Fsxd]>h
x + h .

Fsx + hd

THEOREM 4 The Fundamental Theorem of Calculus Part 1
If ƒ is continuous on [a, b] then is continuous on [a, b] and 

differentiable on and its derivative is 

(2)F¿sxd =

d
dxL

x

a
ƒstd dt = ƒsxd.

ƒsxd ;(a, b)

Fsxd = 1x
a  ƒstd dt

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 358

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


Before proving Theorem 4, we look at several examples to gain a better understanding
of what it says.

EXAMPLE 3 Applying the Fundamental Theorem

Use the Fundamental Theorem to find

(a)

(b)

(c)

(d)

Solution

(a) Eq. 2 with 

(b) Eq. 2 with 

(c) Rule 1 for integrals in Table 5.3 of Section 5.3 sets this up for the Fundamental Theorem.

Rule 1

(d) The upper limit of integration is not x but This makes y a composite of the two
functions,

We must therefore apply the Chain Rule when finding .

 = 2x cos x2

 = cossx2d # 2x

 = cos u #  
du
dx

 = a d
duL

u

1
 cos t dtb #  

du
dx

 
dy
dx

=

dy
du

 #  
du
dx

dy>dx

y = L
u

1
 cos t dt and u = x2 .

x2 .

 = -3x sin x

 = -

d
dxL

x

5
3t sin t dt

 
dy
dx

=

d
dx

 L
5

x
3t sin t dt =

d
dx

 a-L
x

5
3t sin t dtb

ƒstd =

1

1 + t2

d
dx

 L
x

0
 

1
1 + t2 dt =

1
1 + x2

ƒ(t) = cos t
d
dx

 L
x

a
 cos t dt = cos x

dy
dx
 if y = L

x2

1
 cos t dt

dy
dx
 if y = L

5

x
3t sin t dt

d
dx

 L
x

0
 

1
1 + t2 dt

d
dx

 L
x

a
 cos t dt
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EXAMPLE 4 Constructing a Function with a Given Derivative and Value

Find a function on the domain with derivative

that satisfies the condition 

Solution The Fundamental Theorem makes it easy to construct a function with deriva-
tive tan x that equals 0 at 

Since we have only to add 5 to this function to construct one

with derivative tan x whose value at is 5:

Although the solution to the problem in Example 4 satisfies the two required condi-
tions, you might ask whether it is in a useful form. The answer is yes, since today we have
computers and calculators that are capable of approximating integrals. In Chapter 7 we
will learn to write the solution in Example 4 exactly as

We now give a proof of the Fundamental Theorem for an arbitrary continuous function.

Proof of Theorem 4 We prove the Fundamental Theorem by applying the definition of
the derivative directly to the function F(x), when x and are in This means
writing out the difference quotient

(3)

and showing that its limit as is the number ƒ(x) for each x in .
When we replace and F(x) by their defining integrals, the numerator in

Equation (3) becomes

The Additivity Rule for integrals (Table 5.3, Rule 5) simplifies the right side to

so that Equation (3) becomes

(4) =
1
hL

x + h

x
ƒstd dt .

 
Fsx + hd - Fsxd

h
=

1
h

 [Fsx + hd - Fsxd]

L
x + h

x
ƒstd dt ,

Fsx + hd - Fsxd = L
x + h

a
ƒstd dt - L

x

a
ƒstd dt .

Fsx + hd
(a, b)h : 0

Fsx + hd - Fsxd
h

(a, b).x + h

y = ln ` cos 3
cos x ` + 5.

ƒsxd = L
x

3
 tan t dt + 5.

x = 3

ys3d = L
3

3
 tan t dt = 0,

y = L
x

3
 tan t dt .

x = 3:

ƒs3d = 5.

dy
dx

= tan x

s -p>2, p>2dy = ƒsxd
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According to the Mean Value Theorem for Definite Integrals, the value of the last ex-
pression in Equation (4) is one of the values taken on by ƒ in the interval between x and

That is, for some number c in this interval,

(5)

As approaches x, forcing c to approach x also (because c is trapped between
x and ). Since ƒ is continuous at x, ƒ(c) approaches ƒ(x):

(6)

Going back to the beginning, then, we have

Definition of derivative

Eq. (4)

Eq. (5)

Eq. (6)

If then the limit of Equation (3) is interpreted as a one-sided limit with 
or , respectively. Then Theorem 1 in Section 3.1 shows that F is continuous for
every point of [a, b]. This concludes the proof.

Fundamental Theorem, Part 2 (The Evaluation Theorem)

We now come to the second part of the Fundamental Theorem of Calculus. This part
describes how to evaluate definite integrals without having to calculate limits of Riemann
sums. Instead we find and evaluate an antiderivative at the upper and lower limits of
integration.

h : 0-

h : 0+x = a or b,

 = ƒsxd .

 = lim
h:0 

ƒscd

 = lim
h:0

 
1
hL

x + h

x
ƒstd dt

dF
dx

= lim
h:0

 
Fsx + hd - Fsxd

h

lim
h:0

 ƒscd = ƒsxd .

x + h
h : 0, x + h

1
hL

x + h

x
ƒstd dt = ƒscd .

x + h .
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THEOREM 4 (Continued) The Fundamental Theorem of Calculus Part 2
If ƒ is continuous at every point of [a, b] and F is any antiderivative of ƒ on [a, b],
then

L
b

a
ƒsxd dx = Fsbd - Fsad.

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of ƒ exists, namely

Thus, if F is any antiderivative of ƒ, then for some constant C for
(by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2).

Since both F and G are continuous on [a, b], we see that also holds
when and by taking one-sided limits (as and x : b -d .x : a+x = bx = a

F(x) = G(x) + C
a 6 x 6 b

Fsxd = Gsxd + C

Gsxd = L
x

a
ƒstd dt .
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Evaluating we have

The theorem says that to calculate the definite integral of ƒ over [a, b] all we need to
do is:

1. Find an antiderivative F of ƒ, and

2. Calculate the number 

The usual notation for is

depending on whether F has one or more terms.

EXAMPLE 5 Evaluating Integrals

(a)

(b)

(c)

The process used in Example 5 was much easier than a Riemann sum computation.
The conclusions of the Fundamental Theorem tell us several things. Equation (2) can

be rewritten as

which says that if you first integrate the function ƒ and then differentiate the result, you get
the function ƒ back again. Likewise, the equation

says that if you first differentiate the function F and then integrate the result, you get the
function F back (adjusted by an integration constant). In a sense, the processes of integra-

L
x

a
 
dF
dt

 dt = L
x

a
ƒstd dt = Fsxd - Fsad

d
dxL

x

a
ƒstd dt =

dF
dx

= ƒsxd ,

 = [8 + 1] - [5] = 4.

 = cs4d3/2
+

4
4
d - cs1d3/2

+
4
1
d

 L
4

1
a3

2
 1x -

4
x2 b  dx = cx3/2

+
4
x d

1

4

L
0

-p>4 sec x tan x dx = sec x d
-p/4

0

= sec 0 - sec a- p
4
b = 1 - 22

L
p

0
 cos x dx = sin x d

0

p

= sin p - sin 0 = 0 - 0 = 0

Fsxd d
a

b or cFsxd d
a

b

,

Fsbd - Fsad
1b

a  
ƒsxd dx = Fsbd - Fsad .

 = L
b

a
ƒstd dt .

 = L
b

a
ƒstd dt - 0

 = L
b

a
ƒstd dt - L

a

a
ƒstd dt

 = Gsbd - Gsad
 Fsbd - Fsad = [Gsbd + C ] - [Gsad + C]

Fsbd - Fsad ,
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tion and differentiation are “inverses” of each other. The Fundamental Theorem also says
that every continuous function ƒ has an antiderivative F. And it says that the differential
equation has a solution (namely, the function ) for every continu-
ous function ƒ.

Total Area

The Riemann sum contains terms such as which give the area of a rectangle when
is positive. When is negative, then the product is the negative of the

rectangle’s area. When we add up such terms for a negative function we get the negative of
the area between the curve and the x-axis. If we then take the absolute value, we obtain the
correct positive area.

EXAMPLE 6 Finding Area Using Antiderivatives

Calculate the area bounded by the x-axis and the parabola 

Solution We find where the curve crosses the x-axis by setting

which gives

The curve is sketched in Figure 5.21, and is nonnegative on 
The area is

The curve in Figure 5.21 is an arch of a parabola, and it is interesting to note that the area
under such an arch is exactly equal to two-thirds the base times the altitude:

To compute the area of the region bounded by the graph of a function and
the x-axis requires more care when the function takes on both positive and negative values.
We must be careful to break up the interval [a, b] into subintervals on which the function
doesn’t change sign. Otherwise we might get cancellation between positive and negative
signed areas, leading to an incorrect total. The correct total area is obtained by adding the
absolute value of the definite integral over each subinterval where ƒ(x) does not change
sign. The term “area” will be taken to mean total area.

EXAMPLE 7 Canceling Areas

Figure 5.22 shows the graph of the function between and 
Compute

(a) the definite integral of ƒ(x) over 

(b) the area between the graph of ƒ(x) and the x-axis over [0, 2p] .

[0, 2p] .

x = 2p .x = 0ƒsxd = sin x

y = ƒsxd

2
3

s5d a25
4
b =

125
6

= 20 56 .

 = a12 - 2 -

8
3
b - a-18 -

9
2

+

27
3
b = 20 56 .

 L
2

-3
s6 - x - x2d dx = c6x -

x2

2
-

x3

3
d

-3

2

[-3, 2] .

x = -3 or x = 2.

y = 0 = 6 - x - x2
= s3 + xds2 - xd ,

y = 6 - x - x2 .

ƒsckd ¢kƒsckdƒsckd
ƒsckd ¢k

y = F(x)dy>dx = ƒsxd
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–3 –2 –1 0 1 2
x

y

y � 6 � x � x2

25
4

FIGURE 5.21 The area of this
parabolic arch is calculated with a
definite integral (Example 6).

–1

0

1

x

y

� 2�

y � sin x

Area � 2

Area �
�–2� � 2

FIGURE 5.22 The total area between
and the x-axis for 

is the sum of the absolute values of two
integrals (Example 7).

0 … x … 2py = sin x
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Solution The definite integral for is given by

The definite integral is zero because the portions of the graph above and below the x-axis
make canceling contributions.

The area between the graph of ƒ(x) and the x-axis over is calculated by break-
ing up the domain of sin x into two pieces: the interval over which it is nonnegative
and the interval over which it is nonpositive.

The second integral gives a negative value. The area between the graph and the axis is ob-
tained by adding the absolute values

Area = ƒ 2 ƒ + ƒ -2 ƒ = 4.

L
2p

p

 sin x dx = -cos x d
p

2p

= -[cos 2p - cos p] = -[1 - s -1d] = -2.

L
p

0
 sin x dx = -cos x d

0

p

= -[cos p - cos 0] = -[-1 - 1] = 2.

[p, 2p]
[0, p]

[0, 2p]

L
2p

0
 sin x dx = -cos x d

0

2p

= -[cos 2p - cos 0] = -[1 - 1] = 0.

ƒsxd = sin x
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x

y

0 2–1

y � x3 � x2 � 2x

Area �

�

8
3

–





8
3

Area � 5
12

FIGURE 5.23 The region between the
curve and the x-axis
(Example 8).

y = x3
- x2

- 2x

Summary:
To find the area between the graph of and the x-axis over the interval
[a, b], do the following:

1. Subdivide [a, b] at the zeros of ƒ.

2. Integrate ƒ over each subinterval.

3. Add the absolute values of the integrals.

y = ƒsxd

EXAMPLE 8 Finding Area Using Antiderivatives

Find the area of the region between the x-axis and the graph of 

Solution First find the zeros of ƒ. Since

the zeros are and 2 (Figure 5.23). The zeros subdivide into two subin-
tervals: on which and [0, 2], on which We integrate ƒ over each
subinterval and add the absolute values of the calculated integrals.

