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Preface 

This book is intended to be an introduction to mathematical science, par- 
ticularly the theoretical study from the viewpoint of applied analysis. As 
basic materials, vector analysis and calculus of variation are taken, and 
then Fourier analysis is introduced for the eigenfunction expansion to jus- 
tify. After that, statistical method is presented to control the mean field of 
many particles, and the mathematical theory to linear and nonlinear partial 
differential equations is accessed. System of chemotaxis is a special topic in 
this book, and well-posedness of the model is established. We summarize 
several mathematical theories and give some references for the advanced 
study. We also picked up some materials from classical mechanics, geom- 
etry, mathematical programming, numerical schemes, and so forth. Thus, 
this book covers some parts of undergraduate courses for mathematical 
study. It is also suitable for the first degree of graduate course to learn 
the basic ideas, mathematical techniques, systematic logic, physical and 
biological motivations, and so forth. 

Most part of this monograph is based on the notes of the second author 
for undergraduate and graduate courses and seminars at several universi- 
ties. We thank all our students for taking part in the project. 

December 2003 

Takasi Senba and Takashi Suzuki 
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Chapter 1 

Geometric Objects 

Some kind of insects and amoeba are lured by special chemical substances 
of their own. Such a character is called chemotaxis in biology. For its 
formulation, some mathematical terminologies and notions are necessary. 
This chapter is devoted to  geometric objects. 

1.1 Basic Notions of Vector Analysis 

1.1.1 Dgnamical Systems 

Movement of a mass point is indicated by the position vector x = x( t )  E R3 
depending on the time variable t E R. If rn and F denote its mass and 
the force acting on it, respectively, Newton’s equation of motion assures the 
relation 

d 2 x  
dt2 

m- = F ,  

where 
1,2,  . . . , n) are interacting, then they are subject to the system 

stands for the acceleration vector. If n points xi = zi(t) (i = 

d2xi  
mi- = Fi (a = 1,2,  . . . , n), dt2 

simply written as 

2 = f(x, 2, t )  

1 
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with x = (21, 22,. . . , 2,) E R3,, 

dx and x =  - 
dt * 

.. d2x 
x = - p  

It is sometimes referred to as the deterministic principle of Newton, and 
under reasonable assumptions on f, say, continuity in all variables (x ,  i, t )  
and the Lipschitz continuity in (x ,5) ,  there is a unique solution z = x( t )  
to (1.2) locally in time with the prescribed initial position x(0) = xo and 
the initial velocity k(0)  = 50. At this occasion, let us recall that the initial 
values 

z(0) =so and k(0)  =io 

provide equation (1.2) with the Cauchy problem. 

x = x( t )  E R2. For example, 
In some cases the degree of freedom is reduced, as x = z(t)  E R or 

x = - k ~  2 

with z = s ( t )  E R is associated with the oscillatory motion of a bullet 
hanged by spring, and its solution is given by 

x( t )  = xo cos kt  + 20 sin k t / k .  

Although very few solutions to (1.2) are written explicitly even for the case 
of x = ~ ( t )  E R, 

x = f ( x )  (1.3) 

is the simplest but general form of it. In this case 

1 
2 

T = -x2 and U ( z )  = - f (<)d< 

are referred to as the kinetic energy and the potential energy, respectively. 
Then, the total energy is given by 

1 
2 

E = T + u = -x2 + u ( ~ )  
so that it is a function of (s,i), denoted by E = E(z ,k ) .  If z = z ( t )  is a 
solution to (1.3), then it holds that 

d 
d t  
-E ( z ( t ) , i ( t ) )  = 55 - f(z)f = i ( x  - f(~)) = 0, 
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so that E (z ( t ) , i ( t ) )  is a constant. This fact is referred to as the conserva- 
tion law of energy. 

System (1.3) is equivalent to 5 = y and 9 = f(z), or 

with @(z, y) = (y, f(z)). Because the right-hand side does not include 
the variable t explicitly, system (1.4) is said to be autonomous, and its 
solution is illustrated as a curve in z - y plane. Energy conservation 
E ( ~ ( t ) ,  i ( t ) )  = E ( q ,  io) guarantees the existence of the solution globally 
in time if the potential U = U ( Z )  is coercive, which means that 121 --f +m 
implies U ( z )  --f +m. Then, each 

0 = {(z(t),j .(t)) I t E R} 

is called an orbit, which coincides with the curve E = i y 2  + U ( z ) ,  where 
E = E(zo,&). 

Because of the uniqueness of the solution to the Cauchy problem of 
(1.3), the orbit never intersects by itself. However, it may be a point, 
which corresponds to the zero of @, that is, y = 0 and f(z) = -U'(z)  = 0. 
It is referred to as the equilibrium point. Each equilibrium point (f0,O) is 
stable or unstable if 5 0  is a local minimum or a local maximum of U = U ( z ) ,  
respectively. This means that if the initial value ( z 0 , j . o )  is close to ( i o , O ) ,  
then the solution to (1.3) stays near or away from it. 

The solution to (1.4) may be written as 

for t(z(0),y(O)) = t(z~,i~), with the mapping Tt : R2 --t R2 defined for 
each t E R. Then the family {Tt}tER induces the continuous mapping 

T : R 2 x R  --t R2 

This family is provided with the properties that TO = I d ,  the identity 
operator, and Tt+s = Tt o T, for t ,  s E R, with o denoting the composition 

by
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of operators. Then, we call { T t } t E R  the dynamical system. 

Fig. 1.1 

For x = x ( t )  E R3 in (1 .3) ,  we say that f = f ( x )  is a potential field if 

holds with a scalar function U = U ( X ~ , X ~ , X ~ ) .  In use of the gradient 
operator 

relation (1.5) is written as 

f = -vu. 
Then we can define the total energy by 

1 2  
E ( x , f )  = - Ikl + U(X) ,  2 

where (51 denotes the length of the velocity vector f E R3. Similarly to 
the one-dimensional case, this E is a quantity of conservation. In fact, if 
x = x ( t )  is a solution to (1.3) it follows that 

d 
dt 
- - E ( x ( t ) , k ( t ) )  = i . ( 2  + V U ( 2 ) )  = 0, 
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where . denotes the inner product in R 3 .  However, this law of the conser- 
vation of energy is not sufficient to control the orbit (3 in x - x space, which 
is now identified with R6. 

Exercise 1.1 Illustrate some orbits to (1.3) for x = x ( t )  E R in x - i 
plane, when the potential energy is given by U ( x )  = ix4  - a x 2 .  Seek all 
equilibrium points and judge their stability. Examine the same question 
for U ( s )  = &ax2. 

1.1.2 Outer Product 

Here, we take the notion of vector analysis; outer product of the vector, 
gradient of the scalar field, and divergence and rotation of the vector field. 
Throughout the present chapter, three-dimensional vectors are denoted by 
a, b, c, . . ., while a,  b, c, . . . indicate scalars. The canonical basis of R3 is 
given by 

i = (  %). + (  H), k = (  4). 
which are arranged to form a right-handed coordinate system in three di- 
mensional space R3. The length of a is denoted by la], and a. b stands for 
the inner product of a and b. That is, a . b = la1 . Ibl cos 8, where 8 is the 
angle between a and b. If 

and 

b = ( %! ) = bli + b2j + b3lc (1.7) 

represent those vectors by their components, it holds that a . b = albl + 
a2b2 + ~ 3 b 3 .  

The outer product of a and b is the vector denoted by a x b satisfying 
the following property. 
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1 
2 
3 

Its length is equal to the area of the parallelogram made by a and b. 
It is perpendicular to a and b. 
a, b, and a x b are right-handed. 

Fig. 1.2 

Then, we have the following. 

Theorem 1.1 
laws. 

The operation (a, b) H a x b is  subject to the following 

1 (commutative): b x a = -a x b. 
2 (associative): c(a x b)  = (ca) x b. 
3 (distributive): a x ( b  + c) = a x b + a x c. 

Proof. We shall show the distributive law because the other laws are 
obvious. First, from the associative law we may suppose that (a( = 1. We 
take the plane T containing the origin whose normal vector is a. Look down 
IT so that a is upward. Let b', c', and ( b  + c)' be the projections to T of b, 
c, and b + c, respectively. Then, by the definition we have 

a x b = a x b ' ,  a x c = a x c ' ,  

and 

a x ( b  + c)  = a x ( b  + c)'. 

Here, we have ( b  + c)' = b' + c', so that the equality 

a x ( b  + c) = a x b + a x c, 
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to be proven, is equivalent to 

a x (b' + c') = a x b' + a x c'. 

Fig. 1.3 

Because JaJ = 1, the vector a x b' is nothing but the vector on T with 
b' rotated counter-clockwise by 90 degrees. The same is true €or a x c' and 
a x (b' + c'). Therefore, (1.8) is obtained by rotating the parallelogram 

0 made by b' and c' on T counter-clockwisely by 90 degrees. 

By the definition, it holds that 

Therefore, three laws in Theorem 1.1 imply 

by (1.6) and (1.7). 

Exercise 1.2 Prove (1.9). 

Exercise 1.3 Show the Lagrange identity 

(a x b) . ( C  x d )  = (a. c ) ( b .  d )  - (a * d ) ( b .  c).  (1.10) 
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1.1.3 Motion of Particles 

If the mass point x = ~ ( t )  E R3 is subject to the center force, then the 
Newton equation takes the form 

x = ih(r)w (1.11) 

with the scalar function ih = a(.), where r = 1x1 and x = rw.  The angular 
momentum M = x x x is then preserved as 

and hence x lies in the plane perpendicular to the constant vector M .  By 
rotating the axis, therefore, we may put that 

cos e 
x=( ;) and w =  ( $ 0 ) .  

Fig. 1.4 

Then it follows that 

- sin B 
Lj=w'e with w'= ( c;e ) (1.12) 

and x = rw  implies 
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In other words, r26 is a constant, which is referred to as the constant law 
of the area velocity discovered by Kepler. 

If x = x( t )  E R3 is subject to 

2 = -VU(z) (1.13) 

with U = U(r ) ,  then it holds that 

au/axl 

au/ax3 
vu = ( aU/ax2 ) = uI ( r )w .  

Equation (1.13) with (1.14) takes the form of (1.11) and therefore, M = r28 
is a constant. 

(1.14) 

We have from (1.12) that 

(;j = L j l e  +&a with WL= -we, (1.15) 

which implies, from z = rw that 

ji. = 

= 

= -U’(?.)W. 

i;w + 2 7 ~  + rc;j = i;w + 2+8wL + r(-w8’ +wid) 
(i‘ - r P ) w  + (27.8 + r @ w l  

Thus, we obtain 

r - re2 = -U’ and 27.8 + r e  = 0, 

and from 8 = M / r 2  it follows that 

(1.16) 

Equation (1.16) takes the form of (1.3) and this V = V ( r )  is called the 
efficient potential energy. 

System of many particles is subject to 

m.z.  a a -  - Fi with Fi = C Fij + F:, 
j # i  

where F,j and F: denote the self-interaction force and the outer force, 
respectively. Then, the action-reaction law of Newton guarantees that 

F . .  - f .  $3 - tjeij 
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with 

Therefore, the momentum defined by 

i 

is invariant in the closed system without outer force. In fact, F: = 0 in this 
case, and we have 

i i i , j ; i # j  

by Fij = -Fji. The angular momentum 

i 

is also preserved in this case, as it holds that 

-- d M  - c ( k i  x miki + x i  x = c xi x Fij 
i i ,  j ; i # j  

dt  

with 

xi x Fij + x j  x Fji = f i j (x i  x eij + x j  x eji) = f i j ( z i  - z j )  x e . .  13 - - 0. 

If the self-interaction force is determined by the relative distance of parti- 
cles, then we have f i j  = f i j ( (x i  - xjCj0. In this case, we have for 

uij = - Ir f i j  ( p )dp  

that 

and therefore, it holds that 

(1.17) 
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for 

11 

This implies that 

maxi = -V,;U 

and the energy conservation law follows as 

dE 
d t  
-- - 0, (1.18) 

where 

Exercise 1.4 

Exercise 1.5 

Exercise 1.6 

Confirm that (1.12) and (1.15) hold true. 

Confirm that (1.14) holds. 

Confirm that (1.17) and (1.18) hold. 

1.1.4 Gradient 

Chemotmis is a character that some kind of insects and amoeba are at- 
tracted by special chemical substances of their own. If such a life is in R3, 
the force that it receives is a vector field denoted by F .  If f = f ( z l , x 2 , 2 3 )  

denotes the concentration of the chemical substance at z = t ( ~ 1 , ~ 2 , ~ 3 ) ,  

then the vector F(x1, z 2 ,  z 3 )  has the direction where f(z1, z2,x3) increases 
mostly and IF(z1, z 2 , z 3 ) 1  is proportional to its inclination. Letting the 
rate to be one, we shall give the formula for F to be determined by f .  

For this purpose, we take a vector e = t ( e l ,  e2, e3) in /el = 1 arbitrarily. 
Henceforth, such e is called a unit vector. For Is1 << 1, it holds that 
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with 0 < E l ,  &, <3 < 1. In the case that g, g, 2 are continuous at 
z = t(21,X2,x3)r we have 

1 af af af lim - {f(z + se) - f(z)} = e l - ( z )  + ez - (x )  + e 3 - ( z ) .  
s-io s 8x1 8x2 8x3 

This relation is written as 

as s -+ 0, where 

It is a vector field derived from f ,  called the gradient of f .  Relation (1.19) 
means that 

The left-hand side is called the direction derivative of f at z toward e. 
We are selecting the unit vector e for which the value f (z + se) - f (z) 

increases mostly in 0 < s << 1. In fact, from (1.19) this is the case when 
{Of ( x )  e I /el = 1) attains the maximum. That is, 

Of (XI 
lVf (211 

e=- 

and then the inclination is equal to 

V f ( x 1 . e  = lVf(z)l .  

Thus, F ( z )  is the vector proportional to e with the length lVf (z)l, namely, 
V f (z) itself. 
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Relation (1.19) is written as 

(1.20) 

whose left-hand side is called the total derivative of f .  Equality (1.20) 
shows also that a scalar field with continuous partial derivatives is totally 
differentiable. Note that it follows from Leibniz' law for the differentiation 
of composite function, 

d -f ds (x1(s)7x2(s)7x3(s))  = f 3 ~ ~ ( ~ 1 ( ~ ) ~ ~ 2 ( ~ )

+ f Z Z ( X l ( S ) >  x2(s) ,  X 3 ( S ) ) X l ( S )  + f Z Q ( X 1 ( S ) ,  x2 ( s ) ,  5 3 ( S ) ) X L ( S ) ,  

applied to ~ ( s )  = z + se = ( x 1 ( s ) , x ~ ( s ) , x 3 ( s ) ) ,  where fZz stands for 
for i = 1,2,3. 

If Vf(xo) = 0, then the graph of f(z) is flat at x = 20. In this case, 
20 is called a critical (or stationary) point of f. To examine the behavior 
o f f  near by there, we take the matrix 

It is called the Hesse matrix of f. Actually, if f has continuous second 
partial derivatives at x = 20, then it holds that 

S2 
f (20 + se) = f (ZO) + sV f (20) . e + [Hess f (zo)] e . e + o(s2) (1.21) 

as s -+ 0. Here, we set 

i , j d  

for A = ( ' i j ) lS i , j<3  and e = t ( e l ,  e2, e3) with t A  = A.  In fact, we have 

d - f (20 + se) = V f (20 + se) . e 
ds 

and hence 

= [Hess f (q)] e . e 

follows. 
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A critical point zo is said to be non-degenerate if its Hesse matrix 
Hess f(z0) is invertible. In this case, it controls the graph of f(s) near 
s = xo in all directions, because real symmetric matrix is diagonalized by 
orthogonal matrix. In this connection, the number of negative eigenval- 
ues of Hess f ( z g )  is called the Morse index of f at the critical point 20. 
Those notions are extended to any space dimension and the n-dimensional 
scalar field f(z1, 22,- . . , z,) is associated with the n-dimensional gradient 

In the two dimensional case, if its Morse indices are 0, 1, or 2, the non- 
degenerate critical point in consideration is a local minimum, a saddle, or 
a local maximum, respectively. At this moment, it is easy to suspect that 
the Morse index of any critical point cannot be free from those of other 
critical points. Morse theory arises in such a flavor, and for example, if 
the domain R c R2 is simply connected, if the function f (z ,y)  defined 
in R has continuous extensions to a up to its second partial derivatives, 
and if any critical point is non-degenerate and is in R, then it holds that 
mo - ml + m2 = 1, where mo, ml, and m2 denotes the number of critical 
points with the Morse index 0, 1, and 2, respectively. 

Fig. 1.5 

Exercise 1.7 Show that 
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i f f  = f(s) is a C2 function, and in this way confirm that (1.21) holds true. 

Exercise 1.8 Find all critical points of 

f ( 2 1 ,  2 2 )  = (1 - 2: - 22;) (1 + 32:) (1 + 429) 

defined on { (XI ,  2 2 )  1 2: + 22; 5 1). Classify them into maximum, mini- 
mum, and saddle points. Then illustrate the graph 

= ( ( Z l r 2 2 7 2 3 )  I 2 3  = f ( 2 1 7 2 2 ) ,  2: + 22i 5 

in the three-dimensional space, indicating its level lines. 

1.1.5 Divergence 

The gradient V f = (g , 
scalar field f = f ( q 7 x 2 , z 3 ) .  Then, 

, 8 of f is a vector field derived from the 1 

is regarded as a vector, called the gradient operator. Therefore, given a 
vector field v = ( w 1 , w 2 , w 3 )  with the components w1 = w 1 ( x 1 , z 2 , x 3 ) ,  

w2 = w ~ ( z ~ , x ~ , z ~ ) ,  w3 = w 3 ( z 1 , z 2 , z 3 ) ,  we can define 

a d  av2 aw3 v.v=-+-+-  
a x 1  ax2 a x 3  

and 

v x v =  

av3 avZ 
a x 2  ax3 

av' av3 
a x 3  a x l  

avz av' 
z - a Z ,  

--- 

--- 

Those scalar and vector fields are called the divergence and the rotation of 
v, respectively, which have physical meanings as we are now describing. 

To examine V . v, first we consider the one-dimensional case. Take a 
straight uniform pipe, parallel to the x axis. Imagine that a fluid is flowing 
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Fig. 1.6 

inside and let w(x) be its velocity at x E R. If no fluid comes in or out from 
outside of the pipe, then v is uniform so that $ = 0 holds. More precisely, 
the rate of the change of the velocity is proportional to the amount of 
the fluid flowing into the place in the unit time, and that in [x,x + As], 
w(x + Ax) - w(x) is approximated by %Ax for lAxl << 1. 

Applying those considerations to the three-dimensional case, we take a 
small rectangular solid, and suppose that each face of them is perpendicular 
to one of the 2 1 ,  z 2 ,  x3 axes. If the lengths of its sides parallel to xl ,  z 2 ,  x3 
axes are denoted by Ax1, Ax2, Ax3, respectively, then (%Ax,) .Ax2Ax3 
approximates the amount of the fluid flowing into it in the unit time from 
the direction of the x1 axis. Similarly, those from the directions of the x2, 
x3 axes are approximated by ( g A x 2 )  .Ax3Axl and ( E A x 3 )  .Ax1Ax2, 
respectively. Thus, totally, the amount of the fluid flowing into this rect- 
angular solid in the unit time is approximated by (V . v)AxlAx2Ax3. 

The above rough descriptions are justified in the following way. 

v ..........__.. 

v ...... 63 """'.--* v 

Fig. 1.7 

Theorem 1.2 Let v be a continuously differentiable vector field describ- 
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ing the velocity of a fluid, and {w} be a family of domains shrinking to a 
point, denoted by z, in R3. Then, it holds that 

(1.22) 

where Q ( w )  denotes the amount of the fluid flowing into w per unit time 
and IwI the volume of w. 

Proof. 
tial equation 

If the initial value xo is given, the autonomous ordinary differen- 

(1.23) 
dx - = w ( z )  with z(0) = z o  
dt 

has the unique solution z = z ( t )  locally in time. Then, writing z ( t )  = T t z o ,  

we can define a family of operators {Tt}, called a (local) dynamical system. 
It has the properties that (2, t )  Tta: is continuous, and Tt o T, = Tt+,, 
and TO = Id, where they are defined. Here and henceforth, o and Id denote 
the composition operation and the identity operator, respectively. 

The particles in w c R3 at t = 0 are carried to Tt(w) at t = t by the 
flow whose velocity is w. Then, it holds that 

Here, we make use of the transformation 6 = Ttx of variables. Thus, if 
Jt(z) denotes its Jacobian, the volume of Tt(w) is given by 

ITt(w)I = 1 d6 = 1 IJt(z)I d z .  
Tt ( w )  

If 6 = (&, &,&) is regarded as a function of t ,  then it holds that 

d6 - = w(6)  and C(0) = 2, 
dt 

d.5 - = vi(<) and &(O) = zi 
dt 

or 

for i = 1,2,3.  Therefore, writing y: = g, we have 
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where 

- Jt(x) - 

Geometric Objects 

2 
axl axz 2 
aZl ax* E 

& &  
az, arz 

6 6  

aJ3e 

This implies 

= 

and hence 

1 + tg + o(t)  tg + o( t )  tg + o(t) 

tg + o(t)  1 + tg + o( t )  tg + o(t)  

tgg  + o(t)  tgg  + o(t)  1 + tg$ + o( t )  

dVi 
- 6ij  + t-(2) + o( t )  ati -- 

dxj ax 

l V . v d x =  u.vdS, s,, (1.25) 

fOLLOWS AT

tHIS  IMPLIES

tHEN, (1.22) FOLLOWS.

tHE DIVERGEENCE FORMULA OF gAU
tHAT IS,
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where w is a domain in R3 with C1 boundary dw, v is a C1 vector field on 
G, v is the unit outer normal vector on dw, and dS is the area element of dw 
described in the following chapter. In fact, both sides represent the mass 
of the fluid with the velocity v flowing out of w per unit time. Equality 
(1.25) is equivalent to the fonnula of integration by parts, or, 

for j = 1,2,3, where ‘u = v (x )  is a C’ function on Ts and v = t (u l ,  UZ, u3). 

Here, we do not provide the mathematical proof of (1.25), but it is based on 
the fundamental theorem of analysis concerning the function of one variable: 

where 

-1 (z = a) 
+1 (z = b). u ( x )  = 

Here and henceforth, lj denotes the closure of w. 
We also mention the relation between the dynamical system derived 

from the vector field and a partial differential equation of the first order. In 
fact, if (1.23) admits a solution x = x ( t )  globally in time for any xo E R3, 
it generates a (global) dynamical system on R3. Then, the single 
linear partial equation of the first order, 

dU 3 dU 
- - C ~ V ’ ( X ) - - = O  d X j  ( x E R ~ ,  t E R )  

j = 1  
at 

with 

(1.26) 

(1.27) 

admits a unique solution u = u(x ,  t ) ,  where 

V ( X )  =t ( V 1 ( 2 i , 2 2 , 2 3 ) , ~ 2 ( 2 1 , ~ 2 , 2 3 ) , ~ 3 ( ~ ~ , x 2 , 2 3 ) )  

and f is a continuously differentiable function. Actually, it is given by 
u(x,  t )  = f (T-tx), explicitly. 
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In fact, if u(z, t )  = f(T-tz) then 

satisfies that 

by gT ty  = v(Tty). Given z, we take y = T-tx and put this into the above 
relation. Then, (1.26) follows for this u(z, t ) ,  while (1.27) is obvious. 

Conversely, if u(z, t )  is continuously differentiable and satisfies (1.26) 
with (1.27), then w(z,t) = u(Ttz,t) solves 

and therefore, we obtain 

w(z ,  t )  = w(z ,  0) = u(z,O) = f(z). 

This implies 

The quantity 

dU 3 D u  dU 

Dt at 
d U  

at 

- -  - -+Xwj(z)- axj 
j=l 

- - - + v . v u  

is called the material derivative of u subject to the flow {Tt}. 

Exercise 1.9 

Exercise 1.10 

Confirm that (1.22) follows from (1.24). 

If the fluid is incompressible, the velocity v satisfies 

v . v = o .  

Such a vector field is called solenoidal. Suppose that R3 is occupied with 
the water, that the origin is a unique source, and that the amount of the 
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fluid coming from there is a constant per unit time, denoted by Q, If it 
spreads radially, then the velocity v at x is given as 

2) = vw, 

where v = 1211, x = rw with r = 1x1, and v is a function of r.  In the case 
that the density of the water is equal to one, we have 

47rr2v = Q 

because 47rr2 indicates the surface area of the ball with the radius r. This 
means that 

Confirm that this vector field is solenoidal except for the origin. 

Exercise 1.11 Henceforth, 

and 

are called the Laplacian and the (outer) normal derivative, respectively. 
Remember that v indicates the outer unit normal vector on the boundary, 
and v . V is nothing but the direction derivative toward v: 

d 
ds (v . V) f (x) = --f(. + sv) 

Now, derive Green’s formula from that of Gauss: 

( ( A u ) ~  - u(Av)) dx = (1.28) 

where dR is C2 and u and v are C2 functions on a. 
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1.1.6 Rotation 

Let 0 be a rigid body moving in the three-dimensional space with a point 
p E 0 fixed. Assume that p coincides with the origin. We take an ortho- 
normal basis fixed on 0, and let { i ( t ) , j ( t ) ,  k ( t ) }  be its position at time t .  
Because 0 is rigid, we have 

i(t) . j ( t )  = j ( t )  . k ( t )  = k ( t )  . i ( t )  = 0 

and 

i ( t )  . i ( t )  = j ( t )  * j ( t )  = k( t )  k( t )  = 1. 

This implies 

i'. j + i .  j ' =  j ' . k +  j .k '= k ' . i + k . i ' =  0 
i'. i = j ' .  j = k ' .  k = 0 

by the differentiation in t. 
If we represent { i ' ( t ) , j ' ( t ) ,  k ' ( t )}  by { i ( t ) , j ( t ) ,  k ( t ) }  as 

i' = ~ l l i  + ~ 1 2 j  + ~13k 

j' = c2li + c22j + c23k 
k' = c31i + ~32 j  + ~33k,  

then we get from (1.29) that 

(1.29) 

c23 + c32 = c31 + c13 = c12 + c21 = 0 
c11 = c22 = c33 = 0. 

Therefore, letting c1 = ~ 2 3  = - ~ 3 2 ,  c2 = ~ 3 1  = - ~ 1 3 ,  c3 = c12 = - c ~ ~ ,  we 
obtain 

(1.30) 

The vector o = t ( ~ l ,  c2, c3) is called the angular velocity, which depends on 
t and is determined by the movement of 0. 

We now take a fixed point in 0. Let z(t) be its position at time t .  
Putting z(0) = ( x~ (O) , x~(O>,x~(O) ) ,  we have 

4) = .l(O>i(t) + x2(0)j(t) + 23(O)k(t) 
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because 0 is a rigid body. In the use of  the representation of components 
by { i ( O ) , j ( O ) ,  k(O)},  this implies that 

d ( 0 )  = q(o)i’(o) + z a ( O ) f ( o )  -I- za(O)k’(o) 

1 = (  c1(0)z2(0) - c2(0)z1(0) 

CZ (o)z3 (0) - c3 ( 0 ) X Z  (0) 
c3(0)21(0) - Cl(o)z3(0) 

= w x 

Because the above relation holds at any time t ,  the velocity v is given by 
the position x and the angular velocity w at that moment in such a way as 

dx 
dt 

v = - =  w x 2.  (1.31) 

This means that infinitesimally, the rigid body 0 is rotating along w with 
the speed JwJ in the direction where w, x, and v form a right-handed 
coordinate system. Because w is independent of 5, it follows from (1.31) 
that 

v x v = 2w. (1.32) 

In this way, rotation of the velocity is two times the angular velocity in 
the rigid body. This is true even when the fixed point p E 0 regarded as 
the origin is a function o f t ,  if we take the relative coordinate. In the case 
that v stands for the velocity of fluid, the vector V x v picks up its rigid 
movement, and in this sense it is reasonable to be called the vorticity. 

Fig. 1.8 

Exercise 1.12 
pendent of the choice of { i ( t ) , j ( t ) , k ( t ) } .  

Confirm that the angular velocity of the rigid body is inde- 
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Exercise 1.13 

Exercise 1.14 
position at time t of a fixed point on 0 is given as 

Confirm that (1.32) holds true. 

If the rigid body 0 is rotating around x3 axis, then the 

r cos wt 
x ( t > =  ( r s z w t  ) ,  

where r > 0 and x3 E R are constants. In using (1.32), we show that the 
angular velocity is given by w = t(O,O,w). Then, we confirm that (1.31) is 
valid in the case. 

1.1.7 Motion of Fluid 

Motion of fluid is described by the velocity 

and the pressure p = p(x, t), regarded as time dependent vector and scalar 
fields, respectively. If it is incompressible, then the density p is a constant 
and the rate of change of the infinitesimal volume is zero, so that it holds 
that 

v .v  = 0. (1.33) 

It is referred to as the equation of continuity. 

material derivative of the velocity as 
On the other hand, the acceleration vector of the fluid is given by the 

where 

Dvi ad  
Dt at - = -  + v . v v i  
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for i = 1,2,3,  and hence it follows that 

DV av - = - + (v . V)v. 
D t  at 

Therefore, Newton’s equation of motion is given by 

p- DVi = pF, - - (i = 1,2,3) ,  D t  axi 
where F = t ( F ~ ,  F2, F3) denotes the outer force and the second term of 
the right-hand side indicates the force acting to the fluid caused by the 
difference of the pressure. In this way, we get Euler’s equation of motion, 

(3 dV - + ( v . V ) v = F - V  - . at (1.34) 

Equation (1.34) is regarded as the fundamental equation for the incompress- 
ible, non-viscous fluid, which is referred to as the perfect fluid. 

If V x v = 0, then this fluid is said to be rotation free. In this case, we 
have a scalar function, called the velocity potential, @ = @(z, t )  satisfying 

v = V@. (1.35) 

If we take the two-dimensional steady flow, then it holds that 

Equation (1.33) is now reduced to 

au av - - + - = u ,  ax ay 
from which we obtain the stream function Q = Q ( x ,  y )  satisfying 

= u. a* - aQ 
ax a?/ -21, - =  

Along the curve that Q = constant we have 

(1.36) 

(1.37) 

and hence (u,v) is parallel to the velocity field (u,~). This means that 
this curve is the stream line. On the other hand, the rotation free velocity 
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satisfies (1.35), and therefore we obtain the scalar function @ = @(x,y) 
such that 

(1.38) 

Equations (1.37) and (1.38) guarantee the Cauchy-Riemann’s relation 

a@ a9 a@ aq 
ax a y 7  ay ax _ -  -- - -= -  

and hence f = @(x, y) + zQ(x,y) is a holomorphic function of z = x + zy. 
It also indicates the equipotential line @ = constant is perpendicular to 
the stream line. If z = g(C) is a holomorphic function of C, then so is 
F(C) = f (g(C)).  Furthermore, equipotential lines are mapped to those and 
the same is true for the stream lines. In the steady state the boundary itself 
is a stream line. Thus, if one can find a holomorphic function F(<) with 
the mapped boundary regarded as a stream line, then f ( z )  = F(<)  gives 
the status of the physical flow. Thus, this case is reduced to the problem 
of finding a conformal mapping with appropriate conditions. 

Exercise 1.15 
(1.37) implies (1.36). 

Exercise 1.16 
circle satisfying v -+ ‘(1,O) at infinity, let us note that 

Show that (1.35) implies V x v = 0. Confirm also that 

To find the two-dimensional stationary flow outside the unit 

d .  a@ aq a* a* 
dz ax ax ay ax - = -  +z-=- - z - = u + z u  

is identified with v. Confirm that Joukowski transformation 

1 
C = z + -  

z 

maps outside the unit ball conformally to the whole plane except for the 
segment [-2,2] on the real axis and that 

df = dF (1 - $) 
dz dC 

holds true. This implies $ -+ 1 as ICI -+ +GO, F(C) = C, and f ( z )  = z + 5.  
Illustrate the stream and the equipotential lines in the physical plane. 
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1.2 Curvature 

1.2.1 Quadratic Surfaces 

Insect or amoeba is attracted to the place where the local maximum of the 
concentration f(z) of chemical material is attained. This force is propor- 
tional to the gradient of f ,  but meanwhile it feels how that scalar field is 
twisted. This is the curvature of the level set {x E R3 1 f(z) = s}. Now, 
we provide several examples of surfaces. 

Exercise 1.17 
c, d ,  p ,  q are positive constants. 

Illustrate the following surfaces in z, y, z space, where a, b, 

(1) (sphere) z2 + y2 + z2 = u2 

(2) (ellipsoid) ( z 2 / a 2 )  + (y2/b2) + ( z2 / c2 )  = 1 

(3) (elliptic paraboloid) (z2/2p) + (y2/2q) = z 

(4) (hyperboloid with one leaf) (.'/la2) + (y2/b2) - ( z2 / c2 )  = 1 

(5) (hyperboloid with two leaves) ( z 2 / a 2 )  + (y2/b2) - ( z2 /c2 )  = -1 

(6) (hyperbolic paraboloid) ( z 2 / 2 p )  - (y2/2q) = z 

1.2.2 First Fundamental Form 

Generally, surface is a set of points in R3 indicated by two parameters, say 
u and v: 

Thus, 5 = ~ ( u ,  v) is regarded as a mapping 51 -+ R3, where R c R2 denotes 
the parameter region and ~ ( 5 2 )  = M is the surface in consideration. We 
get a family of curves on M ,  putting u or v to be constant. 

Let the distance between two points on M ,  z(u, v) and z(u + Au, v + 
Av), be As, the area of the parallelogram made by 

a = z(u + Au, v) - z(u, v) 
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and 

b = X(U, w + Aw) - Z(U, V) 

be AS, and the normal unit vector on M at Z(U,V) be n. 
First, we have 

Z(U + Au, v + Av) - Z(U, W )  

= zu(u, w)Au + zv(u, w)Av + o ( d m )  
similarly to (1.19), and hence it holds that 

where 

and 

(As)' = I Z ( U  + Au, w + Aw) - P ( U ,  w)I2 

= I ~ , A ~  + X v a v  + 0 (,/A=) l2  
= (z,Au + zVAwl2 + o ( A d  + Av') 
= 12,12 Au2 + 22,  . X ~ A U A W  + Iz,I Aw2 2 

+o (Au2 + Av') , 

d X  

d U  
2, = 2,(u, w) = -(u, w) 

(1.39) 

i3X 
xv = 2 J U ,  w) = Z ( U ,  w). 

This relation is expressed in the infinitesimal limit as the first fundamental 
form, 

ds2 = Edu2 + 2Fdudw + Gdw', 

with 

E = ( z , (  2 , F=x,-x, ,  G=(Z,,J 2 , 

where ds and E ,  F, G are called the lane element and the first fundamental 
quantities, respectively. Next, noting 

a = x(u + Au, w) - Z ( U , V )  

= z,(u, W)AU + ~ ( A u )  
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b = Z(U, w + Av) - X ( U ,  V) 
= x ~ ( u , v ) A w  + ~ ( A w ) ,  

we have 

A S  = ( a x  bl 
= ~ x ~ ( u , w )  x zV(u,w)1 AuAv 

+o (Au2 + Aw2) . (1.40) 

This relation may be written as 

dS = /xu x x,/ dudw, 

call the area element. Then, the vector area element is defined by 

dS = (xu x x,)dudv. 

Finally, xu(u, w) and z,(u, w) are tangent to the curves w and u constants 
on M ,  so that n is a unit vector perpendicular to those vectors. Thus, we 
take 

Putting 

d 

Fig. 1.9 

dx = xudu + x,dv, (1.41) 
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we can write the first fundamental form as 

On the other hand, using ( l . l O ) ,  we obtain 

This implies 

We call dx of (1.41) the infinitesimal vector of direction k = dv/du. 

Exercise 1.18 
(1.40), respectively, using Ic - dl 2 I(c( - ldll. 

Exercise 1.19 
dz/dx and q = dz/dy when the surface M is a graph, 

Confirm the third and the second equalities in (1.39) and 

Express the first fundamental quantities E ,  F ,  G by p = 

Exercise 1.20 In the parametrization 

sin u cos v 
x(u,v)  = ( si:Efiv ) 

of the unit sphere with (u, v) E [0,4 x [0,27r), compute its fist fundamental 
form and the unit normal vector. Then, in use of this parametization, 
compute its total surface area. 

1.2.3 Curves 

We take the plane curve C on R2, indicated as y = f (x). Let 8 be the 
inclination of the tangential line at P(x,  y) E C. Then it holds that tan 8 = 
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f’(z). If Q(z + A x ,  y + A y )  is on C ,  we have 

A y  = f (Z + A x )  - f (x) 
= f ’ ( x ) A x  + o ( A x )  

as A x  1 0.  Then the length As of the segment PQ is given by 

As = ( A x 2  + A Y ’ ) ’ / ~  

= (1 + f’(s)2)1/2 A x  + ~ ( A z ) .  (1.42) 

The second equality of (1.42) justifies that the length of C cut by x = a 
and x = b is given by 

The first equality of (1.42), on the other hand, justifies the relation 

n d s  = ( d y  ) -dx 

on the plane. In particular, the divergence formula of Gauss (1.25) is re- 
duced to the Green’s formula, 

(aldx + a2dy) = (-2 + 2) dxdY, (1.43) 

where D C R2 is a domain with C1 boundary aD and al ,a2 are C1 func- 
tions on D. 

Let the inclination of the tangent line of C at Q(x + A x , y  + Ay) be 
0 + AO. Rotating tangent lines by 90 degrees, we get normal lines of C at P 
and &. Note that AO coincides with the angle made by those normal lines. 
Their crossing point is called the center of curvature. Then, the curvature 
of C at P is defined by 

and p is called the curvature radius. Because As is approximated by pAO if 
Q is close to P, curve C is approximated by circle, with the radius equal to 
its curvature radius and the center coinciding with the center of curvature 
at P. 



32 Geometric Objects 

Y 

Fig. 1.10 

Actual computation of p is performed as follows. First, we have 

tan(O + AO) = f'(z + As)  
= f'(z) + f"(~)Aa: +o(As) 
= tan0 + f"(z)As + ~ ( A z ) .  

On the other hand, we have 

tan(0 + A0) = tan0 + (1 + tan2 0)AO + o(A0) 

by tan' 0 = 1 + tan2 0. This implies 

limA,,o (AO/Az) 1 
P limA,,o ( A S / ~ )  

f" 1 

- - -  

= -. 
1 + f'2 

- f I' 
(1 + f12)1/2 

- 
(1 + fr2)3/2' 

We take a fixed point on C and set s to be the length along C between 
P E C and that point. In that way we parametrize C by s, writing the 
former as x = x(s) .  Under this parametrization, it holds that 

1 
lim - lx(s + As) - x(s)l = 1, 

As+O AS 
or equivalently, 

Idx/dsl = 1. 
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Hence 

d x  t = -  
ds 

coincides with the unit tangent vector of C at P .  

P 

Fig. 1.11 

First, t . t = 1 gives 

dt 
- . t  = 0. ds 

Thus, dt/ds is parallel to the unit normal vector n of C at P .  On the other 
hand, because the angle made by t ( s  + As) and t(s) is equal to A8 and 
those two vectors have length one, it holds that 

( t ( s  + AS) - t ( s ) l  = A0 + o(A8). 

This implies that 

l$l = lim l - ( t ( s + A s )  1 - t ( s ) )  As-0 AS 
A8 - - t ,lKl= If l . 

If the direction of the normal vector n is taken to be the center of curvature, 
then it follows that 

d t  1 
ds P 
_ -  - -n. 

Now, we proceed to the space curve. Actually, three-dimensional vectors 
{ x ( t ) } ,  varying as the time t changes, draw a curve C in R3. We take 
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the length parameter s from a fixed point on C. Thus, C is expressed as 
z = z(s). Then, t = dz/ds  is the unit tangent vector, similarly to the case 
of plane curves. The normal plane indicates the one containing P = z(s) 
and perpendicular to 2. 

We take P I ,  P z  on C near P and set 7r to be the plane made by those 
three points, P I ,  P2 ,  and P .  As PI, Pa + P ,  the plane T converges to the 
one orthogonal to normal plane. This limit is called the osculating plane. 
Intersection of normal and osculating planes forms a line. We take a unit 
vector n, called the unit principal normal vector on it, of which direction 
is determined later. Note that tangent and principal normal vectors are 
perpendicular to each other. Then, b = t x n is called the unit bi-principal 
normal vector. 

Fig. 1.12 

Near P ,  C is approximated by a circle on the osculating plane. If its 
radius is denoted by p and the direction of n is taken toward its center, 
then it holds that 

d t  1 
-n _ -  - 

ds P 

as in the case of plane curves. Thus, l /p  is called the curvature of C at P .  
Bi-principle normal vector b changes its direction if C twists. The torsion 

T indicates how it does. Namely, it is a scalar, positive if b twists clock- 
wisely and satisfies that 

The role of torsion may be clarified in the following way. In fact, b = t x n 
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implies 

On the other hanc 

db 
ds 
- dt  d n  

- - x n + t x -  
ds ds 
1 d n  

= - n x n + t x -  
P ds 

- 

d n  
= t x - - .  

ds 
. b = implies 

Therefore, dblds is perpendicular to t and b. Regarding the sign of torsion, 
we get that 

ds 

Similarly, n = b x t implies that 

db d t  d n  - - - ~ t + b ~ -  
ds ds ds 

1 
P 

- 

= - r n x t + b x - n  

1 

P 
= T b - - t  

because n x t = -b and b x n = -t. Those relations are summarized a~ 
the &net-Semt formula, 

dt  1 - = -n 
ds P 
d n  1 

db 
ds 

- = --t + Tb 
ds P 

-rn, - =  

where p, r ,  and s are curvature radius, torsion, and length parameter, 
respectively. 

Exercise 1.21 
where s is the length parameter and a > b > 0 are constants: 

Draw the following curve and compute dsldt = Iz’(t)l, 
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a cos t 
x( t>= ( a:;t ) . 

Then, seek unit tangential vector, unit principal normal vector, unit bi- 
principal normal vector, curvature, and torsion. 

1.2.4 Second Fundamental Form 

Let x = x(u,v) be a parameter representation of the surface M ,  and 
take a curve C on it. It is represented as u = u(s)  and ' ~ i  = v(s), or 
x = x(u(s),v(s)), using the length parameter s of C. 

The unit tangential vector of C is given as 

(1.44) 

and it holds that 

d t  1 _ -  - -nc,  
d s  Pc 

where pc and n c  denote the curvature radius and the principal normal unit 
vector of C, respectively. If $c denotes the angle between n and n c ,  then 
it holds that cos $c = n . n c ,  or 

cos $c d t  
PC d s  

-=n.- ,  

where n = denotes the unit normal vector on M .  

Fig. 1.13 
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2 
!-! ds = x u u  ( g ) 2 + 2 x u ,  (g) (2) +x,, (2) 

d2u d2v 
+xu- + xu- ds2 ds2 

by (1.44). This implies that 

d t  
n *  - ds = n .  {xu,  (g)2 + 2xu, (2) (2) + x,, ($}  

by n .  xu = n -  x ,  = 0. 
The second fundamental quantities are defined by 

L = xu, ' n, M = xu, ' n, N = x,, . n. 

Writing 

du dv ( z )2  dsds 
Ldu2 + 2Mdudv + Ndv2 
Edu2 + 2Fdudv + Gdv2 ' 

- -  - L - +2M--+N cos $c 
Pc 

- - 

we call 

Ldu2 + 2Mdudv + Ndv2 

the second fundamental form. 

we have 
Recall that k = dv/du is the direction of infinitesimal vector dx. Then, 

cos $c -- - (1.45) 
pc 

L + 2Mk + Nk2 
E + 2Flc + Gk2 ' 

Here, L,  M ,  N ,  E ,  F ,  G are determined by P E M .  On the other hand, 

dv dvlds 
du dulds 

k=-=- 

is determined by the unit tangential vector t of C as well as by P ,  because 
of 

du dv t = -2.1, + -xv .  
ds ds 
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Fig. 1.14 

Let C' be the curve on M cut by the plane T containing P made by the 
unit tangential vector t of C and the unit normal vector n of M .  Let R be 
the curvature of C' at P E M .  Because the center of curvature of C' at P 
is on T, it holds that 

( v b ,  P C ~ )  = (0 ,R)  or (@c, PC.) = (m, -R). 

On the other hand the right-hand side of (1.45) is determined by P and t 
so that we have 

cos& cos$lp 1 
PC P o  R 

at P for any curve C on M passing through P with the unit tangential 
vector t .  Henceforth, 1/R is called the normal curvature of M at P with 
the direction t .  

Fixing P ,  let us seek t such that the normal curvature attains minimum 
or maximum. In those cases, t and 1/R are called the principal direction 
and the principal curvature, respectively. Actually, they are obtained by 
putting 

-=-- _ -  

d L + 2 M k + N k 2  
E + 2 F k + G k 2  = 0 7  

or equivalently, 

1 
- ( F + G k ) =  M + N k .  R 

This equality gives from 

(1.46) 

1 - ( E  + 2Fk + G k 2 )  = L + 2Mk + Nk2 R 
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that 

1 -(E + F k )  = L + M k .  
R (1.47) 

Again by (1.46) we have 

F I R -  M 
G I R  - N 

k = -  

and then 

( i - ~ )  ( & M )  - ( & L )  ( g - N )  = o  (1.48) 

follows from (1.47). 

Writing (1.48) as 
In this way, we get two principal curvatures 1/R1 and 1/R2 by (1.48). 

1 1 
R2 R ( E G  - F2)-  - (GL + E N  - 2FM)-  + L N  - M 2  = 0, (1.49) 

we have 

1 1 G L + E N - 2 F M  2 H = - + - =  
R1 R2 EG - F 2  

and 

1 LN - M~ K z - =  
R1' R2 E G  - F2 ' 

The quantities 

are called the mean curvature and the Gaussian curvature of M at P ,  
respectively. If the Gaussian curvature is positive, then the surface is convex 
to one side at that point. If it is negative, then it looks like a saddle there. It 
is known that the Gaussian curvature is determined by the first fundamental 
quantities . 

Equation (1.48) on 1/R has an equivalent form on k. In fact, we have 

F L  - E M  + (GL  - E N ) k  + (GM - F N ) k 2  = 0 (1.50) 
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by (1.46) and (1.47). Equation (1.50) provides the principal directions kl  
and kp as the solution, which give the infinitesimal vectors 

dxl = Zudul + x,dv1 
d ~ 2  = X , ~ U Z  + xvdVq,  

where kl  = dvl/dul and k2 = dvz/duz. 
Here, we have 

d x l  . d ~ 2  = 

= 

Furthermore, it follows from (1.50) that 

Eduldu2 + F ( d ~ 2 d ~ 1  + duldvz) + G d ~ l d ~ 2  

( E  + F ( k i +  k2) + Gklkn) d ~ l d ~ p .  

G L  - E N  
GM - F N  

F L  - E M  
GM - FN 

and klk2 = kl + k2 = - 

and hence we obtain 
1 

GM - F N  
. { (GM - F N ) E  - F(GL - E N )  + G ( F L  - E M ) }  = 0. 

E + F(k1 + k2) + Gklkz = 

This means that 

d ~ l .  d ~ 2  = 0 

and the principal directions are perpendicular to each other. 

Exercise 1.22 The surface is parametrized as x = x ( u ,  v). Show 

L = -nu.xu,  
M = -n,.x, = -n,.x,, 
N = -n,-x,. 

Exercise 1.23 Surface of revolution is parametrized as ( f(;(;" f ( u )  sinv ) 
for u E (-00, +00) and v E [0, 27~) with f ( u )  > 0. Express fundamental 
quantities E ,  F ,  G, L, M ,  N and the principal curvature radii R1, RS in 
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terms off and g .  Next, assume f’(u)2 +gr(u)’ = 1 in the parametrization, 
and show that mean and Gaussian curvatures are given by 

respectively. Finally, using this expression, construct surfaces with K = 
-l/c2 and H = 0, respectively, where c > 0 is a constant. 

Exercise 1.24 Fix a point zo = z(u0,vo) on M ,  and take the outer unit 
normal vector a at it. Then, compute Hesse matrix of f (u, w) = a. z(u, w) 
at (u, w) = (210, vg) in use of the second fundamental quantities, and give 
the explanation to the geometric meaning of the Gaussian curvature. 

Exercise 1.25 
unit normal vector is given as 

If a surface M is locally expressed by +(z) = 0, then the 

v+ 
IV+I 

n = -  

Take a point on M and let the principal directions be parallel to x1 and 
2 2  coordinates, with the unit normal vector n = t(nl, 122, 123) parallel to x3 

coordinate. Confirming that 

anj = sij 
axi R~ 

for i, j = 1,2  and 

for a = 1,2,3,  show the relation 2 H  = V . n, where H indicates the mean 
curvature. 

1.3 Extremals 

1.3.1 Lagrange Multiplier 

Given y = f(x) defined on a 5 x 5 b, determine its maximum and minimum 
values. For this problem, we may seek all critical points xj E (a ,b)  in 
j ’ ( x j )  = 0 to compare j ( a ) ,  f ( b ) ,  and f(xj)’s. Functions with multiple 
variables are similarly treated. If z = f(x,y) has two variables a 5 x 5 b 
and c I y 5 d ,  then we may seek all interior points ( x j ,  yj) in f z ( x j ,  yj) = 
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fv(zj,yj) = 0. Then, maximum and minimum values are in the boundary 
values, f ( z , y )  for z = a,b with c I y I d ,  and f (z ,y)  for y = c ,d  with 
a 5 z I b, and the critical values f(zj,yj)’s. The third problem is to seek 
maximum and minimum values of z = g(x ,  y), under the constraint that 
f ( z , y )  = 0. Then, solving f ( z , y )  = 0 as y = h(z),  for example, we may 
obtain them by z = g(z, h(z)) defined on a 5 z 5 b. 

Those rough answers are justified in the following way. In the first 
problem, Weierstrass’ theorem guarantees that if y = f(z) is continuous, 
then its maximum and minimum are attained. If f(z) is differentiable at 
z = z o  E (a ,  b ) ,  then it holds that 

f(zo + AX) = f(zo) + f ’ (zo)A~ + o(Az) 

as Ax + 0. Therefore, if f’(z0) # 0, then f(z0) cannot be a maximum or 
minimal value. 

The second problem is treated similarly. Any continuous function on a 
compact set attains its maximum and minimum. Iff is totally digerentiable 
at the interior point (zo, yo), then it has partial derivatives there. It holds 
that 

f(z0 + A X ,  YO + AY) = f k o ,  Yo) + f & O ,  Yo)Aa: + f&o, Y O M Y  

+o ( & 2 T q  (1.51) 

as Ax, Ay + 0. Therefore, (zo, yo) cannot attain maximum or minimum 

Here, we may note the following. First, if f(z, y) has continuous partial 
derivatives fz(z, y), fv(z, y) in the domain 0, then it is totally differentiable 
there. If f has continuous second derivatives there, then we can make use 
of (1.21) to examine its local behavior around the critical point, where the 
Morse index plays a fundamental role. On the other hand, the direction 
derivatives are useful to investigate boundary values. 

For instance, if the boundary r = is (piecewisely) C2 and so is f up 
to there, we may pick up the boundary point (z0,yo) satisfying 

unless f&O, YO> = f&O, Yo) = 0. 

where s is the length parameter with (z(s),y(s)) E r and (s(O),y(O)) = 
(20, yo) so that t (z’(0),  y’(0)) = t is equal to the unit tangential vector on 
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r at (x0,yo). Then, the local behavior of f ( z l y )  around (x0,yo) can be 
examined by 

d2 1 
- f (x(s) ,  y(s))l 
ds2 s=o P 

= [Hess f (20, YO)] t . t + -n * Of (20, YO) (1.52) 

and 

where p and n denote the curvature radius and the unit normal vector of 
F at (50, yo) ,  respectively, and 

( Hess f = 
azf 
axay 

Actually, signs of those values determine whether (xo, yo)  attains local max- 
imum or local minimum off  on the closed region in consideration. 

Remember that for the third problem, elimination of one variable by the 
constraint is proposed. This idea is valid essentially, if the local resolution 
of f (z, y) = 0 is admitted. This is assured by the implicit function theorem. 
The simplest form is stated as follows. 

Theorem 1.3 Let R c R2 be a domain, and f = f (x, y) a continuous 
function in R with fy  = af/ay continuous there, and f(x0, yo) = 0 and 
fy(xo, yo) # 0 hold for (20, yo) E 0. Then, there exists a unique y = h(x),  
continuous near xo satisfying 

yo = h(z0) and f (x, h(x) )  = 0. (1.53) 

If fx exists in 0, then h(x) is differentiable near x = xo and it holds that 

h’(4 = - f x b  Y)/fy(x, Y). (1.54) 

The above theorem justifies the following fact, called the Lagrange mul- 
tiplier principle. 

Theorem 1.4 Let f (x, y) and g(x, y) be C1 functions defined in a domain 
R c R2, (xo, yo) E R attain maximum or minimum (or just extremal) of 
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Fig. 1.15 

z = g(z, y) under the constraint f(z, y) = 0, and Vf(z0, yo) # 0. Then it 
holds that 

Vg(z0, Yo) = XVf(z0, Yo) 

with some X E R. 

(1.55) 

Proof. Without loss of generality, we suppose that fY(zo, yo) # 0. Then, 
by the implicit function theorem 1.3, there exists a unique continuous func- 
tion y = h(z)  near z = 20 satisfying (1.53). Furthermore, h(z) is differen- 
tiable at z = zo, and cp(z) = g(z, h ( z ) )  attains a critical value at z = zo 
from the assumption. Therefore, it holds that 

cp’(z0) = gz(z0, h(z0)) + gy(z0, h(zo))h’(zo) = 0. 

9&0, Yo) - gy(z0, YO)fz(zo, Yo>/fy(zo,Yo) = 0. 

In use of (1.54) with z = zo, we have 

Writing = gy(z0, yo)/fy(zo, Yo), we get that 

g&o, Yo) = Xfz(z0, Yo) and gy(z0, Yo) = Xfy(z0, Yo). 

This means (1.55). 0 

Theorems 1.3 and 1.4 have higher dimensional versions. 

Exercise 1.26 Compute maximum and minimum values of z = zy in R = 
R2 under the constraint x2 + y2 = 1 in the following way. First, put 
f(z, y) = z2 + y2 - 1 and g(z, y) = zy. Confirm that of(., y) # 0 holds if 
f(z,y) = 0. Then show that (1.55) and f(z0,yo) = 0 imply X = f 1 / 2  and 
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xoyo = A. Finally, show that maximum and minimum values are attained 
from the compactness of { (z, y) E R2 I f(z, y) = 0} and the continuity of 
z = xy. 

1.3.2 Implicit Function Theorem 

This paragraph is devoted to the proof of Theorem 1.3, valid to the case of 
higher dimensions. The reader can skip this section if he is familiar with 
the first course of analysis. 

Recall that fY(zo, yo) # 0 is supposed. Without loss of generality, we 
assume fy(xo, yo) > 0. Henceforth, B(z0, r )  denotes the open ball in R2 
with the center zo and the radius r. Because fy is continuous, there exists 
r > 0 sufficiently small such that fy  > 0 in B(zo,r), where zo = (x0,yo). 
The continuously differentiable function p(t) = f(x0, yo + t )  satisfies that 

cp'(t) = f y ( z 0 ,  yo + t )  > 0 

v(--r/2) = f@o,  yo - r / 2 )  < 0 < (P(r/2) = f(x0, Yo + r / 2 ) .  

and p(0) = f(z0, Yo) = 0 

with It[ < T .  We have 

Because f(z, y) is continuous in R, there exists 6 > 0 sufficiently small such 
that 

f(z, yo - r / 2 )  < 0 < f(x, yo + r / 2 )  if 12 - x01 < 6 (1.56) 

and D = [xo - 4 x 0  + 61 x [yo - r /2 ,  yo + r /2]  c B(zo, r ) .  

D C B(zo,r), it holds that 
Taking x E I = (XO - 6, xo + b) ,  we set cp"(t) = f(x, yo + t ) .  Because of 

(cp")' ( t )  = fY(xo,yo + t )  > 0 for I ~ I  I r/2.  

On the other hand, relation (1.56) implies 

cp"(-T/2) < 0 < (p"(T /2) .  

Therefore, there is a unique t ,  E [-r/2,r/2] satisfying cp"(tZ) = 0. In 
other words, each x E I admits a unique y E [yo - r / 2 ,  yo + r/2] such that 
f(x, y) = 0. Let us write this y as h(z). J+om the uniqueness of such y, we 
have h(z0) = yo. 

Now, we prove the continuity of h(x). We shall show that x* E I = 
(20 - 6,zo + 6)  and xj 4 z* imply h(zj)  4 h(x,). This means that any 
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E > 0 admits k such that j 2 k implies 

( h ( Z j )  - h(z*)l < &. 

If this is not the case, there is EO > 0 such that any k = 1 , 2 , . - .  admits 
j(k) 2 k such that 

(1.57) 

Put xi = z j ( k )  for simplicity. We still have xi -+ x, E I ,  and hence x; E I 
for k sufficiently large. From the definition of h(x), it holds that 

h ( 4 )  E [Yo - T/2, Yo + T/2]. 

This makes it possible to extract a subsequence {xi} c {xi} such that 

h(4) + Y* E [Yo - r /2 ,  yo + r/2] (1.58) 

for some y*. This, together with f (z:, h(z:)) = 0, implies 

fb*, Y*) = 0, 

because f is continuous. Therefore, from the uniqueness of h(z) we get 
that y* = h(x,). Thus, (1.57) with (1.58) is a contradiction. 

Finally, we show that if fz exists in R, then h(x) is differentiable at 
x = xo and equality (1.54) holds with z = 50. Actually, the other cases of 
x are proven similarly. 

For this purpose, given Ihl << 1, we put 

Ax = h and Ay = h(xo + Ax) - h(xo). 

Then, it holds that 

f(50, YO) = 0 and ~ ( X O  + Ax, YO + Ay) = 0. 

Furthermore, Ax --f 0 implies Ay + 0 because h(s )  is continuous. 
From the mean value theorem, we have 

f(50 + Ax, YO + AY) = f(xo + As,  YO) + f y ( ~  + AX, yo + 0Ay)Ay 

with 0 E (0 , l ) .  On the other hand, the relation 
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is valid from the assumption to f .  Those relations imply 

0 = fz(z0, Y O ) A ~  + .fp(zo + AZ,YO + OAY)AY + ~ ( A Z )  

and hence 

follows. Here, fy is continuous and f y ( z ~ , y o )  # 0, so that we have the 
existence of h'(z0) with the relation 

and the proof is complete. 

1.3.3 Convez Functions 

We say that a domain 52 C R" (n = 1 , 2 , . - . )  is convex if s,y E R and 
a E [ O , l ]  imply az + (1 - a ) y  E R. If fi is convex, then a function 
f = f(s) of 2 E R is said to be convex if s, y E 52 and a E [0,1] imply 

f(as + (1 - Q)Y) < af(s) + (1 - a)f(y).  

a {f(s) - f(.z)) L (1 - c.)f(z) - (1 - O)f(Y). 

This inequality implies for a = QZ + (1 - a)y that 

Taking a E (0, l), we obtain 

Let us make a 10. Then, if f is differentiable at y, it holds that 

d 
f(z) - f(y) 2 -f (as + (1 - ab)l  = Vf(Y) . - Y). (1.59) 

d a  Cr=O 

This indicates that the graph of a convex function is always over the tan- 
gential space. 

