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Preface

This book is intended to be an introduction to mathematical science, par-
ticularly the theoretical study from the viewpoint of applied analysis. As
basic materials, vector analysis and caleulus of variation are taken, and
then Fourier analysis is introduced for the eigenfunction expansio‘n to jus-
tify. After that, statistical method is presented to control the mean field of
many particles, and the mathematical theory to linear and nonlinear partial
differential equations is accessed. System of chemotaxis is a special topic in
this book, and well-posedness of the model is established. We summarize
several mathematical theories and give some references for the advanced
study. We also picked up some materials from classical mechanics, geom-
etry, mathematical programming, numerical schemes, and so forth. Thus,
this book covers some parts of undergraduate courses for mathematical
study. It is also suitable for the first degree of graduate course to learn
the basic ideas, mathematical techniques, systematic logic, physical and
biological motivations, and so forth.

Most part of this monograph is based on the notes of the second author
for undergraduate and graduate courses and seminars at several universi-
ties. We thank all our students for taking part in the project.

December 2003
Takasi Senba and Takashi Suzuki
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Chapter 1

Geometric Objects

Some kind of insects and amoeba are lured by special chemical substances
of their own. Such a character is called chemotaxis in biology. For its
formulation, some mathematical terminologies and notions are necessary.
This chapter is devoted to geometric objects.

1.1 Basic Notions of Vector Analysis

1.1.1 Dynamical Systems

Movement of a mass point is indicated by the position vector = z(t) € R?
depending on the time variable t € R. If m and F denote its mass and
the force acting on it, respectively, Newton’s equation of motion assures the
relation

d’x
where %;ai stands for the acceleration vector. If n points x; = z;(t) (i =
1,2,---,n) are interacting, then they are subject to the system
d*z; ,
mig{f:F,- (:=1,2,---,n),

simply written as

= f(z,,t) (1.2)
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with z = (x1, 3, - -, x,) € R,

d*z . dx
=3 and = T

It is sometimes referred to as the deterministic principle of Newton, and
under reasonable assumptions on f, say, continuity in all variables (z, z,t)
and the Lipschitz continuity in (z, ), there is a unique solution z = z(t)
to (1.2) locally in time with the prescribed initial position z(0) = z¢ and
the initial velocity £(0) = £o. At this occasion, let us recall that the initial
values

5

z(0)=z9 and  %(0) = o

provide equation (1.2) with the Cauchy problem.
In some cases the degree of freedom is reduced, as z = z(t) € R or
z = z(t) € R2. For example,

&=k’

with z = z(t) € R is associated with the oscillatory motion of a bullet
hanged by spring, and its solution is given by

x(t) = xo cos kt + zosinkt/k.

Although very few solutions to (1.2) are written explicitly even for the case
of z =z(t) € R,

& = f(z) (1.3)
is the simplest but general form of it. In this case

_ 1. __[
T—zx and U(z) = /f({)d{

are referred to as the kinetic energy and the potential energy, respectively.
Then, the total energy is given by

E=T+U=%i2+U(x)

so that it is a function of (z,z), denoted by E = E(z,%). If z = z(t) is a
solution to (1.3), then it holds that

B (a(t),&(t)) = 5 - (@) = £ ( ~ (@) = 0,
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so that E (z(t),%(t)) is a constant. This fact is referred to as the conserva-
tion law of energy.
System (1.3) is equivalent to £ = y and § = f(z), or

% ( ; ) = &(z,y) (1.4)
with ®(z,y) = (y, f(z)). Because the right-hand side does not include
the variable t explicitly, system (1.4) is said to be autonomous, and its
solution is illustrated as a curve in z — y plane. Energy conservation
E (z(t),z(t)) = E(zo, Zo) guarantees the existence of the solution globally
in time if the potential U = U(z) is coercive, which means that |z| — +oc0
implies U(x) — +o00. Then, each

O = {((t),2()) | t € R}

is called an orbit, which coincides with the curve E = Jy? + U(z), where
E= E(.’Eo,:i?o).

Because of the uniqueness of the solution to the Cauchy problem of
(1.3), the orbit never intersects by itself. However, it may be a point,
which corresponds to the zero of ®, that is, y = 0 and f(z) = -U’(z) = 0.
Tt is referred to as the equilibrium point. Each equilibrium point (Zg,0) is
stable or unstable if £ is a local minimum or a local maximum of U = U(zx),
respectively. This means that if the initial value (zo, Zo) is close to (Zo,0),
then the solution to (1.3) stays near or away from it.

The solution to (1.4) may be written as

(2)-()

y(t) “\ (0)

for t(z(0),y(0)) = *(zo,%0), with the mapping T; : R?> — R? defined for
each ¢t € R. Then the family {T}},cg induces the continuous mapping

T:R2xR — R?

by

T (Y(z,y),t) =Tt< ;‘ >

This family is provided with the properties that Ty = Id, the identity
operator, and Ty4s = Ty 0 T for t,s € R, with o denoting the composition
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of operators. Then, we call {T;},.r the dynamical system.

\ x(s+t)
DI Hs+t) )

Fig. 1.1

For z = z(t) € R? in (1.3), we say that f = f(z) is a potential field if

BU/8z1
f=- ( AU / 8z, ) (1.5)
8U/83:3

holds with a scalar function U = U(zy,z2,z3). In use of the gradient
operator
6/6.’1,‘1
V= a/a$2 )
8/6.’1:3

f=-VU.

relation (1.5) is written as

Then we can define the total energy by
R ST
B(w, ) = 5 |4l + U(z),
where || denotes the length of the velocity vector £ € R3. Similarly to
the one-dimensional case, this E is a quantity of conservation. In fact, if

z = z(t) is a solution to (1.3) it follows that

%E(z(t),a‘v(t)) =x-(£+ VU(z)) =0,
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where - denotes the inner product in R3. However, this law of the conser-
vation of energy is not sufficient to control the orbit © in x — & space, which
is now identified with RS.

Exercise 1.1 Illustrate some orbits to (1.3) for z = z(t) € Rinz — &
plane, when the potential energy is given by U(z) = 3z* — 122, Seek all
equilibrium points and judge their stability. Examine the same question
for U(z) = +1z2.

1.1.2 Outer Product

Here, we take the notion of vector analysis; outer product of the vector,
gradient of the scalar field, and divergence and rotation of the vector field.
Throughout the present chapter, three-dimensional vectors are denoted by

a, b, c, -, while g, b, ¢, --- indicate scalars. The canonical basis of R3 is
given by
1 0 0
i=10 ]}, i=1 11, k=] 0],
0 0 1

which are arranged to form a right-handed coordinate system in three di-
mensional space R3®. The length of a is denoted by |a|, and a - b stands for
the inner product of @ and b. That is, a - b = |a| - |b| cos §, where 8 is the
angle between a and b. If

a
a= a9 = a1t + azj + azk (16)
as

and

by
b= | by | =bit+bag+ b3k (1.7)
b3

represent those vectors by their components, it holds that a - b = a1b; +
azba + azbs.

The outer product of @ and b is the vector denoted by a x b satisfying
the following property.
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[

Its length is equal to the area of the parallelogram made by a and b.
It is perpendicular to a and b.
3 a, b, and a x b are right-handed.

[

Fig. 1.2

Then, we have the following.

Theorem 1.1 The operation (a,b) — a x b is subject to the following
laws.

1 (commutative): bxa=-axb.
2 (associative): c(a x b) = (ca) x b.
3 (distributive): ax(b+e)=axb+axc.

Proof. We shall show the distributive law because the other laws are
obvious. First, from the associative law we may suppose that |a| = 1. We
take the plane 7 containing the origin whose normal vector is a. Look down
7 so that a is upward. Let b', ¢/, and (b + c)’ be the projections to 7 of b,
¢, and b + ¢, respectively. Then, by the definition we have

axb=axb, axc=axc,
and
ax((b+c)=ax(b+c).
Here, we have (b + c)’ = b’ + ¢/, so that the equality

ax((b+c)=axb+axc,
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to be proven, is equivalent to

ax(+c)=axb +axc. (1.8)

axp

Fig. 1.3

Because |a] = 1, the vector @ x b’ is nothing but the vector on 7 with
b’ rotated counter-clockwise by 90 degrees. The same is true for a x ¢’ and
a x (' + ¢’). Therefore, (1.8) is obtained by rotating the parallelogram
made by b’ and ¢’ on 7 counter-clockwisely by 90 degrees. O

By the definition, it holds that
ixj=k, jx k=1, kxi=j.

Therefore, three laws in Theorem 1.1 imply

ai b agbz — azb;
az X bo =1 asb; —a1bs (1.9)
a3 bs a1by — azby

by (1.6) and (1.7).

Exercise 1.2 Prove (1.9).

Exercise 1.3 Show the Lagrange identity

(@xb) (cxd)=(a-c)b-d)—(a-d)b-c). (1.10)
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1.1.3 Motion of Particles
If the mass point x = z(¢t) € R? is subject to the center force, then the
Newton equation takes the form

Z=®(r)w (1.11)

with the scalar function & = ®(r), where r = |z| and z = rw. The angular
momentum M = x X I is then preserved as
dM . @)
— =IXITH+xXI=—>"xxx=0
dt r
and hence z lies in the plane perpendicular to the constant vector M. By
rotating the axis, therefore, we may put that

T cosf
r=| 2 and w=| siné
0 0

Fig. 1.4
Then it follows that
—siné
O=wd with wl=| cosd (1.12)
0

and = = rw implies

T X & =rwx (fw+rwt) = rw x wt =r?
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In other words, 726 is a constant, which is referred to as the constant law
of the area velocity discovered by Kepler.
If £ = z(t) € R® is subject to

i =-VU(x) (1.13)
with U = U(r), then it holds that
BU/Bxl
VU= | 8U/dz; | =U'(r)w. (1.14)
8U/6.’L‘3

Equation (1.13) with (1.14) takes the form of (1.11) and therefore, M = 724
is a constant.
We have from (1.12) that

G=wt0+wté with @t =—wi, (1.15)

which implies, from z = rw that

i = w200 + 10 = Fw + 2/0wt + r(—wd? + wth)
= (F—r6%)w + (270 + r)w
~U'(r)w.

Thus, we obtain
F—rf?=-U and 276 +rf =0,
and from 8 = M/r? it follows that

2
F=-V' for V=U+ ]2\47 (1.16)

Equation (1.16) takes the form of (1.3) and this V = V/(r) is called the
efficient potential energy.
System of many particles is subject to
mig; =F; with Fi=)Y Fi+F,
J#i
where F;; and F; denote the self-interaction force and the outer force,
respectively. Then, the action-reaction law of Newton guarantees that

Fij = fijei;
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with
T, — IL']'

e;; = ——
Y w4

and  fi; = fi €R.

Therefore, the momentum defined by
P= Z m,-a':i

is invariant in the closed system without outer force. In fact, F; = 0 in this
case, and we have

%:Zm@, ZF = S Fy=0
k3

3,551#]

by F;; = —Fj. The angular momentum
M = Z.’Ei X mia':i
i

is also preserved in this case, as it holds that

ﬂ = Z(x, X mE; + T; X myE) = Z x; X Fyj

1,531#5

with
x; X F,‘j +z; X Fji = f,-j(xz- X €45 +2L‘j X e]-,-) = fij(.’lli - .’L‘j) X €4 = 0.

If the self-interaction force is determined by the relative distance of parti-
cles, then we have f;; = f;;(|zi ~ z;|). In this case, we have for

Uss(r) = - / fis(p)dp
that

=V, Uij(lzi — z5]) = fi; Ve,

r; — .’L‘jl = fijeij, (117)

and therefore, it holds that

-V, U= Z fijeij
i
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for

U)= Y Uy(lzi—z5])  and 7= (21,20,

k,jik>j

This implies that

mii':,- = “Vin
and the energy conservation law follows as
dE
= -9
a7

where

1 .

Exercise 1.4 Confirm that (1.12) and (1.15) hold true.
Exercise 1.5 Confirm that (1.14) holds.
Exercise 1.6 Confirm that (1.17) and (1.18) hold.

1.1.4 Gradient

11

..., zn) € R,

(1.18)

Chemotaxis is a character that some kind of insects and amoeba are at-
tracted by special chemical substances of their own. If such a life is in R3,
the force that it receives is a vector field denoted by F. If f = f(z1,z2,3)
denotes the concentration of the chemical substance at z = *(x1, 2, T3),
then the vector F(x1, z2,z3) has the direction where f(z;, z3,z3) increases
mostly and |F(z1,x2,z3)| is proportional to its inclination. Letting the
rate to be one, we shall give the formula for F to be determined by f.

For this purpose, we take a vector e = t(ej, ez, €3) in

|e| = 1 arbitrarily.

Henceforth, such e is called a unit vector. For |s| < 1, it holds that

f(x +se) — f(x)

= f(z1 + se1,x2 + sez, x3 + se3) — f(x1,T2,T3)

= {f(z1 + se1,x2 + sep, x5 + ses) — f(z1,x2 + sea, T3 + ses)}
+ {f (w1, 22 + ses, z3 + se3) — f(x1, T2, T3 + se3)}
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+ {f(z1,Z2, 23 + ses) — f(x1, T2, T3)}

3]
= seléxil(wl + s€1eq, Ty + sez, T3 + se3)

8
-F.sez(9 f (x1,T2 + s€2e2,x3 + se3)

a
+S€3—f (@1, 22,23 + s€3€3)
61'3

with 0 < &1,£2,£3 < 1. In the case that a%Lp 5{25%’ g;ﬂ% are continuous at
x =(z1, T2, 23), Wwe have

tim 2 (@ + s6) ~ £(2) = 1 g (@) + 2 g () + ex - (o).

This relation is written as

f(x + se) = f(x) + sV f(x)-e+ofs) (1.19)
as s — 0, where
8f/6x1
Vf= ( 8f [0x2 ) .
of/0z3

It is a vector field derived from f, called the gradient of f. Relation (1.19)
means that

%f(a: + se)

=Vf(x)-e.

s=0

The left-hand side is called the direction derivative of f at x toward e.

We are selecting the unit vector e for which the value f(z + se) — f(x)
increases mostly in 0 < s < 1. In fact, from (1.19) this is the case when
{Vf(z)-e|le| =1} attains the maximum. That is,

_ Vi@
Vi@)

and then the inclination is equal to
Vi) e=|Vf(z).

Thus, F(x) is the vector proportional to e with the length |V f(x)|, namely,
V f(x) itself. «
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Relation (1.19) is written as

_ of of of
df = a—xldwl + _8112—2 ZTo + 6—13-61.'1,‘3 (1.20)

whose left-hand side is called the total derivative of f. Equality (1.20)
shows also that a scalar field with continuous partial derivatives is totally

differentiable. Note that it follows from Leibniz’ law for the differentiation
of composite function,

d
25 [(@1(8),72(5), 23(8)) = far (21(5), 22 (5), w3()) 1 (5)
+ oy (1(5), T2(8), 73(5))72(8) + fas (@1(5), 72(5), T3(3))25(5),
applied to x(s) = x + se = * (z1(s), 2(s), 3(s)), where f;, stands for 6%%
fori=1,2,3.
If Vf(xo) = 0, then the graph of f(x) is flat at £ = @o. In this case,

xg is called a eritical (or stationary) point of f. To examine the behavior
of f near by there, we take the matrix

f
H = .
ess f (amiaxj ) 1<i,j<3

It is called the Hesse matriz of f. Actually, if f has continuous second
partial derivatives at & = &g, then it holds that

flxo + se) = f(xo) + sV f(xo)-e+ g [Hess f(xo)]e- e +o(s?) (1.21)

as s — 0. Here, we set

3
Ae-e = Z a;5€,€;5

1,,j=1

for A = (aij);; j<3 and e = *(e1, ez, €3) with tA = A. In fact, we have

Z;—i;f(a:o + se) = Vf(xo + se)-e

and hence

2
%f(wo + se) . = [Hess f(xzq)]e-e

follows.
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A critical point @ is said to be non-degenerate if its Hesse matrix
Hess f(xo) is invertible. In this case, it controls the graph of f(x) near
x = &g in all directions, because real symmetric matrix is diagonalized by
orthogonal matrix. In this connection, the number of negative eigenval-
ues of Hess f(xg) is called the Morse index of f at the critical point xp.
Those notions are extended to any space dimension and the n-dimensional

scalar field f(x1,x,---,%,) is associated with the n-dimensional gradient
af 2 )
Vf:-t (52‘:%’5;:%’.“’555 .

In the two dimensional case, if its Morse indices are 0, 1, or 2, the non-
degenerate critical point in consideration is a local minimum, a saddle, or
a local maximum, respectively. At this moment, it is easy to suspect that
the Morse index of any critical point cannot be free from those of other
critical points. Morse theory arises in such a flavor, and for example, if
the domain © C R? is simply connected, if the function f(z,y) defined
in © has continuous extensions to  up to its second partial derivatives,
and if any critical point is non-degenerate and is in 2, then it holds that
mg — my + mg = 1, where mg, m1, and my denotes the number of critical
points with the Morse index 0, 1, and 2, respectively.

local max:mum
gcal minihun i

Fig. 1.5

Exercise 1.7 Show that

2
g;if(wo + se) . = [Hess f(xo)le-e
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if f = f(x) is a C? function, and in this way confirm that (1.21) holds true.
Exercise 1.8 Find all critical points of
f(z1,72) = (1 — x3 ~ 223) (1 + 323) (1 + 423)

defined on {(z1,x2) | z} + 222 < 1}. Classify them into maximum, mini-
mum, and saddle points. Then illustrate the graph

G = {(x1,%2,%3) | T3 = f(z1,72), 2% + 273 < 1}

in the three-dimensional space, indicating its level lines.

1.1.5 Divergence

The gradient Vf =? (-?—-f— 2L éL) of f is a vector field derived from the

Oz Oz2’ Ox3

scalar field f = f(xy,Z2,x3). Then,
N
3.11
_ 8
V=1 3

o

Oz3
is regarded as a vector, called the gradient operator. Therefore, given a
vector field v = ! (vl,vz,v?’) with the components v! = v!(zy,z2,13),
v? = v3(x1,Zq, T3), v® = v3(21,Z2, x3), we can define

vl v 8t

V-v=— — -
le 6:152 a.’l,'g
and
e _ ov?
Oz2 Ox3
= | &l _ &2
V xXv= 313 8111
2 ovl
8z, Oz

Those scalar and vector fields are called the divergence and the rotation of

v, respectively, which have physical meanings as we are now describing.
To examine V - v, first we consider the one-dimensional case. Take a

straight uniform pipe, parallel to the z axis. Imagine that a fluid is flowing
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v(x) v(x+Ax)

x x+Ax

Fig. 1.6

inside and let v(z) be its velocity at z € R.. If no fluid comes in or out from
outside of the pipe, then v is uniform so that g—z = 0 holds. More precisely,
the rate of the change of the velocity is proportional to the amount of
the fluid flowing into the place in the unit time, and that in [z,z + Ax],
v(z + Az) — v(z) is approximated by £ Ax for |Az| < 1.

Applying those considerations to the three-dimensional case, we take a
small rectangular solid, and suppose that each face of them is perpendicular
to one of the 1, x2, x3 axes. If the lengths of its sides parallel to x1, x5, z3
axes are denoted by Axy, Axy, Axs, respectively, then (g—;’iAxl) Az Az,
approximates the amount of the fluid flowing into it in the unit time from
the direction of the z; axis. Similarly, those from the directions of the z,,
T3 axes are approximated by (%Amg) -AzzAz, and —gZ—ZAxg) -AziAx,,
respectively. Thus, totally, the amount of the fluid flowing into this rect-
angular solid in the unit time is approximated by (V - v)Ax; Az Azs.

The above rough descriptions are justified in the following way.

X3

X
Fig. 1.7

Theorem 1.2 Let v be a continuously differentiable vector field describ-
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ing the velocity of a fluid, and {w} be a family of domains shrinking to a
point, denoted by x, in R®. Then, it holds that
. QW)
V-v(z) = lim ——, 1.22
(x) ATl (1.22)
where Q(w) denotes the amount of the fluid flowing into w per unit time
and |w| the volume of w.

Proof. If the initial value x is given, the autonomous ordinary differen-
tial equation

dx
dt
has the unique solution = z(t) locally in time. Then, writing x(t) = Tixo,
we can define a family of operators {7}}, called a (local) dynamical system.
It has the properties that (z,t) — Ty is continuous, and T} o Ty = Ty,
and Ty = Id, where they are defined. Here and henceforth, o and Id denote
the composition operation and the identity operator, respectively.
The particles in w C R3 at t = 0 are carried to Ti(w) at t =t by the
flow whose velocity is v. Then, it holds that

= v(x) with z(0) = xo (1.23)

Q) = % ITw)

t=0
Here, we make use of the transformation £ = Tyx of variables. Thus, if
Ji(x) denotes its Jacobian, the volume of T3(w) is given by

|T¢(w)] =/ d£=/ |Ji ()| dex.
T (w) w
If € = (£1,&2,&3) is regarded as a function of ¢, then it holds that

% =v(€) and §(0) ==,

or

d&z i . e
= =V (¢) and &)=

for i = 1,2,3. Therefore, writing ¥} = g%, we have

3 ovi )
=Y —(yf and  yi(0) =4y,
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where

{1 G=d)
=0 (29

This implies

dy} vt
G| "
and hence
8& ot
=4 t—
G, = %+t (@) +ol)
follows as t — 0. We obtain
9 8 9
3 B )
@) = | 58 32 a2
8¢ _§_ 963
31:1 zz r3
1+t§§—1+o(t) toe +o() ta” + o(t)
2 2
= | tZ +o(t) 1+t35 +o(t) t5% +o(t)
3
t9%- + o(t) tggz + oft) 1+ taxa + ot)

= 1+tV-v+o(t).

This implies Jy(z) > 0 for |t| <« 1 and also

QW) = S ILW)

= / V - vdex. (1.24)
t=0 Juw

Then, (1.22) follows. O

The divergence formula of Gauss follows from the conservation of mass.
That is,

fV-vdx:/ v - vdS, (1.25)
w Ow
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where w is a domain in R? with C! boundary 8w, v is a C! vector field on
@, v is the unit outer normal vector on dw, and dS is the area element of dw
described in the following chapter. In fact, both sides represent the mass
of the fluid with the velocity v flowing out of w per unit time. Equality
(1.25) is equivalent to the formula of integration by parts, or,

/ a—z]’l)dib = /aw I/j’l)ds

for j = 1,2,3, where v = v(x) is a C! function on @ and v = (v, va, 13).
Here, we do not provide the mathematical proof of (1.25), but it is based on
the fundamental theorem of analysis concerning the function of one variable:

/ fl2)dz =3 (v- f)(a),
r=a,b

where

-1 (z=a)

v(z) = { +1 (z=0b).

Here and henceforth, @ denotes the closure of w.
We also mention the relation between the dynamical system derived
from the vector field and a partial differential equation of the first order. In
fact, if (1.23) admits a solution & = x(¢) globally in time for any o € R3,

it generates a (global) dynamical system {T}},cg on R3. Then, the single
linear partial equation of the first order,

— + ; vJ’(w)%:O (x € R? teR) (1.26)
with
ul,_o = f(z) (x€R?) (1.27)
admits a unique solution u = u(x,t), where
v(x) =* (v'(z1, 22, 3), v (€1, T2, 23), v* (21, T2, 73))

and f is a continuously differentiable function. Actually, it is given by
u(x,t) = f(T_;x), explicitly.
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In fact, if u(x,t) = f(T_ix) then

w(y,t) = u(Tiy,t) = f(y)

satisfies that
Ow

ot

du L i Bu
= — E — (T,
ot (Ttya t) + o v (:rty) 8113‘ ( tY, t)

a2 Ou
= Vu(Tty7 t) : '&(Tty) + E(Tty’ t)

by %Tty = v(Tyy). Given x, we take y = T_,x and put this into the above
relation. Then, (1.26) follows for this u(z,t), while (1.27) is obvious.
Conversely, if u(x,t) is continuously differentiable and satisfies (1.26)
with (1.27), then w(z,t) = u(Tix,t) solves
ow

E = V’U,(Ttx,t) .

and therefore, we obtain

Ou

() + 5

% (Tix,t) =0
w(z,t) = w(z,0) = u(x,0) = f(x).
This implies
u(z,t) = u(T(T-¢x),t) = f(T-sx).

The quantity

Du _ a'u,+ 3 j( ,)8u
Dt ot &V \ gy
Jj=1
ou
= 5?+U~Vu

is called the material derivative of u subject to the flow {T3}.

Exercise 1.9 Confirm that (1.22) follows from (1.24).
Exercise 1.10  If the fluid is incompressible, the velocity v satisfies
V-v=0.

Such a vector field is called solenoidal. Suppose that R? is occupied with
the water, that the origin is a unique source, and that the amount of the
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fluid coming from there is a constant per unit time, denoted by Q. If it
spreads radially, then the velocity v at x is given as

v = vw,

where v = |v}, € = rw with r = |z|, and v is a function of r. In the case
that the density of the water is equal to one, we have

4rrv = Q

because 4772 indicates the surface area of the ball with the radius r. This
means that

Q =

dmjaf
Confirm that this vector field is solenoidal except for the origin.

Exercise 1.11 Henceforth,

3 82
AzV-V:;ﬂa—z?
and

0

a:

v-V

are called the Laplacian and the (outer) normal derivative, respectively.
Remember that v indicates the outer unit normal vector on the boundary,
and v - V is nothing but the direction derivative toward v:

v-V)f(@) = = fla+ )

s=0

Now, derive Green’s formula from that of Gauss:

/Q ((Auw)v — u(Av)) dx = /69 (%v — u%) ds, (1.28)

where 8Q is C? and u and v are C? functions on €.
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1.1.6 Rotation

Let O be a rigid body moving in the three-dimensional space with a point
p € O fixed. Assume that p coincides with the origin. We take an ortho-
normal basis fixed on O, and let {i(t),5(t), k(t)} be its position at time t.
Because O is rigid, we have

i(t)-J(t) =3 (t) - k(t) = k(t) -i(t) = 0
and
i(t) - i(t) = 5(t) - 5(t) = k() - k(t) = 1.
This implies
¢-j+i-j =4 k+j-K=K-itk-i'=0
i-i=5-j=K k=0 (1.29)
by the differentiation in t.
If we represent {i'(t),5'(t), k'(t)} by {i(t),5(t), k(¢t)} as
i =cni + c12j + cizk
3’ = a1t + c2j + cask
K = c31t + c327 + cask,

then we get from (1.29) that

3 +c32=c¢31+c13a=cia+co; =0

c11 = ¢z = c33 = 0.

Therefore, letting ¢; = ca3 = —¢32, ¢a = €31 = —c13, €3 = €12 = —Cp1, We
obtain
’l:, = 63j —Czk
= —cs3i +cik (1.30)
K= et -1

The vector w = ¥(cy, ¢z, c3) is called the angular velocity, which depends on
t and is determined by the movement of O.

We now take a fixed point in O. Let x(t) be its position at time t.
Putting «(0) = * (z1(0), 2(0), z3(0)), we have

x(t) = £1(0)i(t) + x2(0)5(t) + z3(0)k(t)
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because O is a rigid body. In the use of the representation of components
by {(0), 5(0),k(0)}, this implies that
='(0) 21(0)#'(0) + 22(0)5'(0) + z3(0)k'(0)
¢2(0)z3(0) — ¢3(0)z2(0)
¢3(0)z1(0) — ¢1(0)z3(0)
¢1{0)z2(0) — c2(0)z1(0)
= WX,

Because the above relation holds at any time ¢, the velocity v is given by
the position & and the angular velocity w at that moment in such a way as

potz

dt

This means that infinitesimally, the rigid body O is rotating along w with
the speed |w| in the direction where w, x, and v form a right-handed

coordinate system. Because w is independent of x, it follows from (1.31)
that

=WXE. (1.31)

V xv=2w. (1.32)

In this way, rotation of the velocity is two times the angular velocity in
the rigid body. This is true even when the fixed point p € O regarded as
the origin is a function of ¢, if we take the relative coordinate. In the case
that v stands for the velocity of fluid, the vector V x v picks up its rigid
movement, and in this sense it is reasonable to be called the vorticity.

w

Fig. 1.8

Exercise 1.12  Confirm that the angular velocity of the rigid body is inde-
pendent of the choice of {i(t),J(¢), k(t)}.



24 Geometric Objects

Exercise 1.13  Confirm that (1.32) holds true.

Exercise 1.14 If the rigid body O is rotating around 3 axis, then the
position at time ¢ of a fixed point on O is given as

rcoswt
z(t)=| rsinwt |,
I3

where r > 0 and z3 € R are constants. In using (1.32), we show that the
angular velocity is given by w = (0,0,w). Then, we confirm that (1.31) is
valid in the case.

1.1.7 Motion of Fluid
Motion of fluid is described by the velocity

Ul($17x2ax3at)
v=v(x,t) = | v¥(z1,22,23,1)
v3(z1, 2, 73, t)

and the pressure p = p(z,t), regarded as time dependent vector and scalar
fields, respectively. If it is incompressible, then the density p is a constant
and the rate of change of the infinitesimal volume is zero, so that it holds
that

V-v=0. (1.33)

It is referred to as the equation of continuity.
On the other hand, the acceleration vector of the fluid is given by the
material derivative of the velocity as

Dv!
Dt
Du? _ Do
T
Dv®
Dt
where

Dvt vt .

= +v-V'

Dt Bt
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for i =1, 2,3, and hence it follows that

Dv Ov
Dt Bt +(v-V)v.
Therefore, Newton’s equation of motion is given by
Dyt Sp .
pﬁ_pFl_% (1"_17273)3

where F' = *(F1, Fy, F3) denotes the outer force and the second term of
the right-hand side indicates the force acting to the fluid caused by the
difference of the pressure. In this way, we get Fuler’s equation of motion,

dv

E+(v-V)v=F—V(£)- (1.34)

p

Equation (1.34) is regarded as the fundamental equation for the incompress-
ible, non-viscous fluid, which is referred to as the perfect fluid.

If V x v =0, then this fluid is said to be rotation free. In this case, we
have a scalar function, called the velocity potential, ® = ®(x,t) satisfying

v=Vo. (1.35)
If we take the two-dimensional steady flow, then it holds that
v = < 'U.(.’L‘,y) ) € R2.
v(z,y)
Equation (1.33) is now reduced to

ou v
— +—=0 1.36
3 T oy = (1.36)

from which we obtain the stream function ¥ = ¥(z,y) satisfying

oy oV

= — = 1.37
Oz v By (1.37)
Along the curve that ¥ = constant we have
34 0
0=d¥ = a—d:z: + g—dy = —vdz + udy
oz oy

and hence (u,v) is parallel to the velocity field (u,v). This means that
this curve is the stream line. On the other hand, the rotation free velocity
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satisfies (1.35), and therefore we obtain the scalar function ® = @(z,y)
such that

0% _ 9%

u =

Equations (1.37) and (1.38) guarantee the Cauchy-Riemann’s relation

o0 _ov ov_ v
or oy’ dy Oz

and hence f = ®(z,y) +1¥(z,y) is a holomorphic function of z = z + wy.
It also indicates the equipotential line ® = constant is perpendicular to
the stream line. If z = ¢({) is a holomorphic function of ¢, then so is
F(¢) = f (¢(¢)). Furthermore, equipotential lines are mapped to those and
the same is true for the stream lines. In the steady state the boundary itself
is a stream line. Thus, if one can find a holomorphic function F(¢) with
the mapped boundary regarded as a stream line, then f(z) = F({) gives
the status of the physical flow. Thus, this case is reduced to the problem
of finding a conformal mapping with appropriate conditions.

Exercise 1.15 Show that (1.35) implies V x v = 0. Confirm also that
(1.37) implies (1.36).

Exercise 1.16  To find the two-dimensional stationary flow outside the unit
circle satisfying v — *(1,0) at infinity, let us note that

a 92  ov 0¥ 0% _ .
dz ~ Oz dxr Oy ’axf“ w

is identified with v. Confirm that Joukowski transformation

1
(=z+-
z

maps outside the unit ball conformally to the whole plane except for the
segment [—2, 2| on the real axis and that

df dF 1 1

dz  d¢ P2
holds true. This implies % —las|(| = 400, F({) =¢, and f(2) = z+ %
Illustrate the stream and the equipotential lines in the physical plane.



Curvature 27
1.2 Curvature

1.2.1 Quadratic Surfaces

Insect or amoeba is attracted to the place where the local maximum of the
concentration f(x) of chemical material is attained. This force is propor-
tional to the gradient of f, but meanwhile it feels how that scalar field is
twisted. This is the curvature of the level set {z € R3| f(z) = s}. Now,
we provide several examples of surfaces.

Exercise 1.17 Illustrate the following surfaces in z,y, z space, where a, b,
¢, d, p, q are positive constants.

(1) (sphere) z* + y* + 2% = a®

(2) (ellipsoid) (x%/a?) + (y%/b?) + (22/c?) =1

(3) (elliptic paraboloid) (z2/2p) + (¥%/2q) = z

(4) (hyperboloid with one leaf) (z2/a?) + (y?/b2) — (2%/c?) =1

(5) (hyperboloid with two leaves) (z2/a2) + (y2/b%) — (2%/c%) = -1
(6) (hyperbolic paraboloid) (z2/2p) — (¥%/2q) = 2

1.2.2 First Fundamental Form

Generally, surface is a set of points in R? indicated by two parameters, say

u and v:
( z1(u,v) )
z(u,v) = { z2(u,v) |.
233(“, ’U)

Thus, & = x(u, v) is regarded as a mapping Q — R?, where 2 C R? denotes
the parameter region and x(2) = M is the surface in consideration. We
get a family of curves on M, putting u or v to be constant.

Let the distance between two points on M, x(u,v) and z(u + Ay, v +
Av), be As, the area of the parallelogram made by

a = z(u+ Au,v) ~ z(y,v)
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b = x(u,v + Av) — x(u,v)

be AS, and the normal unit vector on M at x(u,v) be n.
First, we have

x(u + Au,v + Av) — z(u,v)
= T, (u, v)Au + z,(u,v)Av + 0 (\/ Au? + sz)
similarly to (1.19), and hence it holds that
(As)? = |z(u + Au, v + Av) — x(u, )
= ‘a:uAu +xz,Av+o (\/Ez-l——AvE) ‘2
= |ZuAu + 2, A0]% + 0 (Au? + Av?)

= |a:u|2 Au? + 2z, - Ty Aulv + la:,,l2 Av?
+o (Au? + Av?), (1.39)

where

20 = 2u0,0) = 22 (u,0)
and

Ty = T(4,) = 2 (u,0).

This relation is expressed in the infinitesimal limit as the first fundamental
form,

ds? = Edu® + 2Fdudv + Gdv?,
with
E:lazu|2, F=xzx, -, G’=|a:,,|2,

where ds and E, F, G are called the line element and the first fundamental
quantities, respectively. Next, noting

a = z(u+ Au,v) - z(u,v)
Ty (u, v)Au + o( Au)
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and

b = z(u,v+ Av) — z(u,v)
Ty (u, v)Av + o(Av),

we have

AS

It

la x b
|y (u,v) X x, (u, v)| Aulv
+o (Au? + Av?). (1.40)

This relation may be written as
dS = |z, X x| dudy,

call the area element. Then, the vector area element is defined by
dS = (z, X T, )dudv.

Finally, 2, (u,v) and z,(u,v) are tangent to the curves v and u constants
on M, so that n is a unit vector perpendicular to those vectors.. Thus, we
take

Ty X Ty

T @y X @]

Fig. 1.9

Putting

dz = . du + z,dv, (1.41)



30 Geometric Objects

we can write the first fundamental form as

ds? = dx-de
= I:z:ul2 du® + 2z, - T, dudv + |:1:1,|2 dv?.

On the other hand, using (1.10), we obtain

[Ty X :::,,I2 = (Ty X Ty) - (Ty X Ty)
= (wu . xu)(zv . wv) - (wu . xv)2
= EG- F?
This implies
Tu X T
dS = VEG — F2dudv, n=———— dS = ndS.
uew JEG - F?

We call de of (1.41) the infinitesimal vector of direction k = dv/du.

Exercise 1.18 Confirm the third and the second equalities in (1.39) and
(1.40), respectively, using |c — d| > ||c| — |d||.

Exercise 1.19 Express the first fundamental quantities E, F, G by p =
8z /0 and g = 0z/0y when the surface M is a graph,

T
T = y
z(z,y)
Exercise 1.20 In the parametrization
sinu cosv
z(u,v) = | sinusinv
cosu

of the unit sphere with (u,v) € [0, 7] x [0, 27), compute its fist fundamental
form and the unit normal vector. Then, in use of this parametization,
compute its total surface area.

1.2.3 Curves

We take the plane curve C on R? indicated as y = f(z). Let 6 be the
inclination of the tangential line at P(z,y) € C. Then it holds that tan =
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F'(z). If Q(x + Az,y + Ay) is on C, we have

Ay = f(z+Az)~ f(z)
= f'(z)Az + o(Ax)

as Az | 0. Then the length As of the segment PQ is given by
As = (Az®+ Ay"")l/2
1+ f'@)*)" Az + o(Az). (1.42)

The second equality of (1.42) justifies that the length of C cut by z = a
and x = b is given by

/b V1+ f'(z)%dz.

The first equality of (1.42), on the other hand, justifies the relation

nds = ( _3: )

on the plane. In particular, the divergence formula of Gauss (1.25) is re-
duced to the Green'’s formula,

60,1 60,2
d = —_——t = .
/aD (a1dz + azdy) /D ( By + B ) dzdy, (1.43)

where D C R? is a domain with C! boundary 8D and a;, a, are C! func-
tions on D.

Let the inclination of the tangent line of C at Q(x + Az,y + Ay) be
0+ Af. Rotating tangent lines by 90 degrees, we get normal lines of C at P
and Q. Note that A#f coincides with the angle made by those normal lines.
Their crossing point is called the center of curvature. Then, the curvature
of C at P is defined by

m 20 _1
As—0As  p
and p is called the curvature radius. Because As is approximated by pA#f if
Q is close to P, curve C is approximated by circle, with the radius equal to
its curvature radius and the center coinciding with the center of curvature
at P.
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YA
o
AQ
B _6+A8 T
Fig. 1.10

Actual computation of p is performed as follows. First, we have

tan(f + A9) f(z + Az)
f'(z) + f'(z)Az + o(Az)

tand + f"’(z)Az + o(Azx).

On the other hand, we have

tan(f + A8) = tan6 + (1 + tan® 6)A8 + o(AF)

by tan’ @ = 1 + tan? 4. This implies

1 limazo (A6/Ax)
p  limag_o(As/Ax)
_ fll 1
= 1+fl2 (1+f,2)l/2
fll

1+ 12>

We take a fixed point on C and set s to be the length along C between
P € C and that point. In that way we parametrize C by s, writing the
former as x = x(s). Under this parametrization, it holds that

. 1
Al;rilo As |z(s + As) —x(s)| = 1,

or equivalently,

\dac /ds| = 1.
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Hence
_do
T ds

coincides with the unit tangent vector of C at P.

t

t(s+As)

First, t -t = 1 gives

dt
Zs--t—O.

Thus, dt/ds is parallel to the unit normal vector n of C at P. On the other
hand, because the angle made by t(s + As) and ¢(s) is equal to Af and
those two vectors have length one, it holds that

[t(s + As) — t(s)| = A8 + o(A8).

This implies that

dt . 1

e Algrgolz—;(t(s+As)—t(s))
o |Be)
- As—0 | As - P )

If the direction of the normal vector n is taken to be the center of curvature,
then it follows that

dat 1

ds p
Now, we proceed to the space curve. Actually, three-dimensional vectors
{z(t)}, varying as the time ¢ changes, draw a curve C in R3. We take
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the length parameter s from a fixed point on C. Thus, C is expressed as
x = z(s). Then, t = dr/ds is the unit tangent vector, similarly to the case
of plane curves. The normal plane indicates the one containing P = x(s)
and perpendicular to £.

We take P;, P, on C near P and set 7 to be the plane made by those
three points, P, Py, and P. As P;, P, — P, the plane 7 converges to the
one orthogonal to normal plane. This limit is called the osculating plane.
Intersection of normal and osculating planes forms a line. We take a unit
vector n, called the unit principal normal vector on it, of which direction
is determined later. Note that tangent and principal normal vectors are
perpendicular to each other. Then, b =t x n is called the unit bi-principal
normal vector.

Fig. 1.12

Near P, C is approximated by a circle on the osculating plane. If its
radius is denoted by p and the direction of n is taken toward its center,
then it holds that

dt ln
ds p
as in the case of plane curves. Thus, 1/p is called the curvature of C at P.

Bi-principle normal vector b changes its direction if C twists. The torsion
7 indicates how it does. Namely, it is a scalar, positive if b twists clock-
wisely and satisfies that

—|=17].

db
ds

The role of torsion may be clarified in the following way. In fact, b=t xn
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implies
Q = (—if xn+tx dn
ds  ds ds
1 dn
= —-nxn+tx —
p ds
dn
= tx—.
X ds
On the other hand, b- b =1 implies
db
b- = 0.

Therefore, db/ds is perpendicular to t and b. Regarding the sign of torsion,
we get that

db o
ds )
Similarly, n = b x t implies that
dn db dt
g = Eg X t+ b x —d;
= —-mmxt+bx l'n,
p
1
= 7b—--t
P
because 1 X t = —b and b x n = —t. Those relations are summarized as
the Frenet-Serret formula,
at ln
ds  p
d
n_ b
ds P
db _rn
ds — ’

where p, 7, and s are curvature radius, torsion, and length parameter,
respectively.

Exercise 1.21 Draw the following curve and compute ds/dt = [x'(t)|,
where s is the length parameter and a > b > 0 are constants:
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acost
z(t)=| asint
bt

Then, seek unit tangential vector, unit principal normal vector, unit bi-
H b k4
principal normal vector, curvature, and torsion.

1.2.4 Second Fundamental Form

Let € = x(u,v) be a parameter representation of the surface M, and
take a curve C on it. It is represented as u = u(s) and v = v(s), or
x = x(u(s), v(s)), using the length parameter s of C.

The unit tangential vector of C is given as

_ d_:z: du dv

t= ds = (Bua + Il!vd—s (144)
and it holds that
#_1,
ds e C

where p¢ and n¢ denote the curvature radius and the principal normal unit
vector of C, respectively. If y)c denotes the angle between n and n¢, then
it holds that cosyec =n - ne¢, or

cosPc dt

pc ds’

where n = %“%"-[ denotes the unit normal vector on M.

Fig. 1.13
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Here, we have

o (B e (3)(3) o (2
ds “\ ds “Y\ds /) \ds YU\ ds
d?u d?v

E'*’(Dv@

by (1.44). This implies that

n ﬂ_ du 2+2 du dv dv\?
ds =0 Tuu ds Luv ds ds + T ds

byn-z,=n-x,=0.
The second fundamental quantities are defined by

+x,

L=z, n, M=z,  n, N=x,, n.
Writing
2 2
cos e du du dv dv
— = L|— 2M — — —
Pc (ds) * dsds+N<ds
_ Ldu? + 2Mdudv + Ndv?
~ Edu? + 2Fdudv + Gdv?’
we call

Ldu? + 2Mdudv + Ndv?

the second fundamental form.
Recall that k£ = dv/du is the direction of infinitesimal vector da. Then,
we have
costpe L +2Mk+ Nk?
pc  E+2Fk+Gk%’

Here, L, M, N, E, F, G are determined by P € M. On the other hand,

_dv _ dv/ds
T du du/ds

(1.45)

is determined by the unit tangential vector t of C as well as by P, because
of

t:_wu'l'—
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Fig. 1.14

Let C’ be the curve on M cut by the plane m containing P made by the
unit tangential vector ¢ of C and the unit normal vector n of M. Let R be
the curvature of ¢’ at P € M. Because the center of curvature of C' at P
is on 7, it holds that

(Yer1per) =(0,R)  or  (Yc,pcr) = (m,—R).
On the other hand the right-hand side of (1.45) is determined by P and ¢
so that we have

cospc _cospcr 1

Pe pe R

at P for any curve C on M passing through P with the unit tangential
vector ¢. Henceforth, 1/R is called the normal curvature of M at P with
the direction t.

Fixing P, let us seek t such that the normal curvature attains minimum
or maximum. In those cases, t and 1/R are called the principal direction
and the principal curvature, respectively. Actually, they are obtained by
putting

d (1) _d L-+—2Mk+Nk2_0
dc \R) dk E+2Fk+Gk2
or equivalently,
1
E(F+Gk) = M + Nk. (1.46)

This equality gives from
1

R(E+ 2Fk + Gk?) = L + 2Mk + Nk?
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that
=(E+Fk) =L+ Mk. (1.47)
Again by (1.46) we have
g _E/B-M
G/R-N

and then

)G9 (E0) o

follows from (1.47).
In this way, we get two principal curvatures 1/R; and 1/R; by (1.48).
Writing (1.48) as

1
(EG - Fz)ﬁ —(GL+EN — 2FM)% +LN-M?=0, (1.49)
we have
1 1 GL+EN-2FM
2H=—+— =
TR EG - F?
and
L _ 2
Ke_ L _ N-M

Ri-Ry  EG-F?’
The quantities

1 1 1
= — 4+ = d K=
R R, RiR,

2H

are called the mean curvature and the Gaussian curvature of M at P,
respectively. If the Gaussian curvature is positive, then the surface is convex
to one side at that point. If it is negative, then it looks like a saddle there. It
is known that the Gaussian curvature is determined by the first fundamental
quantities.

Equation (1.48) on 1/R has an equivalent form on k. In fact, we have

FL—-EM + (GL - EN)k+ (GM — FN)k*> =0 (1.50)
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by (1.46) and (1.47). Equation (1.50) provides the principal directions k;
and kg as the solution, which give the infinitesimal vectors

dx, = 2 du, + x,dvy
dxs = T dus + Tydvg,

where ki = dvy /duy and ke = dvy/dus.
Here, we have

dxy -dxes = FEdujdus + F(dugdv; + duidvy) + Gdvidvs
= (E + F(k1 + k2) + Gkik2) duydus.
Furthermore, it follows from (1.50) that

_GL-EN 4 i, FL-EM
"CM—-FN 12 =GM-FN

and hence we obtain

ki+ks=

, 1
E+F(k1+k2)+Gk1k2—EM—_—m

-{(GM — FN)E — F(GL - EN)+ G(FL - EM)} = 0.
This means that
d:z:1 . d.’l}z =0

and the principal directions are perpendicular to each other.

Exercise 1.22  The surface is parametrized as & = z{u,v). Show

L = -n,- =z,
M = —ny - xy=-ny @y,
N = —n,- -z,

Exercise 1.23  Surface of revolution is parametrized as
f(u)cosv
f(u)sinv
g9(u)

for u € (—o0,+00) and v € [0,27) with f(u) > 0. Express fundamental
quantities E, F, G, L, M, N and the principal curvature radii R;, Rz in
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terms of f and g. Next, assume f'(u)% + ¢’(u)? = 1 in the parametrization,
and show that mean and Gaussian curvatures are given by
' "
og=% _ f—, and =,
f g f
respectively. Finally, using this expression, construct surfaces with K =
—1/c* and H = 0, respectively, where ¢ > 0 is a constant.

Exercise 1.24 Fix a point o = x(ug,vp) on M, and take the outer unit
normal vector a at it. Then, compute Hesse matrix of f(u,v) = a - z(u,v)
at (u,v) = (uo,Up) in use of the second fundamental quantities, and give
the explanation to the geometric meaning of the Gaussian curvature.

Exercise 1.25 If a surface M is locally expressed by ¥(x) = 0, then the
unit normal vector is given as

_ V¥
VYl
Take a point on M and let the principal directions be parallel to x; and

T4 coordinates, with the unit normal vector n = *(n1, n2,n3) parallel to z3
coordinate. Confirming that

n

onj _ %
6z,~ - R,;
for i,5=1,2 and
81’13 _
axi =0

for i = 1,2,3, show the relation 2H = V - n, where H indicates the mean
curvature.

1.3 Extremals

1.3.1 Lagrange Multiplier

Given y = f(z) defined on a < z < b, determine its maximum and minimum
values. For this problem, we may seek all critical points z; € (a,b) in
f'(z;) = 0 to compare f(a), f(b), and f(z;)’s. Functions with multiple
variables are similarly treated. If z = f(z,y) has two variablesa <z < b
and ¢ < y < d, then we may seek all interior points (z;,y;) in fz(z;,y;) =
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fy(zj,y;) = 0. Then, maximum and minimum values are in the boundary
values, f(z,y) for z = a,b with ¢ < y < d, and f(z,y) for y = ¢,d with
a € z < b, and the critical values f(z;,y;)’s. The third problem is to seek
maximum and minimum values of z = g(z,y), under the constraint that
f(z,y) = 0. Then, solving f(z,y) = 0 as y = h(x), for example, we may
obtain them by z = g(z, h(z)) defined on a < z < b.

Those rough answers are justified in the following way. In the first
problem, Weierstrass’ theorem guarantees that if y = f(z) is continuous,
then its maximum and minimum are attained. If f(z) is differentiable at
T = z¢ € (a,b), then it holds that

flzo + Az) = f(z0) + f'(z0)Az + o(Az)

as Az — 0. Therefore, if f'(2¢) # 0, then f(z,) cannot be a maximum or
minimal value.

The second problem is treated similarly. Any continuous function on a
compact set attains its maximum and minimum. If f is totally differentiable
at the interior point (xq, yo), then it has partial derivatives there. It holds
that

f(zo + Az, yo + Ay) = f(To,y0) + fz(To,y0)AT + f(Zo, Yo)Ay

+o (\/M) (1.51)

as Az, Ay — 0. Therefore, (z¢,yp) cannot attain maximum or minimum
unless fr(zo,y0) = fy(xo, Y0) = 0.

Here, we may note the following. First, if f(x,y) has continuous partial
derivatives f;(z,y), fy(,y) in the domain , then it is totally differentiable
there. If f has continuous second derivatives there, then we can make use
of (1.21) to examine its local behavior around the critical point, where the
Morse index plays a fundamental role. On the other hand, the direction
derivatives are useful to investigate boundary values.

For instance, if the boundary I' = 9Q is (piecewisely) C? and so is f up
to there, we may pick up the boundary point (zg,yo) satisfying

2 Fashu(s)| =t Vi) =0,
s=0

where s is the length parameter with (z(s),y(s)) € T and (z(0),y(0)) =
(z0,Yo0) so that *(z’(0),3(0)) = ¢ is equal to the unit tangential vector on
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I’ at (zo,y0). Then, the local behavior of f(z,y) around (zg,yo) can be
examined by

d2
51 (@(9), 4(s))

= [Hess f(zo,y0)]t -t + %n -V f(zo,y0) (1.52)

3=0

and

=n- Vf(mﬂv yO)a

d
Ef((xo, Yo) + sn) i

where p and n denote the curvature radius and the unit normal vector of
T at (zo, yo), respectively, and

2y o
oz 8z0y

Hess f =
3 f 82
dxzdy 6_y£'

Actually, signs of those values determine whether (o, %0) attains local max-
imum or local minimum of f on the closed region in consideration.

Remember that for the third problem, elimination of one variable by the
constraint is proposed. This idea is valid essentially, if the local resolution
of f(z,y) = 0 is admitted. This is assured by the implicit function theorem.
The simplest form is stated as follows.

Theorem 1.3 Let @ C R? be a domain, and f = f(z,y) a continuous
function in Q with f, = 9f/dy continuous there, and f(zo,yo) = 0 and
fy(xo,y0) # O hold for (zq,yo) € Q. Then, there exists a unique y = h(z),
continuous near xo satisfying

Yo = h{zo) and  f(z,h(z)) =0. (1.53)
If f, exists in Q, then h(z) is differentiable near z = z¢ and it holds that

W(z) = —f=(2,y)/ fy(x,y). (1.54)

The above theorem justifies the following fact, called the Lagrange mul-
tiplier principle.

Theorem 1.4 Let f(x,y) and g(x,y) be C! functions defined in a domain
Q C R?, (x0,%) € Q attain mazimum or minimum (or just extremal) of
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C fey)=0

Fig. 1.15

z = g(z,y) under the constraint f(z,y) =0, and V f(zo,yo0) # 0. Then it
holds that

Vg(zo,y0) = AV f(x0,y0) (1.55)
with some X € R.

Proof. Without loss of generality, we suppose that f,(zo,yo) # 0. Then,
by the implicit function theorem 1.3, there exists a unique continuous func-
tion y = h(z) near x = x¢ satisfying (1.53). Furthermore, A(z) is differen-
tiable at x = xp, and p(z) = g{z, h(z)) attains a critical value at £ = xo
from the assumption. Therefore, it holds that

¢’ (o) = gz(z0, h(x0)) + gy(To, h(z0))'(zo) = 0.
In use of (1.54) with z = zo, we have
9=(Z0, Yo) — 9y(To, Yo) f=(Z0, o)/ fy (%o, o) = 0.
Writing A = gy (0, ¥0)/ fy(Zo, yo), we get that
92(%0,y0) = Afa(To,0)  and  gy(Zo,y0) = Afy(zo. yo)-
This means (1.55). 0

Theorems 1.3 and 1.4 have higher dimensional versions.

Exercise 1.26 Compute maximum and minimum values of z = zy in Q =
R? under the constraint % + y?> = 1 in the following way. First, put
f(z,y) = 2% +y* -1 and g(z,y) = zy. Confirm that Vf(z,y) # 0 holds if
f(z,y) = 0. Then show that (1.55) and f(xo,yo) = 0 imply A = +£1/2 and
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Zoyo = A. Finally, show that maximum and minimum values are attained
from the compactness of {(z,y) € R?| f(z,y) =0} and the continuity of
z=1xy.

1.3.2 Implicit Punction Theorem

This paragraph is devoted to the proof of Theorem 1.3, valid to the case of
higher dimensions. The reader can skip this section if he is familiar with
the first course of analysis.

Recall that fy(xo,y0) # O is supposed. Without loss of generality, we
assume fy(zo,yo) > 0. Henceforth, B(zq,r) denotes the open ball in R?
with the center z, and the radius r. Because f, is continuous, there exists
r > 0 sufficiently small such that f, > 0 in B(z,r), where 25 = (2o, %0)-
The continuously differentiable function ¢(t) = f(zg, yo + t) satisfies that

@'(t) = fy(xo,y0 +1) >0 and ©(0) = f(zo,y0) =0

with |t| < 7. We have

p(=1/2) = f(2o, 30 —7/2) <0 < p(r/2) = (0,90 +7/2)-

Because f(z,y) is continuous in €, there exists § > 0 sufficiently small such
that

flr,yo —1/2) <0 < f(z,y0 +7/2) if lx—xol <6 (1.56)

and D = [zo — 8,70 + 8] X [yo — 7/2,y0 + /2] C B(29,T).
Taking x € I = (zo — 6, %o + d), we set ¢*(t) = f(z,yo +t). Because of
D c B(z,r), it holds that

(™) (t) = fy(zo, 90 +1) >0  for  [t| <r/2.
On the other hand, relation (1.56) implies
P (—=1/2) < 0 < p*(r/2).

Therefore, there is a unique t, € [-7/2,r/2] satisfying ¢®(t;) = 0. In
other words, each z € I admits a unique y € [yo — 7/2,yo + /2| such that
f(z,y) = 0. Let us write this y as h(z). From the uniqueness of such y, we
have h(zo) = yo.

Now, we prove the continuity of h(z). We shall show that z, € I =
(zo — 8, %0 + 6) and z; — z. imply h(z;) — h(z.). This means that any
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€ > 0 admits k such that j > k implies
Ih(e;) - h(@2)] <.

If this is not the case, there is g9 > 0 such that any k = 1,2,-.- admits
j(k) > k such that

| (zj) — h(z4)| 2 €o. (1.57)

Put z}, = z () for simplicity. We still have z; — z, € I, and hence z} € I
for k sufficiently large. From the definition of h(x), it holds that

h(z) € [yo — /2,30 +7/2)].
This makes it possible to extract a subsequence {z}} C {z},} such that
hzk) —  we€[yo—7/2,90+71/2] (1.58)
for some y,. This, together with f (z}, h{z})) = 0, implies
f(@a,ys) =0,

because f is continuous. Therefore, from the uniqueness of h(z) we get
that y. = h(z.). Thus, (1.57) with (1.58) is a contradiction.

Finally, we show that if f, exists in Q, then h(z) is differentiable at
z = ¢ and equality (1.54) holds with £ = xo. Actually, the other cases of
z are proven similarly.

For this purpose, given |h| < 1, we put

Az=h and Ay = h(zo+ Azx) — h(zo).
Then, it holds that
f(zo,y) =0 and  f(xo+ Az,y0 + Ay) = 0.

Furthermore, Az — 0 implies Ay — 0 because h(z) is continuous.
From the mean value theorem, we have

f(@o + Az,yo + Ay) = f(zo + Az,y0) + fy(zo + Az, yo + 0Ay)Ay
with 6 € (0,1). On the other hand, the relation

f(zo + Az,y0) = f(o0,Y0) + fz(Zo, o)Az + o(Ax)
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is valid from the assumption to f. Those relations imply

0 = fz(To,Yo)AT + fy(xo + Az, Yo + 0AY)Ay + o Ax)
and hence

Ay f=(Z0,Y0)
=9 1
Az = T, + bz,y0 7 Ay T oW

follows. Here, f, is continuous and f,(Zo,yp) # 0, so that we have the
existence of h/(zo) with the relation

W(zo) = lim 2¥ — _fz(%0.%0)

Az—0 Az fy(To,Y0)

and the proof is complete.

1.3.3 Convex Functions

We say that a domain @ C R" (n = 1,2,---) is convez if &,y € Q and
a € [0,1] imply oz + (1 — a)y € Q. If Q is convex, then a function
f = f(zx) of x € O is said to be convex if z,y € 2 and «a € [0, 1] imply

flax + (1 - a)y) < af(x) + (1 - a)f(y).

This inequality implies for z = ax + (1 — a)y that
a{f(z) -~ f(2)} 2 1 -a)f(z) - (1 - ) f(y).

Taking o € (0,1), we obtain

1@) - £(2) 2 T2 {52 - Fw)}

Let us make a | 0. Then, if f is differentiable at y, it holds that

f@) - f@) 2 flez+(-a)| =Vi®)-@-v. 159
a=
This indicates that the graph of a convex function is always over the tan-
gential space.

This observation is the starting point of the conver analysis. A con-
vex function f : R® — (—o00,+00] is said to be proper if its effective
domain D(f) = {x € R™| f(x) # +oo} is non-empty. It is lower semi-
continuous if ©; — x, implies f(x.) < liminf f(z;), or equivalently,
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{x € R*| f(x) < c} is closed for any ¢ € R. Given a proper, lower semi-
continuous, convex function f, its conjugate or Legendre transformation is
given by

(&)= sup {z-&- f(z)}.
TeR"
It is again a proper, lower semi-continuous, convex function, although the
first property is not trivial. Then, the duality theorem of Fenchel-Moreau

guarantees that f** = f. The sub-differential of f at * € D(f), denoted
by 0f(x) is the set of £ satisfying

fly)—fl@)>€-(y—=x)

for any y € R™. If f is proper, lower semi-continuous, convex, then £ €
Of (z) if and only if = € 8f*(§), and Fenchel’s identity guarantees that

fl@)+ f () ==&

If o = p(z,y) : R® x R™ — (—00, +00] is a proper, convex, and lower
semi-continuous function, then problems

inf {p(z,0) | z € R"} and sup {—¢*(0,q9) [ ¢ € R™}

indicated (P) and (P*) are called the principal and the dual, respectively,
where

©*(p,q) = sup  {z-p+y-q—p(z,y)}
(z,y)ER"XR™

= sup {:c-p+ sup (y-q—w(-’v,y))}
z€R"™ yeER™

denotes the Legendre transformation of ¢ = ¢(z,y). Let T and g be the
solutions to (P) and (P*), respectively, and

o(y) = inf {p(z,y) | z € R"}

be proper, convex, and lower semi-continuous. Then, we have
¢*(0,9) =sup{y-q—¢(z,y)} =sup{y-q - ®(v)} = ®*(q),
Ty v
and hence it follows that

sup {—¢*(0,9)} = sgp{—@*(Q)} = sup {0-q¢—9*(q)}
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= &**(0) = &(0) = inf ¢(=,0). (1.60)

Thus, (P) and (P*) have the same value.
Fixed z € R™, the Legendre transformation of y — ¢(z,y) (= p,(y)) is
given as

—L(z,9) = sup{y - ¢ — p(z,9)},
Y
and L(z,q) is called the Lagrange function. Then,
¢*(p,q) = sup{z - p - L(z,q)}
T

is nothing but the Legendre transformation of z — L(z,q) with ¢ € R™
fixed. We have

©"(0,9) = sup {—L(z,9)} = —inf L(z,q)
and the dual problem is re-formulated as
sup {—¢*(0,q)} = supinf L(z, q).
q qg %

On the other hand, we have ¢%(q) = —L(z,q) as is noticed, and hence it
holds that

plz,y) = ¢r' (y) = sup {y-q+ L(z,q9)}

and ¢(z,0) = sup, L(z, q). The principal problem is re-formulated as

inf p(z,0) = inf sup L(z, q).
x x q

It is obvious that
supinf L(z, q} < infsup L(z, g},
q T T q
but the equality holds here by (1.60). Thus, T € R™ and § € R™ are the
solutions to (P) and (P*) if and only if
L(z,q) < L(Z,7) < L(z,7) (1.61)

holds for any (z,q) € R x R™. This fact is called Kuhn-Tucker’s saddle
point theorem.



50 Geometric Objects

An application of this theorem is minimizing f under the constraint
g <0 (i =1,---,m). Suppose that f: R® — R and g; : R® — R are
convex and lower semi-continuous, and that there exists £o € R™ such that
gi(xo) < 0 for i =1,---,m. The last condition is called Slater’s constraint
qualification. Then, (1.61) guarantees that if T attains the minimum, then
the function Lz, A) : R® x R™ — R defined by

L(z,A) = f(x) + A - G(x)

for G(z) =t (g1(z),- - -, gm(x)) admits X = t(X;,- -, \y,) such that X; >0
(t=1,---,m) and

L(Z,\) < L(F,X) < L(z, X)

for any (x,A) € R™ x R™. Concerning the existence of the saddle point,
we can make use of the mini-mazx principle of von Neumann. It says that if
Xy, Yy are topological vector spaces, X C Xp, Y C Yy are convex, compact
subsets, z € X — f(z,y) is convex, lower semi-continuous for any y C Y,
and y — f(z,y) is concave, upper semi-continuous for any r € X, then
there exists (Z,7) € X x Y satisfying

f&@y) < fE9) < f(=,7)

for any (z,y) € X x Y.

Instead of examining those general theories, we pick up the following
example. That is, minimizing a continuously differentiable convex function
f(z) of z € R? under the constraint « - e = ¢, where e is a unit vector and
c € R. In fact, first we take @ € R? in a - e = ¢ and set ' = = — a. Then,
it holds that ' - e = 0 and f'(z’) = f(z’ + a) is a convex function of z'.
In other words, we can assume ¢ = 0 without loss of generality.

Let M be the set of x satisfying e - x = 0. It is the (one-dimensional)
vector space orthogonal to e. Let N be the set of y such that Vf(y) is
parallel to e. This means that £ € M and y € N implies Vf(y) -z =0
and hence

fl)>29(y) (xeM,yeN) (1.62)
holds for

9(y) = fy) - Vi) -y
by (1.59).
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If * € M is the solution to the problem, then from the Lagrange mul-
tiplier principle there is A € R such that
V(Z) = de.

This means T € M NN, and therefore, Vf(Z) - T = 0 and g(%) = f(%)
follow. It follows from (1.62) that

f(x) 2 9(T) = f(T) 2 9(v)

for any © € M and y € N. This means that f(Z) = g(T) attains the mini-
mum and the maximum of f(x) in £ € M and g(y) in y € N, respectively.
This conclusion may be regarded as a saddle point theorem.

Exercise 1.27 Given a, b € R?, minimize

1 1
fw) = 3 lu= b (= ju=b)-(u-b))
under the constraint that (u —a)-e = 0.

Exercise 1.28 Let f be a convex function defined in an interval I C R.
For a, b, c € I with a < b < ¢, show

FO) = f@) _ 1= fla) _ f(0)= FO)

b—a c—a c—b

Then, prove that this f is continuous.
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Chapter 2

Calculus of Variation

From the analytic point of view, geometric quantities such as length, area, volume,
are regarded as the value determined by the function parametrizing the object,
and therefore, each of them induces a mapping from the set of functions into
R. Sometimes, such a mapping is called the functional because it is a function
defined on function spaces. In the calculus of variation, a functional is given,
and it is required to find its extremal functions. This formulation can describe
physical problems if the functional is taken as energy, Lagrangian, free energy,
and so forth.

2.1 Isoperimetric Inequality

2.1.1 Analytic Proof

The Jordan curve indicates a closed non-self-intersecting curve, and a con-
nected open set is referred to as the domain. We can observe that a Jordan
curve I on the plane R? encloses there a simply connected domain D. The
question studied here is referred to as the isoperimetric problem. When is
the area A of D minimized if the length L of T is prescribed ?

The answer is a circle. Analytic proof is as follows. First, we parametrize
T as (x(t),y(t)) in t € [a,b]. This implies that (z(a), y(a)) = (z(b), y(b)),

(z(t),y(t) # (=z(t),y(t")  for t#t' in ¢t €la,b),

and

L= /b V()2 + o/ (t)2dt.

