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Preface

Our original purpose in writing this book was to provide a text for the under-
graduate linear algebra course at the Massachusetts Institute of Technology. This
course was designed for mathematics majors at the junior level, although three-
fourths of the students were drawn from other scientific and technological disciplines
and ranged from freshmen through graduate students. This description of the
M.I.T. audience for the text remains generally accurate today. The ten years since
the first edition have seen the proliferation of linear algebra courses throughout
the country and have afforded one of the authors the opportunity to teach the
basic material to a variety of groups at Brandeis University, Washington Univer-
sity (St. Louis), and the University of California (Irvine).

Our principal aim in revising Linear Algebra has been to increase the variety
of courses which can easily be taught from it. On one hand, we have structured the
chapters, especially the more difficult ones, so that there are several natural stop-
ping points along the way, allowing the instructor in a one-quarter or one-semester
course to exercise a considerable amount of choice in the subject matter. On the
other hand, we have increased the amount of material in the text, so that it can be
used for a rather comprehensive one-year course in linear algebra and even as a
reference book for mathematicians.

The major changes have been in our treatments of canonical forms and inner
product spaces. In Chapter 6 we no longer begin with the general spatial theory
which underlies the theory of canonical forms. We first handle characteristic values
in relation to triangulation and diagonalization theorems and then build our way
up to the general theory. We have split Chapter 8 so that the basic material on
inner product spaces and unitary diagonalization is followed by a Chapter 9 which
treats sesqui-linear forms and the more sophisticated properties of normal opera-
tors, including normal operators on real inner product spaces.

We have also made a number of small changes and improvements from the
first edition. But the basic philosophy behind the text is unchanged.

We have made no particular concession to the fact that the majority of the
students may not be primarily interested in mathematics. For we believe a mathe-
matics course should not give science, engineering, or social science students a
hodgepodge of techniques, but should provide them with an understanding of
basic mathematical concepts.
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On the other hand, we have been keenly aware of the wide range of back-
grounds which the students may possess and, in particular, of the fact that the
students have had very little experience with abstract mathematical reasoning.
For this reason, we have avoided the introduction of too many abstract ideas at
the very beginning of the book. In addition, we have included an Appendix which
presents such basic ideas as set, function, and equivalence relation. We have found
it most profitable not to dwell on these ideas independently, but to advise the
students to read the Appendix when these ideas arise.

Throughout the book we have included a great variety of examples of the
important concepts which occur. The study of such examples is of fundamental
importance and tends to minimize the number of students who can repeat defini-
tion, theorem, proof in logical order without grasping the meaning of the abstract
concepts. The book also contains a wide variety of graded exercises (about six
hundred), ranging from routine applications to ones which will extend the very
best students. These exercises are intended to be an important part of the text.

Chapter 1 deals with systems of linear equations and their solution by means
of elementary row operations on matrices. It has been our practice to spend about
six lectures on this material. It provides the student with some picture of the
origins of linear algebra and with the computational technique necessary to under-
stand examples of the more abstract ideas occurring in the later chapters. Chap-
ter 2 deals with vector spaces, subspaces, bases, and dimension. Chapter 3 treats
linear transformations, their algebra, their representation by matrices, as well as
isomorphism, linear functionals, and dual spaces. Chapter 4 defines the algebra of
polynomials over a field, the ideals in that algebra, and the prime factorization of
a polynomial. It also deals with roots, Taylor’s formula, and the Lagrange inter-
polation formula. Chapter 5 develops determinants of square matrices, the deter-
minant being viewed as an alternating n-linear function of the rows of a matrix,
and then proceeds to multilinear functions on modules as well as the Grassman ring,
The material on modules places the concept of determinant in a wider and more
comprehensive setting than is usually found in elementary textbooks. Chapters 6
and 7 contain a discussion of the concepts which are basic to the analysis of a single
linear transformation on a finite-dimensional vector space; the analysis of charac-
teristic (eigen) values, triangulable and diagonalizable transformations; the con-
cepts of the diagonalizable and nilpotent parts of a more general transformation,
and the rational and Jordan canonical forms. The primary and cyclic decomposition
theorems play a central role, the latter being arrived at through the study of
admissible subspaces. Chapter 7 includes a discussion of matrices over a polynomial
domain, the computation of invariant factors and elementary divisors of a matrix,
and the development of the Smith canonical form. The chapter ends with a dis-
cussion of semi-simple operators, to round out the analysis of a single operator.
Chapter 8 treats finite-dimensional inner product spaces in some detail. It covers
the basic geometry, relating orthogonalization to the idea of ‘best approximation
to a vector’ and leading to the concepts of the orthogonal projection of a vector
onto a subspace and the orthogonal complement of a subspace. The chapter treats
unitary operators and culminates in the diagonalization of self-adjoint and normal
operators. Chapter 9 introduces sesqui-linear forms, relates them to positive and
self-adjoint operators on an inner product space, moves on to the spectral theory
of normal operators and then to more sophisticated results concerning normal
operators on real or complex inner product spaces. Chapter 10 discusses bilinear
forms, emphasizing canonical forms for symmetric and skew-symmetric forms, as
well as groups preserving non-degenerate forms, especially the orthogonal, unitary,
pseudo-orthogonal and Lorentz groups. '

We feel that any course which uses this text should cover Chapters 1, 2, and 3
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thoroughly, possibly excluding Sections 3.6 and 3.7 which deal with the double dual
and the transpose of a linear transformation. Chapters 4 and 5, on polynomials and
determinants, may be treated with varying degrees of thoroughness. In fact,
polynomial ideals and basic properties of determinants may be covered quite
sketchily without serious damage to the flow of the logic in the text; however, our
inclination is to deal with these chapters carefully (except the results on modules),
because the material illustrates so well the basic ideas of linear algebra. An ele-
mentary course may now be concluded nicely with the first four sections of Chap-
ter 6, together with (the new) Chapter 8. If the rational and Jordan forms are to
be included, a more extensive coverage of Chapter 6 is necessary.

Our indebtedness remains te those who contributed to the first edition, espe-
cially to Professors Harry Furstenberg, Louis Howard, Daniel Kan, Edward Thorp,
to Mrs. Judith Bowers, Mrs. Betty Ann (Sargent) Rose and Miss Phyllis Ruby.
In addition, we would like to thank the many students and colleagues whose per-
ceptive comments led to this revision, and the staff of Prentice-Hall for their
patience in dealing with two authors caught in the throes of academic administra-
tion. Lastly, special thanks are due to Mrs. Sophia Koulouras for both her skill
and her tireless efforts in typing the revised manuscript.

K.M.H. / R. A K.
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1. Linear Equations

1.1. Fields

We assume that the reader is familiar with the elementary algebra of
real and complex numbers. For a large portion of this book the algebraic
properties of numbers which we shall use are easily deduced from the
following brief list of properties of addition and multiplication. We let F
denote either the set of real numbers or the set of complex numbers.

1. Addition is commutative,

r+y=y+tz
for all x and y in F.
2. Addition is associative,

t+ y+2)=@+y +2

for all z, ¥, and z in F.

3. There is a unique element 0 (zero) in F such that z + 0 = z, for
every r in F.

4. To each x in F there corresponds a unique element (—z) in F such
that x + (—z) = 0.

5. Multiplication is commutative,

Ty = yx
for all z and % in F.
6. Multiplication is associative,

x(yz) = (xy)z
for all z, ¥, and z in F.
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7. There is a unique non-zero element 1 (one) in F such that z1 = z,
for every z in F.

