

LIMITS AND CONTINUITY

OVERVIEW The concept of a limit is a central idea that distinguishes calculus from algebra and trigonometry. It is fundamental to finding the tangent to a curve or the velocity of an object.

In this chapter we develop the limit, first intuitively and then formally. We use limits to describe the way a function f varies. Some functions vary continuously; small changes in x produce only small changes in f(x). Other functions can have values that jump or vary erratically. The notion of limit gives a precise way to distinguish between these behaviors. The geometric application of using limits to define the tangent to a curve leads at once to the important concept of the derivative of a function. The derivative, which we investigate thoroughly in Chapter 3, quantifies the way a function's values change.

2.1

Rates of Change and Limits

In this section, we introduce average and instantaneous rates of change. These lead to the main idea of the section, the idea of limit.

Average and Instantaneous Speed

A moving body's **average speed** during an interval of time is found by dividing the distance covered by the time elapsed. The unit of measure is length per unit time: kilometers per hour, feet per second, or whatever is appropriate to the problem at hand.

EXAMPLE 1 Finding an Average Speed

A rock breaks loose from the top of a tall cliff. What is its average speed

- (a) during the first 2 sec of fall?
- (b) during the 1-sec interval between second 1 and second 2?

Solution In solving this problem we use the fact, discovered by Galileo in the late sixteenth century, that a solid object dropped from rest (not moving) to fall freely near the surface of the earth will fall a distance proportional to the square of the time it has been falling. (This assumes negligible air resistance to slow the object down and that gravity is HISTORICAL BIOGRAPHY*

Galileo Galilei (1564–1642) the only force acting on the falling body. We call this type of motion **free fall**.) If y denotes the distance fallen in feet after t seconds, then Galileo's law is

$$v = 16t^2$$
,

where 16 is the constant of proportionality.

The average speed of the rock during a given time interval is the change in distance, Δy , divided by the length of the time interval, Δt .

(a) For the first 2 sec:
$$\frac{\Delta y}{\Delta t} = \frac{16(2)^2 - 16(0)^2}{2 - 0} = 32 \frac{\text{ft}}{\text{sec}}$$

(b) From sec 1 to sec 2:
$$\frac{\Delta y}{\Delta t} = \frac{16(2)^2 - 16(1)^2}{2 - 1} = 48 \frac{\text{ft}}{\text{sec}}$$

The next example examines what happens when we look at the average speed of a falling object over shorter and shorter time intervals.

EXAMPLE 2 Finding an Instantaneous Speed

Find the speed of the falling rock at t = 1 and t = 2 sec.

Solution We can calculate the average speed of the rock over a time interval $[t_0, t_0 + h]$, having length $\Delta t = h$, as

$$\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16t_0^2}{h}.$$
 (1)

We cannot use this formula to calculate the "instantaneous" speed at t_0 by substituting h = 0, because we cannot divide by zero. But we *can* use it to calculate average speeds over increasingly short time intervals starting at $t_0 = 1$ and $t_0 = 2$. When we do so, we see a pattern (Table 2.1).

Av	erage speed: $\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)}{t_0}$	$\frac{h^2 - 16t_0^2}{h}$
Length of time interval <i>h</i>	Average speed over interval of length h starting at $t_0 = 1$	Average speed over interval of length h starting at $t_0 = 2$
1	48	80
0.1	33.6	65.6
0.01	32.16	64.16
0.001	32.016	64.016
0.0001	32.0016	64.0016

The average speed on intervals starting at $t_0 = 1$ seems to approach a limiting value of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed of 32 ft/sec at $t_0 = 1$ sec. Let's confirm this algebraically.

To learn more about the historical figures and the development of the major elements and topics of calculus, visit **www.aw-bc.com/thomas**.

If we set $t_0 = 1$ and then expand the numerator in Equation (1) and simplify, we find that

$$\frac{\Delta y}{\Delta t} = \frac{16(1+h)^2 - 16(1)^2}{h} = \frac{16(1+2h+h^2) - 16h}{h}$$
$$= \frac{32h + 16h^2}{h} = 32 + 16h.$$

For values of *h* different from 0, the expressions on the right and left are equivalent and the average speed is 32 + 16h ft/sec. We can now see why the average speed has the limiting value 32 + 16(0) = 32 ft/sec as *h* approaches 0.

Similarly, setting $t_0 = 2$ in Equation (1), the procedure yields

$$\frac{\Delta y}{\Delta t} = 64 + 16h$$

for values of *h* different from 0. As *h* gets closer and closer to 0, the average speed at $t_0 = 2$ sec has the limiting value 64 ft/sec.

Average Rates of Change and Secant Lines

Given an arbitrary function y = f(x), we calculate the average rate of change of y with respect to x over the interval $[x_1, x_2]$ by dividing the change in the value of y, $\Delta y = f(x_2) - f(x_1)$, by the length $\Delta x = x_2 - x_1 = h$ of the interval over which the change occurs.

DEFINITION Average Rate of Change over an Interval The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is $\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}, \quad h \neq 0.$

Geometrically, the rate of change of f over $[x_1, x_2]$ is the slope of the line through the points $P(x_1, f(x_1))$ and $Q(x_2, f(x_2))$ (Figure 2.1). In geometry, a line joining two points of a curve is a **secant** to the curve. Thus, the average rate of change of f from x_1 to x_2 is identical with the slope of secant PQ.

Experimental biologists often want to know the rates at which populations grow under controlled laboratory conditions.

EXAMPLE 3 The Average Growth Rate of a Laboratory Population

Figure 2.2 shows how a population of fruit flies (*Drosophila*) grew in a 50-day experiment. The number of flies was counted at regular intervals, the counted values plotted with respect to time, and the points joined by a smooth curve (colored blue in Figure 2.2). Find the average growth rate from day 23 to day 45.

Solution There were 150 flies on day 23 and 340 flies on day 45. Thus the number of flies increased by 340 - 150 = 190 in 45 - 23 = 22 days. The average rate of change of the population from day 23 to day 45 was

Average rate of change:
$$\frac{\Delta p}{\Delta t} = \frac{340 - 150}{45 - 23} = \frac{190}{22} \approx 8.6$$
 flies/day.

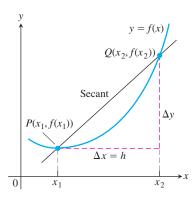


FIGURE 2.1 A secant to the graph y = f(x). Its slope is $\Delta y / \Delta x$, the average rate of change of *f* over the interval $[x_1, x_2]$.

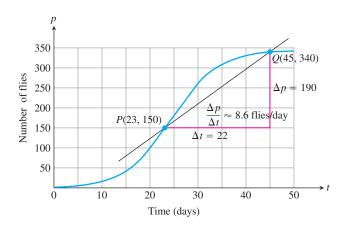


FIGURE 2.2 Growth of a fruit fly population in a controlled experiment. The average rate of change over 22 days is the slope $\Delta p / \Delta t$ of the secant line.

This average is the slope of the secant through the points P and Q on the graph in Figure 2.2.

The average rate of change from day 23 to day 45 calculated in Example 3 does not tell us how fast the population was changing on day 23 itself. For that we need to examine time intervals closer to the day in question.

EXAMPLE 4 The Growth Rate on Day 23

How fast was the number of flies in the population of Example 3 growing on day 23?

Solution To answer this question, we examine the average rates of change over increasingly short time intervals starting at day 23. In geometric terms, we find these rates by calculating the slopes of secants from P to Q, for a sequence of points Q approaching P along the curve (Figure 2.3).

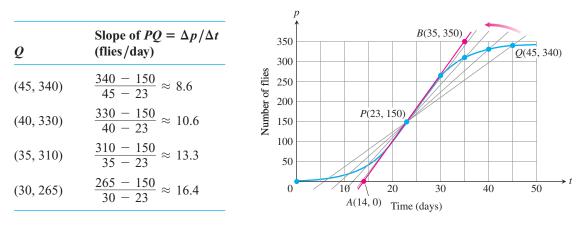


FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the *t*-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher as *t* continued on toward 23. Geometrically, the secants rotate about P and seem to approach the red line in the figure, a line that goes through P in the same direction that the curve goes through P. We will see that this line is called the *tangent* to the curve at P. Since the line appears to pass through the points (14, 0) and (35, 350), it has slope

$$\frac{350 - 0}{35 - 14} = 16.7$$
 flies/day (approximately).

On day 23 the population was increasing at a rate of about 16.7 flies/day.

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 and the rate at which the population in Example 4 was changing on day t = 23 are called *instantaneous rates of change*. As the examples suggest, we find instantaneous rates as limiting values of average rates. In Example 4, we also pictured the tangent line to the population curve on day 23 as a limiting position of secant lines. Instantaneous rates and tangent lines, intimately connected, appear in many other contexts. To talk about the two constructively, and to understand the connection further, we need to investigate the process by which we determine limiting values, or *limits*, as we will soon call them.

Limits of Function Values

Our examples have suggested the limit idea. Let's begin with an informal definition of limit, postponing the precise definition until we've gained more insight.

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. If f(x) gets arbitrarily close to L (as close to L as we like) for all x sufficiently close to x_0 , we say that f approaches the **limit** L as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = L,$$

which is read "the limit of f(x) as x approaches x_0 is L". Essentially, the definition says that the values of f(x) are close to the number L whenever x is close to x_0 (on either side of x_0). This definition is "informal" because phrases like *arbitrarily close* and *sufficiently close* are imprecise; their meaning depends on the context. To a machinist manufacturing a piston, *close* may mean *within a few thousandths of an inch*. To an astronomer studying distant galaxies, *close* may mean *within a few thousand light-years*. The definition is clear enough, however, to enable us to recognize and evaluate limits of specific functions. We will need the precise definition of Section 2.3, however, when we set out to prove theorems about limits.

EXAMPLE 5 Behavior of a Function Near a Point

How does the function

$$f(x) = \frac{x^2 - 1}{x - 1}$$

behave near x = 1?

Solution The given formula defines *f* for all real numbers *x* except x = 1 (we cannot divide by zero). For any $x \neq 1$, we can simplify the formula by factoring the numerator and canceling common factors:

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1$$
 for $x \neq 1$.

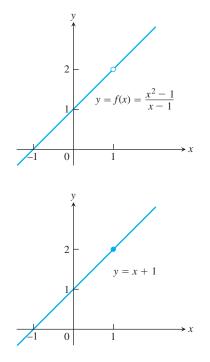


FIGURE 2.4 The graph of *f* is identical with the line y = x + 1 except at x = 1, where *f* is not defined (Example 5).

The graph of f is thus the line y = x + 1 with the point (1, 2) *removed*. This removed point is shown as a "hole" in Figure 2.4. Even though f(1) is not defined, it is clear that we can make the value of f(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2).

TABLE 2.2 The closer x gets to 1, t seems to get to 2 2	
Values of x below and above 1	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1, \qquad x \neq 1$
0.9	1.9
1.1	2.1
0.99	1.99
1.01	2.01
0.999	1.999
1.001	2.001
0.999999	1.999999
1.000001	2.000001

We say that f(x) approaches the *limit* 2 as x approaches 1, and write

$$\lim_{x \to 1} f(x) = 2, \quad \text{or} \quad \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

EXAMPLE 6 The De

The Limit Value Does Not Depend on How the Function Is Defined at x_0

The function f in Figure 2.5 has limit 2 as $x \to 1$ even though f is not defined at x = 1. The function g has limit 2 as $x \to 1$ even though $2 \neq g(1)$. The function h is the only one

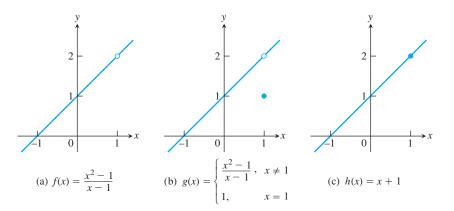
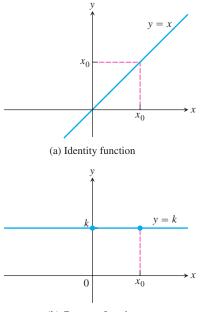


FIGURE 2.5 The limits of f(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) has the same function value as its limit at x = 1 (Example 6).



(b) Constant function

FIGURE 2.6 The functions in Example 8.

whose limit as $x \to 1$ equals its value at x = 1. For *h*, we have $\lim_{x\to 1} h(x) = h(1)$. This equality of limit and function value is special, and we return to it in Section 2.6.

Sometimes $\lim_{x\to x_0} f(x)$ can be evaluated by calculating $f(x_0)$. This holds, for example, whenever f(x) is an algebraic combination of polynomials and trigonometric functions for which $f(x_0)$ is defined. (We will say more about this in Sections 2.2 and 2.6.)

EXAMPLE 7 Finding Limits by Calculating $f(x_0)$

(a) $\lim_{x \to 2} (4) = 4$ (b) $\lim_{x \to -13} (4) = 4$ (c) $\lim_{x \to 3} x = 3$ (d) $\lim_{x \to 2} (5x - 3) = 10 - 3 = 7$ (e) $\lim_{x \to -2} \frac{3x + 4}{x + 5} = \frac{-6 + 4}{-2 + 5} = -\frac{2}{3}$

EXAMPLE 8 The Identity and Constant Functions Have Limits at Every Point (a) If f is the identity function f(x) = x, then for any value of x_0 (Figure 2.6a),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0.$$

(b) If f is the constant function f(x) = k (function with the constant value k), then for any value of x_0 (Figure 2.6b),

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k.$$

For instance,

$$\lim_{x \to 3} x = 3 \quad \text{and} \quad \lim_{x \to -7} (4) = \lim_{x \to 2} (4) = 4.$$

We prove these results in Example 3 in Section 2.3.

Some ways that limits can fail to exist are illustrated in Figure 2.7 and described in the next example.

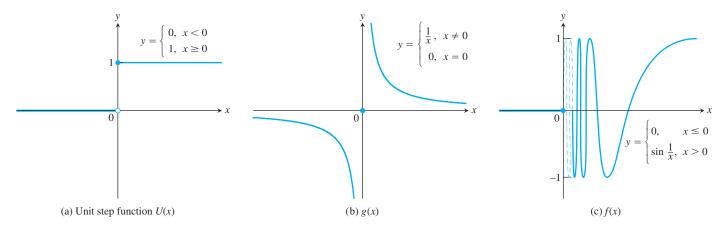


FIGURE 2.7 None of these functions has a limit as *x* approaches 0 (Example 9).

EXAMPLE 9 A Function May Fail to Have a Limit at a Point in Its Domain

Discuss the behavior of the following functions as $x \rightarrow 0$.

(a) $U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$ (b) $g(x) = \begin{cases} \frac{1}{x}, & x \ne 0 \\ 0, & x = 0 \end{cases}$ (c) $f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$

Solution

- (a) It *jumps*: The unit step function U(x) has no limit as x→0 because its values jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive values of x arbitrarily close to zero, U(x) = 1. There is no *single* value L approached by U(x) as x→0 (Figure 2.7a).
- (b) It grows too large to have a limit: g(x) has no limit as x→0 because the values of g grow arbitrarily large in absolute value as x→0 and do not stay close to any real number (Figure 2.7b).
- (c) It oscillates too much to have a limit: f(x) has no limit as x → 0 because the function's values oscillate between +1 and -1 in every open interval containing 0. The values do not stay close to any one number as x → 0 (Figure 2.7c).

Using Calculators and Computers to Estimate Limits

Tables 2.1 and 2.2 illustrate using a calculator or computer to guess a limit numerically as x gets closer and closer to x_0 . That procedure would also be successful for the limits of functions like those in Example 7 (these are *continuous* functions and we study them in Section 2.6). However, calculators and computers can give *false values and misleading impressions* for functions that are undefined at a point or fail to have a limit there. The differential calculus will help us know when a calculator or computer is providing strange or ambiguous information about a function's behavior near some point (see Sections 4.4 and 4.6). For now, we simply need to be attentive to the fact that pitfalls may occur when using computing devices to guess the value of a limit. Here's one example.

EXAMPLE 10 Guessing a Limit

Guess the value of $\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$.

Solution Table 2.3 lists values of the function for several values near x = 0. As x approaches 0 through the values ± 1 , ± 0.5 , ± 0.10 , and ± 0.01 , the function seems to approach the number 0.05.

As we take even smaller values of x, ± 0.0005 , ± 0.0001 , ± 0.00001 , and ± 0.000001 , the function appears to approach the value 0.

So what is the answer? Is it 0.05 or 0, or some other value? The calculator/computer values are ambiguous, but the theorems on limits presented in the next section will confirm the correct limit value to be 0.05(=1/20). Problems such as these demonstrate the

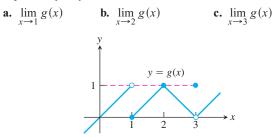
x	f(x)
± 1	0.049876
± 0.5	0.049969
± 0.1	0.049999 approaches 0.05?
± 0.01	0.050000
± 0.0005	0.080000
± 0.0001	0.000000
± 0.00001	0.000000 approaches 0?
± 0.000001	0.000000

power of mathematical reasoning, once it is developed, over the conclusions we might draw from making a few observations. Both approaches have advantages and disadvantages in revealing nature's realities.

EXERCISES 2.1

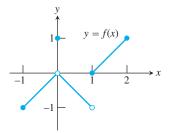
Limits from Graphs

1. For the function g(x) graphed here, find the following limits or explain why they do not exist.



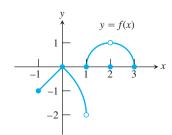
- 2. For the function *f*(*t*) graphed here, find the following limits or explain why they do not exist.
 - **a.** $\lim_{t \to -2} f(t)$ **b.** $\lim_{t \to -1} f(t)$ **c.** $\lim_{t \to 0} f(t)$ s = f(t) f(t) s = f(t) f(t)

- 3. Which of the following statements about the function y = f(x) graphed here are true, and which are false?
 - **a.** $\lim_{x \to 0} f(x)$ exists.
 - **b.** $\lim_{x \to 0} f(x) = 0$.
 - **c.** $\lim_{x \to 0} f(x) = 1$.
 - **d.** $\lim_{x \to 1} f(x) = 1$.
 - **e.** $\lim_{x \to 1} f(x) = 0$.
 - **f.** $\lim_{x \to x_0} f(x)$ exists at every point x_0 in (-1, 1).



- 4. Which of the following statements about the function y = f(x) graphed here are true, and which are false?
 - **a.** $\lim_{x \to 2} f(x)$ does not exist.
 - **b.** $\lim_{x \to 2} f(x) = 2.$

- c. $\lim_{x \to 1} f(x)$ does not exist.
- **d.** $\lim_{x \to x_0} f(x)$ exists at every point x_0 in (-1, 1).
- e. $\lim_{x \to x_0} f(x)$ exists at every point x_0 in (1, 3).



Existence of Limits

In Exercises 5 and 6, explain why the limits do not exist.

- 5. $\lim_{x \to 0} \frac{x}{|x|}$ 6. $\lim_{x \to 1} \frac{1}{x-1}$
- 7. Suppose that a function f(x) is defined for all real values of x except $x = x_0$. Can anything be said about the existence of $\lim_{x \to x_0} f(x)$? Give reasons for your answer.
- 8. Suppose that a function f(x) is defined for all x in [-1, 1]. Can anything be said about the existence of $\lim_{x\to 0} f(x)$? Give reasons for your answer.
- **9.** If $\lim_{x\to 1} f(x) = 5$, must f be defined at x = 1? If it is, must f(1) = 5? Can we conclude *anything* about the values of f at x = 1? Explain.
- **10.** If f(1) = 5, must $\lim_{x\to 1} f(x)$ exist? If it does, then must $\lim_{x\to 1} f(x) = 5$? Can we conclude *anything* about $\lim_{x\to 1} f(x)$? Explain.

Estimating Limits

T You will find a graphing calculator useful for Exercises 11–20.

11. Let $f(x) = (x^2 - 9)/(x + 3)$.

- **a.** Make a table of the values of f at the points x = -3.1, -3.01, -3.001, and so on as far as your calculator can go. Then estimate $\lim_{x\to -3} f(x)$. What estimate do you arrive at if you evaluate f at $x = -2.9, -2.99, -2.999, \ldots$ instead?
- **b.** Support your conclusions in part (a) by graphing *f* near $x_0 = -3$ and using Zoom and Trace to estimate *y*-values on the graph as $x \rightarrow -3$.
- **c.** Find $\lim_{x\to -3} f(x)$ algebraically, as in Example 5.

12. Let $g(x) = (x^2 - 2)/(x - \sqrt{2})$.

- **a.** Make a table of the values of g at the points x = 1.4, 1.41, 1.414, and so on through successive decimal approximations of $\sqrt{2}$. Estimate $\lim_{x\to\sqrt{2}} g(x)$.
- **b.** Support your conclusion in part (a) by graphing g near $x_0 = \sqrt{2}$ and using Zoom and Trace to estimate y-values on the graph as $x \rightarrow \sqrt{2}$.
- **c.** Find $\lim_{x\to\sqrt{2}} g(x)$ algebraically.

- **13.** Let $G(x) = (x + 6)/(x^2 + 4x 12)$.
 - **a.** Make a table of the values of *G* at x = -5.9, -5.99, -5.999, and so on. Then estimate $\lim_{x\to -6} G(x)$. What estimate do you arrive at if you evaluate *G* at $x = -6.1, -6.01, -6.001, \ldots$ instead?
 - **b.** Support your conclusions in part (a) by graphing *G* and using Zoom and Trace to estimate *y*-values on the graph as $x \rightarrow -6$.
 - **c.** Find $\lim_{x\to -6} G(x)$ algebraically.
- 14. Let $h(x) = (x^2 2x 3)/(x^2 4x + 3)$.
 - **a.** Make a table of the values of *h* at x = 2.9, 2.99, 2.999, and so on. Then estimate $\lim_{x\to 3} h(x)$. What estimate do you arrive at if you evaluate *h* at $x = 3.1, 3.01, 3.001, \ldots$ instead?
 - **b.** Support your conclusions in part (a) by graphing *h* near $x_0 = 3$ and using Zoom and Trace to estimate *y*-values on the graph as $x \rightarrow 3$.
 - **c.** Find $\lim_{x\to 3} h(x)$ algebraically.
- **15.** Let $f(x) = (x^2 1)/(|x| 1)$.
 - **a.** Make tables of the values of *f* at values of *x* that approach $x_0 = -1$ from above and below. Then estimate $\lim_{x\to -1} f(x)$.
 - **b.** Support your conclusion in part (a) by graphing *f* near $x_0 = -1$ and using Zoom and Trace to estimate *y*-values on the graph as $x \rightarrow -1$.
 - **c.** Find $\lim_{x\to -1} f(x)$ algebraically.
- **16.** Let $F(x) = (x^2 + 3x + 2)/(2 |x|)$.
 - **a.** Make tables of values of *F* at values of *x* that approach $x_0 = -2$ from above and below. Then estimate $\lim_{x\to -2} F(x)$.
 - **b.** Support your conclusion in part (a) by graphing *F* near $x_0 = -2$ and using Zoom and Trace to estimate *y*-values on the graph as $x \rightarrow -2$.
 - **c.** Find $\lim_{x\to -2} F(x)$ algebraically.
- **17.** Let $g(\theta) = (\sin \theta)/\theta$.
 - **a.** Make a table of the values of g at values of θ that approach $\theta_0 = 0$ from above and below. Then estimate $\lim_{\theta \to 0} g(\theta)$.
 - **b.** Support your conclusion in part (a) by graphing g near $\theta_0 = 0$.
- **18.** Let $G(t) = (1 \cos t)/t^2$.
 - **a.** Make tables of values of *G* at values of *t* that approach $t_0 = 0$ from above and below. Then estimate $\lim_{t\to 0} G(t)$.
 - **b.** Support your conclusion in part (a) by graphing G near $t_0 = 0$.
- **19.** Let $f(x) = x^{1/(1-x)}$.
 - **a.** Make tables of values of *f* at values of *x* that approach $x_0 = 1$ from above and below. Does *f* appear to have a limit as $x \rightarrow 1$? If so, what is it? If not, why not?
 - **b.** Support your conclusions in part (a) by graphing f near $x_0 = 1$.

- **20.** Let $f(x) = (3^x 1)/x$.
 - **a.** Make tables of values of f at values of x that approach $x_0 = 0$ from above and below. Does f appear to have a limit as $x \rightarrow 0$? If so, what is it? If not, why not?
 - **b.** Support your conclusions in part (a) by graphing f near $x_0 = 0$.

Limits by Substitution

In Exercises 21–28, find the limits by substitution. *Support your answers with a computer or calculator if available.*

21. $\lim_{x \to 2} 2x$	22. $\lim_{x \to 0} 2x$
23. $\lim_{x \to 1/3} (3x - 1)$	24. $\lim_{x \to 1} \frac{-1}{(3x-1)}$
25. $\lim_{x \to -1} 3x(2x - 1)$	26. $\lim_{x \to -1} \frac{3x^2}{2x - 1}$
$27. \lim_{x \to \pi/2} x \sin x$	$28. \lim_{x \to \pi} \frac{\cos x}{1 - \pi}$

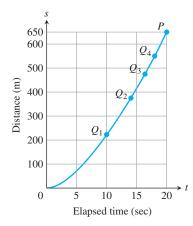
Average Rates of Change

In Exercises 29–34, find the average rate of change of the function over the given interval or intervals.

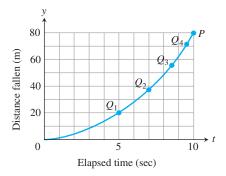
29. $f(x) = x^3 + 1;$ a. [2, 3] b. [-1, 1] 30. $g(x) = x^2;$ a. [-1, 1] b. [-2, 0] 31. $h(t) = \cot t;$ a. $[\pi/4, 3\pi/4]$ b. $[\pi/6, \pi/2]$ 32. $g(t) = 2 + \cos t;$ a. $[0, \pi]$ b. $[-\pi, \pi]$

33.
$$R(\theta) = \sqrt{4\theta + 1}; [0, 2]$$

- **34.** $P(\theta) = \theta^3 4\theta^2 + 5\theta;$ [1, 2]
- **35.** A Ford Mustang Cobra's speed The accompanying figure shows the time-to-distance graph for a 1994 Ford Mustang Cobra accelerating from a standstill.