53
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Putting a1(z,y) = vy, az2(z,y) = 0 in the Grﬁen’s formula (1.43), we obtain

A= /D dody = — /P ydz = — /a " O (t)dt.

Here, we take the parametrization t = (27s)/L € [0, 2] for the length
parameter s. This means that

s= /t V' (t)? + y'(t)2dt
0

ds 2_ 7(4\2 e _ (L 2
(&) —wer+ver=(z
holds. We have

/021r (=) +y'(2)%) dt = /027r (%)Zdt = (%)2 o = _QL_;

and therefore,

and hence

L?—4rA = 2r¢ " (') + ¥/ (t)* + 2y(t)z' (2)) dt
0

I

2 27

o /0 (@' (8) + y(t)) dt + 2r /0 (W () — y2()) dt
2

o /0 (W (1) — y(t)?) dt

v

follows.
‘We may assume that

/:W y(t)dt =0

by translating I" parallel to y axis. Then, from the following fact, referred
to as Wirtinger’s inequality, we have L?> > 4w A with the equality if and
only if I is a circle. In this way, we can give a proof for that well-known
fact.

Theorem 2.1 If y(t) is a smooth periodic function with period 2m such
that

27
/ y(t)dt =0 and  y(t) # asint + Bcost,
0
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then it holds that

2 27
/ v/(t)%dt > / u(t)%dt,
0 0

where a, B are constants.

Proof. We apply the theory of Fourier series developed in §2.4.2. Note
that a periodic function with period 27 is the one, denoted by y(t), satisfying

y(t+2m) =yt) for teR.

Given such a continuous function y(t), we put
1 27 1 27
an = — / y(t) cosntdt and b, =— / y(t) sin ntdt
™ Jo T Jo

forn=0,1,2,---. Then, if y(t) is sufficiently smooth, say, C! and piecewise
C? in t € R, it holds that

oo
y(t) = %9- + Z (an cosnt + b, sinnt) (2.1)
n=1
and
o0
y'(t) = Z (—nan sinnt + nby, cosnt),
n=1

where the right-hand sides converge absolutely and uniformly in ¢t € [0, 2x].
Those relations imply, because of

2
/ 1.dt =2m,
0

27 27
/ sin nt sinmtdt = / cosntcosmtdt =0 (n #m)
0 0
27
/ cos nt sinmtdt = 0,
0

2n 27
/ sin® ntdt = / cos?ntdt =7 (n >1)
0 0

that

(e,

27 27 ap 2 9 9 9
/ y(t)%dt = / (_) +Z(ancos nt + b2 sin’ nt) 3 dt
0 0 2

n=1
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= n{%%+i(ai+bf,)}

n=1

and

2 oo 2w
/ y()idt = Z / (n%a2 sin® nt + n?bZ cos® nt) dt
0 0

n=1
=)

= 7 Z (n%a2 + n%b2).

n=1

Here, from the assumption it follows that

T

1 27
ap = —/ y(t)dt = 0.
0

Thus, we obtain

/27r y()dt =7 i (a2 +b2)
0

n=1
oo 2w
< ﬂz (n%a? +nb2) = / y'(t)3dt.
n=1 0

Here, the equality holds if and only if a,, = b, = 0 for n > 2, or equivalently,
y(t) = ay cost + by sint. The proof is complete. a

We have proven
L? > 47A (2.2)

with the equality if and only if T is a circle, where I' is a Jordan curve on R?,
L is its length, and A denotes the area of the domain D enclosed by I'. It
is called the isoperimetric ineguality. Examining the proof, we see that it is
valid if T" is C! and piecewise C?, which, however, is a technical assumption.
Actually, the geometric proof guarantees (2.2) for any continuous Jordan
curve I

From the analytic point of view, it may be worth mentioning that The-
orem 2.1 is extended to the case that y(t) and y'(t) are quadratic summable
because of Parseval’s equality. Here, the integration and the differentiation
are taken in the sense of Lebesgue and that of distributions, respectively.
The set of such functions, generally referred to as a function space, forms
the Sobolev space, of which details are described in later sections.
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Those geometric objects are thus extended by the generalization of inte-
gration and differentiation of functions, but more direct ways are possible.
First, the area A of the set D C R? is definite if it is Lebesgue measurable.
Correspondingly, the length L of its boundary I' = 8D is definite if D has
the finite perimeter. In this case, we still have (2.2) with the equality if
and only if ' is a circle. However, generally, it may be difficult to solve
variational problems through an a priori insight as (2.2).

Exercise 2.1 Confirm that the equality L? = 47 A implies that I is a circle
in use of Theorem 2.1.

2.1.2 Geometric Proof

Several geometric proofs to (2.2) are known. Here, we describe the method
of symmetrization. Such a technique is important in the study of partial
differential equations arising in mathematical physics, although the reader
can skip this paragraph first.

Taking the convex hull of D, we see that the problem is reduced to
the case that D is convex. Note that the convex domain in the plane
always admits right and left tangential lines. In fact, given P € T, we take
P’ € T\ {P} and the line £p connecting P’ and P. As P’ approaches P
from one side, the limiting line £ of £p- exists, because the inclination of the
latter is monotone from the convexity of D. Remember that if y = f(z) is
a convex function, its right derivative at x = x4 is given by

m(zo) = Aliznfo flzo + Asz) — f(zo)

If P(xo, f(x0)), P'(xo+ Az, f(xo+ Ax)), and R’ denotes the crossing point
of the right tangential line and x = x¢ + Az, then it holds that

PP <(PP')¢ < PR +R'P,

where (PP’)¢ denotes the arc length of I" between P and P’. From those
relations we have

(PP')c = PP' {1 +0(1)} (2.3)

as PP — P.
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We deform the convex body D in the following way, called the Steiner
symmetrization. Namely, we fix a line £ in the plane, and take another one
¢ perpendicular to £. If # N'D # §, it forms a segment [P,Q]. Then, we
translate it as [P*,Q*] on £ so that the middle point the latter is on £ and
PQ = P*Q*. Then, sliding ¢, we see that those {[P,Q]} form a domain
denoted by D*, which is said to be the Steiner symmetrization of D. It
holds that D* is convex and symmetric with respect to £. Also, if a family
of convex bodies {Dy} converges to Do as k — oo, then so does {D}} to
D*

oo

Fig. 2.1

Theorem 2.2 We have the following.

1. The area of D* is equal to that of D.

2. We have |0D| > |0D*|, where |8D| and |0D*| denote the lengths of 8D
and 0D*, respectively.

3. The equality |0D| = |0D*)| is valid if and only if D* is a translation of
D.

Proof. To show the first item, we may assume that ¢ coincides with z
axis. Let the projection of D to £ be [a, b], and
Ata=rg<z1< <2 =b

be its division with the mesh size |Al| = maxi<;<n(z; — z;—1). The line
parallel to y axis and passing through z;, denoted by ¢;, cuts a segment
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from D, denoted by [P;,Q;]. Then, the area of D is the limit of

Sa = Xn: AS;
i=1

as ||A]| — 0, where AS; is the area of the trapezoid made by P;, P;_1,
Qi—1, Qi. Let P, P’ ,, Qf_;, QF be the corresponding points on dD*
of P, P,_1, Qi, Qi-1, respectively. Then, AS; is equal to the area of the
trapezoid made by P}, P} |, Q}, Q;_, by the definition, and therefore, the
area of D,

lim Sa,
jaj—o "%

is equal to that of D*.

Fig. 2.2

For the second item to prove, we note that |3D)| is given by the limit of

n
SA = Z As;
i=1

as ||Al| — 0, where As; = PPy + QiQ;i-1. Here, it follows from the
elementary geometry that

As; > As; = PP}, + Qi Qi
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and hence |[0D| > |0D*| follows.
To show the third item, we assume that D and D* is not congruent. In
this case, there is ¢/ such that

my(P) #my(P7), (2.4)

where m (P), m+(P*) denote the inclinations of the right tangential lines
of D, D* at P, P*, respectively. Let @Q* be the corresponding point of @
on 8D*, where [PQ] = ¢/ N D. Let the right tangential lines at P, Q of
dD be t, k, and those at P*, Q* of 0D* be t*, k*, respectively. We take
a parallel line #” to ¢ in the right, with the distance ¢ > 0. Its crossing
points between ¢, k, t*, k* are denoted by R,, $1, R}, S;. Furthermore, let
[R,S] = ¢/ N D and [R*, S*] = £’ N D*. Then, it holds that

(PR)¢ = PR; + o(¢) (@S)c = QS1 +0o(e)
(P*R*)c = P*R} +o(e) (Q*S*)c =Q*S] +o(e)
as € | 0 by (2.3).
However, from the assumption (2.4) we have

PRy +QS; > P*R! + Q"S>

Again by the elementary geometry the difference of both sides is homoge-
neous in ¢ of degree one, that is,

PR, +QS, = P*R] + Q*S{ + ¢
with a constant v > 0 independent of € > 0. This implies that
(PR)c +(@S)c > (P*R*)o +(Q"S")e +
for £ > 0 sufficiently small. Then, |0D| > |0D*| follows. a

For the moment |C| denotes the length of the curve C. In the case that
the convex body D is not a disc, we take outscribing disc B, line £ passing
through its center O, and largest concentric disc E contained in D. Then,
it holds that |0B| > |8D| > |OE|. The Steiner symmetrization D* of D
with respect to £ is convex, and it holds that E ¢ D* C B. Therefore,
|0B| > |0D*| > |8E)| follows.

We shall show that any convex domain D admits a sequence of convex
domains {Dy}so, such that Do = D, Dy is a Steiner symmetrization of
Dy, and Dy converges to a disc. Then by Theorem 2.2, inequality (2.2)
follows for D with the equality if and only if D is a disc.
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Henceforth, Q denotes the set of rational numbers. We note that D is a
disc if it is symmetric with respect to two lines passing through the origin,
denoted by O, with the angle made by them not in Q/(2x). Letting ¢, 43
be such lines, we take {D;} by the Steiner symmetrization with respect to
£1 and {3, successively. Then, we have E C Dy C B for any k. There is a
countable dense set Cp on 8B. Each q € Cy determines pi(q) € [0, q]N3D
and vx = {pk(q) | ¢ € Co} C 8Dy, is a countable set. In use of the diagonal
argument of Cantor, we get a subsequence of {D;}, still denoted by the
same symbol, such that any p € = converges. Furthermore, it can be
required that both directions of symmetrization, with respect to £, £2, are
contained infinitely many times in this sequence. Let the closure in R? of
the set of those limiting points be ~.

Again by the diagonal argument, there is a subsequence of {Dy}, still
denoted by the same symbol, such that any € = 1/n (n = 1,2,---) admits
ko such that ~y, with k > ko lies in the £/2 neighborhood of v. Similarly,
this sequence can contain both directions of symmetrization infinitely many
times. This implies that 8Dy, is in the & neighborhood of «, and it follows
that 8Dy converges to . Because the former is a closed convex closed
curve, so is 7. It encloses a domain in R2.

Let * indicates the symmetrization with respect to £;. From the above
description, there is {Ek} C {Dg} such that

nm‘ab;;‘ > [8Do|
from the monotonicity and also

nm)ab;;[ = |oD;]
from the continuity of symmetrization. This implies [0Dg| > [0Do| > [0Dg|
and Dy is symmetric with respect to ;. Similarly, it is symmetric with
respect to £3, and the proof is complete.
Exercise 2.2 Confirm that if the convex domain D admits a sequence of
convex domains {Dk}?;o such that Dg = D, Dy is a Steiner symmetriza-

tion of Di, and Dy, converges to a disc, then inequality (2.2) follows for D
with the equality if and only if D is a disc.
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2.2 Indirect Method

2.2.1 FEuler Equation

Structure of the isoperimetric problem is formed as follows. First, quantities
A and L determined by the function (z(t),y(t)) are given. Regarding them
as functionals, we are asked to maximize A under the constraint that L is
a constant. In such a situation, it seems to be natural to take “critical”
functions first, where the “derivative” of the functional vanishes. Even in
this case with the constraint, the “Lagrange multiplier principle” will be
applicable.

Generally, the functions in consideration are called admissible, and such
a problem of finding extremal functions for the given functional is called
the variational problem. Furthermore, such a critical function is to satisfy
the Euler equation. Thus, in the variational problem, a functional is given
and its extremal functions are required among the admissible functions.

We illustrate the story for the problem to minimize the functional

Ie) = [ (@ ole), ¢ () de

defined for the function y = ¢(x) passing the fixed points Pi(z1,11),
Py(z2,y2) in R?, where f(z,vy,y') is a given function.

To fix the idea, we suppose that f is continuous in (z,y,v’), and y =
@(x) is admissible if it is C? on [z1, z,] and satisfies

o)) =y1  and  @(x2) =2

Under such a situation, let us suppose that the minimum in attained by
an admissible function, denoted by y = @o(z). Then ¢(z) = po(z) + sn(z)
is also admissible for any C' function y = n(z) with n(zo) = n(z;) = 0
and s € R. Namely, this ¢ is C! on [z;,z,] and satisfies @(z1) = y1 and
¢(x2) = y2. This implies

I(po + sn) > I(io)

and therefore, s € R — I(po + sn) attains the minimum at s = 0. In
particular,

d
a-’(% + sn) o 0
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follows if the left-hand side exists. Because of
z2
Igo+sm) = [ @ p0(o) +51(@), (2) + s/ (),
Ty

we have, formally that

d
=1
T (o + sn) .

dz

= [ 2 tenla) + on(a), chia) + 9n/@)
. 3=0

1
T2

= [ {fu(z,00(x), v (2))n(z) + fy (z, 00 (x), wo ()0 ()} dz

z1

-/ {fy($,<po(x),(ﬁ6($)) - e @ (o) eh(@) |
n(z)dx (2.5)

by n(z1) = n(x2) = 0. Because such n(z) is arbitrary, it holds that

d (8f\ OF _
& (5)-%-o 26)

for y = ¢o(x) and y' = ¢)(z). Based on those considerations, we say
that equation (2.6) is the Euler equation for this problem. Generally, each
variational problem is associated with the Euler equation of its own, and
indirect method in calculus of variation is to solve it.

The above derivation of (2.6) is justified if f, is continuous, f, is C*
in (z,y,9'), and the extremal function ¢(z) is C? in . The first two
conditions are concerned on the variational problem itself, and it is possible
to examine them in advance. On the other hand, the last condition is on the
extremal function which we are seeking. We may be able to impose it as an
admissibility. However, in this case the admissibility looks too restrictive
to define the functional I(¢). Because the variational problem is to find
the extremal solution within admissible functions, that discrepancy leads
us to the question that the extremal function can exist actually, or, what
is the appropriate admissibility for the existence of the extremal function.

Actually, even the assumption ¢ € C*[z;, z7] is restrictive for the admis-
sibility to assure the existence of the extremal function g of the functional
I. Eventually, this problem of existence is overcome by replacing the no-
tions of integration and differentiation from those of Riemann to those of
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Lebesgue. On the other hand, such an admissibility is too rough to justify
the Euler equation. The second difficulty is overcome by introducing the
notions of weak solution and its regularity. Those stories are realized in
later sections.

Exercise 2.3 Derive the Euler equation for f(z,y,y’) = +/1+y? and
confirm that the shortest curve connecting two fixed points in R? is a
segment.

2.2.2 Lagrange Mechanics

As is described in §1.1.3, if mass particles z; = z;(t) e R® (i =1,2,---, f)

are subjected to the potential energy U = U(z1,%2,---,Ty), then Newton’s

equation of motion takes the form
dpi _ ou

where p; = m;Z; denotes the momentum. Then, the kinetic energy is given
by

f
.. . 1 .
K($1,$2,"',.'L'f)=52 m,-a:;‘»2
i=1

and it holds that
0K

Pi= Bz,

If {q1,---,qy) denotes the generalized coordinate, then it holds that z; =
z1(q1, -+, q5t), -, xf = xf(q1, -, qs;t) and we obtain

i+ o (2.8)

Regarding (g, ¢,t) as independent variables, we differentiate (2.8) with re-
spect to ¢;, and get that

o3, _ ou

94; 9g;
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Hence we have

e ———

OK 0K dix s~ s,
a(jj P 6:'ck an . 6q]' ’

and then it follows that
d 0K Z <dpk Oz d Bzz:k)

aw ~ 2\ @y
AL AN
—~ \ 0y 0g; Otk Og; Ogqr  Oqx
by
dom _oh
dt 9g; 09q;

Therefore, if we regard K as a function of (q,q,t) by (2.8) and take the
Lagrange function

L(qa(L t) = K(q7 q’t) - U(q1 t)

then it follows that
doL_or
dt a(jj - qu
Equation (2.9) is called Lagrange’s equation of motion, and now we know

that it is the Euler equation for the variational problem 4S5 = 0 under the
constraint that dq(t1) = dq(t2) = 0, where

s= / L(g(t), (1), ) dt

denotes the action integral defined for ¢ = q(t) € R3/ with ¢ € [t1,t2]. This
fact is called Hamilton’s principle of least action.
The Legendre transformation is generally taken to L = L(g) by

oL
3

The Legendre transformation ¢ — p to the Lagrangian L = L(q,¢,t) is
called the Hamiltonian with the general momentum p:

L*(p)=pg—~L  with p

. . oL
H=H(pgt)= ZPﬂj —-L with p;= e
] ]

2
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From (2.9) we have
oL oL oL

= - —dg 4+ —dt
dL aqdq-l- ER q + 5
d (0L oL oL oL
= — = —dg + —dt = pd j + —dt,
dt(Bg)dq+8<jdq+ 5 pdq + pdg + 5

which implies that

oL
dH = §¢dp+pd¢g—dL = ¢dp —pdg — -5t—dt

d H
@-dp + —qu + a—dt,

op Oq oL
or Hamilton’s cannonical equation
_oH . _ OH
qg= op an p= g

Exercise 2.4 Confirm that (2.9) is the Euler equation for 65 = 0 under
the constraint that dq(t1) = dq(t2) = 0.

2.2.3 Minimal Surfaces

The reader can skip this paragraph first. Given a surface M, let x =
z(u,v) : © C R? - M C R3 be its parametrization. The first fundamental
form

I = Edu? + 2F dudv + Gdv?
induces the inner product in R?,
2
(U, V)= Z Lijuv;,
ig=1

where I}y = E, 1y = Iy = F, Inp = G, U = Y(uj,u3) € R%, and V =
(v1,v2) € R2. So does the second fundamental form

II = Ldu® + 2Mdudv + Ndv?
and those inner products are so related as

(AU’ V)I = (Uv V)II
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for
-1
E F L M
A=(F G) (M N)’ (2.10)
because
E F
(U,V),—(F G)U 1%
and

(Yo

hold. Then, we can confirm that mean and Gaussian curvatures H, K are
equal to %tr A and det A, where tr and det indicate trace and determinant
of matrices, respectively. Therefore, (1.49) is regarded as the eigenequation
of A, and at P € M if the parametrization is so taken as

lou] = |zol =1, Ty zW =0, (2.11)
and x,, x, to be principal directions, then it holds that
Az, = kiz, and Az, = kyx,,

where ki, ko are the principal curvatures.
On the other hand, we have

L=x,, n=—-2, -n,
by n -, = 0, and similarly,

M=xyy N =—-Ty Ny =—Ty Ny

N =&y N =—I, Ny
From those relations we get that
Ny = k1%, n, = —ko,

at P € M, because A is diagonalized by %, y and E=1, F =0, G =1,
L=k;, M =0,and N = k; there.
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Now, we take its deformation, a family of surfaces M. parametrized by
¢ = & +efn, where f is a smooth function defined on M (or ). We wish
to seek M such that

d

—AE®)

=0 (2.12)

e=0

for any f, where A(g) denotes the area of M. Such M is called the minimal
surface.
In fact, we have

Ale) = / dS:  with  dS. = |z x x| dudv.
M,

However, at P € M it holds that

x, = Ty t+efun+efn,
= (1 —efk)xy, +efun

and similarly,
z; = (1 -~ efky)x, + cfyn.
Because (2.11) implies
Ty X Ty =N, Ty X N = Ty, n X Ty = Ty,
we have

xzy, X, = (1 —efk)(1 —efka)n
—&(1 - efk1) foy — €(1 — efk2) fuy
=(1-2efH)n — e(foy + fuxu) + €22 Kn
+e f(ky foy + ko fuy)

by 2H = k; + ko and K = k;k,. This implies
fof x 25)® =1 — defH + 2(4f2H? + 22K + f2 + £2) + O(c®)
and hence
2 2
[l x 2 =1 —2efH + €2 (f2K + f—"—;’i) +0(%)

follows.
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In use of (2.11), we have

f2+ f2 = df?

at P € M with the one form df = f,x, + fox,. The value f?, ]df|2 are
free from parametrization and is regarded as a function on M. Thus, we
obtain

A(e) = A(0) — 2¢ /M fHAS +€* /M ( K + % {df|2) dS + O(e3).

Condition (2.12) holds for any f if and only if H = 0. Therefore, the mini-
mal surface is characterized by the vanishing of mean curvature. Physically,
it is realized as a soap film. It is stable in the direction of f if

22K +|df|* >0

holds.

Soap bubble is realized as a critical closed surface of the area functional
under the constraint that the volume of the enclosed body is a constant.
In this case, the condition H = constant arises.

Exercise 2.5 Show that tr A = 2H and det A = K for A given by (2.10).

2.3 Direct Method

2.3.1 Vibrating String

Let a string indicated as [0, 7] be given with the endpoints z = 0,7 fixed,
and let f(z) be the outer force acting on it. Suppose that the displacement
u = u(z) is so small as |u'(z)| < |u(x)| holds and that the tension T is a
constant. Then, what is the law to determine u(zx) ?

To answer this question, let § and 8 + Aé be the inclinations of the
string at £ and x + Az, respectively. Then, the deformation induces the
inner force comparable with the outer force, so that we have

T'sin(@ + A6) — T'sinf = — f(z)Axz.

On the other hand, from «'(z) = tan# it follows that
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u'(z)

Tsinf =T ——=—=
1+ u/(z)?

~ T (). (2.13)

Similarly, we obtain
T'sin(6 + Af) = Tu/(z + Ax),

which implies the relation

(@ +An)—w(z)
Az -

Putting T = 1 for simplicity, we get

d?u .
-3 =flz) (0<z<n) with u

because end points of the string are fixed. Thus, the boundary velue problem
arises, when seeking u(z) satisfying (2.14) for given f(z).

While this derivation follows the Newton mechanics, the Lagrange me-
chanics asserts that the actual motion is realized as a critical state of La-
grangian. It is defined by potential energy minus kinetic energy. In the
equilibrium state of this case, physical parameters are independent of the
time variable. Thus, it is realized as a (local) minimum of the potential
energy, denoted by E.

Length of the string is equal to

/0 " I 0@ s

so that the inner energy cause by the tension T is given by

T/ (\/1+u’(z)2—1)dxz—§-/ uldz.
0 0

Because the outer force f(x)dx works by u(z) at = € [0, x|, it induces the
energy [o ufdz. Putting T = 1, we obtain

1 ™ T
E=—/ uidx—/ ufdz. (2.15)
2 0 0

Thus, E is a functional because it is determined by the function u(z).
Putting E = Efu], we get the variational problem to minimize E[u] between
the function u(z) in u(0) = u(m) = 0. We can expect the conclusion that

T f(z).

=0, (2.14)

z=0,7
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this formulation of Lagrange is equivalent to that of Newton described
above.

Exercise 2.6 Confirm that the Euler equation (2.6) for the functional E
of (2.15) is equivalent to (2.14). Confirm also that if we adopt the exact
formula in (2.13), then the equation corresponding to (2.14) is equivalent
to the Euler equation for the functional

E=/07r( 1+u’(a:)2~1)dz—/1rufdm.
0

2.3.2 Minimizing Sequence

The Weierstrass principle says that the continuous function defined on a
compact set attains the minimum. Namely, if K is a compact topological
space and f : K — R is continuous, then there is {zx} C K satisfying
limg oo f(zk) = j, where j = infx f with § = —~co permitted at this
stage. Then, from the compactness of K we can subtract a subsequence,
still denoted by {zx}, which converges to some z, € K. Then from the
continuity we have j = f(z.) > —oco and the minimum of f on K is
attained at z = z,.

Is this argument applicable to the variational problem given above ? To
examine it, we have to formulate the energy

Elu] = %/or uldx — /OW ufdx (2.16)

as a functional. Henceforth, C[0, 7] denotes the set of continuous functions
defined on [0,7]. Let f € C[0,#]. If the integral in the right-hand side
of (2.16) is taken in the sense of Riemann, then it will be appropriate to
assume u € C1[0, 7], where

c*o, 7] = {u e Cl0,7] | v € C[0,7]}.
Actually, the set
Vi = {u € C'0,7] | u(0) = u(r) = 0}

is regarded as a vector space provided with the zero element 0 given by
u(z) = 0 and with the additive and scalar multiplication operations

(u + v)(z) = u(z) + v(z) and (cu)(z) = cu(x)
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for u,v € V} and ¢ € R, Furthermore,

flull = (/07r u’(m)de> v (2.17)

provides a norm there. This means that ||ull > 0 with the equality if and
only if u = 0, |lcull = |c| |jull, and ||u + v|| < ||u|l + [[v||, where ¢ € R and
u,v € Vi. Namely, V; forms a normed space. This induces the metric to V;
by

dist(u,v) = Jju — vl|

and in particular, V; is a topological space. That is, U C V; is open if and
only if any u € U takes r > 0 such that B(u,r) C U, where

Bu,r)={ve W ||v-uj <r}.
This means that {v;} C Vi converges to v € Vj if and only if
lim [[v; —vlf =0
j—oo

holds. Under this topology given to V3, it is not difficult to see that E is a
continuous mapping from V; to R. Then, is V3 compact ? The answer is
no !

We are seeking the minimum of E on V. As the first step we need to
know that this functional is bounded from below. In fact, we have from the
Schwarz inequality that

lu(z)| = /0 ) u’(y)dy\ <xl/2. ( /0 i u’(y)zdy> v =72 |luf  (2.18)

for any z € [0,7]. This implies
1
Elu) > 7 |lull* - C llul (219)

for C = /2 [ |f(z)|dz. Because the right-hand side is estimated from
below by —C?, we obtain

inf Efu) > -C%.
ueVy
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This situation allows us to take the minimizing sequence {u;} C V;
satisfying
JI_ango Elu;] = ulél‘f;l Elu] > —o0.
Again by (2.19), it holds that

sup [|u;|| < +oo,
2

in which case we say that the minimizing sequence {u;} is bounded in V;.
Thus, we get the key question. Does any bounded sequence have a con-
verging subsequence ? This is actually the property of compactness. It
is true in the finite dimensional Euclidean space. However, here we have
two obstructions. That is, the space V] is neither complete, nor of finite
dimension.

Exercise 2.7 Show that || - || in (2.17) provides a norm to V;.

Exercise 2.8 Confirm that a normed space L with the norm | - || is a
metric space and show that

el = llvlll < flu — v

holds for u,v € L. Then, observe that the proof of the continuity of E :
V1 — R is reduced to that of

veV; / vfdz.
0

Confirm, finally, that it follows from (2.18).

2.3.3 Sobolev Spaces

Remember that a sequence {u;} in a metric space V with the distance
dist( , ) is said to be a Cauchy sequence if it satisfies dist(u;,ux) — 0 as
j,k — 0. Then, the metric space (V,dist) is said to be complete if any
Cauchy sequence converges.

In this sense, V; = {u € C[0, 7] | u(0) = u(w) = 0} provided with the

norm
T 1/2
jull = ([ v2a)
0
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is not complete. We have to change the notions of integration and differ-
entiation.

First, integration must be changed from the sense of Riemann to that
of Lebesgue. Thus we introduce the space L2(0, 7). Namely, g € L?(0,7)
means that ¢ = g(z) is a measurable function on (0, 7) satisfying

” 1/2
||g||2=(/0 g(z>2dx) < +oo,

where the integration is taken in the sense of Lebesgue. Such g is said to be
square integrable. Two measurable functions f, g are identified in L?(0, )
if they are equal to each other almost everywhere. Then, L?(0,7) becomes
a Banach space under the norm || - [|,.

On the other hand, differentiation of u € L?(0, ) is taken in the sense
of distribution. We shall write u, for this notion of derivative of u. It
has a vast background, but in this case the following notations are enough.
Namely, given v € L?(0, ), we say v, € L%(0,n) if there is w € L?(0, )

such that
/ wedz = —/ v dx
0 0

for any ¢ € C1(0,7), Here, C1(0,7) is the set of ¢ € C1(0, ) satisfying

supp ¢ = {z € (0,7) | (z) # 0} C (0, 7).

Henceforth, supp ¢ is called the support of ¢. Such w is (if it exists)
unique as an element in L2(0,1), and we write as w = v,. It is called
the distributional derivative of v. If v € C1[0, 7], and v/ denotes the usual
derivative of v, then v, is equal to v’ as an element in L?(0, 7). We set

H'(0,7) = {v e L*(0,7) | v; € L*(0,7)} .

Two functions equal to each other almost everywhere are identified in
H'(0,7). Under this agreement it is shown that

H'(0,7) C Clo,7]. (2.20)

Namely, any element u € H!(0,7) has a representation % € C[0, 7], so that
u = 4 almost everywhere. Relation (2.20) is actually the most primitive
case of Sobolev’s imbedding theorem, but because of this, the condition
v(0) = v(r) = 0 has a meaning for v € H'(0,7). Then, we take V =
H}(0,), where
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HL0,7) = {ve H'(0,7) | v(0) = v(x) =0}.

Relation (2.20) is a consequence of

o@) =) = [ (s)ds,

x

valid for ¢ € C{0, 7]. From this equality we have

/Iy o' (s)ds

It is extended for u € H(0,7):

1/2

le(z) — py)l < <lz -9l '), -

1/2

lu(z) — w(y)] < |z —yI"" Nuzlly, (2.21)

because C[0, 7] is shown to be dense in H'(0, 7). Namely, any u € H'(0,7)
admits {¢y} C C[0, 7] such that

Qm {llor = ully + ik = uellg} = 0.

Once inequality (2.21) is justified for u € H'(0, ), then it implies (2.20).
The norm || - ||, provides to L2(0,7) with the complete metric. This
fact is proven by the convergence theorems on Lebesgue integrals.
A complete normed space is called the Banach space.

Exercise 2.9 Confirm that any converging sequence is a Cauchy sequence
in the metric space.

Exercise 2.10  Show that the normed space (L, || - ||} is a Banach space if
and only if any absolutely converging series converges. This means that if
{ug} C L satisfies

> " {lukll < +o0,

k=1

then there exists u € L such that

n
lim Zuk —ul| =0.
k=1

700
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Note that any Cauchy sequence in a metric space converges if it has a
converging subsequence.

Exercise 2.11 Prove that H!(0, 7) is a Banach space under the norm

2 2
lu fl = y/llullz + lluzllz,

making use of the fact that L?(0,7) is so. Show also that H}(0,7) is a
Banach space.

Exercise 2.12 Prove that the classical derivative v’ is identified with the
distributional derivative v, if v € C[0, 7).

Exercise 2.13  Justify (2.21) for v € H1(0, 1) in use of the fact that C1[0, 1]
is dense in H(0,1).

2.3.4 Lower Semi-Continuily

The space V = H}(0,7) denotes the set of square integrable functions on
(0,7) with their distributional derivatives. If u,v € V, then their inner
product

(u,v) = /07r ug(Z)vg(z)dz (2.22)

is well-defined by the Schwarz inequality and satisfies the axioms that
(u,v) = (v,u), that (ou+Bv, w) = a(u, w)+B(v, w), that (u,u) = |[uf)®* >0
with the equality if and only if « = 0 in V. Importantly, V is complete
with respect to the metric induced by the norm |jull = (u,u)*/? so that
{u;} € X and |lu; — ux]| — 0 as j,k — 400 imply the existence of u € V'
such that ||u; —u|| — 0 as j — +o0o. Those properties are summarized
that V = H}(0, ) forms a Hilbert space with respect to the inner product
(', ) defined by (2.22).

Let us come back to the problem in §2.3.1. Now, we formulate it as to
minimize E on V = H}(0, 7), where

1 ™ ™
Eu) = —/ uldr — / ufdx (2.23)
2 Jo 0
for given f € C[0,7]. In use of (2.20), we can extend (2.18) for u € Hj(0, m):

Jmax Ju(z)] < 2l (uwe H(0,1)).
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This implies (2.19) for u € H} (0, ) and therefore, E is bounded from below
and the minimizing sequence {u;} C V is bounded in V. The latter means
the boundedness of {||u;||} so that we have

Jlirglo Elu;] = Jg{/ Efu] > —oo, Sl;p flu;l| < +oo.

Here, we apply a theorem of abstract analysis that any bounded se-
quence {u;} in a Hilbert space V admits a subsequence, converging weakly.
Here, this subsequence is denoted by the same symbol for simplicity. This
means the existence of v € V such that (u;,v) — (u,v) for any v € V,
where (, ) denotes the inner product in V. In this case, from the abstract
Schwarz inequality

(5 )] < Jlus|l - foll
proven in 3.1.2, we obtain
(u, v)| < liminf ||u;]| - [|v]|.
J—0o0
Then, putting v = u, we get that
llull < lim inf [|u;l}.
j—oo

This property indicates the lower semi-continuity of the norm in the Hilbert
space with respect to the weak convergence.
Here, we make use of the following.

Theorem 2.3 The embedding (2.20) is compact.

Proof. The statement means that if {u;} C H}(0,7) converges weakly,
then it converges uniformly on [0,7]. On the other hand, the uniformly
bounded principle assures that any weakly converging sequence is bounded
in the Hilbert space, we may show that any bounded {u;} C H}(0,)
admits a subsequence, denoted by the same symbol, converging uniformly
on [0, 7].

To show this, we note that inequality (2.21) implies that if sup; [|lu;|| <
+00, then {u;} C C[0,1] is uniformly bounded and egui-continuous. Then,
Ascoli-Arzela’s theorem assures the conclusion. O

Coming back to the problem, we have the minimizing sequence {u;} of
F on V = H}(0,7) that converges weakly in V and uniformly on [0, 7] to
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some u € H}(0,7) C C[0,w]. Those facts imply

s T
. . 2 2
liminf [ wuj,dz > /0 uzdr

j—oo Jo

and
T

lim ujfdw———/ ufdz,
0

j—oo Jo
respectively, and hence

lim Efu;] = liminf Elu;] > Efu]
j—00 j—oo

follows. However, {u;} is a minimizing sequence and we have Efu;] —
infy E. Thus, E[u] = infy E follows from u € V. This means that it
attains the minimum of E on V. We have proven the existence of the
solution to the variational problem of minimizing E on V.

In other words, E[v] > E[u] holds for any v € V and therefore, we
obtain the Euler equation for this u to solve. This is derived from

d
EE[U + sv] e

where v € H}(0, ) is arbitrary. This means that

/ UV dT = / fudzx (2.24)
0 0
by (2.23), which implies
d
T dr (u:c) =f

in the sense of distribution. We get from f € C[0, 7] that this derivative
can be taken in the classical sense and therefore, u, is continuously. Then,
it holds that u € C?[0,7], and (2.14) follows in the classical sense. This
final stage to derive u € C?[0, 7] from u € V and the Euler equation (2.23)
is called to establish regularity of weak solution. It is discussed in the later
chapters more systematically.

In contrast to the weak convergence, usual convergence in norm is re-
ferred to as the strong convergence. In §3.1.2, we shall show that {u;}

actually converges strongly in V' and also the uniqueness of the minimizer
of EonV.
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Euclidean space R" is provided with the standard Hilbert space struc-
ture and there, two notions of convergence, strong and weak, are equivalent.
Therefore, in R™, the fact that any bounded sequence in Hilbert space ad-
mits a subsequence converging weakly indicates the theorem of Bolzano -
Weierstrass.

For the higher dimensional case with [0, 1] replaced by a bounded do-
main Q in R, the embedding H}(92) C C(Q) does not hold any more, and
the boundary value of u € H}(2) must be taken in the sense of trace. Even
so, some properties on 0} are necessary to carry out the task, although
details are not described here.

Exercise 2.14 Confirm that any bounded sequence in H'(0, 7) is uniformly
bounded and equi-continuous on [0, 7].

Exercise 2.15 Show that if g € L?(0, ) satisfies f = g, € C[0,7] in the
distributional sense, then it is identified as a continuously differentiable
function with the derivative f.

Exercise 2.16 As will be shown in §3.1.2, the abstract Schwarz inequality
(s, v)| < fluf - llvll

holds in Hilbert space. In use of this fact, show that any strongly convergent
sequence converges weakly there. Show, more precisely, that {v;} converges
strongly to v if and only if this convergence is weak and also ||v;]| — [|v]|
holds.

Exercise 2.17 First, show that R™ becomes a Hilbert space under the
standard inner product

n
(z,y) = Zl‘iyz'
i=1

forx = (x1,72, -+, Zn) and y = (Y1,Y2, - - -, Yn). Then, in use of the uniform
bounded principle and the theorem of Bolzano-Weierstrass, show that weak
convergence is equivalent to strong convergence in R™.

Exercise 2.18 The Hilbert space H is said to be separable if it has a
countable subset Hy satisfying Hy = H. Show that if H is a separable
Hilbert space, any bounded subsequence has a weakly converging sequence
in use of the diagonal argument, completeness of R, and Hahn-Banach’s
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theorem, which says that any bounded linear operator Tp : Hp — R admits
a bounded linear extension T : H — R with the operator norm preserved.

2.4 Numerical Schemes

2.4.1 Finite Difference Method

Numerical analysis is the mathematical study of numerical schemes. One
aspect is the theory and the other the practice. Those are combined and
form interfaces between mathematics, applied and theoretical sciences, and
technology. Thus, it is concerned with the following items.

1. Derivation of approximate problem (scheme) and establishing its
unique solvability.

2. Proposal to actual computation (algorithm) and examining its
practicality.

3. Mathematical study of the scheme, such as stability, convergence, and
error analysis to the approximate solution.

Remember the two ways of derivation of (2.14) describing the balance
of string, that is, the Newton mechanics and the Lagrange one. Finite
difference method is based on the former. We take the integer N sufficiently
large, and put h = 7 /N as the mesh size parameter. Then, we take the
approximation that

W/(@) ~ Dyu(z) = 3 {u(z + h) - u(a))

W(z) ~ Dru(z) = % {u(z) — u(z — B)}.

Then, we take Dy Dpu(z) as an approximation of u”(z). Letting v(z) =
3+ {u(z + k) — u(z)}, we have

u"(z) ~ DpDpu(x) = Dpv(z)
=+ {v(z) — vlz ~ h)}

_ 7113 {u(z + h) + u(z — h) — 2u(z)} .
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Thus, problem (2.14) is replaced by

-1—115 {u(z + h) + u(z — h) — 2u(z)} = f(z) (2.25)

forx =nhwithn=1,..-,N -1 and »(0) = u(x) = 0. We regard it as the
approximate problem to (2.14). Replacing u”(x) by

1

2 {w(z + h) + u(z — h) — 2u(z)}

is called the three-point difference, because the values of u at x,  — h, and
Z + h are used to approximate u”(z).
Putting u, = u(nh) and f,, = f(nh), we can write (2.25) as

1
_ﬁ(un+1+un—1_2un)=fn (n=1,~--,N—1)

with %o = uxy = 0. Known and unknown values are { fn}f:’;l and {u, }2’;11,

respectively. Thus we get a numerical scheme, of which detailed study is
not treated in this monograph.

Exercise 2.19 Prove that Dy Dy, = Dy Dp. Then, evaluate it, D7, and 5i
as the approximation of a‘—i;;.

2.4.2 Finite Element Method

In the Lagrange mechanics, problem (2.14) is reduced to find
ueV such that / UV dT = / vfdr for any veV, (2.26)
0 0

where V = H}(0,7). Finite element method is a discretization of this
formulation. More concretely, we take a large integer N and the uniform
division of [0, ], denoted by

A:zg=0<z1< - <IN_1<IN=T

with the mesh size parameter h = 7/N, so that z, = nhforn =0,1,.--, N.
Then, the underlying space V' in (2.26) is replaced by the finite dimensional
vector space,

Vi = {v € C[0, 7] | v is piecewise linear and v(0) = v(w) = 0}.
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Then, it holds that Vj, C V and dim V, = IV — 1. Actually, a basis of V}, is

provided with {en}g:ll, where e, = e,(z) € V,, and

1 (z=mnh)
e"(z)z{ 0 (z=ih,i+#n),

because each element v € V}, is determined by its values on the nodal points,
r=z, (n=12,--- N —-1).

efx)

(-Dh nlh (+Dh I

Fig. 2.3
We can reproduce the argument in §2.3.4 with V replacing V}, and get

up, € Vj, that minimizes F on V},. Then, this up satisfies

up €V such that / UhpVhedT = / vpfdx for any wp € V.
0 0

(2.27)
Writing up(z) = Z;N;ll &nen(z) in use of the unknown constants €, € R
forn=1,---,N — 1, we see that (2.27) is equivalent to

N-1 T T
Z én / €nz€madT = / emfdx
n=1 0 0

form =1,--- N — 1. This means that
At =F

for A = (@) with

Anm = /07r nz(T)ems(T)dz, (2.28)
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& o enfde

En-1 Jo en-1fdz

This A is a triple diagonal matrix and its inverse is not hard to compute
numerically.

Exercise 2.20 Prove that V,, C V.

Exercise 2.21 Confirm that the matrix A given by (2.28) is a triple diag-
onal.



This page intentionally left blank



Chapter 3

Infinite Dimensional Analysis

In the previous chapter, it was suggested that the infinite dimensional analysis is
necessary to make the calculus of variation in a rigorous way. The key word is
the completeness and this chapter is devoted to it. Thus, we shall describe the
theory of Hilbert spaces, Fourier series, and eigenvalue problems.

3.1 Hilbert Space

3.1.1 Bounded Linear Operators

Remember that norm induces metric in the vector space, which is said to be
a Banach space if it is complete with respect to that metric. Let (L, || - ||)
be a Banach space and T : L — R be a linear mapping. Sometimes T is
referred to as an operator. It is said to be bounded if there is a constant
M > 0 satisfying

IT(F) < Ml (3.1)

for any f € L.

This is equivalent to saying that T" is continuous at any or some element
in L because of its linearity. In fact, if (3.1) holds and f, — f in L, then
it follows that .

IT(fa) =T =T(fa— I S M| fu—fll -0

Therefore, T(f,) — T(f) follows. Conversely, if T is continuous at f = 0,
then it is bounded. In fact, if this is not the case, there is a sequence

85



86 Infinite Dimensional Analysis

{fn} C L such that

IT(fn)l > |l fall

for n = 1,2,---. Because T is linear, it holds that T'(0) = 0 and hence
fn # 0. Therefore, g, = fno/ (n||fnll) € L is well-defined. However, then
we get

and |T(gr)| > 1

S|+

lgnll =

and hence g, — 0 and T(g,) # 0 hold as n — oo, a contradiction.

If T : L — R is a bounded linear operator, the infimum of M > 0
satisfying (3.1) is called the operator norm of T and is written as ||T|.
Because (3.1) is equivalent to

El<u rezvion, (32)

it holds that

1T ()]

Il = S“p{ T

reL\o).
In particular, we have

THOI<ITI-1A - (fel)

and

i1 =sup {7

<||f||)’ | fEL\{O}} =sup{|T(g)||g € L,|lg| =1}.

In those notions, the target space of the linear operator 7" may not be
R, and the case T : L — K is admitted, where (K, | - |) stands for a Banach
space.

Exercise 3.1 Confirm for the linear operator T : L — R that it is contin-
uous at some f = fy € L then it is continuous at f = 0. Confirm also that
(8.1) for any f € L is equivalent to (3.2).

Exercise 3.2  Given a Banach space (L, || - ||), and introduce its dual space
by

L' ={T: L - R | bounded linear operators }.
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It is a vector space under the operations

T+ =T +5(f) and  (cT)(f) = cT(f)

for T,S € L', f € L, and ¢ € R. Confirm that L’ becomes a Banach space
under the operator norm.

3.1.2 Representation Theorem of Riesz

Remember that inner product of the vector space L is the mapping ( , ):
L x L — R satisfying the axioms that (u,v) = (v,u), (ou + fv,w) =
o(u, w)+p4(v, w), and (v,v) > 0 with the equality if and only if v = 0, where
u,v,w € L and a,3 € R. A vector space provided with the inner product
(, ) is called the pre-Hilbert space. First, let us confirm the following.

Theorem 3.1 A pre-Hilbert space is a normed space by || fl| = /(f, ).
The abstract Schwarz inequality

(Dl <IN - gl (frge L) (3.3)
also holds.

Proof. It is obvious that || f|| > 0 with the equality if and only if f =0
and llcf|| = |c| || £, where f € L and ¢ € R. The Schwarz inequality implies
that

If+gll <Ufll+ gl (fr9€ L)

If+al*=(f+g,f+9)=f1*+2(f.9) +lgll®
< £+ 2151 gl + gh® = (AN + gl

To prove (3.3), we may assume that f # 0. In this case, we can put

a=(f,9)/IIf1? in
0< (af —g,af —g) = lal*IF1? - 2a(f,9) + llgh®.
This implies
I/ 11 = 21591 /112 + Hlgl® > o,

or

1G> < 112 llgll?,
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and hence (3.3) follows. O

A pre-Hilbert space is called a Hilbert space if it is complete with respect
to the metric induced from the inner product. Henceforth, L denotes a
Hilbert space with the inner product (, ). If g € L is fixed, then

T(f)=(f9) (fel)

defines a linear mapping from L to R. Because of (3.3), we have

ITHOI < llgl-IlAl (Fe D),

which means that 7' : L — R is a bounded operator satisfying ||T|| < ||g]|-
On the other hand we have
g
T{—=)=Ildl
(llgll>

if g # 0. This implies that ||T|| = ||g|l.

The representation theorem of Riesz says that any bounded linear oper-
ator is expressed like this. In use of the notion of dual space, it is written
as L' L. This is done by solving an abstract variational problem. The
following theorem provides an abstract version of the argument of §2.3.4.
Here, the proof is given without using weak convergence.

Theorem 3.2 Let L be a Hilbert space with the inner product ( , ) and

the norm || - ||, and T : L — R be a bounded linear operator. Then, the
functional
1, 2
J) =5 llI"=T() (vel)

attains the minimum with a unique minimizer.

Proof. 1In use of |T'(v)| < ||T|| - lv]| we have
1, .2 1
J(0) > 5 oll* = IT) - floll 2 =5 |7
for any v € L. This implies

S inf _
7 112J> 00
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and there exists {vn} C L satisfying J(vn,) — j. In use of the parallelogram
low that

2 2 2 2
utv u—v|” _ Jull”+ v
3 5 = 5 (u,v € L), (3.4)
we have
2
Un + 0 Up — U
2J n m n m
( 2 )+ 2
Up + U 2 Up — U 2 Un + v
- n m n m _2T n m
2 || T 2 ’ 2
2 2
v. + llv. .
= RenlT A Woml _ 7y, — T(0r) = I(00) + T0) = 2

as n,m -+ 00. On the other hand, the first term of the left-hand side is
always greater than or equal to 2j, and hence ||v, — v,| — 0 follows as
n,m — 00.

Because L is complete with respect to || - ||, there is u € L such that
|lvn, — ul} — 0 as n — oco. This implies

lonll = llull  and  J(vn) > J(u) =j

in turn. Thus, j = infy J is attained by v € L. The uniqueness of such a
u is obtained by the proof of the following theorem. O

We are now able to prove the representation theorem of Riesz indicated
as follows.

Theorem 3.3 If L is a Hilbert space provided with the inner product
(, ) and the norm || ||, then any bounded linear operator T : L — R
admits unique g € L such that T(f) = (f,g) for any f € L. Furthermore,
it holds that ||T]| = ||g||.

Proof. We have shown that ||T|| = ||g|| holds if such g exists. If g;,g2 €
L satisfies the condition, then (f,g1 — g2} = 0 for any f € L. Putting
f = g1 — g2, we get g1 = g2. Thus, we only have to show the existence of
such g.

Given T € L', we have a minimizer g € L of the functional

@) =3Il -T)  (vel)
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from the previous theorem. This means J(g) < J(v) for any v € L so that
s J(g +sf)

attains the minimum at s = 0, where f € L is an arbitrary element. How-
ever, we have

Jo+sf) =5 lg+ sfIF = T(g + )

= 31+ 5(7,0) + 5 I9l* = T(9) = sT($),

and hence

LHg+sh|  =(he)-T()

s=0
follows. This means T(f) = (f, g) and the proof is complete. a

So far, the vector space which we treat is over R, the real numbers.
Hilbert space over C, the complex numbers, is defined similarly when the
underlying vector space is over C. In this case the axiom of the symmetry
of inner product is changed from (f,g9) = (g, f) to (f,g) = —(Tf), where
Z = -1y denotes the complex conjugate of z = £ +1y for z,y € R. Hilbert
space over C arises in quantum mechanics, but we are mostly concentrated

on the Hilbert space over R in the following.

Exercise 3.3 Prove that the parallelogram law (3.4) holds in Hilbert space.

Exercise 3.4 Give an alternative proof of Theorem 3.2 based on the weak
convergence.

3.1.3 Complete Ortho-Normal Systems

Let L be a Hilbert space with the inner product ( , ) and the norm || - ||.
A family {¢;} C L is said to be ortho-normal if

(pirp5) = 045 = { (1) 8 ;;;

holds. Because they are linearly independent, if that family is composed of
infinitely many elements, then the dimension of L is infinite.
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Given a family of ortho-normal system {¢;};2,, let L, be the linear
subspace of L spanned by {¢;} . ;, where n = 1,2,--.. Then, we consider
the problem of least square approrimation, that is, to seek a minimizer of

nf g - f 12, (3.5)

where f € L is a given element.
For this problem to solve, we put

n
g= Zai‘Pi €L,
=1

with the undetermined coefficients {;} C R. Letting 8; = (f, @;), we set

f=f—2/3190i-

i=1
Then, it holds that

(f7‘pj (f7‘p_7 Zﬂl <P17<P] f,(p]) ﬂ =0

because {y;} is ortho-normal, and hence

IF—al®=If =Y (i - B)eu
i=1
= 1] - 23t - BGe0 + Y (i = B0~ By)os )

S

follows. Therefore, J(g) = [lg — f||? defined for g € L, attains the mini-
mum
2

>0

i) = = £ - St
i=1

if and only if a; = B; for 1 < i < n, or equivalently,

= z(fa Soi)(pz

i=1
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Relation limp, o0 jn{f) = 0 means that

lim =0. (3.6)

'f - Z('f’ %)‘Pi

i=1

If this is the case, f is in the closure of the linear hull of {g;};2,, the set
of linear combinations of {¢;}52,. Henceforth, the linear hull of {p;}:2, is
denoted by Lyg:

o<
Lo = {Z aip;i | o € R, a; = 0 except for a finite z} .
=1

Thus, if (3.6) holds for any f € L, then it holds that Lo = L. In this case we
say that {;}ie, forms a complete ortho-normal system of L. This is actu-
ally the extensmn of the notion of ortho-normal basis in finite-dimensional
vector spaces.

Let {¢;};o, be a complete ortho-normal system of L, and Lo be the set
of linear comblnatlons of {¢i};, with coefficients in Q, the set of rational
numbers:

o
Lgo = {Z osps | oz € Q, a; =0 except for a finite z} .

i=1

Then, it holds that Lgg C Lo and Lo C Lgg. Thus, we obtain Lgo = L.

A Hilbert space L is said to be separable if it has a countable dense
subset. Above description guarantees that if L is provided with a complete
ortho-normal system (of countable members), then it is separable. However,
the converse is also true, and it can be shown that if L is separable then it
has a complete orthonormal system.

We have the following.

Theorem 3.4  Let {p;};o, be an ortho-normal system in a Hilbert space
L and f € L. Then it holds that

Zl(f, ea)l> < IFIP. (3.7)

Furthermore, the equality in (8.7) is equivalent for (3.6) to hold.
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Proof. Inequality (3.7) follows from

2
f- Z<f, el =NfI% - Z|(f, e)? >0,
i=1
where n = 1,2,---. The latter part is also a direct consequence of this
equality. O

Inequality (3.7) is called Bessel’s inequality. If equality holds, then it is
called Parseval’s relation. If an ortho-normal system is given in a Hilbert
space, it is complete if and only if Parseval’s relation always holds.

Exercise 3.5 Confirm that Ly C Lgg holds.

Exercise 3.6 Confirm the last statement that an ortho-normal system
{¢i}i2; in the Hilbert L is complete if and only if Parseval’s relation

Yo e = 111
i=1

holds for any f € L.

3.2 Fourier Series

3.2.1 Historical Note

If we take non-stationary state of the string described in §2.3.1, then kinetic
energy is taken into account in the Lagrangian. It is given by

Il = // 2da:dt—//ufdxdt~—// 24ndt  (3.8)

under the agreement that any physical constant is one. If f = 0 for sim-
plicity, then the Euler equation is given as

Uit = Ugg- (39)

It describes the vibrating motion of the string, and generally is called the
wave equation. We take the boundary condition u(0) = u(m) = 0 and the
initial condition

ul,_o = u1(x) and Utly—p = uo(Z) (z €[0,7]).
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d’Alembert observed that (3.9) is satisfied for
u(z,t) = oz — 1) + ¢(z + 1), (3.10)

where ¢ and 9 are arbitrary C? function. We take the odd extension to
u with respect to =: u(—z,t) = —u{z,t), and then 27 periodic extension:
u(z + 2m,t) = u(z,t), and in such a way we get a function defined on
R x {0,00) denoted by the same symbol © = u(z,t). Then the boundary
condition u(0,t) = u(m,t) = 0 is satisfied and the extended u = u(z,t) is
continuous in = € R. Putting (3.10), we have

ui(z) = p(x) +9(x) and - ¢'(z) +¥'(z) = uo(z).
The latter equality gives
(@) +¥(z) = | uo(s)ds+ e
0

with a constant ¢, and hence

P(z) = %ul(-'f) + %/Ox uo(s)ds + g

and
1 1/ c
p(z) = Jur(z) ~ 5/0 uo(s)ds ~ 5
follow. Again by (3.10), we have
1 1 T+t
u(z,t) = 5 (ur(z —t) +ur(z +t)) + 5/ ug(s)ds. (3.11)
z—t

Observe that u(—x,t) = ~u(z,t) and u(z + 27,t) = u(z,t) hold if ui(z)
and ug(z) satisfy the same conditions.

D. Bernoulli introduced the method of super-position. First, special
solution to (3.9) is taken in the form of separation of variables, that is,
u(z,t) = p(z)(t). This implies that

¢ (@) /p(x) = ¥" (t)/$(2).

Because left-hand and right-hand sides are independent of t and z, respec-
tively, this quantity must be a constant, denoted by —A. Then, we get the
eigenvalue problem

—¢"(@) =Xp(z) (0<z<m) with 0)=¢(r)=0 (312
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We see that problem (3.12) has the trivial solution u = 0 for any A.
In the case that non-trivial solution to this problem exists, then A and
p{z) are called eigenvalue and eigenfunction, respectively. If ¢(x) is an
eigenfunction, then cp(z) is again so, where ¢ € R \ {0}. Therefore, we
take normalization. Eigenvalues to (3.12) are n? and ¢, (z) = sinnz act as
eigenfunctions for n = 1,2, - ... Then, it follows from —v"'(t) = n2?y(t) that

Y(t) = A, cosnt + By, sinnt,
where ¢(0) = A, and 9¥’'(0)/n = By, and this method leads to
oo
u(z,t) = Z sinnz (A, cosnt + By sinnt), (3.13)
n=1
where A, B, (n = 1,2,---) are constants. However, if it is true, then
(3.11) implies
uy(z) = Z Ay sinnz. (3.14)
n=1

Thus, two questions arise. Does the right-hand side of (3.14) converge?
Is it possible to express any odd 2w periodic function u;(z) in use of the
trigonometric functions like (3.14)? Fourier showed that

-1 (—m<z<0)

f(w)z{ 1 (0<z<m)

is expressed as the Fourier series

4 1 1
—[sinx+§sin3x+—5-sin5x+---+ sin(2n+1)w+---].
s

2n+1

In connection with this, the right-hand side of (3.14) is called generally
formal Fourier series.

Exercise 3.7 Show that Euler equation to J[u] defined by (3.8) is (3.9).

Exercise 3.8 Show that eigenvalues and eigenfunctions of (3.12) are given
by n? and sinnz for n = 1,2, - -, and nothing else can be so.

Exercise 3.9 Derive Euler equation for

T p7 T pr 1 T pw
Ju] = / / V14 uZdxdt — / / ufdxdt — - / / uldzdt.
o Jo o Jo 2Jo Jo
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g B A

Fig. 3.1

3.2.2 Completeness

A measurable function is said to be locally square integrable on R if it is

square integrable on any compact set in R. Set of locally square integrable
functions on R is denoted by L (R). Then,

={ve L} (R)|v(z+2r)=v(z) for ae z€R}

is identified with L?(0,27). We shall work on this space, which forms a
Hilbert space with the inner product

27
(u,v) = /0 w(z)(z)de

and the norm [|v||, = v/(v,v).
‘We have seen that

1
cosmz, —=sinnxr | m,n=1,2,--- 3.15
{ Sz o cosma, —zsinna | b e

forms an ortho-normal system in L?(0,27). Here, we note that odd func-
tions of them are _11; sinnx with n = 1,2, .- in connection with the argu-
ment in the previous paragraph. Here, we show that it is complete in the

sense of §3.1.3, namely (3.6), or

Tim (lsn — fll, = 0 (3.16)
in this context, where

n
- _22 + ’; ay, cos kx + by, sin kx) (3.17)
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with
1 27 1 2
ag = —/ f(a:) cos kxdz, by = —/ f(.'l:) sin kzdzx. (3.18)
™ Jo T Jo

To prove (3.16) for f € X, we can assume that f € X, because X is
dense in X, where

Xo={f € CR)| f(z +2r) = f(z) for any z € R}.

Now, we shall show (3.16) for f € X,.
For this purpose, first we note that Bessel’s inequality holds as

2 o0
ap 2 2
£+ (an+82) <|fl3,
n=1
and hence we have
lim a, = lim b, =0
n—oo n—oo

for any f € X, which is referred to as Riemann-Lebesgue’s theorem. Next,
we have

27 n
sp(z) = = /0 fly) ':% + Z (cos ky cos kz + sin ky sin ka:)jl dy
k=1
27 n
== [ W [% +3 cosk(y - z)} dy
2n—zx
:%/ flz+y) [l-i-Zcoslry] dy,

-z

where ffz is replaced by fzz:_z from the periodicity. We obtain

27
(@) =1 [ f@+9Duu)ay (319)

1 1 sin(n+1/2)y 1 cosny—cos(n+ 1)y
- k =
+ z___; c0s 2 sin(y/2) 2 1—cosy

(3.20)
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Here, we take the arithmetic mean of s,(x) as

5(@) = —5 (0(8) + (@) + -+ 5u(2))
m cos(n-I— 1)y
=271'('n-i-1) fla+ ) —cosy

sin [(n +1)y/2]

= W/O flz+y 272) dy. (3.21)

Sometimes, it is referred to as the Cesdro mean of the original series (3.17).
Letting f(z) =1 in (3.21), we have

1 (% sin (ny/2)

2rn o sin®(y/2) (322

because ag = 2 and ax = bx, = 0 for k > 1 in this case. Equalities (3.21)
and (3.22) imply
1 27

@ +y) - f@) U2 gy (303

Sn-1(2) — f(z) = 2(y/2)

271'71 i)
The following theorem is due to Fejér.

Theorem 3.5 If f(z) is a continuous function with the period 2r, then
the Cesdro mean of the formal Fourier series converges to f(x). That is,
Sn(z) converges to f(z) uniformly in z € R.

Proof. The continuous periodic function f is regarded as a function on
R/(27Z), which is identified with the circle S!. Because the latter is com-
pact, we see that f : R — R is uniformly continuous. Thus, any £ > 0
admits J € (0, 27) such that

lyl < 8 = Iflz+y)— flz)|<e forany zeR. (3.24)

We divide the integral in the right-hand side of (3.23) as

é 2r—46 2
ISR/
0 § 27 —8

From the periodicity, the third integral is reduced to ff - Then, this term
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and the first one are combined as ff s~ In use of (3.24), we have

sin® ny/2)
L[ e - sy el e

e (% sin’(ny/2)

= 2mn J_; sin?(y/2)
—E_/2ﬂ' Sln22(’ny/2) dy _
2 Jy sind(y/2)

On the other hand, we have || f||, = sup.¢[g 2x) |f(z)| < +00 and hence

27n

1 2w —4
’“/5 o+ ) - f@) S

27n
2| flloe [*7° sin (ny/2)
s 2rn /‘; sin®(y/2) 4

2| fllee 27 2iflle
2mnsin®(6/2)  nsin®(5/2)

sin? ny/2)
(y/2)

follows from sin(y/2) > sin(4/2) and |sin(ny/2)] < 1 on [4,27 — 6]. Those
relations are summarized as

2
[Sp—1(z) — f(z)| <e+ rﬂ‘}‘g‘%
This implies
e 215l
xes[l(:gw] |5n(@) = f@)] <&+ (n +1)sin?(6/2)

and

limsup sup |[Sp(z)— f(z)| <e.

n—oo z€[0,27]

Because € > 0 is arbitrary, we get lim,_,c0 SUP,¢0,24) |50 (2) — f(z)| = 0,
or equivalently, S,(z) converges to f(z) uniformly in z. O

We are ready to give the following.

Theorem 3.6  Ortho-normal system (3.15) is complete in L*(0,2).
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Proof. We only have to show that (3.6) holds for any f € X,. However,
in this case, Theorem 3.5 guarantees that lim, .o [|Sn — fll,, = 0. If Ly
denotes the linear subspace of L2(0,2n) spanned by

—=coskz, —= ! sinkz | k=1,2,-- },

(e
we have S,, € L,,. This implies that
llsn — f”z < |Sn - f||2

because g = s, attains infgey, ||g — fll,- We obtain limy, o0 |[$n — fll, =0
by

[1Sn = fll < @2m)2||Sn = flloo — O

and the proof is complete. O

Exercise 3.10 Confirm that the completeness of (3.15) in X is reduced to
(3.6) for f € X,.

Exercise 3.11 Confirm that (3.20) holds.
Exercise 3.12 Expand f(z) = = —z in Fourier series in use of the complete

ortho-normal system

cosmz, sin nx m,n=1,2,-~-}

R

in L?(0,27). Then, show that

follows from Parseval’s relation.

3.2.3 Uniform Convergence

Even if f € Xo, the formal Fourier series does not necessarily converge
uniformly. In this context, first, we note the following.
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Theorem 3.7 If f € X and a,, b, defined by (3.18) satisfies

i (lan| + 1bn}) < +o0, (3.25)

n=1

then f is regarded as an element in Xy and s, (z) defined by (3.17) converges
uniformly to f(z).

Proof. In fact, in this case the series s,(z) has the majorant (3.25) and
therefore converges uniformly to some function, denoted by g(z). However,
this g(z) coincides with f(z) for almost every =z € (0,2r), because s,
converges to f in L2(0,27) by Theorem 3.6, and g(z) and f(z) are identified
in X. Thus, the proof is complete. 0

The criterion given in the previous theorem is assured by the following.

Theorem 3.8 If f € Xp is piecewise C*, then s,(z) defined by (3.17)
converges uniformly to f(x).

Proof. From the assumption we have

1 27 2
n = — = — e 4 i d
a A f(x) cosnzdx o f'(z) sinnzdz
1 27 1 27
by = — i dr = — ! . 3.26
A f(z)sinnzdx o f'(z) cos nzdz (3.26)

Because f’ € L%(0,2r), it holds that

[0 o]
Z (-nas)? + (nb,)?] < +00
by Bessel’s inequality. In use of
9, 1 < (mbo)? 1
2lan| < (nan)*+ —  and  20ba| < (nbn)* + —

we obtain

o

> (lan| + [ba]) < +o00

n=1

and the proof is complete. O
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The following theorem is refined in the next paragraph.

Theorem 3.9 Let f(x) be 27 periodic, bounded, and continuously differ-
entiable ezcept for finite points in [0,2n]. Then the formal Fourier series
sn(zo) converges to f(zo) as n — 0o, if To is not the exceptional point.

Proof. Similarly to (3.22), we have
1 27 1 T
~ | Daly)dy== [ Dn(y)dy =1 (3.27)

T Jo L -

by (3.19). Therefore, it holds that

1 2n
saleo) = o) = = [ [flao+9) = @ D)y 639)
We have
1 _ sm n+1/2)y
2 ZCO sky 2sin(y/2)
_ 1 [cos(y/2)
= 5 [sm(y/?) sinny -+ cos ny}

and hence the right-hand side of (3.28) is divided as
1 27
or | [flzo+9)  Fleo) cosnydy
T Jo

+% A i [flzo +y) - fl= 0)] e Ey;2§ sin nydy.

The first term converges to 0 as n — 0 by Riemann-Lebesgue’s theorem.
The second term is treated similarly, because

) cos(y/2) _ flzo+y) — flzo)  y/2
sin(y/2) y sin(y/2) °

is a bounded function of y € [0, 27} from the assumption.

[f(zo +y) — f(xo (3 29)

Exercise 3.13  Confirm that (3.26) holds for f € X; in piecewise C!.