8. To each non-zero = in F there corresponds a unique element z—!
(or 1/x) in F such that zz—! = 1.

9. Multiplication distributes over addition; that is, z(y + 2z) =
xy + xz, for all z, y, and z in F.

Suppose one has a set F of objects z, y, 2, . . . and two operations on
the elements of F as follows. The first operation, called addition, asso-
ciates with each pair of elements z, ¥ in F' an element (z 4+ y) in F; the
second operation, called multiplication, associates with each pair z, y an
element zy in F'; and these two operations satisfy conditions (1)-(9) above.
The set F, together with these fwo operations, is then called a field.
Roughly speaking, a field is a set together with some operations on the
objects in that set which behave like ordinary addition, subtraction,
multiplication, and division of numbers in the sense that they obey the
nine rules of algebra listed above. With the usual operations of addition
and multiplication, the set C' of complex numbers is a field, as is the set R
of real numbers.

For most of this book the ‘numbers’ we use may as well be the ele-
ments from any field F. To allow for this generality, we shall use the
word ‘scalar’ rather than ‘number.’” Not much will be lost to the reader
if he always assumes that the field of scalars is a subfield of the field of
complex numbers. A subfield of the field C is a set F of complex numbers
which is itself a field under the usual operations of addition and multi-
plication of complex numbers. This means that 0 and 1 are in the set F,
and that if z and y are elements of F, so are (x + y), —=z, zy, and z7!
(if z # 0). An example of such a subfield is the field R of real numbers;
for, if we identify the real numbers with the complex numbers (a + ib)
for which b = 0, the 0 and 1 of the complex field are real numbers, and
if z and y are real, so are (x + y), —z, zy, and 7! (if z # 0). We shall
give other examples below. The point of our discussing subfields is essen-
tially this: If we are working with scalars from a certain subfield of C,
then the performance of the operations of addition, subtraction, multi-
plication, or division on these scalars does not take us out of the given
subfield.

ExamPLE 1. The set of positive integers: 1, 2, 3, . . ., is not a sub-
field of C, for a variety of reasons. For example, 0 is not a positive integer;
for no positive integer n is —n a positive integer; for no positive integer n
except 1 is 1/n a positive integer.

ExampLE 2. The set of integers: . .., —2, —1,0,1,2,...,isnot a
subfield of C, because for an integer n, 1/n is not an integer unless n is 1 or
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—1. With the usual operations of addition and multiplication, the set of
integers satisfies all of the conditions (1)-(9) except condition (8).

ExamrLe 3. The set of rational numbers, that is, numbers of the
form p/q, where p and ¢ are integers and ¢ # 0, is a subfield of the field
of complex numbers. The division which is not possible within the set of
integers is possible within the set of rational numbers. The interested
reader should verify that any subfield of C must contain every rational
number.

ExampLE 4. The set of all complex numbers of the form z + y\/ 5,
where x and y are rational, is a subfield of C. We leave it to the reader to
verify this.

In the examples and exercises of this book, the reader should assume
that the field involved is a subfield of the complex numbers, unless it is
expressly stated that the field is more general. We do not want to dwell
on this point; however, we should indicate why we adopt such a conven-
tion. If F is a field, it may be possible to add the unit 1 to itself a finite
number of times and obtain 0 (see Exercise 5 following Section 1.2):

1+1+4+---4+1=0.

That does not happen in the complex number field (or in any subfield
thereof). If it does happen in F, then the least n such that the sum of n
1’s is 0 is called the characteristic of the ficld F. If it does not happen
in F, then (for some strange reason) F is called a field of characteristic
zero. Often, when we assume F is a subfield of C, what we want to guaran-
tee is that F is a field of characteristic zero; but, in a [irst exposure to
linear algebra, it is usually better not to worry too much about charac-
teristics of fields.

1.2. Systems of Linear Equations

Suppose F is a field. We consider the problem of finding n scalars
(elements of F) zy, . . ., , which satisfy the conditions

Anzy + Apzy + -+ + Auxe = 1
(1-1) Aax + Apxe + -+ 4+ Aoxn = ¥

-Amlxl + Am2x2 "I"‘ e "I’“ Amnxn = UYm

where y;,...,yn and 4;;, 1 <7< m, 1 <j<mn, are given elements
of F. We call (1-1) a system of m linear equations in n unknowns.
Any n-tuple (z),...,x.) of elements of F which satisfies each of the
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equations in (1-1) is called a solution of the system. If y, =y, = -+ =
Ym = 0, we say that the system is homogeneous, or that each of the
equations is homogeneous.

Perhaps the most fundamental technique for finding the solutions
of a system of linear equations is the technique of elimination. We can
illustrate this technique on the homogeneous system

201 — X3+ x3=0
x1+3x2+4x3=0.

If we add (—2) times the second equation to the first equation, we obtain

—T2,—T23,=0
or, r, = —x3. If we add 3 times the first equation to the second equation,
we obtain
Tx1+ 723 =0
or, r; = —x3. So we conclude that if (x;, x,, x3) is a solution then x; = z, =

—ux3. Conversely, one can readily verify that any such triple is a solution.
Thus the set of solutions consists of all triples (—a, —a, a).

We found the solutions to this system of equations by ‘eliminating
unknowns,’ that is, by multiplying equations by scalars and then adding
to produce equations in which some of the x; were not present. We wish
to formalize this process slightly so that we may understand why it works,
and so that we may carry out the computations necessary to solve a
system in an organized manner.

For the general system (1-1), suppose we select m scalars ¢y, . . ., Cm,
multiply the jth equation by ¢; and then add. We obtain the equation

(@dn+ - +emdm)r+ -+ + (din + -+ + tndmn)a
= Clyl + e + CnYm.
Such an equation we shall call a linear combination of the equations in
(1-1). Evidently, any solution of the entire system of equations (1-1) will
also be a solution of this new equation. This is the fundamental idea of
the elimination process. If we have another system of linear equations
Blll?l + e + Bz, = 21
(1-2) : : :
Bkl.’l)l + e + Bknxn == 2k

in which each of the k equations is a linear combination of the equations
in (1-1), then every solution of (1-1) is a solution of this new system. Of
course it may happen that some solutions of (1-2) are not solutions of
(1-1). This clearly does not happen if each equation in the original system
is a linear combination of the equations in the new system. Let us say
that two systems of linear equations are equivalent if each equation
in each system is a linear combination of the equations in the other system.
We can then formally state our observations as follows.
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Theorem 1. Equivalent systems of linear equations have exactly the
same solutions.

If the elimination process is to be effective in finding the solutions of
a system like (1-1), then one must see how, by forming linear combina-
tions of the given equations, to produce an equivalent system of equations
which is easier to solve. In the next section we shall discuss one method
of doing this.

Exercises
1. Verify that the set of complex numbers described in Example 4 is a sub-

field of C.

2. Let F be the field of complex numbers. Are the following two systems of linear
equations equivalent? If so, express each equation in each system as a linear
combination of the equations in the other system.

T =12 =0 3t1+1,=0
221 4 @ = 0 T+ a2=0

3. Test the following systems of equations as in Exercise 2.

'—.T1+ Te+ 423 =0 X1 — r3=0
x1+3x2+82’-3=0 x2+3x3=0
i+ e+ $23=0

4. Test the following systems as in Exercise 2.
21 + (=1 + D) + 2=0 (1+%>x1+8x2—ix3— =0

3wy — 20rz ++ By = 0 Iy — dxo + g+ Tag =

5. Let I be a set which contains exactly two elements, 0 and 1. Define an addition
and multiplication by the tables:

+]0 1 <10 1
0|0 0
111 1

1 00
0 01
Verify that the set F, together with these two operations, is a field.

6. Prove that if two homogeneous systems of linear equations in two unknowns
have the same solutions, then they are equivalent.