The total enclosed area is obtained by adding the absolute values of the calculated integrals,

Total enclosed area =

5
12

+ ` - 8
3
` =

37
12

.

L
2

0
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

0

2

= c4 -

8
3

- 4 d - 0 = -

8
3

L
0

-1
sx3

- x2
- 2xd dx = cx4

4
-

x3

3
- x2 d

-1

0

= 0 - c1
4

+
1
3

- 1 d =

5
12

ƒ … 0.ƒ Ú 0,[-1, 0] ,
[-1, 2]x = 0, -1,

ƒsxd = x3
- x2

- 2x = xsx2
- x - 2d = xsx + 1dsx - 2d ,

-1 … x … 2.
ƒ(x) = x3

- x2
- 2x,
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EXERCISES 5.4

Evaluating Integrals
Evaluate the integrals in Exercises 1–26.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Derivatives of Integrals
Find the derivatives in Exercises 27–30

a. by evaluating the integral and differentiating the result.

b. by differentiating the integral directly.

27. 28.

29. 30.

Find in Exercises 31–36.

31. 32.

33. 34. y = L
x2

0
 cos 1t dty = L

01x
 sin st2d dt

y = L
x

1
 
1
t  dt, x 7 0y = L

x

0
21 + t2 dt

dy>dx

d
duL

 tan u

0
 sec2 y dy

d
dtL

t 4

0
1u du

d
dxL

 sin x

1
3t2 dt

d
dxL

1x

0
 cos t dt

L
p

0
 
1
2

 scos x + ƒ cos x ƒ d dxL
4

-4
ƒ x ƒ  dx

L
4

9
 
1 - 2u2u

 duL
22

1
 
s2

+ 2s

s2  ds

L
1

1>2 a 1
y3 -

1
y4 b  dyL

122
 au7

2
-

1
u5 b  du

L
23

-23
 st + 1dst2

+ 4d dtL
-1

1
sr + 1d2 dr

L
-p>4

-p>3 a4 sec2 t +

p

t2 b  dtL
p>2

-p>2s8y2
+ sin yd dy

L
p>3

-p>3  
1 - cos 2t

2
 dtL

0

p>2 
1 + cos 2t

2
 dt

L
p>3

0
4 sec u tan u duL

3p>4
p>4  csc u cot u du

L
5p>6
p>6  csc2 x dxL

p>3
0

2 sec2 x dx

L
p

0
s1 + cos xd dxL

p

0
 sin x dx

L
-1

-2
 
2
x2 dxL

32

1
x-6>5 dx

L
5

0
x3>2 dxL

1

0
Ax2

+ 1x B  dx

L
2

-2
sx3

- 2x + 3d dxL
4

0
a3x -

x3

4
b  dx

L
4

-3
a5 -

x
2
b  dxL

0

-2
s2x + 5d dx

35.

36.

Area
In Exercises 37–42, find the total area between the region and the
x-axis.

37.

38.

39.

40.

41.

42.

Find the areas of the shaded regions in Exercises 43–46.

43.

44.

45. 46.

t

y

�
4

– 0 1

1

2

y � sec2 t

y � 1 � t2

�

y

–�2

�2

�
4

�
4

– 0

y � sec � tan �

y

x

1

�
6

5�
6

y � sin x

x

y

0

2

�

y � 2

x � �

y � 1 � cos x

y = x1>3
- x, -1 … x … 8

y = x1>3, -1 … x … 8

y = x3
- 4x, -2 … x … 2

y = x3
- 3x2

+ 2x, 0 … x … 2

y = 3x2
- 3, -2 … x … 2

y = -x2
- 2x, -3 … x … 2

y = L
0

 tan x
 

dt

1 + t2

y = L
 sin x

0
 

dt21 - t2
, ƒ x ƒ 6

p

2
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Initial Value Problems
Each of the following functions solves one of the initial value prob-
lems in Exercises 47–50. Which function solves which problem? Give
brief reasons for your answers.

a. b.

c. d.

47. 48.

49. 50.

Express the solutions of the initial value problems in Exercises 51–54
in terms of integrals.

51.

52.

53.

54.

Applications
55. Archimedes’ area formula for parabolas Archimedes

(287–212 B.C.), inventor, military engineer, physicist, and the
greatest mathematician of classical times in the Western world, dis-
covered that the area under a parabolic arch is two-thirds the base
times the height. Sketch the parabolic arch 

assuming that h and b are positive. Then use
calculus to find the area of the region enclosed between the arch
and the x-axis.

56. Revenue from marginal revenue Suppose that a company’s
marginal revenue from the manufacture and sale of egg beaters is

where r is measured in thousands of dollars and x in thousands of
units. How much money should the company expect from a pro-
duction run of thousand egg beaters? To find out, integrate
the marginal revenue from to 

57. Cost from marginal cost The marginal cost of printing a poster
when x posters have been printed is

dollars. Find the cost of printing posters 2–100.

58. (Continuation of Exercise 57.) Find the cost of
printing posters 101–400.

cs400d - cs100d ,

cs100d - cs1d ,

dc
dx

=

1
21x

x = 3.x = 0
x = 3

dr
dx

= 2 - 2>sx + 1d2 ,

-b>2 … x … b>2,
y = h - s4h>b2dx2,

dy
dt

= g std, yst0d = y0

ds
dt

= ƒstd, sst0d = s0

dy

dx
= 21 + x2, ys1d = -2

dy

dx
= sec x, ys2d = 3

y¿ =

1
x , ys1d = -3y¿ = sec x, ys0d = 4

y¿ = sec x, ys -1d = 4
dy

dx
=

1
x , yspd = -3

y = L
x

p

 
1
t  dt - 3y = L

x

-1
 sec t dt + 4

y = L
x

0
 sec t dt + 4y = L

x

1
 
1
t  dt - 3

Drawing Conclusions About Motion from Graphs
59. Suppose that ƒ is the differentiable function shown in the accom-

panying graph and that the position at time t (sec) of a particle
moving along a coordinate axis is

meters. Use the graph to answer the following questions. Give
reasons for your answers.

a. What is the particle’s velocity at time 

b. Is the acceleration of the particle at time positive, or
negative?

c. What is the particle’s position at time 

d. At what time during the first 9 sec does s have its largest
value?

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? away from the
origin?

g. On which side of the origin does the particle lie at time

60. Suppose that g is the differentiable function graphed here and that
the position at time t (sec) of a particle moving along a coordinate
axis is

meters. Use the graph to answer the following questions. Give
reasons for your answers.

x

y

3 6 9

2

4

6

8

–2

–4

–6

y � g(x)

(6, 6)
(7, 6.5)

s = L
t

0
g sxd dx

t = 9?

t = 3?

t = 5

t = 5?

y

x
0 1 2 3 4 5 6 7 8 9

1

2

3

4

–1

–2

(1, 1)

(2, 2) (5, 2)

(3, 3)

y � f (x)

s = L
t

0
ƒsxd dx
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a. What is the particle’s velocity at 

b. Is the acceleration at time positive, or negative?

c. What is the particle’s position at time 

d. When does the particle pass through the origin?

e. When is the acceleration zero?

f. When is the particle moving away from the origin? toward the
origin?

g. On which side of the origin does the particle lie at 

Theory and Examples
61. Show that if k is a positive constant, then the area between the

x-axis and one arch of the curve is .

62. Find

63. Suppose Find ƒ(x).

64. Find ƒ(4) if 

65. Find the linearization of

at 

66. Find the linearization of

at 

67. Suppose that ƒ has a positive derivative for all values of x and that
Which of the following statements must be true of the

function

Give reasons for your answers.

a. g is a differentiable function of x.

b. g is a continuous function of x.

c. The graph of g has a horizontal tangent at 

d. g has a local maximum at 

e. g has a local minimum at 

f. The graph of g has an inflection point at 

g. The graph of crosses the x-axis at 

68. Suppose that ƒ has a negative derivative for all values of x and
that Which of the following statements must be true of
the function

hsxd = L
x

0
 ƒstd dt?

ƒs1d = 0.

x = 1.dg>dx

x = 1.

x = 1.

x = 1.

x = 1.

g sxd = L
x

0
 ƒstd dt?

ƒs1d = 0.

x = -1.

g sxd = 3 + L
x2

1
 sec st - 1d dt

x = 1.

ƒsxd = 2 - L
x + 1

2
 

9
1 + t

 dt

1x
0  ƒstd dt = x cos px .

1x
1  ƒstd dt = x2

- 2x + 1.

lim
x:0

  
1
x3 L

x

0
 

t2

t4
+ 1

 dt .

2>ky = sin kx

t = 9?

t = 3?

t = 3

t = 3? Give reasons for your answers.

a. h is a twice-differentiable function of x.

b. h and are both continuous.

c. The graph of h has a horizontal tangent at 

d. h has a local maximum at 

e. h has a local minimum at 

f. The graph of h has an inflection point at 

g. The graph of crosses the x-axis at 

69. The Fundamental Theorem If ƒ is continuous, we expect

to equal ƒ(x), as in the proof of Part 1 of the Fundamental Theo-
rem. For instance, if then

(7)

The right-hand side of Equation (7) is the difference quotient for
the derivative of the sine, and we expect its limit as to be
cos x.

Graph cos x for Then, in a different color if
possible, graph the right-hand side of Equation (7) as a function
of x for and 0.1. Watch how the latter curves con-
verge to the graph of the cosine as 

70. Repeat Exercise 69 for What is

Graph for Then graph the quotient
as a function of x for and 0.1.

Watch how the latter curves converge to the graph of as

COMPUTER EXPLORATIONS

In Exercises 71–74, let for the specified function ƒ
and interval [a, b]. Use a CAS to perform the following steps and an-
swer the questions posed.

a. Plot the functions ƒ and F together over [a, b].

b. Solve the equation What can you see to be true about
the graphs of ƒ and F at points where Is your
observation borne out by Part 1 of the Fundamental Theorem
coupled with information provided by the first derivative?
Explain your answer.

c. Over what intervals (approximately) is the function F increasing
and decreasing? What is true about ƒ over those intervals?

d. Calculate the derivative and plot it together with F. What can
you see to be true about the graph of F at points where

Is your observation borne out by Part 1 of the
Fundamental Theorem? Explain your answer.
ƒ¿sxd = 0?

ƒ¿

F¿sxd = 0?
F¿sxd = 0.

Fsxd = 1x
a  ƒstd dt

h : 0.
3x2

h = 1, 0.5, 0.2 ,ssx + hd3
- x3d>h -1 … x … 1.ƒsxd = 3x2

lim
h:0

  
1
h

 L
x + h

x
 3t2 dt = lim

h:0
 
sx + hd3

- x3

h
?

ƒstd = 3t2 .

h : 0.
h = 2, 1, 0.5 ,

-p … x … 2p .

h : 0

1
h

 L
x + h

x
 cos t dt =

sin sx + hd - sin x

h
.

ƒstd = cos t ,

lim
h:0

  
1
h

  L
x + h

x
ƒstd dt

x = 1.dh>dx

x = 1.

x = 1.

x = 1.

x = 1.

dh>dx

5.4 The Fundamental Theorem of Calculus 367

T

T
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71.

72.

73.

74.

In Exercises 75–78, let for the specified a, u, and
ƒ. Use a CAS to perform the following steps and answer the questions
posed.

a. Find the domain of F.

b. Calculate and determine its zeros. For what points in its
domain is F increasing? decreasing?

c. Calculate and determine its zero. Identify the local
extrema and the points of inflection of F.

F–sxd

F¿sxd

Fsxd = 1u(x)
a  ƒstd dt

ƒsxd = x cos px, [0, 2p]

ƒsxd = sin 2x cos 
x
3

, [0, 2p]

ƒsxd = 2x4
- 17x3

+ 46x2
- 43x + 12, c0, 

9
2
d

ƒsxd = x3
- 4x2

+ 3x, [0, 4] d. Using the information from parts (a)–(c), draw a rough hand-
sketch of over its domain. Then graph F(x) on your
CAS to support your sketch.

