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Preface to the English
Edition

The present monograph is a translation of Introduction au calcul des variations
that was published by Presses Polytechniques et Universitaires Romandes. In
fact it is more than a translation, it can be considered as a new edition. Indeed,
I have substantially modified many proofs and exercises, with their corrections,
adding also several new ones. In doing so I have benefited from many comments
of students and colleagues who used the French version in their courses on the
calculus of variations.
After several years of experience, I think that the present book can adequately

serve as a concise and broad intro duction to the c alculus of vari ations. It can

advanced level it has to be complemented by more specialized materials and I
have indicated, in every chapter, appropriate books for further readings. The
numerous exercises, integrally corrected in Chapter 7, will also be important to
help understand the subject better.
I would like to thank all students and colleagues for their comments on the

French version, in particular O. Besson and M. M. Marques who commented in
writing. Ms. M. F. DeCarmine helped me by efficiently typing the manuscript.
Finally my thanks go to C. Hebeisen for the drawing of the figures.

ix

be used at undergraduate as well as graduate level. Of course at a more
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Preface to the French
Edition

The p resent b o ok is a result of a graduate course that I gave at t he Ecole

The calculus of variations is one of the classical subjects in mathematics.
Several outstanding mathematicians have contributed, over several centuries,
to its development. It is still a very alive and evolving subject. Besides its
mathematical importance and its links with other branches of mathematics, such
as geometry or differential equations, it is widely used in physics, engineering,
economics and biology. I have decided, in order to remain as unified and concise
as possible, not to speak of any applications other than mathematical ones.
Every interested reader, whether physicist, engineer or biologist, will easily see
where, in his own subject, the results of the present monograph are used. This
fact is clearly asserted by the numerous engineers and physicists that followed
the course that resulted in the present book.
Let us now examine the content of the monograph. It should first be em-

phasized that it is not a reference book. Every individual chapter can be, on its
own, the subject of a book, For example, I have written one that, essentially,
covers the subject of Chapter 3. Furthermore several aspects of the calculus
of variations are not discussed here. One of the aims is to serve as a guide in
the extensive existing literature. However, the main purpose is to help the non
specialist, whether mathematician, physicist, engineer, student or researcher, to
discover the most important problems, results and techniques of the subject.
Despite the aim of addressing the non specialists, I have tried not to sacrifice
the mathematical rigor. Most of the theorems are either fully proved or proved
under stronger, but significant, assumptions than stated.
The different chapters may be read more or less independently. In Chapter

1, I have recalled some standard results on spaces of functions (continuous, Lp or
Sobolev spaces) and on convex analysis. The reader, familiar or not with these
subjects, can, at first reading, omit this chapter and refer to it when needed in

xi

Polytechnique Fédérale of Lausanne during the winter semester of 1990–1991.



xii Preface to the French Edition

the next ones. It is much used in Chapters 3 and 4 but less in the others. All of
them, besides numerous examples, contain exercises that are fully corrected in
Chapter 7.
Finally I would like to thank the students and assistants that followed my

course; their interest has been a strong motivation for writing these notes. I
would like to thank J. Sesiano for several discussions concerning the history of
the calculus of variations, F. Weissbaum for the figures contained in the book
and S. D. Chatterji who accepted my manuscript in his collection at Presses
Polytechniques et Universitaires Romandes (PPUR). My thanks also go to the
staff of PPUR for their excellent job.



Chapter 0

Introduction

0.1 Brief historical comments

The calculus of variations is one of the classical branches of mathematics. It was
Euler who, looking at the work of Lagrange, gave the present name, not really
self explanatory, to this field of mathematics.

In fact the subject is much older. It starts with one of the oldest problems in
mathematics: the isoperimetric inequality. A variant of this inequality is known
as the Dido problem (Dido was a semi historical Phoenician princess and later
a Carthaginian queen). Several more or less rigorous proofs were known since
the times of Zenodorus around 200 BC, who proved the inequality for polygons.
There are also significant contributions by Archimedes and Pappus. Impor-
tant attempts for proving the inequality are due to Euler, Galileo, Legendre,
L’Huilier, Riccati, Simpson or Steiner. The first proof that agrees with modern
standards is due to Weierstrass and it has been extended or proved with dif-
ferent tools by Blaschke, Bonnesen, Carathéodory, Edler, Frobenius, Hurwitz,
Lebesgue, Liebmann, Minkowski, H.A. Schwarz, Sturm, and Tonelli among oth-
ers. We refer to Porter [86] for an interesting article on the history of the
inequality.

Other important problems of the calculus of variations were considered in
the seventeenth century in Europe, such as the work of Fermat on geometrical
optics (1662), the problem of Newton (1685) for the study of bodies moving
in fluids (see also Huygens in 1691 on the same problem) or the problem of
the brachistochrone formulated by Galileo in 1638. This last problem had a
very strong influence on the development of the calculus of variations. It was
resolved by John Bernoulli in 1696 and almost immediately after also by James,
his brother, Leibniz and Newton. A decisive step was achieved with the work of

1



2 Introduction

Euler and Lagrange who found a systematic way of dealing with problems in this
field by introducing what is now known as the Euler-Lagrange equation. This
work was then extended in many ways by Bliss, Bolza, Carathéodory, Clebsch,
Hahn, Hamilton, Hilbert, Kneser, Jacobi, Legendre, Mayer, Weierstrass, just to
quote a few. For an interesting historical book on the one dimensional problems
of the calculus of variations, see Goldstine [52].

In the nineteenth century and in parallel to some of the work that was men-
tioned above, probably, the most celebrated problem of the calculus of variations
emerged, namely the study of the Dirichlet integral; a problem of multiple in-
tegrals. The importance of this problem was motivated by its relationship with
the Laplace equation. Many important contributions were made by Dirichlet,
Gauss, Thompson and Riemann among others. It was Hilbert who, at the turn
of the twentieth century, solved the problem and was immediately after imitated
by Lebesgue and then Tonelli. Their methods for solving the problem were,
essentially, what are now known as the direct methods of the calculus of vari-
ations. We should also emphasize that the problem was very important in the
development of analysis in general and more notably functional analysis, mea-
sure theory, distribution theory, Sobolev spaces or partial differential equations.
This influence is studied in the book by Monna [73].

The problem of minimal surfaces has also had, almost at the same time as
the previous one, a strong influence on the calculus of variations. The problem
was formulated by Lagrange in 1762. Many attempts to solve the problem were
made by Ampère, Beltrami, Bernstein, Bonnet, Catalan, Darboux, Enneper,
Haar, Korn, Legendre, Lie, Meusnier, Monge, Müntz, Riemann, H.A. Schwarz,
Serret, Weierstrass, Weingarten and others. Douglas and Rado in 1930 gave,
simultaneously and independently, the first complete proof. One of the first two
Fields medals was awarded to Douglas in 1936 for having solved the problem.
Immediately after the results of Douglas and Rado, many generalizations and
improvements were made by Courant, Leray, Mac Shane, Morrey, Morse, Tonelli
and many others since then. We refer for historical notes to Dierkes-Hildebrandt-
Küster-Wohlrab [39] and Nitsche [78].

In 1900 at the International Congress of Mathematicians in Paris, Hilbert
formulated 23 problems that he considered to be important for the development
of mathematics in the twentieth century. Three of them (the 19th, 20th and
23rd) were devoted to the calculus of variations. These “predictions” of Hilbert

turn of the twenty first one as active as in the previous century.

Finally we should mention that we will not speak of many important topics
of the calculus of variations such as Morse or Liusternik-Schnirelman theories.
The interested reader is referred to Ekeland [40], Mawhin-Willem [72], Struwe
[92] or Zeidler [99].

have been amply justified all along the twentieth century and the field is at the
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0.2 Model problem and some examples

We now describe in more detail the problems that we will consider. The model
case takes the following form

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ X

¾
= m.

This means that we want to minimize the integral, I (u), among all functions
u ∈ X (and we call m the minimal value that can take such an integral), where

- Ω ⊂ Rn, n ≥ 1, is a bounded open set, a point in Ω will be denoted by
x = (x1, ..., xn);

- u : Ω→ RN , N ≥ 1, u =
¡
u1, ..., uN

¢
, and hence

∇u =
µ
∂uj

∂xi

¶1≤j≤N
1≤i≤n

∈ RN×n ;

- f : Ω×RN ×RN×n −→ R, f = f (x, u, ξ), is continuous;

- X is the space of admissible functions (for example, u ∈ C1
¡
Ω
¢
with u = u0

on ∂Ω).

We will be concerned with finding a minimizer u ∈ X of (P), meaning that

I (u) ≤ I (u) , ∀u ∈ X .

Many problems coming from analysis, geometry or applied mathematics (in
physics, economics or biology) can be formulated as above. Many other prob-
lems, even though not entering in this framework, can be solved by the very
same techniques.
We now give several classical examples.

Example: Fermat principle. We want to find the trajectory that should
follow a light ray in a medium with non constant refraction index. We can
formulate the problem in the above formalism. We have n = N = 1,

f (x, u, ξ) = g (x, u)

q
1 + ξ2

and

(P ) inf

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx : u (a) = α, u (b) = β

)
= m.
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Example: Newton problem. We seek for a surface of revolution moving
in a fluid with least resistance. The problem can be mathematically formulated
as follows. Let n = N = 1,

f (x, u, ξ) = f (u, ξ) = 2πu
ξ3

1 + ξ2

and

(P ) inf

(
I (u) =

Z b

a

f (u (x) , u0 (x)) dx : u (a) = α, u (b) = β

)
= m.

We will not treat this problem in the present book and we refer to Buttazzo-
Kawohl [18] for a review.

Example: Brachistochrone. The aim is to find the shortest path between
two points that follows a point mass moving under the influence of gravity. We
place the initial point at the origin and the end one at (b,−β), with b, β > 0.
We let the gravity act downwards along the y-axis and we represent any point
along the path by (x,−u (x)), 0 ≤ x ≤ b.
In terms of our notation we have that n = N = 1 and the function, under

consideration, is f (x, u, ξ) = f (u, ξ) =
p
1 + ξ2/

√
2gu and

(P ) inf

(
I (u) =

Z b

0

f (u (x) , u0 (x)) dx : u ∈ X

)
= m

whereX =
©
u ∈ C1 ([0, b]) : u (0) = 0, u (b) = β and u (x) > 0, ∀x ∈ (0, b]

ª
. The

shortest path turns out to be a cycloid .

Example: Minimal surface of revolution. We have to determine among
all surfaces of revolution of the form

v (x, y) = (x, u (x) cos y, u (x) sin y)

with fixed end points u (a) = α, u (b) = β one with minimal area. We still have
n = N = 1,

f (x, u, ξ) = f (u, ξ) = 2πu

q
1 + ξ2

and

(P ) inf

(
I (u) =

Z b

a

f (u (x) , u0 (x)) dx : u (a) = α, u (b) = β, u > 0

)
= m.
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Solutions of this problem, when they exist, are catenoids. More precisely the
minimizer is given, λ > 0 and µ denoting some constants, by

u (x) = λ cosh
x+ µ

λ
.

Example: Mechanical system. Consider a mechanical system with M
particles whose respective masses are mi and positions at time t are ui (t) =
(xi (t) , yi (t) , zi (t)) ∈ R3, 1 ≤ i ≤M . Let

T (u0) =
1

2

MX
i=1

mi |u0i|
2
=
1

2

MX
i=1

mi

¡
x02i + y02i + z02i

¢
be the kinetic energy and denote the potential energy with U = U (t, u). Finally
let

f (t, u, ξ) = T (ξ)− U (t, u)

be the Lagrangian. In our formalism we have n = 1 and N = 3M .

Example: Dirichlet integral. This is the most celebrated problem of the
calculus of variations. We have here n > 1, N = 1 and

(P ) inf

½
I (u) =

1

2

Z
Ω

|∇u (x)|2 dx : u = u0 on ∂Ω

¾
.

As for every variational problem we associate a differential equation which is
nothing other than Laplace equation, namely ∆u = 0.

Example: Minimal surfaces. This problem is almost as famous as the
preceding one. The question is to find among all surfaces Σ ⊂ R3 (or more
generally in Rn+1, n ≥ 2) with prescribed boundary, ∂Σ = Γ, where Γ is a
closed curve, one that is of minimal area. A variant of this problem is known
as Plateau problem. One can realize experimentally such surfaces by dipping a
wire into a soapy water; the surface obtained when pulling the wire out from
the water is then a minimal surface.
The precise formulation of the problem depends on the kind of surfaces that

we are considering. We have seen above how to write the problem for minimal
surfaces of revolution. We now formulate the problem for more general surfaces.

Case 1: Nonparametric surfaces. We consider (hyper) surfaces of the form

Σ =
©
v (x) = (x, u (x)) ∈ Rn+1 : x ∈ Ω

ª
with u : Ω → R and where Ω ⊂ Rn is a bounded domain. These surfaces are
therefore graphs of functions. The fact that ∂Σ is a preassigned curve Γ, reads
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now as u = u0 on ∂Ω, where u0 is a given function. The area of such a surface
is given by

Area (Σ) = I (u) =

Z
Ω

f (∇u (x)) dx

where, for ξ ∈ Rn, we have set

f (ξ) =

q
1 + |ξ|2 .

The problem is then written in the usual form

(P ) inf

½
I (u) =

Z
Ω

f (∇u (x)) dx : u = u0 on ∂Ω

¾
.

Associated with (P) we have the so called minimal surface equation

(E) Mu ≡
³
1 + |∇u|2

´
∆u−

nX
i,j=1

uxiuxjuxixj = 0

which is the equation that any minimizer u of (P) should satisfy. In geometrical
terms this equation just expresses the fact that the corresponding surface Σ has
its mean curvature that vanishes everywhere.

Case 2: Parametric surfaces. Nonparametric surfaces are clearly too restric-
tive from the geometrical point of view and one is lead to consider parametric
surfaces. These are sets Σ ⊂ Rn+1 so that there exist a domain Ω ⊂ Rn and a
map v : Ω→ Rn+1 such that

Σ = v
¡
Ω
¢
=
©
v (x) : x ∈ Ω

ª
.

For example, when n = 2 and v = v (x, y) ∈ R3, if we denote by vx × vy the
normal to the surface (where a× b stands for the vectorial product of a, b ∈ R3
and vx = ∂v/∂x, vy = ∂v/∂y) we find that the area is given by

Area (Σ) = J (v) =

ZZ
Ω

|vx × vy| dxdy .

In terms of the notations introduced at the beginning of the present section we
have n = 2 and N = 3.

Example: Isoperimetric inequality. Let A ⊂ R2 be a bounded open set
whose boundary, ∂A, is a sufficiently regular simple closed curve. Denote by
L (∂A) the length of the boundary and by M (A) the measure (the area) of A.
The isoperimetric inequality states that

[L (∂A)]2 − 4πM (A) ≥ 0 .
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Furthermore, equality holds if and only if A is a disk (i.e., ∂A is a circle).
We can rewrite it into our formalism (here n = 1 and N = 2) by parametriz-

ing the curve
∂A = {u (x) = (u1 (x) , u2 (x)) : x ∈ [a, b]}

and setting

L (∂A) = L (u) =

Z b

a

q
u021 + u022 dx

M (A) = M (u) =
1

2

Z b

a

(u1u
0
2 − u2u

0
1) dx =

Z b

a

u1u
0
2 dx .

The problem is then to show that

(P ) inf {L (u) :M (u) = 1; u (a) = u (b)} = 2
√
π .

The problem can then be generalized to open sets A ⊂ Rn with sufficiently
regular boundary, ∂A, and it reads as

[L (∂A)]
n − nnωn [M (A)]

n−1 ≥ 0

where ωn is the measure of the unit ball of Rn, M (A) stands for the measure
of A and L (∂A) for the (n− 1) measure of ∂A. Moreover, if A is sufficiently
regular (for example, convex), there is equality if and only if A is a ball.

0.3 Presentation of the content of the mono-
graph

To deal with problems of the type considered in the previous section, there are,
roughly speaking, two ways of proceeding: the classical and the direct meth-
ods. Before describing a little more precisely these two methods, it might be
enlightening to first discuss minimization problems in RN .

Let X ⊂ RN , F : X → R and

(P ) inf {F (x) : x ∈ X} .

The first method consists, if F is continuously differentiable, in finding solu-
tions x ∈ X of

F 0 (x) = 0, x ∈ X .

Then, by analyzing the behavior of the higher derivatives of F , we determine if x
is a minimum (global or local), a maximum (global or local) or just a stationary
point.
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The second method consists in considering a minimizing sequence {xν} ⊂ X
so that

F (xν)→ inf {F (x) : x ∈ X} .
We then, with appropriate hypotheses on F , prove that the sequence is compact
in X, meaning that

xν → x ∈ X, as ν →∞ .

Finally if F is lower semicontinuous, meaning that

lim inf
ν→∞

F (xν) ≥ F (x)

we have indeed shown that x is a minimizer of (P).

We can proceed in a similar manner for problems of the calculus of variations.
The first and second methods are then called, respectively, classical and direct
methods. However, the problem is now considerably harder because we are
working in infinite dimensional spaces.
Let us recall the problem under consideration

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ X

¾
= m

where
- Ω ⊂ Rn, n ≥ 1, is a bounded open set, points in Ω are denoted by x =

(x1, ..., xn);

- u : Ω→ RN , N ≥ 1, u =
¡
u1, ..., uN

¢
and ∇u =

³
∂uj

∂xi

´1≤j≤N
1≤i≤n

∈ RN×n ;

- f : Ω×RN ×RN×n −→ R, f = f (x, u, ξ), is continuous;
- X is a space of admissible functions which satisfy u = u0 on ∂Ω, where u0

is a given function.
Here, contrary to the case of RN , we encounter a preliminary problem,

namely: what is the best choice for the space X of admissible functions. A
natural one seems to be X = C1

¡
Ω
¢
. There are several reasons, which will be

clearer during the course of the book, that indicate that this is not the best
choice. A better one is the Sobolev space W 1,p (Ω), p ≥ 1. We will say that
u ∈W 1,p (Ω), if u is (weakly) differentiable and if

kukW 1,p =

∙Z
Ω

(|u (x)|p + |∇u (x)|p) dx
¸ 1
p

<∞

The most important properties of these spaces will be recalled in Chapter 1.

In Chapter 2, we will briefly discuss the classical methods introduced by
Euler, Hamilton, Hilbert, Jacobi, Lagrange, Legendre, Weierstrass and oth-
ers. The most important tool is the Euler-Lagrange equation, the equivalent
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of F 0 (x) = 0 in the finite dimensional case, that should satisfy any u ∈ C2
¡
Ω
¢

minimizer of (P), namely (we write here the equation in the case N = 1)

(E)
nX
i=1

∂

∂xi

£
fξi (x, u,∇u)

¤
= fu (x, u,∇u) , ∀x ∈ Ω

where fξi = ∂f/∂ξi and fu = ∂f/∂u.
In the case of the Dirichlet integral

(P ) inf

½
I (u) =

1

2

Z
Ω

|∇u (x)|2 dx : u = u0 on ∂Ω

¾
the Euler-Lagrange equation reduces to Laplace equation, namely ∆u = 0.
We immediately note that, in general, finding a C2 solution of (E) is a difficult

task, unless, perhaps, n = 1 or the equation (E) is linear. The next step is to
know if a solution u of (E), called sometimes a stationary point of I, is, in fact,
a minimizer of (P). If (u, ξ) → f (x, u, ξ) is convex for every x ∈ Ω then u is
indeed a minimum of (P); in the above examples this happens for the Dirichlet
integral or the problem of minimal surfaces in nonparametric form. If, however,
(u, ξ) → f (x, u, ξ) is not convex, several criteria, specially in the case n = 1,
can be used to determine the nature of the stationary point. Such criteria are
for example, Legendre, Weierstrass, Weierstrass-Erdmann, Jacobi conditions or
the fields theories.

In Chapters 3 and 4 we will present the direct methods introduced by Hilbert,
Lebesgue and Tonelli. The idea is to break the problem into two pieces: existence
of minimizers in Sobolev spaces and then regularity of the solution. We will start
by establishing, in Chapter 3, the existence of minimizers of (P) in Sobolev spaces
W 1,p (Ω). In Chapter 4 we will see that, sometimes, minimizers of (P) are more
regular than in a Sobolev space they are in C1 or even in C∞, if the data Ω, f
and u0 are sufficiently regular.
We now briefly describe the ideas behind the proof of existence of minimizers

in Sobolev spaces. As for the finite dimensional case we start by considering a
minimizing sequence {uν} ⊂W 1,p (Ω), which means that

I (uν)→ inf
©
I (u) : u = u0 on ∂Ω and u ∈W 1,p (Ω)

ª
= m, as ν →∞.

The first step consists in showing that the sequence is compact, i.e., that the
sequence converges to an element u ∈ W 1,p (Ω). This, of course, depends on
the topology that we have on W 1,p. The natural one is the one induced by the
norm, that we call strong convergence and that we denote by

uν → u in W 1,p.
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However, it is, in general, not an easy matter to show that the sequence converges
in such a strong topology. It is often better to weaken the notion of convergence
and to consider the so called weak convergence, denoted by -. To obtain that

uν - u in W 1,p, as ν →∞

is much easier and it is enough, for example if p > 1, to show (up to the extraction
of a subsequence) that

kuνkW 1,p ≤ γ

where γ is a constant independent of ν. Such an estimate follows, for instance,
if we impose a coercivity assumption on the function f of the type

lim
|ξ|→∞

f (x, u, ξ)

|ξ| = +∞, ∀ (x, u) ∈ Ω×R .

We observe that the Dirichlet integral, with f (x, u, ξ) = |ξ|2 /2, satisfies this hy-
pothesis but not the minimal surface in nonparametric form, where f (x, u, ξ) =q
1 + |ξ|2.
The second step consists in showing that the functional I is lower semicon-

tinuous with respect to weak convergence, namely

uν - u in W 1,p ⇒ lim inf
ν→∞

I (uν) ≥ I (u) .

We will see that this conclusion is true if

ξ → f (x, u, ξ) is convex, ∀ (x, u) ∈ Ω×R .

Since {uν} was a minimizing sequence we deduce that u is indeed a minimizer
of (P).

In Chapter 5 we will consider the problem of minimal surfaces. The methods
of Chapter 3 cannot be directly applied. In fact the step of compactness of the
minimizing sequences is much harder to obtain, for reasons that we will detail
in Chapter 5. There are, moreover, difficulties related to the geometrical nature
of the problem; for instance, the type of surfaces that we consider, or the notion
of area. We will present a method due to Douglas and refined by Courant and
Tonelli to deal with this problem. However the techniques are, in essence, direct
methods similar to those of Chapter 3.

In Chapter 6 we will discuss the isoperimetric inequality in Rn. Depending
on the dimension the way of solving the problem is very different. When n = 2,
we will present a proof which is essentially the one of Hurwitz and is in the
spirit of the techniques developed in Chapter 2. In higher dimensions the proof
is more geometrical; it will use as a main tool the Brunn-Minkowski theorem.



Chapter 1

Preliminaries

1.1 Introduction

In this chapter we will introduce several notions that will be used throughout
the book. Most of them are concerned with different spaces of functions. We
recommend for the first reading to omit this chapter and to refer to it only when
needed in the next chapters.
In Section 1.2, we just fix the notations concerning spaces of k-times, k ≥ 0

an integer, continuously differentiable functions, Ck (Ω). We next introduce the
spaces of Hölder continuous functions, Ck,α (Ω), where k ≥ 0 is an integer and
0 < α ≤ 1.
In Section 1.3 we consider the Lebesgue spaces Lp (Ω), 1 ≤ p ≤ ∞. We

will assume that the reader is familiar with Lebesgue integration and we will
not recall theorems such as, Fatou lemma, Lebesgue dominated convergence
theorem or Fubini theorem. We will however state, mostly without proofs, some
other important facts such as, Hölder inequality, Riesz theorem and some density
results. We will also discuss the notion of weak convergence in Lp and the
Riemann-Lebesgue theorem. We will conclude with the fundamental lemma of
the calculus of variations that will be used throughout the book, in particular
for deriving the Euler-Lagrange equations. There are many excellent books on
this subject and we refer, for example to Adams [1], Brézis [14], De Barra [37].
In Section 1.4 we define the Sobolev spaces W k,p (Ω), where 1 ≤ p ≤ ∞

and k ≥ 1 is an integer. We will recall several important results concerning
these spaces, notably the Sobolev imbedding theorem and Rellich-Kondrachov
theorem. We will, in some instances, give some proofs for the one dimensional
case in order to help the reader to get more familiar with these spaces. We
recommend the books of Brézis [14] and Evans [43] for a very clear introduction

11
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to the subject. The monograph of Gilbarg-Trudinger [49] can also be of great
help. The book of Adams [1] is surely one of the most complete in this field, but
its reading is harder than the three others.
Finally in Section 1.5 we will gather some important properties of convex

functions such as, Jensen inequality, the Legendre transform and Carathéodory
theorem. The book of Rockafellar [87] is classical in this field. One can also
consult Hörmander [60] or Webster [96], see also [31].

1.2 Continuous and Hölder continuous functions

Definition 1.1 Let Ω ⊂ Rn be an open set and define

(i) C0 (Ω) = C (Ω) is the set of continuous functions u : Ω → R. Similarly
we let C0

¡
Ω;RN

¢
= C

¡
Ω;RN

¢
be the set of continuous maps u : Ω→ RN .

(ii) C0
¡
Ω
¢
= C

¡
Ω
¢
is the set of continuous functions u : Ω→ R, which can

be continuously extended to Ω. When we are dealing with maps, u : Ω → RN ,
we will write, similarly as above, C0

¡
Ω;RN

¢
= C

¡
Ω;RN

¢
.

(iii) The support of a function u : Ω→ R is defined as

suppu = {x ∈ Ω : u (x) 6= 0} .

(iv) C0 (Ω) = {u ∈ C (Ω) : suppu ⊂ Ω is compact}.

(v) We define the norm over C
¡
Ω
¢
, by

kukC0 = sup
x∈Ω

|u (x)| .

Remark 1.2 C
¡
Ω
¢
equipped with the norm k·kC0 is a Banach space.

Theorem 1.3 (Ascoli-Arzela Theorem) Let Ω ⊂ Rn be a bounded domain.
Let K ⊂ C

¡
Ω
¢
be bounded and such that the following property of equicontinuity

holds: for every � > 0 there exists δ > 0 so that

|x− y| < δ ⇒ |u (x)− u (y)| < ε, ∀x, y ∈ Ω and ∀u ∈ K ,

then K is compact.

We will also use the following notations.
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(i) If u : Rn → R, u = u (x1, ..., xn), we will denote partial derivatives by
either of the following ways

Dju = uxj =
∂u

∂xj

∇u = gradu =

µ
∂u

∂x1
, ...,

∂u

∂xn

¶
= (ux1 , ..., uxn) .

(ii) We now introduce the notations for the higher derivatives. Let k ≥ 1 be
an integer; an element of

Ak =

⎧⎨⎩a = (a1, ..., an) , aj ≥ 0 an integer and
nX
j=1

aj = k

⎫⎬⎭ ,

will be called a multi-index of order k. We will also write, sometimes, for such
elements

|a| =
nX
j=1

aj = k .

Let a ∈ Ak, we will write

Dau = Da1
1 ...Dan

n u =
∂|a| u

∂xa11 ...∂xann
.

We will also let ∇ku = (Dau)a∈Ak . In other words, ∇
ku contains all the partial

derivatives of order k of the function u (for example ∇0u = u, ∇1u = ∇u).

Definition 1.4 Let Ω ⊂ Rn be an open set and k ≥ 0 be an integer.

(i) The set of functions u : Ω → R which have all partial derivatives, Dau,
a ∈ Am, 0 ≤ m ≤ k, continuous will be denoted by Ck (Ω).

(ii) Ck
¡
Ω
¢
is the set of Ck (Ω) functions whose derivatives up to the order

k can be extended continuously to Ω. It is equipped with the following norm

kukCk = max
0≤|a|≤k

sup
x∈Ω

|Dau (x)| .

(iii) Ck
0 (Ω) = Ck (Ω) ∩ C0 (Ω).

(iv) C∞ (Ω) =
∞T
k=0

Ck (Ω), C∞
¡
Ω
¢
=
∞T
k=0

Ck
¡
Ω
¢
.
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(v) C∞0 (Ω) = D (Ω) = C∞ (Ω) ∩ C0 (Ω).

(vi) When dealing with maps u : Ω → RN , we will write, for example,
Ck
¡
Ω;RN

¢
, and similarly for the other cases.

Remark 1.5 Ck
¡
Ω
¢
with its norm k·kCk is a Banach space.

We will also need to define the set of piecewise continuous functions.

Definition 1.6 Let Ω ⊂ Rn be an open set.

(i) Define C0piec
¡
Ω
¢
= Cpiec

¡
Ω
¢
to be the set of piecewise continuous func-

tions u : Ω → R. This means that there exists a finite (or more generally a
countable) partition of Ω into open sets Ωi ⊂ Ω, i = 1, ..., I, so that

Ω =
I
∪
i=1
Ωi, Ωi ∩Ωj = ∅, if i 6= j, 1 ≤ i, j ≤ I

and u|Ωi is continuous.

(ii) Similarly Ck
piec

¡
Ω
¢
, k ≥ 1, is the set of functions u ∈ Ck−1 ¡Ω¢, whose

partial derivatives of order k are in C0piec
¡
Ω
¢
.

We now turn to the notion of Hölder continuous functions.

Definition 1.7 Let D ⊂ Rn, u : D → R and 0 < α ≤ 1. We let

[u]C0,α(D) = sup
x,y∈D
x6=y

½
|u (x)− u (y)|
|x− y|α

¾
.

Let Ω ⊂ Rn be open, k ≥ 0 be an integer. We define the different spaces of
Hölder continuous functions in the following way.

(i) C0,α (Ω) is the set of u ∈ C (Ω) so that

[u]C0,α(K) = sup
x,y∈K
x6=y

½
|u (x)− u (y)|
|x− y|α

¾
<∞

for every compact set K ⊂ Ω.

(ii) C0,α
¡
Ω
¢
is the set of functions u ∈ C

¡
Ω
¢
so that

[u]C0,α(Ω) <∞ .
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It is equipped with the norm

kukC0,α(Ω) = kukC0(Ω) + [u]C0,α(Ω) .

If there is no ambiguity we drop the dependence on the set Ω and write simply

kukC0,α = kukC0 + [u]C0,α .

(iii) Ck,α (Ω) is the set of u ∈ Ck (Ω) so that

[Dau]C0,α(K) <∞

for every compact set K ⊂ Ω and every a ∈ Ak.

(iv) Ck,α
¡
Ω
¢
is the set of functions u ∈ Ck

¡
Ω
¢
so that

[Dau]C0,α(Ω) <∞

for every multi-index a ∈ Ak. It is equipped with the following norm

kukCk,α = kukCk + max
a∈Ak

[Dau]C0,α .

Remark 1.8 (i) Ck,α
¡
Ω
¢
with its norm k·kCk,α is a Banach space.

(ii) By abuse of notations we write Ck (Ω) = Ck,0 (Ω); or in other words,
the set of continuous functions is identified with the set of Hölder continuous
functions with exponent 0.
(iii) Similarly when α = 1, we see that C0,1

¡
Ω
¢
is in fact the set of Lipschitz

continuous functions, namely the set of functions u such that there exists a
constant γ > 0 so that

|u (x)− u (y)| ≤ γ |x− y| , ∀x, y ∈ Ω.

The best such constant is γ = [u]C0,1 .

Example 1.9 Let Ω = (0, 1) and uα (x) = xα with α ∈ [0, 1]. It is easy to see
that uα ∈ C0,α ([0, 1]). Moreover, if 0 < α ≤ 1, then

[uα]C0,α = sup
x6=y

x,y∈[0,1]

½
|xα − yα|
|x− y|α

¾
= 1 .

Proposition 1.10 Let Ω ⊂ Rn be open and 0 ≤ α ≤ 1. The following properties
then hold.

(i) If u, v ∈ C0,α
¡
Ω
¢
then uv ∈ C0,α

¡
Ω
¢
.
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(ii) If 0 ≤ α ≤ β ≤ 1 and k ≥ 0 is an integer, then

Ck
¡
Ω
¢
⊃ Ck,α

¡
Ω
¢
⊃ Ck,β

¡
Ω
¢
⊃ Ck,1

¡
Ω
¢
.

(iii) If, in addition, Ω is bounded and convex, then

Ck,1
¡
Ω
¢
⊃ Ck+1

¡
Ω
¢
.

1.2.1 Exercises

Exercise 1.2.1 Show Proposition 1.10.

1.3 Lp spaces
Definition 1.11 Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. We say that a
measurable function u : Ω→ R belongs to Lp (Ω) if

kukLp =

⎧⎪⎪⎨⎪⎪⎩
µZ

Ω

|u (x)|p dx

¶ 1
p

if 1 ≤ p <∞

inf {α : |u (x)| ≤ α a.e. in Ω} if p =∞

is finite. As above if u : Ω→ RN , u =
¡
u1, ..., uN

¢
, is such that ui ∈ Lp (Ω), for

every i = 1, ..., N , we write u ∈ Lp
¡
Ω;RN

¢
.

Remark 1.12 The abbreviation “a.e.” means that a property holds almost every-
where. For example, the function

χQ (x) =

⎧⎨⎩ 1 if x ∈ Q

0 if x /∈ Q

where Q is the set of rational numbers, is such that χQ = 0 a.e.

In the next theorem we summarize the most important properties of Lp

spaces that we will need. We however will not recall Fatou lemma, the dominated
convergence theorem and other basic theorems of Lebesgue integral.

Theorem 1.13 Let Ω ⊂ Rn be open and 1 ≤ p ≤ ∞.

(i) k·kLp is a norm and Lp (Ω), equipped with this norm, is a Banach space.
The space L2 (Ω) is a Hilbert space with scalar product given by

hu; vi =
Z
Ω

u (x) v (x) dx .
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(ii) Hölder inequality asserts that if u ∈ Lp (Ω) and v ∈ Lp
0
(Ω) where

1/p + 1/p0 = 1 (i.e., p0 = p/ (p− 1)) and 1 ≤ p ≤ ∞ then uv ∈ L1 (Ω) and
moreover

kuvkL1 ≤ kukLp kvkLp0 .
In the case p = 2 and hence p0 = 2, Hölder inequality is nothing else than
Cauchy-Schwarz inequality

kuvkL1 ≤ kukL2 kvkL2 , i.e.
Z
Ω

|uv| ≤
µZ
Ω

u2
¶ 1

2
µZ
Ω

v2
¶ 1

2

.

(iii) Minkowski inequality asserts that

ku+ vkLp ≤ kukLp + kvkLp .

(iv) Riesz Theorem: the dual space of Lp, denoted by (Lp)0, can be identi-
fied with Lp

0
(Ω) where 1/p + 1/p0 = 1 provided 1 ≤ p < ∞. The result is false

if p = ∞ (and hence p0 = 1). The theorem has to be understood as follows: if
ϕ ∈ (Lp)0 with 1 ≤ p <∞ then there exists a unique u ∈ Lp

0
so that

hϕ; fi = ϕ (f) =

Z
Ω

u (x) f (x) dx, ∀f ∈ Lp (Ω)

and moreover
kukLp0 = kϕk(Lp)0 .

(v) Lp is separable if 1 ≤ p < ∞ and reflexive (which means that the bidual
of Lp, (Lp)00, can be identified with Lp) if 1 < p <∞.

(vi) Let 1 ≤ p < ∞. The piecewise constant functions (also called step
functions if Ω ⊂ R), or the C∞0 (Ω) functions (i.e., those functions that are
C∞ (Ω) and have compact support) are dense in Lp. More precisely if u ∈ Lp (Ω)
then there exist uν ∈ C∞0 (Ω) (or uν piecewise constants) so that

lim
ν→∞

kuν − ukLp = 0 .

The result is false if p =∞.

Remark 1.14 We will always make the identification (Lp)0 = Lp
0
. Summariz-

ing the results on duality we have

(Lp)0 = Lp
0
if 1 < p <∞,¡

L2
¢0
= L2,

¡
L1
¢0
= L∞, L1 ⊂

6=
(L∞)0 .
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We now turn our attention to the notions of convergence in Lp spaces. The
natural notion, called strong convergence, is the one induced by the k·kLp norm.
We will often need a weaker notion of convergence known as weak convergence.
We now define these notions.

Definition 1.15 Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞.

(i) A sequence uν is said to (strongly) converge to u if uν , u ∈ Lp and if

lim
ν→∞

kuν − ukLp = 0 .

We will denote this convergence by: uν → u in Lp.

(ii) If 1 ≤ p <∞, we say that the sequence uν weakly converges to u if uν ,
u ∈ Lp and if

lim
ν→∞

Z
Ω

[uν (x)− u (x)]ϕ (x) dx = 0, ∀ϕ ∈ Lp
0
(Ω) .

This convergence will be denoted by: uν - u in Lp.

(iii) If p =∞, the sequence uν is said to weak ∗ converge to u if uν , u ∈ L∞

and if

lim
ν→∞

Z
Ω

[uν (x)− u (x)]ϕ (x) dx = 0, ∀ϕ ∈ L1 (Ω)

and will be denoted by: uν
∗
- u in L∞.

Remark 1.16 (i) We speak of weak ∗ convergence in L∞ instead of weak con-
vergence, because as seen above the dual of L∞ is strictly larger than L1. For-
mally, however, weak convergence in Lp and weak ∗ convergence in L∞ take the
same form.
(ii) The limit (weak or strong) is unique.
(iii) It is obvious that

uν → u in Lp ⇒

⎧⎨⎩
uν - u in Lp if 1 ≤ p <∞

uν
∗
- u in L∞ if p =∞ .

Example 1.17 Let Ω = (0, 1), α > 0 and

uν (x) =

⎧⎨⎩ να if x ∈ (0, 1/ν)

0 if x ∈ (1/ν, 1) .
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If 1 < p <∞, we find

uν → 0 in Lp ⇐⇒ 0 ≤ α <
1

p

uν - 0 in Lp ⇐⇒ 0 ≤ α ≤ 1
p

(cf. Exercise 1.3.2).

Example 1.18 Let Ω = (0, 2π) and uν (x) = sin νx, then

sin νx 9 0 in Lp, ∀ 1 ≤ p ≤ ∞
sin νx - 0 in Lp, ∀ 1 ≤ p <∞

and
sin νx

∗
- 0 in L∞ .

These facts will be consequences of Riemann-Lebesgue Theorem (cf. Theorem
1.22).

Example 1.19 Let Ω = (0, 1), α, β ∈ R

u (x) =

⎧⎨⎩ α if x ∈ (0, 1/2)

β if x ∈ (1/2, 1) .

Extend u by periodicity from (0, 1) to R and define

uν (x) = u (νx) .

Note that uν takes only the values α and β and the sets where it takes such
values are, both, sets of measure 1/2. It is clear that {uν} cannot be compact in
any Lp spaces; however from Riemann-Lebesgue Theorem (cf. Theorem 1.22),
we will find

uν -
α+ β

2
in Lp, ∀ 1 ≤ p <∞ and uν

∗
-

α+ β

2
in L∞.

Theorem 1.20 Let Ω ⊂ Rn be a bounded open set. The following properties
then hold.

(i) If uν
∗
- u in L∞, then uν - u in Lp, ∀ 1 ≤ p <∞.

(ii) If uν → u in Lp, then kuνkLp → kukLp , 1 ≤ p ≤ ∞.
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(iii) If 1 ≤ p < ∞ and if uν - u in Lp, then there exists a constant γ > 0
so that kuνkLp ≤ γ, moreover kukLp ≤ lim infν→∞ kuνkLp . The result remains
valid if p =∞ and if uν

∗
- u in L∞.

(iv) If 1 < p < ∞ and if there exists a constant γ > 0 so that kuνkLp ≤ γ,
then there exist a subsequence {uνi} and u ∈ Lp so that uνi - u in Lp. The
result remains valid if p =∞ and we then have uνi

∗
- u in L∞.

(v) Let 1 ≤ p ≤ ∞ and uν → u in Lp, then there exist a subsequence {uνi}
and h ∈ Lp such that uνi → u a.e. and |uνi | ≤ h a.e.

Remark 1.21 (i) Comparing (ii) and (iii) of the theorem, we see that the weak
convergence ensures the lower semicontinuity of the norm, while strong conver-
gence guarantees its continuity.
(ii) The most interesting part of the theorem is (iv). We know that in Rn,

Bolzano-Weierstrass Theorem ascertains that from any bounded sequence we can
extract a convergent subsequence. This is false in Lp spaces (and more generally
in infinite dimensional spaces); but it is true if we replace strong convergence by
weak convergence.
(iii) The result (iv) is, however, false if p = 1; this is a consequence of

the fact that L1 is not a reflexive space. To deduce, up to the extraction of a
subsequence, weak convergence, it is not sufficient to have kuνkL1 ≤ γ, we need
a condition known as “equiintegrability” (cf. the bibliography). This fact is the
reason that explains the difficulty of the minimal surface problem that we will
discuss in Chapter 5.

We now turn to Riemann-Lebesgue theorem that allows to easily construct
weakly convergent sequences that do not converge strongly. This theorem is
particularly useful when dealing with Fourier series (there u (x) = sinx or
cosx).

Theorem 1.22 (Riemann-Lebesgue Theorem). Let 1 ≤ p ≤ ∞, Ω =Qn
i=1 (ai, bi) and u ∈ Lp (Ω). Let u be extended by periodicity from Ω to Rn

and define

uν (x) = u (νx) and u =
1

measΩ

Z
Ω

u (x) dx

then uν - u in Lp if 1 ≤ p <∞ and, if p =∞, uν ∗- u in L∞.

Proof. To make the argument simpler we will assume in the proof that
Ω = (0, 1) and 1 < p ≤ ∞. For the proof of the general case (Ω ⊂ Rn or p = 1)
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see, for example, Theorem 2.1.5 in [31]. We will also assume, without loss of
generality, that

u =

Z 1

0

u (x) dx = 0 .

Step 1. Observe that if 1 ≤ p <∞, then

kuνkpLp =

Z 1

0

|uν (x)|p dx =

Z 1

0

|u (νx)|p dx

=
1

ν

Z ν

0

|u (y)|p dy =

Z 1

0

|u (y)|p dy .

The last identity being a consequence of the 1-periodicity of u. We therefore
find that

kuνkLp = kukLp . (1.1)

The result is trivially true if p =∞.
Step 2. (For a slightly different proof of this step see Exercise 1.3.5). We

therefore have that uν ∈ Lp and, since u = 0, we have to show that

lim
ν→∞

Z 1

0

uν (x)ϕ (x) dx = 0, ∀ϕ ∈ Lp
0
(0, 1) . (1.2)

Let � > 0 be arbitrary. Since ϕ ∈ Lp
0
(0, 1) and 1 < p ≤ ∞, which implies

1 ≤ p0 <∞ (i.e., p0 6=∞), we have from Theorem 1.13 that there exists h a step
function so that

kϕ− hkLp0 ≤ � . (1.3)

Since h is a step function, we can find a0 = 0 < a1 < ... < aI = 1 and αi ∈ R
such that

h (x) = αi if x ∈ (ai−1; ai) , 1 ≤ i ≤ I .

We now computeZ 1

0

uν (x)ϕ (x) dx =

Z 1

0

uν (x) [ϕ (x)− h (x)] dx+

Z 1

0

uν (x)h (x) dx

and get that¯̄̄̄Z 1

0

uν (x)ϕ (x) dx

¯̄̄̄
≤
Z 1

0

|uν (x)| |ϕ (x)− h (x)| dx+
¯̄̄̄Z 1

0

uν (x)h (x) dx

¯̄̄̄
.
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Using Hölder inequality, (1.1) and (1.3) for the first term in the right hand side
of the inequality, we obtain¯̄̄̄Z 1

0

uν (x)ϕ (x) dx

¯̄̄̄
≤ kuνkLp kϕ− hkLp0 +

IP
i=1
|αi|

¯̄̄̄
¯
Z ai

ai−1

uν (x) dx

¯̄̄̄
¯

≤ � kukLp +
IP
i=1
|αi|

¯̄̄̄
¯
Z ai

ai−1

uν (x) dx

¯̄̄̄
¯ .

(1.4)

To conclude we still have to evaluateZ ai

ai−1

uν (x) dx =

Z ai

ai−1

u (νx) dx =
1

ν

Z νai

νai−1

u (y) dy

=
1

ν

(Z [νai−1]+1

νai−1

u dy +

Z [νai]

[νai−1]+1

udy +

Z νai

[νai]

udy

)

where [a] stands for the integer part of a ≥ 0. We now use the periodicity of
u in the second term, this is legal since [νai] − ([νai−1] + 1) is an integer, we
therefore find that¯̄̄̄

¯
Z ai

ai−1

uν (x) dx

¯̄̄̄
¯ ≤ 2

ν

Z 1

0

|u| dy + [νai]− [νai−1 − 1]
ν

¯̄̄̄Z 1

0

u dy

¯̄̄̄
.

Since u =
R 1
0
u = 0, we have, using the above inequality, and returning to (1.4)¯̄̄̄Z 1

0

uνϕdx

¯̄̄̄
≤ � kukLp +

2

ν
kukL1

IX
i=1

|αi| .

Let ν →∞, we hence obtain

0 ≤ lim sup
ν→∞

¯̄̄̄Z 1

0

uνϕdx

¯̄̄̄
≤ � kukLp .

Since � is arbitrary, we immediately have (1.2) and thus the result.
We conclude the present Section with a result that will be used on several

occasions when deriving the Euler-Lagrange equation associated to the problems
of the calculus of variations. We start with a definition.

Definition 1.23 Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. We say that
u ∈ Lploc (Ω) if u ∈ Lp (Ω0) for every open set Ω0 compactly contained in Ω (i.e.
Ω0 ⊂ Ω and Ω0 is compact).
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Theorem 1.24 (Fundamental lemma of the calculus of variations). Let
Ω ⊂ Rn be an open set and u ∈ L1loc (Ω) be such thatZ

Ω

u (x)ψ (x) dx = 0, ∀ψ ∈ C∞0 (Ω) (1.5)

then u = 0, almost everywhere in Ω.

Proof. We will show the theorem under the stronger hypothesis that u ∈
L2 (Ω) and not only u ∈ L1loc (Ω) (recall that L

2 (Ω) ⊂ L1loc (Ω)); for a proof in
the general framework see, for example, Corollary 3.26 in Adams [1] or Lemma
IV.2 in Brézis [14] . Let ε > 0. Since u ∈ L2 (Ω), invoking Theorem 1.13, we
can find ψ ∈ C∞0 (Ω) so that

ku− ψkL2 ≤ ε .

Using (1.5) we deduce that

kuk2L2 =
Z
Ω

u2 dx =

Z
Ω

u (u− ψ) dx .

Combining the above identity and Hölder inequality, we find

kuk2L2 ≤ kukL2 ku− ψkL2 ≤ ε kukL2 .

Since ε > 0 is arbitrary we deduce that kukL2 = 0 and hence the claim.
We next have as a consequence the following result (for a proof see Exercise

1.3.6)

Corollary 1.25 Let Ω ⊂ Rn be an open set and u ∈ L1loc (Ω) be such thatZ
Ω

u (x)ψ (x) dx = 0, ∀ψ ∈ C∞0 (Ω) with
Z
Ω

ψ (x) dx = 0

then u =constant, almost everywhere in Ω.

1.3.1 Exercises

Exercise 1.3.1 (i) Prove Hölder and Minkowski inequalities.
(ii) Show that if p, q ≥ 1 with pq/ (p+ q) ≥ 1, u ∈ Lp and v ∈ Lq, then

uv ∈ Lpq/p+q and kuvkLpq/p+q ≤ kukLp kvkLq .

(iii) Deduce that if Ω is bounded, then

L∞ (Ω) ⊂ Lp (Ω) ⊂ Lq (Ω) ⊂ L1 (Ω) , 1 ≤ q ≤ p ≤ ∞ .

Show, by exhibiting an example, that (iii) is false if Ω is unbounded.
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Exercise 1.3.2 Establish the results in Example 1.17.

Exercise 1.3.3 (i) Prove that if 1 ≤ p <∞, then

uν - u in Lp

vν → v in Lp
0

⎫⎬⎭⇒ uνvν - uv in L1.

Find an example showing that the result is false if we replace vν → v in Lp
0
by

vν - v in Lp
0
.

(ii) Show that

uν - u in L2

u2ν - u2 in L1

⎫⎬⎭⇒ uν → u in L2.

Exercise 1.3.4 (Mollifiers). Let ϕ ∈ C∞0 (R), ϕ ≥ 0, ϕ (x) = 0 if |x| > 1 andR +∞
−∞ ϕ (x) dx = 1, for example

ϕ (x) =

⎧⎪⎪⎨⎪⎪⎩
c exp

½
1

x2 − 1

¾
if |x| < 1

0 otherwise

and c is chosen so that
R +∞
−∞ ϕdx = 1. Define

ϕν (x) = νϕ (νx)

uν (x) = (ϕν ∗ u) (x) =
Z +∞

−∞
ϕν (x− y)u (y) dy .

(i) Show that if 1 ≤ p ≤ ∞ then

kuνkLp ≤ kukLp .

(ii) Prove that if u ∈ Lp (R), then uν ∈ C∞ (R).
(iii) Establish that if u ∈ C (R), then

uν → u uniformly on every compact set of R.

(iv) Show that if u ∈ Lp (R) and if 1 ≤ p <∞, then

uν → u in Lp (R) .

Exercise 1.3.5 In Step 2 of Theorem 1.22 use approximation by smooth func-
tions instead of by step functions.
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Exercise 1.3.6 (i) Show Corollary 1.25.
(ii) Prove that if u ∈ L1loc (a, b) is such thatZ b

a

u (x)ϕ0 (x) dx = 0, ∀ϕ ∈ C∞0 (a, b)

then u = constant, almost everywhere in (a, b).

Exercise 1.3.7 Let Ω ⊂ Rn be an open set and u ∈ L1 (Ω). Show that for every
� > 0, there exists δ > 0 so that for any measurable set E ⊂ Ω

measE ≤ δ ⇒
Z
E

|u (x)| dx ≤ � .

1.4 Sobolev spaces

Before giving the definition of Sobolev spaces, we need to weaken the notion of
derivative. In doing so we want to keep the right to integrate by parts; this is
one of the reasons of the following definition.

Definition 1.26 Let Ω ⊂ Rn be open and u ∈ L1loc (Ω). We say that v ∈ L1loc (Ω)
is the weak partial derivative of u with respect to xi ifZ

Ω

v (x)ϕ (x) dx = −
Z
Ω

u (x)
∂ϕ

∂xi
(x) dx, ∀ϕ ∈ C∞0 (Ω) .

By abuse of notations we will write v = ∂u/∂xi or uxi.
We will say that u is weakly differentiable if all weak partial derivatives,

ux1 , ..., uxn , exist.

Remark 1.27 (i) If such a weak derivative exists it is unique (a.e.), as a con-
sequence of Theorem 1.24.
(ii) All the usual rules of differentiation are easily generalized to the present

context of weak differentiability.
(iii) In a similar way we can introduce the higher derivatives.
(iv) If a function is C1, then the usual notion of derivative and the weak one

coincide.
(v) The advantage of this notion of weak differentiability will be obvious when

defining Sobolev spaces. We can compute many more derivatives of functions
than one can usually do. However not all measurable functions can be differ-
entiated in this way. In particular a discontinuous function of R cannot be
differentiated in the weak sense (see Example 1.29).
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Example 1.28 Let Ω=R and the function u (x) = |x|. Its weak derivative is
then given by

u0 (x) =

⎧⎨⎩ +1 if x > 0

−1 if x < 0 .

Example 1.29 (Dirac mass). Let

H (x) =

⎧⎨⎩ +1 if x > 0

0 if x ≤ 0 .

We will show that H has no weak derivative. Let Ω = (−1, 1). Assume, for the
sake of contradiction, that H 0 = δ ∈ L1loc (−1, 1) and let us prove that we reach a
contradiction. Let ϕ ∈ C∞0 (0, 1) be arbitrary and extend it to (−1, 0) by ϕ ≡ 0.
We therefore have by definition thatZ 1

−1
δ (x)ϕ (x) dx = −

Z 1

−1
H (x)ϕ0 (x) dx = −

Z 1

0

ϕ0 (x) dx

= ϕ (0)− ϕ (1) = 0 .

We therefore find Z 1

0

δ (x)ϕ (x) dx = 0, ∀ϕ ∈ C∞0 (0, 1)

which combined with Theorem 1.24, leads to δ = 0 a.e. in (0, 1). With an
analogous reasoning we would get that δ = 0 a.e. in (−1, 0) and consequently δ =
0 a.e. in (−1, 1). Let us show that we already reached the desired contradiction.
Indeed if this were the case we would have, for every ϕ ∈ C∞0 (−1, 1),

0 =

Z 1

−1
δ (x)ϕ (x) dx = −

Z 1

−1
H (x)ϕ0 (x) dx

= −
Z 1

0

ϕ0 (x) dx = ϕ (0)− ϕ (1) = ϕ (0) .

This would imply that ϕ (0) = 0, for every ϕ ∈ C∞0 (−1, 1), which is clearly
absurd. Thus H is not weakly differentiable.

Remark 1.30 By weakening even more the notion of derivative (for example,
by not requiring anymore that v is in L1loc ), the theory of distributions can give a
meaning at H 0 = δ, it is then called the Dirac mass. We will however not need
this theory in the sequel, except, but only marginally, in the exercises of Section
3.5.
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Definition 1.31 Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞.

(i) We let W 1,p (Ω) be the set of functions u : Ω → R, u ∈ Lp (Ω), whose
weak partial derivatives uxi ∈ Lp (Ω) for every i = 1, ..., n. We endow this space
with the following norm

kukW 1,p = (kukpLp + k∇uk
p
Lp)

1
p if 1 ≤ p <∞

kukW 1,∞ = max {kukL∞ , k∇ukL∞} if p =∞ .