This observation is the starting point of the convex analysis. A con- 
vex function f : Rn + (--oo,+oo] is said to be proper if its eflectiwe 
domain D(f) = {s E Rn 1 f(z) # +oo} is non-empty. It is lower serni- 
continuous if sj -+ z, implies f(s,) < liminff(zj), or equivalently, 
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{x E R" I f(z) 5 c} is closed for any c E R. Given a proper, lower semi- 
continuous, convex function f , its conjugate or Legendre transformation is 
given by 

It is again a proper, lower semi-continuous, convex function, although the 
first property is not trivial. Then, the duality theorem of Fenchel-Moreau 
guarantees that f ** = f. The sub-differential of f at x E D( f), denoted 
by af(z) is the set of < satisfying 

f (Y) - f(z) 2 t . (Y - x) 
for any y E R". If f is proper, lower semi-continuous, convex, then 6 E 

af (2) if and only if x E af *(t), and Fenchel's identity guarantees that 

f(z) + f*W = z. t .  
If cp = cp(x, y) : R" x Rm -+ (--00, +-00] is a proper, convex, and lower 

semi-continuous function, then problems 

inf {cp(z,O) I z E R"} and sup{-cp*(O,q) I q E Rm) 

indicated ( P )  and (F) are called the principal and the dual, respectively, 
where 

denotes the Legendre transformation of cp = cp(s, y). Let Z and ?j be the 
solutions to ( P )  and (P*) ,  respectively, and 

@(Y) = inf 14.7 Y) I z E R n )  

cp*(O,q)  = SUP {Y . Q - cp(X1 Y)} = SUP {Y .4 - @.(Y)} = @ * ( 4 ) ,  

be proper, convex, and lower semi-continuous. Then, we have 

X,Y Y 

and hence it follows that 
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= @**((I) = @ ( O )  = inf cp(z, 0).  (1 .SO) 
X 

Thus, (P) and (P*) have the same value. 

given as 
Fixed z E Rn, the Legendre transformation of y H cp(z,y) (= cpz(y)) is 

-L(z7 = SUP {Y . Q - cp(z7 Y)) 7 

Y 

and L(z ,  q)  is called the Lagrange function. Then, 

cp*(P7 Q) = SUP {. * P - L(z7 Q))  
2 

is nothing but the Legendre transformation of z H L ( z , q )  with q E R" 
fixed. We have 

cp*(O,q) = sup{-L(~,q)} = -inf L ( z , q )  
2 

and the dual problem is reformulated as 

sup{-cp*(O,q)} = supinfL(z,q). 

On the other hand, we have cpj(q) = - L ( z , q )  as is noticed, and hence it 
holds that 

9 9 "  

cp(z7 Y) = cpF(Y) = SUP {Y . Q  + L(z7 47)) 
9 

and p(z, 0) = sup, L(z,  q). The principal problem is reformulated as 

inf cp(z, 0) = inf sup L(z ,  4). 
X " 9  

It is obvious that 

but the equality holds here by (1.60). Thus, Z E R" and ij E R" are the 
solutions to ( P )  and (P*)  if and only if 

L(Z, q)  L L(Z  i7) L L(z ,  v) (1.61) 

holds for any (z,q) E Rn x Rm. This fact is called Kuhn-Tucker's saddle 
point theorem. 
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An application of this theorem is minimizing f under the constraint 
gi 5 0 (i = l , . . . , m )  . Suppose that f : Rn 3 R and gi : R" 4 R are 
convex and lower semi-continuous, and that there exists zo E R" such that 
g i ( z o )  < 0 for i = 1 , .  . . , m. The last condition is called Slater's constraint 
qualification. Then, (1.61) guarantees that if z attains the minimum, then 
the function L ( x , X )  : R" x R" 4 R defined by 

L(z, A) = f (z) + G(z) 
- 

for G(z) = (gl(z),..-,gm(z)) admits = t(X1,...,X,) such that 2 0 
(i = 1 , .  . . ,m) and 

for any (x,X) E R" x R". Concerning the existence of the saddle point, 
we can make use of the mini-mux principle of von Neumann. It says that if 
Xo, Yo are topological vector spaces, X c XO, Y C Yo are convex, conpact 
subsets, z E X H f ( z , y )  is convex, lower semi-continuous for any y f Y ,  
and y H f (z ,y )  is concave, upper semi-continuous for any z E X, then 
there exists (Z, j j )  E X x Y satisfying 

f(Z,Y) I f(z,g) i f ( z , g  
for any (s,y) E X x Y .  

Instead of examining those general theories, we pick up the following 
example. That is, minimizing a continuously differentiable convex function 
f(z) of x E R2 under the constraint x . e = c, where e is a unit vector and 
c E R. In fact, first we take a E R2 in a. e = c and set x' = x - a. Then, 
it holds that x' . e = 0 and f'(z') = f(z' + a) is a convex function of 2'. 
In other words, we can assume c = 0 without loss of generality. 

Let M be the set of x satisfying e . z = 0. It is the (one-dimensional) 
vector space orthogonal to e.  Let N be the set of y such that Vf(y) is 
parallel to e.  This means that x E M and y E N implies V f (y) . x = 0 
and hence 

holds for 

by (1.59). 
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If 5 E M is the solution to the problem, then from the Lagrange mul- 
tiplier principle there is X E R such that 

Vf(Z) = Xe. 

This means Z E M n N, and therefore, Vf(Z) 5 = 0 and g(Z) = f(3) 
follow. It follows from (1.62) that 

f(z) L s ( 3  = f ( 3  2 d y )  

for any z E M and y E n/. This means that f(5) = g ( 5 )  attains the mini- 
mum and the maximum of f(z) in z € M and g(y) in y E N, respectively. 
This conclusion may be regarded as a saddle point theorem. 

Exercise 1.27 Given a, b E R2, minimize 

under the constraint that (u - a) . e = 0. 

Exercise 1.28 
For a ,  b, c E I with a < b < c,  show 

Let f be a convex function defined in an interval I C R. 

f ( b )  - f ( a >  f ( c )  - f ( a )  f(c) - f ( b )  I I b - a  c - a  c - b  ' 

Then, prove that this f is continuous. 
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Chapter 2 

Calculus of Variation 

From the analytic point of view, geometric quantities such as length, area, volume, 
are regarded as the value determined by the function parametrizing the object, 
and therefore, each of them induces a mapping from the set of functions into 
R. Sometimes, such a mapping is called the functional because it is a function 
defined on function spaces. In the calculus of variation, a functional is given, 
and it is required to find its extremal functions. This formulation can describe 
physical problems if the functional is taken as energy, Lugrungiun, free energy, 
and so forth. 

2.1 Isoperimetric Inequality 

2.1.1 Analytic Proof 

The Jordan curve indicates a closed non-self-intersecting curve, and a con- 
nected open set is referred to as the domain. We can observe that a Jordan 
curve I? on the plane R2 encloses there a simply connected domain D. The 
question studied here is referred to as the isoperimetric problem. When is 
the area A of D minimized if the length L of I? is prescribed ? 

The answer is a circle. Analytic proof is as follows. First, we parametrize 
I? as (z( t ) ,  y ( t ) )  in t E [a, b]. This implies that ( ~ ( a ) ,  y (a ) )  = (z(b), y(b)), 

( z ( t ) ,  Y( t ) )  # (z(t’), Y(t’)) for t # t’ in t ,  t’ E [a, b) ,  

and 

L = s,” J z ’ ( t ) 2  + y’(t)%t. 

53 
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Putting a l ( x , y )  = y, a 2 ( z , y )  = 0 in the Green’s formula (1.43), we obtain 

Here, we take the parametrization t = (27rs) /L E [0,27r] for the length 
parameter s. This means that 

t 
s = 1 Jx’(t)2 + yr( t )2dt  

and hence 

($) = z’(t)2 + y’(t)2 = (k)2 
holds. We have 

( ~ ’ ( t ) ~  + y’( t )2)  d t  = 127r ( g)2 dt  = ( &)2 . 2 ~  = L2 I” 
and therefore, 

2x 
L2 - 47~A = 27r Jd  (z’(t)2 + ~ ’ ( t ) ~  + 2y( t ) z ’ ( t ) )  dt 

27r 2n 

(z‘(t) + y(t))2 dt  + 27~ 1 ( ~ ’ ( t ) ~  - y2(t)) dt  

follows. 
We may assume that 

y ( t ) d t  = 0 6’” 
by translating I? parallel to y axis. Then, from the following fact, referred 
to as Wirtinger’s inequality, we have L2 2 47rA with the equality if and 
only if I? is a circle. In this way, we can give a proof for that well-known 
fact. 

Theorem 2.1 
that 

If y(t) i s  a smooth periodic func t ion  with period 27~  such 

y ( t ) d t  = 0 and y(t) # as in t  + @cost ,  
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then it holds that 

1'" y'( t )2dt  > [ y ( t )2d t ,  

where a, p are constants. 

Proof. We apply the theory of Fourier series developed in 52.4.2. Note 
that a periodic func t ion  with period 2n is the one, denoted by y ( t ) ,  satisfying 

y ( t  + 2n) = y ( t )  for t E R. 

Given such a continuous function y ( t ) ,  we put 

y ( t )  cos n td t  and b, = - y ( t )  sin n t d t  : L2" a, = - : Jo'" 
for n = 0,1 ,2 , .  . a .  Then, if y ( t )  is sufficiently smooth, say, C1 and piecewise 
C2 in t E R, it holds that 

a3 
a0 

g ( t )  = + C (a,  cos nt + b, sin nt) 
n= 1 

and 
00 

y ' ( t )  = C (-nu, sin nt + nb, cos nt) , 

where the right-hand sides converge absolutely and uniformly in t E [0, 2x1. 
Those relations imply, because of 

n= 1 

1 ' dt = 2n7 12" 
L2" I'" 
I'" 
I"" I"" 

sin nt sin m t d t  = cos nt cos m t d t  = 0 (n # m) 

cos nt sin m t d t  = 0, 

sin2 n td t  = cos2 n td t  = x (n 2 1) 

that 
2 O 0  12T y ( t )2d t  = 12" { (:) + (a: cos2 nt + b: sin2 nt) 

n=l 
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and 

y'(t)2dt = 2 1"" (n'a; sin' nt + n'bi cos2 nt) dt 
n=l 

n=l 

Here, from the assumption it follows that 

Thus, we obtain 
27F m 1 y(t) 'dt  = 7r 1 (a: + b:) 

n=l 

m 2K 

5 7r (n'a: + n 2 b i )  = Jd y'(t)'dt. 
n= 1 

Here, the equality holds if and only if an = bn = 0 for n 2 2, or equivalently, 
0 y ( t )  = a1 cost + bl sint. The proof is complete. 

We have proven 

L2 2 47rA (2.2) 

with the equality if and only if r is a circle, where I? is a Jordan curve on R2, 
L is its length, and A denotes the area of the domain D enclosed by I?. It  
is called the isoperimetric inequality. Examining the proof, we see that it is 
valid if r is C1 and piecewise C2, which, however, is a technical assumption. 
Actually, the geometric proof guarantees (2.2) for any continuous Jordan 
curve I?. 

From the analytic point of view, it may be worth mentioning that The- 
orem 2.1 is extended to  the case that y ( t )  and y ' ( t )  are quadratic summable 
because of Parseval's equality. Here, the integration and the differentiation 
are taken in the sense of Lebesgue and that of distributions, respectively. 
The set of such functions, generally referred to  as a function space, forms 
the Sobolev space, of which details are described in later sections. 
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Those geometric objects are thus extended by the generalization of inte- 
gration and differentiation of functions, but more direct ways are possible. 
First, the area A of the set D c R2 is definite if it is Lebesgue measurable. 
Correspondingly, the length L of its boundary I? = aD is definite if D has 
the finite perimeter. In this case, we still have (2.2) with the equality if 
and only if I? is a circle. However, generally, it may be difficult to solve 
variational problems through an a priori insight as (2.2). 

Exercise 2.1 
in use of Theorem 2.1. 

Confirm that the equality L2 = 47rA implies that I? is a circle 

2.1.2 Geometric Proof 

Several geometric proofs to (2.2) are known. Here, we describe the method 
of symmetrization. Such a technique is important in the study of partial 
differential equations arising in mathematical physics, although the reader 
can skip this paragraph first. 

Taking the convex hull of D, we see that the problem is reduced to 
the case that D is convex. Note that the convex domain in the plane 
always admits right and left tangential lines. In fact, given P E r, we take 
P’ E I? \ { P }  and the line ept connecting P’ and P. As P’ approaches P 
from one side, the limiting line C of ept exists, because the inclination of the 
latter is monotone from the convexity of D. Remember that if y = f(x) is 
a convex function, its right derivative at x = xo is given by 

If P(z0, ~ ( x o ) ) ,  P’(x0 +Ax, f(x0 +Ax)),  and R’ denotes the crossing point 
of the right tangential line and x = xo + Ax, then it holds that 

PP’ 5 (PP’)c 5 PR’+ R’P’, 

where (PP’)c denotes the arc length of I? between P and PI. From those 
relations we have 

(PP’)c = PP’{1 +o(l)}  (2.3) 

as P’ --t P. 
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We deform the convex body D in the following way, called the Steiner 
symmetrization. Namely, we fix a line ! in the plane, and take another one 
f? perpendicular to !. If P n B # 0, it forms a segment [P, Q]. Then, we 
translate it as [P*, Q*] on so that the middle point the latter is on C and 
PQ = P*Q*. Then, sliding P ,  we see that those {[P,Q]} form a domain 
denoted by D*, which is said to  be the Steiner symmetrization of D. It 
holds that D* is convex and symmetric with respect to  l .  Also, if a family 
of convex bodies {Dk}  converges to  D, as k 4 00, then so does {D;} to 
D& . 

I' 

Fig. 2.1 

Theorem 2.2 W e  have the following. 

1. The area of D* is  equal to that of D. 
2. W e  have ldDl 2 ldD*I, where ldDl and IdD*I denote the lengths of d D  
and dD*, respectively. 

3. The equality ldDl = IdD*I is  valid i f  and only i f  D* is  a translation of 
D. 

Proof. 
axis. Let the projection of 

To show the first item, we may assume that C coincides with x 
to  C be [a,  b] ,  and 

be its division with the mesh size llAll = maxl<i<,(xi - -  - The line 
parallel to y axis and passing through xi, denoted by Ci, cuts a segment 
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from D, denoted by [Pi, Qi]. Then, the area of 

fl  

i=l 

59 

D is the limit of 

as IlAll ---t 0, where ASi is the area of the trapezoid made by Pi, Pi-1, 

Qi-1, Q g .  Let Pc, Pc-l, QI-l, QZ be the corresponding points on dD* 
of Pi, Pi-1, Qi, Qi-1, respectively. Then, AS, is equal to the area of the 
trapezoid made by P:, Pc-l, Qt, Q;-l by the definition, and therefore, the 
area of D, 

is equal to that of D*. 

Fig. 2.2 

For the second item to prove, we note that JdD( is given by the limit of 

as IlAll --t 0, where Asi = PiPi-1 + QiQi-1. Here, it follows from the 
elementary geometry that 

 AS^ 2 AS; = P:P:-l+ QtQt-1  
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and hence ldDl 2 IdD*I follows. 

this case, there is l’ such that 
To show the third item, we assume that D and D* is not congruent. In 

m+(P) f m+(P*), (2.4) 

where m+(P),  m+(P*) denote the inclinations of the right tangential lines 
of D ,  D* at P, P*, respectively. Let Q* be the corresponding point of Q 
on dD*, where [PQ] = L’n n. Let the right tangential lines at P,  Q of 
d D  be t ,  k, and those at P*, Q* of dD* be t*, k*, respectively. We take 
a parallel line L’I to l’ in the right, with the distance E > 0. Its crossing 
points between t ,  k, t* ,  k* are denoted by R1, S1, R;, S;. Furthermore, let 
[R, S] = and [R*, S*] = l” n D*. Then, it holds that n 

(PR)c  = PR1+ O(E)  (QS)c  = QSi+ O ( E )  

(P*R*)c = P*Ri + O(E)  (Q*S*)c = Q*SY + O ( E )  

as E 10 by (2.3). 
However, from the assumption (2.4) we have 

PR1+ QSl > P*R; + Q*S;. 

Again by the elementary geometry the difference of both sides is homoge- 
neous in E of degree one, that is, 

PR1+ QS1 = P*R; + Q*SY + YE 

with a constant y > 0 independent of E > 0. This implies that 

(PR)c  + (QS)c  > (P*R*)c + (Q*S*)c + 
for E > 0 sufficiently small. Then, ldDl > laD*I follows. 0 

For the moment ICI denotes the length of the curve C. In the case that 
the convex body D is not a disc, we take outscribing disc B,  line L passing 
through its center 0, and largest concentric disc E contained in D. Then, 
it holds that ldBl > ldDl > JdEl. The Steiner symmetrization D* of D 
with respect to l is convex, and it holds that E c D* c B. Therefore, 
ldBl > ldD*I > ldEl follows. 

We shall show that any convex domain D admits a sequence of convex 
domains { D k } E o  such that DO = D, Dk+l is a Steiner symmetrization of 
Dk, and Dk converges to a disc. Then by Theorem 2.2, inequality (2.2) 
follows for D with the equality if and only if D is a disc. 
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Henceforth, Q denotes the set of rational numbers. We note that D is a 
disc if it is symmetric with respect to two lines passing through the origin, 
denoted by 0, with the angle made by them not in Ql(27r). Letting el, e2 

be such lines, we take {Dk} by the Steiner symmetrization with respect to 
el and e2, successively. Then, we have E C DI, c B for any k. There is a 
countable dense set CO on dB.  Each q E CO determines &(q) E [O, q] f-laDk 
and yk = { p k ( q )  I q E co} C dDk is a countable set. In use of the diagonal 
argument of Cantor, we get a subsequence of { D I , } ,  still denoted by the 
same symbol, such that any p E yk converges. Furthermore, it can be 
required that both directions of symmetrization, with respect to e l ,  l 2 ,  are 
contained infinitely many times in this sequence. Let the closure in R2 of 
the set of those limiting points be y. 

Again by the diagonal argument, there is a subsequence of {Dk},  still 
denoted by the same symbol, such that any E = l /n  (n = 1 ,2 , .  . .) admits 
ko such that yk with k 2 ko lies in the ~ / 2  neighborhood of y. Similarly, 
this sequence can contain both directions of symmetrization infinitely many 
times. This implies that dDk is in the E neighborhood of y, and it follows 
that ~ D I ,  converges to y. Because the former is a closed convex closed 
curve, so is y. It encloses a domain in R2. 

Let * indicates the symmetrization with respect to el .  From the above 
description, there is C {Dk} such that 

lim lab; 

from the monotonicity and also 

lim I ad; 

from the continuity of symmetrization. This implies (dD$( 2 (dDo( 2 (aD:( 
and DO is symmetric with respect to el .  Similarly, it is symmetric with 
respect to e2, and the proof is complete. 

Exercise 2.2 Confirm that if the convex domain D admits a sequence of 
convex domains {Dk},",, such that DO = D ,  Dk+l is a Steiner symmetriza- 
tion of Dk, and Dk converges to a disc, then inequality (2.2) follows for D 
with the equality if and only if D is a disc. 
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2.2 Indirect Method 

2.2.1 Euler Equation 

Structure of the isoperimetric problem is formed as follows. First, quantities 
A and L determined by the function (x ( t ) ,  y(t)) are given. Regarding them 
as functionals, we are asked to maximize A under the constraint that L is 
a constant. In such a situation, it seems to be natural to take LLcritical’l 
functions first, where the “derivative” of the functional vanishes. Even in 
this case with the constraint, the “Lagrange multiplier principle” will be 
applicable. 

Generally, the functions in consideration are called admissible, and such 
a problem of finding extremal functions for the given functional is called 
the variational problem. Furthermore, such a critical function is to satisfy 
the Euler equation. Thus, in the variational problem, a functional is given 
and its extremal functions are required among the admissible functions. 

We illustrate the story for the problem to minimize the functional 

I(‘p) = 1; f (x, ‘p(x)1 ‘p’(4) dx 

defined for the function y = cp(x) passing the fixed points Pl(x1, yl),  
P2(22, y2) in R2, where f(x, y, y’) is a given function. 

To fix the idea, we suppose that f is continuous in (x, y, y’), and y = 

p(x) is admissible if it is C1 on [x1,z2] and satisfies 

‘p(x1) = Y1 and 4 x 2 )  = Y2. 

Under such a situation, let us suppose that the minimum in attained by 
an admissible function, denoted by y = ‘po(z). Then p(x) = ‘po(x) + sq(x) 
is also admissible for any C1 function y = ~ ( x )  with v(x0) = q(xl) = 0 
and s E R. Namely, this ’p is C1 on [ 5 1 , ~ 2 ]  and satisfies cp(z1) = y1 and 
(~(22) = y2. This implies 

I (V0  + w) 2 I(’p0) 

and therefore, s E R 
particular, 

I ( p 0  + sq) attains the minimum at s = 0. In 
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follows if the left-hand side exists. Because of 

‘((Po + sq) = 1; f(z7 (Po(2) + sq(z)7 (Pb(z) + sq’(z))dx, 

we have, formally that 

‘7 (XI dx (2.5) 

by ~(21) = q ( ~ )  = 0. Because such ~ ( z )  is arbitrary, it holds that 

for y = cpo(z) and y‘ = cpb(z). Based on those considerations, we say 
that equation (2.6) is the Euler equation for this problem. Generally, each 
variational problem is associated with the Euler equation of its own, and 
indirect method in calculus of variation is to solve it. 

The above derivation of (2.6) is justified if f Y  is continuous, fy/ is C1 
in (x,y,y’), and the extremal function (~(2) is C2 in 2. The first two 
conditions are concerned on the variational problem itself, and it is possible 
to examine them in advance. On the other hand, the last condition is on the 
extremal function which we are seeking. We may be able to impose it as an 
admissibility. However, in this case the admissibility looks too restrictive 
to define the functional I(p). Because the variational problem is to find 
the extremal solution within admissible functions, that discrepancy leads 
us to the question that the extremal function can exist actually, or, what 
is the appropriate admissibility for the existence of the extremal function. 

Actually, even the assumption cp E C’ [q , 221 is restrictive for the admis- 
sibility to assure the existence of the extremal function cpo of the functional 
I .  Eventually, this problem of existence is overcome by replacing the no- 
tions of integration and differentiation from those of Riemann to those of 
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Lebesgue. On the other hand, such an admissibility is too rough to justify 
the Euler equation. The second difficulty is overcome by introducing the 
notions of weak solution and its regularity. Those stories are realized in 
later sections. 

Exercise 2.3 Derive the Euler equation for f ( x , y , y ' )  = d w  and 
confirm that the shortest curve connecting two fixed points in R2 is a 
segment. 

2.2.2 Lagrange Mechanics 

As is described in 51.1.3, if mass particles xi = x i ( t )  E R3 (i = 1,2,  * . . , f) 
are subjected to the potential energy U = U(x1,x2,.. a ,  x j ) ,  then Newton's 
equation of motion takes the form 

where pi = mixi denotes the momentum. Then, the hnetic energy is given 
bY 

and it holds that 

dK 
dXi 

pa = -. 

If (q1,. . . , q f )  denotes the generalized coordinate, then it holds that x1 = 
xl(q1,. . . , q f ;  t ) ,  * .  . , x f  = xf(q1,.  . . , q f ;  t )  and we obtain 

Regarding (9, q, t )  as independent variables, we differentiate (2.8) with re- 
spect to &, and get that 

dki axi -= -  
%j 39 j ' 
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Hence we have 

and then it follows that 

d axk akk -- - -- 
dt aqj a q j -  

Therefore, if we regard K as a function of ( q , q , t )  by (2.8) and take the 
Lagrange function 

L(9 ,4 ,  t )  = K(q,Q, t )  - U(q,  t )  

then it follows that 

Equation (2.9) is called Lagrange’s equation of motion, and now we know 
that it is the Euler equation for the variational problem SS = 0 under the 
constraint that Sq(t1) = Sq(t2) = 0 ,  where 

denotes the action integral defined for q = q ( t )  E R3f with t E [ t l ,  t z ] .  This 
fact is called Hamilton’s principle of least action. 

The Legendre transformation is generally taken to L = L(q)  by 

a L  
L*(p )  = p q  - L with p = - 

dq . 
The Legendre transformation q H p to the Lagrangian L = L ( q , q , t )  is 
called the Hamiltonian with the general momentum p :  

a L  

pi = G. H = H ( p , q , t )  = c p j q j  - L with 
j 

BY
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From (2.9) we have 

a~ aL a~ 
aq a4 at d L  = -dq+-dQ+-dt 

which implies that 

or Hamilton's cannonical equation 

Exercise 2.4 
the constraint that bq(t1) = bq(t2) = 0. 

Confirm that (2.9) is the Euler equation for 6s = 0 under 

2.2.3 Minimal Surf aces 

The reader can skip this paragraph first. Given a surface M ,  let x = 
x(ul v) : s1 c R2 + M c R3 be its parametrization. The first fundamental 
form 

I = E d u 2  + 2Fdudv + Gdv2 

induces the inner product in R2, 
n 

( u , ~ ) ,  = C Iiju iv j ,  
i,j=l 

where I11 = El 112 = 121 = F ,  I22  = G, U = t ( ~ 1 , u 2 )  E R2, and V = 
t (v l ,  212) E R2. So does the second fundamental form 

11 = Ldu2 + 2Mdudv  + N d v 2  

and those inner products are so related as 
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for 

A = ( "  M N '  "> 
F G  (2.10) 

because 

and 

hold. Then, we can confirm that mean and Gaussian curvatures H ,  K are 
equal to t t r  A and det A,  where tr  and det indicate trace and determinant 
of matrices, respectively. Therefore, (1.49) is regarded as the eigenequation 
of A,  and at P E M if the parametrization is so taken as 

) x u )  = ) x , )  = 1, 5 , .  5 ,  = 0 ,  (2.11) 

and xu ,  x ,  to be principal directions, then it holds that 

Ax,  = k lx ,  and Ax,  = k2xv, 

where kl , kz are the principal curvatures. 
On the other hand, we have 

L = x , , . n =  - x , . n ,  

by n . xu = 0,  and similarly, 

M = x u , .  n = -xu . n, = -2,. nu 
N = x, ,  . n = -x ,  . n,. 

From those relations we get that 

nu = -klxu,  n, = -k2x, 

at P E M ,  because A is diagonalized by xu ,  x,, and E = 1, F = 0, G = 1, 
L = kl, M = 0, and N = k2 there. 
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Now, we take its deformation, a family of surfaces M E  parametrized by 
x E  = x + E f n, where f is a smooth function defined on M (or 0). We wish 
to seek M such that 

I A ( ~ ) l  d = 0 
E=O 

(2 .12 )  

for any f, where A(&) denotes the area of M,. Such M is called the minimal 
surface. 

In fact, we have 

A(&) = kc dSE with dS, = 12; x xzl dudv. 

However, at P E M it holds that 

x t  = x , + ~ f , n + ~ f n ,  
= (1 - ~ f k p ) x ,  + &fun 

and similarly, 

2; = (1 - e fkz )x ,  + &fun. 

Because (2.11) implies 

X ,  x xu = n, xu x n = xu, n x xu = xu, 

we have 

x: x xc", = (1 - ~ f k l ) ( l  - ~ f k 2 ) n  

-&(I - E f k 1 ) f u X u  - 4 1  - E f  kz)fuxu 

+E2f ( k l f u z u  + k z f u z , )  

= (1 - 2 ~ f  H ) n  - E (  f u x ,  + f ,x , )  + E~ f 2 K n  

by 2H = kl + k2 and K = klk2.  This implies 

[ x i  ~ x ~ ~ ~ = 1 - 4 ~ f H + ~ ~ ( 4 f ~ H ~ + 2 f ~ K +  f,"+ f : )+O(E3)  

and hence 

follows. 
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In use of (2.11), we have 

f: + f,2 = Idf l2  
at P E M with the one form df = fuxu + f,,x,. The value f 2 ,  Idf l2  are 
free from parametrization and is regarded as  a function on M .  Thus, we 
obtain 

A(&) = A ( O )  - 2 ~  f H d S + E 2 /  ( f 2 K +  f l @ 1 2 )  d S + 0 ( c 3 ) .  
M 

Condition (2.12) holds for any f if and only if H = 0. Therefore, the mini- 
mal surface is characterized by the vanishing of mean curvature. Physically, 
it is realized as a soup film. It is stable in the direction of f if 

2 f 2 K  + ldfI2 2 0 

holds. 
Soup bubble is realized as a critical closed surface of the area functional 

under the constraint that the volume of the enclosed body is a constant. 
In this case, the condition H = constant arises. 

Exercise 2.5 Show that tr A = 2H and det A = K for A given by (2.10). 

2.3 Direct Method 

2.3.1 Vibrating String 

Let a string indicated as [0, 7r] be given with the endpoints x = 0, 7r fixed, 
and let f(z) be the outer force acting on it. Suppose that the displacement 
u = u(x) is so small as 1u'(x)1 << Iu(x)I holds and that the tension T is a 
constant. Then, what is the law to determine u(x) ? 

To answer this question, let 8 and 8 + A 8  be the inclinations of the 
string at x and x + A x ,  respectively. Then, the deformation induces the 
inner force comparable with the outer force, so that we have 

T sin(8 + A8) - T sin 8 M - f (x)Az. 

On the other hand, from d ( z )  = tan0 it follows that 



70 Calculus of Variation 

M Tu'(x). Jm Tsin9 = T 

Similarly, we obtain 

Tsin(Q + AQ) M Tu'(x + AX) ,  

which implies the relation 

Putting T = 1 for simplicity, we get 

with 

(2.13) 

(2.14) 

because end points of the string are fixed. Thus, the boundary value problem 
arises, when seeking ~ ( x )  satisfying (2.14) for given f(x). 

While this derivation follows the Newton mechanics, the Lagrange me- 
chanics asserts that the actual motion is realized as a critical state of La- 
grangian. It is defined by potential energy minus kinetic energy. In the 
equilibrium state of this case, physical parameters are independent of the 
time variable. Thus, it is realized as a (local) minimum of the potential 
energy, denoted by E. 

Length of the string is equal to 

I" J m d x  

so that the inner energy cause by the tension T is given by 

Because the outer force f ( x )dz  works by u(x)  at z E [ O , T ] ,  it induces the 
energy J: ufdx.  Putting T = 1, we obtain 

" 
E = k L " u : d x - L  ufdx. (2.15) 

Thus, E is a functional because it is determined by the function u(x) .  
Putting E = E[u],  we get the variational problem to minimize E[u] between 
the function u(x)  in u(0) = U ( T )  = 0. We can expect the conclusion that 
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this formulation of Lagrange is equivalent to that of Newton described 
above. 

Exercise 2.6 Confirm that the Euler equation (2.6) for the functional E 
of (2.15) is equivalent to (2.14). Confirm also that if we adopt the exact 
formula in (2.13), then the equation corresponding to (2.14) is equivalent 
to the Euler equation for the functional 

E = Jd" (d- - 1) dx - 1" ufdx. 

2.3.2 Minimizing Sequence 

The Weierstrass principle says that the continuous function defined on a 
compact set attains the minimum. Namely, if K is a compact topological 
space and f : K --f R is continuous, then there is {Xk} C K satisfying 
limk,, f ( xk )  = j, where j = infK f with j = --oo permitted at this 
stage. Then, from the compactness of K we can subtract a subsequence, 
still denoted by {xk}, which converges to some x,  E K .  Then from the 
continuity we have j = f ( x * )  > --oo and the minimum of f on K is 
attained at x = 2,. 

Is this argument applicable to the variational problem given above ? To 
examine it, we have to formulate the energy 

E[u] = 1" u:dx - J," ufdx (2.16) 

as a functional. Henceforth, C[O, 7r] denotes the set of continuous functions 
defined on [0,7r]. Let f E C[O,7r]. If the integral in the right-hand side 
of (2.16) is taken in the sense of Riemann, then it will be appropriate to 
assume u E C1[0,7r], where 

c y o ,  7r] = {u E C[O, 7r] I u' E C[O, T I } .  

Actually, the set 

v, = {u E C"0,7r] I u(0) = u(7r) = o }  
is regarded as a vector space provided with the zero element 0 given by 
u(x)  = 0 and with the additive and scalar multiplication operations 

(u  + w)(x) = u(x) + w(x) and (cu)(x) = CU(X) 
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for u, w E V1 and c E R, Furthermore, 

(2.17) 

provides a n o m  there. This means that 11u(( 2 0 with the equality if and 
only if u = 0, llczlll = IcI ( ( ~ 1 1 ,  and IIu + 2111 5 llzlll + IlwII, where c E R and 
u, v E V1. Namely, V1 forms a normed space. This induces the metric to Vl 
bY 

dist(u, w) = llu - v1( 

and in particular, V1 is a topological space. That is, U c V1 is open if and 
only if any u E U takes r > 0 such that B(u, r )  c U ,  where 

B(u,r) = {u  E V, I ((w - uII < r } .  

This means that {wj} c V, converges to w E V, if and only if 

holds. Under this topology given to V1, it is not difficult to see that E is a 
continuous mapping from Vl to R. Then, is Vi compact ? The answer is 
no ! 

We are seeking the minimum of E on V,. As the first step we need to 
know that this functional is bounded from below. In fact, we have from the 
Schwarz inequality that 

for any z E [0, T I .  This implies 

for C = T ~ / ~  st If(.)[ dz. Because the right-hand side is estimated from 
below by -C2, we obtain 

inf ~ [ u ]  _> -c2. 
u€V, 
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This situation allows us to take the minimizing sequence { u j }  c V1 
satisfying 

lim E[uj] = inf E[u] > -m. 
j-+w U€Vl 

Again by (2.19), it holds that 

SUP llujll < +m1 

j 

in which case we say that the minimizing sequence { u j }  is bounded in V1. 
Thus, we get the key question. Does any bounded sequence have a con- 
verging subsequence ? This is actually the property of compactness. It 
is true in the finite dimensional Euclidean space. However, here we have 
two obstructions. That is, the space Vl is neither complete, nor of finite 
dimension. 

Exercise 2.7 

Exercise 2.8 
metric space and show that 

Show that 11 . / I  in (2.17) provides a norm to V1. 

Confirm that a normed space L with the norm )I . 11 is a 

lllull - 1 1 ~ 1 1 1  5 Ilu - 41 
holds for u ,v  E L. Then, observe that the proof of the continuity of E : 
V1 -, R is reduced to that of 

W E V ~  H 1 wfdx. K 

Confirm, finally, that it follows from (2.18). 

2.3.3 Sobolev Spaces 

Remember that a sequence {uj} in a metric space V with the distance 
dist( , ) is said to be a Cauchy sequence if it satisfies dist(uj,uk) 4 0 as 
j, lc 4 0. Then, the metric space (V, dist) is said to  be complete if any 
Cauchy sequence converges. 

In this sense, V1 = { u 6 C’[O, T ]  I u(0) = U(T)  = 0) provided with the 
norm 
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is not complete. We have to change the notions of integration and differ- 
entiation. 

First, integration must be changed from the sense of Riemann to that 
of Lebesgue. Thus we introduce the space L2(0, T) .  Namely, g E L2(0, T) 
means that g = g ( x )  is a measurable function on (0, T )  satisfying 

11g112 = (Sng(X)2dX)li2 0 < +m, 

where the integration is taken in the sense of Lebesgue. Such g is said to be 
square integrable. Two measurable functions f, g are identified in L2(0, T )  

if they are equal to each other almost everywhere. Then, L2(0, T )  becomes 
a Banach space under the norm 1) . / I 2 .  

On the other hand, differentiation of u E L 2 ( 0 , r )  is taken in the sense 
of distribution. We shall write u, for this notion of derivative of u. It 
has a vast background, but in this case the following notations are enough. 
Namely, given w E L 2 ( 0 , r ) ,  we say v, E L2(0,n)  if there is w E L2(0 , r )  
such that 

1" wcpdx = - wcp'dx I" 
for any cp E CE(O,T), Here, C,'(O,T) is the set of cp E C'(O,T> satisfying 

SUPP cp = 1. E (0 ,  .> I cp(x> # 01 c (0 ,  .). 

Henceforth, supp cp is called the support of cp. Such w is (if it exists) 
unique as an element in L2(0 ,1) ,  and we write as w = w,. It is called 
the distributional derivative of w. If w E C1 [ O , T ] ,  and w' denotes the usual 
derivative of w, then w, is equal to w' as an element in L2(0, T ) .  We set 

H l ( 0 , T )  = {w E L2(0,7r) 121, E L2(0 ,T) }  

Two functions equal to each other almost everywhere are identified in 
H1(O,r) .  Under this agreement it is shown that 

H1 (0 ,T)  c C[O, TI. (2.20) 

Namely, any element u E H1(O, T) has a representation ii E C[O, T], so that 
u = ii almost everywhere. Relation (2.20) is actually the most primitive 
case of Sobolev's imbedding theorem, but because of this, the condition 
v(0) = W ( T )  = 0 has a meaning for w E H1(O,n). Then, we take V = 
H i  (0,  T )  , where 
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H:(o,T) = {v E H1(0,T)  1 v(0) = U ( T )  = 0 )  

Relation (2.20) is a consequence of 

valid for cp E C1 [0, T I .  From this equality we have 

lcp(z) - cp(Y)l I IJ,” u’(s)dsl 5 1x - Y V 2  IIcp’ll2. 

It is extended for u E H1(O, T): 

14.) - 4 Y ) I  I 12 - Y V 2  lluz.112 7 (2.21) 

because C1 [0, T ]  is shown to be dense in H 1  (0, T ) .  Namely, any u E H1(O, T )  

admits { p k }  C c1 [o, T ]  such that 

Once inequality (2.21) is justified for u E H1(O,r) ,  then it implies (2.20). 

fact is proven by the convergence theorems on Lebesgue integrals. 
The norm (1 . (I2 provides to L 2 ( 0 , r )  with the complete metric. This 

A complete normed space is called the Banach space. 

Exercise 2.9 
in the metric space. 

Exercise 2.10 Show that the normed space ( L ,  11 . 1 1 )  is a Banach space if 
and only if any absolutely converging series converges. This means that if 
{ u k }  c L satisfies 

Confirm that any converging sequence is a Cauchy sequence 

k=l 

then there exists u E L such that 
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Note that any Cauchy sequence in a metric space converges if it has a 
converging subsequence. 

Exercise 2.11 Prove that H'(0, A) is a Banach space under the norm 

llu I I  = 4Il.ll; + l l 4 ,  
making use of the fact that L 2 ( 0 , ~ )  is so. Show also that H i ( 0 , ~ )  is a 
Banach space. 

Exercise 2.12 
distributional derivative w, if w E C'[O, A]. 

Exercise 2.13 
is dense in H1(O, 1). 

Prove that the classical derivative w' is identified with the 

Justify (2.21) for w E H1(O, 1) in use of the fact that C'[O,l] 

2.3.4 Lower Semi- Continuity 

The space V = H o ( 0 , ~ )  denotes the set of square integrable functions on 
(0, T )  with their distributional derivatives. If u, w E V ,  then their inner 
product 

is well-defined by the Schwarz inequality and satisfies the axioms that 
(u, w) = (w,u), that (cru+pw,w) = Q ( U , Z O ) + / ~ ( W , W ) ,  that (u,u) = llull 2 0 
with the equality if and only if u = 0 in V .  Importantly, V is complete 
with respect to the metric induced by the norm 1 1 ~ 1 1  = (u,u)lI2 so that 
{ u j }  C X and lluj - ukI I  -+ 0 as j ,  k + +m imply the existence of u E V 
such that Iluj - uII + 0 as j -+ +co. Those properties are summarized 
that V = HJ(0 ,  T )  forms a Hilbert space with respect to the inner product 
( , ) defined by (2.22). 

Let us come back to the problem in 52.3.1. Now, we formulate it as to 
minimize E on V = Hi (0, T ) ,  where 

2 

(2.23) 

for given f E C[O, T]. In use of (2.20), we can extend (2.18) for u E H;(O, T ) :  

max IU(X)I I T ' ' ~  IIUIJ (u E H;(O, 1)) . 
XE[0,11  
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This implies (2.19) for u E Hi(0 ,  T )  and therefore, E is bounded from below 
and the minimizing sequence {uj} c V is bounded in V. The latter means 
the boundedness of {11ujll} so that we have 

lim E[uj] = inf E[u] > -00, sup ( (u j ( (  < +00. 
j j-m U E V  

Here, we apply a theorem of abstract analysis that any bounded se- 
quence { u j }  in a Hilbert space V admits a subsequence, converging weakly. 
Here, this subsequence is denoted by the same symbol for simplicity. This 
means the existence of u E V such that (uj,w) + (u,w) for any w E V, 
where ( , ) denotes the inner product in V. In this case, from the abstract 
Schwarz inequality 

proven in 3.1.2, we obtain 

Then, putting u = u, we get that 

This property indicates the lower semi-continuity of the norm in the Hilbert 
space with respect to the weak convergence. 

Here, we make use of the following. 

Theorem 2.3 

Proof. The statement means that if {u3}  c Hi(O,n)  converges weakly, 
then it converges uniformly on [O,.rr]. On the other hand, the uniformly 
bounded principle assures that any weakly converging sequence is bounded 
in the Hilbert space, we may show that any bounded {u,} c H i ( 0 , ~ )  
admits a subsequence, denoted by the same symbol, converging uniformly 
on [ O , T ] .  

To show this, we note that inequality (2.21) implies that if sup, lluj I( < 
+m, then { u 3 }  c C[O, 11 is uniformly bounded and equi-continuous. Then, 
Ascoli-Arzela 's theorem assures the conclusion. 0 

Coming back to the problem, we have the minimizing sequence {u3}  of 
E on V = HA (0,n) that converges weakly in V and uniformly on [O,.] to 

The embedding (2.20) is  compact. 
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some u E H i  (0, T )  c C[O, TI .  Those facts imply 

lim inf 1" u;xdx 2 1" u2dx 
1-00 

and 

lim J, uj  fdx = J, ufdx,  
j-00 

respectively, and hence 

lim E[uj] = liminf E[uj] 2 E[u] 
j-00 3-00 

follows. However, {uj} is a minimizing sequence and we have E[uj] + 

infv E. Thus, E[u] = infv E follows from u E V .  This means that it 
attains the minimum of E on V .  We have proven the existence of the 
solution to the variational problem of minimizing E on V .  

In other words, E[v] 2 E[u] holds for any v E V and therefore, we 
obtain the Euler equation for this u to solve. This is derived from 

ds 

where v E Hi(0 ,  T )  is arbitrary. This means that 

u,vxdx = 1' f vdx 

by (2.23), which implies 

(2.24) 

-- d (u,) = f 
dx 

in the sense of distribution. We get from f E C[O,n] that this derivative 
can be taken in the classical sense and therefore, u, is continuously. Then, 
it holds that u E C2[0,.rr], and (2.14) follows in the classical sense. This 
final stage to derive u E C2[0, 7r] from u E V and the Euler equation (2.23) 
is called to establish regularity of weak solution. It is discussed in the later 
chapters more systematically. 

In contrast to the weak convergence, usual convergence in norm is re- 
ferred to as the strong convergence. In 53.1.2, we shall show that {uj} 
actually converges strongly in V and also the uniqueness of the minimizer 
of E on V .  
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Euclidean space Rn is provided with the standard Hilbert space struc- 
ture and there, two notions of convergence, strong and weak, are equivalent. 
Therefore, in Rn, the fact that any bounded sequence in Hilbert space ad- 
mits a subsequence converging weakly indicates the theorem of Bolzano - 
Weierstrass. 

For the higher dimensional case with [0,1] replaced by a bounded d e  
main 0 in R", the embedding H t ( 0 )  c C(n) does not hold any more, and 
the boundary value of u E HA(R2) must be taken in the sense of truce. Even 
so, some properties on dR are necessary to carry out the task, although 
details are not described here. 

Exercise 2.14 
bounded and equi-continuous on [0, TI. 
Exercise 2.15 Show that if g E L 2 ( 0 , r )  satisfies f = gz E C[O,T] in the 
distributional sense,. then it is identified as a continuously differentiable 
function with the derivative f. 

Exercise 2.16 

Confirm that any bounded sequence in H1(O, T) is uniformly 

As will be shown in $3.1.2, the abstract Schwarz inequality 

I(U,V)I I llull . 1141 
holds in Hilbert space. In use of this fact, show that any strongly convergent 
sequence converges weakly there. Show, more precisely, that {wj} converges 
strongly to w if and only if this convergence is weak and also IIwjujll -+ llwll 
holds. 

Exercise 2.17 
standard inner product 

First, show that Rn becomes a Hilbert space under the 

n 

i=l 

for 2 = (zI,x~,. . . , z,) and y = (yl, y2,. . . , y,). Then, in use of the uniform 
bounded principle and the theorem of Bolzano-Weierstrass, show that weak 
convergence is equivalent to strong convergence in R". 

Exercise 2.18 The Hilbert space H is said to be separable if it has a 
countable subset Ho satisfying = H.  Show that if H is a separable 
Hilbert space, any bounded subsequence has a weakly converging sequence 
in use of the diagonal argument, completeness of R, and Hahn-Banach's 
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theorem, which says that any bounded linear operator TO : HO --f R admits 
a bounded linear extension T : H + R with the operator norm preserved. 

2.4 Numerical Schemes 

2.4.1 Finite Difference Method 

Numerical analysis is the mathematical study of numerical schemes. One 
aspect is the theory and the other the practice. Those are combined and 
form interfaces between mathematics, applied and theoretical sciences, and 
technology. Thus, it is concerned with the following items. 

1. Derivation of approximate problem (scheme) and establishing its 
unique solvability. 

2. Proposal to actual computation (algorithm) and examining its 
practicality. 

3. Mathematical study of the scheme, such as stability, convergence, and 
error analysis to the approximate solution. 

Remember the two ways of derivation of (2.14) describing the balance 
of string, that is, the Newton mechanics and the Lagrange one. Finite 
difference method is based on the former. We take the integer N sufficiently 
large, and put h = 7r/N as the mesh size parameter. Then, we take the 
approximation that 

1 
u’(z) N D ~ u ( z )  = - {U(Z + h) - u(z)) h 

or 
1 

u’(z) N D ~ u ( z )  = - {u(z) - U(Z - h ) )  
h 

Then, we take B ~ D ~ u ( z )  as an approximation of u”(z). Letting V ( Z )  = 

- 

{U(Z + h) - u(z)}, we have 
- 

U ” ( Z )  N DhDhU(Z) = D h V ( Z )  

1 
h 

= - { v ( z )  - V ( Z  - h)}  

1 
h2 = - {U(Z + h) + U(Z - h) - ~u(z)}  
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Thus, problem (2.14) is replaced by 

1 
h2 -- {u(x + h) + u(x - h) - 2u(x)} = f (x) (2.25) 

for x = nh with n = 1 ,  - a * ,  N - 1 and u(0) = U(T) = 0. We regard it as the 
approximate problem to (2.14). Replacing u"(x) by 

1 
h2 - {u(x + h) + u(x - h) - 2 4 s ) )  

is called the three-point difference, because the values of 
z + h are used to approximate ~ ~ ' ( x ) .  

at x, x - h, and 

Putting u, = u(nh) and f ,  = f ( n h ) ,  we can write (2.25) as 

1 -p (u,+1 + u,-1 - 2u,) = f, (n = 1 , .  . . , N - 1) 

with uo = U N  = 0. Known and unknown values are { fn},zl N 1  and {u,}:::, 

respectively. Thus we get a numerical scheme, of which detailed study is 
not treated in this monograph. 

Exercise 2.19 Prove that DhDh = DhDh. Then, evaluate it, D i ,  and Di 
as the approximation of m. d2 

2.4.2 Finite Element Method 

In the Lagrange mechanics, problem (2.14) is reduced to find 
7r 

u E V such that u,v,dx = 1 v fdx  for any v E V, (2.26) 

where V = H o ( 0 , ~ ) .  Fznite element method is a discretization of this 
formulation. More concretely, we take a large integer N and the uniform 
division of [0,7r], denoted by 

A :  Xo = o  < X I  < ...  < X N - ~  < X N  = ? T  

with the mesh size parameter h = T/N, so that x, = nh for n = O , l , .  . . , N .  
Then, the underlying space V in (2.26) is replaced by the finite dimensional 
vector space, 

Vh = {v E C[O,T] I v is piecewise linear and v(0) = W(T) = 0). 
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Then, it holds that v h  C V and dim v h  = N - 1. Actually, a basis of v h  is 
provided with {en}:::, where en = en(x) E v h  and 

1 ( x = n h )  
0 ( x  = ih,i # n), 

e n ( x )  = 

because each element u E v h  is determined by its values on the nodal points, 
x = x n  (n=  1 , 2 , . . . , N - l )  . 

x (n-l)h nh (n+l)h - t - L l L -  
(n-l)h nh (n+l)h 

Fig. 2.3 

We can reproduce the argument in $2.3.4 with V replacing v h  and get 
Uh E v h  that minimizes E on vh .  Then, this Uh satisfies 

UhxVhxdX = Uh f d X  for any E v h .  

(2.27) 
Writing U h ( x )  = c,”;’ tnen(x) in use of the unknown constants En E R 

I” 1= Uh E v such that 

for n = 1, .  . . , N - 1, we see that (2.27) is equivalent to  

for m = 1 , .  . . , N - 1. This means that 

A t  = F 

for A = (unm) with 

(2.28) 
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This A is a triple diagonal matrix and its inverse is not hard to compute 
numerically. 

Exercise 2.20 

Exercise 2.21 
onal. 

Prove that Vh c V .  

Confirm that the matrix A given by (2.28) is a triple diag- 
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Chapter 3 

Infinite Dimensional Analysis 

In the previous chapter, it was suggested that the infinite dimensional analysis is 
necessary to make the calculus of variation in a rigorous way. The key word is 
the completeness and this chapter is devoted to it. Thus, we shall describe the 
theory of Hilbert spaces, Fourier series, and eigenvalue problems. 

3.1 Hilbert Space 

3.1.1 Bounded Linear Operators 

Remember that norm induces metric in the vector space, which is said to  be 
a Banach space if it is complete with respect to  that metric. Let ( L ,  1 1  . 1 1 )  
be a Banach space and T : L + R be a linear mapping. Sometimes T is 
referred t o  as an operator. It is said to  be bounded if there is a constant 
M > 0 satisfying 

for any f E L. 
This is equivalent to saying that T is continuous at  any or some element 

in L because of its linearity. In fact, if (3.1) holds and fn 4 f in L,  then 
it follows that 

Therefore, T(f,)  + T(f) follows. Conversely, if T is continuous at f = 0, 
then it is bounded. In fact, if this is not the case, there is a sequence 

85 
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{ f n }  c L such that 

IT(fn)l > llfnll 

for n = 1 , 2 , .  . .. Because T is linear, it holds that T(0) = 0 and hence 
fn # 0. Therefore, gn = fn /  (n  I l f n l l )  E L is well-defined. However, then 
we get 

1 
IIgnII = ; and IT(gn)l > 1 

and hence gn 4 0 and T(gn) f ,  0 hold as n 4 00, a contradiction. 
If T : L 4 R is a bounded linear operator, the infimum of M > 0 

satisfying (3.1) is called the operator norm of T and is written as llTll. 
Because (3.1) is equivalent to 

< M (f E L \ {O}), l l f l l  - 

it holds that 

((TI1 = sup { IT(f>l I f E L \ {O}} . Ilf II 
In particular, we have 

IT(f)l I IITII . llfll (f E L )  

and 

In those notions, the target space of the linear operator T may not be 
R, and the case T : L 4 K is admitted, where ( K ,  I . I) stands for a Banach 
space. 

Exercise 3.1 Confirm for the linear operator T : L 4 R that it is contin- 
uous at some f = fo E L then it is continuous at f = 0. Confirm also that 
(3.1) for any f E L is equivalent to (3.2). 

Exercise 3.2 Given a Banach space (L ,  11 . \ I ) ,  and introduce its dual space 

L’ = {T : L + R I bounded linear operators } . 
bY 
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It is a vector space under the operations 

(T + S)(f) = T(f) + S(f) and (cT)(f) = cT(f) 

for T,  S E L', f E L,  and c E R. Confirm that L' becomes a Banach space 
under the operator norm. 

3.1.2 Representation Theorem of Riesz 

Remember that inner product of the vector space L is the mapping ( , ) : 
L x L -+ R satisfying the axioms that (u,v) = (v,u), (QU + pv ,w)  = 
a(u, w)+p(v, w), and (0, w) 2 0 with the equality if and only if 2, = 0, where 
u, v, w E L and a,  p E R. A vector space provided with the inner product 
( , ) is called the pre-Hilbert space. First, let us confirm the following. 

Theorem 3.1 A pre-HiZbert space is a n o m e d  space by l l f l l  = m. 
The abstract Schwarz inequality 

l(f7g)I I llfll . 11911 ( f , g  E L )  (3.3) 

also holds. 

Proof. It is obvious that l l f l l  2 0 with the equality if and only if f = 0 
and llcfll = IcJ I l f l l ,  where f E L and c E R. The Schwarz inequality implies 
that 

as 

Ilf + 9112 = (f + 9, f + 9 )  = llf1I2 + 2(f, 9 )  + 119112 
I llfll + 2 llfll . 11g11 + 119112 = (Ilf l l  + 11g11>2 . 

To prove (3.3), we may assume that f # 0. In this case, we can put 
a = (f ,g>/ llf1I2 in 

0 5 (af - 9,Qf - 9) = bI2 llf1I2 - %f,g) + ll9Il2. 

l ( f 1  dI2 / llf1I2 - 2 I(f,g)l2 / llf1I2 + 119112 2 0, 

This implies 

OR
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and hence (3.3) follows. 

A pre-Hilbert space is called a Hilbert space if it is complete with respect 
to the metric induced from the inner product. Henceforth, L denotes a 
Hilbert space with the inner product ( , ). If g E L is fixed, then 

defines a linear mapping from L to  R. Because of (3.3), we have 

which means that T : L ---t R is a bounded operator satisfying IlTll 5 11g11. 
On the other hand we have 

if g # 0. This implies that 
The representation theorem of Riesz says that any bounded linear oper- 

ator is expressed like this. In use of the notion of dual space, it is written 
as L’ 2 L. This is done by solving an abstract variational problem. The 
following theorem provides an abstract version of the argument of 52.3.4. 
Here, the proof is given without using weak convergence. 

Theorem 3.2 Let L be a Halbert space with the inner product ( , ) and 
the norm 1 1  . 11, and T : L + R be a bounded linear operator. Then, the 
functional 

= Ilgll. 

1 
J ( v )  = 5 1(v112 - T(w) (v E L)  

attains the minimum with a unique minimizer. 

for any w E L.  This implies 

j = inf J > -co 
L 

pROOF. iN USE WE HAVE
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and there exists {w,} C L satisfying J(wn) + j. In use of the parallelogram 
law that 

we have 

as n,m -.+ 00. On the other hand, the first term of the left-hand side is 
dways greater than or equal to 2j, and hence ((w, - vmll 4 0 follows as 
n, m --f 00. 

Because L is complete with respect to 11 . 11, there is u E L such that 
llv, - uIJ + 0 as n + 00. This implies 

I lVn l l  + llull and 4%) + J ( U )  = j 

in turn. Thus, j = infL J is attained by u E L. The uniqueness of such a 
0 

We are now able to prove the representation theorem of Riesz indicated 

u is obtained by the proof of the following theorem. 

as follows. 

Theorem 3.3 If L is a Hilbert space provided with the inner product 
( , ) and the n o m  11 11, then any bounded linear operator T : L + R 
admits unique g E L such that T (  f) = (f, 9)  for any f E L. Furthermore, 
it holds that IlTll = 11911. 

Proof. We have shown that IlTll = 11911 holds if such g exists. If g l , g 2  E 

L satisfies the condition, then ( f , g l  - 92) = 0 for any f E L. Putting 
f = 91 - 92, we get 91 = 92. Thus, we only have to show the existence of 
such g. 

Given T E L', we have a minimizer g E L of the functional 

1 
J ( w )  = 5 - T ( w )  (W E L )  
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from the previous theorem. This means J ( g )  5 J ( w )  for any w E L so that 

attains the minimum at s = 0, where f E L is an arbitrary element. How- 
ever, we have 

and hence 

follows. This means T ( f )  = ( f , g )  and the proof is complete. 0 

So far, the vector space which we treat is over R, the real numbers. 
Hilbert space over C ,  the complex numbers, is defined similarly when the 
underlying vector space is over C .  In this case the axiom of the symmetry 
of inner product is changed from (f,g) = (g,f)  to (f,g) = ( g , f ) ,  where 
7 = 5 - zy denotes the complex conjugate of z = 2 +zy for 5, y E R. Hilbert 
space over C arises in quantum mechanics, but we are mostly concentrated 
on the Hilbert space over R in the following. 

- 

Exercise 3.3 Prove that the parallelogram law (3.4) holds in Hilbert space. 

Exercise 3.4 
convergence. 

Give an alternative proof of Theorem 3.2 based on the weak 

3.1.3 Complete Ortho-Normal Systems 

Let L be a Hilbert space with the inner product ( , ) and the norm 1 1  . (I. 
A family {pi} c L is said to be ortho-normal if 

holds. Because they are linearly independent, if that family is composed of 
infinitely many elements, then the dimension of L is infinite. 
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Given a family of ortho-normal system {qi}El, let L, be the linear 
subspace of L spanned by {cpi}~~,, where n = 1,2,  . . .. Then, we consider 
the problem of least square approximation, that is, to seek a minimizer of 

(3.5) 

where f E L is a given element. 
For this problem to solve, we put 

n 

g = caicpi E Ln 
a= 1 

with the undetermined coefficients {ai} c R. Letting pi = ( j ,  qi>, we set 

Then, it holds that 

because {cpi} is ortho-normal, and hence 

follows. Therefore, J ( g )  = ((9 - f 1 I 2  defined for g E L, attains the mini- 
mum 

if and only if ai = Pi for 1 5 i 5 n, or equivalently, 
n 
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Relation limn+.w j n (  f )  = 0 means that 

If this is the case, f is in the closure of the linear hull of {cpi}gl, the set 
of linear combinations of {cpi}zl. Henceforth, the linear hull of {cpi}zl is 
denoted by LO: 

I W 

Lo = { 5 aipi I ai E R, ai = 0 except for a finite i . 

Thus, if (3.6) holds for any f E L, then it holds that ZO = L. In this case we 
say that {pi},"=, forms a complete ortho-normal system of L. This is actu- 
ally the extension of the notion of ortho-normal basis in finite-dimensional 
vector spaces. 

Let {pi}& be a complete ortho-normal system of L, and LOO be the set 
of linear combinations of {cpa}El with coefficients in Q, the set of rational 
numbers: 

Loo = { g a i q i  ai E Q, ai = 0 except for a finite i . 
a= 1 1 

Then, it holds that LOO c 
A Hilbert space L is said to be separable if it has a countable dense 

subset. Above description guarantees that if L is provided with a complete 
ortho-normal system (of countable members), then it is separable. However, 
the converse is also true, and it can be shown that if L is separable then it 
has a complete orthonormal system. 

and LO c ZOO. Thus, we obtain zoo = L. 

We have the following. 

Theorem 3.4 Let 
L and f E L. Then  it holds that 

be a n  ortho-normal system an a Hilbert space 

Furthermore, the equality in (3.7) i s  equivalent for (3.6) to  hold. 
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Proof. Inequality (3.7) follows from 

where n = 1 , 2 , . . .  . The latter part is also a direct consequence of this 
equality. 0 

Inequality (3.7) is called Bessel's inequality. If equality holds, then it is 
called Parseval's relation. If an ortho-normal system is given in a Hilbert 
space, it is complete if and only if Parseval's relation always holds. 

Exercise 3.5 Confirm that LO C holds. 

Exercise 3.6 
 pi}^, in the 

Confirm the last statement that an ortho-normal system 
Hilbert L is complete if and only if Parseval's relation 

i=l 

holds for any f E L.  