Exercise 3.14 Confirm that the quantity indicated by (3.29) is a bounded
function of y.
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Exercise 3.15 Regard f(z) = 2—5'%@ defined for z € [—7,7) as a 27
periodic function and apply Theorem 3.9 with o = 0. Confirm that

T sin(n +1/2)y

2 [ 2
= — D dy = —
sn(0) 7"/0 f(y)Dn(y)dy 7r/0 ” dy
2 [(HYDT gin g
T Jo x
and prove
/w SY = lim /R SIY gy = T (3.30)
0 Y R—+00 Jy y 2 ’
in this way.

3.2.4 Pointwise Convergence

To handle with more rough functions, we make use of real analysis. A
function f defined on the compact interval [a,b] is said to be of bounded
variation if there is M > 0 such that

n

S oIf(m) - flmic)l < M

=1

for any division a = o < 23 < -+ < z, = b of [a, b]. Monotone function is
of bounded variation. Then, Jordan’s theorem assures that any function of
bounded variation is a difference of two monotone non-decreasing functions.
Therefore, a function of bounded variation has f(z + 0) = lim,, f(y) and
flz — 0) = limy;, f(y) for any x € [a,b], and its discontinuous points are
at most countable. Hence it is Riemann integrable.

We shall show that if f(z) is a 27 periodic function of bounded variation,
then s,(z) converges to (f(x +0)+ f(z —0)) /2. For this purpose, we
make use of the following lemma by Dirichlet.

Lemma 3.1 If f(z) is of bounded variation in [a,b] and f(a +0) =0,
then it holds that

b .
lim / f(z) S gz = 0.
a

§—+00 x
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Proof. We may assume that f(r) is non-decreasing, a = 0, and f(a) =
f(a+0) = 0. Then, any £ > 0 admits § > 0 such that z € [0, 4] implies
0 < f(z) < . In use of the second mean value theorem of Riemann integral,
we have £ € [0, 4] such that

] . s .
/ f(x)smsxdz:f((s)/ sms:cdx.
0 13

T T

The right-hand side is equal to

9 sin 3% sin € sin
10 [ hay=10) | [ Sray- [ Tlay|.
s€ Y 0 y 0 Yy

Because of (3.30), there is M > 0 such that

R .
o Y
for any R > 0. Thus, we obtain
J sin sz
/ f(x) dxr| < 2Me
0 m

by f(8) € [0,¢).
Similarly, we have 5 € [4, b] satisfying

b sin sz 7 sin sz b sin sz
/6 Fo) 25T 4 — £(6) /5 dz + £(b) /17 % g,

T T

The first term of the right-hand side is treated similarly, and we have

f(é)‘/; sinszdz

T

<2Me.

For the second term we note that

b : sb s
/ sin sz dz = / siny dy.
n T 1 y

Because 7 > 4, we have

sb _:
sin
lim —gdy =0
8§—++4-00 s Yy



Fourier Series 105

again by the convergence of (3.30). We obtain
b sin sz
| o=
0 xr

and get the conclusion because € > 0 is arbitrary. 0

lim sup < 4Me

8-34-00

Now, we give the following.

Theorem 3.10 If f(z) is a 2n periodic function of bounded variation,
then the formal Fourier series s,(x) converges to (f(xz —0) + f(x + 0)) /2
for any z € R.

Proof. In fact, from (3.19) and the periodicity we have

sn(2) = = f(w+y)D (v)dy

=%(/., L) revwtieiin,

_ 1 z s1n(n +1/2)y . sin{n + 1/2)y
T or [ o flet+y sin(y/2) (7)Y +/ USE ey sin(y/2) y] .

In use of (3.27) it follows that
fe+0)+f(z-0) 1 [7 sin(n+1/2)yd

sn(®) = 2 21 Jo 9(v) sin(y/2)
1" _sin(n +1/2)y
=5 || sogt - Ty (331)

with g(y) = f(z+y) + f(z — y) — f(x + 0) — f(z — 0). Because y/ sin(y/2)
is smooth in R, G(y) = g(y) - ETEZ’%ES is of bounded variation on [0, 7]. It
satisfies G(+0) = 0 and therefore, the right-hand side of (3.31) converges
to 0 as n — oco. This means
flx+0)+ f(z - 0)

2
and the proof is complete. O

lim s,(z) =

Exercise 3.16 Confirm that monotone functions are of bounded variation.

Exercise 3.17 Show that discontinuous points of a function of bounded
variation are at most countable.
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Exercise 3.18 Confirm that Lemma 3.1 is reduced to the case that f(x)
is non-decreasing, a = 0, and f(a) = 0.

Exercise 3.19 Confirm that g(y) - ¢(y) is of bounded variation on [a, b, if
g is so and (y) is C?! there.

3.3 Eigenvalue Problems

3.3.1 Vibrating Membrane

Let Q C R™ be a bounded domain with smooth boundary 91, and take
the problem

—~AY =\ in Q, =0 on 09, (3.32)

where A is a constant. This problem always admits the trivial solution
1 = 0 and if a non-trivial solution 1 # 0 exists then such A and ¢ are
called the eigenvalue and the eigenfunction, respectively. One-dimensional
problem is studied in the previous chapter, and a general case in this di-
mension is referred to as the Sturm-Liouville problem. If it is symmetric,
then eigenvalues are real, countably many, and simple. Ezpansion theorem
of Mercer holds so that the eigenfuction expansion is valid with the uniform
convergence for C? functions satisfying the boundary condition. However,
multiple eigenvalues can exist if n > 2, which means that each of them
shares plurally linearly independent eigenfunctions. Problem (3.32) arises
in the process of separation of variables to the heat equation

uy=Au in Qx(0,T), ulgn =0
or the wave equation
Uit = Au in Qx (O,T), u|39 =0 (333)

and hence the erpansion theorem is necessary to justify the method of
superposition by eigenfunctions ¥ (z) for k =1,2,---.
In the case of (3.33), the solution u is given by

u(z,t) = Zwk(m) {(u1, ¥r) coswit + (uo, Yi) sin wit /wy }

k=1

with the right-hand side converging in C1(R; L%(Q)) N C(R; HA(Q)) if the
initial values u; = u|,_q and up = w|,_q are in (u1,up) € HF(Q) x LA(R),
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where (, ) denotes the L? inner product and

we = vk

In this context, this {wk}zc_’__l indicates the characteristic vibration numbers,
or tone if Q is regarded as a vibrating object. The deformation of the
material on the boundary is set to be zero in (3.32), while the Neumann
problem arises if it is open:

oY

—AYy =Xy in K, 5;:0 on 09, (3.34)

where v denotes the outer unit normal vector.
If @ = {(z,y) | 2> + y> <1} C R? is the unit disc, then in use of the
polar coordinate £ = rcosf, y = rsiné we have from (3.32) that

"//rr + %"/’r + 7_%‘/’00 + /\1/1 =0 with ’(/)(1, 0) =0 (3'35)

2 18 1 8
A=smt oo o (3.36)
Then, we apply the separation of variables ¢(r,8) = f(r)h(6) to (3.35) and
get that

r2 (f" + ‘é + )\f) h
f TR
where the left- and the right-hand sides are independent of 6 and r, respec-

tively. Hence this quantity is a constant, and must be k2 with some integer
k > 0, because h = h(0) is 27 periodic. Thus, we obtain

h(6) = acos k@ + bsin ko
and
2 rrf (A -K)f=0 (0<r<]1) with  f(1) =0, (3.37)

where a,b are constants. Confirming that A > 0 if it is an eigenvalue of
(3.32), we put that p = AY/2r and f(r) = J(p) and get Bessel’s equation

d2J 1dJ k2
d_pz.;_;-d;+(1—?>J—0. (3.38)
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This equation admits a solution in the form of

P2 p4
J(p) = X}%p %m(L_ﬂ%+a)+24@k+m@k+®_“)’

denoted by J = Ji(p). It is called the Bessel function of k-th order. Writing
A = w?, we have fi(r) = Ji(wr) and hence (3.37) is equivalent to Ji(w) = 0.

Jox)
Ji(x)

2D
S

Fig. 3.2

More precisely, if {wke} =12, denotes the set of zeros of k-th Bessel’s
function Ji = Ji(r) in r > 0, then the eigenvalues of (3.32) on the
unit disc are {wke} €=1,2, k0,1, and the eigenfunctions are given by
Ji(wker) cos k@ and Ji (wkgr) sin k0 Thus, they are double except for the
first eigenvalue.

If Q = {(z,y,2) | 2 + y? + 2% < 1} is the three-dimensional unit ball,
then the polar coordinate is given by x = rsinfcosy, y = rsinfsiny,
z = rcosf with (r,0, ) € (0,1) x [0,7] X [0,27). Noting

1

T r2sind sin

9 (2 Yo 9 .
[8 (r*¢rsinb) + % ( + =5 (Ygsin 0)_ (3.39)
we take the separation of variables ¥ = Y (6, @) f(r), and get that

G S S K A O
f Y sin@ |Op \sind

This quantity is again a constant denoted by y, and in this way we get

0
) 2 (Ygsme) .

AY +uY =0 (0<6<m 0<p<2n), (3.40)

where A* denotes the Laplace-Beltrami operator on the unit sphere:

w1 [0 (Y, 0 .
ATY = sin @ [5; (sinO) + a6 (Ygsm0)] ’
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Because Y = Y'(6, ¢) is regular at = 0,7 and 27 periodic with respect to
@, it can be shown that y4 = £(£ + 1) with £ = 0,1,2,---. The solution to
(3.40) in this case is referred to as the ¢-th spherically harmonic function
and is denoted by Y;(6, ©).

On the other hand, we have from

(r2f) =+ 1)f+ X2f =0

that f(r) = Sy(AY?r) = J,, 3 (AY2r)/r'/? and eigenvalues are determined
by the boundary condition,

Tery (V%) =0,

where Ji(p) is the solution to (3.38). Furthermore, if {Mem}me12.... denote
its solutions in A > 0, then the eigenfunctions are given by

{Yg(G,(p)Sg(/\l/zr) 1£=0,1,---,m = 1,2,---}.

m

Take the separation of variables Y (8, ¢) = p(¢)q(6) furthermore to (3.40)
with p = £(£ + 1), then we obtain

/7 ! o3 ! o
P (@sinf)sinG |y 1yeine.
p q
This quantity is again a constant, and from the 27 periodicity in ¢ of p it
is the form k2 with k = 0,1,2,---. On the other hand, by z = cosf the
equation to ¢ is transformed into

k2
1-22

(1 -2%)¢) + (e(e +1) — ) g=0 (-l<z<1). (341)
It is called the associated Legendre equation. If £ = 0, then it has a solution
Qk,m(2) = (1= 22)™2 (L))" Pp(z), regular at z = £1 for m = 0,1,---,
where P,,(z) is the Legendre polynomial defined by

Pn(z) = szml (%)m (22 —1)™

Even in the general domain, eigenvalues are real, countably many, and
bounded from below labeled as A; < Az < --- according to their multiplic-
ities in (3.32) or (3.34). Thus, the fist eigenvalue A is always simple and
is positive and zero according to (3.32) and (3.34), respectively. The L2-
normalized eigenfunctions form a complete ortho-normal system in L2().
The number of the nodal domains of the k-th eigenfunction is less than or
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equal to k. Here, nodal domain denotes the sub-domain of 2 where ¢ has
a definite sign. Weyl’s formula says that if A(\) denotes the number of
eigenvalues to (3.32) less than or equal to A, then it holds that

LiQl1+o) (=2
_ 4
AN ‘{ NE10I(L+o(1) (n=3)

as A — +oo. If A;(2) > 0 denotes the first eigenvalue of (3.32), then
Faber-Krahn’s isoperimetric inequality assures that

AL(Q) = M (%),

where * denotes the ball (or disc) with the same volume as . On the
other hand, Polyd-Szegi- Weinberger’s isoperimetric inequality is indicated
as

p2() < p2(02%),

where p3(€2) denote the second eigenvalue of (3.34). In this case, the first
eigenvalue is always zero. In both cases, the equality holds if and only if
Q = Q*. On the other hand, Kac’s problem is stated as to determine by
eigenvalues.

Exercise 3.20  Seek eigenvalues and eigenfunctions for (3.32) and (3.34) for
the rectangle domain Q = (0, a)x (0,b) C R? by the method of separation of
variables: 1k (x,y) = Ax{x)Bi(y). Then, confirm that multiple eigenvalues
can arise.

Exercise 3.21 Confirm (3.36) and (3.39) in the two- and three- dimen-
sional polar coordinates, respectively. That is,

2 10 1 02
or2  rdr  r?dyp?

A=

for n = 2 with z; = rcosp, z2 =rsinp in ¢ € [0,27) and

A= 20 102\, L&
T o2 ror sm600\ " 80 ) " sin200p?

forn = 3 with 1 = rcos @, 2 = rsinfcosp, 3 = rsinfsiny in 6 € {0, 7],
@ € [0,2m), where r = |z|.
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3.3.2 Gel’fand Triple
Problems (3.32) and (3.34) are weakly formulated as to find u € V satisfying

a(u,v) = Ab(u,v)

for any v € V with V = H}(2) and V = HY(Q), respectively, where
a(u,v) = / Vu-Vvdr  and  b(u,v) = / uvdz.
Q Q

The spaces Hg () and H'(Q), to be mentioned in later chapters, are Hilbert
spaces with a : V x V — R being a bounded symmetric bilinear form. It
also holds that b = b(-,-) is the inner product in H = L2(Q), and therefore,
the following abstract theory can guarantee the generation of a complete
orthonormal system in H from the eigenfunctions of (3.32) or (3.34).

Let us confirm some notions and facts described in §3.1.3. In this sec-
tion, H denotes the Hilbert space with inner product ( , ) and norm | |.
If it has a countable dense subset, it is said to be separable. In this case, it
admits a complete ortho-normal system (composed of countable members),
and henceforth this condition is supposed to be satisfied unless otherwise
stated. Here, {¢};, C H is an ortho-normal system if and only if

(‘Pi,%) = 51']' = { (1) E:;;;

holds, and it is said to be complete in the case that its linear hull,

{Zaisoila,- €R, n=1,27...}

i=1
is dense in H. Completeness of the ortho-normal system {(pi}fil is equiv-

alent to the convergence

n

=Y (00 i

=1

lim =0
n—o0

for any f € H. It is also equivalent to Parseval’s relation

(e o]

SIS e =11 (3.42)

i=1
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for any f € H. Even if {p;};-, is not necessarily complete, the left-hand
side is less than or equal to the right-hand side in (3.42), in which case
it is called Bessel’s inequality. In the present section, we show that the
complete ortho-normal system is obtained by the eigenvalue problem with
symmetry and compactness.

The mapping b = b( , ) : H x H — R is bi-linear if it satisfies the
property that

blow + Bv,w) = ab(u,v) + Bb(v, w)
b(u, av + Bw) = ablu,v) + Bb(u,w),
where u,v,w € H and o, € R. It is symmetric if
b(u,v) = b(v, u)
holds for any w,v € H. It is positive definite if there is § > 0 satisfying
b(u,u) > 6 |uf?
for any u € H. Finally, it is bounded if there is M > 0 satisfying
|b(u, v)| < M |ul - |v]

for any u,v € H. If such b( , ) is given, it provides the inner product to
the vector space H, and then H becomes a Hilbert space with its topology
equivalent to the original one.

Let V be another Hilbert space with inner product ((, )) and norm
IIIl, satisfying V' C H as a vector space. We suppose that this inclusion
involves the topology so that there is K > 0 such that

|ul < K ||uf

for any u € V, and furthermore, that V' is dense in H. Throughout this
section, those relations are written as V' < H in short. In this case, if dual
space H' is identified with H by Riesz’ representation theorem, we obtain

VoHH cV (3.43)

by restricting T': H — R on V, where V' is the dual space of V. This is
called the Gel’fand triple.

Ifa=a(,):VxV — Risasymmetric, positive definite, and bounded
bi-linear form. As is shown later, then we can introduce the bounded linear
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operator A:V — V' by

a(u,v) = <Au, v>v',v (u,v V), (3.44)

where (, )y 1 denotes the paring between V' and V so that (T, v}y, =
T(v) for T € V' and v € V. Then the (unbounded) linear operator A on
H is defined by

D(A):{uevmueH}
and
Ay = Au (v € D(A)).

We shall show also that this A is self-adjoint, of which notion is described
in the following paragraph. Henceforth, D(A) is called the domain of A.
Then, the range and the kernel of A are given as

R(A) = {Au | u € D(A)} and N(A) ={u € D(A)| Au =0},

respectively.
This paragraph is concluded by the following.

Theorem 3.11  The linear operator A: V — V' defined by (3.44) is an
isomorphism so that it is one-to-one, onto, and bounded with its inverse.

Proof. The linearity of A is obvious. Remember that the norm in V is
denoted by || ||. From the boundedness of a( , ) we have

(Ao, | = latwo) < M- ol

for u,v € V and hence it follows that

“ﬁu“v’ sup { <Au’v>v',v

M |ju]|-

lveV, ||vu=1}

IA

This assures that A : V — V' is a bounded linear operator.
On the other hand, the relation

<Au,u>v1 v = a(u,u) > 6 |ju))®

)
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for u € V implies that

(),

H/iu“w = sup lveV\ {0}

2 Oull.

The operator A is thus one-to-one. If R(A) = V' is shown, then T = A~ :
V! — V satisfies

ITA <8~ 1Flly

for f € V' and hence is bounded.

In fact, replacing the inner product in V' by a( , ) makes it a Hilbert
space with an equivalent topology. Given f € V', we can apply Riesz’
representation theorem and obtain u € V such that

<Au,v>vi v = a(u,v) = (f, U)v',v

’

for any v € V. This means Au = f and the proof is complete. O

For the Dirichlet problem (3.32), we provide the inner products

b(u,v) = /qudm (u,v € H)

and
a(u,v) = / Vu - Vudz (u,v e V)
Q

to H = L?(Q) and V = H}(RQ), respectively, and then, it is known that the
relations

D) ={ueV|Aue H} = H}(Q) N L2(Q)
and Au = —Au for u € D(A) hold.
Exercise 3.22 Confirm (3.43), which means that any T € H’ is regarded

uniquely as T' € V'. Then show that H' — V’ holds by Hahn-Banach’s
theorem, which means that the inclusion is continuous and dense.
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Exercise 3.23 Confirm that A : V — V' is linear. Confirm also that

A :V = V' is one-to-one.

3.3.3 Self-adjoint Operator

Let A be a linear operator with the domain D(A) and the range R(A) in the
Hilbert space H with inner product ( , ) and norm | - |, so that D(A) ¢ H
is a linear subspace and the mapping

A:D(AYCH—-H
is provided with the property that
Aou + Bv) = adu + SAv (,BER, u,veV).

In the case that D(A) is dense in H, that is D(A) = H, the adjoint operator
A’ is defined by A’v = v’ if and only if

(Au,v) = (u, ")

holds for any v € D(A). The densely defined linear operator A is called
self-adjoint if A = A’ holds including their domains.

The linear operator A is said to be closed if it satisfies the condition
that {u;} C D(A), u; — u, and Au; — v imply u € D(A) and Au =v. It
is known that if the linear operator A is densely defined, then its adjoint A’
is closed. Therefore, a self-adjoint operator is always closed. For a densely
defined closed operator between Banach spaces, we have the closed range
theorem. In this case, it is stated as follows.

Theorem 3.12 If H is a Hilbert space and A: D(A) C H — H is a

closed linear operator satisfying D(A) = H, then it holds that

R(A)= N(A)*  and  R(A) = N(A)*.
Furthermore, R(A) is closed if and only if R(A') is so.
Here and henceforth,

Lt ={uc H|(u,v)=0 forany ve L}

for L C H. In the case that L is a linear subspace, it is known that Hahn-
Banach’s theorem guarantees that L = H if and only if L+ = {0}. On the
other hand, R(A)* = N(A’) and R(A’)t = N(A) are easier to prove.
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A self-adjoint operator A is said to be positive definite if there is § > 0
such that

(Au,u) > 8 |uf?
holds for any u € D{A). In this case, we have
|Au| > & |ul (u € D(A)) (3.45)

and hence N(A) = {0} follows. This implies also the closedness of R(A).
From Theorem 3.12, we have R(A) = H and therefore,

Al':H->H

is well-defined as a closed linear operator. Because the open mapping the-
orem of Banach guarantees that a closed operator with the domain of the
whole space is bounded, any positive definite self-adjoint operator on a
Hilbert space has a bounded inverse.

The self-adjoint operator takes the spectral decomposition, and from
this fact a non-negative self-adjoint operator admits its fractional powers,
although details are not described here.

Exercise 3.24 Confirm that if D(A) is dense then the adjoint operator A’
of A is well-defined.

Exercise 3.25 A densely defined linear operator A is said to be symmetric
if it satisfies A C A’, that is, D(A) C D(A’) and A'u = Au holds for
u € D(A). Confirm that this relation is equivalent to

(Au,v) = (u, Av) (u,v € D(A)).

Exercise 3.26 Show that a linear operator A on H is closed if and only if
its graph

G(A) = {u® Au | u € D(A)}

is closed in H x H. Then, confirm that the inverse operator of a closed
linear operator is closed if it exists.

Exercise 3.27 Confirm that if the linear operator A is densely defined,
then its adjoint A’ is always closed.

Exercise 3.28 Confirm that R(A)t = N(A’) and R(A")* = N(A) hold
for a densely defined linear operator A on H.
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Exercise 3.29  Confirm that (3.45) implies the closedness of R(A) because
of the completeness H and the closedness of A = A’.

3.3.4 Symmetric Bi-linear Form

We recall the notations of §3.3.2. Let
Vo HosV

be a Gel'fand triple, where V and H are Hilbert spaces provided with
the inner products ( , ) and ((, )) and with the norms |- | and | - ||,
respectively. The bi-linear form

a=a(,):VxV =R

is symmetfic, positive definite, and bounded. Then, the bounded linear
operator A : V — V' and the linear operator A : D(A) C H — H are
defined by

</iu, ’U>V’yv = a(u,v) (u,v € H)

and

”}D(A), D(A) = {uevlﬁueH},

respectively.
The purpose of this paragraph is to show the following.

Theorem 3.13 The operator A given above is self-adjoint in H.

Proof. First, we prove that D(A) is dense in V. This implies that it is
also dense in H. For this purpose, from Hahn-Banach’s theorem it suffices
to show that if f € V' satisfies

<f7U>V',V =0

for any v € D(A), then it follows that f = 0. In fact, by Theorem 3.11,
there is u € V satisfying Au = f. This implies that

a(u,v) = (f,v)y,y =0
for any v € V. Letting v = u, we have

0 =a(u,u) > 5|u|2.



118 Infinite Dimensional Analysis

Hence u = 0 and f = 0 follow in turn.
Using R(A) = V' and D(A) = {u eV]Aue H}, we see that R(A) =
H holds. Because A is one-to-one, the operator

T=A1H—-H

is bounded by the open mapping theorem. Becausea =a{, ): VxV - R
is symmetric, we have for v = Aw € R{(A) = H and u € H that

(Tu,v) = (Tu,Aw) = (Aw,Tu) = a(w,Tu) = a(Tu,w)
= (A -Tu,w) = (u,w) = (u,Tv).

Thus, T is bounded and symmetric and hence is self-adjoint. From the
following fact and the relation 7! = A including the domains, we see that
A is self-adjoint in H. O

In the following, 7 may not be bounded.

Theorem 3.14 If T is a self-adjoint operator on a Hilbert space H and
is one-to-one, then T~! is also self-adjoint.

Proof. First, we prove that D(T~!) = R(T) is dense in H by showing
that R(T)* = {0}. In fact, if u € R(T)*, then it holds that

(Tv,u) =0

for any v € D(T). This implies v € D(T) and (v,Tu) = 0 because T is
self-adjoint. We now make use of D(A) = H and N(T) = {0} to get that
Tu = 0 and u = 0 in turn. Thus, R(T) = H is proven, and (T71) is
well-defined.
IfveD ((T‘l)’), we have
(w,v) = (T 'Tu,v) = (Tu, (T“l)’v>
for any v € D(T'). Because T' = T, we have
(IT™YveDT) and T (T v =w.

This means v € D (T7*) and T"'v = (T‘l)’ v. Conversely, if v € D (T71)
and w = T~ v, we have w € D(T) and v = Tw. It holds that

(w,w) = (TT 'u,w) = (T"'u, Tw) = (T u,v)
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for any u € D (T-'). This means v € D ((T‘l)') and w = (T‘l)'v. We
have (I'~')" = T~! including the domains and the proof is complete. [

It is obvious that the self-adjoint operator A in Theorem 3.13 is positive
definite. In connection with its fractional powers, it holds that D (A'/2) =
V and

a(u,v) = (Al/zu, Al/%) (u,v € V).

Exercise 3.30 Confirm that D(A) is dense in H using the fact that it is
dense in V in Theorem 3.13.

3.3.5 Compact Operator

We continue to suppose that H is a Hilbert space with inner product ( , )
and norm | -|. A bounded linear operator T : H — H is said to be
compact if it maps bounded sets to relatively compact set, that is, {Tu,}
contains a converging subsequence if {u,} is bounded in H. As is indicated
in Exercise 2.18, any bounded sequence in H admits a weakly converging
subsequence so that T': H — H is compact if and only if u, — u implies
Tu, — Tu in H. Here and henceforth, u, — u and u, — u indicate the
weak and the strong convergences so that lim, . (un,v) = (u,v) for any
v € H and lim, ., |un, — u|] = 0, respectively. This property, referred to
as the completely continuity, is not equivalent to the compactness for the
nonlinear operator.

In the Gel’fand triple V «— H — V'’ we say that V — H is compact
if the imbedding (that is, identity) mapping i : V — H is compact. In
the case that the symmetric, positive definite, and bounded bi-linear form
a=a(, ):V xV — R exists, the inner product ((, )) of V is replaced
by a( , ). Therefore, this condition is equivalent to saying that if u,,u € V
(n =1,2,--) satisfies a(u, — u,v) — 0 holds for any v € V, then it holds
that |u, — u| — 0. We continue to write (( , )) and || - || for inner product
and norm in V.

First, we show the following,.

Theorem 3.15 If the Gel'fand triple V. — H — V' with the compact
inclusion V < H and the symmetric, positive definite, and bounded bi-
linear forma =a(, ) : V xV — R are given, then the bounded linear
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operator T = A~ : H — H is compact, where A is the self-adjoint operator
introduced in Theorem 3.14.

Proof. Let {u,} C H be a bounded sequence. Then, it holds that

HTunHZ = a(Tuanun) = (un;Tun)
S ,unl * lTunl S K luni " ”Tun”

and hence
“Tun“ <K |un|

follows. Thus {Tu,} C D(A) C V is bounded in V and hence has a
converging subsequence in H. a

For the moment, T denotes a linear operator on H not necessarily
bounded. Given A € R, the set of solutions to

Tv =) (3.46)

forms a linear subspace of H, called the eigenspace associated with the
eigenvalue A. If the dimension of this space is greater than 1, that is, (3.46)
admits a non-trivial solution 0 # v € D(T'), we say that A and v are an
eigenvalue and an eigenfunction of T, respectively. It is easy to see that
if T is self-adjoint, then the eigenfunctions u,v associated with different
eigenvalues are orthogonal so that (u,v) = 0 holds in H.

This paragraph is concluded by the following.

Theorem 3.16 IfT : H — H is a compact self-adjoint bounded linear
operator, then ||T|| or — ||T|| is an eigenvalue of T, where ||T|| denotes the
operator norm of T.

Proof. We may suppose that A = ||T"|| # 0. The linear operator S =
M -T2 : H —> H is bounded, self-adjoint, and non-negative, so that
(Sv,v) > 0 holds for any v € H. Therefore, [u,v] = (Su,v) provides a
non-negative and bounded bi-linear form on H x H. Similarly to the proof
of the abstract Schwarz inequality of Theorem 3.1, we obtain

I, )| < [4,4] - [v, 9]
for u,v € H. Letting v = Su here, we get that
|Sul* < (Su,u) - (S%u, Su) < (Su,u) - | S2u] - |Sul
(Su,u) - [Sul? - 3]

IA
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or equivalently,
1Sul < ISIM2 (Su,w)?  (ue H). (3.47)

Now, from ||T|| = {|Tul|u € H, |u| =1}, we have {u,} C H with
|un} =1 and |Tu,| — A. In this case, it holds that

((A2 - T2) un,un) =\2_ |T'un|2 —0
and hence
(A =THup —0 (3.48)

follows from (3.47).
Because T is compact, {u,} admits a subsequence, denoted by the same
symbol, and w € H such that

Tu, — w. (3.49)

This implies A = |w| # 0 and T?u,, — Tw. Therefore, A%u,, —» Tw follows
from (3.48), and then, A2Tu,, — T?w follows so that

N =T%w

holds by (3.49).

Therefore, v = (A + T)w satisfies (A — T)v = 0 so that if v # 0, then
A = ||IT|| is an eigenvalue of T. Otherwise, v = 0 and hence — ||T'|| is an
eigenvalue of T by |w| = A. O

3.3.6 FEigenfunction Expansions

In this paragraph, the eigenfunction v is normalized as {v| = 1, and an
ortho-normal basis is taken to each eigenspace. Namely, we show the fol-
lowing.

Theorem 3.17 If H is a Hilbert space and T : H — H is a compact
self-adjoint bounded linear operator, then its eigenvalues are discrete and
converge to 0, and each eigenspace is of finite dimension. The family com-
posed of ortho-normal basis of those spaces forms a basis of R(T).

Proof. We show that linearly independent {u,},.; C H with |u,| =1
cannot satisfy Tu,, = Apu, with A\, — X # 0. This assures that eigenvalues
of T is discrete and can accumulate only to 0.
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In fact, if {u,} are linearly independent and M,, denotes the linear hull
of {u1,---,un}, then there is v, € M, satisfying

o =1 and  dist (v,, M, ;)= inf |v,—v|=1 (3.50)

‘UGM’n—l

We show that in this case {A;'Tv, } cannot accumulate in H, which con-
tradicts to the compactness of T'.
For this purpose, we take m < n and note that

N Tvn = A Tvm = v — (A Tvm = A1 (T = An) vn) (3.51)

holds true. We have v,, € M,,_; and hence Tv,, € M, _; holds. On the
other hand, (T — A,)u, = 0 is valid and therefore, (T — A\p)vp, € Mp_1
holds. The second term of the right-hand side of (3.51) is in M,,_;. We
obtain

|An 1 Tvn — AL Tom | > dist (vn, Mp_y) = 1.

Thus, {)\; lTvn} has no subsequence converging in H.

We proceed to the latter part. From Theorem 3.16, there are vy € H
and A; € R satistying |v1| = 1, |A1] = ||T')|, and Tv; = Ajvy. Then, we
take H; = {vl}l and note that T3 = T g, © H1 — Hj is a compact self-
adjoint bounded linear operator. There are vo € Hy and A2 € R satisfying
lval =1, [A2] = ||[Tal] € ||T|l, and Tvy = Agva. We repeat the argument,
taking Hy = {vl,vrz}l and in this way obtain a sequence of eigenvalues
denoted by {A;}.

Let us consider the case that those A; becomes eventually 0. There is
n such that A, = 0 and A; # 0 for 1 £ j < n — 1. In this case, we have
H,_1 C N(T) and Tv; = 0 for j > n. On the other hand, v; € R(T) for
§ < n and hence R(T)* C {vy,++,vn_1}" = Hn_;. Therefore, recalling
N(T) = R(T)*, we get that H,_; = N(T) and R(T) is a linear hull of
{Ula T 7vn~1}'

In the other case, we have A, # 0 for any n. Because of the fact proven
before, it holds that |A;] > |Az| > --- — 0. We show that any w € R(T)
has the property that

=0. (3.52)
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In fact, in this case we have w = T'u with some u € H. Letting b; = (w, u;)
and ¢; = (u,v;), we have

bj = (w,v) = (Tu,v;) = (u,Tv;)

Aj(u,v5) = Ajc;

and hence
T(cjvj) = bjv;

follows. This implies

n n n
w — E ijj =T |u-— E Civ; | = Tn u— E C;v; t,
j=1 j=1 j=1

and therefore, by [|T,,|| = |An+1] and

n
u— Z cu;l < |ul (3.53)
j=1
we obtain
n
w= Y bjvj| < [Ansal - ful = 0.
Jj=1

This means (3.52) and the proof is complete. O

Exercise 3.31 Confirm that the eigenvalues {A} of T in |A| > ¢ is finite
for each € > 0 and that they are actually discrete.

Exercise 3.32 Show that there is v, € M, satisfying (3.50) in the proof
of Theorem 3.17.

Exercise 3.33 Confirm that T} = T H H; — H, is a compact self-
adjoint bounded linear operator in the proof of Theorem 3.17.

Exercise 3.34 Confirm (3.53) in use of the argument developed in §3.2.2.
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3.3.7 Mini-Mazx Principle

Let V — H < V'’ be the Gel'fand triple with compact V — H and
b=b(,):HxH - Randa=a(, ):VxV — R be symmetric, positive
definite, and bounded bilinear forms. Replacing the inner product in H by
b( , ), we take the self-adjoint operator A associated with a( , ) so that
A:V — V' is defined by Au = f if and only if

a(u,v) = b(f,v)
for any v € V, and A : D(A) C H — H is the restriction of 4 to
D(A):{uevmueﬂ}

Then, T = A~ : H — H is a compact self-adjoint bounded operator, and
the eigenfunctions associated to the non-zero eigenvalue to

Tv =M
provides an ortho-normal basis {v;} of R(T) = D(A) such that
bvg, vj) = dij.
Thus, any v € D(A) admits the relation

n
v - E ;U4

i=1

nlirx;o =0 for o =b(v,v;). (3.54)

This relation is valid for any v € H, because D(A) = H. Theorem 3.17
now implies the following.

Theorem 3.18 Suppose that H is separable and of infinite dimension,
and that the inclusion V — H is compact in the Gel’fand triple of Hilbert
spaces V — H — V'. Suppose, furthermore, thatb=5b(, ): Hx H - R
anda=a(, ):V xV — R are symmetric, positive definite, and bounded
bilinear forms. Then, the eigenvalue problem

vevy, o(v,w) = pb(v,w)  forany weV (3.55)

provides a countably many eigenvalues with the finite multiplicity, denoted
by

O<pr Spa < = +oo,
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and the associated normalized system of eigenfunctions {v;};o, forms a
complete ortho-normal system in H in the sense that

b('vi,vj) = (51;]'
and (3.54) holds for any v € H.

Here and henceforth, dimension of eigenspace associated with the eigen-
value in consideration is called multiplicity. In the above theorem, the eigen-
values are labeled according to their multiplicities and each eigenvalue takes
one normalized eigenfunction. Furthermore, those eigenfunctions with the
same eigenvalue are so arranged to be orthogonal by the orthogonalization
of Schmidt.

Under those circumstances, it holds that

a(vi, v} = ;i (3.56)

b(v,v) =Y &, ck=b(v,v;) (veH) (3.57)
k=1

a(v,v) = Zukc,% (veV) (3.58)
k=1

Then, it is easy to see that
p1 = inf {a(v,v) /b(v,v) | v € V \ {0}} (3.59)
holds. Henceforth,
R[v] = a(v,v)/b(v,v)

is called the Rayleigh quotient, and (3.59) the Rayleigh principle.
A generalization of the Rayleigh principle is given by the following,
referred to as the mini-max principle.

Theorem 3.19 It holds that

= i Rlv 3.60
S R 00
= max min Ry, (3.61)

Vi veVi\{0}

where {Lr} and {Vi} denote the families of all subspaces of H with the
dimension k and the codimension k — 1, respectively.
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Proof. To prove the first equality, we set

Ar = inf max Rfv]
Ly veLg\{0}

and
Hn = {Uh"WUn}-L
= {veH|bw,v)=0 (1<i<n)}.

Then, for any Ly we have ¥ € Li \ {0} in ¥ € Hi_; and it follows from
(3.58) that

R[v] > R[7] > pk.
vergka{)io} [U] - [U} = K

This implies
Ay > .

On the other hand, if L is taken as the linear hull of {vy,:--, v}, then
again from (3.58) we obtain

max Rv] = pg.
pRax [v] = pk

Thus, Ay is attained and is equal to px.
To prove the second equality, we put

Y =su inf Rlv].
e=sup tnf, Rl

Let W, be the linear bull of {vy,---,vn}. Then, any V;, satisfies Vi, "W}, #
{0}, and (3.58) guarantees that

inf Rfv]= min Rv|<
w0 [v] o [v] < s,

and hence Xy < py follows. On the other hand, for Vi, = Hy_, we have

inf Rv]= min R[v] = us.
veVi\ {0} [U] vEVkl\I}O} ['U] Hie
Thus, £ is attained, and is equal to pg. The proof is complete. O

Exercise 3.35 Confirm that (3.54) holds for any v € H.
Exercise 3.36  Confirm that (3.58) and (3.59) hold true.
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3.4 Distributions

3.4.1 Dirac’s Delta Function

Distributional derivative is mentioned in §2.3.3. The notion of distribu-
tion is a generalization of that of function, and in this framework several
calculations are admitted rigorously.

In §5.2.4, we shall introduce the Gaussian kernel

1\ _ ..
G(z,t) = (M) e 1o/ (g = (3q,---,7,) €ER™, £ >0) (3.62)

and the operation

(Gt el (2) = [ Gla =y, Ouolu)y

There, it will be shown that u(-,t) = G(-,t} x ugp solves

ou n
E—Au (zeR™ t>0)

with
lm () — woll, = 0

if up € LP(R") with p € [1,00), where LP(R"™) denotes the set of p-
integrable functions. Then, what is

=1 ?
o(x) ltllxg G(z,t) ?
Because of
/ G(z,t)dz =1

it must hold that

/" S@ydz =1,  &(z) = { (J)“°° Ei ; 3%.

However, such an object is not obviously a function any more. Actually, it is
called Dirac’s delta function, but is contained in the category of distribution,
regarded as a natural extension of the notion of functions. This section is
closely related to the objects treated in §5.2. The reader can skip this, but
the program is as follows.
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Let @ C R™ be a domain, and C§°(f2) be a set of functions differen-
tiable arbitrarily many times with compact supports contained in €2. It is
topologized as the inductive limit of Dg_ () as n — oo, where {K,}o , is
a family of compact sets in Q satisfying U, K,, = Q, and

n=1
Dk ={f € C5°(Q) | supp f C K}.

This space Dk can be provided with the distance if K C Q is compact, al-
though it is impossible to give norm here. It is complete in this distance and
belongs to the category Frechét space. The vector space C§°(£2) topologized
in this way is denoted by D(f2). Then, we take the dual space

D'(Q) = {T : D(}) — R | continuous linear}

and each element in D'() is called the distribution on 2.

A remarkable theorem of Bourbaki assures that the linear mapping 7 :
D(Q?) — R is in D'(2) if and only if for any compact set K C  and
any sequence {@;} C Dk () satisfying 0%p; — 0 uniformly on K for any
multi-index , it holds that T'(¢;) — 0. Remember that a = (a1, -, an)
with non-negative integers aq, - - -, @, is indicated as the multi-index, and

o a ay 8 Qg

If a measurable function f = f(z) is summable on any compact set
K C Q, it is called locally summable. The set of such functions is denoted
by L},.(Q). For such f, the linear mapping T : D(2) — R is defined by

T(9)= [ 1@e@ds  (peD(@). (3.69)

It is not difficult to see that this T', denoted by T, is in D’(£2).

The following theorem assures that the function in L} () is identified
with a distribution in € in this way.
Theorem 3.20 The mapping f € L}, (Q) — Ty € D'(Q) is one-to-one.

loc

Proof. Given f € L}, _(Q), we shall show that if

loc

Lﬂ@ﬂ@a:o (3.64)

holds for any ¢ € D(Q), then it follows that f = 0 almost everywhere.
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Let p(dz) be the n-dimensional Lebesgue measure and {Kn}r, bea
sequence of compact sets in ! monotone increasing and satisfies U,, K, =
Q. Taking

AL = {z € Kn, | £f(z) > %},
we shall show that
(AL )=0 forany mn=12, . (3.65)
Then, it holds that u(B) = 0 for
B=Uy,_, [AL.UA; ).

Because B = {z € Q| f(z) # 0} holds, this implies that f = 0 almost
everywhere and the conclusion follows.

To confirm (3.65), let us assume the contrary that p(A) # 0 for some
4 = A,i,‘,m. Then, from a property of the Lebesgue measure any £ > 0
admits compact K and open G in K C AC G C G C Q with G compact
such that u(G'\ K') < €. In this case, there is ¢ € C§°(Q2) with the value in
[0,1] such that

_ J 1/u(K) (onK)
“"{ 0 (on G°).

Thus, we obtain
:!:/Qf(z)cp(x)dxz i/G\K f(x)@(x)dzi/}{f(z)tp(x)dx

1 1
> —M/G\Klf(a:ﬂdx-}—;. (3.66)

Because of f € L},.(2), we have

w(K)
/G\K |f(z)ldz < o

if € > 0 is small enough. Then the right-hand side of (3.66) is greater than
%, but this contradicts to (3.64) for any ¢ € D(RQ). O

If T € D'(2), then S(p) = (~1)I*IT(8%p) for v € D(Q) is in D'(Q). We
set S = 0*T and in this sense the distribution is differentiable arbitrarily
many times and the order of differentiation can be changed arbitrarily.
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If T;, T € D'(Q) satisfy
Jim T;(¢) = T(p)

for any ¢ € D(£), then we say that T; — T in D'(€).

Exercise 3.37 Show that T = Ty defined by (3.63) is a distribution. Show
also that if f is a C? function on §2, then

0

forj=1,---,n.

3.4.2 Locally Convex Spaces

Let X be a linear space over R or C. In the rest of this section, we take
the case that X is over C. Then the mapping p : X — R is said to be a
semi-norm if it satisfies the axioms that

p(xz+y) <plx)+py) (z,y€X)

plaz) = |a| p(z) (zeX, acC). (3.67)
From those relations we can derive that
p(0) =0 (3.68)

lp(z) —p(y)| < p(z—y) (x,y € X).

In particular, p(z) > 0 holds for any z € X.

We say that V C X is absolutely convex if ax + By € V follows from
z,y € V and |o|+|8| <1, where o, 8 € C. We say that V C X is absorbing
if any z € V admits o > 0 such that a~1z € V. The proof of the following
theorem is left to the reader.

Theorem 3.21 If p is a semi-norm on X, then
Vo={z e X |p(x) <1}

1s absolutely convex and absorbing. Conversely, if V. C X is absolutely
conver and absorbing, then

pv(z) =inf{a>0|a 'z eV}

s a semi-norm on X.
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Henceforth, py is referred to as the Minkowsk: functional induced by V.

A family P of semi-norms on X is said to satisfy the aziom of separation
if £ € X with p(z) = 0 for any p € P implies £ = 0. In this case, X is
provided with the Hausdorff topology by defining the convergence of net
{z,} C X to z by p(z, ~ z) — 0 for any p € P. It is referred to as the P
topology of X. Actually, in this topology, the fundamental neighborhood
system of 0 € X is given by

U= {Un;pl,--~mn;61,~-,sn | n= 172,' 3 Py, ,Pn € P7 €1y yEn > 0}7

where Upnp, .. pni e1,6n = {2 € X | pj(x) <5 (1 <j<n)}, and then,
the fundamental neighborhood system of 2o € X is {zo+ U | U € U}. Un-
der the P topology, the linear operations (z,y) — z+vy and (o, ) — oz are
continuous in X, and in this sense, X becomes a topological vector space.

The vector space X is said to be a locally convex space if it is provided
with some P topology. Then, P is said to be the semi-norm system deter-
mining the topology of X. The proof of the following theorem is also left
to the reader.

Theorem 3.22 [f q i¢s a semi-norm on X, then it is continuous in P
topology if and only if there are somen, p1,---,ppn € P, and ¢c1,---,cp >0
such that

g(z) < e1pi(z) + - - - enpn () (z e X).

Admitting the above theorem, we see that if ¢ is a continuous semi-
norm on X with respect to P topology, then P topology is equivalent to
P’ topology, where P’ = P U {q}. Generally, we say that a family of
semi-norms P’ defines the topology of X if P’ topology is equivalent to
the original one, the P topology. From those considerations, we see that a
fundamental neighborhood system of 0 in X is taken as

{Vp | p is a continuous semi-norms on X} .

Exercise 3.38 Derive (3.68) from (3.67).

Exercise 3.39 Give the proof of Theorem 3.21.
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Exercise 3.40 Confirm that X becomes a topological vector space under
the P topology.

Exercise 3.41 Show that a semi-norm ¢ on X is continuous if and only if
Vy = {z € X | ¢(x) < 1} is a neighborhood of 0.

Exercise 3.42 Given an absolutely convex and absorbing set V C X, show
that

V CVp CNys1AV

holds for p = py. Then, prove that it is a neighborhood of 0 if and only if
its Minkowski functional py is continuous.

Exercise 3.43 Mimicking the case of normed spaces, show that if X and
Y are locally convex spaces and T : X — Y is linear, then T is continuous
if and only if any continuous semi-norm ¢ on Y admits a continuous semi-
norm p on X such that ¢(T'z) < p(z) holds for any z € X.

3.4.3 Fréchet Spaces

Locally convex space X is said to be normizable if there is a family of
semi-norms P determining its topology consisting of one element. Locally
convex space X is said to be metrizable if there is a distance d( , ) which
provides an equivalent topology to X. Now, we show the following.

Theorem 3.23 Locally convex space X is metrizable if and only if there
is a family of semi-norms P determining its topology which consists of a
countable number of elements.

Proof. 1If P is countable as P = {p; | = 1,2, -}, then

d(z,y) = Z . -Ti”p—z(;f—)w (3.69)

is a metric provided with the required properties. Conversely, if d( , ) pro-
vides the metric equivalent to the original topology to X, then {V; } i isa
fundamental neighborhood system of 0, where V; = {z € X |d(z,0) < 7}.

Then, there exists a continuous semi-norm p; such that V,,, C Vj, and
P = {p,} provides the equivalent topology to X. O
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A net {z,} C X is said to be Cauchy if p(x, — z,) — 0 holds for any
p € P as v,u — oo. Then, locally convex space X is said to be complete
if any Cauchy net {z,} C X admits z € X such that z, — z as v — oo.
Fréchet space indicates a complete metrizable locally convex space. In this
case, convergence of Cauchy sequences is sufficient for the completeness to
establish.

We have put that Di = {p € C°(Q) |supp ¢ C K} if @ C R™ is a
domain and K C 2 is compact. Then,

pm(f)= sup |0°f(z)|

z€K, |a|<m

is a semi-norm on Dk () for m = 0,1,2,- - -, and Dk (?) becomes a Fréchet
space by P = {pp | m =0,1,2,---}.
Another example is £(Q2) = C*°(Q). In fact,

Pmx(f)= sup |0°f(z)|

z€K, |aj<m

is a semi-norm on £(2) for m = 0,1,--- and a compact set K C Q. Then,
E(Q) becomes a Fréchet space by

P ={pmk|m=0,1,2,---; K C Q :compact}.

Exercise 3.44 Show that d( , ) defined by (3.69) is a metric on X. Show
also that the net {z,} C X converges to x € X in P topology if and only
if d(z,,z) — 0 holds.

Exercise 3.45 If X is a locally convex space with the family P of semi-
norms determining its topology, then B C X is said to be bounded if

sup p(z) < 400

T€B
holds for any p € P. Show that X is normizable if and only if there is a
bounded neighborhood of 0.
Exercise 3.46 Show that Dy () is a Fréchet space.

Exercise 3.47 Show that £(2) is a Fréchet space.
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3.4.4 Inductive Limit

Let X3 ¢ Xy C--- C Xn € Xp41 C -+ be a sequence of locally convex
spaces and suppose that the original topology of X, is equivalent to the one
induced by X,,41 for n = 1,2,.--. Henceforth, we shall write X,, — X, 41
for this situation. Our purpose is to make X = U22 X, a locally convex
space satisfying X,, — X for any n. First, we note the following.

Lemma 3.2 If X and Y are locally conver spaces satisfying X — Y,
then any absolutely convex neighborhood of 0 in X denoted by U admits an
absolutely conver neighborhood W of 0 in'Y such that U =W n X.

Proof. From the assumption, there is an absolutely convex neighborhood
V of 0in Y such that X NV C U. We shall show that the convex hull of
U UV is provided with the required properties:

W={dxu+1-ANv|uelU veV, 0<A<L1}.

First, to show U = W N X we note that U C W N X is obvious. If
w € WnN X, then it is written as Au + (1 — A)v. We have

1-MNv=w- IueX.

IfA#1,thenve XNV CU and hence w = Au+ (1 — A)v € U follows. In
the case of A =1, it holds that w = v € U. In any case, we get w € U and
hence W N X c U follows.

Next, we show that W C Y is absolutely convex. For this purpose, we
take |a| + 8] < 1, ur,u2 € U, vy,v2 € V, and 0 < Ay, A2 < 1. Then, it
holds that

(@dug + a (1 — A1) v) + (BA2uz + B(1 — A2) vo)
_ M +18l e aiiu; + BAru;
lal + 18] (laf A+ 161 A2) / (o] + |8])
laf (1 — A1) +18] (1 — Az)
lo| + 16|
) a(l—)\l)v1+ﬂ(1-)\2)v2
(lod (L= A1) + 18 (1 = A2)) / (] + {B])°
The right-hand side is expressed as Agus + (1 — A\3)vz with us € U, v3 € V,
and 0 < A3 <1, and therefore, in W.
We finally note that W C Y is a neighborhood of 0 because V C W,
and the proof is complete. Oa
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Analytic expression of the previous lemma is given as follows.

Lemma 3.3 If X and Y are locally convexr spaces satisfying X — Y,
then any continuous semi-norm p on X admits a continuous semi-norm p
onY such that p|y = p.

Proof. We can apply Lemma 3.2 to V,, = {z € X | p(z) < 1}. Then, we
get an absolutely convex neighborhood W of 0 in Y, such that WnN X =
Vp. Letting p = pw, the Minkowski functional of W C Y, we obtain the
conclusion. In fact, # is a continuous semi-norm on Y. Furthermore, if
z € X then it holds that

pw(z) = inf{a>0|a lzeW}
= inf{a>0|a 'z e WNX}
= inf{a>0|a 'z €V,}
= inf{a>0|a"'p(z) <1} = p(z).
The proof is complete. a
Now, we show the following

Theorem 3.24 Let X; <= X5 <= -+ = X, = X,,11 < --- be a sequence
of locally convex spaces, X = U2, X, and

P= {p : semi-norm on X | plxn is continuous for any n} .
Then, P admits the axiom of separation, and induces P topology to X.

Proof. Let z € X satisfy p(x) =0 for any p € P.

There is X,, such that z € X,,. Let P, be the family of semi-norms
determining the topology of X,. Applying Lemma 3.3 successively, we see
that any q € P,, admits a semi-norm g on X such that §|y =g and gy
is continuous on X,, for any m > n. This guarantees § € P and hence
g(z) = g(z) = 0 from the assumption. Because q € P, is arbitrary, we see
that z € X, is equal to 0. This means the conclusion. O

Because P induces topology to any Y C X, the following fact is to be
noted.

Theorem 3.25 The P topology introduced to X in the previous theorem
induces the topology to X, C X equivalent to the original one.

Proof. The assertion follows from the definition of P and the fact that
any ¢ € P, admits ¢ € P such that §ly =g¢-. 0O
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The following fact indicates that P topology of X is independent of the
choice of {X, }, and the proof is left to the reader.

Theorem 3.26 Let X, — X’g e Xy o Xmﬂ — -.- be a
sequence of locally convex spaces equivalent to X3 — Xp — -+ — X —
Xns1 < ---, which means that any n admits m satisfying X, < X and
any m admits n satisfying X < Xn. Then, P and P topologies introduced
to X through {X,} and {X..}, respectively, are equivalent to each other.

The locally convex space X defined in this way is called the inductive
limit of {X,,} and is written as X = lim,_, X,,. The only if part of the
following theorem is obvious by Theorem 3.25.

Theorem 3.27 If X =lim,_, X,, Y s a locally convex space, and T :
X — Y is linear, then T is continuous if and only if T x, Xn—Yis
continuous for any X,.

Proof. To prove the if part, we shall apply the criterion given by Exercise
3.43. Thus, given continuous semi-norm g on X, we show the existence of
a continuous semi-norm p on Y such that ¢(Tz) < p(z) forany z € X. In
fact, p(x) = ¢(Tz) is a semi-norm on X and p|x_ is continuous for each
X, from the assumption. This implies p € P and the proof is complete. []

If @ ¢ R™ is a domain, the locally convex space D(Q2) = C§°(Q) is
defined by D(Q) = lim,_, Dk, (), where {K,} denotes a monotone in-
creasing family of compact sets in Q satisfying U, K,, = Q. However, D(Q)
does not satisfy the first aziom of countability.

Exercise 3.48 Let X = U%;X,, and P be as in Theorem 3.5, and U ¢ X
be absolutely convex. Then, show that U is a neighborhood of 0 in X if
and only if U|y_is a neighborhood of 0 in X, for any n.

Exer~cise 3.49 Prove Theorem 3.26 by showing that any p € P satisfies
pEP.

Exercise 3.50  Show that the topology of D(€2) is independent of the choice
of the monotone increasing family of compact sets { K, } satisfying U, K, =

Q.
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3.4.5 Bounded Sets

If X is a locally convex space with the family of semi-norms P determining
its topology, the set B C X is said to be bounded if {p(z) |z € B} is
bounded for any p € P. In the case of X = lim,,_, X,,, if B C X is bounded
then we have B C X, for some X,,. This is a key structure to make the
definition of distributions, D’(€2), much simpler. We note the following.

Lemma 34 If X — Y are locally conver spaces, o € Y\ X, and U
is an absolutely conver neighborhood of 0 in X, then there is an absolutely
convex neighborhood of 0 in'Y, denoted by W, such that U = WN X and
o ¢ w.

Proof. We shall only give the outline. First, we take an absolutely convex
neighborhood V of 0 in Y such that VN X Cc U and (zp + V)NU = 0.
Then, the desired set is given by

W={u+1-Av|uel veV,0<A<1}.

Now, we give the following.

Theorem 3.28 If X = lim,_, X,,, then B C X is bounded if and only if
there is X,, such that B C X, is bounded.

Proof. We show that if B C X is bounded then B C X,, holds with
some X,, because the other cases are obvious. In fact, if this is not the
case, there are X,,, — X, — --- and {ux} C Bin ux € Xy, \ Xy, for
k =1,2,---. By Lemma 3.4, we have an absolutely convex neighborhood
Wy of 0 in X,,, satisfying

U
Wk+1 N Xnk =W and Tk ¢ Wk+1
for k = 1,2,---. Then W = U2 ;W is absolutely convex in X and is a
neighborhood of 0 there by Exercise 3.48.
If % € W, then % € WNX,,,, = Wiy1. This is impossible and hence

Uk
—¢W
k ¢

holds for k = 1,2,---. However, {ux} C B is bounded and hence 4& — 0
follows as k — oo. This is a contradiction, and the proof is complete. O
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The following fact is a direct consequence of Theorem 3.28 because
any Cauchy sequence is bounded. Actually X = lim,_, X,, is a complete
uniform space in that case, although X may not be a Fréchet space in that
case.

Theorem 3.29 If each X, is a Fréchet space, then X = lim,_, X, is
sequentially complete.

Exercise 3.51 Complete the proof of Lemma 3.4.

Exercise 3.52 Introduce a suitable topology to the set of holomorphic
functions on a domain Q C C and make it a (sequentially) complete locally
convex space.

3.4.6 Definition and Exzamples

If @ C R™ is a domain, then each element of
D'(Q) = {T : D() — C | continuous linear}

is called the distribution on . From Theorem 3.27, if T : D(Q?) — C is
linear, T € D'(Q) if and only if

is continuous for any compact K C . This condition is equivalent to
saying that any compact K C 2 and integer m > 0 admits C > 0 such that

T(p)l <C sup [0%(z)|

z€K, |a|<m

for any ¢ € Dg (1), or that for any compact K C Q and for any sequence
{p;} € Dk () satisfying 0*¢; — 0 uniformly on K it holds that T'(¢;) —
0. This fits the rough definition in §3.4.1 and by Theorem 3.20 any locally
summable function on 2 is regarded as a distribution there.

A Radon measure p(dx) on Q is a Borel measure such that u(K) < +oo
for any compact K C Q. Then, it is easy to see that

T,(¢) = /Q p@)u(dz)  (p € Dx(®)
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defines a distribution on 2. Furthermore, p + T}, is shown to be one-to-
one, and in this sense the Radon measure is regarded as a distribution. In
particular,

&(p) =w(p)  (peD()

defines a distribution for p € Q. 1t is called the Dirac’s delta function and
is denoted by 6 = §y € D'(R") for simplicity. Also, sometimes it is written
as §(dzx) or 6(x).

In the one-dimensional case,

(P.f. %) (¢) = lim Md:l: (¢ € D(R))

0 Jizze T

defines a distribution P.f. % In fact, we have

/mzsf?dx = /ﬂ:@dw+/:o@dz
L [Cetmeta,

T

and hence

(P.f. %) (0) = /0 T el —elza) ) (3.70)

x

follows for ¢ € D(Q). If m € C\ {—1,—2,---} we take an integer k > 0 in
Rm-+k+1>-1and set

(—1)*
(m+1)---(m+k+1)

(PL. (2™)z>0) (p) = /Ooo L0 (1)
(3.71)
for ¢ € D(R).

If T € D'(Q), then
S(p) = (-1)IT(8%)  (p € D))

defines S € D'(€)), where a is a multi-index. It is denoted by S = 0°T.
In §3.4.1 we note that 8%Ty = Tyas if f = f(zx) is a C™ function in Q
for m = |a|. It also holds that 8%3(p) = (=1)!*18%p(0) for ¢ € D(Q).
In this way, the distribution can differentiable any times and the order of
differentiations can be changed arbitrarily.



140 Infinite Dimensional Analysis

In the one-dimensional case, the locally summable function

1 (z>0)
Y(z)={ 0 (z<0)

is called the Heaviside function. Then it holds that
d
— = 3.72
ZY (@) = 8(2) (372

as a distribution on R. In the n-dimensional case, the locally summable
function

1 1
_] zo mr (m23)
M) {ilogm (n=2)

satisfies
AT = §(dz), (3.73)

where A = 377, 3%2; denotes the Laplacian and w, is the area of n-
M

dimensional unit ball. The cases of n = 2 and n = 3 are called the Newton
potential and the logarithmic potential, respectively.

Generally, the linear differential operator L{D) with constant coeffi-
cients, T € D'(R") is called the fundamental solution if L(D)T = §(dz)
holds. The Malgrange-Ehrenpreis theorem guarantees the existence of the
fundamental solution for each L(D). The Gaussian kernel G(z, t) defined by
(3.62) is also called the fundamental solution to 8, — A, because it satisfies
that

(6, — AYG(z,t) =0 (z,t) € R™ x (0, 00)
and

ltll%l G(z,t) = é(dz).

Exercise 3.53 Show that p(dz) € M(Q) — T, € D'() is one-to-one,
where M(€) denotes the set of Radon measures on §).

Exercise 3.54 Confirm that P.f. 1 € D'(Q) is well-defined by (3.70).
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Exercise 3.55 Show that P.f. (£™);5¢ defined by (3.71) is a distribu-
tion on R. In use of the partial integral and take the convergent part
of f0°° z™p(z)dz and in that way define P.f. (x™);50 for m = -2,-3,---
as in the case of m = —1.

Exercise 3.56 Confirm (3.72).
Exercise 3.57 Show that (3.73) holds in use of the argument in §5.3.6.

Exercise 3.58  Seek fundamental solutions to A? in R? and R? in the form
of K (|z|) in use of the logarithmic and Newton potentials, respectively, and
the representation in polar coordinate of z = |z|w.

Exercise 3.59 Writing z =z + 1 € R? =~ C and Z = x — 1y, we have

Z+Z -z
Z and yzz Z
21

and hence

9 _1(0 @ ¢ d_1lfo _ 9
0z 2 \0oz lay an 0z 2\0r Oy
follow. First, confirm that f is holomorphic if and only if 3f/0Z = 0 and

then it holds that 8f/8z = f'(2) in use of Cauchy-Riemann’s relation.
Second, prove that

holds as D'(R2).

3.4.7 Fundamental Properties

In this paragraph, we shall try to perform some calculations. First, we
show the following.

Theorem 3.30 It holds that
d 1
—_ = P.f — 3.74
== logla}) = P.f. (374)

as D'(R).
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Proof. In fact, we have log|z| € L} .(R). Then, from the definition we
get for ¢ € D(R) that

d oo
(Zoei) o) = - [ (oglab¢/(wds
T —00
o0 —€
= —lim (/ +/ )(log |z|) ¢ (x)dz
eld \Je —00
. <p(.’1:) T=c
= 1 ——dr + [l - .
0 e @ [log || p(z)];=_.
Here, we have
lloglzlp(@));25, = (loge) (w(e) — ¢(—¢))
) ple) —p(=e)
= 2eloge 5 0
as € | 0 and hence (3.74) follows as
d : p(z)
=1 =1 dz.
(dz og lwl) () = lim e &
The proof is complete. O

Now, we show the following,.

Theorem 3.31 IfT € D'(R) satisfies

d
—T =0,

then T = ¢ with somec ¢ C.

Proof. We take gy € D(R) in ffooo po(z)dx = 1. If p € D(R), then

o

Vo) = 0(@) ~ alo) [ olo)ts

— 00

satisfies that

/oo Y(z)dz =0 and e CO(R).

-0

We have

¥2)= [ e crm)
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and from the assumption it follows that
T@W)=T(¥') =-T(¥) =0.

This means that

Twr=/wqumTww

or equivalently, T = T'(pg) € C, and the proof is complete. O

Given an absolutely continuous function f = f(z), we distinguish its
classical derivative f’ and its distributional derivative % for the moment.
However, those two notions coincide as follows.

Theorem 3.32 If f = f(x) is locally absolutely continuous on R, then
it holds that % = f’ as distributions. Conversely, if f and % are locally
summable functions, then f = f(x), modified on a set of Lebesgue measure
0, becomes locally absolutely continuous on R and it holds that f' = g{;
almost everywhere.

Proof. The first part is easier to prove, as under the assumption it holds
for ¢ € D(R) that

Tyle) = ~T) =~ [ 1@

i

| f@eas.
-0
To prove the latter part, we also take ¢ € D(R) and note that

/—o:o (3_];) pdz = Ty(e) = -Ts(¢)
- /_ Z fla)¢' (z)dz. (3.75)

Let x € C$°(R) be such that 0 < x = x(z) <1 and

1 (2 <1)
““:{O(MZm.
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Given a < b, we take

x(nz+1-nb) =z & (b,o0)
en(x)=4¢ 1 z € [a, b
x{nz—1-na) z¢€(-o00,a),
where n = 1,2,---. Then, it holds that x(z) = 0if z < a —n~! or

z > b+n~!, and relation (3.75) gives

/_Z (%) pn(T)dz = — /_: f (@)l (z)dz.

Here, the left-hand side converges to

df
dm

a

as n — oo from the dominated convergence theorem. On the other hand,
the right-hand side is equal to

- [ @@z [ )@
The first term is treated as

}/ F@)e () - f(a)

< sup |son(x)|/ - f(a)ldz

a—n—1<z<a

/ U@ - f@) e

Wl [ 1) - f(@)lda,

and therefore, it converges to 0 when a is the Lebesgue point of f. The
second term is treated similarly, and thus we obtain

[ (L) e 160~ 100

for almost every (a,b) € R?. This implies the conclusion, and the proof is
complete. 0
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Exercise 3.60 Put

Y. - s PE (@™ o, (m#£0,-1,-2,--)
6O (z) (m=-£4£=0,1,2,--),

and show that Y;,(¢) is a continuous function of m for any ¢ € D’'(R) and
that

d
a;ym =Im-1

holds true, where

[
~(x) =/ e *s*"ds (z>0)
0
denotes the Gamma function.

Exercise 3.61 Confirm that if g(z) is summable on [a, b], then

f@)= [ " g(z)da

is absolutely continuous on [a, b].

Exercise 3.62 Let @ C R™ be a domain and f € C*°(2) and T € D'(2).
Then, S € 7’(Q) is defined by

S(p) =T(fp)  (peD()),

and is denoted by S = fT. Show that the Leibniz formula (or chain rule)
7] 0 oT
—_— ==+ F——

holdsfor j=1,---,n.

3.4.8 Support

Let & C R” be a domain, and T' € D'(Q). If U C Q is open, then we say
that T vanishes on U, or T'|;; = 0 in short, if T'(¢) = 0 for any ¢ € Cg°(U).
The following fact will be obvious.

Theorem 3.33 If {U,} be a family of open sets in Q and T|; =0 for
each a, then it holds that T, ,; =0.
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Therefore, supp T of T € D’(Q) is defined as the maximal closed set F
in Q such that T vanishes on Q\ F. In §3.4.3, we have introduced the space
() = C®(). We have D(Q) C £(R) including their topologies, and
hence any T' € £'(Q) restricted to D(2) is regarded as an element in D'(£2),
denoted by T;. Furthermore, the mapping 7' € £'(Q) — Tp € D'(Q) is
one-to-one because the inclusion C§°(2) C £(N) is dense. Thus, we obtain

Q) Cc D'(Q).
In fact, we have the following.

Theorem 3.34 It holds that

EQ)={TeD(Q)|suppT: compact}.