75.

76.

77.

78.

In Exercises 79 and 80, assume that f is continuous and u(x) is twice-
differentiable.

79. Calculate and check your answer using a CAS.

80. Calculate and check your answer using a CAS.
d2

dx2L
usxd

a
ƒstd dt

d
dxL

usxd

a
ƒstd dt

a = 0, usxd = 1 - x2, ƒsxd = x2
- 2x - 3

a = 0, usxd = 1 - x, ƒsxd = x2
- 2x - 3

a = 0, usxd = x2, ƒsxd = 21 - x2

a = 1, usxd = x2, ƒsxd = 21 - x2

y = Fsxd
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368 Chapter 5: Integration

Indefinite Integrals and the Substitution Rule

A definite integral is a number defined by taking the limit of Riemann sums associated
with partitions of a finite closed interval whose norms go to zero. The Fundamental Theo-
rem of Calculus says that a definite integral of a continuous function can be computed eas-
ily if we can find an antiderivative of the function. Antiderivatives generally turn out to be
more difficult to find than derivatives. However, it is well worth the effort to learn tech-
niques for computing them.

Recall from Section 4.8 that the set of all antiderivatives of the function ƒ is called the
indefinite integral of ƒ with respect to x, and is symbolized by

The connection between antiderivatives and the definite integral stated in the Fundamental
Theorem now explains this notation. When finding the indefinite integral of a function ƒ,
remember that it always includes an arbitrary constant C.

We must distinguish carefully between definite and indefinite integrals. A definite in-

tegral is a number. An indefinite integral is a function plus an arbi-
trary constant C.

So far, we have only been able to find antiderivatives of functions that are clearly rec-
ognizable as derivatives. In this section we begin to develop more general techniques for
finding antiderivatives. The first integration techniques we develop are obtained by invert-
ing rules for finding derivatives, such as the Power Rule and the Chain Rule.

The Power Rule in Integral Form

If u is a differentiable function of x and n is a rational number different from the
Chain Rule tells us that

d
dx

 a un + 1

n + 1
b = un 

du
dx

.

-1,

1ƒsxd dx1b
a ƒsxd dx

Lƒsxd dx .

5.5 
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From another point of view, this same equation says that is one of the anti-
derivatives of the function Therefore,

The integral on the left-hand side of this equation is usually written in the simpler “differ-
ential” form,

obtained by treating the dx’s as differentials that cancel. We are thus led to the following
rule.

Lun du ,

L au
n 

du
dx
b  dx =

un + 1

n + 1
+ C .

unsdu>dxd .
un + 1>sn + 1d

5.5 Indefinite Integrals and the Substitution Rule 369

If u is any differentiable function, then

(1)Lun du =

un + 1

n + 1
+ C sn Z -1, n rationald .

Equation (1) actually holds for any real exponent as we see in Chapter 7.
In deriving Equation (1), we assumed u to be a differentiable function of the variable

x, but the name of the variable does not matter and does not appear in the final formula.
We could have represented the variable with or any other letter. Equation (1) says
that whenever we can cast an integral in the form

with u a differentiable function and du its differential, we can evaluate the integral as

EXAMPLE 1 Using the Power Rule

Simpler form

Replace u by 1 + y2 . =
2
3

 s1 + y2d3>2
+ C

 =
2
3

 u3>2
+ C

 =

u s1>2d + 1

s1>2d + 1
+ C

 = Lu1>2 du

 L21 + y2 # 2y dy = L1u # adu
dy
b  dy

[un + 1>sn + 1d] + C .

Lun du, sn Z -1d ,

u, t, y ,

n Z -1,

Let 
du>dy = 2y

u = 1 + y2 ,

Integrate, using Eq. (1)
with n = 1>2 .
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EXAMPLE 2 Adjusting the Integrand by a Constant

Simpler form

Replace u by 

Substitution: Running the Chain Rule Backwards

The substitutions in Examples 1 and 2 are instances of the following general rule.

4t - 1 . =
1
6

 s4t - 1d3>2
+ C

 =
1
6

 u3>2
+ C

 =
1
4

 #  
u3>2
3>2 + C

 =
1
4Lu1>2 du

 =
1
4L1u # adu

dt
b  dt

 L24t - 1 dt = L  
1
4

# 24t - 1 # 4 dt

370 Chapter 5: Integration

Let 
du>dt = 4 .

u = 4t - 1 ,

With the out front,
the integral is now in
standard form.

1>4

Integrate, using Eq. (1)
with n = 1>2 .

THEOREM 5 The Substitution Rule
If is a differentiable function whose range is an interval I and ƒ is con-
tinuous on I, then

Lƒsg sxddg¿sxd dx = Lƒsud du .

u = g sxd

Proof The rule is true because, by the Chain Rule, F(g (x)) is an antiderivative of
whenever F is an antiderivative of ƒ:

Chain Rule

Because 

If we make the substitution then

Fundamental Theorem

Fundamental Theorem

F¿ = ƒ = Lƒsud du

 = LF¿sud du

u = gsxd = Fsud + C

 = Fsg sxdd + C

 Lƒsg sxddg¿sxd dx = L  
d
dx

 Fsg sxdd dx

u = gsxd

F¿ = ƒ = ƒsg sxdd # g¿sxd .

 
d
dx

 Fsg sxdd = F¿sg sxdd # g¿sxd

ƒsg sxdd # g¿sxd
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The Substitution Rule provides the following method to evaluate the integral

when ƒ and are continuous functions:

1. Substitute and to obtain the integral

2. Integrate with respect to u.

3. Replace u by g (x) in the result.

EXAMPLE 3 Using Substitution

Replace u by 

We can verify this solution by differentiating and checking that we obtain the original
function 

EXAMPLE 4 Using Substitution

Integrate with respect to u.

Replace u by x3 . = -
1
3

 cos sx3d + C

 =
1
3

 s -cos ud + C

 =
1
3L  sin u du

 = L  sin u # 1
3

 du

 Lx2 sin sx3d dx = Lsin sx3d # x2 dx

cos s7u + 5d .

7u + 5 . =
1
7 sin s7u + 5d + C

 =
1
7 sin u + C

 =
1
7L  cos u du

 L  cos s7u + 5d du = L  cos u # 1
7 du

Lƒsud du .

du = g¿sxd dxu = gsxd

g¿

Lƒsg sxddg¿sxd dx ,

5.5 Indefinite Integrals and the Substitution Rule 371

s1>7d du = du .
Let u = 7u + 5, du = 7 du,

With the ( ) out front, the
integral is now in standard form.

1>7

Integrate with respect to u,
Table 4.2.

s1>3d du = x2 dx .

du = 3x2 dx,

Let u = x3,
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EXAMPLE 5 Using Identities and Substitution

The success of the substitution method depends on finding a substitution that changes
an integral we cannot evaluate directly into one that we can. If the first substitution fails,
try to simplify the integrand further with an additional substitution or two (see Exercises
49 and 50). Alternatively, we can start fresh. There can be more than one good way to start,
as in the next example.

EXAMPLE 6 Using Different Substitutions

Evaluate

Solution We can use the substitution method of integration as an exploratory tool: Sub-
stitute for the most troublesome part of the integrand and see how things work out. For the
integral here, we might try or we might even press our luck and take u to be
the entire cube root. Here is what happens in each case.

Solution 1: Substitute 

In the form 

Integrate with respect to u.

Replace u by z2
+ 1 . =

3
2

 sz2
+ 1d2>3

+ C

 =

3
2

 u2>3
+ C

 =

u2>3
2>3 + C

1un du = Lu-1>3 du

 L  
2z dz23 z2

+ 1
= L  

du

u1>3

u = z2
+ 1.

u = z2
+ 1

L  
2z dz23 z2

+ 1
 .

u = 2x =
1
2

 tan 2x + C

d
du

 tan u = sec2 u =
1
2

 tan u + C

 =
1
2Lsec2 u du

 = Lsec2 u # 1
2

 du

1
cos 2x

= sec 2x L  
1

cos2 2x
 dx = Lsec2 2x dx

372 Chapter 5: Integration

dx = s1>2d du
du = 2 dx,
u = 2x,

Let 
du = 2z dz .

u = z2
+ 1,
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Solution 2: Substitute instead.

Integrate with respect to u.

Replace u by 

The Integrals of and 

Sometimes we can use trigonometric identities to transform integrals we do not know how
to evaluate into ones we can using the substitution rule. Here is an example giving the in-
tegral formulas for and which arise frequently in applications.

EXAMPLE 7

(a)

(b)

EXAMPLE 8 Area Beneath the Curve 

Figure 5.24 shows the graph of over the interval Find

(a) the definite integral of over 

(b) the area between the graph of the function and the x-axis over 

Solution

(a) From Example 7(a), the definite integral is

(b) The function is nonnegative, so the area is equal to the definite integral, orp .sin2 x

 = [p - 0] - [0 - 0] = p .

 L
2p

0
sin2 x dx = cx

2
-

sin 2x
4
d

0

2p

= c2p
2

-

sin 4p
4
d - c0

2
-

sin 0
4
d

[0, 2p] .

[0, 2p] .g sxd

[0, 2p] .gsxd = sin2 x

y = sin2 x

 =

x
2

+

sin 2x
4

+ C

 Lcos2 x dx = L  
1 + cos 2x

2
 dx

 =
1
2

 x -
1
2

 
sin 2x

2
+ C =

x
2

-

sin 2x
4

+ C

 =
1
2Ls1 - cos 2xd dx =

1
2L  dx -

1
2L  cos 2x dx

 Lsin2 x dx = L  
1 - cos 2x

2
 dx

cos2 xsin2 x

cos2 xsin2 x

sz2
+ 1d1>3 . =

3
2

 sz2
+ 1d2>3

+ C

 = 3 # u2

2
+ C

 = 3Lu du

 L  
2z dz23 z2

+ 1
= L  

3u2 du
u

u = 23 z2
+ 1

5.5 Indefinite Integrals and the Substitution Rule 373

Let 

3u2 du = 2z dz.

u3
= z2

+ 1,

u = 23 z2
+ 1,

sin2 x =

1 - cos 2x
2

cos2 x =

1 + cos 2x
2

As in part (a), but
with a sign change

0 2���
2

1

x

y

y � sin2 x

1
2

FIGURE 5.24 The area beneath the
curve over equals 
square units (Example 8).

p[0, 2p]y = sin2 x
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EXAMPLE 9 Household Electricity

We can model the voltage in our home wiring with the sine function

which expresses the voltage V in volts as a function of time t in seconds. The function runs
through 60 cycles each second (its frequency is 60 hertz, or 60 Hz). The positive constant

(“vee max”) is the peak voltage.
The average value of V over the half-cycle from 0 to sec (see Figure 5.25) is

The average value of the voltage over a full cycle is zero, as we can see from Figure 5.25.
(Also see Exercise 63.) If we measured the voltage with a standard moving-coil gal-
vanometer, the meter would read zero.

To measure the voltage effectively, we use an instrument that measures the square root
of the average value of the square of the voltage, namely

The subscript “rms” (read the letters separately) stands for “root mean square.” Since the
average value of over a cycle is

(Exercise 63, part c), the rms voltage is

The values given for household currents and voltages are always rms values.Thus, “115 volts
ac” means that the rms voltage is 115. The peak voltage, obtained from the last equation, is

which is considerably higher.

Vmax = 22 Vrms = 22 # 115 L 163 volts ,

Vrms = BsVmaxd2

2
=

Vmax22
.

sV 2dav =
1

s1>60d - 0
 L

1>60

0
sVmaxd2 sin2 120pt dt =

sVmaxd2

2
,

V 2
= sVmaxd2 sin2 120pt

Vrms = 2sV 2dav .

 =

2Vmax
p .