7. Prove that each subfield of the field of complex numbers contains every
rational number.

8. Prove that each field of characteristic zero contains a copy of the rational
number field.

ol
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1.3. Matrices and Elementary
Row Operations

One cannot fail to notice that in forming linear combinations of
linear equations there is no need to continue writing the ‘unknowns’

T, . . ., T, since one actually computes only with the coefficients 4 ;; and
the scalars y;. We shall now abbreviate the system (1-1) by
AX =Y
where
[An - A
A= : :
L__Aml et Amn
231— Y1
X=]": and Y =
x"'_ ym

We call A the matrix of coefficients of the system. Strictly speaking,
the rectangular array displayed above is not a matrix, but is a repre-
sentation of a matrix. An m X n» matrix over the field F is a function
A from the set of pairs of integers (3,7), 1 <7< m, 1 <j <n, into the
field F. The entries of the matrix A are the scalars A(z,7) = A4,;, and
quite often it is most convenient to deseribe the matrix by displaying its
entries in a rectangular array having m rows and n columns, as above.
Thus X (above) is, or defines, an n X 1 matrix and Y is an m X 1 matrix.
For the time being, AX = Y is nothing more than a shorthand notation
for our system of linear equations. Later, when we have defined a multi-
plication for matrices, it will mean that Y is the product of 4 and X.

We wish now to consider operations on the rows of the matrix A
which correspond to forming linear combinations of the equations in
the system AX = Y. We restrict our attention to three elementary row
operations on an m X n matrix A over the field F':

1. multiplication of one row of A by a non-zero sealar c;

2. replacement of the rth row of A by row r plus ¢ times row s, ¢ any
scalar and r # s;

3. interchange of two rows of A.

An elementary row operation is thus a special type of function (rule) e
which associated with each m X n matrix A an m X n matrix e(4). One
can precisely describe e in the three cases as follows:

1. G(A)ij = A,'J' if < # T, e(A),,- = CArj.

2. G(A)ij = Aij if 75 r, G(A)rj = A,j + CAsj.

3. e(Ad);; = A;; if 7 is different from both r and s, e(4),; = 4.
G(A)sj = A,.J'.
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In defining e(4), it is not really important how many columns A has, but
the number of rows of A is crucial. For example, one must worry a little
to decide what is meant by interchanging rows 5 and 6 of a 5 X 5 matrix.
To avoid any such complications, we shall agree that an elementary row
operation e is defined on the class of all m X n matrices over F, for some
fixed m but any n. In other words, a particular e is defined on the class of
all m-rowed matrices over #.

One reason that we restrict ourselves to these three simple types of
row operations is that, having performed such an operation e on a matrix
A, we can recapture A by performing a similar operation on e(A4).

Theorem 2. To each elementary row operation e there corresponds an
elementary row operation ey, of the same type as e, such that ei(e(A)) =
e(el(A)) = A for each A. In other words, the inverse operation (function) of
an elementary row operation exists and is an elementary row operation of the
same type.

Proof. (1) Suppose e is the operation which multiplies the 7th row
of a matrix by the non-zero scalar ¢. Let e: be the operation which multi-
plies row r by ¢~ (2) Suppose e is the operation which replaces row r by
row 7 plus ¢ times row s, r # s. Let e1 be the operation which replaces row r
by row r plus (—c¢) times row s. (3) If e interchanges rows r and s, let e; = e.
In each of these three cases we clearly have ei(e(4)) = e(e)(4)) = A for
each A. ||

Definition. If A and B are m X n matrices over the field I, we say that
B is row-equivalent to A if B can be obtained from A by a finite sequence
of elementary row operations.

Using Theorem 2, the reader should find it easy to verify the following.
Each matrix is row-equivalent to itself; if B is row-equivalent to A, then A
is row-equivalent to B;if B is row-equivalent to A and C is row-equivalent
to B, then C is row-equivalent to A. In other words, row-equivalence is
an equivalence relation (see Appendix).

Theorem 3. If A and B are row-equivalent m X n matrices, the homo-
geneous systems of linear equations AX = 0 and BX = 0 have ezxactly the
same solutions.

Proof. Suppose we pass from A to B by a finite sequence of
elementary row operations:

A =4 A15 = A4 = B.

It is enough to prove that the systems 4;X = 0 and 4;,X = 0 have the
same solutions, i.e., that one elementary row operation does not disturb
the set of solutions.



Linear Equations Chap. 1

So suppose that B is obtained from 4 by a single elementary row
operation. No matter which of the three types the operation is, (1), (2),
or (3), each equation in the system B X = 0 will be a linear combination
of the equations in the system 4 X = 0. Since the inverse of an elementary
row operation is an elementary row operation, each equation in AX =0
will also be a linear combination of the equations in BX = 0. Hence these
two systems are equivalent, and by Theorem 1 they have the same
solutions. ||

ExampLE 5. Suppose F is the field of rational numbers, and

2 -1 3 2

1 4 0 -1}

2 ¢ -1 5

We shall perform a finite sequence of elementary row operations on A4,
indicating by numbers in parentheses the type of operation performed.

A=

2 -1 3 2] [o -9 3 4]
1 4 o0 —-1|2f1 4 o -—-1|=
2 6 -1 5] |2 6 -1 5.
0 -9 3 4] 0 —9 3 4]
1 4 o0 —-1|%1 4 o -1[2
(0 —2 —1 1 o 1 3 —z]
[0 —9 3 4] [0 0 1 —33)
1t 0 -2 13|21 o -2 13|
L0 1 3 —% | 0 1 A
o 0 1 —%] [0 0 1 =37
1 0 —2 1%t o o (®
0 1§ —-3] [0 1§ 4]

0 0 1 —Xt

1 00

010 -—%

The row-equivalence of A with the final matrix in the above sequence
tells us in particular that the solutions of

2331—' ) +3x3+2x4=0

1 + 4z, — x24=0
2y + 62, — T3+ 524 = 0

and
T3 — -133"504 =0
ol + l}m =0
o - %Iq = O

are exactly the same. In the second system it is apparent that if we assign
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any rational value ¢ to z4 we obtain a solution (—*c, §, 4%¢, ¢), and also
that every solution is of this form.

ExampLE 6. Suppose F is the field of complex numbers and

—1 4
A=|—i 3]
12

In performing row operations it is often convenient to combine several
operations of type (2). With this in mind

-1 4 0 244 0 1 01
- 3|2 0 3+2 (%o 3+2 |20 of
1 2 1 2 1 2 10
Thus the system of equations
— + e =
—z'x1+3xg=0
o+ 22, =0

has only the trivial solution z; = z, = 0.

In Examples 5 and 6 we were obviously not performing row opera-
tions at random. Our choice of row operations was motivated by a desire
to simplify the coefficient matrix in a manner analogous to ‘eliminating
unknowns’ in the system of linear equations. Let us now make a formal
definition of the type of matrix at which we were attempting to arrive.

Definition. An m X n matriz R is called row-reduced f:

(a) the first non-zero entry in each non-zero row of R s equal to 1;
(b) each column of R which contains the leading non-zero entry of some
row has all its other entries 0.

ExaMPLE 7. One example of a row-reduced matrix is the n X n
(square) identity matrix I. This is the n X n matrix defined by
_. L, i d=g
Ly =85 = {0, if 155
This is the first of many occasions on which we shall use the Kronecker
delta (5).

In Examples 5 and 6, the final matrices in the sequences exhibited
there are row-reduced matrices. Two examples of matrices which are not
row-reduced are:

10 00 0 2 1
01 =1 0f 1 0 -3}
00 10 0 0 0
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The second matrix fails to satisfy condition (a), because the leading non-
zero entry of the first row is not 1. The first matrix does satisfy condition
(a), but fails to satisfy condition (b) in column 3.

We shall now prove that we can pass from any given matrix to a row-
reduced matrix, by means of a finite number of elementary row oper-
tions. In combination with Theorem 3, this will provide us with an effec-
tive tool for solving systems of linear equations.