- **a.** Estimate the slopes of secants PQ_1 , PQ_2 , PQ_3 , and PQ_4 , arranging them in order in a table like the one in Figure 2.3. What are the appropriate units for these slopes?
- **b.** Then estimate the Cobra's speed at time t = 20 sec.
- **36.** The accompanying figure shows the plot of distance fallen versus time for an object that fell from the lunar landing module a distance 80 m to the surface of the moon.
 - **a.** Estimate the slopes of the secants PQ_1 , PQ_2 , PQ_3 , and PQ_4 , arranging them in a table like the one in Figure 2.3.
 - **b.** About how fast was the object going when it hit the surface?



T 37. The profits of a small company for each of the first five years of its operation are given in the following table:

Year	Profit in \$1000s
1990	6
1991	27
1992	62
1993	111
1994	174

- **a.** Plot points representing the profit as a function of year, and join them by as smooth a curve as you can.
- **b.** What is the average rate of increase of the profits between 1992 and 1994?
- **c.** Use your graph to estimate the rate at which the profits were changing in 1992.
- **T** 38. Make a table of values for the function F(x) = (x + 2)/(x 2)at the points x = 1.2, x = 11/10, x = 101/100, x = 1001/1000, x = 10001/10000, and x = 1.
 - **a.** Find the average rate of change of F(x) over the intervals [1, x] for each $x \neq 1$ in your table.
 - **b.** Extending the table if necessary, try to determine the rate of change of F(x) at x = 1.
- **1 39.** Let $g(x) = \sqrt{x}$ for $x \ge 0$.
 - **a.** Find the average rate of change of g(x) with respect to x over the intervals [1, 2], [1, 1.5] and [1, 1 + h].
 - **b.** Make a table of values of the average rate of change of g with respect to x over the interval [1, 1 + h] for some values of h

approaching zero, say h = 0.1, 0.01, 0.001, 0.0001, 0.00001, and 0.000001.

- **c.** What does your table indicate is the rate of change of g(x) with respect to x at x = 1?
- **d.** Calculate the limit as *h* approaches zero of the average rate of change of g(x) with respect to *x* over the interval [1, 1 + h].

1 40. Let f(t) = 1/t for $t \neq 0$.

- **a.** Find the average rate of change of f with respect to t over the intervals (i) from t = 2 to t = 3, and (ii) from t = 2 to t = T.
- **b.** Make a table of values of the average rate of change of f with respect to t over the interval [2, T], for some values of T approaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001, and 2.000001.
- **c.** What does your table indicate is the rate of change of f with respect to t at t = 2?

d. Calculate the limit as *T* approaches 2 of the average rate of change of *f* with respect to *t* over the interval from 2 to *T*. You will have to do some algebra before you can substitute T = 2.

COMPUTER EXPLORATIONS

Graphical Estimates of Limits

In Exercises 41–46, use a CAS to perform the following steps:

a. Plot the function near the point x₀ being approached.
b. From your plot guess the value of the limit.

41.
$$\lim_{x \to 2} \frac{x^4 - 16}{x - 2}$$
42.
$$\lim_{x \to -1} \frac{x^3 - x^2 - 5x - 3}{(x + 1)^2}$$
43.
$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x} - 1}{x}$$
44.
$$\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x^2 + 7} - 4}$$
45.
$$\lim_{x \to 0} \frac{1 - \cos x}{x \sin x}$$
46.
$$\lim_{x \to 0} \frac{2x^2}{3 - 3\cos x}$$

2.2

Calculating Limits Using the Limit Laws

HISTORICAL ESSAY*

Limits

In Section 2.1 we used graphs and calculators to guess the values of limits. This section presents theorems for calculating limits. The first three let us build on the results of Example 8 in the preceding section to find limits of polynomials, rational functions, and powers. The fourth and fifth prepare for calculations later in the text.

The Limit Laws

The next theorem tells how to calculate limits of functions that are arithmetic combinations of functions whose limits we already know.

THEOREM 1 Limit Laws If <i>L</i> , <i>M</i> , <i>c</i> and <i>k</i> are real numbers and	
$\lim_{x \to c} f(x) = L \text{and} \lim_{x \to c} g(x) = M, t$	hen
1. Sum Rule: $\lim_{x \to c} (f(x) + g(x)) = L$	+ M
The limit of the sum of two functions is the sum of their limits	s.
2. Difference Rule: $\lim_{x \to c} (f(x) - g(x)) = L$	-M
The limit of the difference of two functions is the difference of	
3. Product Rule: $\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$	1
$T_{1}^{1} = 1$	11

The limit of a product of two functions is the product of their limits.

To learn more about the historical figures and the development of the major elements and topics of calculus, visit **www.aw-bc.com/thomas**.

4. Constant Multiple Rule:

$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

The limit of a constant times a function is the constant times the limit of the function.

 $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}, \quad M \neq 0$ 5. *Quotient Rule*:

The limit of a quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. *Power Rule*: If *r* and *s* are integers with no common factor and $s \neq 0$, then

$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

It is easy to convince ourselves that the properties in Theorem 1 are true (although these intuitive arguments do not constitute proofs). If x is sufficiently close to c, then f(x)is close to L and g(x) is close to M, from our informal definition of a limit. It is then reasonable that f(x) + g(x) is close to L + M; f(x) - g(x) is close to L - M; f(x)g(x) is close to LM; kf(x) is close to kL; and that f(x)/g(x) is close to L/M if M is not zero. We prove the Sum Rule in Section 2.3, based on a precise definition of limit. Rules 2–5 are proved in Appendix 2. Rule 6 is proved in more advanced texts.

Here are some examples of how Theorem 1 can be used to find limits of polynomial and rational functions.

EXAMPLE 1 Using the Limit Laws

=

Use the observations $\lim_{x\to c} k = k$ and $\lim_{x\to c} x = c$ (Example 8 in Section 2.1) and the properties of limits to find the following limits.

(a)
$$\lim_{x \to c} (x^3 + 4x^2 - 3)$$
 (b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ (c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

Solution

(a) $\lim_{x \to c} (x^3 + 4x^2 - 3) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} 3$ = $c^3 + 4c^2 - 3$ Sum and Difference Rules Product and Multiple Rules **(b)** $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} (x^4 + x^2 - 1)}{\lim_{x \to c} (x^2 + 5)}$ **Quotient Rule**

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$
Sum and Difference Rules
$$= \frac{c^4 + c^2 - 1}{c^2 + 5}$$
Power or Product Rule

(c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

Power Rule with $r/s = \frac{1}{2}$
$$= \sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$$

Difference Rule
$$= \sqrt{4(-2)^2 - 3}$$

Product and Multiple Rules
$$= \sqrt{16 - 3}$$

$$= \sqrt{13}$$

Two consequences of Theorem 1 further simplify the task of calculating limits of polynomials and rational functions. To evaluate the limit of a polynomial function as x approaches c, merely substitute c for x in the formula for the function. To evaluate the limit of a rational function as x approaches a point c at which the denominator is not zero, substitute c for x in the formula for the function. (See Examples 1a and 1b.)

THEOREM 2 Limits of Polynomials Can Be Found by Substitution If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

EXAMPLE 2 Limit of a Rational Function

$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5} = \frac{0}{6} = 0$$

This result is similar to the second limit in Example 1 with c = -1, now done in one step.

Eliminating Zero Denominators Algebraically

Theorem 3 applies only if the denominator of the rational function is not zero at the limit point c. If the denominator is zero, canceling common factors in the numerator and denominator may reduce the fraction to one whose denominator is no longer zero at c. If this happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE 3 Canceling a Common Factor

Evaluate

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}.$$

Identifying Common Factors

It can be shown that if Q(x) is a polynomial and Q(c) = 0, then (x - c) is a factor of Q(x). Thus, if the numerator and denominator of a rational function of *x* are both zero at x = c, they have (x - c) as a common factor.

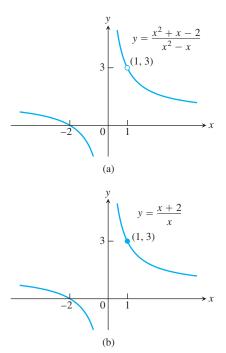


FIGURE 2.8 The graph of $f(x) = (x^2 + x - 2)/(x^2 - x)$ in part (a) is the same as the graph of g(x) = (x + 2)/x in part (b) except at x = 1, where *f* is undefined. The functions have the same limit as $x \rightarrow 1$ (Example 3).

Solution We cannot substitute x = 1 because it makes the denominator zero. We test the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x - 1) in common with the denominator. Canceling the (x - 1)'s gives a simpler fraction with the same values as the original for $x \neq 1$:

$$\frac{x^2 + x - 2}{x^2 - x} = \frac{(x - 1)(x + 2)}{x(x - 1)} = \frac{x + 2}{x}, \quad \text{if } x \neq 1.$$

Using the simpler fraction, we find the limit of these values as $x \rightarrow 1$ by substitution:

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{x + 2}{x} = \frac{1 + 2}{1} = 3.$$

See Figure 2.8.

EXAMPLE 4 Creating and Canceling a Common Factor

x

Evaluate

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}.$$

Solution This is the limit we considered in Example 10 of the preceding section. We cannot substitute x = 0, and the numerator and denominator have no obvious common factors. We can create a common factor by multiplying both numerator and denominator by the expression $\sqrt{x^2 + 100} + 10$ (obtained by changing the sign after the square root). The preliminary algebra rationalizes the numerator:

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \cdot \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{x^2 + 100 - 100}{x^2 (\sqrt{x^2 + 100} + 10)}$$
$$= \frac{x^2}{x^2 (\sqrt{x^2 + 100} + 10)}$$
Common factor x^2
$$= \frac{1}{\sqrt{x^2 + 100} + 10}$$
Cancel x^2 for $x \neq 0$

Therefore,

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100 - 10}}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10}$$
$$= \frac{1}{\sqrt{0^2 + 100} + 10}$$
$$= \frac{1}{20} = 0.05.$$

Denominator not 0 at x = 0; substitute

This calculation provides the correct answer to the ambiguous computer results in Example 10 of the preceding section.

The Sandwich Theorem

The following theorem will enable us to calculate a variety of limits in subsequent chapters. It is called the Sandwich Theorem because it refers to a function f whose values are

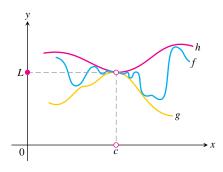
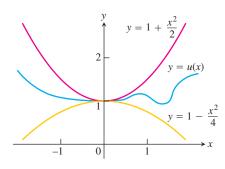


FIGURE 2.9 The graph of f is sandwiched between the graphs of g and h.



sandwiched between the values of two other functions g and h that have the same limit L at a point c. Being trapped between the values of two functions that approach L, the values of f must also approach L (Figure 2.9). You will find a proof in Appendix 2.

THEOREM 4 The Sandwich Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L.$$

Then $\lim_{x\to c} f(x) = L$.

The Sandwich Theorem is sometimes called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE 5 Applying the Sandwich Theorem

Given that

$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$$
 for all $x \ne 0$.

find $\lim_{x\to 0} u(x)$, no matter how complicated *u* is.

Solution Since

$$\lim_{x \to 0} (1 - (x^2/4)) = 1 \quad \text{and} \quad \lim_{x \to 0} (1 + (x^2/2)) = 1$$

the Sandwich Theorem implies that $\lim_{x\to 0} u(x) = 1$ (Figure 2.10).

EXAMPLE 6 More Applications of the Sandwich Theorem

(a) (Figure 2.11a). It follows from the definition of $\sin \theta$ that $-|\theta| \le \sin \theta \le |\theta|$ for all θ , and since $\lim_{\theta \to 0} (-|\theta|) = \lim_{\theta \to 0} |\theta| = 0$, we have

$$\lim_{\theta \to 0} \sin \theta = 0.$$

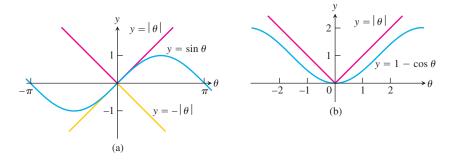


FIGURE 2.11 The Sandwich Theorem confirms that (a) $\lim_{\theta \to 0} \sin \theta = 0$ and (b) $\lim_{\theta \to 0} (1 - \cos \theta) = 0$ (Example 6).

FIGURE 2.10 Any function u(x) whose graph lies in the region between $y = 1 + (x^2/2)$ and $y = 1 - (x^2/4)$ has limit 1 as $x \rightarrow 0$ (Example 5).

(b) (Figure 2.11b). From the definition of $\cos \theta$, $0 \le 1 - \cos \theta \le |\theta|$ for all θ , and we have $\lim_{\theta \to 0} (1 - \cos \theta) = 0$ or

$$\lim_{\theta \to 0} \cos \theta = 1.$$

(c) For any function f(x), if $\lim_{x\to c} |f(x)| = 0$, then $\lim_{x\to c} f(x) = 0$. The argument: $-|f(x)| \le f(x) \le |f(x)|$ and -|f(x)| and |f(x)| have limit 0 as $x \to c$.

Another important property of limits is given by the next theorem. A proof is given in the next section.

THEOREM 5 If $f(x) \le g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x).$$

The assertion resulting from replacing the less than or equal to \leq inequality by the strict < inequality in Theorem 5 is false. Figure 2.11a shows that for $\theta \neq 0$, $-|\theta| < \sin \theta < |\theta|$, but in the limit as $\theta \rightarrow 0$, equality holds.

EXERCISES 2.2

Limit Calculations

Find the limits in Exercises 1–18.

1. $\lim_{x \to -7} (2x + 5)$	2. $\lim_{x \to 12} (10 - 3x)$
3. $\lim_{x \to 2} (-x^2 + 5x - 2)$	4. $\lim_{x \to -2} (x^3 - 2x^2 + 4x + 8)$
5. $\lim_{t \to 6} 8(t-5)(t-7)$	6. $\lim_{s \to 2/3} 3s(2s - 1)$
7. $\lim_{x \to 2} \frac{x+3}{x+6}$	8. $\lim_{x \to 5} \frac{4}{x-7}$
9. $\lim_{y \to -5} \frac{y^2}{5-y}$	10. $\lim_{y \to 2} \frac{y+2}{y^2+5y+6}$
11. $\lim_{x \to -1} 3(2x - 1)^2$	12. $\lim_{x \to -4} (x + 3)^{1984}$
13. $\lim_{y \to -3} (5 - y)^{4/3}$	14. $\lim_{z\to 0} (2z - 8)^{1/3}$
15. $\lim_{h \to 0} \frac{3}{\sqrt{3h+1}+1}$	16. $\lim_{h \to 0} \frac{5}{\sqrt{5h+4}+2}$
17. $\lim_{h \to 0} \frac{\sqrt{3h+1}-1}{h}$	18. $\lim_{h \to 0} \frac{\sqrt{5h+4}-2}{h}$

Find the limits in Exercises 19–36.

19. $\lim_{x \to 5} \frac{x-5}{x^2-25}$	20. $\lim_{x \to -3} \frac{x+3}{x^2+4x+3}$
21. $\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5}$	22. $\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$
23. $\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$	24. $\lim_{t \to -1} \frac{t^2 + 3t + 2}{t^2 - t - 2}$
25. $\lim_{x \to -2} \frac{-2x - 4}{x^3 + 2x^2}$	26. $\lim_{y \to 0} \frac{5y^3 + 8y^2}{3y^4 - 16y^2}$
27. $\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$	28. $\lim_{v \to 2} \frac{v^3 - 8}{v^4 - 16}$
29. $\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}$	30. $\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$
31. $\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$	32. $\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$
33. $\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$	34. $\lim_{x \to -2} \frac{x+2}{\sqrt{x^2+5}-3}$

35.
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$
 36.
$$\lim_{x \to 4} \frac{4 - x}{5 - \sqrt{x^2 + 9}}$$

Using Limit Rules

37. Suppose $\lim_{x\to 0} f(x) = 1$ and $\lim_{x\to 0} g(x) = -5$. Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

$$\lim_{x \to 0} \frac{2f(x) - g(x)}{(f(x) + 7)^{2/3}} = \frac{\lim_{x \to 0} (2f(x) - g(x))}{\lim_{x \to 0} (f(x) + 7)^{2/3}}$$
(a)

$$= \frac{\lim_{x \to 0} 2f(x) - \lim_{x \to 0} g(x)}{\left(\lim_{x \to 0} \left(f(x) + 7\right)\right)^{2/3}}$$
 (b)

$$= \frac{2 \lim_{x \to 0} f(x) - \lim_{x \to 0} g(x)}{\left(\lim_{x \to 0} f(x) + \lim_{x \to 0} 7\right)^{2/3}}$$
(c)
$$= \frac{(2)(1) - (-5)}{(1+7)^{2/3}} = \frac{7}{4}$$

38. Let $\lim_{x\to 1} h(x) = 5$, $\lim_{x\to 1} p(x) = 1$, and $\lim_{x\to 1} r(x) = 2$. Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

$$\lim_{x \to 1} \frac{\sqrt{5h(x)}}{p(x)(4 - r(x))} = \frac{\lim_{x \to 1} \sqrt{5h(x)}}{\lim_{x \to 1} (p(x)(4 - r(x)))}$$
(a)

$$= \frac{\sqrt{\lim_{x \to 1} 5h(x)}}{\left(\lim_{x \to 1} p(x)\right)\left(\lim_{x \to 1} \left(4 - r(x)\right)\right)}$$
(b)
$$= \frac{\sqrt{5\lim_{x \to 1} h(x)}}{\left(\lim_{x \to 1} p(x)\right)\left(\lim_{x \to 1} 4 - \lim_{x \to 1} r(x)\right)}$$
(c)
$$= \frac{\sqrt{(5)(5)}}{(1)(4 - 2)} = \frac{5}{2}$$

39. Suppose $\lim_{x\to c} f(x) = 5$ and $\lim_{x\to c} g(x) = -2$. Find **a.** $\lim_{x \to c} f(x)g(x)$ **b.** $\lim_{x \to c} 2f(x)g(x)$

c.
$$\lim_{x \to c} (f(x) + 3g(x))$$
 d. $\lim_{x \to c} \frac{f(x)}{f(x) - g(x)}$

40. Suppose $\lim_{x\to 4} f(x) = 0$ and $\lim_{x\to 4} g(x) = -3$. Find **a.** $\lim_{x \to 4} (g(x) + 3)$ **b.** $\lim_{x \to 4} xf(x)$ **c.** $\lim (g(x))^2$ **d.** $\lim_{x \to 4} \frac{g(x)}{f(x) - 1}$

c.
$$\lim_{x \to 4} (g(x))^2$$
 d. $\lim_{x \to 4} \frac{g}{f(x)}$

41. Suppose $\lim_{x\to b} f(x) = 7$ and $\lim_{x\to b} g(x) = -3$. Find

a.
$$\lim_{x \to b} (f(x) + g(x))$$

b.
$$\lim_{x \to b} f(x) \cdot g(x)$$

c.
$$\lim_{x \to b} 4g(x)$$

d.
$$\lim_{x \to b} f(x)/g(x)$$

42. Suppose that
$$\lim_{x \to -2} p(x) = 4$$
, $\lim_{x \to -2} r(x) = 0$, and $\lim_{x \to -2} s(x) = -3$. Find
a. $\lim_{x \to -2} (p(x) + r(x) + s(x))$
b. $\lim_{x \to -2} p(x) \cdot r(x) \cdot s(x)$
c. $\lim_{x \to -2} (-4p(x) + 5r(x))/s(x)$

Limits of Average Rates of Change

Because of their connection with secant lines, tangents, and instantaneous rates, limits of the form

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

occur frequently in calculus. In Exercises 43-48, evaluate this limit for the given value of x and function f.

43.
$$f(x) = x^2$$
, $x = 1$
44. $f(x) = x^2$, $x = -2$
45. $f(x) = 3x - 4$, $x = 2$
46. $f(x) = 1/x$, $x = -2$
47. $f(x) = \sqrt{x}$, $x = 7$
48. $f(x) = \sqrt{3x + 1}$, $x = 0$

Using the Sandwich Theorem

49. If $\sqrt{5 - 2x^2} \le f(x) \le \sqrt{5 - x^2}$ for $-1 \le x \le 1$, find $\lim_{x\to 0} f(x)$.

- **50.** If $2 x^2 \le g(x) \le 2 \cos x$ for all *x*, find $\lim_{x \to 0} g(x)$.
- 51. a. It can be shown that the inequalities

$$1 - \frac{x^2}{6} < \frac{x \sin x}{2 - 2 \cos x} < 1$$

hold for all values of x close to zero. What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{x \sin x}{2 - 2 \cos x}?$$

Give reasons for your answer.

b. Graph

$$y = 1 - (x^2/6), y = (x \sin x)/(2 - 2 \cos x), \text{ and } y = 1$$

together for $-2 \le x \le 2$. Comment on the behavior of the graphs as $x \rightarrow 0$.

52. a. Suppose that the inequalities

$$\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < \frac{1}{2}$$

hold for values of x close to zero. (They do, as you will see in Section 11.9.) What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}?$$

Give reasons for your answer.

b. Graph the equations $y = (1/2) - (x^2/24)$, $y = (1 - \cos x)/x^2$, and y = 1/2 together for $-2 \le x \le 2$. Comment on the behavior of the graphs as $x \rightarrow 0$.

Theory and Examples

- **53.** If $x^4 \le f(x) \le x^2$ for x in [-1, 1] and $x^2 \le f(x) \le x^4$ for x < -1 and x > 1, at what points c do you automatically know $\lim_{x\to c} f(x)$? What can you say about the value of the limit at these points?
- **54.** Suppose that $g(x) \le f(x) \le h(x)$ for all $x \ne 2$ and suppose that

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} h(x) = -5.$$

Can we conclude anything about the values of f, g, and h at x = 2? Could f(2) = 0? Could $\lim_{x\to 2} f(x) = 0$? Give reasons for your answers.

55. If
$$\lim_{x \to 4} \frac{f(x) - 5}{x - 2} = 1$$
, find $\lim_{x \to 4} f(x)$.

56. If
$$\lim_{x \to -2} \frac{f(x)}{x^2} = 1$$
, find

a.
$$\lim_{x \to -2} f(x)$$

b. $\lim_{x \to -2} \frac{f(x)}{x}$
57. a. If $\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 3$, find $\lim_{x \to 2} f(x)$.
b. If $\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 4$, find $\lim_{x \to 2} f(x)$.
58. If $\lim_{x \to 0} \frac{f(x)}{x^2} = 1$, find

a. $\lim_{x\to 0}$

$$f(x)$$
 b. $\lim_{x \to 0} \frac{f(x)}{x}$

- **59.** a. Graph $g(x) = x \sin(1/x)$ to estimate $\lim_{x\to 0} g(x)$, zooming in on the origin as necessary.
 - **b.** Confirm your estimate in part (a) with a proof.
- **60.** a. Graph $h(x) = x^2 \cos(1/x^3)$ to estimate $\lim_{x\to 0} h(x)$, zooming in on the origin as necessary.
 - **b.** Confirm your estimate in part (a) with a proof.

2.3

The Precise Definition of a Limit

Now that we have gained some insight into the limit concept, working intuitively with the informal definition, we turn our attention to its precise definition. We replace vague phrases like "gets arbitrarily close to" in the informal definition with specific conditions that can be applied to any particular example. With a precise definition we will be able to prove conclusively the limit properties given in the preceding section, and we can establish other particular limits important to the study of calculus.

To show that the limit of f(x) as $x \to x_0$ equals the number *L*, we need to show that the gap between f(x) and *L* can be made "as small as we choose" if *x* is kept "close enough" to x_0 . Let us see what this would require if we specified the size of the gap between f(x) and *L*.

EXAMPLE 1 A Linear Function

Consider the function y = 2x - 1 near $x_0 = 4$. Intuitively it is clear that y is close to 7 when x is close to 4, so $\lim_{x\to 4} (2x - 1) = 7$. However, how close to $x_0 = 4$ does x have to be so that y = 2x - 1 differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of x is |y - 7| < 2? To find the answer we first express |y - 7| in terms of x:

$$|y - 7| = |(2x - 1) - 7| = |2x - 8|.$$

The question then becomes: what values of x satisfy the inequality |2x - 8| < 2? To find out, we solve the inequality:

$$|2x - 8| < 2$$

-2 < 2x - 8 < 2
6 < 2x < 10
3 < x < 5
-1 < x - 4 < 1.

Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$ (Figure 2.12).

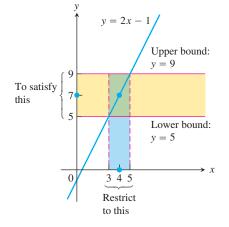


FIGURE 2.12 Keeping *x* within 1 unit of $x_0 = 4$ will keep *y* within 2 units of $y_0 = 7$ (Example 1).

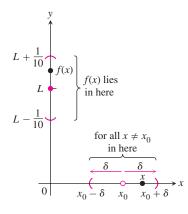


FIGURE 2.13 How should we define $\delta > 0$ so that keeping *x* within the interval $(x_0 - \delta, x_0 + \delta)$ will keep f(x) within the interval $\left(L - \frac{1}{10}, L + \frac{1}{10}\right)$?

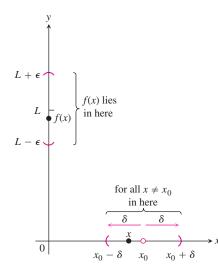


FIGURE 2.14 The relation of δ and ϵ in the definition of limit.

In the previous example we determined how close x must be to a particular value x_0 to ensure that the outputs f(x) of some function lie within a prescribed interval about a limit value L. To show that the limit of f(x) as $x \rightarrow x_0$ actually equals L, we must be able to show that the gap between f(x) and L can be made less than *any prescribed error*, no matter how small, by holding x close enough to x_0 .

Definition of Limit

Suppose we are watching the values of a function f(x) as x approaches x_0 (without taking on the value of x_0 itself). Certainly we want to be able to say that f(x) stays within one-tenth of a unit of L as soon as x stays within some distance δ of x_0 (Figure 2.13). But that in itself is not enough, because as x continues on its course toward x_0 , what is to prevent f(x) from jittering about within the interval from L - (1/10) to L + (1/10) without tending toward L?

We can be told that the error can be no more than 1/100 or 1/100 or 1/100,000. Each time, we find a new δ -interval about x_0 so that keeping x within that interval satisfies the new error tolerance. And each time the possibility exists that f(x) jitters away from L at some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel between a skeptic and a scholar. The skeptic presents ϵ -challenges to prove that the limit does not exist or, more precisely, that there is room for doubt, and the scholar answers every challenge with a δ -interval around x_0 .

How do we stop this seemingly endless series of challenges and responses? By proving that for every error tolerance ϵ that the challenger can produce, we can find, calculate, or conjure a matching distance δ that keeps x "close enough" to x_0 to keep f(x) within that tolerance of L (Figure 2.14). This leads us to the precise definition of a limit.