3.2 Fourier Series 

3.2.1 Historical Note 

If we take non-stationary state of the string described in 52.3.1, then kinetic 
energy is taken into account in the Lagrangian. It is given by 

J[u] = 1" uzdxdt  - lT 1" u f dxdt  - f 1' 1" ufdxd t  (3.8) 

under the agreement that any physical constant is one. If f = 0 for sim- 
plicity, then the Euler equation is given as 

U t t  = U Z Z .  (3.9) 

It describes the vibrating motion of the string, and generally is called the 
wave equation. We take the boundary condition u(0) = u(n) = 0 and the 
initial condition 

4t,0 = ~ ( x )  and utltE0 = U O ( X )  ( x  E [O, 4). 
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d’hlembert observed that (3.9) is satisfied for 

u(z, t )  = cp(x - t )  + $(x + t ) ,  (3.10) 

where cp and $ are arbitrary C2 function. We take the odd extension to 
u with respect to x: u(-x , t )  = -u(x,t), and then 27~ periodic extension: 
u(x + 27r,t) = u(x,t), and in such a way we get a function defined on 
R x [0, 00) denoted by the same symbol u = u(x,  t ) .  Then the boundary 
condition u(0, t )  = U ( T ,  t )  = 0 is satisfied and the extended u = u(x, t )  is 
continuous in x E R. Putting (3.10), we have 

~ ( x )  = cp(z) + $(x) and - cp’(x) + $’(z) = UO(Z). 

The latter equality gives 

-cp(x) + $(x) = uo(s)ds + c IX 
with a constant c, and hence 

and 
C IX 2 

1 
2 p(z) = -u1(x) - 5 uo(s)ds - - 

follow. Again by (3.10), we have 
1 x+t  1 

2 u(x, t )  = - (Ul(Z - t )  + U l ( 2  + t ) )  + 5 l-t uo(s)ds. (3.11) 

Observe that u(--z, t )  = -u(x, t )  and u(z + 2n, t )  = u(x, t )  hold if U I  (x) 
and uo(z) satisfy the same conditions. 

D. Bernoulli introduced the method of super-position. First, special 
solution to (3.9) is taken in the form of separation of variables, that is, 
u(x, t )  = cp(z)$(t). This implies that 

cp’WlP(.) = $”(t)/W). 
Because left-hand and right-hand sides are independent of t  and x, respec- 
tively, this quantity must be a constant, denoted by -A.  Then, we get the 
eigenvalue problem 

-cp”(x) = Xcp(x) (0 I z 5 n) with cp(0) = cp(7~) = 0. (3.12) 
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We see that problem (3.12) has the trivial solution u = 0 for any A. 
In the case that non-trivial solution to this problem exists, then X and 
p(z) are called eigenvalue and eigenfunction, respectively. If p(x) is an 
eigenfunction, then ccp(x) is again so, where c E R \ (0). Therefore, we 
take normalization. Eigenvalues to (3.12) are n2 and p,(x) = sinnx act as 
eigenfunctions for n = 1,2, . . .. Then, it follows from -$"(t) = n2$(t) that 

$(t) = A, cosnt + B, sinnt, 

where +(O) = A, and +'(O)/n = B,, and this method leads to 
00 

u(x, t) = C sin nx (A ,  cos nt + B, sin nt) , (3.13) 

where A,, B, (n  = l , 2 , . - . )  are constants. However, if it is true, then 
(3.11) implies 

n=l 

00 

u1 (x) = C A, sin nx. (3.14) 

Thus, two questions arise. Does the right-hand side of (3.14) converge? 
Is it possible to express any odd 27r periodic function u1(x) in use of the 
trigonometric functions like (3.14)? Fourier showed that 

n=l 

-1 ( - 7 r < X < O )  

1 ( O < Z < 7 r )  
f (x)  = { 

is expressed as the Fourier series 

1 1 4 [s inx+isin3x+-sin5x+.*.+-  1 1 sin(2n + 1)x + . . . 
7r 5 2n + 1 

In connection with this, the right-hand side of (3.14) is called generally 
formal Fourier series. 

Exercise 3.7 

Exercise 3.8 
by n2 and sin nx for n = 1,2 ,  . . ., and nothing else can be so. 

Exercise 3.9 

Show that Euler equation to J[u] defined by (3.8) is (3.9). 

Show that eigenvalues and eigenfunctions of (3.12) are given 

Derive Euler equation for 
T 

J[u] = 1' 1" d m - d x d t  - 1' ln u f dxdt - 1 u:dxdt. 
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Fig. 3.1 

3.2.2 Completeness 

A measurable function is said to be locally square integrable on R if it is 
square integrable on any compact set in R. Set of locally square integrable 
functions on R is denoted by L&,(R).  Then, 

X = {w E Lfo,(R) I v(x + 27r) = w(x) for a.e. x E R} 

is identified with L2(0,27r). We shall work on this space, which forms a 
Hilbert space with the inner product 

r27r 

and the norm 11v112 = m. 
We have seen that 

forms an ortho-normal system in L2(0, 27r). Here, we note that odd func- 
tions of them are 2- sinnx with n = 1,2,  . . . in connection with the argu- 
ment in the previous paragraph. Here, we show that it is complete in the 
sense of $3.1.3, namely (3.6), or 

fi 

lim [Is, - f l 1 2  = 0 (3.16) 
n+m 

in this context, where 
n 

a0 

2 
s, (x) = - + c ( a k  cos kx + bk sin kx) 

k=l 
(3.17) 
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with 
2* 

Uk = 1 f(z) cos kzd., bk = f(.) Sin kzdx. (3.18) 
7r 

To prove (3.16) for f E X, we can assume that f E XO because XO is 
dense in X ,  where 

Xo = {f E C(R) I f(z + 27r) = f(z) for any 2 E R} 

Now, we shall show (3.16) for f E Xo. 
For this purpose, first we note that Bessel's inequality holds a 

and hence we have 

lim an = lim b, = 0 
n+ca n+m 

for any f E X, which is referred to as Riemann-Lebesgue's theorem. Next, 
we have 

where s_", is replaced by s,","_, from the periodicity. We obtain 

with 

(3.19) 

1 sin(n + 1/2)y - 1 cosny - cos(n + 1)y _ - .  1 "  
2 sin(y/2) 2 1 -cosy 

k = l  
(3.20) 
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Here, we take the arithmetic mean of s,(x) as 

1 
n + l  

S,(x) = - (so@) + SI(2) + . . . + s,(x)) 

Sometimes, it is referred to  as the Cesa’ro mean of the original series (3.17). 
Letting f (x) = 1 in (3.21), we have 

(3.22) 

because a0 = 2 and ak = bk  = 0 for k 2 1 in this case. Equalities (3.21) 
and (3.22) imply 

sin2(ny/2) dy. (3.23) 

The following theorem is due to  Fejhr. 

Theorem 3.5 Iff (x) is a continuous function with the period 27r, then 
the Cesa’ro mean of the formal Fourier series converges to f (x). That is, 
Sn(x) converges to f (x) uniformly in x E R .  

Proof. The continuous periodic function f is regarded as a function on 
R/(27rZ), which is identified with the circle S1. Because the latter is com- 
pact, we see that f : R -+ R is uniformly continuous. Thus, any E > 0 
admits 6 E (0,27r) such that 

lyl < 6 + I f  (x + y) - f (.)I < E for any x E R .  (3.24) 

We divide the integral in the right-hand side of (3.23) as 

From the periodicity, the third integral is reduced to  f,. Then, this term 
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and the first one are combined as s!,. In use of (3.24), we have 

dy = E.  

On the other hand, we have I l f l l ,  = supxE[o,27F~ lf(x)I < +oo and hence 

2lIfl1, .27r - - 2 Ilf I L  < 
27rn sin2(6/2) n sin2(6/2) 

follows from sin(y/2) 2 sin(b/2) and Isin(ny/2)1 5 1 on [6,27r - b]. Those 
relations are summarized as 

This implies 

and 

limsup sup ISn(x) - f(x)l 2 E .  

Because E > 0 is arbitrary, we get limn joo S U ~ , ~ I ~ , ~ ~ ~  ISn(x) - f(x)( = 0, 
0 

n+, zE[O,27r] 

or equivalently, Sn(x) converges to  f(z) uniformly in x. 

We are ready to  give the following. 

Theorem 3.6 Ortho-normal system (3.15) is complete in L2(0, 27r). 
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Proof. 
in this case, Theorem 3.5 guarantees that 
denotes the linear subspace of L2(0, 27r) spanned by 

We only have to show that (3.6) holds for any f E XO. However, 
IlS, - ill, = 0. If L, 

we have S, E L,. This implies that 

and the proof is complete. 0

Exercise 3.10 
(3.6) for f E XO. 

Exercise 3.11 

Exercise 3.12 
ortho-normal system 

Confirm that the completeness of (3.15) in X is reduced to 

Confirm that (3.20) holds. 

Expand f(z) = 7r-z in Fourier series in use of the complete 

1 1  1 
-cosmz,-sinnx 1 m , n =  1,2,... 

J;; 
in L2(0, 27r). Then, show that 

1 7r2 

n=l 

follows from Parseval’s relation. 

3.2.3 Uniform Convergence 

Even if f E XO, the formal Fourier series does not necessarily converge 
uniformly. In this context, first, we note the following. 

VBECAUS
BY
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Theorem 3.7 Iff E X and an, bn defined by  (3.18) satisfies 

00 

C (Ian1 + Ibnt) < +m, 

then f is regarded as an element in X O  and sn(x) defined by (3.17) converges 
unzformly to f (x). 

Proof. In fact, in this case the series sn(x) has the majorant (3.25) and 
therefore converges uniformly to some function, denoted by g ( x ) .  However, 
this g ( x )  coincides with f(x) for almost every x E (0,27r), because sn 
converges to f in L2(0, 27r) by Theorem 3.6, and g(x) and f (x) are identified 

0 

The criterion given in the previous theorem is assured by the following. 

Iff E X O  is piecewise C1, then sn(x) defined by  (3.17) 

(3.25) 
n=l 

in X .  Thus, the proof is complete. 

Theorem 3.8 
converges uniformly to f (x). 

Proof. From the assumption we have 

f(x) cosnxdx = 
n7r 

2n 

27r ni 1'" f'(x) cos nxdx. (3.26) 0, = 1 1 f (x) sin nxdx = - 
T o  

Because f '  E L2(0, 27r), it holds that 

n=l 

by Bessel's inequality. In use of 

and 

we obtain 
M 

n=l 

and the proof is complete. 
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The following theorem is refined in the next paragraph. 

Theorem 3.9 Let f (x) be 27r periodic, bounded, and continuously dzfer- 
entiable except for finite points an [0,27~]. Then the formal Fourier series 
s,(zo) converges to f (xo) as n + 00, if xo is not the ezceptional point. 

Proof. Similarly to  (3.22), we have 

by (3.19). Therefore, it holds that 

(3.27) 

(3.28) 

We have 

1 ,  sin(n + 1/2)y 
D,(y) = 5 + C c o s k y  = 

k=l 2 sin(y/2) 

= - [  1 c0s(y/2) sin ny + cos ny 
2 sin(y/2) 

and hence the right-hand side of (3.28) is divided as 

[f (20 + Y) - f (.O)l cos nydy 

The first term converges to 0 as n 4 0 by Riemann-Lebesgue's theorem. 
The second term is treated similarly, because 

is a bounded function of y E [0,27~] from the assumption. 

Exercise 3.13 Confirm that (3.26) holds for f E X O  in piecewise C1. 

Exercise 3.14 
function of y. 

Confirm that the quantity indicated by (3.29) is a bounded 



Fourier Series 103 

Exercise 3.15 Regard f ( x )  = 
periodic function and apply Theorem 3.9 with xo = 0. Confirm that 

defined for 2 E [-n,n) as a 27~ 

and prove 

in this way. 

(3.30) 

3.2.4 Pointwise Convergence 

To handle with more rough functions, we make use of real analysis. A 
function f defined on the compact interval [a,  b] is said to be of bounded 
variation if there is M > 0 such that 

n 

i= 1 

for any division a = xo < x1 < . . . < xn = b of [a,  b]. Monotone function is 
of bounded variation. Then, Jordan’s theorem assures that any function of 
bounded variation is a difference of two monotone non-decreasing functions. 
Therefore, a function of bounded variation has f ( x  + 0) = limgLz f(y)  and 
f ( x  - 0) = lim,T, f ( y )  for any 2 E [a,  b], and its discontinuous points are 
at most countable. Hence it is Riemann integrable. 

We shall show that if f ( x )  is a 2n periodic function of bounded variation, 
then s n ( x )  converges to ( f ( x  + 0) + f ( x  - 0 ) )  /2 .  For this purpose, we 
make use of the following lemma by Dirichlet. 

Lemma 3.1 
then it holds that 

If f ( x )  is of bounded variation in [a,  b] and f ( a  + 0 )  = 0, 

sinsx 
l i ~ ~  1 f (x)-dx = 0. 
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Proof. We may assume that f (x) is non-decreasing, a = 0,  and f (a) = 
f (a + 0 )  = 0. Then, any t > 0 admits 6 > 0 such that x E [0,6] implies 
0 5 f (x) < E .  In use of the second mean value theorem of Riemann integral, 
we have 5 E [0, b] such that 

The right-hand side is equal to 

Because of (3.30), there is M > 0 such that 

for any R > 0. Thus, we obtain 

by f (6) E 10, E l .  
Similarly, we have 77 E [6, b] satisfying 

17 sinsx sinsx 
f (x)-dx = f (6) 1 y d x  + f (b )  ydI" sinsx 

The first term of the right-hand side is treated similarly, and we have 

For the second term we note that 

y d x = l : y d y .  sinsx 

Because 7 2 6, we have 
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again by the convergence of (3.30). We obtain 

and get the conclusion because E > 0 is arbitrary. 0 

Now, we give the following. 

Theorem 3.10 If f(x) is a 2lr periodic function of bounded variation, 
then the formal Fourier series sn(x) converges to (f(x - 0) + f(x + 0)) / 2  
for any x E R. 
Pmof. In fact, from (3.19) and the periodicity we have 

In use of (3.27) it follows that 

(3.31) 

with g ( y )  = f(x + y) + f(x - y) - f(x + 0) - f(x - 0). Because y/sin(y/2) 
is smooth in R, G(y) = g ( g )  . is of bounded variation on [ O , l r ] .  It 
satisfies G(+O) = 0 and therefore, the right-hand side of (3.31) converges 
to 0 its n --+ m. This means 

f(. + 0) + f(x - 0) 
2 lim sn(z )  = 

n-m 

and the proof is complete. 0 

Exercise 3.16 

Exercise 3.17 
variation are at most countable. 

Confirm that monotone functions are of bounded variation. 

Show that discontinuous points of a function of bounded 
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Exercise 3.18 
is non-decreasing, a = 0, and f ( a )  = 0. 

Exercise 3.19 
g is so and cp(y) is C1 there. 

Confirm that Lemma 3.1 is reduced to the case that f ( x )  

Confirm that g ( y )  . cp(y) is of bounded variation on [a, b],  if 

3.3 Eigenvalue Problems 

3.3.1 Vibrating Membrane 

Let R c Rn be a bounded domain with smooth boundary dR, and take 
the problem 

-A11,=X11, in R, 11,=0 on dR, (3.32) 

where X is a constant. This problem always admits the trivial solution 
11, E 0 and if a non-trivial solution 11, $ 0 exists then such X and 11, are 
called the eigenvalue and the eigenfinction, respectively. One-dimensional 
problem is studied in the previous chapter, and a general case in this di- 
mension is referred to as the Sturm-Liouville problem. If it is symmetric, 
then eigenvalues are real, countably many, and simple. Expansion theorem 
of Mercer holds so that the eigenfuction expansion is valid with the uniform 
convergence for C2 functions satisfying the boundary condition. However, 
multiple eigenvalues can exist if n 2 2, which means that each of them 
shares plurally linearly independent eigenfunctions. Problem (3.32) arises 
in the process of separation of variables to the heat equation 

ut = Au in 52 x (0, T ) ,  ulan = 0 

or the wave equation 

utt = Au in R x (0, T ) ,  uIan = 0 (3.33) 

and hence the expansion theorem is necessary to justify the method of 
superposition by eigenfunctions 11,k(x) for k = 1,2,  . . .. 

In the case of (3.33), the solution u is given by 
00 

u(xl t> = C q k ( x )  { ( ~ , Y M C O S W  + ( u O , $ k )  sinwkt/wk} 
k=l 

with the right-hand side converging in C'(R; L2(R)) n C ( R ;  Hi(R)) if the 
initial values u1 = ~ l ~ , ~  and uo = ~ t l ~ , ~  are in (u1, UO) E Hi(R) x L2(R), 
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where ( , ) denotes the L2 inner product and 

wk = Jxk. 
In this context, this { ~ k } r = ~  indicates the characteristic vibration numbers, 
or tone if R is regarded as a vibrating object. The deformation of the 
material on the boundary is set to be zero in (3.32), while the Neumann 
problem arises if it is open: 

-A'=X+ in R, _ -  " - 0 on m, (3.34) 
dU 

where v denotes the outer unit normal vector. 

polar coordinate z = r cos 8, y = r sin 8 we have from (3.32) that 
If R = { (z, y) I z2 + y2 < l} c R2 is the unit disc, then in use of the 

1 1 
r r2 

'rr  + -1Ctr + -Qee + A+ = 0 with q(1, 8) = 0 (3.35) 

by 

(3.36) 

Then, we apply the separation of variables ' ( r ,  8) = f ( r ) h ( 0 )  to (3.35) and 
get that 

where the left- and the right-hand sides are independent of 8 and r ,  respec- 
tively. Hence this quantity is a constant, and must be k2 with some integer 
k 2 0 ,  because h = h(8 )  is 27r periodic. Thus, we obtain 

h(0) = a cos k8 + b sin k8 

and 

r2 f" + rf' + (r2X - k2) f = 0 (0 < r < 1) with f (1) = 0, (3.37) 

where a ,  b are constants. Confirming that X > 0 if it is an eigenvalue of 
(3.32), we put that p = A'/%- and f ( r )  = J ( p )  and get Bessel's equation 

-+--+ 1- -  J = O .  d2J  dP2 P d P  l d J  ( 3 (3.38) 
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This equation admits a solution in the form of 

~ ( p )  = C amprn = - P2 P4 -...) , 
00 

pk ( l -  2 ( 2 k + 2 )  ' 2 . 4 ( 2 k + 2 ) ( 2 k + 4 )  2"k! 
m=O 

denoted by J = J k ( p ) .  It is called the Bessel functionof k-th order. Writing 
A = w 2 ,  we have f k ( r )  = J k ( w r )  and hence (3.37) is equivalent to Jk(w) = 0. 

Fig. 3.2 

More precisely, if { ~ k e ) ~ = ~ , ~ , . , ,  denotes the set of zeros of k-th Bessel's 
function J k  = J k ( r )  in r > 0, then the eigenvalues of (3.32) on the 
unit disc are { 4 e > , , , , ,  ,..., k=0,1, ... 7 and the eigenfunctions are given by 
J k ( w k e T )  cos k e  and J k ( w k e T )  sin kB. Thus, they are double except for the 
first eigenvalue. 

If fl = {(z,y,z) I x 2  + y2 + z2 < 1) is the three-dimensional unit ball, 
then the polar coordinate is given by x = rsinecoscp, y = rsinesincp, 
z = T cos 0 with (r,  0 ,  'p) E (0 , l )  x [ 0 , 4  x [0,27r). Noting 

we take the separation of variables II, = Y(0, cp)f(r), and get that 

This quantity is again a constant denoted by p,  and in this way we get 

A * Y + ~ Y = O  (osesA,  0sCp<24, (3.40) 

where A* denotes the Laplace-Beltrami operator on the unit sphere: 
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Because Y = Y(0, 'p) is regular at 8 = 0,1r and 2.rr periodic with respect to 
'p, it can be shown that p = C(C + 1) with C = 0,1 ,2 ,  .... The solution to 
(3.40) in this case is referred to as the C-th spherically harmonic function 
and is denoted by &(e, cp). 

On the other hand, we have from 

(Pf')' - C(C + 1)f + Xr2f = 0 

that f(r) = Se(X1/2r) E Je+l (X1/2r)/r1/2 and eigenvalues are determined 
by the boundary condition, 

Jr++(X1'2)  = 0, 

{ &(e, cp)se(x:fr) I e = o , i , .  . . , = 1 ,2 , .  . .> 

where Jk(p )  is the solution to (3.38). Furthermore, if {X~m}m=1,2 , . . .  denote 
its solutions in X > 0, then the eigenfunctions are given by 

Take the separation of variables Y(0, cp) = p(cp)q(Q) furthermore to (3.40) 
with p = C(C + l),  then we obtain 

p" 
P Q 

(q' sin a)' sin e + + I) sin2 8. _- - - 

This quantity is again a constant, and from the 21r periodicity in cp of p it 
is the form k2 with k = 0 , 1 , 2 , . . .  . On the other hand, by z = cose the 
equation to q is transformed into 

") q = 0 (-1 < z < 1). (3.41) 
1 - 22  

It is called the associated Legendre equation. If C = 0, then it has a solution 
qk ," (z )  = (1 - z2)m/2 (d)" P,(z), regular at z = ktl for m = 0 , 1 , .  . ., 
where P,(z) is the Legendre polynomial defined by 

Even in the general domain, eigenvalues are real, countably many, and 
bounded from below labeled as XI < X2 5 . . . according to their multiplic- 
ities in (3.32) or (3.34). Thus, the fist eigenvalue A1 is always simple and 
is positive and zero according to (3.32) and (3.34), respectively. The L2- 
normalized eigenfunctions form a complete ortho-normal system in L2(f2). 
The number of the nodal domains of the k-th eigenfunction is less than or 
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equal to k. Here, nodal domain denotes the sub-domain of 52 where ?+bk has 
a definite sign. Weyl’s formula says that if A(X) denotes the number of 
eigenvalues to (3.32) less than or equal to A, then it holds that 

as X --$ +m. If Xl(R) > 0 denotes the first eigenvalue of (3.32), then 
Faber-Krahn’s isoperimetric inequality assures that 

X l ( 0 )  L Al(R*), 

where R* denotes the ball (or disc) with the same volume as R. On the 
other hand, Polyci-Szego- Weinberger ’s isoperimetric inequality is indicated 
as 

where /12(R) denote the second eigenvalue of (3.34). In this case, the first 
eigenvalue is always zero. In both cases, the equality holds if and only if 
R = R*. On the other hand, Kac’s problem is stated as to determine R by 
eigenvalues . 

Exercise 3.20 Seek eigenvalues and eigenfunctions for (3.32) and (3.34) for 
the rectangle domain R = (0, a )  x (0, b)  C R2 by the method of separation of 
variables: ?+bk(x, y) = A k ( x ) B k ( y ) .  Then, confirm that multiple eigenvalues 
can arise. 

Exercise 3.21 
sional polar coordinates, respectively. That is, 

Confirm (3.36) and (3.39) in the twc- and three- dimen- 

a 2  1 a 1 a2 A =  - +-- + -- 
dr2 r d r  r2dcp2 

for n = 2 with XI = rcoscp, 2 2  = rsincp in cp E [0,27r) and 

for n = 3 with ZI =rcos@, 2 2  = rsin@coscp, 23 = rsinesincp in @ E [ O , 7 r ] ,  

cp E [0,27r), where T = 1x1. 



Eigenvalue Problems 111 

3.3.2 Gel’fand Triple 

Problems (3.32) and (3.34) are weakly formulated as to find u E V satisfying 

a(u, w) = Xb(u, w) 

for any w E V with V = Hi(R) and V = H’(R), respectively, where 

u(u, v) = V u  . Vvdx and b(u, v) = uvdz. s, 
The spaces Ho((R) and H1(sZ), to be mentioned in later chapters, are Hilbert 
spaces with a : V x V + R being a bounded symmetric bilinear form. It 
also holds that b = b(., -) is the inner product in H = L2(R), and therefore, 
the following abstract theory can guarantee the generation of a complete 
orthonormal system in H from the eigenfunctions of (3.32) or (3.34). 

Let us confirm some notions and facts described in 53.1.3. In this sec- 
tion, H denotes the Hilbert space with inner product ( , ) and norm I I. 
If it has a countable dense subset, it is said to be separable. In this case, it 
admits a complete ortho-normal system (composed of countable members), 
and henceforth this condition is supposed to be satisfied unless otherwise 
stated. Here, {p}zl C H is an ortho-normal system if and only if 

holds, and it is said to be complete in the case that its linear hull, 

is dense in H .  Completeness of the ortho-normal system {pi},”,l is equiv- 
alent to the convergence 

for any f E H .  It is also equivalent to Parseval’s relation 

(3.42) 
i=l 
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for any f E H .  Even if is not necessarily complete, the left-hand 
side is less than or equal to the right-hand side in (3.42), in which case 
it is called Bessel's inequality. In the present section, we show that the 
complete ortho-normal system is obtained by the eigenvalue problem with 
symmetry and compactness. 

The mapping b = b( , ) : H x H -+ R is bi-linear if it satisfies the 
property that 

b(au + Pv, w) = ab(u, v) + ,8b(v, w) 
b(u, av + Pw) = ab(u, w) + ,8b(u, w), 

where u, v7 w E H and a,  ,O E R. It is symmetric if 

b(U,  v) = b(v, u) 

holds for any u, v E H .  It is positive definite if there is b > 0 satisfying 
2 b(u, u) 2 6 IUI 

for any u E H .  Finally, it is bounded if there is M > 0 satisfying 

Nu, .)I 5 M I4 . lvl 

for any u,v  E H .  If such b( , ) is given, it provides the inner product to 
the vector space H ,  and then H becomes a Hilbert space with its topology 
equivalent to the original one. 

Let V be another Hilbert space with inner product (( , )) and norm 
) 1 . 1 1 ,  satisfying V C H as a vector space. We suppose that this inclusion 
involves the topology so that there is K > 0 such that 

14 5 K 1141 
for any u E V ,  and furthermore, that V is dense in H .  Throughout this 
section, those relations are written as V -+ H in short. In this case, if dual 
space H' is identified with H by Riesz' representation theorem, we obtain 

v -+ H = H' c V' 

by restricting T : H -+ R on V ,  where V' is the dual space of V .  This is 
called the Gel 'fand triple. 

If a = a( , ) : V x V -+ R is a symmetric, positive definite, and bounded 
bi-linear form. As is shown later, then we can introduce the bounded linear 

(3.43) 

,
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operator A : V + V' by 

a(u, w) = (Au, w) (u,v E V ) ,  (3.44) 
V',V 

where ( , )v,,v denotes the paring between V' and V so that (T, w ) ~ , , ~  = 
T(w) for T E V' and v E V .  Then the (unbounded) linear operator A on 
H is defined by 

D(A)  = { u  E V 1 Au E H }  

and 

Au = AU (U E D(A) )  . 
We shall show also that this A is self-adjoint, of which notion is described 
in the following paragraph. Henceforth, D(A)  is called the domain of A.  
Then, the range and the kernel of A are given as 

R(A) = {Au I u E D ( A ) }  and N ( A )  = {u  E D(A)  I Au = 0) , 

respectively. 
This paragraph is concluded by the following. 

Theorem 3.11 
isomorphism so that it i s  one-to-one, onto, and bounded with its inverse. 

Proof. 
denoted by 1 1  11. From the boundedness of u( , ) we have 

The linear operator A : V -+ V' defined by (3.44) is an 

The linearity of A is obvious. Remember that the norm in V is 

for u, w E V and hence it follows that 

I MIIuII. 
This assures that A : V -+ V' is a bounded linear operator. 

On the other hand, the relation 
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for u E V implies that 

2 dllull. 

The operator A is thus one-to-one. If R(A) = V' is shown, then T = A-' : 
V' + V satisfies 

llTf II I 6-l Ilf IIV! 

for f E V' and hence is bounded. 
In fact, replacing the inner product in V by a( , ) makes it a Hilbert 

space with an equivalent topology. Given f E V', we can apply Riesz' 
representation theorem and obtain u E V such that 

for any v E V .  This means Au = f and the proof is complete. 0 

For the Dirichlet problem (3.32), we provide the inner products 

b(u,v) = uwdz (u,w E H )  s, 
s, 

and 

u(u, w) = v u  . Vwdz (u, w E V )  

to H = L 2 ( 0 )  and V = H i ( O ) ,  respectively, and then, it is known that the 
relations 

D ( A ) = { ~ E V I A ~ E H }  = H ; ( R ) ~ L ~ ( R )  

and Au = -Au for u E D(A)  hold. 

Exercise 3.22 Confirm (3.43), which means that any T E H' is regarded 
uniquely as T E V'. Then show that H' - V' holds by Hahn-Banach's 
theorem, which means that the inclusion is continuous and dense. 
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Exercise 3.23 Confirm that : V -+ V’ is linear. Confirm also that 
A : v -, V’ is one-to-one. 

3.3.3 Self-adjoint Operator 

Let A be a linear operator with the domain D(A) and the range R(A) in the 
Hilbert space H with inner product ( , ) and norm I . 1, so that D(A) c H 
is a linear subspace and the mapping 

A : D(A) c H -+ H 

is provided with the property that 

A(au+pw) = aAu+PAw (a,p E R, u,w E V ) .  
- 

In the case that D(A) is dense in H ,  that is D(A) = H ,  the adjoint operator 
A‘ is defined by A’v = w‘ if and only if 

(Au, w) = (u,  w’) 

holds for any u E D(A) .  The densely defined linear operator A is called 
self-adjoint if A = A’ holds including their domains. 

The linear operator A is said to be closed if it satisfies the condition 
that {uj} c D(A), uj + u, and Auj -+ w imply u E D(A) and Au = w. It 
is known that if the linear operator A is densely defined, then its adjoint A’ 
is closed. Therefore, a self-adjoint operator is always closed. For a densely 
defined closed operator between Banach spaces, we have the closed range 
theorem. In this case, it is stated as follows. 

Theorem 3.12 
closed linear operator satisfying D(A) = H ,  then it holds that 

If H is a Hilbert space and A : D(A) C H + H is  a - 

R(A) = N(A’)* and R(A’) = N(A)’. 

Furthermore, R(A)  is  closed i f  and only i f  R(A’) is so. 

Here and henceforth, 

L ’ = { ~ E H I ( ~ , w ) = o  forany  EL} 

for L C H .  In the case that L is a linear subspace, it is known that Hahn- 
Banach’s theorem guarantees that = H if and only if L’ = (0). On the 
other hand, R(A)I  = N(A’) and R(A’)I = N ( A )  are easier to prove. 
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A self-adjoint operator A is said to be positive definite if there is 6 > 0 
such that 

2 (Au, u) 2 6 IuI 

holds for any u E D(A) .  In this case, we have 

( A 4  2 dJu(  (u E D(A) )  (3.45) 

and hence N ( A )  = (0) follows. This implies also the closedness of R(A) .  
From Theorem 3.12, we have R(A)  = H and therefore, 

A - ? H + H  

is well-defined as a closed linear operator. Because the open mapping the- 
orem of Banach guarantees that a closed operator with the domain of the 
whole space is bounded, any positive definite self-adjoint operator on a 
Hilbert space has a bounded inverse. 

The self-adjoint operator takes the spectral decomposition, and from 
this fact a non-negative self-adjoint operator admits its .fractional powers, 
although details are not described here. 

Exercise 3.24 
of A is well-defined. 

Exercise 3.25 A densely defined linear operator A is said to be symmetric 
if it satisfies A c A’, that is, D(A)  c D(A’) and A’u = Au holds for 
u E D(A) .  Confirm that this relation is equivalent to 

Confirm that if D ( A )  is dense then the adjoint operator A’ 

(Au, w) = (u, Av) (u, w E D ( A ) )  . 
Exercise 3.26 
its graph 

Show that a linear operator A on H is closed if and only if 

G(A)  = {u CD AU I u E D ( A ) }  

is closed in H x H .  Then, confirm that the inverse operator of a closed 
linear operator is closed if it exists. 

Exercise 3.27 
then its adjoint A‘ is always closed. 

Exercise 3.28 
for a densely defined linear operator A on H. 

Confirm that if the linear operator A is densely defined, 

Confirm that R(A)’ = N(A’)  and R(A’)’ = N ( A )  hold 
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Exercise 3.29 
of the completeness H and the closedness of A = A'. 

Confirm that (3.45) implies the closedness of R(A)  because 

3.3.4 Symmetric Bi-linear F o m  

We recall the notations of s3.3.2. Let 

V r H r V '  

be a Gel'fand triple, where V and H are Hilbert spaces provided with 
the inner products ( , ) and (( , )) and with the norms I . I and 11 . 11, 
respectively. The bi-linear form 

a = a ( ,  ) : V x V + R  

is symmetric, positive definite, and bounded. Then, the bounded linear 
operator A : V -+ V' and the linear operator A : D ( A )  c H --+ H are 
defined by 

and 

respectively. 
The purpose of this paragraph is to show the following. 

Theorem 3.13 The operator A given above is self-adjoint in H .  

Proof. First, we prove that D ( A )  is dense in V .  This implies that it is 
also dense in H .  For this purpose, from Hahn-Banach's theorem it suffices 
to show that i f f  E V' satisfies 

( f , V ) V t , V  = 0 

for any w E D ( A ) ,  then it follows that f = 0. In fact, by Theorem 3.11, 
there is u E V satisfying Au = f. This implies that 

a ( u , v )  = (f,V)vt,v = 0 

0 = a(u, u) 2 b IuI 

for any w E V .  Letting v = u, we have 
2 . 
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Hence u = 0 and f = 0 follow in turn. 

H holds. Because A is one-to-one, the operator 
Using R ( j )  = V’ and D(A) = { u  E V I Au E H } ,  we see that R(A) = 

T = A - ~ H + H  

is bounded by the open mapping theorem. Because a = a( , ) : V x V -+ R 
is symmetric, we have for v = Aw E R(A) = H and u E H that 

(Tu, v) = (Tu, Aw) = (Aw, Tu) = a(w, Tu) = a(Tu, w) 
= ( A .  Tu, W )  = (u,  W )  = (u,  Tv) .  

Thus, T is bounded and symmetric and hence is self-adjoint. From the 
following fact and the relation T-l = A including the domains, we see that 

0 A is self-adjoint in H .  

In the following, T may not be bounded. 

Theorem 3.14 
is one-to-one, then T-’ is also self-adjoint. 

Proof. 
that R(T)’- = (0). In fact, if u E R(T)I ,  then it holds that 

If T i s  a self-adjoint operator on  a Halbert space H and 

First, we prove that D(T-l)  = R(T)  is dense in H by showing 

(Tv,u) = 0 

for any E D(T) .  This implies u E D(T) and (v,Tu) = 0 because T is 
self-adjoint. We now make use of D(A) = H and N ( T )  = (0) to get that 
Tu = 0 and u = 0 in turn. Thus, R(T) = H is proven, and (T-l)’ is 
well-defined. 

If E D ( ( 7 ’ - ’ ) I ) ,  we have 

(u,  = ( T - ~ T U ,  v) = (Tu, ( ~ - 1 ) ’ ~ )  

for any u E D(T). Because T’ = T ,  we have 

(T-’)’v E D ( T )  and T (T-’)’v = v. 

This means v E D (T-l )  and T-lv = (T-’)’v. Conversely, if v E D (T- l )  
and w = T-lv,  we have w E D(T) and v = Tw. It holds that 

(u,  W) = (TT%, W )  = ( T - ~ u ,  T W )  = (T%, .) 
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for any u E D (T-'). This means v E D ((T-')I) and w = (T-l) 'v.  We 

have (T-l)' = T-l including the domains and the proof is complete. 0 

It is obvious that the self-adjoint operator A in Theorem 3.13 is positive 
definite. In connection with its fractional powers, it holds that D (A1/2) = 
V and 

a ( u ,  v) = ( A ' / ~ U ,  ~ ' / ~ v )  (u, v E v). 

Exercise 3.30 
dense in V in Theorem 3.13. 

Confirm that D ( A )  is dense in H using the fact that it is 

3.3.5 Compact Operator 

We continue to suppose that H is a Hilbert space with inner product ( , ) 
and norm 1 . I. A bounded linear operator T : H + H is said to be 
compact if it maps bounded sets to relatively compact set, that is, {Tu,} 
contains a converging subsequence if {u,} is bounded in H .  As is indicated 
in Exercise 2.18, any bounded sequence in H admits a weakly converging 
subsequence so that T : H + H is compact if and only if u, - u implies 
Tun 4 Tu in H .  Here and henceforth, u, 3 u and u, + u indicate the 
weak and the strong convergences so that limn+oo(un, v) = (u, v) for any 
v E H and Iu, - U I  = 0, respectively. This property, referred to 
as the completely continuity, is not equivalent to the compactness for the 
nonlinear operator. 

In the Gel'fand triple V L) H L) V', we say that V - H is compact 
if the imbedding (that is, identity) mapping i : V + H is compact. In 
the case that the symmetric, positive definite, and bounded bi-linear form 
a = a( , ) : V x V 4 R exists, the inner product (( , )) of V is replaced 
by a( , ). Therefore, this condition is equivalent to saying that if u,, u E V 
(n = 1,2,  -..) satisfies a(u,  - u,v) 4 0 holds for any v E V ,  then it holds 
that Iu, - uI --+ 0. We continue to write (( , )) and ( 1  * 1 1  for inner product 
and norm in V .  

First, we show the following. 

Theorem 3.15 If the Gel'fand triple V L) H L) V' with the compact 
inclusion V c--) H and the symmetric, positive definite, and bounded bi- 
linear form a = a( , ) : V x V -+ R are given, then the bounded linear 
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operator T = A-' : H -+ H is compact, where A i s  the self-adjoint operator 
introduced in Theorem 9.14. 

Proof. Let {u,} c H be a bounded sequence. Then, it holds that 

11Tun112 = ~ ( T ~ , , T u , )  = (u,,Tu,) 
- < Iunt . ITunI I K Iunt . lIT%2ll 

and hence 

IlT~nIl L K I%zI 

converging subsequence in H .  0 
follows. Thus {Tu,} c D(A)  c V is bounded in V and hence has a 

For the moment, T denotes a linear operator on H not necessarily 
bounded. Given X E R, the set of solutions to 

TW = XW (3.46) 

forms a linear subspace of' H ,  called the eigenspace associated with the 
eigenvalue A. If the dimension of this space is greater than 1, that is, (3.46) 
admits a non-trivial solution 0 # w E D(T), we say that X and w are an 
eigenwalue and an eigenfunction of T ,  respectively. It is easy to see that 
if T is self-adjoint, then the eigenfunctions u, w associated with different 
eigenvalues are orthogonal so that (u, v) = 0 holds in H .  

This paragraph is concluded by the following. 

Theorem 3.16 If T : H -+ H is  a compact self-adjoint bounded linear 
operator, then IlTll or - IlTll i s  an  eigenvalue of T ,  where llTll denotes the 
operator norm of T .  

Proof. We may suppose that X = IlTll # 0. The linear operator S = 

X2 - T 2  : H -+ H is bounded, self-adjoint, and non-negative, so that 
( S W , ~ )  2 0 holds for any w E H .  Therefore, [u,w] = (Su,w) provides a 
non-negative and bounded bi-linear form on H x H .  Similarly to the proof 
of the abstract Schwarz inequality of Theorem 3.1, we obtain 

2 Ib, W I I  I [u, .I . [V, Vl 

for u, w E H .  Letting w = Su here, we get that 

ISuI4 I 
- < 

(Su, u)  . (S2u, Su) I (Su, u) . p2u1 . IS211 

(Su, u) . 1w2 . IISII 
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or equivalently, 

lSul i 1/sp2 (Su,u)l12 (u E H ) .  (3.47) 

Now, from IlTll = {ITuI I u E H ,  lul = l}, we have {un} c H with 
lunl = 1 and lTunl + A. In this case, it holds that 

((A2 - T 2 )  un,un) = X2 - + 0 

and hence 

(A2 - T2)  '11, 4 0 (3.48) 

follows from (3.47). 

symbol, and w E H such that 
Because T is compact, {un} admits a subsequence, denoted by the same 

Tun 4 w. (3.49) 

This implies X = IwI # 0 and T2un -+ Tw. Therefore, A2un 4 Tw follows 
from (3.48), and then, A2Tun 4 T2w follows so that 

X2w = T'w 

holds by (3.49). 
Therefore, w = (A + T)w satisfies (A - T)w = 0 so that if w # 0,  then 

X = IlTll is an eigenvalue of T .  Otherwise, w = 0 and hence - IlTll is an 
I7 eigenvalue of T by I w I = A. 

3.3.6 Eigenfunction Expansions 

In this paragraph, the eigenfunction w is normalized as lwl = 1, and an 
ortho-normal basis is taken to each eigenspace. Namely, we show the fol- 
lowing. 

Theorem 3.17 If H is a Hilbert space and T : H 4 H is a compact 
self-adjoint bounded linear operator, then i ts  eigenvalues are discrete and 
converge to 0 ,  and each eigenspace i s  of finite dimension. The family com- 
posed of ortho-normal basis of those spaces fo rms  a basis of R(T). 

Proof. We show that linearly independent {u~}:=~ c H with lunl = 1 
cannot satisfy Tun = Xnun with A, 4 X # 0. This assures that eigenvalues 
of T is discrete and can accumulate only to 0. 
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In fact, if {un} are linearly independent and M,, denotes the linear hull 
of ( ~ 1 , .  . . , un}, then there is w,, E M, satisfying 

lwnl = 1 and dist (wn, AdnFl) = inf Iw, - w1 = 1. (3.50) 
VEMTZ-1 

We show that in this case {X;'Tvn} cannot accumulate in H ,  which con- 
tradicts to the compactness of T .  

For this purpose, we take m < n and note that 

Xi1T~, - Xk'Tv, = 21, - (XklTw, - X i 1  (T - A,) wn) (3.51) 

holds true. We have v, E Mn-l and hence T v ,  E Mn-l holds. On the 
other hand, (T - Xn)u,, = 0 is valid and therefore, (T - Xn)vn E Mn-1 

holds. The second term of the right-hand side of (3.51) is in Mn-l. We 
obtain 

IX,'Tvn - X,lT~,I 2 dist (w,,, M,,-1) = 1. 

Thus, { X;lTw,} has no subsequence converging in H .  
We proceed to the latter part. From Theorem 3.16, there are v1 E H 

and XI E R satisfying lull = 1, [A l l  = llTll, and Twl = Xlvl. Then, we 
take H I  = {q}' and note that TI = TIH1 : H I  --+ H I  is a compact self- 
adjoint bounded linear operator. There are € H1 and Xz E R satisfying 
(v21 = 1, lXz l  = IlTlIlf IlTll, and Twz = Xzwz. We repeat the argument, 
taking Hz = {v1,v2} and in this way obtain a sequence of eigenvalues 
denoted by {X j } .  

Let us consider the case that those X j  becomes eventually 0. There is 
n such that An = 0 and X j  # 0 for 1 5 j 5 n - 1. In this case, we have 
Hn-l c N ( T )  and Twj = 0 for j 2 n. On the other hand, wj E R(T) for 
j < n and hence R(T)I c {vl , . . . ,wn-l}  Therefore, recalling 
N ( T )  = R(T)', we get that Hn-1 = N ( T )  and R(T) is a linear hull of 

In the other case, we have An # 0 for any n. Because of the fact proven 
L . . . --f 0. We show that any w E R(T) 

I = 

{ w l , .  . wn-l } .  

before, it holds that lX1l 2 
has the property that 

lim 
n+oo 

i= 1 I 
(3.52) 
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In fact, in this case we have w = Tu with some u E H .  Letting b j  = (w, u j )  

and cj = (u, Vj), we have 

and hence 

follows. This implies 

and therefore, by IlTnll = IXn+l( and 

I n 1  

(3.53) 

we obtain 

This means (3.52) and the proof is complete. 0 

Confirm that the eigenvalues {A} of T in 1x1 > E is finite Exercise 3.31 
for each E > 0 and that they are actually discrete. 

Exercise 3.32 
of Theorem 3.17. 

Show that there is v, E Mn satisfying (3.50) in the proof 

Exercise 3.33 
adjoint bounded linear operator in the proof of Theorem 3.17. 

Exercise 3.34 

Confirm that TI = TIH1 : H1 -+ H1 is a compact self- 

Confirm (3.53) in use of the argument developed in $3.2.2. 
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3.3.7 Mini-Max Principle 

Let V ~f H c-f V' be the Gel'fand triple with compact V ~f H and 
b = b( , ) : H x H -+ R and a = a( , ) : V x V .--) R be symmetric, positive 
definite, and bounded bilinear forms. Replacing the inner product in H by 
b( , ), we take the self-adjoint operator A associated with a( , ) so that 
A : V + V' is defined by Au = f if and only if 

4% v) = b ( f ,  

for any v E V, and A : D(A)  c H + H is the restriction of A to 

D(A)  = { u  E V I du E H } .  

Then, T = A-' : H --+ H is a compact self-adjoint bounded operator, and 
the eigenfunctions associated to the non-zero eigenvalue to 

TV = XU 

provides an ortho-normal basis {vi} of R(T) = D ( A )  such that 

b(vi, vj) = Sij. 

Thus, any v E D(A)  admits the relation 

n 

lim v - c a i v i  = 0 for ai = b(v ,v i ) .  (3.54) I i=l I n+w 

- 
This relation is valid for any v E H ,  because D(A)  = H .  Theorem 3.17 
now implies the following. 

Theorem 3.18 Suppose that H is  separable and of infinite dimension, 
and that the inclusion V ~f H i s  compact in the GelIfand triple of Hilbert 
spaces V -+ H -+ V'. Suppose, furthermore, that b = b( , ) : H x H -+ R 
and a = a(  , ) : V x V + R are symmetric, positive definite, and bounded 
bilinear forms. Then, the eigenvalue problem 

v E V, a(v, w) = pb(v ,  w) f o r  any w E V (3.55) 

provides a countably many  eigenvalues with the finite multiplicity, denoted 
by 
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and the associated normalized system of eigenjunctions { w i } F l  forms a 
complete ortho-normal system in H in the sense that 

b(vi, vj) = 6ij 

and (3.54) holds f o r  any v E H .  

Here and henceforth, dimension of eigenspace associated with the eigen- 
value in consideration is called multiplicity. In the above theorem, the eigen- 
values are labeled according to their multiplicities and each eigenvalue takes 
one normalized eigenfunction. Furthermore, those eigenfunctions with the 
same eigenvalue are so arranged to be orthogonal by the orthogonalization 
of Schmidt. 

Under those circumstances, it holds that 

Then, it is easy to see that 

holds. Henceforth, 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

R[vI = a ( v ,  v)/b(v,  v) 

is called the Rayleigh quotient, and (3.59) the Rayleigh principle. 

referred to as the mini-maa: principle. 

Theorem 3.19 It holds that 

A generalization of the Rayleigh principle is given by the following, 

- - max min R[v],  
v k  V E V k \ { O }  

(3.60) 

(3.61) 

where {Lk} and {vk} denote the families of all subspaces of H with the 
dimension k and the codimension k - 1, respectively. 
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Proof. To prove the first equality, we set 

= inf max R[v] 
L k  V E L k \ { O )  

and 
I Hn = (~1,. . ., vn}  

= {v E H I b ( V , V i )  = 0 (1 5 2 5 n)}. 
Then, for any L k  we have 6 E L k  \ {o} in 6 E H k - 1  and it follows from 
(3.58) that 

This implies 

A k  1: hk. 

On the other hand, if L k  is taken as the linear hull of (211,. . . , Vk}, then 
again from (3.58) we obtain 

Thus, A k  is attained and is equal to pk. 
To prove the second equality, we put 

Let W, be the linear hull of (211,. . . , V n } .  Then, any v k  satisfies v k  fl W k  # 
{0}, and (3.58) guarantees that 

and hence & 5 p k  follows. On the other hand, for V k  = H k - 1  we have 

inf R[v] = min R[v] = pk. 
V E V k \ { O )  V E  vk \ { 0) 

Thus, is attained, and is equal to pk. The proof is complete. 0 

Exercise 3.35 

Exercise 3.36 

Confirm that (3.54) holds for any v E H 

Confirm that (3.58) and (3.59) hold true. 
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3.4 Distributions 

3.4.1 Dirac's Delta Function 

Distributional derivative is mentioned in 52.3.3. The notion of distribu- 
tion is a generalization of that of function, and in this framework several 
calculations are admitted rigorously. 

In 85.2.4, we shall introduce the Gaussian kernel 

(Z = (XI,. . . , z,) E R", t > 0) (3 .62)  

and the operation 

[G(., t )  * UO] (.) = G(. - Y ,  t)UO(Y)dY. s,. 
There, it will be shown that u(., t )  = G( . ,  t )  * u o  solves 

dU - = AU 
at (a: E Rn, t > 0) 

with 

if uo E LP(Rn) with p E [l,oo), where Lp(R") denotes the set of p 
integrable functions. Then, what is 

6(a:) = lim G(z, t )  ? 
t l 0  

Because of 

Ln G(z , t )da:  = 1 

it must hold that 

However, such an object is not obviously a function any more. Actually, it is 
called Dirac 's delta function, but is contained in the category of distribution, 
regarded as a natural extension of the notion of functions. This section is 
closely related to the objects treated in $5.2.  The reader can skip this, but 
the program is as follows. 
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Let $2 c Rn be a domain, and Cr(R) be a set of functions differen- 
tiable arbitrarily many times with compact supports contained in R. It is 
topologized as the inductive limit of VK,(R) as n + 00, where {Kn}r==l is 
a family of compact sets in R satisfying U,M,~K, = R, and 

V K  = {f E c r ( R )  I SUpp f c K } .  

This space V K  can be provided with the distance if K c R is compact, al- 
though it is impossible to give norm here. It is complete in this distance and 
belongs to the category Frechkt space. The vector space Cr(f2) topologized 
in this way is denoted by V(R). Then, we take the dual space 

V'(R) = (7' : V(R) + R I continuous linear} 

and each element in D'(R) is called the distribution on R. 
A remarkable theorem of Bourbaki assures that the linear mapping T : 

D ( 0 )  -+ R is in V'(R) if and only if for any compact set K c 52 and 
any sequence {cpj} c VK(R) satisfying d*cpj -+ O uniformly on K for any 
multi-index a,  it holds that T(cpj) + 0. Remember that a = (al,-.-,
with non-negative integers a1, . . . , a, is indicated as the multi-index, and 

If a measurable function f = f(x) is summable on any compact set 
K C R, it is called locally summable. The set of such functions is denoted 
by Ltoc(R). For such f ,  the linear mapping T : V(R) -+ R is defined by 

(3.63) 

It is not difficult to see that this T ,  denoted by T f ,  is in D'(52). 

with a distribution in R in this way. 

Theorem 3.20 

Proof. 

The following theorem assures that the function in Ltoc(R) is identified 

The mapping f E L;,,,(R) T'f E V'(R) is  one-to-one. 

Given f E ~ 5 ; ~ ~ ( 5 2 ) ,  we shall show that if 

(3.64) 

holds for any cp E D(R), then it follows that f = 0 almost everywhere. 
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Let p(dx) be the n-dimensional Lebesgue measure and {Km}E=l be a 
sequence of compact sets in 52 monotone increasing and satisfies UmKm = 
R. Taking 

AZ,, = { x E Km 

we shall show that 

p(A$,,) = 0 for an: 

Then, it holds that p ( B )  = 0 for 

(3.65) 

B = U c m = 1  [A;,, u Am,,] . 
Because B = {z E R I f(x) # 0) holds, this implies that f = 0 almost 
everywhere and the conclusion follows. 

To confirm (3.65), let us assume the contrary that p ( A )  # 0 for some 
A = A$,,. Then, from a property of the Lebesgue measure any E > 0 
admits compact K and open G in K C A c G c c c R with c compact 
such that p(G \ K )  < E .  In this case, there is cp E CF(0) with the value in 
[0, 11 such that 

(on G") . 

Thus, we obtain 

(3.66) 

Because of f E &JR), we have 

if E > 0 is small enough. Then the right-hand side of (3.66) is greater than 
0 

If T E D'(O), then S(cp) = (-l)lalT(aacp) for cp E D(R) is in D'(0). We 
set S = dQT and in this sense the distribution is differentiable arbitrarily 
many times and the order of differentiation can be changed arbitrarily. 

1, 2n but this contradicts to (3.64) for any cp E D(R). 
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If Tj ,  T E V’(S2) satisfy 

lim Tj((p) = T ( p )  
j - tm 

for any cp E V(R), then we say that -+ T in V’(R). 

Exercise 3.37 
also that i f f  is a C1 function on R, then 

Show that T = Tf defined by (3.63) is a distribution. Show 

for j = l ; . . ,n .  

3.4.2 Locally Convex Spaces 

Let X be a linear space over R or C. In the rest of this section, we take 
the case that X is over C. Then the mapping p : X + R is said to be a 
semi-nonn if it satisfies the axioms that 

P@ + Y )  5 P(Z) + P ( Y )  (5,Y E XI (3.67) 
P(ax) = I4 P b )  ( Z E X ,  a E C ) .  

From those relations we can derive that 

(3.68) 

In particular, p ( s )  2 0 holds for any z E X .  
We say that V c X is absolutely convex if a x  + p y  E V follows from 

x, y E V and la1 + 1/31 5 1, where a,  /3 E C. We say that V c X is absorbing 
if any z E V admits a > 0 such that a-lx  E V .  The proof of the following 
theorem is left to the reader. 

Theorem 3.21 I f  p i s  a semi-norm on  X ,  then 

is absolutely convex and absorbing. Conversely, if V c X is absolutely 
convex and absorbing, then 

pv(z) = inf { a  > o I a-la: E V }  

is a semi-norm on  X .
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Henceforth, p v  is referred to as the Minkowski functional induced by V .  
A family P of semi-norms on X is said to satisfy the axiom of separation 

if x E X with p ( z )  = 0 for any p E P implies z = 0. In this case, X is 
provided with the Hausdorff topology by defining the convergence of net 
{z,} c X to z by p ( x ,  - x) t 0 for any p E P .  It is referred to as the P 
topology of X. Actually, in this topology, the fundamental neighborhood 
system of 0 E X is given by 

where UniPl ,..., ,,; ,..., = {x E X I p j ( x )  I ~j (1 5 j I n ) } ,  and then, 
the fundamental neighborhood system of 50 E X is (20 + U I U E U}. Un- 
der the P topology, the linear operations (x, y )  H x+ y and (a,  x) H ax are 
continuous in X, and in this sense, X becomes a topological vector space. 

The vector space X is said to be a locally convex space if it is provided 
with some P topology. Then, P is said to be the semi-norm system deter- 
mining the topology of X .  The proof of the following theorem is also left 
to the reader. 

Theorem 3.22 If q is a semi-norm on X ,  then it is continuous in P 
topology if and only if there are some n, P I , .  . . , pn E P, and c1 , . . . , c, > 0 
such that 

Admitting the above theorem, we see that if q is a continuous semi- 
norm on X with respect to P topology, then P topology is equivalent to 
P' topology, where P' = P U { q } .  Generally, we say that a family of 
semi-norms P' defines the topology of X if P' topology is equivalent to 
the original one, the P topology. J3om those considerations, we see that a 
fundamental neighborhood system of 0 in X is taken as 

{V, I p is a continuous semi-norms on X} . 

Exercise 3.38 

Exercise 3.39 

Derive (3.68) from (3.67). 

Give the proof of Theorem 3.21. 
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Exercise 3.40 
the P topology. 

Exercise 3.41 
V, = {x E X I q(z) 5 1) is a neighborhood of 0. 

Exercise 3.42 
that 

Confirm that X becomes a topological vector space under 

Show that a semi-norm q on X is continuous if and only if 

Given an absolutely convex and absorbing set V c X, show 

V c V, c nA,lXV 

holds for p = p v .  Then, prove that it is a neighborhood of 0 if and only if 
its Minkowski functional p v  is continuous. 

Exercise 3.43 Mimicking the case of normed spaces, show that if X and 
Y are locally convex spaces and T : X -+ Y is linear, then T is continuous 
if and only if any continuous semi-norm q on Y admits a continuous semi- 
norm p on X such that q(Tx) 5 p ( x )  holds for any x E X .  

3.4.3 Re'chet Spaces 

Locally convex space X is said to be normizable if there is a family of 
semi-norms P determining its topology consisting of one element. Locally 
convex space X is said to be metrizable if there is a distance d( , ) which 
provides an equivalent topology to X .  Now, we show the following. 

Theorem 3.23 Locally convex space X is metrizable i f  and only i f  there 
is a family of semi-norms P determining its topology which consists of a 
countable number of elements. 

Proof. If P is countable as P = {pj  I j = 1 ,2 , .  . .}, then 

(3.69) 

is a metric provided with the required properties. Conversely, if d( , ) pro- 
vides the metric equivalent to the original topology to X, then {V,}:, is a 

fundamental neighborhood system of 0, where V.  - x E X 1 d(x, 0) 5 i}. 
Then, there exists a continuous semi-norm p j  such that Vpj c V,, and 

4 
P = { p j }  provides the equivalent topology to X. 
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A net (5,) c X is said to be Cuuchy if p ( z ,  - zp) -+ 0 holds for any 
p E P as v , p  -+ 00. Then, locally convex space X is said to be complete 
if any Cauchy net (5,) c X admits z E X such that z, -+ z as v -+ 00. 

I;lre'chet space indicates a complete metrizable locally convex space. In this 
case, convergence of Cauchy sequences is sufficient for the completeness to 
establish. 

We have put that DK = {'p E Cr(R) I supp 'p c K }  if R c R" is a 
domain and K c R is compact. Then, 

is a semi-norm on D~)K (0) for m = 0, 1,2,  . . ., and DK (0) becomes a F'rbchet 
space by P = {pm. I m = 0,1,2, .  . -}. 

Another example is €(R) = Cm(R). In fact, 

is a semi-norm on €(O) for m = 0,1, .  . . and a compact set K c R. Then, 
€(a) becomes a F'rCchet space by 

P = {pm,K I m = 0,1,2, .  . . ; K c R :compact}. 

Exercise 3.44 Show that d( , ) defined by (3.69) is a metric on X .  Show 
also that the net (z,} c X converges to z E X in P topology if and only 
if d(z,, z) -+ 0 holds. 

Exercise 3.45 
norms determining its topology, then B C X is said to be bounded if 

If X is a locally convex space with the family P of semi- 

supp(z) < +oo 
xEB 

holds for any p E P.  Show that X is normizable if and only if there is a 
bounded neighborhood of 0. 

Exercise 3.46 

Exercise 3.47 

Show that DK(R) is a F'rCchet space. 

Show that &(R) is a FrCchet space. 
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3.4.4 Inductive Limit 

Let X1 c X2 c - . -  c X, c Xn+l c 0 . .  be a sequence of locally convex 
spaces and suppose that the original topology of X, is equivalent to the one 
induced by Xn+l for n = 1,2,. . .. Henceforth, we shall write X, - Xn+l 
for this situation. Our purpose is to make X = U?==,X, a locally convex 
space satisfying X, ~ - f  X for any n. First, we note the following. 

Lemma 3.2 If X and Y are locally convex spaces satisfying X ~ - f  Y ,  
then any absolutely convex neighborhood of 0 in X denoted by U admits an 
absolutely convex neighborhood W of 0 in Y such that U = W n X. 

Proof. From the assumption, there is an absolutely convex neighborhood 
V of 0 in Y such that X n V c U .  We shall show that the convex hull of 
U U V is provided with the required properties: 

w = { X u +  (1 -X)w I u E u, w E v, 0 5 X 5 1). 

First, to show U = W n X we note that U c W n X is obvious. If 
w E W n X, then it is written as X u  + (1 - X)w. We have 

(1 - X)w = w - X u  E x .  

I f X # l , t h e n w E X n V ~ U a n d h e n c e w = X u + ( l - X ) w E U f o l l o w s .  In 
the case of X = 1, it holds that w = u E U .  In any case, we get w E U and 
hence W n X c U follows. 

Next, we show that W c Y is absolutely convex. For this purpose, we 
take la1 + [PI 5 1, u1,u2 E U ,  w 1 , w z  E V ,  and 0 5 X 1 , X z  5 1. Then, it 
holds that 

The right-hand side is expressed as X3u3 + (1 - X3)w3 with u3 E U ,  w3 E V ,  
and 0 I A3 2 1, and therefore, in W .  

We finally note that W c Y is a neighborhood of 0 because V c W ,  
and the proof is complete. 
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Analytic expression of the previous lemma is given as follows. 

Lemma 3.3 If X and Y are locally convex spaces satisfying X L, Y ,  
then any continuous semi-norm p o n  X admits a continuous semi-norm 9 
on  Y such that $Ix = p. 