Theorem 4. Every m X n matrix over the field F is row-equivalent to
a row-reduced matriz.

Proof. Let A be an m X n matrix over F. If every entry in the
first row of A4 is 0, then condition (a) is satisfied in so far as row 1 is con-
cerned. If row 1 has a non-zero entry, let k be the smallest positive integer
7 for which A,; # 0. Multiply row 1 by A5', and then condition (a) is
satisfied with regard to row 1. Now for each 7 > 2, add (—A4 ;) times row
1 to row 7. Now the leading non-zero entry of row 1 occurs in column £,
that entry is 1, and every other entry in column £ is 0.

Now consider the matrix which has resulted from above. If every
entry in row 2 is 0, we do nothing to row 2. If some entry in row 2 is dif-
ferent from 0, we multiply row 2 by a scalar so that the leading non-zero
entry is 1. In the event that row 1 had a leading non-zero entry in column
k, this leading non-zero entry of row 2 cannot occur in column k; say it
occurs in column k- # k. By adding suitable multiples of row 2 to the
various rows, we can arrange that all entries in column £’ are 0, except
the 1 in row 2. The important thing to notice is this: In carrying out these
last operations, we will not change the entries of row 1 in columns 1, . . ., k;
nor will we change any entry of column k. Of course, if row 1 was iden-
tically 0, the operations with row 2 will not affect row 1.

Working with one row at a time in the above manner, it is clear that
in a finite number of steps we will arrive at a row-reduced matrix. ||

Exercises

1. Find all solutions to the system of equations

(1 _ ’b)l‘l bnd ’il‘z = .
221+ (1 = ?)ae = 0.

3 -1 2
4=12 11
1 -3 0

find all solutions of AX = 0 by row-reducing A.



Sec. 1.4 Row-Reduced Echelon Matrices

6 —4 0
A= 4 -2 0
-1 0 3
find all solutions of AX = 2X and all solutions of AX = 3X. (The symbol ¢X

denotes the matrix each entry of which is ¢ times the corresponding entry of X.)

4. Find a row-reduced matrix which is row-equivalent to

T —(1+479) 0
A=|1 -2 1
1 2 -1
5. Prove that the following two matrices are not row-equivalent:
2 ¢ 0 11 2
a —1 0} -2 0 —~1F
b ¢ 3 1 3 5
a b
4= [c d]

be a 2 X 2 matrix with complex entries. Suppose that A is row-reduced and also
that a + b + ¢ + d = 0. Prove that there are exactly three such matrices.

6. Let

7. Prove that the interchange of two rows of a matrix can be accomplished by a
finite sequence of elementary row operations of the other two types.

8. Consider the system of equations AX = 0 where

e b
4= I:c cl:l

is a 2 X 2 matrix over the field F. Prove the following.

(a) If every entry of 4 is 0, then every pair (z,, T») is a solution of AX = 0.

(b) If ad — be # 0, the system AX = 0 has only the trivial solution z; =
To = 0.

(c) If ad — bc = 0 and some entry of A is different from 0, then there is a
solution (9, x3) such that (z;, z») is a solution if and only if there is a scalar y
such that z; = yz9, z, = y?.

11

1.4. Row-Reduced Echelon Matrices

Until now, our work with systems of linear equations was motivated
by an attempt to find the solutions of such a system. In Section 1.3 we
established a standardized technique for finding these solutions. We wish
now to acquire some information which is slightly more theoretical, and
for that purpose it is convenient to go a little beyond row-reduced matrices.

Definition. An m X n matrix R s called a row-reduced echelon
matrix uf;
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(a) R s row-reduced;
(b) every row of R which has all its entries 0 occurs below every row
which has a non-zero entry;

(e) if rows 1, . . ., r are the non-zero rows of R, and if the leading non-
zero entry of rew 1 occurs tn column ki, i= 1,...,r, then ki <
ke < -+ <k,

One can also describe an m X n row-reduced echelon matrix R as
follows. Either every entry in R is 0, or there exists a positive integer r,
1 € r < m, and r positive integers ki, . . ., k, with1 < k; < n and

(a) R;j =0fore>r,and Ry; = 01if 7 < k.
(b) Riki=5i1',15isr,1§jﬁr-
) k< -+ <k,

ExampLE 8. Two examples of row-reduced echelon matrices are the
n X n identity matrix, and the m X n zero matrix 0™*, in which all
entries are 0. The reader should have no difficulty in making other ex-
amples, but we should like to give one non-trivial one:
01 -3 0 3
00 01 2}
00 00O

Theorem 5. FEvery m X n matriz A s row-equivalent to a row-reduced
echelon matriz.

Proof. We know that A is row-equivalent to a row-reduced
matrix. All that we need observe is that by performing a finite number of
row interchanges on a row-reduced matrix we can bring it to row-reduced
echelon form. |

In Examples 5 and 6, we saw the significance of row-reduced matrices
in solving homogeneous systems of linear equations. Let us now discuss
briefly the system X = 0, when R is a row-reduced echelon matrix. Let
rows 1,...,r be the non-zero rows of R, and suppose that the leading
non-zero entry of row ¢ occurs in column k;. The system RX = 0 then
consists of r non-trivial equations. Also the unknown z;, will occur (with
non-zero coefficient) only in the 7th equation. If we let w, . . . , u»—r denote
the (n — r) unknowns which are different from zy, ..., i, then the
r non-trivial equations in RX = 0 are of the form

Ty + "5' Cljuj =0
J=1

(1-3) : :

2+ 2 Cot = 0.
jm
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All the solutions to the system of equations RX = 0 are obtained by
assigning any values whatsoever to w, . . ., #.—, and then computing the
corresponding values of zy, . . ., zx from (1-3). For example, if R is the
matrix displayed in Example 8, then r = 2, ky = 2, k;, = 4, and the two
non-trivial equations in the system RX = 0 are

Tp— 3% +ims =0 or =z = 3z; — k5
s+ 225 =0 or z4 = —2z;

So we may assign any values to z), 23, and x5, say &1 = a, 3 = b, 15 = ¢,
and obtain the solution (a, 3b — %¢, b, —2¢, ).

Let us observe one thing more in connection with the system of
equations RX = 0. If the number r of non-zero rows in R is less than n,
then the system RX = 0 has a non-trivial solution, that is, a solution
(z1,...,x,) in which not every z; is 0. For, since r < n, we can choose
some z; which is not among the » unknowns xy,, . . ., xx,, and we can then
construct a solution as above in which this z; is 1. This observation leads
us to one of the most fundamental facts concerning systems of homoge-
neous linear equations.

Theorem 6. If A 1s an m X n matrix and m < n, then the homo-
geneous system of linear equations AX = 0 has a non-trivial solution.

Proof. Let R be a row-reduced echelon matrix which is row-
equivalent to A. Then the systems AX = 0 and RX = 0 have the same
solutions by Theorem 3. If 7 is the number of non-zero rows in R, then
certainly 7 < m, and since m < n, we have r < n. It follows immediately
from our remarks above that AX = 0 has a non-trivial solution. |

Theorem 7. If A is an n X n (square) mairiz, then A s row-equivalent
to the n X n identity matriz if and only if the system of equations AX = 0
has only the trivial solution.

Proof. If A is row-equivalent to I, then AX =0 and IX =0
have the same solutions. Conversely, suppose AX = 0 has only the trivial
solution X = 0. Let R be an n X n row-reduced echelon matrix which is
row-equivalent to 4, and let » be the number of non-zero rows of R. Then
RX = 0 has no non-trivial solution. Thus » > n. But since R has n rows,
certainly » < n, and we have r = n. Since this means that R actually has
a leading non-zero entry of 1 in each of its n rows, and since these 1’s
occur each in a different one of the n columns, R must be the n X n identity
matrix. |

Let us now ask what elementary row operations do toward solving
a system of linear equations A X = Y which is not homogeneous. At the
outset, one must observe one basic difference between this and the homo-
geneous case, namely, that while the homogeneous system always has the

138



14

Linear Equations Chap. 1

trivial solution z; = - -+ = 2, = 0, an inhomogeneous system need have
no solution at all.