In the case p = 2 the space W 1,2 (Ω) is sometimes denoted by H1 (Ω).

(ii) We define W 1,p
¡
Ω;RN

¢
to be the set of maps u : Ω → RN , u =¡

u1, ..., uN
¢
, with ui ∈W 1,p (Ω) for every i = 1, ..., N .

(iii) If 1 ≤ p < ∞, the set W 1,p
0 (Ω) is defined as the closure of C∞0 (Ω)

functions in W 1,p (Ω). By abuse of language, we will often say, if Ω is bounded,
that u ∈W 1,p

0 (Ω) is such that u ∈W 1,p (Ω) and u = 0 on ∂Ω. If p = 2, the set
W 1,2
0 (Ω) is sometimes denoted by H1

0 (Ω).

(iv) We will also write u ∈ u0+W 1,p
0 (Ω) meaning that u, u0 ∈W 1,p (Ω) and

u− u0 ∈W 1,p
0 (Ω).

(v) We let W 1,∞
0 (Ω) =W 1,∞ (Ω) ∩W 1,1

0 (Ω).

(vi) Analogously we define the Sobolev spaces with higher derivatives as fol-
lows. If k > 0 is an integer we let W k,p (Ω) to be the set of functions u : Ω→ R,
whose weak partial derivatives Dau ∈ Lp (Ω), for every multi-index a ∈ Am,
0 ≤ m ≤ k. The norm will then be

kukWk,p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ã P
0≤|a|≤k

kDaukpLp

! 1
p

if 1 ≤ p <∞

max
0≤|a|≤k

(kDaukL∞) if p =∞ .

(vii) If 1 ≤ p < ∞, W k,p
0 (Ω) is the closure of C∞0 (Ω) in W k,p (Ω) and

W k,∞
0 (Ω) =W k,∞ (Ω) ∩W k,1

0 (Ω).

If p = 2, the spaces W k,2 (Ω) and W k,2
0 (Ω) are sometimes respectively de-

noted by Hk (Ω) and Hk
0 (Ω).
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Remark 1.32 (i) By abuse of notations we will write W 0,p = Lp.
(ii) Roughly speaking, we can say that W 1,p is an extension of C1 similar to

that of Lpas compared to C0.
(iii) Note that if Ω is bounded, then

C1
¡
Ω
¢
⊂
6=
W 1,∞ (Ω) ⊂

6=
W 1,p (Ω) ⊂

6=
Lp (Ω)

for every 1 ≤ p <∞.

Example 1.33 The following cases are discussed in Exercise 1.4.1.
(i) Let Ω = {x ∈ Rn : |x| < 1} and ψ (x) = |x|−s, for s > 0. We then have

ψ ∈ Lp ⇔ sp < n and ψ ∈W 1,p ⇔ (s+ 1) p < n .

(ii) Let Ω =
©
x = (x1, x2) ∈ R2 : |x| < 1/2

ª
and ψ (x) = |log |x||s where

0 < s < 1/2. We have that ψ ∈ W 1,2 (Ω), ψ ∈ Lp (Ω) for every 1 ≤ p <∞, but
ψ /∈ L∞ (Ω).
(iii) Let Ω =

©
x ∈ R2 : |x| < 1

ª
. We have that u (x) = x/ |x| ∈W 1,p

¡
Ω;R2

¢
for every 1 ≤ p < 2. Similarly in higher dimensions, namely we will establish
that u (x) = x/ |x| ∈W 1,p (Ω;Rn) for every 1 ≤ p < n.

Theorem 1.34 Let Ω ⊂ Rn be open, 1 ≤ p ≤ ∞ and k ≥ 1 an integer.

(i) W k,p (Ω) equipped with its norm k·kk,p is a Banach space which is sepa-
rable if 1 ≤ p <∞ and reflexive if 1 < p <∞.

(ii) W 1,2 (Ω) is a Hilbert space when endowed with the following scalar prod-
uct

hu; viW 1,2 =

Z
Ω

u (x) v (x) dx+

Z
Ω

h∇u (x) ;∇v (x)i dx .

(iii) The C∞ (Ω)∩W k,p (Ω) functions are dense inW k,p (Ω) provided 1 ≤ p <
∞. Moreover, if Ω is a bounded domain with Lipschitz boundary (cf. Definition
1.40), then C∞

¡
Ω
¢
is also dense in W k,p (Ω) provided 1 ≤ p <∞.

(iv) W k,p
0 (Rn) =W k,p (Rn), whenever 1 ≤ p <∞.

Remark 1.35 (i) Note that as for the case of Lp the space W k,p is reflexive
only when 1 < p < ∞ and hence W 1,1 is not reflexive; as already said, this is
the main source of difficulties in the minimal surface problem.
(ii) The density result is due to Meyers and Serrin, see Section 7.6 in Gilbarg-

Trudinger [49], Section 5.3 in Evans [43] or Theorem 3.16 in Adams [1].
(iii) In general, we have W 1,p

0 (Ω) ⊂
6=
W 1,p (Ω), but when Ω = Rn both coin-

cide (see Corollary 3.19 in Adams [1]).
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We will now give a simple characterization of W 1,p which will turn out to be
particularly helpful when dealing with regularity problems (Chapter 4).

Theorem 1.36 Let Ω ⊂ Rn be open, 1 < p ≤ ∞ and u ∈ Lp (Ω). The following
properties are then equivalent.

(i) u ∈W 1,p (Ω);

(ii) there exists a constant c = c (u,Ω, p) so that¯̄̄̄Z
Ω

u (x)
∂ϕ

∂xi
(x) dx

¯̄̄̄
≤ c kϕkLp0 , ∀ϕ ∈ C∞0 (Ω) , ∀i = 1, 2, ..., n

(recalling that 1/p+ 1/p0 = 1);

(iii) there exists a constant c = c (u,Ω, p) so that for every open set ω ⊂
ω ⊂ Ω, with ω compact, and for every h ∈ Rn with |h| < dist (ω,Ωc) (where
Ωc = Rn \ Ω), thenµZ

ω

|u (x+ h)− u (x)|p dx
¶ 1

p

≤ c |h| if 1 < p <∞

|u (x+ h)− u (x)| ≤ c |h| for almost every x ∈ ω if p =∞ .

Furthermore one can choose c = k∇ukLp in (ii) and (iii).

Remark 1.37 (i) As a consequence of the theorem, it can easily be proved that
if Ω is bounded and open then

C0,1
¡
Ω
¢
⊂W 1,∞ (Ω)

where C0,1
¡
Ω
¢
has been defined in Section 1.2, and the inclusion is, in general,

strict. If, however, the set Ω is also convex (or sufficiently regular, see Theorem
5.8.4 in Evans [43]), then these two sets coincide (as usual, up to the choice of a
representative in W 1,∞ (Ω)). In other words we can say that the set of Lipschitz
functions over Ω can be identified, if Ω is convex, with the space W 1,∞ (Ω).
(ii) The theorem is false when p = 1. We then only have (i) ⇒ (ii) ⇔

(iii). The functions satisfying (ii) or (iii) are then called functions of bounded
variations.

Proof. We will prove the theorem only when n = 1 and Ω = (a, b). For the
more general case see, for example, Proposition IX.3 in Brézis [14] or Theorem
5.8.3 and 5.8.4 in Evans [43].
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(i)⇒ (ii). This follows from Hölder inequality and the fact that u has a weak
derivative; indeed¯̄̄̄

¯
Z b

a

u (x)ϕ0 (x) dx

¯̄̄̄
¯ =

¯̄̄̄
¯
Z b

a

u0 (x)ϕ (x) dx

¯̄̄̄
¯ ≤ ku0kLp kϕkLp0 .

(ii) ⇒ (i). Let F be a linear functional defined by

F (ϕ) = hF ;ϕi =
Z b

a

u (x)ϕ0 (x) dx, ϕ ∈ C∞0 (a, b) . (1.6)

Note that, by (ii), it is continuous over C∞0 (a, b). Since C∞0 (a, b) is dense in
Lp

0
(a, b) (note that we used here the fact that p 6= 1 and hence p0 6=∞), we can

extend it, by continuity (or appealing to Hahn-Banach theorem), to the whole
Lp

0
(a, b); we have therefore defined a continuous linear operator F over Lp

0
(a, b).

From Riesz theorem (Theorem 1.13) we find that there exists v ∈ Lp (a, b) so
that

F (ϕ) = hF ;ϕi =
Z b

a

v (x)ϕ (x) dx, ∀ϕ ∈ Lp
0
(a, b) . (1.7)

Combining (1.6) and (1.7) we getZ b

a

(−v (x))ϕ (x) dx = −
Z b

a

u (x)ϕ0 (x) dx, ∀ϕ ∈ C∞0 (a, b)

which exactly means that u0 = −v ∈ Lp (a, b) and hence u ∈W 1,p (a, b).
(iii) ⇒ (ii). Let ϕ ∈ C∞0 (a, b) and let ω ⊂ ω ⊂ (a, b) with ω compact and

such that suppϕ ⊂ ω. Let h ∈ R so that |h| < dist (ω, (a, b)
c
). We have then,

appealing to (iii),¯̄̄̄
¯
Z b

a

[u (x+ h)− u (x)]ϕ (x) dx

¯̄̄̄
¯ ≤

µZ
ω

|u (x + h)− u (x)|p dx
¶ 1

p

kϕkLp0

≤

⎧⎨⎩ c |h| kϕkLp0 if 1 < p <∞

c |h| kϕkL1 if p =∞ .
(1.8)

We know, by hyp othesis, that ϕ ≡ 0 on (a, a + h) and (b− h, b) if h > 0 and we
therefore find (letting ϕ ≡ 0 outside (a, b))

 (x− h)

∫ b

a

u(x + h) ϕ (x) dx =

∫ b+h

a+h

u(x + h) ϕ (x) dx =

∫ b

a

u(x) ϕ dx . (1.9)
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Since a similar argument holds for h < 0, we deduce from (1.8) and (1.9) that,
if 1 < p ≤ ∞, ¯̄̄̄

¯
Z b

a

u (x) [ϕ (x− h)− ϕ (x)] dx

¯̄̄̄
¯ ≤ c |h| kϕkLp0 .

Letting |h| tend to zero, we get¯̄̄̄
¯
Z b

a

uϕ0dx

¯̄̄̄
¯ ≤ c kϕkLp0 , ∀ϕ ∈ C∞0 (a, b)

which is exactly (ii).
(i) ⇒ (iii). From Lemma 1.38 below, we have for every x ∈ ω

u (x+ h)− u (x) =

Z x+h

x

u0 (t) dt = h

Z 1

0

u0 (x+ sh) ds

and hence

|u (x+ h)− u (x)| ≤ |h|
Z 1

0

|u0 (x+ sh)| ds .

Let 1 < p < ∞ (the conclusion is obvious if p = ∞), we have from Hölder
inequality that

|u (x+ h)− u (x)|p ≤ |h|p
Z 1

0

|u0 (x+ sh)|p ds

and hence after integrationZ
ω

|u (x+ h)− u (x)|p dx ≤ |h|p
Z
ω

Z 1

0

|u0 (x+ sh)|p dsdx

= |h|p
Z 1

0

Z
ω

|u0 (x+ sh)|p dxds .

Since ω + sh ⊂ (a, b), we findZ
ω

|u0 (x+ sh)|p dx =
Z
ω+sh

|u0 (y)|p dy ≤ ku0kpLp

and hence µZ
ω

|u (x+ h)− u (x)|p dx
¶ 1

p

≤ ku0kLp |h|

which is the claim.
In the proof of Theorem 1.36, we have used a result that, roughly speaking,

says that functions in W 1,p are continuous and are primitives of functions in Lp.
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Lemma 1.38 Let u ∈ W 1,p (a, b), 1 ≤ p ≤ ∞. Then there exists a functioneu ∈ C ([a, b]) such that u = eu a.e. and
eu (x)− eu (y) = Z x

y

u0 (t) dt, ∀x, y ∈ [a, b] .

Remark 1.39 (i) As already repeated, we will ignore the difference between u
and eu and we will say that if u ∈ W 1,p (a, b) then u ∈ C ([a, b]) and u is the
primitive of u0, i.e.

u (x)− u (y) =

Z x

y

u0 (t) dt .

(ii) Lemma 1.38 is a particular case of Sobolev imbedding theorem (cf. below).
It gives a non trivial result, in the sense that it is not, a priori, obvious that a
function u ∈W 1,p (a, b) is continuous. We can therefore say that

C1 ([a, b]) ⊂W 1,p (a, b) ⊂ C ([a, b]) , 1 ≤ p ≤ ∞ .

(iii) The inequality (1.12) in the proof of the lemma below shows that if
u ∈ W 1,p (a, b), 1 < p < ∞, then u ∈ C0,1/p

0
([a, b]) and hence u is Hölder

continuous with exponent 1/p0. We have already seen in Remark 1.37 that if
p =∞, then C0,1 ([a, b]) and W 1,∞ (a, b) can be identified.

Proof. We divide the proof into two steps.
Step 1. Let c ∈ (a, b) be fixed and define

v (x) =

Z x

c

u0 (t) dt, x ∈ [a, b] . (1.10)

We will show that v ∈ C ([a, b]) and

Z b

a

v (x)ϕ0 (x) dx = −
Z b

a

u0 (x)ϕ (x) dx, ∀ϕ ∈ C∞0 (a, b) . (1.11)

Indeed we haveZ b

a

v (x)ϕ0 (x) dx =

Z b

a

µZ x

c

u0 (t) dt

¶
ϕ0 (x) dx

=

Z c

a

dx

Z x

c

u0 (t)ϕ0 (x) dt+

Z b

c

dx

Z x

c

u0 (t)ϕ0 (x) dt
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which combined with Fubini theorem (which allows to permute the integrals),
leads toZ b

a

v (x)ϕ0 (x) dx = −
Z c

a

u0 (t) dt

Z t

a

ϕ0 (x) dx+

Z b

c

u0 (t) dt

Z b

t

ϕ0 (x) dx

= −
Z c

a

u0 (t)ϕ (t) dt+

Z b

c

u0 (t) (−ϕ (t)) dt

= −
Z b

a

u0 (t)ϕ (t) dt

which is exactly (1.11). The fact that v is continuous follows from the observation
that if x ≥ y, then

|v (x)− v (y)| ≤
Z x

y

|u0 (t)| dt ≤
µZ x

y

|u0 (t)|p dt
¶ 1

p
µZ x

y

1p
0
dt

¶ 1
p0

≤ |x− y|
1
p0 · ku0kLp

(1.12)

where we have used Hölder inequality. If p = 1, the inequality (1.12) does not
imply that v is continuous; the continuity of v follows from classical results of
Lebesgue integrals, see Exercise 1.3.7.
Step 2. We now are in a position to conclude. Since from (1.11), we haveZ b

a

vϕ0dx = −
Z b

a

u0ϕdx, ∀ϕ ∈ C∞0 (a, b)

and we know that u ∈W 1,p (a, b) (and hence
R
uϕ0dx = −

R
u0ϕdx), we deduceZ b

a

(v − u)ϕ0dx = 0, ∀ϕ ∈ C∞0 (a, b) .

Applying Exercise 1.3.6, we find that v− u = γ a.e., γ denoting a constant, and
since v is continuous, we have that eu = v − γ has all the desired properties.
We are now in a position to state the main results concerning Sobolev spaces.

They give some inclusions between these spaces, as well as some compact imbed-
dings. These results generalize to Rn what has already been seen in Lemma 1.38
for the one dimensional case. Before stating these results we need to define what
kind of regularity will be assumed on the boundary of the domains Ω ⊂ Rn that
we will consider. When Ω = (a, b) ⊂ R, there was no restriction. We will assume,
for the sake of simplicity, that Ω ⊂ Rn is bounded. The following definition ex-
presses in precise terms the intuitive notion of regular boundary (C∞, Ck or
Lipschitz).
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Definition 1.40 (i) Let Ω ⊂ Rn be open and bounded. We say that Ω is a
bounded open set with Ck, k ≥ 1, boundary if for every x ∈ ∂Ω, there exist a
neighborhood U ⊂ Rn of x and a one-to-one and onto map H : Q→ U , where

Q = {x ∈ Rn : |xj | < 1, j = 1, 2, ..., n}

H ∈ Ck
¡
Q
¢
, H−1 ∈ Ck

¡
U
¢
, H (Q+) = U ∩ Ω, H (Q0) = U ∩ ∂Ω

with Q+ = {x ∈ Q : xn > 0} and Q0 = {x ∈ Q : xn = 0}.

(ii) If H is in Ck,α, 0 < α ≤ 1, we will say that Ω is a bounded open set
with Ck,α boundary.

(iii) If H is only in C0,1, we will say that Ω is a bounded open set with
Lipschitz boundary.

Figure 1.1: regular boundary

Remark 1.41 Every polyhedron has Lipschitz boundary, while the unit ball in
Rn has a C∞ boundary.

In the next two theorems (see for references Theorems 5.4 and 6.2 in Adams
[1]) we will write some inclusions between spaces; they have to be understood
up to a choice of a representative.

Theorem 1.42 (Sobolev imbedding theorem). Let Ω ⊂ Rn be a bounded
open set with Lipschitz boundary.
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Case 1. If 1 ≤ p < n then

W 1,p (Ω) ⊂ Lq (Ω)

for every q ∈ [1, p∗] where

1

p∗
=
1

p
− 1

n
, i.e. p∗ =

np

n− p
.

More precisely, for every q ∈ [1, p∗] there exists c = c (Ω, p, q) so that

kukLq ≤ c kukW 1,p .

Case 2. If p = n then

W 1,n (Ω) ⊂ Lq (Ω) , for every q ∈ [1,∞) .

More precisely, for every q ∈ [1,∞) there exists c = c (Ω, p, q) so that

kukLq ≤ c kukW 1,n .

Case 3. If p > n then

W 1,p (Ω) ⊂ C0,α
¡
Ω
¢
, for every α ∈ [0, 1− n/p] .

In particular, there exists a constant c = c (Ω, p) so that

kukL∞ ≤ c kukW 1,p .

The above theorem gives, not only imbeddings, but also compactness of these
imbeddings under further restrictions.

Theorem 1.43 (Rellich-Kondrachov Theorem). Let Ω ⊂ Rn be a bounded
open set with Lipschitz boundary.

Case 1. If 1 ≤ p < n then the imbedding of W 1,p in Lq is compact, for every
q ∈ [1, p∗). This means that any bounded set of W 1,p is precompact (i.e., its
closure is compact) in Lq for every 1 ≤ q < p∗ (the result is false if q = p∗).

Case 2. If p = n then the imbedding of W 1,n in Lq is compact, for every
q ∈ [1,∞).

Case 3. If p > n then the imbedding of W 1,p in C0,α
¡
Ω
¢
is compact, for

every 0 ≤ α < 1− n/p.

In particular in all cases (i.e., 1 ≤ p ≤ ∞) the imbedding of W 1,p (Ω) in
Lp (Ω) is compact.
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Remark 1.44 (i) Let us examine the theorems when Ω = (a, b) ⊂ R. Only
cases 2 and 3 apply and in fact we have an even better result (cf. Lemma 1.38),
namely

C1 ([a, b]) ⊂W 1,p (a, b) ⊂ C0,1/p
0
([a, b]) ⊂ C ([a, b])

for every p ≥ 1 (hence even when p = 1 we have that functions in W 1,1 are
continuous). However, the imbedding is compact only when p > 1.
(ii) In higher dimension, n ≥ 2, the case p = n cannot be improved, in

general. The functions in W 1,n are in general not continuous and not even
bounded (cf. Example 1.33).
(iii) If Ω is unbounded, for example Ω = Rn, we must be more careful, in

particular, the compactness of the imbeddings is lost (see the bibliography for
more details).
(iv) If we consider W 1,p

0 instead of W 1,p then the same imbeddings are valid,
but no restriction on the regularity of ∂Ω is anymore required.
(v) Similar imbeddings can be obtained if we replace W 1,p by W k,p.
(vi) Recall that W 1,∞ (Ω), when Ω is bounded and convex, is identified with

C0,1
¡
Ω
¢
.

(vii) We now try to summarize the results when n = 1. If we denote by
I = (a, b), we have, for p ≥ 1,

D (I) = C∞0 (I) ⊂ · · · ⊂W 2,p (I) ⊂ C1
¡
I
¢
⊂W 1,p (I)

⊂ C
¡
I
¢
⊂ L∞ (I) ⊂ · · · ⊂ L2 (I) ⊂ L1 (I)

and furthermore C∞0 is dense in L1, equipped with its norm.

Theorems 1.42 and 1.43 will not be proved; they have been discussed in
the one dimensional case in Lemma 1.38. Concerning the compactness of the
imbedding when n = 1, it is a consequence of Ascoli-Arzela theorem (see Exercise
1.4.4 for more details).
Before proceeding further it is important to understand the significance of

Theorem 1.43. We are going to formulate it for sequences, since it is in this
framework that we will use it. The corollary says that if a sequence converges
weakly in W 1,p, it, in fact, converges strongly in Lp.

Corollary 1.45 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and
1 ≤ p <∞. If

uν - u in W 1,p (Ω)

(this means that uν , u ∈W 1,p (Ω), uν - u in Lp and ∇uν - ∇u in Lp). Then

uν → u in Lp (Ω) .

If p =∞, uν ∗- u in W 1,∞, then uν → u in L∞.



Sobolev spaces 37

Example 1.46 Let I = (0, 2π) and uν (x) = (1/ν) cos νx. We have already
seen that u0ν

∗
- 0 in L∞ (0, 2π) and hence

uν
∗
- 0 in W 1,∞ (0, 2π) .

It is clear that we also have

uν → 0 in L∞ (0, 2π) .

The last theorem that we will often use is (see Corollary IX.19 in Brézis [14]):

Theorem 1.47 (Poincaré inequality). Let Ω ⊂ Rn be a bounded open set
and 1 ≤ p ≤ ∞. Then there exists γ = γ (Ω, p) > 0 so that

kukLp ≤ γ k∇ukLp , ∀u ∈W 1,p
0 (Ω)

or equivalently
kukW1,p ≤ γ k∇ukLp , ∀u ∈W 1,p

0 (Ω) .

Remark 1.48 (i) We need to impose a condition of the type u = 0 on ∂Ω (which
comes from the hypothesis u ∈W 1,p

0 ) to avoid constant functions u (which imply
∇u = 0), otherwise the inequality would be trivially false.
(ii) Sometimes the Poincaré inequality appears under the following form (see

Theorem 5.8.1 in Evans [43]). If 1 ≤ p ≤ ∞, if Ω ⊂ Rn is a bounded connected
open set, with Lipschitz boundary, and if we denote by

uΩ =
1

measΩ

Z
Ω

u (x) dx

then there exists γ = γ (Ω, p) > 0 so that

ku− uΩkLp ≤ γ k∇ukLp , ∀u ∈W 1,p (Ω) .

(iii) In the case n = 1, that will be discussed in the proof, we will not really
use that u (a) = u (b) = 0, but only u (a) = 0 (or equivalently u (b) = 0). The
theorem remains thus valid under this weaker hypothesis.
(iv) We will often use Poincaré inequality under the following form. If u0 ∈

W 1,p (Ω) and u ∈ u0 +W 1,p
0 (Ω), then there exist γ1, γ2 > 0 so that

k∇ukLp ≥ γ1 kukW 1,p − γ2 ku0kW 1,p .

Proof. We will prove the inequality only when n = 1 and Ω = (a, b). Since
u ∈W 1,p

0 (a, b), we have u ∈ C ([a, b]) and u (a) = u (b) = 0.
We will prove that, for every 1 ≤ p ≤ ∞,

kukLp ≤ (b− a) ku0kLp . (1.13)
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Since u (a) = 0, we have

|u (x)| = |u (x)− u (a)| =
¯̄̄̄Z x

a

u0 (t) dt

¯̄̄̄
≤
Z b

a

|u0 (t)| dt = ku0kL1 .

From this inequality we immediately get that (1.13) is true for p = ∞. When
p = 1, we have after integration that

kukL1 =
Z b

a

|u (x)| dx ≤ (b− a) ku0kL1 .

So it remains to prove (1.13) when 1 < p <∞. Applying Hölder inequality, we
obtain

|u (x)| ≤
ÃZ b

a

1p
0

! 1
p0
ÃZ b

a

|u0|p
! 1

p

= (b− a)
1
p0 ku0kLp

and hence

kukLp =

ÃZ b

a

|u|p dx
! 1

p

≤
Ã
(b− a)

p
p0 ku0kpLp

Z b

a

dx

! 1
p

= (b− a) ku0kLp .

This concludes the proof of the theorem when n = 1.

1.4.1 Exercises

Exercise 1.4.1 Let 1 ≤ p < ∞, R > 0 and BR = {x ∈ Rn : |x| < R}. Let for
f ∈ C∞ (0,+∞) and for x ∈ BR

u (x) = f (|x|) .

(i) Show that u ∈ Lp (BR) if and only ifZ R

0

rn−1 |f (r)|p dr <∞ .

(ii) Assume that
lim
r→0

£
rn−1 |f (r)|

¤
= 0 .

Prove that u ∈W 1,p (BR) if and only if u ∈ Lp (BR) andZ R

0

rn−1 |f 0 (r)|p dr <∞ .

(iii) Discuss all the cases of Example 1.33.
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Exercise 1.4.2 Let AC ([a, b]) be the space of absolutely continuous functions
on [a, b]. This means that a function u ∈ AC ([a, b]), if for every � > 0 there
exists δ > 0 so that for every disjoint union of intervals (ak, bk) ⊂ (a, b) the
following implication is trueX

k

|bk − ak| < δ ⇒
X
k

|u (bk)− u (ak)| < � .

(i) Prove that W 1,1 (a, b) ⊂ AC ([a, b]) ⊂ C ([a, b]), up to the usual selection
of a representative.
(ii) The converse AC ([a, b]) ⊂ W 1,1 (a, b) is also true (see Section 2.2 in

Buttazzo-Giaquinta-Hildebrandt [17] or Section 9.3 in De Barra [37]).

Exercise 1.4.3 Let u ∈W 1,p (a, b), 1 < p <∞ and a < y < x < b. Show that

u (x)− u (y) = o
³
|x− y|1/p

0´
where o (t) stands for a function f = f (t) so that f (t) /t tends to 0 as t tends
to 0.

Exercise 1.4.4 (Corollary 1.45 in dimension n = 1). Prove that if 1 < p <∞,
then

uν - u in W 1,p (a, b) ⇒ uν → u in Lp (a, b)

and even uν → u in L∞ (a, b).

Exercise 1.4.5 Show that if Ω ⊂ Rn is a bounded open set with Lipschitz bound-
ary, 1 < p <∞ and if there exists a constant γ > 0 so that

kuνkW 1,p ≤ γ

then there exist a subsequence {uνi} and u ∈W 1,p (Ω) such that

uνi - u in W 1,p.

Exercise 1.4.6 Let Ω = (0, 1)× (0, 1) ⊂ R2 and

uν (x, y) =
1√
ν
(1− y)

ν
sin νx .

Prove that uν → 0 in L∞, k∇uνkL2 ≤ γ, for some constant γ > 0. Deduce that
a subsequence (one can even show that the whole sequence) converges weakly to
0 in W 1,2 (Ω).

Exercise 1.4.7 Let u ∈ W 1,p (Ω) and ϕ ∈ W 1,p0

0 (Ω) , where 1
p +

1
p0 = 1 and

p > 1. Show that Z
Ω

uxiϕdx = −
Z
Ω

uϕxi dx, i = 1, ..., n .
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1.5 Convex analysis
In this final section we recall the most important results concerning convex
functions.

Definition 1.49 (i) The set Ω ⊂ Rn is said to be convex if for every x, y ∈ Ω
and every λ ∈ [0, 1] we have λx+ (1− λ) y ∈ Ω.

(ii) Let Ω ⊂ Rn be convex. The function f : Ω → R is said to be convex if
for every x, y ∈ Ω and every λ ∈ [0, 1], the following inequality holds

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

We now give some criteria equivalent to the convexity.

Theorem 1.50 Let f : Rn → R and f ∈ C1 (Rn).

(i) The function f is convex if and only if

f (x) ≥ f (y) + h∇f (y) ;x− yi , ∀x, y ∈ Rn

where h.; .i denotes the scalar product in Rn.

(ii) If f ∈ C2 (Rn), then f is convex if and only if its Hessian, ∇2f , is
positive semi definite.

The following inequality will be important (and will be proved in a particular
case in Exercise 1.5.2).

Theorem 1.51 (Jensen inequality). Let Ω ⊂ Rn be open and bounded, u ∈
L1 (Ω) and f : R→ R be convex, then

f

µ
1

measΩ

Z
Ω

u (x) dx

¶
≤ 1

measΩ

Z
Ω

f (u (x)) dx .

We now need to introduce the notion of duality, also known as Legendre
transform, for convex functions. It will be convenient to accept in the definitions
functions that are allowed to take the value +∞ (a function that takes only finite
values, will be called finite).

Definition 1.52 (Legendre transform). Let f : Rn → R (or f : Rn →
R ∪ {+∞}).

(i) The Legendre transform, or dual, of f is the function f∗ : Rn → R ∪
{+∞} defined by

f∗ (x∗) = sup
x∈Rn

{hx;x∗i− f (x)}
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(in general, f∗ takes the value +∞ even if f takes only finite values) where h.; .i
denotes the scalar product in Rn.

(ii) The bidual of f is the function f∗∗ : Rn → R ∪ {±∞} defined by

f∗∗ (x) = sup
x∗∈Rn

{hx;x∗i− f∗ (x∗)} .

Let us see some simple examples that will be studied in Exercise 1.5.4.

Example 1.53 (i) Let n = 1 and f (x) = |x|p /p, where 1 < p < ∞. We then
find

f∗ (x∗) =
1

p0
|x∗|p

0

where p0 is, as usual, defined by 1/p+ 1/p0 = 1.
(ii) Let n = 1 and f (x) =

¡
x2 − 1

¢2
. We then have

f∗∗ (x) =

⎧⎨⎩
¡
x2 − 1

¢2
if |x| ≥ 1

0 if |x| < 1 .

(iii) Let n = 1 and

f (x) =

⎧⎨⎩ 0 if x ∈ (0, 1)

+∞ otherwise.

We immediately find that

f∗ (x∗) = sup
x∈(0,1)

{xx∗} =

⎧⎨⎩ x∗ if x∗ ≥ 0

0 if x∗ ≤ 0

f is often called the indicator function of (0, 1), and f∗ the support function.
We also have

f∗∗ (x) =

⎧⎨⎩ 0 if x ∈ [0, 1]

+∞ otherwise

and hence f∗∗ is the indicator function of [0, 1].
(iv) Let X ∈ R2×2, where R2×2 is the set of 2× 2 real matrices which will be

identified with R4, and let f (X) = detX, then

f∗ (X∗) ≡ +∞ and f∗∗ (X) ≡ −∞ .
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We now gather some properties of the Legendre transform (for a proof see
the exercises).

Theorem 1.54 Let f : Rn → R (or f : Rn → R ∪ {+∞}).

(i) The function f∗ is convex (even if f is not).

(ii) The function f∗∗ is convex and f∗∗ ≤ f . If, furthermore, f is convex
and finite then f∗∗ = f . More generally, if f is finite but not necessarily convex,
then f∗∗ is its convex envelope (which means that it is the largest convex function
that is smaller than f).

(iii) The following identity always holds: f∗∗∗ = f∗.

(iv) If f ∈ C1 (Rn), convex and finite, then

f (x) + f∗ (∇f (x)) = h∇f (x) ;xi , ∀x ∈ Rn.

(v) If f : Rn → R is strictly convex and if

lim
|x|→∞

f (x)

|x| = +∞

then f∗ ∈ C1 (Rn). Moreover if f ∈ C1 (Rn) and

f (x) + f∗ (x∗) = hx∗;xi

then

x∗ = ∇f (x) and x = ∇f∗ (x∗) .

We finally conclude with a theorem that allows to compute the convex en-
velope without using duality (see Theorem 2.2.9 in [31] or Corollary 17.1.5 in
Rockafellar [87]).

Theorem 1.55 (Carathéodory theorem). Let f : Rn → R then

f∗∗ (x) = inf

(
n+1X
i=1

λif (xi) : x =
n+1X
i=1

λixi , λi ≥ 0 and
n+1X
i=1

λi = 1

)
.
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1.5.1 Exercises

Exercise 1.5.1 Prove Theorem 1.50 when n = 1.

Exercise 1.5.2 Prove Jensen inequality, when f ∈ C1.

Exercise 1.5.3 Let f (x) =
√
1 + x2. Compute f∗.

Exercise 1.5.4 Establish (i), (ii) and (iv) of Example 1.53.

Exercise 1.5.5 Prove (i), (iii) and (iv) of Theorem 1.54. For proofs of (ii) and
(v) see the bibliography in the corrections of the present exercise and the exercise
below.

Exercise 1.5.6 Show (v) of Theorem 1.54 under the further restrictions that
n = 1, f ∈ C2 (R) and

f 00 (x) > 0, ∀x ∈ R .

Prove in addition that f∗ ∈ C2 (R).

Exercise 1.5.7 Let f ∈ C1 (R) be convex, p ≥ 1, α1 > 0 and

|f (x)| ≤ α1 (1 + |x|p) , ∀x ∈ R . (1.14)

Show that there exist α2, α3 > 0, so that

|f 0 (x)| ≤ α2

³
1 + |x|p−1

´
, ∀x ∈ R (1.15)

|f (x)− f (y)| ≤ α3

³
1 + |x|p−1 + |y|p−1

´
|x− y| , ∀x, y ∈ R . (1.16)

Note that (1.15) always implies (1.14) independently of the convexity of f .
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Chapter 2

Classical methods

2.1 Introduction
In this chapter we study the model problem

(P ) inf
©
I (u) : u ∈ C1 ([a, b]) , u (a) = α, u (b) = β

ª
where f ∈ C2 ([a, b]×R×R) and

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx .

Before describing the results that we will obtain, it might be useful to recall
the analogy with minimizations in Rn, namely

inf {F (x) : x ∈ X ⊂ Rn} .

The methods that we call classical consist in finding x ∈ X satisfying F 0 (x) = 0,
and then analyze the higher derivatives of F so as to determine the nature of the
critical point x: absolute minimizer or maximizer, local minimizer or maximizer
or saddle point.
In Section 2.2 we derive the Euler-Lagrange equation (analogous to F 0 (x) = 0

in Rn) that should satisfy any C2 ([a, b]) minimizer, u, of (P),

(E)
d

dx
[fξ (x, u (x) , u

0 (x))] = fu (x, u (x) , u
0 (x)) , x ∈ [a, b]

where for f = f (x, u, ξ) we let fξ = ∂f/∂ξ and fu = ∂f/∂u.
In general (as in the case of Rn), the solutions of (E) are not necessarily

minima of (P); they are merely stationary points of I (cf. below for a more

45
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precise definition). However if (u, ξ) → f (x, u, ξ) is convex for every x ∈ [a, b],
then every solution of (E) is automatically a minimizer of (P).
In Section 2.3 we show that any minimizer u of (P) satisfies a different form

of the Euler-Lagrange equation. Namely for every x ∈ [a, b] the following differ-
ential equation holds:

d

dx
[f (x, u (x) , u0 (x))− u0 (x) fξ (x, u (x) , u

0 (x))] = fx (x, u (x) , u
0 (x)) .

This rewriting of the equation turns out to be particularly useful when f does
not depend explicitly on the variable x. Indeed we then have a first integral of
(E) which is

f (u (x) , u0 (x))− u0 (x) fξ (u (x) , u
0 (x)) = constant, ∀x ∈ [a, b] .

In Section 2.4, we will present the Hamiltonian formulation of the problem.
Roughly speaking the idea is that the solutions of (E) are also solutions (and
conversely) of

(H)

⎧⎨⎩ u0 (x) = Hv (x, u (x) , v (x))

v0 (x) = −Hu (x, u (x) , v (x))

where v (x) = fξ (x, u (x) , u
0 (x)) and H is the Legendre transform of f , namely

H (x, u, v) = sup
ξ∈R

{v ξ − f (x, u, ξ)} .

In classical mechanics f is called the Lagrangian and H the Hamiltonian.
In Section 2.5, we will study the relationship between the solutions of (H)

with those of a partial differential equation known as Hamilton-Jacobi equation

(HJ) Sx (x, u) +H (x, u, Su (x, u)) = 0, ∀ (x, u) ∈ [a, b]×R .

Finally, in Section 2.6, we will present the fields theories introduced byWeier-
strass and Hilbert which allow, in certain cases, to decide if a solution of (E) is
a (local or global) minimizer of (P).
We conclude this Introduction with some comments. The methods presented

in this chapter can easily be generalized to vector valued functions of the form
u : [a, b] −→ RN , with N > 1, to different boundary conditions, to integral
constraints, or to higher derivatives. These extensions will be considered in the
exercises at the end of each section. However, except Section 2.2, the remaining
part of the chapter does not generalize easily and completely to the multi di-
mensional case, u : Ω ⊂ Rn −→ R, with n > 1; let alone the considerably harder
case where u : Ω ⊂ Rn −→ RN , with n,N > 1.
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Moreover the classical methods suffer of two main drawbacks. The first one
is that they assume, implicitly, that the solutions of (P) are regular (C1, C2 or
sometimes piecewise C1); this is, in general, difficult (or even often false in the
case of (HJ)) to prove. However the main drawback is that they rely on the fact
that we can solve either of the equations (E), (H) or (HJ), which is, usually, not
the case. The main interest in the classical methods is, when they can be carried
completely, that we have an essentially explicit solution. The advantage of the
direct methods presented in the next two chapters is that they do not assume
any solvability of such equations.
We recall, once more, that our presentation is only a brief one and we have

omitted several important classical conditions such as Legendre, Weierstrass,
Weierstrass-Erdmann or Jacobi conditions. The fields theories as well as all the
sufficient conditions for the existence of local minima have only been, very briefly,
presented. We refer for more developments to the following books: Akhiezer [2],
Bliss [12], Bolza [13], Buttazzo-Giaquinta-Hildebrandt [17], Carathéodory [19],
Cesari [20], Courant [25], Courant-Hilbert [26], Gelfand-Fomin [46], Giaquinta-
Hildebrandt [48], Hestenes [56], Pars [82], Rund [90], Troutman [95] or Weinstock
[97].

2.2 Euler-Lagrange equation
The main result of this chapter is

Theorem 2.1 Let f ∈ C2 ([a, b]×R×R), f = f (x, u, ξ), and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
.

Part 1. If (P) admits a minimizer u ∈ X ∩ C2 ([a, b]), then necessarily

(E)
d

dx
[fξ (x, u (x) , u

0 (x))] = fu (x, u (x) , u
0 (x)) , x ∈ (a, b)

or in other words

fξξ (x, u (x) , u
0 (x))u00 (x) + fuξ (x, u (x) , u

0 (x))u0 (x)

+fxξ (x, u (x) , u
0 (x)) = fu (x, u (x) , u

0 (x))

where we denote by fξ = ∂f/∂ξ, fu = ∂f/∂u, fξξ = ∂2f/∂ξ2, fxξ = ∂2f/∂x∂ξ
and fuξ = ∂2f/∂u∂ξ.
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Part 2. Conversely if u satisfies (E) and if (u, ξ) → f (x, u, ξ) is convex for
every x ∈ [a, b] then u is a minimizer of (P).

Part 3. If moreover the function (u, ξ) → f (x, u, ξ) is strictly convex for
every x ∈ [a, b] then the minimizer of (P), if it exists, is unique.

Remark 2.2 (i) One should immediately draw the attention to the fact that this
theorem does not state any existence result.
(ii) As will be seen below it is not always reasonable to expect that the mini-

mizer of (P) is C2 ([a, b]) or even C1 ([a, b]).
(iii) If (u, ξ)→ f (x, u, ξ) is not convex (even if ξ → f (x, u, ξ) is convex for

every (x, u) ∈ [a, b] × R) then a solution of (E) is not necessarily an absolute
minimizer of (P). It can be a local minimizer, a local maximizer.... It is often
said that such a solution of (E) is a stationary point of I.
(iv) The theorem easily generalizes, for example (see the exercises below), to

the following cases:
- u is a vector, i.e. u : [a, b]→ RN , N > 1, the Euler-Lagrange equations are

then a system of ordinary differential equations;
- u : Ω ⊂ Rn → R, n > 1, the Euler-Lagrange equation is then a single

partial differential equation;
- f = f

¡
x, u, u0, u00, ..., u(n)

¢
, the Euler-Lagrange equation is then an ordinary

differential equation of (2n)th order;
- other type of boundary conditions such as u0 (a) = α, u0 (b) = β;
- integral constraints of the form

R b
a
g (x, u (x) , u0 (x)) dx = 0.

Proof. Part 1. Since u is a minimizer among all elements of X, we have

I (u) ≤ I (u+ hv)

for every h ∈ R and every v ∈ C1 ([a, b]) with v (a) = v (b) = 0. In other words,
setting Φ (h) = I (u+ hv), we have that Φ ∈ C1 (R) and that Φ (0) ≤ Φ (h) for
every h ∈ R. We therefore deduce that

Φ0 (0) =
d

dh
I (u+ hv)

¯̄̄̄
h=0

= 0

and henceZ b

a

[fξ (x, u (x) , u
0 (x)) v0 (x) + fu (x, u (x) , u

0 (x)) v (x)] dx = 0 . (2.1)

Let us mention that the above integral form is called the weak form of the
Euler-Lagrange equation. Integrating by parts (2.1) we obtain that the following
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identity holds for every v ∈ C1 ([a, b]) with v (a) = v (b) = 0Z b

a

∙
− d

dx
[fξ (x, u (x) , u

0 (x))] + fu (x, u (x) , u
0 (x))

¸
v (x) dx = 0 .

Applying the fundamental lemma of the calculus of variations (Theorem 1.24)
we have indeed obtained the Euler-Lagrange equation (E).
Part 2. Let u be a solution of (E) with u (a) = α, u (b) = β. Since (u, ξ)→

f (x, u, ξ) is convex for every x ∈ [a, b], we get from Theorem 1.50 that

f (x, u, u0) ≥ f (x, u, u0) + fu (x, u, u
0) (u− u) + fξ (x, u, u

0) (u0 − u0)

for every u ∈ X. Integrating the above inequality we get

I (u) ≥ I (u)

+

Z b

a

[fu (x, u, u
0) (u− u) + fξ (x, u, u

0) (u0 − u0)] dx .

Integrating by parts the second term in the integral, bearing in mind that u (a)−
u (a) = u (b)− u (b) = 0, we get

I (u) ≥ I (u)

+

Z b

a

∙
fu (x, u, u

0)− d

dx
fξ (x, u, u

0)

¸
(u− u) dx .

Using (E) we get indeed that I (u) ≥ I (u), which is the claimed result.
Part 3. Let u, v ∈ X be two solutions of (P) (recall that m denote the value

of the minimum) and let us show that they are necessarily equal. Define

w =
1

2
u+

1

2
v

and observe that w ∈ X. Appealing to the convexity of (u, ξ) → f (x, u, ξ), we
obtain

1

2
f (x, u, u0) +

1

2
f (x, v, v0) ≥ f

µ
x,
1

2
u+

1

2
v,
1

2
u0 +

1

2
v0
¶
= f (x,w,w0)

and hence
m =

1

2
I (u) +

1

2
I (v) ≥ I (w) ≥ m.

We therefore getZ b

a

∙
1

2
f (x, u, u0) +

1

2
f (x, v, v0)− f

µ
x,
1

2
u+

1

2
v,
1

2
u0 +

1

2
v0
¶¸

dx = 0 .
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Since the integrand is, by strict convexity of f , positive unless u = v and u0 = v0

we deduce that u ≡ v, as wished.
We now consider several particular cases and examples that are arranged in

an order of increasing difficulty.

Case 2.3 f (x, u, ξ)= f (ξ).

This is the simplest case. The Euler-Lagrange equation is

d

dx
[f 0 (u0)] = 0, i.e. f 0 (u0) = constant.

Note that

u (x) =
β − α

b− a
(x− a) + α (2.2)

is a solution of the equation and furthermore satisfies the boundary conditions
u (a) = α, u (b) = β. It is therefore a stationary point of I. It is not, however,
always a minimizer of (P) as will be seen in the second and third examples.

1. f is convex.

If f is convex the above u is indeed a minimizer. This follows from the
theorem but it can be seen in a more elementary way (which is also valid
even if f ∈ C0 (R)). From Jensen inequality (cf. Theorem 1.51) it follows
that for any u ∈ C1 ([a, b]) with u (a) = α, u (b) = β

1

b− a

Z b

a

f (u0 (x)) dx ≥ f

Ã
1

b− a

Z b

a

u0 (x) dx

!
= f

µ
u (b)− u (a)

b− a

¶
= f

µ
β − α

b− a

¶
= f (u0 (x))

=
1

b− a

Z b

a

f (u0 (x)) dx

which is the claim.

2. f is non convex.

If f is non convex then (P) has, in general, no solution and therefore the
above u is not necessarily a minimizer (in the particular example below it
is a maximizer of the integral). Consider f (ξ) = e−ξ

2

and

(P ) inf
u∈X

½
I (u) =

Z 1

0

f (u0 (x)) dx

¾
= m
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where X =
©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
. We have from (2.2) that

u ≡ 0 (and it is clearly a maximizer of I in the class of admissible functions
X), however (P) has no minimizer as we will now show. Assume for a
moment that m = 0, then, clearly, no function u ∈ X can satisfyZ 1

0

e−(u
0(x))

2

dx = 0

and hence (P) has no solution. Let us now show that m = 0. Let n ∈ N
and define

un (x) = n

µ
x− 1

2

¶2
− n

4

then un ∈ X and

I (un) =

Z 1

0

e−4n
2(x−1/2)2 dx =

1

2n

Z n

−n
e−y

2

dy → 0, as n→∞.

Thus m = 0, as claimed.

3. Solutions of (P) are not necessarily C1.

We now show that solutions of (P) are not necessarily C1 even in the
present simple case (another example with a similar property will be given

in Exercise 2.2.8). Let f (ξ) =
¡
ξ2 − 1

¢2
(P ) inf

u∈X

½
I (u) =

Z 1

0

f (u0 (x)) dx

¾
= m

where X =
©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
. We associate to (P) the

following problem

(Ppiec) inf
u∈Xp ie c

½
I (u) =

Z 1

0

f (u0 (x)) dx

¾
= mpiec

Xpiec =
©
u ∈ C1piec ([0, 1]) : u (0) = u (1) = 0

ª
.

This last problem has clearly

v (x) =

½
x if x ∈ [0, 1/2]

1− x if x ∈ (1/2, 1]

as a solution since v is piecewise C1 and satisfies v (0) = v (1) = 0 and
I (v) = 0; thus mpiec = 0. Assume for a moment that we already proved
that not only mpiec = 0 but also m = 0. This readily implies that (P),
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contrary to (Ppiec), has no solution. Indeed I (u) = 0 implies that |u0| = 1
almost everywhere and no function u ∈ X can satisfy |u0| = 1 (since by
continuity of the derivative we should have either u0 = 1 everywhere or
u0 = −1 everywhere and this is incompatible with the boundary data).
We now show that m = 0. We will give a direct argument now and a more
elaborate one in Exercise 2.2.6. Consider the following sequence

un (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x if x ∈

£
0, 12 −

1
n

¤
−2n2

¡
x− 1

2

¢3 − 4n ¡x− 1
2

¢2 − x+ 1 if x ∈
¡
1
2 −

1
n ,

1
2

¤
1− x if x ∈

¡
1
2 , 1
¤
.

Observe that un ∈ X and

I (un) =

Z 1

0

f (u0n (x)) dx =

Z 1
2

1
2−

1
n

f (u0n (x)) dx ≤
4

n
→ 0 .

This implies that indeed m = 0.

We can also make the further observation that the Euler-Lagrange equation
is

d

dx

h
u0
³
(u0)

2 − 1
´i
= 0.

It has u ≡ 0 as a solution. However, since m = 0, it is not a minimizer
(I (0) = 1).

Case 2.4 f (x, u, ξ)= f (x, ξ).

The Euler-Lagrange equation is

d

dx
[fξ (x, u

0)] = 0, i.e. fξ (x, u0) = constant.

The equation is already harder to solve than the preceding one and, in general,
it has not as simple a solution as in (2.2).
We now give an important example known as Weierstrass example. Let

f (x, ξ) = xξ2 (note that ξ → f (x, ξ) is convex for every x ∈ [0, 1] and even
strictly convex if x ∈ (0, 1]) and

(P ) inf
u∈X

½
I (u) =

Z 1

0

f (x, u0 (x)) dx

¾
= m
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where X =
©
u ∈ C1 ([0, 1]) : u (0) = 1, u (1) = 0

ª
. We will show that (P) has

no C1 or piecewise C1 solution (not even in any Sobolev space). The Euler-
Lagrange equation is

(xu0)
0
= 0⇒ u0 =

c

x
⇒ u (x) = c log x+ d, x ∈ (0, 1)

where c and d are constants. Observe first that such a u cannot satisfy simulta-
neously u (0) = 1 and u (1) = 0.
We associate to (P) the following problem

(Ppiec) inf
u∈Xp ie c

½
I (u) =

Z 1

0

f (x, u0 (x)) dx

¾
= mpiec

Xpiec =
©
u ∈ C1piec ([0, 1]) : u (0) = 1, u (1) = 0

ª
.

We next prove that neither (P) nor (Ppiec) have a minimizer. For both cases
it is sufficient to establish thatmpiec = m = 0. Let us postpone for a moment the
proof of these facts and show the claim. If there exists a piecewise C1 function
v satisfying I (v) = 0, this would imply that v0 = 0 almost everywhere in (0, 1).
Since the function v ∈ Xpiec , it should be continuous and v (1) should be equal
to 0, we would then deduce that v ≡ 0, which does not verify the other boundary
condition, namely v (0) = 1. Hence neither (P) nor (Ppiec) have a minimizer.
We first prove that mpiec = 0. Let n ∈ N and consider the sequence

un (x) =

⎧⎨⎩
1 if x ∈

£
0, 1n

¤
− log x
logn if x ∈

¡
1
n , 1

¤
.

Note that un is piecewise C1, un (0) = 1, un (1) = 0 and

I (un) =
1

logn
→ 0, as n→∞,

hence mpiec = 0.
We finally prove that m = 0. This can be done in two different ways. A more

sophisticated argument is given in Exercise 2.2.6 and it provides an interesting
continuity argument. A possible approach is to consider the following sequence

un (x) =

⎧⎪⎨⎪⎩
−n2
lognx

2 + n
lognx+ 1 if x ∈

£
0, 1n

¤
− log x
logn if x ∈

¡
1
n , 1

¤
.

We easily have un ∈ X and since

u0n (x) =

⎧⎨⎩
n

logn (1− 2nx) if x ∈
£
0, 1n

¤
−1

x logn if x ∈
¡
1
n , 1

¤
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we deduce that

0 ≤ I (un) =
n2

log2 n

Z 1/n

0

x (1− 2nx)2 dx+ 1

log2 n

Z 1

1/n

dx

x
→ 0, as n→∞.

This indeed shows that m = 0.

Case 2.5 f (x, u, ξ)= f (u, ξ).

Although this case is a lot harder to treat than the preceding ones it has
an important property that is not present in the most general case when f =
f (x, u, ξ). The Euler-Lagrange equation is

d

dx
[fξ (u (x) , u

0 (x))] = fu (u (x) , u
0 (x)) , x ∈ (a, b)

and according to Theorem 2.7 below, it has a first integral that is given by

f (u (x) , u0 (x))− u0 (x) fξ (u (x) , u
0 (x)) = constant, x ∈ (a, b) .

1. Poincaré-Wirtinger inequality.

We will show, in several steps, thatZ b

a

u02 dx ≥
µ

π

b− a

¶2 Z b

a

u2 dx

for every u satisfying u (a) = u (b) = 0. By a change of variable we
immediately reduce the study to the case a = 0 and b = 1. We will also
prove in Theorem 6.1 a slightly more general inequality known asWirtinger
inequality which states thatZ 1

−1
u02 dx ≥ π2

Z 1

−1
u2 dx

among all u satisfying u (−1) = u (1) and
R 1
−1 u dx = 0.

We start by writing the problem under the above formalism and we let
λ ≥ 0, fλ (u, ξ) =

¡
ξ2 − λ2u2

¢
/2 and

(Pλ) inf
u∈X

½
Iλ (u) =

Z 1

0

fλ (u (x) , u
0 (x)) dx

¾
= mλ

whereX =
©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
. Observe that ξ → fλ (u, ξ)

is convex while (u, ξ)→ fλ (u, ξ) is not. The Euler-Lagrange equation and
its first integral are

u00 + λ2u = 0 and u02 + λ2u2 = constant.
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We will show in Exercise 2.2.7, Example 2.23 and Theorem 6.1 the follow-
ing facts.

- If λ ≤ π then mλ = 0, which implies, in particular,Z 1

0

u02 dx ≥ π2
Z 1

0

u2 dx .

Moreover if λ < π, then u0 ≡ 0 is the only minimizer of (Pλ). If λ = π,
then (Pλ) has infinitely many minimizers which are all of the form uα (x) =
α sinπx with α ∈ R.
- If λ > π then mλ = −∞, which implies that (Pλ) has no solution. To
see this fact it is enough to choose uα as above and to observe that since
λ > π, then

Iλ (uα) = α2
Z 1

0

£
π2 cos2 (πx)− λ2 sin2 (πx)

¤
dx→ −∞ as α→∞.

2. Brachistochrone.

The function, under consideration, is f (u, ξ) =
p
1 + ξ2/

√
u, here (com-

pared with Chapter 0) we take g = 1/2, and

(P ) inf
u∈X

(
I (u) =

Z b

0

f (u (x) , u0 (x)) dx

)
= m

whereX =
©
u ∈ C1 ([0, b]) : u (0) = 0, u (b) = β and u (x) > 0, ∀x ∈ (0, b]

ª
.