Proof. In fact, if T € £'(Q), there is a compact set K C 2, an integer
m > 0, and a constant C' > 0 such that

T <C sup |8%(z)|

la|<m, z€K

for any ¢ € £(). This implies T(p) = 0 for ¢ € C§°() satisfying
supp ¢ C \ K. In particular, supp T C K follows.

Conversely, if the support of T € D’(2) is compact, denoted by K C €,
then we take ¢ € C§°(2) in ¥(z) = 1 for x € K. Then, taking To(yp) =
T () for ¢ € C™(£), we have TOICSO(Q) =T and Tp € £'(Q). The proof
is complete. O

The proof of the following two theorems is not described here. In fact,
for the first theorem, the representation theorem of Riesz is made use of,
and then the second theorem is a consequence of the first one.

Theorem 3.35 Any T € £'()) admits an integer m > 0 and f, € C(Q)
with |a| < m such that supp T C supp fo and

T= Y 0a

lal<m
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Theorem 3.36 If T € D(R"™) satisfies supp T C {0}, then for some
integer m > 0 and constants C, it holds that

T = Z C,8%3.

lal<m

Exercise 3.63 Confirm Theorem 3.33.
Exercise 3.64 Show that supp 0*T C supp T for T € D'(2).
Exercise 3.65 Confirm that C§°(Q) C £(Q) is dense.

3.4.9 Convergence

First, we develop the abstract theory. Let X,Y be locally compact spaces,
and set

L(X,Y)={T: X — Y | continuous linear} .
Several topologies can be introduced to L(X,Y). Henceforth, we put

Pq,F(T) = sup q(Tl‘)v
z€F
where g is a semi-normon Y, F C X, and T € L(X,Y). If q is continuous

and F' is bounded, then this value is finite, and F, r becomes a semi-norm
on L(X,Y). Then, each family

Py = {P,,r | q : continuous semi-norm on Y, F C X : bounded}
P. ={P,,F | q: continuous semi-norm on Y, F C X : compact}

Ps = {P, F | q : continuous semi-norm on Y, F C X : finite}

enjoys the axiom of separation and induces a topology to L(X,Y’). Those
topologies by Py, P., and P, induce for the net on L(X,Y) the convergence
of uniform on each bounded set, that of uniform on each compact set,
and that of pointwise, respectively. A subset B of L(X,Y) is called equi-
continuous if any continuous semi-norm ¢ on Y admits a continuous semi-
norm p on X such that

sup ¢(Tx) < p(z)
TeB
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for any z € X. The following theorem is referred to as that of Banach-
Steinhaus.

Theorem 3.37 If X is a Fréchet space or an inductive limit of Fréchet
spaces and Y is a locally convex space, then for B C L(X,Y) the following
items are equivalent to each other.

(1) B is bounded in P, topology.
(2) B s bounded in P, topology.
(3) B is bounded in P, topology.
(4) B is equi-continuous.

In fact, the inclusions (4) = (3) = (2) = (1) are obvious. The inclusion
(1) = (4) is called the resonance theorem in the case that X is a Fréchet
space. The general case of X is treated by this fact, although details are
not described here.

The proof of the following fact is left to the reader.

Theorem 3.38 If X,Y are locally convex spaces, {T;} C L(X,Y) is an
equi-continuous sequence, T € L(X,Y), and T; — T holds in Py, then, this
convergence s in Pe.

Now, we show the following.

Theorem 3.39 For X,Y as in Theorem 3.37, if a sequence {T;} C
L(X,Y) attains Tz = limj_.o Tjx for any z € X, then T is in L(X,Y)
and T; — T holds in P..

Proof. In fact, {T};} is bounded in P, topology in this case, and hence
is equi-continuous by Theorem 3.37. Any continuous semi-norm g on Y
attains a continuous semi-norm p on X such that

o(Tjz) < plx) (z € X)
for j =1,2,---. This implies
q(Tz) < p(zx) (x € X)
and hence T' € L{X,Y") follows. We get the conclusion by Theorem 3.380

Thus, the following fact is obtained as a corollary.
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Theorem 3.40 If {T;} C D'(Q) is a sequence attaining

T(p) = lim T;(¢)
for each ¢ € D(N), then T € D'() and T; — T uniformly on each bounded
set in D(Q).

Proof. We have T € D'{2) by Theorem 3.39 and the convergence T; —
T is uniform on each compact set of D(2). However, any bounded set
B ¢ D(Q) is relatively compact. In fact, in this case we have a compact
K C Q such that B C Dg(f) is bounded. Therefore, Ascoli’-Arzeld’s
theorem applies. The proof is complete. 0

Exercise 3.66 Confirm Theorem 3.38.

Exercise 3.67 Prove an analogous result to Theorem 3.40.
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Chapter 4

Random Motion of Particles

The underlying structure of chemotaxis is the movement of many particles con-
trolled by the other species. This chapter describes the way to derive dynamical
partial differential equations from the statistic model.

4.1 Process of Diffusion

4.1.1 Master Equation

Random walk on lattice induces the equation of diffusion. In this section,
we describe mostly one-dimensional lattice £, but n-dimensional lattice £"
is treated similarly. Also, we restrict our considerations to the one-step
jump process with continuous time.

Thus, we identify £ with

Z={-,-n—1,-n,—n+1,---,-1,0,1,---,n—Lin,n+1,---}.

Let p,(t) € [0,1] be the conditional probability that the walker stayed on
site n = 0 at time £ = 0 is on site n = n at time ¢ = ¢. Then, it holds that

Op - . " o\
a—tn =T 1Pn-1+ T 1Pny1 — (TF + 157 )pn, (4.1)

where ff’;f denotes the transition rates that the walker staying on site n
jumps to site n+1 in the unit time. Sometimes, equation (4.1) is called the
master equation. Because it is regarded as an ordinary differential equation
on the infinite dimensional space, the reader may skip over the following
exercise first.

151
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i T+

I "

Fig. 4.1

Exercise 4.1 Suppose that T+’s are constants in [0,1] and study (4.1)
in the following way. First, formulate the equation as an abstract linear
ordinary differential equation in the Banach space £!, the set of absolutely
convergent sequences as

d

—P=TP, 4.2
dp=rp (42)
where T is a bounded linear operator on ¢! and P = (p,(t)) € C1([0,T],¢).
Then, show the unique existence the solution globally in time for give initial
values {p,(0)} in p,(0) > 0 and >, pn(0) = 1, by means of the semigroup
{etT}t>0 defined by

© L kk

= k!

Then, show that p,(t) > 0and )_, pn(t) = 1 hold. Finally, generalize those
results to the case that T;f’s are given continuous functions in ¢ with the
values in [0, 1], replacing (4.2) by

P(t) = P(0) + /0 T(s)P(s)ds.

In the following, we take the case that those transient rates 7 are
controlled by the other species living in sub-lattice £, of which mesh size is
a half of that of £. Let the density of that species be

w= ( Ty Wean—1/2:Wen, Woni1/2," ", W_1/2,

Wo, W1/2y "+ s Wn—1/2,Wny Wnyi/2, " ) .
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4.1.2 Local Information Model

If the transition probabilities depend only on the density of the control
species at that site, it holds that 7¥ = T'(w,) and hence (4.1) is written as

Opn . N .
% = T(wn-1)Pn-1 + T(Wn41)Prs1 — 27 (wp)pn. (4.3)

Therefore, writing x = nh by the mesh size h of the lattice, we obtain

@_h‘é’ﬁ

L (T(w)p) +O(hY) (4.4)

because
f(z+h)+ f(z — h) - 2f(z) = h?f"(z) + O(h*)

holds by Taylor’s expansion.
If we have the scaling ¢’ = At, then we can take T(w) = AT (w). Under
the assumption limp g Ah? = D > 0, it follows formally that

ap

32
= Dy (T(w)p)

by replacing t' by t. It is formal because the forth derivatives of T(w)p
is supposed to be bounded a priori. Thus, the response function T'(w)
represents the microscopic mechanism of the jump process.
Taking L™, we get the n-dimensional model
op

5 = PA(T(w)p), (4.5)
where A =V-V=3" 3%2; denotes the Laplacian. We take non-negative
p defined on the bounded domain © with smooth boundary 0€2. Usually,
we impose the boundary condition

(%T(w)p =0 on oQ, (4.6)
where
of d
3 Y Vf= gf('JrSV) o
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indicates the direction derivative of f toward v. Then, by the divergence
formula of Gauss it holds that

p(a: t)d:c—/ptda:~/DV V(T(w)p)dx

9
- /a 3 Twp)ds=o

d
dt

This implies the conservation of total mass,

/Qp(:lz,t)da: = /Qp(:z:, 0)dr = A

Equation (4.5) is written as

dp

= +V-j=0 4.7
5 TV (4.7)
for j = —DV (T (w)p). This form is referred to as the equation of continuity.
It describes the conservation of mass, as

d
pdcc = —/ v-jdS (4.8)
dt Bw

holds for any w C 2 with @ C € and smooth boundary dw by the divergence
formula of Gauss. In fact, equality (4.8) means that the vector field j
indicates the flur of p, by which the particles flow in the unit time. Thus,
v = j/p represents the average particle velocity, and (4.6) indicates the zero
flux boundary condition.

In this case of (4.5), we have

—-DV - (T(w)p)
—DT(w)Vp — DpT’(w)Vw
= —DT(w)Vp + px(w)Vuw,

J

where x(w) = —DT'(w) denotes the chemotactic sensitivity. Here, the first
term of the right-hand side is Vp times a negative scalar determined by w.
Because T'(w) > 0, this vector is parallel to the direction that p decreases
mostly. This term of flux indicates that the particles are subject to the
diffusion. On the other hand, the second term px(w)Vw indicates that p
is carried under the flow subject to the vector field y(w)Vw. Therefore, if
x(w) > 0 the particles are attracted to the place where the concentration of
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w is higher. Similarly, if x(w) < 0 the particles are repulsive in there. Those
cases are referred to as the positive and negative chemotaxis, respectively.
Presence of the chemotactic sensitivity induces the non-constant equi-
librium state. In fact, in this case T'(w)p is independent of . It is harmonic
and satisfies the homogeneous Neumann boundary condition by (4.5) and
(4.6), respectively. This means that it is a constant in Q. In fact, generally,
of

A = i i —_— =
f=0 in Q with £ 0 on 0Q

implies

/ VfP dz =0
Q

from the divergence formula of Gauss (1.25), and hence f is a constant in
Q.

Thus, we obtain

Pe)= 7 (/Q T(iim))_l (49)

for
A=lpll; = /Q p(x)dr

and p(x) is not a constant unless T'(w) is.
Here and henceforth, || - ||, indicates the standard L? norm on (2 so that

loll, = {Jo lo(®)|" dz} "/ for q € [1,00) and |jvllq, = ess. supgeq [v(@)l,
of which details are described in the next chapter.

If this stationary solution is stable, then the solution, with the initial
value close to it, keeps to stay near from it. Then it can happen that

IPoll oo < liminf [|p(t)]lo, < limsup ||p(t)[lo, < +00 (4.10)
t—o0 t—o0
or
lim sup [[p(t) oo < [IPollos - (4.11)

The cases (4.10) and (4.11) are called the aggregation and the collapse,
respectively.

In the actual model of biology, the variables p and w are coupled, so
that w is subject to an equation involving p. In this case, (4.9) becomes a
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functional equation on p, and the stability of the solution must be exam-
ined from the viewpoint of the dynamical system made by those coupled
equations.

Exercise 4.2 Prove (4.9).

Exercise 4.3 Investigate the sign of chemotaxis for the case of linear
response, T'(w) = a + Pw, and that of saturating response at large w,
T(w)=a+pfw/(v+w).

4.1.3 Barrier Model

In the barrier model, the transient rate at site n is determined by the
densities of the control species at site n + 1/2. Therefore, the control
species which govern the jump process makes barrier to the particle. We
have

T (w) = (wn:tl/2)
and the master equation (4.3) is now reduced to

Opn
Bt = T(wn 1/2)Pn-1 + T(wn+1/2)pn+1

- (T(wn+1/2) + T(wn—l/Z)) Pn.
Here, the right-hand side is equal to
T(wn+1/2) (pn+1 - pn) + T(wn—1/2) (pn—l - pn)

= 1 (T = Tlun-sy)) (22 +000)
=1 { 2 (Tw)ge ) +om]

op 0 Bp
under the same scaling limy o A% = D > 0. In n space dimension, we have

8p_
ot

and we obtain

V- (T'(w)Vp)
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and the average particle velocity is given by
v
v= —DT(w)—pB.

This model has only diffusion part and any stationary solution is a
constant in 2. However, aggregation can happen transiently.

4.1.4 Renormalization

We note that the mean waiting time of the particle at site n is given by
. . \—1
(T T +T; ) . In the case that it is independent of w and n, it holds that

T (w) + T, (w) = 2X,

where A > 0 is a constant. If the barrier model is adopted here, then
TE(w) = T(wy11/2) follows. Those relations imply

T(wn:lzl/2)
T(wny1/2) + T(wn-1/2)

Renormalization is the procedure of introducing a new jump process by
replacing the right-hand side as

TE(w) = 2X-

- T(wnt1/2)
TE(w) = 2\
) T(wnt1/2) + T(wn-1/2)

with some T'(w).

Writing
T(wnt1/2)
+ _ n+1/2
N (wn+l/2:wn—1/2) = T(wn+1/2) +T(wn_1/2)
_ T(wn—l/2)
N (wn—1/2x wn+1/2) = T(wn—l/Z) T T(wn+1/2) s
we have

T () = AN (wpt1/2, Wn-1/2)
n 22N~ (wp_1/2) Wnt1/2)

and the master equation (4.3) is reduced to
1 dp,

ot s Nt (Wn—1/2, Wn-3/2)Pn-1 + N~ (Wni1/2, Wnt3/2)Pn+1
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- (N+(wn+l/2a wn—l/Z) + N~ (wn—1/27 wn+1/2)) Pn. (4-13)

In this model, the sub-lattice is assumed to be homogeneous so that N*
is independent of n. Letting N(u,v) = N*(u,v), we have N~ (v,u) =
1 - N(u,v) and

T(u)
T(u)+T(v)

Putting z = nh, we examine the right-hand side of (4.13). In fact, we
have

N(u,v) = (4.14)

N+(wn—1/2a wn—s/z)Pn-1 - N+(wn+1/2, wn—1/2)pn
= N7 (w(z - h/2), w(z - 3h/2)) p(z — })
—N* (w(z + h/2),w(z — h/2)) p(z).

This term vanishes at A = 0. Differentiating the right-hand side in h, we
have

~ SN (e ~ h/2), (@ — 3/2)) walz — h/2)plz — h)
— SN (@ — h/2),w(z ~ 8h/2)) wa(z ~ 3h/2p(z ~ h)
~N* (e~ b2 w(z ~ 3h/2)) pa(z — h)
—S N (@ + h/2),w(z ~ h/2)) wa(z + h/2)p(z)
3N (wlz +h/2), w(e ~ h/2) walz ~ bi2p(z).  (415)
If h = 0, this term is equal to

—NJ (w(2), (@) we(2)p(x) — N (w(x), w(z)) ws(2)p(z)
—N* (w(z), w(z)) po(2)-

Similarly, we have

N~ (Wnt1/2) Wni3/2) Pry1 — N~ (Wn—1/2,Wnt1/2) Pn
=N~ (w(z + h/2),w(z + 3h/2)) p(z + h)
N~ (w(z - h/2),w(z + h/2)) p(z)

and this term vanishes at h = 0. Differentiating in h, we have

%N; (w(z + h/2), w(z + 3h/2)) we(z + h/2)p(x + h)
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+§N; (w(z + h/2), w(z + 3h/2)) wa(z + 3h/2)p(x + b)
+N (w(z + h/2), 0(z + 3h/2)) pa(z + )
43Nz (0l — b/2), (e + h/2) wa(e - h/2)p(a)

—%N; (w(z — h/2),w(z + h/2)) wa(z + h/2)p(@),  (4.16)
which is equal to

Ny (w(z), w(z)) wa(z)p(2) + Ny (w(2), w(z)) wa(z)p(z)
+N7 (w(z), w(z)) p2(z)
at h=0.
We shall write N* = N* (w(z), w(x)) and N = N (w(z),w(z)) for
simplicity. Then, we see that O(h) term of the right-hand side of (4.13)
vanishes as

(Nu'—N,j’)wzp—i—(Nv_-—N;’)wzp+(N‘—N+)p,
= (_Nv - Nu)wxp+ ("Nu - Nv)wzp+ (1 - 2N)px
=(1-2N)p), =0.

In fact, N(w,w) = 1/2 holds by (4.14).
Now, we differentiate (4.15) in h and put h = 0. This gives that
ON} wlp + 2N} wip
+2N1—z+.w:cxp + N:wzpz + 3N:wxp:c + N+pxz-

Under the same operation to (4.16), we have
2N, w2p + 2N, wip
+2Ny wegp + N wepy + 3N, weps + N7 Pz

Therefore, O(h?) term of the right-hand side of (4.13) is a half of the fol-
lowing:

(N+ + N7 )pzz + 2(Nt + N_)m,wgp
+2(N* + N7 )pow?p + 2(NT + N7 )yweap
+(N* + N7 )uwzps + 3(NF + N7 )ywape. (4.17)
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Here, we have N*(u,v) = N(u,v), N~ (u,v) = 1 — N(v,u), and hence it
follows that
(Nt + N7 )y =0
Nt +N™ =1
(N+ + N—)m) = va — Nyu
(Nt+N7)y =N, — N,
(N*+ N7 )y =Ny, — N,
at © = v = w, where N, = Ny(w,w), Nyy = Nyu(w,w), and so forth.
We see that the quantity defined by (4.17) is equal to
Dez + 2 (va - uu) wgp +2 (Nu - Nu) WraD — 2 (Nu - Nv) Wr P
= Paz — 2(p (Nu — V) wI):c
so that (4.17) has the form

10p ,,0 (0p ow 2
Xa_hax (&v 2p (N N”)ax +o(h).

Under the scaling limp o Ah?2 = D > 0 we obtain

Op g (0Op ow
X _p2 (X _ - —}. 4.18
ot Da:c <8$ 2p (Nu = No) 61) (4.18)
Here, we have
/
Ny (w, w) = M = L tog T(w)Y
(Tw) +TW)*|,_,_, 4
and Ny (w,w) = —N,(w,w) by (4.14). Equation (4.18) is written as
op 0 (Op 0

In n space dimension, we have

0

-a—f = DV - (Vp - pVlog T(w)).

Therefore, the chemotactic sensitivity function is x(w) = D (log T(w))’ and
the average particle velocity is v = —DVlogp + D (log T(w))' Vw. This

chemotactic profile is positive if 7'(w) > 0.
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In the renormalized nearest neighbor model, one takes

T(wn41)
T(wny1) + T(wn_1)

Ny (w) =

In this case, it follows that

%:Z - b% (g” 2p (log T(w))’ ——>.

Thus, the chemotactic sensitivity function becomes twice of that of the
renormalized barrier model.

In the case that the organism searches local environment before it de-
cides the movement, the transient rate depends on the difference between
the state at the present position and that of the nearest neighbor in the
direction of the movement. That is,

1::—1(“’) = o+ B(7(ws) — T(Wn-1))
Tn_+1(w) =a+f (T(wn) - T(wn+1)) ’ (419)

called the gradient-based model.

On the other hand, movement of w is under the influence of p. In
this model derived from cellular automaton, it is given by the ordinary
differential equation such as

dw_ w

o =P H

dw

E—(p—u)w

L R
dt 1+~w 1+p

Those cases describe linear, exponential, and saturating growths, respec-
tively. In biological field, the equation for w is given by the ordinary differ-
ential equation in those ways.

Exercise 4.4 Derive

2 — Dy (a5t -2 5rw))

ot ox
from the gradient-based model (4.19). Derive, also, the limiting equation
for the renormalized model to this case.
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4.2 Kinetic Model

4.2.1 Transport Equation

This section studies the self-interaction of many particles. Boltzmann equa-
tion is a description of macroscopic motion of gas particles by the atomic
probability of entropy. Then the transport equation arises as the lineariza-
tion around the Mazwell distribution. However, the latter also comes from
the following physical situation.

Imagine that two families of particles, gas and medium, are interacting.
Suppose that each of them is provided with so many particles as to make
the statistical description of their motions possible, that the number of
particles of medium is much more than that of gas, that the interaction
occurs mostly between gas and medium, and that the macroscopic state of
the medium is free from the influence of interaction.

Let f(x,v,t) be the distribution function of gas particles, so that

/ /G flz,v,t)dxdv

denotes their number staying in the domain G C R? x R? in & — v space at
the time t. The gas particles are labelled by j and =7 = z7(t), v* = v/ (t)
denote the position and the velocity of the j-th particle. If mass of each
gas particle is put to be one and F(x) denotes the outer force acting on
gas particles, then {x7,v7} are subject to the Newton equation as

de? - dv?

= - = J
el and 7 F(x?). (4.20)

Henceforth, the set of infinitely many differentiable function with com-
pact support contained in a domain €2 is denoted by C3°(€2). Then, we take
arbitrary ¢ € C°(R?® x R?) and put

Ity = 3 e (@®),v®)

J

// f(x,v,t)p(x, v)dedv, (4.21)
R3xR3

where the second equality comes from

(@, v,t)dzdv =Y Spi (1) (d) @ Gy 1y (dv). (4.22)
J
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See Chapter 3.4.9 for Dirac’s delta function used in the right-hand side of
(4.22).

If |At| « 1, then AT = I(t + At) — I(t) is decomposed into the contri-
butions of gas particles without collision between medium and those with
more than once. Those quantities are denoted by AI;(t) and Al (t), re-
spectively. Then, we set

Lty =) ¢ (2i(t),v7())
jenN
and
L{t)= > o (a/(t),v'(t)).
JEA"

First, we have

AL() =Y {p (=7 (t + At), vI(t + At)) — o (2(2), v () }

JEA!
=) {d-’v;t(t) Ve (®7(t), 07 (1)) + dv;t(t) Vo (mj(t)’vj(t))}
JEAN
At + o (At)

Then, equation (4.20) gives that

AL = Z (v - Vap(a?,07) + F(a?) - Vo) At + 0 (At).
JEN

Because the number of particles without collision is much more than that
with collision, > ), is approximated by 3 ;- In this case it holds that

AIl = At. /Lang ('v . ngp(m"v) + F(m) . Vv(p(m,'v))
f(x,v,t)dedv + o (At).

Let us proceed to Al;. The possibility that one gas particle interacts
to the medium in At is proportional to At. If ¢ = o(x,v,t) denotes its
rate, then At - o(x,v,t)f(x,v,t) indicates the distribution of gas particles
that interact to the medium during that time. When collision occurs, the
gas particle changes the velocity although the position is unchanged. If
k1 = ki(x,v,v’,t) denotes the conditional probability that the velocity
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changes from v’ to v, then the distribution of gas particles that increases
by the collision (at time ¢, position &, and velocity v) is approximated by

At-/ k(z,v,v',t)f(z, v, t)dv',
R3

where k = k1 - 0. In this way, the change of distribution function of gas
particles with collision is approximated by

At {—a(a:,v, t)f(z,v,t) +/ k(z,v,v',t)f(z, v, t)dv’}
R3

and it holds that

Al = At

2 /./R%ms o(z,v,t)f(z,v,t)

+/ k(z,v,v',t) f(z,v',t)dv' }p(x,v) - dedv + o (At).
R3

We can summarize as

vl //1;3 R {’U . Vmcp(:c,v)f(m,v,t)
FF(E) - Vo (@, ) f(,0,1) - o(2,0,0) (2, ,)p(, v)

+/ k@, v,v,t) f(2, v, t)dv'o(x, v) }daedv + o(1).
R3
This implies
//RS o {v-Vyplz,v)f(z,v,t) + F(x) - Vyp(z,v)f(x,v,t)

—o(z,v,t)f(z,v,t)p(x,v)
+/ k(z,v,v',t) f(z, v, t)dv’ - o(x,v") }dzdv
R3

= // fi(z, v, t)p(z, v)dedy
R3xR3

by (4.21). Because ¢ € C°(R3 x R3) is arbitrary, we get that

of _

5= Y V.f-F. V,,f—af+/ k(o' ) f(-,v t)dv'.  (4.23)

This is linear Boltzmann or transport equation.



Kinetic Model 165

4.2.2 Boltzmann Equation

The last two terms of the right-hand side of (4.23) are called the collision
term, totally denoted by

of

o),

The original Boltzmann equation was derived when the same kind of par-
ticles are interacting. There, collision between more than three particles at
once is ignored and it is assumed that mass, momentum, and kinetic energy
are preserved when the collision between two particles occurs. Because the
mass of particles is preserved we set it to be one as before.

Thus we have

YY) —aif. Al v, 1)
(%).

with
Q[f,f](v)z/RS d'vl//RaXR3 w(v,vy; v, v))
(fFOYf(Y) = f(v)f(v)) dv'dv]. (4.24)

Here, (v,v1) — (v’,v}) indicates the change of velocities in the pair of
collision particles. Namely,
of
(3).0

decreases and increases proportionally to f(v)f(v1) and to f(v')f(v}), re-
spectively, with the rate w(wv,v1;v’,v]) > 0.

Fig. 4.2
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Because the momentum and the kinetic energy are preserved at the
collision, we have

v+v; =v +v) (4.25)

and
2 (P + rl?) = 5 (7 + 1041%). (4:26)

Therefore, the correlation function (or correlation measure, precisely) w
has the support where (4.25) and (4.26) hold. Furthermore, because the
collision is symmetric and reversible we have

w(v, v1;v",v]) = w(vy, v; v}, v')

= w(v',v};v,v1) = w(v},v';v1,v). (4.27)

Those requirements make Q[f, f] in more detailed form.
The Boltzmann equation
7]
A . V.f-F@) Vos+ QU 1) (428)
makes the second law of thermodynamics to be underlined by the inter-

molecular source. In fact, Boltzmann’s formula says that entropy is given
by

S =kglogW,

where kp and W denote the Boltzmann constant and the multiplicity of
thermodynamical states.

In the classical theory, microscopic states in the same macroscopic state
are not distinguished. If the macroscopic states are labelled by i = 1,2, - -,
then we have

W= Hn.,

where g; and n; are the numbers of microscopic states and that of particles,
respectively, involved by the macroscopic state i. The mean number of
particles in those microscopic states is given by f; = n;/g;, and in use of
Starling’s formula logn! ~ n(logn — 1) we obtain

S=kp Z (n;logg; — logn;!) = —kp Zgifi (log fi — 1). (4.29)
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Here, replacing g; by constant times Ax - Av gives the representation of
entropy,

- _k//mxnaf (log f — 1) dadv,

where k is a physical constant.
Based on this formula, Boltzmann’s H-function is defined by

H(x,t) = /RSf (log f — 1) dv.

It follows formally that
OH 7]
-bt—z/ma—t{f(logf—l)} dvz/Rsft-logfdv
[ (Vepossaz= [ V.(ftogs-1)de=0
R3 R?
/ (Vuf)log fdv = / V, (f(log f —1))dv = 0.
R3 R3

Because f = f(zx,v,t) satisfies the Boltzmann equation we have

dH _ / / QLf, f]log f dxdv, (4.30)
dt R3xR3
where
H(t) = / H(z,t)dx.
R3
Here, the right-hand side of (4.30) is treated as

|, lf.A\w)log Sw)av

=// log f(v)dvidv

R:xR3

S wne!, o) F@)00) - Fw) fw) dv'd;
R3xR3

=—1// dvidv
4 R3xR3

//R s w(v,vy; v, v)) {log (F(v) f(v1)) — log (f(v') f(v}))}
{f () f(v1) = F(¥')f(v1)} dv'dv) (4.31)
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by (4.27). This term is non-negative because (logz — logw)(z — w) > 0
holds for z,w > 0. This means the second law of thermodynamics, the
decreasing of H-function. .

In the equilibrium state we have 2 = 0. This implies f(v)f(v1) =
f(v")f(v}) and hence

/R3 {log f(z,v) + log f(x,v1)} da
N /R {log f(,v") + log f(,v})} dx

follows. This means the conservation of fR3 log fdx at the occasion of col-
lision. Such a quantity must be a linear combination of mass, momentum,
and kinetic energy from the physical point of view. In the case that f is
uniform in @, it holds that

log f(v) = o= 5 [off +-v

with some a, 3 € R and v € R?, and in this way the Maxwell distribution

2
folw) = n(2rksT)~? exp <_2|I:2T>

is regarded as an equilibrium state, where n and T stand for the particle
density and the temperature, respectively.

Exercise 4.5 Confirm the last equality of (4.31).

Exercise 4.6 In Fermi and Bose statistics, multiplicities of the state are
given by

gi! (g: +n —1)!
1:[ nil(gi — ni)! and H nil(g; — 1)' ,

respectively. In those cases the entropies are given by

S:—k// (flog f+ (1% f)log(l £ f)) dedv.
R3xR?

Derive them by Starling’s formula.
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4.3 Semi-Conductor Device Equation

4.3.1 Modelling

Transportation of electrons and positrons inside semi-conductor devices
is governed by the Boltzmann-Poisson system. If f(zx,k,t) denotes the
distribution function of electrons or positrons at the position x, the wave
number k, and the time ¢, then the Boltzmann equation is given by

fitu-Vif + Vi f= (g{ ) (4.32)

where F, k, and u stand for the outer force, the Planck constant, and the
carrier velocity, respectively. Here, mass of particles is not put to be one.
Wave number, adopted for velocity as an independent variable, represents
the momentum of particles. The Planck constant arises as the rate for
Az - Av to be replaced by g;, from the principle of the quantum mechanics.

The reader can skip this section first. In the theory of semi-conductor
devices, the carrier velocity

u = u(x, k,t)

of electron or positron is associated with the energy band £ of crystal in
such a way as

1
= =V}E.
u h—Vk

Furthermore, similarly to the transport equation, the effective collision is
taken only between the particle and medium. Therefore, the collision term

is given as (at) = Q|[f, f], where

Qlf. fltk / [F(K) (n — f(k)) P(K', )
(k) (n - F(K')) P(k, K')} dK'. (4.33)

Here, P(k', k) denotes the scattering probability of k' — k at the collision,
and n(x,t) = [zs f(z, k,t)dk is the carrier density.
Outer force F comes from the electric field E in such a way as

F =qFE = —qVy, (4.34)
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where ¢ denotes the elementary electric charge of the particle and ¢ is the
electric field potential. The carrier velocity u is the sum of the drift velocity
v(x,t) and the heat velocity c(x, k,t):

u(x, k,t) = v(z,t) + c(z, k, t).
From the randomness of the latter it follows that
/ clx, k,t) f(x, k,t)dk =0
RS
and hence we obtain

v(x,t) = BT;T) /R u(, k1) (2, k, )dk.

Henceforth (A) denotes the mean value of the physical quantity A:

(A) (x, ) = /R Az, k,0)f (. K, t)dk.

Relations (4.32) and (4.33) imply

% (A) + V, - (uA) — % (VrA) = n(z,t)Ca, (4.35)
where
Ca=1 [ Al Ak

Putting A = g, we take the zeroth moment, where g denotes the ele-
mentary electric charge of particles. In this case, we have

(¢) = qn
(ug) = (qv) = gnv

¢y =2 | Qlr.nwadk=o,

and hence

on

q§+V-(qnv):0
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follows. Here, J = gnv is the electric current density and we obtain the
equation of continuity for the electric current,

= = —%v . (4.36)

Next, we take the first moment, setting A = u. In this case, it holds
that

(u) = (v) =nv
(uu)=nvv+(cRc).

Here we assume that the distribution function f(x, k,t) is isotropic, so that
the non-diagonal part of the second tensor

VRV = ("’i”j)lsi,jS:a

of v = t(v!,v?%,v?) is small. It is approximated by (%’v - 06;5) 1<i j<3? which
comes from T

1 1
§Tr(v®'v) =3v-v
Writing this process simply as

1
TRU==-v-v,
® 3

similarly we have
c®e)=3Tr(coa).
Temperature tensor T and scalar temperature T are given as
nkgT =m{cQc)
and

1 m

where kg and m denote the Boltzmann constant and the effective mass,
respectively. This gives

<c®c)=%T
m
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and hence

Wl N
3
3|

(u®u) =
follows for

3
E = —;—mv-v+§k3T.

Here, E is the sum of the kinetic energy mv - v and the heat energy
%kBT. Compared with the latter, we can ignore the former in the ordinary
temperature. Letting

3
= -kpgT
E 9 B,
we obtain

1
('u. ® u) = —nkpT.
m

The inverse effective mass tensor is given as M 1= %rvku. Between
the effective mass m, we have the relation

1 -1 n
ST (M) =2
Because the density function is isotropic, it follows that
% (Vyu) = F- (M )=F- %T&(M*)
= FZ.
m

Finally, we apply the relaxation time approximation as

v
nC, = —n—,
Ty

where 7, is the kinetic relaxation time. Thus, under those physical assump-
tions we have

0 1 n
—_ - ™ - FZ
5 (nv) + mV(nkB ) Fm
v
=-n—.

Ty
Multiplying the elementary charge g, we get that

9 4T
J +Tu52J = ——F (nkBT) +

q:;nF. (4.37)
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4.3.2 Drift-Diffusion (DD) Model
If J is stationary, equation (4.37) is reduced to

J_—ﬂV( kBT)+ﬂ F.

Furthermore, if the carrier velocity is quasi-uniform in the space, we get
that

J=_I T pron + —nF (4.38)

The elementary electric charge of electron is ¢ = —e. Its mobility p indicates
the rate between the velocity of the electric field and is determined by the
kinetic relaxation time 7, and the effective mass m, associated with the

scattering and the band, respectively, in such a way as
ety
p=—

m
Then, Einstein’s relation is expressed as
kgT
D= M'B—
where D is the diffusion coefficient. In use of (4.34) and (4.38), we obtain

J = pkgTVn+ punekE
= eDVn + peFE.

Because the above relation is concerned with the electron, we shall write it
as

Jn =euE+eD,Vn.

As for the positron, the elementary electric charge and the outer force are
given by ¢ = e and F = —E, respectively. It follows that

Jp = eupE — eDpVp,

where p denotes the carrier density of positron.
Now we re-formulate the problem. In fact, the equation of continuity
on the electric current is given by

on

at—;V J +7r
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dp 1
-é?——zV'Jp'i'T, (439)

where r is the generation-recombination term associated with the band
structure. On the other hand, the Poisson equation holds to the electric
field E = —Vy as

—eAp = —e(n—p-c), (4.40)

where ¢ and p = —e(n — p — ¢) are the dielectric constant and the charge
density, respectively. The term c is the difference between the concentra-
tions of the ionized donors and adapters:

— Nt -
c=Nj - Ny.
Remember that the current densities of electron and positron are given as

Jn=—eu,nVeo +eD,Vn
Jp = —ep,pVep —eD,Vp. (4.41)

4.3.3 Mathematical Structure

We take the case that ¢ = 7 = 0 and put one for every physical constant.
Then, DD model is given as

on

n =V -(Vn-nVy)

dp .

Fri =V -(Vp+pVyp) in  Qx(0,7)

Ap=n-—p, (4.42)

where @ C R" is a bounded domain indicating the device. Let the boundary
O be Lipschitz continuous. For (4.42) to determine the unique solution,
side conditions are necessary. For simplicity, we take the homogeneous
Dirichlet boundary condition for the potential of electric field ¢, and zero
flux boundary conditions for the electric current densities n, p of electrons
and positrons:

on 6<p —0

o "o

9p Oy

3 +ry, =0 on 90x(0,T)

@ =0. (4.43)
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Initial conditions are imposed only for p, n because the third equation of
(4.42) is elliptic:
n[t=o = no(x), plt=o = po(x). (4-44)

If the initial values is taken in a suitable function space X, then the unique
existence of the solution follows in an associated function space in space-
time variables. Thus, well-posedness of problem (4.42), (4.43), (4.44) will
be assured.

A very important feature of the solution is the positivity preserving:

ng, pop >0 in Q = n(t), p(t) > 0.

This is a consequence of the maximum principle in the linear parabolic
equation. On the other hand, we have

d d
P Qp(:z:,t)dm = -(E/nn(a:,t)dm =0

by (4.42) and (4.43). Hence we obtain conservation of mass,

@l = lnolly  lp@®lly = llpoll, (0 <t<T). (4.45)
Here and henceforth || - ||, denotes the standard L norm on € for p €
1, o0]:
ol = { Ual@Pde}” e, o)
P ess. Supgeq [v(x)| (p = o0).

The first step to study long time behavior of the solution is to classify
stationary solutions:

V- (Vn—nVyg)=0
V- -(Vp+pVn)=0 in Qx(0,T)

Ap=n—p (4.46)
with
on Op
aw "o
Op Op
Zypt = Q T
(91/+p61/ 0 on 0 x (0,7)

=0 (4.47)



176 Random Motion of Particles

For this purpose, we note that the chemical potential ¢, = ¢ — logn of
electron is associated with the current density as

Jn=Vn—-nVy =—-nVp,.

In the non-trivial stationary state n = n(x) > 0 it follows from (4.46) and
(4.47) that

3]
V-(nVg,)=0 in £, 3,9 = 0 on 99Q.

This implies
2
/ n|Veu| de =0
Q
and hence ¢, is a constant in £2.

Taking account of the conservation of mass, (4.45), we prescribe this
unknown constant in terms of A = ||n||; > 0. Then, it follows that

o Ae®
n= Jqevdz
and similarly,
__pe?
b= Joevdx’

where p = ||p||; > 0. Thus the stationary problem is reduced to

Ae? pe”¥
Ap = - in

¢ Joevdz [ e vdx o (4.48)
=0 on df)

by means of the third relations of (4.46) and (4.47).

We have observed mass conservation and introduced the problem for
equilibrium state to satisfy. Another important factor for the large time
behavior of the solution is the existence of the Lyapunov function. It is
reasonable because DD model is derived from the Boltzmann equation.

In fact, thermal equilibrium is the state where free energy # = E — TS
attains minimum. Here, E, T, and S denote inner energy, temperature,
and entropy, respectively. Remember that the inner energy is preserved in
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the classical Boltzmann equation. Because any physical constant is set to
be one, we have T' =1,

E=—1-/|V<p|2d:c
2 Ja

S = —-/ {p(logp — 1) + n(logn — 1)} dx
Q

and hence

1
F= / {p(logp - 1)+ n(logn—-1) + 2 |V<p|2} dz
Q
is obtained. In fact, if the smooth functions p = p(z,t) and n = n(x,t)
satisfy (4.42) and (4.43), then it follows that

%fso (0<t<T). (4.49)

Exercise 4.7 Prove (4.49).
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Chapter 5
Linear PDE Theory

This chapter deals with the fundamental theory of partial differential equations,
well-posedness, fundamental solution, potential, and regularity. Although the
materials are restricted mostly to elliptic and parabolic equations, but several
basic ideas and calculations are presented, from which one can access the standard
advanced monographs or papers.

5.1 Well-posedness

5.1.1 Heat Equation

Imagine that a domain £ C R3 is occupied with the heat conductor, and
let u = u(z,t) be the temperature at the position = *(z1,z2,z3) € Q and
the time ¢ > 0. If p, ¢, and w denote the ratio of specific heat, the density,
and a subdomain of  with smooth boundary 8w, respectively, then

/ cpu(zx, t)dx

denotes the heat quantity put in w. On the other hand,
0

o (x,t)dS

Bw ov

indicates the heat quantity radiated inside w through dw, where v and dS
denote the outer unit normal vector and the area element of dw, respec-
tively. Therefore, it holds that

d Ou
a/wcpu(a:,t)da: = /Bw ng;(a:,t)ds. (6.1)

179
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If u(x, t) is smooth, the left-hand side of (5.1) is equal to

3}
/w 5 (cpu)dz,

while the right-hand side is

/w V. (kVu)dz

from the divergence theorem of Gauss. Because w is arbitrary, this implies
that

%(cpu) =V . (kVu) (req, t>0), (5.2)

which is referred to as the heat eguation. Usually, side conditions are pro-
vided to determine u(x,t), so that the initial condition is given as

Ulymg = uo(®) (ze ). (5.3)
The boundary condition
u=af§,t) (€, t>0) (5.4)

prescribes the temperature distribution itself on the boundary and is called
the Dirichlet or the first kind boundary condition. The Neumann or the
second kind boundary condition

Kot =Blet) (€89, t>0) (5.5)

prescribes the heat flux distribution radiated from the boundary. Finally,
the Robin or the third kind boundary condition
Ou

L + pu = y(€,1) (€0, t>0) (5.6)

prescribes the heat flux distribution on the boundary proportionally subject
to the temperature.

In the direct problem, those parameters c, p, K, and p, and the initial
value up, and the boundary value o, or 3, are given and it is asked to
determine the solution u = u(x,t) satisfying (5.2), (5.3), and (5.4) (or
(5.5), or (5.6)). On the other hand, the inverse problem determines those
parameters (or initial and boundary values) by some observable concerning
the solution. It is expected that the direct problem is well-posed, which
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means that the solution exists uniquely for and depends continuously on
the given data.

5.1.2 Uniqueness

We take the simplest case as @ = (0,7) CR,c=p=k=1,anda=0in
(5.4):

Uy = Ugy O0<z<m t>0)
ul,_p =uo(z) (0<z <) (5.7)
Umor =0 (t20)

and consider the classical solution, so that its differentiability and continu-
ity are taken in the classical sense with the least regularity to make (5.7)
reasonable. Namely,

u = u(z,t) € C ([0, 7] x [0,00)) (5.8)
and
Ug, Uz, Uzrr € C{(0,7) x (0,00)). 5.9

Therefore, for the classical solution to exist, the initial value ug must be in
C|0, n| and satisfy | = 0. They are called the compatibility condi-
tion, generally.

We show the following.

z=0,7

Theorem 5.1  The classical solution to (5.7) is unique.

Proof. Let uy, uz be the classical solution and set u = u; — ug. Then, it
satisfies (5.8), (5.9), and

U = Ugz O<z<m t>0)
ul,_o =0 (0<z<m)
Uy, =0 (t20).
We have only to derive u = 0 from those relations. For this purpose, we
show that both » > 0 and u < 0 hold in [0, 7] x [0, 00).

In fact, w = e~ tu is provided with the same continuity and the differ-
entiability as those of u. Writing u = e‘w, we have u; = e'w + etw; and
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t

Uzy = €'wg, and hence

wtw=wy, O0<z<m t>0)

Weo =0 (0<z<n) (5.10)
wl =0 (¢t20)

z=0,n

follows. Let us take T > 0 arbitrarily. Then, w = w(z,t) is continuous on
[0, 7] x [0, T] and there exists (zq, o) € [0, 7] x [0, T| such that u = w(zo, to),
where

p=max{w(z,t) |0<z <7 0<t<T}.

Using the initial and the boundary conditions in (5.10), it holds that
> 0. If > 0, then zo € (0,7) and tp € (0,7 and therefore, we obtain

we(Zo,t0) = 0, Wez(Zo,t0) <0, wy(Zo,t0) = 0. (5.11)
On the other hand, the first equation of (5.10) implies

we(To, o) + 1 = wez(To,20)

and hence p < 0 follows. This is a contradiction and we obtain u = 0.
This means that w = w(z,t) < 0 on [0,x] x [0,T]. Because v = —w is a
classical solution to (5.10) and it follows that w > 0 there. This means
w = e tu =0 on [0,7] x [0,T] and hence u = 0 follows because T > 0 is
arbitrary. O

To prove the above theorem, we have made use of the argument of com-
parison, or the mazimum principle. Actually, we can show the following,
where

Iollee = sup fu(z)| (5.12)

€0,

is called the mazimum norm, because it is attained if v is continuous on
[0, 7].

Theorem 5.2  If u(x,t) = u(-,t) is the classical solution to (5.7), then it
holds that

le(®)ll o < liuoll

foranyt > 0.
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Proof. Letting A = ||luof,,, we have
A < upz) < A 0<z<7).
Then w = e~*(u — \) satisfies that

wtw=wy,; O<z<nm t>0)
W, <0 (0<z<m)
Wy, <O (t20)

z=0,7
and the same argument as in the proof of the previous theorem guarantees
that

max {w(z,t) |0<z <7 0<t<T}<0 (5.13)

for any T > 0. This means u(z,t) < A for (z,t) € [0,7] x [0,T]. The
inequality u(z,t) > — A follows similarly, and the proof is complete. O

Theorem 5.2 indicates the stability of the solution in | - ||_,. But it
also implies the continuous dependence of the solution on the initial data.
Namely, if u1(-,¢) = ui(z,t) and ua(-,t) = ua(z,t) denote the classical
solutions to (5.7) with the initial values ug(z) equal to u;(z) and us(z),
respectively, then u(z,t) = u;(z,t) — ua(z,t) solves the problem with the

initial value u;(z) — u2(z), so that we obtain

e (8) — u2(B)lloo <l — u2llog (5.14)

for any t > 0. Because of this, we see that if |ju; — uz||, is small, then so is
lui(t) — u2(t)|| - Furthermore, Theorem 5.1 follows from this inequality
as uj = up implies u3 (-, t) = ua(-, t) for any ¢ > 0.

Exercise 5.1 Confirm (5.11).
Exercise 5.2 Confirm (5.13).

5.1.3 Existence

Let us make use of the method of §3.2.1 to construct the solution. First, the

principle of super position says that if v; (z, t), va(z, ), - - - are the solutions
to
U = Ugy O<z<m t>0) (5.15)
Ulpmg, =0 (t20),
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then, so is v(z,t) = v1(z,t) + va(z,t) + - - -. Second, the special solution to
(5.15) is obtained by the form of separation of variables, v(z,t) = p(z)n(t).
This trial leads us to

¢i@) @) _ _y (5.16)

p(z) — n()

and hence the eigenvalue problem

—¢"(@)=Xp(z) (0<z<7),  Plugr=0

arises, where A € R denotes the eigenvalue. As we have seen in §3.2.1, this
problem provides a complete ortho-normal system in L2(0, ),

{%sinnzlnzl,?,---},

with each eigenfunction ¢,(z) = % sinnx corresponds to the eigenvalue
A\ = n?.

Writing formally that

o0

u(.’L‘,t) = Z Cn(t)wn(x)7

n=1

we have ¢, (t) = (u(t), vn), where (, ) denotes the L? inner product:

(f,9) = / " f(@)g(z)de.

Thus, integration by parts guarantees

]

e = (ut,on) = (Uzz,¥n)
(U', So'na:z) = A (u7 <pn) = AnCn, (5'17)

which implies that

ea(t) = (uo, pn)e "

from the initial condition to u. We obtain

u(z,t) = Z cne~ o, (z) (5.18)
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with ¢, = (ug,¥n). This sequence is not so difficult to handle except for
the delicate behavior as ¢ | 0, and its justification is left to the reader. Note
that

o

Z Icn|2 < 400

n=1

holds by uo € L%(0, 7).

Exercise 5.3 Confirm that (5.17) follows from integration by parts.

Exercise 5.4 Confirm that u(t) = u(-,t) defined by (5.18) satisfies the
initial condition of (5.14) in the sense that

lim u(t) ~ woll, =0,

where || ||, denotes the L? norm:

£l = ( JECES "

Exercise 5.5 Show that the right-hand side of (5.18) converges uniformly
on [0,7] x [6,T] if 0 < § < T. Show also that any termwise derivative has
the same property and thus prove that u{x,t) defined by (5.14) satisfies
(5.7).

Exercise 5.6 Prove that the right-hand side of (5.7) converges uniformly
on [0,7] x [0,T] for T > 0, provided that g is continuously differentiable

on [0,7] and satisfies the compatibility condition uo|,_o , = 0.

5.2 Fundamental Solutions

5.2.1 Fourier Transformation

The result in §3.2.2 is summarized that

L 1'nzlcos |n,m=1,2
——=, — sinnx, — cos mx =
\/ﬂ’ \/7? 1) \/7_1_ ? b b
forms a complete ortho-normal system in L?(0,27), or in L?*(—m, ).
Vector spaces treated so far are over R. In this paragraph we make use
of the complex variable. Actually, the function space L?(—m, ) is regarded



186 Linear PDE Theory

as the vector space over C if each element takes the complex value. Then,
it forms the Hilbert space over C through the inner product

(f.0)= [ $@o@e.

Using Euler’s convention that

e = cos@ + 1sin b

for # € R, we have

et = cosnx + 1sinnz.

This implies that

1
——e"® | n=0,%1,12,.
{\/27r }

forms a complete ortho-normal system in (complex) L?(—x,«), and the
Fourier series of f € L?(—m, ) is written as

+oo .
f@y= > ifne”‘“” with  fo= [ flz)e " dz.  (5.19)

-

Then, taking ' = Nz, we see that each f € L2(—Nn, Nr) is expanded as

00 1 .
fl)y= Y oo flet/Me

n=—o00
with
. 1 Nx
=L [ o
—Nrn

In terms of f(n/N) =N fflv , those relations are expressed as

N«
f(n/Ny = f(z)e"("/N)xdz (n=0,%1,42,--")

1
:2— Z f(n/N)en/N)= (-Nm <z < Nn).
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Then, making N — oo formally, we get the relation that
o= [ s@weea (€er) (5.20)
and
f@) =5 [ F@ede  @em) (5:21)

The right-hand sides of (5.20) and (5.21) are called the Fourier transforma-
tion of f(z) and the inverse Fourier transformation of f(£), and denoted
by (F£)(€) and (F~1)f(z), respectively. Then, equality (5.21) is referred
to as the Plancherel’s inversion formula. Justification of those relations are
done in several categories.

Exercise 5.7 Confirm that the Fourier series of f € L?(—m, ) is written
as (5.19) and show that

1
——e"™ [ n=0,%1,42,---
{\/27r | }

forms a complete ortho-normal system in (complex) L3(—m, 7).

5.2.2 Rapidly Decreasing Functions

Henceforth, LP(R) denotes the set of p-integrable functions on R for p €
[1,00). That is, f € LP(R) holds if and only if it is measurable and

i1, = ([ 15 do) " < oo

in the sense of Lebesgue. On the other hand, we say that f € L*°(R) if
there is M > 0 such that |f(z)] < M for almost every x € R. In this
case it is said that f(z) is essentially bounded on R, and infimum of such
M is denoted by | f||,,. We note that this notation adjusts with (5.12).
Furthermore, it is known that LP(R) becomes a Banach space under the
norm || ||, for p € [1,00]. Then, inequalities

f+gll, < W7, + llgll, (5.22)
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and

If-glly < 11, - gl (5.23)

hold, and referred to as Minkowski’s inequality and Holder’s inequality,
respectively. Here and henceforth, p’ € [1, oc] denotes the dual exponent of
P € [1, 0], defined by

1 1

-+—-=1

p P

It is obvious that if f € L!(R), then f(£) defined by (5.20) converges
for each £ € R with the property that

fo|<ifl,  €emr). (5:24)

In the L? setting, the right-hand sides of (5.20) and (5.21) are taken as the
limits in L2(R) as N — oo of
N=m N=

f(m)e_’gzdx and i f(&)e'&dg,
~Nn 2w J_Nax

respectively. Then, Plancherel’s inversion formula holds as
FUFf)=f and  F(F)=f

in L2(R) for any f € L%(R) and f € L%(R).
The set of arbitrarily many differentiable functions on R is denoted by
C*(R). We say that f € C*°(R) is rapidly decreasing if
lim |z|™ ‘f(’“)(:z:)l =0
r—too
for any m,k = 0,1,2,---. The set of such functions is denoted by S(R).
Thus, f € S(R) if and only if its any derivative decays more rapidly than

any rational functions. In particular, each f € S(R) admits C > 0 such
that

f(@) < C (14?7

and hence f € L'(R) follows. The integral of the right-hand side of (5.20)
converges absolutely. It also holds that f € L?(R) and hence Plancherel’s
inversion formula (5.21) is valid for each z,£ € R. Furthermore the follow-
ing property holds.
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Theorem 5.3 If f € S(R), then f € S(R). It holds also that

F(£9) () = (&) f(©) (5.25)
and

F (2™ f) (€) = (:8)™ f(€) (5.26)
for k,m =0,1,2,- -, where 3 = 8/0¢.

Proof. To show (5.25), we note that f(*) € S(R). Then, we have by
means of the integration by parts that

F(I0)© = [ M@

_1\k z) - (8, k e~ %2 dr

(1)/Rf()(3)( ) d

(1) / f@)e =dz = ()" F().
R

Equality (5.26) follows similarly, as
FEmh(E) = / 2™ f()e"  do
R
/R (10)™ (f(2)e"%7) da
= g™ [ fle)edz = (09" F(©).
R

Note that the dominated convergence theorem is applied to justify the above
calculations.
Given f € S(R), we have f’ € L*(R). This implies that

61|£©)] = 1F N < 1F1, < +oo
and hence
Jm |7e] =0
follows. Then, we have z™f*) ¢ S(R) and hence

Jim e [eomf@)] = im |7 (am5) )] =0
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follows for k,m = 0,1,---. This means f €S.

Exercise 5.8 Calculate the Fourier transform
fe) = [ r@eea

of

(-l<z<1)
(x = £1)

(I > 1).

f(z) =

O o= =

Then, compute

1 N« N
lim — f(e)e=de.

N—oo 27 -N

Exercise 5.9 Given f,g € L'(R), show that

(Fr9)@ = [ S oy
converges almost every z € R and is in L!(R). Show also that

F(fxg)(€) = Ff(&)- Fg(§)
holds.

5.2.3 Cauchy Problem

We consider the heat equation on the whole space,

U =uUy; (T€ER,t>0) with ul,_o = uo(x).

(5.27)

(5.28)

Such a problem is called the Cauchy problem because the initial data ug
is prescribed. What we wish to establish is the well-posedness, so that
existence, uniqueness, and continuous dependence on the initial data uo(z)
of the solution u(z,t) with appropriate continuity and differentiability, and
also the qualitative study, that is, the properties of the solution. Whole
space R has no boundary, and the infinite point takes its place. Therefore,

we have to prescribe the behavior of the solution at infinity.
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To see this, we shall show that there is smooth u(z, t) for (z,t) € RxR
satisfying u(z,t) =0forz € R, t <0, u(z,t) Z0forz € R, t > 0, and

U = Uy (z e R,t €R).

Actually, this u(z,t) gets to +00 as £ — too more rapidly than any poly-
nomial if £ > 0. Hence uniqueness of (5.28) does not follow unless the
behavior at oo of the solution is prescribed. The reader can skip the rest
of this paragraph if he is not familiar with complex analysis.

In fact, first we see that

eV (t>0)
f(t)—{ 0 (t < 0)

satisfies lim;)p f*)(t) = 0 for k = 0,1,2,---, so that f € C®°(R) holds.
Then, f(t) is extended as f(z) = e~'/#") which is holomorphic in z €
C\ {0}. Let t > 0 be fixed, and apply the integration formula of Cauchy

as
190 =5 [ —%—ldz,

2m Jr(z —t

where
F:z=t+%ew with 0<6<2m.
Here, we have
|£(2)] = e Re(/)

with z = t + Le*?. Therefore, there is d > 0 such that

1 1 ]
Re(1/2%) = {fRe (—-——1—-> > 2

1+ 61’9 + 36219

for any 8 € [0, 2x). This implies that
(*) —5/t
2l
0] < 57 [

k! —6/12 t —k-1 t ky—k —6/t2
- M e o = ) = k125 . (5.29
e 2 "\2 ¢ (5:29)
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Here, we note the elementary inequality

V4
o< (2 2o

valid for p,c > 0. Thus, in (5.29) we have

k/2 k/2
—k_—8/t2 _ (42\—k/2 8/t k/2 _(k
them = () e S(ea 25)

This implies that

. k k/2
’f( )(t)‘ < kl2¥ (%S) = ax.
Now we show the following.
Lemma 5.1 Anyr > 0 admits M > 0 such that
ak < M(2k)!/rk
fork=1,2,....
Proof. We shall show that

k

lim — 0
im ——a = 0.
koo (2K)1 %
In fact, letting by, = é—:ﬁak, we have
= bks1 r Gk+1

* = T 2k+2)(2k+1)  ax

_ 2+l (k4 1\EEDZ g \R2
T 2(k+1)(2k+1) \ 28 2ed

, k12 . 1) (k+D)/2 .
= — | — . — —
2k +1 \ 2ed k

as k — oo, because
k
1
li -] =e
kl.rgo (1 + k) €

In particular, limsup;,_,, ¢k < 1 and hence limy_,, by = 0 follows.

(5.30)
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We can summarize that

e (@g>0)

is in C*°(R) and any 7 > 0 admits M > 0 satisfying
)f”c)(t)\ < M@K (>0, k=0,1,2,--).

Then,

(k) (¢
:L't) Zf(2k()') 2k

converges locally uniformly in (z,t) € R x R. Furthermore, form the
dominated sequence theorem of Weierstrass, it is termwise differentiable so
that we obtain

Uz (2, 1) (2k) (2k —1)z%~2

I

ANk
At':
z
i3
"

> f(k)(t) 2h—2
2 eE-1”
o fED(¢

= X (2k)!( e

for (z,t) € R x R. Then, we can see that u(z,t) =0forz € R, t <0 and
u(z,t) Z0forz e R, t > 0.

Exercise 5.10 Confirm (5.30).

5.2.4 Gaussian Kernel

Let us seek the smooth solution to (5.28), assuming that ug, u(-,t), and
us(-,t) belong to S(R). In fact, in this case we can take

G(€,t) = e = d.
(€, 1) /R u(z,t)e z
Then, it holds that
Flu) = (Fu)y =1, and  Flugs) = (1€)°F(u) = ~€2%0
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and hence
Gy =—€% (E€R, t>0),  dl,o=1() (£€R) (5.31)

follows.
If £ € R is fixed, then (5.31) is the Cauchy problem of the ordinary
differential equation with respect to ¢. Thus, we obtain

a(e,t) = e ag(€)  (E€R, t>0).

Using the inverse Fourier transformation, we can recover u(z,t) as

u(z,t) = —/ a(¢,t)e™Cde = —-—-/ fig(€)er™4dE

1
= 2— et e ge / uo(y)e™*¥dy
T
d§/ —t&* ta(z— y)guo(y)dy
27r

Here, we have
2 _ —_p 2
le-tg +i(z y)fuo(y)} =e % |uo(y)|

and
d d ~t€” = . —t¢?
/R S/R ye™ " Juo(y)l = fluolly /Re dE < 400

for ¢t > 0. Using Fubini’s theorem we obtain

u(z,t) = %/R{/l;e_te“(z‘y){dﬁ} uo(y)dy. (5.32)

™
In this way, we get the Gaussian kernel
1 2
Glz,t) = — | e % *=¢g
(218) = 5 [ e
]. 1z )2 2 6—22/4t 2
= — e‘t(‘f—ﬁ) d§ .e” % /4t = ——— e_tC dC
27 Jr 2r Jr

Using the path integral, where

:Im(¢) =-—=
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This path I is deformed as
Ta={¢-5|-0<¢<-R}U{-R+u|-Z <n<o}
U(E|-R<E<R}U{R+m|02n>-2]
u{g—;—t |R5§<+oo}.

We obtain from Cauchy’s integral theorem that

R
/ e d¢ = / et de + / et %) g
r -R €I>R

0 —z/2t
+/ e—t(—R-}-m)zdn + / e—t(R+117)2dn
—z/2t 0

R
_ / e de + I+ 11+ I11.
-R

It is not difficult to see that the terms I and III converge to zero as
R — 0o if t > 0 is fixed. Furthermore,

z2
ns [ et a0
EI>R

follows similarly. Thus, we have

/ —tCde /oo —t£2d§ 1 /oo e d
e = € = —= S.
R —00 \/Z —oo

/_ Z e dz = V7 (5.33)

In use of

we have

Glot) = e—z2/4t _ 1 1/2 _2/at
(Za )_ 2\/7R - 47l't € N

For this G(z,t), equality (5.32) is written as

u(x,t) = /RG(x — 1y, t)uo(y)dy.
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Fig. 5.1

Exercise 5.11 If the left-hand side is denoted by J, then it holds that

o0 oo
J? = / / e~ @+ gy,
—o00 J ~o0

Then, show (5.33) in use of the polar coordinate.

5.2.5 Semi-groups
In the n-dimensional case, the Gaussian kernel is given as
1\"? _ e
G(z,t) = (ZE) eml=l7/4t (5.34)

and the heat equation takes the form of
w=Au (@ER" ¢>0), ulo=uw(E) @R, (535

where A = 6%27 +--t 3%27 denotes the n-dimensional Laplacian and |z[2 =
1 n
22 +.--+ 22 for z = (21, --,2,) € R™. Under suitable assumptions to

u(z,t) and uo(z), it follows that
u(z,t) = / G(z - y,t)uo(y)dy (zeR"™ t>0). (5.36)
Rﬂ

In this sense, the Gaussian kernel (5.34) is called the fundamental solution
to (5.35).

In this expression of (5.36), G(z,t) > 0 holds for (z,t) € R™ x (0, +00).
Therefore, ug(z) > 0 for z € R™ implies u(z,t) > 0 for (z,t) € R" x
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(0,+00). This implies the order preserving property that ui(z) > uz(x) for
z € R™ implies u; (x,t) > ua(z,t) for (z,t) € R™ x (0,+00), where u;(z,1)
and ua(z,t) denote the solution to (5.35) with the initial values u;(z) and
uo(z), respectively.

More carefully, if uo(z) > 0 with up(z) # 0 for € R", then u(z,t) > 0
follows for £ € R™ and t > 0. In particular, even if ug has compact
support, so it is not true for u(-,t) with ¢ > 0. This means that the heat
equation (5.35) is lack of the finite propagation property. It also holds that
ui(z) > uz(x) and uy(z) # ua(z) for z € R™ imply ui(z,t) > ua(z,t)
for (z,t) € R™ x (0,00). This property is referred to as the strong order
preserving. Those properties are valid to the general parabolic equation
appropriately posed, although details are not described here.

The following fact is referred to as Hausdorff- Young’s inequality. The
proof is left to the reader.

Theorem 5.4 If f € L}(R") and g € LP(R™), the function

(P29 = [ Sa=voay
is well-defined for almost every x € R™ and it holds that

If*gll, < Iflly - lgll,s (5.37)
where p € [1,00].

We have for t > 0 that

n/2
1 it
IGC Dl = /R Gz, t)dz = (E) [ et

1 n/2 .
- (EZ) -(4t)"/2/ ey = 1

n
/ e WWdy = (/ e_szds) =2,
" R

Because of u(z,t) = [G(:,t) * up] (z), thus we obtain

luC, D)l < lluoll,
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for p € [1,00]. Writing u(-,t) = Tiuo, we have

”Tt“LP(Rn),Lp(Rn) <L

where the left-hand side denotes the operator norm. Thus, T; : LP(R") —
LP(R™) becomes a contraction mapping. Even if up € LP(R"™) is not con-
tinuous, u(x,t) = (Tiue)(x) is differentiable arbitrarily many times for
(z,t) € R™ x (0, +00). This property is called the smoothing effect.

On the other hand, by (5.27) we obtain

Tt o Ts = Tt+3 (t, s> 0), (538)

which is called the semi-group property and is proven directly if the unique
existence of the solution to (5.35) is established. In fact, we have

G(&,t) = [FG] (-, t)(6) = 7™
and hence
G(E,t) - GlE, 5) = e P+ = G(e, ¢+ 5)
follows. This implies
/ Gz —y,t)G(y,s)dy = G(x,t +5) (z€R™ t,s>0) (5.39)
Rn

and therefore, (5.38) is obtained.
Now we show the following.

Theorem 5.5 Ifpe [1,00) and up € LP(R™), then it holds that

ltilr(r)l (| Tuo — uoll, = 0. (5.40)

Proof. Letting G(z) = G(z, 1), we have
G(z,t) = t72G(z/ V)
and

wwt) = [ Glo-uu)r= [ Gt - iy

=¢/? /R _Gy/Vtyuo(z — y)dy.
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In terms of ¥’ = y/+/t, we obtain
wwt)= [ Gluole - Vig)iy
and hence
w(z, t) - ug(T) = /R _Gly)pr/h [Uo(fc ~Vty) - uo(w)] dy

follows, where p’ € (1,00] denotes the dual exponent of p. Therefore,
Hélder’s inequality guarantees that

[u(2,8) ~uo(a)] < (/R a(y)dy) "
‘ (/ LW ‘u"(z - Viy) - uo(x)’pdy) 1/,,,

which implies

/R" lu(z,t) — up(z)|P dz < /;t" dz /R" dyG(y) \uo(z —Vty) — uo(z) ?

=/RHG(y)dy{/Rn

- /Iy!<R Glu)dy {/Rn \uo(x - Viy) - Uo(x)'p dz}
* /mza G(y)dy {/Rn 'Uo(z - Vity) - uo(x)\p dz} . (5.41)

where R > 0.
The second term of the right-hand side of (5.41) is estimated from above

by
/ly|2R Cludy- 2 {/Rn ‘uo(x - \/Zy))p az /Rn |uo ()| dw}

— 271 g2 - / G(y)dy
lvIZR

uo(z — Vity) ~ uo(x)‘pdz}

because
(@ -+ b)P < 2P (aP + bP)

holds for a,b >0 and p > 1.
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On the other hand, the first term of the right-hand side of (5.41) con-
verges to 0 as t | 0. To see this, we note that

lim [uo(- + ) — woll, = 0

follows from ug € LP(R™) with p € [1,00), so that any ¢ > 0 admits § > 0
satisfying |luo(- + h) ~ uoll, < € if |{h| < 4. Thus, for t € (0,42%/R?) it holds

that
An

for any y € R™ in Jy| < R, and this term is estimated from above by

/ G(y)dy - P < £P.
lyl<R

uo(z — Vty) ~ uo(x) " dz < eP

This means that

lim G(y)d /
im [ cwa{[

up(x — Vity) — uo(m)‘pdz} = 0.