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the **limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L$$

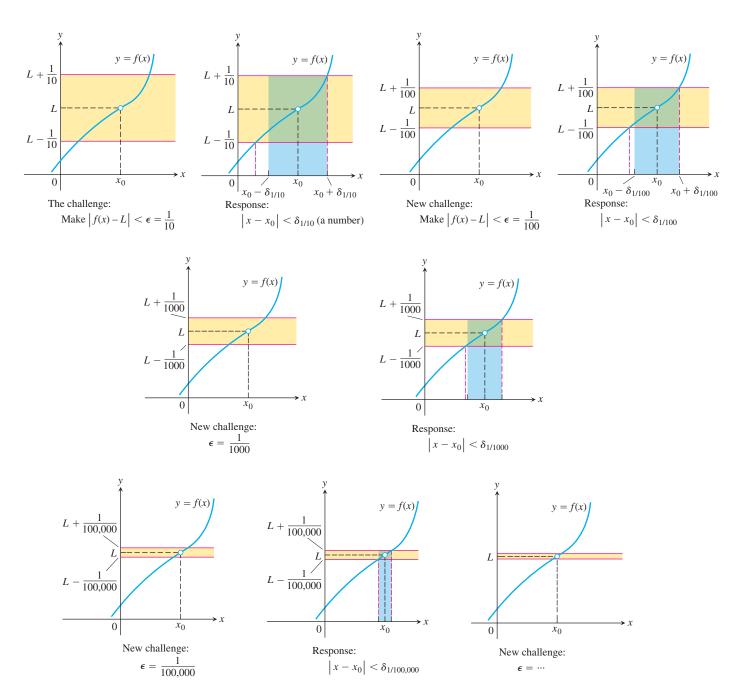
if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all *x*,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$$

One way to think about the definition is to suppose we are machining a generator shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must be satisfied with a diameter f(x) somewhere between $L - \epsilon$ and $L + \epsilon$. The δ is the measure of how accurate our control setting for x must be to guarantee this degree of accuracy in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we may have to adjust δ . That is, the value of δ , how tight our control setting must be, depends on the value of ϵ , the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it enables us to verify that a suspected limit is correct. The following examples show how the



definition can be used to verify limit statements for specific functions. (The first two examples correspond to parts of Examples 7 and 8 in Section 2.1.) However, the real purpose of the definition is not to do calculations like this, but rather to prove general theorems so that the calculation of specific limits can be simplified.

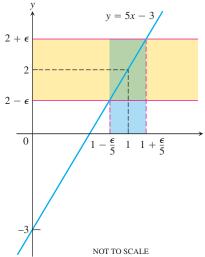
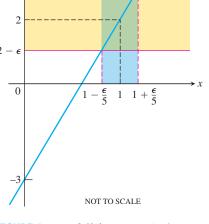


FIGURE 2.15 If f(x) = 5x - 3, then $0 < |x - 1| < \epsilon/5$ guarantees that $|f(x) - 2| < \epsilon$ (Example 2).



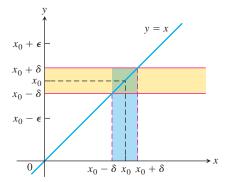


FIGURE 2.16 For the function f(x) = x, we find that $0 < |x - x_0| < \delta$ will guarantee $|f(x) - x_0| < \epsilon$ whenever $\delta \leq \epsilon$ (Example 3a).

EXAMPLE 2 Testing the Definition

Show that

$$\lim_{x \to 1} \left(5x - 3 \right) = 2$$

Set $x_0 = 1$, f(x) = 5x - 3, and L = 2 in the definition of limit. For any given Solution $\epsilon > 0$, we have to find a suitable $\delta > 0$ so that if $x \neq 1$ and x is within distance δ of $x_0 = 1$, that is, whenever

$$0 < |x - 1| < \delta,$$

it is true that f(x) is within distance ϵ of L = 2, so

$$|f(x) - 2| < \epsilon.$$

We find δ by working backward from the ϵ -inequality:

$$|(5x - 3) - 2| = |5x - 5| < \epsilon$$

$$5|x - 1| < \epsilon$$

$$|x - 1| < \epsilon/5$$

Thus, we can take $\delta = \epsilon/5$ (Figure 2.15). If $0 < |x - 1| < \delta = \epsilon/5$, then

$$|(5x-3)-2| = |5x-5| = 5|x-1| < 5(\epsilon/5) = \epsilon,$$

which proves that $\lim_{x\to 1}(5x - 3) = 2$.

The value of $\delta = \epsilon/5$ is not the only value that will make $0 < |x - 1| < \delta$ imply $|5x - 5| < \epsilon$. Any smaller positive δ will do as well. The definition does not ask for a "best" positive δ , just one that will work.

Limits of the Identity and Constant Functions **EXAMPLE 3**

Prove:

(a) $\lim_{x \to x_0} x = x_0$ **(b)** $\lim_{x \to x_0} k = k$ (k constant).

Solution

(a) Let $\epsilon > 0$ be given. We must find $\delta > 0$ such that for all x

 $0 < |x - x_0| < \delta$ implies $|x - x_0| < \epsilon$.

The implication will hold if δ equals ϵ or any smaller positive number (Figure 2.16). This proves that $\lim_{x\to x_0} x = x_0$.

(b) Let $\epsilon > 0$ be given. We must find $\delta > 0$ such that for all x

 $0 < |x - x_0| < \delta$ implies $|k - k| < \epsilon$.

Since k - k = 0, we can use any positive number for δ and the implication will hold (Figure 2.17). This proves that $\lim_{x\to x_0} k = k$.

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about x_0 for which |f(x) - L| was less than ϵ was symmetric about x_0 and we could take δ to be half the length of that interval. When

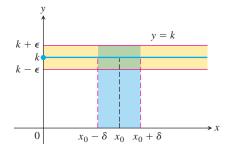


FIGURE 2.17 For the function f(x) = k, we find that $|f(x) - k| < \epsilon$ for any positive δ (Example 3b).

such symmetry is absent, as it usually is, we can take δ to be the distance from x_0 to the interval's *nearer* endpoint.

EXAMPLE 4 Finding Delta Algebraically

For the limit $\lim_{x\to 5} \sqrt{x-1} = 2$, find a $\delta > 0$ that works for $\epsilon = 1$. That is, find a $\delta > 0$ such that for all x

$$0 < |x-5| < \delta \qquad \Rightarrow \qquad |\sqrt{x-1}-2| < 1.$$

Solution We organize the search into two steps, as discussed below.

1. Solve the inequality $|\sqrt{x-1} - 2| < 1$ to find an interval containing $x_0 = 5$ on which the inequality holds for all $x \neq x_0$.

$$|\sqrt{x-1}-2| < 1$$

-1 < $\sqrt{x-1}-2 < 1$
1 < $\sqrt{x-1} < 3$
1 < x - 1 < 9
2 < x < 10

The inequality holds for all x in the open interval (2, 10), so it holds for all $x \neq 5$ in this interval as well (see Figure 2.19).

Find a value of δ > 0 to place the centered interval 5 − δ < x < 5 + δ (centered at x₀ = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10) is 3 (Figure 2.18). If we take δ = 3 or any smaller positive number, then the inequality 0 < |x − 5| < δ will automatically place x between 2 and 10 to make |√x − 1 − 2| < 1 (Figure 2.19)

$$0 < |x - 5| < 3 \implies |\sqrt{x - 1 - 2}| < 1$$

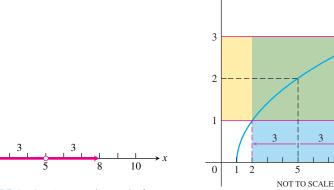
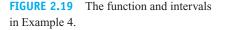


FIGURE 2.18 An open interval of radius 3 about $x_0 = 5$ will lie inside the open interval (2, 10).



 $y = \sqrt{x}$

10

8

How to Find Algebraically a δ for a Given *f*, *L*, x_0 , and $\epsilon > 0$

The process of finding a $\delta > 0$ such that for all *x*

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$$

can be accomplished in two steps.

- **1.** Solve the inequality $|f(x) L| < \epsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- **2.** Find a value of $\delta > 0$ that places the open interval $(x_0 \delta, x_0 + \delta)$ centered at x_0 inside the interval (a, b). The inequality $|f(x) L| < \epsilon$ will hold for all $x \neq x_0$ in this δ -interval.

EXAMPLE 5 Finding Delta Algebraically

Prove that $\lim_{x\to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & x \neq 2\\ 1, & x = 2. \end{cases}$$

Solution Our task is to show that given $\epsilon > 0$ there exists a $\delta > 0$ such that for all x

$$0 < |x-2| < \delta \quad \Rightarrow \quad |f(x)-4| < \epsilon.$$

1. Solve the inequality $|f(x) - 4| < \epsilon$ to find an open interval containing $x_0 = 2$ on which the inequality holds for all $x \neq x_0$.

For
$$x \neq x_0 = 2$$
, we have $f(x) = x^2$, and the inequality to solve is $|x^2 - 4| < \epsilon$:

$$|x^{2} - 4| < \epsilon$$

$$-\epsilon < x^{2} - 4 < \epsilon$$

$$4 - \epsilon < x^{2} < 4 + \epsilon$$

$$\sqrt{4 - \epsilon} < |x| < \sqrt{4 + \epsilon}$$

$$\sqrt{4 - \epsilon} < x < \sqrt{4 + \epsilon}.$$
 Assumes $\epsilon < 4$; see below.
An open interval about $x_{0} = 2$
that solves the inequality.

The inequality $|f(x) - 4| < \epsilon$ holds for all $x \neq 2$ in the open interval $(\sqrt{4 - \epsilon}, \sqrt{4 + \epsilon})$ (Figure 2.20).

2. Find a value of $\delta > 0$ that places the centered interval $(2 - \delta, 2 + \delta)$ inside the interval $(\sqrt{4 - \epsilon}, \sqrt{4 + \epsilon})$.

Take δ to be the distance from $x_0 = 2$ to the nearer endpoint of $(\sqrt{4-\epsilon}, \sqrt{4+\epsilon})$. In other words, take $\delta = \min \{2 - \sqrt{4-\epsilon}, \sqrt{4+\epsilon} - 2\}$, the *minimum* (the smaller) of the two numbers $2 - \sqrt{4-\epsilon}$ and $\sqrt{4+\epsilon} - 2$. If δ has this or any smaller positive value, the inequality $0 < |x-2| < \delta$ will automatically place x between $\sqrt{4-\epsilon}$ and $\sqrt{4+\epsilon}$ to make $|f(x) - 4| < \epsilon$. For all x,

$$0 < |x-2| < \delta \implies |f(x)-4| < \epsilon$$

This completes the proof.

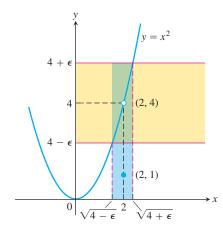


FIGURE 2.20 An interval containing x = 2 so that the function in Example 5 satisfies $|f(x) - 4| < \epsilon$.

Why was it all right to assume $\epsilon < 4$? Because, in finding a δ such that for all $x, 0 < |x - 2| < \delta$ implied $|f(x) - 4| < \epsilon < 4$, we found a δ that would work for any larger ϵ as well.

Finally, notice the freedom we gained in letting $\delta = \min \{2 - \sqrt{4 - \epsilon}, \sqrt{4 + \epsilon} - 2\}$. We did not have to spend time deciding which, if either, number was the smaller of the two. We just let δ represent the smaller and went on to finish the argument.

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as those in the preceding examples. Rather we appeal to general theorems about limits, in particular the theorems of Section 2.2. The definition is used to prove these theorems (Appendix 2). As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6 Proving the Rule for the Limit of a Sum

Given that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, prove that

$$\lim_{x \to c} \left(f(x) + g(x) \right) = L + M.$$

Solution Let $\epsilon > 0$ be given. We want to find a positive number δ such that for all x

$$0 < |x - c| < \delta \implies |f(x) + g(x) - (L + M)| < \epsilon.$$

Regrouping terms, we get

$$|f(x) + g(x) - (L + M)| = |(f(x) - L) + (g(x) - M)|$$

$$\leq |f(x) - L| + |g(x) - M|.$$
Triangle Inequality:
 $|a + b| \leq |a| + |b|$

Since $\lim_{x\to c} f(x) = L$, there exists a number $\delta_1 > 0$ such that for all x

$$0 < |x - c| < \delta_1 \implies |f(x) - L| < \epsilon/2.$$

Similarly, since $\lim_{x\to c} g(x) = M$, there exists a number $\delta_2 > 0$ such that for all x

$$0 < |x - c| < \delta_2 \quad \Rightarrow \quad |g(x) - M| < \epsilon/2$$

Let $\delta = \min \{\delta_1, \delta_2\}$, the smaller of δ_1 and δ_2 . If $0 < |x - c| < \delta$ then $|x - c| < \delta_1$, so $|f(x) - L| < \epsilon/2$, and $|x - c| < \delta_2$, so $|g(x) - M| < \epsilon/2$. Therefore

$$|f(x) + g(x) - (L + M)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that $\lim_{x\to c} (f(x) + g(x)) = L + M$.

Let's also prove Theorem 5 of Section 2.2.

EXAMPLE 7 Given that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, and that $f(x) \le g(x)$ for all x in an open interval containing c (except possibly c itself), prove that $L \le M$.

Solution We use the method of proof by contradiction. Suppose, on the contrary, that L > M. Then by the limit of a difference property in Theorem 1,

$$\lim_{x \to c} \left(g(x) - f(x) \right) = M - L.$$

Therefore, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|(g(x) - f(x)) - (M - L)| < \epsilon$$
 whenever $0 < |x - c| < \delta$.

Since L - M > 0 by hypothesis, we take $\epsilon = L - M$ in particular and we have a number $\delta > 0$ such that

$$|(g(x) - f(x)) - (M - L)| < L - M$$
 whenever $0 < |x - c| < \delta$.

Since $a \leq |a|$ for any number *a*, we have

$$(g(x) - f(x)) - (M - L) < L - M$$
 whenever $0 < |x - c| < \delta$

which simplifies to

$$g(x) < f(x)$$
 whenever $0 < |x - c| < \delta$.

But this contradicts $f(x) \le g(x)$. Thus the inequality L > M must be false. Therefore $L \le M$.

EXERCISES 2.3

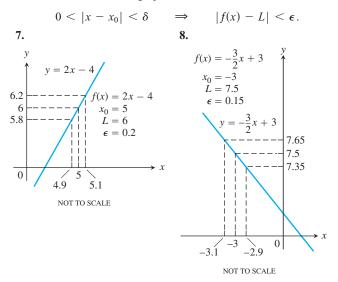
Centering Intervals About a Point

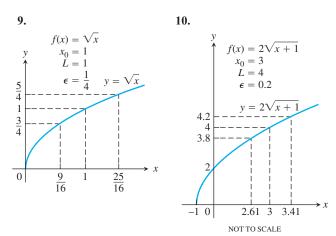
In Exercises 1–6, sketch the interval (a, b) on the *x*-axis with the point x_0 inside. Then find a value of $\delta > 0$ such that for all $x, 0 < |x - x_0| < \delta \implies a < x < b$.

1. a = 1, b = 7, $x_0 = 5$ **2.** a = 1, b = 7, $x_0 = 2$ **3.** a = -7/2, b = -1/2, $x_0 = -3$ **4.** a = -7/2, b = -1/2, $x_0 = -3/2$ **5.** a = 4/9, b = 4/7, $x_0 = 1/2$ **6.** a = 2.7591, b = 3.2391, $x_0 = 3$

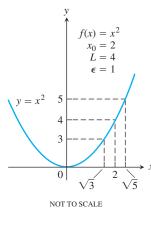
Finding Deltas Graphically

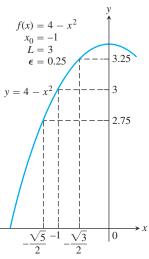
In Exercises 7–14, use the graphs to find a $\delta > 0$ such that for all x



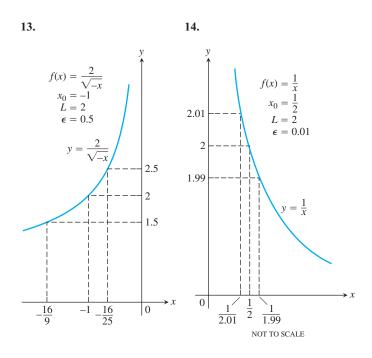


11.





NOT TO SCALE



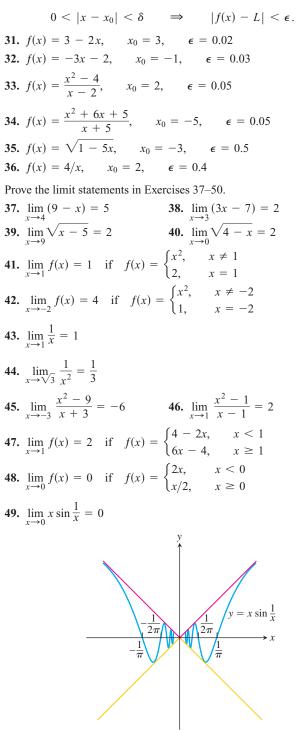
Finding Deltas Algebraically

Each of Exercises 15–30 gives a function f(x) and numbers L, x_0 and $\epsilon > 0$. In each case, find an open interval about x_0 on which the inequality $|f(x) - L| < \epsilon$ holds. Then give a value for $\delta > 0$ such that for all x satisfying $0 < |x - x_0| < \delta$ the inequality $|f(x) - L| < \epsilon$ holds.

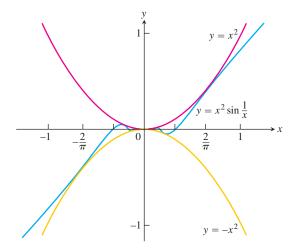
15.
$$f(x) = x + 1$$
, $L = 5$, $x_0 = 4$, $\epsilon = 0.01$
16. $f(x) = 2x - 2$, $L = -6$, $x_0 = -2$, $\epsilon = 0.02$
17. $f(x) = \sqrt{x + 1}$, $L = 1$, $x_0 = 0$, $\epsilon = 0.1$
18. $f(x) = \sqrt{x}$, $L = 1/2$, $x_0 = 1/4$, $\epsilon = 0.1$
19. $f(x) = \sqrt{19 - x}$, $L = 3$, $x_0 = 10$, $\epsilon = 1$
20. $f(x) = \sqrt{x - 7}$, $L = 4$, $x_0 = 23$, $\epsilon = 1$
21. $f(x) = 1/x$, $L = 1/4$, $x_0 = 4$, $\epsilon = 0.05$
22. $f(x) = x^2$, $L = 3$, $x_0 = \sqrt{3}$, $\epsilon = 0.1$
23. $f(x) = x^2$, $L = 4$, $x_0 = -2$, $\epsilon = 0.5$
24. $f(x) = 1/x$, $L = -1$, $x_0 = -1$, $\epsilon = 0.1$
25. $f(x) = x^2 - 5$, $L = 11$, $x_0 = 4$, $\epsilon = 1$
26. $f(x) = 120/x$, $L = 5$, $x_0 = 24$, $\epsilon = 1$
27. $f(x) = mx$, $m > 0$, $L = 2m$, $x_0 = 2$, $\epsilon = 0.03$
28. $f(x) = mx + b$, $m > 0$, $L = (m/2) + b$, $x_0 = 1/2$, $\epsilon = c > 0$
30. $f(x) = mx + b$, $m > 0$, $L = m + b$, $x_0 = 1$, $\epsilon = 0.05$

More on Formal Limits

Each of Exercises 31–36 gives a function f(x), a point x_0 , and a positive number ϵ . Find $L = \lim_{x \to x_0} f(x)$. Then find a number $\delta > 0$ such that for all x



50.
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$



Theory and Examples

- **51.** Define what it means to say that $\lim_{x \to \infty} g(x) = k$.
- 52. Prove that $\lim_{x \to c} f(x) = L$ if and only if $\lim_{h \to 0} f(h + c) = L$.
- **53.** A wrong statement about limits Show by example that the following statement is wrong.

The number *L* is the limit of f(x) as *x* approaches x_0 if f(x) gets closer to *L* as *x* approaches x_0 .

Explain why the function in your example does not have the given value of *L* as a limit as $x \rightarrow x_0$.

54. Another wrong statement about limits Show by example that the following statement is wrong.

The number *L* is the limit of f(x) as *x* approaches x_0 if, given any $\epsilon > 0$, there exists a value of *x* for which $|f(x) - L| < \epsilon$.

Explain why the function in your example does not have the given value of *L* as a limit as $x \rightarrow x_0$.

- **T** 55. Grinding engine cylinders Before contracting to grind engine cylinders to a cross-sectional area of 9 in², you need to know how much deviation from the ideal cylinder diameter of $x_0 = 3.385$ in. you can allow and still have the area come within 0.01 in² of the required 9 in². To find out, you let $A = \pi(x/2)^2$ and look for the interval in which you must hold x to make $|A 9| \le 0.01$. What interval do you find?
 - **56.** Manufacturing electrical resistors Ohm's law for electrical circuits like the one shown in the accompanying figure states that V = RI. In this equation, V is a constant voltage, I is the current in amperes, and R is the resistance in ohms. Your firm has been asked to supply the resistors for a circuit in which V will be 120

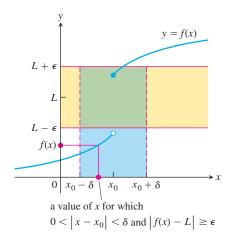
volts and *I* is to be 5 ± 0.1 amp. In what interval does *R* have to lie for *I* to be within 0.1 amp of the value $I_0 = 5$?

When Is a Number *L* Not the Limit of f(x) as $x \rightarrow x_0$?

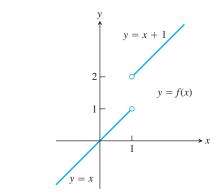
We can prove that $\lim_{x\to x_0} f(x) \neq L$ by providing an $\epsilon > 0$ such that no possible $\delta > 0$ satisfies the condition

For all x, $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon$. We accomplish this for our candidate ϵ by showing that for each $\delta > 0$ there exists a value of x such that

$$0 < |x - x_0| < \delta$$
 and $|f(x) - L| \ge \epsilon$.



57. Let
$$f(x) = \begin{cases} x, & x < 1 \\ x + 1, & x > 1. \end{cases}$$

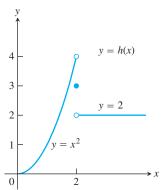


a. Let $\epsilon = 1/2$. Show that no possible $\delta > 0$ satisfies the following condition:

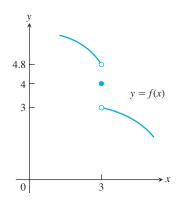
For all x, $0 < |x - 1| < \delta \implies |f(x) - 2| < 1/2$. That is, for each $\delta > 0$ show that there is a value of x such that $0 < |x - 1| < \delta$ and $|f(x) - 2| \ge 1/2$. This will show that $\lim_{x \to 1} f(x) \ne 2$.

- **b.** Show that $\lim_{x\to 1} f(x) \neq 1$.
- c. Show that $\lim_{x\to 1} f(x) \neq 1.5$.

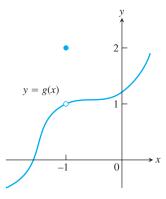
58. Let $h(x) = \begin{cases} x^2, & x < 2 \\ 3, & x = 2 \\ 2, & x > 2. \end{cases}$



- **a.** $\lim_{x \to 2} h(x) \neq 4$ **b.** $\lim_{x \to 2} h(x) \neq 3$ **c.** $\lim_{x \to 2} h(x) \neq 2$
- **59.** For the function graphed here, explain why
 - a. $\lim_{x \to 3} f(x) \neq 4$ b. $\lim_{x \to 3} f(x) \neq 4.8$ c. $\lim_{x \to 3} f(x) \neq 3$



- **60.** a. For the function graphed here, show that $\lim_{x\to -1} g(x) \neq 2$.
 - **b.** Does $\lim_{x\to -1} g(x)$ appear to exist? If so, what is the value of the limit? If not, why not?



COMPUTER EXPLORATIONS

In Exercises 61–66, you will further explore finding deltas graphically. Use a CAS to perform the following steps:

- **a.** Plot the function y = f(x) near the point x_0 being approached.
- **b.** Guess the value of the limit *L* and then evaluate the limit symbolically to see if you guessed correctly.
- **c.** Using the value $\epsilon = 0.2$, graph the banding lines $y_1 = L \epsilon$ and $y_2 = L + \epsilon$ together with the function f near x_0 .
- **d.** From your graph in part (c), estimate a $\delta > 0$ such that for all *x*

 $0 < |x - x_0| < \delta \implies |f(x) - L| < \epsilon.$

Test your estimate by plotting f, y_1 , and y_2 over the interval $0 < |x - x_0| < \delta$. For your viewing window use $x_0 - 2\delta \le x \le x_0 + 2\delta$ and $L - 2\epsilon \le y \le L + 2\epsilon$. If any function values lie outside the interval $[L - \epsilon, L + \epsilon]$, your choice of δ was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for $\epsilon = 0.1, 0.05$, and 0.001.

61.
$$f(x) = \frac{x^4 - 81}{x - 3}, \quad x_0 = 3$$

62. $f(x) = \frac{5x^3 + 9x^2}{2x^5 + 3x^2}, \quad x_0 = 0$

63.
$$f(x) = \frac{3112x}{3x}, \quad x_0 = 0$$

64.
$$f(x) = \frac{x(1 - \cos x)}{x - \sin x}, \quad x_0 = 0$$

65.
$$f(x) = \frac{\sqrt[3]{x-1}}{x-1}, \quad x_0 = 1$$

66. $f(x) = \frac{3x^2 - (7x+1)\sqrt{x+5}}{x-1}, \quad x_0 = 1$

One-Sided Limits and Limits at Infinity

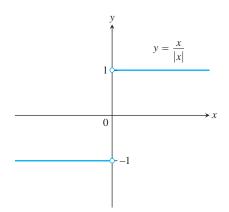


FIGURE 2.21 Different right-hand and left-hand limits at the origin.

In this section we extend the limit concept to *one-sided limits*, which are limits as x approaches the number x_0 from the left-hand side (where $x < x_0$) or the right-hand side ($x > x_0$) only. We also analyze the graphs of certain rational functions as well as other functions with limit behavior as $x \rightarrow \pm \infty$.