The Euler-Lagrange equation and its first integral are∙
u0

√
u
√
1 + u02

¸0
= −
√
1 + u02

2
√
u3

√
1 + u02√

u
− u0

∙
u0

√
u
√
1 + u02

¸
= constant.

This leads (µ being a positive constant) to

u
¡
1 + u02

¢
= 2µ .

The solution is a cycloid and it is given in implicit form by

u (x) = µ
¡
1− cos θ−1 (x)

¢
where

θ (t) = µ (t− sin t) .
Note that u (0) = 0. It therefore remains to choose µ so that u (b) = β.
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3. Minimal surfaces of revolution.

This example will be treated in Chapter 5. Let us briefly present it here.
The function under consideration is f (u, ξ) = 2πu

p
1 + ξ2 and the min-

imization problem (which corresponds to minimization of the area of a
surface of revolution) is

(P ) inf
u∈X

(
I (u) =

Z b

a

f (u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β, u > 0

ª
and α, β > 0.

The Euler-Lagrange equation and its first integral are∙
u0u√
1 + u02

¸0
=
p
1 + u02 ⇔ u00u = 1 + u02

u
p
1 + u02 − u0

u0u√
1 + u02

= λ = constant.

This leads to

u02 =
u2

λ2
− 1.

The solutions, if they exist (this depends on a, b, α and β, see Exercise
5.2.3), are of the form (µ being a constant)

u (x) = λ cosh
³x
λ
+ µ

´
.

We conclude this section with a generalization of a classical example.

Example 2.6 Fermat principle. The function is f (x, u, ξ) = g (x, u)
p
1 + ξ2

and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
. Therefore the Euler-Lagrange

equation is
d

dx

∙
g (x, u)

u0√
1 + u02

¸
= gu (x, u)

p
1 + u02.

Observing that
d

dx

∙
u0√
1 + u02

¸
=

u00

(1 + u02)3/2

we get
g (x, u)u00 + [gx (x, u)u

0 − gu (x, u)]
¡
1 + u02

¢
= 0.
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2.2.1 Exercises

Exercise 2.2.1 Generalize Theorem 2.1 to the case where u : [a, b] → RN ,
N ≥ 1.

Exercise 2.2.2 Generalize Theorem 2.1 to the case where u : [a, b]→ R and

(P ) inf
u∈X

(
I (u) =

Z b

a

f
³
x, u (x) , ..., u(n) (x)

´
dx

)

where X =
©
u ∈ Cn ([a, b]) : u(j) (a) = αj , u

(j) (b) = βj , 0 ≤ j ≤ n− 1
ª
.

Exercise 2.2.3 (i) Find the appropriate formulation of Theorem 2.1 when u :
[a, b]→ R and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x)u0 (x)) dx

)

where X =
©
u ∈ C1 ([a, b]) : u (a) = α

ª
, i.e. we leave one of the end points free.

(ii) Similar question, when we leave both end points free; i.e. when we min-
imize I over C1 ([a, b]).

Exercise 2.2.4 (Lagrange multiplier). Generalize Theorem 2.1 in the fol-
lowing case where u : [a, b]→ R,

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
,

X =

(
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β,

Z b

a

g (x, u (x) , u0 (x)) dx = 0

)
where g ∈ C2 ([a, b]×R×R).

Exercise 2.2.5 (Second variation of I). Let f ∈ C3 ([a, b]×R×R) and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
. Let u ∈ X ∩ C2 ([a, b]) be a

minimizer for (P). Show that the following inequalityZ b

a

£
f uu (x, u, u

0) v2 + 2fuξ (x, u, u
0) vv0 + fξξ (x, u, u

0) v02
¤
dx ≥ 0
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holds for every v ∈ C10 (a, b) (i.e. v ∈ C1 ([a, b]) and v has compact support in
(a, b)). Setting

P (x) = fξξ (x, u, u
0) , Q (x) = f uu (x, u, u

0)− d

dx
[fuξ (x, u, u

0)]

rewrite the above inequality asZ b

a

£
P (x) v02 +Q (x) v2

¤
dx ≥ 0 .

Exercise 2.2.6 Show (cf. Case 2.3 and Case 2.4)
(i) If X =

©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
, then

(P ) inf
u∈X

½
I (u) =

Z 1

0

³
(u0 (x))

2 − 1
´2

dx

¾
= m = 0 .

(ii) If X =
©
u ∈ C1 ([0, 1]) : u (0) = 1, u (1) = 0

ª
, then

(P ) inf
u∈X

½
I (u) =

Z 1

0

x (u0 (x))
2
dx

¾
= m = 0 .

Exercise 2.2.7 Show (cf. Poincaré-Wirtinger inequality), using Poincaré in-
equality (cf. Theorem 1.47), that for λ ≥ 0 small enough then

(Pλ) inf
u∈X

½
Iλ (u) =

1

2

Z 1

0

h
(u0 (x))

2 − λ2 (u (x))2
i
dx

¾
= mλ = 0 .

Deduce that u ≡ 0 is the unique solution of (Pλ) for λ ≥ 0 small enough.

Exercise 2.2.8 Let f (u, ξ) = u2 (1− ξ)2 and

(P ) inf
u∈X

½
I (u) =

Z 1

−1
f (u (x) , u0 (x)) dx

¾
= m

where X =
©
u ∈ C1 ([−1, 1]) : u (−1) = 0, u (1) = 1

ª
. Show that (P) has no

solution in X. Prove, however, that

u (x) =

½
0 if x ∈ [−1, 0]
x if x ∈ (0, 1]

is a solution of (P) among all piecewise C1 functions.



Second form of the Euler-Lagrange equation 59

Exercise 2.2.9 Let X =
©
u ∈ C1 ([0, 1]) : u (0) = 0, u (1) = 1

ª
and

(P ) inf
u∈X

½
I (u) =

Z 1

0

|u0 (x)| dx
¾
= m.

Show that (P) has infinitely many solutions.

Exercise 2.2.10 Let p ≥ 1 and a ∈ C0 (R), with a (u) ≥ a0 > 0. Let A be
defined by

A0 (u) = [a (u)]1/p .

Show that a minimizer (which is unique if p > 1) of

(P ) inf
u∈X

(
I (u) =

Z b

a

a (u (x)) |u0 (x)|p dx

)

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
is given by

u (x) = A−1
∙
A (β)−A (α)

b− a
(x− a) +A (α)

¸
.

2.3 Second form of the Euler-Lagrange equation

The next theorem gives a different way of expressing the Euler-Lagrange equa-
tion, this new equation is sometimes called DuBois-Reymond equation. It turns
out to be useful when f does not depend explicitly on x, as already seen in some
of the above examples.

Theorem 2.7 Let f ∈ C2 ([a, b]×R×R), f = f (x, u, ξ), and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
. Let u ∈ X ∩ C2 ([a, b]) be a

minimizer of (P) then for every x ∈ [a, b] the following equation holds

d

dx
[f (x, u (x) , u0 (x))− u0 (x) fξ (x, u (x) , u

0 (x))] = fx (x, u (x) , u
0 (x)) . (2.3)

Proof. We will give two different proofs of the theorem. The first one is
very elementary and uses the Euler-Lagrange equation . The second one is more
involved but has several advantages that we do not discuss now.
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Proof 1. Observe first that for any u ∈ C2 ([a, b]) we have, by straight
differentiation,

d

dx
[f (x, u, u0)− u0fξ (x, u, u

0)]

= fx (x, u, u
0) + u0

∙
fu (x, u, u

0)− d

dx
[fξ (x, u, u

0)]

¸
.

By Theorem 2.1 we know that any solution u of (P) satisfies the Euler-Lagrange
equation

d

dx
[fξ (x, u (x) , u

0 (x))] = fu (x, u (x) , u
0 (x))

hence combining the two identities we have the result.
Proof 2. We will use a technique known as variations of the independent

variables and that we will encounter again in Chapter 5; the classical deriva-
tion of Euler-Lagrange equation can be seen as a technique of variations of the
dependent variables.
Let � ∈ R, ϕ ∈ C∞0 (a, b), λ = (2 kϕ0kL∞)

−1 and

ξ (x, �) = x+ �λϕ (x) = y .

Observe that for |�| ≤ 1, then ξ (., �) : [a, b] → [a, b] is a diffeomorphism with
ξ (a, �) = a, ξ (b, �) = b and ξx (x, �) > 0. Let η (., �) : [a, b]→ [a, b] be its inverse,
i.e.

ξ (η (y, �) , �) = y .

Since ξx (η (y, �) , �) ηy (y, �) = 1 and ξx (η (y, �) , �) η� (y, �) + ξ� (η (y, �) , �) = 0,
we find (O (t) stands for a function f so that |f (t) /t| is bounded in a neighbor-
hood of t = 0)

ηy (y, �) = 1− �λϕ0 (y) +O
¡
�2
¢

η� (y, �) = −λϕ (y) +O (�) .

Set for u a minimizer of (P)

u� (x) = u (ξ (x, �)) .

Note that, performing also a change of variables y = ξ (x, �),

I (u�) =

Z b

a

f
¡
x, u� (x) , (u�)0 (x)

¢
dx

=

Z b

a

f (x, u (ξ (x, �)) , u0 (ξ (x, �)) ξx (x, �)) dx

=

Z b

a

f
¡
η (y, �) , u (y) , u0 (y) /ηy (y, �)

¢
ηy (y, �) dy .
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Denoting by g (�) the last integrand, we get

g0 (�) = ηy�f +

∙
fxη� −

ηy�
η2y

u0fξ

¸
ηy

which leads to
g0 (0) = λ [−fxϕ+ (u0fξ − f)ϕ0] .

Since by hypothesis u is a minimizer of (P) and u� ∈ X we have I (u�) ≥ I (u)
and hence

0 =
d

d�
I (u�)

¯̄̄̄
�=0

= λ

Z b

a

{−fx (x, u (x) , u0 (x))ϕ (x)

+ [u0 (x) fξ (x, u (x) , u
0 (x))− f (x, u (x) , u0 (x))]ϕ0 (x)} dx

= λ

Z b

a

{−fx (x, u (x) , u0 (x))

+
d

dx
[−u0 (x) fξ (x, u (x) , u0 (x)) + f (x, u (x) , u0 (x))]

¾
ϕ (x) dx .

Appealing, once more, to Theorem 1.24 we have indeed obtained the claim.

2.3.1 Exercises

Exercise 2.3.1 Generalize Theorem 2.7 to the case where u : [a, b] → RN ,
N ≥ 1.

Exercise 2.3.2 Let

f (x, u, ξ) = f (u, ξ) =
1

2
ξ2 − u .

Show that u ≡ 1 is a solution of (2.3), but not of the Euler-Lagrange equation
(E).

2.4 Hamiltonian formulation
Recall that we are considering functions f : [a, b] × R× R→ R, f = f (x, u, ξ),
and

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx .

The Euler-Lagrange equation is

(E)
d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) , x ∈ [a, b] .
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We have seen in the preceding sections that a minimizer of I, if it is sufficiently
regular, is also a solution of (E). The aim of this section is to show that, in
certain cases, solving (E) is equivalent to finding stationary points of a different
functional, namely

J (u, v) =

Z b

a

[u0 (x) v (x)−H (x, u (x) , v (x))] dx

whose Euler-Lagrange equations are

(H)

⎧⎨⎩ u0 (x) = Hv (x, u (x) , v (x))

v0 (x) = −Hu (x, u (x) , v (x)) .

The function H is called the Hamiltonian and it is defined as the Legendre
transform of f , which is defined as

H (x, u, v) = sup
ξ∈R

{v ξ − f (x, u, ξ)} .

Sometimes the system (H) is called the canonical form of the Euler-Lagrange
equation.
We start our analysis with a lemma.

Lemma 2.8 Let f ∈ C2 ([a, b]×R×R), f = f (x, u, ξ), such that

fξξ (x, u, ξ) > 0, for every (x, u, ξ) ∈ [a, b]×R×R (2.4)

lim
|ξ|→∞

f (x, u, ξ)

|ξ| = +∞, for every (x, u) ∈ [a, b]×R. (2.5)

Let
H (x, u, v) = sup

ξ∈R
{v ξ − f (x, u, ξ)} . (2.6)

Then H ∈ C2 ([a, b]×R×R) and

Hx (x, u, v) = −fx (x, u,Hv (x, u, v)) (2.7)

Hu (x, u, v) = −fu (x, u,Hv (x, u, v)) (2.8)

H (x, u, v) = v Hv (x, u, v)− f (x, u,Hv (x, u, v)) (2.9)

v = fξ (x, u, ξ) ⇔ ξ = Hv (x, u, v) . (2.10)
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Remark 2.9 (i) The lemma remains partially true if we replace the hypothesis
(2.4) by the weaker condition

ξ → f (x, u, ξ) is strictly convex.

In general, however the function H is only C1, as the following simple example
shows

f (x, u, ξ) =
1

4
|ξ|4 and H (x, u, v) =

3

4
|v|4/3 .

(See also Example 2.13.)
(ii) The lemma remains also valid if the hypothesis (2.5) does not hold but

then, in general, H is not anymore finite everywhere as the following simple
example suggests. Consider the strictly convex function

f (x, u, ξ) = f (ξ) =

q
1 + ξ2

and observe that

H (v) =

⎧⎨⎩ −
√
1− v2 if |v| ≤ 1

+∞ if |v| > 1.

(iii) The same proof leads to the fact that if f ∈ Ck, k ≥ 2, then H ∈ Ck.

Proof. We divide the proof into several steps.
Step 1. Fix (x, u) ∈ [a, b] × R. From the definition of H and from (2.5) we

deduce that there exists ξ = ξ (x, u, v) such that⎧⎨⎩ H (x, u, v) = v ξ − f (x, u, ξ)

v = fξ (x, u, ξ) .
(2.11)

Step 2. The function H is easily seen to be continuous. Indeed let (x, u, v),
(x0, u0, v0) ∈ [a, b]×R×R, using (2.11) we find ξ = ξ (x, u, v) such that

H (x, u, v) = v ξ − f (x, u, ξ) .

Appealing to the definition of H we also have

H (x0, u0, v0) ≥ v0 ξ − f (x0, u0, ξ) .

Combining the two facts we get

H (x, u, v)−H (x0, u0, v0) ≤ (v − v0) ξ + f (x0, u0, ξ)− f (x, u, ξ) ,

since the reverse inequality is obtained similarly, we deduce the continuity of H
from the one of f (in fact only in the variables (x, u)).



64 Classical methods

Step 3. The inverse function theorem, the fact that f ∈ C2 and the inequality
(2.4) imply that ξ ∈ C1. But, as an exercise, we will establish this fact again.
First let us prove that ξ is continuous (in fact locally Lipschitz). Let R > 0 be
fixed. From (2.5) we deduce that we can find R1 > 0 so that

|ξ (x, u, v)| ≤ R1 , for every x ∈ [a, b] , |u| , |v| ≤ R .

Since fξ is C1, we can find γ1 > 0 so that¯̄
fξ (x, u, ξ)− fξ

¡
x0, u0, ξ0

¢¯̄
≤ γ1

¡
|x− x0|+ |u− u0|+

¯̄
ξ − ξ0

¯̄¢
(2.12)

for every x, x0 ∈ [a, b] , |u| , |u0| ≤ R, |ξ| ,
¯̄
ξ0
¯̄
≤ R1.

From (2.4), we find that there exists γ2 > 0 so that

fξξ (x, u, ξ) ≥ γ2, for every x ∈ [a, b] , |u| ≤ R, |ξ| ≤ R1

and we thus have, for every x ∈ [a, b] , |u| ≤ R, |ξ| ,
¯̄
ξ0
¯̄
≤ R1,¯̄

fξ (x, u, ξ)− fξ
¡
x, u, ξ0

¢¯̄
≥ γ2

¯̄
ξ − ξ0

¯̄
. (2.13)

Let x, x0 ∈ [a, b] , |u| , |u0| ≤ R, |v| , |v0| ≤ R. By definition of ξ we have

fξ (x, u, ξ (x, u, v)) = v

fξ (x
0, u0, ξ (x0, u0, v0)) = v0 ,

which leads to

fξ (x, u, ξ (x
0, u0, v0))− fξ (x, u, ξ (x, u, v))

= fξ (x, u, ξ (x
0, u0, v0))− fξ (x

0, u0, ξ (x0, u0, v0)) + v0 − v .

Combining this identity with (2.12) and (2.13) we get

γ2 |ξ (x, u, v)− ξ (x0, u0, v0)| ≤ γ1 (|x− x0|+ |u− u0|) + |v − v0|

which, indeed, establishes the continuity of ξ.
We now show that ξ is in fact C1. From the equation v = fξ (x, u, ξ) we

deduce that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fxξ (x, u, ξ) + fξξ (x, u, ξ) ξx = 0

fuξ (x, u, ξ) + fξξ (x, u, ξ) ξu = 0

fξξ (x, u, ξ) ξv = 1 .

Since (2.4) holds and f ∈ C2, we deduce that ξ ∈ C1 ([a, b]×R×R).
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Step 4. We therefore have that the functions

(x, u, v)→ ξ (x, u, v) , fx (x, u, ξ (x, u, v)) , fu (x, u, ξ (x, u, v))

are C1. We then immediately obtain (2.7), (2.8), and thus H ∈ C2. Indeed we
have, differentiating (2.11),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hx = vξx − fx − fξ ξx = (v − fξ) ξx − fx = −fx

Hu = vξu − fu − fξ ξu = (v − fξ) ξu − fu = −fu

Hv = ξ + vξv − fξ ξv = (v − fξ) ξv + ξ = ξ

and in particular
ξ = Hv (x, u, v) .

This achieves the proof of the lemma.
The main theorem of the present section is:

Theorem 2.10 Let f and H be as in the above lemma. Let (u, v) ∈ C2 ([a, b])×
C2 ([a, b]) satisfy for every x ∈ [a, b]

(H)

⎧⎨⎩ u0 (x) = Hv (x, u (x) , v (x))

v0 (x) = −Hu (x, u (x) , v (x)) .

Then u verifies

(E)
d

dx
[fξ (x, u (x) , u

0 (x))] = fu (x, u (x) , u
0 (x)) , ∀x ∈ [a, b] .

Conversely if u ∈ C2 ([a, b]) satisfies (E) then (u, v) are solutions of (H) where

v (x) = fξ (x, u (x) , u
0 (x)) , ∀x ∈ [a, b] .

Remark 2.11 The same remarks as in the lemma apply also to the theorem.

Proof. Part 1. Let (u, v) satisfy (H). Using (2.10) and (2.8) we get

u0 = Hv (x, u, v) ⇔ v = fξ (x, u, u
0)

v0 = −Hu (x, u, v) = fu (x, u, u
0)

and thus u satisfies (E).
Part 2. Conversely by (2.10) and since v = fξ (x, u, u

0) we get the first
equation

u0 = Hv (x, u, v) .
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Moreover since v = fξ (x, u, u
0) and u satisfies (E), we have

v0 =
d

dx
[v] =

d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) .

The second equation follows then from the combination of the above identity
and (2.8).

Example 2.12 The present example is motivated by classical mechanics. Let
m > 0, g ∈ C1 ([a, b]) and f (x, u, ξ) = (m/2) ξ2 − g (x)u. The integral under
consideration is

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

and the associated Euler-Lagrange equation is

mu00 (x) = −g (x) , x ∈ (a, b) .

The Hamiltonian is then

H (x, u, v) =
v2

2m
+ g (x)u

while the associated Hamiltonian system is⎧⎨⎩ u0 (x) = v (x) /m

v0 (x) = −g (x) .

Example 2.13 We now generalize the preceding example. Let p > 1 and p0 =
p/ (p− 1),

f (x, u, ξ) =
1

p
|ξ|p − g (x, u) and H (x, u, v) =

1

p0
|v|p

0
+ g (x, u) .

The Euler-Lagrange equation and the associated Hamiltonian system are

d

dx

h
|u0|p−2 u0

i
= −gu (x, u)

and ⎧⎨⎩ u0 = |v|p
0−2

v

v0 = −gu (x, u) .
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Example 2.14 Consider the simplest case where f (x, u, ξ) = f (ξ) with f 00 > 0
(or more generally f is strictly convex) and lim|ξ|→∞ f (ξ) /ξ = +∞. The Euler-
Lagrange equation and its integrated form are

d

dx
[f 0 (u0)] = 0⇒ f 0 (u0) = λ = constant.

The Hamiltonian is given by

H (v) = f∗ (v) = sup
ξ
{vξ − f (ξ)} .

The associated Hamiltonian system is⎧⎨⎩ u0 = f∗0 (v)

v0 = 0 .

We find trivially that (λ and µ denoting some constants) v0 = λ and hence
(compare with Case 2.3)

u (x) = f∗0 (λ)x+ µ.

Example 2.15 We now look for the slightly more involved case where f (x, u, ξ) =
f (x, ξ) with the appropriate hypotheses. The Euler-Lagrange equation and its
integrated form are

d

dx
[fξ (x, u

0)] = 0⇒ fξ (x, u
0) = λ = constant.

The Hamiltonian of f , is given by

H (x, v) = sup
ξ
{vξ − f (x, ξ)} .

The associated Hamiltonian system is⎧⎨⎩ u0 (x) = Hv (x, v (x))

v0 = 0 .

The solution is then given by v = λ = constant and u0 (x) = Hv (x, λ).

Example 2.16 We consider next the more difficult case where f (x, u, ξ) =
f (u, ξ) with the hypotheses of the theorem. The Euler-Lagrange equation and
its integrated form are

d

dx
[fξ (u, u

0)] = fu (u, u
0)⇒ f (u, u0)− u0fξ (x, u

0) = λ = constant.
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The Hamiltonian of f , is given by

H (u, v) = sup
ξ
{vξ − f (u, ξ)} with v = fξ (u, ξ) .

The associated Hamiltonian system is⎧⎨⎩ u0 (x) = Hv (u (x) , v (x))

v0 (x) = −Hu (u (x) , v (x)) .

The Hamiltonian system also has a first integral given by

d

dx
[H (u (x) , v (x))] = Hu (u, v)u

0 +Hv (u, v) v
0 ≡ 0.

In physical terms we can say that if the Lagrangian f is independent of the
variable x (which is here the time), the Hamiltonian H is constant along the
trajectories.

2.4.1 Exercises

Exercise 2.4.1 Generalize Theorem 2.10 to the case where u : [a, b] → RN ,
N ≥ 1.

Exercise 2.4.2 Consider a mechanical system with N particles whose respective
masses are mi and positions at time t are ui (t) = (xi (t) , yi (t) , zi (t)) ∈ R3,
1 ≤ i ≤ N . Let

T (u0) =
1

2

NX
i=1

mi |u0i|
2
=
1

2

NX
i=1

mi

¡
x02i + y02i + z02i

¢
be the kinetic energy and denote by U = U (t, u) the potential energy. Finally let

L (t, u, u0) = T (u0)− U (t, u)

be the Lagrangian. Let also H be the associated Hamiltonian. With the help of
the preceding exercise show the following results.
(i) Write the Euler-Lagrange equations. Find the associated Hamiltonian

system.
(ii) Show that, along the trajectories (i.e. when v = Lξ (t, u, u

0)), the Hamil-
tonian can be written as (in mechanical terms it is the total energy of the system)

H (t, u, v) = T (u0) + U (t, u) .

Exercise 2.4.3 Let f (x, u, ξ) =
p
g (x, u)

p
1 + ξ2. Write the associated Hamil-

tonian system and find a first integral of this system when g does not depend
explicitly on x.
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2.5 Hamilton-Jacobi equation
We now discuss the connection between finding stationary points of the func-
tionals I and J considered in the preceding sections and solving a first order
partial differential equation known as Hamilton-Jacobi equation. This equation
also plays an important role in the fields theories developed in the next section
(cf. Exercise 2.6.3).
Let us start with the main theorem.

Theorem 2.17 Let H ∈ C1 ([a, b]×R×R), H = H (x, u, v). Assume that
there exists S ∈ C2 ([a, b]×R), S = S (x, u), a solution of the Hamilton-Jacobi
equation

Sx +H (x, u, Su) = 0, ∀ (x, u) ∈ [a, b]×R , (2.14)

where Sx = ∂S/∂x and Su = ∂S/∂u. Assume also that there exists u ∈ C1 ([a, b])
a solution of

u0 (x) = Hv (x, u (x) , Su (x, u (x))) , ∀x ∈ [a, b] . (2.15)

Setting
v (x) = Su (x, u (x)) (2.16)

then (u, v) ∈ C1 ([a, b])× C1 ([a, b]) is a solution of⎧⎨⎩ u0 (x) = Hv (x, u (x) , v (x))

v0 (x) = −Hu (x, u (x) , v (x)) .
(2.17)

Moreover if there is a one parameter family S = S (x, u, α), S ∈ C2 ([a, b]×R×R),
solving (2.14) for every (x, u, α) ∈ [a, b] × R × R, then any solution of (2.15)
satisfies

d

dx
[Sα (x, u (x) , α)] = 0, ∀ (x, α) ∈ [a, b]×R ,

where Sα = ∂S/∂α.

Remark 2.18 (i) If the Hamiltonian does not depend explicitly on x then every
solution S∗ (u, α) of

H (u, S∗u) = α, ∀ (u, α) ∈ R×R (2.18)

leads immediately to a solution of (2.14), setting

S (x, u, α) = S∗ (u,α)− αx .

(ii) It is, in general, a difficult task to solve (2.14) and an extensive bibliog-
raphy on the subject exists, cf. Evans [43], Lions [69].
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Proof. Step 1. We differentiate (2.16) to get

v0 (x) = Sxu (x, u (x)) + u0 (x)S uu (x, u (x)) , ∀x ∈ [a, b] .

Differentiating (2.14) with respect to u we find, for every (x, u) ∈ [a, b]×R,

Sxu (x, u) +Hu (x, u, Su (x, u)) +Hv (x, u, Su (x, u))S uu (x, u) = 0 .

Combining the two identities (the second one evaluated at u = u (x)) and (2.15)
with the definition of v, we have

v0 (x) = −Hu (x, u (x) , Su (x, u (x))) = −Hu (x, u (x) , v (x))

as wished.
Step 2. Since S is a solution of the Hamilton-Jacobi equation, we have, for

every (x, u, α) ∈ [a, b]×R×R,
d

dα
[Sx (x, u, α) +H (x, u, Su (x, u, α))]

= Sxα (x, u, α) +Hv (x, u, Su (x, u, α))Suα (x, u, α) = 0 .

Since this identity is valid for every u, it is also valid for u = u (x) satisfying
(2.15) and thus

Sxα (x, u (x) , α) + u0 (x)Suα (x, u (x) , α) = 0 .

This last identity can be rewritten as

d

dx
[Sα (x, u (x) , α)] = 0

which is the claim.
The above theorem admits a converse.

Theorem 2.19 (Jacobi Theorem). Let H ∈ C1 ([a, b]×R×R), S = S (x, u, α)
be C2 ([a, b]×R×R) and solving (2.14), for every (x, u, α) ∈ [a, b]×R×R, with

Suα (x, u, α) 6= 0, ∀ (x, u, α) ∈ [a, b]×R×R .

If u = u (x) satisfies

d

dx
[Sα (x, u (x) , α)] = 0, ∀ (x, α) ∈ [a, b]×R (2.19)

then u necessarily verifies

u0 (x) = Hv (x, u (x) , Su (x, u (x) , α)) , ∀ (x, α) ∈ [a, b]×R .

Thus if v (x) = Su (x, u (x) , α), then (u, v) ∈ C1 ([a, b])×C1 ([a, b]) is a solution
of (2.17).
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Proof. Since (2.19) holds we have, for every (x, α) ∈ [a, b]×R,

0 =
d

dx
[Sα (x, u (x) , α)] = Sxα (x, u (x) , α) + Suα (x, u (x) , α)u

0 (x) .

From (2.14) we obtain, for every (x, u, α) ∈ [a, b]×R×R,

0 =
d

dα
[Sx (x, u, α) +H (x, u, Su (x, u, α))]

= Sxα (x, u, α) +Hv (x, u, Su (x, u, α))Suα (x, u, α) .

Combining the two identities (the second one evaluated at u = u (x)), with the
hypothesis Suα (x, u, α) 6= 0, we get

u0 (x) = Hv (x, u (x) , Su (x, u (x) , α)) , ∀ (x, α) ∈ [a, b]×R

as wished. We still need to prove that v0 = −Hu. Differentiating v we have, for
every (x, α) ∈ [a, b]×R,

v0 (x) = Sxu (x, u (x) , α) + u0 (x)S uu (x, u (x) , α)

= Sxu (x, u (x) , α) +Hv (x, u (x) , Su (x, u (x) , α))Suu (x, u (x) , α) .

Appealing, once more, to (2.14) we obtain, for every (x, u, α) ∈ [a, b]×R×R,

0 =
d

du
[Sx (x, u, α) +H (x, u, Su (x, u, α))]

= Sxu (x, u, α) +Hu (x, u, Su (x, u, α)) +Hv (x, u, Su (x, u, α))S uu (x, u, α) .

Combining the two identities (the second one evaluated at u = u (x)) we infer
the result, namely

v0 (x) = −Hu (x, u (x) , Su (x, u (x) , α)) = −Hu (x, u (x) , v (x)) .

This achieves the proof of the theorem.

Example 2.20 Let g ∈ C1 (R) with g (u) ≥ g0 > 0. Let

H (u, v) =
1

2
v2 − g (u)

be the Hamiltonian associated to

f (u, ξ) =
1

2
ξ2 + g (u) .

The Hamilton-Jacobi equation and its reduced form are given by

Sx +
1

2
(Su)

2 − g (u) = 0 and
1

2
(S∗u)

2 = g (u) .
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Therefore a solution of the equation is given by

S = S (x, u) = S (u) =

Z u

0

p
2g (s)ds .

We next solve

u0 (x) = Hv (u (x) , Su (u (x))) = Su (u (x)) =
p
2g (u (x))

which has a solution given implicitly byZ u(x)

u(0)

dsp
2g (s)

= x .

Setting v (x) = Su (u (x)), we have indeed found a solution of the Hamiltonian
system ⎧⎨⎩ u0 (x) = Hv (u (x) , v (x)) = v (x)

v0 (x) = −Hu (u (x) , v (x)) = g0 (u (x)) .

Note also that such a function u solves

u00 (x) = g0 (u (x))

which is the Euler-Lagrange equation associated to the Lagrangian f .

2.5.1 Exercises

Exercise 2.5.1 Write the Hamilton-Jacobi equation when u ∈ RN , N ≥ 1, and
generalize Theorem 2.19 to this case.

Exercise 2.5.2 Let f (x, u, ξ) = f (u, ξ) =
p
g (u)

p
1 + ξ2. Solve the Hamilton-

Jacobi equation and find the stationary points of

I (u) =

Z b

a

f (u (x) , u0 (x)) dx .

Exercise 2.5.3 Same exercise as the preceding one with f (x, u, ξ) = f (u, ξ) =
a (u) ξ2/2 where a (u) ≥ a0 > 0. Compare the result with Exercise 2.2.10.

2.6 Fields theories
As already said we will only give a very brief account on the fields theories and
we refer to the bibliography for more details. These theories are conceptually
important but often difficult to manage for specific examples.



Fields theories 73

Let us recall the problem under consideration

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
. The Euler-Lagrange equa-

tion is

(E)
d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) , x ∈ (a, b) .

We will try to explain the nature of the theory, starting with a particularly
simple case. We have seen in Section 2.2 that a solution of (E) is not, in general,
a minimizer for (P). However (cf. Theorem 2.1) if (u, ξ) → f (x, u, ξ) is convex
for every x ∈ [a, b] then any solution of (E) is necessarily a minimizer of (P). We
first show that we can, sometimes, recover this result under the only assumption
that ξ → f (x, u, ξ) is convex for every (x, u) ∈ [a, b]×R.

Theorem 2.21 Let f ∈ C2 ([a, b]× R×R). If there exists Φ ∈ C3 ([a, b]× R)
with Φ (a, α) = Φ (b, β) such that

(u, ξ)→ ef (x, u, ξ) is convex for every x ∈ [a, b]
where ef (x, u, ξ) = f (x, u, ξ) +Φu (x, u) ξ +Φx (x, u) ;

then any solution u of (E) is a minimizer of (P).

Remark 2.22 We should immediately point out that in order to have (u, ξ)→ef (x, u, ξ) convex for every x ∈ [a, b] we should, at least, have that ξ → f (x, u, ξ)
is convex for every (x, u) ∈ [a, b] × R. If (u, ξ) → f (x, u, ξ) is already convex,
then choose Φ ≡ 0 and apply Theorem 2.1.

Proof. Define

ϕ (x, u, ξ) = Φu (x, u) ξ +Φx (x, u) .

Observe that the two following identities (the first one uses that Φ (a, α) =
Φ (b, β) and the second one is just straight differentiation)Z b

a

d

dx
[Φ (x, u (x))] dx = Φ (b, β)− Φ (a, α) = 0

d

dx

£
ϕξ (x, u, u

0)
¤
= ϕu (x, u, u

0) , x ∈ [a, b]
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hold for any u ∈ X =
©
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β

ª
. The first iden-

tity expresses that the integral is invariant, while the second one says that
ϕ (x, u, u0) satisfies the Euler-Lagrange equation identically (it is then called a
null Lagrangian).
With the help of the above observations we immediately obtain the result by

applying Theorem 2.1 to ef . Indeed we have that (u, ξ)→ ef (x, u, ξ) is convex,
I (u) =

Z b

a

ef (x, u (x) , u0 (x)) dx = Z b

a

f (x, u (x) , u0 (x)) dx

for every u ∈ X and any solution u of (E) also satisfies³ eE´ d

dx

h efξ (x, u, u0)i = efu (x, u, u0) , x ∈ (a, b) .
This concludes the proof.
With the help of the above elementary theorem we can now fully handle the

Poincaré-Wirtinger inequality.

Example 2.23 (Poincaré-Wirtinger inequality). Let λ ≥ 0, fλ (u, ξ) =¡
ξ2 − λ2u2

¢
/2 and

(Pλ) inf
u∈X

½
Iλ (u) =

Z 1

0

fλ (u (x) , u
0 (x)) dx

¾
= mλ

where X =
©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
. Observe that ξ → fλ (u, ξ) is

convex while (u, ξ)→ fλ (u, ξ) is not. The Euler-Lagrange equation is

(Eλ) u00 + λ2u = 0, x ∈ (0, 1) .

Note that u0 ≡ 0 is a solution of (Eλ). Define, if λ < π,

Φ (x, u) =
λ

2
tan

∙
λ

µ
x− 1

2

¶¸
u2, (x, u) ∈ [0, 1]×R

and observe that Φ satisfies all the properties of Theorem 2.21. The function ef
is then

ef (x, u, ξ) = 1

2
ξ2 + λ tan

∙
λ

µ
x− 1

2

¶¸
uξ +

λ2

2
tan2

∙
λ

µ
x− 1

2

¶¸
u2 .

It is easy to see that (u, ξ)→ ef (x, u, ξ) is convex and therefore applying Theorem
2.21 we have that, for every 0 ≤ λ < π,

Iλ (u) ≥ Iλ (0) , ∀u ∈ X .
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An elementary passage to the limit leads to Poincaré-Wirtinger inequalityZ 1

0

u02dx ≥ π2
Z 1

0

u2dx, ∀u ∈ X .

For a different proof of a slightly more general form of Poincaré-Wirtinger
inequality see Theorem 6.1.

The way of proceeding, in Theorem 2.21, is, in general, too naive and can be
done only locally; in fact one needs a similar but more subtle theory.

Definition 2.24 Let D ⊂ R2 be a domain. We say that Φ : D → R, Φ =
Φ (x, u), is an exact field for f covering D if there exists S ∈ C1 (D) satisfying

Su (x, u) = fξ (x, u,Φ (x, u)) = p (x, u)

Sx (x, u) = f (x, u,Φ (x, u))− p (x, u)Φ (x, u) = h (x, u) .

Remark 2.25 (i) If f ∈ C2, then a necessary condition for Φ to be exact is
that px = hu. Conversely if D is simply connected and if px = hu then such an
S exists.
(ii) In the case where u : [a, b]→ RN , N > 1, we have to add to the preceding

remark, not only that (pi)x = hui , but also (pi)uj = (pj)ui , for every 1 ≤ i, j ≤
N .

We start with an elementary result that is a first justification for defining
such a notion.

Proposition 2.26 Let f ∈ C2 ([a, b]×R×R), f = f (x, u, ξ), and

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx .

Let Φ : D→ R2, Φ = Φ (x, u) be a C1 exact field for f covering D, [a, b]×R ⊂D.
Then any solution u ∈ C2 ([a, b]) of

u0 (x) = Φ (x, u (x)) (2.20)

solves the Euler-Lagrange associated to the functional I, namely

(E)
d

dx
[fξ (x, u (x) , u

0 (x))] = fu (x, u (x) , u
0 (x)) , x ∈ [a, b] . (2.21)

Proof. By definition of Φ and using the fact that p = fξ, we have, for any
(x, u) ∈ D,

hu = fu (x, u,Φ) + fξ (x, u,Φ)Φu − puΦ− pΦu = fu (x, u,Φ)− puΦ
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and hence
fu (x, u,Φ) = hu (x, u) + pu (x, u)Φ (x, u) .

We therefore get for every x ∈ [a, b]

d

dx
[fξ (x, u, u

0)]− fu (x, u, u
0) =

d

dx
[p (x, u)]− [hu (x, u) + pu (x, u)Φ (x, u)]

= px + puu
0 − hu − puΦ = px − hu = 0

since we have that u0 = Φ and px = hu, Φ being exact. Thus we have reached
the claim.
The next theorem is the main result of this section and was established by

Weierstrass and Hilbert.

Theorem 2.27 (Hilbert Theorem). Let f ∈ C2 ([a, b]×R×R) with ξ →
f (x, u, ξ) convex for every (x, u) ∈ [a, b] × R. Let D ⊂ R2 be a domain and
Φ : D → R2, Φ = Φ (x, u), be an exact field for f covering D. Assume that there
exists u0 ∈ C1 ([a, b]) satisfying

(x, u0 (x)) ∈ D, ∀x ∈ [a, b]

u00 (x) = Φ (x, u0 (x)) , ∀x ∈ [a, b]
then u0 is a minimizer for I, i.e.

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx ≥ I (u0) , ∀u ∈ X

where

X =

½
u ∈ C1 ([a, b]) : u (a) = u0 (a) , u (b) = u0 (b)

with (x, u (x)) ∈ D, ∀x ∈ [a, b]

¾
.

Remark 2.28 (i) Observe that according to the preceding proposition we have
that such a u0 is necessarily a solution of the Euler-Lagrange equation.
(ii) As already mentioned it might be very difficult to construct such exact

fields. Moreover, in general, D does not contain the whole of [a, b] × R and,
consequently, the theorem will provide only local minima. The construction of
such fields is intimately linked with the so called Jacobi condition concerning
conjugate points (see the bibliography for more details).

Proof. Denote by E the Weierstrass function defined by

E (x, u, η, ξ) = f (x, u, ξ)− f (x, u, η)− fξ (x, u, η) (ξ − η)

or in other words

f (x, u, ξ) = E (x, u, η, ξ) + f (x, u, η) + fξ (x, u, η) (ξ − η) .
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Since ξ → f (x, u, ξ) is convex, then the function E is always non negative.
Note also that since u00 (x) = Φ (x, u0 (x)) then

E (x, u0 (x) ,Φ (x, u0 (x)) , u
0
0 (x)) = 0, ∀x ∈ [a, b] .

Now using the definition of exact field we get that, for every u ∈ X,

f (x, u (x) ,Φ (x, u (x))) + fξ (x, u (x) ,Φ (x, u (x))) (u
0 (x)− Φ (x, u (x)))

= f (x, u,Φ)− pΦ+ pu0 = Sx + Suu
0 =

d

dx
[S (x, u (x))] .

Combining these facts we have obtained that

I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

=

Z b

a

½
E (x, u (x) ,Φ (x, u (x)) , u0 (x)) +

d

dx
[S (x, u (x))]

¾
dx

≥
Z b

a

d

dx
[S (x, u (x))] dx = S (b, u (b))− S (a, u (a)) .

Since E (x, u0,Φ (x, u0) , u00) = 0 we have that

I (u0) = S (b, u0 (b))− S (a, u0 (a)) .

Moreover since u0 (a) = u (a), u0 (b) = u (b) we deduce that I (u) ≥ I (u0) for
every u ∈ X. This achieves the proof of the theorem.
The quantity Z b

a

d

dx
[S (x, u (x))] dx

is called invariant Hilbert integral .

2.6.1 Exercises

Exercise 2.6.1 Generalize Theorem 2.21 to the case where u : [a, b] → RN ,
N ≥ 1.

Exercise 2.6.2 Generalize Hilbert Theorem (Theorem 2.27) to the case where
u : [a, b]→ RN , N ≥ 1.

Exercise 2.6.3 (The present exercise establishes the connection between exact
field and Hamilton-Jacobi equation). Let f = f (x, u, ξ) and = H (x, u, v) be as
in Theorem 2.10.
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(i) Show that if there exists an exact field Φ covering D, then

Sx +H (x, u, Su) = 0, ∀ (x, u) ∈ D

where

Su (x, u) = fξ (x, u,Φ (x, u))

Sx (x, u) = f (x, u,Φ (x, u))− Su (x, u)Φ (x, u) .

(ii) Conversely if the Hamilton-Jacobi equation has a solution for every
(x, u) ∈ D, prove that

Φ (x, u) = Hv (x, u, Su (x, u))

is an exact field for f covering D.



Chapter 3

Direct methods

3.1 Introduction

In this chapter we will study the problem

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m

where

- Ω ⊂ Rn is a bounded open set;
- f : Ω×R×Rn −→ R, f = f (x, u, ξ);
- u ∈ u0 +W 1,p

0 (Ω) means that u, u0 ∈ W 1,p (Ω) and u − u0 ∈ W 1,p
0 (Ω)

(which roughly means that u = u0 on ∂Ω).

This is the fundamental problem of the calculus of variations. We will show
that the problem (P) has a solution u ∈ u0+W

1,p
0 (Ω) provided the two following

main hypotheses are satisfied.

(H1) Convexity : ξ → f (x, u, ξ) is convex for every (x, u) ∈ Ω×R;

(H2) Coercivity : there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R such that

f (x, u, ξ) ≥ α1 |ξ|p + α2 |u|q + α3, ∀ (x, u, ξ) ∈ Ω×R×Rn.

The Dirichlet integral which has as integrand

f (x, u, ξ) =
1

2
|ξ|2

satisfies both hypotheses.

79
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However the minimal surface problem whose integrand is given by

f (x, u, ξ) =

q
1 + |ξ|2

satisfies (H1) but verifies (H2) only with p = 1. Therefore this problem will
require a special treatment (see Chapter 5).
It is interesting to compare the generality of the result with those of the

preceding chapter. The main drawback of the present analysis is that we prove
existence of minima only in Sobolev spaces. In the next chapter we will see that,
under some extra hypotheses, the solution is in fact more regular (for example
it is C1, C2 or C∞).
We now describe the content of the present chapter. In Section 3.2 we con-

sider the model case, namely the Dirichlet integral. Although this is just an
example of the more general theorem obtained in Section 3.3 we will fully discuss
the particular case because of its importance and to make easier the understand-
ing of the method. Recall that the origin of the direct methods goes back to
Hilbert while treating the Dirichlet integral and to Lebesgue and Tonelli. Let
us briefly describe the two main steps in the proof.
Step 1 (Compactness). Let uν ∈ u0 +W 1,p

0 (Ω) be a minimizing sequence of
(P), this means that

I (uν)→ inf {I (u)} = m, as ν →∞.

It will be easy invoking (H2) and Poincaré inequality (cf. Theorem 1.47) to
obtain that there exists u ∈ u0 +W 1,p

0 (Ω) and a subsequence (still denoted uν)
so that uν converges weakly to u in W 1,p, i.e.

uν - u in W 1,p, as ν →∞.

Step 2 (Lower semicontinuity). We will then show that (H1) implies the
(sequential) weak lower semicontinuity of I, namely

uν - u in W 1,p ⇒ lim inf
ν→∞

I (uν) ≥ I (u) .

Since {uν} was a minimizing sequence we deduce that u is a minimizer of (P).
In Section 3.4 we will derive the Euler-Lagrange equation associated to (P).

Since the solution of (P) is only in a Sobolev space, we will be able to write only
a weak form of this equation.
In Section 3.5 we will say some words about the considerably harder case

where the unknown function u is a vector, i.e. u : Ω ⊂ Rn −→ RN , with
n,N > 1.
In Section 3.6 we will explain briefly what can be done, in some cases, when

the hypothesis (H1) of convexity fails to hold.
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The interested reader is referred for further reading to the book of the au-
thor [31] or to Buttazzo [15], Buttazzo-Giaquinta-Hildebrandt [17], Cesari [20],
Ekeland-Témam [41], Giaquinta [47], Giusti [51], Ioffe-Tihomirov [62], Morrey
[75], Struwe [92] and Zeidler [99].

3.2 The model case: Dirichlet integral
The main result is

Theorem 3.1 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and
u0 ∈W 1,2 (Ω). The problem

(D) inf

½
I (u) =

1

2

Z
Ω

|∇u (x)|2 dx : u ∈ u0 +W 1,2
0 (Ω)

¾
= m

has one and only one solution u ∈ u0 +W 1,2
0 (Ω).

Furthermore u satisfies the weak form of Laplace equation, namelyZ
Ω

h∇u (x) ;∇ϕ (x)i dx = 0, ∀ϕ ∈W 1,2
0 (Ω) (3.1)

where h.; .i denotes the scalar product in Rn.
Conversely if u ∈ u0+W 1,2

0 (Ω) satisfies (3.1) then it is a minimizer of (D).

Remark 3.2 (i) We should again emphasize the very weak hypotheses on u0
and Ω and recall that u ∈ u0 +W 1,2

0 (Ω) means that u = u0 on ∂Ω (in the sense
of Sobolev spaces).
(ii) If the solution u turns out to be more regular, namely in W 2,2 (Ω) then

(3.1) can be integrated by parts and we getZ
Ω

∆u (x) ϕ (x) dx = 0, ∀ϕ ∈W 1,2
0 (Ω)

which combined with the fundamental lemma of the calculus of variations (The-
orem 1.24) leads to ∆u = 0 a.e. in Ω. This extra regularity of u (which will
turn out to be even C∞ (Ω)) will be proved in Section 4.3.
(iii) As we already said, the above theorem was proved by Hilbert, Lebesgue

and Tonelli, but it was expressed in a different way since Sobolev spaces did not
exist then. Throughout the 19th century there were several attempts to establish
a theorem of the above kind, notably by Dirichlet and Riemann.

Proof. The proof is surprisingly simple.
Part 1 (Existence). We divide, as explained in the Introduction, the proof

into three steps.
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Step 1 (Compactness). We start with the observation that since u0 ∈ u0 +
W 1,2
0 (Ω) we have

0 ≤ m ≤ I (u0) <∞.

Let uν ∈ u0 +W 1,2
0 (Ω) be a minimizing sequence of (D), this means that

I (uν)→ inf {I (u)} = m, as ν →∞.

Observe that by Poincaré inequality (cf. Theorem 1.47) we can find constants
γ1, γ2 > 0 so thatp

2I (uν) = k∇uνkL2 ≥ γ1 kuνkW 1,2 − γ2 ku0kW 1,2 .

Since uν is a minimizing sequence andm <∞ we deduce that there exists γ3 > 0
so that

kuνkW 1,2 ≤ γ3 .

Applying Exercise 1.4.5 we deduce that there exists u ∈ u0 +W 1,2
0 (Ω) and a

subsequence (still denoted uν) so that

uν - u in W 1,2, as ν →∞.

Step 2 (Lower semicontinuity). We now show that I is (sequentially) weakly
lower semicontinuous; this means that

uν - u in W 1,2 ⇒ lim inf
ν→∞

I (uν) ≥ I (u) .

This step is independent of the fact that {uν} is a minimizing sequence. We
trivially have that

|∇uν |2 = |∇u|2 + 2 h∇u;∇uν −∇ui+ |∇uν −∇u|2

≥ |∇u|2 + 2 h∇u;∇uν −∇ui .

Integrating this expression we have

I (uν) ≥ I (u) +

Z
Ω

h∇u;∇uν −∇ui dx .

To conclude we show that the second term in the right hand side of the inequality
tends to 0. Indeed since ∇u ∈ L2 and ∇uν − ∇u - 0 in L2 this implies, by
definition of weak convergence in L2, that

lim
ν→∞

Z
Ω

h∇u;∇uν −∇ui dx = 0 .
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Therefore returning to the above inequality we have indeed obtained that

lim inf
ν→∞

I (uν) ≥ I (u) .

Step 3. We now combine the two steps. Since {uν} was a minimizing se-
quence (i.e. I (uν) → inf {I (u)} = m) and for such a sequence we have lower
semicontinuity (i.e. lim inf I (uν) ≥ I (u)) we deduce that I (u) = m, i.e. u is a
minimizer of (D).
Part 2 (Uniqueness). Assume that there exist u, v ∈ u0 +W 1,2

0 (Ω) so that

I (u) = I (v) = m

and let us show that this implies u = v. Denote by w = (u+ v) /2 and observe
that w ∈ u0 +W 1,2

0 (Ω). The function ξ → |ξ|2 being convex, we can infer that
w is also a minimizer since

m ≤ I (w) ≤ 1
2
I (u) +

1

2
I (v) = m,

which readily implies thatZ
Ω

"
1

2
|∇u|2 + 1

2
|∇v|2 −

¯̄̄̄
∇u+∇v

2

¯̄̄̄2#
dx = 0 .

Appealing once more to the convexity of ξ → |ξ|2, we deduce that the integrand
is non negative, while the integral is 0. This is possible only if

1

2
|∇u|2 + 1

2
|∇v|2 −

¯̄̄̄
∇u+∇v

2

¯̄̄̄2
= 0 a.e. in Ω .

We now use the strict convexity of ξ → |ξ|2 to obtain that ∇u = ∇v a.e. in Ω,
which combined with the fact that the two functions agree on the boundary of
Ω (since u, v ∈ u0 +W 1,2

0 (Ω)) leads to the claimed uniqueness u = v a.e. in Ω.
Part 3 (Euler-Lagrange equation). Let us now establish (3.1). Let � ∈ R and

ϕ ∈ W 1,2
0 (Ω) be arbitrary. Note that u+ �ϕ ∈ u0 +W 1,2

0 (Ω), which combined
with the fact that u is the minimizer of (D) leads to

I (u) ≤ I (u+ �ϕ) =

Z
Ω

1

2
|∇u+ �∇ϕ|2 dx

= I (u) + �

Z
Ω

h∇u;∇ϕi dx+ �2I (ϕ) .

The fact that � is arbitrary leads immediately to (3.1), which expresses nothing
else than

d

d�
I (u+ �ϕ)

¯̄̄̄
�=0

= 0 .
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Part 4 (Converse). We finally prove that if u ∈ u0 +W 1,2
0 (Ω) satisfies (3.1)

then it is necessarily a minimizer of (D). Let u ∈ u0 +W 1,2
0 (Ω) be any element

and set ϕ = u− u. Observe that ϕ ∈W 1,2
0 (Ω) and

I (u) = I (u+ ϕ) =

Z
Ω

1

2
|∇u+∇ϕ|2 dx

= I (u) +

Z
Ω

h∇u;∇ϕi dx+ I (ϕ) ≥ I (u)

since the second term is 0 according to (3.1) and the last one is non negative.
This achieves the proof of the theorem.

3.2.1 Exercises

Exercise 3.2.1 Let Ω be as in the theorem and g ∈ L2 (Ω). Show that

(P ) inf

½
I (u) =

Z
Ω

∙
1

2
|∇u (x)|2 − g (x)u (x)

¸
dx : u ∈W 1,2

0 (Ω)

¾
= m

has a unique solution u ∈W 1,2
0 (Ω) which satisfies in additionZ

Ω

h∇u (x) ;∇ϕ (x)i dx =
Z
Ω

g (x)ϕ (x) dx, ∀ϕ ∈W 1,2
0 (Ω) .

3.3 A general existence theorem
The main theorem of the present chapter is the following.

Theorem 3.3 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let
f ∈ C0

¡
Ω×R×Rn

¢
, f = f (x, u, ξ), satisfy

(H1) ξ → f (x, u, ξ) is convex for every (x, u) ∈ Ω× R;

(H2) there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R such that

f (x, u, ξ) ≥ α1 |ξ|p + α2 |u|q + α3, ∀ (x, u, ξ) ∈ Ω×R×Rn.

Let

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m

where u0 ∈ W 1,p (Ω) with I (u0) < ∞. Then there exists u ∈ u0 +W 1,p
0 (Ω) a

minimizer of (P).
Furthermore if (u, ξ)→ f (x, u, ξ) is strictly convex for every x ∈ Ω, then the

minimizer is unique.
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Remark 3.4 (i) The hypotheses of the theorem are nearly optimal, in the sense

of minima (cf. below). The only hypothesis that can be slightly weakened is the
continuity of f (see the above mentioned literature).
(ii) The proof will show that uniqueness holds under a slightly weaker con-

dition, namely that (u, ξ) → f (x, u, ξ) is convex and either u → f (x, u, ξ) is
strictly convex or ξ → f (x, u, ξ) is strictly convex.
(iii) The theorem remains valid in the vectorial case, where u : Ω ⊂ Rn −→

RN , with n,N > 1. However the hypothesis (H1) is then far from being optimal
(cf. Section 3.5).
(iv) This theorem has a long history and we refer to [31] for details. The

first one that noticed the importance of the convexity of f is Tonelli.

Before proceeding with the proof of the theorem, we discuss several examples,
emphasizing the optimality of the hypotheses.