Proof. We can apply Lemma 3.2 to V, = {z E X I p(x) 5 1). Then, we 
get an absolutely convex neighborhood W of 0 in Y ,  such that W n X = 
V,. Letting f i  = p w ,  the Minkowski functional of W c Y ,  we obtain the 
conclusion. In fact, 6 is a continuous semi-norm on Y. Furthermore, if 
x E X then it holds that 

p w ( z )  = inf{a > o I a-lx E W }  
= inf { (Y > 0 1 a-lz E W n X} 
= inf { a  > o I a-lz E vP} 
= inf {a > o I a - l p ( z )  5 I} = p(x). 

The proof is complete. 0 

Now, we show the following 

Theorem 3.24 
of locally convex spaces, X = Ur=lXn, and 

Let X1 L, X 2  - . . . L-) X ,  L-) Xn+l L, . . . be a sequence 

P = { p  : semi-norm on  x I plxn i s  continuous fo r  any n}  . 

Then, P admits the a d o m  of separation, and induces P topology to  X. 
Proof. 

There is X, such that x E X,. Let Pn be the family of semi-norms 
determining the topology of X,. Applying Lemma 3.3 successively, we see 
that any q E P, admits a semi-norm Q on X such that Qlxn = q and Q l x ,  
is continuous on X,,, for any rn  2 n. This guarantees Q E P and hence 
Q(z) = q(z) = 0 from the assumption. Because q E P, is arbitrary, we see 

0 

Because P induces topology to any Y c X, the following fact is to be 

Let x E X satisfy p ( z )  = 0 for any p E P .  

that z E X ,  is equal to 0. This means the conclusion. 

noted. 

Theorem 3.25 
induces the topology to X, c X equivalent to  the original one. 

Proof. 

The P topology introduced to  X in the previous theorem 

The assertion follows from the definition of P and the fact that 
any q E P, admits Q E P such that QIxn = 4. 



136 Infinite Dimensional Analysis 

The following fact indicates that P topology of X is independent of the 
choice of {Xn}, and the proof is left to the reader. 

Theorem 3.26 Let XI ~ - - f  X z  - ... - X m  - X m + 1  ~f ... be a 
sequence of locally convex spaces equivalent to  XI + X2 + * . -  + Xn + 

Xn+l - . . ., which means that any n admits m satisfying Xn c+ Xm and 
any m admits n satisfying X m  -+ X,. Then, P and P topologies introduced 
to X through {X,} and { X m } ,  respectively, are equivalent to  each other. 

The locally convex space X defined in this way is called the inductive 
limit of {Xn} and is written as X = 1imn+X,. The only if part of the 
following theorem is obvious by Theorem 3.25. 

Theorem 3.27 If X = limn+ X,, Y is  a locally convex space, and T : 
X 4 Y is linear, then T is  continuous i f  and only i f  TI,, : X, + Y is 
continuous for any  X,. 

Proof. To prove the if part, we shall apply the criterion given by Exercise 
3.43. Thus, given continuous semi-norm q on X ,  we show the existence of 
a continuous semi-norm p on Y such that q(Tz) 5 p ( z )  for any z E X. In 
fact, p ( z )  = q ( T x )  is a semi-norm on X and pix, is continuous for each 
Xn from the assumption. This implies p E P and the proof is complete. 0 

If R c R" is a domain, the locally convex space D(R) = Cr(R) is 
defined by D(R) = lim,,DK,,(R), where {K,} denotes a monotone in- 
creasing family of compact sets in R satisfying UnKn = R. However, D(R) 
does not satisfy the first axiom of countability. 

Exercise 3.48 Let X = UF!,Xn and P be as in Theorem 3.5, and U C X 
be absolutely convex. Then, show that U is a neighborhood of 0 in X if 
and only if UIx, is a neighborhood of 0 in Xn for any n. 

Exercise 3.49 Prove Theorem 3.26 by showing that any p E P satisfies 
p E P .  

Exercise 3.50 Show that the topology of V(R) is independent of the choice 
of the monotone increasing family of compact sets {K,} satisfying u,K, = 

a. 
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3.4.5 Bounded Sets 

If X is a locally convex space with the family of semi-norms P determining 
its topology, the set B C X is said to be bounded if { p ( x )  I x E B }  is 
bounded for any p E P. In the case of X = limn+ X,, if B c X is bounded 
then we have B c X ,  for some X,. This is a key structure to make the 
definition of distributions, D’(R), much simpler. We note the following. 

Lemma 3.4 If X L) Y are locally convex spaces, xo E Y \ X ,  and U 
i s  an  absolutely convex neighborhood of 0 in X ,  then there i s  an absolutely 
convex neighborhood of 0 in Y ,  denoted by W ,  such that U = W n X and 
20  # W .  

Proof. We shall only give the outline. First, we take an absolutely convex 
neighborhood V of 0 in Y such that V n X c U and (ZO + V) n U = 0. 
Then, the desired set is given by 

w = { X u +  ( 1  - X)v I u E u, v E v, 0 I X 5 1). 
0 

Now, we give the following. 

Theorem 3.28 
there is X ,  such that B C X ,  is bounded. 

If X = limn+ X,, then B c X is bounded if and only i f  

Proof. We show that if B c X is bounded then B c X ,  holds with 
some X ,  because the other cases are obvious. In fact, if this is not the 
case, there are X,, - Xn2 + ... and { U k }  c B in u k  E X,,,, \ Xnk for 
k = l 1 2 , - . - .  By Lemma 3.4, we have an absolutely convex neighborhood 
wk of 0 in X,, satisfying 

U k  
Wk+l n Xn, = W k  and $! W k + i  

for k = 1,2, .  . .. Then W = Ur=.=, W k  is absolutely convex in X and is a 
neighborhood of 0 there by Exercise 3.48. 

If 2 E W ,  then 2 E WnX,,,, = wk+l. This is impossible and hence 

holds for k = 1,2 , .  . .. However, { U k }  c B is bounded and hence 2 + 0 
follows as k -+ 00. This is a contradiction, and the proof is complete. 0 
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The following fact is a direct consequence of Theorem 3.28 because 
any Cauchy sequence is bounded. Actually X = limn+ Xn is a complete 
uniform space in that case, although X may not be a Frkchet space in that 
case. 

Theorem 3.29 
sequentially complete. 

If each X,, is a fie'chet space, then X = lim,+X,, is 

Exercise 3.51 Complete the proof of Lemma 3.4. 

Exercise 3.52 Introduce a suitable topology to the set of holomorphic 
functions on a domain R c C and make it a (sequentially) complete locally 
convex space. 

3.4.6 Definition and Examples 

If 52 c R" is a domain, then each element of 

D'(R) = {T : D(R) -+ C I continuous linear} 

is called the distribution on R. From Theorem 3.27, if T : D(R) -+ C is 
linear, T E D'(R) if and only if 

is continuous for any compact K c 0. This condition is equivalent to 
saying that any compact K c R and integer m 2 0 admits C > 0 such that 

lT(cp)l 5 c SUP Idacp(.)I 
zEK, lallrn 

for any cp E DD,(R), or that for any compact K C R and for any sequence 
{cp j }  c 'DK(R) satisfying P c p j  -+ 0 uniformly on K it holds that T(cpj) -+ 

0. This fits the rough definition in $3.4.1 and by Theorem 3.20 any locally 
summable function on R is regarded as a distribution there. 

A Radon measure p ( d x )  on R is a Bore1 measure such that p ( K )  < +oo 
for any compact K c 0. Then, it is easy to see that 
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defines a distribution on R. Furthermore, p H Tp is shown to be one-to- 
one, and in this sense the Radon measure is regarded as a distribution. In 
particular, 

44P) = c p b )  (9 E D(fl)> 

defines a distribution for p E R. It is called the Dirads delta function and 
is denoted by 6 = 60 E D'(Rn) for simplicity. Also, sometimes it is written 
as d(dx) or b(x).  

In the one-dimensional case, 

defines a distribution P.f. :. In fact, we have 

and hence 

(3.70) 

follows for cp E D ( 0 ) .  If m E C \ { - 1 ,  -2 , .  . .} we take an integer k > 0 in 
!Rm+lc+l > -1 andset 

for cp E D(R). 
If T E D'(R), then 

S(cp) = ( -1) '"lT(m4 (cp E D(W) 

defines S E V'(R), where (Y is a multi-index. It is denoted by S = d"T. 
In s3.4.1 we note that P T f  = Taaf if f = f ( x )  is a C" function in R 
for m = IaI. It also holds that aa6(q) = ( - 1 ) l " ' P ( p ( O )  for cp E D(R). 
In this way, the distribution can diflerentiable any times and the order of 
differentiations can be changed arbitrarily. 
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In the one-dimensional case, the locally summable function 

1 ( x  L 0) { 0 ( x  < 0) 
Y ( x )  = 

is called the Heaviside function. Then it holds that 

d 
dx 
-Y(x)  = 6(2) (3.72) 

as a distribution on R. In the n-dimensional case, the locally summable 
function 

(n 2 3) 
(n = 2) 

1 
qX) = 

satisfies 

Ar = b ( d X ) ,  (3.73) 

where A = Cj”=, a2 denotes the Laplacian and wn is the area of n- 
dimensional unit ball. The cases of n = 2 and n = 3 are called the Newton 
potential and the logarithmic potential, respectively. 

Generally, the linear differential operator L ( D )  with constant coeffi- 
cients, T E D’(R”) is called the fundamental solution if L(D)T = S(dx) 
holds. The Malgrange-Ehrenpreis theorem guarantees the existence of the 
fundamental solution for each L(D) .  The Gaussian kernel G(x, t )  defined by 
(3.62) is also called the fundamental solution to - A, because it satisfies 
that 

(at - A)G(x, t )  = 0 (5, t )  E R” x (O,OO) 

and 

lim G(x, t )  = 6(dx). 
t l0  

Exercise 3.53 
where M(S2) denotes the set of Radon measures on R. 

Exercise 3.54 

Show that p(dx) E M(S2) H Tp E D’(S2) is one-to-one, 

Confirm that P.f. 2 E D’(S2) is well-defined by (3.70). 
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Exercise 3.55 Show that P.f. ( z ~ ) ~ , o  defined by (3.71) is a distribu- 
tion on R. In use of the partial integral and take the convergent part 
of som smcp(z)dz  and in that way define P.f. (zm)z>~ for m = -2, -3 , .  . . 
as in the case of m = -1. 

Exercise 3.56 Confirm (3.72). 

Exercise 3.57 Show that (3.73) holds in use of the argument in 85.3.6. 

Exercise 3.58 Seek fundamental solutions to A2 in R2 and R3 in the form 
of K (1.1) in use of the logarithmic and Newton potentials, respectively, and 
the representation in polar coordinate of x = 121 w.  

Exercise 3.59 Writing z = x + zy E R2 S C and f = x - zy, we have 

z + f  2 - 7  
x = -  and y =  - 

2 22 

and hence 

follow. First, confirm that f is holomorphic if and only if af/m = 0 and 
then it holds that af/az = f'(z) in use of Cauchy-Riemann's relation. 
Second, prove that 

holds as D'(R2). 

3.4.7 Fundamental Properties 

In this paragraph, we shall try to perform some calculations. First, we 
show the following. 

Theorem 3.30 It holds that 

d 1 
d x  5 
- (log 1x1) = P.f - 

as D'(R). 

(3.74) 
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Proof. 
get for cp E D(R) that 

In fact, we have log 1%) E Lioc(R). Then, from the definition we 

Here, we have 

as E 1 0  and hence (3.74) follows as 

The proof is complete. 

Now, we show the following. 

Theorem 3.31 If T E V’(R) satisfies 

d 
dx 
-T = 0, 

then T = c with some c E C .  

Proof. We take cpo E D(R) in s-”, cpo(x)dx = 1. If cp E D(R), then 

We have 

SATIS
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and from the assumption it follows that 

T($)  = T(\k’) = -T’(3)  = 0. 

This means that 

or equivalently, T = T(cp0) E C, and the proof is complete. 0 

Given an absolutely continuous function f = f ( x ) ,  we distinguish its 
classical derivative f ‘  and its distributional derivative % for the moment. 
However, those two notions coincide as follows. 

Theorem 3.32 If f = f (x) is  locally absolutely continuous on  R, then 
it holds that % = f’ as distributions. Conversely, i f f  and $ are locally 
summable functions, then f = f (x), modified on a set of Lebesgue measure 
0, becomes locally absolutely continuous on  R and it holds that f’ = $ 
almost everywhere. 

Proof. 
for cp E D(R) that 

The first part is easier to prove, as under the assumption it holds 

To prove the latter part, we also take cp E D(R) and note that 

(g) cpdx = Tg(cp) = -Tf(p’) 
d x  

Let x E CF(R) be such that 0 I x = x(z) i 1 and 

(3.75) 
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Given a < b, we take 

where n = 1 , 2 , . . .  . 
z > b + n-l, and relation (3.75) gives 

Then, it holds that x(z) = 0 if z < a - n-l or 

Here, the left-hand side converges to  

as n + 00 from the dominated convergence theorem. On the other hand, 
the right-hand side is equal to  

The first term is treated as 

and therefore, it converges to 0 when a is the Lebesgue point of f .  The 
second term is treated similarly, and thus we obtain 

for almost every ( a ,  6 )  E R2. This implies the conclusion, and the proof is 
complete. 0 
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Exercise 3.60 Put 

145 

&P.f. (xm-l)z>O (m # 0, -1, -2,. . .) 
(m = 4; e = 0, 1,2, . . .), y m = {  (X) 

and show that Ym(cp) is a continuous function of m for any cp E V(R) and 
that 

d -Y -Ym-l 
d x  m -  

holds true, where 
02 

y(z) = 1 e-ssz-lds ( x  > 0)  

denotes the Gamma function. 

Exercise 3.61 Confirm that if g(z) is summable on [a, b], then 

f ( x )  = J’g(x)dx 

is absolutely continuous on [a,  b] .  

Exercise 3.62 
Then, S E V’(52) is defined by 

Let 52 c R” be a domain and f E Cm(52) and T E D’(52). 

S(cp) = T(fcp) (cp E V)) 7 

and is denoted by S = f T .  Show that the Leibniz formula (or chain rule) 

holds for j = 1, ... ,n. 

3.4.8 Support 

Let R c R” be a domain, and T E VI(52). If U c R is open, then we say 
that T vanishes on U ,  or TI, = 0 in short, if T(cp) = 0 for any cp E Cr(U). 
The following fact will be obvious. 

Theorem 3.33 
each a, then it holds that TIuaua = 0. 

If {Ua} be a family of open sets in 52 and TIua = 0 for 
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Therefore, supp T of T E D'(R) is defined as the maximal closed set F 
in R such that T vanishes on R \ F .  In 53.4.3, we have introduced the space 
€(a) = Cm(R). We have D(R) c &(R) including their topologies, and 
hence any T E &'(R) restricted to D(R) is regarded as an element in D'(R), 
denoted by TO. Furthermore, the mapping T E E'(R) H TO E D'(C2) is 
one-to-one because the inclusion CF(0) c E ( R )  is dense. Thus, we obtain 

E'(R) c D'(R). 

In fact, we have the following. 

Theorem 3.34 It holds that 

E'(R) = {T E D'(R) I supp T : compact) 

Proof. 
m 2 0, and a constant C > 0 such that 

In fact, if T E &'(R), there is a compact set K c R, an integer 

for any 'p E E(R). This implies T(p) = 0 for 'p E CF(R) satisfying 
supp 'p c R \ K .  In particular, supp T c K follows. 

Conversely, if the support of T E D'(C2) is compact, denoted by K c R, 
then we take 1c, E Cr(R2) in $(x) = 1 for z E K .  Then, taking T,('p) = 

T(+p) for 'p E Cm(R),  we have TolCom(,) = T and TO E E'(R). The proof 
is complete. 0 

The proof of the following two theorems is not described here. In fact, 
for the first theorem, the representation theorem of Riesz is made use of, 
and then the second theorem is a consequence of the first one. 

Theorem 3.35 
with 1 0 1  I m such that supp T C supp f a  and 

Any T E E'(R) admits an integer m L 0 and f a  E C(a) 
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Theorem 3.36 
integer m 2 0 and constants C, it holds that 

If T E D(Rn) satisfies supp T C {0},  then for some 

Exercise 3.63 Confirm Theorem 3.33. 

Exercise 3.64 

Exercise 3.65 

Show that supp d"T c supp T for T E D'(R). 

Confirm that CF(R) c €(a) is dense. 

3.4.9 Convergence 

First, we develop the abstract theory. Let X, Y be locally compact spaces, 
and set 

L ( X ,  Y )  = {T : X --+ Y I continuous linear} . 

Several topologies can be introduced to L ( X ,  Y ) .  Henceforth, we put 

Pq,F(T) = SUP q(Tz), 
x E F  

where q is a semi-norm on Y ,  F c X, and T E L ( X ,  Y ) .  If q is continuous 
and F is bounded, then this value is finite, and Pqp becomes a semi-norm 
on L ( X ,  Y ) .  Then, each family 

Pb = { P q , ~  I q : continuous semi-norm on Y ,  F C x : bounded) 

P, = { P q , ~  I q : continuous semi-norm on Y ,  F c X : compact} 

P, = { P q , ~  I q : continuous semi-norm on Y, F c X : finite} 

enjoys the axiom of separation and induces a topology to L ( X ,  Y ) .  Those 
topologies by Pb, P,, and Ps induce for the net on L ( X ,  Y )  the convergence 
of uniform on each bounded set, that of uniform on each compact set, 
and that of pointwise, respectively. A subset B of L ( X ,  Y )  is called equi- 
continuous if any continuous semi-norm q on Y admits a continuous semi- 
norm p on X such that 
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for any x E X .  The following theorem is referred to as that of Banach- 
Steinhaus. 

Theorem 3.37 If X is a Fre‘chet space or an inductive limit of F’re‘chet 
spaces and Y is a locally convex space, then for B c L ( X ,  Y )  the following 
items are equivalent to each other. 

(1) B is bounded in P, topology. 
(2) B is bounded in P, topology. 
(3) B is bounded an PL, topology. 
(4) B i s  equi-continuous. 

In fact, the inclusions (4) j. (3) j (2) j. (1) are obvious. The inclusion 
(1) j. (4) is called the resonance theorem in the case that X is a F’rkhet 
space. The general case of X is treated by this fact, although details are 
not described here. 

The proof of the following fact is left to the reader. 

Theorem 3.38 If X , Y  are locally convex spaces, {Tj} C L ( X , Y )  is an 
equi-continuous sequence, T E L ( X ,  Y ) ,  and Tj -+ T holds in Ps, then, this 
convergence is an P,. 

Now, we show the following. 

Theorem 3.39 For X , Y  as in Theorem 3.37, i f  a sequence {Tj} c 
L ( X , Y )  attains Tx = limj+mTjx for any x E X ,  then T i s  in L ( X , Y )  
and Tj -+ T holds in P,. 
Proof. In fact, {Tj} is bounded in P, topology in this case, and hence 
is equi-continuous by Theorem 3.37. Any continuous semi-norm q on Y 
attains a continuous semi-norm p on X such that 

q ( T , 4  I P ( Z )  (. E X )  

for j = 1 , 2 , .  . .. This implies 

and hence T E L ( X ,  Y) follows. We get the conclusion by Theorem 3.3813 

Thus, the following fact is obtained as a corollary. 
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Theorem 3.40 If {Tj} c D‘(R) is a sequence attaining 

T(V)  = lim T j ( V )  
3-00 

for  each cp E D(R), then T E V’(R) and Tj + T uniformly on each bounded 
set in D(R). 

Proof. We have T E D’(i2) by Theorem 3.39 and the convergence Tj + 

T is uniform on each compact set of D(R). However, any bounded set 
B C D(R) is relatively compact. In fact, in this case we have a compact 
K c R such that B c ’DK(R) is bounded. Therefore, Ascoli’-Arzel&’s 

0 theorem applies. The proof is complete. 

Exercise 3.66 Confirm Theorem 3.38. 

Exercise 3.67 Prove an analogous result to Theorem 3.40. 
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Chapter 4 

Random Motion of Particles 

The underlying structure of chemotaxis is the movement of many particles con- 
trolled by the other species. This chapter describes the way to derive dynamical 
partial differential equations from the statistic model. 

4.1 Process of Diffusion 

4.1.1 Master Equation 

Random walk on lattice induces the equation of diffusion. In this section, 
we describe mostly one-dimensional lattice L, but n-dimensional lattice Ln 
is treated similarly. Also, we restrict our considerations to the one-step 
jump process with continuous time. 

Thus, we identify C with 

2 = {...,-n- l,-n,-n+l,...,-l,O,l,...,n- l , n , n +  l , . . . }  . 

Let pn(t) E [0,1] be the conditional probability that the walker stayed on 
site n = 0 at time t = 0 is on site n = n at time t = t. Then, it holds that 

where ?$ denotes the transition rates that the walker staying on site n 
jumps to site n f 1 in the unit time. Sometimes, equation (4.1) is called the 
master equation. Because it is regarded as an ordinary differential equation 
on the infinite dimensional space, the reader may skip over the following 
exercise first. 

151 
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T n -  Tn’ 

Fig. 4.1 

Exercise 4.1 Suppose that T?’s are constants in [0, 11 and study (4.1) 
in the following way. First, formulate the equation as an abstract linear 
ordinary differential equation in the Banach space C 1 ,  the set of absolutely 
convergent sequences as 

d 
d t  
-P = TP,  

where T is a bounded linear operator on C1 and P = ( p n ( t ) )  E C1([O,T], e l ) .  

Then, show the unique existence the solution globally in time for give initial 
values {p,(O)} in pn(0)  2 0 and C n p , ( 0 )  = 1, by means of the semigroup 
{ etT},?, defined by 

Then, show that p n ( t )  2 0 and C n p , ( t )  = 1 hold. Finally, generalize those 
results to the case that T z ’ s  are given continuous functions in t with the 
values in [0, 11, replacing (4.2) by 

t 
P( t )  = P(0) + 1 T(s)P(s)ds .  

In the following, we take the case that those transient rates T: are 
controlled by the other species living in sub-lattice f?, of which mesh size is 
a half of that of L. Let the density of that species be 
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4.1.2 Local Information Model 

If the transition probabilities depend only on the density of the control 
species at that site, it holds that Tz = f(wn) and hence (4.1) is written as 

aP, - -- at - T(w"-l)P"-l+ T(wn+l)p"+l - 2T(w")p". (4.3) 

Therefore, writing x = nh by the mesh size h of the lattice, we obtain 

because 

holds by Taylor's expansion. 

the assumption limhlo Ah2 = D > 0, it follows formally that 
If we have the scaling t' = At,  then we can take T(w) = AT(w). Under 

by replacing t' by t .  It is formal because the forth derivatives of T ( w ) p  
is supposed to be bounded a priori. Thus, the response function T(w) 
represents the microscopic mechanism of the jump process. 

Taking C", we get the n-dimensional model 

- = DA (T(w)p)  , 
at (4.5) 

n 2  where A = V . V = & denotes the Laplacian. We take non-negative 
p defined on the bounded domain s1 with smooth boundary aR.  Usually, 
we impose the boundary condition 

on dR, (4.6) 
a 

--T(w)p = 0 
av 

where 

af d 
all ds 
- = v . V f  = - f ( . + s v )  
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indicates the direction derivative of f toward v. Then, by the divergence 
formula of Gauss it holds that 

This implies the conservation of total mass, L p ( z ,  t ) d x  = p ( z ,  0 ) d z  = A. J, 
Equation (4.5) is written as 

d p + V . j = O  at (4.7) 

for j = -DV (T(w)p) .  This form is referred to as the equation of continuity. 
It describes the conservation of mass, as 

d 

holds for any w c R with T j  c R and smooth boundary dw by the divergence 
formula of Gauss. In fact, equality (4.8) means that the vector field j 
indicates the flux of p, by which the particles flow in the unit time. Thus, 
v = j / p  represents the average particle velocity, and (4.6) indicates the zero 
flux boundary condition. 

In this case of (4.5), we have 

j = - D V . ( T ( w ) p )  
= -DT(w)Vp  - D ~ T ’ ( w ) V W  

= -DT(w)Vp + px(w)Vw,  

where x ( w )  = -DT’(w) denotes the chemotactic sensitivity. Here, the first 
term of the right-hand side is V p  times a negative scalar determined by w. 
Because T(w) > 0 ,  this vector is parallel to the direction that p decreases 
mostly. This term of flux indicates that the particles are subject to the 
diffusion. On the other hand, the second term px(w)Vw indicates that p 
is carried under the flow subject to the vector field x (w)Vw.  Therefore, if 
x ( w )  > 0 the particles are attracted to the place where the concentration of 
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w is higher. Similarly, if x ( w )  < 0 the particles are repulsive in there. Those 
cases are referred to as the positive and negative chemotaxis, respectively. 

Presence of the chemotactic sensitivity induces the non-constant equi- 
librium state. In fact, in this case T ( w ) p  is independent o f t .  It is harmonic 
and satisfies the homogeneous Neumann boundary condition by (4.5) and 
(4.6), respectively. This means that it is a constant in 0. In fact, generally, 

Af = O  in R with - af - - 0  on aa au 
implies 

l l V f 1 2 d x = 0  

from the divergence formula of Gauss (1.25), and hence f is a constant in 
0. 

Thus, we obtain 

p ( x )  = T(w)(z)  (s n T ( w ) ( z )  dx ) - I  
(4.9) 

for 

= IlPlll = / P(X)da:  
R 

and p ( z )  is not a constant unless T(w) is. 
Here and henceforth, (1 . [ I g  indicates the standard Lq norm on R so that 

IIVII, = {JR IV(Z)Igdz}l’q for 4 E 11, ..) and II~II, = ess. SUPza IV(Z) I ,  

of which details are described in the next chapter. 

value close to it, keeps to stay near from it. Then it can happen that 

t+w t-+w 

If this stationary solution is stable, then the solution, with the initial 

IlPOll, < liminf IIP(t)II, I limsup IIP(t)II, < +m (4.10) 

or 

(4.11) 

The cases (4.10) and (4.11) are called the aggregation and the collapse, 
respectively. 

In the actual model of biology, the variables p and w are coupled, so 
that w is subject to an equation involving p .  In this case, (4.9) becomes a 
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functional equation on p ,  and the stability of the solution must be exam- 
ined from the viewpoint of the dynamical system made by those coupled 
equations. 

Exercise 4.2 Prove (4.9). 

Exercise 4.3 Investigate the sign of chemotaxis for the case of linear 
response, T ( w )  = CY + pw, and that of saturating response at large w, 
T(w) = a + Pw/(y + 20). 

4.1.3 Barrier Model 

In the barrier model, the transient rate at site n is determined by the 
densities of the control species at site n f 1/2. Therefore, the control 
species which govern the jump process makes barrier to the particle. We 
have 

f%4 = 5%**1/2) 

and the master equation (4.3) is now reduced to 

aPn - 
- at - ~ ( w n - 1 / 2 ) ~ n - 1 +  f ( w n + 1 / 2 ) ~ n + l  

- @Wn+l/2)  + % - 1 / 2 ) )  Pn. 

Here, the right-hand side is equal to 

and we obtain 

- = D -  T(w)-  
ap at a x  a ( 2) (4.12) 

under the same scaling limhlo Ah2 = D > 0. In n space dimension, we have 

9 = DV . (T(w)Vp) 
at 
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and the average particle velocity is given by 

VP 
2) = -DT(w)-. 

P 

This model has only diffusion part and any stationary solution is a 
constant in R. However, aggregation can happen transiently. 

4.1.4 Renormalization 

We note that the mean waiting time of the particle at site n is given by 

(!fz + T i )  . In the case that it is independent of w and n, it holds that 
-1 

?Z(w) +?;(w) = 2x, 

where A > 0 is a constant. If the barrier model is adopted here, then 
?:(w) = ?(wn*lp) follows. Those relations imply 

Renormalization is the procedure of introducing a new jump process by 
replacing the right-hand side as 

I ? Z ( W )  = 2 x .  

with some T ( w ) .  
Writing 

we have 

AND THE
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- ( N + ( w n + 1 / 2 ,  wn-1 /2 )  + N - ( ~ n - 1 / 2 1  wn+1/2 ) )  p n .  (4-13) 

In this model, the sub-lattice is assumed to be homogeneous so that N* 
is independent of n. Letting N(u,w) = N+(u,w), we have N-(w,u) = 

1 - N(u,  w) and 

(4.14) 

Putting a: = nh, we examine the right-hand side of (4.13). In fact, we 
have 

N + (wn-1 /2 ,  w n - 3 p ) ~ n - i -  N + ( w ~ + I / z , w ~ - ~ / ~ ) P ~  

= N +  (W(Z - h/2), W ( X  - 3 h / 2 ) ) p ( ~  - h)  

- N +  (w(z + h/2),w(z - h/2))p(z). 

This term vanishes at h = 0. Differentiating the right-hand side in h, we 
have 

1 
2 

--N: (w(z - h/2),w(a: - 3h/2) )  w,(z - h/2)p(a: - h) 

3 
2 

1 
2 
1 

- - N z  (w(z - h/2), w(z - 3h/2)) w,(z - 3h/2 )p ( z  - h) 

-N+ (w(z - h/2,w(z - 3h/2))pZ(z - h) 

-4: (w(x + h/2), w(z  - h/2)) w,(z + h/2)p(z) 

+ z N z  (W(Z + h/2), W(Z - h/2)) W,(Z - h / 2 ) p ( ~ ) .  (4.15) 

If h = 0, this term is equal to 

-c (W(a:),  4.)) wz(z)P(z)  - @- (w(z), w(z)) WZ(Z)P(a:)  

- N +  ( 4 2 )  7 4.)) pz(.>. 
Similarly, we have 

N -  (wn+1/2r % + 3 / 2 )  pn+l - N -  (wn-1/2,%+1/2) Pn 

= N -  (w(z + h/2),w(a: + 3h/2))p(a: + h) 

-N- (w(x - h/2 ) ,  w(z + h/2 ) )  p(z) 

and this term vanishes at h = 0. Differentiating in h, we have 
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3 -  
2 

1 
+ - N i  ( ~ ( z  - h / 2 ) , w ( ~  + h/2)) W,(Z - h/2)p(z )  2 

1 
--N; 2 ( W ( z  - h/2) ,  W ( Z  + h/2))  Wx(z + h / 2 ) p ( ~ ) ,  

+-Nv ( w ( z  + h/2) ,  W ( Z  + 3h/2))  w x ( z  + 3h/2)p(z + h) 

+ N -  ( W ( z  f h/2) ,  w ( z  + 3 h / 2 ) ) p x ( z  + h)  

(4.16) 

which is equal to 

at h = 0. 
We shall write N* = N* ( w ( z ) ,  ~ ( z ) )  and N = N ( w ( z ) ,  ~ ( 2 ) )  for 

simplicity. Then, we see that O ( h )  term of the right-hand side of (4.13) 
vanishes as 

( N l  - N Z )  w,p + (N; - N;) wxp + ( N -  - N + )  Px 

= (-Nu - Nu)  W,P + (-Nu - Nv) W x P  + (1 - 2 N )  PX 
= ((1 - 2N)p) ,  = 0. 

In fact, N ( w ,  w )  = 1/2 holds by (4.14). 
Now, we differentiate (4.15) in h and put h = 0. This gives that 

Under the same operation to (4.16), we have 

Therefore, O(h2) term of the right-hand side of (4.13) is a half of the fol- 
lowing: 

( N +  + N-)px,  + 2(N+ + N-),,w:p 
+2"+ + N-),,W:p + 2(N+ + N-)vWxxp 

+ ( N +  + N-)uwxpx + 3(N+ + N-)vwxpx.  (4.17) 
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Here, we have N+(u,  w) = N ( u ,  w), N-(u ,  v) = 1 - N(w, u), and hence it 
follows that 

( N +  + N - ) u ,  = 0 
N + + N - = l  

( N +  + N - ) , ,  = N,, - Nu, 
( N +  + N - ) ,  = N ,  - Nu 
( N +  + N - ) u  = Nu - N, 

at u = v = w ,  where Nu = Nu(w, w) ,  Nu, = Nuu(w, w) ,  and so forth. 
We see that the quantity defined by (4.17) is equal to  

P X X  + 2 ( N u ,  - NUU) W2P + 2 ( X J  - Nu) W X X P  - 2 (Nu - N,)  W X P X  

- - P X X  - 2 (P  (Nu - Nu) W X ) ,  

so that (4.17) has the form 

Under the scaling limhlo Ah2 = D > 0 we obtain 

- 2 p ( N u - N , ) -  
at ax 

Here, we have 

(4.18) 

and N,(w, w )  = -Nu(w, w )  by (4.14). Equation (4.18) is written as 

) 
a 

at :x ( 2  ax - = D- - -p-logT(w) . 

In n space dimension, we have 

- aP = D V . ( V ~ - ~ V I O ~ T ( W ) ) .  
at 

Therefore, the chemotactic sensitivity function is x ( w )  = D (logT(w))’ and 
the average particle velocity is IJ = -DVlogp + D(logT(w))’Vw. This 
chemotactic profile is positive if T‘(w) > 0. 
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In the renormalized nearest neighbor model, one takes 

In this case, it follows that 

9 = D- - - 2p(logT(w)) '  ""> . 
at ax a (2 ax 

Thus, the chemotactic sensitivity function becomes twice of that of the 
renormalized barrier model. 

In the case that the organism searches local environment before it de- 
cides the movement, the transient rate depends on the difference between 
the state at the present position and that of the nearest neighbor in the 
direction of the movement. That is, 

+;-1(w) = Q + P (T(wn) - ~ ( w n - 1 ) )  
FL+~(w> = Q + P (T(wn) - T(wn+1)) 1 (4.19) 

called the gradient-based model. 
On the other hand, movement of w is under the influence of p. In 

this model derived from cellular automaton, it is given by the ordinary 
differential equation such as 

dw 

dw 
dt  

- d t  = P - p w  

- = (P - P b  

d t  1 + y w  1 + p '  
TP -=-- dw p'l p w f -  

Those cases describe linear, exponential, and saturating growths, respec- 
tively. In biological field, the equation for w is given by the ordinary differ- 
ential equation in those ways. 

Exercise 4.4 Derive 

from the gradient-based model (4.19). Derive, also, the limiting equation 
for the renormalized model to this case. 



162 Random Motion of Particles 

4.2 Kinetic Model 

4.2.1 Transport Equation 

This section studies the self-interaction of many particles. Boltzmann equa- 
tion is a description of macroscopic motion of gas particles by the atomic 
probability of entropy. Then the transport equation arises as the lineariza- 
tion around the Moxwell distribution. However, the latter also comes from 
the following physical situation. 

Imagine that two families of particles, gas and medium, are interacting. 
Suppose that each of them is provided with so many particles as to make 
the statistical description of their motions possible, that the number of 
particles of medium is much more than that of gas, that the interaction 
occurs mostly between gas and medium, and that the macroscopic state of 
the medium is free from the influence of interaction. 

Let f (5,  w ,  t )  be the distribution function of gas particles, so that 

denotes their number staying in the domain G c R3 x R3 in x - w space at 
the time t .  The gas particles are labelled by j and xj  = x j ( t ) ,  wj = d ( t )  
denote the position and the velocity of the j-th particle. If mass of each 
gas particle is put to be one and F ( x )  denotes the outer force acting on 
gas particles, then { x j ,  wj} are subject to the Newton equation as 

dxj . dwj  
dt d t  
-- - w3 and - = F ( x j ) .  (4.20) 

Henceforth, the set of infinitely many differentiable function with com- 
pact support contained in a domain R is denoted by Cr(R). Then, we take 
arbitrary cp E Cp(R3 x R3) and put 

where the second equality comes from 

(4.21) 

(4.22) 
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See Chapter 3.4.9 for Dirac’s delta function used in the right-hand side of 
(4.22). 

If [At[  << 1, then AI = I(t + At) - I ( t )  is decomposed into the contri- 
butions of gas particles without collision between medium and those with 
more than once. Those quantities are denoted by AI,(t) and A12(t), re- 
spectively. Then, we set 

Il(t)  = c cp ( z j ( t ) ,  4 t ) )  
j€Al  

and 

dxj ( t )  
dt dt 

.At + o ( A t ) .  

Then, equation (4.20) gives that 

A11 = C (d . V,C~(Z’, d) + F ( d )  . V,p) At + o ( A t ) .  
j E A ’  

Because the number of particles without collision is much more than that 
with collision, CjEA, is approximated by Cj .  In this case it holds that 

A11 = A t .  11 (w . V,cp(z, w) + F ( z )  . V,cp(z, w)) 
R3 x R3 

*f (2, W ,  t)dzdv + o ( A t ) .  

Let us proceed to A12. The possibility that one gas particle interacts 
to the medium in At is proportional to At. If u = ~(z, w ,  t )  denotes its 
rate, then At . ~(z, w ,  t ) f ( z ,  w, t )  indicates the distribution of gas particles 
that interact to the medium during that time. When collision occurs, the 
gas particle changes the velocity although the position is unchanged. If 
Icl = kl(z, w, w’, t )  denotes the conditional probability that the velocity 

fIRST,
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changes from v‘ to w, then the distribution of gas particles that increases 
by the collision (at time t ,  position 2, and velocity v) is approximated by 

where k = k1 . u. In this way, the change of distribution function of gas 
particles with collision is approximated by 

A t .  { -u(z, v, t)f(z, v, t )  + 1 k ( z ,  v, v’, t ) f ( z ,  v’, t)dv’ 
L 3  

and it holds that 

AI2 = At / / { -u(z ,  w, t)f(z, v, t )  
R3 x R3 

k ( 2 ,  V ,  w’, t )  f (2, v’, t ) d d } p ( z ,  W )  . d ~ d ~  + o (At).  
+ L 3  

We can summarize as 

k ( z ,  w ,  w‘, t)f(z, v‘, t)dv’cp(z, v)}dzdv + o(1). 
+ /R3 

This implies 

-42, 21, t)f(z, v,t)cp(z, v) 

k ( z ,  V, v’, t)f(z, v’, t ) d d  . V(Z, w ’ ) } ~ z ~ w  
+ L 3  

= / / f t ( 2 ,  v, t)cp(z, v)dzdv 
R3 x R3 

by (4.21). Because cp E Cr(R3 x R3) is arbitrary, we get that 

af - = -W . V, f - F . V, f - ~f + at k( . ,  ., v‘, t)f(., v‘, t)dv‘. (4.23) 

This is linear Boltzmann or transport equation. 
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4.2.2 Boltzmann Equation 

The last two terms of the right-hand side of (4.23) are called the collision 
term, totally denoted by 

The original Boltzmann equation was derived when the same kind of par- 
ticles are interacting. There, collision between more than three particles at 
once is ignored and it is assumed that mass, momentum, and kinetic energy 
are preserved when the collision between two particles occurs. Because the 
mass of particles is preserved we set it to be one as before. 

Thus we have 

with 

. (f(.’)f(v:) - f ( v ) f ( v d )  dv’dvi. (4.24) 

Here, (v,v1) H (v’,vi) indicates the change of velocities in the pair of 
collision particles. Namely, 

decreases and increases proportionally to f(v)f(vl)  and to f(v’)f(v:), re- 
spectively, with the rate w(w, v ~ ;  v’, v:) 2 0. 

Fig. 4.2 
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Because the momentum and the kinetic energy are preserved at the 
collision, we have 

v + 211 = 2)’ + w: (4.25) 

and 
1 1 - 2 (lvI2 + Iv1l2) = 5 (1v’I2 + lv:12) (4.26) 

Therefore, the correlation function (or correlation measure, precisely) w 
has the support where (4.25) and (4.26) hold. Furthermore, because the 
collision is symmetric and reversible we have 

w(v, v1; w’, w:) = w(v1, v; v:, v’) 
(4.27) I 1  = w(?J1, v:; v, 211) = w(v1, v ; v1,v). 

Those requirements make &[ f ,  f ]  in more detailed form. 

- af = -?J. Vzf - F ( z ) .  Vvf + Q[f, f ]  (4.28) at 
makes the second law of thermodynamics to be underlined by the inter- 
molecular source. In fact, Boltzmann’s formula says that entropy is given 

The Boltzmann equation 

by 

s = kB log W, 

where kB and W denote the Boltzmann constant and the multiplicity of 
thermodynamical states. 

In the classical theory, microscopic states in the same macroscopic state 
are not distinguished. If the macroscopic states are labelled by i = 1,2, .  . ., 
then we have 

where gi and ni are the numbers of microscopic states and that of particles, 
respectively, involved by the macroscopic state i. The mean number of 
particles in those microscopic states is given by fi = ni/gi, and in use of 
Starling’s formula logn! M n(1ogn - 1) we obtain 

S = kB (ni loggi - logni!) M -kB c g i  fi (log fi - 1) . (4.29) 
i i 
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Here, replacing gi by constant times Ax . Aw gives the representation of 
entropy, 

S = - k / /  

where k is a physical constant. 

f (logf- 1) dxdw, 
R3 x R3 

Based on this formula, Boltzmann’s H-finction is defined by 

H ( z ,  t )  = f (log f - 1) dv. 
L 3  

It follows formally that 

(V , f ) log fd~  = V, (f(l0gf - 1 ) ) d ~  = 0 
/R3 L 3  

L 3  L 3  
(V,f) log fdw = V, (f(1og f - 1)) dw = 0. 

Because f = f(x, w, t )  satisfies the Boltzmann equation we have 

(4.30) 

WHERE

hERE
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by (4.27). This term is non-negative because (logt - logw)(z - w) 2 0 
holds for z,w > 0. This means the second law of thermodynamics, the 
decreasing of H-function. 

= 0. This implies f(w) f (w1) = 
f (w’)f(wi)  and hence 

In the equilibrium state we have 

follows. This means the conservation of SR3 log f d z  at the occasion of col- 
lision. Such a quantity must be a linear combination of mass, momentum, 
and kinetic energy from the physical point of view. In the case that f is 
uniform in z, it holds that 

P z  log f(w) = a - - It71 + y .w 2 

with some a,  P E R and y E R3, and in this way the Maxwell distribution 

is regarded as an equilibrium state, where n and T stand for the particle 
density and the temperature, respectively. 

Exercise 4.5 Confirm the last equality of (4.31). 

Exercise 4.6 
given by 

In Fermi and Bose statistics, multiplicities of the state are 

respectively. In those cases the entropies are given by 

Derive them by Starling’s formula. 
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4.3 Semi-Conductor Device Equation 

4.3.1 Modelling 

Transportation of electrons and positrons inside semi-conductor devices 
is governed by the Boltzmann-Poisson system. If f ( z , k , t )  denotes the 
distribution function of electrons or positrons at the position 2, the wave 
number k ,  and the time t ,  then the Boltzmann equation is given by 

(4.32) 

where F ,  k, and u stand for the outer force, the Planck constant, and the 
carrier velocity, respectively. Here, mass of particles is not put to be one. 
Wave number , adopted for velocity as an independent variable, represents 
the momentum of particles. The Planck constant arises as the rate for 
Ax - Aw to be replaced by gi, from the principle of the quantum mechanics. 

The reader can skip this section first. In the theory of semi-conductor 
devices, the carrier velocity 

u = ~ ( 2 ,  k, t )  

of electron or positron is associated with the energy band E of crystal in 
such a way as 

Furthermore, similarly to the transport equation, the effective collision is 
taken only between the particle and medium. Therefore, the collision term 
is given as (g) = Q [ f ,  f ] ,  where 

C 

- f (k) (n - f (k’))  P ( k ,  k’)} dk’. (4.33) 

Here, P(k’ ,  k) denotes the scattering probability of k’ H k at the collision, 
and n(z, t )  = sR3 f (2, k ,  t )dk  is the carrier density. 

Outer force F comes from the electric field E in such a way as 

(4.34) 
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where q denotes the elementary electric charge of the particle and cp is the 
electric field potential. The carrier velocity u is the sum of the drift velocity 
w ( z ,  t )  and the heat velocity c(z, k, t ) :  

u(2, k, t )  = v(z,  t )  + c(z, k, t ) .  

From the randomness of the latter it follows that 

J,, 4% k, t)f(z, k, t)dk = 0 

and hence we obtain 

Henceforth (A) denotes the mean value of the physical quantity A: 
P 

Relations (4.32) and (4.33) imply 

d F - (A) + V, . (uA) - - . (VhA) = n(z,t)CA, at k 
where 

(4.35) 

Putting A = q, we take the zeroth moment, where q denotes the ele- 
mentary electric charge of particles. In this case, we have 

and hence 

dn 
qz + v . (qnw) = 0 
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follows. Here, J = qnw is the electric current density and we obtain the 
equation of continuity for the electric current, 

an 1 _ -  - --V . J .  (4.36)  

Next, we take the first moment, setting A = u. In this case, it holds 
that 

(u) = (w) = lzw 

(u @ u) = nw @ w -t (c @ c) . 

Here we assume that the distribution function f(z, k, t )  is isotropic, so that 
the non-diagonal part of the second tensor 

of w = ‘(w1,v2, w3) is small. It is approximated by ( i w .  w&j)15i,j53, which 
comes from 

1 1 
3 3 
-Tr (w €4 w) = -w . w. 

Writing this process simply as 

1 
3 

w @ w = -w .21, 

similarly we have 

1 
3 

(c @ c) = -Tr (c 63 c) . 

Temperature tensor T and scalar temperature T are given as 

n k B T  = m (c  @ c) 

and 
1 m 
3 T = - T r ( T ) = - T r ( c @ c ) ,  3 n k ~  

where kB and m denote the Boltzmann constant and the effective mass, 
respectively. This gives 
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and hence 

follows for 

2 E  
3 m  

(U@U) = -n .  - 

1 3 
E = -mu.  v + -kBT. 

2 2 

Here, E is the sum of the kinetic energy imw . w and the heat energy 
gkBT. Compared with the latter, we can ignore the former in the ordinary 
temperature. Letting 

3 E = - ~ B T ,  
2 

we obtain 
1 

(U '8 21) = -nkBT. m 

The inverse effective mass tensor is given as M-' = LVku. Between 
the effective mass m, we have the relation 

Because the density function is isotropic, it follows that 
F 1 
- . ( V ~ U )  k 3 

= F . ( M - ' )  = F . -Tr (1M-l) 
n 
m 

= F - .  

Finally, we apply the relaxation time approximation as 
W 

nC, = -n-, 
721 

where r, is the kinetic relaxation time. Thus, under those physical assump- 
tions we have 

d 1 n - (nw) + -V (nkBT) - F -  at m m 
21 

721 

= -n-. 

Multiplying the elementary charge q, we get that 

d V U  9 W F .  J + 7,- J = --V (nkBT) + - d t  m m (4.37) 
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4.3.2 Drift-Diffusion (OD) Model 

If J is stationary, equation (4.37) is reduced to 

J = --V 4721 (nkBT) + -nF. QTv 
m m 

Furthermore, if the carrier velocity is quasi-uniform in the space, we get 
that 

9721 9Tu 
m m J = --kBTVn + -nF. (4.38) 

The elementary electric charge of electron is q = -e. Its mobility p indicates 
the rate between the velocity of the electric field and is determined by the 
kinetic relaxation time T, and the effective mass m, associated with the 
scattering and the band, respectively, in such a way as 

eTU 

m 

Then, Einstein’s relation is expressed as 

p = - .  

kBT D = p-, 
e 

where D is the diffusion coefficient. In use of (4.34) and (4.38), we obtain 

J = pkBTVn+pneE 
= e D V n f p e E .  

Because the above relation is concerned with the electron, we shall write it 
as 

J n  = epnE + eDnVn. 

As for the positron, the elementary electric charge and the outer force are 
given by q = e and F = - E ,  respectively. It follows that 

J ,  = ep,E - eD,Vp, 

where p denotes the carrier density of positron. 

on the electric current is given by 
Now we reformulate the problem. In fact, the equation of continuity 

an 1 - = - V .  J n + r  
d t  e 
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a P  1 - = --V . J ,  + T ,  at e 
(4.39) 

where T is the generation-recombination term associated with the band 
structure. On the other hand, the Poisson equation holds to the electric 
field E = -Vp as 

-&A9 = -e(n - p - c) ,  (4.40) 

where cp and p = -e(n - p - c) are the dielectric constant and the charge 
density, respectively. The term c is the difference between the concentra- 
tions of the ionized donors and adapters: 

Remember that the current densities of electron and positron are given as 

J n  = -ep,nVcp + eD,Vn 
J ,  = -epppVcp - eD,Vp. (4.41) 

4.3.3 Mathematical Structure 

We take the case that c = T = 0 and put one for every physical constant. 
Then, DD model is given as 

- = V . ( V p + p V p )  a P  in 52x(O,T) 
at 
Acp = n - p ,  (4.42) 

where R c R" is a bounded domain indicating the device. Let the boundary 
a52 be Lipschitz continuous. For (4.42) to determine the unique solution, 
side conditions are necessary. For simplicity, we take the homogeneous 
Dirichlet boundary condition for the potential of electric field cp, and zero 
flux boundary conditions for the electric current densities n, p of electrons 
and positrons: 

an acp 
av av 
--n-=O 

a P  acp -+p- = O  on a0 x (0,T) av av 
cp = 0. (4.43) 
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Initial conditions are imposed only for p ,  n because the third equation of 
(4.42) is elliptic: 

nlt,O = Pl,=o = Po(z).  (4.44) 

If the initial values is taken in a suitable function space X, then the unique 
existence of the solution follows in an associated function space in space- 
time variables. Thus, well-posedness of problem (4.42), (4.43), (4.44) will 
be assured. 

A very important feature of the solution is the positivity preserving: 

no, po 2 0 in R + n(t), p ( t )  2 0. 

This is a consequence of the maximum principle in the linear parabolic 
equation. On the other hand, we have 

by (4.42) and (4.43). Hence we obtain conservation of mass, 

I lWl l1  = I l ~ O l l l  9 IlP(t>llI = IlPoll, (0 5 t < (4.45) 

Here and henceforth 11 . I t p  denotes the standard L P  norm on R for p E 

[I, 4: 

{So Ib(~)lPWP (P E [I7 00)) Ilvllp = { ess. SUPzEn l v b ) l  ( P  = 00). 

The first step to  study long time behavior of the solution is to classify 
stationary solutions: 

v . (Vn - nVp) = 0 

V . ( V p + p V n ) = O  in Rx(O,T) 
A c p = n - p  

with 

(4.46) 

-+p-=O a P  acp on d R x  (0,") 
du du 
cp = 0. (4.47) 
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For this purpose, we note that the chemical potential cpn = cp - logn of 
electron is associated with the current density as 

Jn = Vn - nVcp = -nVcpn. 

In the non-trivial stationary state n = n(x) > 0 it follows from (4.46) and 
(4.47) that 

a zcpn = O  on dR. V.(nVqn) = O  in 0, 

This implies 

L n l v v n I  2 d X = o  

and hence cpn is a constant in R. 

unknown constant in terms of X = llnlll > 0. Then, it follows that 
Taking account of the conservation of mass, (4.45), we prescribe this 

Xe9 
J, evdx 

n=-  

and similarly, 

pe-9 
= s, e-pdx 

where p = llplll > 0. Thus the stationary problem is reduced to 

(4.48) 
c p = O  on dR 

by means of the third relations of (4.46) and (4.47). 
We have observed mass conservation and introduced the problem for 

equilibrium state to satisfy. Another important factor for the large time 
behavior of the solution is the existence of the Lyapunov function. It is 
reasonable because DD model is derived from the Boltzmann equation. 

In fact, thermal equilibrium is the state where free energy F = E - T S  
attains minimum. Here, El T ,  and S denote inner energy, temperature, 
and entropy, respectively. Remember that the inner energy is preserved in 
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the classical Boltzmann equation. Because any physical constant is set to 
be one, we have T = 1, 

1 
2 

E = - A IVpI2dz 

and hence 

p(l0gp - 1) + n(1ogn - 1) + - IVpI2 d z  .=s,( 2 l }  

is obtained. In fact, if the smooth functions p = p(z,t)  and n = n(z, t )  
satisfy (4.42) and (4.43), then it follows that 

d 
dt - F 5 0  ( O < t < T ) .  (4.49) 

Exercise 4.7 Prove (4.49). 
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Chapter 5 

Linear PDE Theory 

This chapter deals with the fundamental theory of partial differential equations, 
well-posedness, fundamental solution, potential, and regularity. Although the 
materials are restricted mostly to elliptic and parabolic equations, but several 
basic ideas and calculations are presented, from which one can access the standard 
advanced monographs or papers. 

5.1 Well-posedness 

5.1.1 Heat Equation 

Imagine that a domain R C R3 is occupied with the heat conductor, and 
let u = u ( 5 , t )  be the temperature a t  the position x = t(z1,x~,~3) E Q and 
the time t > 0. If p ,  c, and w denote the ratio of specific heat, the density, 
and a subdomain of R with smooth boundary aw, respectively, then 

s, C P U ( X ,  t ) d X  

denotes the heat quantity put in w.  On the other hand, 

indicates the heat quantity radiated inside w through dw, where v and dS 
denote the outer unit normal vector and the area element of dw, respec- 
tively. Therefore, it holds that 

c p u ( x ,  t ) d x  = 

179 
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If u(z, t )  is smooth, the left-hand side of (5.1) is equal to 

while the right-hand side is 

V - (KVu)dx 

from the divergence theorem of Gauss. Because w is arbitrary, this implies 
that 

(5.2) 
d 
at -(cpu) = v . (KVU) (. E a, t > 0 )  , 

which is referred to as the heat equation. Usually, side conditions are pro- 
vided to determine u(x,  t ) ,  so that the initial condition is given as 

Ult=O - - uo(x) (. E 0). (5-3) 

(5.4) 

The boundary condition 

u = a(& t )  (< E aa, t > 0) 

prescribes the temperature distribution itself on the boundary and is called 
the Dirichlet or the first kind boundary condition. The Neumann or the 
second kind boundary condition 

prescribes the heat flux distribution radiated from the boundary. Finally, 
the Robin or the third kind boundary condition 

au 
K- + pu = -f(& t )  (< E aa, t > 0) av 

prescribes the heat flux distribution on the boundary proportionally subject 
to the temperature. 

In the direct problem, those parameters c, p, K, and p,  and the initial 
value uo, and the boundary value a, or /3, are given and it is asked to 
determine the solution u = u(z , t )  satisfying (5.2), (5.3), and (5.4) (or 
(5.5), or (5 .6 ) ) .  On the other hand, the inverse problem determines those 
parameters (or initial and boundary values) by some observable concerning 
the solution. It is expected that the direct problem is well-posed, which 
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means that the solution exists uniquely for and depends continuously on 
the given data. 

5.1.2 Uniqueness 

We take the simplest case as R = (0 ,  7r) c R, c = p = K = 1, and Q = 0 in 
(5.4): 

and consider the classical solution, so that its differentiability and continu- 
ity are taken in the classical sense with the least regularity to make (5.7) 
reasonable. Namely, 

u = u(z, t )  E c ([O, 7r] x [O, CQ))  (5.8) 

and 

Therefore, for the classical solution to exist, the initial value uo must be in 
C[O,7r] and satisfy U O ~ , , ~ , ~  = 0. They are called the compatibility condi- 
tion, generally. 

We show the following. 

Theorem 5.1 

Proof. 
satisfies (5.8), (5.9), and 

The classical solution to (5.7) is unique. 

Let u1, u2 be the classical solution and set u = u1 - u2. Then, it 

We have only to derive u = 0 from those relations. For this purpose, we 
show that both u L 0 and u 5 0 hold in [0, 7r] x [0, co). 

In fact, w = e-tu is provided with the same continuity and the differ- 
entiability as those of u. Writing u = etw, we have ut = etw + etwt and 
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uxx = etwxx and hence 

wt + w = W Z X  

W(t,O = 0 (0 5 2 5 7r) (5.10) 
(0 < 5 < 7r, t > 0 )  

( t  L 0 )  wlx,o,Tr = 0 

follows. Let us take T > 0 arbitrarily. Then, w = w ( z , t )  is continuous on 
[0,7r] x [0, T ]  and there exists (20, t o )  E [0,7r] x [0, T]  such that p = w(z0, t o ) ,  
where 

p = max { w (5, t )  I O 5 z 5 7r, O 5 t 5 T} . 

Using the initial and the boundary conditions in (5.10), it holds that 
p 2 0. If p > 0,  then z o  E ( 0 , ~ )  and t o  E (O,T] and therefore, we obtain 

W X ( ~ 0 , t O )  = 0, WXZ(Z0,tO) 5 0,  wt(z0,to) 2 0. (5.11) 

On the other hand, the first equation of (5.10) implies 

wt(z0, t o )  + p = W X X ( ~ 0 , t O )  

and hence p 5 0 follows. This is a contradiction and we obtain p = 0. 
This means that w = w ( z , t )  5 0 on [0,7r] x [O,T]. Because u = -w is a 
classical solution to (5.10) and it follows that w 2 0 there. This means 
w = e% = 0 on [0,7r] x [O,T] and hence u = 0 follows because T > 0 is 
arbitrary. 

To prove the above theorem, we have made use of the argument of com- 
parison, or the maximum principle. Actually, we can show the following, 
where 

(5.12) 

is called the maximum norm, because it is attained if u is continuous on 
10, .I. 
Theorem 5.2 
holds that 

If u(z, t )  = u(., t )  is the classical solution to (5.71, then it 

for any t 2 0. 
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Proof. Letting X = l l u ~ l l ~ ,  we have 

-A I uo(x) I x (0 I x I.). 

(0 < x < 7r, t > 0) 
(0 I x 5 .) 
(t L 0) 

Then w = e-t(u - A) satisfies that 

Wt + w = w,, 
wlt,O I0 
wl,,o,?r L 0 

and the same argument as in the proof of the previous theorem guarantees 
that 

max{w(x,t) 10 5 x 5 T, 0 5 t 5 T }  I 0 (5.13) 

for any T > 0. This means u(x,t) 5 X for (x,t) E [O,.] x [O,T]. The 
inequality u(x,t) 2 - A  follows similarly, and the proof is complete. 0 

Theorem 5.2 indicates the stability of the solution in 11 . Jim. But it 
also implies the continuous dependence of the solution on the initial data. 
Namely, if ul(. , t)  = ul(x,t) and u ~ ( . , t )  = u2(z,t) denote the classical 
solutions to (5.7) with the initial values uo(z) equal to u1(x) and uz(z), 
respectively, then u(x,t) = ul(x,t) - u2(x,t) solves the problem with the 
initial value u1(x) - uq(x), so that we obtain 

llw(t) - u2( t ) l lm I lbl - 21211, (5.14) 

for any t 2 0. Because of this, we see that if (Iu1 - 2~211, is small, then so is 
llul(t) - uq(t)ll,. Furthermore, Theorem 5.1 follows from this inequality 
as u1 = u2 implies ul(. , t)  = uz(.,t) for any t 2 0. 

Exercise 5.1 Confirm (5.11). 

Exercise 5.2 Confirm (5.13). 

5.1.3 Existence 

Let us make use of the method of 53.2.1 to construct the solution. First, the 
principle of super position says that if ‘u1 (z, t ) ,  w2(x, t ) ,  . . . are the solutions 
to 

(5.15) ut = u,x (0 < I < ., t > 0) 
‘1Llx=O,n = o  ( t 2 0 ) ,  
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then, so is v(x, t )  = vl(z, t )  + vz(x, t )  + . . .. Second, the special solution to 
(5.15) is obtained by the form of separation of variables, v(x, t )  = cp(z)q(t). 
This trial leads us to 

(5.16) 

and hence the eigenvalue problem 

arises, where X E R denotes the eigenvalue. As we have seen in 53.2.1, this 
problem provides a complete ortho-normal system in L2(0,  T), 

with each eigenfunction cpn(x) = 5 sinnx corresponds to the eigenvalue 
A, = n2. 

Writing formally that 

00 

n=l 

we have cn( t )  = (u(t),cp,), where ( , ) denotes the L2 inner product: 

Thus, integration by parts guarantees 

which implies that 

from the initial condition to u. We obtain 
00 

(5.17) 

(5.18) 
n=l 
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with Cn = (uo,cpn). This sequence is not so difficult to handle except for 
the delicate behavior as t 1 0 ,  and its justification is left to the reader. Note 
that 

n=l 

holds by uo E L2(0, T) .  

Exercise 5.3 

Exercise 5.4 
initial condition of (5.14) in the sense that 

Confirm that (5.17) follows from integration by parts. 