We have
limsup/ |u(z, t) — uo(z)|P dz < 2P+1 lluoll? - / G(y)dy
tl0 JR® lyI>R
and hence (5.40) follows. The proof is complete. O

Exercise 5.12 Prove (5.37) and (5.38).
Exercise 5.13 Prove the smoothing effect of T; : LP(R") — LP(R").
Exercise 5.14 Confirm that Theorem 5.5 is not valid for p = 0.

Exercise 5.15 Show that the Gaussian kernel G(z,t) converges to é(z) in
D'(R™) ast | 0.

5.2.6 Fourier Transformation of Distributions

If f = f(z) is differentiable infinitely many times in x € R", then it is said
to be rapidly decreasing if

9 k
Pko(f) = sup (1 + |z ) |D* f(z)} < +o0
z€R™
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for any non-negative integer k and the multi-index . Then the set of such
functions, denoted by S(R"), becomes a Fréchet space by {pk,}. We have
the dense inclusions P(R") C S(R™) C £(R™) including the topologies,
and hence

E'R™ c S'(R") c D'(R™)

follows. Each element in S'(R™) is called the tempered distribution. This
paragraph is devoted to the theory of Fourier transformation of tempered
distributions. The reader can skip it first.

If m(dz) is a Borel measure satisfying

/R,. (1 + |z|2) ~k lm|| (dz) < +o0,

then it is a tempered distribution, where ||m|| (dz) denotes the total varia-
tion of m(dzx).
The Fourier transformation on S(R™) is defined by

FENO=f©) = [ faet=da
with the inverse transformation
- = f() = i " 16z
F @ =0 = (55) [ r@eeede
Then, it holds that
Dg(Ff)=F((-x)*f)  and  EX(Ff) =F(DZf),

where

19\ 13\ o _ .o o
b= (i) (o) e wesem

for a = (01, -, 0n).

If T € S'(R"), then S(f) = T(Ff) determines an element in S'(R").
1t is denoted by S = FT and called the Fourier transformation of T. It
can be shown that the mapping F : §'(R™) — &’(R") is an isomorphism,
(FIT)(f) = T(F~f) for f € S'(R"),

D¢F(T) = F((-2)°T),  &*F(T) =F(D:T),
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and so forth. Also, this definition agrees with the usual Fourier transfor-
mation for L! and L? functions, and it is obvious that

F(6) =1 and F()=(2m)"s (5.42)

hold.
The convolution of ¢ € D(R™) and T € D'(R™) is given by

(T +p)(z) =Ty (p(z —y))-

Then, it follows that

Txpe C®R") (5.43)
supp (T * ¢) C supp T + supp ¢ (5.44)
D*(T xp) =T % D% = (D°T) * . (5.45)

The convolution T * p of ¢ € E(R™) and T € £'(R") is defined similarly.
Now, we note the following.

Lemma 5.2 We have (T * @) x4 = T * (p x ) for p,v € D(R") and
T € D'(R™). The same conclusion holds for o, € ER™) and T € E'(R").

Proof. In fact, we have
(o) 0) @ = [ Txp)a- vy
= / T: (p(z —y — 2)) Y(y)dy
-
- [ Lwweta-y- )

2. ([ oa-y- i)y
=T, ((g*¥)(x —2)) = (T * (px¢)) (z)

and the proof is complete. O

Here, we describe the following facts without proof. First, if T €
D'(R"), S € £'(R™), and ¢ € D(R™), we have S * p € D(R™) and hence
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T % (S * ) is defined. Similarly, S * (T * ¢) is well-defined, but actually we
have

T*(S+xp)=5x*(T=*y).

This quantity is equal to K * ¢ with the unique K € D'(R"), which is
written as K =T« S=S5*T.

Next, if T € £'(R"), then F(T') is extended to an entire function in C"
with the property that

F(T)(C) = Tu(e™*=¢) for (eC™
IfT, S € &(R™), then
F(T xS)=F(T) - F(S)
follows. Finally,
T*x6=6xT=T

for any T € D'(R™).

The theorem of Malgrange and Ehlenpreis assures that any partial dif-
ferential operator P(D) with constant coefficients admits the fundamental
solution E € D'(R™) so that P(D)E = ¢ holds in D’(R"™). This means that
u = E * f solves P(D)u = f for any f € D(R™).

The following process is called the regularization.

Theorem 5.6 For ¢ € C°(R™) satisfying
>0 and / p(x)dzr =1,
Rn

let p. = e "p(x/€) for € > 0, and take T * . € C°(R™) for T € D'(R").
Then, it holds that T * p. — T is x-weakly in D'(R™), which means the
pointwise convergence so that

(T * ) (¥) = T(¥) (5.46)
holds as € | 0 for any ¥ € D(R™).
Proof. If S € D'(R™) and ¢ € D(R™), then we have

S(¥) = (S *9)(0),
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where )(z) = ¥(—x). Then, it holds that

(T+ () (O)
T ((pe + 9))

(T*p)(®) = (T x9)x$) O

and
e * P — P in D(R"™).
Thus, we obtain (5.46) as

(Txp)®) - T (¥)) =T()
and the proof is complete. 0
Exercise 5.16 Show that LP(R"™) C S'(R") for p € [1, 00].
Exercise 5.17 Confirm that (5.42) holds true.
Exercise 5.18 Confirm (5.43), (5.44), and (5.45).

Exercise 5.19 Show that T x ¢ € S'(R™) N E(R") is well-defined for T €
S'(R™) and ¢ € S(R™). Show also F(T * ) = (Fy) - FT.

5.3 Potential

5.3.1 Harmonic Functions

Function u(z) satisfying Au = 0 in a domain 2 C R" is said to be harmonic
there. It is a fundamental problem in mathematical physics to solve

Au=0 in Q, u=f on 09, (5.47)

where (2 is a bounded domain and f(£) is a continuous function on its
boundary 0Q2. Actually, we have the following theorem for the Dirichlet
problem to harmonic function, (5.47).

Theorem 5.7  Problem (5.47) admits the solution u € C%(Q) N C(Q) for
arbitrary given f € C(0Q) if and only if any point on 8Q is regular.

Here, the boundary point £ € 0 is said to be regular if it has a barrier
w(z). This means that w(z) is continuous on Q, super-harmonic there,
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positive in Q \ {¢}, and is equal to zero at x = ¢ Furthermore, super-
harmonicity of the continuous function w(z) is defined through the mean
value property,

f w>w(zo) (@€, 0<r<l). (5.48)
aB(:to,T)

It is actually equivalent to Aw > 0 in Q if w(z) is twice differentiable.
Remember that B(zg,r) denotes the open ball with the center zo and the

) 'w, y )

If u € C%(9) N C(Q) satisfies (5.47), then it is called the classical solution.
A sufficient condition for the regularity of boundary point is the outer
circumscribing ball condition.

Theorem 5.7 is proven by Perron’s method. First, sub-harmonicity for
continuous function w(z) is defined by the reverse inequality of (5.48).
Then, we take

S(f) = {ve C(Q) | vis sub-harmonicin @  and v < f on 8Q}

and set

u(z) = sup {v(z) | v € S(f)}.

It is proven that u(z) is harmonic in © and furthermore, if £ € 051 is a
regular point, it holds that
im u(@) = 7).

Rough description of this theory is as follows. First, we have poten-
tial and the Kelvin transformation. In use of those, we can represent the
solution to (5.47) by the Poisson integral in the case that Q is a ball. By
this we get mean value theorem and the Harnack inequality to the harmonic
function, which imply weak and strong mazimum principles and the Har-
nack principle, respectively. Then, the method of harmonic lifting and the
notion of barrier settle down the problem.

Here, likely to the complex function theory, the integral formula induces
every notion but the idea of lifting from sub-solutions is nothing but that
of real analysis. This beautiful theory has a vast background.
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Henceforth, the harmonic function is supposed to be C? in the domain
Q in consideration. If A is taken in the sense of distribution, this notion is
extended to D’($2). However, Weyl’s lemma guarantees that any harmonic
distribution is regarded as a harmonic function, and furthermore, any har-
monic function is real-analytic, which means that it is represented as the
Taylor series around any point in . Such a property is generally called the
regularity.

Exercise 5.20 Suppose that the outer circumscribing condition holds at
€ € 8%, as there is a disc B # @ such that BN Q = {¢}. Then show that

_[ R — -yt (n23)
w(z) = { loglz —y| —logR (n=2)

is a barrier at £, where B = B(y, R).

5.3.2 Poisson Integral

For the moment, we are concentrated on the two-dimensional case and make
use of the complex function theory, identifying R? with C, the complexr
plane, that is z = (z1,z2) € R? is identified with Re f = u. In fact, we
have the following theorem.

Theorem 5.8 If Q) C R? is simply connected and (real-valued) u(z) is
harmonic in Q, then there erists a holomorphic f(2) in z € Q such that
Re f = u.

Here, f(z) is unique up to an additive pure imaginary constant. Even
if © is not simply connected, such f(z) is taken locally, thus can be an
analytic function in Q in this case. In this way, harmonic functions are
associated with the complex function theory in the two space dimension.

Here, we wish to confirm that any harmonic function is taken to be
real-valued henceforth. Let u(z) be harmonic and continuous in |z| < R
and |z| < R, respectively, and take a holomorphic function f(2) in |z| < R
satisfying Re f = u. Then, Cauchy’s integral formula guarantees that

R (9]

%)= 2me Jigl=p § — %

¢ (lzl <p),
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where p € (0, R). We take the mirror image of z = re* for r € (0, p) with
respect to the circle |(] = p, that is, z* = p%e*® /r. Then, we have

1 f)
T om /lCl=p (—z* &«
by |2*| > p. This gives that
0y _ L { 1t 1 } d
foe) = gn | s0{e -

1 1 1
= 2—7” cl=p f(C) {C — reil - C — P2619/7‘ } d(

Thus, putting { = pe'?, we obtain

10\ _ 1 21rf 18 1 1 }Cd
f(re )_5‘7; 0 (pe ){C—Telo_'c_pZElo/'r <p

by d¢ = 1pe**dyp. Here, we have

1 1
(e~ e )¢
_ 7"610 p26z9/r
- {H C—Te"’}_ {H C~p2e“’/r}

_ r _ p2/r
- pel(‘P—e) s pe’(‘P—o) - pZ/r
— r _ P
- pe’l(‘l’—e) —_—T re’t(‘l’—o) —-p
T (pe_"'(‘P_e) — T) P (Te_z(‘p"e) —_— p)
© p2—2rpcos(p —0) +712  r2 —2rpcos(p — ) + p?
p?—r? L

p? —2prcos(p—0) +12  p? —2prcos(d — ) + 712’

and hence
p? — 12

d
— 2prcos(8 — @) + 12 4

1 27
$re) =50 [ foe)

follows. Taking real parts of both sides, we get that

2T ,02 —r2
= w d
2 /0 u(pe )p2 — 2prcos(8 — ) + r2 14

u(re?)
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for 0 <7 < p < R. Letting p T R, we obtain Poisson’s integral formula.

Theorem 5.9 Ifn =2 and u(z) is harmonic and continuous in |z} < R
and |z| < R, respectively, then it holds that

R2—T'2

1 27
L AN (1
uw(re*) = o /0 u(Re )R2 g S B g do (5.49)

for0<r<R.

Equality (5.49) gives the mean value theorem,

1 2n
w(0) = — / w(Re®)dop. (5.50)
2n 0
In the case of u(Re¥) > 0, this gives that
R - |z| R+ |2
< < —
o lZlu(O) <u(z) < o IZlu(O)
by
R-r R? —r? <BR+r

< .
R+r~ R2—-2Rrcos(0—p)+7r2 ~ R—7r
In particular, Harnack’s inequality
1
gu(O) < u(z) < 3u(0) (Jz] < R/2) (5.51)
holds true.
We now show that the strong mazimum principle.

Theorem 5.10 Any non-constant harmonic function defined in a domain
Q C R? cannot attain the maximum or the minimum there.

Proof. It suffices to show that the non-constant harmonic function u(z)
in Q cannot attain the maximum. Suppose the contrary, that there exists
2o € 2 such that u(z) < u(zp) for any z € Q. Then, we apply the mean
value theorem that

][ uds<m= max u
8B(zo,R) 9B(zo0,R)

This implies that ¥ = m on 8B(2p, R) and hence near zp, because 0 < R <
1 is arbitrary. This means that the non-empty set

{z € Q| u(z) =m}
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is open. Obviously it is closed and hence coincides with €2 from its connec-
tivity. Thus, u(z) is identically equal to the constant m, and the proof is
complete. O

The strong maximum principle implies the weak mazimum principle
indicated as follows.

Theorem 5.11 IfQ C R? is a bounded domain, u(zx) is harmonic in Q,
and is continuous on Q, then it holds that

SUp ¥4 = mMax u.
0 an

A general form of Harnack’s inequality is given as follows.

Theorem 5.12 IfQ C R? is a domain and E C Q is a bounded closed
set, then there is K = K(Q, E) > 0 such that any non-negative harmonic
Junction u(z) in Q admits the inequality

supu < K inf u. (5.52)
E E

Proof. Because E is compact, it is covered by a finite number of discs
with the radius R > 0, where

0 < R<dist(E,00)= _inf dist(z,y).
yEIN

z€E,

This means that there is an integer m and z,,-- -, 2z, € E such that
E cUZ,B(z,R/2) C Q.
Therefore, inequality (5.51) guarantees that
Fu(2) < u(z) < 3u(2)

for z € B(z;,R/2) and i = 1,-- - ,m. However, any w; € E can come to the
same disc to which any wy € E belongs, and hence

3™ u(wr) < 3™ u(ws)
follows. This implies

3 ™supu < 3™infu,
E E
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or (5.52) with K = 32™. O
Inequality (5.52) implies the following theorem, indicated as the Har-

nack principle.

Theorem 5.13  Let {ur(z)};o, be a sequence of harmonic functions in
the domain Q@ C R2?, monotone non-decreasing at each point, and bounded
at some zo € Q0. Then, there is a harmonic function u(z) in Q such that
ug(z) — u(z) locally uniformly in z € Q, which means that its convergence
is uniform on any compact set in .

Proof. The function uj1(z) — ux(z) is non-negative and harmonic in
and hence any compact set F C 2 containing 2o admits K > 0 such that

0 < ugy1(2) — ur(2) < K {ugs1(20) — ur(z0)}

holds for z € F and k = 1,2,---. From the assumption, we have

> {urs1(20) — ur(20)} < +o0.

k=1
This implies that

o0
> {urs1(2) — wk(2)} < +oo
k=1
uniformly in z € E. We get the limiting function
o0
w(z) = lim uk(z) = uy(z) + Z {ug+1(2) — up(2)}
k—o00
. k=1
with the convergence uniform in E. Because E is arbitrary, this convergence

is locally uniform in Q. We get u € C(Q).
On the other hand, ux(z) is harmonic in Q and hence we have

R2 _ ,,.2
do
R2 — 2Rr cos(0 — ) + 12
for z; € Q and 0 <r < R <« 1. Letting k — 0o, we have
RZ _ ,,.2
de.
R? — 2Rrcos(0 — ¢) +r?

This implies that v = u(z) is continuously differentiable twice and is har-
monic in €. O

1 2
ug(z1 +re¥f) = ﬁ/ ug(z1 +re*?)
0

1 27
u(zy + re) = 5-‘;/ u(2z; + Re*¥)
0
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Exercise 5.21 Prove Theorem 5.8 in use of Cauchy-Riemann’s relation and
the path integral.

Exercise 5.22  Derive the uniqueness of the solution to the Dirichlet prob-
lem for harmonic function in use of the weak maximum principle.

5.3.3 Perron Solution

Real-valued continuous function u(z) defined on the domain Q C R? is said
to be super-harmonic if

u(z) > ][ uds
J9B(z,R)

holds for any z € @ and 0 < R « 1. Similarly to the case of harmonic
function, we can prove that non-constant super-harmonic function cannot
attain the infimum in interior. If —u(z) is super-harmonic, we say that
u(x) is sub-harmonic. Then, non-constant sub-harmonic function cannot
attain the interior maximum. Thus, we can say that a continuous function
is harmonic if and only if it is sub- and super-harmonic.

Let @ C R? be a bounded domain, and suppose that the Dirichlet
problem (5.47) has a solution u € C?(Q2) N C(R), where f € C(8%). In this
case, if v € C(Q) is sub-harmonic in  satisfying v < f on 8, then the
function v — u € C(R) is sub-harmonic in Q and v — » < 0 holds on 8.
Therefore, the weak maximum principle guarantees that v < u on €. This
means that u(z) attains the maximum of v(z) in v € S8(f), where

S(f) = {v e C(Q) | sub-harmonic in ©, v<f on 9Q}.
This observation leads us to the Perron solution to (5.47),
u(z) = sup {v(z) | v € S(f)} (5.53)

for each z € Q.
Henceforth, the Poisson integral P(f) of f € C(dB) is defined by

1 27 R2 _ ,,.2
—_ 1
(P£)(z) = 27 Jo f(zo + Re )R2 —2Rrcos(8 — )+

4o,

where B = B(zp,R) and z = zp + re® with 0 < r < R. The following
theorem is a counterpart of Theorem 5.9, and the proof is left to the reader.
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Lemma 5.3 For f € C(9B), it holds that Pf € C(B) N C*(B) and
A(Pf) =0 in B.

We shall show that u(z) defined by (5.53) is harmonic in Q. This is
proven by showing that each element in S(f) can lift up as a harmonic
function on any disc contained in Q. The following lemma indicates that
S(f) is soft enough to make such a process closed.

Lemma 5.4 Given B = B(z, R) satisfying BcCQandveS, we take

[ (PH(z) (2=2 +re?)
w@={ {09 CiN

for f = vlgg. Then, it holds that vp € S(f).

(5.54)

Proof. From Lemma 5.3, we see that vg defined by (5.54) is continuous
on Q. Because vg < f on 99 is obvious, we shall show that vg is sub-
harmonic in Q. Let us put w = vp for the moment. We only have to show
that

wp(z) = w(z) (5.55)

holds for any z €  and for any disc D satisfying D C , for that purpose.

In fact v(z) is sub-harmonic and hence the weak maximum principle
guarantees w > v in B, and hence w > v holds on Q. This implies that
wp > vp in . On the other hand, we have vp > v in Q similarly, and
hence

wp = Up 2V (5.56)

follows in . If z ¢ D, then wp(z) = w(z) holds. If z € B, then v(z) =
vg(z) = w(z) and hence wp(z) > w(z) follows from (5.56). Therefore, we
have only to take the case that z € DN B.

In fact, we have v = vp = w on BN D and wp = w on DN B, so that
wp 2> w holds on 8(D N B) by (5.56). However, both wp and w = vg are
harmonic in D N B, we get that wp > w in D N B by the weak maximum
principle. Thus, we obtain (5.55) in 2, and the proof is complete. a

The function vg defined by (5.54) is called the harmonic lifting of v on
B. The proof of the following lemma is also left to the reader.

Lemma 5.5 Show that if the continuous functions v and w are sub-
harmonic in €2, then so is max {v,w}.
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Now, we show the following.
Theorem 5.14  The function u(z) defined by (5.53) is harmonic in Q.

Proof. We note first that —m € S holds for a constant m >> 1 satisfying
—m < f on 0N and hence S(f) # 0 follows. On the other hand, the weak
maximum principle guarantees for v € S(f) that

<
v(z) < r%%xv < né?zxf < 400
and hence
u(z) = sup{v(z) | v € S(f)} < +o0

holds for each z € §}.
We take B = B(y,R) in B C Q, and {v;} C S(f) such that v(y) /
u(y) as k — oo. If we take 0y (k=1,2,---) as

U1 = vy, D9 = max {vy,v2},

then it holds that {7z} C S(f) by Lemma 5.5 and also 9x(y) = vk(y) /
u(y). Thus, we may suppose that {v;} is non-decreasing at any point in €.

If Vi = (vk)B denotes the harmonic lifting of vi(z) on B = B(y, R),
then {Vi} € 8(f) is non-decreasing at any point in 2. Furthermore, Vj is

harmonic in B and the weak maximum principle guarantees vy < Vi in Q.
This implies

u(y) <Vily) —  uly) <+oo (5.57)
from vg(y) — u(y) and (5.53). The Harnack principle, Theorem 5.13 is

applicable, and we have a harmonic function v(z) in B such that V}, — v
locally uniformly in B. If v = u is shown to hold in B, then u(z) is harmonic
in B. Thus, it is harmonic in Q because B is arbitrary.

For this purpose, first we note that V; < u holds in @ by (5.53). This
implies

v<u in B.
On the other hand, relation (5.57) gives that
v(y) = u(y).

If there is z € B satisfying u(z) > v(z), then we have 4 € S(f) such that

u(z) > a(z) > v(z).
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Let wy = max {vk, @} for {vi} taken previously. It holds that {wx} C S(f)
and is non-decreasing in §2. Take, furthermore, that Wi = (wi)p. Then,
similarly to the case of {Vx}, we have a harmonic function w in B such that
W, — w locally uniformly in B and W (y) — u(y) = w(y). Here, we have
wy, 2 v, and hence Wy, > V. in €2, which implies that

w>v in B.

On the other hand, we have w(y) = u(y) = v(y) and hence the strong
maximum principle guarantees that w = v in B. This implies w(z) = v(z).
On the other hand, we have

wg > U in Q,

and hence wy(z) > @(z) holds. This implies w(z) > @(z) > v(z), a contra-
diction. O

Exercise 5.23 Give the proof of Lemmas 5.3 and 5.5.

5.3.4 Boundary Regularity

Remember that ¢ € 89 is said to be a regular point if there is a barrier
w(z), which means that w € C(f) is super-harmonic in €, w(¢) = 0, and
w(z) > 0 for x € O\ {¢}. Now, we shall show the following.

Theorem 5.15 If f is continuous on 9 and any point on O is reqular,
then the Perron solution u(z) defined by (5.53) is continuous on Q and
satisfies u|yq = f.

Proof. We shall show that if £ € 9Q, {z} C Q, and z — &, then
u(z) — f(&) follows. In fact, because f is continuous on 95, we have
M = maxaq |f| < 400, and any € > 0 admits § > 0 such that |z — &| < 6
for x € 0 implies |f(z) — f(&)| < €.

There is a barrier, denoted by w(z), at {. Because w € C(Q) and
w(z) > 0 for z € 0\ {¢}, we have k > 0 such that

kw(x) > 2M
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holds for z € 9Q in |z — £| > §. Furthermore, w(z) is super-harmonic in Q
and hence

vi(z) = f(§) — & — kw(z)

is sub-harmonic in £ and is continuous on Q. If z € 6N satisfies |z — ¢| < 6,
then

vi(z) f(z) + (f(§) — f(z) — &) — kw(x)
< fl=)
follows. On the other hand, for z € 9% in |z — £| > 4, it holds that
vi(z) < f(§) —kw(z) < f(§) -2M
< —-M < f(z).
We obtain v; € S(f) and hence u > v; holds in Q.
Now, we take
va(z) = f(&) + € + kw(x).

1t is super-harmonic and continuous in £ and on £, respectively. Similarly,
we can show that vy > f on 9Q. Any v € S(f) is sub-harmonic in
and satisfies v < f on 09, and therefore, it follows that v < v, in  from
the weak maximum principle. Hence we obtain u < v, holds in € because
v € S(f) is arbitrary.

Those relations are summarized as

lu(z) = f(&)| < &+ kw(z)
for z € . Because of w € C(Q) and w(€£) = 0, it holds that

limsup |u(z) — f(&)| <e.

T€EQ—E

Here, € > 0 is arbitrary, we have

u(z) = f(£)

lim
TEN—-E

and the proof is complete. a

Exercise 5.24 Confirm that if the Dirichlet problem (5.47) has a solution
u € C3Q) N C(Q) for any f € C(0N), then any point on IS} is regular.
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5.3.5 The Green’s Function

If @ C R? is a bounded domain, the function G(z, z) defined for (z,zo) €
0 x Q is said to be the Green’s function, if, as a function of z, it is harmonic

in \ {Zo},
1
K(z,zo) = G(z,70) + Dy log [z — zo|

is harmonic in a neighborhood of zg, and limzeq_.¢ G(z, zo) = 0 for £ € A1
The Green’s function exists if any boundary point of 0 is regular, and is
unique if it exists.

If r > 0 is small and |z — zo| = 7, we have G(x, o) > 0 by the second
requirement to G(z,zo). Therefore, G(x,z0) > 0 for z € Q \ B(zo,7)
from the third requirement and the maximum principle. Because r > 0 is
arbitrary, we have G(z,xo) > 0 if x € Q\ {zo}. Therefore, it holds that

9G(¢§, zo)

<0
61/5 -

for £ € 09 if the left-hand side exists, where v = v¢ denotes the outer unit
normal vector.

The following theorem is the generalization of the Poisson’s formula
(5.49).

Theorem 5.16  If 0 is C? and u(z) is harmonic and continuous in
and on 2, respectively, then it holds that

u(z) = - /a ) u({)é—q{%’z—)d& for  zeQ, (558

where dSg denotes the line element.

Proof. In use of Green’s formula (1.28) in Q \ B(zo, p) with small p > 0,
we have

0G(z, )
/ 9G@.z0) yo [ OC@ ) 4o o,
aB(zo,p)

ov 80 v

Now, we have, again by (1.28) that
oG
L (woFED - cen ) as
8B(z0,p)

o[ (we2 G(E’ - 6ie0%2) as o
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We have for € 8B(xp, p) and 7 = p that

1 1
G(z,zo) = o log -t K(z,xo)

and

8G(z,z0) _  0G(z,z0) _ 1  0K(z,o)
ov - or T 27 or

and hence the first term of the left-hand side is treated as

bt (O3 O

2 1 0K
_ 10 T
B /o [u(z +re”) (27rr or )

1 1 du(z + re'?)
+ (—2;10g ; + K) T T—ppdo — u(x)

as p | 0. Then, (5.58) follows because G(§,z¢) = 0 for £ € 0R, and the
proof is complete. O

The privilege of the use of the complex function theory is the relation
between Riemann’s mapping and the Green’s function. Actually, we have
the following, where a domain surrounded by a Jordan curve is called the
Jordan region.

Theorem 5.17 Let w = f(z) be a conformal homeomorphism between
the domains D and Q, and G(w,wq) the Green’s function on Q. Then,
Gp(z,z0) = G(f(z), f(20)) is that on D.

Proof. First, if u(w) is harmonic in ©, then v(z) = u(f(z)) is so in D.
Thus, we have only to show that Gp(z, z) satisfies the second requirement.
In fact,

1
G(w, wp) + 5 log {w — wp|
is harmonic at w = wy € 2, and it holds that

GD(z,zo)+%log|z—~zo|
f(z) f(Zo)_

zZ— 2

= GUF(2), F(z0)) + 5= loB1(2) — £(z0)] -
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The last term of the right-hand side is also holomorphic at z = 2z by
f'(z0) # 0. The proof is complete. O

Exercise 5.25 Show that the Green’s function on the unit disc D : |z| <1
is given by

1—Z292

1
G(z,z0) = oy log Z— 20

with z = T1 + 1x2 and zg = To1 + 1Tog for = (z1,z2) and zo = (To1, To2)-
Then, apply Theorem 5.17 and show that the Green’s function on the Jor-
dan region  is expressed as

1 - f(z0)f(2)
f(z) - f(zo)

where f : @ — D denotes the Riemann mapping, that is, a conformal
homeomorphism.

1
G(z,xq) = o log

?

Exercise 5.26 Confirm that if f: D —  is a conformal homeomorphism
and u(w) is harmonic in €, then so is v(2) = u(f(z)) in D.

5.3.6 Newton Potential

We have seen that the theory of two-dimensional harmonic functions are
based on the expression of the solution of Dirichlet problem on the disc,
the Poisson integral. The function log|z| is a two-dimensional harmonic
function in = # 0, because it is the real part of the analytic function log z.
It depends only on r = |x|. Now, we shall seek such harmonic functions in
higher dimensions.

Let n be the space dimension. For that purpose, we take the polar
coordinate £ = rw € R™ with r = |z| and w € S"~! = {x e R" | |z| = 1}.
In this case, it holds that

52 82

-
_ 9 m-18 1
T 92 r or r?

1 3,0 1
= e () TRt
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where A denotes the Laplace-Bertrami operator on S™~1. In the case that
n =2and z1 = rcosy, zp = rsiny with ¢ € [0, 2r) are taken, then it holds
that A = a .Ifn=3and zy =rcosf, zo =rsinfcosy, T3 = rsinfsing
with 6 € [0 ], @ € [0,27), then we have

A= ——1 _8_ in 6 — o 1 >
=560 \*""36) " sin?0 097
If T' =T'(Jz|) is harmonic, then
1 8 (a0l _,
rn=1 gy ar

and it follows that ['(r) = ¢;7~"*?+¢; for n > 3, where ¢y, c2 are constants.
We take

M(e) = 5= "

where w, denotes the area of S ! so that it is equal to 22™/2/y(n/2).
Here, 4 indicates the Gamma function:

o0
7(z)=/ e *s*1ds.
0

In the case of n = 3, we have the Newton potential,

1

I(z) = —m.

Generally, AT = 0 for x # 0. The singularity at x = 0 of I' is important.
Suppose that u € C%(B) is harmonic in B, where

B={zeR"||z| <1}.

We take z € B,0 < e < 1, and @ = B\ B(z,¢). If v and dS denote the
outer normal vector and the area element on JQ, respectively. In use of
Green’s formula, we obtain

/Q (Buly) -T(z - ) — u(y) A, T(z — y)) dy

= /a . (%(y)r‘(x -y)— u(y)%(x - y)) ds,. (5.59)
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The left-hand side vanishes because Au(y) = A,I'(z —y) = 0 for y € .
The right-hand side is divided into f55 + [3p(, - Here, we have

[ TG-S, < Vvl [ P -2lds,
8B(z,c) BVy ly—z|=¢
1 2—-n n—1
= ”VU”Lm(B) ) m (€T T wné
€
= ||Vu”L°°(B) ’n,_——i — 0.
On the other hand -5% = ——‘% on 8B(z,¢) for p = |y — x|. Hence we obtain

or
u(y)=—(x — y)dS
/3 IR Or AR

= _1_.._ . - _ 1-n _
B /BB(z,E) u(v) wn(2 —n) 2-n)lz -y " (-1)dS,
1 / ][
T T et dSy = - u(y)dSy — —u(z
wnsﬂ—l 8B(ze) U(y) Y 8B(z,¢) ( ) v ( )

as £ | 0. Those relations are summarized as

for z € B.
The mirror image with respect to dB is associated with the Kelvin
transformation as follows.

Lemma 5.6 Ify = z/|z|° and U(y) = |z|* *u(x), then it holds that
AU = |z Agu.

Proof. We take the polar coordinate z = rw. This implies y = r~'w and
hence for p = r~! that

1 0 10U 1
U = ——
By pn~1 0p (p Bp)+ P
= -t <p"‘1y) 24t AU
op/,

= e () -rz)r 24?2 A (")
= pntl(pont3 (r"_zu)r)r +r"Au

= ™ (ru, + (n - 2)u), + r"Au
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= ! (rup + (n— Du,) +r"Au

n —
= pnt2 (urr + ur> +7r"Au
1 1
— n+2 n—
= gt {rn—1 (7‘ lur)r + r—zAu}
This means the conclusion. O

Now, we take

r2(y) =T (il (= - v/ Wl*)) -

For z =y/ (y|2, it holds that

=|z|"*I'(z - 2).

Namely, I'* is the Kelvin transformation of I'(z — -). Thus, we obtain from
Lemma 5.6 that

A = 2" ATz —-2) =0

for z # z. If z,y € B, then z ¢ B and hence = # z. Therefore, ['* is
harmonic on B. Replacing T by I'® in (5.59), we obtain

Ou (. \p= or* ~
/(;B {b?(ll)f‘ (y) — uly) ors (y)} dS, =0

for (5.60). Here, if y € 8B, then z = y and hence I'*(y) = I'(z — y) holds.
This implies

ou or=
[ {zore-v-wi-w}as,=o G
Equalities (5.60) and (5.61) imply
or or=
o= [ S e-n-Gwfuis,.  6o)

It is valid for w € C%(B)N C(B) with Au = 0 because then we take B(0,7)
for B = B(0,1) and making r T 1 after deriving an analogous equality.
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Thus, the Poisson integral is given as follows if n > 3, where

P(z,y) =

is called the Poisson kernel.

Theorem 5.18 If u € C?*(B) is harmonic and continuous in B and on
B, respectively, then it holds that

we)= [ Pyuwds, (@eB)

Proof. In fact we have

or

a—z]_(m)
o°T

sz B:Ek

(z)

or
gy"(x -y) =

A Iyl By,

DRSO S o 7)
j:1| | wn Jz—y* ! |z-yl
1.1 y-2

wn Yyl Jy-2l

On the other hand, for p = |z| = 1/r with z = y/ |y|2 we have

ore
ary (y) -

at p = 1. In use of (5.65),

—(p" I (z - z))p 72

—(n—-2(x—-2z)— aipl"(x ~2)

we see that the right-hand side is equal to

|2—n —_—.

'Z - ZII' Wn B Wn

(5.63)

(5.64)

(5.65)

1 (y,y-1z)
ly — z|"
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by p = 1. Thus, we get

ar ors 2y,y —z) —ly -z
a,ry (:E y) ary (y) - Wn |y _ x|n
wt+zy-2) _ -l
wn ly —z|" wn |y — 2"
and hence (5.63) follows. a

Similar formula to (5.63) holds on B = B(zo, R) with P(z,y) replaced
by

R2 — Il‘ ot 1110'2

wn |y —=|"

P(z,y) =

We can reproduce the arguments in §§5.3.2, 5.3.3, 5.3.4, such as mean value
theorem, maximum principle, Harnack’s inequality, Harnack principle, sub-
and super-harmonic functions, Perron solution, harmonic lifting, and bar-
rier. Thus, Theorem 5.7 holds true.

Exercise 5.27 Seek all eigenvalues and eigenfunctions of A for n = 2.
Then, give the answer to the same problem for n = 3 in use of the Legendre
function.

Exercise 5.28 Confirm (5.64).

5.3.7 Layer Potentials

Here, we take a different approach to (5.47), the layer potential, supposing
that the bounded domain © C R3? has the smooth boundary 6. Taking

1
F(Z) = m,
we say that
o) = [ - nds, (5.66)
and

w@)= [ ST - mds, (5.67)
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the single layer integral and the double layer integral of f € C(0%), re-
spectively, where v denotes the outer unit normal vector on 9. We note
that both v(z) and w(z) are harmonic in R?\ 8Q. We shall show that the
normal derivative of the single layer integral E%U(m) and the value itself
of the double layer integral w(z) take gaps across 02, and that those gaps
reduce the Neumann and the Dirichlet problems for harmonic functions in
Q to some integral equations on 9. Actually, the kernels T'(- — 1) and
%I‘( —n) of those integrals are called the single layer potential and the
double layer potential, respectively.

First, we note that the double layer potential has weaker singularities
on the boundary. In fact, given zo € 91, let us take n — ¢ in 5 € 9.
Then, it holds that

To—"
|zo — 7l

vy — 0

and hence

m —
!zz_z"‘/n=0(|’7—xo|) (n € Q2 — z¢ € 8Q)

follows from the smoothness of Q. This implies

0
é—uzr(xo —n) =y Vol'(zg — 1)

1 To—1 -1
- _ . vy =0 (|n— . (5.68
prrmmr A Frm i (In-2l™). (5.68)

On the other hand, in use of the polar coordinate 7 = ¢ + rw with
T = | — zo|, we have

dS, = rdrdw (5.69)

near 7 = To € 9§, so that the double layer integral w(z) converges even at
each z = z¢ € 0f).
Now, we show

5 -1 (zeQ)
/ 5, L@~ n)dS, = -1 (zeo0) (5.70)
a0 Oy 0 (zeQr).

In fact, if x € §2¢, then



Potential 225

holds for 7 € Q. Then, from Green’s formula we obtain

0
/an a—y'r(.’L‘ - ’I’])dS-,, =0.

n

In the case of z € , we take £ > 0 sufficiently small and note that

AT(z-n)=0
holds for n € Q \ B(z, ). Then, it follows that
a 0
—I(z —n)dS, = -—/ —TI'(z — n)dS,
| re—nds, DS,
a
= —TI'(z — n)dS
/aB(z,e) or ( !
for r = |y — z|. Therefore, similarly to the case of §5.3.5 we have
0 1 1
—T(z — 7)dS, = —— = - &2dw = -1, 5.71
~/33(I,€) or ( ) 7 4r jwl=1 g2 ( )

and hence
JRL -
an Oy 1%

follows for x € Q. Finally, if z € 99, we take small £ > 0 and deform 9%}
as

89, = [0Q N B(z,)°| U [2N BB(g,¢))].

Because z is on the outside of €)., we have

o
—I(z~n)dS,=0 (5.72)
| 55T =nas,
by Green’s formula. On the other hand, it holds that
o] ]
—7T'(z - )dS, = lim —TI'(z - n)dS
/n Ovy (e = mdSy =3 80\B(z,¢) In !
by (5.68) and (5.69), and that
]
/ —a—-I‘(m ~n)dS, = —/ —TI(z - n)dS,
B0\ B(z.e) OV 8B(z,e)n0 Oy

0
—TI'(z — n)dS
/c';B(:c,e)r'\Q or ( ) K
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by (5.72). Similarly to (5.71), we can derive that

17 1
I 2 (@ —n)dS, = —=,
e10 8B(z,c)nn OT (= = m)dSy 2

and hence

0 1
—I(x—1n)dS, = —3
/maun (&~ n)dS, =~

follows for x € 8. In this way, we have proven (5.70).

From the extension theorem of Tietze, the continuous function f(zx)
defined on A9 has a continuous extension near <, denoted by f (x). In
use of the regularization process, this f (z) is approximated uniformly by a
family of Holder continuous functions. If f(z) itself is such a function from
the beginning and z¢ € 09, then we can show that the function

E@) = [ (f(n) - f(ao) 8—?,;1‘@ — 1)dS,

defined for z € R? is continuous at z = xy.
In fact, we split E(z) as

53]
B@) = [ (f0) - f@) 5T - n)dS,
an Ovy
15]
+(f@) - fao)) [ Tl - m)ds,
an Ovn
for this purpose, and apply (5.70) to the second term. This implies that

)(f(z) ~ ) [ a—i;l*(x _n)dS,| < |f(@)  Fzo)| — 0

as £ — o in R3. Furthermore, we have for € R® and 5 € 6Q that
0 -
() = () 5T =) < M e 0|2
Vn
with the constants M > 0 and @ € (0,1), and it holds that

lim lx — nl_2+0 s, = / |zo — 7|~ 2F° as,,.
a0

r— o o0
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This gives

) o
mnAJﬂm—mmgzwwmw&

r—To
0
= [ ()~ $(o0) porTeo = m)iS, = Bizo)
N Uy
from the dominated convergence theorem, and therefore,
Jim E(z) = B(zo)

holds true.
On the other hand, we have from (5.70) that

E(z0) = w(zo) + -;-f(wo)
and

_ [ w@)+fx) (ze)
Efz) = { w(z) (z € Q°).

This gives for z¢ € 2 that

w (o) = _lim w(z) = E(z0) — (o)

TEQN, z—x0
1
= w(zo) — ‘Z'f(-’ﬂo)
and

w* (x0)

I

lim Ow(ar:) = E(xy)

T€ENC, z—x
1
= w(zo) + 3f(z0).
We have proven the following.

Theorem 5.19 If f(n) has a Hélder continuous extension near o5, then
the double layer integral w(z) defined by (5.67) satisfies that

wr (o) = w(zo) %f(xo) (5.73)
for o € 0, where

- - i
w™ (zo) zen,nalc]—»zow(z)
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and

+ — .
(.’L'o) - meﬂll,na}—m:o 'I.U(ZL')

w

The single layer integral
v(n) = / f(mT(z — n)dSy
a0

is easier to handle, because I'(z — ) = O (|:c - nl_l) holds for z,7 € R3.
This implies for an open set U containing 0 that

sup/ Iz —n)dS, = M < +o0. (5.74)
z€U J 8N

Then, we can show that
F@= [ ()~ fea) T —n)dS, — Flz)  (579)
N

follows as £ — zo in R3 if z € 8Q — f(z) is continuous at z = zo € 9.
In fact, from the assumption any £ > 0 admits § > 0 such that

1f(m) — f(zo)l <&
holds for | — 29| < § and n € 952. Here, splitting F(x) as

F(z) = / (f(n)  f(z0)) T(x  n)dSy
nedN, In—xo|26

+f (1) = F(@0)) Tz = S,
nedN, |n—=xol<s

we can estimate the second term as

/ (Fn) ~ F(ao)) e - m)dSy| < Me
€, |n—zo| <6

for x € U. On the other hand, we have
zllrglo Fs(x) = F5(x0)
for

Fi(z) = / (F(n) - F(z0)) T( — 7)dSy.
n€dN, |n~xo|2>6
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We have
|F(x) — F(2o)| < Me + |Fs(x) — Fs(zo)|
for z € U, and hence it follows that

limsup |F(z) — F(z0)| < Me.

T—Zg

This implies (5.75).
Similarly to the double layer integral, the function

/ F (1) =2—T(zo — 7)dS,
N

Ovz,

is well-defined for z¢ € 8. Also, the function

ov
OV,

(2) = vaq - V() = /a s ai Tz - n)dS,

is well-defined for z € R3 \ Q. Therefore, the function
du

Oy,

D(z) = w(z) - (z)
is well-defined for ¢ € 8Q, z € Q, and = € Q°, where w(z) denotes the
double layer integral of f = f(n).

In fact, we have

D) = [ 1) (50 - 50 ) Tla =),

0

with the kernel satisfying
0 0 1 z—7
_— P T — = - c\Up — on
(61/,, 81/zo> (=m) 4r |z —q)* |z —nl b )
= 0(ls-n"?).

This implies limg_z, D(z) = D(zo) as ¢ — zo € Q2 in R®* if z € 8Q —
f(z) is continuous. Hence we get the following from (5.73).

Theorem 5.20 If f(n) has a Holder continuous extension near 052, the
single layer integral v(z) defined by (5.66) satisfies that
dvE
Ov,

(@0) = (o) 31 (20) (5.76)

(]
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for xo € 092, where

Bv‘( Y= i ov
6’/:1:0 To) = :z:EQ,lr:?—mo szo

(z)

and

ovt . v
61/:1:0 (xO) B

(z).

lim
z€Q°, T—x0 61/10

5.3.8 Fredholm Theory

From the above mentioned properties of layer potentials, boundary value
problems for harmonic functions are reduced to the integral equation on
the boundary. Here, we take the simplest case of

Av=0 in €, v=g on Of (5.77)

and describe the guideline.
In fact, if the integral equation on 052 given as

We -2 [ WO TE-dS,=g€) (o) G
anN n
has the solution u(€), then
d
v =2 [ W(n) T ~ m)ds,

is harmonic in 2. Furthermore, from (5.73) it follows that

v (€) = v(€) + u(€) = g(&)

and u(€) becomes a solution to (5.78).
If we define the operator K : C(8Q2) — C(89) by

0
@) = [ un (e -nas, (5.79)
then (5.78) means for A = 2 that
(I-AK)p=g. (5.80)

In use of (5.68), we can show that K is compact by Ascoli-Arzel4’s theo-
rem and hence Riesz-Schauder’s theorem is applicable, which implies the
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Fredholm alternative. Namely, because 0 = % is not an eigenvalue of K, we
have the bounded linear operator

(I-AK)™': c(o0) — C(89).
Hence, equation (5.80) is uniquely solvable for given g € C(8).
Exercise 5.29 Confirm that the operator K : C(9Q) — C(89) defined by

(5.79) is compact.
5.4 Regularity

5.4.1 Poisson Equation

Let us confirm that equality (5.59) is valid even if u € C?(B) is not har-

monic, where B = B(0,1) and @ = B\ B(z,¢) with€e Band 0 < e < 1.
The left-hand side is equal to

[ suw) Te-yay (5.81)
B\ B(z,c)
and hence converges to

/B Au(y) - T'(z - y)dy (5.82)

as € | 0. On the other hand, the right-hand side accepts the same treatment
and hence converges to

we)+ [ {3) T -9) sy g (o~ ) 5,

Yy

Thus, we obtain
[ 8uy)- 1@ - v)dy = u(z)
B
Ou or
+ —(y)'(x — —uy—z-y)}dS. (5.83)
[ re - - utig :
The analogous equality to (5.61) is similar, and is given as

. ou " or=
[ sty Ty = [ {a—ry(y)l’ ) - u(y)—a—,;w)} ds,.  (5.84)
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Thus, we obtain

w@) = [ Pleniwas,+ [ Geuewiy  @eB) (68
with the Green’s function
G(z,y) =T*(y) - T(z - ),
if u € C%(B) satisfies
—-Au=g¢ in B, with u=f on OB. (5.86)
In particular, if u € C%(B) solves the Poisson equation
—Au=g in B with u=0 on 0B, (5.87)

then it is given as
ue) = [ Gty (e B).

However, deriving (5.86) from (5.85) is not so simple.

First, because B satisfies the outer circumscribing ball condition at
any boundary point, any f € C(8B) admits a unique u € C?(B) N C(B)
satisfying (5.86) with g = 0. By Theorem 5.18, this u(x) is given by

u(z) = /8 PEnf@iy  (eB)

Therefore, if f € C(0B) the first term of the right-hand side of (5.85) is in
C?(B) N C(B) and satisfies

—Au=0 in B with u=f on OB.

On the other hand, g € C(B) cannot imply the first term of the right-hand
side is in C?(B). We recall that a similar discrepancy is observed in §§5.1.2
and 5.1.3.

Namely, in §5.1.3, we asked for the reader to confirm that u(z,t) given
by (5.18) becomes the classical solution to (5.7), provided that ug(z) is
continuously differentiable on [0, 7] and satisfies the compatibility condition
that ug| =0.1If

z=0,7

X'= {v € Cl[O,7r].| Vpor = O}
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and
X° = {v € Cl0,m] | v]pep r = 0} ;

this means that the mapping up € X' — u(t) € X° is well-defined through
(5.7) for each t > 0. However, those spaces X! and X° are different and it
causes a discrepancy in the regularity between the initial value ug and the
solution u(-,t) with ¢t | 0. It is compensated by the use of Holder space.
Similar situation arises in the elliptic problem as is suggested in Theorem
5.21. Actually, we have u € C?%(Q) if g € C%(Q) in

—Au=g in Q, v=0 on 09,

where 2 C R™ is a bounded domain with C*? boundary 952 for 6 € (0,1).
Exercise 5.30 Confirm that (5.81) converges to (5.82) if u € C?(B).

5.4.2 Schauder FEstimate

In §5.4.1 we have mentioned that u € C?(B) does not follow from g € C(B)
in

u(z) = /B Gz, v)ew)dy (=< B)

for the Green’s function G(z,y) of the Poisson equation (5.87). To under-
stand the situation, we take the essential part

Mz -y)= - y|* ™"

1
wn(2 —n)
of G(z,y), assuming n > 3. Given g € L*(R") N L*(R"), we take

ue)=- | T@-ve)dy (= €R). (5.88)
Because of
IT(z — )9(v)]
L aemle®l (y-al2D)
) sy e (y-zl<1)
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and dy = r"ldrdw for y = rw with r = |y| and

we S ={zeR"||z| =1},
we have

/ Dz - ¥)g(y)] dy < +o00
-

for each x € R™. Thus, the measurable function u(z) is well-defined. On
the other hand, from the first relation (5.64), we have

or 1 1
15,-(?” - y)g(y)l S P lg()] (5.89)
and hence
uj(z) = - /R . %(z -y)gy)dy (zeR™) (5.90)

is well-defined as (5.88). We shall show that u(z) is differentiable and
5971; = u;. For this purpose, we develop the regularization argument instead
of applying directly the dominated convergence theorem.

We take 17 € C™[0, 00) satisfying 0 < 7 <1 and

1 (t>2)
"(s)z{ 0 0<t<1).

Then, the function

ue(r) = — / T@-ym (h:%m) 9(y)dy

is well-defined for each £ > 0. From the following lemma, it follows that
u€ CYR™) and 2% = u;.

Lemma 5.7 The function u. is continuously differentiable in R™ and
satisfies that

Ou,
ox 3§

flue — ull ~0

0 —UYj

-0 and ‘

[o o]

ase | 0.
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Proof. We have

2 (e (5) )« (252

(lz—yl\ 7~y
+F(w—y)-;n( " )'|z.~ -9(y)

yl
with
‘%}(w -y)n (——Ix;yl) -g(y)\
1 Alz—yly
Swnm-yw* 1(554) o)
< ——lg0)
and

r@—y%é#(fgﬁg-aw'

1
<o e o)

by 0 <7 <1 and supp 7 C R™\ B(0,1). This implies

% (P(x -y ('i;_—ylg(y)))‘

= {1+ ey e e

- wn&-n—l

and the dominated convergence theorem guarantees that

g:j (z) = - /R" 8%:] (F(x —-yn (W_;‘}/l) g(y)) dy. (5.91)

Hence we obtain
) = - é%—;(z - ) {n (E;_yl) - 1}9(y)dy
[ st (254 2

|z

B (E52)
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1 / |z ~ yl)
+= Fx—yn( 21755 g (y)dy.
€ Je<ly—z|<2¢ ( ) € ‘.’l: yl

Therefore, in use of

]——(z {r (B3 -1 o] < v e

an
@—yn' { —— Ix y{ (v)
: 7l -l
wn(n_z) ‘I_yln—Z Moo goo
we have
Ou,
sup |=—(z) — u;(z
sup |2 (@) ~ uy(x)
</ lgllee _d=z 1/ 17 llo - gl d2
— n—1 + n—2
(zl<2¢ Wn |z| <|z|<2¢e wn(n —2) 2|
2e . n-1 2 ,.n—-1
ol [ Wl 1
Wn 0o T wn(n —2) eJ ™~
= O(e)
and hence
. Ue _
ltslﬁ)1 6.’17]' uJ 00_0
follows. The proof of
i s — g = 0 (5.92)
is easier and left to the reader. 1

From the second equality of (5.64), it follows that

a°Tr

~~ -n 1 n

and the above argument in use of the cut-off function fails to take the second
derivative of u(z). Here, we introduce the notion of Hélder continuity. A
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function f(z) is said to be Hélder continuous with the exponent 8 € (0,1)
in a domain Q C R" if

7 = f@) - F@I _

= sup —————— < +oo.
TY€N, sty |T — yl

Then, C™?(Q) denotes the set of C™ functions on Q such that D*f is
Holder continuous with the exponent 6 for |o| = m, where m = 0,1,--- and
#e(0,1).

The following theorem illustrates the simplest case of the Schauder reg-
ularity.

Theorem 5.21 Ifg € C°(R™) N LY(R") with n > 2, then u(x) defined
by (5.88) is in C*°(R™) and satisfies that

~Au=g in R", (5.93)
where 6 € (0,1).

Proof. From Lemma 5.7, we see that

u(z)=~- | T(z-y)g(y)dy

R»

is C1 and satisfies

LR / ] B—F(m - y)9(y)dy

Ba:j

in x € R™. Similarly, we can prove that

wnla) == [ o) ) - ste)

— T
+g(z -y dS,y
g( ) |m_y|=p 6$k ( ) | |
& (¥) (5.94)
— — Tz — y)g(y)dy 5.94
/|y z|>p 0z ;07 ( )

converges for each p > 0. Now, we shall show that 5‘2—;3—; converges uni-
formly to u;x. This implies
d%u —u
oz;0z "
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and also (5.93) by AI'(z) = 0 for z € R™ \ {0} and

- ~Yigs — dik 5.95
/M._,,axk( VE=tas, (5.95)

n
The Holder continuity of u;; is left to the reader and thus the proof is
reduced to

8%u,

o0

lim

10 sk

. 2 .
First, we confirm that 52—%;: exists. In fact, we have
2

% (g; (z - y)n (lz_—gl) g(y))
< (.,z]axk H ("5 )|g<y)n
1
€

lx yl )l

<{ (2% + 5 ) Lo (3] > )
0 (ke -yl <e).

Here, the right-hand side is independent of y and is summable in z, so that
we obtain from the dominated convergence theorem that

8%u, o [or |z — y|
B0 —/Rn oz, (6_xk Tz —y)n (—E )g(y)> dy

with its continuity in z € R™.
Next, we have

2

8? oxy,

87T Iz — y|
[, oot -on (222
(z) e les az,.azk( yn - Y

+g(x) OF o )% L2,

(z) + uj(z)

la—yl=p OTk
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+/|x_y|>,, 61:]6xk( —v) ( (@) - 1) 9(y)dy

a (z -y (

+ / 0
<lz—-y|<2e Oz

].:l‘j

>_

£

—yj
|z -yl

g(y)dy.

239

Making € | 0, we have 2¢ < p, and hence the fourth term disappears. For
the second term, we apply Green’s formula as

/lr—yl<p

where

follows for |z — y|

Bzue

/Iz—y|<p

—g(x)

lz—yl<p

/Ix-yl =p

32
BIL‘] a.’l:k
9
6.1;]-

T

+g(x /
(=) lz—yl<p OT;0Tk

3y (gt - (7)) o
e (1) B,

lz -yl
£

1(E54) -

= p if 2¢ < p. Thus, we obtain

(1’) + ujk(z)

@ (1(E1) - 1) 6 - st o

(%(z -y (Ig_;_yl)> dy
(—y)n (lx - yl) dy

or , (|$—y|> lz;
+ T — - y)dy
/<|x yl<2e axk( um € € lx yl ;1)

=I+1I

Here, we have

Hl <

62

-/l:r—yl<2e Oz ;0zy,

or
+ (
e<|z—yl<2e Oz,

(n=1)

[z -y

(z—y) (n( -

dflz—yl\ 12—y
y)n< € )elw—yl

(9(y)

T —

oo [ o=yl dy=0()
lz—yl<2e

) - 1) (9(y) — g9(x)) dy

- g(z)) dy
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and
1 1 -
< lolde [ Fle—l ™ dy = 00
Wn e<jz—y|<2 €
as € | 0. Hence (5.96) follows and the proof is complete. d

Exercise 5.31  Confirm (5.92).
Exercise 5.32 Confirm that the right-hand side of (5.94) converges.
Exercise 5.33  Show (5.95).

Exercise 5.34 Try to show that u;, is Holder continuous.

5.4.3 Dirichlet Principle

In §5.3, we studied (5.47) by means of the potential function. However,
first this problem was approached differently from those methods of Perron
or Fredholm. Namely, the Dirichlet principle asserts that the solution to
(5.47) is realized as the minimizer of

1
Jw) == / |Vo|? (5.97)
2 Ja
under the constraint that
v=f on 0. (5.98)

It took a long time to justify this result. The first obstruction was to
establish the existence of the minimizer. For this purpose, it is actually
necessary to prepare a functional space with the complete metric. Now, we
can show the following.

Theorem 5.22 The functional J(v) defined by (5.97) attains the mini-
mum on

E={veH'(Q)|v=f on 00}.
The minimizer u € E satisfies
/ Vu-Vv=0 (5.99)
Q

for any v € E.
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Remember that H!(2) denotes the set of functions square integrable up
to their first derivatives. It forms a Hilbert space with the norm

1/2
2 2
ollg = (llol3 +1vol3)

If Q has the restricted cone property, then the mapping
7:veCE) vy € CON)

has a continuous extension from H!(Q2) to H'/?(dQ). This operation is
called the trace and the constraint (5.98) is taken in this sense for v €
H(Q).

The proof of Theorem 5.22 is quite similar to the abstract Riesz’ repre-
sentation theorem in §3.2.2 if we apply the Poincaré inequality described in
the following section. Let us confirm that H}(f) is the closure of C§°(Q2)
in HY(Q), and that v € H(Q) is in H}(Q) if and only if its trace to o9

vanishes.

Lemma 5.8 Any bounded domain Q@ C R™ admits a constant C > 0
satisfying

vl < ClIVvll, (5.100)
for any v € HY(R).

Proof. Inequality (5.100) is reduced to the case of v € C§°(2). In
fact, from the definition, any v € HE(Q) admits {vi} C C§(Q) satisfy-
ing ||lux — v|| g2 — 0. This implies

IVorlly = [Voll,  and  loglly = llvll,

and hence inequality (5.100) for v, implies that for v.
We may suppose that

QcC{z=(x1,22,- -, 2n) ER® |0 <z < {}.

The function v € C§°(R2) is regarded as an element in CG°(R™) by the zero
extension. Then, it holds for = (z1, 2, -, Z,) € R” that

z3
v(z) = / Vg, (t, T2, - -,z )dL.
0
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This implies

2
£
I’U(.’IJ)|2 < { 0 Ivzl(t,.’lfz,'--,:l,‘n)'dt}

Y]
2
S L. Ivl‘l(t7x27"'vxn)| dt
0

and hence

/ [o(z1,Z2, - 2n )| da - - - dp,
n—1

£
<t at[ oo o) o da
0 Rr-1
follows. We obtain

Wi = [ @ ds

Y
/ dzl/ lv(xl,xg,---,a:n)lzdzz---da:n
0 Rn-1

14
< ] fulem )Pl
0 R»-1
= g, |3 <2V
and hence inequality (5.100) holds for C = £. O

Exercise 5.35 Prove Theorem 5.22 in the following way. First, take thoé
minimizing sequence {vy} C E of J. Then apply (5.100) to wx = v — f
and show that it is bounded in H}(f), where f € H'(Q) in f‘an = f.
Take its subsequence that converges weakly there, and apply the lower
semi-continuity.

5.4.4 Moser’s Iteration Scheme

This paragraph is an introduction to the regularity theory applicable to
nonlinear problems. We admit the following fact referred to as Sobolev’s
imbedding theorem. Here, as H}() is based on L*(Q), W, P() is con-
structed from LP(Q). That is, W'P(§) is the set of p-th integrable func-
tions up to their first derivatives, and W, () is the closure of C§e(R) in
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WLP(Q) under the norm

p P\ /P
lollwsay = (IV015+lol2) ™.

Theorem 5.23 IfQ C R" is a bounded domain, p € (1,n), and n > 2,
then the embedding Wy (2) C LP" () holds for p* = np/(n ~ p). More

precisely, there exists a constant determined by n and p such that
ol 2. < V0, (5.101)

holds for any v € Wy?(R).

We will concentrate on the inner regularity, so that f € L} (£2) means

that ¢ - f € LP(Q) for any ¢ € C°(£2). The sets H., () and Wltf(ﬂ) are
defined similarly.

Henceforth, we take the case n > 2 only. We say that v € H. () is
sub-harmonic in §2 if

/ Vu -V <0 (5.102)
Q

holds for any non-negative ¢ € C§°(2). By the regularization and cut-
off process, this ¢ can be taken to be a non-negative function in Hj(Q).
Given such u, we take B(xp,2R) C 2, where B(zg, 2R) denotes the open
ball with the radius and the center 2R > 0 and xg, respectively. We put
2o = 0 and B(zp,2R) = Bsp for simplicity. For 0 < p < r < 2R, we take a
non-negative 1 = n(|z|) € C§°(B,) satisfying

n=1 on B, and [Vnl < C/(r — p). (5.103)

Here and henceforth, C > 0 denotes a constant independent of the param-
eter in consideration.
It is known that v € H () implies |v| € H(©) and

Vv  (v>0)
Vivl=¢ 0 (v=0) (a.e.)
-Vv (v <0).
Similarly, v, = (uy At)Vt~1isin H} (Q) for t > 1 and it holds that

V ((uh)*'n?) = (o + 1)(uh)*n?Vul +2(u)*'nVn  (ae)
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for € R, where a A b = min{a, b} and a Vb = max{a,b}. From this
and t~! < w4 < t, the non-negative function ¢ = (u%)**1n? is in H}(Q).
Plugging it into (5.102), we get that
@+1) [ @h)rnvu-vit <2 [ Vel @) (ala.
Q Q
Here, sending ¢ — co, we have
/ (ut)*n*Vu - Vi, = / |Vul? ugn? — / |Vul? ugn?,
Q t-l<uy <t 1)
and similarly
Jvu @t nin— [ 1vulugt (vl
by the monotone convergence theorem. Therefore, it holds that
@+1) [ IVl <2 [Vl (Valn
Q4 Qyt
for Q4 = {z € 2| 2u(x) > 0}, and by adding those terms, we get that
(@+1) [ (Vallul* s <2 [ [9ullu™ Vel (5.104)
o Q
Inequality (5.104) coincides with that derived from the formal calculation
obtained by putting ¢ = |u|*un? in (5.102), and henceforth we omit to

write this justification process.
Let & > —1 in (5.104). We see that

P’ 2 [ P 2
2 . — haet z 2
[ (%) of = (]G 1)t
o 2
is equal to the ﬁ%—lll times the left-hand side, and that
a a2
[ 19 (1® w) o] 0t ™ o)
Q
= [1(5+1) tul® vu-n| 1 *F* v
o i\2
is equal to the @2 times the right-hand side. Therefore, we have

L1 (1) -of <cte) [ |9 () of % om 105
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with a constant C(a) > 0 determined by a > —1.
In use of

2
valid for a,b > 0, the right-hand side of (5.105) is estimated from above by

5 1V (% 0) nf +') [ i var,

with another constant C’(a) > 0. The first term of this quantity is absorbed
by the left-hand side of (5.105), and therefore, it follows that

/n‘v (1wl u)_n‘2SZC,(a)/(;|u‘a+2 Vot

Then we obtain

L1 (et )" <2 [ (9 (1t ) o+ 11+ 90

< C(a) /Q [ul**? | Vn)?. (5.106)

ab <

Here and henceforth, C(a) > 0 denotes a constant determined by o > —1,
possibly changing from line to line.

We apply Sobolev’s inequality (5.101) to the left-hand side of (5.106).
Then, we have

{/n (|u|%+1 n)%‘i}nTﬂz < C(a)/n|"|a+2|vﬂ|2-

Namely, for = ;25 > 1, = a + 2, and a > —1 it holds that

{/Qlulﬂenzg}l/ogc(a)/n[ulﬁ V(2. (5.107)

At this moment, it is only required to recognize that C(a) is a rational
function of a.
The following fact is referred to as the local mazimum principle.

Theorem 5.24 Any vy > 1 takes C = C(y) > 0 that admits

1/~
lull poo By <€ {][ lul”’} (5.108)
Bzr



246 Linear PDE Theory

for any sub-harmonic function u € H} () and B(zo,2R) C ), where

Here and henceforth, |G| denotes the volume of the set G.
Proof. We have from (5.107) and (5.103) that

1/0
{][ |u|""} sc’<a)(r—p)-2-r"'p-"/"][ Jul® . (5.100)
B, B,

Remember that § =n/(n—2)>1,8=a+2,and a > —1.
We take v > 1 and define By, ap by ¥ = By = o + 2, which implies that
ap > —1. Putting

Bi=0Fo6" and R;=R(1+27%,

we apply (5.109) for 8 = B;, r = Ri, and p = Rij1, where i = 0,1,---. In
fact, it holds that 0 < R; < 2R and §; 1 oo.
First, we have

r—-p=2""1R and —24+n—-(n/6)=0
and hence it follows that

(r— p)—2 P p-n/e = 9206+1) 1+ 2—i)n 1+ 2_,'-1)_"/0
Ci+1.

IA

On the other hand, C(a) is a rational function of o and a; = 3; — 2 T oo,
so that we have m >> 1 such that

C(ai) < 0(i+1)m

for i = 0,1,2,---. Therefore, with some C = C() > 1 it holds that

1/6
{f Iulﬁiﬂ} < CH—I][ |u|ﬁi
B Bp,

for i =0,1,2,---. This inequality means

1/8;
piy1 < CEFV/Big, for ¢; = {f |u|ﬁi} ,
Bn,

Rit1
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which implies that
b; < Cz;o(“-l)/ﬂ‘(ﬁo < Czw (£+1)/(B06*) ¢0

1/~
)"
Bp

On the other hand, we have 2R > R; > R and 5; T oo, and therefore it

follows that
1/8:
1 .
¢ = lu\ﬂ'
'BR:‘I Br,
1 5 1/B:
{|sz| Br fu } = lullze By -
The proof is complete. O

The super-harmonicity of u € H} () is defined similarly by
/ Vu Vi >0 (5.110)
Q

for any non-negative function ¢ € C§°(Q2). We can show an analogous fact
to the weak minimum principle to non-negative super-harmonic functions
by a more delicate argument.

For the moment, u € H} () denotes a non-negative super-harmonic
function and Byg C Q. Given 0 < p <1 < 4R, we take the non-negative
function n = 7n(|x}) € C§°(By) satisfying (5.103). Then, the reverse in-
equality

a+1)/|Vu| P > 2/|Vu| w1 [Vl

to (5.104) is obtained by substituting ¢ = u**!n? into (5.110). In particu-
lar, for a < -1 it holds that

/|Vu|2u°‘n2_ a+1)/ |Vu|utt | V| n (5.111)

and hence
2 o
|Vu|2u°‘n2 < ——(a+ 0 /Q [Vu|u**t? (V| n

follows.
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Repeating the previous argument, we obtain an analogous result to

(5.107),
1/6
{/ uﬁ9n20} < C(a)/ u? |[Vn)?,
o o

where § = n/(n —2) > 1, 8 = a+ 2, and a < —1, which implies that

1/0
{][ uﬁe} < Cla)(r — p)“2r"p'"/9]1 u, (5.112)
B, B.