Example 3.5 (i) The Dirichlet integral considered in the preceding section en-
ters, of course, in the framework of the present theorem; indeed we have that

f (x, u, ξ) = f (ξ) =
1

2
|ξ|2

satisfies all the hypotheses of the theorem with p = 2.
(ii) The natural generalization of the preceding example is

f (x, u, ξ) =
1

p
|ξ|p + g (x, u)

where g is continuous and non negative and p > 1.

Example 3.6 The minimal surface problem has an integrand given by

f (x, u, ξ) = f (ξ) =

q
1 + |ξ|2

that satisfies all the hypotheses of the theorem but (H2), this hypothesis is only
verified with p = 1. We will see in Chapter 5 that this failure may lead to
non existence of minima for the corresponding (P). The reason why p = 1 is not
allowed is that the corresponding Sobolev space W 1,1 is not reflexive (see Chapter
1).

Example 3.7 This example is of the minimal surface type but easier, it also
shows that all the hypotheses of the theorem are satisfied, except (H2) that is

that the weakening of any of them leads to a counterexample to the existence
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true with p = 1. This weakening of (H2) leads to the following counterexample.
Let n = 1, f (x, u, ξ) = f (u, ξ) =

p
u2 + ξ2 and

(P ) inf

½
I (u) =

Z 1

0

f (u (x) , u0 (x)) dx : u ∈ X

¾
= m

where X =
©
u ∈W 1,1 (0, 1) : u (0) = 0, u (1) = 1

ª
. Let us prove that (P) has no

solution. We first show that m = 1 and start by observing that m ≥ 1 since

I (u) ≥
Z 1

0

|u0 (x)| dx ≥
Z 1

0

u0 (x) dx = u (1)− u (0) = 1 .

To establish that m = 1 we construct a minimizing sequence uν ∈ X (ν being an
integer) as follows

uν (x) =

⎧⎨⎩ 0 if x ∈
£
0, 1− 1

ν

¤
1 + ν (x− 1) if x ∈

¡
1− 1

ν , 1
¤
.

We therefore have m = 1 since

1 ≤ I (uν) =

Z 1

1− 1
ν

q
(1 + ν (x− 1))2 + ν2 dx

≤ 1

ν

p
1 + ν2 −→ 1, as ν →∞ .

Assume now, for the sake of contradiction, that there exists u ∈ X a minimizer
of (P). We should then have, as above,

1 = I (u) =

Z 1

0

p
u2 + u02 dx ≥

Z 1

0

|u0| dx

≥
Z 1

0

u0 dx = u (1)− u (0) = 1 .

This implies that u = 0 a.e. in (0, 1). Since elements of X are continuous we
have that u ≡ 0 and this is incompatible with the boundary data. Thus (P) has
no solution.

Example 3.8 (Weierstrass example). We have seen this example in Section
2.2. Recall that n = 1, f (x, u, ξ) = f (x, ξ) = xξ2 and

(P ) inf

½
I (u) =

Z 1

0

f (x, u0 (x)) dx : u ∈ X

¾
= mX
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where X =
©
u ∈W 1,2 (0, 1) : u (0) = 1, u (1) = 0

ª
. All the hypotheses of the

theorem are verified with the exception of (H2) that is satisfied only with α1 = 0.
This is enough to show that (P) has no minimizer in X. Indeed we have seen
in Exercise 2.2.6 that (P) has no solution in Y = X ∩ C1 ([0, 1]) and that the
corresponding value of the infimum, let us denote it by mY , is 0. Since trivially
0 ≤ mX ≤ mY we deduce that mX = 0. Now assume, by absurd hypothesis,
that (P) has a solution u ∈ X, we should then have I (u) = 0, but since the
integrand is non negative we deduce that u0 = 0 a.e. in (0, 1). Since elements of
X are continuous we have that u is constant, and this is incompatible with the
boundary data. Hence (P) has no solution.

Example 3.9 The present example (cf. Poincaré-Wirtinger inequality) shows
that we cannot allow, in general, that q = p in (H2). Let n = 1, λ > π and

f (x, u, ξ) = f (u, ξ) =
1

2

¡
ξ2 − λ2u2

¢
.

We have seen in Section 2.2 that if

(P ) inf

½
I (u) =

Z 1

0

f (u (x) , u0 (x)) dx : u ∈W 1,2
0 (0, 1)

¾
= m

then m = −∞, which means that (P) has no solution.

Example 3.10 (Bolza example). We now show that, as a general rule, one
cannot weaken (H1) either. One such example has already been seen in Section
2.2 where we had f (x, u, ξ) = f (ξ) = e−ξ

2

(which satisfies neither (H1) nor
(H2)). Let n = 1,

f (x, u, ξ) = f (u, ξ) =
¡
ξ2 − 1

¢2
+ u4

(P ) inf

½
I (u) =

Z 1

0

f (u (x) , u0 (x)) dx : u ∈W 1,4
0 (0, 1)

¾
= m.

Assume for a moment that we already proved that m = 0 and let us show that
(P) has no solution, using an argument by contradiction. Let u ∈W 1,4

0 (0, 1) be
a minimizer of (P), i.e. I (u) = 0. This implies that u = 0 and |u0| = 1 a.e. in
(0, 1). Since the elements of W 1,4 are continuous we have that u ≡ 0 and hence
u0 ≡ 0 which is clearly absurd.
So let us show that m = 0 by constructing an appropriate minimizing se-

quence. Let uν ∈ W 1,4
0 (ν ≥ 2 being an integer) defined on each interval

[k/ν, (k + 1) /ν], 0 ≤ k ≤ ν − 1, as follows

uν (x) =

⎧⎨⎩ x− k
ν if x ∈

£
2k
2ν ,

2k+1
2ν

¤
−x+ k+1

ν if x ∈
¡
2k+1
2ν , 2k+22ν

¤
.
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...

x

1
N

N
u  (x)

1
N2

3
N
2

N
1

Figure 3.1: minimizing sequence

Observe that |u0ν | = 1 a.e. and |uν | ≤ 1/ (2ν) leading therefore to the desired
convergence, namely

0 ≤ I (uν) ≤
1

(2ν)4
−→ 0, as ν →∞ .

Proof. We will not prove the theorem in its full generality. We refer to the
literature and in particular to Theorem 3.4.1 in [31] for a general proof; see also
the exercises below. We will prove it under the stronger following hypotheses.
We will assume that f ∈ C1

¡
Ω×R×Rn

¢
, instead of C0, and

(H1+) (u, ξ)→ f (x, u, ξ) is convex for every x ∈ Ω;
(H2+) there exist p > 1 and α1 > 0, α3 ∈ R such that

f (x, u, ξ) ≥ α1 |ξ|p + α3, ∀ (x, u, ξ) ∈ Ω×R×Rn.

(H3) there exists a constant β ≥ 0 so that for every (x, u, ξ) ∈ Ω×R×Rn

|fu (x, u, ξ)| , |fξ (x, u, ξ)| ≤ β
³
1 + |u|p−1 + |ξ|p−1

´
where fξ =

¡
fξ1 , ..., fξn

¢
, fξi = ∂f/∂ξi and fu = ∂f/∂u.

Once these hypotheses are made, the proof is very similar to that of Theorem
3.1. Note also that the function f (x, u, ξ) = f (ξ) = |ξ|2 /2 satisfies the above
stronger hypotheses.
Part 1 (Existence). The proof is divided into three steps.
Step 1 (Compactness). Recall that by assumption on u0 and by (H2+) we

have
−∞ < m ≤ I (u0) <∞.
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Let uν ∈ u0 +W 1,p
0 (Ω) be a minimizing sequence of (P), i.e.

I (uν)→ inf {I (u)} = m, as ν →∞.

We therefore have from (H2+) that for ν large enough

m+ 1 ≥ I (uν) ≥ α1 k∇uνkpLp − |α3|measΩ

and hence there exists α4 > 0 so that

k∇uνkLp ≤ α4 .

Appealing to Poincaré inequality (cf. Theorem 1.47) we can find constants
α5, α6 > 0 so that

α4 ≥ k∇uνkLp ≥ α5 kuνkW 1,p − α6 ku0kW 1,p

and hence we can find α7 > 0 so that

kuνkW 1,p ≤ α7 .

Applying Exercise 1.4.5 (it is only here that we use the fact that p > 1) we
deduce that there exists u ∈ u0+W 1,p

0 (Ω) and a subsequence (still denoted uν)
so that

uν - u in W 1,p, as ν →∞.

Step 2 (Lower semicontinuity). We now show that I is (sequentially) weakly
lower semicontinuous; this means that

uν - u in W 1,p ⇒ lim inf
ν→∞

I (uν) ≥ I (u) . (3.2)

This step is independent of the fact that {uν} is a minimizing sequence. Using
the convexity of f and the fact that it is C1 we get

f (x, uν ,∇uν) ≥

f (x, u,∇u) + fu (x, u,∇u) (uν − u) + hfξ (x, u,∇u) ;∇uν −∇ui .
(3.3)

Before proceeding further we need to show that the combination of (H3) and
u ∈W 1,p (Ω) leads to

fu (x, u,∇u) ∈ Lp
0
(Ω) and fξ (x, u,∇u) ∈ Lp

0
(Ω;Rn) (3.4)

where 1/p + 1/p0 = 1 (i.e. p0 = p/ (p− 1)). Indeed let us prove the first
statement, the other one being shown similarly. We have (β1 being a constant)Z

Ω

|fu (x, u,∇u)|p
0
dx ≤ βp

0
Z
Ω

³
1 + |u|p−1 + |∇u|p−1

´ p
p−1

dx

≤ β1
¡
1 + kukpW1,p

¢
<∞ .
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Using Hölder inequality and (3.4) we find that for uν ∈W 1,p (Ω)

fu (x, u,∇u) (uν − u) , hfξ (x, u,∇u) ;∇uν −∇ui ∈ L1 (Ω) .

We next integrate (3.3) to get

I (uν) ≥ I (u) +

Z
Ω

fu (x, u,∇u) (uν − u) dx

+

Z
Ω

hfξ (x, u,∇u) ;∇uν −∇ui dx .
(3.5)

Since uν − u - 0 in W 1,p (i.e. uν − u - 0 in Lp and ∇uν −∇u - 0 in Lp) and
(3.4) holds, we deduce, from the definition of weak convergence in Lp, that

lim
ν→∞

Z
Ω

fu (x, u,∇u) (uν − u) dx = lim
ν→∞

Z
Ω

hfξ (x, u,∇u) ;∇uν −∇ui dx = 0 .

Therefore returning to (3.5) we have indeed obtained that

lim inf
ν→∞

I (uν) ≥ I (u) .

Step 3. We now combine the two steps. Since {uν} was a minimizing se-
quence (i.e. I (uν) → inf {I (u)} = m) and for such a sequence we have lower
semicontinuity (i.e. lim inf I (uν) ≥ I (u)) we deduce that I (u) = m, i.e. u is a
minimizer of (P).
Part 2 (Uniqueness). The proof is almost identical to the one of Theorem

3.1 and Theorem 2.1. Assume that there exist u, v ∈ u0 +W 1,p
0 (Ω) so that

I (u) = I (v) = m

and we prove that this implies u = v. Denote by w = (u+ v) /2 and observe
that w ∈ u0 +W 1,p

0 (Ω). The function (u, ξ) → f (x, u, ξ) being convex, we can
infer that w is also a minimizer since

m ≤ I (w) ≤ 1
2
I (u) +

1

2
I (v) = m,

which readily implies thatZ
Ω

∙
1

2
f (x, u,∇u) + 1

2
f (x, v,∇v)− f

µ
x,

u+ v

2
,
∇u+∇v

2

¶¸
dx = 0 .

The convexity of (u, ξ)→ f (x, u, ξ) implies that the integrand is non negative,
while the integral is 0. This is possible only if

1

2
f (x, u,∇u) + 1

2
f (x, v,∇v)− f

µ
x,

u+ v

2
,
∇u+∇v

2

¶
= 0 a.e. in Ω .

We now use the strict convexity of (u, ξ)→ f (x, u, ξ) to obtain that u = v and
∇u = ∇v a.e. in Ω, which implies the desired uniqueness, namely u = v a.e. in
Ω.
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3.3.1 Exercises

Exercise 3.3.1 Prove Theorem 3.3 under the hypotheses (H1+), (H2) and (H3).

Exercise 3.3.2 Prove Theorem 3.3 if

f (x, u, ξ) = g (x, u) + h (x, ξ)

where
(i) h ∈ C1

¡
Ω×Rn

¢
, ξ → h (x, ξ) is convex for every x ∈ Ω, and there exist

p > 1 and α1 > 0, β, α3 ∈ R such that

h (x, ξ) ≥ α1 |ξ|p + α3, ∀ (x, ξ) ∈ Ω×Rn

|hξ (x, ξ)| ≤ β
³
1 + |ξ|p−1

´
, ∀ (x, ξ) ∈ Ω× Rn ;

(ii) g ∈ C0
¡
Ω×R

¢
, g ≥ 0 and either of the following three cases hold

Case 1: p > n. For every R > 0, there exists γ = γ (R) such that

|g (x, u)− g (x, v)| ≤ γ |u− v|

for every x ∈ Ω and every u, v ∈ R with |u| , |v| ≤ R .
Case 2: p = n. There exist q ≥ 1 and γ > 0 so that

|g (x, u)− g (x, v)| ≤ γ
³
1 + |u|q−1 + |v|q−1

´
|u− v|

for every x ∈ Ω and every u, v ∈ R.
Case 3: p < n. There exist q ∈ [1, np/ (n− p)) and γ > 0 so that

|g (x, u)− g (x, v)| ≤ γ
³
1 + |u|q−1 + |v|q−1

´
|u− v|

for every x ∈ Ω and every u, v ∈ R.

Exercise 3.3.3 Prove Theorem 3.3 in the following framework. Let α, β ∈ RN ,
N > 1 and

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈W 1,p

¡
(a, b) ;RN

¢
: u (a) = α, u (b) = β

ª
and

(i) f ∈ C1
¡
[a, b]×RN ×RN

¢
, (u, ξ) → f (x, u, ξ) is convex for every x ∈

[a, b];
(ii) there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R such that

f (x, u, ξ) ≥ α1 |ξ|p + α2 |u|q + α3, ∀ (x, u, ξ) ∈ [a, b]×RN ×RN ;
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(iii) for every R > 0, there exists β = β (R) such that

|fu (x, u, ξ)| ≤ β (1 + |ξ|p) and |fξ (x, u, ξ)| ≤ β
³
1 + |ξ|p−1

´
for every x ∈ [a, b] and every u, ξ ∈ RN with |u| ≤ R .

3.4 Euler-Lagrange equations

We now derive the Euler-Lagrange equation associated to (P). The way of pro-
ceeding is identical to that of Section 2.2, but we have to be more careful. Indeed
we assumed there that the minimizer u was C2, while here we only know that
it is in the Sobolev space W 1,p.

Theorem 3.11 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Let
p ≥ 1 and f ∈ C1

¡
Ω×R×Rn

¢
, f = f (x, u, ξ), satisfy

(H3) there exists β ≥ 0 so that for every (x, u, ξ) ∈ Ω×R× Rn

|fu (x, u, ξ)| , |fξ (x, u, ξ)| ≤ β
³
1 + |u|p−1 + |ξ|p−1

´
where fξ =

¡
fξ1 , ..., fξn

¢
, fξi = ∂f/∂ξi and fu = ∂f/∂u.

Let u ∈ u0 +W 1,p
0 (Ω) be a minimizer of

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m

where u0 ∈W 1,p (Ω), then u satisfies the weak form of the Euler-Lagrange equa-
tion

(Ew)

Z
Ω

[fu (x, u,∇u)ϕ+ hfξ (x, u,∇u) ;∇ϕi] dx = 0, ∀ϕ ∈W 1,p
0 (Ω) .

Moreover if f ∈ C2
¡
Ω×R×Rn

¢
and u ∈ C2

¡
Ω
¢
then u satisfies the Euler-

Lagrange equation

(E)
nX
i=1

∂

∂xi

£
fξi (x, u,∇u)

¤
= fu (x, u,∇u) , ∀x ∈ Ω .

Conversely if (u, ξ) → f (x, u, ξ) is convex for every x ∈ Ω and if u is a
solution of either (Ew) or (E) then it is a minimizer of (P).
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Remark 3.12 (i) A more condensed way of writing (E) is

(E) div [fξ (x, u,∇u)] = fu (x, u,∇u) , ∀x ∈ Ω .

(ii) The hypothesis (H3) is necessary for giving a meaning to (Ew); more
precisely for ensuring that fuϕ, hfξ;∇ϕi ∈ L1 (Ω). It can be weakened, but only
slightly by the use of Sobolev imbedding theorem (see Exercise 3.4.1).
(iii) Of course any solution of (E) is a solution of (Ew). The converse is

true only if u is sufficiently regular.
(iv) In the statement of the theorem we do not need hypothesis (H1) or (H2)

of Theorem 3.3. Therefore we do not use the convexity of f (naturally for the
converse we need the convexity of f). However we require that a minimizer of
(P) does exist.
(v) The theorem remains valid in the vectorial case, where u : Ω ⊂ Rn −→

RN , with n,N > 1. The Euler-Lagrange equation becomes now a system of
partial differential equations and reads as follows

(E)
nX
i=1

∂

∂xi

h
fξji
(x, u,∇u)

i
= fuj (x, u,∇u) , ∀x ∈ Ω, j = 1, ..., N

where f : Ω×RN ×RN×n → R and

u =
¡
u1, ..., uN

¢
∈ RN , ξ =

³
ξji

´1≤j≤N
1≤i≤n

∈ RN×n and ∇u =
µ
∂uj

∂xi

¶1≤j≤N
1≤i≤n

.

(vi) In some cases one can be interested in an even weaker form of the Euler-
Lagrange equation. More precisely if we choose the test functions ϕ in (Ew) to
be in C∞0 (Ω) instead of in W 1,p

0 (Ω) then one can weaken the hypothesis (H3)
and replace it by
(H3’) there exist p ≥ 1 and β ≥ 0 so that for every (x, u, ξ) ∈ Ω×R×Rn

|fu (x, u, ξ)| , |fξ (x, u, ξ)| ≤ β (1 + |u|p + |ξ|p) .

The proof of the theorem remains almost identical. The choice of the space where
the test function ϕ belongs depends on the context. If we want to use the solution,
u, itself as a test function then we are obliged to choose W 1,p

0 (Ω) as the right
space (see Section 4.3) while some other times (see Section 4.2) we can actually
limit ourselves to the space C∞0 (Ω).

Proof. The proof is divided into four steps.
Step 1 (Preliminary computation). From the observation that

f (x, u, ξ) = f (x, 0, 0) +

Z 1

0

d

dt
[f (x, tu, tξ)] dt, ∀ (x, u, ξ) ∈ Ω×R×Rn
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and from (H3), we find that there exists γ1 > 0 so that

|f (x, u, ξ)| ≤ γ1 (1 + |u|
p
+ |ξ|p) , ∀ (x, u, ξ) ∈ Ω×R×Rn. (3.6)

In particular we deduce that

|I (u)| <∞, ∀u ∈W 1,p (Ω) .

Step 2 (Derivative of I). We now prove that for every u, ϕ ∈ W 1,p (Ω) and
every � ∈ R we have

lim
�→0

I (u+ �ϕ)− I (u)

�
=

Z
Ω

[fu (x, u,∇u)ϕ+ hfξ (x, u,∇u) ;∇ϕi] dx . (3.7)

We let
g (x, �) = f (x, u (x) + �ϕ (x) ,∇u (x) + �∇ϕ (x))

so that

I (u+ �ϕ) =

Z
Ω

g (x, �) dx .

Since f ∈ C1 we have, for almost every x ∈ Ω, that � → g (x, �) is C1 and
therefore there exists θ ∈ [− |�| , |�|], θ = θ (x), such that

g (x, �)− g (x, 0) = g� (x, θ) �

where

g� (x, θ) = fu (x, u+ θϕ,∇u+ θ∇ϕ)ϕ+ hfξ (x, u+ θϕ,∇u+ θ∇ϕ) ;∇ϕi .

The hypothesis (H3) implies then that we can find γ2 > 0 so that, for every
θ ∈ [−1, 1],¯̄̄̄
g (x, �)− g (x, 0)

�

¯̄̄̄
= |g� (x, θ)| ≤ γ2 (1 + |u|

p + |ϕ|p + |∇u|p + |∇ϕ|p) ≡ G (x) .

Note that since u,ϕ ∈W 1,p (Ω), we have G ∈ L1 (Ω).
We now observe that, since u, ϕ ∈ W 1,p (Ω), we have from (3.6) that the

functions x→ g (x, 0) and x→ g (x, �) are both in L1 (Ω).
Summarizing the results we have that

g (x, �)− g (x, 0)

�
∈ L1 (Ω) ,¯̄̄̄

g (x, �)− g (x, 0)

�

¯̄̄̄
≤ G (x) , with G ∈ L1 (Ω)

g (x, �)− g (x, 0)

�
→ g� (x, 0) a.e. in Ω .
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Applying Lebesgue dominated convergence theorem we deduce that (3.7) holds.
Step 3 (Derivation of (Ew) and (E)). The conclusion of the theorem follows

from the preceding step. Indeed since u is a minimizer of (P) then

I (u+ �ϕ) ≥ I (u) , ∀ϕ ∈W 1,p
0 (Ω)

and thus

lim
�→0

I (u+ �ϕ)− I (u)

�
= 0

which combined with (3.7) implies (Ew).
To get (E) it remains to integrate by parts (using Exercise 1.4.7) and to find

(Ew)

Z
Ω

[fu (x, u,∇u)− div fξ (x, u,∇u)]ϕdx = 0, ∀ϕ ∈W 1,p
0 (Ω) .

The fundamental lemma of the calculus of variations (Theorem 1.24) implies the
claim.
Step 4 (Converse). Let u be a solution of (Ew) (note that any solution of

(E) is necessarily a solution of (Ew)). From the convexity of f we deduce that
for every u ∈ u0 +W 1,p

0 (Ω) the following holds

f (x, u,∇u) ≥ f (x, u,∇u) + fu (x, u,∇u) (u− u)

+ hfξ (x, u,∇u) ; (∇u−∇u)i .

Integrating, using (Ew) and the fact that u− u ∈ W 1,p
0 (Ω) we immediately get

that I (u) ≥ I (u) and hence the theorem.
We now discuss some examples.

Example 3.13 In the case of Dirichlet integral we have

f (x, u, ξ) = f (ξ) =
1

2
|ξ|2

which satisfies (H3). The equation (Ew) is thenZ
Ω

h∇u (x) ;∇ϕ (x)i dx = 0, ∀ϕ ∈W 1,2
0 (Ω)

while (E) is ∆u = 0.

Example 3.14 Consider the generalization of the preceding example, where

f (x, u, ξ) = f (ξ) =
1

p
|ξ|p .

The equation (E) is known as the p-Laplace equation (so called, since when p = 2
it corresponds to Laplace equation)

div
h
|∇u|p−2∇u

i
= 0, in Ω .
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Example 3.15 The minimal surface problem has an integrand given by

f (x, u, ξ) = f (ξ) =

q
1 + |ξ|2

that satisfies (H3) with p = 1, since

|fξ (ξ)| =

⎛⎜⎝ nX
i=1

¯̄̄̄
¯̄ ξiq
1 + |ξ|2

¯̄̄̄
¯̄
2
⎞⎟⎠
1/2

≤ 1 .

The equation (E) is the so called minimal surface equation

div
∇uq

1 + |∇u|2
= 0, in Ω

and can be rewritten as³
1 + |∇u|2

´
∆u−

nX
i,j=1

uxiuxjuxixj = 0, in Ω .

Example 3.16 Let f (x, u, ξ) = f (u, ξ) = g (u) |ξ|2, with 0 ≤ g (u) , |g0 (u)| ≤
g0. We then have

|fu (u, ξ)| = |g0 (u)| |ξ|2 , |fξ (u, ξ)| = 2 |g (u)| |ξ| ≤ 2g0 |ξ|

We see that if g0 (u) 6= 0, then f does not satisfy (H3) but only the above (H3’).
We are therefore authorized to write onlyZ

Ω

[fu (u,∇u)ϕ+ hfξ (u,∇u) ;∇ϕi] dx = 0, ∀ϕ ∈ C∞0 (Ω)

or more generally the equation should hold for any ϕ ∈W 1,2
0 (Ω) ∩ L∞ (Ω).

Let us now recall two examples from Section 2.2, showing that, without any
hypotheses of convexity of the function f , the converse part of the theorem is
false.

Example 3.17 (Poincaré-Wirtinger inequality). Let λ > π, n = 1 and

f (x, u, ξ) = f (u, ξ) =
1

2

¡
ξ2 − λ2u2

¢
(P ) inf

½
I (u) =

Z 1

0

f (u (x) , u0 (x)) dx : u ∈W 1,2
0 (0, 1)

¾
= m.
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Note that ξ → f (u, ξ) is convex while (u, ξ) → f (u, ξ) is not. We have seen
that m = −∞ and therefore (P) has no minimizer; however the Euler-Lagrange
equation

u00 + λ2u = 0 in [0, 1]

has u ≡ 0 as a solution. It is therefore not a minimizer.

Example 3.18 Let n = 1, f (x, u, ξ) = f (ξ) =
¡
ξ2 − 1

¢2
, which is non convex,

and

(P ) inf

½
I (u) =

Z 1

0

f (u0 (x)) dx : u ∈W 1,4
0 (0, 1)

¾
= m.

We have seen that m = 0. The Euler-Lagrange equation is

(E)
d

dx

£
u0
¡
u02 − 1

¢¤
= 0

and its weak form is (note that f satisfies (H3))

(Ew)

Z 1

0

u0
¡
u02 − 1

¢
ϕ0 dx = 0, ∀ϕ ∈W 1,4

0 (0, 1) .

It is clear that u ≡ 0 is a solution of (E) and (Ew), but it is not a minimizer
of (P) since m = 0 and I (0) = 1. The present example is also interesting for
another reason. Indeed the function

v (x) =

½
x if x ∈ [0, 1/2]

1− x if x ∈ (1/2, 1]

is clearly a minimizer of (P) which is not C1; it satisfies (Ew) but not (E).

3.4.1 Exercises

Exercise 3.4.1 (i) Show that the theorem remains valid if we weaken the hy-
pothesis (H3), for example, as follows: if 1 ≤ p < n, replace (H3) by:
there exist β > 0, 1 ≤ s1 ≤ (np− n+ p) / (n− p), 1 ≤ s2 ≤ (np− n+ p) /n,
1 ≤ s3 ≤ n (p− 1) / (n− p) so that the following hold, for every (x, u, ξ) ∈
Ω×R×Rn,

|fu (x, u, ξ)| ≤ β (1 + |u|s1 + |ξ|s2) , |fξ (x, u, ξ)| ≤ β
³
1 + |u|s3 + |ξ|p−1

´
.

(ii) Find, with the help of Sobolev imbedding theorem, other ways of weaken-
ing (H3) and keeping the conclusions of the theorem valid.
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Exercise 3.4.2 Let
f (x, u, ξ) =

1

p
|ξ|p + g (x, u) .

Find growth conditions (depending on p and n) on g that improve (H3) and still
allow to derive, as in the preceding exercise, (Ew).

Exercise 3.4.3 Let n = 2, Ω = (0, π)2, u = u (x, t), ut = ∂u/∂t, ux = ∂u/∂x
and

(P ) inf

½
I (u) =

1

2

ZZ
Ω

¡
u2t − u2x

¢
dxdt : u ∈W 1,2

0 (Ω)

¾
= m.

(i) Show that m = −∞.
(ii) Prove, formally, that the Euler-Lagrange equation associated to (P) is

the wave equation utt − uxx = 0.

3.5 The vectorial case
The problem under consideration is

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0

¡
Ω;RN

¢¾
= m

where n,N > 1 and

- Ω ⊂ Rn is a bounded open set;
- f : Ω×RN ×RN×n −→ R, f = f (x, u, ξ);

- u =
¡
u1, ..., uN

¢
∈ RN , ξ =

³
ξji

´1≤j≤N
1≤i≤n

∈ RN×n and ∇u =
³
∂uj

∂xi

´1≤j≤N
1≤i≤n

;

- u ∈ u0 +W 1,p
0

¡
Ω;RN

¢
means that uj , uj0 ∈ W 1,p (Ω), j = 1, ..., N , and

u− u0 ∈W 1,p
0

¡
Ω;RN

¢
(which roughly means that u = u0 on ∂Ω).

All the results of the preceding sections apply to the present context when
n,N > 1. However, while for N = 1 (or analogously when n = 1) Theorem 3.3
was almost optimal, it is now far from being so. The vectorial case is intrinsically
more difficult. For example the Euler-Lagrange equations associated to (P) are
then a system of partial differential equations, whose treatment is considerably
harder than that of a single partial differential equation.
We will present one extension of Theorem 3.3; it will not be the best possible

result, but it has the advantage of giving some flavours of what can be done. For
the sake of clarity we will essentially consider only the case n = N = 2; but we
will, in a remark, briefly mention what can be done in the higher dimensional
case.
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Theorem 3.19 Let n = N = 2 and Ω ⊂ R2 be a bounded open set with Lipschitz
boundary. Let f : Ω×R2×R2×2 −→ R, f = f (x, u, ξ), and F : Ω×R2×R2×2×
R −→ R, F = F (x, u, ξ, δ), be continuous and satisfying

f (x, u, ξ) = F (x, u, ξ, det ξ) , ∀ (x, u, ξ) ∈ Ω×R2 ×R2×2

where det ξ denotes the determinant of the matrix ξ. Assume also that

(H1vect) (ξ, δ)→ F (x, u, ξ, δ) is convex for every (x, u) ∈ Ω×R2;

(H2vect) there exist p > max [q, 2] and α1 > 0, α2, α3 ∈ R such that

F (x, u, ξ, δ) ≥ α1 |ξ|p + α2 |u|q + α3, ∀ (x, u, ξ, δ) ∈ Ω× R2 ×R2×2 ×R .

Let u0 ∈ W 1,p
¡
Ω;R2

¢
be such that I (u0) < ∞, then (P) has at least one solu-

tion.

Remark 3.20 (i) It is clear that from the point of view of convexity the theorem
is more general than Theorem 3.3. Indeed if ξ → f (x, u, ξ) is convex then
choose F (x, u, ξ, δ) = f (x, u, ξ) and therefore (H1vect) and (H1) are equivalent.
However (H1vect) is more general since, for example, functions of the form

f (x, u, ξ) = |ξ|4 + (det ξ)4

can be shown to be non convex, while

F (x, u, ξ, δ) = |ξ|4 + δ4

is obviously convex as a function of (ξ, δ).
(ii) The theorem is however slightly weaker from the point of view of coerciv-

ity. Indeed in (H2vect) we require p > 2, while in (H2) of Theorem 3.3 we only
asked that p > 1.
(iii) Similar statements and proofs hold for the general case n,N > 1. For

example when n = N = 3 we ask that there exists a function

F : Ω×R3 ×R3×3 ×R3×3 ×R −→ R, F = F (x, u, ξ, η, δ)

so that

f (x, u, ξ) = F (x, u, ξ, adj2ξ, det ξ) , ∀ (x, u, ξ) ∈ Ω×R3 ×R3×3

where adj2ξ denotes the matrix of cofactors of ξ (i.e. all the 2× 2 minors of the
matrix ξ). (H1vect) becomes then: (ξ, η, δ)→ F (x, u, ξ, η, δ) is convex for every
(x, u) ∈ Ω×R3; while (H2vect) should hold for p > max [q, 3].
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(iv) When n,N > 1 the function f should be of the form

f (x, u, ξ) = F (x, u, ξ, adj2ξ, adj3ξ, ..., adjsξ)

where s = min [n,N ] and adjrξ denotes the matrix of all r × r minors of the
matrix ξ ∈ RN×n. The hypothesis (H1vect) requires then that the function F
be convex for every (x, u) fixed. The hypothesis (H2vect) should then hold for
p > max [q, s].
(v) A function f that can be written in terms of a convex function F as in

the theorem is called polyconvex. The theorem is due to Morrey (see also Ball
[7] for important applications of such results to non linear elasticity). We refer
for more details to [31].

Let us now see two examples.

Example 3.21 Let n = N = 2, p > 2 and

f (x, u, ξ) = f (ξ) =
1

p
|ξ|p + h (det ξ)

where h : R −→ R is non negative and convex (for example h (det ξ) = (det ξ)2).
All hypotheses of the theorem are clearly satisfied. It is also interesting to com-
pute the Euler-Lagrange equations associated. To make them simple consider
only the case p = 2 and set u = u (x, y) =

¡
u1 (x, y) , u2 (x, y)

¢
. The system is

then ⎧⎨⎩
∆u1 +

£
h0 (det∇u)u2y

¤
x
−
£
h0 (det∇u)u2x

¤
y
= 0

∆u2 −
£
h0 (det∇u)u1y

¤
x
+
£
h0 (det∇u)u1x

¤
y
= 0 .

Example 3.22 Another important example coming from applications is the fol-
lowing: let n = N = 3, p > 3, q ≥ 1 and

f (x, u, ξ) = f (ξ) = α |ξ|p + β |adj2ξ|
q + h (det ξ)

where h : R −→ R is non negative and convex and α, β > 0.

The key ingredient in the proof of the theorem is the following lemma that
is due to Morrey and Reshetnyak.

Lemma 3.23 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary, p > 2
and

uν = (ϕν , ψν)- u = (ϕ,ψ) in W 1,p
¡
Ω;R2

¢
;

then
det∇uν - det∇u in Lp/2 (Ω) .
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Remark 3.24 (i) At first glance the result is a little surprising. Indeed we have
seen in Chapter 1 (in particular Exercise 1.3.3) that if two sequences, say (ϕν)x
and (ψν)y, converge weakly respectively to ϕx and ψy, then, in general, their
product (ϕν)x (ψ

ν)y does not converge weakly to ϕxψy. Writing

det∇uν = (ϕν)x (ψ
ν)y − (ϕν)y (ψ

ν)x

we see that both terms (ϕν)x (ψ
ν)y and (ϕ

ν)y (ψ
ν)x do not, in general, converge

weakly to ϕxψy and ϕyψx but, according to the lemma, their difference, which
is det∇uν , converges weakly to their difference, namely det∇u. We therefore
have a non linear function, the determinant, that has the property to be weakly
continuous. This is a very rare event (see for more details [30] or Theorem 4.2.6
in [31]).
(ii) From Hölder inequality we see that, whenever p ≥ 2 and u ∈ W 1,p then

det∇u ∈ Lp/2.
(iii) The lemma is false if 1 ≤ p ≤ 2 but remains partially true if p > 4/3;

this will be seen from the proof and from Exercise 3.5.5.
(iv) The lemma generalizes to the case where n,N > 1 and we obtain that

any minor has this property (for example when n = N = 3, then any 2 × 2
minor and the determinant are weakly continuous). Moreover they are the only
non linear functions which have the property of weak continuity.

Proof. We have to show that for every v ∈
¡
Lp/2

¢0
= Lp/(p−2)

lim
ν→∞

ZZ
Ω

det∇uν (x, y) v (x, y) dxdy =
ZZ
Ω

det∇u (x, y) v (x, y) dxdy . (3.8)

The proof will be divided into three steps. Only the first one carries the impor-
tant information, namely that the determinant has a divergence structure; the
two last steps are more technical. We also draw the attention on a technical
fact about the exponent p. The first step can also be proved if p > 4/3 (cf. also
Exercise 3.5.5). The second, in fact, requires that p ≥ 2 and only the last one
fully uses the strict inequality p > 2. However, in order not to burden the proof
too much, we will always assume that p > 2.
Step 1. We first prove (3.8) under the further hypotheses that v ∈ C∞0 (Ω)

and uν , u ∈ C2
¡
Ω;R2

¢
.

We start by proving a preliminary result. If we let v ∈ C∞0 (Ω) and w ∈
C2
¡
Ω;R2

¢
, w = (ϕ,ψ), we always haveZZ

Ω

det∇w v dxdy = −
ZZ
Ω

£
ϕψyvx − ϕψxvy

¤
dxdy . (3.9)

Indeed, us ing the f act that ϕ,ψ ∈ C  2 , we obtain

det∇w = ϕxψy − ϕyψx =
¡
ϕψy

¢
x
− (ϕψx)y (3.10)
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and therefore, since v ∈ C∞0 (Ω), we haveZZ
Ω

det∇w v dxdy =

ZZ
Ω

h¡
ϕψy

¢
x
v − (ϕψx)y v

i
dxdy

and hence (3.9) after integration by parts.
The result (3.8) then easily follows. Indeed from Rellich theorem (Theorem

1.43) we have, since ϕν - ϕ inW 1,p and p > 2, that ϕν → ϕ in L∞. Combining
this observation with the fact that ψνx , ψ

ν
y - ψx , ψy in Lp we deduce (cf.

Exercise 1.3.3) that

ϕνψνx , ϕ
νψνy - ϕψx , ϕψy in Lp . (3.11)

Since vx , vy ∈ C∞0 ⊂ Lp
0
we deduce from (3.9), applied to w = uν , and from

(3.11) that

lim
ν→∞

ZZ
Ω

det∇uν v dxdy = −
ZZ
Ω

£
ϕψyvx − ϕψxvy

¤
dxdy .

Using again (3.9), applied to w = u, we have indeed obtained the claimed result
(3.8).
Step 2. We now show that (3.8) still holds under the further hypothesis

v ∈ C∞0 (Ω), but considering now the general case, i.e. uν , u ∈W 1,p
¡
Ω;R2

¢
.

In fact (3.9) continues to hold under the weaker hypothesis that v ∈ C∞0 (Ω)
and w ∈ W 1,p

¡
Ω;R2

¢
; of course the proof must be different, since this time we

only know that w ∈ W 1,p
¡
Ω;R2

¢
. Let us postpone for a moment the proof of

this fact and observe that if (3.9) holds for w ∈W 1,p
¡
Ω;R2

¢
then, with exactly

the same argument as in the previous step, we get (3.8) under the hypotheses
v ∈ C∞0 (Ω) and uν , u ∈W 1,p

¡
Ω;R2

¢
.

We now prove the above claim and we start by regularizing w ∈W 1,p
¡
Ω;R2

¢
appealing to Theorem 1.34. We therefore find for every � > 0, a function w� =
(ϕ�, ψ�) ∈ C2

¡
Ω;R2

¢
so that

kw − w�kW 1,p ≤ � and kw − w�kL∞ ≤ � .

Since p ≥ 2 we can find (cf. Exercise 3.5.4) a constant α1 (independent of �) so
that

kdet∇w − det∇w�kLp/2 ≤ α1� . (3.12)

It is also easy to see that we have, for α2 a constant (independent of �),°°ϕψy − ϕ�ψ�y
°°
Lp
≤ α2�, kϕψx − ϕ�ψ�xkLp ≤ α2� (3.13)

since, for example, the first inequality follows from°°ϕψy − ϕ�ψ�y
°°
Lp
≤ kϕkL∞

°°ψy − ψ�y
°°
Lp
+
°°ψ�y°°Lp kϕ− ϕ�kL∞ .
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Returning to (3.9) we haveZZ
Ω

det∇w v dxdy +

ZZ
Ω

£
ϕψyvx − ϕψxvy

¤
dxdy

=

ZZ
Ω

det∇w� v dxdy +

ZZ
Ω

£
ϕ�ψ�yvx − ϕ�ψ�xvy

¤
dxdy

+

ZZ
Ω

(det∇w − det∇w�) v dxdy

+

ZZ
Ω

£¡
ϕψy − ϕ�ψ�y

¢
vx − (ϕψx − ϕ�ψ�x) vy

¤
dxdy .

Appealing to (3.9) which has already been proved to hold for w� = (ϕ�, ψ�) ∈ C2,
to Hölder inequality, to (3.12) and to (3.13) we find that, α3 being a constant
independent of �, ¯̄̄̄ZZ

Ω

det∇w v dxdy +

ZZ
Ω

£
ϕψyvx − ϕψxvy

¤
dxdy

¯̄̄̄
≤ α3�

h
kvk(Lp/2)0 + kvxkLp0 + kvykLp0

i
.

Since � is arbitrary we have indeed obtained that (3.9) is also valid for w ∈
W 1,p

¡
Ω;R2

¢
.

Step 3. We are finally in a position to prove the lemma, removing the last
unnecessary hypothesis (v ∈ C∞0 (Ω)). We want (3.8) to hold for v ∈ Lp/(p−2).
This is obtained by regularizing the function as in Theorem 1.13. This means,
for every � > 0 and v ∈ Lp/(p−2), that we can find v� ∈ C∞0 (Ω) so that

kv − v�kLp/(p−2) ≤ � . (3.14)

We moreover haveZZ
Ω

det∇uν v dxdy =
ZZ
Ω

det∇uν (v − v�) dxdy +

ZZ
Ω

det∇uν v� dxdy .

Using, once more, Hölder inequality we find¯̄̄̄ZZ
Ω

(det∇uν − det∇u) v
¯̄̄̄

≤ kv − v�kLp/(p−2) kdet∇uν − det∇ukLp/2 +
¯̄̄̄ZZ

Ω

(det∇uν − det∇u) v�
¯̄̄̄
.

The previous step has shown that

lim
ν→∞

¯̄̄̄ZZ
Ω

(det∇uν − det∇u) v�
¯̄̄̄
= 0
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while (3.14), the fact that uν - u in W 1,p and Exercise 3.5.4 show that we can
find γ > 0 so that

kv − v�kLp/(p−2) kdet∇uν − det∇ukLp/2 ≤ γ� .

Since � is arbitrary we have indeed obtained that (3.8) holds for v ∈ Lp/(p−2)

and for uν - u in W 1,p. The lemma is therefore proved.
We can now proceed with the proof of Theorem 3.19.
Proof. We will prove the theorem under the further following hypotheses

(for a general proof see Theorem 4.2.10 in [31])

f (x, u, ξ) = g (x, u, ξ) + h (x, det ξ)

where g satisfies (H1) and (H2), with p > 2, of Theorem 3.3 and h ∈ C1
¡
Ω×R

¢
,

h ≥ 0, δ → h (x, δ) is convex for every x ∈ Ω and there exists γ > 0 so that

|hδ (x, δ)| ≤ γ
³
1 + |δ|(p−2)/2

´
. (3.15)

The proof is then identical to the one of Theorem 3.3, except the second step
(the weak lower semicontinuity), that we discuss now. We have to prove that

uν - u in W 1,p ⇒ lim inf
ν→∞

I (uν) ≥ I (u)

where I (u) = G (u) +H (u) with

G (u) =

Z
Ω

g (x, u (x) ,∇u (x)) dx, H (u) =

Z
Ω

h (x, det∇u (x)) dx .

We have already proved in Theorem 3.3 that

lim inf
ν→∞

G (uν) ≥ G (u)

and therefore the result will follow if we can show

lim inf
ν→∞

H (uν) ≥ H (u) .

Since h is convex and C1 we have

h (x, det∇uν) ≥ h (x, det∇u) + hδ (x, det∇u) (det∇uν − det∇u) . (3.16)

We know that u ∈ W 1,p
¡
Ω;R2

¢
, which implies that det∇u ∈ Lp/2 (Ω), and

hence using (3.15) we deduce that

hδ (x, det∇u) ∈ Lp/(p−2) = L(p/2)
0
, (3.17)
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since we can find a constant γ1 > 0 so that

|hδ (x, det∇u)|p/(p−2) ≤
h
γ
³
1 + |det∇u|(p−2)/2

´ip/(p−2)
≤ γ1

³
1 + |det∇u|p/2

´
.

Returning to (3.16) and integrating we get

H (uν) ≥ H (u) +

Z
Ω

hδ (x, det∇u) (det∇uν − det∇u) dx .

Since uν − u - 0 in W 1,p, p > 2, we have from Lemma 3.23 that det∇uν −
det∇u - 0 in Lp/2 which combined with (3.17) and the definition of weak
convergence in Lp/2 lead to

lim
ν→∞

Z
Ω

hδ (x, det∇u) (det∇uν − det∇u) dx = 0 .

We have therefore obtained that

lim inf
ν→∞

H (uν) ≥ H (u)

and the proof is complete.

3.5.1 Exercises

The exercises will focus on several important analytical properties of the deter-
minant. Although we will essentially deal only with the two dimensional case,
most results, when properly adapted, remain valid in the higher dimensional
cases.
We will need in some of the exercises the following definition.

Definition 3.25 Let Ω ⊂ Rn be an open set and uν , u ∈ L1loc (Ω). We say that
uν converges in the sense of distributions to u, and we denote it by uν - u in
D0 (Ω), if

lim
ν→∞

Z
Ω

uνϕdx =

Z
Ω

uϕdx, ∀ϕ ∈ C∞0 (Ω) .

Remark 3.26 (i) If Ω is bounded we then have the following relations

uν
∗
- u in L∞ ⇒ uν - u in L1 ⇒ uν - u in D0 .

(ii) The definition can be generalized to uν and u that are not necessarily in
L1loc (Ω), but are merely what is known as “distributions”, cf. Exercise 3.5.6.
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Exercise 3.5.1 Show that f (ξ) = (det ξ)2, where ξ ∈ R2×2, is not convex.

Exercise 3.5.2 Show that if Ω ⊂ R2 is a bounded open set with Lipschitz bound-
ary and if u ∈ v +W 1,p

0

¡
Ω;R2

¢
, with p ≥ 2, thenZZ

Ω

det∇u dxdy =
ZZ
Ω

det∇v dxdy .

Suggestion: Prove first the result for u, v ∈ C2
¡
Ω;R2

¢
with u = v on ∂Ω.

Exercise 3.5.3 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary,
u0 ∈W 1,p

¡
Ω;R2

¢
, with p ≥ 2, and

(P ) inf

½
I (u) =

ZZ
Ω

det∇u (x) dx : u ∈ u0 +W 1,p
0

¡
Ω;R2

¢¾
= m.

Write the Euler-Lagrange equation associated to (P). Is the result totally sur-
prising?

Exercise 3.5.4 Let u, v ∈ W 1,p
¡
Ω;R2

¢
, with p ≥ 2. Show that there exists

α > 0 (depending only on p) so that

kdet∇u− det∇vkLp/2 ≤ α (k∇ukLp + k∇vkLp) k∇u−∇vkLp .

Exercise 3.5.5 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. We
have seen in Lemma 3.23 that, if p > 2, then

uν - u in W 1,p
¡
Ω;R2

¢
⇒ det∇uν - det∇u in Lp/2 (Ω) .

(i) Show that the result is, in general, false if p = 2. To achieve this goal
choose, for example, Ω = (0, 1)2 and

uν (x, y) =
1√
ν
(1− y)

ν
(sin νx, cos νx) .

(ii) Show, using Rellich theorem (Theorem 1.43), that if uν , u ∈ C2
¡
Ω;R2

¢
and if p > 4/3 (so in particular for p = 2), then

uν - u in W 1,p
¡
Ω;R2

¢
⇒ det∇uν - det∇u in D0 (Ω) .

(iii) This last result is false if p ≤ 4/3, see Dacorogna-Murat [34].

Exercise 3.5.6 Let Ω =
©
x ∈ R2 : |x| < 1

ª
and u (x) = x/ |x|.

(i) Show that u ∈ W 1,p
¡
Ω;R2

¢
for every 1 ≤ p < 2 (observe, however, that

u /∈W 1,2 and u /∈ C0).



Relaxation theory 107

(ii) Let uν (x) = x/ (|x|+ 1/ν). Show that uν - u in W 1,p, for any 1 ≤ p <
2.
(iii) Let δ(0,0) be the Dirac mass at (0, 0), which means­

δ(0,0);ϕ
®
= ϕ (0, 0) , ∀ϕ ∈ C∞0 (Ω) .

Prove that
det∇uν - πδ(0,0) in D0 (Ω) .

3.6 Relaxation theory
Recall that the problem under consideration is

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m

where

- Ω ⊂ Rn is a bounded open set with Lipschitz boundary;
- f : Ω × R × Rn −→ R, f = f (x, u, ξ), is continuous, uniformly in u with

respect to ξ;
- u0 ∈W 1,p (Ω) with I (u0) <∞.

Before stating the main theorem, let us recall some facts from Section 1.5.

Remark 3.27 The convex envelope of f , with respect to the variable ξ, will be
denoted by f∗∗. It is the largest convex function (with respect to the variable ξ)
which is smaller than f . In other words

g (x, u, ξ) ≤ f∗∗ (x, u, ξ) ≤ f (x, u, ξ) , ∀ (x, u, ξ) ∈ Ω×R×Rn

for every convex function g (ξ → g (x, u, ξ) is convex), g ≤ f . We have two ways
of computing this function.
(i) From the duality theorem (Theorem 1.54) we have, for every (x, u, ξ) ∈

Ω×R×Rn,
f∗ (x, u, ξ∗) = sup

ξ∈Rn
{hξ; ξ∗i− f (x, u, ξ)}

f∗∗ (x, u, ξ) = sup
ξ∗∈Rn

{hξ; ξ∗i− f∗ (x, u, ξ∗)} .

(ii) From Carathéodory theorem (Theorem 1.55) we have, for every (x, u, ξ) ∈
Ω×R×Rn,

f∗∗ (x, u, ξ) = inf

(
n+1X
i=1

λif (x, u, ξi) : ξ =
n+1X
i=1

λiξi , λi ≥ 0 and
n+1X
i=1

λi = 1

)
.
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We have seen in Theorem 3.3 that the existence of minimizers of (P) depend
strongly on the two hypotheses (H1) and (H2). We now briefly discuss the case
where (H1) does not hold, i.e. the function ξ → f (x, u, ξ) is not anymore convex.
We have seen in several examples that in general (P) will have no minimizers.
We present here a way of defining a “generalized” solution of (P). The main
theorem (without proof) is the following.

Theorem 3.28 Let Ω, f , f∗∗ and u0 be as above. Let p > 1 and α1 be such
that

0 ≤ f (x, u, ξ) ≤ α1 (1 + |u|p + |ξ|p) , ∀ (x, u, ξ) ∈ Ω× R×Rn.
Finally let

(P ) inf

½
I (u) =

Z
Ω

f∗∗ (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m.

Then

(i) m = m;

(ii) for every u ∈ u0 +W 1,p
0 (Ω), there exists uν ∈ u0 +W 1,p

0 (Ω) so that

uν - u in W 1,p and I (uν)→ I (u) , as ν →∞ .

If, in addition, there exist α2 > 0, α3 ∈ R such that

f (x, u, ξ) ≥ α2 |ξ|p + α3, ∀ (x, u, ξ) ∈ Ω×R×Rn

then (P) has at least one solution u ∈ u0 +W 1,p
0 (Ω).

Remark 3.29 (i) If f satisfies

f (x, u, ξ) ≥ α2 |ξ|p + α3, ∀ (x, u, ξ) ∈ Ω×R×Rn

then its convex envelope f∗∗ satisfies the same inequality since ξ → α2 |ξ|p+α3 ≡
h (ξ) is convex and h ≤ f . This observation implies that f∗∗ verifies (H1)
and (H2) of Theorem 3.3 and therefore the existence of a minimizer of (P) is
guaranteed.
(ii) Theorem 3.28 allows therefore to define u as a generalized solution of

(P), even though (P) may have no minimizer in W 1,p.
(iii) The theorem has been established by L.C. Young, Mac Shane and as

stated by Ekeland (see Theorem 10.3.7 in Ekeland-Témam [41], Corollary 3.13
in Marcellini-Sbordone [71] or [31]). It is false in the vectorial case (see Example
3.31 below). However the author in [29] (see Theorem 5.2.1 in [31]) has shown
that a result in the same spirit can be proved.
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We conclude this section with two examples.

Example 3.30 Let us return to Bolza example (Example 3.10). We here have
n = 1,

f (x, u, ξ) = f (u, ξ) =
¡
ξ2 − 1

¢2
+ u4

(P ) inf

½
I (u) =

Z 1

0

f (u (x) , u0 (x)) dx : u ∈W 1,4
0 (0, 1)

¾
= m.

We have already shown that m = 0 and that (P) has no solution. An elementary
computation (cf. Example 1.53 (ii)) shows that

f∗∗ (u, ξ) =

⎧⎨⎩ f (u, ξ) if |ξ| ≥ 1

u4 if |ξ| < 1 .

Therefore u ≡ 0 is a solution of¡
P
¢

inf

½
I (u) =

Z 1

0

f∗∗ (u (x) , u0 (x)) dx : u ∈W 1,4
0 (0, 1)

¾
= m = 0.

The sequence uν ∈ W 1,4
0 (ν ≥ 2 being an integer) constructed in Example 3.10

satisfies the conclusions of the theorem, i.e.

uν - u in W 1,4 and I (uν)→ I (u) = 0, as ν →∞ .

Example 3.31 Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. Let
u0 ∈W 1,4

¡
Ω;R2

¢
be such thatZZ

Ω

det∇u0 (x) dx 6= 0 .

Let, for ξ ∈ R2×2, f (ξ) = (det ξ)2,

(P ) inf

½
I (u) =

ZZ
Ω

f (∇u (x)) dx : u ∈ u0 +W 1,4
0

¡
Ω;R2

¢¾
= m

(P ) inf

½
I (u) =

ZZ
Ω

f∗∗ (∇u (x)) dx : u ∈ u0 +W 1,4
0

¡
Ω;R2

¢¾
= m.

We will show that Theorem 3.28 is false, by proving that m > m. Indeed it is
easy to prove (cf. Exercise 3.6.3) that f∗∗ (ξ) ≡ 0, which therefore implies that
m = 0. Let us show that m > 0. Indeed by Jensen inequality (cf. Theorem 1.51)
we have, for every u ∈ u0 +W 1,4

0

¡
Ω;R2

¢
,ZZ

Ω

(det∇u (x))2 dx ≥ measΩ
µ

1

measΩ

ZZ
Ω

det∇u (x) dx
¶2

.
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Appealing to Exercise 3.5.2 we therefore find thatZZ
Ω

(det∇u (x))2 dx ≥ 1

measΩ

µZZ
Ω

det∇u0 (x) dx
¶2

.