We form the augmented matrix A’ of the system AX = Y. This
is the m X (n + 1) matrix whose first n columns are the columns of A
and whose last column is Y. More precisely,

;]'=Aij) if ]Sn
Alw+y = Yi.
Suppose we perform a sequence of elementary row operations on A,
arriving at a row-reduced echelon matrix K. If we perform this same
sequence of row operations on the augmented matrix A’, we will arrive
at a matrix R’ whose first n columns are the columns of R and whose last
column contains certain scalars z, . . ., z,. The scalars z; are the entries
of the m X 1 matrix
21
Z =

Zm

which results from applying the sequence of row operations to the matrix
Y. It should be clear to the reader that, just as in the proof of Theorem 3,
the systems AX = Y and RX = Z are equivalent and hence have the
same solutions. It is very easy to determine whether the system RX = Z
has any solutions and to determine all the solutions if any exist. For, if R
has r non-zero rows, with the leading non-zero entry of row z occurring

in column k;, ¢ = 1,..., r, then the first r cquations of RX = Z effec-
tively express Zy, . .., Z in terms of the (n — r) remaining z; and the
scalars z), . . ., 2, The last (m — r) equations are

0= 2r41

0= 2,

and accordingly the condition for the system to have a solution is z; = 0
for ¢ > r. If this condition is satisfied, all solutions to the system are
found just as in the homogeneous case, by assigning arbitrary values to
(n — r) of the z; and then computing xi, from the 7th equation.

ExampLE 9. Let F be the field of rational numbers and

1 -2 1
4 =12 1 1
0 5 —1

and suppose that we wish to solve the system AX = Y for some v, ¥,
and y;. Let us perform a sequence of row operations on the augmented
matrix A’ which row-reduces A :
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1 -2 1 1 -2 1 m
2 1 1 w20 5 -1 @—290|2
L_O 5 —1 Y3 0 5 -1 Y3
1 —2 1 U1 1 —-2 1 h
0 5 -1 (m-2w |20 1 -t iw-—2m [&
_0 0 0 (ya — Y2+ 2?/1) 0 0 0 (ys —y+ 2y1)
10 & 3n+2y)
0 1 —% iy —2p)
00 0 (ys — v+ 2y1)

The condition that the system AX = Y have a solution is thus
2y1 — Yo+ ys =0

and if the given scalars y; satisfy this condition, all solutions are obtained
by assigning a value ¢ to z; and then computing

©m = —§c+ %(?/1 + 2y,)
To %C + %(y2 - 21/1)

Let us observe one final thing about the system AX = Y. Suppose
the entries of the matrix A and the scalars ¥y, . . ., ¥ happen to lie in a
subfield F; of the field F. If the system of equations AX = Y has a solu-
tion with z, ..., z, in F, it has a solution with z;,..., z, in F1. For,
over either field, the condition for the system to have a solution is that
certain relations hold between vy, . . ., ¥a in F; (the relations z; = 0 for
1 > r, above). For example, if AX = Y is a system of linear equations
in which the scalars y: and A4;; are real numbers, and if there is a solution
in which z,, ..., x, are complex numbers, then there is a solution with
a1, . . ., T, real numbers.

Exercises

1. Find all solutions to the following system of equations by row-reducing the
coefficient matrix:
I+ 22— 623=0
—dz + 5235=0
—31‘1 + 6122 - 131‘3 0
—Ir+ 22— $x35=0

2. Find a row-reduced echelon matrix which is row-equivalent to

1 —
A =12 2 |
1 1474

What are the solutions of AX = 0?

15
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3. Describe explicitly all 2 X 2 row-reduced echelon matrices.
4. Consider the system of equations

Ty - xa+ 223 =1
21, + 225 =1
r — 3132‘{'41‘3 = 2.

Does this system have a solution? If so, describe explicitly all solutions.

5. Give an example of a system of two linear equations in two unknowns which
has no solution.

6. Show that the system

=20+ 3+ 2r,=1
2t 22— Tzt Tg=2
2+ T2y — 523 — x¢=3

has no solution.

7. Find all solutions of

221 — 322 — Taz + Sz + 205 = —2
1 — 22 —4a3+ 324+ 5= —2
21 — 43+ 204+ 5= 3
21 — dxe — Tus + 624 + 225 = —7.

8. Let

3 —~1 2
A=|2 1 1}
1 -3 0

For which triples (y1, ¥s, ys) does the system AX = Y have a solution?
9. Let

3 —6 2 -1
0 01 1
1 =21 0

For which (yi, ¥, ¥, ¥4) does the system of equations AX = ¥ have a solution?

10. Suppose R and R’ are 2 X 3 row-reduced echelon matrices and that the
systems RX = 0and R'X = 0 have exactly the same solutions. Prove that R = R’.

1.5. Matrix Multiplication

It is apparent (or should be, at any rate) that the process of forming
linear combinations of the rows of a matrix is a fundamental one. For this
reason it is advantageous to introduce a systematic scheme for indicating
just what operations are to be performed. More specifically, suppose B

isan n X p matrix over a field F with rows 8y, . . ., 8, and that from B we
construct a matrix C with rows v, ..., v, by forming certain linear
combinations

(1‘4) Yi = Ailﬂl 4+ Apfe -+ -+ -+ A
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The rows of C are determined by the mn scalars A;; which are themselves
the entries of an m X n matrix 4. If (1-4) is expanded to

(Cil‘ ' 'Cip) = §1 (AirBrl‘ : ‘AirBrp)
we see that the entries of C are given by
Cy= 3 AubBs,.
r=1

Definition. Let A be an m X n matrix over the field ' and let B be an
n X p matrix over F. The product AB ¢s the m X p matriz C whose 1i,

entry s
Cii = 2 AitBri-

r=

ExamrLe 10. Here are some products of matrices with rational entries.

(@) [5 —1 2]_[10][5—12
0 7 2] L-3 1]L15 4 8

Here

m=G -1 2)=1-6 -1 2)+0-(15 4 8
Y2=0 7 2)=-35 ~1 2)+1-(15 4 8)

0 6 1 10
b) 912—8_—23[06 1]
12 62 =3 | 5 4|3 8 -2
3 8 —2 0 1
Here
ve=(9 12 —8 =—-20 6 1)+338 8 —2)
vs=(12 62 —3)= 50 6 1)+43 8 —2)
8 2 1711
(©) [29]‘[5 4][6]
-2 —4 -1
@ e 12]-[ R
Here
v= 6 12) =32 4)
-1
(@) 2 4][ 3]=[10]
0 1 01 —5 271 [2 3 4]
() 0 0 0|2 3 4|l=|0 0 o
(0 0 0|9 —1 3] [0 0 0]
1 -5 2770 1 0] [0 1 0]
(g) 2 3 4|lo 0o o|=[0 2 0
(9 —1 3]{0 0 0] |0 9 O

17
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It is important to observe that the product of two matrices need not
be defined; the product is defined if and only if the number of columns in
the first matrix coincides with the number of rows in the second matrix.
Thus it is meaningless to interchange the order of the factors in (a), (b),
and (c¢) above. Frequently we shall write products such as AB without
explicitly mentioning the sizes of the factors and in such cases it will be
understood that the product is defined. From (d), (e), (f), (g) we find that
even when the products AB and BA are both defined it need not be true
that AB = BA; in other words, matrix multiplication is not commutative.

ExampLE 11.