One-Sided Limits

To have a limit *L* as *x* approaches *c*, a function *f* must be defined on *both sides* of *c* and its values f(x) must approach *L* as *x* approaches *c* from either side. Because of this, ordinary limits are called **two-sided**.

If f fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a limit if the approach is only from one side. If the approach is from the right, the limit is a **right-hand limit**. From the left, it is a **left-hand limit**.

The function f(x) = x/|x| (Figure 2.21) has limit 1 as x approaches 0 from the right, and limit -1 as x approaches 0 from the left. Since these one-sided limit values are not the same, there is no single number that f(x) approaches as x approaches 0. So f(x) does not have a (two-sided) limit at 0.

Intuitively, if f(x) is defined on an interval (c, b), where c < b, and approaches arbitrarily close to L as x approaches c from within that interval, then f has **right-hand limit** L at c. We write

$$\lim_{x \to c^+} f(x) = L$$

The symbol " $x \rightarrow c^+$ " means that we consider only values of x greater than c.

Similarly, if f(x) is defined on an interval (a, c), where a < c and approaches arbitrarily close to M as x approaches c from within that interval, then f has **left-hand limit** M at c. We write

$$\lim_{x \to c^-} f(x) = M$$

The symbol " $x \rightarrow c^{-}$ " means that we consider only x values less than c.

These informal definitions are illustrated in Figure 2.22. For the function f(x) = x/|x| in Figure 2.21 we have

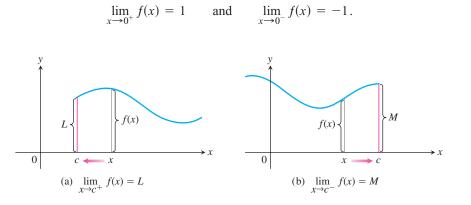


FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x approaches c.

EXAMPLE 1 One-Sided Limits for a Semicircle

The domain of $f(x) = \sqrt{4 - x^2}$ is [-2, 2]; its graph is the semicircle in Figure 2.23. We have

$$\lim_{x \to -2^+} \sqrt{4 - x^2} = 0 \quad \text{and} \quad \lim_{x \to 2^-} \sqrt{4 - x^2} = 0.$$

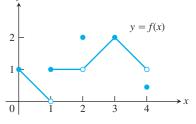
The function does not have a left-hand limit at x = -2 or a right-hand limit at x = 2. It does not have ordinary two-sided limits at either -2 or 2.

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The righthand limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems for limits of polynomials and rational functions hold with one-sided limits, as does the Sandwich Theorem and Theorem 5. One-sided limits are related to limits in the following way.

THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \quad \iff \quad \lim_{x \to c^-} f(x) = L \quad \text{and} \quad \lim_{x \to c^+} f(x) = L.$$



 $v = \sqrt{4 - x^2}$

0

FIGURE 2.23 $\lim_{x \to 2^{-}} \sqrt{4 - x^2} = 0$ and

 $\lim_{x \to 0} \sqrt{4 - x^2} = 0$ (Example 1).

FIGURE 2.24 Graph of the function in Example 2.

EXAMPLE 2 Limits of the Function Graphed in Figure 2.24

At $x = 0$:	$\lim_{x\to 0^+} f(x) = 1,$
	$\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0} f(x)$ do not exist. The function is not defined to the left of $x = 0$.
At $x = 1$:	$\lim_{x \to 1^{-}} f(x) = 0 \text{ even though } f(1) = 1,$
	$\lim_{x\to 1^+} f(x) = 1,$
	$\lim_{x\to 1} f(x)$ does not exist. The right- and left-hand limits are not equal.
At $x = 2$:	$\lim_{x\to 2^-} f(x) = 1,$
	$\lim_{x\to 2^+} f(x) = 1,$
	$\lim_{x\to 2} f(x) = 1$ even though $f(2) = 2$.
At $x = 3$:	$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} f(x) = f(3) = 2.$
At $x = 4$:	$\lim_{x \to 4^{-}} f(x) = 1 \text{ even though } f(4) \neq 1,$
	$\lim_{x\to 4^+} f(x)$ and $\lim_{x\to 4} f(x)$ do not exist. The function is not defined to the right of $x = 4$.

At every other point *c* in [0, 4], f(x) has limit f(c).

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.

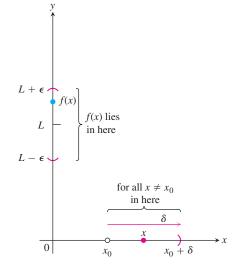


FIGURE 2.25 Intervals associated with the definition of right-hand limit.

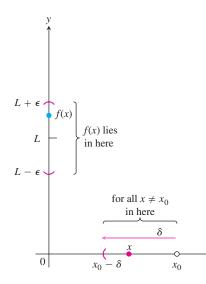
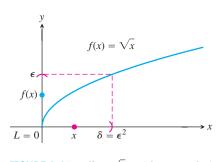


FIGURE 2.26 Intervals associated with the definition of left-hand limit.



We say that f(x) has **right-hand limit** *L* at x_0 , and write

DEFINITIONS

$$\lim_{x \to x_0^+} f(x) = L \qquad \text{(See Figure 2.25)}$$

Right-Hand, Left-Hand Limits

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all *x*

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \epsilon.$$

We say that f has left-hand limit L at x_0 , and write

$$\lim_{x \to x^{-}} f(x) = L \qquad \text{(See Figure 2.26)}$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all *x*

$$x_0 - \delta < x < x_0 \implies |f(x) - L| < \epsilon.$$

Prove that

$$\lim_{x \to 0^+} \sqrt{x} = 0$$

Solution Let $\epsilon > 0$ be given. Here $x_0 = 0$ and L = 0, so we want to find a $\delta > 0$ such that for all x

$$0 < x < \delta \qquad \Rightarrow \qquad |\sqrt{x} - 0| < \epsilon,$$

or

or

$$0 < x < \delta \qquad \Rightarrow \qquad \sqrt{x} < \epsilon.$$

Squaring both sides of this last inequality gives

$$x < \epsilon^2$$
 if $0 < x < \delta$.

If we choose $\delta = \epsilon^2$ we have

$$0 < x < \delta = \epsilon^2 \qquad \Rightarrow \qquad \sqrt{x} < \epsilon,$$

$$0 < x < \epsilon^2 \quad \Rightarrow \quad |\sqrt{x} - 0| < \epsilon.$$

According to the definition, this shows that $\lim_{x\to 0^+} \sqrt{x} = 0$ (Figure 2.27).

The functions examined so far have had some kind of limit at each point of interest. In general, that need not be the case.

EXAMPLE 4 A Function Oscillating Too Much

Show that $y = \sin(1/x)$ has no limit as x approaches zero from either side (Figure 2.28).

Solution As x approaches zero, its reciprocal, 1/x, grows without bound and the values of sin (1/x) cycle repeatedly from -1 to 1. There is no single number L that the function's

FIGURE 2.27 $\lim_{x \to 0^+} \sqrt{x} = 0$ in Example 3.

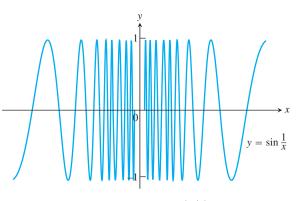
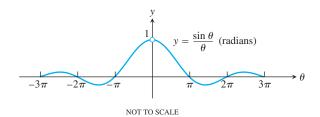


FIGURE 2.28 The function $y = \sin(1/x)$ has neither a right-hand nor a left-hand limit as *x* approaches zero (Example 4).

values stay increasingly close to as x approaches zero. This is true even if we restrict x to positive values or to negative values. The function has neither a right-hand limit nor a left-hand limit at x = 0.

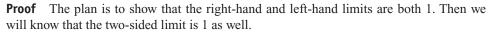
Limits Involving $(\sin \theta)/\theta$

A central fact about $(\sin \theta)/\theta$ is that in radian measure its limit as $\theta \rightarrow 0$ is 1. We can see this in Figure 2.29 and confirm it algebraically using the Sandwich Theorem.



THEOREM 7

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians}) \tag{1}$$



To show that the right-hand limit is 1, we begin with positive values of θ less than $\pi/2$ (Figure 2.30). Notice that

Area $\Delta OAP < \text{ area sector } OAP < \text{ area } \Delta OAT$.

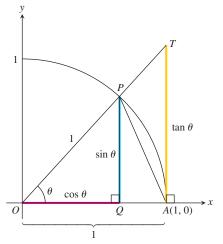


FIGURE 2.30 The figure for the proof of Theorem 7. $TA/OA = \tan \theta$, but OA = 1, so $TA = \tan \theta$.

Equation (2) is where radian measure comes in: The area of sector *OAP* is $\theta/2$ only if θ is measured in radians. We can express these areas in terms of θ as follows:

Area
$$\Delta OAP = \frac{1}{2}$$
 base \times height $= \frac{1}{2}(1)(\sin \theta) = \frac{1}{2}\sin \theta$
Area sector $OAP = \frac{1}{2}r^2\theta = \frac{1}{2}(1)^2\theta = \frac{\theta}{2}$ (2)
Area $\Delta OAT = \frac{1}{2}$ base \times height $= \frac{1}{2}(1)(\tan \theta) = \frac{1}{2}\tan \theta$.

Thus,

$$\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta.$$

This last inequality goes the same way if we divide all three terms by the number $(1/2) \sin \theta$, which is positive since $0 < \theta < \pi/2$:

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$

Taking reciprocals reverses the inequalities:

$$1 > \frac{\sin \theta}{\theta} > \cos \theta.$$

Since $\lim_{\theta\to 0^+} \cos\theta = 1$ (Example 6b, Section 2.2), the Sandwich Theorem gives

$$\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1.$$

Recall that $\sin \theta$ and θ are both *odd functions* (Section 1.4). Therefore, $f(\theta) = (\sin \theta)/\theta$ is an *even function*, with a graph symmetric about the *y*-axis (see Figure 2.29). This symmetry implies that the left-hand limit at 0 exists and has the same value as the right-hand limit:

$$\lim_{\theta \to 0^{-}} \frac{\sin \theta}{\theta} = 1 = \lim_{\theta \to 0^{+}} \frac{\sin \theta}{\theta},$$

so $\lim_{\theta \to 0} (\sin \theta)/\theta = 1$ by Theorem 6.

EXAMPLE 5 Using
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Show that (a)
$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$$
 and (b) $\lim_{x \to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$.

Solution

(a) Using the half-angle formula $\cos h = 1 - 2\sin^2(h/2)$, we calculate

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} -\frac{2 \sin^2 (h/2)}{h}$$
$$= -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \sin \theta \qquad \text{Let } \theta = h/2.$$
$$= -(1)(0) = 0.$$

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator, not a 5x. We produce it by multiplying numerator and denominator by 2/5:

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{(2/5) \cdot \sin 2x}{(2/5) \cdot 5x}$$
$$= \frac{2}{5} \lim_{x \to 0} \frac{\sin 2x}{2x} \qquad \text{Now, Eq. (1) applies with}$$
$$= \frac{2}{5} (1) = \frac{2}{5}$$

Finite Limits as $x \to \pm \infty$

The symbol for infinity (∞) does not represent a real number. We use ∞ to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example, the function f(x) = 1/x is defined for all $x \neq 0$ (Figure 2.31). When x is positive and becomes increasingly large, 1/x becomes increasingly small. When x is negative and its magnitude becomes increasingly large, 1/x again becomes small. We summarize these observations by saying that f(x) = 1/x has limit 0 as $x \rightarrow \pm \infty$ or that 0 is a *limit of* f(x) = 1/x *at infinity and negative infinity*. Here is a precise definition.

DEFINITIONS Limit as x approaches ∞ or $-\infty$

1. We say that f(x) has the limit *L* as *x* approaches infinity and write

$$\lim_{x \to \infty} f(x) = I$$

if, for every number $\epsilon > 0$, there exists a corresponding number *M* such that for all *x*

$$x > M \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

2. We say that f(x) has the limit *L* as *x* approaches minus infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number N such that for all x

$$x < N \implies |f(x) - L| < \epsilon$$

Intuitively, $\lim_{x\to\infty} f(x) = L$ if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L. Similarly, $\lim_{x\to\infty} f(x) = L$ if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as $x \to \pm \infty$ is similar to the one for finite limits in Section 2.2. There we first found the limits of the constant and identity functions y = k and y = x. We then extended these results to other functions by applying a theorem about limits of algebraic combinations. Here we do the same thing, except that the starting functions are y = k and y = 1/x instead of y = k and y = x.

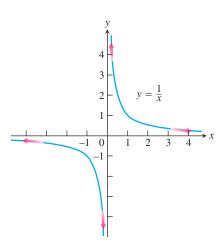


FIGURE 2.31 The graph of y = 1/x.

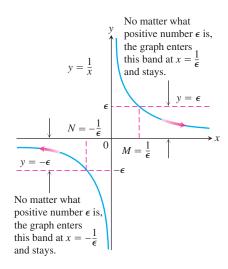


FIGURE 2.32 The geometry behind the argument in Example 6.

The basic facts to be verified by applying the formal definition are

$$\lim_{x \to \pm \infty} k = k \quad \text{and} \quad \lim_{x \to \pm \infty} \frac{1}{x} = 0.$$
 (3)

We prove the latter and leave the former to Exercises 71 and 72.

EXAMPLE 6 Limits at Infinity for
$$f(x) = \frac{1}{x}$$

Show that

(a)
$$\lim_{x \to \infty} \frac{1}{x} = 0$$
 (b) $\lim_{x \to -\infty} \frac{1}{x} = 0$.

Solution

(a) Let $\epsilon > 0$ be given. We must find a number M such that for all x

$$x > M \implies \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon.$$

The implication will hold if $M = 1/\epsilon$ or any larger positive number (Figure 2.32). This proves $\lim_{x\to\infty} (1/x) = 0$.

(b) Let $\epsilon > 0$ be given. We must find a number N such that for all x

$$x < N \implies \left| \frac{1}{x} - 0 \right| = \left| \frac{1}{x} \right| < \epsilon.$$

The implication will hold if $N = -1/\epsilon$ or any number less than $-1/\epsilon$ (Figure 2.32). This proves $\lim_{x\to-\infty} (1/x) = 0$.

Limits at infinity have properties similar to those of finite limits.

THEOREM 8 Limit Laws as $x \to \pm \infty$

If *L*, *M*, and *k*, are real numbers and

$\lim_{x \to \pm \infty} f(x) = L$	and $\lim_{x \to \pm \infty} g(x) = M$, then
1. Sum Rule:	$\lim_{x \to \pm \infty} (f(x) + g(x)) = L + M$
2. Difference Rule:	$\lim_{x \to \pm \infty} (f(x) - g(x)) = L - M$
3. Product Rule:	$\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$
4. Constant Multiple Rule:	$\lim_{x \to \pm \infty} (k \cdot f(x)) = k \cdot L$
5. Quotient Rule:	$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$
6 Power Rule: If r and s are i	ntegers with no common factors $s \neq -$

6. *Power Rule:* If *r* and *s* are integers with no common factors, $s \neq 0$, then

$$\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number. (If s is even, we assume that L > 0.)

These properties are just like the properties in Theorem 1, Section 2.2, and we use them the same way.

EXAMPLE 7 Using Theorem 8

(a) $\lim_{x \to \infty} \left(5 + \frac{1}{x} \right) = \lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{1}{x}$ Sum Rule = 5 + 0 = 5 Known limits (b) $\lim_{x \to -\infty} \frac{\pi\sqrt{3}}{x^2} = \lim_{x \to -\infty} \pi\sqrt{3} \cdot \frac{1}{x} \cdot \frac{1}{x}$ $= \lim_{x \to -\infty} \pi\sqrt{3} \cdot \lim_{x \to -\infty} \frac{1}{x} \cdot \lim_{x \to -\infty} \frac{1}{x}$ Product rule $= \pi\sqrt{3} \cdot 0 \cdot 0 = 0$ Known limits

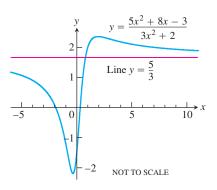


FIGURE 2.33 The graph of the function in Example 8. The graph approaches the line y = 5/3 as |x| increases.

11x + 2

6

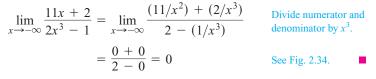
Limits at Infinity of Rational Functions

To determine the limit of a rational function as $x \to \pm \infty$, we can divide the numerator and denominator by the highest power of x in the denominator. What happens then depends on the degrees of the polynomials involved.

EXAMPLE 8 Numerator and Denominator of Same Degree

$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + (8/x) - (3/x^2)}{3 + (2/x^2)}$$
 Divide numerator and denominator by x^2 .
$$= \frac{5 + 0 - 0}{3 + 0} = \frac{5}{3}$$
 See Fig. 2.33.

9 Degree of Numerator Less Than Degree of Denominator



We give an example of the case when the degree of the numerator is greater than the degree of the denominator in the next section (Example 8, Section 2.5).

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a point on the graph moves increasingly far from the origin, we say that the graph approaches the line asymptotically and that the line is an *asymptote* of the graph.

Looking at f(x) = 1/x (See Figure 2.31), we observe that the *x*-axis is an asymptote of the curve on the right because

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

and on the left because

$$\lim_{x \to -\infty} \frac{1}{x} = 0.$$

FIGURE 2.34 The graph of the function in Example 9. The graph approaches the *x*-axis as |x| increases.

-6

-2

We say that the *x*-axis is a *horizontal asymptote* of the graph of f(x) = 1/x.

DEFINITION Horizontal Asymptote

A line y = b is a **horizontal asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b.$$

The curve

$$f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$$

sketched in Figure 2.33 (Example 8) has the line y = 5/3 as a horizontal asymptote on both the right and the left because

$$\lim_{x \to \infty} f(x) = \frac{5}{3} \quad \text{and} \quad \lim_{x \to -\infty} f(x) = \frac{5}{3}.$$

EXAMPLE 10 Substituting a New Variable

Find $\lim_{x \to \infty} \sin(1/x)$.

Solution We introduce the new variable t = 1/x. From Example 6, we know that $t \rightarrow 0^+$ as $x \rightarrow \infty$ (see Figure 2.31). Therefore,

$$\lim_{x \to \infty} \sin \frac{1}{x} = \lim_{t \to 0^+} \sin t = 0.$$

The Sandwich Theorem Revisited

The Sandwich Theorem also holds for limits as $x \rightarrow \pm \infty$.

EXAMPLE 11 A Curve May Cross Its Horizontal Asymptote

Using the Sandwich Theorem, find the horizontal asymptote of the curve

$$y = 2 + \frac{\sin x}{x}.$$

Solution We are interested in the behavior as $x \to \pm \infty$. Since

$$0 \le \left|\frac{\sin x}{x}\right| \le \left|\frac{1}{x}\right|$$

and $\lim_{x\to\pm\infty} |1/x| = 0$, we have $\lim_{x\to\pm\infty} (\sin x)/x = 0$ by the Sandwich Theorem. Hence,

$$\lim_{x \to \pm \infty} \left(2 + \frac{\sin x}{x} \right) = 2 + 0 = 2,$$

 $y = 2 + \frac{\sin x}{x}$ $1 - \frac{1}{-3\pi - 2\pi - \pi} = 0 \qquad \pi \quad 2\pi \quad 3\pi$

FIGURE 2.35 A curve may cross one of its asymptotes infinitely often (Example 11).

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.35).

This example illustrates that a curve may cross one of its horizontal asymptotes, perhaps many times.

Oblique Asymptotes

If the degree of the numerator of a rational function is one greater than the degree of the denominator, the graph has an **oblique (slanted) asymptote**. We find an equation for the asymptote by dividing numerator by denominator to express *f* as a linear function plus a remainder that goes to zero as $x \rightarrow \pm \infty$. Here's an example.

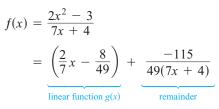
EXAMPLE 12 Finding an Oblique Asymptote

Find the oblique asymptote for the graph of

$$f(x) = \frac{2x^2 - 3}{7x + 4}$$

in Figure 2.36.

Solution By long division, we find



As $x \rightarrow \pm \infty$, the remainder, whose magnitude gives the vertical distance between the graphs of *f* and *g*, goes to zero, making the (slanted) line

$$g(x) = \frac{2}{7}x - \frac{8}{49}$$

an asymptote of the graph of f (Figure 2.36). The line y = g(x) is an asymptote both to the right and to the left. In the next section you will see that the function f(x) grows arbitrarily large in absolute value as x approaches -4/7, where the denominator becomes zero (Figure 2.36).

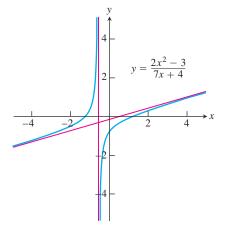


FIGURE 2.36 The function in Example 12 has an oblique asymptote.

Infinite Limits and Vertical Asymptotes

In this section we extend the concept of limit to *infinite limits*, which are not limits as before, but rather an entirely new use of the term limit. Infinite limits provide useful symbols and language for describing the behavior of functions whose values become arbitrarily large, positive or negative. We continue our analysis of graphs of rational functions from the last section, using vertical asymptotes and dominant terms for numerically large values of x.

Infinite Limits

Let us look again at the function f(x) = 1/x. As $x \to 0^+$, the values of f grow without bound, eventually reaching and surpassing every positive real number. That is, given any positive real number B, however large, the values of f become larger still (Figure 2.37). Thus, f has no limit as $x \to 0^+$. It is nevertheless convenient to describe the behavior of fby saying that f(x) approaches ∞ as $x \to 0^+$. We write

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = \infty.$$

In writing this, we are *not* saying that the limit exists. Nor are we saying that there is a real number ∞ , for there is no such number. Rather, we are saying that $\lim_{x\to 0^+} (1/x)$ does not exist because 1/x becomes arbitrarily large and positive as $x \to 0^+$.

As $x \to 0^-$, the values of f(x) = 1/x become arbitrarily large and negative. Given any negative real number -B, the values of f eventually lie below -B. (See Figure 2.37.) We write

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

Again, we are not saying that the limit exists and equals the number $-\infty$. There *is* no real number $-\infty$. We are describing the behavior of a function whose limit as $x \rightarrow 0^-$ *does not exist because its values become arbitrarily large and negative.*

EXAMPLE 1 One-Sided Infinite Limits

Find
$$\lim_{x \to 1^+} \frac{1}{x - 1}$$
 and $\lim_{x \to 1^-} \frac{1}{x - 1}$.

Geometric Solution The graph of y = 1/(x - 1) is the graph of y = 1/x shifted 1 unit to the right (Figure 2.38). Therefore, y = 1/(x - 1) behaves near 1 exactly the way y = 1/x behaves near 0:

$$\lim_{x \to 1^{+}} \frac{1}{x - 1} = \infty \quad \text{and} \quad \lim_{x \to 1^{-}} \frac{1}{x - 1} = -\infty.$$

Analytic Solution Think about the number x - 1 and its reciprocal. As $x \to 1^+$, we have $(x - 1) \to 0^+$ and $1/(x - 1) \to \infty$. As $x \to 1^-$, we have $(x - 1) \to 0^-$ and $1/(x - 1) \to -\infty$.

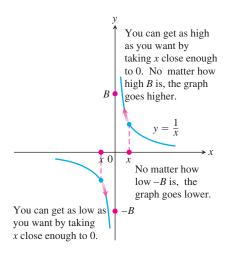


FIGURE 2.37 One-sided infinite limits: $\lim_{x \to 0^{+}} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^{-}} \frac{1}{x} = -\infty$

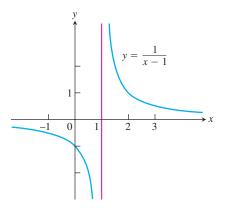


FIGURE 2.38 Near x = 1, the function y = 1/(x - 1) behaves the way the function y = 1/x behaves near x = 0. Its graph is the graph of y = 1/x shifted 1 unit to the right (Example 1).

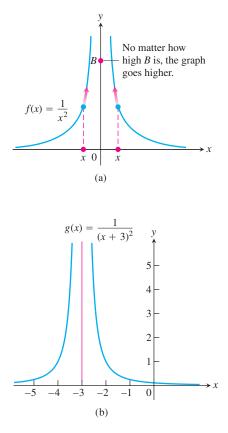


FIGURE 2.39 The graphs of the functions in Example 2. (a) f(x) approaches infinity as $x \rightarrow 0$. (b) g(x) approaches infinity as $x \rightarrow -3$.

EXAMPLE 2 Two-Sided Infinite Limits

Discuss the behavior of

(a)
$$f(x) = \frac{1}{x^2} \operatorname{near} x = 0$$
,
(b) $g(x) = \frac{1}{(x+3)^2} \operatorname{near} x = -3$.

Solution

(a) As x approaches zero from either side, the values of $1/x^2$ are positive and become arbitrarily large (Figure 2.39a):

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = \infty$$

(b) The graph of $g(x) = 1/(x + 3)^2$ is the graph of $f(x) = 1/x^2$ shifted 3 units to the left (Figure 2.39b). Therefore, g behaves near -3 exactly the way f behaves near 0.

$$\lim_{x \to -3} g(x) = \lim_{x \to -3} \frac{1}{(x+3)^2} = \infty.$$

for x > 2, x near 2.

See parts (c) and (d).

The function y = 1/x shows no consistent behavior as $x \to 0$. We have $1/x \to \infty$ if $x \to 0^+$, but $1/x \to -\infty$ if $x \to 0^-$. All we can say about $\lim_{x\to 0} (1/x)$ is that it does not exist. The function $y = 1/x^2$ is different. Its values approach infinity as x approaches zero from either side, so we can say that $\lim_{x\to 0} (1/x^2) = \infty$.

EXAMPLE 3 Rational Functions Can Behave in Various Ways Near Zeros of Their Denominators

- (a) $\lim_{x \to 2} \frac{(x-2)^2}{x^2 4} = \lim_{x \to 2} \frac{(x-2)^2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{x-2}{x+2} = 0$ (b) $\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}$ (c) $\lim_{x \to 2} \frac{x-3}{x^2 - 4} = \lim_{x \to 2} \frac{x-3}{(x-2)(x+2)} = \frac{1}{x+2} = \frac{1}{4}$
- (c) $\lim_{x \to 2^+} \frac{x-3}{x^2-4} = \lim_{x \to 2^+} \frac{x-3}{(x-2)(x+2)} = -\infty$
- (d) $\lim_{x \to 2^{-}} \frac{x-3}{x^2-4} = \lim_{x \to 2^{-}} \frac{x-3}{(x-2)(x+2)} = \infty$ The values are positive for x < 2, x near 2.
- (e) $\lim_{x \to 2} \frac{x-3}{x^2-4} = \lim_{x \to 2} \frac{x-3}{(x-2)(x+2)}$ does not exist.
- (f) $\lim_{x \to 2} \frac{2-x}{(x-2)^3} = \lim_{x \to 2} \frac{-(x-2)}{(x-2)^3} = \lim_{x \to 2} \frac{-1}{(x-2)^2} = -\infty$

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled because the numerator is zero there also. Thus a finite limit exists. This is not true in part (f), where cancellation still leaves a zero in the denominator.