Confirm that u(t)  = u(. , t)  defined by (5.18) satisfies the 

where 1 1  [I2 denotes the L2 norm: 

Exercise 5.5 Show that the right-hand side of (5.18) converges uniformly 
on [ O , T ]  x [b,T] if 0 < b < T .  Show also that any termwise derivative has 
the same property and thus prove that u(z, t )  defined by (5.14) satisfies 
(5.7). 

Exercise 5.6 Prove that the right-hand side of (5.7) converges uniformly 
on [O,T]  x [O,T] for T > 0 ,  provided that uo  is continuously differentiable 
on [ O , ~ T ]  and satisfies the compatibility condition ~ o J ~= 0. 

5.2 Fundamental Solutions 

5.2.1 Fourier h n s  fornation 

The result in 53.2.2 is summarized that 

forms a complete ortho-normal system in L2(0,2n), or in L2(-r,7r). 
Vector spaces treated so far are over R. In this paragraph we make use 

of the complex variable. Actually, the function space L2( -T, T) is regarded 
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as the vector space over C if each element takes the complex value. Then, 
it forms the Hilbert space over C through the inner product 

J-" 

Using Euler's convention that 

,ze - -cosB+zsinB 

for 0 E R, we have 

efznx = cos nz f z sin nx. 

This implies that 

eznx 1 n = 0, fl, f 2 , .  . . 

forms a complete ortho-normal system in (complex) L'(-T, T ) ,  and the 
Fourier series of f E L2( -T, T )  is written as 

Then, taking x' = N x ,  we see that each f E L 2 ( - N r ,  N T )  is expanded as 

with 

In terms of f ( n / N )  = N i t ,  those relations are expressed as 

l o o  f(x) = - L f ( n / N ) e a ( n / N ) x  (-NT < x < N T ) .  
N n=-cc 2T 
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Then, making N 4 00 formally, we get the relation that 

00 

f(S) = / f(x)e-aczdx ( S  E R) 
J--00 

and 

(5.20) 

(5.21) 

The right-hand sides of (5.20) and (5.21) are called the Fourier transfoma- 
tion of f ( x )  and the inverse Fourier transformation of f(c), and denoted 
by (F f ) (<)  and ( F - ' ) f ( x ) ,  respectively. Then, equality (5.21) is referred 
to as the Planeherel's inversion formula. Justification of those relations are 
done in several categories. 

Exercise 5.7 
as (5.19) and show that 

Confirm that the Fourier series of f E L2(-r,n) is written 

forms a complete ortho-normal system in (complex) L2( -n, r). 

5.2.2 Rapidly Decreasing Functions 

Henceforth, LP(R) denotes the set of p-integrable functions on R for p E 
[l, 00). That is, f E Lp(R) holds if and only if it is measurable and 

in the sense of Lebesgue. On the other hand, we say that f E L"(R) if 
there is M > 0 such that I f  (x)] 5 M for almost every z E R .  In this 
case it is said that f ( x )  is essentially bounded on R, and infimum of such 
M is denoted by I l f l l , .  We note that this notation adjusts with (5.12). 
Furthermore, it is known that LP(R) becomes a Banach space under the 
norm I) 11, for p E [l, m]. Then, inequalities 

Ilf + 911, i I l f l l ,  + Ilsll, (5.22) 

.
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and 

Ilf .91l1 I llfllp . llgllp~ (5.23) 

hold, and referred to as Minkowski's inequality and Holder's inequality, 
respectively. Here and henceforth, p' E [l, CQ] denotes the dual exponent of 
p E [l,oo], defined by 

It is obvious that if f E L'(R), then f(<) defined by (5.20) converges 

If̂ (<)1 5 llflll (5  E R ) .  (5.24) 

In the L2 setting, the right-hand sides of (5.20) and (5.21) are taken as the 
limits in L2(R) as N + oo of 

for each 5 E R with the property that 

N?r N?r 
f ( z ) e - ' cZdz  and & LNx f ( J ) e Z E 2 d J ,  

L N T  

respectively. Then, Plancherel's inversion formula holds as 

3-' (3f) = f and 3 (F'f) = f 

in L2(R) for any f E L2(R) and f E L2(R). 

P ' ( R ) .  We say that f E Cm(R) is rapidly decreasing if 
The set of arbitrarily many differentiable functions on R is denoted by 

for any m, k = 0, 1 ,2 , .  . .. The set of such functions is denoted by S(R). 
Thus, f E S(R) if and only if its any derivative decays more rapidly than 
any rational functions. In particular, each f E S (R)  admits C > 0 such 
that 

If(.)l I c (1 +.")-I 

and hence f E L1(R) follows. The integral of the right-hand side of (5.20) 
converges absolutely. It also holds that f E L2(R) and hence Plancherel's 
inversion formula (5.21) is valid for each z, [ E R. Furthermore the follow- 
ing property holds. 
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Theorem 5.3 Iff E S(R), t hen  f E S(R). I t  holds also that  

and 

F((."f) (0 = ( z a c ) m f ( J )  
fo r  k, m = 0, 1,2,. . a ,  where 8, = a/a(. 
Pmof. 
means of the integration by parts that 

To show (5.25), we note that f ( k )  E S(R). Then, we have by 

Equality (5.26) follows similarly, as 

(5.25) 

(5.26) 

= ]R(tac)m ( f (x )e-zez )  dx 

= (tac>m J f(z)e-+dx = ( z + ) m f ( ~ ) .  
R 

Note that the dominated convergence theorem is applied to justify the above 
calculations. 

Given f E S(R), we have f' E L1(R). This implies that 

and hence 

follows. Then, we have xmf@) E S(R) and hence 
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follows for k, m = 0,1, . a -. This means f E S. 

Exercise 5.8 Calculate the Fourier transform 

of 

Then, compute 

Exercise 5.9 Given f, g E L1 (R), show that 

(f*g>(.> = S , f k  - Y ) d Y ) d Y  

converges almost every 5 E R and is in L'(R). Show also that 

w * d(<) = m(E) . Fdr) (5.27) 

holds. 

5.2.3 Cauchy Problem 

We consider the heat equation on the whole space, 

ut = uZz (z E R, t > 0) with ult,O = uo(z). (5.28) 

Such a problem is called the Cauchy problem because the initial data uo 
is prescribed. What we wish to establish is the well-posedness, so that 
existence, uniqueness, and continuous dependence on the initial data uo (z) 
of the solution u(z, t )  with appropriate continuity and differentiability, and 
also the qualitative study, that is, the properties of the solution. Whole 
space R has no boundary, and the infinite point takes its place. Therefore, 
we have to prescribe the behavior of the solution at infinity. 
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To see this, we shall show that there is smooth U ( X ,  t )  for (z, t )  E R x R 
satisfying U ( X ,  t )  = 0 for z E R, t I 0,  u(2, t )  f 0 for z E R, t > 0, and 

tit = tizz (X E R, t E R). 

Actually, this ti(z,t) gets to +oo as z + f o o  more rapidly than any poly- 
nomial if t > 0. Hence uniqueness of (5.28) does not follow unless the 
behavior at oo of the solution is prescribed. The reader can skip the rest 
of this paragraph if he is not familiar with complex analysis. 

In fact, first we see that 

satisfies limtlo f ( k ) ( t )  = 0 for k = 0 , 1 , 2 , . . . ,  so that f E C"(R) holds. 
Then, f(t) is extended as f ( z )  = e-'/'', which is holomorphic in z E 
C \ (0). Let t > 0 be fixed, and apply the integration formula of Cauchy 
as 

where 
t 
2 

I?: z = t + - e a e  with 0 5  8 < 2n 

Here, we have 

lf(z>I = e-Re(l/rz) 

with z = t + i eae .  Therefore, there is 6 > 0 such that 

1 

for any B E [0,2n). This implies that 
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Here, we note the elementary inequality 

valid for p ,  c > 0. Thus, in (5.29) we have 

This implies that 

Now we show the following. 

Lemma 5.1 Any r > 0 admits M > 0 such that 

ak 5 M(2k)! / rk  

f o r k = l , 2 , . . .  . 

Proof. We shall show that 

lim ak = 0. 
k-cc  (2k)! 

In fact, letting bk = &ak, we have 

as k 4 00, because 

k-cc  

(5.30) 

In particular, lim SUPk+cc Ck < 1 and hence limk-,m bk = 0 follows. 0 
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We can summarize that 

193 

is in C"(R) and any T > 0 admits M > 0 satisfying 

I f @ ) ( t ) l  5 M ( 2 k ) ! / r k  (t > 0, k = 0,1,2,. . .) . 

Then, 

converges locally uniformly in ( z , t )  E R x R. Furthermore, form the 
dominated sequence theorem 
that we obtain 

of Weierstrass, it is termwise differentiable so 

for (5, t )  E R x R. Then, we can see that u(z, t )  = 0 for z E R, t 5 0 and 
u(z,t) f 0 for z E R, t > 0. 

Exercise 5.10 Confirm (5.30). 

5.2.4 Gaussian Kernel 

Let us seek the smooth solution to (5.28), assuming that UO, u(., t ) ,  and 
ut(., t )  belong to S(R). In fact, in this case we can take 

Then, it holds that 

J=(ut) = ( F u ) ~  = Ct and F(uzZ) = ( ~ c ) ~ F ( u )  = -C2C 
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follows. 

differential equation with respect t o  t .  Thus, we obtain 
If E E R is fixed, then (5.31) is the Cauchy problem of the ordinary 

G ( [ ,  t )  = e-tE2iio(<) (e E R, t > 0). 

Using the inverse Fourier transformation, we can recover u(5, t )  as 

Here, we have 

] e - t € ~ + z ( ~ - Y ) € u o ( y ) ]  = e-tE2 luo(y)I 

and 

for t > 0. Using Fubini's theorem we obtain 

In this way, we get the Gaussian kernel 

1 G(z, t )  = s, e-tE2+zzSdJ 

Using the path integral, where 

z I' : Im(<) = -- 
2t * 

AND HENCE
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This path r is deformed as 

195 

We obtain from Cauchy's integral theorem that 

R 
= 1, e-tc2dJ + I + 11 + I I I .  

It is not difficult to see that the terms 11 and 111 converge to zero as 
R + 00 if t > 0 is fixed. Furthermore, 

follows similarly. Thus, we have 

In use of 
00 

e-"'dz = f i  

we have 

For this G(z , t ) ,  equality (5.32) is written as 

(5.33) 
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Fig. 5.1 

Exercise 5.11 If the left-hand side is denoted by J, then it holds that 

Then, show (5.33) in use of the polar coordinate. 

5.2.5 Semi-groups 

In the n-dimensional case, the Gaussian kernel is given as 

(5.34) 

and the heat equation takes the form of 

ut = AIL (X E R", t > 0 ) ,  ult,o = U O ( X )  (X E R"), (5.35) 

a2 a2 2 where A = +. . . + denotes the n-dimensional Laplacian and It/ = 

zf + + z: for t = (21, ... , zn) E Rn. Under suitable assumptions to 
u(z,  t )  and ug(z), it follows that 

u(x,~) = G(z - y,t)uo(Y)& (Z E R", t > 0). (5.36) 

In this sense, the Gaussian kernel (5.34) is called the fundamental solution 

In this expression of (5.36), G(z,t)  > 0 holds for ( z , t )  E R" x (0, +m). 
Therefore, ug(z) 2 0 for z E R" implies U ( X ,  t )  2 0 for (5 ,  t )  E R" x 

/Rn 

to (5.35). 
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(0 ,  +m). This implies the order presenring property that u1(z) 2 up(z) for 
z E R" implies u1(z, t )  2 u2(z, t )  for (2, t )  E R" x (0 ,  +m), where u1(z, t )  
and u2(z, t )  denote the solution to (5.35) with the initial values u1(z) and 
u2 (z) , respectively. 

More carefully, if ~ ( z )  2 0 with uo(z) $ 0  for z E R", then u(z, t )  > 0 
follows for z E R" and t > 0. In particular, even if uo has compact 
support, so it is not true for u(.,t) with t > 0. This means that the heat 
equation (5.35) is lack of the finite propagation property. It also holds that 
u1(z) 2 u2(z) and q ( z )  $ u2(z) for z E R" imply ul(z,t) > u2(z,t) 
for (5, t )  E Rn x (0, m). This property is referred to as the strong order 
preserving. Those properties are valid to the general parabolic equation 
appropriately posed, although details are not described here. 

The following fact is referred to as Hausdorff- Young's inequality. The 
proof is left to the reader. 

Theorem 5.4 I f f  E L1(R") and g E LP(R"), the function 

( f  * g ) ( x )  = J ,  f(. - Y)dY)dY  

i s  well-defined f o r  almost every x E Rn and it holds that 

I l f  * 911, 5 llflll . llsllp 7 

where p E [l, m]. 

We have for t > 0 that 

Because of u(z, t )  = [G(- ,  t )  * UO] (z), thus we obtain 

(5.37) 

BY
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for p E [l, co]. Writing u(.,t) = Ttu0, we have 

l l G l l ~ ~ ~ ~ n5 1, 

where the left-hand side denotes the operator norm. Thus, Tt : L p ( R " )  + 

LP(R") becomes a contraction mapping. Even if uo E LP(Rn) is not con- 
tinuous, u(z, t )  = (Ttuo)(z) is differentiable arbitrarily many times for 
(5, t )  E Rn x (0, +co). This property is called the smoothing eflect. 

On the other hand, by (5.27) we obtain 

Tt 0 Ts = Tt+s (t ,  s 2 O ) ,  (5.38) 

which is called the semi-group property and is proven directly if the unique 
existence of the solution to (5.35) is established. In fact, we have 

G(<,t) = [FG] (.,t)(<) = e-IE12t 

and hence 

G(t, t )  . G(<, s) = e-1Cl2(t+s) = G(c, t + s) 
follows. This implies 

G(z - y, t)G(y, s)dy = G(x,  t + S) (X E R", t ,  s > 0) (5.39) Ln 
and therefore, (5.38) is obtained. 

Now we show the following. 

Theorem 5.5 I f p  E [l, co) and uo E L p ( R " ) ,  then it holds that 

lim llTtuo - U O ~ ( ~  = 0. 
t l0  

(5.40) 

Proof. Letting G(z) = G(z, l), we have 

G(z, t )  = t-n'2G(z/&) 

and 



hndamental Solutions 

In terms of y’ = y/&, we obtain 

199 

and hence 

u(z,t) - uo(z) = G(g)( l /p)+(l /p’)  [uo(z - &y) - u0(5)] dy s, 
follows, where p’ E (1,00] denotes the dual exponent of p .  
Holder’s inequality guarantees that 

Therefore, 

t )  - .o(.)l I 

which implies 

where R > 0. 
The second term of the right-hand side of (5.41) is estimated from above 

bY 

because 

(a  + b ) P  I 2 p  (aP + P) 
holds for a, b 2 0 and p 2 1. 
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On the other hand, the first term of the right-hand side of (5.41) con- 
verges to 0 as t 10.  To see this, we note that 

lim Iluo(. + h) - uollP = 0 

follows from uo E LP(Rn) with p E [l, co), so that any E > 0 admits 6 > 0 
satisfying Iluo(. + h)  - uoll, < c if lhl < 6 .  Thus, for t E (O,C~~/R~> it holds 
that 

h+O 

for any y E R'" in )yJ < R, and this term is estimated from above by 

This means that 

We have 

Iu(x,t) - uo(z)IPdx I 2P+' IluollP,. 

and hence (5.40) follows. The proof is complete. 0 

Exercise 5.12 

Exercise 5.13 

Exercise 5.14 

Exercise 5.15 
D'(Rn) as t L O .  

Prove (5.37) and (5.38). 

Prove the smoothing effect of Tt : LP(R'") + LP(R'"). 

Confirm that Theorem 5.5 is not valid for p = 00. 

Show that the Gaussian kernel G ( I ,  t) converges to 6(x) in 

5.2.6 Fourier Transformation of Distributions 

If f = f (x) is differentiable infinitely many times in x E R", then it is said 
to be rapidly decreasing if 
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for any non-negative integer k and the multi-index a. Then the set of such 
functions, denoted by S(Rn),  becomes a F'rkchet space by { p k , & } .  We have 
the dense inclusions D(R") C S(R") c E(Rn) including the topologies, 
and hence 

€'(Rn) c S'(Rn) c D'(Rn) 

follows. Each element in S'(Rn) is called the tempered distribution. This 
paragraph is devoted to the theory of Fourier transformation of tempered 
distributions. The reader can skip it first. 

If rn(dz) is a Bore1 measure satisfying 

then it is a tempered distribution, where ((m(( (dx) denotes the total uariu- 
tion of rn(dx). 

The Fourier transformation on S(Rn) is defined by 

with the inverse transformation 

Then, it holds that 

where 

for a = (al , .  . . , a,). 
If T E S'(Rn), then S(f) = T ( 3 f )  determines an element in S'(Rn). 

It is denoted by S = 3 T  and called the Fourier transformation of T.  It 
can be shown that the mapping F : S'(Rn) 4 S'(Rn) is an isomorphism, 
( F I T ) ( f )  = T(F-lf) for f E S'(Rn), 

D r 3 ( T )  = F((-x)"T), <".F(T) = F(D:T), 
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and so forth. Also, this definition agrees with the usual Fourier transfor- 
mation for L1 and L2 functions, and it is obvious that 

F(6) = 1 and F(1) = ( 2 ~ ) ~ 6  (5.42)  

hold. 
The convolution of cp E D(Rn) and T E D'(R") is given by 

Then, it follows that 

T * 'p E Cm(R") 

SUPP (T * 9) c SUPP T f SUPP cp 

Da(T * cp) = T * Day = (DaT)  * cp. 

(5.43) 
(5.44) 
(5 .45)  

The convolution T * cp of cp E E(Rn) and T E E'(R") is defined similarly. 
Now, we note the following. 

Lemma 5.2 We have (T * cp) * $ = T * (cp * $) for  cp, $ E D(Rn)  and 
T E D'(R"). The same conclusion holds for cp, $ E E(R") and T E E'(R"). 

Proof. In fact, we have 

and the proof is complete. 

Here, we describe the following facts without proof. First, if T E 
D'(Rn), S E E'(Rn), and cp E D(Rn), we have S * cp E D(Rn) and hence 
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T * ( S  * 'p) is defined. Similarly, S * (T * 'p) is well-defined, but actually we 
have 

T * (S*  'p) = S *  (T * 9). 

This quantity is equal to K * 'p with the unique K E D'(R"), which is 
written as K = T * S = S * T .  

Next, if T E €'(Rn), then F(T)  is extended to an entire function in C" 
with the property that 

F(T) ( ( )  = Tz(e-Zz'C) for < E C". 

If T,  S E E'(Rn), then 

F(T * S) = F ( T ) .  F ( S )  

follows. Finally, 

for any T E Dr(Rn). 
The theorem of Malgrange and Ehlenpreis assures that any partial dif- 

ferential operator P ( D )  with constant coefficients admits the fundamental 
solution E E D'(Rn) so that P(D)E = 6 holds in D'(R"). This means that 
u = E * f solves P(D)u = f for any f E D(Rn), 

The following process is called the regularization. 

Theorem 5.6 For 'p E CT(Rn) satisfying 

' p 2 0  and s,. cp(s)dz = 1, 

let 'pE = e-"cp(z/e) for E > 0,  and take T * pE E Cm(Rn) for T E V'(Rn). 
Then, it holds that T * qE 2 T i s  *-weakly in Vr(Rn), which means the 
pointwise convergence so that 

(T * cpd$J) + T($J)  (5.46) 

holds as E 1 0 for any $J E D(Rn). 

Proof. If S E Dr(Rn) and $J E D(R"), then we have 
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where 4 ( x )  = 11,(-z). Then, it holds that 

and 

p E * 4 - - + 4  in D(Rn). 

Thus, we obtain (5.46) as 

(T * cpd11,)  + T (74)) = T(11,) 

and the proof is complete. 

Exercise 5.16 Show that LP(Rn) c S'(Rn) for p E [l,co]. 

0 

Exercise 5.17 

Exercise 5.18 

Exercise 5.19 
S'(Rn) and 11, E S(Rn). Show also F(T * 'p) = (Fp) . FT. 

Confirm that (5.42) holds true. 

Confirm (5.43), (5.44), and (5.45). 

Show that T * cp E S'(Rn) n &(Rn) is well-defined for T E 

5.3 Potential 

5.3.1 Harmonic Functions 

Function U(Z) satisfying Au = 0 in a domain R c Rn is said to be harmonic 
there. It is a fundamental problem in mathematical physics to solve 

Au=O in R, u =  f on dR, (5.47) 

where R is a bounded domain and f(<) is a continuous function on its 
boundary dR. Actually, we have the following theorem €or the Dirichlet 
problem to harmonic function, (5.47). 

Theorem 5.7 
arbitrary given f E C(82) if and only if any point on  dR i s  regular. 

Problem (5.47) admits the solution u E C2(R) n C(n) for 

Here, the boundary point < E dR is said to be regular if it has a barrier 
~ ( z ) .  This means that ~ ( x )  is continuous on n, super-harmonic there, 
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positive in \ { c } ,  and is equal to zero at z = t. Furthermore, super- 
harmonicity of the continuous function w(x) is defined through the mean 
value property, 

{ 20 1 w(20) (20 E R, 0 < T << 1).  (5.48) 

It is actually equivalent to Aw 2 0 in R if w(2) is twice differentiable. 
Remember that B(z0, r )  denotes the open ball with the center 20 and the 
radius r and 

aB(xo,r) 

If u E C2(Q) n C(n) satisfies (5.47), then it is called the classical solution. 
A sufficient condition for the regularity of boundary point is the outer 
circumscribing ball condition. 

Theorem 5.7 is proven by Perron's method. First, sub-harmonicity for 
continuous function w(x) is defined by the reverse inequality of (5.48). 
Then, we take 

&(f) = {w E C(0) I v is sub-harmonic in R and w 5 f on an> 
and set 

4.) = SUP {.(%) I 2) E S(f)). 
It is proven that u(x) is harmonic in R and furthermore, if 5 E dS1 is a 
regular point, it holds that 

lim u(z) = f(c). 
XER-rE 

Rough description of this theory is as follows. First, we have poten- 
tial and the Kelvin transformation. In use of those, we can represent the 
solution to (5.47) by the Poisson integral in the case that R is a ball. By 
this we get mean value theorem and the Harnack inequality to the harmonic 
function, which imply weak and strong maximum principles and the Har- 
nack principle, respectively. Then, the method of harmonic lifting and the 
notion of barrier settle down the problem. 

Here, likely to the complex function theory, the integral formula induces 
every notion but the idea of lifting from sub-solutions is nothing but that 
of real analysis. This beautiful theory has a vast background. 
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Henceforth, the harmonic function is supposed to be C2 in the domain 
R in consideration. If A is taken in the sense of distribution, this notion is 
extended to D'(R). However, Weyl's lemma guarantees that any harmonic 
distribution is regarded as a harmonic function, and furthermore, any har- 
monic function is real-analytic, which means that it is represented as the 
Taylor series around any point in R. Such a property is generally called the 
regularity. 

Exercise 5.20 
E E aR, as there is a disc B # 0 such that B n a = (6). Then show that 

Suppose that the outer circumscribing condition holds at 

R2-" - )x - yj2-" (n  2 3) 
log 15 - Y I  - log R (71, = 2) 

w(x) = 

is a barrier at t ,  where B = B(y, R). 

5.3.2 Poisson Integral 

For the moment, we are concentrated on the two-dimensional case and make 
use of the complex function theory, identifying R2 with C ,  the complex 
plane, that is x = ( x 1 , x z )  E R2 is identified with Re f = u. In fact, we 
have the following theorem. 

Theorem 5.8 If R c R2 is simply connected and (real-valued) u(x) is 
harmonic in R, then there exists a holomorphic f ( z )  in z E R such that 
Ref  =u. 

Here, f(z) is unique up to an additive pure imaginary constant. Even 
if s1 is not simply connected, such f(z) is taken locally, thus can be an 
analytic function in R in this case. In this way, harmonic functions are 
associated with the complex function theory in the two space dimension. 

Here, we wish to confirm that any harmonic function is taken to be 
real-valued henceforth. Let u ( z )  be harmonic and continuous in 121 < R 
and IzI 5 R, respectively, and take a holomorphic function f(z) in 12) < R 
satisfying Re f = u. Then, Cauchy's integral formula guarantees that 
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where p E (0, R).  We take the mirror image of z = rea6 for T E (0, p) with 
respect to the circle = p, that is, z* = p2e"/r. Then, we have 

by Iz*I > p. This gives that 

Thus, putting C = pe2v, we obtain 

by dc = zpezvdcp. Here, we have 

} - { 1 + - p2eae/T 
={l+- - reae p2ezelT 1 

and hence 

follows. Taking real parts of both sides, we get that 
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for 0 < r < p < R. Letting p 

Theorem 5.9 
and ( z I  5 R, respectively, then it holds that 

R, we obtain Poisson's integral formula. 

If n = 2 and u ( z )  is  harmonic and continuous in IzI < R 

(5.49) 
R2 - r2 

dv 
1 27r 

u(re ) - - 
" - 2~ 1 u(Rea')R2 - 2Rr cos(8 - 'p) + r2 

f o r0  5 r < R. 

Equality (5.49) gives the mean value theorem, 
2n 

u(0) = & 1 u(Rea')dv. 

In the case of u( Reze) 2 0,  this gives that 

bY 
R+r  <- 

R + T  - R 2 - 2 R ~ ~ ~ ~ ( 8 - c p ) + ~ 2  - R - T '  
R - T  R2 - r2 < 

In particular, Hurnack's inequality 
1 
3 -u(O) 5 u ( z )  5 3 4 0 )  (1.1 < R/2) 

holds true. 
We now show that the strong maximum principle. 

(5.50) 

(5.51) 

Theorem 5.10 
R c R2 cannot attain the maximum or the minimum there. 

Proof. It suffices to show that the non-constant harmonic function u ( z )  
in R cannot attain the maximum. Suppose the contrary, that there exists 
zo E R such that u ( z )  5 u(zg)  for any z E R. Then, we apply the mean 
value theorem that 

A n y  non-constant harmonic function defined in a domain 

uds 5 m = max u. f a B ( z o  3) a B ( z o  , R )  

This implies that u = m on dB(z0, R) and hence near zo, because 0 < R << 
1 is arbitrary. This means that the non-empty set 

{ z  E R I u(z)  = m} 
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is open. Obviously it is closed and hence coincides with R from its connec- 
tivity. Thus, u(z) is identically equal to the constant m, and the proof is 
complete. 0 

The strong maximum principle implies the weak moximum principle 
indicated as follows. 

Theorem 5.11 
and i s  continuous o n  n, then it holds that 

If R c R2 i s  a bounded domain, U(Z) i s  harmonic in R, 

sup u = max u. 
n an 

A general form of Harnack’s inequality is given as follows. 

Theorem 5.12 If R C R2 i s  a domain and E C R i s  a bounded closed 
set, then there i s  K = K(R, E )  > 0 such that any non-negative harmonic 
function u(z)  in R admits the inequality 

sup u 5 K inf u. (5.52) 
E E 

Proof. 
with the radius R > 0, where 

Because E is compact, it is covered by a finite number of discs 

0 < R < dist(E,dR) = inf dist(z,y). 
TEE,  yEaR 

This means that there is an integer m and 2 1 , .  . . , z, E E such that 

E c UZ,B(zi,R/2) C R. 

Therefore, inequality (5.51) guarantees that 

1 
- U ( Z )  5 U(.i) 5 3 U ( Z )  
3 

for z E B(zi,  R/2) and i = 1 , .  . . , m. However, any w1 E E can come to the 
same disc to which any w2 E E belongs, and hence 

3-%(w1) 5 3%(Wz) 

follows. This implies 

3-m sup u 5 3m inf u, 
E E 
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or (5.52) with K = 32m. 0 

Inequality (5.52) implies the following theorem, indicated as the Har- 
nack principle. 

Theorem 5.13 Let { U ~ ( Z ) ) ~ ~  be a sequence of harmonic functions in 
the domain s1 c R2, monotone non-decreasing at each point, and bounded 
at some zo E R. Then, there is a harmonic function u ( z )  in R such that 
uk(z) 4 u ( z )  locally uniformly in z E 0, which means that its convergence 
i s  uniform on  any compact set in R. 

Proof. 
and hence any compact set E c R containing zo admits K > 0 such that 

The function uk+l(z)  - u k ( z )  is non-negative and harmonic in R 

0 5 U k + l ( Z )  - 4 2 )  5 K { u k + l ( z o )  - 2 1 k ( Z O ) )  

holds for z E E and k = 1 ,2 , .  . .. From the assumption, we have 
03 c {uk+l(.zo) - u k k o ) }  < +m. 

c {.k+l(Z) - Uk(Z)) < f w  

k=l 

This implies that 
Do 

k=l 

uniformly in z E E. We get the limiting function 
m 

with the convergence uniform in E. Because E is arbitrary, this convergence 
is locally uniform in 0. We get u E C ( 0 ) .  

On the other hand, uk(z) is harmonic in R and hence we have 

for z1 E $2 and 0 5 r < R << 1. Letting k + 00, we have 

R2 - r2 
R2 - 2Rr cos(0 - cp) + r2 u(z1 + r e  ) = - dv. 

" 2', 12= u ( z 1  + Re'v) 

This implies that u = u(x) is continuously differentiable twice and is har- 
monic in 0. 13 
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Exercise 5.21 
the path integral. 

Prove Theorem 5.8 in use of Cauchy-Riemann’s relation and 

Exercise 5.22 
lem for harmonic function in use of the weak maximum principle. 

Derive the uniqueness of the solution to the Dirichlet prob- 

5.3.3 P e m n  Solution 

Real-valued continuous function u(z)  defined on the domain R c R2 is said 
to be super-harmonic if 

u ( z )  2 f uds 
aB(z ,R)  

holds for any z E 52 and 0 < R << 1. Similarly to the case of harmonic 
function, we can prove that non-constant super-harmonic function cannot 
attain the infimum in interior. If -ti(.) is super-harmonic, we say that 
~ ( x )  is sub-harmonic. Then, non-constant sub-harmonic function cannot 
attain the interior maximum. Thus, we can say that a continuous function 
is harmonic if and only if it is sub- and super-harmonic. 

Let R c R2 be a bounded domain, and suppose that the Dirichlet 
problem (5.47) has a solution u E C2(s2) n C(a), where f E C(ds2). In this 
case, if u E C(n) is sub-harmonic in R satisfymg u 5 f on dR, then the 
function u - u E C(n) is sub-harmonic in R and v - u 5 0 holds on dR. 
Therefore, the weak maximum principle guarantees that u 5 u on a. This 
means that u ( z )  attains the maximum of v ( z )  in u E S(f), where 

S(f) = {v E C(a) I sub-harmonic in 52, u 5 f on a i l } .  

This observation leads us to the Perron solution to (5.47), 

for each z E 0. 
Henceforth, the Poisson integral P ( f )  of f  E C(dB)  is defined by 

where B = B(z0, R) and z = zo + reZe with 0 5 r < R. The following 
theorem is a counterpart of Theorem 5.9, and the proof is left to the reader. 
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Lemma 5.3 
A ( P f )  = 0 in B .  

We shall show that u(z)  defined by (5.53) is harmonic in R. This is 
proven by showing that each element in S( f )  can lift up as a harmonic 
function on any disc contained in 0. The following lemma indicates that 
S(f) is soft enough to make such a process closed. 

Lemma 5.4 

For f E C(BB), it holds that Pf E C(B) n C 2 ( B )  and 

Given B = B(z0, R)  satisfying B c R and v E S, we take 

(5.54) 

for f = vlaB. Then, it holds that v g  E S( f ) .  

Pmof. From Lemma 5.3, we see that v g  defined by (5.54) is continuous 
on a. Because v g  5 f on dR is obvious, we shall show that vg is sub- 
harmonic in R. Let us put w = VB for the moment. We only have to show 
that 

wD(z)  2 W(z) (5.55) 

holds for any z c R, for that purpose. 
In fact u(x)  is sub-harmonic and hence the weak maximum principle 

guarantees w 2 v in B,  and hence w 2 v holds on n. This implies that 
WD L VD in R. On the other hand, we have U D  2 v in R similarly, and 
hence 

R and for any disc D satisfying 

W D  2 V D  2 v (5.56) 

follows in R. If z # D, then WD(Z) = w(z) holds. If z # B,  then v(z) = 
u ~ ( z )  = ~ ( z )  and hence W D ( Z )  2 W(Z) follows from (5.56). Therefore, we 
have only to take the case that z E D n B. 

Infact,wehavev=vUg = w o n d B n D a n d w D  = w o n d D n B , s o t h a t  
W D  2 w holds on d ( D  n B )  by (5.56). However, both WD and w = vg are 
harmonic in D n B,  we get that WD 2 w in D n B by the weak maximum 

0 

The function V B  defined by (5.54) is called the harmonic lifting of v on 

principle. Thus, we obtain (5.55) in R, and the proof is complete. 

B. The proof of the following lemma is also left to the reader. 

Lemma 5.5 
harmonic in R, then so is max {v, w}. 

Show that i f  the continuous functions v and w are sub- 
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Now, we show the following. 

Theorem 5.14 

Proof. holds for a constant m >> 1 satisfying 
-m 5 f on d52 and hence S(f) # 0 follows. On the other hand, the weak 
maximum principle guarantees for v E S( f )  that 

The function u(z)  defined by  (5.53) is harmonic in R. 

We note first that -m E 

~ ( 2 )  5 maxv 5 max f < +co 
a0 an 

and hence 

u(2) = sup{v(z) I v E S(f)} < +co 

holds for each z E 52. 

u(y) as k --+ 00. If we take i jk (k = 1 , 2 , . . . )  as 
We take B = B(y,R)  in B C R, and {vk} C S ( f )  such that vk(y) /” 

61 =v1, 6 ~ = m a x { w ~ , v ~ } ,  . . . ,  

then it holds that {&} c S(f) by Lemma 5.5 and also 6k(y) = vk(y) /” 
u(y). Thus, we may suppose that {vk} is non-decreasing at any point in $2. 

If V k  = ( v k ) ~  denotes the harmonic lifting of wk(z) on B = B(y, R), 
then { V k }  c S(f) is non-decreasing at any point in 0. Furthermore, V k  is 
harmonic in B and the weak maximum principle guarantees vk 5 v k  in 0. 
This implies 

Vk(Y) I W Y )  --+ U(Y) < +0O (5.57) 

from vk(y) -+ u(y) and (5.53). The Harnack principle, Theorem 5.13 is 
applicable, and we have a harmonic function v(z) in B such that V k  --+ v 
locally uniformly in B. If v = u is shown to hold in B,  then u(z)  is harmonic 
in B. Thus, it is harmonic in R because B is arbitrary. 

For this purpose, first we note that V k  5 u holds in R by (5.53). This 
implies 

v 5 u  in B. 

On the other hand, relation (5.57) gives that 

4 Y )  = 4Y). 

u(2) > i i(2) > ?I(.). 

If there is z E B satisfying ~ ( 2 )  > v(z), then we have ii E S(f) such that 
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Let wk = max {vk, ii} for {vk} taken previously. It holds that {wk} C &( f )  
and is non-decreasing in R. Take, furthermore, that wk = (Wk)B. Then, 
similarly to the case of {vk}, we have a harmonic function w in B such that 
wk -+ w locally uniformly in B and Wk(y) -+ u(y) = w(y). Here, we have 
wk 2 vk and hence wk > vk in 0, which implies that 

w > v  in B. 

On the other hand, we have w(y) = u ( y )  = v(y) and hence the strong 
maximum principle guarantees that w = v in B. This implies w(z) = v(z). 

On the other hand, we have 

and hence wk(z) > G(z) holds. This implies W(Z) > G(z)  > v(z), a contra- 
diction. 

Exercise 5.23 Give the proof of Lemmas 5.3 and 5.5.  

5.3.4 Boundary Regularity 

Remember that E E dR is said to be a regular point if there is a barrier 
w(z), which means that w E C(D) is super-harmonic in 52, w(S) = 0, and 
~ ( x )  > 0 for x E n \ {t}. Now, we shall show the following. 

Theorem 5.15 Iff is  continuous on  dR and any point on  dR is  regular, 
then the Perron solution u(z )  defined by (5.53) is  continuous o n  a and 
satisfies ulan = f .  

Proof. We shall show that if E E dR, {x} c R, and x + 5, then 
u(x) + f(5) follows. In fact, because f is continuous on dR, we have 
M = maxan I f  I < +m, and any E > 0 admits 6 > 0 such that Ix - 51 < b 
for x E dR implies I f  (x) - f (<)I < E .  

There is a barrier, denoted by w(z), at E .  Because w E C(n) and 
~ ( z )  > 0 for z E \ {t}, we have Ic > 0 such that 
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holds for z E dR in /z - [I 2 6. Furthermore, w(z) is super-harmonic in R 
and hence 

w(z) = f(5) - E - W z )  

is sub-harmonic in 52 and is continuous on n. If z E dR satisfies Iz - (1 < 6, 
then 

W l ( 2 )  = f(z) + (f (a - f(z) - E )  - hw(z) 
L f k )  

follows. On the other hand, for z E dS2 in Iz - El 2 6, it holds that 

IJl(2) I f(5) - W z )  I f(t) - 2M 
L - M I f ( z ) .  

We obtain w1 E S(f) and hence u 2 01 holds in R. 
Now, we take 

w2(z) = f ( E )  + E + Icw(z). 

It is super-harmonic and continuous in R and on n, respectively. Similarly, 
we can show that 212 2 f on aR. Any I J  E S(f) is sub-harmonic in R 
and satisfies v I f on do, and therefore, it follows that IJ I v2 in R from 
the weak maximum principle. Hence we obtain u I v2 holds in R because 
w E S(f) is arbitrary. 

Those relations are summarized as 

I4z) - f(0l I E + W z )  

for z E R. Because of w E C(n) and w([) = 0, it holds that 

Here, E > 0 is arbitrary, we have 

lim u(z)  = f(6) 
X E n +  

and the proof is complete. 0 

Exercise 5.24 
u E C2(R) n C(n) for any f E C(dR), then any point on dR is regular. 

Confirm that if the Dirichlet problem (5.47) has a solution 
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5.3.5 The Green’s Function 

If R c R2 is a bounded domain, the function G(z, 20) defined for ( x , x o )  6 

R x 52 is said to be the Green’s function, if, as a function of x, it is harmonic 
- 
in \ { x O ) 7  

is harmonic in a neighborhood of xo, and lim,En-+c G(x ,  XO) = 0 for E E do.  
The Green’s function exists if any boundary point of dR is regular, and is 
unique if it exists. 

If r > 0 is small and 1x - 501 = r ,  we have G(x ,  20) > 0 by the second 
requirement to G(x,zo). Therefore, G(x,xo) > 0 for x E R \ B(zo,r) 
from the third requirement and the maximum principle. Because T > 0 is 
arbitrary, we have G(z, T O )  > 0 if x E R \ (20). Therefore, it holds that 

for [ E aR if the left-hand side exists, where u = uc denotes the outer unit 
normal vector. 

The following theorem is the generalization of the Poisson’s formula 
(5.49). 

Theorem 5.16 
and on a, respectively, then it holds that 

If dQ i s  C2 and u(x)  as harmonic and continuous in R 

where dS6 denotes the line element. 

Proof. 
we have 

In use of Green’s formula (1.28) in R \ B(x0,  p )  with small p > 0, 

Now, we have, again by (1.28) that 
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We have for x E dB(z0 ,p)  and r = p that 

1 1  
G(z, ~ 0 )  = - log - + K ( z ,  ~ o )  

2n r 

and 

a G ( V 0 )  - aG(z,Zo) 1 W W o )  - -  - 
dU dr 2nr dr ' 

and hence the first term of the left-hand side is treated as 

+ - log -+K 1 1 ) au(z;re")] pd8 --f u(z) 
(2, r r=p 

as p 1 0. Then, (5.58) follows because G(c,zo) = 0 for E E dR, and the 
proof is complete. 0 

The privilege of the use of the complex function theory is the relation 
between Riemann's mapping and the Green's function. Actually, we have 
the following, where a domain surrounded by a Jordan curve is called the 
Jordan region. 

Theorem 5.17 Let w = f ( 2 )  be a conformal homeomorphism between 
the domains D and 0, and G(w,wo) the Green's function on R.  Then, 
GD(z, ZO) = G(f(z), f(z0)) is that on D. 

Proof. First, if u(w) is harmonic in 52, then U(Z) = u(f(z)) is so in D. 
Thus, we have only to show that GD(z ,  zo) satisfies the second requirement. 
In fact, 

1 
G(w, WO) + - log (W - W O ~  2n 

is harmonic at w = wo E Q, and it holds that 
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The last term of the right-hand side is also holomorphic at z = zo by 
0 f'(z0) # 0. The proof is complete. 

Exercise 5.25 
is given by 

Show that the Green's function on the unit disc D : 1x1 < 1 

with z = z1+ 222 and zo = zo1+ 2202 for z = (21, $2) and 20 = (201,202).  

Then, apply Theorem 5.17 and show that the Green's function on the Jor- 
dan region R is expressed as 

where f : R -+ D denotes the Riemann mapping, that is, a conformal 
homeomorphism. 

Exercise 5.26 
and u(w) is harmonic in R, then so is w(z) = u(f(z)) in D. 

Confirm that if f : D -+ R is a conformal homeomorphism 

5.3.6 Newton Potential 

We have seen that the theory of two-dimensional harmonic functions are 
based on the expression of the solution of Dirichlet problem on the disc, 
the Poisson integral. The function log 1x1 is a two-dimensional harmonic 
function in x # 0, because it is the real part of the analytic function logz. 
It depends only on T = 1x1. Now, we shall seek such harmonic functions in 
higher dimensions. 

Let n be the space dimension. For that purpose, we take the polar 
coordinate 2 = rw E R" with T = 1x1 and w E Sn-l = {x E R" I 1x1 = 1). 
In this case, it holds that 

a 2  a 2  A = -+. . .  ax: += 
d2 n - l a  1 
-+-- + -A 
ar2 T dr ~2 

- - 

1 d  1 
- - -- (T" - '$ )  + F A ,  

~ - 1  aT 
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where A denotes the Laplace-Bertrami operator on Sn-l. In the case that 
n = 2 and x1 = r cos cp,x2 = r sin cp with cp E [O, 2n) are taken, then it holds 
that; A = w. If n = 3 and x1 = rcose, 2 2  = rsinecoscp, 5 3  = rsinesincp 
with 0 E [0, n], cp E [O, 2n), then we have 

az 

l a  1 a2 
A = -- (sine$) + -- 

sin2 e dp2 . sin e ae 
If I? = I'(lxl) is harmonic, then 

and it follows that r ( r )  = c ~ T - * + ~ + c ~  for n 2 3, where el, c2 are constants. 
We take 

where W n  denotes the area of S"-l so that it is equal to 2nn12/y(n/2). 
Here, y indicates the Gamma function: 

00 

y(z) = Jd  e-'s'-'ds. 

In the case of n = 3, we have the Newton potential, 

Generally, A r  = 0 for z # 0. The singularity at z = 0 of 
Suppose that u E C2@) is harmonic in B ,  where 

is important. 

B = {Z E R" I 1x1 < 1). 

We take x E B, 0 < E << 1, and R = B \ B(x,E) .  If Y and dS denote the 
outer normal vector and the area element on aR, respectively. In use of 
Green's formula, we obtain 
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The left-hand side vanishes because Au(y) = A,r(z - y) = 0 for y E 0. 
The right-hand side is divided into SaB + SaB(x,E). Here, we have 

-(y)r(z - w, I iivulILm(B) . / ~ r ( y  - X)I~S,  
l g - X l = E  

On the other hand = -8 on aB(z, E )  for p = Iy - 2). Hence we obtain 
a%/ 

as c 0. Those relations are summarized as 

for z E B. 

transformation as follows. 

Lemma 5.6 
A,U = 1 ~ 1 ~ "  A,u. 

Proof. 
hence for p = r-l that 

The mirror image with respect to 8B is associated with the Kelvin 

If y = z/ 1zI2 and U(y) = Iz/n-2 u(z), then it holds that 

We take the polar coordinate x = rw. This implies y = r-lw and 

AyU = - - ( p n - ' g ) + - A U  l a  1 

- - - rn-' ( p n - ' z )  . r2 + r 2 .  
pn-1 a p  P2 

r 

- - rn-' ( T - ~ + '  (rn-2u)r . r2 ) r  . r2 + r2 . A (rn-'u) 

rn+' (r-n+3 (rn-2u),)r + rnAu 

rn+' (rur + (n - 2 ) ~ ) ~  + rnAu 

- - 
- - 
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- - rn+’ (ru,, + (n - l)u,) + r n h u  

This means the conclusion. 

Now, we take 

For z = y/ (y12, it holds that 

Namely, r“ is the Kelvin transformation of r (z  - a). Thus, we obtain from 
Lemma 5.6 that 

AJ” = I z ~ ~ + ~  A,I’(z - z )  = 0 

for z # x. If z,y E B,  then z @ and hence z # z. Therefore, I?” is 
harmonic on B. Replacing I’ by I?” in (5.59), we obtain 

for (5.60). Here, if y E aB, then z = y and hence J?”(y) = J?(z - y) holds. 
This implies 

Equalities (5.60) and (5.61) imply 

It is valid for u E C 2 ( B )  n C(B) with Au = 0 because then we take B(0, r )  
for B = B(0,l)  and making r T 1 after deriving an analogous equality. 
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Thus, the Poisson integral is given as follows if n 2 3, where 

is called the Poisson kernel. 

Theorem 5.18 
B,  respectively, then it holds that 

If u E C2(B)  i s  harmonic and continuous in B and on  - 

Proof. In fact we have 

Therefore, because of y . Vy = r& for r = 191 it holds that 

1 1 4% - Yj) n 
- 
- j=1 C$.W,.  lx-Yyln-l I. - YI 

- 1 1 . ( Y , Y - X )  

wn IYI IY - - I n  ' 

- - . -  

On the other hand, for p = IzJ = 1 / r  with z = y/ IyI2 we have 

at p = 1. In use of (5.65), we see that the right-hand side is equal to 

(5.63) 

(5.64) 

(5.65) 
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by p = 1. Thus, we get 

223 

and hence (5.63) follows. 0 

by 
Similar formula to (5.63) holds on B = B(z0, R) with P(z ,  y) replaced 

We can reproduce the arguments in @5.3.2,5.3.3,5.3.4, such as mean value 
theorem, maximum principle, Harnack's inequality, Harnack principle, sub- 
and super-harmonic functions, Perron solution, harmonic lifting, and bar- 
rier. Thus, Theorem 5.7 holds true. 

Exercise 5.27 Seek all eigenvalues and eigenfunctions of A for n = 2. 
Then, give the answer to the same problem for n = 3 in use of the Legendre 
function. 

Exercise 5.28 Confirm (5.64). 

5.3.7 Layer Potentials 

Here, we take a different approach to (5.47), the layer potential, supposing 
that the bounded domain R c R3 has the smooth boundary aC2. Taking 

we say that 

and 

(5.66) 

(5.67) 
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the single layer integral and the double layer integral of f E C(aR), re- 
spectively, where u denotes the outer unit normal vector on dR. We note 
that both w(x) and w(x) are harmonic in R3 \ aR. We shall show that the 
normal derivative of the single layer integral &w(x) and the value itself 
of the double layer integral w(x) take gaps across do, and that those gaps 
reduce the Neumann and the Dirichlet problems for harmonic functions in 
R to some integral equations on aR. Actually, the kernels I?(. - 77) and 
aI'(- - q) of those integrals are called the single layer potential and the a% 
double layer potential, respectively. 

First, we note that the double layer potential has weaker singularities 
on the boundary. In fact, given xo E dR, let us take q + xo in rl E do. 
Then, it holds that 

u, --+ 0 50 - rl -. 
1x0 - 71 

and hence 

follows from the smoothness of dR. This implies 

On the other hand, in use of the polar coordinate = xo + rw with 
r = (q  - xo(, we have 

d S ,  x rdrdw (5.69) 

near rl = xo E 80, so that the double layer integral w ( x )  converges even at 
each x = xo E 80. 

Now, we show 

-1 (ZE 52) d -qx - q)ds, = (5.70) 

In fact, if x E Rc, then 

A$(x - 71) = O 

x)
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holds for q E a. Then, from Green's formula we obtain 

In the case of x E R, we take E > 0 sufficiently small and note that 

A J ( X  - 7) = 0 

holds for q E a \ B(z,  E) .  Then, it follows that 

Therefore, similarly to the case of 55.3.5 we have 

7 .  1 2  E dw = -1, (5.71) a 1 -I'(z - g)dS, = -- 
dr 

and hence 

follows for x E R. Finally, if x E aR, we take small E > 0 and deform aR 
as 

act, = [an n B ( X ,  E ) ~ ]  u [n n ~ B ( z ,  E ) ]  . 
Because x is on the outside of RE, we have 

by Green's formula. On the other hand, it holds that 

by (5.68) and (5.69), and that 

a 
-I'(x - q)dS, a 

-r'(z-q)dSv = 
LO\B(x .r )  au7, - L B ( x . E ) n n  

(5.72) 
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by (5.72). Similarly to (5.71), we can derive that 

and hence 

follows for x E dR. In this way, we have proven (5.70). 
From the extension theorem of Tietze, the continuous function f(x) 

defined on 8R has a continuous extension near dR, denoted by f(x). In 
use of the regularization process, this j(x) is approximated uniformly by a 
family of Holder continuous functions. If f(x) itself is such a function from 
the beginning and xo E dR, then we can show that the function 

defined for x E R3 is continuous at x = 20. 

In fact, we split E ( z )  as 

for this purpose, and apply (5.70) to the second term. This implies that 

as x 4 xo in R3. Furthermore, we have for x E R3 and r] E dR that 

with the constants M > 0 and 0 E (0, l), and it holds that 
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This gives 

227 

from the dominated convergence theorem, and therefore, 

lirn E ( x )  = E(z0) 
5-20 

holds true. 
On the other hand, we have from (5.70) that 

1 
E(xo) = ~ ( z o )  + ,f(xo) 

and 

This gives for xo E dR that 

and 

1 
= wko)  + sf(x0). 

We have proven the following. 

Theorem 5.19 
the double layer integral w(x) defined by (5.67) satisfies that 

Iff (v) has a Holder continuous extension near dR, then 

for xo E dR, where 

(5.73) 

w-(xo) = lim w(x) 
I€,, 1-50 



228 

and 

Linear PDE Theory 

w+(xo) = lim ~ ( x ) .  
X E W ,  x+xo 

The single layer integral 

4 7 )  = J,, f(r])r(x - r])dS, 

is easier to handle, because r(x - r ] )  = 0 (12 - 771 
This implies for an open set U containing aR that 

holds for x,r] E R3. -7 
(5.74) 

Then, we can show that 

follows as x + xo in R3 if x E aR H f(x) is continuous at x = xo E asZ. 
In fact, from the assumption any E > 0 admits 6 > 0 such that 

l f (4  - f(.o)l < E 

holds for Ir] - ZOI < b and r] E af2. Here, splitting F ( x )  as 

we can estimate the second term as 

for x E U. On the other hand, we have 

lim F&(x) = F&(zo) 
X’XO 

for 
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We have 

for x E U, and hence it follows that 

limsup IF(z) - F(xo)l 5 ME. 
x+xo 

This implies (5.75). 
Similarly to the double layer integral, the function 

is well-defined for z o  E 80. Also, the function 

is well-defined for z E R3 \ 80. Therefore, the function 

av 
dVX0 

D ( z )  = w(2) - -(z) 

is well-defined for x E dR, x E a, and x E W, where ~ ( x )  denotes the 
double layer integral of f = f ( q ) .  

In fact, we have 

with the kernel satisfying 

This implies limx+zo D ( z )  = D(z0) as x -i z o  E a0 in R3 if x E 80 - 
f(z) is continuous. Hence we get the following from (5.73). 

Theorem 5.20 
single layer integral v(x) defined by (5.66) satisfies that 

If f (q) has a Holder continuous extension near 80, the 

(5.76) 
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for xo E dR, where 

and 

5.3.8 Fredholm Theory 

From the above mentioned properties of layer potentials, boundary value 
problems for harmonic functions are reduced to the integral equation on 
the boundary. Here, we take the simplest case of 

Av=O in R, v = g  on dR (5.77) 

and describe the guideline. 
In fact, if the integral equation on dR given as 

has the solution p ( < ) ,  then 

is harmonic in R. Furthermore, from (5.73) it follows that 

v-(<) = v( t )  + At) = 9(<> 

and p ( t )  becomes a solution to (5.78). 
If we define the operator K : C(dR) 4 C(dR) by 

(5.79) 

then (5.78) means for X = 2 that 

( I - X K ) p = g .  (5.80) 

In use of (5.68), we can show that K is compact by Ascoli-Arzelb's theo- 
rem and hence Riesz-Schauder's theorem is applicable, which implies the 
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Fkdholm alternative. Namely, because a = f is not an eigenvalue of K ,  we 
have the bounded linear operator 

( I  - XK)-l : C(a0)  t C(a0). 

Hence, equation (5.80) is uniquely solvable for given g E C(B0). 

Exercise 5.29 
(5.79) is compact. 

Confirm that the operator K : C(d52) -, C(d52) defined by 

5.4 Regularity 

5.4.1 Poisson Equation 

Let us confirm that equality (5.59) is valid even if u E C2(B) is not har- 
monic, where B = B(0,l) and 52 = B \ B(z ,E )  with E B and 0 < E << 1. 
The left-hand side is equal to 

(5.81) 

and hence converges to 

as E 1 0. On the other hand, the right-hand side accepts the same treatment 
and hence converges to 

Thus, we obtain 

The analogous equality to (5.61) is similar, and is given as 
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Thus, we obtain 

with the Green's function 

G(z, Y> = rz(Y) - r(z - Y>, 

if u E c2(B) satisfies 

- A u = g  in B, with u =  f on d B .  (5.86) 

In particular, if u E C2(B)  solves the Poisson equation 

- A u = g  in B with u = O  on d B ,  (5.87) 

then it is given as 

However, deriving (5.86) from (5.85) is not so simple. 
First, because B satisfies the outer circumscribing ball condition at 

any boundary point, any f E C(dB) admits a unique u E C 2 ( B )  n C(B) 
satisfying (5.86) with g = 0. By Theorem 5.18, this u(x) is given by 

4.1 = J,, P(.7 Y)f ( Y P Y  (x E B) .  

Therefore, iff  E C(dB) the first term of the right-hand side of (5.85) is in 
C2(B) n C(B) and satisfies 

- A u = O  in B with u =  f on d B .  

On the other hand, g E C(B) cannot imply the first term of the right-hand 
side is in C2(B). We recall that a similar discrepancy is observed in 555.1.2 
and 5.1.3. 

Namely, in $5.1.3, we asked for the reader to confirm that u(2, t) given 
by (5.18) becomes the classical solution to (5.7), provided that uo(z) is 
continuously differentiable on [O,.] and satisfies the compatibility condition 
that U O ( ~ = ~ , ~  = 0. If 
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and 

this means that the mapping 210 E X1 H u(t)  E X o  is well-defined through 
(5.7) for each t 2 0. However, those spaces X1 and X o  are different and it 
causes a discrepancy in the regularity between the initial value uo and the 
solution u(.,t) with t -1 0. It is compensated by the use of Holder space. 
Similar situation arises in the elliptic problem as is suggested in Theorem 
5.21. Actually, we have u E C29e(R) if g E Ce(R) in 

- A u = g  in R, u=O on aR,  

where R C R" is a bounded domain with C2ve boundary aR  for 0 E (0,l). 

Exercise 5.30 Confirm that (5.81) converges to (5.82) if u E C2(B). 

5.4.2 Schauder Estimate 

In 85.4.1 we have mentioned that u E C2(B) does not follow from g E C(B)  
in 

4.) = s, G(z, Y)9(?/)& (. E B )  

for the Green's function G(z, y) of the Poisson equation (5.87). To under- 
stand the situation, we take the essential part 

of G(z, y), assuming n 2 3. Given g E L'(R") n Lw(Rn) ,  we take 

Because of 

(5.88) 
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and d y  = rn-'drdW for y = rw with r = IyI and 

w E S"-' = {Z E Rn I 1x1 = l}, 

we have 

for each x E Rn. Thus, the measurable function U(Z)  is well-defined. On 
the other hand, from the first relation (5.64), we have 

(5.89) 

and hence 

is well-defined as (5.88). We shall show that u(x)  is differentiable and 

a X j  

of applying directly the dominated convergence theorem. 
- au = u j .  For this purpose, we develop the regularization argument instead 

We take r] E Cm[O, ca) satisfymg 0 5 r] 5 1 and 

Then, the function 

is well-defined for each E > 0. From the following lemma, it follows that 
u E C1(Rn) and 

Lemma 5.7 
satisfies that 

= uj. 

The function uE is continuously differentiable in R" and 

as E 10.  
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Proof. We have 

and 

with

and the dominated

Hence we

by 0 < n < 1 and supp n U R n \ B(0, 1). This implies
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Therefore, in use of 

and 

we have 

= O(&) 

and hence 

follows. The proof of 

is easier and left to the reader. 

From the second equality of (5.64), it follows that 

(5.92) 

0 

and the above argument in use of the cut-off function fails to take the second 
derivative of u(x). Here, we introduce the notion of Holder continuity. A 
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function f(x) is said to be Holder continuous with the exponent 0 E (0,l)  
in a domain R C Rn if 

Then, Cm*e(Cl) denotes the set of C" functions on Cl such that D"f is 
Holder continuous with the exponent 0 for la1 = m, where m = 0,1,. . . and 

The following theorem illustrates the simplest case of the Schauder reg- 
e E (o,i). 

ularity. 

Theorem 5.21 
by  (5.88) is in C2te(Rn) and satisfies that 

I fg  E Ce(Rn) n L1(R") with n > 2, then U ( X )  defined 

-Au=g  in Rn, (5.93) 

where 0 E (0 , l ) .  

Proof. From Lemma 5.7, we see that 

is C1 and satisfies 

in x E R". Similarly, we can prove that 

(5.94) 

converges for each p > 0. Now, we shall show that 
formly to ujk. This implies 

converges uni- 

aZu 
= ujk dx j ax k 
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and also (5.93) by h r ( x )  = 0 for x E R" \ (0) and 

(5.95) 

The Holder continuity of ujk is left to the reader and thus the proof is 
reduced to 

First, we confirm that exists. In fact, we have 

(5.96) 

-1  (s + &-1 lld11,) M Y ) l  (1. - YI 2 E )  

I ( 0  (1. - Yl < E). 
Here, the right-hand side is independent of y and is summable in x, so that 
we obtain from the dominated convergence theorem that 

with its continuity in x E R". 
Next, we have 



Regularity 239 

Making E 10, we have ZE < p, and hence the fourth term disappears. For 
the second term, we apply Green’s formula as 

where 

follows for 1x - yJ = p if ZE < p. Thus, we obtain 

= I + I I .  

Here, we have 
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as E 1 0. Hence (5.96) follows and the proof is complete. 

Exercise 5.31 Confirm (5.92). 

Exercise 5.32 

Exercise 5.33 Show (5.95). 

Exercise 5.34 

Confirm that the right-hand side of (5.94) converges. 

Try to show that u j k  is Holder continuous. 

0 

5.4.3 Dirichlet Principle 

In $5.3, we studied (5.47) by means of the potential function. However, 
first this problem was approached differently from those methods of Perron 
or F'redholm. Namely, the Dirichlet principle asserts that the solution to 
(5.47) is realized as the minimizer of 

J ( v )  = - (VVl2 :s, (5.97) 

under the constraint that 

v =  f on dR. (5.98) 

It took a long time to justify this result. The first obstruction was to 
establish the existence of the minimizer. For this purpose, it is actually 
necessary to prepare a functional space with the complete metric. Now, we 
can show the following. 

Theorem 5.22 
mum on 

The functional J(v) defined by (5.97) attains the mini- 

E = {v E H'(S2) 1 w = f on an}. 
The minimizer u E E satisfies 

L V U .  vv = 0 

for any v E E.  