(a) If I is the m X m identity matrix and A is an m X n matrix,
IA = A.

(b) If I is the n X n identity matrix and A is an m X n matrix,
Al = A.

(¢) If O*m is the k X m zero matrix, 0*» = Q0¥m4. Similarly,
AQ»? = (Qmr,

ExampLE 12. Let A be an m X n matrix over F. Our earlier short-
hand notation, AX = Y, for systems of linear equations is consistent
with our definition of matrix products. For if

zy ]

X=|"

Zo.

with z; in F, then AX is the m X 1 matrix

ZIlT

Yy =|%

Ym_]

such that y; = Aaxs + Awxe + -+ + Ainn.
The use of column matrices suggests a notation which is frequently

useful. If B is an n X p matrix, the columns of B are the 1 X n matrices
B,, ..., B, defined by

By;
BJ‘ = : ’ 1< .7 < p.
B,;

The matrix B is the succession of these columns:
B = [B],...,Bp].
The 4, j entry of the product matrix AB is formed from the zth row of A
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and the jth column of B. The reader should verify that the jth column of
AB is AB;:
AB = [ABy,...,AB,].

In spite of the fact that a product of matrices depends upon the
order in which the factors are written, it is independent of the way in
which they are associated, as the next theorem shows.

Theorem 8. If A, B, C are matrices over the field I such that the prod-
ucts BC and A(BC) are defined, then so are the products AB, (AB)C and

A(BC) = (AB)C.

Proof. Suppose B is an n X p matrix. Since BC is defined, C is
a matrix with p rows, and BC has n rows. Because 4 (BC) is defined we
may assume 4 is an m X n matrix. Thus the product 4 B exists and is an
m X p matrix, from which it follows that the product (AB)C exists. To
show that A(BC) = (AB)C means to show that

[A(BO)];; = [(AB)C];;
for each 7, j. By definition
(A(BC))s; = Z Au(BC)x

= 2 Airz BrsCuj
= 2 E AirBrsCaj

= 2 2 AirBeraj

Z (2 A 'ian)Csf

2 (AB)uCs;

= [(AB)C]s4. 1

When 4 is an n X n (square) matrix, the product AA is defined.
We shall denote this matrix by A2 By Theorem 8, (44)A = A(AA) or
A2A = AA? so that the product A4A is unambiguously defined. This
product we denote by A*. In general, the product A4 --- A (k times) is
unambiguously defined, and we shall denote this product by A*.

Note that the relation A(BC) = (AB)C implies among other things
that linear combinations of linear combinations of the rows of C are again
linear combinations of the rows of C.

If B is a given matrix and C is obtained from B by means of an ele-
mentary row operation, then each row of C is a linear combination of the
rows of B, and hence there is a matrix A such that AB = C. In general
there are many such matrices 4, and among all such it is convenient and

19
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possible to choose one having a number of special properties. Before going
into this we need to introduce a class of matrices.

Definition. An m X n matrix s said to be an elementary matrix ¢f
it can be obtained from the m X m identity matrix by means of a single ele-
mentary row operation.

ExampLE 13. A 2 X 2 elementary matrix is necessarily one of the

following:
[O 1:| I:l c:] [1 0]
1 0/ 0o 1] ¢ 1
¢ 0 1 0
[0 I:Ir c # 0, |:0 C:I, c # 0

Theorem 9. Let e be an elementary row operation and let E be the
m X m elementary matric E = e(I). Then, for every m X n matriz A,

e(A) = EA.

Proof. The point of the proof is that the entry in the 7th row
and jth column of the product matrix EA is obtained from the 7th row of
E and the jth column of A. The three types of elementary row operations
should be taken up separately. We shall give a detailed proof for an oper-
ation of type (ii). The other two cases are even easier to handle than this
one and will be left as exercises. Suppose 7 # s and e is the operation
‘replacement of row r by row r plus ¢ times row s.” Then

_ 6“:) TET
Eu = {a,k + cbw, =1
Therefore,
A,'k, 1 #r

(BA); = 2 Baudi; = {A,j +ody, i=r

In other words EA = e(4). |

Corollary. Let A and B be m X n matrices over the field F. Then B
s row-equivalent to A if and only if B = PA, where P is a product of m X m
elementary matrices.

Proof. Suppose B = PA where P = E, --- E;E; and the E; are
m X m elementary matrices. Then E;4 is row-equivalent to A, and
Ey(E\A) is row-equivalent to E1A. So E;E1A is row-equivalent to A ; and
continuing in this way we see that (E, - - - E;)A is row-equivalent to A.
Now suppose that B is row-equivalent to 4. Let Ey, E,, ..., E, be
the elementary matrices corresponding to some sequence of elementary
row operations which carries A into B. Then B = (E, --- E})A. |



Sec. 1.6 Invertible Matrices 21

Exercises

A=[f _; i] B=|:_€q, C=[ —1].

1
Compute ABC and CAB.

2. Let
1 -1 1 2 -2
A= |:2 0 1:|, B = [1 3i|-
3 01 4 4

Verify directly that A(AB) = A%B.
3. Find two different 2 X 2 matrices 4 such that A2 = 0 but 4 5 0.

4. For the matrix A of Exercise 2, find elementary matrices Ky, E, ..., E
such that

1. Let

E},; e EgElA == I.

1 ~1
A= [2 2:|, B = l:_i /11]
1 0
Is there a matrix C such that CA = B?

6. Let A be an m X n matrix and B an n X k matrix. Show that the columns of
C = AB are linear combinations of the columns of 4. If ey, . . ., @, are the columns
of A and v, . . ., yr are the columns of C, then

5. Let

n
Yi = 2 Brj'ar-
r=1

7. Let A and Bbe 2 X 2 matrices such that AB = I. Provethat BA = I.

8. Let
_[Cu Cy
C - [021 022]
be a 2 X 2 matrix. We inquire when it is possible to find 2 X 2 matrices A and B

such that C = AB — BA. Prove that such matrices can be found if and only if
Cn + 022 = 0.

1.6. Imvertible Matrices

Suppose P is an m X m matrix which is a product of elementary
matrices. For each m X n matrix A, the matrix B = PA is row-equivalent
to A; hence 4 is row-equivalent to B and there is a product @ of elemen-
tary matrices such that A = @B. In particular this is true when A is the
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m X m identity matrix. In other words, there is an m X m matrix Q,
which is itself a product of elementary matrices. such that QP = I. As
we shall soon see, the existence of a Q with QP = I is equivalent to the
fact that P is a product of elementary matrices.

Definition. Let A be an n X n (square) matriz over the field F. An
n X n matriz B such that BA = 1 1s called a left inverse of A;an n X n
matriz B such that AB = 1 is called a right inverse of A.IfAB = BA =],
then B is called a two-sided inverse of A and A is said to be invertible.

Lemma. If A has a left inverse B and a right tnverse C, then B = C.
Proof. Suppose BA = I and AC = I. Then
B = BI = B(AC) = (BA)C =1IC = C. |
Thus if A has a left and a right inverse, A is invertible and has a

unique two-sided inverse, which we shall denote by A~! and simply call
the inverse of 4.

Theorem 10. Let A and B be n X n matrices over 17.

(i) If A is tnvertible, so is A~V and (A~1)~! = A.
(i1) If both A and B are invertible, so is AB, and (AB)™! = B-1A-L

Proof. The first statement is evident from the symmetry of the
definition. The second follows upon verification of the relations

(AB)(B™'A-1Y) = (BT1A")(4B) = 1. |
Corollary. A product of tnvertible matrices ts tnvertible.

Theorem 11. An elementary matriz ts invertible.