Precise Definitions of Infinite Limits

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all x sufficiently close to x_0 , the definitions of infinite limits require f(x) to lie arbitrarily far from the ori-

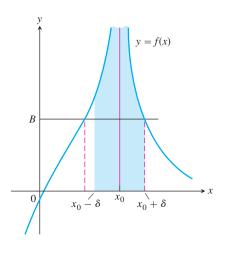


FIGURE 2.40 f(x) approaches infinity as $x \rightarrow x_0$.

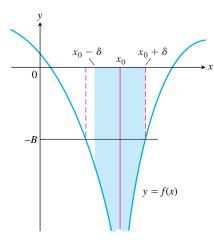


FIGURE 2.41 f(x) approaches negative infinity as $x \rightarrow x_0$.

gin. Except for this change, the language is identical with what we have seen before. Figures 2.40 and 2.41 accompany these definitions.

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x_0 , and write

$$\lim_{x\to x_0}f(x)=\infty,$$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all *x*

$$0 < |x - x_0| < \delta \implies f(x) > B$$

2. We say that f(x) approaches negative infinity as x approaches x_0 , and write

$$\lim_{x \to x_0} f(x) = -\infty,$$

if for every negative real number -B there exists a corresponding $\delta > 0$ such that for all *x*

$$0 < |x - x_0| < \delta \implies f(x) < -B.$$

The precise definitions of one-sided infinite limits at x_0 are similar and are stated in the exercises.

EXAMPLE 4 Using the Definition of Infinite Limits

Prove that
$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Solution Given B > 0, we want to find $\delta > 0$ such that

$$0 < |x - 0| < \delta$$
 implies $\frac{1}{x^2} > B$.

Now,

$$\frac{1}{x^2} > B$$
 if and only if $x^2 < \frac{1}{B}$

or, equivalently,

$$|x| < \frac{1}{\sqrt{B}}.$$

Thus, choosing $\delta = 1/\sqrt{B}$ (or any smaller positive number), we see that

$$|x| < \delta$$
 implies $\frac{1}{x^2} > \frac{1}{\delta^2} \ge B$.

Therefore, by definition,

$$\lim_{x \to 0} \frac{1}{x^2} = \infty.$$

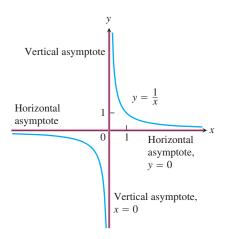


FIGURE 2.42 The coordinate axes are asymptotes of both branches of the hyperbola y = 1/x.

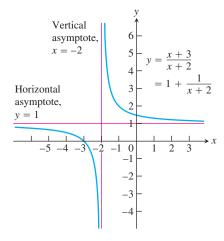


FIGURE 2.43 The lines y = 1 and x = -2 are asymptotes of the curve y = (x + 3)/(x + 2) (Example 5).

Vertical Asymptotes

Notice that the distance between a point on the graph of y = 1/x and the y-axis approaches zero as the point moves vertically along the graph and away from the origin (Figure 2.42). This behavior occurs because

$$\lim_{x \to 0^+} \frac{1}{x} = \infty \quad \text{and} \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty.$$

We say that the line x = 0 (the y-axis) is a *vertical asymptote* of the graph of y = 1/x. Observe that the denominator is zero at x = 0 and the function is undefined there.

DEFINITION Vertical Asymptote

A line x = a is a **vertical asymptote** of the graph of a function y = f(x) if either

$$\lim_{x \to a^+} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^-} f(x) = \pm \infty.$$

EXAMPLE 5 Looking for Asymptotes

Find the horizontal and vertical asymptotes of the curve

$$y = \frac{x+3}{x+2}.$$

Solution We are interested in the behavior as $x \to \pm \infty$ and as $x \to -2$, where the denominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial with a remainder, by dividing (x + 2) into (x + 3).

$$x + 2\overline{\smash{\big)}x + 3}$$
$$\underline{x + 2}$$
$$1$$

This result enables us to rewrite *y*:

$$y = 1 + \frac{1}{x+2}.$$

We now see that the curve in question is the graph of y = 1/x shifted 1 unit up and 2 units left (Figure 2.43). The asymptotes, instead of being the coordinate axes, are now the lines y = 1 and x = -2.

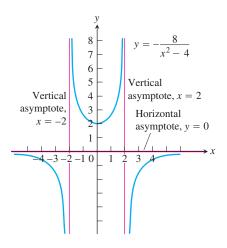
EXAMPLE 6 Asymptotes Need Not Be Two-Sided

Find the horizontal and vertical asymptotes of the graph of

$$f(x) = -\frac{8}{x^2 - 4}$$

Solution We are interested in the behavior as $x \to \pm \infty$ and as $x \to \pm 2$, where the denominator is zero. Notice that *f* is an even function of *x*, so its graph is symmetric with respect to the *y*-axis.

(a) The behavior as $x \to \pm \infty$. Since $\lim_{x\to\infty} f(x) = 0$, the line y = 0 is a horizontal asymptote of the graph to the right. By symmetry it is an asymptote to the left as well



(Figure 2.44). Notice that the curve approaches the *x*-axis from only the negative side (or from below).

(b) *The behavior as* $x \rightarrow \pm 2$. Since

x

$$\lim_{x \to 2^+} f(x) = -\infty \quad \text{and} \quad \lim_{x \to 2^-} f(x) = \infty,$$

the line x = 2 is a vertical asymptote both from the right and from the left. By symmetry, the same holds for the line x = -2.

There are no other asymptotes because *f* has a finite limit at every other point.

EXAMPLE 7 Curves with Infinitely Many Asymptotes

The curves

$$y = \sec x = \frac{1}{\cos x}$$
 and $y = \tan x = \frac{\sin x}{\cos x}$

both have vertical asymptotes at odd-integer multiples of $\pi/2$, where $\cos x = 0$ (Figure 2.45).

FIGURE 2.44 Graph of $y = -8/(x^2 - 4)$. Notice that the curve approaches the *x*-axis from only one side. Asymptotes do not have to be two-sided (Example 6).

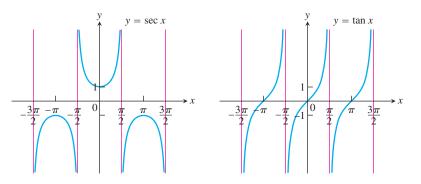


FIGURE 2.45 The graphs of sec *x* and tan *x* have infinitely many vertical asymptotes (Example 7).

The graphs of

$$y = \csc x = \frac{1}{\sin x}$$
 and $y = \cot x = \frac{\cos x}{\sin x}$

have vertical asymptotes at integer multiples of π , where sin x = 0 (Figure 2.46).

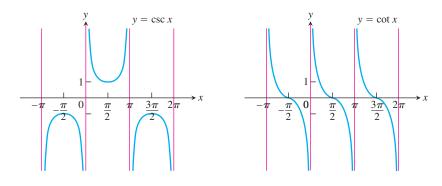


FIGURE 2.46 The graphs of csc *x* and cot *x* (Example 7).

EXAMPLE 8 A Rational Function with Degree of Numerator Greater than Degree of Denominator

Find the asymptotes of the graph of

$$f(x) = \frac{x^2 - 3}{2x - 4}.$$

Solution We are interested in the behavior as $x \to \pm \infty$ and also as $x \to 2$, where the denominator is zero. We divide (2x - 4) into $(x^2 - 3)$:

$$\frac{\frac{x}{2} + 1}{2x - 4)\overline{x^2 - 3}}$$

$$\frac{\frac{x^2 - 2x}{2x - 3}}{\frac{2x - 4}{1}}$$

This tells us that

$$f(x) = \frac{x^2 - 3}{2x - 4} = \underbrace{\frac{x}{2} + 1}_{\text{linear}} + \underbrace{\frac{1}{2x - 4}}_{\text{remainder}}.$$

Since $\lim_{x\to 2^+} f(x) = \infty$ and $\lim_{x\to 2^-} f(x) = -\infty$, the line x = 2 is a two-sided vertical asymptote. As $x \to \pm \infty$, the remainder approaches 0 and $f(x) \to (x/2) + 1$. The line y = (x/2) + 1 is an oblique asymptote both to the right and to the left (Figure 2.47).

Notice in Example 8, that if the degree of the numerator in a rational function is greater than the degree of the denominator, then the limit is $+\infty$ or $-\infty$, depending on the signs assumed by the numerator and denominator as |x| becomes large.

Dominant Terms

Of all the observations we can make quickly about the function

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

in Example 8, probably the most useful is that

$$f(x) = \frac{x}{2} + 1 + \frac{1}{2x - 4} \,.$$

This tells us immediately that

$$f(x) \approx \frac{x}{2} + 1$$
 For x numerically large
 $f(x) \approx \frac{1}{2x - 4}$ For x near 2

If we want to know how f behaves, this is the way to find out. It behaves like y = (x/2) + 1 when x is numerically large and the contribution of 1/(2x - 4) to the total



FIGURE 2.47 The graph of $f(x) = (x^2 - 3)/(2x - 4)$ has a vertical asymptote and an oblique asymptote (Example 8).

value of f is insignificant. It behaves like 1/(2x - 4) when x is so close to 2 that 1/(2x - 4) makes the dominant contribution.

We say that (x/2) + 1 **dominates** when x is numerically large, and we say that 1/(2x - 4) dominates when x is near 2. **Dominant terms** like these are the key to predicting a function's behavior. Here's another example.

EXAMPLE 9 Two Graphs Appearing Identical on a Large Scale

Let $f(x) = 3x^4 - 2x^3 + 3x^2 - 5x + 6$ and $g(x) = 3x^4$. Show that although f and g are quite different for numerically small values of x, they are virtually identical for |x| very large.

Solution The graphs of f and g behave quite differently near the origin (Figure 2.48a), but appear as virtually identical on a larger scale (Figure 2.48b).

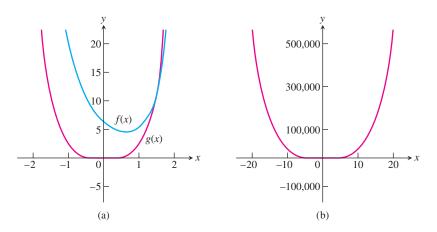


FIGURE 2.48 The graphs of f and g, (a) are distinct for |x| small, and (b) nearly identical for |x| large (Example 9).

We can test that the term $3x^4$ in f, represented graphically by g, dominates the polynomial f for numerically large values of x by examining the ratio of the two functions as $x \rightarrow \pm \infty$. We find that

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \lim_{x \to \pm \infty} \frac{3x^4 - 2x^3 + 3x^2 - 5x + 6}{3x^4}$$
$$= \lim_{x \to \pm \infty} \left(1 - \frac{2}{3x} + \frac{1}{x^2} - \frac{5}{3x^3} + \frac{2}{x^4} \right)$$
$$= 1,$$

so that f and g are nearly identical for |x| large.

EXERCISES 2.5

Infinite Limits

Find the limits in Exercises 1–12.

1.
$$\lim_{x \to 0^+} \frac{1}{3x}$$

3. $\lim_{x \to 2^-} \frac{3}{x-2}$
5. $\lim_{x \to 7^+} \frac{2x}{x+8}$
7. $\lim_{x \to 7^+} \frac{4}{(x-7)^2}$
9. a. $\lim_{x \to 0^+} \frac{2}{3x^{1/3}}$
10. a. $\lim_{x \to 0^+} \frac{2}{x^{1/5}}$
11. $\lim_{x \to 0} \frac{4}{x^{2/5}}$
2. $\lim_{x \to 0^-} \frac{5}{2x}$
4. $\lim_{x \to 3^+} \frac{1}{x-3}$
6. $\lim_{x \to -5^-} \frac{3x}{2x+10}$
8. $\lim_{x \to 0^-} \frac{-1}{x^{2}(x+1)}$
b. $\lim_{x \to 0^-} \frac{2}{3x^{1/3}}$
10. $\lim_{x \to 0^+} \frac{2}{x^{1/5}}$
11. $\lim_{x \to 0} \frac{4}{x^{2/5}}$
12. $\lim_{x \to 0} \frac{1}{x^{2/3}}$

Find the limits in Exercises 13–16.

13. $\lim_{x \to (\pi/2)^{-}} \tan x$	14. $\lim_{x \to (-\pi/2)^+} \sec x$
15. $\lim_{\theta \to 0^-} (1 + \csc \theta)$	16. $\lim_{\theta \to 0} (2 - \cot \theta)$

Additional Calculations

Find the limits in Exercises 17–22.

17.
$$\lim \frac{1}{x^2 - 4}$$
 as
a. $x \to 2^+$ **b.** $x \to 2^-$
c. $x \to -2^+$ **d.** $x \to -2^-$
18. $\lim \frac{x}{x^2 - 1}$ as
a. $x \to 1^+$ **b.** $x \to 1^-$
c. $x \to -1^+$ **d.** $x \to -1^-$
19. $\lim \left(\frac{x^2}{2} - \frac{1}{x}\right)$ as
a. $x \to 0^+$ **b.** $x \to 0^-$
c. $x \to \sqrt[3]{2}$ **d.** $x \to -1$
20. $\lim \frac{x^2 - 1}{2x + 4}$ as
a. $x \to -2^+$ **b.** $x \to -2^-$
c. $x \to 1^+$ **d.** $x \to 0^-$

21. $\lim \frac{x^2 - 3x + 2}{x^3 - 2x^2}$ as	
a. $x \rightarrow 0^+$	b. $x \rightarrow 2^+$
c. $x \rightarrow 2^-$	d. $x \rightarrow 2$
e. What, if anything, can be sai	d about the limit as $x \rightarrow 0$?
22. $\lim \frac{x^2 - 3x + 2}{x^3 - 4x}$ as	
a. $x \rightarrow 2^+$	b. $x \rightarrow -2^+$
c. $x \rightarrow 0^-$	d. $x \rightarrow 1^+$
e. What, if anything, can be sai	d about the limit as $x \rightarrow 0$?
Find the limits in Exercises 23–26.	
23. $\lim_{t \to -\infty} \left(2 - \frac{3}{t^{1/3}}\right)$ as	
a. $t \rightarrow 0^+$	b. $t \rightarrow 0^-$
24. $\lim_{t \to -\infty} \left(\frac{1}{t^{3/5}} + 7 \right)$ as	
a. $t \rightarrow 0^+$	b. $t \rightarrow 0^-$
25. $\lim\left(\frac{1}{x^{2/3}} + \frac{2}{(x-1)^{2/3}}\right)$ as	
a. $x \rightarrow 0^+$	b. $x \rightarrow 0^-$
c. $x \rightarrow 1^+$	d. $x \rightarrow 1^-$
26. $\lim\left(\frac{1}{x^{1/3}} - \frac{1}{(x-1)^{4/3}}\right)$ as	
a. $x \rightarrow 0^+$	b. $x \rightarrow 0^-$
c. $x \rightarrow 1^+$	d. $x \rightarrow 1^-$

Graphing Rational Functions

Graph the rational functions in Exercises 27–38. Include the graphs and equations of the asymptotes and dominant terms.

27. $y = \frac{1}{x-1}$	28. $y = \frac{1}{x+1}$
29. $y = \frac{1}{2x+4}$	30. $y = \frac{-3}{x-3}$
31. $y = \frac{x+3}{x+2}$	32. $y = \frac{2x}{x+1}$
33. $y = \frac{x^2}{x - 1}$	34. $y = \frac{x^2 + 1}{x - 1}$
35. $y = \frac{x^2 - 4}{x - 1}$	36. $y = \frac{x^2 - 1}{2x + 4}$
37. $y = \frac{x^2 - 1}{x}$	38. $y = \frac{x^3 + 1}{x^2}$

Inventing Graphs from Values and Limits

In Exercises 39–42, sketch the graph of a function y = f(x) that satisfies the given conditions. No formulas are required—just label the coordinate axes and sketch an appropriate graph. (The answers are not unique, so your graphs may not be exactly like those in the answer section.)

39.
$$f(0) = 0, f(1) = 2, f(-1) = -2, \lim_{x \to -\infty} f(x) = -1, \text{ and}$$

$$\lim_{x \to \infty} f(x) = 1$$

- **40.** f(0) = 0, $\lim_{x \to \pm \infty} f(x) = 0$, $\lim_{x \to 0^+} f(x) = 2$, and $\lim_{x \to 0^-} f(x) = -2$
- **41.** f(0) = 0, $\lim_{x \to \pm \infty} f(x) = 0$, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = \infty$, $\lim_{x \to 1^{+}} f(x) = -\infty$, and $\lim_{x \to -1^{-}} f(x) = -\infty$

42.
$$f(2) = 1, f(-1) = 0, \lim_{x \to \infty} f(x) = 0, \lim_{x \to 0^+} f(x) = \infty,$$

 $\lim_{x \to 0^-} f(x) = -\infty, \text{ and } \lim_{x \to -\infty} f(x) = 1$

Inventing Functions

In Exercises 43–46, find a function that satisfies the given conditions and sketch its graph. (The answers here are not unique. Any function that satisfies the conditions is acceptable. Feel free to use formulas defined in pieces if that will help.)

43.
$$\lim_{x \to \pm \infty} f(x) = 0$$
, $\lim_{x \to 2^{-}} f(x) = \infty$, and $\lim_{x \to 2^{+}} f(x) = \infty$

- 44. $\lim_{x \to \pm \infty} g(x) = 0$, $\lim_{x \to 3^{-}} g(x) = -\infty$, and $\lim_{x \to 3^{+}} g(x) = \infty$
- **45.** $\lim_{\substack{x \to -\infty \\ x \to 0^+}} h(x) = -1, \lim_{x \to \infty} h(x) = 1, \lim_{x \to 0^-} h(x) = -1, \text{ and}$
- **46.** $\lim_{x \to \pm \infty} k(x) = 1$, $\lim_{x \to 1^{-}} k(x) = \infty$, and $\lim_{x \to 1^{+}} k(x) = -\infty$

The Formal Definition of Infinite Limit

Use formal definitions to prove the limit statements in Exercises 47-50.

47.
$$\lim_{x \to 0} \frac{-1}{x^2} = -\infty$$
48.
$$\lim_{x \to 0} \frac{1}{|x|} = \infty$$
49.
$$\lim_{x \to 3} \frac{-2}{(x-3)^2} = -\infty$$
50.
$$\lim_{x \to -5} \frac{1}{(x+5)^2} = \infty$$

Formal Definitions of Infinite One-Sided Limits

51. Here is the definition of infinite right-hand limit.

We say that f(x) approaches infinity as x approaches x_0 from the right, and write

$$\lim_{x \to x_0^+} \quad f(x) = \infty$$

if, for every positive real number *B*, there exists a corresponding number $\delta > 0$ such that for all *x*

$$x_0 < x < x_0 + \delta \implies f(x) > B.$$

Modify the definition to cover the following cases.

a.
$$\lim_{x \to x_0^-} f(x) = \infty$$

b.
$$\lim_{x \to x_0^+} f(x) = -\infty$$

c.
$$\lim_{x \to x_0^-} f(x) = -\infty$$

Use the formal definitions from Exercise 51 to prove the limit statements in Exercises 52–56.

52.
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$

53.
$$\lim_{x \to 0^-} \frac{1}{x} = -\infty$$

54.
$$\lim_{x \to 2^-} \frac{1}{x - 2} = -\infty$$

55.
$$\lim_{x \to 2^+} \frac{1}{x - 2} = \infty$$

56.
$$\lim_{x \to 1^-} \frac{1}{1 - x^2} = \infty$$

Graphing Terms

Each of the functions in Exercises 57–60 is given as the sum or difference of two terms. First graph the terms (with the same set of axes). Then, using these graphs as guides, sketch in the graph of the function.

57.
$$y = \sec x + \frac{1}{x}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

58. $y = \sec x - \frac{1}{x^2}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$
59. $y = \tan x + \frac{1}{x^2}, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$
60. $y = \frac{1}{x} - \tan x, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$

Grapher Explorations—Comparing Graphs with Formulas

Graph the curves in Exercises 61–64. Explain the relation between the curve's formula and what you see.

61.
$$y = \frac{x}{\sqrt{4 - x^2}}$$

62. $y = \frac{-1}{\sqrt{4 - x^2}}$
63. $y = x^{2/3} + \frac{1}{x^{1/3}}$
64. $y = \sin\left(\frac{\pi}{x^2 + 1}\right)$

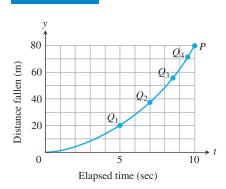


FIGURE 2.49 Connecting plotted points by an unbroken curve from experimental data Q_1, Q_2, Q_3, \ldots for a falling object.

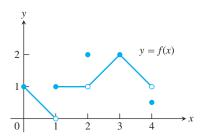


FIGURE 2.50 The function is continuous on [0, 4] except at x = 1, x = 2, and x = 4 (Example 1).

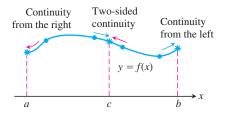


FIGURE 2.51 Continuity at points *a*, *b*, and *c*.

When we plot function values generated in a laboratory or collected in the field, we often connect the plotted points with an unbroken curve to show what the function's values are likely to have been at the times we did not measure (Figure 2.49). In doing so, we are assuming that we are working with a *continuous function*, so its outputs vary continuously with the inputs and do not jump from one value to another without taking on the values in between. The limit of a continuous function as x approaches c can be found simply by calculating the value of the function at c. (We found this to be true for polynomials in Section 2.2.)

Any function y = f(x) whose graph can be sketched over its domain in one continuous motion without lifting the pencil is an example of a continuous function. In this section we investigate more precisely what it means for a function to be continuous. We also study the properties of continuous functions, and see that many of the function types presented in Section 1.4 are continuous.

Continuity at a Point

To understand continuity, we need to consider a function like the one in Figure 2.50 whose limits we investigated in Example 2, Section 2.4.

EXAMPLE 1 Investigating Continuity

Find the points at which the function f in Figure 2.50 is continuous and the points at which f is discontinuous.

Solution The function f is continuous at every point in its domain [0, 4] except at x = 1, x = 2, and x = 4. At these points, there are breaks in the graph. Note the relationship between the limit of f and the value of f at each point of the function's domain.

Points at which *f* is continuous:

$\operatorname{At} x = 0,$	$\lim_{x \to 0^+} f(x) = f(0).$
At $x = 3$,	$\lim_{x \to 3} f(x) = f(3).$
At $0 < c < 4, c \neq 1, 2$,	$\lim_{x \to c} f(x) = f(c).$

Points at which *f* is discontinuous:

At $x = 1$,	$\lim_{x \to 1} f(x) \text{ does not exist.}$
At $x = 2$,	$\lim_{x \to 2} f(x) = 1, \text{ but } 1 \neq f(2).$
At $x = 4$,	$\lim_{x \to 4^{-}} f(x) = 1$, but $1 \neq f(4)$.
At $c < 0, c > 4$,	these points are not in the domain of f .

To define continuity at a point in a function's domain, we need to define continuity at an interior point (which involves a two-sided limit) and continuity at an endpoint (which involves a one-sided limit) (Figure 2.51).

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to \infty} f(x) = f(c)$$

Endpoint: A function y = f(x) is continuous at a left endpoint *a* or is continuous at a right endpoint *b* of its domain if

$$\lim_{x \to a^+} f(x) = f(a) \quad \text{or} \quad \lim_{x \to b^-} f(x) = f(b), \text{ respectively.}$$

If a function f is not continuous at a point c, we say that f is **discontinuous** at c and c is a **point of discontinuity** of f. Note that c need not be in the domain of f.

A function f is **right-continuous (continuous from the right)** at a point x = c in its domain if $\lim_{x\to c^+} f(x) = f(c)$. It is **left-continuous (continuous from the left)** at c if $\lim_{x\to c^-} f(x) = f(c)$. Thus, a function is continuous at a left endpoint a of its domain if it is right-continuous at a and continuous at a right endpoint b of its domain if it is left-continuous at b. A function is continuous at an interior point c of its domain if and only if it is both right-continuous and left-continuous at c (Figure 2.51).

EXAMPLE 2 A Function Continuous Throughout Its Domain

The function $f(x) = \sqrt{4 - x^2}$ is continuous at every point of its domain, [-2, 2] (Figure 2.52), including x = -2, where f is right-continuous, and x = 2, where f is left-continuous.

EXAMPLE 3 The Unit Step Function Has a Jump Discontinuity

The unit step function U(x), graphed in Figure 2.53, is right-continuous at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at x = 0.

We summarize continuity at a point in the form of a test.

Continuity Too

A function $f(x)$ is continuous at $x = c$ if and only if it meets the following three conditions.		
1.	f(c) exists	(c lies in the domain of f)
2.	$\lim_{x\to c} f(x)$ exists	$(f \text{ has a limit as } x \rightarrow c)$
3.	$\lim_{x \to c} f(x) = f(c)$	(the limit equals the function value)

For one-sided continuity and continuity at an endpoint, the limits in parts 2 and 3 of the test should be replaced by the appropriate one-sided limits.

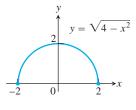


FIGURE 2.52 A function that is continuous at every domain point (Example 2).

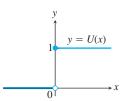


FIGURE 2.53 A function that is right-continuous, but not left-continuous, at the origin. It has a jump discontinuity there (Example 3).

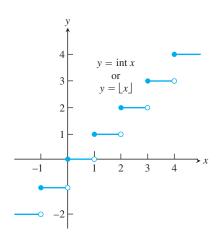


FIGURE 2.54 The greatest integer function is continuous at every noninteger point. It is right-continuous, but not left-continuous, at every integer point (Example 4).