Taking v < 0, we define Gy and o by v = Gy = ap + 2, and set
Bi =08 and R;=R(1+3-27)

for ¢ = 0,1,2,---. Then, (5.112) is applicable to 8 = B;, r = R; and
p=Rit1,as a0 < -1, fp <0, B; | —00, and 0 < R; < 4R hold. We have

1/6
][ uﬁi+1 < Ci+1][ uﬁi
B Br,

for i =0,1,2,---, where C = C(y) > 1 is a constant.
This means for

-1/8; 1/(-B:)
J— B — -1\-B;
&i {][;Ri u } {]/BR'. (u ) }

bir1 < CEFD/(=BIg,

Rin

that

and therefore, it holds that

-1/
¢isc'¢o=c'{]/ m} .
Bur

On the other hand, we have

-1
¢ — “u_1||L°°(BR) = (ess. i};liu)

and hence the following lemma is obtained with ¢ = —y > 0.
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Lemma 5.9 Given o > 0, we have C = C(0) > 0 such that

~1/o
Cess.infu > {][ u‘”} (5.113)
Br 4R

for any non-negative super-harmonic function u € H. (Q) and Bsg C Q.

In (5.112), 8 may be negative as far as § < 1. In particular, for 8 € (0,1)
and 2 < £ < m < 4 we have C(8,£,m) > 0 such that

1/(80) 1/8
{][ uﬂ"} <C(8,4,m) {][ uﬁ} .
B:r Bmr

4R

is monotone increasing in 3 > 0. We make use of this fact and the above
inequality by finitely many times. Then, for given v € (0,1) and ¢ > 0, we
have C = C(n,v,0) > 0 such that

1/(~6) 1/o
{][ zﬂ"} < c{][ u"} . (5.114)
Bar Buyr

Here is the key lemma.

Lemma 5.10 IfQ C R™ with n > 2, then there is C = C(n) > 0 and
o9 = g¢(n) > 0 such that

{fs “u}l/a ' {fg "_”}l/a ¢ (5.115)

is satisfied for any non-negative super-harmonic function u € H} (Q),
Bsp C Q, and o > 0.

Proof. Let us take o = -2 in (5.111). In fact, we have
[ Viogul i = [ [vuputn <2 [ 1vulutvalg
Q Q Q
=2 [ |Viogujn[Va

sl/ IVloguI2n2+2/ |Vnl?,
2 Ja Q
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and hence
[ viogulat<c [ roar
Y] Q

follows. This implies

[ 1iogu <€ - )25
BP
by (5.103), and taking r = 2p, we obtain
][ |V Iogul|® < Cp~2? (5.116)
BP

for0< p< R.
We now make use of Poincaré-Sobolev’s inequality,

e 1/2
{][ |v—v3r|2} SC’r{][ |Vv|2} (5.117)
B, B,

valid for v € H'(B,), where 2* = 2n/(n — 2) and

B,

This will be proven in the following paragraph. Admitting it, we can esti-
mate the left-hand side of (5.117) from below by

f v~ vs,|.
B,

We apply this form to v = logu and get from (5.116) that

1/2
][ llogu — (logu)s,| < Cp {][ IVlogulz} <C. (5.118)
BP

P

Now, we get the notion of the function of bounded mean oscillation or

BMO in short, namely, a measurable function v = v(z) defined on a domain
2 C R" is said to be in BMO if

IVl garo = sup {][ lv —wvp|| B:ball, BC Q} < +00, (5.119)
B
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va=1{
B

log ull gpro < € (5.120)

where

Thus, we have

by (5.118).

A typical unbounded BMO function is log|{x|. In this connection, we
have John-Nirenberg’s inequality, proven in the next paragraph, indicated
as follows:

{z € B |v(x) —vB| > t}| < e1|Blexp (—cat/ vl gpro) » (5.121)

where ¢; = ¢1(n) > 0 and ¢z = ca(n) > 0 are the constants determined by
the dimension n, ¢ > 0, and B is a ball with 2B, the concentric ball with
twice radius, satisfying 2B C .

We apply this inequality to the BMO function v = logu and B = Bypg,
putting

u(t) = |{z € B | |v(z) — vp| > t}].
In fact, for s € (0,cz), say s = c2/2, we have
f exp (siv(z) —ve|/ IVl sro)
B
- ﬁ /0 exp (st/ Ilvl gaso) d (—n(t))
- % [~ exp (st/ o]l paso) OIEZS

ret [t/ ol (5122

<1425 / exp (—(c2 — 8)t/ |[vll ppo) dt
”””BMO 0
t=00
=t ers [ e (e 9/ oo
Cy— S t=0
1495 _g (5.123)

Cy2 — 8
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Therefore, for o < s/ ||v|| gpro We have

][ exp (xo (v(z) — vB)) < 6,
B

feav_f e v Sﬂz
B B

We have, by u = log v that

1/o /o
{f ua’} A {f u—a’} S ﬂ2||logul|BM0/s < C.
B B

This means (5.115). By (5.120) we can take o > oo with o9 = oo(n) > 0
and the proof is complete. ]

which implies that

The local minimum principle is now obtained from (5.113), (5.114), and
(5.115).

Theorem 5.25 Any~ € (0,n/(n—2)) takes C = C(n,v) > 0 that admits

1/
{][ u” } < Cess.infu (5.124)
Bar Br

for any non-negative super-harmonic function u € HL () and Bgg C Q.

Because the local maximum and the minimum principles are commonly
valid to v € (1,n/(n — 2)), we obtain the Harnack inequality.

Theorem 5.26 If ) C R™ is a domain with n > 2, then there is a
constant C = C(n) > 0 determined by n that admits the estimate

ess.supu < Cess.infu (5.125)

Br Br
for any non-negative harmonic function u € Hlloc(Q) and any Bggr C Q.

It is now well recognized that this type of inequality implies the Holder
continuity of the solution.

Theorem 5.27 If§) C R" is a domain with n > 2, then there is a €
(0,1) such that any compact set E C Q admits C > 0 such that

lu(z) — u(y)| < Clx —y|*

holds for any harmonic function u € H., (Q) and z,y € E.
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Proof. For simplicity, we shall write inf, sup for ess.inf and ess.sup,
respectively. Let u € H} (§2) be a non-negative harmonic function, and
take ¢ € Q, 0 < p < dist(zg,00)/16, 0 < 7 < 16p,

M, = sup u, and m, = inf wu.
B(zo,r) B(zo,r)

Here, it may be worth noting that u € L{? () follows from the local max-
imum principle.

Because u(z) ~ mig, is non-negative and harmonic in B(zg, 8p), it fol-
lows from (5.125) that

sup {u—migp} = M, — migp
B(Io,ﬂ)

<C inf {u—mep} =C(m, — mis,).
B(JJO,P)

The function Mg, — u(z) has the same property and it follows that
Miygp —m, < C(Migp — M,).
Adding those two inequalities, we obtain
(C+1)(Mp—mp) < (C —1)(Miep — miep) »

and therefore, for w(p) = M, —m, and 0 < 0 = (C-1)/(C+1) < 1it
holds that

w(p) < Buw(16p).
Repeating this inequality, we have
w(p-167"1) < 6w (16p)

fori=1,2,---.
Taking o by § = 16=%, we have, for i = 1,2,--- and

0 < p < dist(zo,00)/16
that
w(p-1671) < (1677)%w(16p),

which implies, for 0 < r; < r2 < dist(zo, 02)/16 that

w(ry) <671 (%)aw(m).



254 Linear PDE Theory
Taking r = p and setting » = 71, we obtain for 0 < r < pand z € 9B(zo, )
that
|u(z) — u(zo)| < w(r) < 679" %w(p) - |& ~ zo|*.
In other words, for C = 8~!p~%w(p), z € B(zq, p), and

dist(xo, 69)

0<p< 16

that
lu(z) — u(zo)| < Clz — zo|*.

Then, the conclusion follows from the standard covering argument, and the
proof is complete. a

5.4.5 BMO Estimate

This section is devoted to the proof of (5.117) and (5.121). First, we show
(5.117), that is, Poincaré-Sobolev’s inequality. Actually, it suffices to prove
the following.

Theorem 5.28 There erxists C = C(n,p) > 0 determined by n > 2 and
p € [1,n) that admits the estimate

R 1/p
{][ I’U - ’UB(z,r)rJ } <Cr {]/ |Vvlp} (5.126)
B(z,r) B(z,r)

holds true for v € W1P(R"), where p* = np/(n — p).

Proof. Letn >2and 1 < p < n. First, we show that there is a constant
C = C{n,p) > 0 that admits the estimate

/ [u(y) — v(2){" dy < Crte-l / \Vo@)P |y — 2" " dy (5.127)
B(z,r) B(z,r)

for z € B(z,r) C R™ and v € CY(B(z,r)).
In fact, we have from

1
v(y) — v(z) /0 ditv(z +t(y — 2))dt

= /0 Vu(z +t(y — 2))dt - (y — 2)
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that

1
() - ()P < |y ~ 2 / V(e + t(y — 2))|P dt.
0
Therefore, for s > 0 we obtain

/ o) ()P S,
B(z,r)N8B(z,s)

1
<5 / dt / Yoz + 1y — 2))/PdS,.  (5.128)
0 B(z,r)ndB(z,s)

Here, in terms of w = z + t(y — z) it holds that
dS, = t1="dS,,.

Also, y € B(z,r) N dB(z, s) implies |w — z| = ts and hence the right-hand
side of (5.128) is estimated from above by

bod
s”/ tn_l/ |Vo(w)|P dSy
0 B(z,r)NOB(z,ts)

1
=P f & IVo(w)|? fw — 2| " dS,, - (ts)~1+"
ot B(z,r)N8B(z,ts)

1
:Sn+p—1/ dt/ 'Vu(w)[plw—zll_ndSw. (5.129)
0 B(z,r)NdB(z,ts)

Generally, for the measurable function g = g(w) : R® — [0,00] and
z € R™ it holds that

o0
/ gdw = / dp / 9dS,,.
Rn 0 dB(z,p)

Therefore, applying the transformation ts = p, we have

1 3
/ dt / gdSy, = st / dp / gdS,,
0 B(z,r)N8B(z,ts) 0 9B(z,p)NB(z,r)

=s! / X(0,5)(p)dp / XB(z,r) 985w
0 9B(z,p)

=571 / XB(zr)9dw = 57" / gdw,
B(z,s) B(z,s)NB(z,r)
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where xr denotes the characteristic function of F. Therefore, the right-
hand side of (5.129) is equal to

s"+”_2/ Vo) jw — 2" " dw,
B(z,r)NB(z,s)

and hence it indicates that

/ lu(y) — v(z)[P dS,
B(z,r)NdB(z,s)

< s"+””2/ Vo) jw — z|' " dw.
B(z,m)NB(z,s)

This implies

2r
/ ds/ [v(y) — v(z)|P dSy
0 B(z,r)N8B(z,s)

= [ @ -o@Pd
B(z,r)

2r
S/ s"‘”’“zds/ |Vo(w)f? |Jw — 2! dw
0 B(z,r)NB(z,s)
2r
5/ s"+”'2ds/ |Vo(w)? Jw - 2| ™ dw
0 B(z,r)
= Crntrl / |Vo(w)lP |w — 2| dw
B(z,r)

and inequality (5.127) has been proven.

We turn to the proof of (5.126). Actually, we may assume that v €
CY(B(z,r)). A variant of Sobolev’s imbedding Theorem 5.23 is indicated
as

Iollpe < Cllvllwr(g)

with the constant C = C(n,p,Q) > 0 independent of v € W'P(Q), if
Q C R is a bounded domain and 8% is C!. Actually, it is reduced to
(5.101) in use of the eztension operator.

In use of this to @ = B(0,1), we have a constant C; > 0 that admits
the estimate

1/p*
{ Gl dw} <a { L,

1/p
(V5P +loa)P) da:}

’
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for any g € W1P(B(0,1)). Here, we take the scaling transformation y = rz

and f = rg. Then, we get that
1/p*
{ [ i dy}
B(0,r)

1/p*
{ / 9(@)? dx}
B(0,1)
1/p"
= o
B(0,7)

I

and

1/p
) (IVg(@)IP + 1g()I") dx}

A

1/p
= {/B(o ) (rP-rPIVFWIP + 7P | F () I) r‘"dy}

1/p
=C{f (IVfI”+r"’IfI")} .
B(0,r)

Thus, we get for f € WHP(B(z,r)) that

1

1/p

1/p*
{f Ifl”‘} < C{][ (P |VFIP + |f|”)} : (5.130)
B(z,r) B(z,r)

On the other hand, from (5.127) we have for v € C1(B(z,r)) that

4
f "U - vB(a:,r)Ip = f ][ (v(y) - 'U(Z)) dz dy
B(z,r) B(z,r) |/ B(z,r)
<f ) -vePrdd
B(z,r) J B(z,r)
sof e [ vPly- oy
B(z,r) B{z,r)
=C IVu(y)|® dy - 7"’_1][ ly — 2" "dz.  (5.131)
B(z,r) B(z,r)
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If y,z € B(z,) then z € B(y, 2r), so that the right-hand side of (5.131) is
estimated from above by

1 _
C IVo(y)[Pdy-rP~1- —;/ ly — z|' " da.
B(z,r) ™" JB(y,2r)

Thus, we get that

][ lv-— vp@n| < Cr”f [Vu(y)|P dy. (5.132)
B(z,r) B(z,r)

From inequalities (5.132) and (5.130) with f = v — vp(; r), We obtain

. 1/p*
{][ lv—vB@n|" }
B(z.r)

1/p
<olf  Emf -]
B(z,r)

1/p 1/p
< c{][ e |vu|"} - C’r{][ |Vv|”} ,
B(z.r) B(zr)

and the proof of (5.117) is complete. O

Let us note that inequality (5.121) is equivalent to saying that v is a
BMO function. Actually, if

u(t)

l{z € B | [u(x) - vs| > t}]
< e |Blexp(~kt)

holds for a ball B in B C  and a constant k£ > 0, then we can derive
f e%|v—v3| < ,3, - ﬁ'(n)
B

similarly to (5.123). Then, it follows from Jensen’s inequality that

f va_vBI S Zf e%lv—val S 2,61/5.
B KJ/B

In the original definition of the BMO function, the ball B in condition
(5.119) is taken place by the cubic, denoted by . We note that a cube can
be divided into smaller cubes with the intersection of the Lebesgue measure
0. We shall apply this dyadic sub-division by means of the following.
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Lemma 5.11 There exists a constant co(n) determined by the dimension
n such that if Q is a cubic and B is the minimal ball containing Q such
that B C Q, then it holds that

]2 v — vo] < co(m) vl pgo - (5.133)

Proof. We have a constant ¢;(n) > 0 determined by n such that

|B| < e1(n) Q|-
On the other hand, we have

1 / 1
— |v—vQ|§—/|v—'uB|+|vB—'u |
Q) Jo QI Jo N

and

lvp — vg| = (v - vB)| < %Q,/Qw—vg

T

Thus, we obtain (5.133) by
2¢1(n)

|Q|/'“
< 2 /| — vg| < 21(n) [0l paso -

The proof is complete. a

Now, we show the decomposition theorem of Calderén-Zygmund.

Theorem 5.29 If Qo C R™ is a cube, v € L}(Qo), and

]’ o] < s,
[1]

then there is a countable family of disjoint sub-cubes denoted by {Qk} ey
such that

| <s  ae in Qo\URl,Qk (5.134)
lvgul <2%s  (k=1,2,--) (5.135)

3 Qx| < st v} . (5.136)
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Proof. We take the sub-division of Qp uniformly by 2" sub-cubes, and
classify them into two types, that is, the one on which the mean of |v] is
greater than or equal to s and that less than s. Let the former and the
latter be {Qqx} and {Q},}, respectively. As for Q1 we have

siQul < [ pl<2iQulf I
Qi Qo
< 2siQul.

Now, we take the sub-division of {Q],} uniformly by 2" sub-cubes, and
classify them into the ones on which the mean of |v| is greater than or equal
to s, denoted by {Q2+x}, and the others, denoted by {Q}, }. Because Qg is
contained in some Q7,., it holds that

5|Qul < / rv|s2"|Q2kif o]
Q2 QL
2"s|Qakl .

Continuing this process, we get a family of sub-cubes {Q«}. Let us label
it as {Qx}. Then, it holds that

AN

5 1Qul s/Q o] < 2" |Qul.

This means (5.135). It also implies

leQk|S/ lvls/ o
k=1 Uk Qk o

and hence (5.136) follows.
Finally, if zo & UxQy, then there is a shrinking family {Q}} such that
|Q;c+1l =2"|Q%l, zo € Qj, and
][ o] < s.
Q

’
k

Then, the differentiation theorem of Lebesgue guarantees that

klim [v] = |v(zo)| a.e. To € Ur Qg

and the proof is complete. a
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In view of (5.133), we that (5.121) is almost equivalent to the following.

Lemma 5.12 There are the constants cs(n) > 0 and c4(n) > 0 deter-
mined by n such that if Q is a cubic, B is the minimum ball containing Q
in BC S, and t > 0, then it holds that

Hz € Q| [v(z) — vg| >t} < ca|Qfexp (—cat/ vl zaso) - (5.137)

Proof. Given v = v(z), we take a > 0 satisfying

1

v(z) =aw(z) and Jwlpmo = 7

Then, it follows that
{z € Q| lv(z) —vg| >t} = {z € Q| lw(z) — wo| > t/lal}
and

vl 5aro = lalllwlligmo »

and therefore, inequality (5.137) for w implies that for v. Namely, we can
assume

Iollso = 55 (5.138)

from the beginning.

Let Q be a cubic and B(Q) the minimum ball containing Q. We put
for ¢t > 0 that

So(t) = {z € Q| lv(z) — vq| >t}

and
F(t) = inf {C’ >0 [Sq)| < C’/ lv —vgl, Q : cubic, B(Q)C Q}

Q
It follows from

1

Sel < [ Iv-val
Q
that
F(t) <1/t (5.139)
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Let t > 2™ and s € [1,27"t]. From (5.138) we have

][ lv—vg| <1< s.
Qo

We apply Theorem 5.29 with Qg, v(z) replaced by Q, v(z)—vg, respectively,
and get the family of cubics {Q}. Let

Si(t) = Sg,.(t) and So(t) = S(t).
We have, from t > s and (5.138) that
S(t) € S(s) CUR,Qk

except for a set of Lebesgue measure 0. On the other hand, by (5.135) we
have

[v(@) —va| = |(v(z) — vQ) - (v() — vQ)g,| > t - 2"s
for x € S(t) N Q. Those relations imply

ISOI<D OISO NQ) <D 1z € Qi | lv(@) —vg, | >t —2"s}.
k=1

k=1
Here, from the definition of F'(t) and (5.138) we have

[z € Q| [o(e) - v, | = t 278}
<F(t-29) [ o-vg,l < F(t - 2)IQu.

Qk

Therefore, it follows from (5.136) that

Sq(t)] = IS(t)| < F(t —2"s) ) Qx|

k=1
Ss_lF(t—2"s)/Q|v—vq|,

and because () is arbitrary, we have
F(t)<s 'F(t-2"s) (1<s<27™, t>2"), (5.140)

Taking s = e in (5.140), we see that if F(t) < Ae™° for a = 1/(27e)
then

b

1 n
Ft+2"e) < -e-Ae—at = Ae—(t+2"e)
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follows. On the other hand, we have
F(t) < (e—1)e=T.27". ot (5.141)
for ¢ <t < Z¢ 4 2%¢ by (5.139). Therefore, this inequality (5.141)

e—1
continues to hold for ¢ > 2"e/(e — 1) and hence we obtain

1So(t)] < A][ v~ vg,| < Ae=*|Q)]

Qo
for t > ty, where
2"e 1 1
to:e—l’ o= A= (e—1)e=T.
On the other hand, it is obvious that
1So(t)] < |Qo| < e -e™**|Q)]

holds for 0 < t < ¢4, and therefore, (5.137) follows for

c3 = max{A,e*} and ¢ = o
The proof is complete. O
Now, we complete the proof of John-Nirenberg’s inequality.

Theorem 5.30 There are constants c1(n) > 0 and co(n) determined by
the dimension n such that if 2B C Q and t > 0, then it holds that (5.121).

Proof. Let Q be the minimum cubic containing B. Then, from the as-
sumption, we have Q@ C 2. In use of

{zeB||v(z)—ve| >t} C{z€Q|v(z) —vgl >t —|vp —vgl}
and Lemma 5.12, we obtain
|{z € B | |v(z) —ve| > t}|
< ¢3|Qlexp (—camax{0,t — [ve — vqQl} / 1l smo)
< c3|Qlexp (—cat/ ||Vl paro) - €xp (e lve — vel /vl pao) -

On the other hand, from Lemma 5.11 we have

1
|(v - vQ)g| < |—§|/BIU—UQ|

cl(n)f;2 lv — vq| < c1(n)eo(n) vl garo

1

lve — vql

IA

and then (5.121) follows. D
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Chapter 6
Nonlinear PDE Theory

Although nonlinear partial differential equations have vast varieties, they share
several common features and techniques. This chapter is devoted to the non-
negative solution to semilinear heat equation u; = Au 4 u” on the whole space
R". If the nonlinearity is strongasp > 1+ %, then small initial data admits the
solution globally in time. On the contrary, if it is weak as 1 < p < 1+ %, then
any non-trivial initial data make the solution to continue to ¢ = 400 impossible.
This phenomenon was noticed by H. Fujita in 1966, and p. = 1 + ;2; is called
Fugita’s critical exponent.

6.1 Method of Perturbation

6.1.1 Duhamel’s Principle

In §5.2.4, we have derived from
us=Au (xR t>0) ul—o = uvo(x) (z€R") (6.1)
that

wzt)= [ Ga-uhwedy @R >0,  (62)

where
n/2
1 2
Y —|z}?/4t
G(zx,t) (47rt) e

265



266 Nonlinear PDE Theory

denotes the Gaussian kernel. Actually, if up € LP(R™) with p € [1,00) then
u(z,t) defined by (6.2) satisfies (6.1) and

i . —_ = (. 3
tim (1) ~ woll, =0 63)

We note that the right-hand side of (6.2) converges for more rough data,
say

juo(a)] < Cexp (l2f”) (xR,

where C > 0 and 3 € (0,2) are constants.
Duhamel’s principle asserts that the solution

u =Au+ f(z,t) (xR te(0,T)) ul,_o = uo(z) (z€R")
(6.4)
is given by

i
u(z,t) = / G(z*y,t)uO(y)dy+/ dS/ G(z—y,t—s)f(y,s)dy. (6.5)
R~ 0 R™
This is obtained from the law that
d t i
4 / H(t,s)ds = H(t,t) + / Hy(t, 5)ds. (6.6)
dt Jo 0

In fact, putting

o(z, ) = /0 ds /R G(e -y, 5) 1, 9)dy, 6.7)

we have formally that

vz, t) = / Gz — y,0)f(y, t)dy

/ ds-—/ -yt~ s)f(y,s)dy

= fla,t) + / dst [ G-yt - 9)f(y,s)dy
0 R~
= f(z,t) + Av

because of G(z,0) = 6(x). The above argument is formal because the
behavior as t | 0 of G(z,t) is not obvious.



Method of Perturbation 267

Exercise 6.1 Give a sufficient condition to ug(z) for (6.3) to hold. Also
give a sufficient condition to H(t, s) for (6.6) to hold.

Exercise 6.2 Show that v(z,t) given by (6.7) satisfies the first relation of
(6.4) if f(-,t) € C(R™) N L°(R™) and

"f(at) - f(,s)uoo .<_ C‘t - S|’y

for t,s € [0,T], where C >0 and «y € (0,1) are constants.

6.1.2 Semilinear Heat Equation

Given p € (1, 00), we take the problem
w=Au+u? (zeR" t>0) ul,_o = uo(z) (z€R"), (6.8)

where the solution u = u(z,t) and the initial value uy = ug(x) are supposed
to be non-negative. For T' > 0, we say that the non-negative u(z,t) is the
regular solution to (6.8) on t € [0,T] if u, u;, ug,, and ug,,, exist and
continuous on R™ x [0,T] and satisfies (6.8). We say also that u(z,t) €
E[0, T if there exist M > 0 and 8 € (0,2) such that

|u(z, t)] < Mexp (|m|") (zreR™, teo,T)).

Finally, we say that u(z,t) € £[0,c0) if u(z,t) € £[0,T] for any T > 0.
Then, the following inclusion is obvious:

0<u=u(zt)e&0,T] = uPe&0T] (6.9)

Henceforth, we study the regular non-negative solution to {6.8) belong-
ing to £[0, 7). Furthermore, we assume ug € B2(R"), which means that
it is C? and any D%ug with Ja| < 2 is bounded on R". We show that
Duhamel’s principle is valid even to this class of the solution.

Theorem 6.1  If0 < u(z,t) € £[0,T] is a regular solution to (6.8), then
it holds that

u(z,t) = uo(z,t) + /0 ds /Rn G(zx —y,t — s)u(y, s)Pdy (6.10)
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forz € R™, t € [0,T], where

w(@t) = [ 6= vy

Proof. It suffices to prove (6.10) for t € (0,T]. We take p € Cg°(R™)
satisfying 0 < p(z) <1 and

1 (2l <1)
“”={0<Mzm,

and put that pny(z) = p(x/N) and vy = pyu for N = 1,2,---. Then, in
use of

Ovy _ Ou _ »
5t = PN = pn (Au + uP)
and
Avy = pnAu+ 2Vpn - Vu + (Apn)u,
we get that
6vN
5 = Avy + pyuP — 2Vpn - Vu ~ (Apn)u

in R™ x [0,T] with vn|,_, = pnuo. Because vy(z,t) is appropriately
smooth and has the compact support in x, we can apply Duhamel’s principle
as

un(z,t)=Vi+ Vo —2V3 -V}
with

Vi = G(x — y,t)pn - uo(y)dy
R’II

t
Vo = / ds G(z —y,t — s)pn - u(y, s)Pdy
0 R~

Vs

]

t
/ ds G(z - y,t — s)Vypn - Vyu(y, s)dy
0 R"

¢
Vi= / ds/ G(z —y,t — s)Aypn - u(y, s)dy.
0 n
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First, if N — oo, then pyug{y) — uo(y) for any y € R®. We can apply
the dominated convergence theorem by

IG(z — y,t)pn - uo(y)] < Jluoll, Glz — y,t) € Ly (R™),
and obtain
Vi — uolz, t).

To treat the second term, we recall the assumption 0 < u(z,t) € £[0, T
and (6.9). There exist M > 0 and 8 € (0,2) such that

0<u(y,s) <Mexp (jyl°)  (yeR™, s€0,7]),

and hence we obtain
t
0 < / ds G(z —y,t — s)pn - u(y, s)Pdy
0 R~

t
< M/ ds G(z —y,t — s)exp (|y|ﬂ) dy
0 R"

IA

4
M/ ds Gz —y,t —s)
0 R™
-exp (2ﬁ |z — ylﬂ +28 |x|ﬁ) dy. (6.11)

For t > 0 fixed, we have

nf2
1
G(z,t)exp (2"3 |x|ﬁ) dz = (R) /n e~ lal? /44282l oo

J— / g~ InlZ+1607 0l g

RrR”

< pni2 / e~ IP+ASTY 2l g — My < oo

for t € (0,T] by z = v/4tn. Therefore, the right-hand side of (6.11) is
estimated from above by

M exp (2‘3 ]z|ﬁ) -TM,.

On the other hand, we have

t
Vo — / ds G(z —- y,t — s)u(y, s)Pdy
0 R™
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t
< / ds / G(z —y,t ~ s)u(y, s)Pdy
0 [yI>N

t
< M/ ds/ G(z —y,t — s)exp (|y|ﬁ) dy. (6.12)
0 lyIZN

In use of an estimate obtained similarly to the right-hand side of (6.11)
and the dominated convergence theorem, we see that the right-hand side
of (6.12) converges to 0 as N — co.

Next, we have |Apy(y)] < CN~2 with C = ||Ap||,, and hence

t
IVZISCN_2-M-/O. ds N G(z—y,t—s)exp(lyl’g)dy—)()

follows. Finally, we have
t
o= [ds [ Gl-yt-9)Vyon Vyuly, sy
0 Rn

¢
= /0 ds {— o Vy - (G(x —y,t — s)Vypn) u(y, s)dy}
= V-V,
‘We shall show that

t
Vs = / ds V.G(z —y,t —s) - Vpnu(y, s)dy — 0.
0 R~
In fact, we have for C = ||Vp||_, that

1

nf2
Von(y)| < CN71, IVzG(x,t)l=<—) elet/ae | 2

E.’l‘

3

4nt

and
[u(y, )| < Mexp (191”) < Mexp (2 al’) - exp (2° |2 - 917

This time we have
[ 1926 =y t)lexp (1917 v
Rn

<ew (X1ef’) [ 19,60 Hlewn (2017 dy

— exp (2a t$|ﬂ) (%ﬂt)"ﬂ /Rn exp (_ [y|2 /4t + 27 |y|ﬂ) . lzitldy
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= exp (21a) 72 [ exp (= Inf* + (169" ) nl
Rn
112
= exp (2[’ |x|ﬁ) Myt~1/?

and hence
_ t
)VQ{ < CN7lexp (25 lzlﬁ) MI/ (t —s)~Y2%ds
0
< CN7lexp (2B |$|ﬂ) M, -2T2 .50
as N — +o00. Thus, the proof is complete. ]

Exercise 6.3 Confirm (6.9).

Exercise 6.4 Show that if 0 < up € B*(R™), up(z) £ 0, and 0 < u(z,t) €
£[0,T) satisfies (6.10), then u(z,t) > 0 holds for (z,t) € R™ x (0,T] and
also £ € £[0,T) for j=1,---,n.

Exercise 6.5 Show that if ug € B2(R") and u € C(R" x [0, T])NL>®(R"™ x
(0,T)) solves (6.10), then it is the regular solution to (6.8).

6.1.3 Global Existence

The right-hand side of (6.10) is regarded as a nonlinear operator to u(z,1),
and it is the fixed point equation with respect to this operator. If the
iterative sequence converges, then we get the solution.

Theorem 6.2 Letp > 1+ % and up € B*(R"). If there are 0 < v K 1
and § > 0 such that

0 < up(z) £ 6G(z,7) (x e R™), (6.13)
then (6.8) admits the regular solution 0 < u = u(x,t) € £[0,00).

Proof. Wesay that u = u(z,t) € §[0,00) if it is continuous on R™x [0, c0)
and satisfies

0 <ufz,t) < MG(z,t +7) (z e R", t>0).
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Letting

t
(Fu)(z,t) = / ds G(zx — y,t — s)u(y, s)Pdy,
0 R"
we show that the iterative sequence
uj+1 = up + F(uy) (=0,1,--9) (6.14)

converges in S[0,00). Actually, it is the Banach space provided with the
norm

lv(z, )|
ol = _sup &
z€Rm, t20 p(T,t)

where p(z,t) = G(z,t + 7).
First, we show that

luo(-, )l < 6. (6.15)
For this purpose, we recall (5.39):
/ G(z — y,t)G(y, s)dy = G(z,t + ) (zeR™ t,s>0). (6.16)
Rﬂ

Then, it holds that

0 < wup(x, t)= /R _G(z ~ y, tyuo(y)dy

IA

5/" G(z — y,t)G(y,7)dy
0G(z,t + ) = dp(z, 1),

which implies (6.15).
We next show that if p > 1+ %, then it holds that

IFpll < Coly,p) = (4m)~"P-D/2

o]
: / (s +7) P V245 < foo. (6.17)
0

In fact, we have

(fp)xt)_/ ds G:c-y,t—s) (y, s)Pdy < +o0
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is continuous on R™ x [0, 00). Now, we have

ply,s)P 1 = Gly,s+7)?

I (p=1) Iyl
{4ﬂs+ﬂ} “p(‘4@+v))

(4m(s + ) P V/2, (6.18)

IA

This implies that

0 < (fp)(:l:,t)

¢
/0 ds n Gz —y,t — s)p(y,s) (dn(s + fy))_"(”‘l)/2 dy

IA

I

t
[ ds-tan )T [ G-yt )Gl + iy
0 R»

I

t
/ ds (4n(s + ’)’))_n(p_l)/2 G(z,t +7)
0

= p(x,t)Co(7,p)

by (6.16). Thus, (6.17) follows.
If u € §[0,00), then

0 < u(z,t) < |lull p(z,t)
holds. This implies 0 < u(z,t)? < ||u||” p(z,t)?, and hence

0 < (Fu)(a,t) < ([ull® (Fo)(z,t)
< Gollull” p(x,t)

holds by (6.17). Thus, we obtain F : [0, 00) — S[0, c0) with
[ Full < Co(v,p) (jull” (6.19)

forp>1+ % The iterative sequence {u; };’;0 in 8|0, o) is well-defined by
(6.14).
Now, we show that u,v € §[0,00) with ||u]l, |v|] £ M implies

17 (u) = F()ll < Co(v,p)pMP ™ fju ~ ]| (6.20)

S d 8
4P p—1
/r (d’TT )dT /r N

In fact, for r,s > 0, we have

”—* = <p




274 Nonlinear PDE Theory

< pmax {r”‘l,s”_l} |r — s/,
and hence
lu(y, s) — v(y, s)”|

< pmax {u(y, s)* ", v(y, s)* "} [u(y, s) — v(y, s)|
< pMP p(y, )P u(y, s) — v(y, s)|

follows. In use of (6.18), we have
lu(y, )P — v(y, s)F|

< pMmP-1 (

n(p-1)/2
! ) u — ol o, 5

An(s +7)
and therefore, it holds that

[(Fu)(z,t) — (Fv)(z,t)|
ds

Glz — .t - ) [uly, 5)? — v(y, )" dyl

n

. n(p—1)/2
< pMPJu ] / (———M(Sﬂ))

/ G(z —y,t — 5)G(y,s +7)dy
Rn

. n(p—1)/2
=t ol s (i) Gy

< pMP7u = || Co(, p)p(=, ¢).

This means (6.20).
The sequence {u;}3, C S[0,00) defined by (6.14) satisfies

Nujr1)) <6+ Co(y,p) lus))®

by (6.15) and (6.19). If § > 0 is sufficiently small as Cy(,p)(26)P < 8, we
get

“u]” <2 (j=1,2,"')
by an induction. On the other hand, we have from (6.20) that

lujre —ujiall = ||Fujpr — Fuyl

< oflujsn — gl
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for j = 1,2,--., where 0 = Cy(v,p)p(26)P"!. Making § > 0 so small as
¢ < 1, we have

o0
Z llujr1 = usll < +o0.
=1

This gives the existence of

k
v= kllrr;ozg (uj —uj—1) € S[0,00)
i=

and hence that of u = lim;_, u; in S[0, 00).
The mapping F : §[0,00) — S[0, 00) is continuous by (6.20), and send-
ing j — 0o in (6.14), we have

u = ug + Fu.

This means (6.10) for (z,t) € R x [0,00), and the proof is complete. ~ [J

Exercise 6.6 Show that (Fp)(z,t) is continuous in (z,t) € R" x [0, 00) in
use of the dominated convergence theorem.
6.1.4 Blowup

In this paragraph, we show the following.

Theorem 6.3 If1<p<1+32,0<u € BXR"), and up Z 0, then
there is no regular solution u = u(x,t) to (6.8) in 0 < u € £[0, 00).

Proof. Suppose the contrary, and let 0 < u € £[0,00) be the regular
solution to (6.8). First, we shall show that

up(0,8)" PV —(0,6)" PV > (p-1)t  (t>0) (6.21)
holds for
w(et) = [ G-ty
Rn

In fact, we take £ > 0 and put

Je(s) = /R" ve(z, 8)u(z, s)dx (6.22)
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for s € [0,1], where v.(z, s) = G(z,t ~s+¢€). We have M > 0 and 8 € (0,2)
such that

O_<_u(z,s)§Mexp(|x|ﬂ) (zeR™ 0<s<t).

Similarly to §6.1.1, we can show that J.(s) is finite and continuous in
s € [0,t] from the dominated convergence theorem. Furthermore, for
p € C°(R™) in the proof of Theorem 6.1, we take py(z) = p(z/N) and set

IV (s) = / ve(z, 8) - u(z, s) - py(z)dz.
R"
Then, we can show the convergence JV(s) — J.(s) uniformly in s € [0,¢]

as N — oo.
Now, J¥ is continuously differentiable as

/ 3 + _(2 d
n 6sv5 wTve 83“ PNET

{-Av, - u + v.Au} pydz +/ v -uP - pydx
Rﬂ

il

d N
'd_s‘]s (S)

R‘n
= L+

by % = —Auv,. Here we have from u? € £[0, ] that
I, — veuPdr
R»

uniformly in s € [0,t] as N — oo. We shall show I; — 0 uniformly in
s € [0,¢].
In fact, we have

5L

/ Ve - V(upn)dz +/ Ve - Au - pydzx
R~ R~

—/ vs-A(upN)d:l:+/ v Au - pydr
n Rﬂ

—2/ ’UEV’U,-Vde.’L'—~/ ve - u - Apndz.

Similarly to the proof of Theorem 6.1, we have for the second term of the
right-hand side that

<CN™2 Ve - udz < C'N~2
Rn

/ Ve - u - Apndz
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with a constant C’ > 0 independent of s € [0,t]. The first term is treated
similar because of g—:j— € £[0,t]. Then, it follows that

/ Ve - |Vuldz < C and \ Von - Vudz| < CN!

Rn

uniformly in s € [0,t]. In this way, J.(s) defined by (6.22) is continuously
differentiable in s € [0,¢] and satisfies

—;;Je(s) = /nvs(a:,s)u(z, s)Pdz.

Now, we have

/ ve(z, s)dx = / Glz,t—s+e)dr=1

and from Jensen’s inequality that

dJ. »
- = /nvs(x,s)u(x,s) dx

P
(/ ve(z, 8)u(z, s)dx) =JP
for s € [0,t]. This implies

dJ.

d
L= — _(p — -p Ay —
737 (p-1JIP—= < (r-1)

v

and hence
(p— 1)t < JZ®=D(0) - JZ V(1) (6.23)

follows.
Here, we have

Je(t) = /Rn ve(z, t)u(z, t)de = /Rn G(z,e)u(z, t)dz

= G(0 — y,€)u(y, t)dy — u(0,t)
R_n

as € | 0. Similarly we have

J.(0) = / i ve(z,0)u(z,0)dr = e G(z,t + e)uo(z)dz

— u0(0,t)
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as € | 0. Inequality (6.21) is a consequence of (6.23).
Now, we have

uo(0,8) "~V > (p~ 1)t (6.24)

for t > 0 by (6.21). Recall ug(x) £ 0. Without loss of generality, we assume
ug(0) > 0. There exist 7,8 > 0 such that ug(z) > v for |z| < 26. For t > 62
and |z| < 20 we have

(26> 1
462

jal? /4t <

Therefore, we obtain

ug(0,t) = /"G(x,t)uo(x)dzZ/RzISZ(;G(x,t)uo(x)dx

n/2
1 2
—lz}*/4t

> —_ e dzr
- 7/|;|526 (47"t>

1 n/2 y
> ~e 1|B(0,20)] [ — = Cyt™ /2
> e |B(0,29) (Mt) G

with a constant C; > 0. Inequality (6.24) implies
CFlp-p < V2 (1> 67,

which is a contradiction by 1 < p <1+ % a

6.2 Method of Energy

6.2.1 Lyapunov Function

As is described in the previous section, in 1966, H. Fujita showed that the
blowup of the solution occurs to (6.8), involving Fujita’s critical exponent.
On the other hand, in 1969 he studied the asymptotic behavior of the
solution to

u—Au=Xxe* in  Qx(0,T)
with

ulgo =0  and ul,_o = uo(z)
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in connection with the stationary solution and discovered the triple law of
him, which is not described here. Actually, later it was noticed that the
work is involved by the blowup of the solution in finite time, but at that time
it was thought to have no direct connection to the previous work. However,
the forward self-similar transformation to the former equation on the whole
space makes the domain compact, and that the critical exponent is realized
again by the study of stationary solutions to that system. Meanwhile it has
become clear also that the backward self-similar transformation provides
sharp descriptions of the blowup mechanism in finite time. In this section,
we study

u—Au=v’ in Q with Ulgqo =0 and ul|,_, = uo(z) (6.25)

by the method of energy, and then derive the critical exponent to (6.1) in
use of the forward self-similar transformation, where 2 C R" is a bounded
domain with smooth boundary 9.

Henceforth, u = u(z,t) denotes the classical solution to (6.25) and the
supremum of its existence time is denoted by Tpnax € (0, +00]. Then, the
strong maximum principle guarantees that u(z,t) > 0 for (z,t) € Q x
(0, Thmax). Actually, the unique existence of such a solution is assured if
up € Co(2), by converting (6.25) to the integral equation

i
w(z,t) = /Q Gz, v; t)uo(y)dy + /0 dt’ /Q Gz, y;t — uly, £)Pdy

and applying the contraction mapping principle in X1 = C ([0, T], Co())
for T > 0 sufficiently small. Here and henceforth, Cy (ﬁ) denotes the set of
continuous functions on Q taking the value 0 on 8, and G(z,y;t) denotes
the fundamental solution of the linear part, so that it holds that

(O — Az) Gz, y;t) =0 ((x,9,t) € 2 x Q x (0,))
with
Glyegn =0  and Gl = 6(z — y)-

In this argument of showing the well-posedness of (6.25) locally in time, it
can be assured that the existence time of the solution T > 0 is estimated
from below by [[uoll,, = max, g |uo(z)|. Because (6.25) is autonomous in

time, then liminf; 7 ||u(t)||,, < 400 guarantees that Tiyax > T. In other
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words, we have
T = Thax < +00 = tlin% flu(t)|| o = +o0. (6.26)

This justifies the terminology of blowup to indicate the case of Tinax < +00
and also the introducing of the blowup set by

S= {xo eq | there exist tx — T, and zx — zo
such that u(zg,tx) — +oo}.

Actually, it is a non-empty compact set in this case of Tiyax < +00. In 1993,
J.J.L. Veldzquez showed if 1 < p < (n"fzf‘; then the Hausdorff dimension of
S, denoted by d(S) is less than or equal to n — 1 so that dy(S) < n —1.
Here, ps = (—T:‘;_%—: is referred to as the Sobolev exponent, satisfying always
that p; > py, where py =1+ % denotes the Fujita exponent.

This exponent is related to Sobolev’s imbedding theorem H}(Q2) —
LPTY(Q) with p € (1, p;), where the inclusion is compact if 1 < p < p,. If
p = ps on the other hand, the imbedding constant

§ = inf {|Vully | ull 2, =1} (6.27)

is determined by n and is independent of 2. Henceforth, this constant is
written as § = S,, > 0. The role of Sobolev’s imbedding theorem is taken
from the energy,

1
J(u) = -nv ull3 — —— JlulP¥1,
p+1

which acts as the Lyapunov function, so that if u = u(-,t) is a solution to
(6.25), then it holds that

d
57 (W) = (Vu, Vuy) ~ (wP, ) = — [Jase 13- (6.28)
On the other hand, for

2 -1
1) = IVl = s = 27(0) = Tl

we have
d
5 2 O3 = () = ~1 u(t)

= ~2J (u(t)) + % (Ol (6.29)
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If J(up) < 0, then J (u(t)) < 0 for any t € [0, Timax) and therefore, it follows
that

p—- p+1 p 1 +1
> = — f P

> p+1|n|{f w} T =P g

for t € [0,Tmax)- Therefore, Tax = +00 is impossible by p +1 > 2 and
luoll, # 0. This means that Tinax = +00 implies J(up) > 0 and translating
the initial time, we get the following.

Theorem 6.4 If T« = +00 holds in (6.25) with p > 1, then it follows
that J (u(t)) > 0 for any t > 0.

R. Ikehata and the second author showed that if Tiax = +oo and
liminf; o |ju(t)]l,, > O hold in (6.25) with p € (1,p;], then it follows
that J (u(t)) > d for any t > 0, where d > 0 is a constant determined by
Q. If p = ps, then d depends only on n as d = -};Sﬁ/z. On the other hand,
Y. Giga showed the following in 1986.

Theorem 6.5 In (6.25) with 1 < p < p, it holds that
T = Tax < +00 = tlin%.] (u(t)) = —co. (6.30)

If © is convex, then the work by Y. Giga and R.V. Kohn is applicable.
In fact, in this case it follows that S C Q and for ¢y € S we have

) 1 \7T
th—»nql*(T —t)yrTu{z,t) = (5-71) (6.31)

locally uniformly in |z — x| < C(T'—t)Y/2 for any C > 0, where T = Tipax <
+oo and 1 < p < p,. Here, {(z,t) | |z — xo| < C(T —t)1/2} is the standard
parabolic region obtained from the backward self-similar transformation,

and
O L

indicates the solution to the ODE part,

G« =uP  with thn% ux(t) = 400,
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or the constant self-similar solution. Relation (6.31) indicates that the
blowup mechanism in the parabolic region is controlled by the ODE part
if the exponent is sub-critical: p € (1, ps).

The actual backward self-transformation is indicated as

w(y,s) = (T - )7 Tu(y,t), y=_(z-20)/(T —t)"/%, s=—log(T~1).
Then, it holds that
ws—Aw+lyoVw+Lw=w”
2 p—1
in

U e2(@—{=o}) x {s}.

s>—logT

Relation (6.31) means that

o~ ()"

locally uniformly in y € R™ as s — +00. Then, the parabolic regularity
guarantees that

wy(y,s) = 0 and Vw(y,s) — 0

locally uniformly in y € R™ as s — +00. Then, we have for 0 <t < T =
Tinax and B(0,1) C e? (2 — {zo}) that

t —log(T—t) 9 _
K(t) = / e ()} dt’ = / exp ( (—— _n 2) ) ds
0 —logT p- 1 2

[ e
. ——w+ws+—y-Vw
es/2(Q—{zo}) [P — 1 2T Y y
— log(T—t) ) n—2
> X _ = d
L e (GE) )
2
/ —1—w+w +ly-Vw dy
i<t lpP=17 "7 2 '
Because -}2—1—"7_2 > 0, we have lim; .7 K(¢) = +oco and hence

J(@(t)) = J(uo) — K(t) — —oo
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holds as t — T. The proof is complete.

6.2.2 Solution Global in Time

If Timax = +o0 with liminf; .o [[u(t)||,, < +oo holds in (6.25), then there
are tp, — 400 and Cy > 0 satisfying |[u(t,)l|, < Ci. Regarding u(t,) as
the initial value to (6.25), then we can apply the unique existence theorem
for the classical solution. The proof guarantees the existence of 7 > 0
satisfying that for any é € (0,7) we have C3 > 0 such that

lullgaronrors(@x tatotatn) < Ca (6.32)
forn=1,2,-.-, where 8 € (0,1).
On the other hand, we have from (6.28) and Theorem 6.4 that

| ol de < Iao) (6.33)

Taking sub-sequences if necessary, we may suppose that t,, — +oo satisfies
tn + 7 < t,41. In this case, we get from (6.33) that

tn+T
lim llue (8))|2 dt = 0.
n—oo tn 5
Therefore, there is t, € (t, + §,t, + 7) satisfying
lue(t)llz  — O

We also have (6.32) and hence |ju(t))|| crvoqmy < Ca follows. Then, passing
through a subsequence, we obtain u(t},) — us in C%() with u, satisfying

—Auyp =ul, in Q, Uslgn =0 on 99,
This means that u, is a stationary solution to (6.25). Putting
E = {uo, € C*(§) | classical solutions to (6.25)}
and
w(uo) = {uco € C*(Q) | there is t], — +o00
such that u(t,) — ue in C*(Q)}, (6.34)

we get the following, where w(uo) is called the omega-limit set of the orbit
O = {u(t) | t >0} C Co ().
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Theorem 6.6 The asymptotic behavior of the classical solution u =
u(-,t) to (6.25) is classified into the following.

(1) The blowup case T = Tpax < +00, where it holds that
lim f[u(t)l o0 = +o0.

(2) Tmax = +00 and liminf, o ||u(t)||,, < +00, where it holds that
w(ug) C E.
(3) Tmax =400 and llmt_,oo ”’u,(t)“oo = +400.

The third case of the above theorem is referred to as the blowup in infi-
nite time. In 1980, M. Otani showed that this is not the case for p € (1, p;)
and more strongly, limsup;_, ., [|u(t)||,, < +oo holds whenever Tyax = 400
in this case. To prove this fact, we make use of the following.

Theorem 6.7 If the solution u = u(-,t) to (6.25) with p > 1 satisfies
Tmax = +00, then it holds that

sup [[u(t){l, < +oo. (6.35)
>0

Proof. We have from (6.29) and (6.28) that
2 )1 = ~1 ()
= ~(p+ 1)J (u(®) + 25 IVl
>+ 1) [ lu)lid -+ 1) (w0)
0
W L (6.36)

for t > 0, where A\; > 0 denotes the first eigenvalue of —A with the zero
Dirichlet boundary condition, which assures the Poincaré inequality

2 2
[Vullz 2 Axlfull;

holds for u € H}(Q). Letting

A(®) = 220 (o)1 = (0 -+ 1) (wo),
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we shall show that h(t) < 0 for any ¢t > 0. Then, the conclusion (6.35) is
obtained.

In fact, if this is not the case, there is tp > 0 such that h(tp) > 0. This
implies from (6.36) that

CIE > ht)  and ()  hlto)

for any t > tg by the continuation in time. Then, it holds that
Jim u@l, = +oc.

Letting ¢o = 0 without loss of generality, we now take
t
2
£0)= [ )1 o
and get that
1., ¢ N2 gt
/02 @+1) [ Juld

y (6.36) and A(t) > 0, which is combined with

t t t
t%LHwWW%f=AHMﬁﬁﬁ“LHmWNWf

z{/memzwmumum}2z{Aﬂmwxmw»Mﬂ}

2 1 5
~H{ [ Zwensar} -100-ror
We have for ¢ = 1’—;—1 > 0 that
F)- £ = L+ ) (F) - £(0)°.

Because f'(t) = ||u(t)]|, — 400, we have

OB KON (SR FIOK

2

for t sufficiently large, which means that f (t)'e/ 2 > 0 is concave there.
However, again f'(t) — -+oo implies f(t) — +o0o, which is impossible. We
get a contradiction and the proof is complete. a
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Now, we proceed to the following.

Theorem 6.8 If1 < p < ps and Tmax = +00 hold in (6.25), then we
have sup;>gq lu(t) o < +oo.

Proof. We only take the case of n > 3. First, we combine (6.29) with
(6.35). There is C3 > 0 such that

2L Iu(®l - (p-+ 1) () = 5 5 @)
= (ue(t), u(t)) < Ca [ue(®)l-

Thus, we obtain
-1
P IVa)l} < Co lu®lly + @+ DI(w).  (63)
Let T = {t > 0 |lu(t)ll, > 1}. We have by (6.33) that

/ (lue()]|3 dt < +o00.
0

Hence we obtain

lim |I'N ¢, 00)| =0, (6.38)
t—oo -
where | - | denotes the one-dimensional Lebesgue measure. On the other

hand, inequality (6.37) implies

2 203 2(p + 1)
IVu@)l} < 22 + 222 s (wo)
for t ¢ I, so that it follows that
flu(@®)|l,. < Ca for tgT (6.39)

with a constant Cq > 0, where 2* =p, + 1 = nz—_"z
Now, we take the semi-group {e_‘A} ¢>o» Where A denotes —A with zero
Dirichlet boundary condition. Then, it holds that

lle™* ol < vl

and

“e—tA

vli,, <Cs ||Ae_tAv

-1
2 2+ /(27 —1) < Cgt ”’0“2,/(2__1) ,
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where the relation W22 /(' ~1(Q) «— L2°(Q) is made use of. Actually,
if A, denotes A regarded as an operator in L9(f2), it holds that D(4,) =
W24(Q) N Wyd(R) for ¢ € (1,00). In use of Riesz-Thorin’s interpolation
theorem we get that

He‘tAv o S Cpt™0 vllgw /p (6.40)

with 8 = (p—1)/(2* — 2) € (0, 1).
In use of [[uP([,. /, = [[uf[5., we have

lult + )2 < Ju()ll,- + Cst'™®  sup ]HU(S)H”.

S€[r,t+T
for t > 0. Letting f(t) = sup,¢(y,s1r) [|4(8)ll,., we have
lu@+ 7 < llulllye +Cst' =0 £ (2)
< £,(0) + CsT' £, (TP
for t € [0,T], and hence
fr(T) < £2(0) + CsT'~° £(T)?
follows. Writing T = t, we obtain
£(8) < F(0) + Cat! P (8)P (£20).
In particular, f, (o) = 2f,(0) implies that
tp > 2¢/(1-6) .08-1/(1—0) {fr(o)}—(p—l)/(l—f’)
and there is § > 0 such that
rgT and filte) =2/,(0) = o230
by (6.39). Therefore, it holds by |Ju(7)||,. < C that
lu(sill. < 2C for 717<s<7+4+4

Now, coming back to (6.38), we get t1 > 0 satisfying |I’' N [¢t;, 00)| < §/2.
In particular, any ¢ > t; admits that [t,t + 6/2] N T"° # @, and hence we
have

lu@)llys <2C1  for  t>to,

where t2 = t; +8/2. Then the following lemma assures the conclusion, and
the proof is complete. 0
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Lemma 6.1 Let uF = u¥(x,t) be the solution to (6.25) with p € (1,ps)
globally in time with the initial value uf = u*(-,0) satisfying

[|ug]l,. < €< +oo
forn=1,2,--.. Then, any 7 € (0,1) admits a positive constant depending
only on T and £, denoted by C(r,£) > 0, such that
sup ||uk(t)|| < C(r,0) (6.41)
te(r,1)

forn=12--.
Proof. We have from

) :e~tAuI5+/()t =94 (44 ()" ds
and
e~ 4]l < llvll, (g€ (1,00))
that
|47 uk @), < Cot™ [[ub]|, + Cot

for t € (0,1), where v € (0,1) and ¢ = 2*/p € (2*/(2* —1),2*). Given
7 € (0,1), we get from this inequality that

”A'Yu

gop SC0 for  te(r1).

We have D(A7) C W?279 and if Zpl > %, then Morrey’s theorem guarantees
that (6.41) holds. If this is not the case, we apply Sobolev’s imbedding, in
use of

waE-a)7l () ¢ L#(1-52e) 7 ()
valid for a € (0, +2) Thus,
”(“Ié)p“ 28 (1—a)-1 S <Cn
implies

||uk(t)”"2_112(1_:_tg_ﬁ)—l < Ci2
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fort € (7,1), where 7 € (0,1) and 3 € (0, ) are arbitrary. Continuing this
procedure finitely many times, we eventually obtain for any ¢q € (1, o0) and
7 € (0,1) that

kOl < Cus.
o [l < s

Then, (6.41) is obtained similarly, and the proof is complete. [

Exercise 6.7 Confirm that
1-6 + [/
> 22" - 1)

holds for 8 = (p — 1)/(2* — 2) and justify (6.40).

=2
2*

6.2.3 Unbounded Solution

In 1986, Y. Giga refined the proof of Theorem 6.8 and showed that the
upper bound of sup,> ||u(%)|, depends only on ||ugll - This, in particular,
implies the following theorem, where C = {uo € Co(Q) | ug > 0}.

Theorem 6.9 The set K defined by
K = {up € C | It holds that Tyyax = +00 in (6.25)}
is closed in C in the case of p € (1,p;s)-

This means that C \ K is relatively open, but F. Merle proved that the
blowup time Tinax = Tmax(0) is a continuous function of ug € C\ K. First,
we note the following.

Lemma 6.2 If J (u(to)) < 0 holds with some to € (0, Tiax), then it holds
that

_p-1
Tmax —tp < C \J ('U;(to))‘ P,
where C > 0 is a constant determined by 2 and p > 1.

Proof. We have from (6.29) that

1d 2 p—1 +1
3d lu(t)llz = —2J (u(t)) + g )b
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-1
with ||u(t)||§ < |Q|1;L+T ||u(t)”12,+1. Therefore, because J (u(t)) is a non-
increasing function of £, we have

1d — it
2 I = =27 () + B 1017 Jute) ™ > 0

for t € [to, Tmax). This means

1
2

e

uu(t)n§ __>1

i (uols) ©

B

—2J (u(to)) + ’;

+

and hence it follows that

flu(TH?
-]; / ds 2L >T -1,
2 Jiutoiz —2J (ulto)) + XL |Q| 7T s

~F
:

P+1

for any T € (to, Timax). Then, this implies

< —ezt b dt
Tmax —tp < |'](u’(t0))| P o :C—t—%'_}.

with a constant ¢ > 0 determined by Q and p. [
Now, we show the following.

Theorem 6.10 If1 < p < p,, then the mapping

uw €C\K +— Thax(ug) >0
is continuous, where Trax(up) denotes the blowup time for the solution
u=u(-t) to (6.25).

Proof. We take {uf},., C C\ K satisfying that u§ — uo in C. The
solution u = u(-,t) to (6.25) with the initial value uf is denoted by u* =
uF(-,t) for k = 0,1,2,- -, where u® = u and u3 = ug. Let Ty, = Tinax(uk) be
its blowup time. Then, it holds that limsup;_, ., “u’&“co < +00. Because
Tinax is estimated from below by ||uo|l,, any € > 0 admits k, satisfying
Ti > Tp — € for any k > k. Thus,

likm infTy > Tp

follows.
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We now show that

limsupT}, < Tp (6.42)

k—o0

holds for p € (1,p,). In fact, Theorem 6.5 guarantees that
tll’.'r"f..lax J (u(t)) = —oc0

and therefore, any M > 0 admits ¢ € (0,7)) such that
—J (uo(To —to)) > M + 1.
This implies the existence of ko satisfying
—J (W (To—to)) > M

for any k£ > ko. Then, Lemma 6.2 gives that

T — (To — to) < C|J (w*(Tp - to))l_ﬁ ,
or

Ty <To—to+ CM™ 51 < Ty + CM~ 571
Letting M — +o00, we obtain

limsup T < Ty

k—o0
and the proof is complete. 0

For the moment, we take the general semilinear parabolic equation
us — Au = f(u) in Qx(0,7)
with
u=0 on 00 x(0,T) and Ul;—p = Uo(z) in O

with the nonlinearity f : R — R is C! and ug € Co(Q). Recall that the
omega-limit set w(ugp) is defined by (6.34) for Tmax = +00. In the case of

sup [[u(t)l]p < +o0, (6.43)
t>0
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the orbit O = {u(t)},5, is compact in Cy($2) and then the general theory
guarantees that w(ue) is a non-empty, compact, and connected set con-
tained in E, the set of stationary solutions, and it holds that

t_!’iinoo dist (u(t), w(up)) = 0.

Each u € E is associated with the linearized operator —A — f’(u) provided
with the zero Dirichlet condition, of which first eigenvalue is denoted by
A1(u). Putting

E. ={ue E|xM(u) >0} and Ey ={u € E | M(u) =0},
P.L. Lions showed in 1984 the following:

(1) E, is composed of at most countable set of isolated points.
(2) Any closed subset of Ej is an ordered C* curve.
(3) If C is a connected component of E_, then C C E_ holds.

By this it holds that w(ug) C E_-, Ep, or E, exclusively, in the case of
(6.43). It also implies the following, where

I, ={up € K |w(up) C Ex+} and Ip = {up € K | w(up) C Ep}

for

K= {UO € Co(ﬁ) | up >0, Tax = +oo, limsup “u(t)”oo < +°°} .
t—+o0

(1) I U I, contains an open dense subset of K.

(2) If ug € I+ U Iy, then w(uo) is composed of one element.

(3) Ifup € I, then there aree > 0 and u+ € ELUEg such that iy € K,
fip > uo, o # uo, and |t — uo||, < € imply w(ip) = {u4}, where
u4 is the minimal element of

{ue Eju>w forany w € w(up)},

and that 4y € K, tip < uo, %o Z o, and ||y — uol,, < € imply
w(tip) = {u—}, where u_ is the the maximal element of

{ue E|u<w forany w€ w(ug)}.



Method of Energy 293

Those results are proven by the strong mazimum principle.
Concerning (6.25), we can show that any non-trivial stationary solution
uis in E_. In fact, the linearized operator is —A — puP~! and it holds that

IVull; - p lulZt} = —(p - 1) | Vull} < 0.

Therefore, u € E_ follows from the Rayleigh principle. Note also that if
1 <p < pg, then K = {uo € Co(ﬁ) | uo 2 0, Trax = +oo}.

Kaplan’s method is the other tool, which is important in the study of
(6.25). There, the first eigenvalue A; > 0 and the eigenfunction ¢; =
¢p1{z) > 0 of —A provided with the zero Dirichlet boundary condition is
taken, so that it holds that

—Ap; = A101, p1 >0 in Q, v1=0 on 9.

Adopting the normalization

L%MM=L

we put

) = [ e tyor(@)da
Q
and apply Jensen’s inequality as

d—J-I—/\lj = /u(m,t)pcpl(x)dm
dt Q

{[ntyon@is} =,

1
where t € [0,Tmax). We have for j. = AJ™' that s? — A;s > 0 for s > ji,
and if

v

ﬂ®=wa%@M>ﬁ

then -g-ti > 0, j(t) > . holds for t € [0,Tinax). Therefore, Tmax = +00

induces a contradiction as

+00 . +00
/ _4 / dt = +oo.
i) JP— A 0
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Thus, j(0) > j.« implies Tnax < +00, and hence Tyax = 400 gives that
j(0) < j.. Because (6.25) is autonomous in time, we have that

Tinax = +00 = /Qu(z,t)cpl(x)dz <j« (20). (6.44)

In 1984, W.-M. Ni, P. Sack, and J. Tavantzis provided the following
argument. Let 1 € Co(§2) with ¢ > 0, ¥ # 0 be fixed, and take up = pp
with g > 0 in (6.25). The solution and its blowup time are denoted by u,, =
u, (-, t) and Tmax(p) > 0, respectively. Then, it is proven that 0 < p < 1
and g > 1 imply Tax(p) = +oo with limsup,_, o [luu(t)|l, = +oo and
Tmax < +00, respectively. Putting

L = SUp {u > 0 | Tmax(#t) = +o00, limsup [lu,(t)]l, < +oo} >0,
t—+o0

we have Tinax(u) = +oo for p € (0, ) by the comparison theorem, and
therefore, it holds that

/ uu(z, t)p1(z)dr < 4. for any t>0.
Q

In use of the Hopf lemma and the monotone convergence theorem, we get
the limit function

Uy = Us(z,t) = ,}EE up(z,t)

converging in C ([0, 00), L*(£2, 6(z)dz)), where 8(z) = dist(z, Q). Then,
we can show that this u.(z,t) is a weak solution to (6.25) so that u, =
U+, t) € LP(Q,d(z)dz) for a.e. t > 0, that

te[0,00) /Qu*(z,t)w(r)dz

is locally absolutely continuous if ¢ € C%(Q) N C5(), which means that
¢ = p(z) is C? and satisfies the estimate |p| < C§ with a constant C > 0
on £, and that

%/ﬂ“*(x’t)‘P(z)dz=/ﬂ“*(xvt)A‘P(x)dm+/s;u*(w,t)”cp(x)dx

holds for a.e. t € [0, 00).
They showed that if 1 < p < 1+ % and €2 is convex, then it holds

that limsup,_, , o, lu«(t)||, < +00 and hence u.(z,t) is a classical solution.



Method of Energy 295

Remember that p; = 1+ % is the Fujita exponent, in which case it is known
that the L! boundedness implies that of L®. They also showed that if p >
242 and € is star-shaped, then it holds that limsup,_, 100 1Ux ()| oo = +o0.
Again, p, = zﬁzﬁ is the Sobolev exponent, and the set of stationary
solutions E is empty if Q is star-shaped by the Pokhozaev identity. If
Tmax{#+) < +00 in that case, the solution blows-up in finite time with a
post blowup continuation as the weak solution. If Tiax(it«) = +00 on the
contrary, then u, = u.(-,t) blows-up in infinite time. That problem was
studied by V.A. Galaktionov and J.L. Vazquez in 1997 in more details. The
solution u, = u«(x,t) in this case is called the unbounded global solution.

6.2.4 Stable and Unstable Sets

To establish the local well-posed theorem for the discontinuous initial value
to (6.25) has been tried by several authors. It is confirmed that if p <
Ps = (—n——'%)— and uy € H}(f), then there is T > 0 that admits the unique
solution u = u(-,) in C ([0, T), H3 ()), which is called the H!-solution in
this monograph. More precisely, it is the solution to an abstract integral
equation in Hj(€2). However, the parabolic regularity guarantees that it
becomes smooth for ¢t > 0. Moreover, if ug € HE() N Co(Q) then this
H?! solution coincides with the classical solution which we have discussed.
In particular, the supremum of the existence time as the classical and the
H! solutions coincides and is denoted by Tiax € (0, +00], and (6.26) holds
even in this case of up € H(£2). On the other hand, if 1 < p < p, we can
observe that this 7' > 0 and sup,cjp 1) | Vu(t)|, are estimated from above
and from below by ||Vugl|,, respectively. Thus, it holds that

T = Tax < +00 = tlil’l,}‘ (Vu(t)ll, = +oo, (6.45)

although this relation (6.45) does not hold for p = p;.
In any case, Hy(Q) — LP*1(Q) holds for p € (1, p;), and

J(u) =3 ||Vu||z =~ Py; and  I(w) = |[Vull; - [lulf,
are well-defined for u € X = H}(Q?). The relations

d
D) =~ @I and 3w} =~ ()
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continue to hold for the H! solution to (6.25). Combined with Poincaré’s
inequality

IVull3 > M lulls  (ue H3()), (6.46)

to realize the orbit O = {u(t) |0 <t < Tax} in X = H}(R) becomes
meaningful.