(5.99) 
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Remember that H1(R) denotes the set of functions square integrable up 
to their first derivatives. It forms a Hilbert space with the norm 

If R has the restricted cone property, then the mapping 

y : 21 E C(Q H wJan E c(an) 

has a continuous extension from H1(R) to H1/2(dR). This operation is 
called the trace and the constraint (5.98) is taken in this sense for v E 

The proof of Theorem 5.22 is quite similar to the abstract Riesz' repre- 
sentation theorem in 53.2.2 if we apply the Poincare' inequality described in 
the following section. Let us confirm that Hi(0) is the closure of Cr(R) 
in H'(R), and that v E H1(R) is in HJ(R) if and only if its trace to dR 
vanishes. 

Hl(R). 

Lemma 5.8 
satisfying 

Any bounded domain R c R" admits a constant C > 0 

11412 I c IIVw112 (5.100) 

for any  v E Hi(R). 

Proof. In 
fact, from the definition, any v E Hi(R) admits {vk} c Cr(R)  satisfy- 
ing ((uk - w(lH1 + 0. This implies 

Inequality (5.100) is reduced to the case of w E Cr(R). 

and hence inequality (5.100) for Vk implies that for w. 
We may suppose that 

The function v E 
extension. Then, 

Cr(IR) is regarded as an element in Cr(Rn) by the zero 
it holds for z = (z1,z2,. . . , z,) E R" that 
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and hence 

follows. We obtain 

= c2 lbz ,  11; I e2 IIVVII; 

and hence inequality (5.100) holds for C = e. 

.. 

dxn 

. dx, 

Exercise 5.35 Prove Theorem 5.22 in the following way. First, take the 
minimizing sequence {Vk} C E of J .  Then apply (5.100) to Wk = Vk - f 
and show that it is bounded in Hi(R), where f E H1(R) in f l  = f .  
Take its subsequence that converges weakly there, and apply the lower 
semi-continuity. 

an 

5.4.4 Moser’s Iteration Scheme 

This paragraph is an introduction to the regularity theory applicable to  
nonlinear problems. We admit the following fact referred to as Sobolev’s 
imbedding theorem. Here, as H;(R) is based on L2(R), Wol,p(R) is con- 
structed from Lp(R). That is, WIJ’(R) is the set of p t h  integrable func- 
tions up to  their first derivatives, and Wtlp(R) is the closure of Cr(R) in 
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WIJ’(R) under the norm 

V P  
1l~11w’~P(n) = (Ilvvll; + Ilvll;) . 

Theorem 5.23 I f R  C Rn i s  a bounded domain, p E (l ,n),  and n > 2, 
then the embedding Wo1”(R2) c LP’(R) holds for p* = np/(n - p ) .  More 
precisely, there exists a constant determined by n and p such that 

1 1 ~ 1 1 =  2 c IIVvllp (5.101) 
n-p  

holds for any v E W,’?’(Q). 

We will concentrate on the inner regularity, so that f E Lyoc(f2) means 
that cp . f E Lp(R) for any cp E CF(52). The sets H;oc(R) and Wk:(R) are 
defined similarly. 

Henceforth, we take the case n > 2 only. We say that v E H/oc(R) is 
sub-harmonic in R if 

J ,  v u  . vcp 2 0 (5.102) 

holds for any non-negative rp E Cp(R). By the regularization and cut- 
off process, this cp can be taken to be a non-negative function in HJ(f2) .  
Given such u, we take B(zo,2R) c R,  where B(so, 2R) denotes the open 
ball with the radius and the center 2R > 0 and 20, respectively. We put 
20 = 0 and B(zo,2R) = B2R for simplicity. For 0 < p < r 5 2R, we take a 
non-negative q = q(lz1) E CP(B,.) satisfying 

r ] =  1 on B, and IVq1 I C / ( r - p ) .  (5.103) 

Here and henceforth, C > 0 denotes a constant independent of the param- 
eter in consideration. 

It is known that v E H/oc(Q) implies lzll E H/oc(s2) and 

vv (v > 0) 
VIvI = 0 (v = 0) (a.e.) { -vv (w < 0). 

Similarly, u: = (u* A t )  V t-l is in H/oc(Q) for t > 1 and it holds that 

t a 2  V ((ui)*+lq2) = (a  + l)(u*) q VU; + 2 ( ~ ; ) ~ + l q v q  (a.e.1 
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for a E R, where a A b = min{a,b} and a V b = max{a, b } .  From this 
and t-' _< u$ I t ,  the non-negative function cp = (u$)~+'$ is in Hj((R).  
Plugging it into (5.102), we get that 

Here, sending t + 00, we have 

J (u:)Qq2Vu. vu: = 
n 

and similarly 

by the monotone convergence theorem. Therefore, it holds that 

for R* = {x E R I h ( x )  2 0}, and by adding those terms, we get that 

(a + 1) J, IW2 M a  v2 I 2 J ,  lVul 14=+' IVvl 77- (5.104) 

Inequality (5.104) coincides with that derived from the formal calculation 
obtained by putting cp = lulauq2 in (5.102), and henceforth we omit to 
write this justification process. 

Let a > -1 in (5.104). We see that 

(+j+1)2 is equal to the a+l times the left-hand side, and that 

is equal to the (%+I)  times the right-hand side. Therefore, we have 
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with a constant C(a)  > 0 determined by cy > -1. 
In use of 

a2 + b2 
ab 5 - 

2 
valid for a, b 2 0, the right-hand side of (5.105) is estimated from above by 

with another constant C’(a) > 0. The first term of this quantity is absorbed 
by the left-hand side of (5.105), and therefore, it follows that 

Then we obtain 

(5.106) 

Here and henceforth, C(a)  > 0 denotes a constant determined by a > -1, 
possibly changing from line to line. 

We apply Sobolev’s inequality (5.101) to the left-hand side of (5.106). 
Then, we have 

Namely, for 0 = 5 > 1, P = a + 2, and a > -1 it holds that 

(5.107) 

At this moment, it is only required to recognize that C(a)  is a rational 
function of a. 

The following fact is referred to as the local maximum principle. 

Theorem 5.24 Any y > 1 takes C = C(y) > 0 that admits 

(5.108) 
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for any sub-harmonic function u E H/o,(R) and B(xo,2R) c R, where 
B ~ R  = B(xo,2R) and 

Here and henceforth, IGI denotes the volume of the set G. 

Proof. We have from (5.107) and (5.103) that 

Remember that 8 = n/(n - 2) > 1, p = a + 2, and Q > -1. 

a0 > -1. Putting 
We take y > 1 and define 00, QO by y = PO = a0 + 2, which implies that 

pi = Doei and Ri = R(l  + 2-i), 

we apply (5.109) for p = pi, r = &, and p = Ri+l, where i = 0,1, .. .. In 
fact, it holds that 0 < Ri 5 2R and pi T 00. 

First, we have 

- p = 2 4 - 1  R and - 2 + n - ( n / O } = 0  

and hence it follows that 

(. - p)-2 . Tn . p-n/@ = 22(i+') . (1 + 2-7n. (1 + 2-i-')-n/@ 
< ci+l - 

On the other hand, C(Q)  is a rational function of Q and ai = pi - 2 T 00, 

so that we have m >> 1 such that 

qai) 5 e(i+l)m 
for i = 0,1,2,. . .. Therefore, with some C = C(y) > 1 it holds that 

for i = 0,1,2,. . .. This inequality means 
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On the other hand, we have 2R > Ri > R and Pi 1 00, and therefore it 
fOllOw5 that 

The proof is complete. 0 

The super-harmonicity of u E Hio,(R) is defined similarly by 

J,vu. vlp 2 0 (5.110) 

for any non-negative function lp E CT(R). We can show an analogous fact 
to the weak minimum principle to non-negative super-harmonic functions 
by a more delicate argument. 

function and 
function 

For the moment, u E H/o,(f2) denotes a non-negative super-harmonic 
c R. Given 0 < p < r 5 4R, we take the non-negative 

= ~(1x1) E Cr(B,) satisfying (5.103). Then, the reverse in- 
equality 

to (5.104) is obtained by substituting cp = u"+lq2 into (5.110). In particu- 
lar, for a < -1 it holds that 

and hence 

follows. 
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Repeating the previous argument, we obtain an analogous result to 
(5.107), 

where 8 = n / ( n  - 2) > 1, P = cr + 2, and CY < -1, which implies that 

(5.112) 

Taking y < 0, we define Po and cro by y = PO = cro + 2, and set 

Pi = Po@ and Ri = R( 1 + 3 .2-a) 

for i = 0 , 1 , 2 , . . .  . Then, (5.112) is applicable to P = Pi, T = Ri and 
p = Ri+l, as a0 < -1, PO < 0, Pi 1 -00, and 0 < Ri 5 4R hold. We have 

for i = 0 ,1 ,2 , .  . ., where C = C(y) > 1 is a constant. 
This means for 

- 1/Pi l/(-Pi) 

that 

4. 2+1 < - &+l)/(-A)(#)a 

and therefore, it holds that 

- l / Y  

4i L c140 = C' { f,,, u.) . 

On the other hand, we have 

and hence the following lemma is obtained with u = -y > 0. 



Regularity 249 

Lemma 5.9 Given a > 0, we have C = C(a)  > 0 such that 

Cess. infu BR 2 { i R u - a } - l ’ u  

for any non-negative super-harmonic function u E Hioc(R) and BQR c R. 

(5.113) 

In (5.112), p may be negative as far asp < 1. In particular, for p E ( 0 , l )  
and 2 I l <  m 5 4 we have C(p, e,  m) > 0 such that 

{ f,,, uP8)1 / (pB)  

Here, the quantity 

is monotone increasing in p > 0. We make use of this fact and the above 
inequality by finitely many times. Then, for given y E ( 0 , l )  and a > 0,  we 
have C = C(n,  y, a )  > 0 such that 

l/(-@) {{ ..’} 5c{{ B ~ R  d}liU. (5.114) 
BZR 

Here is the key lemma. 

Lemma 5.10 If 52 C Rn with n > 2, then there is  C = C(n)  > 0 and 
a0 = ao(n) > 0 such that 

{f ua}l/u. {j u - a } l / a  5 c (5.115) 

is  satisfied for any non-negative super-harmonic function u E H,b,(R), 
B ~ R  c R, and 

Proof. 

BIR B ~ R  

- 
> (TO.  

Let us take (Y = -2 in (5.111). In fact, we have 
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and hence 

follows. This implies 

by (5.103), and taking r = 2p, we obtain 

f,, IVl0gul2 I C F 2  

for 0 < p < R. 
We now make use of PoincarL-Sobolev's inequality, 

(5.116) 

valid for 'u E H1(B, ) ,  where 2* = 2n/(n - 2 )  and 

UL?, = f,. 21. 

This will be proven in the following paragraph. Admitting it, we can esti- 
mate the left-hand side of (5.117) from below by 

We apply this form to u = logu and get from (5.116) that 

Now, we get the notion of the function of bounded mean oscillation or 
BMO in short, namely, a measurable function w = w(x) defined on a domain 
R c R" is said to  be in BMO if 

llullBMO = sup { f, )u - U B ~  I B : ball, B C R < +GO, (5.119) 
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where 

Thus, we have 

by (5.118). 
A typical unbounded BMO function is loglzl. In this connection, we 

have John-Nirenberg 's inequality, proven in the next paragraph, indicated 
as follows: 

where c1 = cl(n) > 0 and c2 = c2(n) > 0 are the constants determined by 
the dimension n, t > 0, and B is a ball with 2B, the concentric ball with 
twice radius, satisfying 2B c 0. 

We apply this inequality to the BMO function w = logu and B = B ~ R ,  
putting 

In fact, for s E (0, c ~ ) ,  say s = 4 2 ,  we have 

(5.123) 
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Therefore, for (T 5 s/ 1 1 0 1 1 ~ ~ ~  we have 
r 

which implies that 

We have, by u = log v that 

(f,..)l/u. (JI,.")LIU 

This means (5.115). By (5.120) we can take o > o0 with
and the proof is complete. 

The local minimum princzple is now obtained from (5.113), (5.114), and 
(5.115). 

Theorem 5.25 Any y E (0, n / ( n - 2 ) )  takes C = C(n,y) > 0 that admits 

(5.124) 

- 
for any non-negative super-harmonic function u E H:oc(R) and B ~ R  c 0. 

Because the local maximum and the minimum principles are commonly 
valid to  y E (1 ,  n/(n - 2)) ,  we obtain the Harnack inequality. 

Theorem 5.26 
constant C = C(n)  > 0 determined by n that admits the estimate 

If 52 C Rn is a domain with n > 2, then there is a 

ess. sup u 5 Cess. inf u 
BR BR 

(5.125) 

for any non-negative harmonic function u E H:oc(R) and any C R. 

It is now well recognized that this type of inequality implies the Holder 
continuity of the solution. 

Theorem 5.27 
(0,l)  such that any compact set E C R admits C > 0 such that 

If R C Rn is a domain with n > 2, then there is a E 

I.(.) - 4 Y ) l  i c 15 - Yla 

holds for  any harmonic function u E H:o,(R) and x ,  y E E .  
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Proof. For simplicity, we shall write inf, sup for ess. inf and ess. sup, 
respectively. Let u E H/,,(R) be a non-negative harmonic function, and 
take z o  E R, 0 < p < dist(zo,dR)/16, 0 < T < 16p, 

Mr = sup u, and m, = inf u. 

Here, it may be worth noting that u E Lzc((R) follows from the local max- 
imum principle. 

Because u(x) - m1,jP is non-negative and harmonic in B(Q, 8p),  it fol- 
lows from (5.125) that 

B ( x o , r )  B( zo , r )  

SUP {u  - m 1 6 p )  = M p  - mleP 
B(xo,P)  

The function M16p - u(z) has the same property and it follows that 

M 1 6 p  - mp 5 c (M16p - M p )  . 

Adding those two inequalities, we obtain 

(c -k ( M p  - mp) 5 (c - 1) (MlSp - m16p) 1 

and therefore, for w(p)  = M p  - mp and 0 < 8 = (C - l ) / (C + 1) < 1 it 
holds that 

w ( p )  I ew(16p). 

w ( p .  i6-%+l) 5 eiw(i6p) 

Repeating this inequality, we have 

for i = 1 , 2 , . . .  . 
Taking a by 8 = 16-O, we have, for i = 1 ,2 , .  . . and 

0 < p < dist(z0, dR)/l6 

that 

~ ( p .  16-i+1) 5 (16-Z)ff~(16p), 

which implies, for 0 < T I  < ~2 < dist(x0, dR)/16 that 



254 Linear PDE Theory 

Taking 7-2 = p and setting r = r1, we obtain for 0 < r < p and x E aB(x0, r )  
that 

1 --a I+) - u(xo)l I W ( r )  I 8- P W ( P )  . Iz - 501~.  

In other words, for C = O-'p-"w(p), z E B(xo, p) ,  and 

dist(x0, an) 
O < P <  16 

that 

I.(.) - .(zo)l I c 12 - xOla. 

proof is complete. 0 
Then, the conclusion follows from the standard covering argument, and the 

5.4.5 BMO Estimate 

This section is devoted to the proof of (5.117) and (5.121). First, we show 
(5.117), that is, Poincark-Sobolew's inequality. Actually, it suffices to prove 
the following. 

Theorem 5.28 
p E [l, n) that admits the estimate 

There exists C = C ( n , p )  > 0 determined by n > 2 and 

holds true for u E W'J'(Rn), where p* = n p / ( n  - p ) .  

Proof. 
C = C ( n , p )  > 0 that admits the estimate 

1 B(x,r)  

Let n > 2 and 1 I p < n. First, we show that there is a constant 

lVw(y)Ip Jy - ~ l ~ - ~  d y  (5.127) L w )  lw(y) - w(z)lpdy 5 Cr"+P-1 

for z E B(z , r )  c R" and w E C1(B(z , r ) ) .  
In fact, we have from 

u(y) - 4.) = 1' i u ( 2  + t ( y  - 2))d t  

= 1' Vv(2 + t ( y  - 2 ) ) d t .  (y - 2 )  
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that 

Therefore, for s > 0 we obtain 

Here, in terms of w = z + t(y - z )  it holds that 

dS, = tl-”dSw. 

Also, y E B(z ,  r )  n d B ( z ,  s) implies Iw - zl = t s  and hence the right-hand 
side of (5.128) is estimated from above by 

- - s”+”-’ 1’ dt  IVv(w)Ip Iw - zll-ndSw. (5.129) 

Generally, for the measurable function g = g(w) : Rn + [O,m] and 

B(z,r)naB(z, ts)  

z E R” it holds that 

L n  gdw = 1” d p  i B ( , , p )  gdSw‘ 

Therefore, applying the transformation t s  = p,  we have 

gdSw = s-l Jo’ d p  gdSw I’ dt L ( z , r ) n a s ( z , t s )  aB(z ,p)nB(z ,r)  
roo r 
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where X F  denotes the characteristic function of F. Therefore, the right- 
hand side of (5.129) is equal to 

(Vw(w)Jp Iw - ~ l ~ - ~  dw, I p + p - 2  

B ( z , r ) n B ( z , s )  

and hence it indicates that 

b ( Y )  - v(41P dS ,  
B(z,r)naB(z,s) 

5 Sn+p-2  J (Vw(w)Ip IW - z I ~ - ~  dw. 

s 
B ( x , r ) n B ( z , s )  

This implies 

12' ds  L ( z , r ) n a B ( z , s )  M Y )  - "(41PdSY 

= / M Y )  - 441PdY 

I 
B ( x , T )  

IVw(w)lp Izu - z I ~ - ~  dw 5 12r sn+pd2ds 
B ( x , r ) n B ( z , s )  

- - Crn+P-l J IVW(W)lP Iw - ZI1-n dw 
B ( x , T )  

and inequality (5.127) has been proven. 
We turn to the proof of (5.126). Actually, we may assume that v E 

C1(B(z, r ) ) .  A variant of Sobolev's imbedding Theorem 5.23 is indicated 
as 

I I?J I Ip*  5 c I I ~ I I W l ! P ( ~ )  

with the constant C = C(n,p,R) > 0 independent of v E W'?P(R), if 
R c Rn is a bounded domain and dR is C'. Actually, it is reduced to 
(5.101) in use of the extension operator. 

In use of this to R = B(0, l),  we have a constant C1 > 0 that admits 
the estimate 
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for any g E W'>p(B(O, 1)). Here, we take the scaling transformation y = TZ 

and f = rg. Then, we get that 

and 

Thus, we get for f E W'*P(B(z,r))  that 

On the other hand, from (5.127) we have for w E C'(B(z,r))  that 
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If y, z E B(z,  r )  then z E B(y, 2r), so that the right-hand side of (5.131) is 
estimated from above by 

Thus, we get that 

f 121 - w B ( x , r ) / p  5 C r p f  IVv(y)lp&* (5.132) 
B ( v )  B ( x , r )  

F’rom inequalities (5.132) and (5.130) with f = w - w B ( = , ~ ) ,  we obtain 

and the proof of (5.117) is complete. 0 

Let us note that inequality (5.121) is equivalent to saying that w is a 
BMO function. Actually, if 

P( t>  = I{. E B I IW(.> -“-‘El > t ) l  
5 c1 IBI exP(-Kt) 

holds for a ball B in c R and a constant K > 0,  then we can derive 

- P’ = P’(n) f, eq‘v-vs‘ 

similarly to (5.123). Then, it follows from Jensen’s inequality that 

In the original definition of the BMO function, the ball B in condition 
(5.119) is taken place by the cubic, denoted by Q. We note that a cube can 
be divided into smaller cubes with the intersection of the Lebesgue measure 
0. We shall apply this dyadic subdivision by means of the following. 
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Lemma 5.11 There exists a constant Q(n) determined by the dimension 
n such that if Q is a cubic and B is  the minimal ball containing Q such 
that c 52, then it holds that 

Proof. We have a constant q(n )  > 0 determined by n such that 

PI I ci(n) I Q I  . 
On the other hand, we have 

and 

IVB - "Q 

Thus, we obtain (5.133) 'Y 

(5.133) 

The proof is complete. 0 

Now, we show the decomposition theorem of Caldero'n-Zygmund. 

Theorem 5.29 If QO c Rn is a cube, z1 E L1(Qo), and 

then there i s  a countable family of disjoint sub-cubes denoted by {Qk}F=l 
such that 

JvJ 5 s a.e. in QO \ UF=O=lQk (5.134) 
I"Qk I 5 2"s (k = 1,2, .  * ') (5.135) 
M 

(5.136) 
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Proof. We take the sub-division of QO uniformly by 2n sub-cubes, and 
classify them into two types, that is, the one on which the mean of )w1 is 
greater than or equal to s and that less than s. Let the former and the 
latter be { Q l k }  and {Q ik} ,  respectively. As for Q l k  we have 

S I Q i k l  I bl I 2 n I Q i k l f  bl 
l k  Qo 

5 . 2 n s l Q i k ( .  

Now, we take the sub-division of {Qik} uniformly by 2n sub-cubes, and 
classify them into the ones on which the mean of lzll is greater than or equal 
to s, denoted by { Q z k } ,  and the others, denoted by {QLk} .  Because Q2k is 
contained in some Plk,, it holds that 

s I Q z k l  I L,, 1 ~ 1  I 2n IQ2kI fu:,. bl 

5 2 n s l Q z k l .  

Continuing this process, we get a family of sub-cubes {Qmk} .  Let us label 
it as { Q k } .  Then, it holds that 

This means (5.135). It also implies 

m 

and hence (5.136) follows. 

lQL+i/ = 2n IQLI, 20 E QL, and 
Finally, if xo # U k Q k ,  then there is a shrinking family { Q k }  such that 

Then, the dzflerentiation theorem of Lebesgue guarantees that 

iLr& fg; Iul = b(xo) t a.e. 20 # U k Q k  

and the proof is complete. 0 
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In view of (5.133), we that (5.121) is almost equivalent to the following. 

Lemma 5.12 There are the constants c3(n) > 0 and c4(n) > 0 deter- 
mined by n such that i f Q  is  a cubic, B is the minimum ball containing Q 
in B c R, and t > 0,  then it holds that 

I{. E Q I 14.) - WQI > t)l I c3 IQI ~ X P  ( - ~ 4 t /  IlvllBMO) . (5-137) 

Proof. Given v = w(z), we take a > 0 satisfying 

1 
.(.> = aw(x> and lIWIIBMO = co(n>' 

Then, it follows that 

{x E Q 1 Iw(x) - "QI > t }  = {x E Q 1 \.I(.> - 'W?l > t /  1.1) 
and 

llwllBMO = l a l  IIwIIBMO 7 

and therefore, inequality (5.137) for w implies that for w. Namely, we can 
assume 

1 
l l4 lBMO = co(n) (5.138) 

from the beginning. 

for t > 0 that 
Let Q be a cubic and B(Q)  the minimum ball containing Q. We put 

S Q ( ~ )  = {z E Q I b(z> - "QI > t )  

It follows from 

that 

F ( t )  5 l / t .  (5.139) 

and
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Let t 2 2" and s E [ 1 , 2 T ] .  F'rom (5.138) we have 

f,, Iv - vQI 5 1 5 s. 

We apply Theorem 5.29 with Qo, w(z) replaced by Q ,  'u(z)-vQ, respectively, 
and get the family of cubics { Q k } .  Let 

S k ( t )  = S Q ~ ( ~ )  and So(t) = S(t) .  

We have, from t 2 s and (5.138) that 

s(t) c S(S) c UEO=,Qk 

except for a set of Lebesgue measure 0. On the other hand, by (5.135) we 
have 

IW(.> - wQk I = l(w(z) - vQ) - (v(z) - " Q ) Q ~  I > t - 2"s 

for z E S( t )  n Q k .  Those relations imply 
00 00 

Is(t>l 5 Is(t> n Qkl 5 I{. E Qk I b(z) - v Q k l  > t - 2ns}l. 
k = l  k = l  

Here, from the definition of F ( t )  and (5.138) we have 

I { Z E Q k I  I w ( z ) - w Q k I L t - 2 n s } l  

Therefore, it follows from (5.136) that 

and because Q is arbitrary, we have 

F ( t )  5 s-IF(t  - 2ns) (1 5 s 5 2 - 9 ,  t 2 2 " ) .  (5.140) 

Taking s = e in (5.140), we see that if F ( t )  5 Ae-"t for a = 1 / ( 2 n e ) ,  
then 
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follows. On the other hand, we have 

F ( t )  5 ( e  - l>e* .2-* . e-at (5.141) 

for 9 5 t 5 fi e-1 + 2ne by (5.139). Therefore, this inequality (5.141) 
continues to hold for t 2 2ne/(e - 1) and hence we obtain 

for t 2 to ,  where 

A = (e  - l>e.-1. 1 a=--. 2n e t o  = - 
e - 1 '  2*e 

On the other hand, it is obvious that 

ISo(t)l 5 IQol 5 eato . e-at IQI 
holds for 0 < t < t o ,  and therefore, (5.137) follows for 

c3 = max { A , e a t o }  and c4 = a. 

The proof is complete. 0 

Now, we complete the proof of John-Nirenberg's inequality. 

Theorem 5.30 
the dimension n such that i f  2B C R and t > 0,  then it holds that (5.121). 

Proof. 
sumption, we have 

There are constants cl(n) > 0 and c2(n) determined by 

Let Q be the minimum cubic containing B. Then, from the as- 
c R. In use of 

{z E B I Iv(z) - U B ~  > t }  C {x E Q I Iv(x) - ~ Q I  > t - - vQI) 

and Lemma 5.12, we obtain 

E B I I.(.> > t } l  
I c3 IQIexp(-~4m~{O,t  - I ~ B  - ~ Q I )  / I l v l l ~ ~ o )  
5 c3 I Q I  exp ( - ~ 4 t l  IIvIIBMO) . ~ X P  ( ~ 4  I ~ B  - "QI / I l v l l ~ ~ o ) .  

On the other hand, from Lemma 5.11 we have 

and then (5.121)
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Chapter 6 

Nonlinear PDE Theory 

Although nonlinear partial differential equations have vast varieties, they share 
several common features and techniques. This chapter is devoted to the non- 
negative solution to semilinear heat equation ut = Au + up on the whole space 
R". If the nonlinearity is strong as p > 1 + :, then small initial data admits the 
solution globally in time. On the contrary, if it is weak as 1 < p < 1 + :, then 
any non-trivial initial data make the solution to continue to t = +m impossible. 
This phenomenon was noticed by H. Fujita in 1966, and p ,  = 1 + is called 
Fujita 's critical exponent. 

6.1 Method of Perturbation 

6.1.1 Duhamel's Principle 

In 55.2.4, we have derived from 

that 

u(z,~) = G(x - y,t)uo(y)dy (Z E R", t > 0), (6.2) s, 
where 

265 
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denotes the Gaussian kernel. Actually, if uo E LP(R”) with p E [l, 00) then 
u(z,t) defined by (6.2) satisfies (6.1) and 

lim Ilu(.,t) - uollp = 0. (6.3) 
t l0  

We note that the right-hand side of (6.2) converges for more rough data, 
say 

I.~(.)I L c e x p  (IZI’) 

where C > 0 and ,O E (0,2) are constants. 

(z E R ~ ) ,  

Duhamel’s principle asserts that the solution 

U t  = AU + f(z,t) (X E R”, t E (O,T]) Ult,0 = U O ( ~ )  (Z E R”) 
(6.4) 

is given by 

This is obtained from the law that 
t 

H ( t ,  s)ds = H ( t ,  t )  + Ht( t ,  s)ds. $1 I” 
In fact, putting 

we have formally that 

t 

= f(z7 t )  + Jd dsA J, G(z - Y, t - s)f(y,  s)dY 

= f(z,t) + Aw 

because of G(z,O) = b(z) .  The above argument is formal because the 
behavior as t 1 0  of G(z , t )  is not obvious. 
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Exercise 6.1 
give a sufficient condition to H(t ,  s) for (6.6) to hold. 

Exercise 6.2 
(6.4) if f ( . , t )  E C(Rn) n Lw(Rn) and 

Give a sufficient condition to UO(Z) for (6.3) to hold. Also 

Show that V(Z, t )  given by (6.7) satisfies the first relation of 

for t ,  s E [O,  TI, where C > 0 and y E (0,l)  are constants. 

6.1.2 Semilinear Heat Equation 

Given p E (1, m), we take the problem 

~t = AIL + u p  (Z E R", t > 0 )  ~ l ~ = ~  = UO(Z) (Z E R"), (6.8) 

where the solution u = U(Z, t )  and the initial value uo = UO(Z) are supposed 
to be non-negative. For T > 0, we say that the non-negative u(x , t )  is the 
regular solution to (6.8) on t E [O,T] if u, ut, uxi ,  and uxizj exist and 
continuous on R" x [O,T] and satisfies (6.8). We say also that u(z,t) E 
&[O, T]  if there exist M > 0 and p E (0,2) such that 

Finally, we say that.u(z,t)  E E[O,oo) if u(Z,t)  E E [ O , T ]  for any T > 0. 
Then, the following inclusion is obvious: 

0 5 u = u(Z, t )  E €[O,T] + up E E [ O , T ] .  (6.9) 

Henceforth, we study the regular non-negative solution to (6.8) belong- 
ing to E[O,T]. Furthermore, we assume u g  E Bj2(Rn), which means that 
it is C2 and any DQuO with /a1 5 2 is bounded on R". We show that 
Duhamel's principle is valid even to this class of the solution. 

Theorem 6.1 
it holds that 

If0 5 u(s,t) E €[O,T] is a regular solution to (6.81, then 
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Proof. 
satisfying 0 I p(z)  5 1 and 

It suffices to prove (6.10) for t E (O,T]. We take p E CT(Rn) 

and put that p ~ ( z )  = p ( z / N )  and VN = p ~ u  for N = 1 , 2 , .  . -. Then, in 
use of 

we get that 

-- dUN - AUN + p N U P  - 2 v p N  ‘ v u  - ( A p ~ ) u  
at 

in R” x [O,T) with V N ~ ~ , ~  = ~ N U O .  Because v N ( z , t )  is appropriately 
smooth and has the compact support in z, we can apply Duhamel’s principle 
as 

with 

and
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First, if N -, 00, then p ~ u o ( y )  -, uo(y) for any y E Rn. We can apply 
the dominated convergence theorem by 

IG(s - Y , ~ ) P N  * UO(Y)~ 5 lluollo0 G(x - y,t) E Cj(R”), 

and obtain 

VI + uo(2, t). 

To treat the second term, we recall the assumption 0 I u(z, t )  E E[O, T]  
and (6.9). There exist M > 0 and 0 E (0,2) such that 

0 I U(Y, s)” I Mexp (IYI’) (Y E R”, s E [O, TI) 7 

and hence we obtain 

0 I I” ds s,. G ( .  - Y, t - S ) P N  ..(?A SIPdY 

5 M l d s J R n  G(z - Y,t - s)exp (IYI’) dY 

I M l d s L n  G(z - y,t - s) 

-exp 20 ~z - yl’ + 2’ 1x1’) dy. (6.11) ( 
For t > 0 fixed, we have 

< - =-n/2 J ,  e-101’+(16~)”~101’~q MI < +m 

for t E (O,T] by x = f i q .  Therefore, the right-hand side of (6.11) is 
estimated from above by 

Mexp (2’ 1x1’) . T M ~ .  

On the other hand, we have 
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G(z - y, t - s) exp ([yl’) dy. (6.12) 
M J d ” d S i y I / N  

In use of an estimate obtained similarly to the right-hand side of (6.11) 
and the dominated convergence theorem, we see that the right-hand side 
of (6.12) converges to 0 as N 4 00. 

Next, we have lAp~(y)l  5 C N - 2  with C = ~ ~ A p ~ ~ m ,  and hence 
t 

Ihl <CN-2-M.Jd - d s L m  G(z - Y,t - s)exp (IYlP) dY + 0 

follows. Finally, we have 

We shall show that 
t 

v 3  = 1 ds Ln V,G(x - y, t - s) . VPNU(Y, S ) ~ Y  -+ 0. 

In fact, we have for C = IlVpll, that 

and 

This time we have 

4 2  
= exp (2O IzI”> (&) / exp (- lyI2 /4 t  + 2O ly/’) . g d y  

R” 
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and hence 

as N -+ +m. Thus, the proof is complete. 0 

Exercise 6.3 Confirm (6.9). 

Exercise 6.4 Show that if 0 I u g  E B2(Rn), ug(z) $ 0 ,  and 0 I u(z,t) E 
€[O,T] satisfies (6.10), then u(z,t) > 0 holds for ( z , t )  E Rn x (O,T] and 
also 8 E E[O, T]  for j = I, . . , n. 

Exercise 6.5 
(0, T ) )  solves (6.10), then it is the regular solution to (6.8). 

Show that if u o  E B2(Rn) and u E C(R" x [O,T])nL"(R" x 

6.1.3 Global Existence 

The right-hand side of (6.10) is regarded as a nonlinear operator to u(z, t ) ,  
and it is the fixed point equation with respect to this operator. If the 
iterative sequence converges, then we get the solution. 

Theorem 6.2 
and b > 0 such that 

Let p > 1 + and u g  E Bz(Rn). If there are 0 < y << 1 

0 I uo(z) I b G ( z , y )  (z E R"), (6.13) 

then (6.8) admits the regular solution 0 I u = u(z, t )  E E[O, 00). 

Proof. 
and satisfies 

We say that u = u(z ,  t )  E S[O, 00) if it is continuous on R" x [0,  m) 

0 I u(z , t )  I MG(z , t  + y) (z E R", t 2 0) .  
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Letting 

Nonlinear PDE Theory 

we show that the iterative sequence 

"j+l = "0  + F(.j) ( j  = 0,1,. . .) (6.14) 

converges in S[O, m). Actually, it is the Banach space provided with the 
norm 

where p(z ,  t )  = G(s, t + 7 ) .  
First, we show that 

Iluo(.,t)ll L 6. 

For this purpose, we recall (5.39): 

G(x - y, t)G(y, s)dy = G(z, t + S )  Ln 
Then, it holds that 

(6.15) 

(x E R", t , s  > 0). (6.16) 

= GG(x,t + 7) = Gp(x, t ) ,  

which implies (6.15). 
We next show that if p > 1 + i, then it holds that 

n ( p - 1 ) / 2  IIFPII I CO(7,P) = (4.rr)- 

In fact, we have 

(6.17) 
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is continuous on R” x [ O , c o ) .  Now, we have 

p(y, s ) ~ - ’  = G(y, s + y)p-l 

This implies that 

0 I ( F P ) ( Z , t )  

ds (47r(s + y ) ) - n ( p - 1 ) / 2  G ( 5 , t+r )  = I ’  
= P(5 ,  t)Co(y,P) 

by (6.16). Thus, (6.17) follows. 
If u E S[O, co), then 

0 I u(.,t> 5 llull P(5,t) 

0 I (Fu)(xC,t) I 1 1 ~ 1 1 ”  (F’p)(x,t) 

holds. This implies 0 5 u(z, t ) P  5 I(uIIp p ( ~ ,  t)”, and hence 

I c o  Ilull” P ( 5 ,  t )  

holds by (6.17). Thus, we obtain F : S[O, co) -+ S[O, 00) with 

IIF4l I CO(7tP) IIuIlP (6.19) 

for p > 1 + i. The iterative sequence { u j } E o  in S[O, co) is well-defined by 
(6.14). 

Now, we show that u, w E S[O, co) with llull , 1 1 0 1 1  5 M implies 

IIF(.> - F‘ (w) I I  5 Co(T,P)PMP-l Ib - 41. (6.20) 

In fact, for T , S  2 0, we have 
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and hence 

follows. In use of (6.18), we have 

M Y ,  S I P  - 4 Y ,  S I P (  

5 PMP-' IIU - 41 Co(Y,P)P(x, t) .  

This means (6.20). 
The sequence { ~ l j } ~ ~  C S[O, 00) defined by (6.14) satisfies 

ll'11j+lll F 6 + CO(YlP) 11'11jlJ" 

by (6.15) and (6.19). If 6 > 0 is sufficiently small as C,(y,p)(26)P 5 6, we 
get 

I1Ujll 5 2 6  ( j = 1 , 2 , . . . )  

ll'11j+2 - "j+lll = llF'11j+l - F'11jII 

by an induction. On the other hand, we have from (6.20) that 

- < fY Ibj+l - '11jll 

and therefore,
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for j = 1 , 2 , . - . ,  where cr = Cg(~,p)p(26)P-~. Making b > 0 so small as 
u < 1, we have 

j=1 

This gives the existence of 

k 
21 = lim C (uj - uj-1) E S[O,  co) 

k - + m  
j=l 

and hence that of u = limj+OO uj in S[O, co). 

ing j --+ 00 in (6.14), we have 
The mapping F : S[O, 00) + S[O, co) is continuous by (6.20), and send- 

u = ug + Fu. 
This means (6.10) for (2, t )  E R x [0, co), and the proof is complete. 0 

Exercise 6.6 
use of the dominated convergence theorem. 

Show that ( F p ) ( x ,  t )  is continuous in (z, t )  E R" x [0, 00) in 

6.1.4 Blowup 

In this paragraph, we show the following. 

Theorem 6.3 
there is  no regular solution u = u(z, t )  to (6.8) in 0 5 u E E[O, co). 

Proof. 
solution to (6.8). First, we shall show that 

If 1 < p < 1 + I, 0 I u g  E B2(Rn), and ug $ 0 ,  then 

Suppose the contrary, and let 0 5 u E E[O,co)  be the regular 

uo(0, t)-(*-') - u(0, t)-'(p-l) 2 ( p  - 1)t (t  > 0 )  (6.21) 

holds for 

uo(x, t )  = G ( .  - Y, t )uo(y)dy.  J,. 
In fact, we take E > 0 and put 

(6.22) 
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fo r sE  [O,t] ,wherev,(x,s)=G(s,t-s+~).  W e h a v e M > O a n d p E  (0,2) 
such that 

o 5 u(x,  s )  I Mexp (1xlP) ( x  E R", o 5 s I t ) .  

Similarly to 56.1.1, we can show that JE(s) is finite and continuous in 
s E [O , t ]  from the dominated convergence theorem. Furthermore, for 
p E CF(Rn) in the proof of Theorem 6.1, we take p ~ ( 5 )  = p ( z / N )  and set 

Then, we can show the convergence J,"(s) + JE(s) uniformly in s E [O, t ]  
asN-+00. 

Now, J," is continuously differentiable as 

{-Awe . u + vEAu} PNdx + V, . up PNdX 
= s,. s,. 
= I1 + I2 

a V  by & = -Av,. Here we have from up E E[O, t ]  that 

I2 + km u,updx 

uniformly in s E [ O , t ]  as N + 00. We shall show I1 +. 0 uniformly in 
s E [ O , t ] .  

In fact, we have 

V V E  . V ( U p N ) d X  4- 

= -2 kn ~ , V U .  V p N d X  - 

Similarly to the proof of Theorem 6.1, we have for the second term of the 
right-hand side that 

IS,. 21, . U .  A p N d X  21,. udx I C'N-2 
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Now, we have 

and from Jensen's inequality that 

for s E [0, t ] .  This implies 

d J E  - ( p  - l)J,-P- < - ( p  - 1)  -J,-(P-l) d = 
ds ds - 

and hence 

follows. 
Here, we have 

(6.23) 

 a constant Cc > 0 indenpendent of s E[0,t]. The first term is treated
similar because of vThen it follows that

uniformly in s E [0,t]. In this way, defined by (6.22) is continuously
differentiable in s E [0,t] and satisfies

as E Similarly we have
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as E 5 0. Inequality (6.21) is a consequence of (6.23) 
Now, we have 

uo(0, t p - 1 )  2 ( p  - 1)t (6.24) 

for t > 0 by (6.21). Recall uo(z) f 0. Without loss of generality, we assume 
uo(0) > 0. There exist y, 6 > 0 such that uo(z) 2 y for IzI < 26. For t 2 b2 
and 1x1 5 26 we have 

Therefore, we obtain 

with a constant C1 > 0. Inequality (6.24) implies 

c;-yp - 1)t 5 t n b - ' ) / 2  (t 2 h2),  

which is a contradiction by 1 < p < 1 + 9 .  0 

6.2 Method of Energy 

6.2.1 Lyapunov Function 

As is described in the previous section, in 1966, H. Fujita showed that the 
blowup of the solution occurs to (6.8), involving Fujita's critical exponent. 
On the other hand, in 1969 he studied the asymptotic behavior of the 
solution to 

ut - Au = Xe" in R x (0,T) 

with 
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in connection with the stationary solution and discovered the triple law of 
him, which is not described here. Actually, later it was noticed that the 
work is involved by the blowup of the solution in finite time, but at that time 
it was thought to have no direct connection to the previous work. However, 
the forward self-similar transformation to the former equation on the whole 
space makes the domain compact, and that the critical exponent is realized 
again by the study of stationary solutions to that system. Meanwhile it has 
become clear also that the backward self-similar transformation provides 
sharp descriptions of the blowup mechanism in finite time. In this section, 
we study 

ut - A u =  up in 52 with ulan = 0 and ~ l ~ , ~  =uo(z) (6.25) 

by the method of energy, and then derive the critical exponent to (6.1) in 
use of the forward self-similar transformation, where 52 c R” is a bounded 
domain with smooth boundary 852. 

Henceforth, u = u(z,t)  denotes the classical solution to (6.25) and the 
supremum of its existence time is denoted by T,, E (0, +a]. Then, the 
strong maximum principle guarantees that u(z,t) > 0 for (z , t )  E I7 x 
(O,Tmax). Actually, the unique existence of such a solution is assured if 
uo E Co(n), by converting (6.25) to the integral equation 

and applying the contraction mapping principle in XT = C ([0 ,  TI, C O ( ~ ) )  
for T > 0 sufficiently small. Here and henceforth, Co(a) denotes the set of 
continuous functions on a taking the value 0 on dR, and G(z, y; t )  denotes 
the fundamental solution of the linear part, so that it holds that 

(at - A,) G(z, y; t )  = 0 ((z, y, t )  E x a x (0, a)) 

with 

GIzEaR = 0 and = 6(z - y). 

In this argument of showing the well-posedness of (6.25) locally in time, it 
can be assured that the existence time of the solution T > 0 is estimated 
from below by lluollo0 = rnaxzEn Iuo(z)I. Because (6.25) is autonomous in 
time, then liminft-rr Ilu(t)II, < +a guarantees that T,, > T .  In other 
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words, we have 

T = T,,, < +oo + lim Jlu(t)II, = +oo. (6.26) 
t+T 

This justifies the terminology of blowup to indicate the case of T,, < +oo 
and also the introducing of the blowup set by 

S = { X O  E 0 I there exist t k  + T,  and xk 4 zo 

such that U ( Z k ,  t k )  -+ +GO}.  

Actually, it is a non-empty compact set in this case of T,, < +oo. In 1993, 
J.J.L. Velhzquez showed if 1 < p < - then the Hausdorfl dimension of 
S, denoted by d x ( S )  is less than or equal to n - 1 so that d x ( S )  5 n - 1. 
Here, p ,  = f i  is referred to as the Soboleu exponent, satisfying always 
that p ,  > p f ,  where p f  = 1 f 2 denotes the Fujita exponent. 

This exponent is related to Sobolev’s imbedding theorem Ho((R) ~f 

Lp+l(R) with p E ( l , p , ] ,  where the inclusion is compact if 1 < p < p,. If 
p = p ,  on the other hand, the imbedding constant 

s = inf { 1lvullX I llul12” = I} (6.27) 

is determined by n and is independent of R. Henceforth, this constant is 
written as S = S, > 0. The role of Sobolev’s imbedding theorem is taken 
from the energy, 

n-2  

which acts as the Lyapunov function, so that if u = u(., t )  is a solution to 
(6.25), then it holds that 

d 
--J (u(t))  = (Vu, Vut) - (UP, ut)  = - IlutllX. dt (6.28) 

On the other hand, for 

we have 

(6.29) 
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If J(u0) 5 0, then J (u( t ) )  5 0 for any t E [0,  T,,,) and therefore, it follows 
that 

for t E [0, Tm,). Therefore, T,,, = +oo is impossible by p + 1 > 2 and 
1 1 ~ 0 1 1 ~  # 0. This means that T,,, = +cm implies J(u0)  > 0 and translating 
the initial time, we get the following. 

Theorem 6.4 If Tmax = +oo holds in (6.25) with p > 1, then it follows 
that J ( u ( t ) )  > 0 for  any t 2 0. 

R. Ikehata and the second author showed that if T,, = +cm and 
liminft,, Ilu(t)II, > 0 hold in (6.25) with p E (l,p,], then it follows 
that J ( u ( t ) )  2 d for any t 2 0, where d > 0 is a constant determined by 
R. If p = p,, then d depends only on n as d = $SE/2. On the other hand, 
Y. Giga showed the following in 1986. 

Theorem 6.5 In (6.25) with 1 < p < p, it holds that 

T = T,,, < +oo + lim J ( u ( t ) )  = -m. (6.30) 
t-T 

If fl is convex, then the work by Y .  Giga and R.V. Kohn is applicable. 
In fact, in this case it follows that S c R and for 20 E S we have 

(6.31) 

locally uniformly in 12 - 201 5 C(T- t )1 /2  for any C > 0, where T = T,,, < 
+cm and 1 < p < p,. Here, { (5, t )  I Iz - 201 5 C(T - t ) l l 2 }  is the standard 
parabolic region obtained from the backward self-similar transformation, 
and 

u*(t)  = 

indicates the solution to the 

1, = u: 

ODE part, 

with lim u,(t) = +co, 
t+T 
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or the constant self-similar solution. Relation (6.31) indicates that the 
blowup mechanism in the parabolic region is controlled by the ODE part 
if the exponent is sub-critical: p E (l ,ps).  

The actual backward self-transformation is indicated as 

w(y, s)  = (T - t)&(y,t), y = (2 - zo)/(T - t ) 1 / 2 ,  s = - log(T - t ) .  

Then, it holds that 

w = wp 
1 1 

W, - AW + -Y*VW + - 
2 P - 1  

in 

u es/2 (a - (20)) x { s } .  
s>-logT 

Relation (6.31) means that 

locally uniformly in y E R" as s -+ +oo. Then, the parabolic regularity 
guarantees that 

w,(y,s) + 0 and Vw(y,s) + 0 

locally uniformly in y E R" as s -+ +GO. Then, we have for 0 5 t < T = 
Tmax and B(0,l) C eA (a - (20)) that 

Because 2 - 9 > 0, we have lirnt-T K ( t )  = +oo and hence 
P- 1 

J(.(t)) = J(u0)  - K ( t )  + -oo 
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holds as t -+ T .  The proof is complete. 

6.2.2 Solution Global in Time 

If T,,, = t c o  with liminft,, Ilu(t)ll, < +co holds in (6.25), then there 
are t, -+ +oo and CI > 0 satisfying llu(t,)/lm 5 CI. Regarding u(t,) as 
the initial value to (6.25), then we can apply the unique existence theorem 
for the classical solution. The proof guarantees the existence of T > 0 
satisfying that for any b E ( 0 , ~ )  we have C2 > 0 such that 

ll~llC2+e,'+e/2(zX(tn+b,tn+T)) 5 c2 (6.32) 

for n = 1 , 2 , - . - ,  where 8 E (0,l). 
On the other hand, we have from (6.28) and Theorem 6.4 that 

(6.33) 

Taking sub-sequences if necessary, we may suppose that t ,  -+ +co satisfies 
t ,  + T < tn+l. In this case, we get from (6.33) that 

Therefore, there is t& E (t, + 6, t ,  + T )  satisfying 

llut(tN2 -+ 0. 

We also have (6.32) and hence I l ~ ( t ~ ) l l ~ ~ + ~ ~ z ,  I C2 follows. Then, passing 
through a subsequence, we obtain u(tk) -+ u, in C2@)  with u, satisfying 

-Au, =u& in 1;2, umlaR = O  on aS2, 

This means that um is a stationary solution to (6.25). Putting 

E = {urn E C2@) 1 classical solutions to (6.25)) 

and 

w(u0) = {um E C2(a) 1 there is t; -+ +co 
such that u(tL) -+ u, in C2(@}, (6.34) 

we get the following, where w(u0) is called the omega-limit set of the orbit 
0 = {up) I t 2 0 )  c CO(Q. 
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Theorem 6.6 
u(.,t) to  (6.25) is  classified into the following. 

The asymptotic behavior of the classical solution u = 

(1) The blowup case T = Tmax < +m, where it holds that 

lim Ilu(t)II, = +m. 
t+T 

(2) T,, = +m and liminft+, Ilu(t)II, < +m, where it holds that 

(3) Tmax = +OO and limt+, IJu(t)II, = +m. 
w(u0) c E.  

The third case of the above theorem is referred to as the blowup in infi- 
nite time. In 1980, M. Otani showed that this is not the case for p E ( 1 ,
and more strongly, limsup,,, Ilu(t)I(, < +m holds whenever Tm,, = +m 
in this case. To prove this fact, we make use of the following. 

Theorem 6.7 
Tmax = +CQ, then it holds that 

If the solution u = u(., t )  to (6.25) with p > 1 satisfies 

P ~ o o f .  We have from (6.29) and (6.28) that 

(6.35) 

(6.36) 

for t 2 0, where A1 > 0 denotes the first eigenvalue of -A with the zero 
Dirichlet boundary condition, which assures the Poincare' inequality 

llv4l; 2 A1 Ibll; 
holds for u E Hi(R). Letting 
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we shall show that h(t)  5 0 for any t 2 0. Then, the conclusion (6.35) is 
obtained. 

In fact, if this is not the case, there is t o  2 0 such that h(t0) > 0. This 
implies from (6.36) that 

for any t 2 t o  by the continuation in time. Then, it holds that 

lim Ilu(t)112 = +m. 
t-ca 

Letting t o  = 0 without loss of generality, we now take 

and get that 

by (6.36) and h(t)  2 0, which is combined with 

We have for E = 9 > 0 that 

f(t) . f’W 2 (1 + E )  (f’(t) - f W 2  ’ 

Because f’(t) = Ilu(t)l12 --f +co, we have 

f(t)  . f”(t) 2 (1 + ;> 
for t sufficiently large, which means that f(t)-“12 2 0 is concave there. 
However, again f’(t) -+ +cc implies f(t)  --f +m, which is impossible. We 
get a contradiction and the proof is complete. 

and
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Now, we proceed to the following. 

Theorem 6.8 If 1 < p < p, and T,, = +oo hold in (6.251, then we 
have SUP,,O - Il'u(t>ll, +Go* 

Proof. 
(6.35). There is C3 > 0 such that 

We only take the case of n 2 3. First, we combine (6.29) with 

P - 1  I d  
- 2 IIVu(t)llX - (P+ l ) J ( u ( t ) )  = $z Il4t)II: 

= (.ut(t),u(t)) I c3 llut(t)112. 

Thus, we obtain 

p-l IIVu(t)ll; 5 c3 llut(t)ll2. + (P+ 1)J(uo). (6.37) 
2 

Let r = {t > 0 1 ((ut(t)l12 > 1). We have by (6.33) that 

Hence we obtain 

lim IF n [t, m)I = 0, (6.38) 
t+aJ 

where I . 1 denotes the one-dimensional Lebesgue measure. On the other 
hand, inequality (6.37) implies 

for t $ r, so that it follows that 

Ilu(t)ll2. I c4 for t $! l? (6.39) 

with a constant C4 > 0, where 2* = p, + 1 = 2. 
Dirichlet boundary condition. Then, it holds that 

Now, we take the semi-group {e-tA}t20, where A denotes -A with zero 

and 
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where the relation W272*’(2*-1)(Q) c-t L2*(Q) is made use of. Actually, 
if A, denotes A regarded as an operator in L,(Q),  it holds that D(A,) = 
W2>q((52) n Wt+’(l)) far q E (1, m). In use of Riesz-Thorin’s interpolation 
theorem we get that 

Ile-tAvl12. I C7t-e I l~ l lp /p  (6.40) 

with 8 = ( p  - 1)/(2* - 2 )  E (0,l) .  
In use of I I U P ~ ~ ~ . , ~  = ~ ~ u ~ ~ ~ .  , we have 

for t 2 0. Letting fT(t )  = supSEIT,t+Tl I I u ( s ) ~ ) ~ . ,  we have 

1Iu(t + T)112* 5 11u(T)112* + C8t1-efr(t)p 
I f T ( O )  + C 8 T ’ - e f 7 ( T ) p  

for t E [O,  TI, and hence 

f T ( T )  5 f T ( O )  -k C8T1-efT(T)” 

follows. Writing T = t ,  we obtain 

f T ( t )  5 f7(0) + C8t1-efT(t)p (t 2 O ) .  

In particular, f7(tO) = 2 f 7 ( 0 )  implies that 

to 2 ~ / ( 1 - e )  . ~ - 1 / ( 1 - 0 )  { fT  (0) } - ( P -  1) / ( 1  - 0) 
8 

and there is 6 > 0 such that 

T el? and fT(t,-,) = 2f7 (0 )  + t o  2 6 

by (6.39). Therefore, it holds by 1 1 ~ ( ~ ) 1 1 ~ *  5 C1 that 

I I U ( S ) ~ ~ ~ .  5 2C1 for T 5 s 5 T + 6. 
Now, coming back to (6.38), we get tl > 0 satisfymg Il? n [tl, m)l < 6 / 2 .  

In particular, any t 2 t l  admits that [t, t + 8/21 n rC # 0, and hence we 
have 

llu(qll2* I 2 C 1  for t 2 t 2 ,  

where t 2  = tl + 6 / 2 .  Then the following lemma assures the conclusion, and 
the proof is complete. 0 
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Lemma 6.1 
globally in time with the initial value uk = uk(. ,  0)  satisfying 

Let uk = uk(s , t )  be the solution to (6.25) with p E ( 1 , ~ ~ )  

IIuokl12* I l < +m 

for n = 1,2, . . .. Then, any T E (0,l) admits a positive constant depending 
only on 7 and l ,  denoted by  C ( T , ~ )  > 0, such that 

(6.41) 

forn= 1,2,... . 

Proof. We have from 
t 

uk(t) = e-tAut + 1 e- ( t  - S) A (uk(s))' ds 

IIA7uk(t)/Iq I C9t- 11ui1Iq + c9e 

IjA7uk(t)112*,, I ClO for t E (7,l). 

for t E (O,l), where y E (0,l)  and q = 2*/p E (2*/(2* - 1),2*). Given 
7 E (0, l), we get from this inequality that 

We have D(Ai)  c W 2 Y 7 Q  and if $ > 2, then Morrey's theorem guarantees 
that (6.41) holds. If this is not the case, we apply Sobolev's imbedding, in 
use of 

(0) c & ( l - * q l  (0) 
w2&(l-a)4 

valid for a E (0, s). Thus, 

< c11 II(U0) k p  lI*(l-&l - 

implies 

and

that
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for t E (7, l ) ,  where T E (0,l)  and /? E (0, a)  are arbitrary. Continuing this 
procedure finitely many times, we eventually obtain for any q E (1, cm) and 
T E (0,l) that 

Then, (6.41) is obtained similarly, and the proof is complete. 0 

Exercise 6.7 Confirm that 

P -- - 
1 - 8  e + - 

2* 2*/(2* - 1) 2' 

holds for 8 = ( p  - 1)/(2* - 2) and justify (6.40). 

6.2.3 Unbounded Solution 

In 1986, Y. Giga refined the proof of Theorem 6.8 and showed that the 
upper bound of sup,>o JJu(t)IJ, depends only on JJuoJI,. This, in particular, 
implies the followingtheorem, where C = {UO E CO@) 1 uo 2 O}. 

Theorem 6.9 The set K defined by 

K = {UO E C 1 It  holds that T,,, = +oo in (6.25)) 

is closed in C in the case of p E ( 1 , ~ ~ ) .  

This means that C \ K is relatively open, but F. Merle proved that the 
blowup time T,,, = T,,,(uo) is a continuous function of uo E C\ K .  First, 
we note the following. 

Lemma 6.2 
that 

I f J  (u(t0)) < 0 holds with some t o  E (0, T,,,), then at holds 

-p--l 
Tmax - t o  I C I J  ( ~ ( t 0 ) ) l  '+' 7 

where C > 0 i s  a constant determined by R and p > 1. 

Proof. We have from (6.29) that 
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with Ilu(t)II; I Iflls Ilu(t)J/:+,. Therefore, because J ( u ( t ) )  is a non- 
increasing function o f t ,  we have 

for t E [tO,Tmax).  Th' is means 

and hence it follows that 

for any T E (tO,Tmax). Then, this implies 

with a constant c > 0 determined by fl and p .  

Now, we show the following. 

Theorem 6.10 If 1 < p < p , ,  then the mapping 

0 

uo E C\K H Tmax(U0) > 0 

is continuous, where Tmax(ug) denotes the blowup time for the solution 
u = u(., t )  to (6.25). 

Proof. We take {u$};=~ c C \ K satisfying that uk + uo in C. The 
solution u = u(. , t)  t o  (6.25) with the initial value ut is denoted by uk = 
uk(- ,  t )  for k = 0,1,2, f .  ., where uo = u and u: = UO. Let Tk = Tmax(uk) be 
its blowup time. Then, it holds that limsupk+oo IIu;lloo < +oo. Because 
Tmax is estimated from below by ~ ~ u o ~ ~ ~ ,  any E > 0 admits ko satisfying 
Tk > TO - E for any k 2 ko. Thus, 

follows. 
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IimsupTk 5 TO 
k+m 

holds for p E ( 1 , ~ ~ ) .  In fact, Theorem 6.5 guarantees that 

lim J(u(t)) = -co 
t-*Tmax 

and therefore, any M > 0 admits t o  E (0,To) such that 

-J  (ug(T0 - t o ) )  2 M + 1. 

This implies the existence of ICo satisfying 

- J  (uk(T0 -to))  2 M 

for any k 2 ko. Then, Lemma 6.2 gives that 

(6.42) 

lim sup T k  5 TO 
k+m 

and the proof is complete. 

For the moment, we take the general semilinear parabolic equation 

ut - Au = f(u) in R x (0,T) 

with 

0 

u =  0 on dR x (0,T) and ~ l ~ = ~  = ug(z) in R 

with the nonlinearity f : R 3 R is C1 and uo E C O ( ~ ) .  Recall that the 
omega-limit set w(u0) is defined by (6.34) for Tmax = +co. In the case of 

(6.43) 

or

Letting we obtain
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the orbit 8 = {u(t)},,o is compact in Co(B) and then the general theory 
guarantees that w(u0)  is a non-empty, compact, and connected set con- 
tained in El the set of stationary solutions, and it holds that 

lim dist (u(t) ,  w(u0)) = 0. 
t-++W 

Each u E E is associated with the linearized operator -A - f’(u) provided 
with the zero Dirichlet condition, of which first eigenvalue is denoted by 
X1(u). Putting 

Eh = {u  E E I &Xl(u) > 0) and Eo = {u  E E I X l (u )  = 0}, 

P.L. Lions showed in 1984 the following: 

(1) E+ is composed of at most countable set of isolated points. 
(2) Any closed subset of EO is an ordered C1 curve. 
(3) If C is a connected component of E-, then c E- holds. 

By this it holds that w(u0) c E-,  Eo, or E+, exclusively, in the case of 
(6.43). It also implies the following, where 

I* = {uo E K I w(u0) c EA} and I0 = {UO E K I ~ ( u o )  C Eo} 

for 

(1) I+ U 10 contains an open dense subset of K .  
(2) If uo E I+ U 10, then w(u0) is composed of one element. 
(3) If uo E I- ,  then there are E > 0 and u* E E*UEo such that iio E K ,  

iio 2 uo, 60 $ UO, and 11210 - 2~011, < E imply w(i i0)  = {u+}, where 
u+ is the minimal element of 

{u E E J u 2 w for any w E ~ ( u o ) } ,  

and that 60 E K ,  60 5 UO, iio $ UO, and lliio - ~ 0 1 1 ,  < E imply 
w(iio) = {u - } ,  where u- is the the maximal element of 

{u  E E I u I w for any w E w(u0) ) .  
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Those results are proven by the strong marimurn principle. 

u is in E-. In fact, the linearized operator is -A 
Concerning (6.25), we can show that any non-trivial stationary solution 

and it holds that 

P+l - Ilvull; - P IIullp+1 - -(P - 1) llvull; < 0. 