EXAMPLE 4 The Greatest Integer Function

The function $y = \lfloor x \rfloor$ or y = int x, introduced in Chapter 1, is graphed in Figure 2.54. It is discontinuous at every integer because the limit does not exist at any integer *n*:

$$\lim_{x \to n^{-}} \operatorname{int} x = n - 1 \quad \text{and} \quad \lim_{x \to n^{+}} \operatorname{int} x = n$$

so the left-hand and right-hand limits are not equal as $x \rightarrow n$. Since int n = n, the greatest integer function is right-continuous at every integer *n* (but not left-continuous).

The greatest integer function is continuous at every real number other than the integers. For example,

$$\lim_{x \to 1.5} \inf x = 1 = \inf 1.5.$$

In general, if n - 1 < c < n, *n* an integer, then

$$\lim_{x \to c} \operatorname{int} x = n - 1 = \operatorname{int} c.$$

Figure 2.55 is a catalog of discontinuity types. The function in Figure 2.55a is continuous at x = 0. The function in Figure 2.55b would be continuous if it had f(0) = 1. The function in Figure 2.55c would be continuous if f(0) were 1 instead of 2. The discontinuities in Figure 2.55b and c are **removable**. Each function has a limit as $x \rightarrow 0$, and we can remove the discontinuity by setting f(0) equal to this limit.

The discontinuities in Figure 2.55d through f are more serious: $\lim_{x\to 0} f(x)$ does not exist, and there is no way to improve the situation by changing f at 0. The step function in Figure 2.55d has a **jump discontinuity**: The one-sided limits exist but have different values. The function $f(x) = 1/x^2$ in Figure 2.55e has an **infinite discontinuity**. The function in Figure 2.55f has an **oscillating discontinuity**: It oscillates too much to have a limit as $x \to 0$.

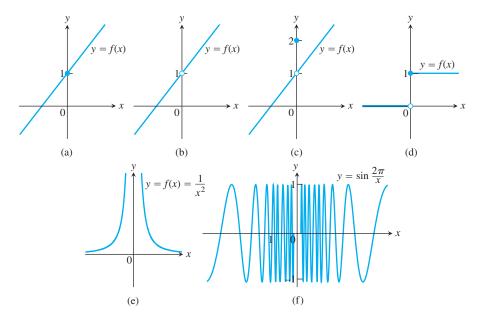


FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

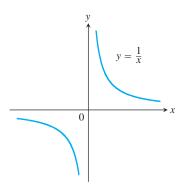


FIGURE 2.56 The function y = 1/x is continuous at every value of x except x = 0. It has a point of discontinuity at x = 0 (Example 5).

Continuous Functions

A function is **continuous on an interval** if and only if it is continuous at every point of the interval. For example, the semicircle function graphed in Figure 2.52 is continuous on the interval [-2, 2], which is its domain. A **continuous function** is one that is continuous at every point of its domain. A continuous function need not be continuous on every interval. For example, y = 1/x is not continuous on [-1, 1] (Figure 2.56), but it is continuous over its domain $(-\infty, 0) \cup (0, \infty)$.

EXAMPLE 5 Identifying Continuous Functions

- (a) The function y = 1/x (Figure 2.56) is a continuous function because it is continuous at every point of its domain. It has a point of discontinuity at x = 0, however, because it is not defined there.
- (b) The identity function f(x) = x and constant functions are continuous everywhere by Example 3, Section 2.3.

Algebraic combinations of continuous functions are continuous wherever they are defined.

THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

1. <i>Sums</i> :	f + g
2. Differences:	f - g
3. Products:	$f \cdot g$
4. Constant multiples:	$k \cdot f$, for any number k
5. Quotients:	f/g provided $g(c) \neq 0$
6. <i>Powers</i> :	$f^{r/s}$, provided it is defined on an open interval containing <i>c</i> , where <i>r</i> and <i>s</i> are integers

Most of the results in Theorem 9 are easily proved from the limit rules in Theorem 1, Section 2.2. For instance, to prove the sum property we have

$$\lim_{x \to c} (f + g)(x) = \lim_{x \to c} (f(x) + g(x))$$

=
$$\lim_{x \to c} f(x) + \lim_{x \to c} g(x), \qquad \text{Sum Rule, Theorem I}$$

=
$$f(c) + g(c) \qquad \text{Continuity of } f, g \text{ at } c$$

=
$$(f + g)(c).$$

This shows that f + g is continuous.

EXAMPLE 6 Polynomial and Rational Functions Are Continuous

(a) Every polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is continuous because $\lim_{x \to c} P(x) = P(c)$ by Theorem 2, Section 2.2.

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)/Q(x) is continuous wherever it is defined $(Q(c) \neq 0)$ by the Quotient Rule in Theorem 9.

EXAMPLE 7 Continuity of the Absolute Value Function

The function f(x) = |x| is continuous at every value of x. If x > 0, we have f(x) = x, a polynomial. If x < 0, we have f(x) = -x, another polynomial. Finally, at the origin, $\lim_{x\to 0} |x| = 0 = |0|$.

The functions $y = \sin x$ and $y = \cos x$ are continuous at x = 0 by Example 6 of Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 62). It follows from Theorem 9 that all six trigonometric functions are then continuous wherever they are defined. For example, $y = \tan x$ is continuous on $\cdots \cup (-\pi/2, \pi/2) \cup (\pi/2, 3\pi/2) \cup \cdots$.

Composites

All composites of continuous functions are continuous. The idea is that if f(x) is continuous at x = c and g(x) is continuous at x = f(c), then $g \circ f$ is continuous at x = c (Figure 2.57). In this case, the limit as $x \rightarrow c$ is g(f(c)).

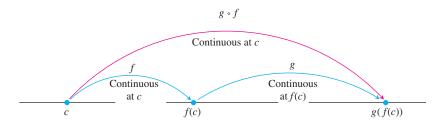


FIGURE 2.57 Composites of continuous functions are continuous.

THEOREM 10 Composite of Continuous Functions

If f is continuous at c and g is continuous at f(c), then the composite $g \circ f$ is continuous at c.

Intuitively, Theorem 10 is reasonable because if x is close to c, then f(x) is close to f(c), and since g is continuous at f(c), it follows that g(f(x)) is close to g(f(c)).

The continuity of composites holds for any finite number of functions. The only requirement is that each function be continuous where it is applied. For an outline of the proof of Theorem 10, see Exercise 6 in Appendix 2.

EXAMPLE 8 Applying Theorems 9 and 10

Show that the following functions are continuous everywhere on their respective domains.

~ /~

(a)
$$y = \sqrt{x^2 - 2x - 5}$$

(b) $y = \frac{x^{2/3}}{1 + x^4}$
(c) $y = \left| \frac{x - 2}{x^2 - 2} \right|$
(d) $y = \left| \frac{x \sin x}{x^2 + 2} \right|$

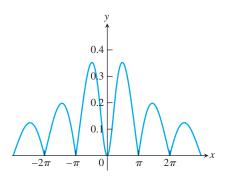


FIGURE 2.58 The graph suggests that $y = |(x \sin x)/(x^2 + 2)|$ is continuous (Example 8d).

Solution

- (a) The square root function is continuous on [0, ∞) because it is a rational power of the continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then the composite of the polynomial f(x) = x² 2x 5 with the square root function g(t) = √t.
- (b) The numerator is a rational power of the identity function; the denominator is an everywhere-positive polynomial. Therefore, the quotient is continuous.
- (c) The quotient $(x 2)/(x^2 2)$ is continuous for all $x \neq \pm \sqrt{2}$, and the function is the composition of this quotient with the continuous absolute value function (Example 7).
- (d) Because the sine function is everywhere-continuous (Exercise 62), the numerator term $x \sin x$ is the product of continuous functions, and the denominator term $x^2 + 2$ is an everywhere-positive polynomial. The given function is the composite of a quotient of continuous functions with the continuous absolute value function (Figure 2.58).

Continuous Extension to a Point

The function $y = (\sin x)/x$ is continuous at every point except x = 0. In this it is like the function y = 1/x. But $y = (\sin x)/x$ is different from y = 1/x in that it has a finite limit as $x \rightarrow 0$ (Theorem 7). It is therefore possible to extend the function's domain to include the point x = 0 in such a way that the extended function is continuous at x = 0. We define

$$F(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 1, & x = 0. \end{cases}$$

The function F(x) is continuous at x = 0 because

$$\lim_{x \to 0} \frac{\sin x}{x} = F(0)$$

(Figure 2.59).

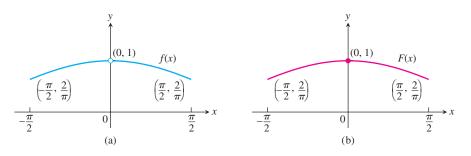


FIGURE 2.59 The graph (a) of $f(x) = (\sin x)/x$ for $-\pi/2 \le x \le \pi/2$ does not include the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discontinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x) everywhere else. Note that $F(0) = \lim_{x \to 0} f(x)$.

More generally, a function (such as a rational function) may have a limit even at a point where it is not defined. If f(c) is not defined, but $\lim_{x\to c} f(x) = L$ exists, we can define a new function F(x) by the rule

$$F(x) = \begin{cases} f(x), & \text{if } x \text{ is in the domain of } f \\ L, & \text{if } x = c. \end{cases}$$

The function F is continuous at x = c. It is called the **continuous extension** of f to x = c. For rational functions f, continuous extensions are usually found by canceling common factors.

EXAMPLE 9 A Continuous Extension

Show that

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a continuous extension to x = 2, and find that extension.

Solution Although f(2) is not defined, if $x \neq 2$ we have

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4} = \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2}.$$

The new function

$$F(x) = \frac{x+3}{x+2}$$

is equal to f(x) for $x \neq 2$, but is continuous at x = 2, having there the value of 5/4. Thus *F* is the continuous extension of *f* to x = 2, and

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} f(x) = \frac{5}{4}.$$

The graph of *f* is shown in Figure 2.60. The continuous extension *F* has the same graph except with no hole at (2, 5/4). Effectively, *F* is the function *f* with its point of discontinuity at x = 2 removed.

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly useful in mathematics and its applications. One of these is the *Intermediate Value Property*. A function is said to have the **Intermediate Value Property** if whenever it takes on two values, it also takes on all the values in between.

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every value between f(a) and f(b). In other words, if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

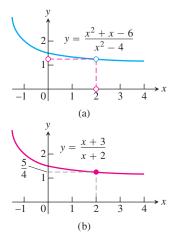
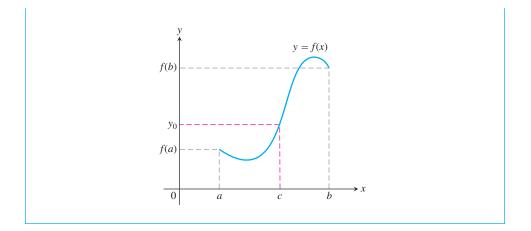


FIGURE 2.60 (a) The graph of f(x) and (b) the graph of its continuous extension F(x) (Example 9).



Geometrically, the Intermediate Value Theorem says that any horizontal line $y = y_0$ crossing the y-axis between the numbers f(a) and f(b) will cross the curve y = f(x) at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property of the real number system and can be found in more advanced texts.

The continuity of f on the interval is essential to Theorem 11. If f is discontinuous at even one point of the interval, the theorem's conclusion may fail, as it does for the function graphed in Figure 2.61.

A Consequence for Graphing: Connectivity Theorem 11 is the reason the graph of a function continuous on an interval cannot have any breaks over the interval. It will be connected, a single, unbroken curve, like the graph of sin *x*. It will not have jumps like the graph of the greatest integer function (Figure 2.54) or separate branches like the graph of 1/x (Figure 2.56).

A Consequence for Root Finding We call a solution of the equation f(x) = 0 a root of the equation or zero of the function f. The Intermediate Value Theorem tells us that if f is continuous, then any interval on which f changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizontal axis on a computer screen, we know it is not stepping across. There really is a point where the function's value is zero. This consequence leads to a procedure for estimating the zeros of any continuous function we can graph:

- 1. Graph the function over a large interval to see roughly where the zeros are.
- 2. Zoom in on each zero to estimate its *x*-coordinate value.

You can practice this procedure on your graphing calculator or computer in some of the exercises. Figure 2.62 shows a typical sequence of steps in a graphical solution of the equation $x^3 - x - 1 = 0$.

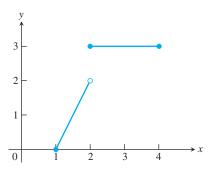


FIGURE 2.61 The function

 $f(x) = \begin{cases} 2x - 2, & 1 \le x < 2\\ 3, & 2 \le x \le 4 \end{cases}$ does not take on all values between f(1) = 0 and f(4) = 3; it misses all the values between 2 and 3.

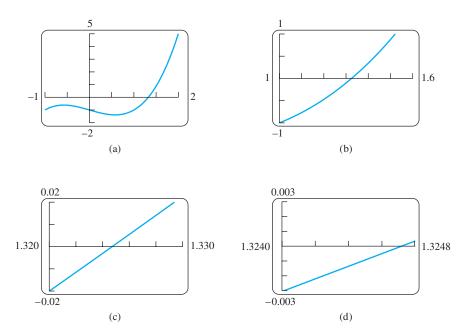
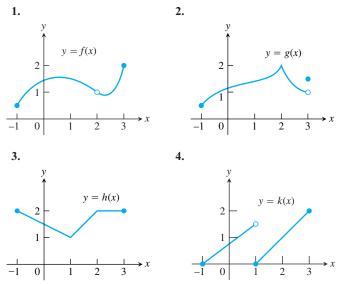


FIGURE 2.62 Zooming in on a zero of the function $f(x) = x^3 - x - 1$. The zero is near x = 1.3247.

EXERCISES 2.6

Continuity from Graphs

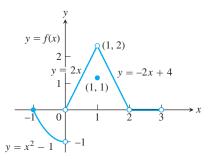
In Exercises 1–4, say whether the function graphed is continuous on [-1, 3]. If not, where does it fail to be continuous and why?



Exercises 5–10 are about the function

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x < 0\\ 2x, & 0 < x < 1\\ 1, & x = 1\\ -2x + 4, & 1 < x < 2\\ 0, & 2 < x < 3 \end{cases}$$

graphed in the accompanying figure.



The graph for Exercises 5–10.

- **5. a.** Does f(-1) exist?
 - **b.** Does $\lim_{x \to -1^+} f(x)$ exist?
 - **c.** Does $\lim_{x\to -1^+} f(x) = f(-1)$?
 - **d.** Is f continuous at x = -1?
- 6. a. Does f(1) exist?
 - **b.** Does $\lim_{x\to 1} f(x)$ exist?
 - **c.** Does $\lim_{x\to 1} f(x) = f(1)$?
 - **d.** Is f continuous at x = 1?
- 7. a. Is f defined at x = 2? (Look at the definition of f.)
 - **b.** Is f continuous at x = 2?
- **8.** At what values of x is f continuous?
- 9. What value should be assigned to f(2) to make the extended function continuous at x = 2?
- **10.** To what new value should f(1) be changed to remove the discontinuity?

Applying the Continuity Test

At which points do the functions in Exercises 11 and 12 fail to be continuous? At which points, if any, are the discontinuities removable? Not removable? Give reasons for your answers.

11. Exercise 1, Section 2.4 **12.** Exercise 2, Section 2.4

At what points are the functions in Exercises 13–28 continuous?

13. $y = \frac{1}{x-2} - 3x$	14. $y = \frac{1}{(x+2)^2} + 4$
15. $y = \frac{x+1}{x^2 - 4x + 3}$	16. $y = \frac{x+3}{x^2 - 3x - 10}$
17. $y = x - 1 + \sin x$	18. $y = \frac{1}{ x +1} - \frac{x^2}{2}$
$19. \ y = \frac{\cos x}{x}$	20. $y = \frac{x+2}{\cos x}$
21. $y = \csc 2x$	22. $y = \tan \frac{\pi x}{2}$
23. $y = \frac{x \tan x}{x^2 + 1}$	24. $y = \frac{\sqrt{x^4 + 1}}{1 + \sin^2 x}$
25. $y = \sqrt{2x + 3}$	26. $y = \sqrt[4]{3x - 1}$
27. $y = (2x - 1)^{1/3}$	28. $y = (2 - x)^{1/5}$

Composite Functions

Find the limits in Exercises 29–34. Are the functions continuous at the point being approached?

- 29. $\lim_{x \to \pi} \sin (x \sin x)$ 30. $\lim_{t \to 0} \sin \left(\frac{\pi}{2} \cos (\tan t) \right)$
- 31. $\lim_{y \to 1} \sec(y \sec^2 y \tan^2 y 1)$

32.
$$\lim_{x \to 0} \tan\left(\frac{\pi}{4}\cos(\sin x^{1/3})\right)$$

33.
$$\lim_{t \to 0} \cos\left(\frac{\pi}{\sqrt{19 - 3 \sec 2t}}\right)$$

34.
$$\lim_{x \to \pi/6} \sqrt{\csc^2 x + 5\sqrt{3} \tan x}$$

Continuous Extensions

- **35.** Define g(3) in a way that extends $g(x) = (x^2 9)/(x 3)$ to be continuous at x = 3.
- **36.** Define h(2) in a way that extends $h(t) = (t^2 + 3t 10)/(t 2)$ to be continuous at t = 2.
- **37.** Define f(1) in a way that extends $f(s) = (s^3 1)/(s^2 1)$ to be continuous at s = 1.
- **38.** Define g(4) in a way that extends $g(x) = (x^2 16)/(x^2 3x 4)$ to be continuous at x = 4.
- **39.** For what value of *a* is

$$f(x) = \begin{cases} x^2 - 1, & x < 3\\ 2ax, & x \ge 3 \end{cases}$$

continuous at every x?

40. For what value of b is

$$g(x) = \begin{cases} x, & x < -2\\ bx^2, & x \ge -2 \end{cases}$$

continuous at every *x*?

In Exercises 41–44, graph the function f to see whether it appears to have a continuous extension to the origin. If it does, use Trace and Zoom to find a good candidate for the extended function's value at x = 0. If the function does not appear to have a continuous extension, can it be extended to be continuous at the origin from the right or from the left? If so, what do you think the extended function's value(s) should be?

41.
$$f(x) = \frac{10^x - 1}{x}$$

42. $f(x) = \frac{10^{|x|} - 1}{x}$
43. $f(x) = \frac{\sin x}{|x|}$
44. $f(x) = (1 + 2x)^{1/x}$

Theory and Examples

- **45.** A continuous function y = f(x) is known to be negative at x = 0 and positive at x = 1. Why does the equation f(x) = 0 have at least one solution between x = 0 and x = 1? Illustrate with a sketch.
- **46.** Explain why the equation $\cos x = x$ has at least one solution.
- **47.** Roots of a cubic Show that the equation $x^3 15x + 1 = 0$ has three solutions in the interval [-4, 4].
- **48.** A function value Show that the function $F(x) = (x a)^2 \cdot (x b)^2 + x$ takes on the value (a + b)/2 for some value of x.
- 49. Solving an equation If $f(x) = x^3 8x + 10$, show that there are values c for which f(c) equals (a) π ; (b) $-\sqrt{3}$; (c) 5,000,000.

- **50.** Explain why the following five statements ask for the same information.
 - **a.** Find the roots of $f(x) = x^3 3x 1$.
 - **b.** Find the *x*-coordinates of the points where the curve $y = x^3$ crosses the line y = 3x + 1.
 - **c.** Find all the values of x for which $x^3 3x = 1$.
 - **d.** Find the *x*-coordinates of the points where the cubic curve $y = x^3 3x$ crosses the line y = 1.
 - e. Solve the equation $x^3 3x 1 = 0$.
- **51. Removable discontinuity** Give an example of a function f(x) that is continuous for all values of x except x = 2, where it has a removable discontinuity. Explain how you know that f is discontinuous at x = 2, and how you know the discontinuity is removable.
- 52. Nonremovable discontinuity Give an example of a function g(x) that is continuous for all values of x except x = -1, where it has a nonremovable discontinuity. Explain how you know that g is discontinuous there and why the discontinuity is not removable.

53. A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers contains both rational and irrational numbers to show that the function

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

is discontinuous at every point.

- **b.** Is *f* right-continuous or left-continuous at any point?
- 54. If functions f(x) and g(x) are continuous for $0 \le x \le 1$, could f(x)/g(x) possibly be discontinuous at a point of [0, 1]? Give reasons for your answer.
- **55.** If the product function $h(x) = f(x) \cdot g(x)$ is continuous at x = 0, must f(x) and g(x) be continuous at x = 0? Give reasons for your answer.
- 56. Discontinuous composite of continuous functions Give an example of functions f and g, both continuous at x = 0, for which the composite $f \circ g$ is discontinuous at x = 0. Does this contradict Theorem 10? Give reasons for your answer.
- **57.** Never-zero continuous functions Is it true that a continuous function that is never zero on an interval never changes sign on that interval? Give reasons for your answer.

- **58.** Stretching a rubber band Is it true that if you stretch a rubber band by moving one end to the right and the other to the left, some point of the band will end up in its original position? Give reasons for your answer.
- **59.** A fixed point theorem Suppose that a function f is continuous on the closed interval [0, 1] and that $0 \le f(x) \le 1$ for every x in [0, 1]. Show that there must exist a number c in [0, 1] such that f(c) = c (c is called a **fixed point** of f).
- **60.** The sign-preserving property of continuous functions Let f be defined on an interval (a, b) and suppose that $f(c) \neq 0$ at some c where f is continuous. Show that there is an interval $(c \delta, c + \delta)$ about c where f has the same sign as f(c). Notice how remarkable this conclusion is. Although f is defined throughout (a, b), it is not required to be continuous at any point except c. That and the condition $f(c) \neq 0$ are enough to make f different from zero (positive or negative) throughout an entire interval.
- **61.** Prove that *f* is continuous at *c* if and only if

$$\lim_{h \to 0} f(c+h) = f(c).$$

62. Use Exercise 61 together with the identities

 $\sin(h+c) = \sin h \cos c + \cos h \sin c,$

 $\cos(h + c) = \cos h \cos c - \sin h \sin c$

to prove that $f(x) = \sin x$ and $g(x) = \cos x$ are continuous at every point x = c.

Solving Equations Graphically

1 Use a graphing calculator or computer grapher to solve the equations in Exercises 63–70.

63.
$$x^3 - 3x - 1 = 0$$

- **64.** $2x^3 2x^2 2x + 1 = 0$
- **65.** $x(x-1)^2 = 1$ (one root)
- **66.** $x^x = 2$

67.
$$\sqrt{x} + \sqrt{1+x} = 4$$

- **68.** $x^3 15x + 1 = 0$ (three roots)
- **69.** $\cos x = x$ (one root). Make sure you are using radian mode.
- **70.** $2 \sin x = x$ (three roots). Make sure you are using radian mode.

134 Chapter 2: Limits and Continuity

This section continues the discussion of secants and tangents begun in Section 2.1. We calculate limits of secant slopes to find tangents to curves.

What Is a Tangent to a Curve?

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L passes through P perpendicular to the radius at P (Figure 2.63). Such a line just *touches*

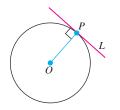


FIGURE 2.63 *L* is tangent to the circle at *P* if it passes through *P* perpendicular to radius *OP*.

the circle. But what does it mean to say that a line L is tangent to some other curve C at a point P? Generalizing from the geometry of the circle, we might say that it means one of the following:

- 1. L passes through P perpendicular to the line from P to the center of C.
- 2. *L* passes through only one point of *C*, namely *P*.
- 3. *L* passes through *P* and lies on one side of *C* only.

Although these statements are valid if C is a circle, none of them works consistently for more general curves. Most curves do not have centers, and a line we may want to call tangent may intersect C at other points or cross C at the point of tangency (Figure 2.64).

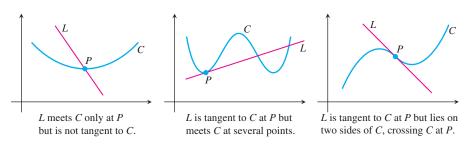


FIGURE 2.64 Exploding myths about tangent lines.

To define tangency for general curves, we need a *dynamic* approach that takes into account the behavior of the secants through P and nearby points Q as Q moves toward P along the curve (Figure 2.65). It goes like this:

- 1. We start with what we *can* calculate, namely the slope of the secant *PQ*.
- 2. Investigate the limit of the secant slope as Q approaches P along the curve.
- 3. If the limit exists, take it to be the slope of the curve at *P* and define the tangent to the curve at *P* to be the line through *P* with this slope.

This approach is what we were doing in the falling-rock and fruit fly examples in Section 2.1.

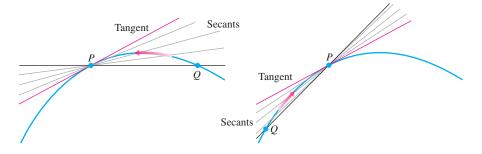


FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at *P* is the line through *P* whose slope is the limit of the secant slopes as $Q \rightarrow P$ from either side.

HISTORICAL BIOGRAPHY

Pierre de Fermat (1601–1665)

EXAMPLE 1 Tangent Line to a Parabola

Find the slope of the parabola $y = x^2$ at the point P(2, 4). Write an equation for the tangent to the parabola at this point.

Solution We begin with a secant line through P(2, 4) and $Q(2 + h, (2 + h)^2)$ nearby. We then write an expression for the slope of the secant PQ and investigate what happens to the slope as Q approaches P along the curve:

Secant slope
$$= \frac{\Delta y}{\Delta x} = \frac{(2+h)^2 - 2^2}{h} = \frac{h^2 + 4h + 4 - 4}{h}$$

 $= \frac{h^2 + 4h}{h} = h + 4.$

If h > 0, then Q lies above and to the right of P, as in Figure 2.66. If h < 0, then Q lies to the left of P (not shown). In either case, as Q approaches P along the curve, h approaches zero and the secant slope approaches 4:

$$\lim_{h \to 0} \left(h + 4 \right) = 4$$

We take 4 to be the parabola's slope at *P*.

The tangent to the parabola at *P* is the line through *P* with slope 4:

$$y = 4 + 4(x - 2)$$
 Point-slope equation
 $y = 4x - 4$.

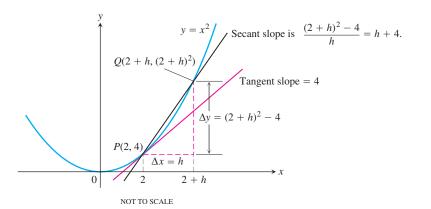


FIGURE 2.66 Finding the slope of the parabola $y = x^2$ at the point P(2, 4) (Example 1).