 =

Vmax
p  [-cos p + cos 0]

 = 120Vmax c- 1
120p

 cos 120pt d
0

1>120

 Vav =
1

s1>120d - 0
 L

1>120

0
 Vmax sin 120pt dt

1>120
Vmax

V = Vmax sin 120pt ,

374 Chapter 5: Integration

t

V

0

V � Vmax sin 120�tVmax

Vav �
2Vmax

�

1
120

1
60

FIGURE 5.25 The graph of the voltage
over a full cycle. Its

average value over a half-cycle is 
Its average value over a full cycle is zero
(Example 9).

2Vmax>p .
V = Vmax sin 120pt

4100 AWL/Thomas_ch05p325-395  8/20/04  9:57 AM  Page 374

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


374 Chapter 5: Integration

EXERCISES 5.5

Evaluating Integrals
Evaluate the indefinite integrals in Exercises 1–12 by using the given
substitutions to reduce the integrals to standard form.

1. 2. Lx sin s2x2d dx, u = 2x2

L  sin 3x dx, u = 3x

3.

4. L a1 - cos 
t
2
b2

 sin 
t
2

 dt, u = 1 - cos 
t
2

L  sec 2t tan 2t dt, u = 2t
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5.

6.

7.

8.

9.

10.

11.

a. Using b. Using 

12.

a. Using b. Using 

Evaluate the integrals in Exercises 13–48.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35. 36. L  
6 cos t

s2 + sin td3 dtL  
sin s2t + 1d

cos2 s2t + 1d
 dt

Lcsc ay - p

2
b  cot ay - p

2
b  dy

L  sec ay +

p

2
b  tan ay +

p

2
b  dy

Lx1>3 sin sx4>3
- 8d dxLx1>2 sin sx3>2

+ 1d dx

Lr4 a7 -

r5

10
b3

 drLr2 a r3

18
- 1b5

 dr

L tan7 
x
2

 sec2 
x
2

 dxLsin5 
x
3

 cos 
x
3

 dx

L tan2 x sec2 x dxLsec2 s3x + 2d dx

Lsin s8z - 5d dzLcos s3z + 4d dz

L  
s1 + 1xd31x

 dxL  
11x s1 + 1xd2 dx

L  
4y dy22y2

+ 1L3y27 - 3y2 dy

L8u23 u2
- 1 duLu24 1 - u 2 du

L  
3 dx

s2 - xd2L  
125s + 4

 ds

L s2x + 1d3 dxL23 - 2s ds

u = 25x + 8u = 5x + 8

L  
dx25x + 8

u = csc 2uu = cot 2u
Lcsc2 2u cot 2u du

L  
1
x2 cos2 a1x b  dx, u = -

1
x

L1x sin2 sx3>2
- 1d dx, u = x3>2

- 1

L12s y4
+ 4y2

+ 1d2s y3
+ 2yd dy, u = y4

+ 4y2
+ 1

L  
9r2 dr21 - r3

, u = 1 - r3

Lx3sx4
- 1d2 dx, u = x4

- 1

L28s7x - 2d-5 dx, u = 7x - 2 37. 38.

39. 40.

41. 42.

43.

44.

45. 46.

47. 48.

Simplifying Integrals Step by Step
If you do not know what substitution to make, try reducing the integral
step by step, using a trial substitution to simplify the integral a bit and
then another to simplify it some more. You will see what we mean if
you try the sequences of substitutions in Exercises 49 and 50.

49.

a. followed by then by 

b. followed by 

c.

50.

a. followed by then by 

b. followed by 

c.

Evaluate the integrals in Exercises 51 and 52.

51.

52.

Initial Value Problems
Solve the initial value problems in Exercises 53–58.

53.

54.

55.

56.
dr
du

= 3 cos2 ap
4

- ub , r s0d =

p

8

ds
dt

= 8 sin2 at +

p

12
b , s s0d = 8

dy

dx
= 4x sx2

+ 8d-1>3, y s0d = 0

ds
dt

= 12t s3t2
- 1d3, s s1d = 3

L  
sin 2u2u cos3 1u du

L  
s2r - 1d cos 23s2r - 1d2

+ 623s2r - 1d2
+ 6

 dr

u = 1 + sin2 sx - 1d
y = 1 + u2u = sin sx - 1d ,

w = 1 + y2y = sin u ,u = x - 1,
L21 + sin2 sx - 1d sin sx - 1d cos sx - 1d dx

u = 2 + tan3 x

y = 2 + uu = tan3 x ,

w = 2 + yy = u3 ,u = tan x ,
L  

18 tan2 x sec2 x

s2 + tan3 xd2  dx

L3x52x3
+ 1 dxLx32x2

+ 1 dx

LAx - 1
x5  dxL t3s1 + t4d3 dt

Lsu4
- 2u2

+ 8u - 2dsu3
- u + 2d du

Lss3
+ 2s2

- 5s + 5ds3s2
+ 4s - 5d ds

L  
cos 2u2u sin2 2u duL  

1
u2 sin 

1
u

 cos 
1
u

 du

L  
11t

 cos s1t + 3d dtL  
1
t2 cos a1t - 1b  dt

L  
sec z tan z2sec z

 dzL2cot y csc2 y dy

5.5 Indefinite Integrals and the Substitution Rule 375
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57.

58.

59. The velocity of a particle moving back and forth on a line is
for all t. If when find

the value of s when 

60. The acceleration of a particle moving back and forth on a line is
for all t. If and 

when find s when 

Theory and Examples
61. It looks as if we can integrate 2 sin x cos x with respect to x in

three different ways:

a.

b.

c.

 = -

cos 2x
2

+ C3 .

2 sin x cos x = sin 2x L2 sin x cos x dx = L  sin 2x dx

 = -u2
+ C2 = -cos2 x + C2

u = cos x , L2 sin x cos x dx = L -2u du

 = u2
+ C1 = sin2 x + C1

u = sin x , L2 sin x cos x dx = L2u du

t = 1 sec .t = 0,8 m/sec
y =s = 0a = d2s>dt2

= p2 cos pt m>sec2

t = p>2 sec .
t = 0,s = 0y = ds>dt = 6 sin 2t m>sec

d2y

dx2 = 4 sec2 2x tan 2x, y¿s0d = 4, y s0d = -1

d2s

dt2 = -4 sin a2t -

p

2
b , s¿s0d = 100, s s0d = 0

Can all three integrations be correct? Give reasons for your an-
swer.

62. The substitution gives

The substitution gives

Can both integrations be correct? Give reasons for your answer.

63. (Continuation of Example 9.)

a. Show by evaluating the integral in the expression

that the average value of over a full cycle
is zero.

b. The circuit that runs your electric stove is rated 240 volts rms.
What is the peak value of the allowable voltage?

c. Show that

L
1>60

0
sVmaxd2 sin2 120 pt dt =

sVmaxd2

120
.

V = Vmax sin 120 pt

1
s1>60d - 0

 L
1>60

0
Vmax sin 120 pt dt

Lsec2 x tan x dx = Lu du =

u2

2
+ C =

sec2 x
2

+ C .

u = sec x

Lsec2 x tan x dx = Lu du =

u2

2
+ C =

tan2 x
2

+ C .

u = tan x
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376 Chapter 5: Integration

Substitution and Area Between Curves

There are two methods for evaluating a definite integral by substitution. The first method
is to find an antiderivative using substitution, and then to evaluate the definite integral by
applying the Fundamental Theorem. We used this method in Examples 8 and 9 of the pre-
ceding section. The second method extends the process of substitution directly to definite
integrals. We apply the new formula introduced here to the problem of computing the area
between two curves.

Substitution Formula

In the following formula, the limits of integration change when the variable of integration
is changed by substitution.

5.6

THEOREM 6 Substitution in Definite Integrals
If is continuous on the interval [a, b] and ƒ is continuous on the range of g, then

L
b

a
ƒsg sxdd # g¿sxd dx = L

gsbd

gsad
ƒsud du

g¿
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Proof Let F denote any antiderivative of ƒ. Then,

To use the formula, make the same u-substitution and you
would use to evaluate the corresponding indefinite integral. Then integrate the trans-
formed integral with respect to u from the value g (a) (the value of u at ) to the value
g (b) (the value of u at ).

EXAMPLE 1 Substitution by Two Methods

Evaluate 

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 6.

Evaluate the new definite integral.

Method 2: Transform the integral as an indefinite integral, integrate, change back to x, and
use the original x-limits.

 =
2
3

 c23>2
- 03>2 d =

2
3

 c222 d =

422
3

 =
2
3

 css1d3
+ 1d3>2

- ss -1d3
+ 1d3>2 d

 L
1

-1
3x22x3

+ 1 dx =
2
3

 sx3
+ 1d3>2 d

-1

1

 =
2
3

 sx3
+ 1d3>2

+ C

 =
2
3

 u3>2
+ C

 L3x22x3
+ 1 dx = L1u du

 =
2
3

 c23>2
- 03>2 d =

2
3

 c222 d =

422
3

 =
2
3

 u3>2 d
0

2

 = L
2

0
1u du

L
1

-1
 3x22x3

+ 1 dx

L
1

-1
 3x22x3

+ 1 dx.

x = b
x = a

du = g¿sxd dxu = g sxd

 = L
gsbd

gsad
ƒsud du .

 = Fsud d
u = gsad

u = gsbd

 = Fsg sbdd - Fsg sadd

 L
b

a
ƒsg sxdd # g¿sxd dx = Fsg sxdd d

x = a

x = b

5.6 Substitution and Area Between Curves 377

=  ƒsgsxddg¿sxd
=  F¿sgsxddg¿sxd

d
dx

 Fsgsxdd

Fundamental
Theorem, Part 2

Let 
When 
When x = 1, u = s1d3

+ 1 = 2 .
x = -1, u = s -1d3

+ 1 = 0 .
u = x3

+ 1, du = 3x2 dx .

Let u = x3
+ 1, du = 3x2 dx .

Integrate with respect to u.

Replace u by x3
+ 1 .

Use the integral just found,
with limits of integration for x.
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Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 6, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 Using the Substitution Formula

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 6 simplifies the calculation of definite integrals of
even and odd functions (Section 1.4) over a symmetric interval (Figure 5.26).[-a, a]

 = - cs0d2

2
-

s1d2

2
d =

1
2

 = - cu2

2
d

1

0

 = -L
0

1
u du

 L
p>2
p>4  cot u csc2 u du = L

0

1
u # s -dud

378 Chapter 5: Integration

x

y

0
a–a

(b)

x

y

0 a–a

(a)

FIGURE 5.26 (a) ƒ even, (b) ƒ odd, 1a
-a ƒsxd dx = 01a

-a ƒsxd dx = 21a
0  ƒsxd dx

Theorem 7

Let ƒ be continuous on the symmetric interval 

(a) If ƒ is even, then 

(b) If ƒ is odd, then L
a

-a
 ƒ(x) dx = 0.

L
a

-a
 ƒsxd dx = 2L

a

0
ƒsxd dx .

[-a, a] .

Let

When 

When u = p>2, u = cot (p>2) = 0.

u = p>4, u = cot (p>4) = 1.
-  du = csc2 u du.

u = cot u, du = -csc2 u du,
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Proof of Part (a)

The proof of part (b) is entirely similar and you are asked to give it in Exercise 86.

The assertions of Theorem 7 remain true when ƒ is an integrable function (rather than
having the stronger property of being continuous), but the proof is somewhat more diffi-
cult and best left to a more advanced course.

EXAMPLE 3 Integral of an Even Function

Evaluate

Solution Since satisfies it is even on the symmet-
ric interval so

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve 
below by the curve and on the left and right by the lines and 
(Figure 5.27). The region might accidentally have a shape whose area we could find with
geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the
area with an integral.

To see what the integral should be, we first approximate the region with n vertical rec-
tangles based on a partition of [a, b] (Figure 5.28). The area of the
kth rectangle (Figure 5.29) is

¢Ak = height * width = [ƒsckd - g sckd] ¢xk .

P = 5x0 , x1, Á , xn6

x = bx = ay = g sxd ,
y = ƒsxd ,

 = 2 a32
5 -

32
3

+ 12b =

232
15

.