The right hand side being strictly positive, by hypothesis, we have indeed found
that m > 0, which leads to the claimed counterexample.

3.6.1 Exercises

Exercise 3.6.1 Let n = 1 and

(P ) inf
u∈X

½
I (u) =

Z 1

0

f (u0 (x)) dx

¾
= m

where X =
©
u ∈W 1,∞ (0, 1) : u (0) = α, u (1) = β

ª
.

(i) Assume that there exist λ ∈ [0, 1], a, b ∈ R such that⎧⎨⎩ β − α = λa+ (1− λ) b

f∗∗ (β − α) = λf (a) + (1− λ) f (b) .

Show then that (P) has a solution, independently of wether f is convex or not
(compare the above relations with Theorem 1.55). Of course if f is convex, the
above hypothesis is always true, it suffices to choose λ = 1/2 and a = b = β−α.
(ii) Can we apply the above considerations to f (ξ) = e−ξ

2

(cf. Section 2.2)
and α = β = 0?
(iii) What happens when f (ξ) =

¡
ξ2 − 1

¢2
?

Exercise 3.6.2 Apply the theorem to Ω = (0, 1)2,

f (x, u, ξ) = f (ξ) =
³
(ξ1)

2 − 1
´2
+ (ξ2)

4

where ξ = (ξ1, ξ2) ∈ R2 and

(P ) inf

½
I (u) =

ZZ
Ω

f (∇u (x, y)) dxdy : u ∈W 1,4
0 (Ω)

¾
= m.

Exercise 3.6.3 Let f (ξ) = (det ξ)2, where ξ ∈ R2×2. Show that f∗∗ (ξ) ≡ 0.



Chapter 4

Regularity

4.1 Introduction
We are still considering the problem

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
= m

where

- Ω ⊂ Rn is a bounded open set;
- f : Ω×R×Rn −→ R, f = f (x, u, ξ);
- u ∈ u0 +W 1,p

0 (Ω) means that u, u0 ∈W 1,p (Ω) and u− u0 ∈W 1,p
0 (Ω).

We have shown in Chapter 3 that, under appropriate hypotheses on f , u0
and Ω, (P) has a minimizer u ∈ u0 +W 1,p

0 (Ω).
The question that we will discuss now is to determine whether, in fact, the

minimizer u is not more regular, for example C1
¡
Ω
¢
. More precisely if the data

f , u0 and Ω are sufficiently regular, say C∞, does u ∈ C∞? This is one of the
23 problems of Hilbert that were mentioned in Chapter 0.
The case n = 1 will be discussed in Section 4.2. We will obtain some general

results. We will then turn our attention to the higher dimensional case. This is
a considerably harder problem and we will treat only the case of the Dirichlet
integral in Section 4.3. We will in Section 4.4 give, without proofs, some general
theorems.
We should also point out that all the regularity results that we will obtain

here are about solutions of the Euler-Lagrange equation and therefore not only
minimizers of (P).

111
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The problem of regularity, including the closely related ones concerning reg-
ularity for elliptic partial differential equations, is a difficult one that has at-
tracted many mathematicians. We quote only a few of them: Agmon, Bernstein,
Calderon, De Giorgi, Douglis, E. Hopf, Leray, Liechtenstein, Morrey, Moser,
Nash, Nirenberg, Rado, Schauder, Tonelli, Weyl and Zygmund.
In addition to the books that were mentioned in Chapter 3 one can consult

those by Gilbarg-Trudinger [49] and Ladyzhenskaya-Uraltseva [66].

4.2 The one dimensional case

Let us restate the problem. We consider

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈W 1,p (a, b) : u (a) = α, u (b) = β

ª
, f ∈ C0 ([a, b]×R×R), f =

f (x, u, ξ).
We have seen that if f satisfies

(H1) ξ → f (x, u, ξ) is convex for every (x, u) ∈ [a, b]×R;

(H2) there exist p > q ≥ 1 and α1 > 0, α2, α3 ∈ R such that

f (x, u, ξ) ≥ α1 |ξ|p + α2 |u|q + α3, ∀ (x, u, ξ) ∈ [a, b]×R×R;

then (P) has a solution u ∈ X.
If, furthermore, f ∈ C1 ([a, b]×R×R) and verifies (cf. Remark 3.12)

(H3’) for every R > 0, there exists α4 = α4 (R) such that

|fu (x, u, ξ)| , |fξ (x, u, ξ)| ≤ α4 (1 + |ξ|p) , ∀ (x, u, ξ) ∈ [a, b]× [−R,R]×R .

then any minimizer u ∈ X satisfies the weak form of the Euler-Lagrange equation

(Ew)

Z b

a

[fu (x, u, u
0) v + fξ (x, u, u

0) v0] dx = 0, ∀v ∈ C∞0 (a, b) .

We will show that under some strengthening of the hypotheses, we have that if
f ∈ C∞ then u ∈ C∞. These results are, in part, also valid if u : [a, b] → RN ,
for N > 1.
We start with a very elementary result that will illustrate our purpose.
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Proposition 4.1 Let g ∈ C∞ ([a, b]×R) satisfy

(H2) there exist 2 > q ≥ 1 and α2, α3 ∈ R such that

g (x, u) ≥ α2 |u|q + α3, ∀ (x, u) ∈ [a, b]× R .

Let
f (x, u, ξ) =

1

2
ξ2 + g (x, u) .

Then there exists u ∈ C∞ ([a, b]), a minimizer of (P). If, in addition, u →
g (x, u) is convex for every x ∈ [a, b], then the minimizer is unique.

Proof. The existence (and uniqueness, if g is convex) of a solution u ∈
W 1,2 (a, b) follows from Theorem 3.3. We also know from Theorem 3.11 that it
satisfies the weak form of the Euler-Lagrange equationZ b

a

u0v0 dx = −
Z b

a

gu (x, u) v dx, ∀v ∈ C∞0 (a, b) . (4.1)

To prove further regularity of u, we start by showing that u ∈W 2,2 (a, b). This
follows immediately from (4.1) and from the definition of weak derivative. Indeed
since u ∈W 1,2, we have that u ∈ L∞ and thus gu (x, u) ∈ L2, leading to¯̄̄̄

¯
Z b

a

u0v0 dx

¯̄̄̄
¯ ≤ kgu (x, u)kL2 kvkL2 , ∀v ∈ C∞0 (a, b) . (4.2)

Theorem 1.36 implies then that u ∈W 2,2. We can then integrate by parts (4.1),
bearing in mind that v (a) = v (b) = 0, and using the fundamental lemma of the
calculus of variations (cf. Theorem 1.24), we deduce that

u00 (x) = gu (x, u (x)) , a.e. x ∈ (a, b) . (4.3)

We are now in a position to start an iteration process. Since u ∈ W 2,2 (a, b)
we deduce that (cf. Theorem 1.42) u ∈ C1 ([a, b]) and hence the function x →
gu (x, u (x)) is C1 ([a, b]), g being C∞. Returning to (4.3) we deduce that u00 ∈ C1

and hence u ∈ C3. From there we can infer that x → gu (x, u (x)) is C3, and
thus from (4.3) we obtain that u00 ∈ C3 and hence u ∈ C5. Continuing this
process we have indeed established that u ∈ C∞ ([a, b]).
We will now generalize the argument of the proposition and we start with a

lemma.

Lemma 4.2 Let f ∈ C1 ([a, b]×R×R) satisfy (H1), (H2) and (H3’). Then
any minimizer u ∈ W 1,p (a, b) of (P) is in fact in W 1,∞ (a, b) and the Euler-
Lagrange equation holds almost everywhere, i.e.

d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) , a.e. x ∈ (a, b) .
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Proof. We know from Remark 3.12 that the following equation holds

(Ew)

Z b

a

[fu (x, u, u
0) v + fξ (x, u, u

0) v0] dx = 0, ∀v ∈ C∞0 (a, b) . (4.4)

We then divide the proof into two steps.
Step 1. Define

ϕ (x) = fξ (x, u (x) , u
0 (x)) and ψ (x) = fu (x, u (x) , u

0 (x)) .

We easily see that ϕ ∈ W 1,1 (a, b) and that ϕ0 (x) = ψ (x), for almost every
x ∈ (a, b), which means that

d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) , a.e. x ∈ (a, b) . (4.5)

Indeed since u ∈W 1,p (a, b), and hence u ∈ L∞ (a, b), we deduce from (H3’) that
ψ ∈ L1 (a, b). We also have from (4.4) thatZ b

a

ψ (x) v (x) dx = −
Z b

a

ϕ (x) v0 (x) dx, ∀v ∈ C∞0 (a, b) .

Since ϕ ∈ L1 (a, b) (from (H3’)), we have by definition of weak derivatives the
claim, namely ϕ ∈W 1,1 (a, b) and ϕ0 = ψ a.e..
Step 2. Since ϕ ∈W 1,1 (a, b), we have that ϕ ∈ C0 ([a, b]) which means that

there exists a constant α5 > 0 so that

|ϕ (x)| = |fξ (x, u (x) , u0 (x))| ≤ α5, ∀x ∈ [a, b] . (4.6)

Since u is bounded (and even continuous), let us say |u (x)| ≤ R for every
x ∈ [a, b], we have from (H1) that

f (x, u, 0) ≥ f (x, u, ξ)− ξfξ (x, u, ξ) , ∀ (x, u, ξ) ∈ [a, b]× [−R,R]×R .

Combining this inequality with (H2) we find that there exists α6 ∈ R such that,
for every (x, u, ξ) ∈ [a, b]× [−R,R]×R,

ξfξ (x, u, ξ) ≥ f (x, u, ξ)− f (x, u, 0) ≥ α1 |ξ|p + α6 .

Using (4.6) and the above inequality we find

α1 |u0|p + α6 ≤ u0fξ (x, u, u
0) ≤ |u0| |fξ (x, u, u0)| ≤ α5 |u0| , a.e. x ∈ (a, b)

which implies, since p > 1, that |u0| is uniformly bounded. Thus the lemma.
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Theorem 4.3 Let f ∈ C∞ ([a, b]×R×R) satisfy (H2), (H3’) and

(H1’) fξξ (x, u, ξ) > 0, ∀ (x, u, ξ) ∈ [a, b]×R×R .

Then any minimizer of (P) is in C∞ ([a, b]).

Remark 4.4 (i) Note that (H1’) is more restrictive than (H1). This stronger
condition is usually, but not always as will be seen in Theorem 4.5, necessary to
get higher regularity.
(ii) Proposition 4.1 is, of course, a particular case of the present theorem.
(iii) The proof will show that if f ∈ Ck, k ≥ 2, then the minimizer is also

Ck.

Proof. We will propose a different proof in Exercise 4.2.1. The present one
is more direct and uses Lemma 2.8.
Step 1. We know from Lemma 4.2 that x→ ϕ (x) = fξ (x, u (x) , u

0 (x)) is in
W 1,1 (a, b) and hence it is continuous. Appealing to Lemma 2.8 (and the remark
following this lemma), we have that if

H (x, u, v) = sup
ξ∈R

{v ξ − f (x, u, ξ)}

then H ∈ C∞ ([a, b]×R×R) and, for every x ∈ [a, b], we have

ϕ (x) = fξ (x, u (x) , u
0 (x)) ⇔ u0 (x) = Hv (x, u (x) , ϕ (x)) .

Since Hv, u and ϕ are continuous, we infer that u0 is continuous and hence
u ∈ C1 ([a, b]). We therefore deduce that x→ fu (x, u (x) , u

0 (x)) is continuous,
which combined with the fact that (cf. (4.5))

d

dx
[ϕ (x)] = fu (x, u (x) , u

0 (x)) , a.e. x ∈ (a, b)

(or equivalently, by Lemma 2.8, ϕ0 = −Hu (x, u, ϕ)) leads to ϕ ∈ C1 ([a, b]).
Step 2. Returning to our Hamiltonian system⎧⎨⎩ u0 (x) = Hv (x, u (x) , ϕ (x))

ϕ0 (x) = −Hu (x, u (x) , ϕ (x))

we can start our iteration. Indeed since H is C∞and u and ϕ are C1 we deduce
from our system that, in fact, u and ϕ are C2. Returning to the system we get
that u and ϕ are C3. Finally we get that u is C∞, as wished.
We conclude the section by giving an example where we can get further

regularity without assuming the non degeneracy condition fξξ > 0.
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Theorem 4.5 Let g ∈ C1 ([a, b]×R) satisfy

(H2) there exist p > q ≥ 1 and α2, α3 ∈ R such that

g (x, u) ≥ α2 |u|q + α3, ∀ (x, u) ∈ [a, b]× R .

Let
f (x, u, ξ) =

1

p
|ξ|p + g (x, u) .

Then there exists u ∈ C1 ([a, b]), with |u0|p−2 u0 ∈ C1 ([a, b]), a minimizer of (P)
and the Euler-Lagrange equation holds everywhere, i.e.

d

dx

h
|u0 (x)|p−2 u0 (x)

i
= gu (x, u (x)) , ∀x ∈ [a, b] .

Moreover if 1 < p ≤ 2, then u ∈ C2 ([a, b]).
If, in addition, u→ g (x, u) is convex for every x ∈ [a, b], then the minimizer

is unique.

Remark 4.6 The result cannot be improved in general, cf. Exercise 4.2.2.

Proof. The existence (and uniqueness, if g is convex) of a solution u ∈
W 1,p (a, b) follows from Theorem 3.3. According to Lemma 4.2 we know that
u ∈ W 1,∞ (a, b) and since x → gu (x, u (x)) is continuous, we have that the
Euler-Lagrange equation holds everywhere, i.e.

d

dx

h
|u0 (x)|p−2 u0 (x)

i
= gu (x, u (x)) , x ∈ [a, b] .

We thus have that |u0|p−2 u0 ∈ C1 ([a, b]). Call v ≡ |u0|p−2 u0. We may then infer
that

u0 = |v|
2−p
p−1 v .

Since the function t → |t|
2−p
p−1 t is continuous if p > 2 and C1 if 1 < p ≤ 2, we

obtain, from the fact that v ∈ C1 ([a, b]), the conclusions of the theorem.

4.2.1 Exercises

Exercise 4.2.1 With the help of Lemma 4.2, prove Theorem 4.3 in the following
manner.
(i) First show that u ∈W 2,∞ (a, b), by proving (iii) of Theorem 1.36.
(ii) Conclude, using the following form of the Euler-Lagrange equation

d

dx
[fξ (x, u, u

0)] = fξξ (x, u, u
0)u00 + fuξ (x, u, u

0)u0 + fxξ (x, u, u
0)

= fu (x, u, u
0) .
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Exercise 4.2.2 Let p > 2q > 2 and

f (x, u, ξ) = f (u, ξ) =
1

p
|ξ|p + λ

q
|u|q where λ = qpq−1 (p− 1)

(p− q)q

u (x) =
p− q

p
|x|p/(p−q)

(note that if, for example, p = 6 and q = 2, then f ∈ C∞
¡
R2
¢
).

(i) Show that u ∈ C1 ([−1, 1]) but u /∈ C2 ([−1, 1]).
(ii) Find some values of p and q so that

|u0|p−2 u0, |u|q−2 u ∈ C∞ ([−1, 1]) ,

although u /∈ C2 ([−1, 1]).
(iii) Show that u is the unique minimizer of

(P ) inf
u∈W1,p(−1,1)

½
I (u) =

Z 1

−1
f (u (x) , u0 (x)) dx : u (−1) = u (1) =

p− q

p

¾
.

4.3 The model case: Dirichlet integral

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and u0 ∈W 1,2 (Ω)
and consider the problem

(P ) inf

½
I (u) =

1

2

Z
Ω

|∇u (x)|2 dx : u ∈ u0 +W 1,2
0 (Ω)

¾
.

We have seen in Section 3.2 that there exists a unique minimizer u ∈ u0 +
W 1,2
0 (Ω) of (P). Furthermore u satisfies the weak form of Laplace equation,

namely

(Ew)

Z
Ω

h∇u (x) ;∇ϕ (x)i dx = 0, ∀ϕ ∈W 1,2
0 (Ω)

where h.; .i denotes the scalar product in Rn.
We will now show that u ∈ C∞ (Ω) and that it satisfies Laplace equation

∆u (x) = 0, ∀x ∈ Ω .

We speak then of interior regularity. If, in addition, Ω is a bounded open set
with C∞ boundary and u0 ∈ C∞

¡
Ω
¢
one can show that in fact u ∈ C∞

¡
Ω
¢
; we

speak then of regularity up to the boundary.
Dirichlet integral has been studied so much that besides the books that we

have quoted in the introduction of the present chapter, one can find numerous
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references where this problem is discussed. We quote here only two of them,
namely Brézis [14] and John [63].
In this section we will treat only the problem of interior regularity, we refer

to the literature for the question of the regularity up to the boundary. We will,
however, give two different proofs. The first one is really specific to the present
problem but gives, in some sense, a sharper result than the second one, which
however applies to more general problems than the present context.

Theorem 4.7 (Weyl lemma). Let Ω ⊂ Rn be open and u ∈ L1loc (Ω) satisfyZ
Ω

u (x)∆v (x) dx = 0, ∀v ∈ C∞0 (Ω) (4.7)

then u ∈ C∞ (Ω) and ∆u = 0 in Ω.

Remark 4.8 (i) The function u being defined only almost everywhere, we have
to interpret the result, as usual, up to a change of the function on a set of
measure zero.
(ii) Note that a solution of the weak form of Laplace equation

(Ew)

Z
Ω

h∇u (x) ;∇ϕ (x)i dx = 0, ∀ϕ ∈W 1,2
0 (Ω)

satisfies (4.7). The converse being true if, in addition, u ∈W 1,2 (Ω). Therefore
(4.7) can be seen as a “very weak” form of Laplace equation and a solution of
this equation as a “very weak” solution of ∆u = 0.

Proof. Let x ∈ Ω and R > 0 sufficiently small so that

BR (x) = {y ∈ Rn : |y − x| < R} ⊂ Ω .

Let σn−1 = meas (∂B1 (0)) (i.e. σ1 = 2π, σ2 = 4π,...). The idea is to show that
if

u (x) =
1

σn−1Rn−1

Z
∂BR(x)

u dσ (4.8)

then u is independent of R, u ∈ C0 (Ω) and u = u a.e. in Ω. A classical result
(cf. Exercise 4.3.2) allows to conclude that in fact u ∈ C∞ (Ω) and hence ∆u = 0
in Ω, as claimed.
These statements will be proved in three steps.
Step 1. We start by making an appropriate choice of the function v in (4.7).

Let R be as above and choose � ∈ (0, R) and ϕ ∈ C∞ (R) with suppϕ ⊂ (�, R).
Define then

v (y) = ϕ (|x− y|)
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and observe that v ∈ C∞0 (BR (x)). An easy computation gives, for r = |x− y|,

∆v = ϕ00 (r) +
n− 1
r

ϕ0 (r) = r1−n
d

dr

£
rn−1ϕ0 (r)

¤
.

From now on we assume that n ≥ 2, the case n = 1 is elementary and is discussed
in Exercise 4.3.1. We next let

ψ (r) =
d

dr

£
rn−1ϕ0 (r)

¤
. (4.9)

Note that ψ ∈ C∞0 (�, R) and Z R

�

ψ (r) dr = 0 . (4.10)

Remark that the converse is also true, namely that given ψ ∈ C∞0 (�, R) satisfying
(4.10) we can find ϕ ∈ C∞0 (�, R) verifying (4.9).
Step 2. Let ψ ∈ C∞0 (�, R), satisfying (4.10), be arbitrary. Define then ϕ and

v as above and use such a v in (4.7). We get, since v ≡ 0 on Ω \BR (x),

0 =

Z
Ω

u∆v dy =

Z
BR(x)

u∆v dy =

Z R

�

ψ (r) r1−n
Z
∂Br(x)

u dσ dr

=

Z R

�

ψ (r)w (r) dr

where we have set

w (r) = r1−n
Z
∂Br(x)

udσ .

We can use Corollary 1.25 to deduce that

w (r) = constant, a.e. r ∈ (�, R) .

We denote this constant by σn−1u (x) and we use the fact that � is arbitrary to
write

w (r) = σn−1u (x) , a.e. r ∈ (0, R) . (4.11)

Step 3. We now conclude with the proof of the theorem. We first observe
that (4.11) is nothing else than (4.8) with the fact that u is independent of R.
We next integrate (4.8) and get

u (x) =
1

measBR (x)

Z
BR(x)

u (z) dz . (4.12)
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From (4.12) we deduce that u ∈ C0 (Ω). Indeed let x, y ∈ Ω and R be sufficiently
small so that BR (x) ∪ BR (y) ⊂ Ω. We then have that (denoting by ωn the
measure of the unit ball)

|u (x)− u (y)| = 1

ωnRn

¯̄̄̄
¯
Z
BR(x)

u (z) dz −
Z
BR(y)

u (z) dz

¯̄̄̄
¯ ≤ 1

ωnRn

Z
O

|u (z)| dz ,

where O = (BR (x) ∪BR (y)) r (BR (x) ∩BR (y)). Appealing to the fact that
u ∈ L1 (BR (x) ∪BR (y)) and to Exercise 1.3.7, we deduce that u is indeed
continuous.
It therefore remains to prove that u = u a.e. in Ω. This follows from Lebesgue

theorem and the fact that u ∈ L1loc (Ω). Indeed letting R tend to 0 in (4.12)
we have that for almost every x ∈ Ω the right hand side of (4.12) is u (x). The
theorem has therefore been established.
We now present a second proof that uses the so called difference quotients ,

introduced by Nirenberg.

Theorem 4.9 Let k ≥ 0 be an integer, Ω ⊂ Rn be a bounded open set with
Ck+2 boundary, f ∈W k,2 (Ω) and

(P 0) inf

½
I (u) =

Z
Ω

∙
1

2
|∇u (x)|2 − f (x)u (x)

¸
dx : u ∈W 1,2

0 (Ω)

¾
.

Then there exists a unique minimizer u ∈W k+2,2 (Ω) of (P’). Furthermore there
exists a constant γ = γ (Ω, k) > 0 so that

kukWk+2,2 ≤ γ kfkWk,2 . (4.13)

In particular if k =∞, then u ∈ C∞
¡
Ω
¢
.

Remark 4.10 (i) Problem (P) and (P’) are equivalent. If in (P) the boundary
datum u0 ∈W k+2,2 (Ω), then choose f = ∆u0 ∈W k,2 (Ω).
(ii) A similar result as (4.13) can be obtained in Hölder spaces (these are

then known as Schauder estimates), under appropriate regularity hypotheses on
the boundary and when 0 < a < 1, namely

kukCk+2,a ≤ γ kfkCk,a .

If 1 < p <∞, it can also be proved that

kukWk+2,p ≤ γ kfkWk,p ;

these are then known as Calderon-Zygmund estimates and are considerably harder
to obtain than those for p = 2.
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(iii) Both above results are however false if a = 0, a = 1 or p = ∞ (see
Exercise 4.3.3) and if p = 1 (see Exercise 4.3.4). This is another reason why,
when dealing with partial differential equations or the calculus of variations,
Sobolev spaces and Hölder spaces are more appropriate than Ck spaces.

Proof. We know from the theory developed in Chapter 3 (in particular,
Exercise 3.2.1) that (P’) has a unique solution u ∈ W 1,2

0 (Ω) which satisfies in
addition Z

Ω

h∇u (x) ;∇v (x)i dx =
Z
Ω

f (x) v (x) dx, ∀v ∈W 1,2
0 (Ω) .

We will only show the interior regularity of u, more precisely we will show that
f ∈W k,2 (Ω) implies that u ∈W k+2,2

loc (Ω). To show the sharper result (4.13) we
refer to the literature (see Theorem 8.13 in Gilbarg-Trudinger [49]).
The claim is then equivalent to proving that ϕu ∈ W k+2,2 (Ω) for every

ϕ ∈ C∞0 (Ω). We let u = ϕu and notice that u ∈W 1,2 (Rn) and that it is a weak
solution of

∆u = ∆ (ϕu) = ϕ∆u+ u∆ϕ+ 2 h∇u;∇ϕi
= −ϕf + u∆ϕ+ 2 h∇u;∇ϕi ≡ g .

Since f ∈ W k,2 (Ω), u ∈ W 1,2
0 (Ω) and ϕ ∈ C∞0 (Ω) we have that g ∈ L2 (Rn).

We have therefore transformed the problem into showing that any u ∈W 1,2 (Rn)
which satisfiesZ

Rn
h∇u (x) ;∇v (x)i dx =

Z
Rn

g (x) v (x) dx, ∀v ∈W 1,2 (Rn) (4.14)

is in fact in W k+2,2 (Rn) whenever g ∈ W k,2 (Rn). We will prove this claim in
two steps. The first one deals with the case k = 0, while the second one will
handle the general case.
Step 1. We here show that g ∈ L2 (Rn) implies u ∈ W 2,2 (Rn). To achieve

this goal we use the method of difference quotients . We introduce the following
notations, for h ∈ Rn, h 6= 0, we let

(Dhu) (x) =
u (x+ h)− u (x)

|h| .

It easily follows from Theorem 1.36 that

∇ (Dhu) = Dh (∇u) , kD−hukL2(Rn) ≤ k∇ukL2(Rn)

kDhukL2(Rn) ≤ γ ⇒ u ∈W 1,2 (Rn)
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where γ denotes a constant independent of h. Returning to (4.14), we choose

v (x) = (D−h (Dhu)) (x) =
2u (x)− u (x+ h)− u (x− h)

|h|2

and observe that, since u ∈W 1,2 (Rn), v ∈W 1,2 (Rn). We therefore findZ
Rn
h∇u (x) ;∇ (D−h (Dhu)) (x)i dx =

Z
Rn

g (x) (D−h (Dhu)) (x) dx . (4.15)

Let us express differently the left hand side of the above identity and writeZ
Rn
h∇u;∇ (D−h (Dhu))i dx

=
1

|h|2
Z
Rn
h∇u (x) ; 2∇u (x)−∇u (x+ h)−∇u (x− h)i dx

=
2

|h|2
Z
Rn

h
|∇u (x)|2 − h∇u (x) ;∇u (x+ h)i

i
dx

=
1

|h|2
Z
Rn
|∇u (x+ h)−∇u (x)|2 dx

where we used, for passing from the first to the second identity and from the
second to the third one, respectivelyZ

Rn
[h∇u (x) ;∇u (x+ h)i] dx =

Z
Rn
[h∇u (x) ;∇u (x− h)i] dxZ

Rn
|∇u (x)|2 dx =

Z
Rn
|∇u (x+ h)|2 dx .

Returning to (4.15) we just found thatZ
Rn
h∇u (x) ;∇ (D−h (Dhu)) (x)i dx =

1

|h|2
Z
Rn
|∇u (x+ h)−∇u (x)|2 dx

=

Z
Rn
|(Dh∇u) (x)|2 dx

=

Z
Rn

g (x) (D−h (Dhu)) (x) dx .

Applying Cauchy-Schwarz inequality and the properties of the operator Dh we
get

kDh∇uk2L2 ≤ kgkL2 kD−h (Dhu)kL2 ≤ kgkL2 kDh∇ukL2
and hence

kDh∇ukL2 ≤ kgkL2 .
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Using again the properties of the operator Dh we have indeed obtained that
∇u ∈W 1,2 (Rn;Rn) and hence u ∈W 2,2 (Rn).
Step 2. (The present step, contrary to the preceding one, relies heavily on

the special form of the equation). Let now g ∈ W 1,2 (Rn) and let us show that
u ∈W 3,2 (Rn). The general case g ∈W k,2 implying that u ∈W k+2,2 follows by
repeating the argument. The idea is simple, it consists in applying the previous
step to uxi = ∂u/∂xi and observing that since ∆u = g, then ∆uxi = gxi . Indeed
it is elementary to see that we have, for every i = 1, ..., n,Z

Rn
h∇uxi (x) ;∇v (x)i dx =

Z
Rn

gxi (x) v (x) dx, ∀v ∈W 1,2 (Rn) . (4.16)

To prove this, it is sufficient to establish it for v ∈ C∞0 (Rn) (since C∞0 (Rn) is
dense in W 1,2 (Rn)). We have, using (4.14), thatZ

Rn
h∇uxi ;∇vi dx =

Z
Rn

­
(∇u)xi ;∇v

®
dx = −

Z
Rn

­
∇u; (∇v)xi

®
dx

= −
Z
Rn
h∇u;∇vxii dx = −

Z
Rn

gvxi dx =

Z
Rn

gxiv dx .

Since g ∈ W 1,2, we have that gxi ∈ L2 and hence by the first step applied to
(4.16) we get that uxi ∈ W 2,2. Since this holds for every i = 1, ..., n, we have
indeed obtained that u ∈W 3,2. This concludes the proof of the theorem.

4.3.1 Exercises

Exercise 4.3.1 Prove Theorem 4.7 when n = 1.

Exercise 4.3.2 Let Ω ⊂ Rn be an open set and let σn−1 = meas (∂B1 (0)) (i.e.
σ1 = 2π, σ2 = 4π,...). Let u ∈ C0 (Ω) satisfy the mean value formula, which
states that

u (x) =
1

σn−1rn−1

Z
∂Br(x)

udσ

for every x ∈ Ω and for every r > 0 sufficiently small so that

Br (x) = {y ∈ Rn : |y − x| < r} ⊂ Ω .

Show that u ∈ C∞ (Ω).

Exercise 4.3.3 We show here that if f ∈ C0, then, in general, there is no
solution u ∈ C2 of ∆u = f . Let Ω =

©
x ∈ R2 : |x| < 1/2

ª
and for 0 < α < 1,

define

u (x) = u (x1, x2) =

⎧⎨⎩ x1x2 |log |x||α if 0 < |x| ≤ 1/2

0 if x = 0 .
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Show that
ux1x1 , ux2x2 ∈ C0 (Ω) , ux1x2 /∈ L∞ (Ω)

which implies that ∆u = ux1x1 +ux2x2 ∈ C0, while u /∈ C2, in fact u is not even
in W 2,∞.

Exercise 4.3.4 The present exercise (in the spirit of the preceding one) will
give an example of a function u /∈W 2,1, with ∆u ∈ L1. Let

Ω =
©
x ∈ R2 : 0 < |x| < 1/2

ª
u (x) = u (x1, x2) = log |log |x|| , if x ∈ Ω .

Show that u /∈W 2,1 (Ω) while ∆u ∈ L1 (Ω).

4.4 Some general results
The generalization of the preceding section to integrands of the form f =
f (x, u,∇u) is a difficult task. We will give here, without proof, a general the-
orem and we refer for more results to the literature. The next theorem can be
found in Morrey [75] (Theorem 1.10.4).

Theorem 4.11 Let Ω ⊂ Rn be a bounded open set and f ∈ C∞ (Ω×R×Rn),
f = f (x, u, ξ). Let fx = (fx1 , ..., fxn), fξ =

¡
fξ1 , ..., fξn

¢
and similarly for the

higher derivatives. Let f satisfy, for every (x, u, ξ) ∈ Ω×R×Rn and λ ∈ Rn,

(C)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α1V
p − α2 ≤ f (x, u, ξ) ≤ α3V

p

|fξ| , |fxξ| , |fu| , |fxu| ≤ α3V
p−1, |fuξ| , |f uu| ≤ α3V

p−2

α4V
p−2 |λ|2 ≤

nX
i,j=1

fξiξj (x, u, ξ)λiλj ≤ α5V
p−2 |λ|2

where p ≥ 2, V 2 = 1 + u2 + |ξ|2 and αi > 0, i = 1, ..., 5, are constants.
Then any minimizer of

(P ) inf

½
I (u) =

Z
Ω

f (x, u (x) ,∇u (x)) dx : u ∈ u0 +W 1,p
0 (Ω)

¾
is in C∞ (D), for every D ⊂ D ⊂ Ω.

Remark 4.12 (i) The last hypothesis in (C) implies a kind of uniform convexity
of ξ → f (x, u, ξ); it guarantees the uniform ellipticity of the Euler-Lagrange
equation. The example of the preceding section, obviously, satisfies (C).
(ii) For the regularity up to the boundary, we refer to the literature.
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The proof of such a theorem relies on the De Giorgi-Nash-Moser theory. In
the course of the proof, one transforms the nonlinear Euler-Lagrange equation
into an elliptic linear equation with bounded measurable coefficients. Therefore
to obtain the desired regularity, one needs to know the regularity of solutions of
such equations and this is precisely the famous theorem that is stated below (see
Giaquinta [47] Theorem 2.1 of Chapter II). It was first established by De Giorgi,
then simplified by Moser and also proved, independently but at the same time,
by Nash.

Theorem 4.13 Let Ω ⊂ Rn be a bounded open set and v ∈ W 1,2 (Ω) be a
solution of

nX
i,j=1

Z
Ω

h
aij (x) vxi (x)ϕxj (x)

i
dx = 0, ∀ϕ ∈W 1,2

0 (Ω)

where aij ∈ L∞ (Ω) and, denoting by γ > 0 a constant,
nX

i,j=1

aij (x)λiλj ≥ γ |λ|2 , a.e. in Ω and ∀λ ∈ Rn .

Then there exists 0 < α < 1 so that v ∈ C0,α (D), for every D ⊂ D ⊂ Ω.
Remark 4.14 It is interesting to try to understand, formally, the relationship
between the last two theorems, for example in the case where f = f (x, u, ξ) =
f (ξ). The coefficients aij (x) and the function v in Theorem 4.13 are, respec-
tively, fξiξj (∇u (x)) and uxi in Theorem 4.11. The fact that v = uxi ∈W 1,2 is
proved by the method of difference quotients presented in Theorem 4.9.

The two preceding theorems do not generalize to the vectorial case u : Ω ⊂
Rn −→ RN , with n,N > 1. In this case only partial regularity can, in general, be
proved. We give here an example of such a phenomenon due to Giusti-Miranda
(see Giaquinta [47] Example 3.2 of Chapter II).

Example 4.15 Let n, an integer, be sufficiently large, Ω ⊂ Rn be the unit ball
and u0 (x) = x. Let

f (x, u, ξ) = f (u, ξ) =
nX

i,j=1

³
ξji

´2
+

⎡⎣ nX
i,j=1

Ã
δij +

4

n− 2
uiuj

1 + |u|2

!
ξji

⎤⎦2

where ξji stands for ∂u
j/∂xi and δij is the Kronecker symbol (i.e., δij = 0 if

i 6= j and δij = 1 if i = j). Then u (x) = x/ |x| is the unique minimizer of

(P ) inf

½
I (u) =

Z
Ω

f (u (x) ,∇u (x)) dx : u ∈ u0 +W 1,2
0 (Ω;Rn)

¾
.
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Chapter 5

Minimal surfaces

5.1 Introduction
We start by explaining informally the problem under consideration. We want
to find among all surfaces Σ ⊂ R3 (or more generally in Rn+1, n ≥ 2) with
prescribed boundary, ∂Σ = Γ, where Γ is a Jordan curve, one that is of minimal
area.
Unfortunately the formulation of the problem in more precise terms is del-

icate. It depends on the kind of surfaces we are considering. We will consider
two types of surfaces: parametric and nonparametric surfaces. The second ones
are less general but simpler from the analytical point of view.
We start with the formulation for nonparametric (hyper)surfaces (this case

is easy to generalize to Rn+1). These are of the form

Σ =
©
v (x) = (x, u (x)) ∈ Rn+1 : x ∈ Ω

ª
with u : Ω → R and where Ω ⊂ Rn is a bounded domain. The surface Σ is
therefore the graph of the function u. The fact that ∂Σ is prescribed reads now
as u = u0 on ∂Ω, where u0 is a given function. The area of such surface is given
by

Area (Σ) = I (u) =

Z
Ω

f (∇u (x)) dx

where, for ξ ∈ Rn, we have set

f (ξ) =

q
1 + |ξ|2 .

The problem is then written in the usual form

(P ) inf

½
I (u) =

Z
Ω

f (∇u (x)) dx : u ∈ u0 +W 1,1
0 (Ω)

¾
.

127
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As already seen in Chapter 3, even though the function f is strictly convex
and f (ξ) ≥ |ξ|p with p = 1, we cannot use the direct methods of the calculus
of variations, since we are lead to work, because of the coercivity condition
f (ξ) ≥ |ξ|, in a non reflexive space W 1,1 (Ω). In fact, in general, there is no
minimizer of (P) in u0 +W 1,1

0 (Ω). We therefore need a different approach to
deal with this problem.
Before going further we write the associated Euler-Lagrange equation to (P)

(E) div

⎡⎣ ∇uq
1 + |∇u|2

⎤⎦ = nX
i=1

∂

∂xi

⎡⎣ uxiq
1 + |∇u|2

⎤⎦ = 0
or equivalently

(E) Mu ≡
³
1 + |∇u|2

´
∆u−

nX
i,j=1

uxiuxjuxixj = 0 .

The last equation is known as the minimal surface equation. If n = 2 and
u = u (x, y), it reads as

Mu =
¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy = 0 .

Therefore any C2
¡
Ω
¢
minimizer of (P) should satisfy the equation (E) and

conversely, since the integrand f is convex. Moreover, since f is strictly convex,
the minimizer, if it exists, is unique.
The equation (E) is equivalent (see Section 5.2) to the fact that the mean

curvature of Σ, denoted by H, vanishes everywhere.
It is clear that the above problem is, geometrically, too restrictive. Indeed

if any surface can be locally represented as a graph of a function (i.e., a non-
parametric surface), it is not the case globally. We are therefore lead to consider
more general ones known as the parametric surfaces. These are sets Σ ⊂ Rn+1
so that there exist a domain (i.e. an open and connected set) Ω ⊂ Rn and a
map v : Ω→ Rn+1 such that

Σ = v
¡
Ω
¢
=
©
v (x) : x ∈ Ω

ª
.

For example, when n = 2 and v = v (x, y) ∈ R3, if we denote by vx × vy the
normal to the surface (where a× b stands for the vectorial product of a, b ∈ R3
and vx = ∂v/∂x, vy = ∂v/∂y) we find that the area is given by

Area (Σ) = J (v) =

ZZ
Ω

|vx × vy| dxdy .
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More generally if n ≥ 2, we define (cf. Theorem 4.4.10 in Morrey [75])

g (∇v) =

⎡⎣n+1X
i=1

Ã
∂
¡
v1, ..., vi−1, vi+1, ..., vn+1

¢
∂ (x1, ..., xn)

!2⎤⎦1/2

where ∂
¡
u1, ..., un

¢
/∂ (x1, ..., xn) stands for the determinant of the n × n ma-

trix
¡
∂ui/∂xj

¢
1≤i,j≤n. In the terminology of Section 3.5 such a function g is

polyconvex but not convex. The area for such a surface is therefore given by

Area (Σ) = J (v) =

Z
Ω

g (∇v (x)) dx .

The problem is then, given Γ, to find a parametric surface that minimizes

(Q) inf {Area (Σ) : ∂Σ = Γ} .

It is clear that problem (Q) is more general than (P). It is however a more
complicated problem than (P) for several reasons besides the geometrical ones.
Contrary to (P) it is a vectorial problem of the calculus of variations and the
Euler-Lagrange equations associated to (Q) form now a system of (n+ 1) partial
differential equations. Moreover, although, as for (P), any minimizer is a solution
of these equations, it is not true in general, contrary to what happens with (P),
that every solution of the Euler-Lagrange equations is necessarily a minimizer
of (Q). Finally uniqueness is also lost for (Q) in contrast with what happens for
(P).
We now come to the definition of minimal surfaces. A minimal surface will

be a solution of the Euler-Lagrange equations associated to (Q), it will turn
out that it has (see Section 5.2) zero mean curvature. We should draw the
attention to the misleading terminology (this confusion is not present in the
case of nonparametric surfaces): a minimal surface is not necessarily a surface
of minimal area, while the converse is true, namely, a surface of minimal area is
a minimal surface.
The problem of finding a minimal surface with prescribed boundary is known

as Plateau problem.
We now describe the content of the present chapter. In most part we will

only consider the case n = 2. In Section 5.2 we will recall some basic facts
about surfaces, mean curvature and isothermal coordinates. We will then give
several examples of minimal surfaces. In Section 5.3 we will outline some of the
main ideas of the method of Douglas, as revised by Courant and Tonelli, for
solving Plateau problem. This method is valid only when n = 2, since it uses
strongly the notion and properties of conformal mappings. In Section 5.4 we
briefly, and without proofs, mention some results of regularity, uniqueness and



130 Minimal surfaces

non uniqueness of minimal surfaces. In the final section we come back to the
case of nonparametric surfaces and we give some existence results.
We now briefly discuss the historical background of the problem under con-

sideration. The problem in nonparametric form was formulated and the equation
(E) of minimal surfaces was derived by Lagrange in 1762. It was immediately
understood that the problem was a difficult one. The more general Plateau
problem (the name was given after the theoretical and experimental work of
the physicist Plateau) was solved in 1930 simultaneously and independently by
Douglas and Rado. One of the first two Fields medals was awarded to Douglas
in 1936 for having solved the problem. Before that many mathematicians have
contributed to the study of the problem: Ampère, Beltrami, Bernstein, Bon-
net, Catalan, Darboux, Enneper, Haar, Korn, Legendre, Lie, Meusnier, Monge,
Müntz, Riemann, H.A. Schwarz, Serret, Weierstrass, Weingarten and others.
Immediately after the work of Douglas and Rado, we can quote Courant, Mac
Shane, Morrey, Morse, Tonelli and many others since then. It is still a very
active field.
We conclude this introduction with some comments on the bibliography. We

should first point out that we gave many results without proofs and the ones that
are given are only sketched. It is therefore indispensable in this chapter, even
more than in the others, to refer to the bibliography. There are several excellent
books but, due to the nature of the subject, they are difficult to read. The most
complete to which we will refer constantly are those of Dierkes-Hildebrandt-
Küster-Wohlrab [39] and Nitsche [78]. As a matter of introduction, interesting
for a general audience, one can consult Hildebrandt-Tromba [58]. We refer also
to the monographs of Almgren [4], Courant [24], Federer [45], Gilbarg-Trudinger
[49] (for the nonparametric surfaces), Giusti [50], Morrey [75], Osserman [80]
and Struwe [91].

5.2 Generalities about surfaces

We now introduce the different types of surfaces that we will consider. We
will essentially limit ourselves to surfaces of R3, although in some instances we
will give some generalizations to Rn+1. Besides the references that we already
mentioned, one can consult books of differential geometry such as that of Hsiung
[61].

Definition 5.1 (i) A set Σ ⊂ R3 will be called a parametric surface (or more
simply a surface) if there exist a domain (i.e. an open and connected set) Ω ⊂ R2
and a (non constant) continuous map v : Ω→ R3 such that

Σ = v
¡
Ω
¢
=
©
v (x, y) ∈ R3 : (x, y) ∈ Ω

ª
.
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(ii) We say that Σ is a nonparametric surface if

Σ =
©
v (x, y) = (x, y, u (x, y)) ∈ R3 : (x, y) ∈ Ω

ª
with u : Ω→ R continuous and where Ω ⊂ R2 is a domain.

(iii) A parametric surface is said to be regular of class Cm, (m ≥ 1 an
integer) if, in addition, v ∈ Cm

¡
Ω;R3

¢
and vx × vy 6= 0 for every (x, y) ∈ Ω

(where a × b stands for the vectorial product of a, b ∈ R3 and vx = ∂v/∂x,
vy = ∂v/∂y). We will in this case write

e3 =
vx × vy
|vx × vy|

.

Remark 5.2 (i) In many cases we will restrict our attention to the case where
Ω is the unit disk and Σ = v

¡
Ω
¢
will then be called a surface of the type of the

disk.
(ii) In the sequel we will let

M
¡
Ω
¢
= C0

¡
Ω;R3

¢
∩W 1,2

¡
Ω;R3

¢
.

(iii) For a regular surface the area will be defined as

J (v) = Area (Σ) =

ZZ
Ω

|vx × vy| dxdy .

It can be shown, following Mac Shane and Morrey, that if v ∈M
¡
Ω
¢
, then the

above formula still makes sense (see Nitsche [78] pages 195-198).
(iv) In the case of nonparametric surface v (x, y) = (x, y, u (x, y)) we have

Area (Σ) = J (v) = I (u) =

ZZ
Ω

q
1 + u2x + u2y dxdy .

Note also that, for a nonparametric surface, we always have |vx × vy|2 = 1 +
u2x + u2y 6= 0.

We now introduce the different notions of curvatures.

Definition 5.3 Let Σ be a regular surface of class Cm, m ≥ 2, we let

E = |vx|2 , F = hvx; vyi , G = |vy|2 , e3 =
vx × vy
|vx × vy|

L = he3; vxxi , M = he3; vxyi , N = he3; vyyi

where h.; .i denotes the scalar product in R3.
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(i) The mean curvature of Σ, denoted by H, at a point p ∈ Σ (p = v (x, y))
is given by

H =
1

2

EN − 2FM +GL

EG− F 2
.

(ii) The Gaussian curvature of Σ, denoted byK, at a point p ∈ Σ (p = v (x, y))
is by definition

K =
LN −M2

EG− F 2
.

(iii) The principal curvatures, k1 and k2, are defined as

k1 = H +
p
H2 −K and k2 = H −

p
H2 −K

so that H = (k1 + k2) /2 and K = k1k2.

Remark 5.4 (i) We always have H2 ≥ K.
(ii) For a nonparametric surface v (x, y) = (x, y, u (x, y)), we have

E = 1 + u2x, F = uxuy, G = 1+ u2y, EG− F 2 = 1 + u2x + u2y

e3 =
(−ux,−uy, 1)q
1 + u2x + u2y

, L =
uxxq

1 + u2x + u2y

,

M =
uxyq

1 + u2x + u2y

, N =
uyyq

1 + u2x + u2y

and hence

H =

¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy

2
¡
1 + u2x + u2y

¢3/2 and K =
uxxuyy − u2xy¡
1 + u2x + u2y

¢2 .
(iii) For a nonparametric surface in Rn+1 given by xn+1 = u (x1, ..., xn), we

have that the mean curvature is defined by (cf. (A.14) in Gilbarg-Trudinger [49])

H =
1

n

nX
i=1

∂

∂xi

⎡⎣ uxiq
1 + |∇u|2

⎤⎦
=

1

n

³
1 + |∇u|2

´− 3
2

⎡⎣³1 + |∇u|2´∆u− nX
i,j=1

uxiuxjuxixj

⎤⎦ .

In terms of the operator M defined in the introduction of the present chapter,
we can write

Mu = n
³
1 + |∇u|2

´ 3
2

H .
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(iv) Note that we always have (see Exercise 5.2.1)

|vx × vy| =
p
EG− F 2 .

We are now in a position to define the notion of minimal surface.

Definition 5.5 A regular surface of class C2 is said to be minimal if H = 0 at
every point.

We next give several examples of minimal surfaces, starting with the non-
parametric ones.

Example 5.6 The first minimal surface that comes to mind is naturally the
plane, defined parametrically by (α, β, γ being constants)

Σ =
©
v (x, y) = (x, y, αx+ βy + γ) : (x, y) ∈ R2

ª
.

We trivially have H = 0.

Example 5.7 Scherk surface is a minimal surface in nonparametric form given
by

Σ =
n
v (x, y) = (x, y, u (x, y)) : |x| , |y| < π

2

o
where

u (x, y) = log cos y − log cosx .

We now turn our attention to minimal surfaces in parametric form.

Example 5.8 Catenoids defined, for (x, y) ∈ R2, by

v (x, y) = (x,w (x) cos y,w (x) sin y) with w (x) = λ cosh
x+ µ

λ
,

where λ 6= 0 and µ are constants, are minimal surfaces. We will see that they
are the only minimal surfaces of revolution (here around the x axis).

Example 5.9 The helicoid given, for (x, y) ∈ R2, by

v (x, y) = (y cosx, y sinx, ax)

with a ∈ R is a minimal surface (see Exercise 5.2.2).

Example 5.10 Enneper surface defined, for (x, y) ∈ R2, by

v (x, y) =

µ
x− x3

3
+ xy2,−y + y3

3
− yx2, x2 − y2

¶
is a minimal surface (see Exercise 5.2.2).
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As already said we have the following characterization for surfaces of revolu-
tion.

Proposition 5.11 The only regular minimal surfaces of revolution of the form

v (x, y) = (x,w (x) cos y, w (x) sin y) ,

are the catenoids, i.e.

w (x) = λ cosh
x+ µ

λ

where λ 6= 0 and µ are constants.

Proof. We have to prove that Σ given parametrically by v is minimal if and
only if

w (x) = λ cosh ((x+ µ) /λ) .

Observe first that

vx = (1, w
0 cos y, w0 sin y) , vy = (0,−w sin y, w cos y) , E = 1+w02, F = 0, G = w2

vx × vy = w (w0,− cos y,− sin y) , e3 =
w

|w|
(w0,− cos y,− sin y)√

1 + w02

vxx = w00 (0, cos y, sin y) , vxy = w0 (0,− sin y, cos y) , vyy = −w (0, cos y, sin y)

L =
w

|w|
−w00√
1 + w02

, M = 0, N =
|w|√
1 + w02

.

Since Σ is a regular surface, we must have |w| > 0 (because |vx × vy|2 = EG−
F 2 > 0). We therefore deduce that (recalling that |w| > 0)

H = 0 ⇔ EN +GL = 0 ⇔ |w|
¡
ww00 −

¡
1 + w02

¢¢
= 0

⇔ ww00 = 1 + w02 . (5.1)

Any solution of the differential equation necessarily satisfies

d

dx

"
w (x)p
1 + w02 (x)

#
= 0 .

The solution of this last differential equation (see the corrections of Exercise
5.2.3) being either w ≡ constant (which however does not satisfy (5.1)) or of the
form w (x) = λ cosh ((x+ µ) /λ), we have the result.
We now turn our attention to the relationship between minimal surfaces and

surfaces of minimal area.
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Theorem 5.12 Let Ω ⊂ R2 be a bounded Lipschitz domain.

Part 1. Let Σ0 = v
¡
Ω
¢
where v ∈ C2

¡
Ω;R3

¢
, v = v (x, y), with vx × vy 6= 0

in Ω. If
Area (Σ0) ≤ Area (Σ)

among all regular surfaces Σ of class C2 with ∂Σ = ∂Σ0, then Σ0 is a minimal
surface.

Part 2. Let SΩ be the set of nonparametric surfaces of the form Σu =©
(x, y, u (x, y)) : (x, y) ∈ Ω

ª
with u ∈ C2

¡
Ω
¢
and let Σu ∈ SΩ. The two fol-

lowing assertions are then equivalent.

(i) Σu is a minimal surface, which means

Mu =
¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy = 0 .

(ii) For every Σu ∈ SΩ with u = u on ∂Ω

Area (Σu) ≤ Area (Σu) = I (u) =

ZZ
Ω

q
1 + u2x + u2y dxdy .

Moreover, Σu is, among all surfaces of SΩ with u = u on ∂Ω, the only one to
have this property.

Remark 5.13 (i) The converse of Part 1, namely that if Σ0 is a minimal sur-
face then it is of minimal area, is, in general, false. The claim of Part 2 is that
the converse is true when we restrict our attention to nonparametric surfaces.
(ii) This theorem is easily extended to Rn+1, n ≥ 2.

Proof. We will only prove Part 2 of the theorem and we refer to Exercise
5.2.4 for Part 1. Let

v (x, y) = (x, y, u (x, y)) , (x, y) ∈ Ω

we then have

J (v) =

ZZ
Ω

|vx × vy| dxdy =
ZZ
Ω

q
1 + u2x + u2y dxdy ≡ I (u) .

(ii)⇒ (i). We write the associated Euler-Lagrange equation. Since u is a
minimizer we have

I (u) ≤ I (u+ �ϕ) , ∀ϕ ∈ C∞0 (Ω) , ∀� ∈ R
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and hence

d

d�
I (u+ �ϕ)

¯̄̄̄
�=0

=

ZZ
Ω

uxϕx + uyϕyq
1 + u2x + u2y

dxdy = 0, ∀ϕ ∈ C∞0 (Ω) .

Since u ∈ C2
¡
Ω
¢
we have, after integration by parts and using the fundamental

lemma of the calculus of variations (Theorem 1.24),

∂

∂x

⎡⎣ uxq
1 + u2x + u2y

⎤⎦+ ∂

∂y

⎡⎣ uyq
1 + u2x + u2y

⎤⎦ = 0 in Ω (5.2)

or equivalently

Mu =
¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy = 0 in Ω . (5.3)

This just asserts that H = 0 and hence Σu =
©
(x, y, u (x, y)) : (x, y) ∈ Ω

ª
is a

minimal surface.
(i)⇒ (ii). We start by noting that the function ξ → f (ξ) =

q
1 + |ξ|2,

where ξ ∈ R2, is strictly convex. So let Σu =
©
(x, y, u (x, y)) : (x, y) ∈ Ω

ª
be

a minimal surface. Since H = 0, we have that u satisfies (5.2) or (5.3). Let
Σu =

©
(x, y, u (x, y)) : (x, y) ∈ Ω

ª
with u ∈ C2

¡
Ω
¢
and u = u on ∂Ω. We want

to show that I (u) ≤ I (u). Since f is convex, we have

f (ξ) ≥ f (η) + h∇f (η) ; ξ − ηi , ∀ξ, η ∈ R2

and hence

f (ux, uy) ≥ f (ux, uy) +
1q

1 + u2x + u2y

h(ux, uy) ; (ux − ux, uy − uy)i .