Finding a Tangent to the Graph of a Function

The problem of finding a tangent to a curve was the dominant mathematical problem of the early seventeenth century. In optics, the tangent determined the angle at which a ray of light entered a curved lens. In mechanics, the tangent determined the direction of a body's motion at every point along its path. In geometry, the tangents to two curves at a point of intersection determined the angles at which they intersected. To find a tangent to an arbitrary curve y = f(x) at a point $P(x_0, f(x_0))$, we use the same dynamic procedure. We calculate the slope of the secant through *P* and a point $Q(x_0 + h, f(x_0 + h))$. We then investigate the limit of the slope as $h \rightarrow 0$ (Figure 2.67). If the limit exists, we call it the slope of the curve at *P* and define the tangent at *P* to be the line through *P* having this slope.

exists).

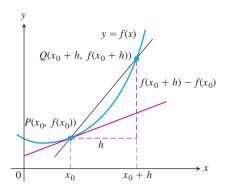


FIGURE 2.67 The slope of the tangent line at *P* is $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$.

DEFINITIONS Slope, Tangent Line

The slope of the curve y = f(x) at the point $P(x_0, f(x_0))$ is the number

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \qquad \text{(provided the limit)}$$

The **tangent line** to the curve at *P* is the line through *P* with this slope.

Whenever we make a new definition, we try it on familiar objects to be sure it is consistent with results we expect in familiar cases. Example 2 shows that the new definition of slope agrees with the old definition from Section 1.2 when we apply it to nonvertical lines.

EXAMPLE 2 Testing the Definition

Show that the line y = mx + b is its own tangent at any point $(x_0, mx_0 + b)$.

Solution We let f(x) = mx + b and organize the work into three steps.

1. Find $f(x_0)$ and $f(x_0 + h)$.

$$f(x_0) = mx_0 + b$$

$$f(x_0 + h) = m(x_0 + h) + b = mx_0 + mh + b$$

- 2. Find the slope $\lim_{h \to 0} (f(x_0 + h) f(x_0))/h$. $\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(mx_0 + mh + b) - (mx_0 + b)}{h}$ $= \lim_{h \to 0} \frac{mh}{h} = m$
- 3. Find the tangent line using the point-slope equation. The tangent line at the point $(x_0, mx_0 + b)$ is

$$y = (mx_0 + b) + m(x - x_0)$$

$$y = mx_0 + b + mx - mx_0$$

$$y = mx + b.$$

Let's summarize the steps in Example 2.

Finding the Tangent to the Curve y = f(x) at (x_0, y_0)

- **1.** Calculate $f(x_0)$ and $f(x_0 + h)$.
- 2. Calculate the slope

$$m = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

3. If the limit exists, find the tangent line as

$$y = y_0 + m(x - x_0).$$

EXAMPLE 3 Slope and Tangent to $y = 1/x, x \neq 0$

- (a) Find the slope of the curve y = 1/x at $x = a \neq 0$.
- (b) Where does the slope equal -1/4?
- (c) What happens to the tangent to the curve at the point (a, 1/a) as a changes?

Solution

(a) Here f(x) = 1/x. The slope at (a, 1/a) is

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} \frac{\frac{1}{a+h} - \frac{1}{a}}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \frac{a - (a+h)}{a(a+h)}$$
$$= \lim_{h \to 0} \frac{-h}{ha(a+h)}$$
$$= \lim_{h \to 0} \frac{-1}{a(a+h)} = -\frac{1}{a^2}.$$

Notice how we had to keep writing " $\lim_{h\to 0}$ " before each fraction until the stage where we could evaluate the limit by substituting h = 0. The number *a* may be positive or negative, but not 0.

(b) The slope of y = 1/x at the point where x = a is $-1/a^2$. It will be -1/4 provided that

$$-\frac{1}{a^2} = -\frac{1}{4}$$

This equation is equivalent to $a^2 = 4$, so a = 2 or a = -2. The curve has slope -1/4 at the two points (2, 1/2) and (-2, -1/2) (Figure 2.68).

(c) Notice that the slope $-1/a^2$ is always negative if $a \neq 0$. As $a \rightarrow 0^+$, the slope approaches $-\infty$ and the tangent becomes increasingly steep (Figure 2.69). We see this situation again as $a \rightarrow 0^-$. As a moves away from the origin in either direction, the slope approaches 0^- and the tangent levels off.

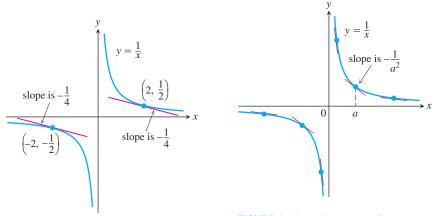


FIGURE 2.68 The two tangent lines to y = 1/x having slope -1/4 (Example 3).

FIGURE 2.69 The tangent slopes, steep near the origin, become more gradual as the point of tangency moves away.

Rates of Change: Derivative at a Point

The expression

$$\frac{f(x_0+h)-f(x_0)}{h}$$

is called the **difference quotient of** f at x_0 with increment h. If the difference quotient has a limit as h approaches zero, that limit is called the **derivative of** f at x_0 . If we interpret the difference quotient as a secant slope, the derivative gives the slope of the curve and tangent at the point where $x = x_0$. If we interpret the difference quotient as an average rate of change, as we did in Section 2.1, the derivative gives the function's rate of change with respect to x at the point $x = x_0$. The derivative is one of the two most important mathematical objects considered in calculus. We begin a thorough study of it in Chapter 3. The other important object is the integral, and we initiate its study in Chapter 5.

EXAMPLE 4 Instantaneous Speed (Continuation of Section 2.1, Examples 1 and 2)

In Examples 1 and 2 in Section 2.1, we studied the speed of a rock falling freely from rest near the surface of the earth. We knew that the rock fell $y = 16t^2$ feet during the first *t* sec, and we used a sequence of average rates over increasingly short intervals to estimate the rock's speed at the instant t = 1. Exactly what *was* the rock's speed at this time?

Solution We let $f(t) = 16t^2$. The average speed of the rock over the interval between t = 1 and t = 1 + h seconds was

$$\frac{f(1+h)-f(1)}{h} = \frac{16(1+h)^2 - 16(1)^2}{h} = \frac{16(h^2+2h)}{h} = 16(h+2).$$

The rock's speed at the instant t = 1 was

$$\lim_{h \to 0} 16(h+2) = 16(0+2) = 32 \text{ ft/sec.}$$

Our original estimate of 32 ft/sec was right.

Summary

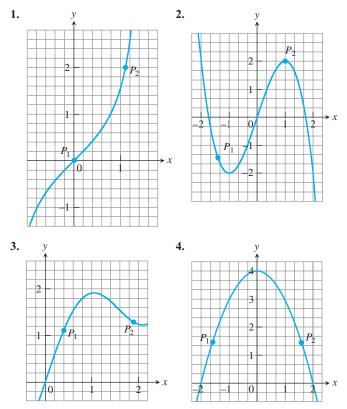
We have been discussing slopes of curves, lines tangent to a curve, the rate of change of a function, the limit of the difference quotient, and the derivative of a function at a point. All of these ideas refer to the same thing, summarized here:

- 1. The slope of y = f(x) at $x = x_0$
- 2. The slope of the tangent to the curve y = f(x) at $x = x_0$
- 3. The rate of change of f(x) with respect to x at $x = x_0$
- 4. The derivative of f at $x = x_0$
- 5. The limit of the difference quotient, $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$

EXERCISES 2.7

Slopes and Tangent Lines

In Exercises 1–4, use the grid and a straight edge to make a rough estimate of the slope of the curve (in *y*-units per *x*-unit) at the points P_1 and P_2 . Graphs can shift during a press run, so your estimates may be somewhat different from those in the back of the book.



In Exercises 5–10, find an equation for the tangent to the curve at the given point. Then sketch the curve and tangent together.

5.
$$y = 4 - x^2$$
, (-1, 3)
6. $y = (x - 1)^2 + 1$, (1, 1)
7. $y = 2\sqrt{x}$, (1, 2)
8. $y = \frac{1}{x^2}$, (-1, 1)
9. $y = x^3$, (-2, -8)
10. $y = \frac{1}{x^3}$, $\left(-2, -\frac{1}{8}\right)$

In Exercises 11–18, find the slope of the function's graph at the given point. Then find an equation for the line tangent to the graph there.

11. $f(x) = x^2 + 1$, (2, 5)	12. $f(x) = x - 2x^2$, $(1, -1)$
13. $g(x) = \frac{x}{x-2}$, (3,3)	14. $g(x) = \frac{8}{x^2}$, (2, 2)
15. $h(t) = t^3$, (2, 8)	16. $h(t) = t^3 + 3t$, (1, 4)
17. $f(x) = \sqrt{x}$, (4, 2)	18. $f(x) = \sqrt{x+1}$, (8,3)

In Exercises 19–22, find the slope of the curve at the point indicated.

19. $y = 5x^2$, $x = -1$	20. $y = 1 - x^2$, $x = 2$
21. $y = \frac{1}{x-1}, x = 3$	22. $y = \frac{x-1}{x+1}, x = 0$

Tangent Lines with Specified Slopes

At what points do the graphs of the functions in Exercises 23 and 24 have horizontal tangents?

- **23.** $f(x) = x^2 + 4x 1$ **24.** $g(x) = x^3 3x$
- **25.** Find equations of all lines having slope -1 that are tangent to the curve y = 1/(x 1).
- **26.** Find an equation of the straight line having slope 1/4 that is tangent to the curve $y = \sqrt{x}$.

Rates of Change

- 27. Object dropped from a tower An object is dropped from the top of a 100-m-high tower. Its height above ground after t sec is $100 4.9t^2$ m. How fast is it falling 2 sec after it is dropped?
- **28.** Speed of a rocket At *t* sec after liftoff, the height of a rocket is $3t^2$ ft. How fast is the rocket climbing 10 sec after liftoff?
- **29.** Circle's changing area What is the rate of change of the area of a circle $(A = \pi r^2)$ with respect to the radius when the radius is r = 3?
- **30.** Ball's changing volume What is the rate of change of the volume of a ball ($V = (4/3)\pi r^3$) with respect to the radius when the radius is r = 2?

Testing for Tangents

31. Does the graph of

$$f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

have a tangent at the origin? Give reasons for your answer.

32. Does the graph of

$$g(x) = \begin{cases} x \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

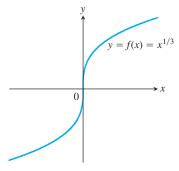
have a tangent at the origin? Give reasons for your answer.

Vertical Tangents

We say that the curve y = f(x) has a **vertical tangent** at the point where $x = x_0$ if $\lim_{h\to 0} (f(x_0 + h) - f(x_0))/h = \infty$ or $-\infty$.

Vertical tangent at x = 0 (see accompanying figure):

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3} - 0}{h}$$
$$= \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty$$

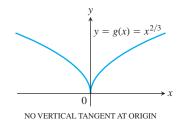


VERTICAL TANGENT AT ORIGIN

No vertical tangent at x = 0 (see next figure):

$$\lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{h^{2/3} - 0}{h}$$
$$= \lim_{h \to 0} \frac{1}{h^{1/3}}$$

does not exist, because the limit is ∞ from the right and $-\infty$ from the left.



33. Does the graph of

$$f(x) = \begin{cases} -1, & x < 0\\ 0, & x = 0\\ 1, & x > 0 \end{cases}$$

have a vertical tangent at the origin? Give reasons for your answer.

34. Does the graph of

$$U(x) = \begin{cases} 0, & x < 0\\ 1, & x \ge 0 \end{cases}$$

have a vertical tangent at the point (0, 1)? Give reasons for your answer.

- **T a.** Graph the curves in Exercises 35–44. Where do the graphs appear to have vertical tangents?
 - **b.** Confirm your findings in part (a) with limit calculations. But before you do, read the introduction to Exercises 33 and 34.

35.
$$y = x^{2/5}$$

36. $y = x^{4/5}$
37. $y = x^{1/5}$
38. $y = x^{3/5}$
39. $y = 4x^{2/5} - 2x$
40. $y = x^{5/3} - 5x^{2/3}$
41. $y = x^{2/3} - (x - 1)^{1/3}$
42. $y = x^{1/3} + (x - 1)^{1/3}$
43. $y = \begin{cases} -\sqrt{|x|}, & x \le 0 \\ \sqrt{x}, & x > 0 \end{cases}$
44. $y = \sqrt{|4 - x|}$

COMPUTER EXPLORATIONS

Graphing Secant and Tangent Lines

Use a CAS to perform the following steps for the functions in Exercises 45–48.

- **a.** Plot y = f(x) over the interval $(x_0 1/2) \le x \le (x_0 + 3)$.
- **b.** Holding x_0 fixed, the difference quotient

$$q(h) = \frac{f(x_0 + h) - f(x_0)}{h}$$

at x_0 becomes a function of the step size *h*. Enter this function into your CAS workspace.

- **c.** Find the limit of q as $h \rightarrow 0$.
- **d.** Define the secant lines $y = f(x_0) + q \cdot (x x_0)$ for h = 3, 2, and 1. Graph them together with *f* and the tangent line over the interval in part (a).

45. $f(x) = x^3 + 2x$, $x_0 = 0$ **46.** $f(x) = x + \frac{5}{x}$, $x_0 = 1$ **47.** $f(x) = x + \sin(2x)$, $x_0 = \pi/2$

48. $f(x) = \cos x + 4 \sin (2x), \quad x_0 = \pi$

Chapter 2 Additional and Advanced Exercises

1. Assigning a value to 0^0 The rules of exponents (see Appendix 9) tell us that $a^0 = 1$ if a is any number different from zero. They also tell us that $0^n = 0$ if n is any positive number.

If we tried to extend these rules to include the case 0^0 , we would get conflicting results. The first rule would say $0^0 = 1$, whereas the second would say $0^0 = 0$.

We are not dealing with a question of right or wrong here. Neither rule applies as it stands, so there is no contradiction. We could, in fact, define 0^0 to have any value we wanted as long as we could persuade others to agree.

What value would you like 0^0 to have? Here is an example that might help you to decide. (See Exercise 2 below for another example.)

- **a.** Calculate x^x for x = 0.1, 0.01, 0.001, and so on as far as your calculator can go. Record the values you get. What pattern do you see?
- **b.** Graph the function $y = x^x$ for $0 < x \le 1$. Even though the function is not defined for $x \le 0$, the graph will approach the *y*-axis from the right. Toward what *y*-value does it seem to be headed? Zoom in to further support your idea.

T 2. A reason you might want 0⁰ to be something other than 0 or 1 As the number *x* increases through positive values, the numbers 1/x and $1/(\ln x)$ both approach zero. What happens to the number

$$f(x) = \left(\frac{1}{x}\right)^{1/(\ln x)}$$

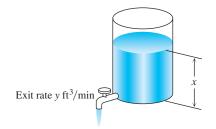
as x increases? Here are two ways to find out.

- **a.** Evaluate f for x = 10, 100, 1000, and so on as far as your calculator can reasonably go. What pattern do you see?
- **b.** Graph *f* in a variety of graphing windows, including windows that contain the origin. What do you see? Trace the *y*-values along the graph. What do you find?
- 3. Lorentz contraction In relativity theory, the length of an object, say a rocket, appears to an observer to depend on the speed at which the object is traveling with respect to the observer. If the observer measures the rocket's length as L_0 at rest, then at speed v the length will appear to be

$$L = L_0 \sqrt{1 - \frac{v^2}{c^2}}.$$

This equation is the Lorentz contraction formula. Here, *c* is the speed of light in a vacuum, about 3×10^8 m/sec. What happens to *L* as *v* increases? Find $\lim_{v\to c^-} L$. Why was the left-hand limit needed?

4. Controlling the flow from a draining tank Torricelli's law says that if you drain a tank like the one in the figure shown, the rate *y* at which water runs out is a constant times the square root of the water's depth *x*. The constant depends on the size and shape of the exit valve.



Suppose that $y = \sqrt{x/2}$ for a certain tank. You are trying to maintain a fairly constant exit rate by adding water to the tank with a hose from time to time. How deep must you keep the water if you want to maintain the exit rate

a. within 0.2 ft³/min of the rate $y_0 = 1$ ft³/min?

- **b.** within 0.1 ft³/min of the rate $y_0 = 1$ ft³/min?
- 5. Thermal expansion in precise equipment As you may know, most metals expand when heated and contract when cooled. The dimensions of a piece of laboratory equipment are sometimes so critical that the shop where the equipment is made must be held at the same temperature as the laboratory where the equipment is to be used. A typical aluminum bar that is 10 cm wide at 70°F will be

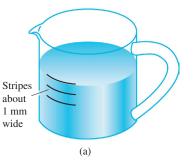
$$y = 10 + (t - 70) \times 10^{-1}$$

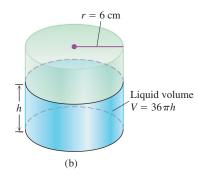
centimeters wide at a nearby temperature *t*. Suppose that you are using a bar like this in a gravity wave detector, where its width must stay within 0.0005 cm of the ideal 10 cm. How close to $t_0 = 70^{\circ}$ F must you maintain the temperature to ensure that this tolerance is not exceeded?

6. Stripes on a measuring cup The interior of a typical 1-L measuring cup is a right circular cylinder of radius 6 cm (see accompanying figure). The volume of water we put in the cup is therefore a function of the level *h* to which the cup is filled, the formula being

$$V = \pi 6^2 h = 36\pi h.$$

How closely must we measure *h* to measure out 1 L of water (1000 cm^3) with an error of no more than 1% (10 cm^3) ?





A 1-L measuring cup (a), modeled as a right circular cylinder (b) of radius r = 6 cm

Precise Definition of Limit

In Exercises 7–10, use the formal definition of limit to prove that the function is continuous at x_0 .

- **7.** $f(x) = x^2 7$, $x_0 = 1$ **8.** g(x) = 1/(2x), $x_0 = 1/4$ **9.** $h(x) = \sqrt{2x - 3}$, $x_0 = 2$ **10.** $F(x) = \sqrt{9 - x}$, $x_0 = 5$
- **11. Uniqueness of limits** Show that a function cannot have two different limits at the same point. That is, if $\lim_{x\to x_0} f(x) = L_1$ and $\lim_{x\to x_0} f(x) = L_2$, then $L_1 = L_2$.
- **12.** Prove the limit Constant Multiple Rule: $\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x) \quad \text{for any constant } k.$
- **13. One-sided limits** If $\lim_{x\to 0^+} f(x) = A$ and $\lim_{x\to 0^-} f(x) = B$, find

a.
$$\lim_{x\to 0^+} f(x^3 - x)$$

b. $\lim_{x\to 0^-} f(x^3 - x)$
c. $\lim_{x\to 0^+} f(x^2 - x^4)$
d. $\lim_{x\to 0^-} f(x^2 - x^4)$

- **14.** Limits and continuity Which of the following statements are true, and which are false? If true, say why; if false, give a counterexample (that is, an example confirming the falsehood).
 - **a.** If $\lim_{x\to a} f(x)$ exists but $\lim_{x\to a} g(x)$ does not exist, then $\lim_{x\to a} (f(x) + g(x))$ does not exist.
 - **b.** If neither $\lim_{x\to a} f(x)$ nor $\lim_{x\to a} g(x)$ exists, then $\lim_{x\to a} (f(x) + g(x))$ does not exist.
 - **c.** If f is continuous at x, then so is |f|.
 - **d.** If |f| is continuous at *a*, then so is *f*.

In Exercises 15 and 16, use the formal definition of limit to prove that the function has a continuous extension to the given value of x.

15.
$$f(x) = \frac{x^2 - 1}{x + 1}$$
, $x = -1$ **16.** $g(x) = \frac{x^2 - 2x - 3}{2x - 6}$, $x = 3$

17. A function continuous at only one point Let

$$f(x) = \begin{cases} x, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

- **a.** Show that f is continuous at x = 0.
- **b.** Use the fact that every nonempty open interval of real numbers contains both rational and irrational numbers to show that *f* is not continuous at any nonzero value of *x*.

18. The Dirichlet ruler function If x is a rational number, then x can be written in a unique way as a quotient of integers m/n where n > 0 and m and n have no common factors greater than 1. (We say that such a fraction is in *lowest terms*. For example, 6/4 written in lowest terms is 3/2.) Let f(x) be defined for all x in the interval [0, 1] by

 $f(x) = \begin{cases} 1/n, & \text{if } x = m/n \text{ is a rational number in lowest terms} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$

For instance, f(0) = f(1) = 1, f(1/2) = 1/2, f(1/3) = f(2/3) = 1/3, f(1/4) = f(3/4) = 1/4, and so on.

- **a.** Show that f is discontinuous at every rational number in [0, 1].
- **b.** Show that *f* is continuous at every irrational number in [0, 1]. (*Hint*: If ϵ is a given positive number, show that there are only finitely many rational numbers *r* in [0, 1] such that $f(r) \ge \epsilon$.)
- **c.** Sketch the graph of *f*. Why do you think *f* is called the "ruler function"?
- **19. Antipodal points** Is there any reason to believe that there is always a pair of antipodal (diametrically opposite) points on Earth's equator where the temperatures are the same? Explain.
- **20.** If $\lim_{x \to c} (f(x) + g(x)) = 3$ and $\lim_{x \to c} (f(x) g(x)) = -1$, find $\lim_{x \to c} f(x)g(x)$.
- 21. Roots of a quadratic equation that is almost linear The equation $ax^2 + 2x 1 = 0$, where *a* is a constant, has two roots if a > -1 and $a \neq 0$, one positive and one negative:

$$r_{+}(a) = \frac{-1 + \sqrt{1 + a}}{a}, \qquad r_{-}(a) = \frac{-1 - \sqrt{1 + a}}{a},$$

- **a.** What happens to $r_+(a)$ as $a \to 0$? As $a \to -1^+$?
- **b.** What happens to $r_{-}(a)$ as $a \rightarrow 0$? As $a \rightarrow -1^{+}$?
- **c.** Support your conclusions by graphing $r_+(a)$ and $r_-(a)$ as functions of *a*. Describe what you see.
- **d.** For added support, graph $f(x) = ax^2 + 2x 1$ simultaneously for a = 1, 0.5, 0.2, 0.1, and 0.05.
- **22. Root of an equation** Show that the equation $x + 2\cos x = 0$ has at least one solution.
- **23.** Bounded functions A real-valued function f is bounded from above on a set D if there exists a number N such that $f(x) \le N$ for all x in D. We call N, when it exists, an **upper bound** for f on D and say that f is bounded from above by N. In a similar manner, we say that f is bounded from below on D if there exists a number M such that $f(x) \ge M$ for all x in D. We call M, when it exists, a **lower bound** for f on D and say that f is bounded from below on D if there exists a number M such that $f(x) \ge M$ for all x in D. We call M, when it exists, a **lower bound** for f on D and say that f is bounded from below by M. We say that f is bounded on D if it is bounded from below by M. We say that f is bounded on D if it is bounded from both above and below.
 - **a.** Show that f is bounded on D if and only if there exists a number B such that $|f(x)| \le B$ for all x in D.
 - **b.** Suppose that f is bounded from above by N. Show that if $\lim_{x\to x_0} f(x) = L$, then $L \leq N$.
 - **c.** Suppose that *f* is bounded from below by *M*. Show that if $\lim_{x\to x_0} f(x) = L$, then $L \ge M$.

146 Chapter 2: Limits and Continuity

24. *Max* $\{a, b\}$ *and min* $\{a, b\}$

a. Show that the expression

$$\max\{a, b\} = \frac{a+b}{2} + \frac{|a-b|}{2}$$

equals *a* if $a \ge b$ and equals *b* if $b \ge a$. In other words, max $\{a, b\}$ gives the larger of the two numbers *a* and *b*.

b. Find a similar expression for min $\{a, b\}$, the smaller of *a* and *b*.

Generalized Limits Involving $\frac{\sin \theta}{\theta}$

The formula $\lim_{\theta\to 0} (\sin \theta)/\theta = 1$ can be generalized. If $\lim_{x\to c} f(x) = 0$ and f(x) is never zero in an open interval containing the point x = c, except possibly *c* itself, then

$$\lim_{x \to c} \frac{\sin f(x)}{f(x)} = 1.$$

Here are several examples.

a.
$$\lim_{x \to 0} \frac{\sin x^2}{x^2} = 1$$
.

$$\begin{aligned} \mathbf{b.} & \lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \frac{\sin x^2}{x^2} \lim_{x \to 0} \frac{x^2}{x} = 1 \cdot 0 = 0. \\ \mathbf{c.} & \lim_{x \to -1} \frac{\sin (x^2 - x - 2)}{x + 1} = \lim_{x \to -1} \frac{\sin (x^2 - x - 2)}{(x^2 - x - 2)} \cdot \\ & \lim_{x \to -1} \frac{(x^2 - x - 2)}{x + 1} = 1 \cdot \lim_{x \to -1} \frac{(x + 1)(x - 2)}{x + 1} = -3. \\ \mathbf{d.} & \lim_{x \to 1} \frac{\sin (1 - \sqrt{x})}{x - 1} = \lim_{x \to 1} \frac{\sin (1 - \sqrt{x})}{1 - \sqrt{x}} \frac{1 - \sqrt{x}}{x - 1} = \\ & 1 \cdot \lim_{x \to 1} \frac{(1 - \sqrt{x})(1 + \sqrt{x})}{(x - 1)(1 + \sqrt{x})} = \lim_{x \to 1} \frac{1 - x}{(x - 1)(1 + \sqrt{x})} = -\frac{1}{2}. \end{aligned}$$

Find the limits in Exercises 25–30.

25.
$$\lim_{x \to 0} \frac{\sin (1 - \cos x)}{x}$$
26.
$$\lim_{x \to 0^+} \frac{\sin x}{\sin \sqrt{x}}$$
27.
$$\lim_{x \to 0} \frac{\sin (\sin x)}{x}$$
28.
$$\lim_{x \to 0} \frac{\sin (x^2 + x)}{x}$$
29.
$$\lim_{x \to 2} \frac{\sin (x^2 - 4)}{x - 2}$$
30.
$$\lim_{x \to 9} \frac{\sin (\sqrt{x} - 3)}{x - 9}$$

Chapter 2 Practice Exercises

Limits and Continuity

1. Graph the function

$$f(x) = \begin{cases} 1, & x \le -1 \\ -x, & -1 < x < 0 \\ 1, & x = 0 \\ -x, & 0 < x < 1 \\ 1, & x \ge 1. \end{cases}$$

Then discuss, in detail, limits, one-sided limits, continuity, and one-sided continuity of f at x = -1, 0, and 1. Are any of the discontinuities removable? Explain.