 = 2 cx5

5 -
4
3

 x3
+ 6x d

0

2

 L
2

-2
sx4

- 4x2
+ 6d dx = 2L

2

0
sx4

- 4x2
+ 6d dx

[-2, 2] ,
ƒs -xd = ƒsxd ,ƒsxd = x4

- 4x2
+ 6

L
2

-2
sx4

- 4x2
+ 6d dx .

 = 2L
a

0
ƒsxd dx

 = L
a

0
ƒsud du + L

a

0
ƒsxd dx

 = L
a

0
ƒs -ud du + L

a

0
ƒsxd dx

 = -L
a

0
ƒs -uds -dud + L

a

0
ƒsxd dx

 = -L
-a

0
ƒsxd dx + L

a

0
ƒsxd dx

 L
a

-a
 ƒsxd dx = L

0

-a
 ƒsxd dx + L

a

0
ƒsxd dx

5.6 Substitution and Area Between Curves 379

Additivity Rule for
Definite Integrals

Order of Integration Rule

Let 
When 
When x = -a, u = a .

x = 0, u = 0 .
u = -x, du = -dx .

ƒ is even, so
ƒs -ud = ƒsud .

x

y

a

b

Lower curve
y � g(x)

Upper curve
y � f (x)

FIGURE 5.27 The region between
the curves and 
and the lines and x = b .x = a

y = gsxdy = ƒsxd

x

y

y � f (x)

y � g(x)

b � xn

xn�1a � x0
x1

x2

FIGURE 5.28 We approximate the
region with rectangles perpendicular
to the x-axis.

x

y

a

b

(ck, f (ck))

f (ck) � g(ck)

�Ak
ck

(ck, g(ck))
�xk

FIGURE 5.29 The area of the k th
rectangle is the product of its height,

and its width, ¢xk .ƒsckd - g sckd ,

¢Ak
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380 Chapter 5: Integration

We then approximate the area of the region by adding the areas of the n rectangles:

Riemann Sum

As the sums on the right approach the limit because ƒ and
g are continuous. We take the area of the region to be the value of this integral. That is,

A = lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
[ƒsckd - gsckd] ¢xk = L

b

a
[ƒsxd - gsxd] dx .

1b
a  [ƒsxd - gsxd] dx7P 7 : 0,

A L a
n

k = 1
¢Ak = a

n

k = 1
[ƒsckd - gsckd] ¢xk .

DEFINITION Area Between Curves
If ƒ and g are continuous with throughout [a, b], then the area of
the region between the curves and from a to b is the inte-
gral of from a to b:

A = L
b

a
[ƒsxd - g sxd] dx .

( f - g)
y = gsxdy = fsxd

ƒsxd Ú g sxd

When applying this definition it is helpful to graph the curves. The graph reveals which
curve is the upper curve ƒ and which is the lower curve g. It also helps you find the limits
of integration if they are not already known. You may need to find where the curves inter-
sect to determine the limits of integration, and this may involve solving the equation

for values of x. Then you can integrate the function for the area be-
tween the intersections.

EXAMPLE 4 Area Between Intersecting Curves

Find the area of the region enclosed by the parabola and the line 

Solution First we sketch the two curves (Figure 5.30). The limits of integration are found
by solving and simultaneously for x.

Equate ƒ(x) and g(x).

Rewrite.

Factor.

Solve.

The region runs from to The limits of integration are 
The area between the curves is

 = a4 +
4
2

-

8
3
b - a-2 +

1
2

+
1
3
b =

9
2

 = L
2

-1
s2 + x - x2d dx = c2x +

x2

2
-

x3

3
d

-1

2

 A = L
b

a
[ƒsxd - gsxd] dx = L

2

-1
[s2 - x2d - s -xd] dx

a = -1, b = 2.x = 2.x = -1

 x = -1, x = 2.

 sx + 1dsx - 2d = 0

 x2
- x - 2 = 0

 2 - x2
= -x

y = -xy = 2 - x2

y = -x .y = 2 - x2

ƒ - gƒsxd = gsxd

x

y

0–1 1 2

(–1, 1)

(x, f (x))

y � 2 � x2

(x, g(x))

�x

y � –x (2, –2)

FIGURE 5.30 The region in
Example 4 with a typical
approximating rectangle.
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If the formula for a bounding curve changes at one or more points, we subdivide the re-
gion into subregions that correspond to the formula changes and apply the formula for the
area between curves to each subregion.

EXAMPLE 5 Changing the Integral to Match a Boundary Change

Find the area of the region in the first quadrant that is bounded above by and be-
low by the x-axis and the line 

Solution The sketch (Figure 5.31) shows that the region’s upper boundary is the graph of
The lower boundary changes from for to 

for (there is agreement at ). We subdivide the region at into subre-
gions A and B, shown in Figure 5.31.

The limits of integration for region A are and The left-hand limit for re-
gion B is To find the right-hand limit, we solve the equations and

simultaneously for x:

Equate ƒ(x) and g(x).

Square both sides.

Rewrite.

Factor.

Solve.

Only the value satisfies the equation The value is an extrane-
ous root introduced by squaring. The right-hand limit is 

We add the area of subregions A and B to find the total area:

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles
are horizontal instead of vertical and the basic formula has y in place of x.

 =
2
3

 s8d - 2 =

10
3

.

 =
2
3

 s2d3>2
- 0 + a2

3
 s4d3>2

- 8 + 8b - a2
3

 s2d3>2
- 2 + 4b

 = c2
3

 x3>2 d
0

2

+ c2
3

 x3>2
-

x2

2
+ 2x d

2

4

 
Total area =

 
L

2

0
1x dx

(')'*

area of A

+

 
L

4

2
s1x - x + 2d dx

('''')''''*

area of B

 For 2 … x … 4: ƒsxd - gsxd = 1x - sx - 2d = 1x - x + 2

 For 0 … x … 2: ƒsxd - gsxd = 1x - 0 = 1x

b = 4.
x = 11x = x - 2.x = 4

 x = 1, x = 4.

 sx - 1dsx - 4d = 0

 x2
- 5x + 4 = 0

 x = sx - 2d2
= x2

- 4x + 4

 1x = x - 2

y = x - 2
y = 1xa = 2.

b = 2.a = 0

x = 2x = 22 … x … 4
gsxd = x - 20 … x … 2gsxd = 0ƒsxd = 1x .

y = x - 2.
y = 1x
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HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)

x

y

0

1

2

42

y � �x

y � 0

y � x � 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area �

2

0
�x dx

Area �

4

2
(�x � x � 2) dxL

L

FIGURE 5.31 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 5.
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For regions like these

use the formula

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so
is nonnegative.

EXAMPLE 6 Find the area of the region in Example 5 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.32). The region’s right-hand boundary is the line

so The left-hand boundary is the curve so 
The lower limit of integration is We find the upper limit by solving and

simultaneously for y:

Rewrite.

Factor.

Solve.

The upper limit of integration is (The value gives a point of intersection
below the x-axis.)

The area of the region is

This is the result of Example 5, found with less work.

 = 4 +
4
2

-

8
3

=

10
3

.

 = c2y +

y2

2
-

y3

3
d

0

2

 = L
2

0
[2 + y - y2] dy

 A = L
b

a
[ƒs yd - gs yd] dy = L

2

0
[y + 2 - y2] dy

y = -1b = 2.

 y = -1, y = 2

 s y + 1ds y - 2d = 0

 y2
- y - 2 = 0

 y + 2 = y2

x = y2
x = y + 2y = 0.

gs yd = y2 .x = y2 ,ƒs yd = y + 2.x = y + 2,

ƒs yd - gs yd

A = L
d

c
[ƒs yd - gs yd] dy .

x � f (y)

y y

x

x

x

y

x � g(y)

0

c

d

x � g(y)

x � f (y)

0

c

d

0

c

d
x � f (y)x � g(y)
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Equate 
and  gsyd = y2 .

ƒsyd = y + 2

x

y

y � 0 2 40

1

2
(g(y), y)

( f (y), y)
f (y) � g(y)

(4, 2)

x � y � 2

x � y2

�y

FIGURE 5.32 It takes two
integrations to find the area of this
region if we integrate with respect to
x. It takes only one if we integrate
with respect to y (Example 6).
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Combining Integrals with Formulas from Geometry

The fastest way to find an area may be to combine calculus and geometry.

EXAMPLE 7 The Area of the Region in Example 5 Found the Fastest Way

Find the area of the region in Example 5.

Solution The area we want is the area between the curve and the
x-axis, minus the area of a triangle with base 2 and height 2 (Figure 5.33):

Conclusion from Examples 5–7 It is sometimes easier to find the area between
two curves by integrating with respect to y instead of x. Also, it may help to combine
geometry and calculus. After sketching the region, take a moment to think about the best
way to proceed.

 =
2
3

 s8d - 0 - 2 =

10
3

 .

 =
2
3

 x3>2 d
0

4

- 2

 Area = L
4

0
1x dx -

1
2

 s2ds2d

y = 1x, 0 … x … 4,
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0 2

2

4

1

2

Area � 2

(4, 2)

x

y

y � 0

y � x � 2

y � �x

2

FIGURE 5.33 The area of the blue region
is the area under the parabola 
minus the area of the triangle (Example 7).

y = 1x
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5.6 Substitution and Area Between Curves 383

EXERCISES 5.6

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 6 to evaluate the integrals in
Exercises 1–24.

1. a. b.

2. a. b.

3. a. b.

4. a. b.

5. a. b.

6. a. b.

7. a. b.

8. a. b.

9. a. b. L
23

-23
 

4x2x2
+ 1

 dxL
23

0
 

4x2x2
+ 1

 dx

L
4

1
 

101y
s1 + y3>2d2

 dyL
1

0
 

101y
s1 + y 3>2d2

 dy

L
1

0
 

5r

s4 + r2d2 drL
1

-1
 

5r

s4 + r2d2 dr

L
0

-27
 t st2

+ 1d1>3 dtL
27

0
t st2

+ 1d1>3 dt

L
1

-1
t3s1 + t4d3 dtL

1

0
t3s1 + t4d3 dt

L
3p

2p
3 cos2 x sin x dxL

p

0
3 cos2 x sin x dx

L
0

-p>4tan x sec2 x dxL
p>4

0
 tan x sec2 x dx

L
1

-1
r21 - r2 drL

1

0
r21 - r2 dr

L
0

-1
2y + 1 dyL

3

0
2y + 1 dy

10. a. b.

11. a. b.

12. a. b.

13. a. b.

14. a. b.

15. 16.

17. 18.

19. 20.

21.

22. L
1

0
s y3

+ 6y2
- 12y + 9d-1>2 s y2

+ 4y - 4d dy

L
1

0
s4y - y2

+ 4y3
+ 1d-2>3 s12y2

- 2y + 4d dy

L
p>4

0
s1 - sin 2td3>2 cos 2t dtL

p

0
5s5 - 4 cos td1>4 sin t dt

L
3p>2
p

cot5 au
6
b  sec2 au

6
b  duL

p>6
0

cos-3 2u sin 2u du

L
4

1
 

dy

21y s1 + 1yd2L
1

0
2t5

+ 2t s5t4
+ 2d dt

L
p>2

0
 

sin w

s3 + 2 cos wd2 dwL
0

-p>2 
sin w

s3 + 2 cos wd2 dw

L
p

-p

 
cos z24 + 3 sin z

 dzL
2p

0
 

cos z24 + 3 sin z
 dz

L
p>2

-p>2 a2 + tan 
t
2
b  sec2 

t
2

 dtL
0

-p>2 a2 + tan 
t
2
b  sec2 

t
2

 dt

L
p>3
p>6 s1 - cos 3td sin 3t dtL

p>6
0

s1 - cos 3td sin 3t dt

L
0

-1
 

x32x4
+ 9

 dxL
1

0
 

x32x4
+ 9

 dx
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23. 24.

Area
Find the total areas of the shaded regions in Exercises 25–40.

25. 26.

27. 28.