Integrating the above inequality and appealing to (5.2) and to the fact that
u = u on ∂Ω we readily obtain the result.
The uniqueness follows from the strict convexity of f .
We next introduce the notion of isothermal coordinates (sometimes also called

conformal parameters). This notion will help us to understand the method of
Douglas that we will discuss in the next section.
Let us start with an informal presentation. Among all the parametrizations of

a given curve the arc length plays a special role; for a given surface the isothermal
coordinates play a similar role. They are given by E = |vx|2 = G = |vy|2 and
F = hvx; vyi = 0, which means that the tangent vectors are orthogonal and have
equal norms. In general and contrary to what happens for curves, we can only
locally find such a system of coordinates (i.e., with E = G and F = 0), according
to the result of Korn, Lichtenstein and Chern [21].
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Remark 5.14 (i) Note that for a nonparametric surface

Σ =
©
v (x, y) = (x, y, u (x, y)) , (x, y) ∈ Ω

ª
we have E = G = 1 + u2x = 1 + u2y and F = uxuy = 0 only if ux = uy = 0.
(ii) Enneper surface (Example 5.10) is globally parametrized with isothermal

coordinates.

One of the remarkable aspects of minimal surfaces is that they can be globally
parametrized by such coordinates as the above Enneper surface. We have the
following result that we will not use explicitly. We will, in part, give an idea of
the proof in the next section (for a proof, see Nitsche [78], page 175).

Theorem 5.15 Let Ω =
©
(x, y) ∈ R2 : x2 + y2 < 1

ª
. Let Σ be a minimal sur-

face of the type of the disk (i.e., there exists ev ∈ C2
¡
Ω;R3

¢
so that Σ = ev ¡Ω¢)

such that ∂Σ = Γ is a Jordan curve. Then there exists a global isothermal rep-
resentation of the surface Σ. This means that Σ =

©
v (x, y) : (x, y) ∈ Ω

ª
with v

satisfying

(i) v ∈ C
¡
Ω;R3

¢
∩ C∞

¡
Ω;R3

¢
and ∆v = 0 in Ω;

(ii) E = G > 0 and F = 0 (i.e., |vx|2 = |vy|2 > 0 and hvx;xyi = 0);

(iii) v maps the boundary ∂Ω topologically onto the Jordan curve Γ.

Remark 5.16 The second result asserts that Σ is a regular surface (i.e., vx ×
vy 6= 0) since |vx × vy| =

√
EG− F 2 = E = |vx|2 > 0.

To conclude we point out the deep relationship between isothermal coordi-
nates of minimal surfaces and harmonic functions (see also Theorem 5.15) which
is one of the basic facts in the proof of Douglas.

Theorem 5.17 Let Σ =
©
v (x, y) ∈ R3 : (x, y) ∈ Ω

ª
be a regular surface (i.e.

vx × vy 6= 0) of class C2 globally parametrized by isothermal coordinates; then

Σ is a minimal surface ⇔ ∆v = 0 (i.e., ∆v1 = ∆v2 = ∆v3 = 0).

Proof. We will show that if E = G = |vx|2 = |vy|2 and F = 0, then

∆v = 2EHe3 = 2H vx × vy (5.4)

where H is the mean curvature and e3 = (vx × vy) / |vx × vy|. The result will
readily follow from the fact that H = 0.
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Since E = G and F = 0, we have

H =
L+N

2E
⇒ L+N = 2EH . (5.5)

We next prove that hvx;∆vi = hvy;∆vi = 0. Using the equations E = G and
F = 0, we have, after differentiation of the first one by x and the second one by
y,

hvx; vxxi = hvy; vxyi and hvx; vyyi+ hvy; vxyi = 0 .
This leads, as wished, to hvx;∆vi = 0 and in a similar way to hvy;∆vi = 0.
Therefore ∆v is orthogonal to vx and vy and thus parallel to e3, which means
that there exists a ∈ R so that ∆v = ae3 . We then deduce that

a = he3;∆vi = he3; vxxi+ he3; vyyi = L+N . (5.6)

Combining (5.5) and (5.6), we immediately get (5.4) and the theorem then fol-
lows.

5.2.1 Exercises

Exercise 5.2.1 (i) Let a, b, c ∈ R3 show that

|a× b|2 = |a|2 |b|2 − (ha; bi)2

(a× b)× c = ha; ci b− hb; ci a .
(ii) Deduce that |vx × vy| =

√
EG− F 2 .

(iii) Show that

L = he3; vxxi = − he3x; vxi ,
M = he3; vxyi = − he3x; vyi = − he3y; vxi ,
N = he3; vyyi = − he3y; vyi .

Exercise 5.2.2 Show that the surfaces in Example 5.9 and Example 5.10 are
minimal surfaces.

Exercise 5.2.3 Let Σ be a surface (of revolution) given by

v (x, y) = (x,w (x) cos y, w (x) sin y) , x ∈ (0, 1) , y ∈ (0, 2π) , w ≥ 0 .

(i) Show that

Area (Σ) = I (w) = 2π

Z 1

0

w (x)

q
1 + (w0 (x))2 dx.
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(ii) Consider the problem (where α > 0)

(Pα) inf {I (w) : w (0) = w (1) = α} .

Prove that any C2 ([0, 1]) minimizer is necessarily of the form

w (x) = a cosh
2x− 1
2a

with a cosh
1

2a
= α .

Discuss the existence of such solutions, as function of α.

Exercise 5.2.4 Prove the first part of Theorem 5.12.

5.3 The Douglas-Courant-Tonelli method
We now present the main ideas of the method of Douglas, as modified by Courant
and Tonelli, for solving Plateau problem in R3. For a complete proof, we refer
to Courant [24], Dierkes-Hildebrandt-Küster-Wohlrab [39], Nitsche [78] or for a
slightly different approach to a recent article of Hildebrandt-Von der Mosel [59].
Let Ω =

©
(x, y) ∈ R2 : x2 + y2 < 1

ª
and Γ ⊂ R3 be a rectifiable (i.e., of finite

length) Jordan curve. Let wi ∈ ∂Ω (wi 6= wj) and pi ∈ Γ (pi 6= pj) i = 1, 2, 3 be
fixed. The set of admissible surfaces will then be

S =

⎧⎪⎪⎨⎪⎪⎩
Σ = v

¡
Ω
¢
where v : Ω→ Σ ⊂ R3 so that

(S1) v ∈M
¡
Ω
¢
= C0

¡
Ω;R3

¢
∩W 1,2

¡
Ω;R3

¢
(S2) v : ∂Ω→ Γ is weakly monotonic and onto
(S3) v (wi) = pi, i = 1, 2, 3

⎫⎪⎪⎬⎪⎪⎭ .

Remark 5.18 (i) The set of admissible surfaces is then the set of parametric
surfaces of the type of the disk with parametrization in M

¡
Ω
¢
. The condition

weakly monotonic in (S2) means that we allow the map v to be constant on some
parts of ∂Ω; thus v is not necessarily a homeomorphism of ∂Ω onto Γ. However
the minimizer of the theorem will have the property to map the boundary ∂Ω
topologically onto the Jordan curve Γ. The condition (S3) may appear a little
strange, it will help us to get compactness (see the proof below).
(ii) A first natural question is to ask if S is non empty. If the Jordan curve

Γ is rectifiable then S 6= ∅ (see for more details Dierkes-Hildebrandt-Küster-
Wohlrab [39] pages 232-234 and Nitsche [78], pages 253-257).
(iii) Recall from the preceding section that for Σ ∈ S we have

Area (Σ) = J (v) =

ZZ
Ω

|vx × vy| dxdy .

The main result of this chapter is then
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Theorem 5.19 Under the above hypotheses there exists Σ0 ∈ S so that

Area (Σ0) ≤ Area (Σ) , ∀Σ ∈ S .

Moreover there exists v satisfying (S1), (S2) and (S3), such that Σ0 = v
¡
Ω
¢
and

(i) v ∈ C∞
¡
Ω;R3

¢
with ∆v = 0 in Ω,

(ii) E = |vx|2 = G = |vy|2 and F = hvx; vyi = 0.

(iii) v maps the boundary ∂Ω topologically onto the Jordan curve Γ.

Remark 5.20 (i) The theorem asserts that Σ0 is of minimal area. To solve
completely Plateau problem, we still must prove that Σ0 is a regular surface (i.e.
vx×vy 6= 0 everywhere); we will then be able to apply Theorem 5.12 to conclude.
We will mention in the next section some results concerning this problem. We
also have a regularity result, namely that v is C∞ and harmonic, as well as a
choice of isothermal coordinates (E = G and F = 0).
(ii) The proof uses properties of conformal mappings in a significant way and

hence cannot be generalized as such to Rn+1, n ≥ 2. The results of De Giorgi,
Federer, Fleming, Morrey, Reifenberg (cf. Giusti [50], Morrey [75]) and others
deal with such a problem

Proof. We will only give the main ideas of the proof. It is divided into four
steps.
Step 1. Let Σ ∈ S and define

Area (Σ) = J (v) =

ZZ
Ω

|vx × vy| dxdy

D (v) ≡ 1

2

ZZ
Ω

³
|vx|2 + |vy|2

´
dxdy .

We then trivially have
J (v) ≤ D (v) (5.7)

since we know that

|vx × vy| =
p
EG− F 2 ≤ 1

2
(E +G) =

1

2

³
|vx|2 + |vy|2

´
. (5.8)

Furthermore, we have equality in (5.8) (and hence in (5.7)) if and only if E = G
and F = 0 (i.e., the parametrization is given by isothermal coordinates). We
then consider the minimization problems

(D) d = inf {D (v) : v satisfies (S1), (S2), (S3)}
(A) a = inf {Area (Σ) : Σ ∈ S} .



The Douglas-Courant-Tonelli method 141

We will show, in Step 2, that there exists a minimizer v of (D), whose components
are harmonic functions, which means that ∆v = 0. Moreover, this v verifies
E = G and F = 0 (cf. Step 3) and hence, according to Theorem 5.17, Σ0 = v

¡
Ω
¢

solves Plateau problem (up to the condition vx× vy 6= 0). Finally we will show,
in Step 4, that in fact a = d = D (v) and thus, since E = G, F = 0 and (5.7)
holds, we will have found that Σ0 is also of minimal area.
Step 2. We now show that (D) has a minimizer. This does not follow from

the results of the previous chapters; it would be so if we had chosen a fixed
parametrization of the boundary Γ. Since S 6= ∅, we can find a minimizing
sequence {vν} so that

D (vν)→ d . (5.9)

Any such sequence {vν} will not, in general, converge. The idea is to replace vν
by a harmonic function evν such that vν = evν on ∂Ω. More precisely, we defineevν as the minimizer of

D (evν) = min {D (v) : v = vν on ∂Ω} . (5.10)

Such a evν exists and its components are harmonic (cf. Chapter 2). Combining
(5.9) and (5.10), we still have

D (evν)→ d .

Without the hypotheses (S2), (S3), this new sequence {evν} does not converge
either. The condition (S3) is important, since (see Exercise 5.3.1) Dirichlet
integral is invariant under any conformal transformation from Ω onto Ω; (S3)
allows to select a unique one. The hypothesis (S2) and the Courant-Lebesgue
lemma imply that {evν} is a sequence of equicontinuous functions (see Courant
[24] page 103, Dierkes-Hildebrandt-Küster-Wohlrab [39] pages 235-237 or Nitsche
[78], page 257). It follows from Ascoli-Arzela theorem (Theorem 1.3) that, up
to a subsequence, evνk → v uniformly.

Harnack theorem (see, for example, Gilbarg-Trudinger [49], page 21), a classical
property of harmonic functions, implies that v is harmonic, satisfies (S1), (S2),
(S3) and

D (v) = d .

Step 3. We next show that this map v verifies also E = G (i.e., |vx|2 = |vy|2)
and F = 0 (i.e., hvx; vyi = 0). We will use, in order to establish this fact,
the technique of variations of the independent variables that we have already
encountered in Section 2.3, when deriving the second form of the Euler-Lagrange
equation.
Since the proof of this step is a little long, we subdivide it into three substeps.
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Step 3.1. Let λ, µ ∈ C∞
¡
Ω
¢
, to be chosen later, and let � ∈ R be sufficiently

small so that the mapµ
x0

y0

¶
= ϕ� (x, y) =

µ
ϕ�1 (x, y)
ϕ�2 (x, y)

¶
=

µ
x+ �λ (x, y)
y + �µ (x, y)

¶
is a diffeomorphism from Ω onto a simply connected domain Ω

�
= ϕ�

¡
Ω
¢
. We

denote its inverse by ψ� and we find thatµ
x
y

¶
= ψ� (x0, y0) =

µ
ψ�1 (x

0, y0)
ψ�2 (x

0, y0)

¶
=

µ
x0 − �λ (x0, y0) + o (�)
y0 − �µ (x0, y0) + o (�)

¶
where o (t) stands for a function f = f (t) so that f (t) /t tends to 0 as t tends
to 0. We therefore have

ϕ� (ψ� (x0, y0)) = (x0, y0) and ψ� (ϕ� (x, y)) = (x, y)

moreover the Jacobian is given by

det∇ϕ� (x, y) = 1 + �
¡
λx (x, y) + µy (x, y)

¢
+ o (�) . (5.11)

We now change the independent variables and write

u� (x0, y0) = v (ψ� (x0, y0)) .

We find that

u�x0 (x
0, y0) = vx (ψ

� (x0, y0))
∂

∂x0
ψ�1 (x

0, y0) + vy (ψ
� (x0, y0))

∂

∂x0
ψ�2 (x

0, y0)

= vx (ψ
�)− � [vx (ψ

�)λx (ψ
�) + vy (ψ

�)µx (ψ
�)] + o (�)

and similarly

u�y0 (x
0, y0) = vy (ψ

�)− �
£
vx (ψ

�)λy (ψ
�) + vy (ψ

�)µy (ψ
�)
¤
+ o (�) .

This leads to

|u�x0 (x0, y0)|
2
+
¯̄
u�y0 (x

0, y0)
¯̄2

= |vx (ψ�)|2 + |vy (ψ�)|2

−2�
h
|vx (ψ�)|2 λx (ψ�) + |vy (ψ�)|2 µy (ψ�)

i
−2� [hvx (ψ�) ; vy (ψ�)i (λy (ψ�) + µx (ψ

�))] + o (�) .
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Integrating this identity and changing the variables, letting (x0, y0) = ϕ� (x, y),
in the right hand side we find (recalling (5.11)) thatRR

Ω�

h
|u�x0 (x0, y0)|

2
+
¯̄
u�y0 (x

0, y0)
¯̄2i

dx0dy0 =
RR
Ω

h
|vx (x, y)|2 + |vy (x, y)|2

i
dxdy

−�
RR
Ω

h³
|vx|2 − |vy|2

´ ¡
λx − µy

¢
+ 2 hvx; vyi (λy + µx)

i
dxdy + o (�) .

(5.12)
Step 3.2. We now use Riemann theorem to find a conformal mapping

α� : Ω→ Ω�

which is also a homeomorphism from Ω onto Ω
�
. We can also impose that the

mapping verifies
α� (wi) = ϕ� (wi)

where wi are the points that enter in the definition of S.
We finally let

v� (x, y) = u� ◦ α� (x, y) = v ◦ ψ� ◦ α� (x, y)

where u� is as in Step 3.1.
Since v ∈ S, we deduce that v� ∈ S. Therefore using the conformal invariance

of the Dirichlet integral (see Exercise 5.3.1), we find that

D (v�) =
1

2

ZZ
Ω

h
|v�x (x, y)|

2
+
¯̄
v�y (x, y)

¯̄2i
dxdy

=
1

2

ZZ
Ω�

h
|u�x0 (x0, y0)|

2
+
¯̄
u�y0 (x

0, y0)
¯̄2i

dx0dy0

which combined with (5.12) leads to

D (v�) = D (v)− �

2

ZZ
Ω

h³
|vx|2 − |vy|2

´ ¡
λx − µy

¢i
dxdy

−�
ZZ
Ω

[hvx; vyi (λy + µx)] dxdy + o (�) .

Since v�, v ∈ S and v is a minimizer of the Dirichlet integral, we find thatZZ
Ω

h³
|vx|2 − |vy|2

´¡
λx − µy

¢
+ 2 hvx; vyi (λy + µx)

i
dxdy = 0. (5.13)

Step 3.3. We finally choose in an appropriate way the functions λ, µ ∈
C∞

¡
Ω
¢
that appeared in the previous steps. We let σ, τ ∈ C∞0 (Ω) be arbitrary,
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we then choose λ and µ so that⎧⎨⎩ λx − µy = σ

λy + µx = τ

(this is always possible; find first λ satisfying ∆λ = σx + τy then choose µ such
that

¡
µx, µy

¢
= (τ − λy, λx − σ)). Returning to (5.13) we findZZ
Ω

{(E −G)σ + 2Fτ} dxdy = 0, ∀σ, τ ∈ C∞0 (Ω) .

The fundamental lemma of the calculus of variations (Theorem 1.24) implies
then E = G and F = 0. Thus, up to the condition vx×vy 6= 0, Plateau problem
is solved (cf. Theorem 5.17).
We have still to prove (iii) in the statement of the theorem. However this

follows easily from (i), (ii) and (S2) of the theorem, cf. Dierkes-Hildebrandt-
Küster-Wohlrab [39] page 248.
Step 4. We let Σ0 = v

¡
Ω
¢
where v is the element that has been found in the

previous steps and satisfies in particular

d = inf {D (v) : v satisfies (S1), (S2), (S3)} = D (v) .

To conclude the proof of the theorem it remains to show that

a = inf {Area (Σ) : Σ ∈ S} = Area (Σ0) = D (v) = d .

We already know, from the previous steps, that

a ≤ Area (Σ0) = D (v) = d

and we therefore wish to show the reverse inequality.
A way of proving this claim is by using a result of Morrey (see Dierkes-

Hildebrandt-Küster-Wohlrab [39] page 252 and for a slightly different approach
see Courant [24] and Nitsche [78]) which asserts that for any � > 0 and any v
satisfying (S1), (S2), (S3), we can find v� verifying (S1), (S2), (S3) so that

D (v�)− � ≤ Area (Σ)

where Σ = v
¡
Ω
¢
. Since d ≤ D (v�) and � is arbitrary, we obtain that d ≤ a; the

other inequality being trivial we deduce that a = d.
This concludes the proof of the theorem.
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5.3.1 Exercises

Exercise 5.3.1 Let Ω ⊂ R2 be a bounded smooth domain and

ϕ (x, y) = (λ (x, y) , µ (x, y))

be a conformal mapping from Ω onto B. Let v ∈ C1
¡
B;R3

¢
and w = v ◦ ϕ;

show that ZZ
Ω

h
|wx|2 + |wy|2

i
dxdy =

ZZ
B

h
|vλ|2 + |vµ|2

i
dλdµ .

5.4 Regularity, uniqueness and non uniqueness
We are now going to give some results without proofs. The first ones concern
the regularity of the solution found in the previous section.
We have seen how to find a minimal surface with a C∞ parametrization. We

have seen, and we will see it again below, that several minimal surfaces may
exist. The next result gives a regularity result for all such surfaces with given
boundary (see Nitsche [78], page 274).

Theorem 5.21 If Γ is a Jordan curve of class Ck,α (with k ≥ 1 an integer
and 0 < α < 1) then every solution of Plateau problem (i.e., a minimal surface
whose boundary is Γ) admits a Ck,α

¡
Ω
¢
parametrization.

However the most important regularity result concerns the existence of a
regular surface (i.e., with vx × vy 6= 0) which solves Plateau problem? We have
seen in Section 5.3, that the method of Douglas does not answer this question.
A result in this direction is the following (see Nitsche [78], page 334).

Theorem 5.22 (i) If Γ is an analytical Jordan curve and if its total curvature
does not exceed 4π then any solution of Plateau problem is a regular minimal
surface.

(ii) If a solution of Plateau problem is of minimal area then the result remains
true without any hypothesis on the total curvature of Γ.

Remark 5.23 The second part of the theorem allows, a posteriori, to assert that
the solution found in Section 5.3 is a regular minimal surface (i.e., vx×vy 6= 0),
provided Γ is analytical.

We now turn our attention to the problem of uniqueness of minimal sur-
faces. Recall first (Theorem 5.12) that we have uniqueness when restricted to
nonparametric surfaces. For general surfaces we have the following uniqueness
result (see Nitsche [78], page 351).
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Theorem 5.24 Let Γ be an analytical Jordan curve with total curvature not
exceeding 4π, then Plateau problem has a unique solution.

We now give a non uniqueness result (for more details we refer to Dierkes-
Hildebrandt-Küster-Wohlrab [39] and to Nitsche [78]).

Example 5.25 (Enneper surface, see Example 5.10). Let r ∈
¡
1,
√
3
¢
and

Γr =

½µ
r cos θ − 1

3
r3 cos 3θ,−r sin θ − 1

3
r3 sin 3θ, r2 cos 2θ

¶
: θ ∈ [0, 2π)

¾
.

We have seen (Example 5.10) that

Σr =

½µ
rx+ r3xy2 − r3

3
x3,−ry − r3x2y +

r3

3
y3, r2

¡
x2 − y2

¢¶
: x2 + y2 ≤ 1

¾
is a minimal surface and that ∂Σr = Γr. It is possible to show (cf. Nitsche [78],
page 338) that Σr is not of minimal area if r ∈

¡
1,
√
3
¢
; therefore it is distinct

from the one found in Theorem 5.19.

5.5 Nonparametric minimal surfaces
We now discuss the case of nonparametric surfaces. Let Ω ⊂ Rn be a bounded
domain (in the present section we do not need to limit ourselves to the case
n = 2). The surfaces that we will consider will be of the form

Σ =
©
(x, u (x)) = (x1, ..., xn, u (x1, ..., xn)) : x ∈ Ω

ª
.

The area of such a surface is given by

I (u) =

Z
Ω

q
1 + |∇u (x)|2 dx .

As already seen in Theorem 5.12, we have that any C2
¡
Ω
¢
minimizer of

(P ) inf {I (u) : u = u0 on ∂Ω}

satisfies the minimal surface equation

(E) Mu ≡
³
1 + |∇u|2

´
∆u−

nX
i,j=1

uxiuxjuxixj = 0

⇔
nX
i=1

∂

∂xi

⎡⎣ uxiq
1 + |∇u|2

⎤⎦ = 0
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and hence Σ has mean curvature that vanishes everywhere. The converse is also
true; moreover we have uniqueness of such solutions. However, the existence of
a minimizer still needs to be proved because Theorem 5.19 does not deal with
this case. The techniques for solving such a problem are much more analytical
than the previous ones.
Before proceeding with the existence theorems we would like to mention a

famous related problem known as Bernstein problem. The problem is posed in
the whole space Rn (i.e., Ω = Rn) and we seek for C2 (Rn) solutions of the
minimal surface equation

(E)
nX
i=1

∂

∂xi

⎛⎝ uxiq
1 + |∇u|2

⎞⎠ = 0 in Rn

or of its equivalent form Mu = 0. In terms of regular surfaces, we are searching
for a nonparametric surface (defined over the whole of Rn) in Rn+1 which has
vanishing mean curvature. Obviously the function u (x) = ha;xi+b with a ∈ Rn
and b ∈ R, which in geometrical terms represents a hyperplane, is a solution of
the equation. The question is to know if this is the only one.
In the case n = 2, Bernstein has shown that, indeed, this is the only C2

solution (the result is known as Bernstein theorem). Since then several authors
found different proofs of this theorem. The extension to higher dimensions is
however much harder. De Giorgi extended the result to the case n = 3, Almgren
to the case n = 4 and Simons to n = 5, 6, 7. In 1969, Bombieri, De Giorgi and
Giusti proved that when n ≥ 8, there exists a nonlinear u ∈ C2 (Rn) (and hence
the surface is not a hyperplane) satisfying equation (E). For more details on
Bernstein problem, see Giusti [50], Chapter 17 and Nitsche [78], pages 429-430.
We now return to our problem in a bounded domain. We start by quoting a

result of Jenkins and Serrin; for a proof see Gilbarg-Trudinger [49], page 297.

Theorem 5.26 (Jenkins-Serrin). Let Ω ⊂ Rn be a bounded domain with
C2,α, 0 < α < 1, boundary and let u0 ∈ C2,α

¡
Ω
¢
. The problem Mu = 0 in Ω

with u = u0 on ∂Ω has a solution for every u0 if and only if the mean curvature
of ∂Ω is everywhere non negative.

Remark 5.27 (i) We now briefly mention a related result due to Finn and
Osserman. It roughly says that if Ω is a non convex domain, there exists a
continuous u0 so that the problem Mu = 0 in Ω with u = u0 on ∂Ω has no C2

solution. Such a u0 can even have arbitrarily small norm ku0kC0 .
(ii) The above theorem follows several earlier works that started with Bern-

stein (see Nitsche [78], pages 352-358).

We end the present chapter with a simple theorem whose ideas contained in
the proof are used in several different problems of partial differential equations.
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Theorem 5.28 (Korn-Müntz). Let Ω ⊂ Rn be a bounded domain with C2,α,
0 < α < 1, boundary and consider the problem⎧⎪⎪⎨⎪⎪⎩

Mu =
³
1 + |∇u|2

´
∆u−

nP
i,j=1

uxiuxjuxixj = 0 in Ω

u = u0 on ∂Ω.

Then there exists � > 0 so that, for every u0 ∈ C2,α
¡
Ω
¢
with ku0kC2,α ≤ �, the

above problem has a (unique) C2,α
¡
Ω
¢
solution.

Remark 5.29 It is interesting to compare this theorem with the preceding one.
We see that we have not made any assumption on the mean curvature of ∂Ω;
but we require that the C2,α norm of u0 to be small. We should also observe
that the above mentioned result of Finn and Osserman shows that if Ω is non
convex and if ku0kC0 ≤ �, this is, in general, not sufficient to get existence of
solutions. Therefore we cannot, in general, replace the condition ku0kC2,α small,
by ku0kC0 small.

Proof. The proof is divided into three steps. We write

Mu = 0⇔ ∆u = N (u) ≡
nX

i,j=1

uxiuxjuxixj − |∇u|
2
∆u . (5.14)

From estimates of the linearized equation ∆u = f (Step 1) and estimates of the
nonlinear part N (u) (Step 2), we will be able to conclude (Step 3) with the help
of Banach fixed point theorem.
Step 1. Let us recall the classical Schauder estimates concerning Poisson

equation (see Theorem 6.6 and page 103 in Gilbarg-Trudinger [49]). If Ω ⊂ Rn
is a bounded domain of Rn with C2,α boundary and if⎧⎨⎩ ∆u = f in Ω

u = ϕ on ∂Ω
(5.15)

we can then find a constant C = C (Ω) > 0 so that the (unique) solution u of
(5.15) satisfies

kukC2,α ≤ C (kfkC0,α + kϕkC2,α) . (5.16)

Step 2. We now estimate the nonlinear term N . We will show that we can
find a constant, still denoted by C = C (Ω) > 0, so that for every u, v ∈ C2,α

¡
Ω
¢

we have

kN (u)−N (v)kC0,α ≤ C (kukC2,α + kvkC2,α)
2 ku− vkC2,α . (5.17)
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From

N (u)−N (v) =
nX

i,j=1

uxiuxj
¡
uxixj − vxixj

¢
+

nX
i,j=1

vxixj
¡
uxiuxj − vxivxj

¢
+ |∇u|2 (∆v −∆u) +∆v

³
|∇v|2 − |∇u|2

´
we deduce that (5.17) holds from Proposition 1.10 and its proof (cf. Exercise
1.2.1).
Step 3. We are now in a position to show the theorem. We define a sequence

{uν}∞ν=1 of C2,α
¡
Ω
¢
functions in the following way⎧⎨⎩ ∆u1 = 0 in Ω

u1 = u0 on ∂Ω
(5.18)

and by induction ⎧⎨⎩ ∆uν+1 = N (uν) in Ω

uν+1 = u0 on ∂Ω .
(5.19)

The previous estimates will allow us to deduce that for ku0kC2,α ≤ �, � to be
determined, we have

kuν+1 − uνkC2,α ≤ K kuν − uν−1kC2,α (5.20)

for some K < 1. Banach fixed point theorem will then imply that uν → u in
C2,α and hence ⎧⎨⎩ ∆u = N (u) in Ω

u = u0 on ∂Ω

which is the claimed result.
We now establish (5.20), which amounts to find the appropriate � > 0. We

start by choosing 0 < K < 1 and we then choose � > 0 sufficiently small so that

2C2�

µ
1 +

C4�2

1−K

¶
≤
√
K (5.21)

where C is the constant appearing in Step 1 and Step 2 (we can consider, without
loss of generality, that they are the same).
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We therefore only need to show that if ku0kC2,α ≤ �, we have indeed (5.20).
Note that for every ν ≥ 2, we have⎧⎨⎩ ∆ (uν+1 − uν) = N (uν)−N (uν−1) in Ω

uν+1 − uν = 0 on ∂Ω .

From Step 1 and Step 2, we find that, for every ν ≥ 2,

kuν+1 − uνkC2,α ≤ C kN (uν)−N (uν−1)kC0,α

≤ C2 (kuνkC2,α + kuν−1kC2,α)
2 kuν − uν−1kC2,α .

(5.22)

Similarly for ν = 1, we have

ku2 − u1kC2,α ≤ C kN (u1)kC0,α ≤ C2 ku1k3C2,α . (5.23)

From now on, since all norms will be C2,α norms, we will denote them simply
by k·k. From (5.22), we deduce that it is enough to show

C2 (kuνk+ kuν−1k)2 ≤ K, ν ≥ 2 (5.24)

to obtain (5.20) and thus the theorem. To prove (5.24), it is sufficient to show
that

kuνk ≤ C�

µ
1 +

C4�2

1−K

¶
, ν ≥ 2 . (5.25)

The inequality (5.22) will then follow from the choice of � in (5.21). We will
prove (5.25) by induction. Observe that by Step 1 and from (5.18), we have

ku1k ≤ C ku0k ≤ C�

µ
≤ C�

µ
1 +

C4�2

1−K

¶¶
. (5.26)

We now show (5.25) for ν = 2. We have, from (5.23) and from (5.26), that

ku2k ≤ ku1k+ ku2 − u1k ≤ ku1k
³
1 + C2 ku1k2

´
≤ C�

¡
1 + C4�2

¢
and hence since K ∈ (0, 1), we deduce the inequality (5.25). Suppose now, from
the hypothesis of induction, that (5.25) is valid up to the order ν and let us
prove that it holds true for ν + 1. We trivially have that

kuν+1k ≤ ku1k+
νX

j=1

kuj+1 − ujk . (5.27)
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We deduce from (5.22) and (5.24) (since (5.25) holds for every 1 ≤ j ≤ ν) that

kuj+1 − ujk ≤ K kuj − uj−1k ≤ Kj−1 ku2 − u1k .

Returning to (5.27), we find

kuν+1k ≤ ku1k+ ku2 − u1k
νX

j=1

Kj−1 ≤ ku1k+
1

1−K
ku2 − u1k .

Appealing to (5.23) and then to (5.26), we obtain

kuν+1k ≤ ku1k
Ã
1 +

C2 ku1k2

1−K

!
≤ C�

µ
1 +

C4�2

1−K

¶
,

which is exactly (5.25). The theorem then follows.

5.5.1 Exercises

Exercise 5.5.1 Let u ∈ C2
¡
R2
¢
, u = u (x, y), be a solution of the minimal

surface equation

Mu =
¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy = 0 .

Show that there exists a convex function ϕ ∈ C2
¡
R2
¢
, so that

ϕxx =
1 + u2xq
1 + u2x + u2y

, ϕxy =
uxuyq

1 + u2x + u2y

, ϕyy =
1 + u2yq
1 + u2x + u2y

.

Deduce that
ϕxxϕyy − ϕ2xy = 1 .
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Chapter 6

Isoperimetric inequality

6.1 Introduction

Let A ⊂ R2 be a bounded open set whose boundary, ∂A, is a sufficiently regular,
simple closed curve. Denote by L (∂A) the length of the boundary and byM (A)
the measure (the area) of A. The isoperimetric inequality states that

[L (∂A)]
2 − 4πM (A) ≥ 0 .

Furthermore, equality holds if and only if A is a disk (i.e., ∂A is a circle).

This is one of the oldest problems in mathematics. A variant of this in-
equality is known as Dido problem (who is said to have been a Phoenician
princess). Several more or less rigorous proofs were known since the times of the
Ancient Greeks; the most notable attempt for proving the inequality is due to
Zenodorus, who proved the inequality for polygons. There are also significant
contributions by Archimedes and Pappus. To come closer to us one can mention,
among many, Euler, Galileo, Legendre, L’Huilier, Riccati or Simpson. A special
tribute should be paid to Steiner who derived necessary conditions through a
clever argument of symmetrization. The first proof that agrees with modern
standards is due to Weierstrass. Since then, many proofs were given, notably by
Blaschke, Bonnesen, Carathéodory, Edler, Frobenius, Hurwitz, Lebesgue, Lieb-
mann, Minkowski, H.A. Schwarz, Sturm, and Tonelli among others. We refer to
Porter [86] for an interesting article on the history of the inequality.

We will give here the proof of Hurwitz as modified by H. Lewy and Hardy-
Littlewood-Polya [55]. In particular we will show that the isoperimetric inequal-
ity is equivalent to Wirtinger inequality that we have already encountered in a

153
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weaker form (cf. Poincaré-Wirtinger inequality). This inequality reads asZ 1

−1
u02 dx ≥ π2

Z 1

−1
u2 dx, ∀u ∈ X

where X =
n
u ∈W 1,2 (−1, 1) : u (−1) = u (1) and

R 1
−1 udx = 0

o
. It also states

that equality holds if and only if u (x) = α cosπx+ β sinπx, for any α, β ∈ R.
In Section 6.3 we discuss the generalization to Rn, n ≥ 3, of the isoperimetric

inequality. It reads as follows

[L (∂A)]
n − nnωn [M (A)]

n−1 ≥ 0

for every bounded open set A ⊂ Rn with sufficiently regular boundary, ∂A; and
where ωn is the measure of the unit ball of Rn, M (A) stands for the measure
of A and L (∂A) for the (n− 1) measure of ∂A. Moreover, if A is sufficiently
regular (for example, convex), there is equality if and only if A is a ball.
The inequality in higher dimensions is considerably harder to prove; we will

discuss, briefly, in Section 6.3 the main ideas of the proof. When n = 3, the
first complete proof was the one of H.A. Schwarz. Soon after there were gen-
eralizations to higher dimensions and other proofs notably by A. Aleksandrov,
Blaschke, Bonnesen, H. Hopf, Liebmann, Minkowski and E. Schmidt.
Finally numerous generalizations of this inequality have been studied in rela-

tion to problems of mathematical physics, see Bandle [9], Payne [83] and Polya-
Szegö [85] for more references.
There are several articles and books devoted to the subject, we recommend

the review article of Osserman [81] and the books by Berger [10], Blaschke [11],
Federer [45], Hardy-Littlewood-Polya [55] (for the two dimensional case) and
Webster [96]. The book of Hildebrandt-Tromba [58] also has a chapter on this
matter.

6.2 The case of dimension 2

We start with the key result for proving the isoperimetric inequality; but before
that we introduce the following notation, for any p ≥ 1,

W 1,p
per (a, b) =

©
u ∈W 1,p (a, b) : u (a) = u (b)

ª
.

Theorem 6.1 (Wirtinger inequality). Let

X =

½
u ∈W 1,2

per (−1, 1) :
Z 1

−1
u (x) dx = 0

¾
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then Z 1

−1
u02 dx ≥ π2

Z 1

−1
u2 dx, ∀u ∈ X .

Furthermore equality holds if and only if u (x) = α cosπx + β sinπx, for any
α, β ∈ R.

Remark 6.2 (i) It will be implicitly shown below that Wirtinger inequality is
equivalent to the isoperimetric inequality.
(ii) More generally we have if

X =

(
u ∈W 1,2

per (a, b) :

Z b

a

u (x) dx = 0

)
that Z b

a

u02 dx ≥
µ
2π

b− a

¶2 Z b

a

u2 dx, ∀u ∈ X .

(iii) The inequality can also be generalized (cf. Croce-Dacorogna [28]) toÃZ b

a

|u0|p dx

!1/p
≥ α (p, q, r)

ÃZ b

a

|u0|q dx
!1/q

, ∀u ∈ X

for some appropriate α (p, q, r) (in particular α (2, 2, 2) = 2π/ (b− a)) and where

X =

(
u ∈W 1,p

per (a, b) :

Z b

a

|u (x)|r−2 u (x) dx = 0
)
.

(iv) We have seen in Example 2.23 a weaker form of the inequality, known
as Poincaré-Wirtinger inequality, namelyZ 1

0

u02 dx ≥ π2
Z 1

0

u2 dx, ∀u ∈W 1,2
0 (0, 1) .

This inequality can be inferred from the theorem by setting

u (x) = −u (−x) if x ∈ (−1, 0) .

Proof. An alternative proof, more in the spirit of Example 2.23, is proposed
in Exercise 6.2.1. The proof given here is, essentially, the classical proof of
Hurwitz. We divide the proof into two steps.
Step 1. We start by proving the theorem under the further restriction that

u ∈ X ∩ C2 [−1, 1]. We express u in Fourier series

u (x) =
∞X
n=1

[an cosnπx+ bn sinnπx] .
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Note that there is no constant term since
R 1
−1 u (x) dx = 0. We know at the

same time that

u0 (x) = π
∞X
n=1

[−nan sinnπx+ nbn cosnπx] .

We can now invoke Parseval formula to getZ 1

−1
u2 dx =

∞X
n=1

¡
a2n + b2n

¢
Z 1

−1
u02 dx = π2

∞X
n=1

¡
a2n + b2n

¢
n2.

The desired inequality follows then at onceZ 1

−1
u02 dx ≥ π2

Z 1

−1
u2 dx, ∀u ∈ X ∩ C2 .

Moreover equality holds if and only if an = bn = 0, for every n ≥ 2. This implies
that equality holds if and only if u (x) = α cosπx + β sinπx, for any α, β ∈ R,
as claimed.
Step 2. We now show that we can remove the restriction u ∈ X ∩C2 [−1, 1].

By the usual density argument we can find for every u ∈ X a sequence uν ∈
X ∩C2 [−1, 1] so that

uν → u in W 1,2 (−1, 1) .

Therefore, for every � > 0, we can find ν sufficiently large so thatZ 1

−1
u02 dx ≥

Z 1

−1
u02ν dx− � and

Z 1

−1
u2ν dx ≥

Z 1

−1
u2 dx− � .

Combining these inequalities with Step 1 we findZ 1

−1
u02 dx ≥ π2

Z 1

−1
u2 dx−

¡
π2 + 1

¢
� .

Letting �→ 0 we have indeed obtained the inequality.
We still need to see that equality in X holds if and only if u (x) = α cosπx+

β sinπx, for any α, β ∈ R. This has been proved in Step 1 only if u ∈ X ∩
C2 [−1, 1]. This property is established in Exercise 6.2.2.
We get as a direct consequence of the theorem
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Corollary 6.3 The following inequality holdsZ 1

−1

¡
u02 + v02

¢
dx ≥ 2π

Z 1

−1
uv0 dx, ∀u, v ∈W 1,2

per (−1, 1) .

Furthermore equality holds if and only if

(u (x)− r1)
2 + (v (x)− r2)

2 = r23, ∀x ∈ [−1, 1]

where r1, r2, r3 ∈ R are constants.

Proof. We first observe that if we replace u by u − r1 and v by v − r2 the
inequality remains unchanged, therefore we can assume thatZ 1

−1
u dx =

Z 1

−1
v dx = 0

and hence that u, v ∈ X =
n
u ∈W 1,2

per (−1, 1) :
R 1
−1 u (x) dx = 0

o
. We write

the inequality in the equivalent formZ 1

−1

¡
u02 + v02 − 2πuv0

¢
dx =

Z 1

−1
(v0 − πu)

2
dx+

Z 1

−1

¡
u02 − π2u2

¢
dx ≥ 0 .

From Theorem 6.1 we deduce that the second term in the above inequality is
non negative while the first one is trivially non negative; thus the inequality is
established.
We now discuss the equality case. If equality holds we should have

v0 = πu and
Z 1

−1

¡
u02 − π2u2

¢
dx = 0

which implies from Theorem 6.1 that

u (x) = α cosπx+ β sinπx and v (x) = α sinπx− β cosπx .

Since we can replace u by u− r1 and v by v − r2, we have that

(u (x)− r1)
2
+ (v (x)− r2)

2
= r23, ∀x ∈ [−1, 1]

as wished.
We are now in a position to prove the isoperimetric inequality in its analytic

form; we postpone the discussion of its geometric meaning for later.



158 Isoperimetric inequality

Theorem 6.4 (Isoperimetric inequality). Let for u, v ∈W 1,1
per (a, b)

L (u, v) =

Z b

a

p
u02 + v02 dx

M (u, v) =
1

2

Z b

a

(uv0 − vu0) dx =

Z b

a

uv0 dx .

Then
[L (u, v)]

2 − 4πM (u, v) ≥ 0, ∀u, v ∈W 1,1
per (a, b) .

Moreover, among all u, v ∈W 1,1
per (a, b) ∩ C1 ([a, b]), equality holds if and only if

(u (x)− r1)
2 + (v (x)− r2)

2 = r23, ∀x ∈ [a, b]

where r1, r2, r3 ∈ R are constants.

Remark 6.5 The uniqueness holds under fewer regularity hypotheses that we
do not discuss here. We, however, point out that the very same proof for the
uniqueness is valid for u, v ∈W 1,1

per (a, b) ∩ C1piec ([a, b]).

Proof. We divide the proof into two steps.
Step 1. We first prove the theorem under the further restriction that u, v ∈

W 1,1
per (a, b) ∩C1 ([a, b]). We will also assume that

u02 (x) + v02 (x) > 0, ∀x ∈ [a, b] .

This hypothesis is unnecessary and can be removed, see Exercise 6.2.3.
We start by reparametrizing the curve by a multiple of its arc length, namely⎧⎪⎪⎨⎪⎪⎩

y = η (x) = −1 + 2
L(u,v)

Z x

a

√
u02 + v02 dx

ϕ (y) = u
¡
η−1 (y)

¢
and ψ (y) = v

¡
η−1 (y)

¢
.

It is easy to see that ϕ,ψ ∈W 1,2
per (−1, 1) ∩ C1 ([−1, 1]) andq

ϕ02 (y) + ψ02 (y) =
L (u, v)

2
, ∀y ∈ [−1, 1] .

We therefore have

L (u, v) =

Z 1

−1

q
ϕ02 (y) + ψ02 (y) dy =

µ
2

Z 1

−1

£
ϕ02 (y) + ψ02 (y)

¤
dy

¶1/2
M (u, v) =

Z 1

−1
ϕ (y)ψ0 (y) dy .
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We, however, know from Corollary 6.3 thatZ 1

−1

¡
ϕ02 + ψ02

¢
dx ≥ 2π

Z 1

−1
ϕψ0 dx, ∀ϕ,ψ ∈W 1,2

per (−1, 1)

which implies the claim

[L (u, v)]2 − 4πM (u, v) ≥ 0, ∀u, v ∈W 1,1
per (a, b) ∩ C1 ([a, b]) .

The uniqueness in the equality case follows also from the corresponding one in
Corollary 6.3.
Step 2. We now remove the hypothesis u, v ∈ W 1,1

per (a, b) ∩ C1 ([a, b]). As
before, given u, v ∈ W 1,1

per (a, b), we can find uν , vν ∈ W 1,1
per (a, b) ∩ C1 ([a, b]) so

that
uν , vν → u, v in W 1,1 (a, b) ∩ L∞ (a, b) .

Therefore, for every � > 0, we can find ν sufficiently large so that

[L (u, v)]2 ≥ [L (uν , vν)]2 − � and M (uν , vν) ≥M (u, v)− �

and hence, combining these inequalities with Step 1, we get

[L (u, v)]2−4πM (u, v) ≥ [L (uν , vν)]2−4πM (uν , vν)−(1 + 4π) � ≥ − (1 + 4π) � .

Since � is arbitrary, we have indeed obtained the inequality.
We now briefly discuss the geometrical meaning of the inequality obtained

in Theorem 6.4. Any bounded open set A, whose boundary ∂A is a closed curve
which possesses a parametrization u, v ∈ W 1,1

per (a, b) so that its length and area
are given by

L (∂A) = L (u, v) =

Z b

a

p
u02 + v02 dx

M (A) = M (u, v) =
1

2

Z b

a

(uv0 − vu0) dx =

Z b

a

uv0 dx

will therefore satisfy the isoperimetric inequality

[L (∂A)]
2 − 4πM (A) ≥ 0 .

This is, of course, the case for any simple closed smooth curve, whose interior is
A.
One should also note that very wild sets A can be allowed. Indeed sets A

that can be approximated by sets Aν that satisfy the isoperimetric inequality
and which are so that

L (∂Aν)→ L (∂A) and M (Aν)→M (A) , as ν →∞

also verify the inequality.
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6.2.1 Exercises

Exercise 6.2.1 Prove Theorem 6.1 in an analogous manner as that of Example
2.23.

Exercise 6.2.2 Let

X =

½
u ∈W 1,2

per (−1, 1) :
Z 1

−1
u (x) dx = 0

¾
and consider

(P ) inf

½
I (u) =

Z 1

−1

¡
u02 − π2u2

¢
dx : u ∈ X

¾
= m.

We have seen in Theorem 6.1 that m = 0 and the minimum is attained in
X ∩C2 [−1, 1] if and only if u (x) = α cosπx+ β sinπx, for any α, β ∈ R.
Show that these are the only minimizers in X (and not only in X∩C2 [−1, 1]).
Suggestion: Show that any minimizer of (P) is C2 [−1, 1]. Conclude.

Exercise 6.2.3 Prove Step 1 of Theorem 6.4 for any u, v ∈W 1,1
per (a, b)∩C1 ([a, b]).

6.3 The case of dimension n

The above proof does not generalize to Rn, n ≥ 3. A completely different and
harder proof is necessary to deal with this case.
Before giving a sketch of the classical proof based on Brunn-Minkowski the-

orem, we want to briefly mention an alternative proof. The inequality Ln −
nnωnM

n−1 ≥ 0 (L = L (∂A) and M = M (A)) is equivalent to the minimiza-
tion of L for fixed M together with showing that the minimizers are given by
spheres. We can then write the associated Euler-Lagrange equation, with a La-
grange multiplier corresponding to the constraint that M is fixed (see Exercise
6.3.2). We then obtain that for ∂A to be a minimizer it must have constant
mean curvature (we recall that a minimal surface is a surface with vanishing
mean curvature, see Chapter 5). The question is then to show that the sphere
is, among all compact surfaces with constant mean curvature, the only one to
have this property. This is the result proved by Aleksandrov, Hopf, Liebmann,
Reilly and others (see Hsiung [61], page 280, for a proof). We immediately see
that this result only partially answers the problem. Indeed we have only found
a necessary condition that the minimizer should satisfy. Moreover this method
requires a strong regularity on the minimizer.
We now turn our attention to the proof of the isoperimetric inequality. We

will need several definitions and intermediate results.
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Definition 6.6 (i) For A,B ⊂ Rn, n ≥ 1, we define

A+B = {a+ b : a ∈ A, b ∈ B} .

(ii) For x ∈ Rn and A ⊂ Rn, we let

d (x,A) = inf {|x− a| : a ∈ A} .

Example 6.7 (i) If n = 1, A = [a, b], B = [c, d], we have

A+B = [a+ c, b+ d] .

(ii) If we let BR = {x ∈ Rn : |x| < R}, we get

BR +BS = BR+S .

Proposition 6.8 Let A ⊂ Rn, n ≥ 1 be compact and BR = {x ∈ Rn : |x| < R}.
The following properties then hold.

(i) A+BR = {x ∈ Rn : d (x,A) ≤ R}.

(ii) If A is convex, then A+BR is also convex.

Proof. (i) Let x ∈ A+BR and

X = {x ∈ Rn : d (x,A) ≤ R} .

We then have that x = a+ b for some a ∈ A and b ∈ BR , and hence

|x− a| = |b| ≤ R

which implies that x ∈ X. Conversely, since A is compact, we can find, for every
x ∈ X, an element a ∈ A so that |x− a| ≤ R. Letting b = x−a, we have indeed
found that x ∈ A+BR.
(ii) Trivial.
We now examine the meaning of the proposition in a simple example.

Example 6.9 If A is a rectangle in R2, we find that A + BR is given by the
figure below. Anticipating, a little, on the following results we see that we have

M
¡
A+BR

¢
=M (A) +RL (∂A) +R2π

where L (∂A) is the perimeter of ∂A.
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R

A
R

Figure 6.1: A+BR

Definition 6.10 We now define the meaning of L (∂A) and M (A) for A ⊂ Rn,
n ≥ 2, a compact set. M (A) will denote the Lebesgue measure of A. The
quantity L (∂A) will be given by the Minkowski-Steiner formula

L (∂A) = lim inf
�→0

M
¡
A+B�

¢
−M (A)

�

where B� = {x ∈ Rn : |x| < �}.

Remark 6.11 (i) The first natural question that comes to mind is to know if
this definition of L (∂A) corresponds to the usual notion of (n− 1) measure of
∂A. This is the case if A is “sufficiently regular”. This is a deep result that
we will not prove and that we will, not even, formulate precisely (see Federer
[45] for a thorough discussion on this matter and the remark below when A is
convex). One can also try, with the help of drawings such as the one in Figure
7.1, to see that, indeed, the above definition corresponds to some intuitive notion
of the area of ∂A.
(ii) When A ⊂ Rn is convex, the above limit is a true limit and we can show

(cf. Berger [10], Sections 12.10.6 and 9.12.4.6) that

M
¡
A+B�

¢
=M (A) + L (∂A) �+

n−1X
i=2

Li (A) �
i + ωn�

n

where Li (A) are some (continuous) functions of A and ωn is the measure of the
unit ball in Rn given by

ωn =
2πn/2

nΓ (n/2)
=

⎧⎨⎩ πk/k! if n = 2k

2k+1πk/1.3.5.... (2k + 1) if n = 2k + 1.
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Example 6.12 If A = BR, we find the well known formula for the area of the
sphere SR = ∂BR

L (SR) = lim
�→0

M
¡
BR +B�

¢
−M

¡
BR

¢
�

= lim
�→0

[(R+ �)n −Rn]ωn
�

= nRn−1ωn

where ωn is as above.

We are now in a position to state the theorem that plays a central role in
the proof of the isoperimetric inequality.

Theorem 6.13 (Brunn-Minkowski theorem). Let A,B ⊂ Rn, n ≥ 1, be
compact, then the following inequality holds

[M (A+B)]
1/n ≥ [M (A)]

1/n
+ [M (B)]

1/n
.

Remark 6.14 (i) The same proof establishes that the function A→ (M (A))
1/n

is concave. We thus have

[M (λA+ (1− λ)B)]
1/n ≥ λ [M (A)]

1/n
+ (1− λ) [M (B)]

1/n

for every compact A,B ⊂ Rn and for every λ ∈ [0, 1].
(ii) One can even show that the function is strictly concave. This implies

that the inequality in the theorem is strict unless A and B are homothetic.

Example 6.15 Let n = 1.
(i) If A = [a, b], B = [c, d], we have A+B = [a+ c, b+ d] and

M (A+B) =M (A) +M (B) .

(ii) If A = [0, 1], B = [0, 1] ∪ [2, 3], we find A+B = [0, 4] and hence

M (A+B) = 4 > M (A) +M (B) = 3.

We will prove Theorem 6.13 at the end of the section. We are now in a
position to state and to prove the isoperimetric inequality.

Theorem 6.16 (Isoperimetric inequality). Let A ⊂ Rn, n ≥ 2, be a com-
pact set, L = L (∂A), M = M (A) and ωn be as above, then the following
inequality holds

Ln − nnωnM
n−1 ≥ 0 .

Furthermore equality holds, among all convex sets, if and only if A is a ball.
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Remark 6.17 (i) The proof that we will give is also valid in the case n = 2.
However it is unduly complicated and less precise than the one given in the
preceding section.
(ii) Concerning the uniqueness that we will not prove below (cf. Berger [10],

Section 12.11), we should point out that it is a uniqueness only among convex
sets. In dimension 2, we did not need this restriction; since for a non convex set
A, its convex hull has larger area and smaller perimeter. In higher dimensions
this is not true anymore. In the case n ≥ 3, one can still obtain uniqueness by
assuming some regularity of the boundary ∂A, in order to avoid "hairy" spheres
(i.e., sets that have zero n and (n− 1) measures but non zero lower dimensional
measures).

Proof. (Theorem 6.16). Let A ⊂ Rn be compact, we have from the definition
of L (see Minkowski-Steiner formula) and from Theorem 6.13 that

L (∂A) = lim inf
�→0

M
¡
A+B�

¢
−M (A)

�

≥ lim inf
�→0

⎡⎣
h
(M (A))

1/n
+ (M (B�))

1/n
in
−M (A)

�

⎤⎦ .

Since M (Bε) = �nωn, we get

L (∂A) ≥ M (A) lim inf
�→0

∙
1 + �

³
ωn

M(A)

´1/n¸n
− 1

�

= M (A) · n
µ

ωn
M (A)

¶1/n
and the isoperimetric inequality follows.
We conclude the present section with an idea of the proof of Brunn-Minkowski

theorem (for more details see Berger [10], Section 11.8.8, Federer [45], page 277
or Webster [96] Theorem 6.5.7). In Exercise 6.3.1 we will propose a proof of the
theorem valid in the case n = 1. Still another proof in the case of Rn can be
found in Pisier [84].
Proof. (Theorem 6.13). The proof is divided into four steps.
Step 1. We first prove an elementary inequality. Let ui > 0, λi ≥ 0 with

Σni=1λi = 1, then
nY
i=1

uλii ≤
nX
i=1

λiui . (6.1)
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This is a direct consequence of the fact that the logarithm function is concave
and hence

log

Ã
nX
i=1

λiui

!
≥

nX
i=1

λi log ui = log

Ã
nY
i=1

uλii

!
.

Step 2. Let F be the family of all open sets A of the form

A =
nY
i=1

(ai, bi) .