2. Repeat the instructions of Exercise 1 for

$$f(x) = \begin{cases} 0, & x \le -1\\ 1/x, & 0 < |x| < 1\\ 0, & x = 1\\ 1, & x > 1. \end{cases}$$

- **3.** Suppose that f(t) and g(t) are defined for all t and that $\lim_{t \to t_0} f(t) = -7$ and $\lim_{t \to t_0} g(t) = 0$. Find the limit as $t \to t_0$ of the following functions.
 - **a.** 3f(t)**b.** $(f(t))^2$ **c.** $f(t) \cdot g(t)$ **d.** $\frac{f(t)}{g(t) 7}$ **e.** $\cos(g(t))$ **f.** |f(t)|**g.** f(t) + g(t)**h.** 1/f(t)

- **4.** Suppose that f(x) and g(x) are defined for all x and that $\lim_{x\to 0} f(x) = 1/2$ and $\lim_{x\to 0} g(x) = \sqrt{2}$. Find the limits as $x \to 0$ of the following functions.
 - **a.** -g(x) **b.** $g(x) \cdot f(x)$
 c. f(x) + g(x) **d.** 1/f(x)

 e. x + f(x) **f.** $\frac{f(x) \cdot \cos x}{x 1}$

In Exercises 5 and 6, find the value that $\lim_{x\to 0} g(x)$ must have if the given limit statements hold.

- 5. $\lim_{x \to 0} \left(\frac{4 g(x)}{x} \right) = 1$ 6. $\lim_{x \to -4} \left(x \lim_{x \to 0} g(x) \right) = 2$
- 7. On what intervals are the following functions continuous?
 - **a.** $f(x) = x^{1/3}$ **b.** $g(x) = x^{3/4}$ **c.** $h(x) = x^{-2/3}$ **d.** $k(x) = x^{-1/6}$
- 8. On what intervals are the following functions continuous?
 - **a.** $f(x) = \tan x$ **b.** $g(x) = \csc x$ **c.** $h(x) = \frac{\cos x}{x - \pi}$ **d.** $k(x) = \frac{\sin x}{x}$

Finding Limits

In Exercises 9–16, find the limit or explain why it does not exist.

9.
$$\lim \frac{x^2 - 4x + 4}{x^3 + 5x^2 - 14x}$$

a. as $x \to 0$
b. as $x \to 2$
10.
$$\lim \frac{x^2 + x}{x^5 + 2x^4 + x^3}$$

a. as $x \to 0$
b. as $x \to -1$
11.
$$\lim_{x \to 1} \frac{1 - \sqrt{x}}{1 - x}$$

12.
$$\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$$

13.
$$\lim_{h \to 0} \frac{(x + h)^2 - x^2}{h}$$

14.
$$\lim_{x \to 0} \frac{(x + h)^2 - x^2}{h}$$

15.
$$\lim_{x \to 0} \frac{\frac{1}{2 + x} - \frac{1}{2}}{x}$$

16.
$$\lim_{x \to 0} \frac{(2 + x)^3 - 8}{x}$$

In Exercises 17–20, find the limit of g(x) as x approaches the indicated value.

17.
$$\lim_{x \to 0^+} (4g(x))^{1/3} = 2$$

18. $\lim_{x \to \sqrt{5}} \frac{1}{x + g(x)} = 2$
19. $\lim_{x \to 1} \frac{3x^2 + 1}{g(x)} = \infty$
20. $\lim_{x \to -2} \frac{5 - x^2}{\sqrt{g(x)}} = 0$

Limits at Infinity

Find the limits in Exercises 21–30.

21.
$$\lim_{x \to \infty} \frac{2x+3}{5x+7}$$
 22. $\lim_{x \to -\infty} \frac{2x^2+3}{5x^2+7}$

23.
$$\lim_{x \to -\infty} \frac{x^2 - 4x + 8}{3x^3}$$
24.
$$\lim_{x \to \infty} \frac{1}{x^2 - 7x + 1}$$
25.
$$\lim_{x \to -\infty} \frac{x^2 - 7x}{x + 1}$$
26.
$$\lim_{x \to \infty} \frac{x^4 + x^3}{12x^3 + 128}$$

27. $\lim_{x \to \infty} \frac{\sin x}{\lfloor x \rfloor}$ (If you have a grapher, try graphing the function for $-5 \le x \le 5$.)

28. $\lim_{\theta \to \infty} \frac{\cos \theta - 1}{\theta}$ (If you have a grapher, try graphing $f(x) = x(\cos (1/x) - 1)$ near the origin to "see" the limit at infinity.)

29.
$$\lim_{x \to \infty} \frac{x + \sin x + 2\sqrt{x}}{x + \sin x}$$
 30.
$$\lim_{x \to \infty} \frac{x^{2/3} + x^{-1}}{x^{2/3} + \cos^2 x}$$

Continuous Extension

- **31.** Can $f(x) = x(x^2 1)/|x^2 1|$ be extended to be continuous at x = 1 or -1? Give reasons for your answers. (Graph the function—you will find the graph interesting.)
- **32.** Explain why the function $f(x) = \sin(1/x)$ has no continuous extension to x = 0.
- In Exercises 33–36, graph the function to see whether it appears to have a continuous extension to the given point *a*. If it does, use Trace and Zoom to find a good candidate for the extended function's value at *a*. If the function does not appear to have a continuous extension, can it be extended to be continuous from the right or left? If so, what do you think the extended function's value should be?

33.
$$f(x) = \frac{x-1}{x - \sqrt[4]{x}}, \quad a = 1$$
 34. $g(\theta) = \frac{5 \cos \theta}{4\theta - 2\pi}, \quad a = \pi/2$
35. $h(t) = (1 + |t|)^{1/t}, \quad a = 0$ **36.** $k(x) = \frac{x}{1 - 2^{|x|}}, \quad a = 0$

Roots

T 37. Let $f(x) = x^3 - x - 1$.

- **a.** Show that f has a zero between -1 and 2.
- **b.** Solve the equation f(x) = 0 graphically with an error of magnitude at most 10^{-8} .
- c. It can be shown that the exact value of the solution in part (b) is

$$\left(\frac{1}{2} + \frac{\sqrt{69}}{18}\right)^{1/3} + \left(\frac{1}{2} - \frac{\sqrt{69}}{18}\right)^{1/3}$$

Evaluate this exact answer and compare it with the value you found in part (b).

T 38. Let $f(\theta) = \theta^3 - 2\theta + 2$.

- **a.** Show that f has a zero between -2 and 0.
- **b.** Solve the equation $f(\theta) = 0$ graphically with an error of magnitude at most 10^{-4} .
- c. It can be shown that the exact value of the solution in part (b) is

$$\left(\sqrt{\frac{19}{27}} - 1\right)^{1/3} - \left(\sqrt{\frac{19}{27}} + 1\right)^{1/3}$$

Evaluate this exact answer and compare it with the value you found in part (b).

Chapter 2 Questions to Guide Your Review 141

Chapter 2 Questions to Guide Your Review

- 1. What is the average rate of change of the function *g*(*t*) over the interval from *t* = *a* to *t* = *b*? How is it related to a secant line?
- 2. What limit must be calculated to find the rate of change of a function *g*(*t*) at *t* = *t*₀?
- 3. What is an informal or intuitive definition of the limit

$$\lim_{x \to x_0} f(x) = L?$$

Why is the definition "informal"? Give examples.

- 4. Does the existence and value of the limit of a function f(x) as x approaches x_0 ever depend on what happens at $x = x_0$? Explain and give examples.
- **5.** What function behaviors might occur for which the limit may fail to exist? Give examples.
- **6.** What theorems are available for calculating limits? Give examples of how the theorems are used.

- 7. How are one-sided limits related to limits? How can this relationship sometimes be used to calculate a limit or prove it does not exist? Give examples.
- 8. What is the value of $\lim_{\theta \to 0} ((\sin \theta)/\theta)$? Does it matter whether θ is measured in degrees or radians? Explain.
- **9.** What exactly does $\lim_{x\to x_0} f(x) = L$ mean? Give an example in which you find a $\delta > 0$ for a given f, L, x_0 , and $\epsilon > 0$ in the precise definition of limit.
- 10. Give precise definitions of the following statements.

a.	$\lim_{x \to 2^-} f(x) = 5$	b.	$\lim_{x\to 2^+} f(x) = 5$
c.	$\lim_{x\to 2} f(x) = \infty$	d.	$\lim_{x\to 2} f(x) = -\infty$

- 11. What exactly do $\lim_{x\to\infty} f(x) = L$ and $\lim_{x\to-\infty} f(x) = L$ mean? Give examples.
- **12.** What are $\lim_{x\to\pm\infty} k$ (*k* a constant) and $\lim_{x\to\pm\infty} (1/x)$? How do you extend these results to other functions? Give examples.
- **13.** How do you find the limit of a rational function as $x \to \pm \infty$? Give examples.
- 14. What are horizontal, vertical, and oblique asymptotes? Give examples.
- **15.** What conditions must be satisfied by a function if it is to be continuous at an interior point of its domain? At an endpoint?
- **16.** How can looking at the graph of a function help you tell where the function is continuous?
- **17.** What does it mean for a function to be right-continuous at a point? Left-continuous? How are continuity and one-sided continuity related?
- **18.** What can be said about the continuity of polynomials? Of rational functions? Of trigonometric functions? Of rational powers and al-

gebraic combinations of functions? Of composites of functions? Of absolute values of functions?

- **19.** Under what circumstances can you extend a function f(x) to be continuous at a point x = c? Give an example.
- 20. What does it mean for a function to be continuous on an interval?
- **21.** What does it mean for a function to be continuous? Give examples to illustrate the fact that a function that is not continuous on its entire domain may still be continuous on selected intervals within the domain.
- **22.** What are the basic types of discontinuity? Give an example of each. What is a removable discontinuity? Give an example.
- 23. What does it mean for a function to have the Intermediate Value Property? What conditions guarantee that a function has this property over an interval? What are the consequences for graphing and solving the equation f(x) = 0?
- **24.** It is often said that a function is continuous if you can draw its graph without having to lift your pen from the paper. Why is that?
- **25.** What does it mean for a line to be tangent to a curve *C* at a point *P*?
- **26.** What is the significance of the formula

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} ?$$

Interpret the formula geometrically and physically.

- **27.** How do you find the tangent to the curve y = f(x) at a point (x_0, y_0) on the curve?
- **28.** How does the slope of the curve y = f(x) at $x = x_0$ relate to the function's rate of change with respect to x at $x = x_0$? To the derivative of f at x_0 ?

Chapter 2 Technology Application Projects

Mathematica-Maple Module

 Take It to the Limit

 Part I

 Part II (Zero Raised to the Power Zero: What Does it Mean?)

 Part III (One-Sided Limits)

 Visualize and interpret the limit concept through graphical and numerical explorations.

 Part IV (What a Difference a Power Makes)

 See how sensitive limits can be with various powers of x.

Mathematica-Maple Module

Going to Infinity

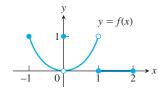
Part I (Exploring Function Behavior as $x \to \infty$ or $x \to -\infty$) This module provides four examples to explore the behavior of a function as $x \to \infty$ or $x \to -\infty$. **Part II (Rates of Growth)**

Observe graphs that *appear* to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you may find surprising.

EXERCISES 2.4

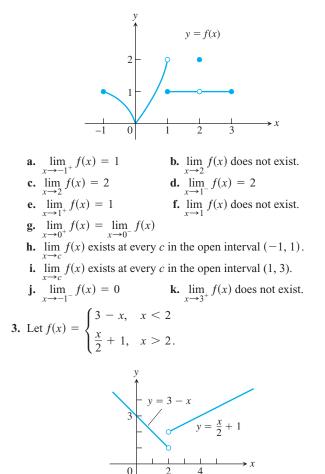
Finding Limits Graphically

1. Which of the following statements about the function y = f(x)graphed here are true, and which are false?



- **a.** $\lim_{x \to -1^+} f(x) = 1$ **b.** $\lim_{x \to 0^-} f(x) = 0$
- **e.** $\lim_{x \to 0} f(x)$ exists **f.** $\lim_{x \to 0} f(x) = 0$
- **g.** $\lim_{x \to 0} f(x) = 1$
- **c.** $\lim_{x \to 0^{-}} f(x) = 1$ **d.** $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$ **h.** $\lim_{x \to 1} f(x) = 1$ i. $\lim_{x \to 1} f(x) = 0$ j. $\lim_{x \to 2^{-}} f(x) = 2$ k. $\lim_{x \to -1^{-}} f(x)$ does not exist. l. $\lim_{x \to 2^{+}} f(x) = 0$

2. Which of the following statements about the function y = f(x) graphed here are true, and which are false?



- **a.** Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$.
- **b.** Does $\lim_{x\to 2} f(x)$ exist? If so, what is it? If not, why not?
- **c.** Find $\lim_{x\to 4^-} f(x)$ and $\lim_{x\to 4^+} f(x)$.
- **d.** Does $\lim_{x\to 4} f(x)$ exist? If so, what is it? If not, why not?

4. Let
$$f(x) = \begin{cases} 3 - x, & x < 2 \\ 2, & x = 2 \\ \frac{x}{2}, & x > 2. \end{cases}$$

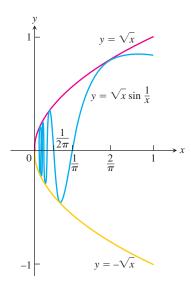
$$y = 3 - x$$

- **a.** Find $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$, and f(2).
- **b.** Does $\lim_{x\to 2} f(x)$ exist? If so, what is it? If not, why not?
- **c.** Find $\lim_{x\to -1^-} f(x)$ and $\lim_{x\to -1^+} f(x)$.
- **d.** Does $\lim_{x\to -1} f(x)$ exist? If so, what is it? If not, why not?

5. Let
$$f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0. \end{cases}$$

a. Does lim_{x→0⁺} f(x) exist? If so, what is it? If not, why not?
b. Does lim_{x→0⁻} f(x) exist? If so, what is it? If not, why not?
c. Does lim_{x→0} f(x) exist? If so, what is it? If not, why not?

6. Let $g(x) = \sqrt{x} \sin(1/x)$.



- **a.** Does $\lim_{x\to 0^+} g(x)$ exist? If so, what is it? If not, why not?
- **b.** Does $\lim_{x\to 0^-} g(x)$ exist? If so, what is it? If not, why not?
- **c.** Does $\lim_{x\to 0} g(x)$ exist? If so, what is it? If not, why not?

- 7. a. Graph $f(x) = \begin{cases} x^3, & x \neq 1 \\ 0, & x = 1. \end{cases}$
 - **b.** Find $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$.
 - **c.** Does $\lim_{x\to 1} f(x)$ exist? If so, what is it? If not, why not?

8. a. Graph
$$f(x) = \begin{cases} 1 - x^2, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

- **b.** Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$.
- **c.** Does $\lim_{x\to 1} f(x)$ exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

- **a.** What are the domain and range of *f*?
- **b.** At what points *c*, if any, does $\lim_{x\to c} f(x)$ exist?
- c. At what points does only the left-hand limit exist?
- d. At what points does only the right-hand limit exist?

$$9. \ f(x) = \begin{cases} \sqrt{1 - x^2}, & 0 \le x < 1\\ 1, & 1 \le x < 2\\ 2, & x = 2 \end{cases}$$
$$10. \ f(x) = \begin{cases} x, & -1 \le x < 0, & \text{or} \quad 0 < x \le 1\\ 1, & x = 0\\ 0, & x < -1, & \text{or} \quad x > 1 \end{cases}$$

Finding One-Sided Limits Algebraically

Find the limits in Exercises 11-18.

11.
$$\lim_{x \to -0.5^{-}} \sqrt{\frac{x+2}{x+1}}$$
12.
$$\lim_{x \to 1^{+}} \sqrt{\frac{x-1}{x+2}}$$
13.
$$\lim_{x \to -2^{+}} \left(\frac{x}{x+1}\right) \left(\frac{2x+5}{x^{2}+x}\right)$$
14.
$$\lim_{x \to 1^{-}} \left(\frac{1}{x+1}\right) \left(\frac{x+6}{x}\right) \left(\frac{3-x}{7}\right)$$
15.
$$\lim_{h \to 0^{+}} \frac{\sqrt{h^{2}+4h+5}-\sqrt{5}}{h}$$
16.
$$\lim_{h \to 0^{-}} \frac{\sqrt{6}-\sqrt{5h^{2}+11h+6}}{h}$$
17. a.
$$\lim_{x \to -2^{+}} (x+3) \frac{|x+2|}{x+2}$$
b.
$$\lim_{x \to -2^{-}} (x+3) \frac{|x+2|}{x+2}$$
18. a.
$$\lim_{x \to 1^{+}} \frac{\sqrt{2x}(x-1)}{|x-1|}$$
b.
$$\lim_{x \to 1^{-}} \frac{\sqrt{2x}(x-1)}{|x-1|}$$

Use the graph of the greatest integer function $y = \lfloor x \rfloor$ (sometimes written y = int x), Figure 1.31 in Section 1.3, to help you find the limits in Exercises 19 and 20.

19. a.
$$\lim_{\theta \to 3^+} \frac{\lfloor \theta \rfloor}{\theta}$$
 b.
$$\lim_{\theta \to 3^-} \frac{\lfloor \theta \rfloor}{\theta}$$

20. a.
$$\lim_{t \to 4^+} (t - \lfloor t \rfloor)$$
 b.
$$\lim_{t \to 4^-} (t - \lfloor t \rfloor)$$

Using $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$

Find the limits in Exercises 21–36.

21. $\lim_{\theta \to 0} \frac{\sin\sqrt{2}\theta}{\sqrt{2}\theta}$	22. $\lim_{t \to 0} \frac{\sin kt}{t} (k \text{ constant})$
$23. \lim_{y \to 0} \frac{\sin 3y}{4y}$	$24. \lim_{h \to 0^-} \frac{h}{\sin 3h}$
$25. \lim_{x \to 0} \frac{\tan 2x}{x}$	$26. \lim_{t \to 0} \frac{2t}{\tan t}$
$27. \lim_{x \to 0} \frac{x \csc 2x}{\cos 5x}$	28. $\lim_{x \to 0} 6x^2 (\cot x) (\csc 2x)$
$29. \lim_{x \to 0} \frac{x + x \cos x}{\sin x \cos x}$	30. $\lim_{x \to 0} \frac{x^2 - x + \sin x}{2x}$
31. $\lim_{t \to 0} \frac{\sin(1 - \cos t)}{1 - \cos t}$	32. $\lim_{h \to 0} \frac{\sin(\sin h)}{\sin h}$
33. $\lim_{\theta \to 0} \frac{\sin \theta}{\sin 2\theta}$	$34. \lim_{x \to 0} \frac{\sin 5x}{\sin 4x}$
$35. \lim_{x \to 0} \frac{\tan 3x}{\sin 8x}$	$36. \lim_{y \to 0} \frac{\sin 3y \cot 5y}{y \cot 4y}$

Calculating Limits as $x \to \pm \infty$

In Exercises 37–42, find the limit of each function (a) as $x \to \infty$ and (b) as $x \to -\infty$. (You may wish to visualize your answer with a graphing calculator or computer.)

37.
$$f(x) = \frac{2}{x} - 3$$

38. $f(x) = \pi - \frac{2}{x^2}$
39. $g(x) = \frac{1}{2 + (1/x)}$
40. $g(x) = \frac{1}{8 - (5/x^2)}$
41. $h(x) = \frac{-5 + (7/x)}{3 - (1/x^2)}$
42. $h(x) = \frac{3 - (2/x)}{4 + (\sqrt{2}/x^2)}$

Find the limits in Exercises 43–46.

43.
$$\lim_{x \to \infty} \frac{\sin 2x}{x}$$
44.
$$\lim_{\theta \to -\infty} \frac{\cos \theta}{3\theta}$$
45.
$$\lim_{t \to -\infty} \frac{2 - t + \sin t}{t + \cos t}$$
46.
$$\lim_{r \to \infty} \frac{r + \sin r}{2r + 7 - 5 \sin r}$$

Limits of Rational Functions

In Exercises 47–56, find the limit of each rational function (a) as $x \to \infty$ and (b) as $x \to -\infty$.

47. $f(x) = \frac{2x+3}{5x+7}$ **48.** $f(x) = \frac{2x^3+7}{x^3-x^2+x+7}$ **49.** $f(x) = \frac{x+1}{x^2+3}$ **50.** $f(x) = \frac{3x+7}{x^2-2}$ **51.** $h(x) = \frac{7x^3}{x^3-3x^2+6x}$ **52.** $g(x) = \frac{1}{x^3-4x+1}$

53.
$$g(x) = \frac{10x^5 + x^4 + 31}{x^6}$$

54. $h(x) = \frac{9x^4 + x}{2x^4 + 5x^2 - x + 6}$
55. $h(x) = \frac{-2x^3 - 2x + 3}{3x^3 + 3x^2 - 5x}$
56. $h(x) = \frac{-x^4}{x^4 - 7x^3 + 7x^2 + 9}$

Limits with Noninteger or Negative Powers

The process by which we determine limits of rational functions applies equally well to ratios containing noninteger or negative powers of x: divide numerator and denominator by the highest power of x in the denominator and proceed from there. Find the limits in Exercises 57–62.

57.
$$\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x - 7}$$
58.
$$\lim_{x \to \infty} \frac{2 + \sqrt{x}}{2 - \sqrt{x}}$$
59.
$$\lim_{x \to -\infty} \frac{\sqrt[3]{x} - \sqrt[5]{x}}{\sqrt[3]{x} + \sqrt[5]{x}}$$
60.
$$\lim_{x \to \infty} \frac{x^{-1} + x^{-4}}{x^{-2} - x^{-3}}$$
61.
$$\lim_{x \to \infty} \frac{2x^{5/3} - x^{1/3} + 7}{x^{8/5} + 3x + \sqrt{x}}$$
62.
$$\lim_{x \to -\infty} \frac{\sqrt[3]{x} - 5x + 3}{2x + x^{2/3} - 4}$$

Theory and Examples

- **63.** Once you know $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a^-} f(x)$ at an interior point of the domain of f, do you then know $\lim_{x\to a} f(x)$? Give reasons for your answer.
- **64.** If you know that $\lim_{x\to c} f(x)$ exists, can you find its value by calculating $\lim_{x\to c^+} f(x)$? Give reasons for your answer.
- **65.** Suppose that *f* is an odd function of *x*. Does knowing that $\lim_{x\to 0^+} f(x) = 3$ tell you anything about $\lim_{x\to 0^-} f(x)$? Give reasons for your answer.
- 66. Suppose that f is an even function of x. Does knowing that lim_{x→2⁻} f(x) = 7 tell you anything about either lim_{x→-2⁻} f(x) or lim_{x→-2⁺} f(x)? Give reasons for your answer.
- 67. Suppose that f(x) and g(x) are polynomials in x and that $\lim_{x\to\infty} (f(x)/g(x)) = 2$. Can you conclude anything about $\lim_{x\to-\infty} (f(x)/g(x))$? Give reasons for your answer.
- **68.** Suppose that f(x) and g(x) are polynomials in *x*. Can the graph of f(x)/g(x) have an asymptote if g(x) is never zero? Give reasons for your answer.
- **69.** How many horizontal asymptotes can the graph of a given rational function have? Give reasons for your answer.
- **70.** Find $\lim_{x \to \infty} \left(\sqrt{x^2 + x} \sqrt{x^2 x} \right)$.

Use the formal definitions of limits as $x \rightarrow \pm \infty$ to establish the limits in Exercises 71 and 72.

71. If f has the constant value f(x) = k, then $\lim_{x \to \infty} f(x) = k$. **72.** If f has the constant value f(x) = k, then $\lim_{x \to -\infty} f(x) = k$.

Formal Definitions of One-Sided Limits

- 73. Given $\epsilon > 0$, find an interval $I = (5, 5 + \delta), \delta > 0$, such that if x lies in I, then $\sqrt{x 5} < \epsilon$. What limit is being verified and what is its value?
- 74. Given $\epsilon > 0$, find an interval $I = (4 \delta, 4), \delta > 0$, such that if x lies in I, then $\sqrt{4 x} < \epsilon$. What limit is being verified and what is its value?

Use the definitions of right-hand and left-hand limits to prove the limit statements in Exercises 75 and 76.

75.
$$\lim_{x \to 0^-} \frac{x}{|x|} = -1$$
 76. $\lim_{x \to 2^+} \frac{x-2}{|x-2|} = 1$

77. Greatest integer function Find (a) lim_{x→400⁺} [x] and (b) lim_{x→400⁻} [x]; then use limit definitions to verify your findings.
(c) Based on your conclusions in parts (a) and (b), can anything be said about lim_{x→400} |x|? Give reasons for your answers.

78. One-sided limits Let
$$f(x) = \begin{cases} x^2 \sin(1/x), & x < 0 \\ \sqrt{x}, & x > 0. \end{cases}$$

Find (a) $\lim_{x\to 0^+} f(x)$ and (b) $\lim_{x\to 0^-} f(x)$; then use limit definitions to verify your findings. (c) Based on your conclusions in parts (a) and (b), can anything be said about $\lim_{x\to 0} f(x)$? Give reasons for your answer.

Grapher Explorations—"Seeing" Limits at Infinity

Sometimes a change of variable can change an unfamiliar expression into one whose limit we know how to find. For example,

$$\lim_{x \to \infty} \sin \frac{1}{x} = \lim_{\theta \to 0^+} \sin \theta \qquad \text{Substitute } \theta = 1/x$$
$$= 0.$$

This suggests a creative way to "see" limits at infinity. Describe the procedure and use it to picture and determine limits in Exercises 79–84.

79.
$$\lim_{x \to \pm \infty} x \sin \frac{1}{x}$$

80.
$$\lim_{x \to -\infty} \frac{\cos(1/x)}{1 + (1/x)}$$

81.
$$\lim_{x \to \pm \infty} \frac{3x + 4}{2x - 5}$$

82.
$$\lim_{x \to \infty} \left(\frac{1}{x}\right)^{1/x}$$

83.
$$\lim_{x \to \pm \infty} \left(3 + \frac{2}{x}\right) \left(\cos \frac{1}{x}\right)$$

84.
$$\lim_{x \to \infty} \left(\frac{3}{x^2} - \cos \frac{1}{x}\right) \left(1 + \sin \frac{1}{x}\right)$$