29. 30.

t

y

y � sec2 t1
2

�
3

�
3

– 0

1

2

–4

y � –4 sin2 t

x

y

��
2

y � cos2 x

0

1 y � 1

x

y

0–1–�

–1

1

�
2

–

y � (cos x)(sin(� � �sin x))�
2

x

y

0–1

–1

–2

–3

–2–�

y � 3(sin x)�1 � cos x

x

y

0 �

y � (1 � cos x) sin x

0 2–2
x

y

y � x�4 � x2

L
-1>2

-1
t -2 sin2 a1 +

1
t b  dtL

2 
3
p2

0
2u cos2 su3>2d du

31.

32.

33.

34. 35.

x

y

0 1 2

1

y � x
y � 1

y � x2

4
x

y

–1 0

–2

1

1

y � x2

y � –2x4

x

y

0

1

1

x � 12y2 � 12y3

x � 2y2 � 2y

0 1

1

x

y

(1, 1)

x � y2

x � y3

x

y

–2 –1 1 2
–1

8
(–2, 8) (2, 8)

y � 2x2

y � x 4 � 2x2

NOT TO SCALE
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36.

37. 38.

39. 40.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 41–50.

41.

42.

43.

44.

45.

46.

47.

48. y = x2a2
- x2, a 7 0, and y = 0

y = x4
- 4x2

+ 4 and y = x2

y = 7 - 2x2 and y = x2
+ 4

y = x2 and y = -x2
+ 4x

y = x2
- 2x and y = x

y = x4 and y = 8x

y = 2x - x2 and y = -3

y = x2
- 2 and y = 2

x

y

–1 1 2 3–2

2

–5

4

(3, –5)

(–2, 4) y � 4 � x2

y � –x � 2

x

y

5

–4

(–3, 5)

(1, –3)
(–3, –3)

10–3

y � x2 � 4

y � –x2 � 2x

0 1 2

1

x

y

y � x2
x � y � 2

49. (How many intersection points
are there?)

50.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 51–58.

51.

52.

53.

54.

55.

56.

57.

58.

Find the areas of the regions enclosed by the curves in Exercises 59–62.

59.

60.

61.

62.

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 63–70.

63.

64.

65.

66.

67.

68.

69.

70.

71. Find the area of the propeller-shaped region enclosed by the curve
and the line 

72. Find the area of the propeller-shaped region enclosed by the
curves and 

73. Find the area of the region in the first quadrant bounded by the
line the line the curve and the x-axis.

74. Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves

and 

75. The region bounded below by the parabola and above by
the line is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line 

a. Sketch the region and draw a line across it that looks
about right. In terms of c, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

y = c

y = c .
y = 4

y = x2

y = cos x .y = sin x

y = 1>x2 ,x = 2,y = x ,

x - y1>5
= 0.x - y1>3

= 0

x - y = 0.x - y3
= 0

y = sec2 spx>3d and y = x1>3, -1 … x … 1

x = 3 sin y 2cos y and x = 0, 0 … y … p>2
x = tan2 y and x = - tan2 y, -p>4 … y … p>4
y = sec2 x, y = tan2 x, x = -p>4, and x = p>4
y = sin spx>2d and y = x

y = cos spx>2d and y = 1 - x2

y = 8 cos x and y = sec2 x, -p>3 … x … p>3
y = 2 sin x and y = sin 2x, 0 … x … p

x + y2
= 3 and 4x + y2

= 0

x + 4y2
= 4 and x + y4

= 1, for x Ú 0

x3
- y = 0 and 3x2

- y = 4

4x2
+ y = 4 and x4

- y = 1

x = y3
- y2 and x = 2y

x = y2
- 1 and x = ƒ y ƒ21 - y2

x - y2>3
= 0 and x + y4

= 2

x + y2
= 0 and x + 3y2

= 2

x - y2
= 0 and x + 2y2

= 3

y2
- 4x = 4 and 4x - y = 16

x = y2 and x = y + 2

x = 2y2, x = 0, and y = 3

y = ƒ x2
- 4 ƒ  and y = sx2>2d + 4

y = 2 ƒ x ƒ  and 5y = x + 6
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x

y

–10

2

1–1–2 2

(–2, –10)

y � 2x3 � x2 � 5x

y � –x2 � 3x

(2, 2)

x

y

30

6

–2

y �
3
x

y � � x
3
x3

(3, 6)

(3, 1)





–2, –

3
2
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b. Find c by integrating with respect to y. (This puts c in the
limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the
integrand as well.)

76. Find the area of the region between the curve and the
line by integrating with respect to a. x, b. y.

77. Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line above left by the
curve and above right by the curve 

78. Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the curve above left by the
curve and above right by the line 

79. The figure here shows triangle AOC inscribed in the region cut
from the parabola by the line Find the limit of the
ratio of the area of the triangle to the area of the parabolic region
as a approaches zero.

80. Suppose the area of the region between the graph of a positive
continuous function ƒ and the x-axis from to is 4
square units. Find the area between the curves and

from to 

81. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

a.

b. L
1

-1
s -x - sxdd dx = L

1

-1
 -2x dx

L
1

-1
sx - s -xdd dx = L

1

-1
2x dx

x = b .x = ay = 2ƒsxd
y = ƒsxd

x = bx = a

x

y

CA

O–a a

y � x2

y � a2

(a, a2)(–a, a2)

y = a2 .y = x2

x

y

0

1

2

1 2

x � 2�y

x � 3 � y

x � (y � 1)2 

x = 3 - y .x = sy - 1d2,
x = 21y ,

y = 2>1x .y = 1 + 1x ,
y = x>4,

y = -1
y = 3 - x2

82. True, sometimes true, or never true? The area of the region be-
tween the graphs of the continuous functions and

and the vertical lines and is

Give reasons for your answer.

Theory and Examples
83. Suppose that F(x) is an antiderivative of 

Express

in terms of F.

84. Show that if ƒ is continuous, then

85. Suppose that

Find

if a. ƒ is odd, b. ƒ is even.

86. a. Show that if ƒ is odd on then

b. Test the result in part (a) with and 

87. If ƒ is a continuous function, find the value of the integral

by making the substitution and adding the resulting
integral to I.

u = a - x

I = L
a

0
 

ƒsxd dx

ƒsxd + ƒsa - xd

a = p>2.ƒsxd = sin x

L
a

-a
 ƒsxd dx = 0.

[-a, a] ,

L
0

-1
ƒsxd dx

L
1

0
ƒsxd dx = 3.

L
1

0
ƒsxd dx = L

1

0
ƒs1 - xd dx .

L
3

1
 
sin 2x

x  dx

ƒsxd = ssin xd>x,  x 7 0.

L
b

a
[ƒsxd - g sxd] dx .

x = b sa 6 bdx = ay = g sxd
y = ƒsxd

x

y

–1

–1

1

1

y � –x y � x

386 Chapter 5: Integration

4100 AWL/Thomas_ch05p325-395  8/20/04  9:58 AM  Page 386

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


88. By using a substitution, prove that for all positive numbers x and y,

The Shift Property for Definite Integrals
A basic property of definite integrals is their invariance under transla-
tion, as expressed by the equation.

(1)

The equation holds whenever ƒ is integrable and defined for the nec-
essary values of x. For example in the accompanying figure, show that

because the areas of the shaded regions are congruent.

x

y

0 1–1–2

y � (x � 2)3 y � x3 

L
-1

-2
sx + 2d3 dx = L

1

0
x3 dx

L
b

a
ƒsxd dx = L

b - c

a - c
ƒsx + cd dx .

L
xy

x
 
1
t  dt = L

y

1
 
1
t  dt .

89. Use a substitution to verify Equation (1).

90. For each of the following functions, graph ƒ(x) over [a, b] and
over to convince yourself that Equation

(1) is reasonable.

a.

b.

c.

COMPUTER EXPLORATIONS

In Exercises 91–94, you will find the area between curves in the plane
when you cannot find their points of intersection using simple alge-
bra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the
points of intersection.

c. Integrate over consecutive pairs of intersection
values.

d. Sum together the integrals found in part (c).

91.

92.

93.

94. ƒsxd = x2 cos x, g sxd = x3
- x

ƒsxd = x + sin s2xd, g sxd = x3

ƒsxd =

x4

2
- 3x3

+ 10, g sxd = 8 - 12x

ƒsxd =

x3

3
-

x2

2
- 2x +

1
3

, g sxd = x - 1

ƒ ƒsxd - g sxd ƒ

ƒsxd = 2x - 4, a = 4, b = 8, c = 5

ƒsxd = sin x, a = 0, b = p, c = p>2
ƒsxd = x2, a = 0, b = 1, c = 1

[a - c, b - c]ƒsx + cd

387
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Chapter 5 Additional and Advanced Exercises

Theory and Examples

1. a. If 

b. If 

Give reasons for your answers.

2. Suppose 

Which, if any, of the following statements are true?

a. b.

c. on the interval 

3. Initial value problem Show that

y =

1
aL

x

0
ƒstd sin asx - td dt

-2 … x … 5ƒsxd … g sxd
L

5

-2
sƒsxd + g sxdd = 9L

2

5
ƒsxd dx = -3

L
2

-2
ƒsxd dx = 4, L

5

2
ƒsxd dx = 3, L

5

-2
g sxd dx = 2.

 L
1

0
2ƒsxd dx = 24 = 2?

L
1

0
ƒsxd dx = 4 and ƒsxd Ú 0, does

L
1

0
7ƒsxd dx = 7,  does L

1

0
ƒsxd dx = 1?

solves the initial value problem

(Hint: )

4. Proportionality Suppose that x and y are related by the equation

Show that is proportional to y and find the constant of
proportionality.

5. Find ƒ(4) if

a. b.

6. Find from the following information.

i. ƒ is positive and continuous.

ii. The area under the curve from to is

a2

2
+

a
2

 sin a +

p

2
 cos a .

x = ax = 0y = ƒsxd

ƒsp/2d
L

ƒsxd

0
t2 dt = x cos px .L

x2

0
ƒstd dt = x cos px

d2y/dx2

x = L
y

0
 

121 + 4t2
 dt .

sin sax - atd = sin ax cos at - cos ax sin at .

d2y

dx2 + a2y = ƒsxd, dy

dx
= 0  and  y = 0 when x = 0.
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7. The area of the region in the xy-plane enclosed by the x-axis, the
curve and the lines and is 

equal to for all Find ƒ(x).

8. Prove that

(Hint: Express the integral on the right-hand side as the difference
of two integrals. Then show that both sides of the equation have
the same derivative with respect to x.)

9. Finding a curve Find the equation for the curve in the xy-plane
that passes through the point if its slope at x is always

10. Shoveling dirt You sling a shovelful of dirt up from the bottom
of a hole with an initial velocity of 32 ft/sec. The dirt must rise 17
ft above the release point to clear the edge of the hole. Is that
enough speed to get the dirt out, or had you better duck?

Piecewise Continuous Functions
Although we are mainly interested in continuous functions, many
functions in applications are piecewise continuous. A function ƒ(x) is
piecewise continuous on a closed interval I if ƒ has only finitely
many discontinuities in I, the limits

exist and are finite at every interior point of I, and the appropriate one-
sided limits exist and are finite at the endpoints of I. All piecewise
continuous functions are integrable. The points of discontinuity subdi-
vide I into open and half-open subintervals on which ƒ is continuous,
and the limit criteria above guarantee that ƒ has a continuous exten-
sion to the closure of each subinterval. To integrate a piecewise con-
tinuous function, we integrate the individual extensions and add the
results. The integral of

(Figure 5.34) over is

The Fundamental Theorem applies to piecewise continuous func-
tions with the restriction that is expected to equal
ƒ(x) only at values of x at which ƒ is continuous. There is a similar re-
striction on Leibniz’s Rule below.

Graph the functions in Exercises 11–16 and integrate them over
their domains.

sd>dxd1x
a  ƒstd dt

 =

3
2

+

8
3

- 1 =

19
6

.