Proof. Let E be an elementary matrix corresponding to the
elementary row operation e. If ¢; is the inverse operation of e (Theorem 2)
and E; = ¢(I), then

EE,

i

e(By) = ela(l)) =1

and
E\E = e(E) = e(e(])) =1

so that I is invertible and E, = E-'. ||

ExampLE 14. )
® [V o] =L o]
® o 1] -0 7]



Sec. 1.6 Invertible Matrvces

[

(d) When ¢ # 0, |

[c or_[r1 0] i [1 0-1_[1 01
0 1] Lo 1 0 ¢J] “Llo ¢t

Theorem 12. If A is an n X n matriz, the following are equivalent.

(1) A s tnvertible.
(i1) A ¢s row-equivalent to the n X n identity matrix.
(i) A 4s a product of elementary matrices.

Proof. Let R be a row-reduced echelon matrix which is row-
equivalent to A. By Theorem 9 (or its corollary),

R = E; - EEA
where k), . . ., Ei are elementary matrices. Each E; is invertible, and so
A =Ert--- Ef'R.

Since products of invertible matrices are invertible, we see that A is in-
vertible if and only if R is invertible. Since R is a (square) row-reduced
echelon matrix, R is invertible if and only if each row of R contains a
non-zero entry, that is, if and only if R = I. We have now shown that A
is invertible if and only if R = I, and if R = J then 4 = E;'--- Ei''.
It should now be apparent that (i), (ii), and (iii) are equivalent statements
about 4. |

Corollary. If A is an tnvertible n X n matriz and if a sequence of
elementary row operations reduces A to the identity, then that same sequence
of operations when applied to 1 yrelds A~L.

Corollary. Let A and B be m X n matrices. Then B is row-equivalent
to A if and only if B = PA where P is an invertible m X m matriz.

Theorem 13. For an n X n matriz A, the following are equivalent.

(1) A 7s Tnvertible.
(i1) The homogeneous system AX = 0 has only the trivial solution
X = 0.
(iii) The system of equations AX = Y has a solution X for each n X 1
matriz Y.

Proof. According to Theorem 7, condition (ii) is equivalent to
the fact that A is row-equivalent to the identity matrix. By Theorem 12,
(1) and (ii) are therefore equivalent. If A is invertible, the solution of
AX =Y is X = A-'Y. Conversely, suppose AX = Y has a solution for
each given Y. Let R be a row-reduced echelon matrix which is row-

23
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equivalent to A. We wish to show that R = I. That amounts to showing
that the last row of R is not (identically) 0. Let

0
0

0

1

If the system RX = E can be solved for X, the last row of R cannot be 0.
We know that R = PA, where P is invertible. Thus RX = FE if and only
if AX = P~'E. According to (iii), the latter system has a solution. ||

Corollary. A square matriz with either a left or right tnverse is in-
vertible.

Proof. Let A be an n X n matrix. Suppose 4 has a left inverse,
i.e., a matrix B such that BA = I. Then AX = 0 has only the trivial
solution, because X = IX = B(AX). Therefore A is invertible. On the
other hand, suppose A has a right inverse, i.e., a matrix C such that
AC = I. Then C has a left inverse and is therefore invertible. It then
follows that A = C~!and so A4 is invertible with inverse C. ||

Corollary. Let A = AjA; --- Ay, where Ay . .., Axaren X n (square)
matrices. Then A s invertible if and only if each A; is invertible.

Proof. We have already shown that the product of two invertible
matrices is invertible. From this one sees easily that if each A4; is invertible
then 4 is invertible.

Suppose now that A is invertible. We first prove that A: is in-
vertible. Suppose X is an » X 1 matrix and A;X = 0. Then AX =
(Ay --- A1) A X = 0. Since A is invertible we must have X = 0. The
system of equations A;X = 0 thus has no non-trivial solution, so A is
invertible. But now A4, --- A,y = AA;" is invertible. By the preceding
argument, A;_; is invertible. Continuing in this way, we conclude that
each A; isinvertible. |

We should like to make one final comment about the solution of
linear equations. Suppose 4 is an m X n matrix and we wish to solve the
system of equations AX = Y. If R is a row-reduced echelon matrix which
is row-equivalent to A, then B = PA where P is an m X m invertible
matrix. The solutions of the system AX = Y are exactly the same as the
solutions of the system RX = PY (= Z). In practice, it is not much more
difficult to find the matrix P than it is to row-reduce A to R. For, suppose
we form the augmented matrix A’ of the system AX = Y, with arbitrary
scalars yy, . . ., yn Occurring in the last column. If we then perform on A’
a sequence of elementary row operations which leads from 4 to R, it will
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become evident what the matrix P is. (The reader should refer to Ex-
ample 9 where we essentially carried out this process.) In particular, if 4
is a square matrix, this process will make it clear whether or not 4 is
invertible and if A is invertible what the inverse P is. Since we have
already given the nucleus of one example of such a computation, we shall
content ourselves with a 2 X 2 example.

ExampLE 15. Suppose F is the field of rational numbers and
2 -1
A=l 7l
Then

A R FR e B PR

1 3 Yo 2 =1 yn 0 -7 y1—2y2
[1 3 Y ]ﬂ[l 0 %(yz+3yl):|
0 1 32y —y) 0 1 32y — w)

from which it is clear that A is invertible and

e[ ]

ki
It may seem cumbersome to continue writing the arbitrary scalars
#1, Yo, . . . in the computation of inverses. Some people find it less awkward
to carry along two sequences of matrices, one describing the reduction of
A to the identity and the other recording the effect of the same sequence
of operations starting from the identity. The reader may judge for him-
self which is a neater form of bookkeeping.

3o -3l

ExampLE 16. Let us find the inverse of

I 3 3

A=} % i

1 1 1

3 4 5
1 1 1] ! 0 0]
11 1y 0 1 0
R S . 0 0 1]
1 1 17 ! 0 07]
0 % &) -3 1 0
...0 Tli I‘%_ L_% 0 1..4
1 3 17 1 0 0]
0 & &/ —1 1 0
o0 0 ) L 3 -1 1
1 1 1 0 07
¢ 1 1} —6 12 0
Lo 0 1 [ 30 —180 180 ]
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o3 0] [ -9 60 —60]
o 1 o} —-36 192 —180
o o 1] | 30 —180 180
10 0] [ 9 -3 30]
o 1 of —36 192 —180 |
o o 1] | 30 —180 180

It must have occurred to the reader that we have carried on a lengthy
discussion of the rows of matrices and have said little about the columns.
We focused our attention on the rows because this seemed more natural
from the point of view of linear equations. Since there is obviously nothing
sacred about rows, the discussion in the last sections could have been
carried on using columns rather than rows. If one defines an elementary
column operation and column-equivalence in a manner analogous to that
of elementary row operation and row-equivalence, it is clear that each
m X n matrix will be column-equivalent to a ‘column-reduced echelon’
matrix. Also each elementary column operation will be of the form
A = AE, where E is an n X n elementary matrix—and so on.

Exercises
1. Let

1 210
A=|-1 0 3 5|
1 =2 1 1

Find a row-reduced echelon matrix B which is row-equivalent to A and an in-
vertible 3 X 3 matrix P such that R = PA,

2. Do Exercise 1, but with
2 0 )
4 = |:1 -3 —-i:|-
t 1 1

3. For each of the two matrices

2 5 —1 1 -1 2
4 ~1 2| 3 2 4
6 4 1 0 1 -2
use elementary row operations to discover whether it is invertible, and to find the

inverse in case it is.

4. Let
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For which X does there exist a scalar ¢ such that AX = ¢X?

5. Discover whether

cc o~
S o
o W w w
NN

is invertible, and find A~ if it exists.