We will now prove the theorem for A,B ∈ F . We will even show that for every
λ ∈ [0, 1], A,B ∈ F we have

[M (λA+ (1− λ)B)]
1/n ≥ λ [M (A)]

1/n
+ (1− λ) [M (B)]

1/n
. (6.2)

The theorem follows from (6.2) by setting λ = 1/2. If we let

A =
nY
i=1

(ai, bi) and B =
nY
i=1

(ci, di)

we obtain

λA+ (1− λ)B =
nY
i=1

(λai + (1− λ) ci, λbi + (1− λ) di) .

Setting, for 1 ≤ i ≤ n,

ui =
bi − ai

λ (bi − ai) + (1− λ) (di − ci)
, vi =

di − ci
λ (bi − ai) + (1− λ) (di − ci)

(6.3)

we find that
λui + (1− λ) vi = 1, 1 ≤ i ≤ n , (6.4)

M (A)

M (λA+ (1− λ)B)
=

nY
i=1

ui ,
M (B)

M (λA+ (1− λ)B)
=

nY
i=1

vi . (6.5)

We now combine (6.1), (6.4) and (6.5) to deduce that

λ [M (A)]
1/n

+ (1− λ) [M (B)]
1/n

[M (λA+ (1− λ)B)]
1/n

= λ
nY
i=1

u
1/n
i + (1− λ)

nY
i=1

v
1/n
i

≤ λ
nX
i=1

ui
n
+ (1− λ)

nX
i=1

vi
n

=
1

n

nX
i=1

(λui + (1− λ) vi) = 1
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and hence the result.
Step 3. We now prove (6.2) for any A and B of the form

A =
M[
µ=1

Aµ , B =
N[
ν=1

Bν

where Aµ, Bν ∈ F , Aν ∩Aµ = Bν ∩Bµ = ∅ if µ 6= ν. The proof is then achieved
through induction on M +N . Step 2 has proved the result when M = N = 1.
We assume now that M > 1. We then choose i ∈ {1, ..., n} and a ∈ R such that
if

A+ = A ∩ {x ∈ Rn : xi > a} , A− = A ∩ {x ∈ Rn : xi < a}

then A+ and A− contain at least one of the Aµ , 1 ≤ µ ≤M , i.e. the hyperplane
{xi = a} separates at least two of the Aµ (see Figure 7.2).

Figure 6.2: separating hyperplane

We clearly have
M
¡
A+
¢
+M

¡
A−
¢
=M (A) . (6.6)

We next choose b ∈ R (such a b exists by an argument of continuity) so that if

B+ = B ∩ {x ∈ Rn : xi > b} , B− = B ∩ {x ∈ Rn : xi < b}

then
M (A+)

M (A)
=

M (B+)

M (B)
and

M (A−)

M (A)
=

M (B−)

M (B)
. (6.7)
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We let
A±µ = A± ∩Aµ and B±

ν = B± ∩Bν

provided these intersections are non empty; and we deduce that

A± =
M±[
µ=1

A±µ and B± =
N±[
ν=1

B±
ν .

By construction we have M+ < M and M− < M , while N+, N− ≤ N . If
λ ∈ [0, 1], we see that λA+ + (1− λ)B+ and λA− + (1− λ)B− are separated
by {x : xi = λa+ (1− λ) b} and thus

M (λA+ (1− λ)B) =M
¡
λA+ + (1− λ)B+

¢
+M

¡
λA− + (1− λ)B−

¢
.

Applying the hypothesis of induction to A+, B+ and A−, B−, we deduce that

M (λA+ (1− λ)B) ≥
h
λ
£
M
¡
A+
¢¤1/n

+ (1− λ)
£
M
¡
B+
¢¤1/nin

+
h
λ
£
M
¡
A−
¢¤1/n

+ (1− λ)
£
M
¡
B−
¢¤1/nin

.

Using (6.7) we obtain

M (λA+ (1− λ)B) ≥ M (A+)

M (A)

h
λ [M (A)]1/n + (1− λ) [M (B)]1/n

in
+
M (A−)

M (A)

h
λ [M (A)]

1/n
+ (1− λ) [M (B)]

1/n
in

.

The identity (6.6) and the above inequality imply then (6.2).
Step 4. We now show (6.2) for any compact set, concluding thus the proof

of the theorem. Let � > 0, we can then approximate the compact sets A and B,
by A� and B� as in Step 3, so that

|M (A)−M (A�)| , |M (B)−M (B�)| ≤ � , (6.8)

|M (λA+ (1− λ)B)−M (λA� + (1− λ)B�)| ≤ � . (6.9)

Applying (6.2) to A�, B�, using (6.8) and (6.9), we obtain, after passing to the
limit as �→ 0, the claim

[M (λA+ (1− λ)B)]
1/n ≥ λ [M (A)]

1/n
+ (1− λ) [M (B)]

1/n
.
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6.3.1 Exercises

Exercise 6.3.1 Let A,B ⊂ R be compact,

a = min {a : a ∈ A} and b = max {b : b ∈ B} .

Prove that
(a+B) ∪

¡
b+A

¢
⊂ A+B

and deduce that
M (A) +M (B) ≤M (A+B) .

Exercise 6.3.2 Denote by A the set of bounded open sets A ⊂ R3 whose bound-
ary ∂A is the image of a bounded smooth domain Ω ⊂ R2 by a C2

¡
Ω;R3

¢
map

v, v = v (x, y), with vx × vy 6= 0 in Ω. Denote by L (∂A) and M (A) the area of
the boundary ∂A and the volume of A respectively.
Show that if there exists A0 ∈ A so that

L (∂A0) = inf
A∈A

{L (∂A) :M (A) =M (A0)}

then ∂A0 has constant mean curvature.



Chapter 7

Solutions to the Exercises

7.1 Chapter 1: Preliminaries

7.1.1 Continuous and Hölder continuous functions

Exercise 1.2.1. (i) We have

kuvkC0,α = kuvkC0 + [uv]C0,α .

Since

[uv]C0,α ≤ sup
|u(x)v(x)− u(y)v(y)|

|x− y|α

≤ kukC0 sup
|v(x)− v(y)|
|x− y|α + kvkC0 sup

|u(x)− u(y)|
|x− y|α

we deduce that

kuvkC0,α ≤ kukC0 kvkC0 + kukC0 [v]C0,α + kvkC0 [u]C0,α

≤ 2 kukC0,α kvkC0,α .

(ii) The inclusion Ck,α ⊂ Ck is obvious. Let us show that Ck,β ⊂ Ck,α. We
will prove, for the sake of simplicity, only the case k = 0. Observe that

sup
x,y∈Ω

0<|x−y|<1

½
|u(x)− u(y)|
|x− y|α

¾
≤ sup

x,y∈Ω
0<|x−y|<1

(
|u(x)− u(y)|
|x− y|β

)
6 [u]C0,β .

Since

sup
x,y∈Ω
|x−y|≥1

½
|u(x)− u(y)|
|x− y|α

¾
≤ sup

x,y∈Ω
{|u(x)|− u(y)} ≤ 2 kukC0

169
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we get

kukC0,α = kukC0 + [u]C0,α

≤ kukC0 +max {2 kukC0 , [u]C0,β} ≤ 3 kukC0,β .

(iii) We now assume that Ω is bounded and convex and k = 0 (for the sake
of simplicity) and let us show that C1

¡
Ω
¢
⊂ C0,1

¡
Ω
¢
. From the mean value

theorem, we have that for every x, y ∈ Ω we can find z ∈ [x, y] ⊂ Ω (i.e., z is an
element of the segment joining x to y) so that

u(x)− u(y) = h∇u(z);x− yi .

We have, indeed, obtained that

|u(x)− u(y)| ≤ |∇u(z)| |x− y| ≤ kukC1 |x− y| .

7.1.2 Lp spaces

Exercise 1.3.1. (i) Hölder inequality. Let a, b > 0 and 1/p+ 1/p0 = 1, with
1 < p <∞. Since the function f(x) = log x is concave, we have that

log

µ
1

p
ap +

1

p0
bp

0
¶
> 1

p
log ap +

1

p0
log bp

0
= log ab

and hence
1

p
ap +

1

p0
bp

0 ≥ ab .

Choose then

a =
|u|
kukLp

, b =
|v|

kvkLp0
and integrate to get the inequality for 1 < p < ∞. The cases p = 1 or p = ∞
are trivial.
Minkowski inequality. The cases p = 1 and p = ∞ are obvious. We

therefore assume that 1 < p <∞. Use Hölder inequality to get

ku+ vkpLp =

Z
Ω

|u+ v|p ≤
Z
Ω

|u| |u+ v|p−1 +
Z
Ω

|v| |u+ v|p−1

≤ kukLp
°°°|u+ v|p−1

°°°
Lp0

+ kvkLp
°°°|u+ v|p−1

°°°
Lp0

.

The result then follows, since°°°|u+ v|p−1
°°°
Lp0

= ku+ vkp−1Lp .
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(ii) Use Hölder inequality with α = (p+ q) /q and hence α0 = (p+ q) /p to
obtain Z

Ω

|uv|pq/p+q ≤
µZ
Ω

|u|pqα/(p+q)
¶1/αµZ

Ω

|v|pqα
0/(p+q)

¶1/α0
≤

µZ
Ω

|u|p
¶q/(p+q)µZ

Ω

|v|q
¶p/(p+q)

.

(iii) The inclusion L∞ (Ω) ⊂ Lp (Ω) is trivial. The other inclusions follow
from Hölder inequality. Indeed we haveZ

Ω

|u|q =

Z
Ω

(|u|q · 1) ≤
µZ
Ω

|u|q·p/q
¶q/pµZ

Ω

1p/(p−q)
¶(p−q)/p

≤ (measΩ)(p−q)/p
µZ
Ω

|u|p
¶q/p

and hence
kukLq ≤ (measΩ)

(p−q)/pq kukLp
which gives the desired inclusion.
If, however, the measure is not finite the result is not valid as the simple

example Ω = (1,∞), u (x) = 1/x shows; indeed we have u ∈ L2 but u /∈ L1.
Exercise 1.3.2. A direct computation leads to

kuνkpLp =
Z 1

0

|uν (x)|p dx =
Z 1/ν

0

ναpdx = ναp−1.

We therefore have that uν → 0 in Lp provided αp − 1 < 0. If α = 1/p, let us
show that uν - 0 in Lp. We have to prove that for every ϕ ∈ Lp

0
(0, 1), the

following convergence holds

lim
ν→∞

Z 1

0

uν (x)ϕ (x) dx = 0 .

By a density argument, and since kuνkLp = 1, it is sufficient to prove the result
when ϕ is a step function, which means that there exist 0 = a0 < a1 < · · · <
aN = 1 so that ϕ (x) = αi whenever x ∈ (ai, ai+1), 0 ≤ i ≤ N − 1. We hence
find, for ν sufficiently large, thatZ 1

0

uν (x)ϕ (x) dx = α0

Z 1/ν

a0

ν1/pdx = α0ν
(1/p)−1 → 0 .

Exercise 1.3.3. (i) We have to show that for every ϕ ∈ L∞, then

lim
ν→∞

Z
Ω

(uνvν − uv)ϕ = 0 .
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Rewriting the integral we haveZ
Ω

(uνvν − uv)ϕ =

Z
Ω

uν (vν − v)ϕ+

Z
Ω

(uν − u) vϕ .

Since (vν − v) → 0 in Lp
0
and kuνkLp ≤ K, we deduce from Hölder inequality

that the first integral tends to 0. The second one also tends to 0 since uν−u - 0
in Lp and vϕ ∈ Lp

0
(this follows from the hypotheses v ∈ Lp

0
and ϕ ∈ L∞).

Let us show that the result is, in general, false if vν - v in Lp
0
(instead of

vν → v in Lp
0
). Choose p = p0 = 2 and uν(x) = vν(x) = sin νx, Ω = (0, 2π). We

have that uν , vν - 0 in L2 but the product uνvν does not tend to 0 weakly in
L2 (since uν(x)vν(x) = sin2 νx - 1/2 6= 0 in L2).
(ii) We want to prove that kuν − ukL2 → 0. We writeZ

Ω

|uν − u|2 =
Z
Ω

u2ν − 2
Z
Ω

uuν +

Z
Ω

u2.

The first integral tends to
R
u2 since u2ν - u2 in L1 (choosing ϕ(x) ≡ 1 ∈ L∞

in the definition of weak convergence). The second one tends to −2
R
u2 since

uν - u in L2 and u ∈ L2. The claim then follows.
Exercise 1.3.4. (i) The case p =∞ is trivial. So assume that 1 ≤ p <∞. We
next compute

uν(x) =

Z +∞

−∞
ϕν (x− y)u (y) dy = ν

Z +∞

−∞
ϕ (ν (x− y))u (y) dy

=

Z +∞

−∞
ϕ (z)u

³
x− z

ν

´
dz .

We therefore find

|uν (x)| ≤
Z +∞

−∞
ϕ(z)

¯̄̄
u
³
x− z

ν

´¯̄̄
dz

=

Z +∞

−∞
|ϕ(z)|1/p

0 h
|ϕ(z)|1/p

¯̄̄
u
³
x− z

ν

´¯̄̄i
dz .

Hölder inequality leads to

|uν (x)| ≤
µZ +∞

−∞
ϕ(z) dz

¶1/p0 µZ +∞

−∞
ϕ(z)

¯̄̄
u
³
x− z

ν

´¯̄̄p
dz

¶1/p
.

Since
R
ϕ = 1, we have, after interchanging the order of integration,

kuνkpLp =

Z +∞

−∞
|uν (x)|p dx ≤

Z +∞

−∞

Z +∞

−∞

n
ϕ (z)

¯̄̄
u
³
x− z

ν

´¯̄̄p
dz
o
dx

≤
Z +∞

−∞

½
ϕ (z)

Z +∞

−∞

¯̄̄
u
³
x− z

ν

´¯̄̄p
dx

¾
dz ≤ kukpLp .
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(ii) The result follows, since ϕ is C∞ and

u0ν (x) =

Z +∞

−∞
ϕ0ν (x− y)u (y) dy .

(iii) Let K ⊂ R be a fixed compact. Since u is continuous, we have that for
every � > 0, there exists δ = δ (�,K) > 0 so that

|y| ≤ δ ⇒ |u (x− y)− u (x)| ≤ �, ∀x ∈ K .

Since ϕ = 0 if |x| > 1,
R
ϕ = 1, and hence

R
ϕν = 1, we find that

uν (x)− u (x) =

Z +∞

−∞
[u (x− y)− u (x)]ϕν (y) dy

=

Z 1/ν

−1/ν
[u (x− y)− u (x)]ϕν (y) dy .

Taking x ∈ K and ν > 1/δ, we deduce that |uν (x)− u (x)| ≤ �, and thus the
claim.
(iv) Since u ∈ Lp (R) and 1 ≤ p <∞, we deduce (see Theorem 1.13) that for

every � > 0, there exists u ∈ C0 (R) so that

ku− ukLp ≤ � . (7.1)

Define then

uν (x) = (ϕν ∗ u) (x) =
Z +∞

−∞
ϕν (x− y)u (y) dy .

Since u− u ∈ Lp, it follows from (i) that

kuν − uνkLp ≤ ku− ukLp ≤ �. (7.2)

Moreover, since suppu is compact and ϕ = 0 if |x| > 1, we find that there exists
a compact set K so that suppu, suppuν ⊂ K (for every ν). From (iii) we then
get that kuν − ukLp → 0. Combining (7.1) and (7.2), we deduce that

kuν − ukLp ≤ kuν − uνkLp + kuν − ukLp + ku− ukLp
≤ 2�+ kuν − ukLp

which is the claim, since � is arbitrary.
Exercise 1.3.5. We adopt the same hypotheses and notations of Theorem 1.22.
Step 1 remains unchanged and we modify Step 2 as follows.
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We define

vν (x) =

Z x

0

uν (t) dt =

Z x

0

u (νt) dt =
1

ν

Z νx

0

u (s) ds

=
1

ν

Z νx

[νx]

u (s) ds =
1

ν

Z νx−[νx]

0

u (s) ds

where [a] stands for the integer part of a ≥ 0 and where we have used the
periodicity of u and the fact that u =

R 1
0
u = 0.

We therefore find that

kvνkL∞ ≤
1

ν

Z νx−[νx]

0

|u (s)| ds ≤ 1

ν

Z 1

0

|u (s)| ds = 1

ν
kukL1 ≤

1

ν
kukLp .

(7.3)
Recall that we have to show that

lim
ν→∞

Z 1

0

uν (x)ϕ (x) dx = 0, ∀ϕ ∈ Lp
0
(0, 1) . (7.4)

Let � > 0 be arbitrary. Since ϕ ∈ Lp
0
(0, 1) and 1 < p ≤ ∞, which implies

1 ≤ p0 < ∞ (i.e., p0 6= ∞), we have from Theorem 1.13 that there exists
ψ ∈ C∞0 (0, 1) so that

kϕ− ψkLp0 ≤ � . (7.5)

We now computeZ 1

0

uν (x)ϕ (x) dx =

Z 1

0

uν (x) [ϕ (x)− ψ (x)] dx+

Z 1

0

uν (x)ψ (x) dx

=

Z 1

0

uν (x) [ϕ (x)− ψ (x)] dx−
Z 1

0

vν (x)ψ
0 (x) dx

where we have used integration by parts, the fact that v0ν = uν and ψ ∈ C∞0 (0, 1).
Using Hölder inequality, (1.1), (7.3) and (7.5), we obtain that¯̄̄̄Z 1

0

uν (x)ϕ (x) dx

¯̄̄̄
≤ � kukLp + kvνkL∞

°°ψ0°°
L1
≤ � kukLp +

1

ν
kukLp

°°ψ0°°
L1

.

Let ν →∞, we hence obtain

0 ≤ lim sup
ν→∞

¯̄̄̄Z 1

0

uνϕdx

¯̄̄̄
≤ � kukLp .

Since � is arbitrary, we immediately have (7.4) and thus the result.
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Exercise 1.3.6. (i) Let f ∈ C∞0 (Ω) with
R
Ω
f (x) dx = 1, be a fixed function.

Let w ∈ C∞0 (Ω) be arbitrary and

ψ (x) = w (x)−
∙Z
Ω

w (y) dy

¸
f (x) .

We therefore have ψ ∈ C∞0 (Ω) and
R
ψ = 0 which leads to

0 =

Z
Ω

u (x)ψ (x) dx =

Z
Ω

u (x)w (x) dx−
Z
Ω

f (x)u (x) dx ·
Z
Ω

w (y) dy

=

Z
Ω

∙
u (x)−

Z
Ω

u (y) f (y) dy

¸
w (x) dx .

Appealing to Theorem 1.24, we deduce that u (x) =
R
u (y) f (y) dy = constant

a.e.
(ii) Let ψ ∈ C∞0 (a, b), with

R b
a
ψ = 0, be arbitrary and define

ϕ (x) =

Z x

a

ψ (t) dt .

Note that ψ = ϕ0 and ϕ ∈ C∞0 (a, b). We may thus apply (i) and get the result.
Exercise 1.3.7. Let, for ν ∈ N,

uν (x) = min {|u (x)| , ν} .

The monotone convergence theorem implies that, for every � > 0, we can find ν
sufficiently large so thatZ

Ω

|u (x)| dx ≤
Z
Ω

uν (x) dx+
�

2
.

Choose then δ = �/2ν. We therefore deduce that, if measE ≤ δ, thenZ
E

|u (x)| dx =
Z
E

uν (x) dx+

Z
E

[|u (x)|− uν (x)] dx ≤ νmeasE +
�

2
≤ � .

For a more general setting see, for example, Theorem 5.18 in De Barra [37].

7.1.3 Sobolev spaces

Exercise 1.4.1. Let σn−1 = meas (∂B1 (0)) (i.e. σ1 = 2π, σ2 = 4π,...).
(i) The result follows from the following observation

kukpLp =
Z
BR

|u (x)|p dx = σn−1

Z R

0

rn−1 |f (r)|p dr.
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(ii) We find, if x 6= 0, that

uxi = f 0 (|x|) xi|x| ⇒ |∇u (x)| = |f 0 (|x|)| .

Assume, for a moment, that we already proved that u is weakly differentiable in
BR, then

k∇ukpLp = σn−1

Z R

0

rn−1 |f 0 (r)|p dr ,

which is the claim.
Let us now show that uxi , as above, is indeed the weak derivative (with

respect to xi) of u. We have to prove that, for every ϕ ∈ C∞0 (BR),Z
BR

uϕxidx = −
Z
BR

ϕuxidx . (7.6)

Let � > 0 be sufficiently small and observe that (recall that ϕ = 0 on ∂BR)Z
BR

uϕxidx =

Z
BR\B�

uϕxidx+

Z
B�

uϕxidx

= −
Z
BR\B�

ϕuxidx−
Z
∂B�

uϕ
xi
|x|dσ +

Z
B�

uϕxidx

= −
Z
BR

ϕuxidx+

Z
B�

ϕuxidx+

Z
B�

uϕxidx−
Z
∂B�

uϕ
xi
|x|dσ .

Since the elements ϕuxi and uϕxi are both in L1 (BR), we deduce (this follows
from Hölder inequality if p > 1 or from standard properties of integrals if p ≥ 1,
see Exercise 1.3.7) that

lim
�→0

Z
B�

ϕuxidx = lim
�→0

Z
B�

uϕxidx = 0 .

Moreover, by hypothesis, we have the claim (i.e. (7.6)), since¯̄̄̄Z
∂B�

uϕ
xi
|x|dσ

¯̄̄̄
≤ σn−1 kϕkL∞ �n−1f (�)→ 0, as �→ 0 .

(iii) 1) The first example follows at once and gives

ψ ∈ Lp ⇔ sp < n and ψ ∈W 1,p ⇔ (s+ 1) p < n .

2) We find, for every 0 < s < 1/2 and p ≥ 1, thatZ 1/2

0

r |log r|sp dr <∞,

Z 1/2

0

r−1 |log r|2(s−1) dr = |log 2|2s−1

1− 2s <∞ .



Chapter 1: Preliminaries 177

The first one guarantees that ψ ∈ Lp (BR) and the second one that ψ ∈
W 1,2 (BR). The fact that ψ /∈ L∞ (BR) is obvious.
3) We have, denoting by δij the Kronecker symbol, that

∂ui

∂xj
=

δij |x|2 − xixj

|x|3
=⇒ |∇u|2 = n− 1

|x|2
.

We therefore findZ
Ω

|∇u (x)|p dx = (n− 1)p/2 σn−1
Z 1

0

rn−1−pdr .

This quantity is finite if and only if p ∈ [1, n).
Exercise 1.4.2. The inclusion AC ([a, b]) ⊂ C ([a, b]) is easy. Indeed by defin-
ition any function in AC ([a, b]) is uniformly continuous in (a, b) and therefore
can be continuously extended to [a, b].
Let us now discuss the second inclusion, namely W 1,1 (a, b) ⊂ AC ([a, b]).

Let u ∈W 1,1 (a, b). We know from Lemma 1.38 that

u (bk)− u (ak) =

Z bk

ak

u0 (t) dt .

We therefore find X
k

|u (bk)− u (ak)| ≤
X
k

Z bk

ak

|u0 (t)| dt .

Let E = ∪k (ak, bk). A classical property of Lebesgue integral (see Exercise
1.3.7) asserts that if u0 ∈ L1, then, for every � > 0, there exists δ > 0 so that

measE =
X
k

|bk − ak| < δ ⇒
Z
E

|u0| < � .

The claim then follows.
Exercise 1.4.3. This follows from Hölder inequality, since

|u (x)− u (y)| ≤
xZ
y

|u0 (t)| dt ≤

⎛⎝ xZ
y

|u0 (t)|p dt

⎞⎠ 1
p
⎛⎝ xZ

y

1p
0
dt

⎞⎠ 1
p0

≤

⎛⎝ xZ
y

|u0 (t)|p dt

⎞⎠ 1
p

|x− y|
1
p0
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and by the properties of Lebesgue integrals (see Exercise 1.3.7) the quantityµZ x

y

|u0 (t)|p dt
¶ 1

p

tends to 0 as |x− y| tends to 0.

Exercise 1.4.4. Observe first that if v ∈W 1,p (a, b), p > 1 and y > x, then

|v (x)− v (y)| =
¯̄̄̄Z y

x

v0 (z) dz

¯̄̄̄

≤
µZ y

x

|v0 (z)|p dz
¶1/pµZ y

x

dz

¶1/p0
≤ kv0kLp |x− y|1/p

0
.

(7.7)

Let us now show that if uν - u in W 1,p, then uν → u in L∞. Without loss
of generality, we can take u ≡ 0. Assume, for the sake of contradiction, that
uν 9 0 in L∞. We can therefore find � > 0, {νi} so that

kuνikL∞ ≥ �, νi →∞. (7.8)

From (7.7) we have that the subsequence {uνi} is equicontinuous (note also that
by Theorem 1.42 and Theorem 1.20 (iii) we have kuνikL∞ ≤ c0 kuνikW 1,p ≤ c)
and hence from Ascoli-Arzela theorem, we find, up to a subsequence,

uνij → v in L∞. (7.9)

We, however, must have v = 0 since (7.9) implies uνij - v in Lp and by
uniqueness of the limits (we already know that uνij - u = 0 in Lp) we deduce
that v = 0 a.e., which contradicts (7.8).
Exercise 1.4.5. Follows immediately from Theorem 1.20.
Exercise 1.4.6. It is clear that uν → 0 in L∞. We also find

∂uν
∂x

=
√
ν (1− y)ν cos (νx) ,

∂uν
∂y

= −
√
ν (1− y)ν−1 sin (νx)

which implies that, there exists a constant K > 0 independent of ν, such thatZZ
Ω

|∇uν (x, y)|2 dxdy ≤ K .

Apply Exercise 1.4.5 to get the result.
Exercise 1.4.7. Since u ∈ W 1,p (Ω), we have that it is weakly differentiable
and therefore Z

Ω

£
uxiψ + uψxi

¤
dx = 0, ∀ψ ∈ C∞0 (Ω) .

Let ϕ ∈W 1,p0

0 (Ω) and � > 0 be arbitrary. We can then find ψ ∈ C∞0 (Ω) so that

kψ − ϕkLp0 + k∇ψ −∇ϕkLp0 ≤ � .
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We hence obtain, appealing to the two above relations, that¯̄̄̄Z
Ω

£
uxiϕ+ uϕxi

¤
dx

¯̄̄̄
≤

Z
Ω

£
|uxi | |ϕ− ψ|+ |u|

¯̄
ϕxi − ψxi

¯̄¤
dx

≤ kukW 1,p

£
kψ − ϕkLp0 +

°°ϕxi − ψxi
°°
Lp0
¤
≤ � kukW 1,p .

Since � is arbitrary, we have indeed obtained thatZ
Ω

uxiϕdx = −
Z
Ω

uϕxi dx, i = 1, ..., n .

7.1.4 Convex analysis

Exercise 1.5.1. (i) We first show that if f is convex then, for every x, y ∈ R,

f (x) ≥ f (y) + f 0 (y) (x− y) .

Apply the inequality of convexity

1

λ
[f (y + λ (x− y))− f (y)] ≤ f (x)− f (y)

and let λ→ 0 to get the result.
We next show the converse. Let λ ∈ [0, 1] and apply the above inequality to

find

f (x) ≥ f (λx+ (1− λ) y) + (1− λ) f 0 (λx+ (1− λ) y) (x− y)

f (y) ≥ f (λx+ (1− λ) y)− λf 0 (λx+ (1− λ) y) (x− y) .

Multiplying the first inequality by λ, the second one by (1− λ) and summing
the two of them, we have indeed obtained the desired convexity inequality

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

(ii) We next show that f is convex if and only if, for every x, y ∈ R,

[f 0 (x)− f 0 (y)] (x− y) ≥ 0 . (7.10)

Once this will be established, we will get the claimed result, namely that if
f ∈ C2 (R) then f is convex if and only if f 00 (x) ≥ 0 for every x ∈ R. We start
by assuming that f is convex and hence apply (i) to get

f (x) ≥ f (y) + f 0 (y) (x− y)

f (y) ≥ f (x) + f 0 (x) (y − x) .
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Combining the two inequalities we have immediately (7.10).
Let us now show the converse and assume that (7.10) holds. Let λ ∈ (0, 1),

x, y ∈ R and define

z =
y − x

λ
+ x ⇔ y = x+ λ (z − x)

ϕ (λ) = f (x+ λ (z − x)) .

Observe that

ϕ0 (λ)− ϕ0 (0) = [f 0 (x+ λ (z − x))− f 0 (x)] (z − x)

=
1

λ
[f 0 (x+ λ (z − x))− f 0 (x)] (x+ λ (z − x)− x) ≥ 0

since (7.10) holds. Therefore, integrating the inequality, we find

ϕ (λ) ≥ ϕ (0) + λϕ0 (0)

and thus, returning to the definition of y, we find

f (y) ≥ f (x) + f 0 (x) (y − x)

which is equivalent by (i) to the convexity of f .
Exercise 1.5.2. Since f is convex, we have, for every α, β ∈ R,

f (α) ≥ f (β) + f 0 (β) (α− β) .

Choose then α = u (x) and β = (1/measΩ)
R
Ω
u (x) dx, and integrate to get the

inequality.
Exercise 1.5.3. We easily find that

f∗ (x∗) =

½
−
√
1− x∗2 if |x∗| ≤ 1

+∞ otherwise.

Note, in passing, that f (x) =
√
1 + x2 is strictly convex over R.

Exercise 1.5.4. (i) We have that

f∗ (x∗) = sup
x∈R

½
xx∗ − |x|

p

p

¾
.

The supremum is, in fact, attained at a point y where

x∗ = |y|p−2 y ⇔ y = |x∗|p
0−2 x∗.
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Replacing this value in the definition of f∗ we have obtained that

f∗ (x∗) =
|x∗|p

0

p0
.

(ii) We do not compute f∗, but instead use Theorem 1.55. We let

g (x) =

⎧⎨⎩
¡
x2 − 1

¢2
if |x| ≥ 1

0 if |x| < 1

and we wish to show that f∗∗ = g. We start by observing that g is convex,
0 ≤ g ≤ f , and therefore according to Theorem 1.54 (ii) we must have

g ≤ f∗∗ ≤ f .

First consider the case where |x| ≥ 1; the functions g and f coincide there and
hence f∗∗ (x) = g (x), for such x. We next consider the case |x| < 1. Choose in
Theorem 1.55

x1 = 1, x2 = −1, λ1 =
1 + x

2
, λ2 =

1− x

2

to get immediately that f∗∗ (x) = g (x) = 0. We have therefore proved the claim.
(iv) This is straightforward since clearly

f∗ (ξ∗) = sup
ξ∈R2×2

{hξ; ξ∗i− det ξ} ≡ +∞

and therefore
f∗∗ (ξ) = sup

ξ∗∈R2×2
{hξ; ξ∗i− f∗ (ξ∗)} ≡ −∞ .

Exercise 1.5.5. (i) Let x∗, y∗ ∈ Rn and λ ∈ [0, 1]. It follows from the definition
that

f∗ (λx∗ + (1− λ) y∗) = sup
x∈Rn

{hx;λx∗ + (1− λ) y∗i− f (x)}

= sup
x
{λ (hx;x∗i− f (x)) + (1− λ) (hx; y∗i− f (x))}

≤ λ sup
x
{hx;x∗i− f (x)}+ (1− λ) sup

x
{hx; y∗i− f (x)}

≤ λf∗ (x∗) + (1− λ) f∗ (y∗) .

(ii) For this part we can refer to Theorem I.10 in Brézis [14], Theorem 2.2.5 in
[31] or Theorem 12.2 (coupled with Corollaries 10.1.1 and 12.1.1) in Rockafellar
[87].
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(iii) Since f∗∗ ≤ f , we find that f∗∗∗ ≥ f∗. Furthermore, by definition of
f∗∗, we find, for every x ∈ Rn, x∗ ∈ Rn,

hx;x∗i− f∗∗ (x) ≤ f∗ (x∗) .

Taking the supremum over all x in the left hand side of the inequality, we get
f∗∗∗ ≤ f∗, and hence the claim.
(iv) By definition of f∗, we have

f∗ (∇f (x)) = sup
y
{hy;∇f (x)i− f (y)} ≥ hx;∇f (x)i− f (x)

and hence
f (x) + f∗ (∇f (x)) ≥ hx;∇f (x)i .

We next show the opposite inequality. Since f is convex, we have

f (y) ≥ f (x) + hy − x;∇f (x)i ,

which means that

hx;∇f (x)i− f (x) ≥ hy;∇f (x)i− f (y) .

Taking the supremum over all y, we have indeed obtained the opposite inequality
and thus the proof is complete.
(v) We refer to the bibliography, in particular to Mawhin-Willem [72], page

35, Rockafellar [87] (Theorems 23.5, 26.3 and 26.5 as well as Corollary 25.5.1)
and for the second part to [31] or Theorem 23.5 in Rockafellar [87]; see also the
exercise below.
Exercise 1.5.6. We divide the proof into three steps.
Step 1. We know that

f∗ (v) = sup
ξ
{ξv − f (ξ)}

and since f ∈ C1 and satisfies

lim
|ξ|→∞

f (ξ)

|ξ| = +∞ (7.11)

we deduce that there exists ξ = ξ (v) such that

f∗ (v) = ξv − f (ξ) and v = f 0 (ξ) . (7.12)

Step 2. Since f satisfies (7.11), we have

Image [f 0 (R)] = R .
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Indeed, f being convex, we have

f (0) ≥ f (ξ)− ξf 0 (ξ) ⇒ lim
ξ→±∞

f 0 (ξ) = ±∞ .

Moreover, since f 00 > 0, we have that f 0 is strictly increasing and therefore
invertible and we hence obtain

ξ = f 0−1 (v) .

The hypotheses on f clearly imply that ξ = f 0−1 is C1 (R).
Step 3. We now conclude that

f∗0 = f 0−1. (7.13)

Indeed, we have from (7.12) that

f∗0 (v) = ξ (v) + ξ0 (v) v − f 0 (ξ (v)) ξ0 (v)

= ξ (v) + ξ0 (v) [v − f 0 (ξ (v))] = ξ (v) .

We therefore have that f∗ is C1 (R) and (7.13). Furthermore, since f 00 > 0, we
deduce that f∗ is as regular as f (so, in particular f∗ is C2).
Exercise 1.5.7. (i) Let h > 0. Use the convexity of f and (1.14) to write

hf 0 (x) ≤ f (x+ h)− f (x) ≤ α1 (1 + |x+ h|p) + α1 (1 + |x|p)
−hf 0 (x) ≤ f (x− h)− f (x) ≤ α1 (1 + |x− h|p) + α1 (1 + |x|p) .

We can therefore find eα1 > 0, so that
|f 0 (x)| ≤ eα1 (1 + |x|p + |h|p)

h
.

Choosing h = 1 + |x|, we can surely find α2 > 0 so that (1.15) is satisfied, i.e.,

|f 0 (x)| ≤ α2

³
1 + |x|p−1

´
, ∀x ∈ R .

The inequality (1.16) is then a consequence of (1.15) and of the mean value
theorem.
(ii) Note that the convexity of f is essential in the above argument. Indeed,

taking, for example, f (x) = x+sinx2, we find that f satisfies (1.14) with p = 1,
but it does not verify (1.15).
(iii) Of course if f 0 satisfies (1.15), we have by straight integration

f (x) = f (0) +

Z x

0

f 0 (s) ds

that f verifies (1.14), even if f is not convex.
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7.2 Chapter 2: Classical methods

7.2.1 Euler-Lagrange equation

Exercise 2.2.1. The proof is almost identical to that of the theorem. The Euler-
Lagrange equation becomes then a system of ordinary differential equations,
namely, if u = (u1, ..., uN ) and ξ = (ξ1, ..., ξN ), we have

d

dx

£
fξi (x, u, u

0)
¤
= fui (x, u, u

0) , i = 1, ...,N.

Exercise 2.2.2. We proceed as in the theorem. We let

X =
n
u ∈ Cn ([a, b]) : u(j) (a) = αj , u

(j) (b) = βj , 0 ≤ j ≤ n− 1
o

If u ∈ X ∩ C2n ([a, b]) is a minimizer of (P) we have I (u+ �v) ≥ I (u) , ∀� ∈ R
and ∀v ∈ C∞0 (a, b). Letting f = f (x, u, ξ1, ..., ξn) and using the fact that

d

d�
I (u+ �v)|�=0 = 0

we findZ b

a

(
fu

³
x, u, ..., u(n)

´
v +

nX
i=1

fξi

³
x, u, ..., u(n)

´
v(i)

)
dx = 0, ∀v ∈ C∞0 (a, b) .

Integrating by parts and appealing to the fundamental lemma of the calculus of
variations (Theorem 1.24) we find

nX
i=1

(−1)i+1 di

dxi

h
fξi

³
x, u, ..., u(n)

´i
= fu

³
x, u, ..., u(n)

´
.

Exercise 2.2.3. (i) Let

X0 =
©
v ∈ C1 ([a, b]) : v (a) = 0

ª
.

Let u ∈ X ∩C2 ([a, b]) be a minimizer for (P), since I (u+ �v) ≥ I (u) , ∀v ∈ X0,
∀� ∈ R we deduce as above thatZ b

a

{fu (x, u, u0) v + fξ (x, u, u
0) v0} dx = 0, ∀v ∈ X0.

Integrating by parts (bearing in mind that v (a) = 0) we findZ b

a

½∙
fu −

d

dx
fξ

¸
v

¾
dx+ fξ (b, u (b) , u

0 (b)) v (b) = 0, ∀v ∈ X0.
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Using the fundamental lemma of the calculus of variations and the fact that v (b)
is arbitrary we find⎧⎪⎨⎪⎩

d

dx
[fξ (x, u, u

0)] = fu (x, u, u
0) , ∀x ∈ [a, b]

fξ (b, u (b) , u
0 (b)) = 0 .

We sometimes say that fξ (b, u (b) , u0 (b)) = 0 is a natural boundary condition.
(ii) The proof is completely analogous to the preceding one and we find, in

addition to the above conditions, that

fξ (a, u (a) , u
0 (a)) = 0 .

Exercise 2.2.4. Let u ∈ X ∩C2 ([a, b]) be a minimizer of (P). Recall that

X =

(
u ∈ C1 ([a, b]) : u (a) = α, u (b) = β,

Z b

a

g (x, u (x) , u0 (x)) dx = 0

)
.

We assume that there exists w ∈ C∞0 (a, b) such thatZ b

a

[gξ (x, u (x) , u
0 (x))w0 (x) + gu (x, u (x) , u

0 (x))w (x)] dx 6= 0;

this is always possible if

d

dx
[gξ (x, u, u

0)] 6= gu (x, u, u
0) .

By homogeneity we choose one such w so thatZ b

a

[gξ (x, u (x) , u
0 (x))w0 (x) + gu (x, u (x) , u

0 (x))w (x)] dx = 1 .

Let v ∈ C∞0 (a, b) be arbitrary, w as above and define for �, h ∈ R

F (�, h) = I (u+ �v + hw) =

Z b

a

f (x, u+ �v + hw, u0 + �v0 + hw0) dx

G (�, h) =

Z b

a

g (x, u+ �v + hw, u0 + �v0 + hw0) dx .

Observe that G (0, 0) = 0 and that by hypothesis

Gh (0, 0) =

Z b

a

[gξ (x, u (x) , u
0 (x))w0 (x) + gu (x, u (x) , u

0 (x))w (x)] dx = 1 .
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Applying the implicit function theorem we can find �0 > 0 and a function t ∈
C1 ([−�0, �0]) with t (0) = 0 such that

G (�, t (�)) = 0, ∀� ∈ [−�0, �0]

which implies that u+ �v + t (�)w ∈ X. Note also that

G� (�, t (�)) +Gh (�, t (�)) t
0 (�) = 0, ∀� ∈ [−�0, �0]

and hence
t0 (0) = −G� (0, 0) .

Since we know that

F (0, 0) ≤ F (�, t (�)) , ∀� ∈ [−�0, �0]

we deduce that
F� (0, 0) + Fh (0, 0) t

0 (0) = 0

and thus letting λ = Fh (0, 0) be the Lagrange multiplier we find

F� (0, 0)− λG� (0, 0) = 0

or in other wordsZ b

a

{[fξ (x, u, u0) v0 + fu (x, u, u
0) v]− λ [gξ (x, u, u

0) v0 + gu (x, u, u
0) v]} dx = 0 .

Appealing once more to the fundamental lemma of the calculus of variations and
to the fact that v ∈ C∞0 (a, b) is arbitrary we get

d

dx
[fξ (x, u, u

0)]− fu (x, u, u
0) = λ

½
d

dx
[gξ (x, u, u

0)]− gu (x, u, u
0)

¾
.

Exercise 2.2.5. Let v ∈ C10 (a, b), � ∈ R and set ϕ (�) = I (u+ �v). Since u is a
minimizer of (P) we have ϕ (�) ≥ ϕ (0), ∀� ∈ R, and hence we have that ϕ0 (0) = 0
(which leads to the Euler-Lagrange equation) and ϕ00 (0) ≥ 0. Computing the
last expression we findZ b

a

©
fuuv

2 + 2fuξvv
0 + fξξv

02ª dx ≥ 0, ∀v ∈ C10 (a, b) .

Noting that 2vv0 =
¡
v2
¢0
and recalling that v (a) = v (b) = 0, we findZ b

a

½
fξξv

02 +

µ
fuu −

d

dx
fuξ

¶
v2
¾
dx ≥ 0, ∀v ∈ C10 (a, b) .
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Exercise 2.2.6. i) Setting

u1 (x) =

½
x if x ∈ [0, 1/2]

1− x if x ∈ (1/2, 1]

we find that I (u1) = 0. Observe however that u1 /∈ X where

X =
©
u ∈ C1 ([0, 1]) : u (0) = u (1) = 0

ª
.

Let � > 0. Since u1 ∈W 1,∞
0 (0, 1), we can find v ∈ C∞0 (0, 1) (hence in particular

v ∈ X) such that
ku1 − vkW 1,4 ≤ � .

Note also that since f (ξ) =
¡
ξ2 − 1

¢2
we can find K > 0 such that

|f (ξ)− f (n)| ≤ K
³
1 + |ξ|3 + |η|3

´
|ξ − η| .

Combining the above inequalities with Hölder inequality we get ( eK denoting a
constant not depending on �)

0 ≤ m ≤ I (v) = I (v)− I (u1) ≤
Z 1

0

|f (v0)− f (u01)| dx

≤ K

Z 1

0

n³
1 + |v0|3 + |u01|

3
´
|v0 − u01|

o
≤ K

µZ 1

0

³
1 + |v0|3 + |u01|

3
´4/3¶3/4µZ 1

0

|v0 − u01|
4
¶1/4

≤ eK ku1 − vkW 1,4 ≤ eK� .

Since � is arbitrary we deduce the result, i.e. m = 0.
ii) The argument is analogous to the preceding one and we skip the details.

We first let

X =
©
v ∈ C1 ([0, 1]) : v (0) = 1, v (1) = 0

ª
Xpiec =

©
v ∈ C1piec ([0, 1]) : v (0) = 1, v (1) = 0

ª
where C1piec stands for the set of piecewise C

1 functions. We have already proved
that

(Ppiec) inf
u∈Xp ie c

½
I (u) =

Z 1

0

x (u0 (x))
2
dx

¾
= 0

We need to establish that m = 0 where

(P ) inf
u∈X

½
I (u) =

Z 1

0

x (u0 (x))
2
dx

¾
= m
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We start by observing that for any � > 0 and u ∈ Xpiec , we can find v ∈ X such
that

ku− vkW 1,2 ≤ � .

It is an easy matter (exactly as above) to show that if

I (u) =

Z 1

0

x (u0 (x))
2
dx

then we can find a constant K so that

0 ≤ I (v) ≤ I (u) +K� .

Taking the infimum over all elements v ∈ X and u ∈ Xpiec we get that

0 ≤ m ≤ K�

which is the desired result since � is arbitrary.
Exercise 2.2.7. Let u ∈ C1 ([0, 1]) with u (0) = u (1) = 0. Invoking Poincaré
inequality (cf. Theorem 1.47), we can find a constant c > 0 such thatZ 1

0

u2dx ≤ c

Z 1

0

u02dx .

We hence obtain that mλ = 0 if λ is small (more precisely λ2 ≤ 1/c). Observe
that u0 ≡ 0 satisfies Iλ (u0) = mλ = 0. Furthermore it is the unique solution
of (Pλ) since, by inspection, it is the only solution (if λ

2 < π2) of the Euler-
Lagrange equation ½

u00 + λ2u = 0
u (0) = u (1) = 0 .

The claim then follows.
Exercise 2.2.8. Let

Xpiec =
©
u ∈ C1piec ([−1, 1]) : u (−1) = 0, u (1) = 1

ª
and

u (x) =

½
0 if x ∈ [−1, 0]
x if x ∈ (0, 1] .

It is then obvious to see that

inf
u∈Xp ie c

½
I (u) =

Z 1

−1
f (u (x) , u0 (x)) dx

¾
= I (u) = 0 .

Note also that the only solution in Xpiec is u.
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Since any element in Xpiec can be approximated arbitrarily closed by an
element of X (see the argument of Exercise 2.2.6) we deduce that m = 0 in

(P ) inf
u∈X

½
I (u) =

Z 1

−1
f (u (x) , u0 (x)) dx

¾
= m.

To conclude it is sufficient to observe that if for a certain u ∈ C1 ([−1, 1]) we have
I (u) = 0, then either u ≡ 0 or u0 ≡ 1, and both possibilities are incompatible
with the boundary data.
Another possibility of showing that m = 0 is to consider the sequence

un (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x ∈ [−1, 0]

−n2x3 + 2nx2 if x ∈
¡
0, 1n

¤
x if x ∈

¡
1
n , 1

¤
and observe that un ∈ X and that

I (un) =

Z 1/n

0

f (un (x) , u
0
n (x)) dx→ 0.

This proves that m = 0, as wished.
Exercise 2.2.9. Note first that by Jensen inequality m ≥ 1, where

(P ) inf
u∈X

½
I (u) =

Z 1

0

|u0 (x)| dx
¾
= m

and X =
©
u ∈ C1 ([0, 1]) : u (0) = 0, u (1) = 1

ª
. Let n ≥ 1 be an integer and

observe that un defined by un (x) = xn belongs to X and satisfies I (un) = 1.
Therefore un is a solution of (P) for every n. In fact any u ∈ X with u0 ≥ 0 in
[0, 1] is a minimizer of (P).
Exercise 2.2.10. Set v (x) = A (u (x)). We then have, using Jensen inequality,

I (u) =

Z b

a

a (u (x)) |u0 (x)|p dx

=

Z b

a

¯̄̄
(a (u (x)))

1
p u0 (x)

¯̄̄p
dx =

Z b

a

|v0 (x)|p dx

≥ (b− a)

¯̄̄̄
¯ 1

b− a

Z b

a

v0 (x) dx

¯̄̄̄
¯
p

= (b− a)

¯̄̄̄
v (b)− v (a)

b− a

¯̄̄̄p
and hence

I (u) ≥ (b− a)

¯̄̄̄
A (β)−A (α)

b− a

¯̄̄̄p
.
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Setting

v (x) =
A (β)−A (α)

b− a
(x− a) +A (α) and u (x) = A−1 (v (x))

we have from the preceding inequality

I (u) ≥ (b− a)

¯̄̄̄
A (β)−A (α)

b− a

¯̄̄̄p
=

Z b

a

|v0 (x)|p dx = I (u)

as claimed.

7.2.2 Second form of the Euler-Lagrange equation

Exercise 2.3.1. Write fξ =
¡
fξ1 , ..., fξN

¢
and start by the simple observation

that for any u ∈ C2
¡
[a, b] ;RN

¢
d

dx
[f (x, u, u0)− hu0; fξ (x, u, u0)i]

= fx (x, u, u
0) +

NX
i=1

u0i

∙
fui (x, u, u

0)− d

dx

£
fξi (x, u, u

0)
¤¸

.

Since the Euler-Lagrange system (see Exercise 2.2.1) is given by

d

dx

£
fξi (x, u, u

0)
¤
= fui (x, u, u

0) , i = 1, ..., N

we obtain
d

dx
[f (x, u, u0)− hu0; fξ (x, u, u0)i] = fx (x, u, u

0) .

Exercise 2.3.2. The second form of the Euler-Lagrange equation is

0 =
d

dx
[f (u (x) , u0 (x))− u0 (x) fξ (u (x) , u

0 (x))] =
d

dx

∙
−u (x)− 1

2
(u0 (x))

2
¸

= −u0 (x)− u00 (x)u0 (x) = −u0 (x) [u00 (x) + 1] ,

and it is satisfied by u ≡ 1. However u ≡ 1 does not verify the Euler-Lagrange
equation, which is in the present case

u00 (x) = −1 .
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7.2.3 Hamiltonian formulation

Exercise 2.4.1. The proof is a mere repetition of that of Theorem 2.10 and
we skip the details. We just state the result. Let u = (u1, ..., uN ) and ξ =
(ξ1, ..., ξN ). We assume that f ∈ C2

¡
[a, b]× RN ×RN

¢
, f = f (x, u, ξ), and

that it verifies

D2f (x, u, ξ) =
³
fξiξj

´
1≤i,j≤N

> 0, for every (x, u, ξ) ∈ [a, b]×RN ×RN

lim
|ξ|→∞

f (x, u, ξ)

|ξ| = +∞, for every (x, u) ∈ [a, b]×RN .

If we let
H (x, u, v) = sup

ξ∈RN
{hv; ξi− f (x, u, ξ)}

then H ∈ C2
¡
[a, b]×RN ×RN

¢
and, denoting by

Hv (x, u, v) = (Hv1 (x, u, v) , ...,HvN (x, u, v))

and similarly for Hu (x, u, v), we also have

Hx (x, u, v) = −fx (x, u,Hv (x, u, v))

Hu (x, u, v) = −fu (x, u,Hv (x, u, v))

H (x, u, v) = hv;Hv (x, u, v)i− f (x, u,Hv (x, u, v))

v = fξ (x, u, ξ) ⇔ ξ = Hv (x, u, v) .

The Euler-Lagrange system is

d

dx

£
fξi (x, u, u

0)
¤
= fui (x, u, u

0) , i = 1, ...,N.

and the associated Hamiltonian system is given, for every i = 1, ..., N , by⎧⎨⎩ u0i = Hvi (x, u, v)

v0i = −Hui (x, u, v) .

Exercise 2.4.2. i) The Euler-Lagrange equations are, for i = 1..., N ,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mix

00
i = −Uxi (t, u)

miy
00
i = −Uyi (t, u)

miz
00
i = −Uzi (t, u) .
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In terms of the Hamiltonian, if we let ui = (xi, yi, zi) , ξi = (ξxi , ξ
y
i , ξ

z
i ) and

vi = (v
x
i , v

y
i , v

z
i ), for i = 1...,N , we find

H (t, u, v) = sup
ξ∈R3N

(
NX
i=1

∙
hvi; ξii−

1

2
mi |ξi|

2

¸
+ U (t, u)

)

=
NX
i=1

|vi|2

2mi
+ U (t, u) .

ii) Note that along the trajectories we have vi = miu
0
i, i.e.

vxi = mix
0
i, v

y
i = miy

0
i, v

z
i = miz

0
i

and hence

H (t, u, v) =
1

2

NX
i=1

mi |u0i|+ U (t, u) .

Exercise 2.4.3. Although the hypotheses of Theorem 2.10 are not satisfied in
the present context; the procedure is exactly the same and leads to the following
analysis. The Hamiltonian is

H (x, u, v) =

⎧⎨⎩ −
p
g (x, u)− v2 if v2 ≤ g (x, u)

+∞ otherwise.

We therefore have, provided v2 < g (x, u), that⎧⎪⎪⎪⎨⎪⎪⎪⎩
u0 = Hv =

vp
g (x, u)− v2

v0 = −Hu =
1

2

gup
g (x, u)− v2

.

We hence obtain that 2vv0 = guu
0 and thus£

v2 (x)− g (x, u (x))
¤0
+ gx (x, u (x)) = 0.

If g (x, u) = g (u), we get (c being a constant)

v2 (x) = c+ g (u (x)) .
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7.2.4 Hamilton-Jacobi equation

Exercise 2.5.1. We state without proofs the results (they are similar to the
case N = 1 and we refer to Gelfand-Fomin [46] page 88, if necessary). Let H ∈
C1
¡
[a, b]×RN ×RN

¢
, H = H (x, u, v) and u = (u1, ..., uN ). The Hamilton-

Jacobi equation is

Sx +H (x, u, Su) = 0, ∀ (x, u, α) ∈ [a, b]×RN ×RN ,

where S = S (x, u, α) and Su = (Su1 , ..., SuN ). Jacobi Theorem reads then as
follows. Let S ∈ C2

¡
[a, b]×RN × RN

¢
be a solution of the Hamilton-Jacobi

equation and

det (Suα (x, u, α)) 6= 0, ∀ (x, u, α) ∈ [a, b]×RN ×RN ,

where Suα =
¡
∂2S/∂αi∂uj

¢
1≤i,j≤N . If u ∈ C1

¡
[a, b] ;RN

¢
satisfies

d

dx
[Sαi (x, u (x) , α)] = 0, ∀ (x, α) ∈ [a, b]×RN , i = 1, ..., N

and if v (x) = Su (x, u (x) , α) then⎧⎨⎩ u0 (x) = Hv (x, u (x) , v (x))

v0 (x) = −Hu (x, u (x) , v (x)) .

Exercise 2.5.2. The procedure is formal because the hypotheses of Theorem
2.19 are not satisfied. We have seen in Exercise 2.4.3 that

H (u, v) =

⎧⎨⎩ −
p
g (u)− v2 if v2 ≤ g (u)

+∞ otherwise.

The Hamilton-Jacobi equation (it is called in this context: eikonal equation) is
then

Sx −
p
g (u)− S2u = 0 ⇔ S2x + S2u = g (u) .