 = cx -

x2

2
d

-1

0

+ cx3

3
d

0

2

+ c-x d
2

3

 L
3

-1
ƒsxd dx = L

0

-1
s1 - xd dx + L

2

0
x2 dx + L

3

2
s -1d dx

[-1, 3]

ƒsxd = •
1 - x, -1 … x 6 0

x2,  0 … x 6 2

-1,  2 … x … 3

lim
x:c- 

ƒsxd and lim
x:c +

ƒsxd

3x2
+ 2.

s1, -1d

L
x

0
aL

u

0
ƒstd dtb  du = L

x

0
ƒsudsx - ud du .

b 7 1.2b2
+ 1 - 22

x = bx = 1y = ƒsxd, ƒsxd Ú 0,

11.

12.

13.

14.

15.

16.

17. Find the average value of the function graphed in the accompany-
ing figure.

18. Find the average value of the function graphed in the accompany-
ing figure.

x

y

1

1 2 30

x

y

0 1 2

1

hsrd = •
r, -1 … r 6 0

1 - r2, 0 … r 6 1

1, 1 … r … 2

ƒsxd = •
1, -2 … x 6 -1

1 - x2, -1 … x 6 1

2, 1 … x … 2

hszd = e21 - z, 0 … z 6 1

s7z - 6d-1>3, 1 … z … 2

g std = e t, 0 … t 6 1

 sin pt, 1 … t … 2

ƒsxd = e2-x, -4 … x 6 0

x2
- 4, 0 … x … 3

ƒsxd = e x2>3, -8 … x 6 0

-4, 0 … x … 3

392 Chapter 5: Integration

x

y

2

20 31–1

1

3

4

–1

y � x2

y � 1 � x

y � –1

FIGURE 5.34 Piecewise continuous functions
like this are integrated piece by piece.
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Leibniz’s Rule
In applications, we sometimes encounter functions like

defined by integrals that have variable upper limits of integration and
variable lower limits of integration at the same time. The first integral
can be evaluated directly, but the second cannot. We may find the de-
rivative of either integral, however, by a formula called Leibniz’s Rule.

ƒsxd = L
x2

 sin x
s1 + td dt and g sxd = L

21x1x
 sin t2 dt ,

at which the carpet is being unrolled. That is, A(x) is being in-
creased at the rate

At the same time, A is being decreased at the rate

the width at the end that is being rolled up times the rate . The
net rate of change in A is

which is precisely Leibniz’s Rule.

To prove the rule, let F be an antiderivative of ƒ on [a, b]. Then

Differentiating both sides of this equation with respect to x gives the
equation we want:

Chain Rule

Use Leibniz’s Rule to find the derivatives of the functions in Ex-
ercises 19–21.

19. 20.

21.

22. Use Leibniz’s Rule to find the value of x that maximizes the value
of the integral

Problems like this arise in the mathematical theory of political
elections. See “The Entry Problem in a Political Race,” by Steven
J. Brams and Philip D. Straffin, Jr., in Political Equilibrium, Peter
Ordeshook and Kenneth Shepfle, Editors, Kluwer-Nijhoff,
Boston, 1982, pp. 181–195.

Approximating Finite Sums with Integrals
In many applications of calculus, integrals are used to approximate fi-
nite sums—the reverse of the usual procedure of using finite sums to
approximate integrals.

L
x + 3

x
 t s5 - td dt .

g s yd = L
21y1y

 sin t2 dt

ƒsxd = L
 sin x

 cos x
 

1
1 - t2 dtƒsxd = L

x

1/x
 
1
t  dt

 = ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

 = F¿sysxdd 
dy
dx

- F¿susxdd 
du
dx

 
d
dxL

ysxd

usxd
ƒstd dt =

d
dx

 cFsysxdd - Fsusxdd d

L
ysxd

usxd
ƒstd dt = Fsysxdd - Fsusxdd .

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

,

du>dx

ƒsusxdd 
du
dx

,

ƒsysxdd 
dy
dx

.

dy>dx
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t

y

0

Uncovering

Covering
f (u(x))

y � f (t)
f (y(x))

u(x)

y(x)
A(x) � f (t) dt

y(x)

u(x)L
FIGURE 5.35 Rolling and unrolling a carpet: a geometric
interpretation of Leibniz’s Rule:

dA
dx

= ƒsysxdd 
dy
dx

- ƒsusxdd 
du
dx

.

Leibniz’s Rule
If ƒ is continuous on [a, b] and if u(x) and y(x) are dif-
ferentiable functions of x whose values lie in [a, b],
then

.
d
dx

 L
ysxd

usxd
ƒstd dt = ƒsysxdd 

dy
dx

- ƒsusxdd 
du
dx

Figure 5.35 gives a geometric interpretation of Leibniz’s Rule. It
shows a carpet of variable width ƒ(t) that is being rolled up at the left
at the same time x as it is being unrolled at the right. (In this interpre-
tation, time is x, not t.) At time x, the floor is covered from u(x) to y(x).
The rate at which the carpet is being rolled up need not be the
same as the rate at which the carpet is being laid down. At any
given time x, the area covered by carpet is

Asxd = L
ysxd

usxd
ƒstd dt .

dy>dx
du>dx

At what rate is the covered area changing? At the instant x, A(x) is in-
creasing by the width ƒ(y(x)) of the unrolling carpet times the rate
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For example, let’s estimate the sum of the square roots of the first
n positive integers, The integral

is the limit of the upper sums

Therefore, when n is large, will be close to and we will have

The following table shows how good the approximation can be.

n Root sum Relative error

10 22.468 21.082
50 239.04 235.70 1.4%

100 671.46 666.67 0.7%
1000 21,097 21,082 0.07%

23. Evaluate

by showing that the limit is

and evaluating the integral.

24. See Exercise 23. Evaluate

lim
n: q

 
1
n4 s13

+ 23
+ 33

+
Á

+ n3d .

L
1

0
x5 dx

lim
n: q

 
15

+ 25
+ 35

+
Á

+ n5

n6

1.386>22.468 L 6%

s2>3dn3>2

Root sum = 21 + 22 +
Á

+ 2n = Sn
# n3>2

L

2
3

 n3/2 .

2>3Sn

x

y

0

y � �x

1 1
n

2
n

n � 1
n

 =

21 + 22 +
Á

+ 2n

n3>2 .

 Sn = A1
n #  

1
n + A2

n #  
1
n +

Á
+ An

n #  
1
n

L
1

0
1x dx =

2
3

 x3>2 d
0

1

=

2
3

21 + 22 +
Á

+ 2n .
25. Let ƒ(x) be a continuous function. Express

as a definite integral.

26. Use the result of Exercise 25 to evaluate

a.

b.

c.

What can be said about the following limits?

d.

e.

27. a. Show that the area of an n-sided regular polygon in a circle
of radius r is

b. Find the limit of as Is this answer consistent with
what you know about the area of a circle?

28. A differential equation Show that 
satisfies both of the following conditions:

i.

ii. and when 

29. A function defined by an integral The graph of a function ƒ
consists of a semicircle and two line segments as shown. Let

a. Find g (1). b. Find g (3). c. Find 

d. Find all values of x on the open interval at which g
has a relative maximum.

e. Write an equation for the line tangent to the graph of g at

f. Find the x-coordinate of each point of inflection of the graph
of g on the open interval 

g. Find the range of g.

s -3, 4d .

x = -1.

s -3, 4d
g s -1d .

y

1 3–3

y � f(x)

–1
–1

1

3

x

g sxd = 1x
1  ƒstd dt .

x = p .y¿ = -2y = 1

y– = -sin x + 2 sin 2x
1px  cos 2t dt + 1

y = sin x +

n : q .An

An =

nr2

2
 sin 

2p
n .

An

lim
n: q

 
1

n15 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1

n17 s115
+ 215

+ 315
+

Á
+ n15d

lim
n: q

 
1
n asin 

p
n + sin 

2p
n + sin 

3p
n +

Á
+ sin 

np
n b .

lim
n: q

 
1

n16 s115
+ 215

+ 315
+

Á
+ n15d ,

lim
n: q

 
1
n2 s2 + 4 + 6 +

Á
+ 2nd ,

lim
n: q

 
1
n cƒ a1n b + ƒ a2n b +

Á
+ ƒ ann b d
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388 Chapter 5: Integration

Chapter 5 Practice Exercises

Finite Sums and Estimates
1. The accompanying figure shows the graph of the velocity (ft sec)

of a model rocket for the first 8 sec after launch. The rocket accel-
erated straight up for the first 2 sec and then coasted to reach its
maximum height at 

a. Assuming that the rocket was launched from ground level,
about how high did it go? (This is the rocket in Section 3.3,
Exercise 17, but you do not need to do Exercise 17 to do the
exercise here.)

b. Sketch a graph of the rocket’s height aboveground as a
function of time for 

2. a. The accompanying figure shows the velocity (m sec) of a
body moving along the s-axis during the time interval from

to About how far did the body travel during
those 10 sec?

b. Sketch a graph of s as a function of t for 
assuming 

3. Suppose that and Find the value of

a. b.

c. d. a
10

k = 1
a5

2
- bkba

10

k = 1
sak + bk - 1d

a
10

k = 1
sbk - 3akda

10

k = 1
 
ak

4

a
10

k = 1
bk = 25.a

10

k = 1
ak = -2

0

1

2 4 6 8 10

2

3

4

5

Time (sec)

V
el

oc
ity

 (
m

/s
ec

)

ss0d = 0.
0 … t … 10

t = 10 sec.t = 0

>0 … t … 8.

2 4 6 80

50

100

150

200

Time after launch (sec)

V
el

oc
ity

 (
ft

/s
ec

)

t = 8 sec .

> 4. Suppose that and Find the values of

a. b.

c. d.

Definite Integrals
In Exercises 5–8, express each limit as a definite integral. Then evalu-
ate the integral to find the value of the limit. In each case, P is a parti-
tion of the given interval and the numbers are chosen from the
subintervals of P.

5. where P is a partition of [1, 5]

6. where P is a partition of [1, 3]

7. where P is a partition of 

8. where P is a partition of 

9. If and 
find the values of the following.

a. b.

c. d.

e.

10. If and find
the values of the following.

a. b.

c. d.

e.

Area
In Exercise 11–14, find the total area of the region between the graph
of ƒ and the x-axis.

11.

12. ƒsxd = 1 - sx2>4d, -2 … x … 3

ƒsxd = x2
- 4x + 3, 0 … x … 3

L
2

0
sg sxd - 3ƒsxdd dx

L
2

0
22 ƒsxd dxL

0

2
ƒsxd dx

L
2

1
g sxd dxL

2

0
g sxd dx

11
0  g sxd dx = 2,12

0 ƒsxd dx = p, 12
0  7g sxd dx = 7,

L
5

-2
aƒsxd + g sxd

5
b  dx

L
5

-2
s -pg sxdd dxL

-2

5
g sxd dx

L
5

2
ƒsxd dxL

2

-2
 ƒsxd dx

15
-2 g sxd dx = 2,12

-2 3ƒsxd dx = 12, 15
-2 ƒsxd dx = 6,

[0, p>2]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
ssin ckdscos ckd ¢xk ,

[-p, 0]lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
acos ack

2
bb  ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
cksck 

2
- 1d1>3 ¢xk ,

lim
ƒ ƒP ƒ ƒ :0

 a
n

k = 1
s2ck - 1d-1>2 ¢xk ,

ck

a
20

k = 1
sak - 2da

20

k = 1
a1

2
-

2bk

7
b

a
20

k = 1
sak + bkda

20

k = 1
3ak

a
20

k = 1
bk = 7.a

20

k = 1
ak = 0
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13.

14.

Find the areas of the regions enclosed by the curves and lines in Exer-
cises 15–26.

15.

16.

17.

18.

19. 20.

21.

22.

23.

24.

25.

26.