Therefore, u E E- follows from the Raylezgh principle. Note also that if 
1 < p < p , ,  then K = {uo E Co(n) I uo L 0, Tmax = +m}. 

Kaplan's method is the other tool, which is important in the study of 
(6.25). There, the first eigenvalue A1 > 0 and the eigenfunction cp1 = 
(P~(x) > 0 of -A provided with the zero Dirichlet boundary condition is 
taken, so that it holds that 

Adopting the normalization 

we put 

and apply Jensen's inequality as 

1 - 
where t E [0,Tmax). We have for j ,  = A{-' that sp - XIS > 0 for s > j,, 
and if 

then % > 0, j ( t )  > j ,  holds for t E [O,Tmax). Therefore, Tmax = +m 
induces a contradiction as 

dt = +CQ. 
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Thus, j ( 0 )  > j, implies Tmax < +co, and hence Tmax = +co gives that 
j(0) 5 j,. Because (6.25) is autonomous in time, we have that 

In 1984, W.-M. Ni, P. Sack, and J. Tavantzis provided the following 
argument. Let $ E CO(@ with $ 2 0,  @ $ 0 be fixed, and take uo = p$ 
with p > 0 in (6.25). The solution and its blowup time are denoted by up = 
up(.$) and Tmax(p) > 0,  respectively. Then, it is proven that 0 < p << 1 
and p >> 1 imply Tmax(p) = +co with limsup,,+, ~ ~ u P ( t ) ~ ~ w  = +m and 
Tmax < +W, respectively. Putting 

we have Tmax(p) = +co for p E (O ,p*)  by the comparison theorem, and 
therefore, it holds that 

S, uP(z,t)cpl(z)dz 5 j, for any t 1 0. 

In use of the Hopf lemma and the monotone convergence theorem, we get 
the limit function 

u, = u,(z,t) = lim uP(z,t) 
P-P- 

converging in C ( [ 0 ,  co), L’(s2, b(z)dz)), where S(z) = dist(z, aR).  Then, 
we can show that this u,(x,t) is a weak solution to (6.25) so that u* = 

u,(.,t) E LP(fl,b(z)dz) for a.e. t > 0 ,  that 

is locally absolutely continuous if cp E Cz((n) n C6((n), which means that 
cp = cp(x) is C2 and satisfies the estimate IcpI 5 CS with a constant C > 0 
on n, and that 

holds for a.e. t E [O,m). 

that lim 
They showed that if 1 < p < 1 + $ and 0 is convex, then it holds 

< +co and hence u* (z, t )  is a classical solution. IIu* ( t )  1 1  
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Remember that p f  = 1 + is the Fujita exponent, in which case it is known 
that the L1 boundedness implies that of L". They also showed that if p 2 
~ 3 2  n-2 and R is star-shaped, then it holds that limsup,,+, (lu*(t)((, = +oo. 
Again, pa = -* is the Sobolev exponent, and the set of stationary 
solutions E is empty if R is star-shaped by the Pokhozaev identity. If 
Tmm(p*) < +OO in that case, the solution blows-up in finite time with a 
post blowup continuation as the weak solution. If Tmax(p*) = +OO on the 
contrary, then u* = u*(-, t)  blows-up in infinite time. That problem was 
studied by V.A. Galaktionov and J.L. Vazquez in 1997 in more details. The 
solution u* = u*(x, t )  in this case is called the unbounded global solution. 

6.2.4 Stable and Unstable Sets 

To establish the local well-posed theorem for the discontinuous initial value 
to (6.25) has been tried by several authors. It is confirmed that if p 5 
p ,  = and uo E HJ(R), then there is T > 0 that admits the unique 
solution u = u(., t )  in C ( [0 ,  T), Hi(R)), which is called the H1-soZution in 
this monograph. More precisely, it is the solution to an abstract integral 
equation in HO((n). However, the parabolic regularity guarantees that it 
becomes smooth for t > 0. Moreover, if uo E HO(R2) n CO(~) then this 
H1 solution coincides with the classical solution which we have discussed. 
In particular, the supremum of the existence time as the classical and the 
H' solutions coincides and is denoted by TmaX E (0, +oo], and (6.26) holds 
even in this case of uo E HO(52). On the other hand, if 1 < p < p ,  we can 
observe that this T > 0 and S U ~ , , ~ ~ , ~ ]  IIVu(t)I12 are estimated from above 
and from below by llVu011~, respectively. Thus, it holds that 

T = T,,, < t o o  * lim IIVu(t)ll, = +oo, (6.45) 
t+T 

although this relation (6.45) does not hold for p = pa. 
In any case, (R) L) L P + l  (R) holds for p E (1, p, ]  , and 

and 

are well-defined for u E X = Ht(52). The relations 

and 
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continue to hold for the H' solution to (6.25). Combined with PoincarB's 
inequality 

I I ~ ~ I I X  2 A 1  Il.IlX (. E Hi(% 7 (6.46) 

to realize the orbit 0 = ( u ( t )  10 5 t < T,,,} in X = Hi(R) becomes 
meaningful. 

The Nehari manzfold and the potential depth indicate the set N = 
{ u  E Hi(f2) 1 I(u) = 0, u # 0 }  and the constant 

d = inf sup J ( su )  1 u E Hi(R), u # 0 } ,  { s l o  

respectively. Then, it holds that E \ (0) C N ,  where E denotes the set of 
stationary solutions to (6.25): 

E =  { u ~ C ~ ( a )  1 -Au=up, u > O  in R, u=O on ast}. 
In the case of 1 < p < p ,  we have E # 8 and d = inf { J ( u )  I u E E \ (0)). 
This relation is valid even if E is replaced by 

B = { ~ E C Z ( K ) I - A ~ = ( ~ ~ P - ' ~  in R,  u = o  on a ~ } .  

If p = p , ,  then d = $SnI2 for the Sobolev constant determined by (6.27). 
It is not difficult to see that for any u E Hi(R) \ { 0 } ,  the mapping 

s E [0, co) H J(su) takes the maximum if and only if su E id. Furthermore, 

W, = {u  E X I J ( u )  < d,  I ( u )  > 0) U (0) 

is a bounded neighborhood of 0 in X = Ht(R), and is called the stable set. 
On the other hand, 

V, = {U E X I J ( u )  < d,  1(u) < 0 )  

is called the unstable set, and it holds that 0 6 
W, n V, = E, for 

in X. Then, it holds that - -  

E, = ( U  E N 1 J ( u )  = d }  = {U E E 1 J (u )  = d } ,  

and each element in E, is called the minimum energg solution. If 1 < p < 
p,, then E, # 8, while E, = 8 if p = p ,  and R is star-shaped, because 
then Pohozaev's identity guarantees that E = (0). It is also known that 
infN J is attained by the element in E,, which is referred to as the Nehari 
principle. 
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( J = d ]  @ Nehzki manifold 

Fig. 6.1 

Thus, each W, and V, forms the connected component of 

{u E x I J ( u )  < d }  

in X and in particular, is a positively invariant set of (6.25) as uo E W, 
(resp. V,) implies u(t) E W, (resp. V,) for t E [O,Trnax). NOW, we can 
prove the following. 

Theorem 6.11 Let 1 < p < p ,  and u = u(., t )  be the H'-solution with 
the initial value uo E X = HJ((R) in uo L 0,  and let Tmax be the blowup 
time, that is, the supremum of the existence time of the solution. Then we 
have the following alternatives. 

(1) u(t0) E W, f o r  some t o  E [O,Tm,x),  which is equivalent to T,,, = 

(2) u(t0) E V, for  some t o  E [O,T,,,), which is  equivalent to T,,, < 

(3) Tmax = +OO and u(t)  $ W, U V, for any t E [O,T,,), which is 

+m and limt-,+oo IIVu(t)II, = 0. 

+m. 

equivalent to  Tmax = +m and 0 $ w(u0). 

In the last case, 0 = {u(t)}t>o is called the floating orbit. Because any 
orbit global in time is uniformly bounded in this case, then it holds that 
w(u0) is a compact connected set contained in E - .  

Pmof. To prove the first case, we note that u(t0) E W, implies u(t)  E W, 
for any t E [to,  Tmm)- Because W, is bounded, we have supt,=[t,,~m,,) IlVu(t>ll, < 
+OO, and hence Tmax = +m follows from (6.45). Now, it becomes the clas- 
sical solution globally in time and it holds that sup,>, Ilu(t)II, < +m and - 
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w(u0) c E is connected. Because EnW, = {0}, we have limt+, llu(t)[[c2(El = 
0 and hence limt+, IIVu(t)JJ2 = 0 holds true. Conversely, if Tmax = +m 
and limt+m IlVu(t)l12 = 0, then u(t0) E W, holds for some t o  2 0 because 
W, is a neighborhood of 0 in X. 

Now, we proceed to the second case. In fact, if u(t0) E V,, then it 
holds that u(t) E V, for t E [tO,Tmax). In case Tmax = +m, we have 
sup,,, Ilu(t))I, < +m and hence 0 # w(u0) C V, n E = 0 follows. This is 
a contradiction. Conversely, if T,, < +m, then Theorem 6.5 guarantees 
that limt+T,,,,, J (u ( t ) )  = -m. Furthermore, we have u(t)  $ W, for t E 
[O,T,,,) from the first step. Therefore, it holds that u(t0) E V, for some 
t o  E [O,Tm,). 

The final case is a direct consequence of Theorem 6.8, as T,,, = +m 
with 0 6 w(u0) is equivalent to be other than the first and the second cases. 

- 

The proof is complete. 0 

Several parts are open in the case of p = p , .  The if part of the first 
case is obvious, while the only if part is not known. However, we can prove 
the existence of EO > 0 such that 11Vu(t0)l12 < EO for some t o  E [O,T,,,) 
implies that T,,, = +m and limt,, 11Vu(t)))2 = 0. The only if part of 
the second case is proven by a different argument, and its if part is true 
at least for n 2 4. On the other hand, the final part is rather different. 
From Theorem 6.6,  we have the alternatives that lim,,, llu(t)II, < +m 
and limt+, IIu(t)II, = +m in this case. F'urthermore, if the former occurs 
then it holds that 0 # w(u0) c E. Because E = ( 0 )  holds if R is star- 
shaped, then we obtain limt-, IlVu(t)l12 = limt+, Ilu(t)II, = 0. On the 
other hand, in the latter case, we have limt,, J ( u ( t ) )  = kd for some 
k = 1,2,  . . .. This actually occurs if n 2 4. 

6.2.5 Method of Rescaling 

Let us go back to (6.8). If u = u(z, t )  is the solution, then ux(z, t )  = 
X*u(Xz, X2t) is so except for the initial value, where X > 0. This trans- 
formation is called the forward self-similar transformation, and if it is in- 
variant under this transformation the solution u is said to be self-similar. 
This means that u = ux for any X > 0 and hence 

u(z, t )  = t-* f (z/vG) 
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holds with some f = f (y) satisfying 

1 1 
2 P-1 

- A f - - x . V f = - f + f P ,  f 2 0 ,  f $ O  in R". (6.47) 

It is known that if 1 + = p f  < p < p ,  = &, then some solutions 
global in time to (6.8) converges to a self-similar solution as t -+ +oo. On 
the other hand, the baclcward self-similar transformation is useful to control 
the blowup behavior in finite time of the solution as is indicated in 56.2.1. 

Concerning the radial symmetry of the self-similar solution, we have the 
following. 

Theorem 6.12 If 

f(2) = o(/zI-*) (6.48) 

holds in (6.47) as 1x1 + +co, then it follows that f = f (1.1). 
Thus, from the work on radially symmetric forward self-similar solution, we 
have the following fact concerning the solution to (6.47) satisfying (6.48). 

(1) If p 2 p , ,  then such a solution does not exist. 
(2) If p f  < p < p , ,  then such a solution exists uniquely. 

In fact, for the solution u = u(r, a )  to 

with 

u'(0) = 0 and u(0) = a ,  

we have the following. 

(1) The finite value L ( a )  = limT4m r2/(P-')u(r, a)  exists for each a E 

(2) If L(a)  = 0, then it holds that 
R. 

u(r, a )  = Ae-'2/4r2/(p-1)-" { 1 + 0 ( r - 2 ) }  as r -+ co 

with some A E R \ (0). 

a > 0. 
(3) If p 2 p,, then u(r, a )  is positive on [0, co) and L(a)  > 0 for each 
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(4) If p f  < p < p , ,  then there is a unique ap > 0 such that u(r, ap) is 
positive on [0, m) and L(ap)  = 0. Moreover, if (Y E (0, ap)  it holds 
that L(a)  > 0. 

Thus, if p > p f ,  we have the solution f = f(l.1) to (6.47) satisfylng l = 

limr+Dc) r*f(r) > 0. Then, we have a counterpart of Theorem 6.12, where 
Sn-l denotes the n-dimensional unit sphere. 

Theorem 6.13 
(a E Sn-') admits a solution f = f (x) to (6.47) such that 

I f p  > p f ,  then any A E C(S"-l) in 0 5 A(a)  5 l 

uniformly in a E Sn-l. 

From Theorem 6.3,  we see that if 1 < p < pf, then there is no solution 

To describe the relation to the asymptotic profile of the solution to (6.8), 
to (6.47). This is also the case of p = p f .  

we put ~ ( x )  = e14'/4, 

LQ(K)  = v : R" R measurable I Lm ~ ( y ) ~ K ( y ) d y  < +m} , { 
and 

P ( K )  = {v E P ( K )  I vv E L 2 ( K ) " } ,  

where q E [l, co). 
Given 1c, 2 0 ,  11, $ 0 in H 1 ( K )  n L"(R"), we take uo = p1c, in (6.1). 

The classical solution and its blowup time are denoted by up = up(x , t )  
and Tmax(p) E ( O , c o ] ,  respectively. Then, if p f  < p < p ,  we have a 
unique po > 0 such that p < po and p > po imply Tmax(p)  = +co with 
limt-rDc) IIup(t)JI, = 0 and Tmax(p) < +co, respectively. Here, we have 
T',(~o) = +co and 

In 1987, M. Escobedo and 0. Kavian proved the following, where 
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(1) H'(K)  ~f Lq(K) holds for 1 5 q 5 p ,  and is compact for 1 5 q < 
p, .  Furthermore, if n 2 3, then the Poincar6Sobolev inequality 

(6.49) S n  IIvllz*,K + A* 11~l12,K 5 lIV~fll2,K 

holds for v E H'(K) ,  where A, = max(l,n/4) and Sn is the 
Sobolev constant: 

s n  = inf { llvwll; I v E C?(R~), 11w112. = 1 ) .  

2 2 2 

( 2 )  The operator L is realized as a self-adjoint operator in L2(K)  with 
the domain D(L)  = {v E L 2 ( K )  1 Lw E L 2 ( K ) } .  It is positive 
definite with the compact resolvent and it holds that D ( L 1 / 2 )  = 
H1 ( K ) .  Its eigenvalues are given by XI, = (k = 1,2 ,  . ..) 
with the multiplicity 

( " f i k T ' )  
and the eigenfunction PI,-1(D)e-IY12, where  PI,-^(() denotes the 
homogeneous polynomial of degree k - 1. 

Applying the forward self-similar transformation 

w(y, s) = (t + l )p- lu(s , t ) ,  y = s/(t + 1)1'2, s = log@ + 1) 

to (6.1), we have 

(6.50) 

This equation is treated very similarly to (6.25) on the bounded domain, 
because L has the compact resolvent and the Poincar&Sobolev inequality 
(6.49) holds. 

1 
P- 1 

v, + Lv = -u+ vp in Rn x (0, co). 

Thus, letting 

we have 

d 
ds - J ( v ( s ) )  2 0 (s 2 0). 
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Now, we apply the Kaplan method in use of 91 = e-ly12/47 which satisfies 
that Lip1 = For E > 0, we take $ = C(E)(P:+' with C(E) > 0 satisfying 
that JR,, $Kdy = 1. In fact, we have 

and hence for u = u(z7 t )  with 

being well-defined, it holds that 

Then, we see that 5 - t ( 1  + E )  > 0 holds for 0 < E << 1 in the case of 
1 < p < p f .  This gives that 

and then non-existence of non-trivial non-negative solution of (6.1) follows 
in this case. 



Chapter 7 

System of Chemotaxis 

This chapter is devoted to the study of the elliptic-parabolic system of partial 
differential equations, arising in several areas in mathematical biology and math- 
ematical physics. The first section is the description of the background and the 
motivation of mathematical study. Then, we shall establish the local wellposed- 
ness in the second section. 

7.1 Story 

7.1.1 The Keller-Segel System 

System of parabolic partial differential equations is proposed to describe 
several phenomena in mathematical biology. A typical example is 

} in R x ( 0 , ~ )  u t = V . ( V u - u V v )  
0 = Av - av + u 

au av 
du au 
- = - -  - 0  on dRx (0,T) 

where R c R" is a bounded domain with smooth boundary aR,  a > 0 a 
constant, and u the outer unit vector on dR. It is proposed by T. Nagai in 
1995 as a simplified form of the one given by E.F. Keller and L.A. Segel in 
1970. Here, u = u(x, t )  and v = v(x, t ) ,  respectively, stand for the density of 
cellular slime molds and the concentration of chemical substances secreted 
by themselves at the position x E R and the time t > 0. 

303 
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The first equation describes the conservation of mass, where flux of u is 
given by 3 = -Vu + uVv, as 

holds for any subdomain w c R with i;i c 52. The first term -Vu of 3 
is the vector field with the direction where u decreases mostly, and with 
the rate equal to its derivative to that direction. The second term uVv, on 
the other hand, indicates that u is carried by the vector field Vv with the 
direction where v increases mostly, and with the rate equal to its derivative 
to that direction. Thus, the effect of diffusion -Vu and that of chemotaxis 
uVv are competing for u to vary. In this context, the boundary condition 
for u is preferably replaced by the null flux condition, 

au av 
a v  au 3. v 3 - -u- = o  on aR x ( 0 , ~ ) .  

A general form of this equation is given in 54.1. Each of them is derived 
from the different principle, and each feature of the solution is also different 
from the others. 

However, a similar system to (7.1) is found in statistical mechanics. 
There, domain R is usually replaced by R", and the second equation takes 
the form 

where 

+-YI (n=1)  
r(x,y) = & l o g & ,  (n = 2) (7.3) 

{ l  & (n = 3) 

denotes the (-1) times potential of the gravitational force. It is derived 
from Langevin and then Fokker-Planck equations, describing the motion of 
mean field of self-interacting particles. Therefore, while the first equation 
of (7.1) is concerned with the mass conservation of particles, the second 
one replaced by (7.2) is the description of the total field of gravitational 
force made by those particles. This form (7.2) is a natural extension of the 
second equation of (7.1) to the whole space, as the latter is equivalent to 
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the equality in use of the Green’s function for -Alv+a, denoted by G(z, y): 

(7.4) 

In fact, we have 

with H = H ( z ,  y )  standing for the regular part. 

of the boundary condition to v, they are totally described as 
Other forms of the second equation are also proposed. Taking account 

d v  
d t  

T-++v=u in L2(s2), 

where A > 0 is a self-adjoint operator A > 0 with the compact resolvent. 
Here, 7 is a non-negative constant. As we have seen, if T = 0 the field 
created by those particles is physical. In this case we call it the simplzfied 
system. On the other hand, T > 0 arises when the field is formed through 
the chemical material. This case is realistic in some biological media, and 
(7.1) with the second equation replaced by (7.6) of T > 0 the full system. 
There the additional initial condition ~ l ~ , ~  = vo(z) is imposed. In the 
other case, equation (7.6) is reduced to the ordinary differential equation 
such as 

av 
7- = 21. at 

Actually, it follows from the statistical model of cellular automaton as is 
described in 54.1. There, the effect of transmissive action is restricted to 
each cell and the field is not formed in the classical sense. 

7.1.2 Blowup Mechanism 

It will be shown that the classical solution to (7.1) exists locally in time 
if the initial value is smooth, and becomes positive if it is non-negative 
and not identically zero. Let T,, > 0 be the supremum of the existence 
time of the solution. If Tmax < +GO, we say that the solution blows-up 
in finite time. The blowup mechanism of (7.1) depends sensitively on the 
space dimension n, and in the case of n = 2, spiky patterns are formed as 
t T Tmax. 
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Henceforth, M ( n )  denotes the set of measures on a, 2 the *-weak 
convergence there, and 6,, (dx) the delta function, respectively. Therefore, 
M(R) is the dual space of C@), the set of continuous functions on n, and 

(91 6zo(dx)) = Cp(x0) 

for cp E C(n). Now, if n = 2 and T,,, < +m, the solution u(s,t)  to (7.1) 
satisfies 

u(x,  t)da: - c rn(xo)&, (dx) + f(s)dx (7.7) 
X O E S  

in M ( n )  as t TmaX with rn(x0) = rn,(zo) for 

and 0 5 f E L1(R) n C(n \ S). On the other hand, we have 

and S coincides with the blowup set of u. That is, xo E S if and only if 
there exist Xk + 50 and t k  T T,,, such that u ( z ~ ,  t k )  + $00. This inems 
S # 0 if Tmax < +oo. Here, we have 

Ilu(t)ll, = I l ~ O l l l  (7.8) 

and hence 

2 .  # (0 n s) + # (an n s) I lluolll /(44 (7.9) 

follows from (7.7) and (7.8). In particular, llu0lll < 41r implies Tmax = +m. 
This fact is related to the conjecture of S. Childress and J.K. Percus in 1981 
concerning the threshold in L1 norm of the initial value for the blowup of 
the solution. 

It was obtained by semi-analysis, derivation of the stationary problem 
in use of the free energy and numerical study to its bifurcation diagram. 
On the other hand, relation (7.7) was conjectured by V. Nanjundiah and is 
referred to as the formation of chemotactic collapses, although the termi- 
nology is not consistent with that in 54.1. In this context of biology, each 
collapse 

~ ( ~ o ) & o  (dz) 
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is supposed to express a spore made from the slime molds. Inequality (7.9) 
indicates that the phenomenon of threshold in ) ( ~ 0 1 1 ~  concerning the blowup 
of the solution is a consequence of the formation of collapses in the blowup 
process. Equality rn(z0) = rn,(zo) is referred to as the mass quantization 
of collapses. It means that the spore is formed in the normalized mass. It 
is related to the optimality of the condition lluolll < 47r for T,,, = +m to 
occur, proven by T. Nagai and the authors. It was observed that the mass 
quantization holds if the solution is continued after the blowup time, or it 
blows-up in infinite time. In this connection it was noted that the Fokker- 
Planck equation admits the weak solution globally in time, provided that 
the initial value has a finite second moment and is bounded and summable. 
Fokker-Planck equation is concerned with the case that the distribution of 
particles is thin, and system (7.1) is regarded as its adiabatic limit. Al- 
though post blowup continuation does not hold, mass quantization is valid 
in (7.1). Here, we emphasize that the mass quantization agrees with the 
blowup mechanism in the stationary problem, which arises as a nonlinear 
elliptic eigenvalue problem. We call this story the nonlinear quantum me- 
chanics. If the concentration speed is rapid, then the particles are thin 
near the blowup oint, which makes the blowup mechanism simple. Ac- 
tually, this case is referred to as the type 11 blowup point, and then the 
whole blowup mechanism is contained in infinitely small parabolic region 
in (z, t )  space, called the hyper-parabola. The family of blowup solutions 
constructed by M.A. Herrero and J.J.L. Velgzquez in 1996 by the method 
of matched asymptotic expansion is of this type. In the other case, referred 
to as the type I blowup point, the feature of the blowup mechanism is rather 
different from the previous one. Actually, infinitely wide parabolic region, 
called the parabolic envelope, is necessary to describe the whole blowup 
mechanism, but the local free energy gets to -too. It is open whether such 
a blouwp point actually exists or not. 

It is known that the blowup mechanism of the parabolic equation 

ut - Au = up, u 2 0 in R x (0,T) 

with ulan = 0 is controlled by the ordinary differential part ti = u p  if the 
nonlinearity is sub-critical as p E (1, s), where 0 c R" is a bounded 
convex domain. Namely, if 20 is a blowup point, then 
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holds as t T T = Tmax uniformly in Iz - z01 5 C (T - t)1'2. Here, the 
concentration is so slow that u(z, t )  becomes flat in any parabolic region, 
and total blowup mechanism is not enveloped there in this case. On the 
other hand, the blowup solution of Herrero and Velazquez to (7.1) has the 
form 

+o ( e - f i I l ~ ~ - t ) I ' "  
. 1tlxl2r(t)} 

as t 7 T = T,,, uniformly in 1x1 5 C(T - t) '12, where 

r( t )  = C(T - t) 'D . e-fi/2 IlodT-t)l'/2 

(1 + 41)) . Ilog(T - t ) l ~ 1 0 g - ' / 2 ( T - - t ) - ~  

-2 
and E(y) = 8 .  (1 + IyI2) . We have 0 < ~ ( t )  << b(T - t)'12 for any 
b > 0. This solution creates collapses again, under the backward self- 
similar transformation z(y,s) = (T - t)u(z,t) for y = z / (T  - t) l12 and 
s = log(T - t) .  Thus, super-critical nonlinearity of (7.1) admits type I1 
blowup point with high concentration. 

Exercise 7.1 
for (7.1), following the idea to DD model. 

Introduce the stationary problem and the Lyapunov function 

7.1.3 Free Energy 

Parabolic-elliptic system of partial differential equations is found in several 
areas of applied and theoretical physics. The drift-diffusion model for semi- 
conductor device is written as 

in R x (0,T) 
nt = V . (Vn - nV9) 

A + = n - p  
Pt = v . ( v P + P v 9 )  

on d R x  (O,T), 
c p = O  
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where n = n(z, t )  and p = p ( z ,  t )  are the densities of electron and positron, 
respectively, and cp = cp(z,t) is the electric charge field. Particles of the 
same kind are self-repulsive, while the attractive force acts between different 
kind of particles, and thus, the system is dissipative totally. Vortex system 
is given by 

} in RZ x (O,T), W t  = v . ( v w  - wv+)  
-A$ = w 

where 

V l = (  --) 
for z = ( z 1 , 5 2 ) .  It comes from the Navier-Stokes system 

} in R3 x (O,T), 
~t - AU -k U .  VU = Vp 

v - u = o  
where 

denote the velocity and the gradient operator, respectively. If we take the 
two-dimensional model with z = ( z 1 , 2 2 , 0 )  and ug = 0, then we get 

This system is also dissipative but some underlying chaotic features are 
observed. Directions of self-interacting forces of those systems, chemotaxis, 
semi-conductor device, and vortices are different, but some common struc- 
tures are noticed. Let us recall that the second law of thermodynamics; the 
mean field of many particles is governed by the free energy, decreasing in 
time. Its local minimum is an equilibrium state, while transient dynamics 
are controlled by the critical points, especially, non-local minima. 

We note that free energy is given by inner energy minus entropy. If 
p = p(z)  2 0 denotes the density of particles, entropy on the domain 
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s1 c Rn is given as 

System of Chemotaxis 

On the other hand, inner energy is composed of kinetic and potential en- 
ergies so that it is given as 

where -P(z, y) and V(z) denote the potentials of self-interactions and ex- 
ternal force, respectively. Note that Newton's third law implies 

F(z, Y) = r(Y,z). 

Actually, it is given as (7.3) if the self-interaction is caused by the gravi- 
tational force. Thus, physical question is to derive mean field equation of 
which free energy is given by 

It has been known that such a system is realized by introducing friction 
and fluctuations of particles. 

The classical theory of Jeans and Vlasov starts with the Newton equa- 
tion 

for 1 5 i 5 N .  Letting N + 00 with M = mN preserved, it asserts the 
convergence 

PN(dz,dv,t) = mCd,,O(dz) €4 bv,(t)(dv) - f(z,v,t)dzdv 
with f(z, v, t )  satisfying the kinetic model, referred to as the Jeans-Vlasov 
equation. In the normal form, it is given as 

f t  = -v, . (vf) + yv, . [fV,(V 4- V ) ]  
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In the process of (dwi) / (d t )  --t 0, the distribution function f(z, w, t )  is re- 
placed by the Maxwellian w(x,t)7r-n/2e-v2/2. If n = 2, then w(z, t )  is 
subject to the vorticity equation derived from the Euler equation, that is, 

-A$ = W ,  ~t = -V . (wV’ ($ + V ) )  . 

The stationary state of this equation, w = w ( z )  is associated with the 
elliptic problem 

-A$ = g($ + V )  

with the nonlinearity g unknown. If mass is so concentrated as 

then the positions are subject to the Hamiltonian system 

dxi 
- = v;p(x1,x2, .  . . , X N )  ( 2  = 1 , 2 , .  . . , N )  , dt 

where 

‘H(W x2 , .  . . , zN) = - C + Cryzi, zj). 
i j # i  

If K(x ,  y) is replaced by G(z, y) in (7.10), then 3 Ci R(zi) is added to the 
right-hand side, where R(z)  is the regular part of K(z,y) so that R(z) = 
H ( z ,  z) with H ( z ,  y) defined by (7.5). However, the Newton equation is 
time reversible and this hierarchy of systems is not subject to the second 
law of thermodynamics, that is, decreasing of the free energy. Actually, this 
hierarchy is governed by three laws of conservation; mass, momentum, and 
energy. As a consequence, it has a feature of chaotic motion of particles. 

An answer that we know to derive systems provided with free energy is 
to replace the Newton equation by the Langevin equation. More precisely, 
this requirement is realized when the particles are subject to the friction 
and random fluctuations: 
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Here, k ,  T ,  and p are Boltzmann constant, temperature, friction coefficient, 
respectively, and (W:) denotes the white noise. Its kinetic model, referred 
to as the Fokker-Planck equation is given as 

where 

p ( z ,  t )  = f(z, v, t)dv and X = p ( z ,  t ) d s  

stand for the density and the total mass, respectively. Then, in the adia- 
batic limit p 4 +m, we have 

If V = 0 and the kernel r(z, y) is replaced by G(z, y), it is nothing but 
the simplified system of chemotaxis. Semi-conductor device equation is ob- 
tained similarly by taking the opposite sign of the kernel G(s, y). In those 
systems of chemotaxis and semi-conductor device the interaction acts at- 
tractively and repulsively, respectively, and in the Euler equation, particles 
receive the force perpendicular to the level lines of the field. 

As is mentioned, stationary state of the above equation is described by 
elliptic problem with exponential nonlinearity. Furthermore, the localized 
densities are subject to the gradient flow. In this way, this hierarchy of 
equations starts with the free energy as the physical principle. On the other 
hand, mathematically it is characterized by the quantization of the blowup 
mechanism as is described in the previous paragraph, and it comes from the 
quantized structure of the set of stationary solutions. Another important 
consequence of this observation is the variational structure of the stationary 
problems derived from the free energy. Actually, it is regarded as the dual 
variation of the standard one, and remarkably those variational structures 
are equivalent up to Morse indices. 
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7.2 Well-posedness 

7.2.1 Summary 

As is described in the previous section, E.F. Keller and L.A. Segel proposed 
a mathematical model describing the chemotactic aggregation of cellular 
slime molds which move preferentially toward the area with relatively high 
concentration of a chemical substance secreted by the amoebae themselves. 
Then, V. Nanjundiah introduced a simplified form and conjectured the for- 
mation of collapses. Later in 1996, M. Mimura and T. Tsujikawa modelled 
the formation of some kind of bacterium's colony by another system, and 
studied the asymptotic behavior of the solution. Here, we show the unique 
existence of the classical solution locally in time. 

Namely, we take the following system denoted by (CS): 

ut = V . (Vu + x(u,v)Vv) + f (u,v) in R x (0,T) (7.11) 
TQ = Av + g(u, v) in R x (0,T) (7.12) 
au. - = o  on aR x (0,T) 
d U  
f3V - = o  on d R x  (o ,T)  
d U  
u ( ~ , ~  = U O  on 
vlt,O = V O  on a, 

(7.13) 

(7.14) 

(7.15) 
(7.16) 

where 52 is a bounded domain in R" (n = 1,2,3)  with smooth boundary 
f3R, and x, f and g are smooth functions of u and v. Furthermore, T > 0 
is a constant and henceforth it is put to 1 for simplicity. We say that (u, v) 
is a classical solution to (CS) in R x (0,  T ) ,  if u = u(x, t )  and v = v(x, t )  
are in u, v E ~ ( 0  x [0, T ) ) ,  

and (CS) is satisfied. 
First, we study the linear system 

w t = A w + a . V w + h  in R x ( 0 , T )  

= O  on aR x (0,T) 
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- 
where a = (al,.-.,a,) : R x (0 ,T)  -+ R", h : x (0,T) --+ R, and 
wo : R --+ R are given functions. Henceforth, 1 1  . [ I p  and [ . 10 denote the Lp 
and the Holder norms, respectively, where p E [l, m] and 8 E (0,l). Then, 
for 0 E (0,l)  and m = 1,2,3,. . ., we put 

- 

[wIm,e C IID~WII, + C [ ~ w l e .  
b l < m  lal=m 

For a function w defined on QT = R x (O,T), we set 

(I) ( t )  [Wle;Q~ IwI0 ;Q~  + [ w l e / 2 ; Q ~  7 

where 

and 

Finally, putting 

we define 

cmYe(QT) {w E ~ ( Q T )  I [w]m,e;QT < W } .  

The following theorem is contained in Theorem 5.2 of chapter IV of 
the monograph written by O.A. Ladyienskaja, V.A. Solonnikov, and N. N. 
Ural'ceva. 

Theorem 7.1 Suppose that 

(al,. . . ,a,) E C->'(QT)~ and h E Cm7'(Q~) 

for m = 1,2,3, .  . . and 8 E (0, l), and also that wg E C m + 2 2 e ( Q ~ )  satisfies 
the compatibility condition up to the order [(m + 1)/2]. Then, there exists 
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a unique classical solution w E C m + 2 @ ( Q ~ )  to (HE). Moreover, it holds 
that 

[w]m+2,0;Q, - < ( [hlm,O;Q~ + [wo]m+2,0) 

wtth a constant C > 0 determined by  suplljln [ ~ j ] ~ , , , ~ ~ .  

We say that wo satisfies the compatibility condition with the order k = 0 
if w r )  = wo satisfies 

(7.17) 

for k = 0. The compatibility condition with the order k = 1 indicates 
equality (7.17) with k = 1, where w?) = AWO + a(-, 0 )  . V w ( . ,  0 )  + h(., 0) .  
The other cases are defined similarly. 

This section is devoted to the proof of the following. 

Theorem 7.2 If R c Rn is  a convex domain with smooth boundary dR, 
and uo and vo are in C4>e(R) for t9 E (0,l)  and satisfy the compatibility 
condition up to the order 1 for (7.11) with (7.13), (7.15), and for (7.12) 
with (7.14) and (7.16), respectively, then, there exists a unique classical 
solution (u,u)  to (CS) in QT for some T > 0. Moreover, u and v are in 
@(QT).  

To prove the above theorem, we make use of the following system de- 
noted by (IS), where p > n + 2 is an even integer, 19 E (0 , l  - (n + 2 ) / p ) ,  
U,  V E @ ( Q T )  with (V, V)I,=, = (UO, VO), and T E (0,1]: 

2 
~t = AU + xU(V, V)VV . VU + xv(U, V) lvvl 

+x(U, w ) A w  + f ( U ,  V) in 0 x (0, T ) ,  (7.18) 
vt = Av +g(V,V) in R x (O,T), (7.19) 
dU 
av 
dV - = o  on dR x (O,T), 
av 

_ -  - 0 on dR x (0,T) (7.20) 

(7.21) 

(7.22) 
(7.23) 

In the following, first we show the uniqueness and existence of the solution 
( u , ? ~ )  to (IS) for each smooth function U and V with U(.,O) = uo and 
V ( - , t )  = vo in use of Theorem 7.1 together with some estimates on (u,v). 
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Thus, we can define the mapping 3 : C e ( Q ~ ) 2  + P ( Q T ) ~  by (u, w) = 
3 ( U , V ) ,  and then we show that this T has a fix point, which gives the 
unique classical solution to (CS). 

7.2.2 The Linearized System 

Studying (IS), first we note that each (U, V )  E Ce(Q,)2 with (U, V)I,=, = 
(~0,210) admits the unique classical solution (u,v) E C 2 * e ( Q ~ ) 2 .  In fact, 
in this case g(U, V )  E Ce(Q,) follows from the assumption, and therefore, 
Theorem 7.1 guarantees the unique existence of the classical solution v E 
C27e(Q~)  to (7.19) with (7.21) and (7.23). Then, for this w, it holds that 

and again by Theorem 7.1, we have the unique existence of the classical 
solution u E C2pe(Q,) to (7.18) with (7.20) and (7.22). Henceforth, we 
say (U ,V)  E C e ( Q ~ ) 2  if U ,  V E Ce(Q,) and (U,V)I,=, = (u0,wo). Thus, 
putting (u, w) = F((U,  V ) ;  T ) ,  we have the mapping 3 = F( . ;T)  defined 
on @ ( Q T ) ~ .  

The space C2te(Q~)2 is defined similarly. In particular, for ( U , V )  E 
C 2 * e ( Q ~ ) 2  it holds that F(U, V ;  2’) E C27e(Q~)2.  Therefore, F is regarded 
as a mapping on C2ie(Q~)2. 

To prescribe its range in more details, we make use of the following. 

Lemma 7.1 I f f ,  g E C’(n)n, and 

g . u = O  on 852, (7.24) 

then at holds that 

where
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Proof. If f ,  g E C2(a)", we have 

and hence 

(V . f ) ( v .  g)da = 

follows from Green's formula. This equality is extended to f , g  E 
and therefore, (7.25) holds in the case of (7.24). 0 

Lemma 7.2 If w E C2(a), 

dW _ -  - 0  on d o ,  
dU (7.26) 

and 0 C R" is a conuex domain, then it holds that 

d 2 zlVwl 5 0  on dsZ. 

In the case where n = 1, it holds that Proof. 

a dw d2 f - I V W ~ ~  = f2 - -  = o on a ~ .  
dU dx dx2 

In the case where n = 2, we take place of R by 51 x R. Thus, the lemma is 
reduced to the case of n = 3. 

Given xo E Xl, we can assume taking principal directions parallel to x1 
and x2 coordinates and u = (0, 0,l) .  In this case we have 

d U i  6ij av3 

a ~ j  Ri 8Xi -= -  ( i , j  = 1,2) and - = 0 (i = 1,2,3) 

at x = xo by Exercise 1.25. On the other hand, it holds that 

1 - > o  ( 2  = 1,2)  
Rj - 
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because R is convex. Thus, we obtain 

avi aw a w  
xi axa 8x3 

3 

d W  5 2v-. v w .  
dU 

Here, we have 

a w  a w  - - = o  -0 (j = 1,2) and - - a a w  -- - 
axj  au ax3 au 

at 2 = xo by (7.26), and the proof is complete. 0 

In (IS), p > n+2 is an even integer, e E (O , l - (n+2) /p ) ,  U,  V E Ce(QT), 
and T E (0,1]. Now, we take 

II (uo, ~o)lIw2~P(,)xw3.P(~) 

M,P = 11(~o,~0)II~2,P(~)X~3,P(R) 7 

U P  
= (IIAuollp, + ll.ollp, + IIvAvoIl; + Il.ollp,) 7 

M = ~ ( M o  + I ) ,  

and 

O ( M , T )  = {(u,~) E C2+?(QT)2 nc([o,T];W2~p(R) x w37P(n)) I 
Il(u, v) Ilc([o,T];w2~P(n)xw3.P(n)) < M  - 

au av 
= O  on ~ R x  [O,T]}, and - - - av au 

- 

where 

Then, we can show the following. 

Lemma 7.3 
that 

If Q c R" is convex and (U,  V) E (3( M ,  T ) ,  then it holds 
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5 (IIVAvolli + IIVvollP, + C1T) eCtT I C2, (7.27) 

where (u,  w) denotes the solution to  (IS). 

Here and henceforce, Ci > 0 (i = 1,2,3,4) denote the positive constants 
depending on p ,  Mo, R, and 9. 

Proof. 
h E (0, T )  and s E (0, T - h). Integrating (7.19) over [s, s + h],  we have 

Since p > n + 2 is an even integer, we put p = 2m + 2. Let 

s+h s+h 
w(2, s + h) - V(Z: s) = l 7)dT + l 9(U(Z, 71, V(2,  7))dT. 

(7.28) 
We set 

) F(z, S, h)  = C IVAw(z, s + h)l22 IVAV(S, ~ ) 1 ~ ( ~ - ~ )  
( m  i = O  

. (VAW(Z, s + h) + VAW(S, s ) )  

and F = (F1,. . . , Fn). Operating -A to (7.28), multiplying V F(x, s, h),  
and integrating over R, we have 

(Aw(s, s + h) - Aw(s, s))V. F(z, S, h ) d z  - J ,  
= - ls+h A2w(z, T)V . F(z, 7, h)dzd.r 

- lsfh Ag(U(z, T ) ,  V ( x 7  T))V. F(z,T,  h)dzdT 

= -I - II. (7.29) 

We have 
a au av -wt = - = - = O  on dR x [O,T] av au au 

and (7.20), and hence it follows that 

a -Aw = 0 on dQ x (0 ,T) .  
du 

Furthermore, it holds that 

(7.30) 

m 
(a - b) - (a + b) la12i (b12(m-i) - - !alp - (blp 

i = O  
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for a, b E R”, and the left-hand side of (7.29) is equal to 

J, IVAv(x, s + h)lp dx - IVAw(x, s)lp dx. s, (7.31) 

We divide this term by h. 
Applying Lemma 7.1, first we have 

This implies that 

d2Aw(x, s) 
+P 2 1 I V A W ( X , S ) ~ ~ - ~  ( axiaxj )2dx 

i,j=l 

IVAw(x, s)lp-2dx 

a IVAw(x, s)ip-2 lVAw(x, . ) I 2  do 

d2Av(x, s) 
+P 2 IVAw(x, ( axiaxj ) dx i,j=l 

P(P - 2) 2 +- IVAw(x, s ) I ” - ~  / V  IVAV(X,S)~~I dx. 
4 

Therefore, by Lemma 7.2 we obtain 

n 2 I d2AW(X, s) lim - L p 1 ~VAW(X,S)I”-~ ( ) dx 
h+O h axiaxj i,j=l 
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P(P - 2) 2 
f- 1 JVAv(z, s ) / ’ - ~  IV JVAv(z, s)lzI dz. (7.32) 4 

We also have 

11 
lim - = p l  Ag(U(z, s), V(z, s))V. (VAu(z, s) IVAv(z, s)J’-~) dz. 
h-0 h 

Combining this with 

V . (JVAv(z, VAv(z, s)) 

= IVAv(z, S)I’-~ A2v(z, s) 
P - 2  

2 +- IVAV(X,S)(’-~ VAW(X, s) . V IVAv(x, .)I2 

implies that 

tP-2 / JVAv(x, s)(’dz + - 1 1 lAg(U(x, s), V(z, s))Iydx) 
2P n P n  

2 
JVAv(x, s ) I ’ - ~  IV IVAv(x, s)I2/ dx 

2 

(7.33) 

We have 

by (7.31). Sending h -+ 0, we get that 
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by (7.32) and (7.33).
Henceforce, vvdenote the positive  Constants depending

only on and p. Because of p > we have by Sobolev's imbedding
theorem that

Therefore, it holds that

We obtain
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By this and Gronwall’s inequality, we have that 

llVAv(t)ll; 5 { IlVAvoII; + TK4C,P [(Ki + K2) (fll”’ + 11’ M P >  eK3T.  

(7.36) 
Next, multiplying 1vIp-’ v to (7.19), we have 

Combining this with 

we have 

This is equivalent to 

and hence 

I l W I ;  I (llvoll; + 1) exp ( ( P  + G 1521 - 1)T) (7.37) 

complete. 0 
follows. Inequality (7.27) follows from (7.36) and (7.37) and the proof is 

7.2.3 Properties of 3 

We make use of the contraction mapping principle to show that 3 = 3 ( . , T )  
has a fixed point if T > 0 is small. In this paragraph, we suppose that the 
domain 52 c R” is convex. We put 

El = [-KIM, KiM] x [-K2C;IP, K2C;/”], 
E2 = [-KIM, K I M ]  x [-KzM, KzM], 
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and 

(7.38) 

Here and henceforce, Ci > 0 (i = 5,6,7,.. . ,22) denotes the constants 
determined by p ,  Mo, 0, g, x, f, and Kj ( j  = 1,2,3,. . . ,7). We emphasize 
that those constants are independent of T E (0,1]. 

First, we show the following. 

Lemma 7.4 There exists TO E (0,1] such that 

F O ( M ,  T) c O ( M ,  T )  

for any T E (0, To]. 

Proof. 
by Lemma 7.3 and (7.35), we have 

Given (V, V) E O ( M ,  T ) ,  we take the solution (u, v) to (IS). First, 

IlWII, + IlVWl, + IlAWI, L K2CYP. (7.39) 

Next, multiplying I u I ’ - ~  u to (7.18) and integrating over R, we have that 

Combining this with (7.39) and (7.38) implies that 

(u(’ d x  + -C,P 1 (01 + - ’- ( u I p d x  
P ‘ P  P 
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Next, we operate A to (7.18), multiply ~ A U I ~ - ~ A U ,  and integrate it 
over R. Then, it follows that 

f 1 lAulP dx + ( p  - 1) lAvlp-2 IVAv12 dx = - ( p  - 1) 
P d t  n 

Here, we have 

with

By this inequality, and it holds that
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We have 

for f E W2J’(0),  and therefore, it follows that 

+?C7 s, (1 + IVul’ + lAulP + lAwJ’ + IVAw(’) dx. 
P 

By this, Lemma 7.3, and 

it holds that 

lA~l’ -~  III’dx I P - 2  - IAul’ dx 
P 

Therefore, from (7.41) we have 
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Then, (7.40) implies that 

327 

We obtain 

IlA.ll; + 11.11; I (1lA.oll; + Iluoll; + 1) eCQT. 

Then by Lemma 7.3, we get that 

Because of M = 4(Mo + 1)) we have (u, w) E U ( M , T )  for sufficiently small 
0 T > 0, and the proof is complete. 

Now, we show the following. 

Lemma 7.5 There exists Ti E (O,To] such that 

I ; Il(U1, Vl) - (U2t V2)11C([O,T];LP(n)2) 

is satisfied for (Vi, &) E U ( M , T )  (i = 1,2)  and T E (0, TI], where 

Proof. 
that (ui, vi) E U ( M ,  T )  (i = 1,2). Also, we have 

We put (ui,vi) = F(Ui,&) for i = 1,2.  By Lemma 7.4, it holds 

(7.43) 
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By Lemma 7.2, for w with awl& = 0 on dS2 it holds that 

AVw + lVwlp-2 Vwdx 

(7.44) 

Operating v to (7.43), multiplying lv(w2 - wl)lp-2 0(w2 - wl), integrating 
over R, and applying (7.44) for w = 212 - w1, we have 

Here, in use of we have

Next, we have
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Therefore, it holds that 

J ,  MU27 V2) - g(U1, Vdl 

and hence it follows from (7.45) that 

Next, multiplying (02 - ( 0 2  - wl) to (7.43) and integrating over 
R, we get that 
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1 
5 p lIg(U2, V2) - g(U1, Wll; + y 11212 - 21111; a 

Combining this with (7.46), we have 

s, P 

d 
11212 - w11; + P(P - 1) 1212 - 211 lp-2 IV(V2 - .1)12 da: 

I CL (llU2 - Ul I l p  + llV2 - Kll,) + (P - 1) 11212 - 21111;. (7.48) 

Next, multiplying Iu2 - u1lp-’ (u2 - u1) to (7.43) and integrating over 
0, we have 

J, 
I d  
-- 11212 - 
P dt 

+ ( p  - 1) (‘1~2 - uiIp-’ IV(u2 - u1)l2 dx 

Here, we apply Lemmas 7.3, 7.4 and inequalities (7.34), (7.39), (7.38), and
get the following:
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we get the conclusion. CI 

The following lemma will assure the regularity of the fixed point. 

Lemma 7.6 Each T E (O,T1] admits the estimate 

mu, V>le;& 5 c 1 9  

for (U,V) E O ( M , T ) ,  where 
- 

[ ( u 7  '> l r3 ;Q~  = [U1f3;QT + [']O;Q= ' 

Those relations are summarized as

From (7.47), (7.48), and (7.49) we get that

and hence it follows that

This implies

and therefore, taking
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Proof. Let us recall that (V ,V)  E C)(M,T) and that ( u , ~ )  = F(U,V) 
denotes the classical solution to (IS). From (7.39), (7.19) and the definition 
of O( M ,  T )  , we have 

I l~tl l , I llA41p + l ld~7V)lIp e M + c11 1s2111P 

and 

and hence we obtain 

llvlIW1.p(QT) < - c 2 0 .  

Therefore, because 

[v]e;QT 5 c21. 

On the other hand, we have by (7.18) that 

We have also that 

and hence again by (7.50) it holds that 

["]~;QT < - c 2 2 .  

Thus, we get the conclusion by (7.51) and (7.52). 

(7.50) 

(7.51) 

(7.52) 

17 

holds by we have
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7.2.4 Local Solvability 

We will find a timelocal solution to (CS) as a fix point of 3, taking T E 
(0, TI] .  For this purpose, we put 

K = K ( M ,  T )  
= {(u,v)  E ce(QT)2 n C([o,T];W27p(R) x W3ip(R)) 

I I t ( %  ")llc([o,T];w2,P(n)xW3.P(n)) 5 M7 Ku, ")lo;& 5 C197 

au av 
av au = O  on dR x [@TI}, - - _ -  

where CIS is the constant prescribed in Lemma 7.6. This K is compact and 
convex in C([O, TI; Lp(R)'), and we have F 0 ( M ,  T )  c K ( M ,  T )  by Lemma 
7.6. 

Now, we note the following. 

Theorem 7.3 I f X  i s  a Banach space with the norm (1 . [ I x  and F is a 
continuous mapping on  X satisfying 0 n K c D o m ( F ) ,  F ( 0 )  c 0 n K ,  
and 

llF(w2) - F(w1)llx I k Ilw2 - w1IIx (W2,WI E 0) 7 (7.53) 

where 0, K are subsets in X and k E (0,l). Then, F has a unique fixed 
point in 0 n K .  

Proof. From the assumption, it holds that 

F ( m )  c F(D) c F(O) c %=G? 

and that (7.53) for w2, w1 E 0 n K .  Therefore, the conclusion follows from 
the contraction mapping principle. 0 

Now, we give the following. 

Proof of Theorem 7.2: We have 

([o>T1;Lp(n)2) = K ( M ,  T )  O ( M ,  T )  n K ( M ,  qC 
and Lemma 7.5, and apply Theorem 7.3 for X = C([O, TI; Lp(R)2), 0 = 
O ( M , T ) ,  K = K ( M , T ) ,  and F = 3( . ,T) .  Then, we have a unique fix 
point denoted by (u*, w.) E C2ie(Q~)2, which becomes a classical solution 
to (CS). Conversely, if (u ,v )  is a classical solution to (CS) locally in time 
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with the existence time T,, > 0, then it is in (u, w) E O ( M ,  T’) nlC(M, TI) 
for some TI E (0, min(T, Tmax)) and is a fix point of F(-, T’). Therefore, it 
coincides with the above (u,, w,) for t E [0, T‘]. Continuing the procedure, 
we see that T,,, 2 T and (u, w) = (u,, w,) for t E [ O ,  TI, and the proof is 
complete. 
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Chapter 8 

Appendix 

This is the appendix. The first section is a catalogue of mathematical theories. 
Mathematical notions stated there are referred to in this monograph several times, 
and the reader will be able to get them easily. Detailed proofs of theorems are 
mostly written in Rudin [17] and Folland [9]. The second section, on the other 
hand, provides with some references to the theme treated in this monograph. 

8.1 Catalogue of Mathematical Theories 

8.1.1 Basic Analysis 

Set of real numbers, denoted by R, is provided with algebraic calculus, 
order, and continuity, which distinguishes that of rational numbers, denoted 
by Q. Sets of integers and positive integers are denoted by Z and N, 
respectively. Given A C R, we say that it is bounded from above or below 
if there is M E R or m E R such that any x E A is in x I M or x 2 m, 
respectively. It is said to be bounded if it is bounded from above and below. 
Such M or m is called the upper or lower bound of A ,  respectively. If A is 
bounded from above or below, then its least upper bound or largest lower 
bound is called the supremum or infimum, respectively. Then, the axiom 
of Weierstrass says that any set bounded from above and below has the 
supremum and infimum, respectively. Given a sequence in R, denoted by 
all a2,. . . and Q E R, we mean limn--rm a, = Q by (a, - QI = 0. 
This is expressed more precisely by the E - S argument that any E > 0 
admits N E N such that n 2 N implies (a, - a( < E. A sequence {a,} 
is monotone increasing or decreasing if a, 5 a,+1 and a, L a,+] for n = 

337 
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1,2,  . . -, respectively. Monotone increasing sequence bounded from above 
converges and so does monotone decreasing sequence bounded from below 
at the same time. Therefore, a bounded sequence always has a converging 
subsequence. If a E R is a limit of some subsequence of {a,}, we say that 
it is an accumulating point of {a,}. A sequence {a,} is said to be Cauchy 
if any E > 0 takes N E N such that la, - a,/ < E if n,m 2 N .  Then, 
any Cauchy sequence converges. Those criteria of existence of supremum 
of the set bounded from above, convergence of the monotone increasing 
sequence bounded from above, and convergence of the Cauchy sequence 
are equivalent, and are indicated as the continuity of real numbers in short. 

Given a sequence {a,}, its supremum and infimum exist if +oo and -oo 
are admitted, and they are denoted by supnan and inf,a,, respectively. 
Then, we can take the monotone decreasing sequence {b,} by 

b, = sup a k ,  
k > n  

where b, = +oo is admitted. In this case, we have limn+, b, with f o o  
admitted as its value, which is called the limit supremum of {a,} and 
is denoted by limsup,,,a,. The limit infimum of {a,}, denoted by 
lim inf,,, a, is defined similarly by limn,+, infk?, ak. Any sequence 
{a,} admits subsequences converging to lim inf,,, a, and limsup,,, a,, 
respectively, and existence of limn,, a, is equivalent to lim inf,,, a, = 
limsup,,, a,, where foo is admitted as the value, and then, it holds that 
limn-.+, a, = liminf,,, a, = limsup,,, a,. Convergence of a series 

a, is discussed by the sequence {s,} made by its partial sum: 00 

k=l 

If a, 2 0 for any n = 1,2..., then {sn} is monotone increasing so that 
Cn=la, converges if and only if {s,} is bounded from above, in which 
case we refer to 

00 

n=l  

A series a, is said to absolutely converge 
this case it is shown that {s,} forms a Cauchy 
convergence of C,"==, a, follows. 

co 
if C,"==, lan[ < +oo. In 
sequence and hence the 
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Let I = (a ,b )  c R be an open interval with a = --oo and b = +m 
admitted, and f : I -+ R be given. Then its continuity at x = xo E 
I is indicated by limr-rzof(x) = f(zo), so that we have to define C = 
limz+zo f(x) more precisely. Actually, this means that any E > 0 admits 
6 > 0 such that any IC in (z - ZO( < 6 takes the estimate If(.) - 1)  < E .  

Therefore, f = f(x) is continuous at z = x~ E I if and only if any E > 0 
admits 6 > 0 such that )x - 201 < 6 implies If(.) - f(zo)l < E. Because I 
is an open interval and 20 E I ,  we have x E I for x close to 50, and f(z) is 
defined if above 6 > 0 is small enough. Then, we can show that f = f(x) 
is continuous at x = zo if any sequence {z,} in limn--roo 2, = z o  admits 
limn-m f ( x n )  = f(x0). We say that f is continuous in I if it is continuous 
at any 50 E I .  

A set A c R is said to be open if any z o  E A admits S > 0 such that 
( 2 0  - 6,xo + 6) c A. It is said to be closed if A" = R \ A is open. By 
definition, it is open even if A = 8, R. In particular, they are simultaneously 
closed. Subset F C R is closed if and only if {z,} c F and limn+.oo x, = zo 
implies xo E F .  A real-valued function f defined on an open interval I is 
continuous there if and only if the inverse image f - l ( A )  of any open set 
A c I is open. Given X C R not necessarily an open interval and zo E X ,  
we say that f : X + R is continuous at x = xo if any E > 0 admits 
6 > 0 such that z E X and Ix - z0I < 6 implies f(z) - f(z0)l < E.  It is 
continuous on X if it is so at any xo E X .  A subset A c X is said to be 
open in X ,  if any zo E A admits 6 > 0 such that (xo - 6,xo + 6 )  n X c A .  
Then, f is continuous on X if and only if the inverse image f - l ( A )  of open 
A c R is open in X. Subset X c R is said to be connected if there is no 
pair of open sets U ,  V in R such that U n X  # 0, VnX # 8, UnVnX = 8, 
and X c U U V .  It is equivalent for X c R to be an interval. If f : X + R 
is continuous and X c R is connected, then f ( X )  is connected. Then, the 
intermediate value theorem follows as if f : [a, b] +. R is continuous with 
a < b and J denotes the closed interval with the endpoints composed of 
f ( a ) ,  f ( b ) ,  then any a E J admits z E [a, b] such that f(z) = a. Subset 
X c R is said to be compact if there is a family of open sets {Ua},EA in 
R such that X c UaEA U,, then there is a finite al ,  CQ,. . . ,a, E A such 
that X c u:==, Uai.  If X c R is compact and f : X -+ R is continuous, 
then f ( X )  is compact in R. On the other hand, Heine-Borel's theorem 
says that X c R is compact if and only if it is bounded and closed. From 
this we can show that if f is a real-valued continuous function defined on 
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a bounded closed interval I = [a, b] it takes minimum and maximum there. 
A real-valued function f defined on X c R is said to  be uniformly 

continuous if any E > 0 admits 6 > 0 such that z, z o  E X and Iz - 201 < 6 
imply If(.) - f(z0)l < E. If X is compact and f : X + R is continuous, 
then it is uniformly continuous. For a bounded closed interval I = [a,b],  
its division is given by A : xo = a < x1 < 2 2  < . . . < x, = b and 
IlAll = maxl<i<n(zi - xi-1) is referred as  the mesh size. For each small 
interval we take Ei E [zi-l,zi] arbitrarily and set 

n 

i= 1 

with 6 = (&, ...,&). We say that f is Riemann integrable if there is I 
such that limp(l,o I A , ~  = I .  We suppose that f = f(z) is bounded, which 
means supzEI lf(z)I 5 M with some M > 0 ,  and let Mi = S U ~ ~ ~ [ ~f(z) 
and mi = infzE[zi-l,zi] f(x). Then, we can take that 

n n 

i=l i=l  

which satisfies that SA 5 I&,< 5 SA for any E .  Then, Darboux’s theorem 
assures limllAll+oS~ = S and limllAll-os~ = s with s 5 S ,  where S = 
infa SA and s = supA SA. Therefore, f is Riemann integrable on I if and 
only if s = S ,  or equivalently, any E > 0 admits 6 > 0 such that IlAll < 6 
implies SA - SA < E .  Then, we can show that if f : [a,  b] ---f R is continuous, 
then it is Riemann integrable from its uniform continuity. Sequence of real- 
valued functions {f,} defined on X C R is said to  converge f uniformly 
if any E > 0 admits N E N such that Ifn(z) - f(z)I < E for any n 1 N 
and z E X .  In this case if each f, is continuous on X ,  then so is the limit 
function f and furthermore, 

r b  

if X = [a,  b].  

8.1.2 Topological Spaces 

First, topological space is a set provided with the family of open subsets, 
which satisfies the axioms that the whole space and the empty set are 
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open and that any union of open subsets, and any finite intersection of 
open subsets, are again open. A subset of topological space is closed if its 
complement is open. A subset of topological space is connected, if it is not 
covered by any disjoint union of two non-empty open sets. A subset of a 
topological space is compact if any open covering of it is reduced to a sub- 
covering of finite number. A mapping from a topological space to another 
one is said to be continuous if its inverse image of any open set is open. If 
it is onto, one-tc-one, and the inverse mapping is continuous, then it is said 
to be homeomorphism. Any subset A of a topological space L is regarded 
as a topological space under the agreement that a subset in A is open if 
and only if it is the intersection of an open set in L and A itself. 