The Nehari manifold and the potential depth indicate the set N =
{ue H}(Q) | I(u) =0, u # 0} and the constant

d = inf {supJ(su) |ue Hy(Q), u# 0},
3>0

respectively. Then, it holds that E \ {0} C N, where E denotes the set of
stationary solutions to (6.25):

E={ueC*Q)|-Au=vuP, u>0in @, u=0 on a0} .

In the case of 1 < p < p; we have E # § and d = inf {J(u) | u € E\ {0}}.
This relation is valid even if E is replaced by

E={u602(§)|-—Au=|ulp—lu in Q, u=0 on 89}.

If p=ps, then d = ;ll—Sn/ 2 for the Sobolev constant determined by (6.27).
It is not difficult to see that for any uw € H(f2) \ {0}, the mapping
s € [0,00) — J(su) takes the maximum if and only if su € N. Furthermore,

W, ={ue X |J(u) <d, I(u)>0}u{0}

is a bounded neighborhood of 0 in X = H}(R2), and is called the stable set.
On the other hand,

Vi={ueX|Ju)<d, I(x) <0}
is called the unstable set, and it holds that 0 ¢ V, in X. Then, it holds that
W.NV, =E, for
E.={ueN|Ju)=d}={uec E|J(u)=d},

and each element in E, is called the minimum energy solution. If 1 < p <
Ds, then E, # 0, while E, = 0 if p = p, and  is star-shaped, because
then Pohozaev’s identity guarantees that E = {0}. It is also known that
infar J is attained by the element in E,, which is referred to as the Nehari
principle.
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{I=d} E* Nehari manifold

Fig. 6.1

Thus, each W, and V. forms the connected component of
{ue X|J(u) <d}

in X and in particular, is a positively invariant set of (6.25) as ug € W,
(resp. Vi) implies u(t) € W, (resp. V;) for t € [0,Tmax). Now, we can
prove the following.

Theorem 6.11 Let 1 < p < p, and u = u(-,t) be the H-solution with
the initial value up € X = HL(Q) in up > 0, and let Ty be the blowup
time, that is, the supremum of the eristence time of the solution. Then we
have the following alternatives.

(1) u(to) € W, for some tg € [0, Timax), which is equivalent to Tpax =
+00 and limy—4cc [Vu(t)], = 0.

(2) u(to) € Vi for some ty € [0, Tmax), which is equivalent to Tyax <
+00.

(3) Tmax = +00 and u(t) € W UV, for any t € [0, Tyax), which is
equivalent to Tmax = +00 and 0 & w(ug).

In the last case, O = {u(t)}, is called the floating orbit. Because any
orbit global in time is uniformly bounded in this case, then it holds that
w(uo) is a compact connected set contained in E_.

Proof. To prove the first case, we note that u(to) € W, implies u(t) € W,
for any ¢ € [to, Tmax)- Because W, is bounded, we have sup,c(y, 1,.....) [Vu(t)]l <
+00, and hence Tnax = +oo follows from (6.45). Now, it becomes the clas-
sical solution globally in time and it holds that sup,>; ||lu(t)||, < +oco and
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w(uo) C E'is connected. Because ENW, = {0}, we have lim¢—.oo [|u(t) (| c2 @) =
0 and hence lim;_, ||Vu(t)|l; = 0 holds true. Conversely, if Tmax = +00
and lim;_, ||Vu(t)||, = 0, then u(ty) € W, holds for some ¢, > 0 because
W, is a neighborhood of 0 in X.

Now, we proceed to the second case. In fact, if u(tg) € Vi, then it
holds that u(t) € V, for t € [to,Tmax)- In case Thnax = +00, we have
supgs |lu(t)|l, < +o0 and hence § # w(up) C Vo N E = P follows. This is
a contradiction. Conversely, if Tiyax < +00, then Theorem 6.5 guarantees
that limg—7 . J (u(t)) = —oo. Furthermore, we have u(t) ¢ W, for t €
[0, Trnax) from the first step. Therefore, it holds that u(tg) € Vi for some
to € [0, Tmax)

The final case is a direct consequence of Theorem 6.8, as Tax = +0©
with 0 ¢ w(ug) is equivalent to be other than the first and the second cases.

The proof is complete. O

Several parts are open in the case of p = p;. The if part of the first
case is obvious, while the only if part is not known. However, we can prove
the existence of €9 > 0 such that {|Vu(to)|l, < €o for some to € [0, Tiax)
implies that Tinax = +00 and lim;_, [|Vu(t)|l, = 0. The only if part of
the second case is proven by a different argument, and its if part is true
at least for n > 4. On the other hand, the final part is rather different.
From Theorem 6.6, we have the alternatives that lim, o |ju(t)||,, < +o0
and lim,_, o, [|u(t)|,, = +o0 in this case. Furthermore, if the former occurs
then it holds that § # w(up) C E. Because E = {0} holds if Q is star-
shaped, then we obtain lim;_, [|Vu(t)|l, = lim; [Ju(t)l|,, = 0. On the
other hand, in the latter case, we have lim; ., J (u(t)) = kd for some
k =1,2,.--. This actually occurs if n > 4.

6.2.5 Method of Rescaling

Let us go back to (6.8). If u = wu(z,t) is the solution, then uy(z,t) =
AT u(Ax, A%t) is so except for the initial value, where A > 0. This trans-
formation is called the forward self-similar transformation, and if it is in-
variant under this transformation the solution u is said to be self-similar.
This means that © = uy for any A > 0 and hence

u(z,t) =t~ 71 f (z/\/Z)
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holds with some f = f(y) satisfying
1
Af-geVi=—of+f’ f20,f#0 i R (647)

It is known that if 1 + % =pr<p<ps= ﬁ, then some solutions
global in time to (6.8) converges to a self-similar solution as t — +00. On
the other hand, the backward self-similar transformation is useful to control
the blowup behavior in finite time of the solution as is indicated in §6.2.1.

Concerning the radial symmetry of the self-similar solution, we have the
following.

Theorem 6.12 If

fa)=o (=l 7T) (6.43)
holds in (6.47) as |z| — +o0, then it follows that f = f(|z|).

Thus, from the work on radially symmetric forward self-similar solution, we
have the following fact concerning the solution to (6.47) satisfying (6.48).

(1) If p > ps, then such a solution does not exist.
(2) If py < p < ps, then such a solution exists uniquely.

In fact, for the solution u = u(r, a) to

u”+(n;l+g>u'+p11u+|u|p_lu=0 for 7>0
with
¥ {(0)=0 and  u(0) = q,
we have the following.

(1) The finite value L(a) = lim,_ oo 72/ ®~Du(r, a) exists for each a €
R.
(2) If L(e) = 0, then it holds that

u(r, ) = A~ /4,2/(p=1)-n {1+0 (r=2)} as 7 — 00

with some A € R\ {0}.
(3) If p > ps, then u(r, ) is positive on [0,00) and L(a) > 0 for each
a>0.



300 Nonlinear PDE Theory

(4) If pf < p < ps, then there is a unique a5 > 0 such that u(r,ap) is
positive on [0,00) and L(a,) = 0. Moreover, if a € (0, ap) it holds
that L(a) > 0.

Thus, if p > py, we have the solution f = f(|z|) to (6.47) satisfying £ =
lim,— o0 rT f(r) > 0. Then, we have a counterpart of Theorem 6.12, where
$™=1 denotes the n-dimensional unit sphere.

Theorem 6.13 Ifp > py, then any A € C(S™ ') in 0 < A(g) < ¢
(o € S"71) admits a solution f = f(z) to (6.47) such that

lim er‘Tf(ra) = A(o)
uniformly in o € S™L.

From Theorem 6.3, we see that if 1 < p < py, then there is no solution
to (6.47). This is also the case of p = p;.

To describe the relation to the asymptotic profile of the solution to (6.8),
we put K (z) = el**/4,

LK) = {v :R" - R measurable | / v(y)? K (y)dy < +oo} ,
Rn
and
HYK) = {v e L*(K) | Vv € L*(K)"},

where g € [1, 00).

Given ¢ > 0, ¥ # 0 in H(K) N L>®(R™), we take up = pt in (6.1).
The classical solution and its blowup time are denoted by u, = wu,(z,t)
and Tmax(it) € (0,00], respectively. Then, if pf < p < ps we have a
unique po > 0 such that u < po and g > po imply Tiax (i) = +0c with
lims o0 J|uu(t)|l, = 0 and Tmax(p) < +oo, respectively. Here, we have
Tmax(to) = +00 and

lim
t—o0

t7Tu, () - f (/VE)||_=o.

In 1987, M. Escobedo and O. Kavian proved the following, where

1/q
W=k k%) wd o= ([ @I K@)
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(1) HY(K) — L9(K) holds for 1 < q < p, and is compact for 1 < q <
ps. Furthermore, if 7 > 3, then the Poincaré-Sobolev inequality

Sallvl3. g + A llvls 4 < IVI13 4 (6.49)

holds for v € HY(K), where A\, = max(1,n/4) and S, is the
Sobolev constant:

Sn = int {|Vol} | v e CRR™), o, =1}

(2) The operator L is realized as a self-adjoint operator in L?(K) with
the domain D(L) = {ve L*K)|Lv e L*K)}. It is positive
definite with the compact resolvent and it holds that D(L/2) =
HY(K). Its eigenvalues are given by Ay = 2HE=l (k = 1,2,...)
with the multiplicity

n+k—2
("57)

and the eigenfunction Py_;(D)e~!¥*, where P;_,(¢) denotes the
homogeneous polynomial of degree k — 1.

Applying the forward self-similar transformation
o(y,s) = (t + 1)7Tu(z,t), y=z/(t+1)Y2  s=logt+1)

to (6.1), we have

vg+ Lv =

1 TV +vP in  R"™x (0,00). (6.50)

This equation is treated very similarly to (6.25) on the bounded domain,
because L has the compact resolvent and the Poincaré-Sobolev inequality

(6.49) holds.
Thus, letting

1 2 1 2 1 +1
J() = 5 IVollgk — -1 lvllz,x — o | lvllbi ks

we have

%J(v(s)) <0 (s>0).
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Now, we apply the Kaplan method in use of ¢ = e~ lvl*/ 4 which satisfies
that Lyp; = Z¢;. Fore > 0, we take ¢ = C(e)p1™e with C(e) > 0 satisfying
that [;.¥Kdy = 1. In fact, we have

Ly < Z(1+e)
and hence for u = u(z,t) with
i) = [ oy

being well-defined, it holds that
g » 1
s /nvady+/RnU <p-1¢ Lt/;)Kdy

(/"qudy)”+/" (p—i— - g(l-f-s)) v Kdy.

Then, we see that 13 — 2(1 +¢) > 0 holds for 0 < £ < 1 in the case of

1 < p < ps. This gives that

Y,

di _ .
= > 4P >
25 27 (s20)

and then non-existence of non-trivial non-negative solution of (6.1) follows
in this case.



Chapter 7

System of Chemotaxis

This chapter is devoted to the study of the elliptic-parabolic system of partial
differential equations, arising in several areas in mathematical biology and math-
ematical physics. The first section is the description of the background and the
motivation of mathematical study. Then, we shall establish the local wellposed-
ness in the second section.

7.1 Story

7.1.1 The Keller-Segel System

System of parabolic partial differential equations is proposed to describe
several phenomena in mathematical biology. A typical example is

ug = V- (Vu — uVv)

0=Av—av+u } i x(0.7)

ou Ov
b;zgl-:() on aQX(O,T)
g = uo(T) on Q, (7.1)

where Q@ C R” is a bounded domain with smooth boundary 892, a > 0 a
constant, and v the outer unit vector on 9. It is proposed by T. Nagai in
1995 as a simplified form of the one given by E.F. Keller and L.A. Segel in
1970. Here, u = u(z,t) and v = v(z, t), respectively, stand for the density of
cellular slime molds and the concentration of chemical substances secreted
by themselves at the position z € 2 and the time ¢ > 0.

303
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The first equation describes the conservation of mass, where flux of u is
given by F = —Vu + uVu, as

d
E/wuz— 3w]:‘u

holds for any subdomain w C Q with @ C €. The first term —Vu of F
is the vector field with the direction where u decreases mostly, and with
the rate equal to its derivative to that direction. The second term u«Vwv, on
the other hand, indicates that u is carried by the vector field Vv with the
direction where v increases mostly, and with the rate equal to its derivative
to that direction. Thus, the effect of diffusion —Vu and that of chemotaxis
uVv are competing for u to vary. In this context, the boundary condition
for u is preferably replaced by the null flux condition,
F-uz%—ug%zo on 00 x(0,T).

A general form of this equation is given in §4.1. Each of them is derived
from the different principle, and each feature of the solution is also different
from the others.

However, a similar system to (7.1) is found in statistical mechanics.
There, domain € is usually replaced by R™, and the second equation takes
the form

v(z,t) = /R" Iz, y)u(y, t)dy, (7.2)

where

3zl (n=1)

Iy =4 3 log ey (n=2) (7.3)
Tl (n=

denotes the (—1) times potential of the gravitational force. It is derived
from Langevin and then Fokker-Planck equations, describing the motion of
mean field of self-interacting particles. Therefore, while the first equation
of (7.1) is concerned with the mass conservation of particles, the second
one replaced by (7.2) is the description of the total field of gravitational
force made by those particles. This form (7.2) is a natural extension of the
second equation of (7.1) to the whole space, as the latter is equivalent to
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the equality in use of the Green’s function for —Ax +a, denoted by G(z, y):

v@t) = [ Glovuly, . (.4
In fact, we have

I(z,y) (yeQ)

M(z,y) (ye o9) (7.5)

G(z.) = Hiz) +
with H = H(z,y) standing for the regular part.
Other forms of the second equation are also proposed. Taking account
of the boundary condition to v, they are totally described as

Tifd_,lt) +Av=u in L(Q), (7.6)

where A > 0 is a self-adjoint operator A > 0 with the compact resolvent.
Here, 7 is a non-negative constant. As we have seen, if 7 = 0 the field
created by those particles is physical. In this case we call it the simplified
system. On the other hand, 7 > 0 arises when the field is formed through
the chemical material. This case is realistic in some biological media, and
(7.1) with the second equation replaced by (7.6) of 7 > 0 the full system.
There the additional initial condition v|,_, = wo(z) is imposed. In the
other case, equation (7.6) is reduced to the ordinary differential equation
such as

v
T— = u.

ot

Actually, it follows from the statistical model of cellular automaton as is
described in §4.1. There, the effect of transmissive action is restricted to
each cell and the field is not formed in the classical sense.

7.1.2 Blowup Mechanism

It will be shown that the classical solution to (7.1) exists locally in time
if the initial value is smooth, and becomes positive if it is non-negative
and not identically zero. Let Ti,ax > 0 be the supremum of the existence
time of the solution. If Thax < +00, we say that the solution blows-up
in finite time. The blowup mechanism of (7.1) depends sensitively on the
space dimension n, and in the case of n = 2, spiky patterns are formed as

t T Tmax-
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Henceforth, M(Q) denotes the set of measures on Q, — the *-weak
convergence there, and J;,(dr) the delta function, respectively. Theiefore,
M(S) is the dual space of C(12), the set of continuous functions on £, and

(¢, 62, (dz)) = ¢(T0)

for p € C(ﬁ). Now, if n = 2 and Tpax < +00, the solution u(z,t) to (7.1)
satisfies

u(z,tydz  — Y m(z0)ds,(dz) + f(z)dz (7.7)
ToES

in M(Q) as t T Tmax with m(zo) = m.(zo) for

_f 81 (o)
™ (o) ={ 4r (mﬁ € 89)

and 0 < f € LY(Q) N C(2\ S). On the other hand, we have

li t =

Jim Ju(®), = +o0

and S coincides with the blowup set of u. That is, zop € S if and only if
there exist zx — xo and tx 7 Tmax such that u(zk,tr) — +oo. This ineans
S # 0 if Tiax < +00. Here, we have

llu@®)lly = llwolly (7.8)

and hence
2-H(QNS) +H(OQNS) < fluoll, /(47) (7.9)

follows from (7.7) and (7.8). In particular, ||uo}|; < 47 implies Tmax = +00.
This fact is related to the conjecture of S. Childress and J.K. Percus in 1981
concerning the threshold in L' norm of the initial value for the blowup of
the solution.

It was obtained by semi-analysis, derivation of the stationary problem
in use of the free energy and numerical study to its bifurcation diagram.
On the other hand, relation (7.7) was conjectured by V. Nanjundiah and is
referred to as the formation of chemotactic collapses, although the termi-
nology is not consistent with that in §4.1. In this context of biology, each
collapse

M(Z0)dz, (d)
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is supposed to express a spore made from the slime molds. Inequality (7.9)
indicates that the phenomenon of threshold in |jug||, concerning the blowup
of the solution is a consequence of the formation of collapses in the blowup
process. Equality m(zo) = m.(zp) is referred to as the mass quantization
of collapses. It means that the spore is formed in the normalized mass. It
is related to the optimality of the condition ||ug||; < 47 for Tyax = +o00 to
occur, proven by T. Nagai and the authors. It was observed that the mass
quantization holds if the solution is continued after the blowup time, or it
blows-up in infinite time. In this connection it was noted that the Fokker-
Planck equation admits the weak solution globally in time, provided that
the initial value has a finite second moment and is bounded and summable.
Fokker-Planck equation is concerned with the case that the distribution of
particles is thin, and system (7.1) is regarded as its adiabatic limit. Al-
though post blowup continuation does not hold, mass quantization is valid
in (7.1). Here, we emphasize that the mass quantization agrees with the
blowup mechanism in the stationary problem, which arises as a nonlinear
elliptic eigenvalue problem. We call this story the nonlinear quantum me-
chanics. If the concentration speed is rapid, then the particles are thin
near the blowup oint, which makes the blowup mechanism simple. Ac-
tually, this case is referred to as the type II blowup point, and then the
whole blowup mechanism is contained in infinitely small parabolic region
in (z,t) space, called the hyper-parabola. The family of blowup solutions
constructed by M.A. Herrero and J.J.L.. Veldzquez in 1996 by the method
of matched asymptotic expansion is of this type. In the other case, referred
to as the type I blowup point, the feature of the blowup mechanism is rather
different from the previous one. Actually, infinitely wide parabolic region,
called the parabolic envelope, is necessary to describe the whole blowup
mechanism, but the local free energy gets to +0o. It is open whether such
a blouwp point actually exists or not.
It is known that the blowup mechanism of the parabolic equation

u—Au=v?, u>0 in Qx(0,7)

with u|,q = 0 is controlled by the ordinary differential part @ = u” if the
nonlinearity is sub-critical as p € (1, Z—i’g), where @ C R"™ is a bounded
convex domain. Namely, if zo is a blowup point, then

w(z,t) = (T — )7 (1%) m {1+0(1)}
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holds as t T T = Tax uniformly in |z — z¢| < C(T—t)1/2. Here, the
concentration is so slow that u(z,t) becomes flat in any parabolic region,
and total blowup mechanism is not enveloped there in this case. On the
other hand, the blowup solution of Herrero and Veldzquez to (7.1) has the
form

1 _ /[ x
U@ t) = T (m) {1+ (L)}

= V2llog(T—t)[/?
+0 T L{jz1>r(t)}

as t 1 T = Tiax uniformly in |z| < C(T —t)'/2, where
r(t) = C(T — t)1/2 . ¢~ V2/2 llog(T-0)1"/

- [log(T — £)| 157 2T 0= (1 4 (1))

and T(y) = 8- (1 + |y|2) 2. We have 0 < r(t) < b(T — t)'/2 for any
b > 0. This solution creates collapses again, under the backward self-
similar transformation z(y,s) = (T — t)u(z,t) for y = z/(T - t)/2 and
s = log(T' —t). Thus, super-critical nonlinearity of (7.1) admits type II
blowup point with high concentration.

Exercise 7.1 Introduce the stationary problem and the Lyapunov function
for (7.1), following the idea to DD model.

7.1.3 Free Energy

Parabolic-elliptic system of partial differential equations is found in several
areas of applied and theoretical physics. The drift-diffusion model for semi-
conductor device is written as

ny =V - (Vn - nVyp)
pt=V-(Vp+pVyp) in 2x(0,T)

Ap=n—-p
on _ 8p _
2P 4+ p22 =0 on 90 x (0,T),

p=0
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where n = n(z,t) and p = p(z,t) are the densities of electron and positron,
respectively, and ¢ = ¢(z,t) is the electric charge field. Particles of the
same kind are self-repulsive, while the attractive force acts between different
kind of particles, and thus, the system is dissipative totally. Vortex system
is given by

we =V (Vo — wVL)

AY—w } in R?x (0,T),

— 2
vi=( 3
61:1

for ¢ = (z1,z2). It comes from the Navier-Stokes system

where

o/ SN

V-u=0
where
a
(738 5;‘1‘
u=| ug and V= 6%2'
u o
3 6133

denote the velocity and the gradient operator, respectively. If we take the
two-dimensional model with £ = (z1,z32,0) and ug = 0, then we get

0
Vxu=| 0 for w = w(z1,T2).

This system is also dissipative but some underlying chaotic features are
observed. Directions of self-interacting forces of those systems, chemotaxis,
semi-conductor device, and vortices are different, but some common struc-
tures are noticed. Let us recall that the second law of thermodynamics; the
mean field of many particles is governed by the free energy, decreasing in
time. Its local minimum is an equilibrium state, while transient dynamics
are controlled by the critical points, especially, non-local minima.

We note that free energy is given by inner energy minus entropy. If
p = p(z) 2 0 denotes the density of particles, entropy on the domain
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Q C R" is given as

- /Qp(logp -1).

On the other hand, inner energy is composed of kinetic and potential en-
ergies so that it is given as

—% / /9 >(Q1‘(36,y)p(-”fc)p(y)alﬂﬂdy+ /Q PV,

where ~I'(z,y) and V() denote the potentials of self-interactions and ex-
ternal force, respectively. Note that Newton’s third law implies

F(xa y) = F(y7 .’l:)

Actually, it is given as (7.3) if the self-interaction is caused by the gravi-
tational force. Thus, physical question is to derive mean field equation of
which free energy is given by

Flp) = /Q plogp —1) ~ % / /ﬂ o I'(z,y)p(z)p(y)dzdy + /ﬂ pV.

It has been known that such a system is realized by introducing friction
and fluctuations of particles.

The classical theory of Jeans and Vlasov starts with the Newton equa-
tion

dzx; dv; 2
-a— = vV, m—E = Vmi —-mV(z,') +m ;F(ij,l‘i) (710)
J#

for 1 € i < N. Letting N — oo with M = mN preserved, it asserts the
convergence

ph (dz,dv,t) =m Y 8z, (dx) ® by, ) (dv) = f(, v, t)dzdv

with f(z,v,t) satisfying the kinetic model, referred to as the Jeans-Vlasov
equation. In the normal form, it is given as

ft = _vz : (Uf) + 7V11 : [fva:(U + V)]
Uz,t) = ——//I‘(z,y)f(y,v,t)dvdt.
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In the process of (dv;)/(dt) — 0, the distribution function f(z,v,t) is re-
placed by the Maxwellian w(z,t)r~"/2e=**/2, If n = 2, then w(z,t) is
subject to the vorticity equation derived from the Euler equation, that is,

-AY=w, w=-V-(wV@®+V)).

The stationary state of this equation, w = w(z) is associated with the
elliptic problem

-AY =g(p+V)

with the nonlinearity g unknown. If mass is so concentrated as

w(z,t) = Z 6Ij(t) (dx),
then the positions are subject to the Hamiltonian system

dil,‘.,' _
dt

Vi{H($17x2,-.-,$N) (i=1,2,-..,N)’
where

H(z1,22,--,2n) = — 3 V(z:) + 3 (i, 25).
i J#i

If K(z,y) is replaced by G(z,y) in (7.10), then 3 >, R(z;) is added to the
right-hand side, where R(z) is the regular part of K(z,y) so that R(z) =
H(z,z) with H(z,y) defined by (7.5). However, the Newton equation is
time reversible and this hierarchy of systems is not subject to the second
law of thermodynamics, that is, decreasing of the free energy. Actually, this
hierarchy is governed by three laws of conservation; mass, momentum, and
energy. As a consequence, it has a feature of chaotic motion of particles.

An answer that we know to derive systems provided with free energy is
to replace the Newton equation by the Langevin equation. More precisely,
this requirement is realized when the particles are subject to the friction
and random fluctuations:

dz; = v;dt
mdv; = V,, { —mV(z;) + m? Zf(xj,x,-) — Bu;dt
Jj#i
+(28KT)M 2dW;.
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Here, k, T, and B are Boltzmann constant, temperature, friction coefficient,
respectively, and (W¢) denotes the white noise. Its kinetic model, referred
to as the Fokker-Planck equation is given as

ft = ’Va: . (Uf)+vv' [fvx(U+V)]+ﬂkTvv '(vf+Avf)
Uz t) = / / L(z,y)f (), t)dyd,

where
p(z,t) =/f(:v,v,t)dv and A:/p(x,t)dz

stand for the density and the total mass, respectively. Then, in the adia-
batic limit 8 — 400, we have

pe =V -(pVU)+ V- (pVV) + Ap.

If V = 0 and the kernel I'(z,y) is replaced by G(z,y), it is nothing but
the simplified system of chemotaxis. Semi-conductor device equation is ob-
tained similarly by taking the opposite sign of the kernel G(z,y). In those
systems of chemotaxis and semi-conductor device the interaction acts at-
tractively and repulsively, respectively, and in the Euler equation, particles
receive the force perpendicular to the level lines of the field.

As is mentioned, stationary state of the above equation is described by
elliptic problem with exponential nonlinearity. Furthermore, the localized
densities are subject to the gradient flow. In this way, this hierarchy of
equations starts with the free energy as the physical principle. On the other
hand, mathematically it is characterized by the quantization of the blowup
mechanism as is described in the previous paragraph, and it comes from the
quantized structure of the set of stationary solutions. Another important
consequence of this observation is the variational structure of the stationary
problems derived from the free energy. Actually, it is regarded as the dual
variation of the standard one, and remarkably those variational structures
are equivalent up to Morse indices.
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7.2 Well-posedness

7.2.1 Summary

As is described in the previous section, E.F. Keller and L.A. Segel proposed
a mathematical model describing the chemotactic aggregation of cellular
slime molds which move preferentially toward the area with relatively high
concentration of a chemical substance secreted by the amoebae themselves.
Then, V. Nanjundiah introduced a simplified form and conjectured the for-
mation of collapses. Later in 1996, M. Mimura and T. Tsujikawa modelled
the formation of some kind of bacterium’s colony by another system, and
studied the asymptotic behavior of the solution. Here, we show the unique
existence of the classical solution locally in time.
Namely, we take the following system denoted by (CS):

u =V - (Vu + x(u,v)Vv) + f(u,v) in Qx(0,T) (7.11)

U = Av + g(u,v) in Qx(0,T) (7.12)
% =0 on 0Qx(0,T) (7.13)
% =0 on 9Qx(0,7T) (7.14)
Uly_o = Uo on {2 (7.15)
V|,_0 = o on {2, (7.16)

where Q is a bounded domain in R® (n = 1,2, 3) with smooth boundary
09, and x, f and g are smooth functions of © and v. Furthermore, 7 > 0
is a constant and henceforth it is put to 1 for simplicity. We say that (u, v)
is a classical solution to (CS) in Q x (0,7T), if u = u(z,t) and v = v(z,t)
are in u,v € C(Q x [0,T)),

oo Gu o
a.’l,'j7 ij’ 8zj6xi’ 3wj8:zi

y Uty Ut € C(Q X (OvT))

and (CS) is satisfied.
First, we study the linear system

wy=Aw+a-Vw+h in Qx(0,7)
(HE) g_w =0 on 9Qx(0,T)
14

Wy—p = Wo on £,
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where a = (a3,--+,a,) : @ x (0,T) - R, h : @ x (0,T) — R, and
wo :  — R are given functions. Henceforth, || - ||, and [ - ]; denote the L?
and the Holder norms, respectively, where p € [1,00] and 8 € (0,1). Then,
for # € (0,1) and m =1,2,3,- -, we put

[Wne= D ID2w],+ Y [DSul,.
la|<m laj=m

For a function w defined on Qr = Q x (0,T’), we set

_ x )
[Wpop = (Wi, + [l a0y »

where

W, = sup { izt - wi,b)

/le

T lz,2'€Q, c#£2, te [O,T]},

— t' e
(0] .0 Esup{)w(z":) t;j/(f Vit ey, t4t, ze Q}

and
C*(@Qr) = {w e C@) | [ulgq, < o}
Finally, putting

Whneor= D, 18D3wlo+ Y. [0/ Duwlyg, .
2r+|al<m 2r+|al=m

we define

c™*(Qr) = {w € CQr) | Wl 00, < ) -

The following theorem is contained in Theorem 5.2 of chapter IV of
the monograph written by O.A. LadyZenskaja, V.A. Solonnikov, and N. N.
Ural’ceva.

Theorem 7.1 Suppose that
(a1,--,a,) €C™(Qr)™ and  heC™(Qr)

form =1,2,3,--- and 8 € (0,1), and also that wg € C™+>9(Qr) satisfies
the compatibility condition up to the order [(m + 1)/2]. Then, there exists



Well-posedness 315

a unique classical solution w € C™+29(Qr) to (HE). Moreover, it holds
that

[Wmy200r <C ([h]m,G;QT + [wo]m+2,9)

with a constant C > 0 determined by sup; ;< [a;,, 9 o,

We say that wo satisfies the compatibility condition with the order k = 0
if w(()o) = wy satisfies
0

k
awé )=0 on 89 (7.17)

for k = 0. The compatibility condition with the order & = 1 indicates
equality (7.17) with k = 1, where w(()l) = Awp + a(+,0) - Vw(-,0) + h(-,0).
The other cases are defined similarly.

This section is devoted to the proof of the following.

Theorem 7.2 IfQ C R™ is a conver domain with smooth boundary 01,
and uo and vy are in CH9(2) for 8 € (0,1) and satisfy the compatibility
condition up to the order 1 for (7.11) with (7.13), (7.15), and for (7.12)
with (7.14) and (7.16), respectively, then, there erists a unique classical
solution (u,v) to (CS) in Qr for some T > 0. Moreover, u and v are in

C?%(Qr).

To prove the above theorem, we make use of the following system de-
noted by (IS), where p > n + 2 is an even integer, 6 € (0,1 — (n + 2)/p),
U,V € C%Qr) with (U,V)|,_o = (uo,v0), and T € (0, 1]:

w = Au + Xu (U, )V - Vu + xo(U, v) | V|

+x(U,v)Av + f(U,V) in Qx(0,T), (7.18)
v=0+gU, V) in Qx(0,T), (7.19)
Bu =0 on 00x(0,T) (7.20)
ov
ik =0 on 090 x (0,T), (7.21)
av
Ul = Uo on (7.22)
Vo = Yo on . (7.23)

In the following, first we show the uniqueness and existence of the solution
(u,v) to (IS) for each smooth function U and V' with U(:,0) = uo and
V(-,t) = vo in use of Theorem 7.1 together with some estimates on (u,v).
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Thus, we can define the mapping F : C?(Qr)? — C%Qr)? by (u,v) =
F(U,V), and then we show that this F has a fix point, which gives the
unique classical solution to (CS).

7.2.2 The Linearized System

Studying (IS), first we note that each (U, V) € C%(Qr)? with (U,V)|,_, =
(ug,vo) admits the unique classical solution (u,v) € C*4(Qr)%. In fact,
in this case g(U,V) € C%(Qr) follows from the assumption, and therefore,
Theorem 7.1 guarantees the unique existence of the classical solution v €
C?9(Qr) to (7.19) with (7.21) and (7.23). Then, for this v, it holds that

xu(U,v)Vv € C¥(Qr)™
xv(U,v) |[Vo)* + x(U,v)Av + f(U, V) € C°(Qr),

and again by Theorem 7.1, we have the unique existence of the classical
solution u € C%%(Qr) to (7.18) with (7.20) and (7.22). Henceforth, we
say (U, V) € C®(Qr)?if U, V € C®(Qr) and (U, V)|, = (u0,v0). Thus,
putting (u,v) = F((U,V); T), we have the mapping F = F(-;T) defined
on C%(Qr)?%.

The space C*%(Qr)? is defined similarly. In particular, for (U,V) €
C%%(Qr)? it holds that F(U,V;T) € C*%(Qr)>?. Therefore, F is regarded
as a mapping on C%%(Qr)?.

To prescribe its range in more details, we make use of the following.

Lemma 7.1 Iff, g € CY(Q)", and
g-v=0 on 09, (7.24)
then it holds that

/Q(V-f)w-g)dx
= Z/ u,—g]d o+ Z/giz gii T, (7.25)

i,7=1

where f = (f17f21"'7fn) andg: (917921"'1971)'
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Proof. Iff,g e C?*(Q)", we have

V-[(V-fgl=(V-£)(V- g +Zg; - (VD)

09; 0fi
= (V-£(V- g)+§jv (g, o) - Z R
and hence

/a (V- £)w-g)do = [ (V-0)(V - g)da
oS [t 3 [ i

follows from Green’s formula. This equality is extended to f,g € C1(Q)»
and therefore, (7.25) holds in the case of (7.24). O

Lemma 7.2 Ifw e C?2(Q),

ow
ov

and  C R” is a convex domain, then it holds that

=0 on 80, (7.26)

17
5 [Vw)?<0 on 8.
Proof. In the case where n = 1, it holds that

7] 2 dw d*f
— =4+2——= = o0.
aI/|Vw| T 22 0 on
In the case where n = 2, we take place of by 2 x R. Thus, the lemma is
reduced to the case of n = 3.
Given xg € 052, we can assume taking principal directions parallel to

and z3 coordinates and v = (0,0,1). In this case we have

al/,' (Si]‘ .. 81/3

—_— =1 — = =

%, " R (5,7=1,2) and Bz, 0(=1,2,3)
at £ = zp by Exercise 1.25. On the other hand, it holds that

1
_ > 1 =1.2
Rj_O (i ,2)
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because §? is convex. Thus, we obtain
3

w Bw
o 2 _ 2 _
IVw{ v-V|Vw]® =2 ; Vi Btz B,
BV, ow Bw
=2 Z ( 6z1> dz; ZZ dx; 9z; Ox;
<9V — - Vuw.
< 2V 81/ Vw
Here, we have
8 ow . ow Ow
-a-;;E=0(J—1,2) and 8_11:3—5—0
at T = g by (7.26), and the proof is complete. O

In (IS), p > n+2is an even integer, § € (0,1-(n+2)/p), U,V € C%Qr),
and T € (0,1]. Now, we take

(| (w0, 'UO)”WZP(Q) xW3p(Q)
/p
= (IAuoll? + lluoll2 + IV AwoE + floall2)

MG = ||(uo, U0)||€v2,p(n)xw3,p(n) )

M = 4(Mo + 1),
and
O(M,T) = {(u,v) € C**(Qr)* N C([0, T); W>P(2) x W**(Q)) |
1w, Voo mwer @) xwer@) <M
and %%=gg—0 on 09 x (0,7},
where

1€, Do o,rpwar@xwer) = Bax, (®lwar @ + ””(t)”Ws"’m)) '

Then, we can show the following.

Lemma 7.3 IfQ C R™ is conver and (U,V) € O(M,T), then it holds
that

ax (IVA)IE+le()I?)

0<
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< (IVAw |2 + [ Vuol 2 + OT) T <Gy, (127)
where (u,v) denotes the solution to (IS).

Here and henceforce, C; > 0 (i = 1,2,3,4) denote the positive constants
depending on p, My, Q, and g.

Proof. Since p > n + 2 is an even integer, we put p = 2m + 2. Let
h €(0,T) and s € (0,T — h). Integrating (7.19) over [s, s + h|, we have
s+h s+h
v(z,s + h) —v(z,s) = / Av(z, T)dr + / g(U(z,7),V(z,7))dr.
] 8

(7.28)
We set

F(z,s,h) = (Z (VAv(z,s + k)% |[VA(z, s)(z(m“i))
=0
-(VAu(z,s + h) + VAu(z, 5))
and F = (Fy,- -, F,). Operating —A to (7.28), multiplying V - F(z, s, h),
and integrating over ), we have

_ / (Av(z, s + h) — Av(, 8))V - F(z, s, h)dz
“ s+h
= —/ /sz(x,T)V~F(IL’,T, h)dzdr
s Q

s+h
- / / Ag(U(x,7),V(z, 7))V - F(z, 7, h)dzdT
s Q

=-I-1II. (7.29)

We have
8, _9U_0ov _
Buvt T v v
and (7.20), and hence it follows that

0 on 90 x{0,T]

ai)—Av =0 on 00Qx(0,T). (7.30)
v

Furthermore, it holds that

(a~b)-(a+b)>_ la® ™ =|af” - |bf”
1=0
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for a, b € R™, and the left-hand side of (7.29) is equal to
/ IV Av(z, s + h)[P dz / VAv(z, 8P da. (7.31)
Q Q

We divide this term by h.
Applying Lemma 7.1, first we have

s+h ©n
S e i
s 3 ©

!
=

P~

3,j=1

Fj(z, 7, h)dzdr.

1/3'Hl - 0?Av(z,7) 8
h s Q

0z ;0x; oz, ’

4,j=1

This implies that

P P
;llli% = / 3 IVAv(z, s)|P do
0%Av(z,s) 8 [OAv(x,s) om
P Zl/g 0,z ; 6m,~{ oz; IVAv(z, 5)]

HI=

= —%’ / |VAv(z,s)|P-2i|VAu(z,s)|2da
2 2
+p Z / |VAu(z, s)[P~2 (M) dx

ij=1 6Z‘¢a$j

A
+p Z/ OAv Av B —I|VAvu(z, s)|P~%dx

0xz;0z; 8:1:] ox;

= ~g/ |VA(z, s)[]"_2 — lVAv(:c,s)|2da

_2 [ 82Av(z, )\ ?
P ]
+p”Z:1/ |VAu(z, s)| <——8x,~8xj ) dx
-9 2
+3%—) / |VAv(x,s)|"'4]wmv(z,s)ﬂ dz.
Q

Therefore, by Lemma 7.2 we obtain

hm— > pZ/lVAv(:c s)[P~?

h—0 h
1,j=1

9?Av(z, s)
( 0z;0z; ) dz
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+p(p —2)

2
; / [VAu(z, )7 |V [V Au(z, s)| dz. (7.32)
Q

We also have
. II p—-2
lim — =p | Ag(U(z,s),V(z,s))V- (VAv(x, s) |V Av(z, s)| ) dz
h—0 h Q
Combining this with

V- (IVav(z, )P ? VAu(z, )
= |VAy(z, s){p-2 A%y(z,s)
+p_;‘2‘ VAv(z, 5)"~* VAv(z, 5) - V|VAv(z, s)|

implies that

hm < Z( /IVAv(x,s),p— (8 Av(z, s)) e
+Tp—/anAU(x,s)|de+%/Q|A9(U(x,s)’v(z’ S))Ipdx>

—_ 2
L2 (1 / IV A0(z, )P |V 1V Au(z, )| da
2 4 Jq
p—2 P or/2 P
+——/ [VAv(z, s)| dm+-——/ |Ag{U(z, s),V(x,s))|Pdz ) .
2p Ja r Ja
(7.33)
We have

1 t+h 1 h
—/ /|VAv(z,s)lpdxds———/ /lVAv(x,s)|”dxds
h J: Q h 0 JN

t 1 s+h
—/ —/ /sz(m,T)V'F(.'II,T,h)d.’L'dT
0 h 3 19}
t 1 s+h
[ 5[ [ 8w, v B i
0 s Q

by (7.31). Sending h — 0, we get that

/ IVAv(z, t)[” dz — / IV Avo(z)[? dx
Q Q
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< 25 [ o (2R g

zjl

_ 2
—&?2—)/ /lVAv(a:,s)Ip-‘l‘VlVAv(z,s)|2i dxds
o Ja

+<P;2n+ (”‘42)2) /Ot/QIVAU(z,sﬂ”dmds

+(n+’%2zp/2) /0 t /Q [Ag(U(z, s), V(x, s))|F dzds

by (7.32) and (7.33).

Henceforce, K; (i = 1,2, ---,7) denote the positive constants depending
only on Q and p. Because of p > n + 2, we have by Sobolev’s imbedding

theorem that
[Vl + 0l < Kn (ol + 2]2) "
JAwl, + 190l + 0l < Ko (Tul? + 1V Aw]?)
Therefore, it holds that

|Ag(U(z, ), V(z,5))l

< 9u(U(=,5), V(,5))| - |AU(z, 5)|
+19uu(U(z, 8), V(z,9))| - |VU (2, 5)|?
+2|gus (U (z, 5), V (2, 9))| - [VU(z, )| - [VV (g, 5)|
+gun(Ulz, 8), V(z, )| - [VV (3, 5))’
+1go(U(z, ), V(z, )| - [AV (,5)|

< Ci(K1M + KoM 4+ |AU(z, s)Y).

We obtain
VAv(@)|I; < IVAw|? + K3 /0 t [V Au(s)|E ds
+Kq /0 t 18g(U(s), V(s))IIp ds
< |V Awl + TK(CE [(Ky + K2)MIQ[Y? + M|

t
+K / IV Au(s)|2 ds.
0

(7.34)

v
" (1.35)
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By this and Gronwall’s inequality, we have that

Y4
IVA(t)[2 < {uvmon;; + TK4CE [(K1 + Ko) QP + 1] M”} eKoT.

(7.36)
Next, multiplying |v|"~2 v to (7.19), we have
1d p p—2 2
o3 /ﬂ ol dz + (p - 1) /Q P2 Vol dz
< / g(U,V) ol da
Q
- 1
< ”——1-/ of? do + -/ \9(U, V)PP da.
P Ja PJa
Combining this with
l9(V(z,1), V(z,1))|
<sup{lg(U, V)| | lU| < K1M, V]| < K2M}
= C4a
we have
d
2 VOl < (- 1) [v@II; + C7 1.
This is equivalent to
d
= (@ +1) < @+ cz10 - 1) (le@)1E +1)
and hence
lo®IE < (llvoll? +1) exp ((» + CF 19 - )T) (7.37)

follows. Inequality (7.27) follows from (7.36) and (7.37) and the proof is
complete. O

7.2.3 Properties of F

We make use of the contraction mapping principle to show that F = F(-,T)
has a fixed point if T > 0 is small. In this paragraph, we suppose that the
domain  C R"” is convex. We put

By = [-KiM, K1M] x [-K2 Gy, Ko Gy,
E2 = [—‘KlM,KlM] X [—KQM,KzM],
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and

max (“X”C2(E1) ) ”f”cl(Ez)) =Cs. (7.38)

Here and henceforce, C; > 0 (¢ = 5,6,7,---,22) denotes the constants
determined by p, My, Q, g, x, f, and K; (j =1,2,3,---,7). We emphasize
that those constants are independent of T' € (0, 1].

First, we show the following.

Lemma 7.4 There exists Ty € (0,1] such that
FO(M,T) C O(M,T)
for any T € (0,Ty).

Proof. Given (U,V) € O(M,T), we take the solution (u,v) to (IS). First,
by Lemma 7.3 and (7.35), we have

[0 o0 + IV0E)llgo + 1AVl 4 < K2C3'. (7.39)

Next, multiplying |u|? “2uto (7.18) and integrating over 2, we have that
P P2,
pdt/ | dz_/ut|u|
= / Au - JulP~? udz+/ Xu (U, v)(V - Vu) juf’ "2 udz
Q Q

+/ (xv(U,v)IVv|2+x(U,v)Av) lul”‘zudx-\‘-/f(U, V)|ul|P~%udz.
Q Q
Combining this with (7.39) and (7.38) implies that
1d
prii Ol
< —(p—l) / [ufP~2 |Vu|® dz + K2CL/PCs / Vu| - Julf ™ dz
Q
(K2 C2? + K,C) ‘/" Cs / julP~ dz + Cs / P~ dz
Q Q
_ 1 _
—(p—1) / P2 Vol dx + / (P2 |Vu|? dz
+ixzcre? [ upd K227 4 Kkpo?) e o
552 25U|$+(2 +22)5‘|

+p—/ lulpdz+—0§’|9|+———/ lu|? dz
P Ja 4 P Ja
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< Ce+ Cs / luf? dz. (7.40)
Q

Next, we operate A to (7.18), multiply |Aul|? =2 Au, and integrate it
over . Then, it follows that

li/ A dz + (p— 1)/ AP VAW dz = —(p — 1)
i Jo A
/ [V (xu(U, v)(Vv - Vu) + x(U,v) |Vv|2) . VAu] [AulP~ dz
Q
-1 [ [V (xU0)A0 + S(0,V) - VA | A~ de
]
<kt / |AuP~2 VAW dg + P21 / AuP2IIPdz  (7.41)
2 Q 2 Q
with
111 = [V {xu(U,0)(Vv- V1) + (U, ) [V0]” + x(U, 0) A0 + (U, V)]

Here, we have

IIT < |xuu(U,0)| - VU] - [Vo] - V] + X (U, 0)] - [V0]? - [V

+\/7—"|X'u(va)'
) 1/2 N R 1/2
L ) 0y
(Z 87:01; ) IVl + 1Vl (Z B0, )
1,j= 1,j=1

+ X (U, 0)] - VU - [V + [ x00 (U, )] - [V

i %y

+2v/n |x (U, v)| (i;l Er =

+ xo(U, )] - [Vo] - |A] + [x(U, v)| - VAW + | (U, V)] - VU]
+fo(U, V)| -|VV].

By this inequality, (7.39), (7.34), and (7.38), it holds that

%
) Vo] + xu (U, v)| - [VU]| - | Av]

I < Cs (KIMchl/” + Kgcg/”) |Vu| + vnCs

n 2 1/2 n
( 3 ) IVul + K2Cy'? ( Z
i,5=1 i,5=

6%v
6.’1,‘1'81'5

Bmzaxj

2) 1/2
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+Cs K MK2C2P 4 CsK3C3/P

n

+2+/nCs (Z

4j=1

0%
a.’E.,' a.'l,‘j

1/2
2
) K2Cy'? + Cs K\ MK,CHP

+CsK2C2P 4 5 |V Av| + Cs K1 M + Cs K M.
We have
n

L

i,j=1

o%f
O0z;0x;

9 p/2
) dz < Ks (IIAfIIZ + Hfllﬁ)

for f € W2P(Q), and therefore, it follows that

/ \Aul~ [11%z < P2 / |AulP dz
Q p Q

2
+=0; / (1+ |Vul® + |Auf + |Avf® + [VA0P) de.
Q

By this, Lemma 7.3, and

IA

IVuly < Ko (lwl? + 1 Aw]?)

lawly < K (lwl} + VAw]?),

IA

it holds that
/ \AufP~2 [112ds < P=2 / Auf? do
Q D 0
2
+20r {100+ (Ko + 1) [ (8P + o) ao
2
Ky +1) / (VAP + o) d:c}
1]
< Gy (1+ [[ulls + | Au|f)

Therefore, from (7.41) we have

d
7 18ully < pCs (14 Julf + au)?)

(7.42)
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Then, (7.40) implies that

4
dt
We obtain

(hawl + 1wl +1) < Co (1+ 1Au? + uf?)

1Aul? + ul? < (1 Auol? + Juoll? +1) €.
Then by Lemma 7.3, we get that

(s 0)ll o Tws @y x war )
< (Il(uo,vo) lwer@yxwary + TCro +2) €907
(Mo + TCyo + 2) T,

Because of M = 4(Mj + 1), we have (u,v) € O(M,T) for sufficiently small
T > 0, and the proof is complete. a

Now, we show the following.

Lemma 7.5 There exists T € (0,To] such that
1F (U1, V1) = F (U2, Va)lloqpo,7y0 (002
1
< 5 UL V) = U2, Vo)l oo,y e (22

is satisfied for (U;,V;) € O(M,T) (: =1,2) and T € (0,T1], where

HU W co,m;Le ) = X, (IIU M, + !IV(t)II,,) -

Proof. We put (u;,v;) = F(U;, V;) for ¢ = 1,2. By Lemma 7.4, it holds
that (u;,v;) € O(M,T) (i = 1,2). Also, we have
(v2 — v1)e = A(vz —v1) + 9(Uz, V2) — g(U1, V1)
(u2 — 1) = Alug — u1) + (xu(Uz, v2)(Vvz - Vuz)
—xu(U1,v1)(Vv1 - Vuy))
+ (Xu(Uz,Uz) |Vus|® = xu(Ur,v1) |VU1|2)
+ (x (U2, v2) Ave — x(U1,v1)Av1)
+(f(U2,V2) - f(U1, V1)). (7.43)
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By Lemma 7.2, for w with dw/0v = 0 on 99 it holds that

/QAVw. |Vw[P~2 Vwdz
2
=%LQ§;|Vw|pdz—/ |Vl Z (afzgz) a
n . ow
—(p-—Z)Z/QIVwV’ 4<Vw'vaTj) @
2
/ V[~ Z (az,ax])

‘“Lpi/ ‘VIV |”/2’ dz. (7.44)

Operating V to (7.43), multiplying |V(vs — v1)|P~2 V(vz — v1), integrating
over €2, and applying (7.44) for w = vy — v;, we have
2
0*(vz = 1) dr
O0x;01;

219 vs - w2 + / V(2 —u)P? 3

t,j=1

S/ﬂ|g(U2,V2) - g(U1, V)|

: \v- (V2 = v)P? V(w2 ~ vl))’dx. (7.45)

Here, in use of C11 = ||gll¢1(g,), We have
19(Uz, V2) — g(U1, V)| S Cra (U2 = UL + V2 — V1)) (7.46)
Next, we have

V- IV = o) V(o — o)
< V(vz —v1) [P |A vz — 1))

z": 8%(vg — v1) B(va — v1) B(vy — v1)

+(p — 2) |V(v2 — v1)| 92,02, B2s oz;

i,4=1

1/2
n 2 —_ 2
< |V(vg —vy){P 2 { Z (a_gjzi—amj—l)> }

1,j=1
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1/2
_ it ) = (P —w)\?
+(p = 2)[V(v2 — )/ {,;1 <_aziazj )}

{ $ (8(1}2 —vl))2 (a(v2 —v1)>2}1/2
i) oz; Oz,

n 1/2
£ (e}

3,J=1

=(p-1)|V(vz — )P {
Therefore, it holds that

[ la(w2,) - sw, )
: |v (192 ~01) P2 I (o, - u)) \ dz

—2/|V(Uz—vl)l" 2{2 (%)?dz

i,7=1
450170k [ (Ua=Th]+1Vs - Wl da
—_— - d
2 [ 9 - )P,
and hence it follows from (7.45) that

d
% IV (va = v1)lIf

i - 5 (Gz52) o

4,7=1
pOP P
< (p - 1)°C%, (IUz = Uil + V2 - Vil )

+222 1V, - ). (747

Next, multiplying |vg — v1|P"2 (v — v1) to (7.43) and integrating over
Q, we get that

L2 o=l G- [ o =P V(on — ) e
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< / 19Uz, Va) — g(Us, V)| - [vz — o [P~ d
Q

(p—~1)
> vz = vally -

1
< » lg(U2, V2) = g(Ur, V1)li; +

Combining this with (7.46), we have
d -
Gl = ol 420~ 1) [ o2 =012 190z~ v0) e
h4
< &8, (U2 = Uil + V2 = Vall,)” + (0= 1) oz = wi]. (7.48)

Next, multiplying |uz — u1)P~2 (u2 — u;) to (7.43) and integrating over

Q, we have

1d -
>l = w2+ =) [ ua w7 Ve~ ) e

= /Q(Xu(Uz,Uz)VUz -Vuy — Xu(Uh'Ul)Vvl 'Vul)

ug — ul|"’_2 (uz — uy)dx

+ / (U2, v2) [Vol” = xo (U1, v0) (Vr ) = P2 (a2 — wa)de
Q
+ /Q (x(Uz, v2) Avz — x(U1,v1)Av1) |uz — ur[P~2 (ug — w1)da

+/Q (f(Us, Vo) — f(U1, V1)) Juz — w P72 (ug — wy)da
=IV+V+VI+VIIL
Here, we apply Lemmas 7.3, 7.4 and inequalities (7.34), (7.39), (7.38), and
get the following:
v <
’/ﬂ (xu(Uz,v2) = xu (U, v1)) (V02 - Vag) fug — w1 P72 (ug — u1)dz

+ 1/9xu(U1,vl) (V(v2 — 1) - Vug) juz - ull”—2 (ug — uy)dzx

+ '/ Xu(Ulyvl) (V’Ul . V(ug - ul)) IU2 — ullp_g (u2 - ul)dx
Q

<Cs /Q (V2 = U] + vz — 1)) (K2CL/P) Ky M)z — wa PV
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+Cs / [V(vg ~ vi)[ (K1 M) Jug — uy [P do
0
+C'5/(K1021/p) [V(uz - ug)| - Jug — Ullp_l dx
Q
< Cuallluz = willg + U2 = Urll} + [V (v2 = v1) |2 + ||uy — v1?)

-1 _
+p—2—"/ |’U,2 - ’ll,llp 2 IV(’UQ - Ul)lzd.’b.
Q

V) < } 0 V2) a0, 00 1908 i = 1P~ 3 — )

+ i/ Xv(U1,v1)V(vy +vy) - V(ve —vy) lug — uﬂ”_2 (ug — uy)dz
Q
2
< 05/ (V2 = Ul + o = 0a) (KoCY'7) s — P~ o
Q
+Cs / (2K2C3/7) [V (vg — vy)] - |up — wi [P~ da
Q
< Cuz(fluz —wa iy + Uz — U112 + V(v — v} + [lvg — w1 B).
Vil < f [ OcUz,02) = (01, 00)) Aoz — a2 (g~ )
(94

-+

/QV(Uz —v1) - { xu(U1,v1) VU + X0 (Us, v1) Vi

Juz = ur P72 (ug — )

2 = Dx(U1,01) Juz = a7 V(s — uy) ]

<Cs [ (02 = Vil + oz = al) (KaOY) fua — P o
N

+cs/ IV (vg — vy)] - {(KlM + KQC;/”) g — ug P
Q

+@~ 1) uz — [P [V (uy - ul)]} dx
< Cuallluz — wallf + U2 = Un]l? + 1V (v2 — ) |2 + [|vz — v1l7)

-1 -
22 [z = a2 Vs~ )P
Q

VIl < cs/ (U2 = Ur| + Ve ~ Vi) fuy — wa P~ da
9
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< Crs([lug — wallh + Uz = ULl + V2 — VAllp)-
Those relations are summarized as
d
Iz — wllf < Crelluz ~wllz + Ci6llUz2 = UL}
+C16)|Ve — V1|2 + Ci6[|V(v2 — v1)||} + Ciellvz — a5 (7.49)

From (7.47), (7.48), and (7.49) we get that

9 (lhuz = a2+ 192 — w0)IZ + o2 = a1
< Cuy (lluz = willy + 19 vz = )|} + llez = i)
+Cur (102~ Unllg + Ve = Wil
and hence it follows that

lluz(®) = ur(@®)llp + IV (v2(t) — va ()l + llva(t) — v (Bl

t
< Ciy / =9 (|Ua8) — O + IValt) - a5 ds.
0
This implies

ll(uz, v2) ~ (u1, )G 0,732 ()7)
< Cis (9T = 1) ||(Uz, Vo) — UL )IGo. 12002

and therefore, taking T} € (0,Tp| in
1
CarTh 1
Cuo (77 —1) < o,
we get the conclusion. O

The following lemma will assure the regularity of the fixed point.

Lemma 7.6 FEach T € (0,Ty] admits the estimate
[FU,V)g.qr < Ci9
for (U, V) e O(M,T), where

(%, )lo.q, = [Moqr + Moo -
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Proof. Let us recall that (U,V) € O(M,T) and that (u,v) = F(U,V)
denotes the classical solution to (IS). From (7.39), (7.19) and the definition
of O(M,T), we have

lvell, < AV, + lg(U, V)Il, < M + Cry 197

Il
and
IVoll, < 197 V0], < |07 Ka2C5,
and hence we obtain
lvllwie@ry < Coo-
Therefore, because
WhP(Qr) C C°(Qr) (7.50)
holdsby9<1—"Tf2<l—%l,wehave
[v]g.0r < Car (7.51)
On the other hand, we have by (7.18) that

Juell, < NAull, + lixu(U, v)Vo - Vul|,

+ (U (9o + I, )20, + 15TV,

2
< M + Cs(KxCYPY (KL M) 1P + Cs (ch;/”) Tolike
+CsK,CLP 1017 4 ¢ 1017

We have also that
IVl oy < (KaM) Q17
and hence again by (7.50) it holds that
[vlg.op < Co2- (7.52)

Thus, we get the conclusion by (7.51) and (7.52). 0
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7.2.4 Local Solvability

We will find a time-local solution to (CS) as a fix point of F, taking T €
(0, T1]. For this purpose, we put

K=KM,T)

= {(u,v) € C¥(Qr)? N C([0, T); W>P(Q) x W3P(Q))

| 1t (u, U)”c({o,T];Wz,p(n)xwa.p(g)) <M, [(u v)]G;QT < G,

Ju Ov

-a-; = -c')—u =0 on 00X [O,T]},

where Cyg is the constant prescribed in Lemma 7.6. This K is compact and
convex in C([0, T]; LP(£2)?), and we have FO(M,T) C K(M,T) by Lemma
7.6.

Now, we note the following.

Theorem 7.3 If X is a Banach space with the norm || - ||x and F is a
continuous mapping on X satisfying ONK C Dom(F), F(O) C ONK,
and

[F(ws) — Flwa)llx <kllwz —willx  (wz,w1 €0), (7.53)

where O, K are subsets in X and k € (0,1). Then, F has a unique fized
point in ON K.

Proof. From the assumption, it holds that
FONK)CFO)CFO)cONK

and that (7.53) for we,w; € O N K. Therefore, the conclusion follows from
the contraction mapping principle. O

Now, we give the following.

Proof of Theorem 7.2: We have
C([0,T};L7(2)?)

O(M, T) N K(M,T) = K(M,T)

and Lemma 7.5, and apply Theorem 7.3 for X = C([0,T); LP(Q)?), O =
O(M,T), K = K(M,T), and F = F(-,T). Then, we have a unique fix
point denoted by (u.,v.) € C%%(Qr)?, which becomes a classical solution
to (CS). Conversely, if (u,v) is a classical solution to (CS) locally in time
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with the existence time Tax > 0, then it is in (u,v) € O(M, T )NK(M,T")
for some T” € (0, min(7T’, Tax)) and is a fix point of F(-,T’). Therefore, it
coincides with the above (u.,v.) for ¢t € [0,T"]. Continuing the procedure,
we see that Trax > T and (u,v) = (us,vs) for t € [0,7], and the proof is
complete. ]
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Chapter 8

Appendix

This is the appendix. The first section is a catalogue of mathematical theories.
Mathematical notions stated there are referred to in this monograph several times,
and the reader will be able to get them easily. Detailed proofs of theorems are
mostly written in Rudin {17] and Folland [9]. The second section, on the other
hand, provides with some references to the theme treated in this monograph.

8.1 Catalogue of Mathematical Theories

8.1.1 Basic Analysis

Set of real numbers, denoted by R, is provided with algebraic calculus,
order, and continuity, which distinguishes that of rational numbers, denoted
by Q. Sets of integers and positive integers are denoted by Z and N,
respectively. Given A C R, we say that it is bounded from above or below
ifthereisM e Rorme Rsuchthat anyz € Aisina < Morzxz > m,
respectively. It is said to be bounded if it is bounded from above and below.
Such M or m is called the upper or lower bound of A, respectively. If A is
bounded from above or below, then its least upper bound or largest lower
bound is called the supremum or infimum, respectively. Then, the axiom
of Weierstrass says that any set bounded from above and below has the
supremum and infimum, respectively. Given a sequence in R, denoted by
ai,az,--- and a € R, we mean lim,_ ., 6, = a by lim, .o la, —a| = 0.
This is expressed more precisely by the € — § argument that any ¢ > 0
admits N € N such that n > N implies |a, — a| < €. A sequence {an}
is monotone increasing or decreasing if a, < ap+; and a, > ap4j for n =

337
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1,2,---, respectively. Monotone increasing sequence bounded from above
converges and so does monotone decreasing sequence bounded from below
at the same time. Therefore, a bounded sequence always has a converging
subsequence. If o € R is a limit of some subsequence of {a,}, we say that
it is an accumulating point of {a,}. A sequence {a,} is said to be Cauchy
if any € > 0 takes V € N such that |a, —a,,| < € if n,m > N. Then,
any Cauchy sequence converges. Those criteria of existence of supremum
of the set bounded from above, convergence of the monotone increasing
sequence bounded from above, and convergence of the Cauchy sequence
are equivalent, and are indicated as the continuity of real numbers in short.

Given a sequence {ay }, its supremum and infimum exist if +00 and —oco
are admitted, and they are denoted by sup,, a, and inf, a,, respectively.
Then, we can take the monotone decreasing sequence {b,} by

b, = sup ay,
k>n

where b, = 400 is admitted. In this case, we have lim, _, o b, with oo
admitted as its value, which is called the limit supremum of {a,} and
is denoted by limsup,,_,., a,. The Lmit infimum of {a,}, denoted by
liminf, . a, is defined similarly by lim,_, 4o infr>, ax. Any sequence
{an} admits subsequences converging to lim inf,, _, @y, and limsup,,_, . an,
respectively, and existence of lim,,_,, a,, is equivalent to liminf,_,. a, =
limsup,,_, . @,, where 00 is admitted as the value, and then, it holds that
limy o0 @ = liminf,_,a, = limsup,_, a, Convergence of a series
Y =1 @n is discussed by the sequence {s,} made by its partial sum:

n
Sp = Z ag.
k=1

If @, > 0 for any n = 1,2---, then {sn} is monotone increasing so that
> m=1 Gn converges if and only if {s,} is bounded from above, in which
case we refer to

oo
Z a, < -+o00.
n=1

A series >0 | a, is said to absolutely converge if Yo i lan] < 400, In
this case it is shown that {s,} forms a Cauchy sequence and hence the
convergence of Y o 1 a, follows.
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Let I = (a,b) C R be an open interval with ¢ = ~oco and b = +o00
admitted, and f : I — R be given. Then its continuity at x = zy €
I is indicated by limg—z, f(z) = f(zo), so that we have to define £ =
lim, 4, f(z) more precisely. Actually, this means that any € > 0 admits
§ > 0 such that any x in |x — x| < § takes the estimate |f(z) — ¢| < e.
Therefore, f = f(z) is continuous at £ = z € I if and only if any € > 0
admits & > 0 such that |z — zo| < § implies |f(z) — f(zo)| < . Because [
is an open interval and xy € I, we have x € I for x close to o, and f(z) is
defined if above § > 0 is small enough. Then, we can show that f = f(x)
is continuous at x = ¢ if any sequence {z,} in lim, o z, = zp admits
lim, o f(zn) = f(zo). We say that f is continuous in I if it is continuous
at any xg € I.

A set A C R is said to be open if any o € A admits § > 0 such that
(zo — 0,29 + &) C A. It is said to be closed if A° = R\ A is open. By
definition, it is open even if A = §, R. In particular, they are simultaneously
closed. Subset F C R is closed if and only if {z,} C F and lim,,—.oc , = 2o
implies zo € F. A real-valued function f defined on an open interval I is
continuous there if and only if the inverse image f~!(A) of any open set
A C I is open. Given X C R not necessarily an open interval and ¢ € X,
we say that f : X — R is continuous at x = zp if any € > 0 admits
d > 0 such that z € X and |z — zp| < & implies |f(z) — f(zo)| < €. It is
continuous on X if it is so at any g € X. A subset A C X is said to be
open in X, if any z¢ € A admits § > 0 such that (zg — 6,z + )N X C A.
Then, f is continuous on X if and only if the inverse image f~(A) of open
A C R isopenin X. Subset X C R is said to be connected if there is no
pair of open sets U, Vin Rsuchthat UNX # 0, VNX # 0, UNVNX =0,
and X C UUV. It is equivalent for X C Rtobeaninterval. If f : X - R
is continuous and X C R is connected, then f(X) is connected. Then, the
intermediate value theorem follows as if f : [a,b] — R is continuous with
a < b and J denotes the closed interval with the endpoints composed of
f(a), f(b), then any a € J admits = € [a,d] such that f(z) = a. Subset
X C R is said to be compact if there is a family of open sets {Ua},cp in
R such that X C UJ,cp Ua, then there is a finite a;,az, -+, am € A such
that X C Ui, Us;- If X C R is compact and f : X — R is continuous,
then f(X) is compact in R. On the other hand, Heine-Borel's theorem
says that X C R is compact if and only if it is bounded and closed. From
this we can show that if f is a real-valued continuous function defined on
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a bounded closed interval I = [a, b] it takes minimum and maximum there.