27. Find the area of the “triangular” region bounded on the left by
on the right by and above by 

28. Find the area of the “triangular” region bounded on the left by
on the right by and below by 

29. Find the extreme values of and find the area of
the region enclosed by the graph of ƒ and the x-axis.

30. Find the area of the region cut from the first quadrant by the curve

31. Find the total area of the region enclosed by the curve 
and the lines and 

32. Find the total area of the region between the curves and
for 0 … x … 3p>2.y = cos x

y = sin x

y = -1.x = y
x = y2>3

x1>2
+ y1>2

= a1>2 .

ƒsxd = x3
- 3x2

y = 1.y = 6 - x ,y = 1x ,

y = 2.y = x2 ,x + y = 2,

y = 8 cos x, y = sec2 x, -p>3 … x … p>3
y = 2 sin x, y = sin 2x, 0 … x … p

y = ƒ sin x ƒ , y = 1, -p>2 … x … p>2
y = sin x, y = x, 0 … x … p>4
y2

= 4x + 4, y = 4x - 16

y2
= 4x, y = 4x - 2

x = 4 - y2, x = 0x = 2y2, x = 0, y = 3

x

y

0 1

1
x3 � �y � 1,  0 � x � 1

x3
+ 1y = 1, x = 0, y = 0, for 0 … x … 1

x

y

1

0 1

�x � �y � 1

1x + 1y = 1, x = 0, y = 0

y = x, y = 1>1x, x = 2

y = x, y = 1>x2, x = 2

ƒsxd = 1 - 1x, 0 … x … 4

ƒsxd = 5 - 5x2>3, -1 … x … 8 Initial Value Problems

33. Show that solves the initial value problem

34. Show that solves the initial value
problem

Express the solutions of the initial value problems in Exercises 35 and
36 in terms of integrals.

35.

36.

Evaluating Indefinite Integrals
Evaluate the integrals in Exercises 37–44.

37. 38.

39.

40.

41. 42.

43. 44.

Evaluating Definite Integrals
Evaluate the integrals in Exercises 45–70.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56. L
p>4

0
 cos2 a4t -

p

4
b  dtL

p

0
 sin2 5r dr

L
1>2

0
x3s1 + 9x4d-3>2 dxL

1

1/8
 x-1>3s1 - x2>3d3>2 dx

L
1

0
 

dr23 (7 - 5r)2L
1

0
 

36 dx

s2x + 1d3

L
4

1
 
A1 + 1u B1>21u

 duL
4

1
 

dt
t1t

L
27

1
x-4/3 dxL

2

1
 
4
y2 dy

L
1

0
s8s3

- 12s2
+ 5d dsL

1

-1
s3x2

- 4x + 7d dx

L  sec u tan u 21 + sec u duL  1t sin s2t3>2d dt

L  
st + 1d2

- 1

t4  dtL at -

2
t b at +

2
t b  dt

L a
122u - p

+ 2 sec2 s2u - pdb  du

Ls2u + 1 + 2 cos s2u + 1dd du

Lstan xd-3>2 sec2 x dxL2scos xd-1>2 sin x dx

dy

dx
= 22 - sin2 x ,  y s -1d = 2

dy

dx
=

sin x
x , y s5d = -3

d2y

dx2 = 2sec x tan x ; y¿s0d = 3, y s0d = 0.

y = 1x
0 A1 + 22sec t B  dt

d2 y

dx2 = 2 -

1
x2 ; y¿s1d = 3, y s1d = 1.

y = x2
+ L

x

1
 
1
t  dt
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57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Average Values
71. Find the average value of 

a. over 

b. over 

72. Find the average value of

a. over [0, 3]

b. over [0, a]

73. Let ƒ be a function that is differentiable on [a, b]. In Chapter 2 we
defined the average rate of change of ƒ over [a, b] to be

and the instantaneous rate of change of ƒ at x to be In this
chapter we defined the average value of a function. For the new def-
inition of average to be consistent with the old one, we should have

Is this the case? Give reasons for your answer.

74. Is it true that the average value of an integrable function over an
interval of length 2 is half the function’s integral over the interval?
Give reasons for your answer.

75. Compute the average value of the temperature function

for a 365-day year. This is one way to estimate the annual mean
air temperature in Fairbanks, Alaska. The National Weather Ser-
vice’s official figure, a numerical average of the daily normal
mean air temperatures for the year, is 25.7ºF, which is slightly
higher than the average value of ƒ(x). Figure 3.33 shows why.

76. Specific heat of a gas Specific heat is the amount of heat re-
quired to raise the temperature of a given mass of gas with con-

Cy

ƒsxd = 37 sin a 2p
365

 sx - 101db + 25

ƒsbd - ƒsad
b - a

= average value of ƒ¿ on [a, b] .

ƒ¿sxd .

ƒsbd - ƒsad
b - a

y = 2ax

y = 23x

[-k, k]

[-1, 1]

ƒsxd = mx + b

L
p2>4
p2>36

 
cos1t2t sin 1t

 dtL
p>3

0
 

tan u22 sec u
 du

L
p>4

0
 

sec2 x

s1 + 7 tan xd2>3 dxL
p>2

0
 

3 sin x cos x21 + 3 sin2 x
 dx

L
2p>3

0
 cos-4 ax

2
b  sin ax

2
b  dxL

p>2
-p>2  15 sin4 3x cos 3x dx

L
1

-1
2x sin s1 - x2d dxL

p>2
0

5ssin xd3>2 cos x dx

L
3p>4
p>4  csc z cot z dzL

0

-p>3 sec x tan x dx

L
p

0
 tan2 

u

3
 duL

3p

p

 cot2 
x
6

 dx

L
3p>4
p>4  csc2 x dxL

p>3
0

 sec2 u du
stant volume by 1ºC, measured in units of cal deg-mole (calories
per degree gram molecule). The specific heat of oxygen depends
on its temperature T and satisfies the formula

Find the average value of for and the tem-
perature at which it is attained.

Differentiating Integrals
In Exercises 77–80, find .

77. 78.

79. 80.

Theory and Examples
81. Is it true that every function that is differentiable on 

[a, b] is itself the derivative of some function on [a, b]? Give rea-
sons for your answer.

82. Suppose that F(x) is an antiderivative of Ex-

press in terms of F and give a reason for your
answer.

83. Find if Explain the main steps in
your calculation.

84. Find if Explain the main steps
in your calculation.

85. A new parking lot To meet the demand for parking, your town
has allocated the area shown here. As the town engineer, you have
been asked by the town council to find out if the lot can be built
for $10,000. The cost to clear the land will be $0.10 a square foot,
and the lot will cost $2.00 a square foot to pave. Can the job be
done for $10,000? Use a lower sum estimate to see. (Answers
may vary slightly, depending on the estimate used.)

0 ft

36 ft

54 ft

51 ft

49.5 ft

54 ft

64.4 ft

67.5 ft

42 ft

Ignored

Vertical spacing � 15 ft

y = 10
 cos x s1>s1 - t2dd dt .dy>dx

y = 11
x  21 + t2 dt .dy>dx

11
0  21 + x4 dx

ƒsxd = 21 + x4 .

y = ƒsxd

y = L
2

sec x
  

1
t2

+ 1
 dty = L

1

x
 

6
3 + t4 dt

y = L
7x2

2
 22 + cos3 t dty = L

x

2
22 + cos3 t dt

dy>dx

20° … T … 675°CCy

Cy = 8.27 + 10-5 s26T - 1.87T 2d .

>
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86. Skydivers A and B are in a helicopter hovering at 6400 ft. Sky-
diver A jumps and descends for 4 sec before opening her para-
chute. The helicopter then climbs to 7000 ft and hovers there.
Forty-five seconds after A leaves the aircraft, B jumps and de-
scends for 13 sec before opening his parachute. Both skydivers
descend at 16 ft sec with parachutes open. Assume that the sky-
divers fall freely (no effective air resistance) before their para-
chutes open.

a. At what altitude does A’s parachute open?

b. At what altitude does B’s parachute open?

c. Which skydiver lands first?

Average Daily Inventory
Average value is used in economics to study such things as average
daily inventory. If I(t) is the number of radios, tires, shoes, or whatever
product a firm has on hand on day t (we call I an inventory function),
the average value of I over a time period [0, T ] is called the firm’s av-
erage daily inventory for the period.

If h is the dollar cost of holding one item per day, the product 
is the average daily holding cost for the period.

avsId # h

 Average daily inventory = avsId =

1
T

 L
T

0
Istd dt .

>

87. As a wholesaler, Tracey Burr Distributors receives a shipment of
1200 cases of chocolate bars every 30 days. TBD sells the choco-
late to retailers at a steady rate, and t days after a shipment ar-
rives, its inventory of cases on hand is 

What is TBD’s average daily inventory for the 30-
day period? What is its average daily holding cost if the cost of
holding one case is 3¢ a day?

88. Rich Wholesale Foods, a manufacturer of cookies, stores its cases
of cookies in an air-conditioned warehouse for shipment every 14
days. Rich tries to keep 600 cases on reserve to meet occasional
peaks in demand, so a typical 14-day inventory function is

The daily holding cost for each
case is 4¢ per day. Find Rich’s average daily inventory and aver-
age daily holding cost.

89. Solon Container receives 450 drums of plastic pellets every 30
days. The inventory function (drums on hand as a function of
days) is Find the average daily inventory. If
the holding cost for one drum is 2¢ per day, find the average daily
holding cost.

90. Mitchell Mailorder receives a shipment of 600 cases of athletic
socks every 60 days. The number of cases on hand t days after the
shipment arrives is Find the average
daily inventory. If the holding cost for one case is ¢ per day,
find the average daily holding cost.

1>2Istd = 600 - 20215t .

Istd = 450 - t2>2.

Istd = 600 + 600t, 0 … t … 14.

0 … t … 30.
Istd = 1200 - 40t,
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Chapter 5 Questions to Guide Your Review 387

Chapter 5 Questions to Guide Your Review

1. How can you sometimes estimate quantities like distance traveled,
area, and average value with finite sums? Why might you want to
do so?

2. What is sigma notation? What advantage does it offer? Give ex-
amples.

3. What is a Riemann sum? Why might you want to consider such a
sum?

4. What is the norm of a partition of a closed interval?

5. What is the definite integral of a function ƒ over a closed interval
[a, b]? When can you be sure it exists?

6. What is the relation between definite integrals and area? Describe
some other interpretations of definite integrals.

7. What is the average value of an integrable function over a closed
interval? Must the function assume its average value? Explain.

8. Describe the rules for working with definite integrals (Table 5.3).
Give examples.

9. What is the Fundamental Theorem of Calculus? Why is it so im-
portant? Illustrate each part of the theorem with an example.

10. How does the Fundamental Theorem provide a solution to the ini-
tial value problem when ƒ is continu-
ous?

11. How is integration by substitution related to the Chain Rule?

12. How can you sometimes evaluate indefinite integrals by substitu-
tion? Give examples.

13. How does the method of substitution work for definite integrals?
Give examples.

14. How do you define and calculate the area of the region between
the graphs of two continuous functions? Give an example.

dy>dx = ƒsxd, ysx0d = y0 ,
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Chapter 5 Technology Application Projects

Mathematica/Maple Module
Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves
Visualize and approximate areas and volumes in Part I.

Mathematica/Maple Module
Riemann Sums, Definite Integrals, and the Fundamental Theorem of Calculus
Parts I, II, and III develop Riemann sums and definite integrals. Part IV continues the development of the Riemann sum and definite integral
using the Fundamental Theorem to solve problems previously investigated.

Mathematica/Maple Module
Rain Catchers, Elevators, and Rockets
Part I illustrates that the area under a curve is the same as the area of an appropriate rectangle for examples taken from the chapter. You will
compute the amount of water accumulating in basins of different shapes as the basin is filled and drained.

Mathematica/Maple Module
Motion Along a Straight Line, Part II
You will observe the shape of a graph through dramatic animated visualizations of the derivative relations among the position, velocity, and
acceleration. Figures in the text can be animated using this software.

Mathematica/Maple Module
Bending of Beams
Study bent shapes of beams, determine their maximum deflections, concavity and inflection points, and interpret the results in terms of a beam’s
compression and tension.
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