A set L is said to be a metric space if it is provided with the distance 
denoted by dist( , ), which is a mapping from L x L to [0, +oo) satisfying the 
axioms that dist(u, w) = 0 if and only if u = w, that dist(w, u)  = dist(u, w) 
for u, v E L, and that 

dist(u, w) 5 dist(u, w) + dist(w, v)  (8.1) 

for u, w, w E L. Here, (8.1) is referred to as the triangle inequality. 
If L is a metric space with the distance dist( , ) and A is a subset of L ,  

then 20 E L is said to be an interior point of A if there is r > 0 satisfying 
B(1~10,r) c A ,  where 

B(so,r) = {x E L 1 dist(rc,zo) < r}. 

A subset of the metric space is said to be open if any element is an 
interior point. This notion agrees the axioms of open sets stated above and 
under this agreement the metric space is usually regarded as a topological 
space. Then, the set of interior points of A is called the interior of A and 
is denoted by intA. Always, it is an open subset. On the other hand, an 
element 20 of L is said to be on the boundary of A if B(z0, r) n A # 0 and 
B(Q, T )  nAc # 0 for any r > 0. The set of boundary points of A is denoted 
by d A  and 3 = A u d A  is said to be the closure of A. A subset of L is 
closed if and only if it is equal to its closure. A subset of L is said to be 
dense if its closure is equal to L itself. Also, L is said to be separable if 
there is a countable dense subset. Those notions of interior, boundary, and 
closure are extended to the general topological space. 

A sequence {zj} in a metric space L with the distance dist( , ) is said 
to converge to 20 E L if any T > 0 admits Ic such that x,j E B(zo, T )  for 
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j 2 k. This is equivalent to  

lim 
j - rn 

dist (xj 

and is denoted by xj -t xo or limj+ooxj = 20. Then, xo E 3 if and only 
if there is a sequence {xj} c A converging to  xo. A continuous function 
f from the metric space (L,dist) to  R is uniformly continuous on any 
compact subset E c L,  which means that any E > 0 admits S > 0 such 
that dist(x, y) < 6 and x, y E E imply I f  (x) - f (y)l < E .  A sequence {u j}  

in the metric space (V,dist) is said to be a Cauchy sequence if it satisfies 
dist(uj, u k )  --+ 0 as j, k +. 00. A converging sequence is always a Cauchy 
sequence, and the metric space (V, dist) is said to  be complete if any Cauchy 
sequence converges. 

Euclidean space Rn is provided with the standard distance dist(x, y) = 
Ix - yIl where 

151 = 4%: + x: + . . . x; for x = (51, zz ,  . . . , zn). 

Usually, domain indicates an open, connected subset of Rn, and it is said 
to  be simply connected if any Jordan curve can shrink to  a point inside, 
where Jordan curve denotes a closed curve without self-intersections, and 
a closed curve in Rn is the image of a continuous mapping from the unit 
circle S1 = { (cos 8, sin 8) 1 0 5 B < 27r) c R2 to R". Finally, closed region 
indicates the closure of a domain. 

Family of closed subsets satisfies the axioms that the whole space and 
the empty set are closed and that any intersection of closed subsets, and any 
finite union of closed subsets, are again closed. Topology can be introduced 
from this family by saying that a subset is open if its complement is closed. 
If x E L is given, its neighborhood indicates an open set containing it. A 
family U ( x )  is said to be a fundamental neighborhood system of x E L if 
any U E U ( x )  admits an open V such that x E V c U .  It satisfies the 
axioms that any V E U ( x )  satisfies x E V ,  that any V1, VZ E U ( x )  admits 
V, E U ( x )  such that V3 C VI n VZ, and that any V E U ( x )  admits W E U ( s )  
such that for y E W there is V, E U ( y )  in V, c V. In the case that the 
fundamental neighborhood system U ( s )  is given at each x E L,  we say that 
x is an interior point of A C L if there is U E U ( x )  such that U c A, and in 
this way the topology can be introduced from fundamental neighborhood 
systems instead of that of the family of open sets. 
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The notions of uniformly continuity and completeness are not extended 
to the general topological space, but can be to uniform topological spaces. 
In this connection, it should be noted that in the general topological space 
without countability, sequences are not enough to describe the full struc- 
ture of topology and the notion of net takes place of. Thus, we say that 
the uniform topological space is complete if any Cauchy net converges, se- 
quentially complete if any Cauchy sequence converges. Topological space 
L is said to satisfy the first countability axiom if each x E L admits a 
fundamental neighborhood system with countable members. In this case, 
its topology can be described by the notion of convergence of sequences. 
Topological space L is said to satisfy the second countability axiom if there 
is a family 0 consisting of countable open sets such that any open set is 
a union of some members in 0. The metric space ( L ,  dist) always satisfies 
the first countability axiom. If it is separable, then it satisfies the second 
countability axiom. 

Another important notion of topological space is the separability. First, 
topological space L is said to be a Hausdorff space if any x, y E L in x # y 
admit open sets U and V such that x E U ,  y E V ,  and U n V  = 0. Hausdorff 
space L is said to be normal if any closed subsets F1, F2 with F1 n F2 = 8 
admits open sets U1 and U2 such that F1 c U1, F2 c U2, and U1 n U2 = 0. 
Then, Urysohn’s theorem guarantees that if Fo, F1 are closed subsets in the 
normal Hausdorff space L satisfying FO n F1 = 0, then there is a continuous 
mapping f : L -+ [0,1] with the values 0 and 1 on FO and F1, respectively. 
This implies the extension theorem of Tietee that any continuous mapping 
f : F -+ R defined on the closed set F in the normal Hausdorff space L 
has a continuous extension f : L -+ R. 

A topological space is said to be compact if its any open covering is 
reduced to a finite subcovering. In the metric space it is equivalent to 
be sequentially compact, which means that any sequence there contains a 
converging subsequence. If X is a compact metric space, then the set of 
continuous functions on X ,  denoted by C ( X )  forms a Banach space under 
the norm = maxZEx I f  (.)I. Then, Ascoli-Arzeld’s theorem guarantees 
that F C C ( X )  is compact if and only if it is uniformly bounded and equi- 
continuous. Here, the former means supfeF 11 f (1 < +oo, while the latter 
says that any E > 0 admits 6 > 0 such that x , y  E X with dist(x,y) < 6 
implies that S U P ~ ~ F  If(.) - f ( y ) ]  < E .  
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Exercise 8.1 
clidean space is a metric space under the distance given above. 

Exercise 8.2 
is continuous if and only if xj 4 xo in L implies f(xj)  -+ f(z0) in M .  

Confirm that a metric space is a topological space and Eu- 

Confirm that if L and M are metric spaces, then f : L 4 M 

8.1.3 Complex Function Theory 

Complex function theory is an interesting object by itself, and here we shall 
collect some basic facts. 

C 
is said to be differentiable at z = c E D if 

First, a complex valued function f (z )  defined on a domain D in R2 

exists. In terms of z = x+zy and f (z )  = u(z ,  y)+zw(x, y) with real x, y, u, w, 
this condition is equivalent to saying that u, v are totally differentiable at 
c and satisfy Cauchy-Riemann’s relation 

We say that f(z) is holomorphic in D and at c if it is differentiable at 
any point in D and in a neighborhood of c, respectively. The function 
f(z) = u(x,  y )  + ~ ( x ,  y) with z = x + zy is holomorphic in D if and only if 
u, v are totally differentiable at any point z in D and satisfy 

We say that w = f ( z )  is conformal at z = c if y is a curve crossing c 
with its tangential line there, then f(y)  has the same property in w plane 
at f(c), and the angle made by any of such two curves 71, 7 2  are equal 
to that made by f(y1) and f(y2). It is known that if f’(c) # 0, then 
w = f(z) is conformal at c. Men’show’s theorem says that if f : D + R is 
homeomorphic and conformal at any point in D, then it is holomorphic and 
satisfies f’(z) # 0 for any z E D. A domain surrounded by a Jordan curve 
is called the Jordan region. Then, Riemann’s mapping theorem guarantees 
that any Jordan region admits a conformal homeomorphism to the unit 
disc. 
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Cauchy-Hadamard's formula 

assures that the power series 

n = O  

converges absolutely and uniformly in IzI < R, while it does not converge 
for Iz\ > R. That is, R is the convergence radius and 1.1 = R is the 
convergence circle. In this case, 

m 

n=O 

is holomorphic in JzJ  < R with the relation that 
m 

n=l 

is also holomorphic in IzI < R. Actually, its convergence radius is again R. 
The integral theorem of Cauchy guarantees that if f (2) is holomorphic 

in a simply connected domain D and is continuous on B, then it holds that 

where C = aD is oriented counter-clockwisely. Conversely, Morera 's theo- 
rem says that if f (2) is continuous in D and satisfies 

for any Jordan curve C in D ,  then it is holomorphic in D. 
Cauchy's integral formula is indicated as 

for z E D, which guarantees that the holomorphic function f(z)  is differ- 
entiable arbitrary many times with the formula that 
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Furthermore, if f(z) is holomorphic in (21 < R, then it has the Taylor 
expansion there as 

f (n)(0) 
m 

f ( z )  = xc,$ with cn = -. n! 
n=O 

This implies that if f(z),  g(z )  are holomorphic in D and there is a sequence 
zk # c converging to c E D with f(zk) = g(zk) for k = 1,2,..., then it 
holds that f(z) = g(z)  for any z E D. 

Another application of (8.2) is the maximum principle, which says that 
if f ( z )  is a non-constant holomorphic function in D, then If(.)/ does not 
take the maximum in D. Therefore, if D is a bounded domain and f(z) is 
continuous on n, then the maximum of If(z)l is attained on aD. If f ( z )  
is holomorphic in IzI < 00, then it is said to be entire. In this case, the 
maximum principle guarantees that 

is non-decreasing in r > 0 and the value 

log log M (7.) 
lim sup 

T’M logr 

is called the order of f(z). 

M ,  and f(0)  = 0,  then it holds that 
Schwarz’ theorem says that if f ( z )  is holomorphic in IzI < R, If(z)l 5 

If equality holds at some z = z1 E D in the above inequality, then it follows 
that f(z) = ezs . g z  with some 6 E [0,27r). 

Cauchy’s estimate means that if f ( z )  = unzn is holomorphic in IzI < 
R, then it holds that 

with M ( r )  defined by (8.3). This implies the Liouville’s theorem that any 
bounded entire function must be a constant. This theorem makes it possible 
to give the proof of the fundamental theorem of algebra that any non- 
constant polynomial has a zero point in the complex plane C .  
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The Laurent series is expressed as 

+W -00 +W c a,(z - c)“ = a-,(z - c)-” + c a,(z - c),, (8.4) 
n=-m n=l n=O 

where the first term of the right-hand side is called the principal part. If f ( z )  
is holomorphic in p < Jz - CJ < R for 0 5 p < R 5 00, then it is expanded 
uniquely by the Laurent series. In the case that f ( z )  is holomorphic in 
0 < Iz - cI < R and is not holomorphic at z = c, then z = c is called the 
isolated singular point off  ( z ) .  An isolated singular point is removable, pole, 
and essential if the principal part in (8.4) is composed of the terms of none, 
finite, and infinite, respectively. Then, Riemann’s theorem says that if f ( z )  
is bounded and holomorphic in 0 < Iz - cI < R, then z = c is removable so 
that it has a holomorphic extension in Iz - cI < R. Conversely, Weierstrass’ 
theorem says that if f ( z )  is essentially singular at z = c,  then any a E C 
admits z, t c such that f(zn) t a. If z = c is an isolated singular 
point of f ( z ) ,  then the coefficient a-1 in (8.4) is called the residue. The 
isolated singularity of f (z )  at z = 00 is defined by that of g(w) = f ( l / w )  
at w = 0. If f ( z )  is holomorphic in D except for isolated poles, it is called 
a meromorphic function. A function meromorphic on 121 5 03 must be a 
rational function. 

The residue principle says that if f ( z )  is holomorphic in D except for 
finite isolated singular points, denoted by ( a l , . . . , ~ , }  c C ,  and C is a 
Jordan curve in D \ { a l ,  . . . , a,} containing those singular points inside, 
then it holds that 

where Res ( a j )  indicates the residue of f ( z )  at z = a j .  

morphic on C with f (z )  # 0, then it holds that 
The argument principle says that if f ( z )  is meromorphic in D and holo- 

where C is a Jordan curve in D and N ,  P denote the number of zeros and 
poles of f ( z )  inside C, respectively, with the multiplicities included. Then, 
Rouche’s theorem says that if f ( z )  is holomorphic in D, C is a Jordan curve 
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Fig. 8.1 

in D, and If(.)[ > 1g(z)1 holds on C,  then the number of zeros of f(z) and 
f ( z )  + g(z )  are equal in D. 

Exercise 8.3 
non-decreasing function of r > 0. 

Exercise 8.4 Suppose that a polynomial P ( z )  does not assume 0 in C ,  
and take the entire function f ( z )  = &. Then, apply Liouville's theorem 
to guarantee that P ( z )  must be a constant. 

Exercise 8.5 A function meromorphic on IzI L 00 is holomorphic in (21 5 
00 except for finite number of poles, denoted by c1, . . , Ck. Letting Pi(z) 
be its principal part at z = ci, take 

Show that if f(z) is entire, then M(r)  = maxlzl,r If(z)l is a 

i 

It is holomorphic in IzI 5 00 and therefore, must be a constant by Liouville's 
theorem. Thus, confirm that a function meromorphic on IzI 5 co must be 
a rational function. 

8.1.4 Real Analysis 

The norm 1 1  . introduced in 52.3.3 provides L2(0,.rr) with the complete 
metric. As is mentioned there, this fact is proven by the convergence the- 
orems on Lebesgue integrals. In this connection, it may be worth noting 
that there are three important convergence theorems, dominated conver- 
gence theorem, monotone convergence theorem, and Fatou 's lemma. The 
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last one describes some kind of lower semi-continuity, described in 2.3.4. 
If X is a set, then 2x denotes the set of all subsets of X .  A subset 3 of 

2x is said to be finitely additive if it satisfies the axiom that 0 E 3, F" E 3 
if F E 3, and E U F E 3 if El F E F. If 3 is such a family, then the 
mapping m : 3 -, [0, m] is said to be a finitely additive measure on ( X ,  3) 
if it satisfies the axiom that m(0) = 0 and m ( A  U B )  = m ( A )  + m(B) for 
A,  B E F with A n B = 0. It is said to be a pre-measure if it satisfies the 
axiom that m ( A )  = C E l m ( A k )  if {Ak}r=l E 3 is a disjoint family and 
A = C,"=, Ak(= U&) E 3. 

If 3 C 2x is a finitely additive family and m is a finitely additive 
measure on ( X ,  F), then 

r ( A )  = inf m(Ak) I Ak E 3, A c U,M=,Ak E 
defines the outer measure so that I? : 2x -, [0, m] satisfies the axiom that 

{Ak};=, c 2x. Furthermore, if m is a pre-measure, then rlr = m holds. 
A family V c 2x is said to be a a-algebra if it satisfies the axiom that 

8 E V, A" E V if A E V, and U&Ak E V if {Ak},& c V. If V is a 
a-algebra and { A k } E l  c V is a disjoint family, then the latter is said to 
be a division of A = CEl Ak(= UTz1Ak) E V. If V is a a-algebra, then 
the mapping p : V -+ [0, m] is said to be a measure if it satisfies the axiom 
that p(0) = 0 and p ( A )  = C:=,p(Ak) if {Ak}F.l c V is a division of 
A = cp=l Ak E 2). 

If 2) c 2x is a c-algebra, then ( X , V )  is said to be a measurable space. 
If p is a measure on ( X , V ) ,  then (X,V,p) is called the measure space. 
An assertion in the measure space is said to hold almost everywhere if it is 
valid except for a set of measure 0. A measure space ( X , V , p )  is said to 
be a-finite if there are Xk E V (k = 1 , 2 , .  . .) such that p ( X k )  < +m and 
UkXk = x. 

If r is an outer measure on X ,  then E E 2x is said to be I?-measurable 
if r ( A )  = r ( A  n E )  + I?(A n E") holds for any A E 2x. Then, the family of 
r-measurable sets, denoted by mr,  forms a a-algebra, and restricted to 
mr becomes a measure. 

The Jordan family of R" denotes the least finitely additive family in 
2R" containing n-dimensional rectangles, and the Jordan measure is the 
uniquely determined finitely additive measure defined on the Jordan family 

r(0) = 0,  r ( A )  I r ( B )  if A c B, and r ( u g l A k )  5 C E I I ' ( A k )  for 



350 Appendix 

with the value of the n-dimensional rectangle equal to its n-dimensional 
volume. It is shown that the Jordan measure is a pre-measure, and from 
the above story, referred to as the Carathe'odoy t h e o y ,  we get a mea- 
sure space denoted by (R", Ln, pn(dz)). Each element in L, is said to be 
a (n-dimensional) Lebesgue measurable set, and p,(dz) is called the (n- 
dimensional) Lebesgue measure. 

The minimum cr-algebra containing all open sets in R" is said to be the 
Bore1 family in R" and is denoted by B,,. Each element in B, is called 
the Bore1 set. Each Borel set is Lebesgue measurable, and in this way 
we get a smaller measure space by restricting p,(dz) to B,. Then, the 
original measure space (Rn, L,, p n ( d z ) )  is regarded as the completion of 
(R", Bn, f i n ( & ) )  as a measure space. Actually, the measure space (X, D, p )  
is said to be complete if it satisfies the axiom that A E D, p ( A )  = 0 ,  and B c 
A imply B E D, and each measure space takes the least extended complete 
measure space, referred to as its completion. For n = 1, it is convenient 
to extend those notions of the Borel and the Lebesgue measurable sets to 
those in the two-point compactification of R, denoted by = [-00, +00]. 

If ( X ,  D) is a measurable space, then the function f : X 4 [-00, 001 is 
said to be measurable if any inverse image of the Borel set in is in D. 
The measurability of functions is preserved under countably many limiting 
processes. Let (X,D,p) be a measure space with p ( X )  < +00, and let 
fk : x --$ R (k = 1 ,2 ,  . . .) be a family of measurable functions satisfying 
limk,, f k ( z )  = f(z) for almost every z E X. Given E > 0, then Egorov's 
theorem assures E E D such that p ( E )  < E and limk,, f k ( 5 )  = f(z) 
uniformly in z E X \ E. If A C R" and f : A .--) R are Lebesgue mea- 
surable with p ( A )  < +00 and E > 0,  then Lusin's theorem guarantees the 
existence of a compact set K C A such that p ( A  \ K )  < E and f I K  is 
continuous. If (X,V,p) is a measure space and {fk}F=o=l is a family of 
measurable functions, then we say that fk converges in measure to f if 
limk-., p {z E X I I f k ( z )  - f(z)l > E }  = 0 for any E > 0. 

If ( X ,  D, p)  is a measure space, then f : X -+ [0, 001 is said to be a 
(non-negative) simple function if it is written as a finite sum of a j x A j  

with oj 2 0 and Aj E 2). The set of such functions is denoted by L:. In 
this case, the quantity 
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is independent of the expression of f = C . C Y ~ X A ~  under the agreement of 
0.00 = 0. This definition of J f for f E Lo 4 is consistent with 

for the general measurable function f : X -+ [O,m], of which totality is 
denoted by L+. 

Then, the monotone convergence theorem guarantees that if fk E L+ is 
monotone increasing pointwisely in k = 1,2 ,  . . ., then 

follows for f = limk f k  with f E L+. On the other hand, Fatou’s lemma 
assures that 

J lim inf fk 5 lim inf J f k ,  

whenever fk E L+ for k = 1,2,  . . ., in which case it follows that lim infk f k  E 

In the general case that f : X -+ [-m,+m] is measurable, we take 

k 

L+ . 

f*(z) = max{f f ( x ) , O } ,  which are again measurable. Then, we set 

J f =  J f + -  J f -  
at most one of s f* is finite. If both of them are finite, then we say that f is 
summable and write that f E L1 ( X ,  dp ) .  Then, the dominated convergence 
theorem of Lebesgue assures (8.5) under the assumption that f k  -+ f and 
161 5 g almost everywhere with some g E L1(X,dp). Here, the latter 
assumption may be replaced by 1 fk  I 5 gk , g k  -+ g almost everywhere, and 

lim gk = 9. 
k J J  

If ( X ,  M ,  p )  and (Y,N, u )  are measure spaces, then m(E x F )  = p ( E ) .  
u ( F )  defined for E E M ,  F E N generates the finitely additive family Q C 

2 x x y  and the finitely additive measure m : Q -+ [0, m] under the agreement 
that 0.00 = 0. This m is a pre-measure, and from the Carathkodory theory 
it is extended to a measure on M @N, the minimum 0-algebra containing 
Q, which is denoted by p @ u. 
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If (X, M ,  p)  and (Y, N, v) are a-finite, then so is (X x Y, M @3 N, p @ v) 
and the extension is unique. In this case, it is called the direct product of 
( X ,  M, p )  and (Y, N, v). Then, the theorem of Tonelli guarantees that if 
f : X x Y -+ [0, m] is measurable, then 

and z E X H g ( z )  = fZdv y E Y H h(y) = / fYdp s 
are measurable and it holds that 

(8.6) 

where fZ(y) = j(z,y) and fY(x) = f (z ,y) .  The theorem of Fubini, on 
the other hand, says that if f : X x Y + [-00,00] is summable, then 
y E Y H f Z  is v-measurable for almost every z E X and g ( z )  = JfZdv is 
p-summable, that similarly, x E X H f Y  is p-measurable for almost every 
y E Y and h(y) = J fYdp is v-summable, and that (8.6) holds true. 

In the case that (X, M ,  p )  and (Y, N, v) are a-finite complete measure 
spaces, we take the completion of (X x Y, M 8 N, p 8 v) denoted by (X x 
Y, L, A). Then, if f : X x Y + 1-00, 001 is L-measurable, and either f 2 0 
or f E L1(X  x Y,A(dzdy)) is satisfied, then we have that fZ and f Y  are 
N- and M-measurable for p- and v- almost every x and y, respectively, 
which are summable in the latter case, that z H J f Z d v ,  y H J fYdp are 
measurable and are summable in the latter case, and that 

If (X, D) is a measurable space, the mapping p : D + (-00, m) is said 
to be a signed measure if {Ak}  C D is a division of A = cr=l A k ,  then 
p ( A )  = x k  p (&)  holds with the right-hand side converging absolutely. In 
this case, the total variation is given by 

1 1pl ( A )  = sup Ip(Ak)l I {Ak}El c D is a division of A { k = l  

and is shown to be a measure on ( X , D )  satisfying lpl (X) < +00. We 
call p = p+ - p- and IpI = p+ + p- the Jordan decompositions, where 
p& = (1p1 * p ) .  A non-negative signed measure is called the positive 



Catalogue of Mathematical Theories 353 

measure, so that the total variation of a signed measure is a positive measure 
and so are p& given above. 

If p and X are a measure and a (signed) measure on the measurable 
space ( X ,  V), we say that X is absolutely continuous with respect to p if 
A E 2) and p(A) = 0 imply X(A) = 0. It is written as X << p. This 
condition is equivalent to that for any E > 0 there is 6 > 0 such that 
A E V and p(A)  < 6 imply IX(A)I < E .  On the contrary, it is said that 
X is concentrated on E E 2) if X(A) = X(E n A) holds for any A E 2). 

Finally, two (signed) measures XI, X2 on ( X ,  23) is said to be singular to 
each other if there is a decomposition A l l  A2 E V of X such that XI, X2 are 
concentrated on A l ,  A2, respectively. This case is written as X1 I X2. 

If ( X , D )  is a measurable space and p,X : V 4 [0,00) are positive 
measures, then, the theorem of Radon and Nikodym says that there are 
unique positive measures A, and A, such that A, << p,  A, I p, and X = 
A, + A,, which is referred to as the Lebesgue decomposition, and that there 
is a p-summable non-negative function h, which is unique up to p-almost 
everywhere and is called the Radon-Nikodym density such that X,(A) = 
s, h d p  for any A E 2). It is written as dX, = h d p  or 9 = h. This is also 
the case that X : V -+ (-00, 00) is a signed-measure if ( X ,  V, p)  is a a-finite 
measure space and the density can change sign. The differentiation theorem 
of Lebesgue says that if f (x) is locally summable in R", which means that 
it is summable (with respect to the Lebesgue measure p)  on any compact 
set in R", then it holds that 

for almost every z E R". 
A locally compact Hausdorff space X is said to be a-compact if there 

is a family of compact subsets { x k } ~ ? l  such that x = uEo,,xk. Let 
X be such a space and BX be the Borel family so that the minimum a- 
algebra containing any open set. In this case, if p is a measure on ( X ,  Bx) 
such that p ( K )  < $00 for any compact set K c X, then it is a Radon 
measure so that p ( A )  = inf {p (U)  1 A c U : open} for A E By. and p ( U )  = 
sup { p ( K )  U c K : compact} for U c X open. If X is a locally compact 
Hausdorff space, provided with the property that any open set is a-compact, 
and BX denotes the Borel family, then a measure p on (X, Bx) is Radon if 
and only if p ( K )  < 00 for any compact K .  

Here, we state some facts on the function of one variable used in $3.4.7. 
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First, a function f defined on the compact interval [a, b] is said to be abso- 
lutely continuous if any E > 0 admits 6 > 0 such that the division 

A : xo = a  < x1 < . . .  < xn = b 

of [a, b] satisfies IlAll = maxlliln (x i  - xi-1) < 6 then it holds that 

n 

i=l 

An absolutely continuous function f(z) on [a,  b] is differentiable for almost 
every x E (a ,b)  with the derivative f‘(z) to be summable on [a,b],  which 
enjoys the property that 

for each x E [a,b]. A function f(x) defined on R is said to be locally 
absolutely continuous if it is absolutely continuous on any compact interval. 
A Lebesgue point of a locally summable function f(x) denotes xo satisfying 

Then, Lebesgue ’s differentiation theorem guarantees that the complement 
of the set of Lebesgue points has the Lebesgue measure equal to 0. 

8.1.5 Abstract Analysis 

A complete normed space is called the Banach space. It is provided with 
three important properties, Hahn-Banach’s theorem, the uniformly bounded 
principle of Banach-Steinhaus, and the open mapping theorem of Banach. 
The latter two are from Baire’s category theorem, while the first one is 
based on Zorn’s lemma, which is equivalent to the axiom of selection. 

Hahn-Banach’s theorem has several variations. In the analytic form 
it assures that any bounded linear operator TO : HO 4 R defined on a 
subspace HO of a normed space H admits a bounded linear extension T : 
H 4 R with IIToIIH;, = IITIIH,, where 
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and 

Those boundedness conditions may be unilateral in terms of the semi-norm 
defined on the topological linear space. The geometric version, on the other 
hand, is referred to as the separation principle, as disjoint convex sets A and 
B in a normed space are separated weakly, and strongly by a hyper-plane, 
if A is open, and if A is closed and B is compact, respectively. 

One form of the theorem of Banach-Steinhaus says that if X and Y are 
Banach spaces and the bounded linear operators T, : X -+ Y (n  = 1,2,  . . .) 
satisfies SUP, JIT,xJ) < +oo for each x E X ,  then it holds that supn llTn(I < 
+OO. On the other hand, the open mapping theorem says that if X and 
Y are Banach spaces and T : X -+ Y is a surjective bounded operator, 
then it is open so that any image of open set is open. An equivalent form 
is the closed graph theorem. Namely, a linear operator T with the domain 
D ( T )  c X and the range R(T) c Y for Banach spaces X ,  Y is called 
closed if its graph Q = { ( f , T f )  I f E D ( T ) }  is closed in X x Y .  Then, it 
assures that a closed operator T with D ( T )  = X is bounded. Closed range 
theorem, on the other hand, is concerned with the dual operator. Given a 
densely defined closed (linear) operator T : D ( T )  c X -+ Y ,  we can define 
the dual operator T‘ : Y’ -+ X’ by (T’y’, x ) x l , x  = (Y’, T Z ) ~ , , ~ ,  where X 
and Y are Banach spaces. Then it says that R(T) is closed in Y if and only 
if R(T’) is dense in X’, and in this case it holds that R(T) = N(T’)I and 

If E is a closed non-empty subset of a Banach space X and a (nonlinear) 
mapping f : E -+ E is a contraction so that there is p E (0,l) such 
that [If(.) - f(y)(I I p 115 - yII for any x, y E E ,  then it admits a unique 
jixed point x* in E: f(x*) = x*. On the other hand Schauder’s theorem 
guarantees the existence of a fixed point of f : E -+ E if E c X is closed, 
convex, and non-empty, and f is compact so that image of any bounded set 
in E is relatively compact. Fundamentals of nonlinear functional analysis 
are composed of fixed point theorems, topological degree, and variational 
methods. 

Important example of Banach space is the L P  space on measure space 
(X,B,p) for p E [l, m], with the norm given by 

R(T’) = N(T)*.  
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There, two functions equal to each other almost everywhere are identified. 
Then, convergence in LP implies that in measure for p E [l ,m),  so that 
if a family converges in LP for p E [l, 00) there is a sub-family converg- 
ing almost everywhere. It holds that (LP)' = LP' for p E [l ,m),  where 

+ 5 = 1. Another example is the set of continuous functions taking 0 
at cx, on a locally compact Hausdorff space X ,  denoted by Co(X), with 
the norm I l f l l ,  = maXzEX If(z)I. If T E Co(X)' has the positivity, it is 
identified with the integration of a finite Radon measure, and Co(X)' is 
realized as the set of signed Radon measures in that sense. This fact is 
also referred to as Riesz' representation theorem. If X = R is a domain 
in R", then the LP space denoted by Lp(R) is introduced associated with 
the Lebesgue measure. Fre'chet-Kolmogorov 's theorem assures for a family 
3 c Lp(R) with p E [1,m) is relatively compact if and only if the fol- 
lowing two conditions hold. Namely, first, any E > 0 and sub-domain w 
with 55 c R admits 6 > 0 in 6 < dist(w,RC) such that 11~hf  - f l l L P c w ,  < E 

for any h E R" in lhl < 6 and f E 9, where Th denotes the translation 
operator: (TJ)(z) = f(z + h),  and second, any E > 0 takes a sub-domain 
w in J c R such that IlfllLP(n,w) < E.  The Sobolev space WmiP(R) denotes 
the set of pintegrable functions including their rn-th order (distributional) 
derivatives. With its atural norm, it becomes a Banach space. On the other 
hand, WF'p(R) indicates the closure of Cr(R),  the set of C" functions 
with compact supports in R, in Wm,P(R). If a0 is Lipschitz continuous, 
W,"p(R) with p E 11, m) is characterized as the kernel of the trace opera- 
t o r y  : W'>P(R) --f W171-11P(dR). The space Wm,z(R) becomes a Hilbert 
space, denoted by H"(R). We also put H,"(R) = WF2'(R). Sobolev's 
imbedding theorem in the primitive form is described as W,'lp(R) c LP' (R) 
for p E [l ,n),  where 5 = - i. The best constant associated with this 
imbedding depends only on n and p. On the contrary, Morrey's theorem 
guarantees Wi'p(s2) C C"(fi) for p > n, where a = 1 - 34. Those imbed- 

?'  ding theorems extend to WlJ'(R) if ail is Lipschitz continuous, with the 
imbedding constant now depends on each R. 

8.2 Commentary 

8.2.1 Elliptic and Parabolic Equations 

For the Strum-Liouville problem and the expansion theorem of Mercer, 
see Yosida [25] and Suzuki [20]. Concerning the method of separation of 
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variables to seek eigenfunctions on symmetric domains described in $3.3.1, 
see Courant and Hilbert [6]. Justification of the eigenfunction expansion 
has been the fundamental theme of the operator theory. See Reed and 
Simon [16] and so forth. Concerning the eigenvalues for the general domains 
to (3.32) or (3.34), see Courant and Hilbert [6], Bandle [l], Chavel [4], 
and Suzuki [21]. Detailed justification of the Fourier transformation of 
distributions described in 55.2.6 including the theorem of Malgrange and 
Ehlenpreis is given in Yosida 1241. Layer potential is treated by Courant and 
Hilbert [6], Garabedian [ll], and Folland [9]. For the modern treatment, 
see Fabes, Jodeit, and Riviere [33] and Verchota [91]. 

The standard text for the second order elliptic equation is Gilbarg and 
Trudinger [12]. For the parabolic equation, we refer to Ladyienskaja, Solon- 
nikov, and Ural’ceva [15]. Holder continuity of Ujk in $5.4.2 is described in 
[12]. Its LP boundedness is established by [28], referred to as the theory of 
singular integrals. See also Stein [19] for this method of linear approach. 

Theory of semilinear elliptic equations requires a different staff based on 
the topological consideration, and so forth, as is described in Suzuki [21]. As 
for more detailed justification of the method given in 855.4.3 and 5.4.4 such 
as the trace operator, Sobolev’s imbedding theorem, and so forth, see Brezis 
[3]. Among most important topics in recent study on nonlinear equations 
are the regularity and the blowup of the solution. The descriptions of 
$55.4.4 and 5.4.5 are due to [63], [54], and [28]. For their extensions to the 
nonlinear problem, see Choe [5] and DiBenedetto [8]. 

The description of $6.1 follows Fujita [34]. The critical exponent p = 
p f  is contained in the blowup case, which was proven by Hayakawa [42]. 
Fujita’s triple law is obtained in Fujita [35] and is described in [ Z l ] .  See 
also Kohda and Suzuki [59] for later developments. J.J.L. Velbquez’ work 
on the best estimate of the dimension of the blowup set is done in [go]. The 
proof of Theorem 6.5 follows Ikehata and Suzuki [51]. The work by Y. Giga 
and R.V. Kohn characterizing the blowup point by the backward self-similar 
transformation is done in [39], [40], [41]. Theorem 6.7 is obtained by Otani 
[78]. The proof exposed here is based on Cazenave and Lions [29]. Theorems 
6.9 and 6.10 are proven by Giga [38] and Merle [61], respectively. General 
theory of dynamical systems, particularly the omega-limit set of compact 
orbits in the presence of the Lyapunov function, is described in Henry [13]. 
The result by P.L. Lions on the semilinear parabolic dynamics is given 
in [60]. The unbounded global solution was introduced by W.-M. Nil P.E. 
Sacks, and T. Tavantzis [73]. V.A. Galaktionov and J.L. Vazquez showed in 
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[37] that if fl is a ball and 2 < p < 1+ &-, uo = u ~ ( l z I ) ,  and uor < 0 
for T = 121 > 0, then it holds that T,, < +oo for the unbounded global 
solution. Y. Naito and T. Suzuki studied the same problem for the case of 
p = p, in the general domain. Generally, this problem is concerned with 
the post-blowup continuation. In this connection, Sakaguchi and Suzuki [Sl] 
showed that if u = u(z, t )  is a super-solution to the linear heat equation and 
if its dead core D(t) = {z I u(z,t) = +co} enclosed in a bounded domain, 
then it hold that liminft,t, L"(D(t)) = 0 for any to, where L" denotes the 
n-dimensional Lebesgue measure. See also the references therein for the 
related work. The H1 solution to (6.25) was constructed by Weissler [92], 
Hoshino and Yamada [50], and Ikehata and Suzuki [52]. Stable and unstable 
sets are introduced by Sattinger [82]. Fundamental properties of the Nehari 
manifold are described in Suzuki [21]. Theorem 6.11 is due to [51]. For 
the forward self-similar solution and its role to the asymptotic behavior of 
solutions to (6.1), see Kawanago [56] and the references therein. Theorem 
6.12 is due to Naito and Suzuki [70]. See the references therein concerning 
the study on radially symmetric self-similar solutions. The results by M. 
Escobedo and 0. Kavian are done in [32], [55]. 

For detailed studies on the numerical scheme to solve partial differential 
equations, see Fujita, Saito, and Suzuki [lo]. For elements in nonlinear 
functional analysis, see Deimling [7]. 

8.2.2 Systems of Self-interacting Particles 

Modelling of the motion of the mean field of self-interacting particles is 
treated by Samarskii and Mikhailov (181. In Bensoussan and F'rehse [2] the 
regularity of the solution to the (DD) model is described. More systematic 
study to the semiconductor device equation, modelling, simulation, and 
analysis, is done in Jungel [14]. The statistical modelling described in 54.1 
is based on Othmer and Stevens [79]. Semilinear elliptic equations with 
exponential nonlinearity arise also in the gauge field theory. See Yang [23] 
for this area. 

T. Nagai's work on (7.1) is [65]. The original Keller-Segel model was 
proposed in [57] with the biological background and instability of the con- 
stant solution was studied. Then, V. Nanjundiah introduced a simplified 
system in [72], which now is called the Keller-Segel system, or the full sys- 
tem as in 87.1. Mathematical studies on this system, physical and biological 
motivations, and related references are described in Suzuki [22]. 
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Problem (7.1) has several relatives and some of them were studied by 
[53], [65], (261, [43], [71]. Amang others are the existence and uniqueness 
of the classical solution [93], blowup of the solution and its singularity [53; 
65; 85; 69; 46; 431, Lyapunov function and threshold for the blowup [68; 
36; 26]), stationary solutions [84], and asymptotic behavior of the solution 
[75]. W. Jager and J. Luckhaus introduced the simplified system whose 
second equation is slightly different, where the comparison theorem is valid 
to V(r, t )  = J;s ,<r u(z, t)dz. T. Nagai introduced (7.1) with the threshold 
expected by [30] for the blowup solution in the case of radially symmetric 
solutions. That method of using second moment Jn 1zI2 u(z, t )dz  is valid 
to non-radial case or the system 

U t  = v .  (Vu-uVx(w)), 
0 = A w - w + u ,  

where x = x(w) is a monotone increasing function. See [86; 66; 671. Sim- 
plified system of chemotaxis has a remarkable structure in two space di- 
mension. See [45; 44; 461 for the matched asymptotic expansion, [68; 
36; 261 for the use of the Lyapunov function and the Trudinger-Moser 
type inequality, \22; 861 for the method of symmetrization, [85; 21; 49; 
831 for stationary solutions and global dynamics. In three-dimensional case, 
there are self-similar blowup solutions and L1 concentration blowup solu- 
tions. See [43] and the reference. The former case does not arise in two 
space dimensions. See [71]. Concerning with numerical results, see [47] and 
the references therein. 

For the system whose second equation does not have the diffusion term, 
the structure of solutions is different from the systems with diffusion term. 
Yang, Chen and Liu treat the system 

U t  = v . (Vu - uv log(w)), 

wt = F(u,w). 

They show results concerning with time-global existence and boundedness 
of the solution in the case where F(u ,  w) = u - w, and results concerning 
with growup and blowup of solutions in the case where F ( u ,  w) = u or uw. 
Then, the structure of solutions depends on the form F(u,v).  Othmer, 
Stevens, Levine and Sleeman introduce the system and numerically inves- 
tigate. Concerning with background, mathematical and numerical results, 
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see 1941 and the references therein. Hillen and Stevens [48] introduced a 
hyperbolic model from the Keller-Segel system. 

There are not so many mathematical results concerning the spatial pat- 
tern formulated by the solutions, but in the experiment and numerical 
computations a lot of systems of chemotaxis are reported to show the fea- 
ture of aggregation, e.g., several patterns formed by bacterium such as the 
spot, ring, spike, swarm ring, spiral, and target patterns. One of the math- 
ematical approach to the pattern formation is the dimension analysis of 
the attractor. See [75] for this. Profile or the speed of the traveling wave 
is an important information for the spatial pattern to understand, where 
the traveling wave is a solution determined by x - ct with a constant c. 
Traveling bands was shown by Adler experimentally, which means that the 
gradient of chemical substance makes bacterium move toward higher den- 
sity. E.F. Keller and L.A. Segel introduced a mathematical model for this 
phenomena with an explicit traveling wave solution. T. Nagai and others 
introduced a simplified system, 

U t  = ( U x  - a u ( l o g ( v ) ) x ) x  
V t  = dux,  - u 

in R x (0, cm), where a and d are positive constants, and studied the lin- 
earized instability of traveling waves. See [58; 31; 741 and the references 
therein. 

Budrene and Berg’s experiment showed that the bacterium exhibit com- 
plex two-dimensional spot or stripe patterns by the interplay of diffusion, 
growth, and chemotaxis. To analyze those patterns, M. Mimura and others 
proposed 

U t  = d l V .  (VU - ~ u V X ( V ) )  + t f ( ~ ) ,  
vt = d 2 A v  - av + Y U ,  

where d l ,  d2,  a and y are positive constants, x(v)  and f ( u )  are smooth 
functions. T. Tsujikawa observed the existence of the explicit stationary 
solution in the limiting system. Then, in use of the singular perturbation 
method, he found onedimensional and two-dimensional planar stationary 
solutions corresponding to the strip pattern, and investigated their stability. 
By a similar method, T. Tsujikawa and M. Mimura found a radially sym- 
metric solution corresponding to the spot pattern and also two-dimensional 
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stationary solutions different from the one previously found. See [27; 871 
and the references therein. 

After aggregation, cells of the cellular slime mold form a multicellular 
structure and show coherent motion such as vortices. For this phenomenon, 
T. Umeda and K. Inouye introduced a discrete model. In the numerical 
calculation, cells form some clusters, which merge to form larger clusters, 
and then the rotational cells movement can be seen. Also, they introduced 
the continuous model 

1 V c  + bv  
P IVc + bvl ' -Vp = -av+ f V - v  = 0, 

where p is the density of cells, c is the chemical concentration, p is the 
pressure, v is the velocity of cells, and a, b, D, ki (i = 1,2) are positive 
constants. They found a radial solution to the continuous model whose 
velocity has only azimuthal velocity, which corresponds to the rotational 
movement of cells. See [89] and the references therein. 

Hildebrand and others introduced 

~t = dlAu - CYV{U(~ - u)VX(V))}  + f ( ~ ,  v), 

V t  = d 2 A ~  + ~ W ( W  + u - 1)(1 - w),  

where micro-reactors with sub-micrometer and nanometer sizes are allowed 
to develop chemical reactions on surface by a non-equilibrium self-organization 
process. Here, di (i = 1,2), CI: and y are positive constants, and X ( V )  and 
f(u,v) are smooth functions. This model has the chemotactic term, as 
aV(u(1 - ~)Vx(w)}. T. Tsujikawa and A. Yagi showed the existence of 
the time-global solution and the exponential attractor. See [88] and the 
reference. 

The stream formation and spiral wave was studied by [77] to describe for 
finite amoebas from the numerical calculation. That model describes the 
case that each cell responses to one chemical substance. For the other case, 
Painter, Maini and Othmer proposed a system modelling bacterial chemo- 
taxis or animal skin patterns. From the numerical calculation, solutions 
form spot, ring, and stream patterns. One of them is given by 
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See [80]. Finally, let us recall that several experiments, mathematical mod- 
els, and numerical calculations are exposed in [64]. 
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absorbing, 130, 132 
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action integral, 65 
action-reaction law, 9 
adjoint operator, 115116 
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algorithm, 80 
almost everywhere, 74, 349 
angular velocity, 22-24 
area element, 18, 29, 179, 219 
area velocity, 9 
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autonomous, 3, 17, 279, 294 
average particle velocity, 154, 157, 
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- first countability, 136 
- second countability, 343 
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- separation, 131, 135, 147 
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354, 356 
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Bessel function, 108 
Bessel’s equation, 107 
Bessel’s inequality, 93, 97, 101, 112 
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bi-linear form, 117 
-bounded, 112, 119-120 
- symmetric, 111 
bi-principal normal vector, 33 
biological field, 161 
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- in infinite time, 284 
- posto continuation, 358 
- set, 280, 306, 357 
- type I, 307 
- type 11, 307 
Borel family, 350, 353 
Borel measure, 138, 201 
Borel set, 350 
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- smooth, 279 
boundary condition, 180 
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boundary value, 41-42, 79, 180 
boundary value problem, 70, 230 
bounded, 73, 85, 112, 133 
bounded domain, 79, 307 
bounded from below, 72, 77 
bounded mean oscillation, 251 
boundedness, 77 
bounded variation, 103, 105-106 

Cauchy, 133, 338 
Cauchy’s estimate, 346 
Cauchy’s integral formula, 206, 345 
Cauchy’s integral theorem, 195 
Cauchy net, 343 
Cauchy problem, 2-3, 190, 194 
Cauchy sequence, 73, 342 
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chemotactic sensitivity, 313 
chemotactic sensitivity function, 161 
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- explicit stationary solution, 360 
- full system, 305, 358 
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closed, 115, 341, 355 
closed linear operator, 116 
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complete metric, 241 
complete normed space, 75, 354 
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356 
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complete uniform space, 138 
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complex analysis, 191 
complex conjugate, 90 
complex function theory, 205-206, 

complex plane, 206, 346 
conformal, 344 
conformal homeomorphism, 217-218, 

conformal mapping, 26 
conjugate, 47 
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- Lipschitz, 174 
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contracton mapping, 198 
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convex domain, 60-61, 315, 317 
convex function, 47, 51 
convex hull, 57 
convex set, 355 
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critical, 13 
critical closed surface, 69 
critical exponent, 279, 357 
critical function, 62 
critical point, 14-15, 41-42, 309 
critical state, 70 
critical value, 44 
curvature, 26, 31, 34 
- center, 31, 33, 38 
- Gaussian, 39-40, 67 
- mean, 39, 41, 67, 69 
- normal, 33, 343 
- principal, 38-39, 67 
curvature radius, 31, 36, 42 
- principal, 40 

decomposition, 
- Jordan, 352 
- Lebesgue, 353 
- spectral, 116 
dense, 341 
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densely defined, 115-116 
derivative 
- direction, 12, 21, 42, 154 
- material, 20, 24 
- (outer) normal, 21, 224 
- partial, 42 
- total, 13, 42, 62-63, 344 
determinant, 67 
diagonal argument, 61, 79 
diffusion, 154, 304 
diffusion coefficient, 173 
diffusion term, 359 
direct problem, 180 
direct product, 352 
Dirichlet, 103 
distibution, 56, 74, 127, 138 
- harmonic, 206 

- Maxwell, 162, 168 
- tempered, 201 
distributional derivative, 74, 76, 143 
distributional sense, 78-79 
divergence, 5, 15 
division, 349, 352 
domain, 113, 342 
dual, 48 
dual exponent, 188, 199 
dual space, 86, 88, 128, 306 
dyadic subdivision, 259 
dynamical system, 4, 17, 19, 156, 357 

effective domain, 47 
efficient potential energy, 9 
eigenfunction, 95, 106, 120 
eigenfunction expansion, 357 
eigenspace, 120 
eigenvalue, 95, 106 
- multiple, 106, 110 
- negative, 14 
eigenvalue problem, 85, 94, 124, 184 
energy, 5, 53 
- inner, 70, 310 
- kinetic, 2, 64, 70, 93, 172 
- energy bound, 169 
entire, 346, 348 
entire function, 203, 346, 348 
equation 
- Bessel, 107 
- Boltzmann, 162, 165-166, 177 
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- Euler, 62, 63 
- Euler’s motion, 25 
- fundamental, 25 
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- linear parabolic, 175 
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- Newton’s motion, 1, 24, 64 
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- semilinear heat, 265 
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- wave, 93, 106 
equi-continuous, 77, 147, 148, 343 
equi-continuous sequence, 148 
equilibrium point, 3, 5 
equi-potential line, 25-26 
error analysis, 80 
essentially bounded, 187 
essentially singular, 347 
exponential , 16 1 
exponential attractor, 361 
exponential nonlinearity, 312, 358 
extension operator, 257 

finite element method, 81 
finite multiplicity, 124 
finite perimeter, 57 
finite propagation, 197 
finitely additive, 349 
finitely additive family, 349, 351 
finitely additive measure, 349, 351 
fixed point, 355 
floating orbit, 297 
flux, 154, 304 
-heat, 180 
- null condition, 304 
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- outer, 9, 24, 162 
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- Cauchy’s integral, 191, 206, 345 
- Cauchy-Hadamard, 345 
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- Gauss’ divergence, 18, 31, 154-155 
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free energy, 53, 176 
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Fujita’s triple law, 357 
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- analytic, 206, 218 
- Bessel, 108 
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- continuous, 145, 152, 204 
- convex, 47, 51 
- delta, 127, 139, 163 
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- entire, 203, 346, 348 
- Gamma, 145, 219 
- Green’s, 216, 232, 305 
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- holomorphic, 26, 345 
- Lagrange, 48, 65 
- Lyapunov, 280 
- meromorphic, 347 
- pintegrable, 127, 187, 356 
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function space, 56 
functional, 53 
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fundamental form 
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- second, 37, 66 
fundamental quantities 
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fundamental solution, 140 
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Gamma function, 145, 219 
Gamma measurable, 349 
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general momentum, 65 
general cordinate, 64 
gradient, 12 
gradient flow, 312 
gradient operator, 4, 15, 309 
graph, 116 

Hamiltonian, 65, 311 
harmonic, 204 
- spherically, 109 

- super-, 211, 247 
harmonic distribution, 206 
harmonic lifting, 205, 212-213, 223 
Hausdorff dimension, 280 
Hausdorff space, 343, 353 
Hausdorff topology, 131 
Hesse matrix, 13-14, 40 
Hilbert space, 76, 79, 88, 90, 96, 111, 

holomorphic, 141, 344 
holomorphic function, 26, 345 
homeomorphism, 341 
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- sub-, 205, 211, 243 

186, 241, 356 

identity 
- Fenchel, 47 
- Lagrange, 7 
- Parseval, 56 
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- Harnack, 205, 208-209, 223, 253, 
- Hausdorff-Young, 197 
- Holder, 188 
- isoperimetric, 56, 110 
- Jensen, 259, 277, 293 
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- Minkowski, 188 
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incompressible, 20, 24 
indirect method, 63 
inductive limit, 128, 136, 148 
infinitesimal vector, 29, 37, 39 
initial condition, 180, 185 
initial value, 180, 267, 307 
inner product, 5, 76, 79, 96 
- L2, 107, 184 
interior, 211, 341 
interior point, 41-42, 342-342 
invariant set, 297 
inverse problem, 180 
isolated singular point, 347 

Jordan curve, 56 
Jordan decomposition, 352 
Jordan family, 349 
Jordan measure, 349 
Jordan region, 217, 344 

kernel, 224 

Lagrange function, 48, 65 
Lagrange identity, 7 
Lagrange mechanics, 70 
Lagrange multiplier, 43, 50 
Lagrange equation of motion, 65 
Lagrangian, 53, 65, 70, 93 
Laplacian, 21, 140, 153, 196 
law 
- action-reaction, 9 
- energy conservation, 3, 11 
- Fujita’s triple, 279, 357 
- mass law, 18, 304 
- parallelogram, 89-90 
- second of thermodynamics, 166, 

layer integral 
- single, 224, 228, 230 
layer potential, 
- double, 224 
- single, 224 
least square approximation, 91 

168, 309, 311 
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Lebesgue, 56 
Lebesgue decomposition, 353 
Lebesgue measurable, 57, 350 
Lebesgue measurable set, 350 
Lebesgue measure, 129 
Lebesgue integral, 75, 187, 348 
Lebesgue point, 144, 354 
Legendre polynomial, 109 
Legendre tranformation, 47-48, 65 
lemma 
- Fatou, 348, 351 
- Weyl, 206 
- Zorn, 354 
limit infimum, 338 
limit supremum, 338 
line element, 28, 216 
linear combination, 92, 168 
linear differential operator, 140 
linear hull, 92, 122 
linear mapping, 85, 88, 128 
linear operation, 131, 
linear operator, 86, 115 
linear part, 279 
h e a r  response, 156 
linear space, 130 
linear subspace, 91, 100, 115, 120 
linear system, 313 
linearity, 85 
linearization, 162 
linearized instability, 360 
linearized operator, 292-293 
linearly independent, 90, 106, 121-122 
local well-posed, 295 
local maximum principle, 246, 253 
local minimum principle, 252 
locally convex space, 131, 133, 

Lyapunov function, 280 
136-137, 148 

mass point, 1, 8 
mass quantization, 307 
measurable, 187, 350-352 
measure 
- Borel, 138, 201 

- finitely additive, 349, 351 
- Jordan, 349 
- Lebesgue (one-dimensional), 286 
- Lebesgue (n-dimensional), 350, 

- outer, 349 
- positive, 353 
- pre, 349-351 
- Radon, 138-140, 353, 356 
- signed, 352 
mechanics 
- quantum, 90, 169, 307 
- Lagrange, 70 
- Newton, 70, 80 
mesh size, 80-81 
method 
- energy, 279 
- finite element, 81 
- indirect, 63 
- Kaplan, 293 
- Perron, 205 
- singular perturbation, 360 
- variation, 355 
metrizable, 133 
minimal surface, 68-69 
minimizing sequence, 73, 77-78, 242 
minimum energy solution, 296 
model 
- barier, 156, 161 
- continuous, 361 
- nearest neighbor, 161 
momentum, 10 
- angular, 8, 10 
- general, 65 
Morse index, 14, 42 
Morse theory, 14 
multiplicity, 125, 166, 301 
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negative, 39, 154-155, 249 
Nehari manifold, 296, 358 
net, 131, 343 
Neumann, 49 
Neumann problem, 107, 224 
Newton mechanics, 70, 80 
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non-degenerate, 14 
non-negative, 116 
nonlinear functional anaysis, 355 
nonlinear operator, 119 
norm, 72, 74, 76, 88, 90, 117 

- Holder, 314 
- C, 343, 356 

- L2, 185 
- Lp,  155, 175, 355 
-maximum, 182 
- preserved, 80 
- semi-, 130-131, 135-136, 148, 355 
- W',P, 243 
normal, 33, 343 
normal curvature, 38 
normal derivative, 224 
normal form, 310 
normal plane, 33 
normalizable, 132-133 
normalization, 95, 293 
normed space, 72-73, 75, 87, 354-355 
- complete, 75, 354 
numerical 
- analysis, 80 
- scheme, 80-81, 358 

omega-limit set, 283, 291, 357 
one form, 69 
open, 340 
operator, 85 
- adjoint, 115-116 
- closed linear, 116 
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-gradient, 4, 15, 309 
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- LaplaceBeltrami, 108, 219 
- linear, 86, 156 
- linear differential, 140 
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- nonlinear, 119 
- unbounded linear, 113 
operator norm, 8687, 120, 198 

operator theory, 357 
orbit, 3, 283 
order, 346 
order preserving, 197 
- strong, 197 
ortho-normal, 90 
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osculating plane, 33 
outer circumscribing ball condition, 

205, 232 

parabolic envelope, 307 
parameter, 180 
perfect fluid, 25 
period, 55, 98 
periodic, 107, 109 
periodic extension, 94 
periodic function, 55, 95 
periodicity, 98-98, 105, 109 
Perron solution, 211, 214, 223 
piecewise linear, 81 
Poisson kernel, 222 
Poisson integral, 205, 211, 218, 222 
pole, 347-348 
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positive definite, 112, 116-117 
potential 
- double layer, 224 
- logarithmic, 140 
- Newton, 140-141, 219 
- velocity, 25 
potential depth, 296 
principal direction, 38-39 
principal part, 347-348 
principle 
- argument, 347 
- contraction mapping, 279, 323, 334 
- deterministic, 2 
- Dirichlet, 240 
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- Harnack, 205, 210, 213, 223 
- Lagrange multiplier, 43, 50 
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- maximum, 182, 205, 346 
- mini-ma, 49, 125 
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- Rayleigh, 125 
- residue, 347 
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- separation, 355 
- strong maximum, 208-209, 293 
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- uniformly bounded, 354 
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- Weierstrass, 71 
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- boundary value, 70, 230 
- Cauchy, 2-3, 190, 194 
- direct, 180 
- Dirichlet, 204, 211, 215, 218, 224 
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- isoperimetric, 53, 62 

- Neumann, 107, 224, 180 
- Strum-Liouville, 106, 356 
- variation, 57, 62-63, 78, 88, 
proper, 47 
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quantum mechanics, 90, 169, 307 

radially symmetric solution, 359-360 
Radon-Nikodym density, 353 
range, 113, 115, 316, 355 
rapidly decreasing, 188, 200 
Rayleigh, 293 
Rayleigh quatient, 125 
real analysis, 103, 205-206 
regular, 204 
regular part, 305, 311 
regular point, 205, 214 
regular solution, 267, 271, 275 
relation 

- Cauchy-Riemann, 25, 141,211,344 
- Parseval, 56, 93, 100, 111 
regularity, 64, 78, 206 
- inner, 243 
- Schauder, 237 
regularization, 203, 226, 234, 243 
renormalization, 157 
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rotation free velocity, 25 
rotational cell, 361 
rotational movement, 361 

saturating, 156, 161 
scheme, 80 
Schwarz, 346 
self-adjoint, 113, 115 
self-similar, 298-299 
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separability, 343 
separable, 79, 92, 111, 341 
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singular integral, 357 
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temperature distribution, 180 
theorem 
- Ascoli-Arzela, 77, 343 
- Baire, 354 
- Banach-Steinhaus, 148, 354-355 
- Bolzano-Weierstrass, 79 
- Bourbaki, 128 
- Calder6n-Zygmund, 260 
- CarathCodory, 350 
- Cauchy’s integral, 195, 345 
- closed range, 115, 355 
- closed graph, 355 
- convergence, 75, 348 
- Egorov, 350 
- eigefifunction expansion, 106, 356 
- Fenchel-Moreau’s duality, 47 
- FrBchet-Kolmogorv, 356 
- hbini ,  352 
- fundamental in analysis, 19 
- Gauss’ divergence, 180 
- Hahn-Banach, 80, 114-115, 354 
- implicit function, 43-44 
- intermediate value, 339 
- Jordan, 103 
- Lebesgue’s diffential, 261, 353-354 
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- Lebesgue’s dominated 

- Liouville, 346, 348 
- Lusin, 350 
- Malgrange-Ehrenpreis, 140, 203, 

- mean value, 205, 208 
- Menshov, 344 
- Mercer’s expansion, 106 
- monotone convergence, 244, 294, 

- Morera, 345 
- Morrey, 288, 356 
- open mapping, 116, 118, 354-355 
- Radon-Nikodym, 353 
- resonance, 148 
- Riemann’s mapping, 344 
- Riemann’s removable singularity, 

- Riemann-Lebesgue, 97, 102 
- Riesz’ representation, 88-89, 112, 

114, 146, 241, 356 
- Riesz-Schauder, 231 
- Riesz-Thorin’s interpolation, 287 

- saddle point, 49-50 
- Schauder’s fixed point, 355 
- second mean value, 104 
- Sobolev’s imbedding, 74,m 243, 

- Tietze’s extension, 226, 343 
- Tonelli, 352 
- Urysohn, 343 
- Weierstrass, 347 
three-point difference, 81 
tone, 107 
topological degree, 355 
torsion, 34 
total energy, 2, 4 
total variation, 201, 352-353 
trace, 69, 79, 241 
transformat ion 
- backward self-similar, 281, 299, 

convergence, 144, 238, 270, 348, 351 

357 

348, 351 

347 

- RouchB, 347 

356 

308, 357 

- forward self-similar, 279, 298, 301 
- Fourier, 187, 201-202, 357 
- inverse Fourier, 187, 194 

- Kelvin, 205, 220, 221 
- Legendre, 47-48, 65 
trivial solution, 95, 106 

- Joukowski, 26 

unbounded global solution, 295, 357 
uniform convergence, 106 
uniformly bounded, 77, 79, 2987, 343 
unit circle 
unit vector, 11 
- outer normal, 18, 27, 37, 40, 179, 

216, 219, 224, 303, 371, 376 
- principal normal, 33, 36, 48 
unstable, 3 
unstable set, 296, 358 

vector area element, 29 
velocity 
- angular, 22-24 
- area, 9 
- average particle, 154, 157, 160 
- rotation free, 25 
velocity potential, 25 
vorticity, 23 

weak solution, 64, 78, 294-295, 307 
well-posed, 175, 179-180, 190, 279 