A real-valued function f defined on X C R is said to be uniformly
continuous if any € > 0 admits § > 0 such that =,z € X and |z — x| < §
imply |f(z) — f(zo)| < . If X is compact and f : X — R is continuous,
then it is uniformly continuous. For a bounded closed interval I = [a,b],
its division is given by A : zp = a < 71 < T3 < -+ < T, = b and
lA| = maxi<i<n(z; — z;—1) is referred as the mesh size. For each small
interval we take &; € [z;—1, ;] arbitrarily and set

Ing =3 f& 1) (@i~ zio1)
i=1
with € = (&1,---,&,). We say that f is Riemann integrable if there is I
such that limya—o Ja,¢ = I. We suppose that f = f(z) is bounded, which
means sup,¢; | f(z)] < M with some M > 0, and let M; = sup,¢(,,_, 2.} f(@)
and m; = infye(z,_, o) f(2). Then, we can take that

n
Sa = ZM i — Ti-1) and s =Zmi($i—$i—1),

i=1
which satisfies that sy < Ia ¢ < Sa for any . Then, Darboux’s theorem
assures limja)—~oSa = S and limja|—05a = s with s < S, where § =
infa Sa and s = supp sa. Therefore, f is Riemann integrable on I if and
only if s = S, or equivalently, any € > 0 admits § > 0 such that |JA)| < ¢
implies Sp —sa < €. Then, we can show that if f : [a, b] — R is continuous,
then it is Riemann integrable from its uniform continuity. Sequence of real-
valued functions {f,} defined on X C R is said to converge f uniformly
if any £ > 0 admits V € N such that [f,(z) — f(z)| < e foranyn > N
and x € X. In this case if each f, is continuous on X, then so is the limit
function f and furthermore,

lim fn d:l:—/f

n—oo

if X = [a,b].

8.1.2 Topological Spaces

First, topological space is a set provided with the family of open subsets,
which satisfies the axioms that the whole space and the empty set are
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open and that any union of open subsets, and any finite intersection of
open subsets, are again open. A subset of topological space is closed if its
complement is open. A subset of topological space is connected, if it is not
covered by any disjoint union of two non-empty open sets. A subset of a
topological space is compact if any open covering of it is reduced to a sub-
covering of finite number. A mapping from a topological space to another
one is said to be continuous if its inverse image of any open set is open. If
it is onto, one-to-one, and the inverse mapping is continuous, then it is said
to be homeomorphism. Any subset A of a topological space L is regarded
as a topological space under the agreement that a subset in A is open if
and only if it is the intersection of an open set in L and A itself.

A set L is said to be a metric space if it is provided with the distance
denoted by dist( , ), which is a mapping from L x L to [0, +o0) satisfying the
axioms that dist(u,v) = 0 if and only if u = v, that dist(v,u) = dist(u,v)
for u,v € L, and that

dist(u, v) < dist(u, w) + dist(w, v) (8.1)

for u,v,w € L. Here, (8.1) is referred to as the triangle inequality.

If L is a metric space with the distance dist(, ) and A is a subset of L,
then zy € L is said to be an interior point of A if there is r > 0 satisfying
B(xzg,7) C A, where

B(zy,r) = {x € L | dist(z,1p) < 1}.

A subset of the metric space is said to be open if any element is an
interior point. This notion agrees the axioms of open sets stated above and
under this agreement the metric space is usually regarded as a topological
space. Then, the set of interior points of A is called the interior of A and
is denoted by intA. Always, it is an open subset. On the other hand, an
element zo of L is said to be on the boundary of A if B(zo,7) N A # @ and
B(zg,T)NA° # 0 for any r > 0. The set of boundary points of A is denoted
by A and 4 = AU A is said to be the closure of A. A subset of L is
closed if and only if it is equal to its closure. A subset of L is said to be
dense if its closure is equal to L itself. Also, L is said to be separable if
there is a countable dense subset. Those notions of interior, boundary, and
closure are extended to the general topological space.

A sequence {z;} in a metric space L with the distance dist( , ) is said
to converge to zo € L if any r > 0 admits k such that x; € B(zo,r) for
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j > k. This is equivalent to

lim dist(z;,z0) = 0,

Jo0
and is denoted by z; — z¢ or lim;_,o T; = Zo. Then, x¢ € A if and only
if there is a sequence {z;} C A converging to zo. A continuous function
f from the metric space (L,dist) to R is uniformly continuous on any
compact subset E C L, which means that any ¢ > 0 admits § > 0 such
that dist(z,y) < ¢ and z,y € E imply |f(z) — f(y)| < e. A sequence {u;}
in the metric space (V,dist) is said to be a Cauchy sequence if it satisfies
dist(u;, ux) — 0 as j,k — 0o. A converging sequence is always a Cauchy
sequence, and the metric space (V, dist) is said to be complete if any Cauchy
sequence CONverges.

Euclidean space R™ is provided with the standard distance dist(x,y) =

|z — y|, where

|zl =y/ai+23+---22 for  ®= (1,22, 2n)

Usually, domain indicates an open, connected subset of R™, and it is said
to be simply connected if any Jordan curve can shrink to a point inside,
where Jordan curve denotes a closed curve without self-intersections, and
a closed curve in R” is the image of a continuous mapping from the unit
circle St = {(cos,sinf) | 0 < 6 < 2w} C R? to R™. Finally, closed region
indicates the closure of a domain.

Family of closed subsets satisfies the axioms that the whole space and
the empty set are closed and that any intersection of closed subsets, and any
finite union of closed subsets, are again closed. Topology can be introduced
from this family by saying that a subset is open if its complement is closed.
If z € L is given, its neighborhood indicates an open set containing it. A
family U(z) is said to be a fundamental neighborhood system of x € L if
any U € U(z) admits an open V such that £ €¢ V C U. It satisfies the
axioms that any V' € U(z) satisfies x € V, that any V4, V2 € U(z) admits
Vi € U(x) such that V3 C V1NV, and that any V € U(x) admits W € U(z)
such that for y € W there is V, € U(y) in V, C V. In the case that the
fundamental neighborhood system U (z) is given at each z € L, we say that
x is an interior point of A C L if there is U € U{x) such that U C A, and in
this way the topology can be introduced from fundamental neighborhood
systems instead of that of the family of open sets.



Catalogue of Mathematical Theories 343

The notions of uniformly continuity and completeness are not extended
to the general topological space, but can be to uniform topological spaces.
In this connection, it should be noted that in the general topological space
without countability, sequences are not enough to describe the full struc-
ture of topology and the notion of net takes place of. Thus, we say that
the uniform topological space is complete if any Cauchy net converges, se-
quentially complete if any Cauchy sequence converges. Topological space
L is said to satisfy the first countability axiom if each x € L admits a
fundamental neighborhood system with countable members. In this case,
its topology can be described by the notion of convergence of sequences.
Topological space L is said to satisfy the second countability axiom if there
is a family O consisting of countable open sets such that any open set is
a union of some members in @. The metric space (L, dist) always satisfies
the first countability axiom. If it is separable, then it satisfies the second
countability axiom.

Another important notion of topological space is the separability. First,
topological space L is said to be a Hausdorff spaceif any z,y € Linx # y
admit open sets U and V such that z € U, y € V, and UNV = §. Hausdorff
space L is said to be normal if any closed subsets Fy, F> with F; N F, =0
admits open sets U; and Uy such that F, C Uy, F, C Uy, and U NU, = 6.
Then, Urysohn’s theorem guarantees that if Fy, F; are closed subsets in the
normal Hausdorff space L satisfying Fo N F; = @, then there is a continuous
mapping f : L — [0,1] with the values 0 and 1 on Fj and F}, respectively.
This implies the ertension theorem of Tietze that any continuous mapping
f : F — R defined on the closed set F' in the normal Hausdorff space L
has a continuous extension f: L — R.

A topological space is said to be compact if its any open covering is
reduced to a finite subcovering. In the metric space it is equivalent to
be sequentially compact, which means that any sequence there contains a
converging subsequence. If X is a compact metric space, then the set of
continuous functions on X, denoted by C(X) forms a Banach space under
the norm || fi| = max,ex |f(x)]. Then, Ascoli-Arzeld’s theorem guarantees
that F C C(X) is compact if and only if it is uniformly bounded and equi-
continuous. Here, the former means sup;cr [[fll < 400, while the latter
says that any € > 0 admits § > 0 such that z,y € X with dist(z,y) < 6

implies that supscp |f(z) - fF(¥)| <e.
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Exercise 8.1 Confirm that a metric space is a topological space and Eu-
clidean space is a metric space under the distance given above.

Exercise 8.2 Confirm that if L and M are metric spaces, then f: L - M
is continuous if and only if z; — o in L implies f(z;) — f(zo) in M.

8.1.3 Complex Function Theory

Complex function theory is an interesting object by itself, and here we shall
collect some basic facts.

First, a complex valued function f(z) defined on a domain D in R?2=C
is said to be differentiable at z =c€ D if

z p—
i FO =IO _
z—e z—c
exists. In terms of z = x4y and f(z) = u(z, y)+w(z,y) with real z,y, u, v,
this condition is equivalent to saying that u,v are totally differentiable at

c and satisfy Cauchy-Riemann’s relation

uz(c) = vy(c), uy(c) = ~vz(c).

We say that f(z) is holomorphic in D and at c if it is differentiable at
any point in D and in a neighborhood of ¢, respectively. The function
f(2) = u{z,y) + w(z,y) with 2 = z + 1y is holomorphic in D if and only if
u,v are totally differentiable at any point z in D and satisfy

uz(2) = vy(2), uy(2z) = —vz(2).

We say that w = f(z) is conformal at z = ¢ if v is a curve crossing c
with its tangential line there, then f(7) has the same property in w plane
at f(c), and the angle made by any of such two curves ~y;, 2 are equal
to that made by f(v1) and f(y2). It is known that if f'(c) # 0, then
w = f(z) is conformal at c¢. Men'shov’s theorem says that if f : D — Q is
homeomorphic and conformal at any point in D, then it is holomorphic and
satisfies f'(z) # O for any z € D. A domain surrounded by a Jordan curve
is called the Jordan region. Then, Riemann’s mapping theorem guarantees
that any Jordan region admits a conformal homeomorphism to the unit
disc.
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Cauchy-Hadamard’s formula
1

limsup,,_, o |an|

1/n

assures that the power series

oo
E an 2"
n=0

converges absolutely and uniformly in |z| < R, while it does not converge
for |z| > R. That is, R is the convergence radius and |z} = R is the
convergence circle. In this case,

f(z)= Z anz2"

n=0

is holomorphic in |2] < R with the relation that

fl(z) = Z annz™1
n=1

is also holomorphic in |z| < R. Actually, its convergence radius is again R.
The integral theorem of Cauchy guarantees that if f(z) is holomorphic
in a simply connected domain D and is continuous on D, then it holds that

| ez =

where C = 8D is oriented counter-clockwisely. Conversely, Morera’s theo-
rem says that if f(z) is continuous in I and satisfies

| #ayiz=

for any Jordan curve C in D, then it is holomorphic in D.
Cauchy’s integral formula is indicated as

= / C_zd( (8.2)

for z € D, which guarantees that the holomorphic function f(z) is differ-
entiable arbitrary many times with the formula that

f(n)(z) = 5%/0 (¢ _f(zc))n+1 d¢.
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Furthermore, if f(z) is holomorphic in |z] < R, then it has the Taylor
expansion there as

_ ™)

n!

f(z)= Z cn2™ with Cr
=0

This implies that if f(2), g(2) are holomorphic in D and there is a sequence
zi # ¢ converging to ¢ € D with f(z) = g(z) for & = 1,2,---, then it
holds that f(z) = g(z) for any z € D.

Another application of (8.2) is the mazimum principle, which says that
if f(z) is a non-constant holomorphic function in D, then |f(z)| does not
take the maximum in D. Therefore, if D is a bounded domain and f(z) is
continuous on D, then the maximum of |f(z)| is attained on 8D. If f(z)
is holomorphic in |z| < oo, then it is said to be entire. In this case, the
maximum principle guarantees that

M(r) = max |£(2)]

|

is non-decreasing in 7 > 0 and the value

lim sup M

msup =58 (8.3)

is called the order of f(z).
Schwarz’ theorem says that if f(z) is holomorphic in |z| < R, |f(2)] <
M, and f(0) = 0, then it holds that

@IS Tl (<R,

If equality holds at some z = 2; € D in the above inequality, then it follows
that f(z) = e - %z with some 6 € [0, 27).

Cauchy’s estimate means that if f(z) = 3 a,2" is holomorphic in |z| <
R, then it holds that

wl < 2D e R,

with M(r) defined by (8.3). This implies the Liouville’s theorem that any
bounded entire function must be a constant. This theorem makes it possible
to give the proof of the fundamental theorem of algebra that any non-
constant polynomial has a zero point in the complex plane C.
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The Laurent series is expressed as

+o00 00 +o0o
Z an(z — )" = Z G_n(z—c) "+ Z an(z — )%, (8.4)
n=-—00 n=1 n=0

where the first term of the right-hand side is called the principal part. If f(z)
is holomorphic in p < |z —¢| < R for 0 < p < R < 00, then it is expanded
uniquely by the Laurent series. In the case that f(z) is holomorphic in
0 < |z —¢| < R and is not holomorphic at z = ¢, then z = ¢ is called the
1solated singular point of f(z). An isolated singular point is removable, pole,
and essential if the principal part in (8.4) is composed of the terms of none,
finite, and infinite, respectively. Then, Riemann’s theorem says that if f(z)
is bounded and holomorphic in 0 < |z — ¢| < R, then z = ¢ is removable so
that it has a holomorphic extension in |z — ¢| < R. Conversely, Weierstrass’
theorem says that if f(z) is essentially singular at z = ¢, then any o € C
admits z, — ¢ such that f(z,) — a. If z = ¢ is an isolated singular
point of f(z), then the coefficient a_; in (8.4) is called the residue. The
isolated singularity of f(z) at 2 = oo is defined by that of g(w) = f(1/w)
at w = 0. If f(z) is holomorphic in D except for isolated poles, it is called
a meromorphic function. A function meromorphic on |z| < oo must be a
rational function.

The residue principle says that if f(z) is holomorphic in D except for
finite isolated singular points, denoted by {ai,---,a,} C C, and C is a
Jordan curve in D\ {a1,"--,a,} containing those singular points inside,
then it holds that

1
o /Cf(z)dz = %:Res (aj),

where Res (a;) indicates the residue of f(z) at z = a;.
The argument principle says that if f(z) is meromorphic in D and holo-
morphic on C with f(z) # 0, then it holds that
’
1 [ 1),

2m Jo f(2)

where C is a Jordan curve in D and N, P denote the number of zeros and
poles of f(z) inside C, respectively, with the multiplicities included. Then,
Rouche’s theorem says that if f(z) is holomorphic in D, C is a Jordan curve

z=N— P,
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Fig. 8.1

in D, and |f(2)| > |g(z)| holds on C, then the number of zeros of f(z) and
f(2) + g(2) are equal in D.

Exercise 8.3 Show that if f(2) is entire, then M(r) = maxy,—, |f(2)| isa
non-decreasing function of r > 0.

Exercise 8.4 Suppose that a polynomial P(z) does not assume 0 in C,
and take the entire function f(z) = 7’_1(27' Then, apply Liouville’s theorem
to guarantee that P(z) must be a constant.

Exercise 8.5 A function meromorphic on }z| < oo is holomorphic in |z]| <
oo except for finite number of poles, denoted by c;,---,ci. Letting P;(z)
be its principal part at z = ¢;, take

o(2) = £:) = L Pa)

It is holomorphic in |z| < oo and therefore, must be a constant by Liouville’s
theorem. Thus, confirm that a function meromorphic on |z| € co must be
a rational function.

8.1.4 Real Analysis

The norm || - ||, introduced in §2.3.3 provides L%(0,7) with the complete
metric. As is mentioned there, this fact is proven by the convergence the-
orems on Lebesgue integrals. In this connection, it may be worth noting
that there are three important convergence theorems, dominated conver-
gence theorem, monotone convergence theorem, and Fatou’s lemma. The
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last one describes some kind of lower semi-continuity, described in § 2.3.4.

If X is a set, then 2% denotes the set of all subsets of X. A subset F of
2% is said to be finitely additive if it satisfies the axiom that § € F, Fc € F
ifFeF,and EUF ¢ Fif E,F € F. If F is such a family, then the
mapping m : F — [0, 00] is said to be a finitely additive measure on (X, F)
if it satisfies the axiom that m(#) = 0 and m(A U B) = m(A) + m(B) for
A,B € F with AN B = {. It is said to be a pre-measure if it satisfies the
axiom that m(A) = Y77, m(Ax) if {Ax}ze, € F is a disjoint family and
A=3Y70, Ar(=UrAg) € F.

If F C 2% is a finitely additive family and m is a finitely additive
measure on (X, F), then

T'(A) = inf {Z m(Ag) |Ag € F, AC Uz?:lAk}

k=1

defines the outer measure so that I' : 2X — [0, 00] satisfies the axiom that
['@ =0,T(A) <I'(B)if A C B, and T (U, Ax) < Y 5o, T(4g) for
{Ak}ie, C 2X . Furthermore, if m is a pre-measure, then I'|z = m holds.

A family D C 2X is said to be a o-algebra if it satisfies the axiom that
PeD AcDif Ac D and UR A € Dif {A4}°, CD. IfDisa
o-algebra and {Ax},o,; C D is a disjoint family, then the latter is said to
be a division of A = 37 | Ag(= UL Ax) € D. If D is a o-algebra, then
the mapping p : D — [0, 00] is said to be a measure if it satisfies the axiom
that u(0) = 0 and p(A) = > po, u(Ax) if {Ak}re; C D is a division of
A= ZZ°=1 A €D.

If D C 2% is a g-algebra, then (X, D) is said to be a measurable space.
If p is a measure on (X,D), then (X,D,pu) is called the measure space.
An assertion in the measure space is said to hold almost everywhere if it is
valid except for a set of measure 0. A measure space (X, D, ) is said to
be o-finite if there are X € D (k =1,2,---) such that p(X;) < 400 and
U X = X.

If T is an outer measure on X, then E € 2% is said to be I'-measurable
if [(A) = T(ANE)+T(AN E°) holds for any A € 2X. Then, the family of
I-measurable sets, denoted by mr, forms a o-algebra, and I' restricted to
mr becomes a measure.

The Jordan family of R™ denotes the least finitely additive family in
2R™ containing n-dimensional rectangles, and the Jordan measure is the
uniquely determined finitely additive measure defined on the Jordan family
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with the value of the n-dimensional rectangle equal to its n-dimensional
volume. It is shown that the Jordan measure is a pre-measure, and from
the above story, referred to as the Carathéodory theory, we get a mea-
sure space denoted by (R"™, L,,, un(dz)). Each element in £,, is said to be
a (n-dimensional) Lebesque measurable set, and p,(dz) is called the (n-
dimensional) Lebesgue measure.

The minimum ¢-algebra containing all open sets in R™ is said to be the
Borel family in R™ and is denoted by B,,. Each element in B, is called
the Borel set. Each Borel set is Lebesgue measurable, and in this way
we get a smaller measure space by restricting p,(dz) to B,. Then, the
original measure space (R"™, Ly, un(dz)) is regarded as the completion of
(R™, By, un(dz)) as a measure space. Actually, the measure space (X, D, i)
is said to be complete if it satisfies the axiom that A € D, u(A) = 0,and B C
A imply B € D, and each measure space takes the least extended complete
measure space, referred to as its completion. For n = 1, it is convenient
to extend those notions of the Borel and the Lebesgue measurable sets to
those in the two-point compactification of R, denoted by R = [~o0, +00].

If (X, D) is a measurable space, then the function f: X — [~o00,00] is
said to be measurable if any inverse image of the Borel set in R is in D.
The measurability of functions is preserved under countably many limiting
processes. Let (X,D,p) be a measure space with p(X) < 400, and let
fi: X - R (k=1,2,---) be a family of measurable functions satisfying
limg oo fi(z) = f(z) for almost every z € X. Given ¢ > 0, then Egorov’s
theorem assures E € D such that pu(E) < ¢ and limgoo fi{z) = f(2)
uniformly inz € X \ E. If A C R"” and f : A —» R are Lebesgue mea-
surable with s(A4) < 400 and € > 0, then Lusin’s theorem guarantees the
existence of a compact set K C A such that p(A\ K) < ¢ and f| is
continuous. If (X, D,u) is a measure space and {fi};, is a family of
measurable functions, then we say that fi converges in measure to f if
limg oo p{z € X | | fr(z) — f(z)| > €} =0 for any £ > 0.

If (X,D,p) is a measure space, then f : X — [0,00] is said to be a
(non-negative) simple function if it is written as a finite sum of a;x A;
with o; > 0 and A; € D. The set of such functions is denoted by L. In
this case, the quantity

[1= Xj:aju(Aj)
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is independent of the expression of f = ). a;x4; under the agreement of
000 = 0. This definition of [ f for f € Ly is consistent with

/f:sup{/goIOSSPSf’ wEL(T}

for the general measurable function f : X — [0, 00|, of which totality is
denoted by Lt.

Then, the monotone convergence theorem guarantees that if fi € L™ is
monotone increasing pointwisely in k = 1,2,---, then

tim [ 5= [ 1 (8.5)

follows for f = limg fi with f € L*. On the other hand, Fatou’s lemma
assures that

/ liminf f < limk inf / Tr,

whenever fr, € Lt for k = 1,2, - - -, in which case it follows that lim infy fi €
L+

In the general case that f : X — [—o00,+00] is measurable, we take
fi(z) = max{xf(z),0}, which are again measurable. Then, we set

[t=[r- 1

at most one of [ f is finite. If both of them are finite, then we say that f is
summable and write that f € L!(X,du). Then, the dominated convergence
theorem of Lebesgue assures (8.5) under the assumption that fi, — f and
|fe] < g almost everywhere with some g € L'(X,du). Here, the latter
assumption may be replaced by |fi| < gk, gr — g almost everywhere, and

hlzn/gszg.

If (X, M, 1) and (Y, N, v) are measure spaces, then m(E x F') = u(E)-
v(F) defined for E € M, F € N generates the finitely additive family G C
2X*Y and the finitely additive measure m : G — [0, co] under the agreement
that 0-00 = 0. This m is a pre-measure, and from the Carathéodory theory
it is extended to a measure on M ® N, the minimum o-algebra containing
G, which is denoted by p ® v.
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If (X, M, u) and (Y, N, v) are o-finite, then so is (X XY, M@N, u®v)
and the extension is unique. In this case, it is called the direct product of
(X, M, u) and (Y,N,v). Then, the theorem of Tonelli guarantees that if
f: X xY —[0,00] is measurable, then

a;eX»—»g(z):/fde and erHh(y)z/fydu

/ [/ f (x,y)dv(y)} du(z)
_ / [ / f(z,y)du(z)} (), 6

where f,(y) = f(z,y) and f¥(z) = f(x,y). The theorem of Fubini, on
the other hand, says that if f : X x Y — [-o00,00] is summable, then
y € Y — f; is v-measurable for almost every z € X and g(z) = f fzdv is
p-summable, that similarly, x € X — f¥ is py-measurable for almost every
y €Y and h(y) = [ f¥du is v-summable, and that (8.6) holds true.

In the case that (X, M, ) and (Y, N, v) are o-finite complete measure
spaces, we take the completion of (X x Y, M@ N, u ® v) denoted by (X x
Y,L,A). Then, if f: X x Y — [—00, 0] is L-measurable, and either f > 0
or f € LY X x Y, \(dzdy)) is satisfied, then we have that f, and fY are
N- and M-measurable for y- and v- almost every z and y, respectively,
which are summable in the latter case, that z — [ fodv, y — [ f¥du are
measurable and are summable in the latter case, and that

[sr=[ ][ s y)du(w)]dvy) /[/fwy)dvy)]dn( 7).

If (X, D) is a measurable space, the mapping p : D — (—00, 00) is said

to be a signed measure if {Ax} C D is a division of A = Y27, Ak, then

A) =%, n(Ag) holds with the right-hand side converging absolutely. In
this case, the total variation is given by

are measurable and it holds that

/ fd(u®v)

oo

1| (A) = sup {Z |1(Ak)| | {Ak}ieq C D is a division of A}
k=1

and is shown to be a measure on (X, D) satisfying |p|(X) < +o0o0. We

call p = py — p_ and |p| = py + p— the Jordan decompositions, where

py = %( [#| £ 1). A non-negative signed measure is called the positive
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measure, so that the total variation of a signed measure is a positive measure
and so are p4 given above.

If p and X are a measure and a (signed) measure on the measurable
space (X, D), we say that X is absolutely continuous with respect to u if
A € D and p(A) = 0 imply AM(A) = 0. It is written as A <« p. This
condition is equivalent to that for any € > 0 there is § > 0 such that
A € D and p(A) < 4 imply |A(A)] < e. On the contrary, it is said that
A is concentrated on E € D if A(A) = A(E N A) holds for any A € D.
Finally, two (signed) measures A1, Az on (X, D) is said to be singular to
each other if there is a decomposition A1, As € D of X such that Ay, Ay are
concentrated on A;, As, respectively. This case is written as A; L As.

If (X,D) is a measurable space and p,A : D — [0,00) are positive
measures, then, the theorem of Radon and Nikodym says that there are
unique positive measures A, and A; such that A\, < p, A; L p, and A =
Aa + A, which is referred to as the Lebesgue decomposition, and that there
is a u-summable non-negative function h, which is unique up to p-almost
everywhere and is called the Radon-Nikodym density such that A,(A) =
J4 hdp for any A € D. It is written as dA, = hdp or %ﬂ = h. This is also
the case that A : D — (—00, 00) is a signed-measure if (X, D, i) is a o-finite
measure space and the density can change sign. The differentiation theorem
of Lebesgue says that if f(x) is locelly summable in R™, which means that
it is summable (with respect to the Lebesgue measure p) on any compact
set in R™, then it holds that

for almost every x € R™.

A locally compact Hausdorff space X is said to be o-compact if there
is a family of compact subsets {Xj};o, such that X = U, X;. Let
X be such a space and By be the Borel family so that the minimum o-
algebra containing any open set. In this case, if 4 is a measure on (X, Bx)
such that p(K) < +oo for any compact set K C X, then it is a Radon
measure so that u(A) = inf {u(U) | A C U : open} for A € Bx and p(U) =
sup {u(K) | U C K : compact} for U C X open. If X is a locally compact
Hausdorff space, provided with the property that any open set is o-compact,
and Bx denotes the Borel family, then a measure  on (X, Bx) is Radon if
and only if u(K) < oo for any compact K.

Here, we state some facts on the function of one variable used in §3.4.7.
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First, a function f defined on the compact interval [a, b] is said to be abso-
lutely continuous if any € > 0 admits d > 0 such that the division

Aixg=a<zr1<---<zZ,=b

of [a, b] satisfies |A|| = max;<;<n (T; — Zi—1) < & then it holds that

Z |f(zs) — flzicy)] <e.

i=1

An absolutely continuous function f(z) on [a, b} is differentiable for almost
every T € (a,b) with the derivative f'(z) to be summable on [a, b], which
enjoys the property that

/a " Fy)dy = £() - f(a)

for each z € [a,b]. A function f(z) defined on R is said to be locally
absolutely continuous if it is absolutely continuous on any compact interval.
A Lebesgue point of a locally summable function f(z) denotes xg satisfying

1 xo+h ) 1 X0
im 7 [ @) - fteol e = / " 1@ - feo)de =0

Then, Lebesgue’s differentiation theorem guarantees that the complement
of the set of Lebesgue points has the Lebesgue measure equal to 0.

8.1.5 Abstract Analysis

A complete normed space is called the Banach space. It is provided with
three important properties, Hahn-Banach’s theorem, the uniformly bounded
principle of Banach-Steinhaus, and the open mapping theorem of Banach.
The latter two are from Baire’s category theorem, while the first one is
based on Zorn’s lemma, which is equivalent to the aziom of selection.

Hahn-Banach’s theorem has several variations. In the analytic form
it assures that any bounded linear operator Ty : Hy — R defined on a
subspace Hp of a normed space H admits a bounded linear extension T :
H — R with ”T‘)”H,g = ||T|| g/, where

I Tolly, = sup {ITo(f)] | £ € Ho, Il <1}
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and

1Tl g = sup{IT(NV | f € H, |IF]l <1}

Those boundedness conditions may be unilateral in terms of the semi-norm
defined on the topological linear space. The geometric version, on the other
hand, is referred to as the separation principle, as disjoint convex sets A and
B in a normed space are separated weakly, and strongly by a hyper-plane,
if A is open, and if A is closed and B is compact, respectively.

One form of the theorem of Banach-Steinhaus says that if X and Y are
Banach spaces and the bounded linear operators T,, : X - Y (n =1,2,---)
satisfies sup,, |Thz|| < +oo for each z € X, then it holds that sup,, | T, || <
+00. On the other hand, the open mapping theorem says that if X and
Y are Banach spaces and T : X — Y is a surjective bounded operator,
then it is open so that any image of open set is open. An equivalent form
is the closed graph theorem. Namely, a linear operator T with the domain
D(T) ¢ X and the range R(T) C Y for Banach spaces X, Y is called
closed if its graph G = {(f,Tf) | f € D(T)} is closed in X x Y. Then, it
assures that a closed operator T with D(T') = X is bounded. Closed range
theorem, on the other hand, is concerned with the dual operator. Given a
densely defined closed (linear) operator T': D(T) C X — Y, we can define
the dual operator T : Y’ — X' by (I"y', z)x, x = (¢, TZ)y/ y, where X
and Y are Banach spaces. Then it says that R(T) is closed in Y if and only
if R(T") is dense in X', and in this case it holds that R(T) = N(T")* and
R(T") = N(T)*.

If E is a closed non-empty subset of a Banach space X and a (nonlinear)
mapping f : E — E is a contraction so that there is p € (0,1) such
that || f(z) — fW)| < pllz — y|| for any z,y € E, then it admits a unique
fized point z* in E: f(z*) = z*. On the other hand Schauder’s theorem
guarantees the existence of a fixed point of f : E — E if E C X is closed,
convex, and non-empty, and f is compact so that image of any bounded set
in E is relatively compact. Fundamentals of nonlinear functional analysis
are composed of fixed point theorems, topological degree, and variational
methods.

Important example of Banach space is the LP space on measure space
(X, B, u) for p € [1,00], with the norm given by

I£ll, = { {fx 1F@ u(dz)}'"? (p e[l 00))

ess.sup;cx | f(Z)] (p= ).
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There, two functions equal to each other almost everywhere are identified.
Then, convergence in L? implies that in measure for p € {1, 00), so that
if a family converges in L? for p € [1,00) there is a sub-family converg-
ing almost everywhere. It holds that (L?)’ = LP for p € [1,00), where
% + # = 1. Another example is the set of continuous functions taking 0
at 0o on a locally compact Hausdorff space X, denoted by Co(X), with
the norm ||f|, = maxzex |f(z)|. If T € Co(X)’ has the positivity, it is
identified with the integration of a finite Radon measure, and Co(X)’ is
realized as the set of signed Radon measures in that sense. This fact is
also referred to as Riesz’ representation theorem. If X = Q is a domain
in R™, then the L? space denoted by LP(?) is introduced associated with
the Lebesgue measure. Fréchet-Kolmogorouv’s theorem assures for a family
F C LP(R2) with p € [1,00) is relatively compact if and only if the fol-
lowing two conditions hold. Namely, first, any € > 0 and sub-domain w
with @ C @ admits § > 0 in § < dist(w,2°) such that ||7af — fllLn(,) <€
for any h € R™ in |h| < 6 and f € F, where 7, denotes the translation
operator: (1,f)(z) = f(x + h), and second, any € > 0 takes a sub-domain
w in @ C £ such that || f|| ,»(q\,) < & The Sobolev space W™P(§2) denotes
the set of p-integrable functions including their m-th order (distributional)
derivatives. With its atural norm, it becomes a Banach space. On the other
hand, W;™?(Q) indicates the closure of C§°(f2), the set of C* functions
with compact supports in £, in W™P(Q). If 8Q is Lipschitz continuous,
WP (Q) with p € [1,00) is characterized as the kernel of the trace opera-
tor v : WHP(Q) — WH1-1/P(Q). The space W™2(Q) becomes a Hilbert
space, denoted by H™(Q). We also put HJ*(Q) = WJ*(Q). Sobolev’s
imbedding theorem in the primitive form is described as W ™P(Q) ¢ LP" ()
for p € [1,n), where - = 2 — 1. The best constant associated with this
imbedding depends only on n and p. On the contrary, Morrey’s theorem
guarantees Wy'(Q) C C*(®) for p > n, where a = 1 — 2. Those imbed-
ding theorems extend to WP(Q) if #Q is Lipschitz continuous, with the
imbedding constant now depends on each Q.

8.2 Commentary

8.2.1 Elliptic and Parabolic Equations

For the Strum-Liouville problem and the expansion theorem of Mercer,
see Yosida [25] and Suzuki [20]. Concerning the method of separation of
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variables to seek eigenfunctions on symmetric domains described in §3.3.1,
see Courant and Hilbert [6]. Justification of the eigenfunction expansion
has been the fundamental theme of the operator theory. See Reed and
Simon [16] and so forth. Concerning the eigenvalues for the general domains
to (3.32) or (3.34), see Courant and Hilbert [6], Bandle [1], Chavel [4],
and Suzuki [21]. Detailed justification of the Fourier transformation of
distributions described in §5.2.6 including the theorem of Malgrange and
Ehlenpreis is given in Yosida {24]. Layer potential is treated by Courant and
Hilbert [6], Garabedian {11}, and Folland [9]. For the modern treatment,
see Fabes, Jodeit, and Riviére [33] and Verchota [91].

The standard text for the second order elliptic equation is Gilbarg and
Trudinger [12]. For the parabolic equation, we refer to LadyZenskaja, Solon-
nikov, and Ural’ceva [15]. Holder continuity of ujx in §5.4.2 is described in
[12]. Its Z? boundedness is established by (28], referred to as the theory of
singular integrals. See also Stein [19] for this method of linear approach.

Theory of semilinear elliptic equations requires a different staff based on
the topological consideration, and so forth, as is described in Suzuki [21]. As
for more detailed justification of the method given in §§5.4.3 and 5.4.4 such
as the trace operator, Sobolev’s imbedding theorem, and so forth, see Brezis
[3]. Among most important topics in recent study on nonlinear equations
are the regularity and the blowup of the solution. The descriptions of
§85.4.4 and 5.4.5 are due to {63], [54], and [28]. For their extensions to the
nonlinear problem, see Choe [5] and DiBenedetto (8].

The description of §6.1 follows Fujita [34]. The critical exponent p =
ps is contained in the blowup case, which was proven by Hayakawa [42].
Fujita’s triple law is obtained in Fujita [35] and is described in [21]. See
also Kohda and Suzuki [59] for later developments. J.J.L. Veldzquez’ work
on the best estimate of the dimension of the blowup set is done in [90]. The
proof of Theorem 6.5 follows Ikehata and Suzuki [51]. The work by Y. Giga
and R.V. Kohn characterizing the blowup point by the backward self-similar
transformation is done in [39], [40], [41}. Theorem 6.7 is obtained by Otani
[78]. The proof exposed here is based on Cazenave and Lions [29]. Theorems
6.9 and 6.10 are proven by Giga [38] and Merle [61], respectively. General
theory of dynamical systems, particularly the omega-limit set of compact
orbits in the presence of the Lyapunov function, is described in Henry [13].
The result by P.L. Lions on the semilinear parabolic dynamics is given
in (60]. The unbounded global solution was introduced by W.-M. Ni, P.E.
Sacks, and T. Tavantzis [73]. V.A. Galaktionov and J.L. Vazquez showed in
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[37] that if @ is a ball and 242 < p < 1+ ;=577 U0 = uo(|l), and uo, < 0
for r = [z| > 0, then it holds that T},,x < 400 for the unbounded global
solution. Y. Naito and T. Suzuki studied the same problem for the case of
p = p, in the general domain. Generally, this problem is concerned with
the post-blowup continuation. In this connection, Sakaguchi and Suzuki [81]
showed that if u = u(z,t) is a super-solution to the linear heat equation and
if its dead core D(t) = {z | u(z,t) = +oo} enclosed in a bounded domain,
then it hold that liminf;_,,, L™(D(t)) = 0 for any o, where L™ denotes the
n-dimensional Lebesgue measure. See also the references therein for the
related work. The H* solution to (6.25) was constructed by Weissler [92],
Hoshino and Yamada [50], and Ikehata and Suzuki [52]. Stable and unstable
sets are introduced by Sattinger [82]. Fundamental properties of the Nehari
manifold are described in Suzuki [21]. Theorem 6.11 is due to [51]. For
the forward self-similar solution and its role to the asymptotic behavior of
solutions to (6.1), see Kawanago [56] and the references therein. Theorem
6.12 is due to Naito and Suzuki [70]. See the references therein concerning
the study on radially symmetric self-similar solutions. The results by M.
Escobedo and O. Kavian are done in [32], [55].

For detailed studies on the numerical scheme to solve partial differential
equations, see Fujita, Saito, and Suzuki [10]. For elements in nonlinear
functional analysis, see Deimling [7].

8.2.2 Systems of Self-interacting Particles

Modelling of the motion of the mean field of self-interacting particles is
treated by Samarskii and Mikhailov [18]. In Bensoussan and Frehse [2] the
regularity of the solution to the (DD) model is described. More systematic
study to the semiconductor device equation, modelling, simulation, and
analysis, is done in Jiingel [14]. The statistical modelling described in §4.1
is based on Othmer and Stevens [79]. Semilinear elliptic equations with
exponential nonlinearity arise also in the gauge field theory. See Yang [23]
for this area.

T. Nagai’s work on (7.1) is [65]. The original Keller-Segel model was
proposed in [57] with the biological background and instability of the con-
stant solution was studied. Then, V. Nanjundiah introduced a simplified
system in [72], which now is called the Keller-Segel system, or the full sys-
tem as in §7.1. Mathematical studies on this system, physical and biological
motivations, and related references are described in Suzuki [22].



Commentary 359

Problem (7.1) has several relatives and some of them were studied by
[53], [65], [26], [43], [71]. Amang others are the existence and uniqueness
of the classical solution [93], blowup of the solution and its singularity [53;
65; 85; 69; 46; 43], Lyapunov function and threshold for the blowup [68;
36; 26)), stationary solutions [84], and asymptotic behavior of the solution
[75]. W. Jiger and J. Luckhaus introduced the simplified system whose
second equation is slightly different, where the comparison theorem is valid
to U(r,t) = flzl <» w(z,t)dz. T. Nagai introduced (7.1) with the threshold
expected by [30] for the blowup solution in the case of radially symmetric
solutions. That method of using second moment f, 1z|? u(z, t)dx is valid
to non-radial case or the system

U

V- (Vu - uVx(v)),
0 = Av—wv+u,

where x = x{(v) is 2 monotone increasing function. See [86; 66; 67]. Sim-
plified system of chemotaxis has a remarkable structure in two space di-
mension. See [45; 44; 46] for the matched asymptotic expansion, [68;
36; 26] for the use of the Lyapunov function and the Trudinger-Moser
type inequality, {22; 86] for the method of symmetrization, [85; 21; 49;
83] for stationary solutions and global dynamics. In three-dimensional case,
there are self-similar blowup solutions and L! concentration blowup solu-
tions. See [43] and the reference. The former case does not arise in two
space dimensions. See [71]. Concerning with numerical results, see [47] and
the references therein.

For the system whose second equation does not have the diffusion term,
the structure of solutions is different from the systems with diffusion term.
Yang, Chen and Liu treat the system

u = V- (Vu—uVlog(v)),
v = F(u,v).

They show results concerning with time-global existence and boundedness
of the solution in the case where F(u,v) = u — v, and results concerning
with growup and blowup of solutions in the case where F(u,v) = u or wv.
Then, the structure of solutions depends on the form F(u,v). Othmer,
Stevens, Levine and Sleeman introduce the system and numerically inves-
tigate. Concerning with background, mathematical and numerical results,
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see [94] and the references therein. Hillen and Stevens [48] introduced a
hyperbolic model from the Keller-Segel system.

There are not so many mathematical results concerning the spatial pat-
tern formulated by the solutions, but in the experiment and numerical
computations a lot of systems of chemotaxis are reported to show the fea-
ture of aggregation, e.g., several patterns formed by bacterium such as the
spot, ring, spike, swarm ring, spiral, and target patterns. One of the math-
ematical approach to the pattern formation is the dimension analysis of
the attractor. See [75] for this. Profile or the speed of the traveling wave
is an important information for the spatial pattern to understand, where
the traveling wave is a solution determined by x — ¢t with a constant c.
Traveling bands was shown by Adler experimentally, which means that the
gradient of chemical substance makes bacterium move toward higher den-
sity. E.F. Keller and L.A. Segel introduced a mathematical model for this
phenomena with an explicit traveling wave solution. T. Nagai and others
introduced a simplified system,

vy = (uy —au(log(v))z)s
Vg = dUgz — U

in R x (0,00), where o and d are positive constants, and studied the lin-
earized instability of traveling waves. See [58; 31; 74| and the references
therein.

Budrene and Berg’s experiment showed that the bacterium exhibit com-
plex two-dimensional spot or stripe patterns by the interplay of diffusion,
growth, and chemotaxis. To analyze those patterns, M. Mimura and others
proposed

uy = diV-(Vu - kuVx(v)) + £f(u),
v = d2Av—ov + yu,

where dy, d2, a and v are positive constants, x(v) and f(u) are smooth
functions. T. Tsujikawa observed the existence of the explicit stationary
solution in the limiting system. Then, in use of the singular perturbation
method, he found one-dimensional and two-dimensional planar stationary
solutions corresponding to the strip pattern, and investigated their stability.
By a similar method, T. Tsujikawa and M. Mimura found a radially sym-
metric solution corresponding to the spot pattern and also two-dimensional



Commentary 361

stationary solutions different from the one previously found. See (27; 87]
and the references therein.

After aggregation, cells of the cellular slime mold form a multicellular
structure and show coherent motion such as vortices. For this phenomenon,
T. Umeda and K. Inouye introduced a discrete model. In the numerical
calculation, cells form some clusters, which merge to form larger clusters,
and then the rotational cells movement can be seen. Also, they introduced
the continuous model

1 Ve + bv

SVUp = V.v=

p P av+f|Vc+bv|’ V=0,
¢ = DAc—kic+ kap,

where p is the density of cells, ¢ is the chemical concentration, p is the
pressure, v is the velocity of cells, and a, b, D, k; (i = 1,2) are positive
constants. They found a radial solution to the continuous model whose
velocity has only azimuthal velocity, which corresponds to the rotational
movement of cells. See {89] and the references therein.
Hildebrand and others introduced

Ut diAu — aV{u(l — u)Vx(¥))} + f(u,v),

d2Av +yv(v +u —1)(1 —v),

Il

Ve

where micro-reactors with sub-micrometer and nanometer sizes are allowed
to develop chemical reactions on surface by a non-equilibrium self-organization
process. Here, d; (i = 1,2), o and +y are positive constants, and x(v) and
f(u,v) are smooth functions. This model has the chemotactic term, as
aV{u(l — u)Vx(v)}. T. Tsujikawa and A. Yagi showed the existence of
the time-global solution and the exponential attractor. See [88] and the
reference.

The stream formation and spiral wave was studied by {77] to describe for
finite amoebas from the numerical calculation. That model describes the
case that each cell responses to one chemical substance. For the other case,
Painter, Maini and Othmer proposed a system modelling bacterial chemo-
taxis or animal skin patterns. From the numerical calculation, solutions
form spot, ring, and stream patterns. One of them is given by

ue = V- (Vu—u(V(a(v) +xa2(v2)))),
d1Av; + fi(v,v2) (1=1,2).

Vit
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See [80]. Finally, let us recall that several experiments, mathematical mod-
els, and numerical calculations are exposed in [64].
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*-weak convergence, 203, 306 354, 356
up-summable, 352-353 barier, 204, 206
v-summable, 352 Bessel function, 108
Bessel’s equation, 107

absolutely continuous, 143, 145, 353, Bessel’s inequality, 93, 97, 101, 112

354 bi-linear, 112
absolutely convex, 130, 132, 134-137 bi-linear form, 117
absorbing, 130, 132 — bounded, 112, 119-120
acceleration, 1, 24 — symmetric, 111
action integral, 65 bi-principal normal vector, 33
action-reaction law, 9 biological field, 161
adjoint operator, 115-116 blowup
admissible, 62-63 — in infinite time, 284
aggregation, 155, 157, 360-361 — posto continuation, 358
algorithm, 80 — set, 280, 306, 357
almost everywhere, 74, 349 — type I, 307
angular velocity, 22-24 — type II, 307
area element, 18, 29, 179, 219 Borel family, 350, 353
area velocity, 9 Borel measure, 138, 201
arithmetic mean, 98 Borel set, 350
autonomous, 3, 17, 279, 294 boundary, 8, 18, 204, 341
average particle velocity, 154, 157, —C 31

160 — C**, 233
axiom — smooth, 279
— first countability, 136 boundary condition, 180
— second countability, 343 — Dirichlet (first kind), 174, 180,
— selection, 354 284, 286, 293
— separation, 131, 135, 147 — Neumann (second kind), 154-155,

174, 180

Banach space, 74-76, 85, 187, 343, — Robin (third kind), 180
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boundary point, 204-205, 216, 312
boundary value, 41-42, 79, 180
boundary value problem, 70, 230
bounded, 73, 85, 112, 133
bounded domain, 79, 307
bounded from below, 72, 77
bounded mean oscillation, 251
boundedness, 77

bounded variation, 103, 105-106

Cauchy, 133, 338

Cauchy’s estimate, 346

Cauchy’s integral formula, 206, 345

Cauchy’s integral theorem, 195

Cauchy net, 343

Cauchy problem, 2-3, 190, 194

Cauchy sequence, 73, 342

Césaro mean, 98

chain rule, 145

characteristic vibration, 107

chemotactic aggregation, 313

chemotactic sensitivity, 313

chemotactic sensitivity function, 161

chemotaxis, 11, 303

— explicit stationary solution, 360

— full system, 305, 358

classical solution, 181, 205, 279

closed, 115, 341, 355

closed linear operator, 116

closed region, 43, 342

closure, 19, 341

coercive, 3

collapse, 155, 306-308, 313

collision, 165, 169

compact, 119, 341, 343, 355

compact orbit, 357

compact support, 128, 162, 197, 268,
356

compatibility, 181, 315

complete, 73, 133, 342, 343, 350

complete metric, 241

complete normed space, 75, 354

complete ortho-normal system, 92,
185

Index

complete uniform space, 138

completely continuous, 119

completion, 350, 352

complex analysis, 191

complex conjugate, 90

complex function theory, 205-206,
217, 344

complex plane, 206, 346

conformal, 344

conformal homeomorphism, 217-218,
344

conformal mapping, 26

conjugate, 47

connected, 14, 298, 339, 341

connected component, 292, 297

connected open set, 53

connected set, 292, 297

connected subset, 342

constraint qualification, 49

continuity of real numbers, 338

continuous, 206, 275, 341

— absolutely, 143, 353, 354

— completely, 119

— Holder, 228, 230, 237, 240

— locally absolutely, 143, 294, 354

— lower semi-, 47-49, 77, 243, 349

— Lipschitz, 174

— uniformly, 98, 340, 342

continuous dependence, 183, 190

continuous extension, 14, 241

continuous function, 145, 152, 204

continous mapping, 72, 334, 342-343

continous model, 361

contraction, 355

contracton mapping, 198

convergence, 80, 343

— absolutely, 75

— in measure, 350

— pointwise 203

— weakly, 77-79, 243, 355

convergence radius, 345

convex, 47, 294

convex analysis, 47

convex closed curve, 61
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convex domain, 60-61, 315, 317 — Maxwell, 162, 168
convex function, 47, 51 — tempered, 201
convex hull, 57 distributional derivative, 74, 76, 143
convex set, 355 distributional sense, 78-79
countable dense subset, 61, 92, 111 divergence, 5, 15
critical, 13 division, 349, 352
critical closed surface, 69 domain, 113, 342
critical exponent, 279, 357 dual, 48
critical function, 62 dual exponent, 188, 199
critical point, 14-15, 41-42, 309 dual space, 86, 88, 128, 306
critical state, 70 dyadic sub-division, 259
critical value, 44 dynamical system, 4, 17, 19, 156, 357
curvature, 26, 31, 34
— center, 31, 33, 38 effective domain, 47
— Gaussian, 39-40, 67 efficient potential energy, 9
— mean, 39, 41, 67, 69 eigenfunction, 95, 106, 120
— normal, 33, 343 eigenfunction expansion, 357
— principal, 38-39, 67 eigenspace, 120
curvature radius, 31, 36, 42 eigenvalue, 95, 106
— principal, 40 — multiple, 106, 110

— negative, 14
decomposition, eigenvalue problem, 85, 94, 124, 184
— Jordan, 352 energy, 5, 53
— Lebesgue, 353 — inner, 70, 310
— spectral, 116 — kinetic, 2, 64, 70, 93, 172
dense, 341 — energy bound, 169
dense subset, 61, 292 entire, 346, 348
densely defined, 115-116 entire function, 203, 346, 348
derivative equation
— direction, 12, 21, 42, 154 — Bessel, 107
— material, 20, 24 — Boltzmann, 162, 165-166, 177
— (outer) normal, 21, 224 — continuty, 24, 154, 171, 173
— partial, 42 — Euler, 62, 63
— total, 13, 42, 62-63, 344 — Euler’s motion, 25
determinant, 67 — fundamental, 25
diagonal argument, 61, 79 — Hamilton’s cannonical, 66
diffusion, 154, 304 — heat, 106, 180, 190, 197
diffusion coefficient, 173 — linear parabolic, 175
diffusion term, 359 — master, 151, 156-157
direct problem, 180 — Newton’s motion, 1, 24, 64
direct product, 352 — parabolic, 179, 197, 291, 307, 357
Dirichlet, 103 — Poisson, 174, 232, 234
distibution, 56, 74, 127, 138 — semilinear heat, 265

— harmonic, 206 — transport, 162, 164, 169
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— vorticity, 311

— wave, 93, 106

equi-continuous, 77, 147, 148, 343
equi-continuous sequence, 148
equilibrium point, 3, 5
equi-potential line, 25-26

error analysis, 80

essentially bounded, 187
essentially singular, 347
exponential, 161

exponential attractor, 361
exponential nonlinearity, 312, 358
extension operator, 257

finite element method, 81

finite multiplicity, 124

finite perimeter, 57

finite propagation, 197

finitely additive, 349

finitely additive family, 349, 351
finitely additive measure, 349, 351
fixed point, 355

floating orbit, 297

flux, 154, 304

— heat, 180

— null condition, 304

force

— center, 8

— outer, 9, 24, 162

— second interaction, 9-10
formula

— Cauchy'’s integral, 191, 206, 345
— Cauchy-Hadamard, 345

— Frenet-Serret, 35

— Gauss’ divergence, 18, 31, 154-155

— Green, 21, 54, 216

— integration by parts, 19

— Leibniz, 145

— Planchelel’s inversion, 187-188
— Poisson’s integral, 208

— Weyl, 110

Fourier inverse transformation, 187,

194
Fourier series, 95

Index

Fourier transformation, 187, 201-202,

357
fractiona powers, 116, 119
Fréchet space, 128, 133
Fredholm alternative, 231
free energy, 53, 176
Fujita’s critical exponent, 265, 278
Fujita’s triple law, 357
function
— analytic, 206, 218
— Bessel, 108
—- chemotactic sensitivity, 161
— continuous, 145, 152, 204
— convex, 47, 51
— delta, 127, 139, 163
— eigen, 95, 106, 120
— entire, 203, 346, 348
— Gamma, 145, 219
— Green’s, 216, 232, 305
— H-, 167-168
— Heaviside, 140
— holomorphic, 26, 345
— Lagrange, 48, 65
— Lyapunov, 280
—— meromorphic, 347
— p-integrable, 127, 187, 356
— simple, 350
function space, 56
functional, 53
— Minkowski, 131-132, 135
fundamental form
— first, 28-29, 66
— second, 37, 66
fundamental quantities
— first, 28, 30, 39
— second, 36, 40
fundamental neighborhood system,
131, 342, 343
fundamental solution, 140

Gamma function, 145, 219
Gamma measurable, 349
Gaussian kernel, 140, 194
Gaussian curvature, 39-40, 67
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Gel’fand triple, 112, 119
general momentum, 65
general cordinate, 64
gradient, 12

gradient flow, 312

gradient operator, 4, 15, 309
graph, 116

Hamiltonian, 65, 311

harmonic, 204

— spherically, 109

— sub-, 205, 211, 243

— super-, 211, 247

harmonic distribution, 206

harmonic lifting, 205, 212-213, 223

Hausdorff dimension, 280

Hausdorff space, 343, 353

Hausdorff topology, 131

Hesse matrix, 13-14, 40

Hilbert space, 76, 79, 88, 90, 96, 111,
186, 241, 356

holomorphic, 141, 344

holomorphic function, 26, 345

homeomorphism, 341

hyper-parabola, 307

identity

— Fenchel, 47

— Lagrange, 7

— Parseval, 56

— Pohozaev, 296

inequality

— Harnack, 205, 208-209, 223, 253,

— Hausdorff-Young, 197

— Holder, 188

— isoperimetric, 56, 110

— Jensen, 259, 277, 293

— John-Nirenberg, 251, 264

— Minkowski, 188

— Poincaré, 241, 284

— Poincaré-Sobolev, 250, 255

— Polya-Szegd-Weinberger’s
isoperimetric, 110

— triangle, 341
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— Wirtinger, 54
incompressible, 20, 24
indirect method, 63
inductive limit, 128, 136, 148
infinitesimal vector, 29, 37, 39
initial condition, 180, 185
initial value, 180, 267, 307
inner product, 5, 76, 79, 96
— L?, 107, 184

interior, 211, 341

interior point, 41-42, 342-342
invariant set, 297

inverse problem, 180
isolated singular point, 347

Jordan curve, 56

Jordan decomposition, 352
Jordan family, 349

Jordan measure, 349
Jordan region, 217, 344

kernel, 224

Lagrange function, 48, 65

Lagrange identity, 7

Lagrange mechanics, 70

Lagrange multiplier, 43, 50

Lagrange equation of motion, 65

Lagrangian, 53, 65, 70, 93

Laplacian, 21, 140, 153, 196

law

— action-reaction, 9

— energy conservation, 3, 11

— Fujita’s triple, 279, 357

— mass law, 18, 304

— parallelogram, 89-90

— second of thermodynamics, 166,
168, 309, 311

layer integral

— single, 224, 228, 230

layer potential,

— double, 224

— single, 224

least square approximation, 91
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Lebesgue, 56 — finitely additive, 349, 351
Lebesgue decomposition, 353 — Jordan, 349
Lebesgue measurable, 57, 350 — Lebesgue (one-dimensional), 286
Lebesgue measurable set, 350 — Lebesgue (n-dimensional), 350,
Lebesgue measure, 129 358
Lebesgue integral, 75, 187, 348 — outer, 349
Lebesgue point, 144, 354 — positive, 353
Legendre polynomial, 109 — pre, 349-351
Legendre tranformation, 47-48, 65 — Radon, 138-140, 353, 356
lemma — signed, 352
— Fatou, 348, 351 mechanics
— Weyl, 206 — quantum, 90, 169, 307
— Zorn, 354 — Lagrange, 70
limit infimum, 338 — Newton, 70, 80
limit supremum, 338 mesh size, 80-81
line element, 28, 216 method
linear combination, 92, 168 — energy, 279
linear differential operator, 140 — finite element, 81
linear hull, 92, 122 — indirect, 63
linear mapping, 85, 88, 128 — Kaplan, 293
linear operation, 131, — Perron, 205
linear operator, 86, 115 — singular perturbation, 360
linear part, 279 — variation, 355
linear response, 156 metrizable, 133
linear space, 130 minimal surface, 68-69
linear subspace, 91, 100, 115, 120 minimizing sequence, 73, 77-78, 242
linear system, 313 minimum energy solution, 296
linearity, 85 model
linearization, 162 — barier, 156, 161
linearized instability, 360 — continuous, 361
linearized operator, 292-293 — nearest neighbor, 161
linearly independent, 90, 106, 121-122 momentum, 10
local well-posed, 295 — angular, 8, 10
local maximum principle, 246, 253 — general, 65
local minimum principle, 252 Morse index, 14, 42
locally convex space, 131, 133, Morse theory, 14
136-137, 148 multiplicity, 125, 166, 301

Lyapunov function, 280
negative, 39, 154-155, 249

mass point, 1, 8 Nehari manifold, 296, 358
mass quantization, 307 net, 131, 343

measurable, 187, 350-352 Neumann, 49

measure Neumann problem, 107, 224

— Borel, 138, 201 Newton mechanics, 70, 80



Newton potential, 140-141, 219
nodal domain, 109-110
non-degenerate, 14
non-negative, 116

nonlinear functional anaysis, 355
nonlinear operator, 119

norm, 72, 74, 76, 88, 90, 117
— C, 343, 356

— Hélder, 314

— L2, 185

— L?, 155, 175, 355

— maximum, 182

— preserved, 80

— semi-, 130-131, 135-136, 148, 355

— WbP 243

normal, 33, 343
normal curvature, 38
normal derivative, 224
normal form, 310
normal plane, 33
normalizable, 132-133
normalization, 95, 293

Index

normed space, 72-73, 75, 87, 354-355

— complete, 75, 354
numerical

— analysis, 80

— scheme, 80-81, 358

omega-limit set, 283, 291, 357
one form, 69

open, 340

operator, 85

— adjoint, 115-116

— closed linear, 116

— extension, 257

— gradient, 4, 15, 309

— trace, 356-357

— Laplace-Beltrami, 108, 219
— linear, 86, 156

— linear differential, 140

— linearized, 292-293

— nonlinear, 119

— unbounded linear, 113
operator norm, 86-87, 120, 198

operator theory, 357
orbit, 3, 283

order, 346

order preserving, 197
— strong, 197
ortho-normal, 90
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ortho-normal basis, 21, 92, 121, 124

osculating plane, 33

outer circumscribing ball condition,

205, 232

parabolic envelope, 307
parameter, 180

perfect fluid, 25

period, 55, 98

periodic, 107, 109

periodic extension, 94
periodic function, 55, 95
periodicity, 98-98, 105, 109
Perron solution, 211, 214, 223
piecewise linear, 81
Poisson kernel, 222

Poisson integral, 205, 211, 218, 222

pole, 347-348

positive, 155

positive definite, 112, 116-117
potential

— double layer, 224

— logarithmic, 140

— Newton, 140-141, 219
— velocity, 25

potential depth, 296
principal direction, 38-39
principal part, 347-348
principle

— argument, 347

-— contraction mapping, 279, 323, 334

— deterministic, 2

— Dirichlet, 240

— Duhamel, 266-268

— Harnack, 205, 210, 213, 223
— Lagrange multiplier, 43, 50
— least action of Hamilton, 65
— local maximum, 246, 253
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— local minimum, 252

— maximum, 182, 205, 346

— mini-max, 49, 125

— Nebhari, 296

— Rayleigh, 125

— residue, 347

— resonance, 148

— separation, 355

— strong maximum, 208-209, 293
— super-position, 94

— uniformly bounded, 354

— weak maximum, 209, 212-213, 215
— Weierstrass, 71

problem

— boundary value, 70, 230

— Cauchy, 2-3, 190, 194

— direct, 180

— Dirichlet, 204, 211, 215, 218, 224
— eigenvalue, 85, 94, 124, 184

— inverse, 180

— isoperimetric, 53, 62

— Kac, 110

— Neumann, 107, 224, 180

— Strum-Liouville, 106, 356

— variation, 57, 62-63, 78, 88,
proper, 47

propery

— restricted cone, 241

— semi-group, 198

quantum mechanics, 90, 169, 307

radially symmetric solution, 359-360
Radon-Nikodym density, 353
range, 113, 115, 316, 355
rapidly decreasing, 188, 200
Rayleigh, 293

Rayleigh quatient, 125

real analysis, 103, 205-206
regular, 204

regular part, 305, 311

regular point, 205, 214
regular solution, 267, 271, 275
relation

Indez

— Cauchy-Riemann, 25, 141, 211, 344

— Parseval, 56, 93, 100, 111
regularity, 64, 78, 206

— inner, 243

— Schauder, 237
regularization, 203, 226, 234, 243
renormalization, 157
residue, 347

rotation, 5, 15, 23, 25
rotation free velocity, 25
rotational cell, 361
rotational movement, 361

saturating, 156, 161

scheme, 80

Schwarz, 346

self-adjoint, 113, 115

self-similar, 298-299

— backward transformation, 281,
299, 308, 357

— blowup, 359

— forward transformation, 279, 298
301

— radially symmetric, 359-360

separability, 343

separable, 79, 92, 111, 341

separation of variables, 94

sequentially compact, 343

seqentially complete, 138, 343

series

— Fourier, 95

— Laurent, 347

o-algebra, 349

o-finite, 349

simplified system

singular integral, 357

singularity, 353

— point, 347

— removable, 347

simply connected (domain), 53, 206,
342, 345

smoothing effect, 198, 200

soap bubble, 69

soap film, 69
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Sobolev exponent, 280, 285

solenoidal, 20-21

space

— Banach, 74-76, 85, 187, 343, 354,
356

— complete uniform, 138

— dual, 86, 88, 128, 306

— eigen, 120

— Fréchet, 128, 133

— function, 56

— Hausdorff, 343, 353

— Hilbert, 76, 79, 88, 90, 96, 111,
186, 241, 356

— linear, 130

-— linear sub-, 91, 100, 115, 120

— locally convex, 131, 133, 136-137,
148 -

— measurable, 349-350, 352-353

— measure, 349-351, 353, 355

— metric, 341-342

— normal Hausdorff, 343

— normed, 72-73, 75, 87, 354-355

— pre-Hilbert, 87-88

— (sequentially) complete locally
convex, 138

— o-finite complete measure, 352

— Sobolev, 56, 356

— topological, 71-72, 340-341,
343-344

— topological linear, 355

~— uniform topological, 343

spectral decomposition, 116

spectrum, 116

spherically harmonic function, 109

square integrable

— locally, 96

stability, 5, 80, 183

stable, 3, 69, 155, 358

stable set, 296

standard distance, 342

stationary, 13

— explicit solution, 360

— non-, 93

— non-trivial state, 176, 293
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— planner solution, 360

stationary problem, 176, 306-308, 312
stationary solution, 175, 292, 296, 359
steady flow, 25

Steiner symmetrization, 58, 60-61
stream function, 25

strong convergence, 78-79, 119
sub-differential, 47

sub-solution, 205

super-solution, 358

support, 74, 146, 166

summable, 315

— locally, 128, 138, 353

— quadratic (square), 56, 76
symmetric, 112, 116

symmetric domain, 357

symmetric matrix, 14

Taylor expansion, 346
temperature distribution, 180
theorem

— Ascoli-Arzela, 77, 343

— Baire, 354

— Banach-Steinhaus, 148, 354-355
— Bolzano-Weierstrass, 79

— Bourbaki, 128

— Calderén-Zygmund, 260

— Carathéodory, 350

— Cauchy’s integral, 195, 345

— closed range, 115, 355

— closed graph, 355

— convergence, 75, 348

— Egorov, 350

— eigenfunction expansion, 106, 356
— Fenchel-Moreau’s duality, 47
— Fréchet-Kolmogorv, 356

— Fubini, 352

— fundamental in analysis, 19

— Gauss’ divergence, 180

— Hahn-Banach, 80, 114-115, 354
-—— implicit function, 43-44

— intermediate value, 339

— Jordan, 103

— Lebesgue’s diffential, 261, 353-354
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— Lebesgue’s dominated
convergence, 144, 238, 270, 348, 351

— Liouville, 346, 348

— Lusin, 350

— Malgrange-Ehrenpreis, 140, 203,
357

— mean value, 205, 208

— Menshov, 344

— Mercer’s expansion, 106

— monotone convergence, 244, 294,
348, 351

— Morera, 345

— Morrey, 288, 356

— open mapping, 116, 118, 354-355

— Radon-Nikodym, 353

— resonance, 148

-— Riemann’'s mapping, 344

— Riemann’s removable singularity,
347

— Riemann-Lebesgue, 97, 102

— Riesz’ representation, 88-89, 112,
114, 146, 241, 356

— Riesz-Schauder, 231

— Riesz-Thorin’s interpolation, 287

— Rouché, 347

— saddle point, 49-50

— Schauder’s fixed point, 355

— second mean value, 104

— Sobolev’s imbedding, 74,m 243,
356

— Tietze’s extension, 226, 343

— Tonelli, 352

— Urysohn, 343

— Weierstrass, 347

three-point difference, 81

tone, 107

topological degree, 355

torsion, 34

total energy, 2, 4

total variation, 201, 352-353

trace, 69, 79, 241

transformation

~— backward self-similar, 281, 299,
308, 357

Index

— forward self-similar, 279, 298, 301
— Fourier, 187, 201-202, 357

— inverse Fourier, 187, 194

— Joukowski, 26

— Kelvin, 205, 220, 221

— Legendre, 47-48, 65

trivial solution, 95, 106

unbounded global solution, 295, 357

uniform convergence, 106

uniformly bounded, 77, 79, 2987, 343

unit circle

unit vector, 11

— outer normal, 18, 27, 37, 40, 179,
216, 219, 224, 303, 371, 376

— principal normal, 33, 36, 48

unstable, 3

unstable set, 296, 358

vector area element, 29

velocity

— angular, 22-24

— area, 9

— average particle, 154, 157, 160
— rotation free, 25

velocity potential, 25

vorticity, 23

weak solution, 64, 78, 294-295, 307
well-posed, 175, 179-180, 190, 279