Its reduced form is then, for α > 0, g (u)− (S∗u)
2 = α2 and this leads to

S∗ (u, α) =

Z u

u0

p
g (s)− α2 ds .

We therefore get

S (x, u, α) = αx+

Z u

u0

p
g (s)− α2 ds .
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The equation Sα = β (where β is a constant) reads as

x− α

Z u(x)

u0

dsp
g (s)− α2

= β

which implies

1− αu0 (x)p
g (u (x))− α2

= 0 .

Note that, indeed, any such u = u (x) and

v = v (x) = Su (x, u (x) , α) =
p
g (u (x))− α2

satisfy ⎧⎪⎪⎨⎪⎪⎩
u0 (x) = Hv (x, u (x) , v (x)) =

√
g(u(x))−α2

α

v0 (x) = −Hu (x, u (x) , v (x)) =
g0(u(x))u0(x)

2
√
g(u(x))−α2

.

Exercise 2.5.3. The Hamiltonian is easily seen to be

H (u, v) =
v2

2a (u)
.

The Hamilton-Jacobi equation and its reduced form are given by

Sx +
(Su)

2

2a (u)
= 0 and

(S∗u)
2

2a (u)
=

α2

2
.

Therefore, defining A by A0 (u) =
p
a (u), we find

S∗ (u,α) = αA (u) and S (x, u, α) = −α
2

2
x+ αA (u) .

Hence, according to Theorem 2.19 (note that Suα =
p
a (u) > 0) the solution is

given implicitly by

Sα (x, u (x) , α) = −αx+A (u (x)) ≡ β = constant .

Since A is invertible we find (compare with Exercise 2.2.10)

u (x) = A−1 (αx+ β) .
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7.2.5 Fields theories

Exercise 2.6.1. Let f ∈ C2
¡
[a, b]×RN ×RN

¢
, α, β ∈ RN . Assume that there

exists Φ ∈ C3
¡
[a, b]×RN

¢
satisfying Φ (a, α) = Φ (b, β). Suppose also thatef (x, u, ξ) = f (x, u, ξ) + hΦu (x, u) ; ξi+ Φx (x, u)

is such that (u, ξ)→ ef (x, u, ξ) is convex. The claim is then that any solution u
of the Euler-Lagrange system

d

dx

£
fξi (x, u, u

0)
¤
= fui (x, u, u

0) , i = 1, ..., N

is a minimizer of

(P ) inf
u∈X

(
I (u) =

Z b

a

f (x, u (x) , u0 (x)) dx

)
= m

where X =
©
u ∈ C1

¡
[a, b] ;RN

¢
: u (a) = α, u (b) = β

ª
.

The proof is exactly as the one dimensional one and we skip the details.
Exercise 2.6.2. The procedure is very similar to the one of Theorem 2.27. An
exact field Φ = Φ (x, u) covering a domain D ⊂ RN+1 is a map Φ : D → RN so
that there exists S ∈ C1

¡
D;RN

¢
satisfying

Sui (x, u) = fξi (x, u,Φ (x, u)) , i = 1, ..., N

Sx (x, u) = f (x, u,Φ (x, u))− hSu (x, u) ;Φ (x, u)i .
The Weierstrass function is defined, for u, η, ξ ∈ RN , as

E (x, u, η, ξ) = f (x, u, ξ)− f (x, u, η)− hfξ (x, u, η) ; (ξ − η)i .
The proof is then identical to the one dimensional case.
Exercise 2.6.3. (i) We have by definition⎧⎨⎩ Su (x, u) = fξ (x, u,Φ (x, u))

Sx (x, u) = − [Su (x, u)Φ (x, u)− f (x, u,Φ (x, u))] .

We therefore have immediately from Lemma 2.8

Sx (x, u) = −H (x, u, Su (x, u)) .
(ii) Using again Lemma 2.8 we obtain⎧⎨⎩ H (x, u, Su) = Su (x, u)Φ (x, u)− f (x, u,Φ (x, u))

Su (x, u) = fξ (x, u,Φ (x, u)) .

Since S is a solution of Hamilton-Jacobi equation, we get Sx = −H (x, u, Su) as
wished.
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7.3 Chapter 3: Direct methods

7.3.1 The model case: Dirichlet integral

Exercise 3.2.1. The proof is almost completely identical to that of Theorem
3.1; only the first step is slightly different. So let {uν} be a minimizing sequence

I (uν)→ m = inf
n
I (u) : u ∈W 1,2

0 (Ω)
o
.

Since I (0) < +∞, we have that m < +∞. Consequently we have from Hölder
inequality that

m+ 1 ≥ I (uν) =
1

2

Z
Ω

|∇uν |2 dx−
Z
Ω

g (x)uν (x) dx

≥
Z
Ω

1

2
|∇uν |2 − kgkL2 kuνkL2 =

1

2
k∇uνk2L2 − kgkL2 kuνkL2 .

Using Poincaré inequality (cf. Theorem 1.47) we can find constants (independent
of ν) γk > 0, k = 1, ..., 5, so that

m+ 1 ≥ γ1 kuνk
2
W 1,2 − γ2 kuνkW 1,2 ≥ γ3 kuνk

2
W 1,2 − γ4

and hence, as wished,
kuνkW 1,2 ≤ γ5 .

7.3.2 A general existence theorem

Exercise 3.3.1. As in the preceding exercise it is the compactness proof in
Theorem 3.3 that has to be modified, the remaining part of the proof is essentially
unchanged. Let therefore {uν} be a minimizing sequence, i.e. I (uν)→ m. We
have from (H2) that for ν sufficiently large

m+ 1 ≥ I (uν) ≥ α1 k∇uνkpLp − |α2| kuνk
q
Lq − |α3|measΩ .

From now on we will denote by γk > 0 constants that are independent of ν.
Since by Hölder inequality we have

kuνkqLq =
Z
Ω

|uν |q ≤
µZ
Ω

|uν |p
¶q/pµZ

Ω

dx

¶(p−q)/p
= (measΩ)(p−q)/p kuνkqLp

we deduce that we can find constants γ1 and γ2 such that

m+ 1 ≥ α1 k∇uνkpLp − γ1 kuνk
q
Lp − γ2

≥ α1 k∇uνkpLp − γ1 kuνk
q
W1,p − γ2 .
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Invoking Poincaré inequality (cf. Theorem 1.47) we can find γ3, γ4, γ5, so that

m+ 1 ≥ γ3 kuνk
p
W 1,p − γ4 ku0k

p
W 1,p − γ1 kuνk

q
W 1,p − γ5

and hence, γ6 being a constant,

m+ 1 ≥ γ3 kuνk
p
W1,p − γ1 kuνk

q
W 1,p − γ6 .

Since 1 ≤ q < p, we can find γ7, γ8 so that

m+ 1 ≥ γ7 kuνk
p
W 1,p − γ8

which, combined with the fact that m <∞, leads to the claim, namely

kuνkW 1,p ≤ γ9 .

Exercise 3.3.2. This time it is the lower semicontinuity step in Theorem 3.3
that has to be changed. Let therefore uν - u in W 1,p and let

I (u) = I1 (u) + I2 (u)

where

I1 (u) =

Z
Ω

h (x,∇u (x)) dx , I2 (u) =
Z
Ω

g (x, u (x)) dx .

It is clear that, by the proof of the theorem, lim inf I1 (uν) ≥ I1 (u). The result
will therefore be proved if we can show

lim
i→∞

I2 (uν) = I2 (u) .

Case 1: p > n. From Rellich theorem (Theorem 1.43) we obtain that uν → u
in L∞; in particular there exists R > 0 such that kuνkL∞ , kukL∞ ≤ R. The
result then follows since

|I2 (uν)− I2 (u)| ≤
Z
Ω

|g (x, uν)− g (x, u)| dx ≤ γ kuν − ukL∞ measΩ.

Case 2: p = n. The estimate

|I2 (uν)− I2 (u)| ≤ γ

Z
Ω

³
1 + |uν |q−1 + |u|q−1

´
|uν − u| dx ,

combined with Hölder inequality gives us

|I2 (uν)− I2 (u)| ≤ γ

µZ
Ω

³
1 + |uν |q−1 + |u|q−1

´ q
q−1
¶ q−1

q
µZ
Ω

|uν − u|q
¶ 1

q

.
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Since we have from Rellich theorem, that uν → u in Lq, ∀q ∈ [1,∞) we obtain
the desired convergence.
Case 3: p < n. The same argument as in Case 2 leads to the result, the dif-

ference being that Rellich theorem gives now uν → u in Lq, ∀q ∈ [1, np/ (n− p)).
Exercise 3.3.3. We here have weakened the hypothesis (H3) in the proof of the
theorem. We used this hypothesis only in the lower semicontinuity part of the
proof, so let us establish this property under the new condition. So let uν - u
in W 1,p

¡
(a, b) ;RN

¢
. Using the convexity of (u, ξ)→ f (x, u, ξ) we findZ b

a

f (x, uν , u
0
ν) dx ≥

Z b

a

f (x, u, u0) dx

+

Z b

a

[hfu (x, u, u0) ;uν − ui+ hfξ (x, u, u0) ;u0ν − u0i] dx .

Since, by Rellich theorem, uν → u in L∞, to pass to the limit in the second term
of the right hand side of the inequality we need only to have fu (x, u, u0) ∈ L1.
This is ascertained by the hypothesis |fu (x, u, ξ)| ≤ β (1 + |ξ|p). Similarly to
pass to the limit in the last term we need to have fξ (x, u, u

0) ∈ Lp
0
, p0 =

p/ (p− 1); and this is precisely true because of the hypothesis |fξ (x, u, ξ)| ≤
β
³
1 + |ξ|p−1

´
.

7.3.3 Euler-Lagrange equations

Exercise 3.4.1. We have to prove that for u ∈ W 1,p, the following expression
is meaningfulZ

Ω

{fu (x, u,∇u)ϕ+ hfξ (x, u,∇u) ;∇ϕi} dx = 0, ∀ϕ ∈W 1,p
0 .

Case 1: p > n. We have from Sobolev imbedding theorem (cf. Theorem
1.42) that u, ϕ ∈ C

¡
Ω
¢
. We therefore only need to have fu (x, u,∇u) ∈ L1 and

fξ (x, u,∇u) ∈ Lp
0
, where p0 = p/ (p− 1). This is true if we assume that for

every R > 0, there exists β = β (R) so that ∀ (x, u, ξ) with |u| ≤ R the following
inequalities hold

|fu (x, u, ξ)| ≤ β (1 + |ξ|p) , |fξ (x, u, ξ)| ≤ β
³
1 + |ξ|p−1

´
.

Case 2: p = n. This time we have u, ϕ ∈ Lq, ∀q ∈ [1,∞). We therefore have
to ascertain that fu ∈ Lr for a certain r > 1 and fξ ∈ Lp

0
. To guarantee this

claim we impose that there exist β > 0, p > s2 ≥ 1, s1 ≥ 1 such that

|fu (x, u, ξ)| ≤ β (1 + |u|s1 + |ξ|s2) , |fξ (x, u, ξ)| ≤ β
³
1 + |u|s1 + |ξ|p−1

´
.
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Case 3: p < n. We now only have u, ϕ ∈ Lq, ∀q ∈ [1, np/ (n− p)]. We
therefore should have fu ∈ Lq

0
, q0 = q/ (q − 1), and fξ ∈ Lp

0
. This happens if

there exist β > 0, 1 ≤ s1 ≤ (np− n+ p) / (n− p), 1 ≤ s2 ≤ (np− n+ p) /n,
1 ≤ s3 ≤ n (p− 1) / (n− p) so that

|fu (x, u, ξ)| ≤ β (1 + |u|s1 + |ξ|s2) , |fξ (x, u, ξ)| ≤ β
³
1 + |u|s3 + |ξ|p−1

´
.

Exercise 3.4.2. Use the preceding exercise to deduce the following growth
conditions on g ∈ C1

¡
Ω×R

¢
.

Case 1: p > n. No growth condition is imposed on g.
Case 2: p = n. There exist β > 0 and s1 ≥ 1 such that

|gu (x, u)| ≤ β (1 + |u|s1) , ∀ (x, u) ∈ Ω×R .

Case 3: p < n. There exist β > 0 and 1 ≤ s1 ≤ (np− n+ p) / (n− p), so
that

|gu (x, u)| ≤ β (1 + |u|s1) , ∀ (x, u) ∈ Ω×R .

Exercise 3.4.3. (i) Let N be an integer and

uN (x, t) = sinNx sin t .

We obviously have uN ∈ W 1,2
0 (Ω) (in fact uN ∈ C∞

¡
Ω
¢
and uN = 0 on ∂Ω).

An elementary computation shows that lim I (uN ) = −∞.
(ii) The second part is elementary.
It is also clear that for the wave equation it is not reasonable to impose an

initial condition (at t = 0) and a final condition (at t = π).

7.3.4 The vectorial case

Exercise 3.5.1. Let

ξ1 =

µ
2 0
0 0

¶
, ξ2 =

µ
0 0
0 2

¶
.

We therefore have the desired contradiction, namely

1

2
f (ξ1) +

1

2
f (ξ2) =

1

2
(det ξ1)

2
+
1

2
(det ξ2)

2
= 0 < f

µ
1

2
ξ1 +

1

2
ξ2

¶
= 1 .

Exercise 3.5.2. We divide the discussion into two steps.
Step 1. Let u, v ∈ C2

¡
Ω;R2

¢
with u = v on ∂Ω. Write u = u (x, y) =

(ϕ (x, y) , ψ (x, y)) and v = v (x, y) = (α (x, y) , β (x, y)). Use the fact that

det∇u = ϕxψy − ϕyψx =
¡
ϕψy

¢
x
− (ϕψx)y
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and the divergence theorem to getZZ
Ω

det∇udxdy =
Z
∂Ω

¡
ϕψyν1 − ϕψxν2

¢
dσ

where ν = (ν1, ν2) is the outward unit normal to ∂Ω. Since ϕ = α on ∂Ω, we
have, applying twice the divergence theorem,ZZ
Ω

det∇u dxdy =

ZZ
Ω

h¡
αψy

¢
x
− (αψx)y

i
dxdy

=

ZZ
Ω

h
(αxψ)y − (αyψ)x

i
dxdy =

Z
∂Ω

(αxψν2 − αyψν1) dσ .

Since ψ = β on ∂Ω, we obtain, using again the divergence theorem, thatZZ
Ω

det∇u dxdy =
ZZ
Ω

h
(αxβ)y − (αyβ)x

i
dxdy =

ZZ
Ω

det∇v dxdy .

Step 2. We first regularize v, meaning that for every � > 0 we find v� ∈
C2
¡
Ω;R2

¢
so that

kv − v�kW 1,p ≤ � .

Since u− v ∈W 1,p
0

¡
Ω;R2

¢
, we can find w� ∈ C∞0

¡
Ω;R2

¢
so that

k(u− v)− w�kW 1,p ≤ � .

Define u� = v� + w� and observe that u�, v� ∈ C2
¡
Ω;R2

¢
, with u� = v� on ∂Ω,

and
ku− u�kW 1,p = k(u− v)− w� + (v − v�)kW 1,p ≤ 2� .

Using Exercise 3.5.4 below, we deduce that there exists α1 (independent of �) so
that

kdet∇u− det∇u�kLp/2 , kdet∇v − det∇v�kLp/2 ≤ α1� .

Combining Step 1 with the above estimates we obtain that there exists a constant
α2 (independent of �) such that¯̄̄̄ZZ

Ω

(det∇u− det∇v) dxdy
¯̄̄̄
≤
¯̄̄̄ZZ

Ω

(det∇u� − det∇v�) dxdy
¯̄̄̄

+

¯̄̄̄ZZ
Ω

(det∇u− det∇u�) dxdy
¯̄̄̄
+

¯̄̄̄ZZ
Ω

(det∇v� − det∇v) dxdy
¯̄̄̄
≤ α2� .

Since � is arbitrary we have indeed the result.
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Exercise 3.5.3. Let u ∈ C2
¡
Ω;R2

¢
, u (x, y) = (ϕ (x, y) , ψ (x, y)), be a mini-

mizer of (P) and let v ∈ C∞0
¡
Ω;R2

¢
, v (x, y) = (α (x, y) , β (x, y)), be arbitrary.

Since I (u+ �v) ≥ I (u) for every �, we must have

0 =
d

d�
I (u+ �v)

¯̄̄̄
�=0

=
d

d�

½ZZ
Ω

£
(ϕx + �αx)

¡
ψy + �βy

¢
−
¡
ϕy + �αy

¢
(ψx + �βx)

¤
dxdy

¾¯̄̄̄
�=0

=

ZZ
Ω

£¡
ψyαx − ψxαy

¢
+
¡
ϕxβy − ϕyβx

¢¤
dxdy .

Integrating by parts, we find that the right hand side vanishes identically. The
result is not surprising in view of Exercise 3.5.2, which shows that I (u) is in fact
constant.
Exercise 3.5.4. The proof is divided into two steps.
Step 1. It is easily proved that the following algebraic inequality holds

|detA− detB| ≤ α (|A|+ |B|) |A−B| , ∀A,B ∈ R2×2

where α is a constant.
Step 2. We therefore deduce that

|det∇u− det∇v|p/2 ≤ αp/2 (|∇u|+ |∇v|)p/2 |∇u−∇v|p/2 .

Hölder inequality implies thenZZ
Ω

|det∇u− det∇v|p/2 dxdy

≤ αp/2
µZZ

Ω

(|∇u|+ |∇v|)p dxdy

¶1/2µZZ
Ω

|∇u−∇v|p dxdy

¶1/2
.

We therefore obtain that

kdet∇u− det∇vkLp/2 =
µZZ

Ω

|det∇u− det∇v|p/2 dxdy
¶2/p

≤ α

µZZ
Ω

(|∇u|+ |∇v|)p dxdy

¶1/pµZZ
Ω

|∇u−∇v|p dxdy

¶1/p
and hence the claim.
Exercise 3.5.5. For more details concerning this exercise see [31] page 158.
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(i) We have seen (Exercise 1.4.6) that the sequence uν - 0 in W 1,2 (we have
shown this only up to a subsequence, but it is not difficult to see that the whole
sequence has this property). An elementary computation gives

det∇uν = −ν (1− y)
2ν−1

.

Let us show that det∇uν - 0 in L1 does not hold. Indeed, let ϕ ≡ 1 ∈ L∞ (Ω).
It is not difficult to see that

lim
ν→∞

ZZ
Ω

det∇uν (x, y) dxdy 6= 0,

and thus the result.
(ii) Note first that by Rellich theorem (Theorem 1.43) we have that if uν -

u in W 1,p then uν → u in Lq, ∀q ∈ [1, 2p/ (2− p)) provided p < 2 and
∀q ∈ [1,∞) if p = 2 (the case p > 2 has already been considered in Lemma
3.23). Consequently if p > 4/3, we have uν → u in L4. Let therefore uν =
uν (x, y) = (ϕν (x, y) , ψν (x, y)) and v ∈ C∞0 (Ω). Since det∇uν = ϕνxψ

ν
y −

ϕνyψ
ν
x =

¡
ϕνψνy

¢
x
− (ϕνψνx)y (this is allowed since uν ∈ C2) we have, after

integrating by parts,ZZ
Ω

det∇uνv dxdy =
ZZ
Ω

¡
ϕνψνxvy − ϕνψνyvx

¢
dxdy .

However we know that ψν - ψ in W 1,4/3 (since uν - u in W 1,p and p > 4/3)
and ϕν → ϕ in L4, we therefore deduce that

¡
ϕνψνx, ϕ

νψνy
¢
-
¡
ϕψx, ϕψy

¢
in L1

(Exercise 1.3.3). Passing to the limit and integrating by parts once more we get
the claim, namely

lim
ν→∞

ZZ
Ω

det∇uνv dxdy =
ZZ
Ω

(ϕψxvy − ϕψxvy) dxdy =

ZZ
Ω

det∇u v dxdy .

Exercise 3.5.6. (i) Let x = (x1, x2), we then find

∇u =

⎛⎜⎜⎝
x22

|x|3
−x1x2
|x|3

−x1x2
|x|3

x21

|x|3

⎞⎟⎟⎠⇒ |∇u|2 = 1

|x|2
.

We therefore deduce (cf. Exercise 1.4.1) that u ∈ L∞ and u ∈ W 1,p provided
p ∈ [1, 2), but, however, u /∈W 1,2 and u /∈ C0.
(ii) SinceZZ

Ω

|uν (x)− u (x)|q dx = 2π
Z 1

0

r

(νr + 1)
q dr =

2π

ν2

Z ν+1

1

s− 1
sq

ds
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we deduce that uν → u in Lq, for every q ≥ 1; however the convergence uν → u
in L∞ does not hold. We next show that uν - u in W 1,p if p ∈ [1, 2). We
will show this only up to a subsequence (it is not difficult to see that the whole
sequence has this property). We readily have

∇uν = 1

|x| (|x|+ 1/ν)2

⎛⎜⎝ x22 +
|x|
ν

−x1x2

−x1x2 x21 +
|x|
ν

⎞⎟⎠
and thus

|∇uν | =

µ
|x|2 + 2 |x|

ν
+
2

ν2

¶1/2
(|x|+ 1/ν)2

.

We therefore find, if 1 ≤ p < 2, that, γ denoting a constant independent of ν,

ZZ
Ω

|∇uν |p dx1dx2 = 2π

Z 1

0

³
(r + 1/ν)2 + 1/ν2

´p/2
(r + 1/ν)

2p r dr

≤ 2π

Z 1

0

2p/2 (r + 1/ν)p

(r + 1/ν)
2p r dr = 2(2+p)/2πνp

Z 1

0

r dr

(νr + 1)
p

≤ 2(2+p)/2πνp−2
Z ν+1

1

(s− 1) ds
sp

≤ γ .

This implies that, up to the extraction of a subsequence, uν - u in W 1,p, as
claimed.
(iii) A direct computation gives

det∇uν = |det∇uν | = 1

ν (|x|+ 1/ν)3

and henceZZ
Ω

|det∇uν | dx1dx2 = 2πν2
Z 1

0

r dr

(νr + 1)3
= 2π

Z ν+1

1

(s− 1) ds
s3

= 2π

∙
1

2s2
− 1

s

¸ν+1
1

.

We therefore have

lim
ν→∞

ZZ
Ω

|det∇uν | dx1dx2 = π . (7.14)

Observe that if Ωδ =
©
x ∈ R2 : |x| < δ

ª
, then for every fixed δ > 0, we have

det∇uν = |det∇uν |→ 0 in L∞ (ΩÂΩδ) . (7.15)
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So let � > 0 be arbitrary and let ϕ ∈ C∞ (Ω). We can therefore find δ = δ (�) > 0
such that

x ∈ Ωδ ⇒ |ϕ (x)− ϕ (0)| < �. (7.16)

We then combine (7.14), (7.15) and (7.16) to get the result. Indeed let ϕ ∈
C∞0 (Ω) and obtainZZ

Ω

det∇uνϕdx = ϕ (0)

ZZ
Ω

det∇uνdx+
ZZ
Ωδ

det∇uν (ϕ (x)− ϕ (0)) dx

+

ZZ
Ω−Ωδ

det∇uν (ϕ (x)− ϕ (0)) dx .

This leads to the following estimate¯̄̄̄ZZ
Ω

det∇uνϕdx− ϕ (0)

ZZ
Ω

det∇uνdx
¯̄̄̄

≤ sup
x∈Ωδ

[|ϕ (x)− ϕ (0)|]
ZZ
Ω

|det∇uν | dx+ 2 kϕkL∞
ZZ
Ω−Ωδ

|det∇uν | dx .

Keeping first fixed �, and thus δ, we let ν →∞ and obtain

lim
ν→∞

¯̄̄̄ZZ
Ω

det∇uνϕdx− πϕ (0)

¯̄̄̄
≤ π� ,

� being arbitrary, we have indeed obtained the result.

7.3.5 Relaxation theory

Exercise 3.6.1. (i) Let

u (x) =

½
ax+ α if x ∈ [0, λ]
b (x− 1) + β if x ∈ [λ, 1] .

Note that u (0) = α, u (1) = β and u is continuous at x = λ since β − α =
λa+(1− λ) b, hence u ∈ X. Since f∗∗ ≤ f and f∗∗ is convex, we have appealing
to Jensen inequality that, for any u ∈ X,

I (u) =

Z 1

0

f (u0 (x)) dx ≥
Z 1

0

f∗∗ (u0 (x)) dx

≥ f∗∗
µZ 1

0

u0 (x) dx

¶
= f∗∗ (β − α) = λf (a) + (1− λ) f (b) = I (u) .

Hence u is a minimizer of (P).
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(ii) The preceding result does not apply to f (ξ) = e−ξ
2

and α = β = 0.
Indeed we have f∗∗ (ξ) ≡ 0 and we therefore cannot find λ ∈ [0, 1], a, b ∈ R so
that ½

λa+ (1− λ) b = 0

λe−a
2

+ (1− λ) e−b
2

= 0 .

In fact we should need a = −∞ and b = +∞. Recall that in Section 2.2 we
already saw that (P) has no solution.

(iii) If f (ξ) =
¡
ξ2 − 1

¢2
, we then find

f∗∗ (ξ) =

⎧⎨⎩
¡
ξ2 − 1

¢2
if |ξ| ≥ 1,

0 if |ξ| < 1 .

Therefore if |β − α| ≥ 1 choose in (i) λ = 1/2 and a = b = β − α. However
if |β − α| < 1, choose a = 1, b = −1 and λ = (1 + β − α) /2. In conclusion, in
both cases, we find that problem (P) has u as a minimizer.
Exercise 3.6.2. If we set ξ = (ξ1, ξ2), we easily have that

f∗∗ (ξ) =

⎧⎨⎩
f (ξ) if |ξ1| ≥ 1,

ξ42 if |ξ1| < 1 .

From the Relaxation theorem (cf. Theorem 3.28) we find m = 0 (since u ≡ 0 is
such that I (u) = 0). However no function u ∈ W 1,4

0 (Ω) can satisfy I (u) = 0,
hence (P) has no solution.
Exercise 3.6.3. It is easy to see that

f∗ (ξ∗) = sup
ξ∈R2×2

n
hξ; ξ∗i− (det ξ)2

o
=

⎧⎨⎩ 0 if ξ∗ = 0

+∞ if ξ∗ 6= 0

and therefore
f∗∗ (ξ) = sup

ξ∗∈R2×2
{hξ; ξ∗i− f∗ (ξ∗)} ≡ 0 .

7.4 Chapter 4: Regularity

7.4.1 The one dimensional case

Exercise 4.2.1. (i) We first show that u ∈ W 2,∞ (a, b), by proving (iii) of
Theorem 1.36. Observe first that from (H1’) and the fact that u ∈ W 1,∞ (a, b),
we can find a constant γ1 > 0 such that, for every z ∈ R with |z| ≤ ku0kL∞ ,

fξξ (x, u (x) , z) ≥ γ1 > 0, ∀x ∈ [a, b] . (7.17)
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We have to prove that we can find a constant α > 0 so that

|u0 (x+ h)− u0 (x)| ≤ α |h| , a.e. x ∈ ω

for every open set ω ⊂ ω ⊂ (a, b) and every h ∈ R satisfying |h| < dist (ω, (a, b)c).
Using (7.17) we have

γ1 |u0 (x+ h)− u0 (x)|

≤
¯̄̄̄
¯
Z u0(x+h)

u0(x)

fξξ (x, u (x) , z) dz

¯̄̄̄
¯

≤ |fξ (x, u (x) , u0 (x+ h))− fξ (x, u (x) , u
0 (x))|

≤ |fξ (x+ h, u (x+ h) , u0 (x+ h))− fξ (x, u (x) , u
0 (x))|

+ |fξ (x, u (x) , u0 (x+ h))− fξ (x+ h, u (x+ h) , u0 (x+ h))| .

Now let us evaluate both terms in the right hand side of the inequality. Since
we know from Lemma 4.2 that x → fu (x, u (x) , u

0 (x)) is in L∞ (a, b) and the
Euler-Lagrange equation holds we deduce that x → ϕ (x) = fξ (x, u (x) , u

0 (x))
is in W 1,∞ (a, b). Therefore applying Theorem 1.36 to ϕ, we can find a constant
γ2 > 0, such that

|ϕ (x+ h)− ϕ (x)| = |fξ (x+ h, u (x+ h) , u0 (x+ h))− fξ (x, u (x) , u
0 (x))|

≤ γ2 |h| .

Similarly since u ∈ W 1,∞ and f ∈ C∞, we can find constant γ3, γ4 > 0, such
that

|fξ (x, u (x) , u0 (x+ h))− fξ (x+ h, u (x+ h) , u0 (x+ h))|
≤ γ3 (|h|+ |u (x+ h)− u (x)|) ≤ γ4 |h| .

Combining these two inequalities we find

|u0 (x+ h)− u0 (x)| ≤ γ2 + γ4
γ1

|h|

as wished; thus u ∈W 2,∞ (a, b).
(ii) Since u ∈ W 2,∞ (a, b), and the Euler-Lagrange equation holds, we get

that, for almost every x ∈ (a, b),

d

dx
[fξ (x, u, u

0)] = fξξ (x, u, u
0)u00 + fuξ (x, u, u

0)u0 + fxξ (x, u, u
0)

= fu (x, u, u
0) .
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Since (H1’) holds and u ∈ C1 ([a, b]), we deduce that there exists γ5 > 0 such
that

fξξ (x, u (x) , u
0 (x)) ≥ γ5 > 0, ∀x ∈ [a, b] .

The Euler-Lagrange equation can then be rewritten as

u00 =
fu (x, u, u

0)− fxξ (x, u, u
0)− fuξ (x, u, u

0)u0

fξξ (x, u, u
0)

and hence u ∈ C2 ([a, b]). Returning to the equation we find that the right
hand side is then C2, and hence u ∈ C3. Iterating the process we conclude that
u ∈ C∞ ([a, b]), as claimed.
Exercise 4.2.2. (i) We have

u0 = |x|
p

p−q−2 x and u00 =

µ
p

p− q
− 1
¶
|x|

p
p−q−2 =

q

p− q
|x|

2q−p
p−q

which implies, since p > 2q > 2, that u ∈ C1 ([−1, 1]) but u /∈ C2 ([−1, 1]).
(ii) We find that

|u0|p−2 u0 = |x|
q(p−2)
p−q |x|

2q−p
p−q x = |x|

p(q−1)
p−q x

|u|q−2 u =

µ
p− q

p

¶q−1
|x|

p(q−1)
p−q .

If we choose, for instance, p(q−1)p−q = 4 (which is realized, for example, if p = 8 and

q = 10/3), then |u0|p−2 u0, |u|q−2 u ∈ C∞ ([−1, 1]), although u /∈ C2 ([−1, 1]).
(iii) Since the function (u, ξ)→ f (u, ξ) is strictly convex and satisfies all the

hypotheses of Theorem 3.3 and Theorem 3.11, we have that (P) has a unique
minimizer and that it should be the solution of the Euler-Lagrange equation³

|u0|p−2 u0
´0
= λ |u|q−2 u .

A direct computation shows that, indeed, u is a solution of this equation and
therefore it is the unique minimizer of (P).

7.4.2 The model case: Dirichlet integral

Exercise 4.3.1. We have to show that if u ∈ L1loc (a, b) andZ b

a

u (x)ϕ00 (x) dx = 0, ∀ϕ ∈ C∞0 (a, b)

then, up to changing u on a set of measure zero, u (x) = αx+β for some α, β ∈ R.
This follows exactly as in Exercise 1.3.6.
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Exercise 4.3.2. This is a classical result.
(i) We start by choosing ψ ∈ C∞0 (0, 1), ψ ≥ 0, so thatZ 1

0

rn−1ψ (r) dr =
1

σn−1
(7.18)

where σn−1 = meas (∂B1 (0)). We then let ψ ≡ 0 outside of (0, 1) and we define
for every � > 0

ϕ� (x) =
1

�n
ψ

µ
|x|
�

¶
.

(ii) Let Ω� =
n
x ∈ Rn : B� (x) ⊂ Ω

o
. Let x ∈ Ω�, the function y → ϕ� (x− y)

has then its support in Ω since suppϕ� ⊂ B� (0). We therefore haveZ
Rn

u (y)ϕ� (x− y) dy =

Z
Rn

u (x− y)ϕ� (y) dy =
1

�n

Z
|y|<�

u (x− y)ψ

µ
|y|
�

¶
dy

=

Z
|z|<1

u (x− �z)ψ (|z|) dz =
Z 1

0

Z
|y|=1

u (x− �ry)ψ (r) rn−1drdσ (y) .

(7.19)
We next use the mean value formula

u (x) =
1

σn−1rn−1

Z
∂Br(x)

udσ =
1

σn−1

Z
|y|=1

u (x+ ry) dσ (y) . (7.20)

Returning to (7.19) and using (7.18) combined with (7.20), we deduce that

u (x) =

Z
Rn

u (y)ϕ� (x− y) dy .

Since ϕ� ∈ C∞0 (Rn), we immediately get that u ∈ C∞ (Ω�). Since � is arbitrary,
we find that u ∈ C∞ (Ω), as claimed.
Exercise 4.3.3. Let V (r) = |log r|α and

u (x1, x2) = x1x2V (|x|) .

A direct computation shows that

ux1 = x2V (|x|) +
x21x2
|x| V

0 (|x|) and ux2 = x1V (|x|) +
x1x

2
2

|x| V
0 (|x|)
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while

ux1x1 =
x31x2

|x|2
V 00 (|x|) + x1x2

|x|3
¡
2x21 + 3x

2
2

¢
V 0 (|x|)

ux2x2 =
x32x1

|x|2
V 00 (|x|) + x1x2

|x|3
¡
2x22 + 3x

2
1

¢
V 0 (|x|)

ux1x2 =
x21x

2
2

|x|2
V 00 (|x|) + x41 + x21x

2
2 + x42

|x|3
V 0 (|x|) + V (|x|) .

We therefore get that

ux1x1 , ux2x2 ∈ C0 (Ω) , ux1x2 /∈ L∞ (Ω) .

Exercise 4.3.4. Let V (r) = log |log r|. A direct computation shows that

ux1 =
x1
|x|V

0 (|x|) and ux2 =
x2
|x|V

0 (|x|)

and therefore

ux1x1 =
x21

|x|2
V 00 (|x|) + x22

|x|3
V 0 (|x|)

ux2x2 =
x22

|x|2
V 00 (|x|) + x21

|x|3
V 0 (|x|)

ux1x2 =
x1x2

|x|2
V 00 (|x|)− x1x2

|x|3
V 0 (|x|) .

This leads to

∆u = V 00 (|x|) + V 0 (|x|)
|x| =

−1
|x|2 |log |x||2

∈ L1 (Ω)

while ux1x1 , ux1x2 , ux2x2 /∈ L1 (Ω). Summarizing the results we indeed have that
u /∈ W 2,1 (Ω) while ∆u ∈ L1 (Ω). We also observe (compare with Example 1.33
(ii)) that, trivially, u /∈ L∞ (Ω) while u ∈W 1,2 (Ω), sinceZZ

Ω

|∇u|2 dx = 2π
Z 1/2

0

dr

r |log r|2
=

2π

log 2
.

A much more involved example due to Ornstein [79] produces a u such that

ux1x1 , ux2x2 ∈ L1 (Ω) , ux1x2 /∈ L1 (Ω) .
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7.5 Chapter 5: Minimal surfaces

7.5.1 Generalities about surfaces

Exercise 5.2.1. (i) Elementary.
(ii) Apply (i) with a = vx, b = vy and the definition of E, F and G.
(iii) Since e3 = (vx × vy) / |vx × vy|, we have

he3; vxi = he3; vyi = 0 .

Differentiating with respect to x and y, we deduce that

0 = he3; vxxi+ he3x; vxi = he3; vxyi+ he3y; vxi
= he3; vxyi+ he3x; vyi = he3; vyyi+ he3y; vyi

and the result follows from the definition of L, M and N .
Exercise 5.2.2. (i) We have

vx = (−y sinx, y cosx, a) , vy = (cosx, sinx, 0) ,

e3 =
(−a sinx, a cosx,−y)p

a2 + y2
,

vxx = (−y cosx,−y sinx, 0) , vxy = (− sinx, cosx, 0) , vyy = 0

and hence

E = a2 + y2, F = 0, G = 1, L = N = 0, M =
ap

a2 + y2

which leads to H = 0, as wished.
(ii) A straight computation gives

vx =
¡
1− x2 + y2,−2xy, 2x

¢
, vy =

¡
2xy,−1 + y2 − x2,−2y

¢
,

e3 =

¡
2x, 2y, x2 + y2 − 1

¢
(1 + x2 + y2)

,

vxx = (−2x, − 2y, 2) , vxy = (2y,−2x, 0) , vyy = (2x, 2y,−2)

and hence

E = G =
¡
1 + x2 + y2

¢2
, F = 0, L = −2, N = 2, M = 0

which shows that, indeed, H = 0.
Exercise 5.2.3. (i) Since |vx × vy|2 = w2

¡
1 + w02

¢
, we obtain the result.
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(ii) Let f (w, ξ) = w
p
1 + ξ2. Observe that the function f is not convex over

(0,+∞)×R; although the function ξ → f (w, ξ) is strictly convex, whenever w >
0. We will therefore only give necessary conditions for existence of minimizers
of (Pα) and hence we write the Euler-Lagrange equation associated to (Pα),
namely

d

dx
[fξ (w,w

0)] = fw (w,w
0) ⇔ d

dx

∙
ww0√
1 + w02

¸
=
p
1 + w02 . (7.21)

Invoking Theorem 2.7, we find that any minimizer w of (Pα) satisfies

d

dx
[f (w,w0)− w0fξ (w,w

0)] = 0 ⇔ d

dx

∙
w√

1 + w02

¸
= 0

which implies, if we let a > 0 be a constant,

w02 =
w2

a2
− 1 . (7.22)

Before proceeding further, let us observe the following facts.
1) The function w ≡ a is a solution of (7.22) but not of (7.21) and therefore

it is irrelevant for our analysis.
2) To a = 0 corresponds w ≡ 0, which is also not a solution of (7.21) and

moreover does not satisfy the boundary conditions w (0) = w (1) = α > 0.
3) Any solution of (7.22) must verify w2 ≥ a2 and, since w (0) = w (1) = α >

0, thus verifies w ≥ a > 0.
We can therefore search for solutions of (7.22) the form

w (x) = a cosh
f (x)

a

where f satisfies, when inserted into the equation, f 02 = 1, which implies that
either f 0 ≡ 1 or f 0 ≡ −1, since f is C1. Thus the solution of the differential
equation is of the form

w (x) = a cosh
x+ µ

a
.

Since w (0) = w (1), we deduce that µ = −1/2. Finally since w (0) = w (1) = α,
every solution C2 of (Pα) must be of the form

w (x) = a cosh

µ
2x− 1
2a

¶
and a cosh

1

2a
= α .

Summarizing, we see that depending on the values of α, the Euler-Lagrange
equation (7.21) may have 0, 1 or 2 solutions (in particular for α small, (7.21)
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has no C2 solution satisfying w (0) = w (1) = α and hence (Pα) also has no C2

minimizer).
Exercise 5.2.4. By hypothesis there exist a bounded smooth domain Ω ⊂ R2
and a map v ∈ C2

¡
Ω;R3

¢
(v = v (x, y), with vx×vy 6= 0 in Ω) so that Σ0 = v

¡
Ω
¢
.

Let e3 = (vx × vy) / |vx × vy|. We then let for � ∈ R and ϕ ∈ C∞0 (Ω)

v� (x, y) = v (x, y) + �ϕ (x, y) e3 .

Finally let Σ� = v�
¡
Ω
¢
. Since Σ0 is of minimal area and ∂Σ� = ∂Σ0, we should

have ZZ
Ω

|vx × vy| dxdy ≤
ZZ
Ω

¯̄
v�x × v�y

¯̄
dxdy . (7.23)

Let E� = |v�x|
2, F � =

­
v�x; v

�
y

®
, G� =

¯̄
v�y
¯̄2
, E = |vx|2, F = hvx; vyi and G = |vy|2.

We therefore get

E� = |vx + �ϕe3x + �ϕxe3|
2 = E + 2� [ϕx hvx; e3i+ ϕ hvx; e3xi] +O

¡
�2
¢

F � = F + �
£
ϕx hvy; e3i+ ϕy hvx; e3i+ ϕ hvy; e3xi+ ϕ hvx; e3yi

¤
+O

¡
�2
¢

G� = G+ 2�
£
ϕy hvy; e3i+ ϕ hvy; e3yi

¤
+O

¡
�2
¢

where O (t) stands for a function f so that |f (t) /t| is bounded in a neighborhood
of t = 0. Appealing to the definition of L, M , N , Exercise 5.2.1 and to the fact
that hvx; e3i = hvy; e3i = 0, we obtain

E�G� − (F �)
2
= (E − 2�Lϕ) (G− 2�ϕN)− (F − 2�ϕM)

2
+O

¡
�2
¢

= EG− F 2 − 2�ϕ [EN − 2FM +GL] +O
¡
�2
¢

=
¡
EG− F 2

¢
[1− 4�ϕH] +O

¡
�2
¢
.

We therefore conclude that¯̄
v�x × v�y

¯̄
= |vx × vy| (1− 2�ϕH) +O

¡
�2
¢

and hence

Area (Σ�) = Area (Σ0)− 2�
ZZ
Ω

ϕH |vx × vy| dxdy +O
¡
�2
¢
. (7.24)

Using (7.23) and (7.24) (i.e., we perform the derivative with respect to �) we getZZ
Ω

ϕH |vx × vy| dxdy = 0, ∀ϕ ∈ C∞0 (Ω) .

Since |vx × vy| > 0 (due to the fact that Σ0 is a regular surface), we deduce
from the fundamental lemma of the calculus of variations (Theorem 1.24) that
H = 0.
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7.5.2 The Douglas-Courant-Tonelli method

Exercise 5.3.1. We have

wx = vλλx + vµµx , wy = vλλy + vµµy

and thus

|wx|2 = |vλ|2 λ2x + 2λxµx hvλ; vµi+ µ2x |vµ|
2

|wy|2 = |vλ|2 λ2y + 2λyµy hvλ; vµi+ µ2y |vµ|
2 .

Since λx = µy and λy = −µx, we deduce that

|wx|2 + |wy|2 =
h
|vλ|2 + |vµ|2

i £
λ2x + λ2y

¤
and thusZZ

Ω

h
|wx|2 + |wy|2

i
dxdy =

ZZ
Ω

h
|vλ|2 + |vµ|2

i £
λ2x + λ2y

¤
dxdy .

Changing variables in the second integral, bearing in mind that

λxµy − λyµx = λ2x + λ2y ,

we get the result, namelyZZ
Ω

h
|wx|2 + |wy|2

i
dxdy =

ZZ
B

h
|vλ|2 + |vµ|2

i
dλdµ .

7.5.3 Nonparametric minimal surfaces

Exercise 5.5.1. Set

f =
1 + u2xq
1 + u2x + u2y

, g =
uxuyq

1 + u2x + u2y

, h =
1 + u2yq
1 + u2x + u2y

.

A direct computation shows that

fy = gx and gy = hx ,

since
Mu =

¡
1 + u2y

¢
uxx − 2uxuyuxy +

¡
1 + u2x

¢
uyy = 0 .

Setting

ϕ (x, y) =

Z x

0

Z y

0

g (s, t) dtds+

Z x

0

Z t

0

f (s, 0) dsdt+

Z y

0

Z t

0

h (0, s) dsdt
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we find that
ϕxx = f, ϕxy = g, ϕyy = h

and hence that
ϕxxϕyy − ϕ2xy = 1 .

The fact that ϕ is convex follows from the above identity, ϕxx > 0, ϕyy > 0 and
Theorem 1.50.

7.6 Chapter 6: Isoperimetric inequality

7.6.1 The case of dimension 2

Exercise 6.2.1. One can consult Hardy-Littlewood-Polya [55], page 185, for
more details. Let u ∈ X where

X =

½
u ∈W 1,2 (−1, 1) : u (−1) = u (1) with

Z 1

−1
u = 0

¾
.

Define
z (x) = u (x+ 1)− u (x)

and note that z (−1) = −z (0), since u (−1) = u (1). We deduce that we can find
α ∈ (−1, 0] so that z (α) = 0, which means that u (α+ 1) = u (α). We denote
this common value by a (i.e. u (α+ 1) = u (α) = a). Since u ∈ W 1,2 (−1, 1) it
is easy to see that the function v (x) = (u (x)− a)

2
cot (π (x− α)) vanishes at

x = α and x = α + 1 (this follows from Hölder inequality, see Exercise 1.4.3).
We therefore have (recalling that u (−1) = u (1))Z 1

−1

n
u02 − π2 (u− a)2 − (u0 − π (u− a) cotπ (x− α))

2
o
dx

= π
h
(u (x)− a)

2
cot (π (x− α))

i1
−1
= 0 .

Since
R 1
−1 u = 0, we get from the above identity thatZ 1

−1

¡
u02 − π2u2

¢
dx = 2π2a2 +

Z 1

−1
(u0 − π (u− a) cotπ (x− α))

2
dx

and hence Wirtinger inequality follows. Moreover we have equality in Wirtinger
inequality if and only if a = 0 and,c denoting a constant,

u0 = πu cotπ (x− α) ⇔ u = c sinπ (x− α) .
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Exercise 6.2.2. Since the minimum in (P) is attained by u ∈ X, we have, for
any v ∈ X ∩ C∞0 (−1, 1) and any � ∈ R, that

I (u+ �v) ≥ I (u) .

Therefore the Euler-Lagrange equation is satisfied, namelyZ 1

−1

¡
u0v0 − π2uv

¢
dx = 0, ∀v ∈ X ∩ C∞0 (−1, 1) . (7.25)

Let us transform it in a more classical way and choose a function f ∈ C∞0 (−1, 1)
with

R 1
−1 f = 1 and let ϕ ∈ C∞0 (−1, 1) be arbitrary. Set

v (x) = ϕ (x)−
µZ 1

−1
ϕdx

¶
f (x) and λ = − 1

π2

Z 1

−1

¡
u0f 0 − π2uf

¢
dx .

Observe that v ∈ X ∩C∞0 (−1, 1). Use (7.25), the fact that
R 1
−1 f = 1,

R 1
−1 v = 0

and the definition of λ to get, for every ϕ ∈ C∞0 (−1, 1),Z 1

−1

£
u0ϕ0 − π2 (u− λ)ϕ

¤
dx

=

Z ∙
u0
µ
v0 + f 0

Z
ϕ

¶
− π2u

µ
v + f

Z
ϕ

¶¸
+ π2λ

Z
ϕ

=

Z ¡
u0v0 − π2uv

¢
+

∙Z
ϕ

¸ ∙
π2λ+

Z ¡
u0f 0 − π2uf

¢¸
= 0 .

The regularity of u (which is a minimizer of (P) in X) then follows (as in
Proposition 4.1) at once from the above equation. Since we know (from The-
orem 6.1) that among smooth minimizers of (P) the only ones are of the form
u (x) = α cosπx+ β sinπx, we have the result.
Exercise 6.2.3. We divide the proof into two steps.
Step 1. We start by introducing some notations. Since we will work with

fixed u, v, we will drop the dependence on these variables in L = L (u, v) and
M =M (u, v). However we will need to express the dependence of L and M on
the intervals (α, β),where a ≤ α < β ≤ b, and we will therefore let

L (α, β) =

Z β

α

p
u02 + v02 dx

M (α, β) =

Z β

α

uv0 dx .

So that in these new notations

L (u, v) = L (a, b) and M (u, v) =M (a, b) .
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We next let
O =

©
x ∈ (a, b) : u02 (x) + v02 (x) > 0

ª
.

The case where O = (a, b) has been considered in Step 1 of Theorem 6.4. If O
is empty the result is trivial, so we will assume from now on that this is not the
case. Since the functions u0 and v0 are continuous, the set O is open. We can
then find (see Theorem 6.59 in [57] or Theorem 9 of Chapter 1 in [37])

a ≤ ai < bi < ai+1 < bi+1 ≤ b, ∀i ≥ 1

O =
∞
∪
i=1
(ai, bi) .

In the complement of O, Oc, we have u02 + v02 = 0, and hence

L (bi, ai+1) =M (bi, ai+1) = 0 . (7.26)

Step 2. We then change the parametrization on every (ai, bi). We choose a
multiple of the arc length, namely⎧⎪⎪⎨⎪⎪⎩

y = η (x) = −1 + 2L (a, x)
L (a, b)

ϕ (y) = u
¡
η−1 (y)

¢
and ψ (y) = v

¡
η−1 (y)

¢
.

Note that this is well defined, since (ai, bi) ⊂ O. We then let

αi = −1 + 2
L (a, ai)

L (a, b)
and βi = −1 + 2

L (a, bi)

L (a, b)

so that

βi − αi = 2
L (ai, bi)

L (a, b)
.

Furthermore, since L (bi, ai+1) = 0, we get

βi = αi+1 and
∞
∪
i=1

[αi, βi] = [−1, 1] .

We also easily find that, for y ∈ (αi, βi),q
ϕ02 (y) + ψ02 (y) =

L (a, b)

2
=

L (ai, bi)

βi − αi

ϕ (αi) = u (ai) , ψ (αi) = v (ai) , ϕ (βi) = u (bi) , ψ (βi) = v (bi) .
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In particular we have that ϕ,ψ ∈W 1,2 (−1, 1), with ϕ (−1) = ϕ (1) and ψ (−1) =
ψ (1), and

L (ai, bi) =
2

L (a, b)

Z βi

αi

¡
ϕ02 (y) + ψ02 (y)

¢
dy (7.27)

M (ai, bi) =

Z βi

αi

ϕ (y)ψ0 (y) dy . (7.28)

We thus obtain, using (7.26), (7.27) and (7.28),

L (a, b) =
∞X
i=1

L (ai, bi) =
2

L (a, b)

Z 1

−1

¡
ϕ02 (y) + ψ02 (y)

¢
dy

M (a, b) =
∞X
i=1

M (ai, bi) =

Z 1

−1
ϕ (y)ψ0 (y) dy .

We therefore find, invoking Corollary 6.3, that

[L (u, v)]2 − 4πM (u, v) = [L (a, b)]2 − 4πM (a, b)

= 2

Z 1

−1

¡
ϕ02 + ψ02

¢
dy − 4π

Z 1

−1
ϕψ0 dy ≥ 0

as wished.

7.6.2 The case of dimension n

Exercise 6.3.1. We clearly have

C = (a+B) ∪
¡
b+A

¢
⊂ A+B .

It is also easy to see that (a+B) ∩
¡
b+A

¢
=
©
a+ b

ª
. Observe then that

M (C) =M (a+B) +M
¡
b+A

¢
−M

£
(a+B) ∩

¡
b+A

¢¤
=M (A) +M (B)

and hence
M (A) +M (B) ≤M (A+B) .

Exercise 6.3.2. (i) We adopt the same notations as those of Exercise 5.2.4.
By hypothesis there exist a bounded smooth domain Ω ⊂ R2 and a map v ∈
C2
¡
Ω;R3

¢
(v = v (x, y), with vx × vy 6= 0 in Ω) so that ∂A0 = v

¡
Ω
¢
.

From the divergence theorem it follows that

M (A0) =
1

3

ZZ
Ω

hv; vx × vyi dxdy . (7.29)
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Let then � ∈ R, ϕ ∈ C∞0 (Ω) and

v� (x, y) = v (x, y) + �ϕ (x, y) e3

where e3 = (vx × vy) / |vx × vy|.
We next consider ∂A� =

©
v� (x, y) : (x, y) ∈ Ω

ª
= v�

¡
Ω
¢
. We have to evalu-

ate M (A�) and we start by computing

v�x × v�y = (vx + � (ϕxe3 + ϕe3x))×
¡
vy + �

¡
ϕye3 + ϕe3y

¢¢
= vx × vy + � [ϕ (e3x × vy + vx × e3y)]

+�
£
ϕxe3 × vy + ϕyvx × e3

¤
+O

¡
�2
¢

(where O (t) stands for a function f so that |f (t) /t| is bounded in a neighbor-
hood of t = 0) which leads to­
v�; v�x × v�y

®
=

­
v + �ϕe3; v

�
x × v�y

®
= hv; vx × vyi+ �ϕ he3; vx × vyi+ � hv;ϕ (e3x × vy + vx × e3y)i

+�
­
v;ϕxe3 × vy + ϕyvx × e3

®
+O

¡
�2
¢
.

Observing that he3; vx × vyi = |vx × vy| and returning to (7.29), we get after
integration by parts that (recalling that ϕ = 0 on ∂Ω).

M (A�)−M (A0) =
�

3

ZZ
Ω

ϕ {|vx × vy|+ hv; e3x × vy + vx × e3yi

− (hv; e3 × vyi)x − (hv; vx × e3i)y
o
dxdy +O

¡
�2
¢

=
�

3

ZZ
Ω

ϕ {|vx × vy|− hvx; e3 × vyi

− hvy; vx × e3i} dxdy +O
¡
�2
¢
.

Since hvx; e3 × vyi = hvy; vx × e3i = − |vx × vy|, we obtain that

M (A�)−M (A0) = �

ZZ
Ω

ϕ |vx × vy| dxdy +O
¡
�2
¢
. (7.30)

(ii) We recall from (7.24) in Exercise 5.2.4 that we have

L (∂A�)− L (∂A0) = −2�
ZZ
Ω

ϕH |vx × vy| dxdy +O
¡
�2
¢
. (7.31)

Combining (7.30), (7.31), the minimality of A0 and a Lagrange multiplier α, we
get ZZ

Ω

(−2ϕH + αϕ) |vx × vy| dxdy = 0, ∀ϕ ∈ C∞0 (Ω) .

The fundamental lemma of the calculus of variations (Theorem 1.24) implies
then that H = constant (since ∂A0 is a regular surface we have |vx × vy| > 0).
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