6. Suppose A isa 2 X 1 matrix and that Bisa 1 X 2 matrix. Prove that C = AB
is not invertible.

7. Let A be an n X n (square) matrix. Prove the following two statements:
(a) If A is invertible and AB = 0 for some n X n matrix B, then B = 0.
(b) If A is not invertible, then there exists an n X n matrix B such that

AB = 0 but B 0.
a b
4 = |:c d]

8. Let
Prove, using elementary row operations, that A is invertible if and only if
(ad ~ bc) # 0.

9. An n X n matrix 4 is called upper-triangular if 4;; = 0 for ¢+ > j, that is,
if every entry below the main diagonal is 0. Prove that an upper-triangular (square)
matrix is invertible if and only if every entry on its main diagonal is different
from 0.

10. Prove the following generalization of Exercise 6. If 4 is an m X n matrix,
B is an n X m matrix and n < m, then AB is not invertible.

11. Let A be an m X n matrix. Show that by means of a finite number of elemen-
tary row and/or column operations one can pass from A to a matrix R which
is both ‘row-reduced echelon’ and ‘column-reduced echelon,’ i.e., RB;; = 0 if 7 # j,
Ri=11<1<7r R;=0if 1> r. Show that R = PAQ, where P is an in-
vertible m X m matrix and @ is an invertible n X n matrix.

12. The result of Example 16 suggests that perhaps the matrix

1 1
b3 n
1 1
A=13 3 n+ 1
SRS D
n n-+4+1 2n —~ 1

is invertible and A~! has integer entries. Can you prove that?



2. Vector Spaces

2.1. Vector Spaces

In various parts of mathematics, one is confronted with a set, such
that it is both meaningful and interesting to deal with ‘linear combina-
tions’ of the objects in that set. For example, in our study of linear equa-
tions we found it quite natural to consider linear combinations of the
rows of a matrix. It is likely that the reader has studied calculus and has
dealt there with linear combinations of functions; certainly this is so if
he has studied differential equations. Perhaps the reader has had some
experience with vectors in three-dimensional Euclidean space, and in
particular, with linear combinations of such vectors.

Loosely speaking, linear algebra is that branch of mathematics which
treats the common properties of algebraic systems which consist of a set,
together with a reasonable notion of a ‘linear combination’ of elements
in the set. In this section we shall define the mathematical object which
experience has shown to be the most useful abstraction of this type of
algebraic system.

Definition. A vector space (or linear space) conststs of the following:

1. a field F of scalars;

2. a set 'V of objects, called vectors;

3. a rule (or operation), called vector addition, which associates with
each patr of vectors a, B in V a vector a + B 1n 'V, called the sum of o and B,
in such a way that

(a) addition 1s commutative, « + 8 = 8 + «;
(b) addition is associative, @« + (8 + v) = (a + B8) + v;
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(c) there is a unique vector 0 in V, called the zero vector, such that
a+0 =aforall ainV;

(d) for each vector a in 'V there is a unique vector —a tn 'V such that
a+ (—a) = 0;

4. a rule (or operation), called scalar multiplication, which assoctates
with each scalar ¢ tn F and vector a in V a vector ca tn 'V, called the product
of ¢ and a, 1n such a way that

(a) la = aforevery a in'V;
(b) (erez)a = ci(cea);

() cle + B) = ca + cb;
(d) (e1 + c2)a = c1a + cocn.

It is important to observe, as the definition states, that a vector
space is a composite object consisting of a field, a set of ‘vectors,” and
two operations with certain special properties. The same set of vectors
may be part of a number of distinct vector spaces (see Example 5 below).
When there is no chance of confusion, we may simply refer to the vector
space as V, or when it is desirable to specify the field, we shall say V is
a vector space over the field F. The name ‘vector’ is applied to the
elements of the set V largely as a matter of convenience. The origin of
the name is to be found in Example 1 below, but one should not attach
too much significance to the name, since the variety of objects occurring
as the vectors in ¥V may not bear much resemblance to any preassigned
concept of vector which the reader has. We shall try to indicate this
variety by a list of examples; our list will be enlarged considerably as we
begin to study vector spaces.

ExampLE 1. The n-tuple space, F». Let F be any field, and let V be

the set of all n-tuples o = (@1, x, ..., x,) of scalars z; in F. If g =
(Y1, Y2 . . ., Ya) with y; in F, the sum of & and g is defined by
(2"1) a+6=(ﬂ¢1+yh$2+y2,~u,$n+?jn)~

The product of a scalar ¢ and vector « is defined by
(2-2) ca = (¢xy, CTay . . ., CLy).

The fact that this vector addition and scalar multiplication satisfy con-
ditions (3) and (4) is easy to verify, using the similar properties of addi-
tion and multiplication of elements of F.

ExampLE 2. The space of m X n matrices, F™". Let F be any
field and let m and n be positive integers. Let F™ be the set of all m X n
matrices over the field F. The sum of two vectors A and B in F™% is de-
fined by

(2-3) (4 + B)i; = Ay + By

29



30

Vector Spaces Chap. 2

The product of a scalar ¢ and the matrix 4 is defined by
(2'4) (CA),;_-,' = CA.;J'.
Note that Fx» = F»,

ExampLE 3. The space of funclions from a set to a field. Let F be
any field and let S be any non-empty set. Let V be the set of all functions
from the set S into F. The sum of two vectors f and g in V is the vector
f + g, i.e., the function from S into F, defined by

(2-5) (f + 9)(s) = f(s) + g(s).
The product of the scalar ¢ and the function f is the function ¢f defined by
(2-6) (ef)(s) = cf(s).

The preceding examples are special cases of this one. For an n-tuple of
elements of F may be regarded as a function from the set S of integers
1,...,ninto F. Similarly, an m X n matrix over the field F is a function
from the set S of pairs of integers, (7,7), 1 <7< m, 1 <j < n, into the
field F. For this third example we shall indicate how one verifies that the
operations we have defined satisfy conditions (3) and (4). For vector
addition:

(a) Since addition in F is commutative,

f(s) + g(s) = g(s) + f(s)
for each s in S, so the functions f 4+ ¢ and g + f are identical.
(b) Since addition in F is associative,

1(s) + [9(s) + ()] = [f(s) + g(s)] + h(s)

for each s, so f + (g + k) is the same function as (f + ¢) + h.

(¢) The unique zero vector is the zero function which assigns to each
element of S the scalar 0 in F.

(d) For each fin V, (—f) is the function which is given by

(=N)(s) = —f(s).
The reader should find it easy to verify that scalar multiplication
satisfies the conditions of (4), by arguing as we did with the vector addition.

ExampLE 4. The space of polynomial functions over a field F.
Let F be a field and let V be the set of all functions f from F into F which
have a rule of the form

(2-7) f@) =c+ar+ - + caz

where ¢, ¢, ..., c, are fixed scalars in F (independent of z). A func-
tion of this type is called a polynomial function on F. Let addition
and scalar multiplication be defined as in Example 3. One must observe
here that if f and ¢ are polynomial functions and ¢ is in F, then f 4+ ¢ and
¢f are again polynomial functions.
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ExampLE 5. The field C of complex numbers may be regarded as a
vector space over the field K of real numbers. More generally, let F be the
field of real numbers and let V be the set of n-tuples a = (x1,. .., Za)
where a3, . .., 2, are complex numbers. Define addition of vectors and
scalar multiplication by (2-1) and (2-2), as in Example 1. In this way we
obtain a vector space over the field £ which is quite different from the
space C™ and the space k™.

There are a few simple facts which follow almost immediately from
the definition of a vector space, and we proceed to derive these. If ¢ is
a scalar and 0 is the zero vector, then by 3(c) and 4(c)

¢0 = ¢(0 + 0) = c0 + 0.
Adding — (c0) and using 3(d), we obtain

(2-8) c0 =0.
Similarly, for the scalar 0 and any vector o we find that
(2-9) Oa = 0.

If ¢ is a non-zero scalar and « is a vector such that ca = 0, then by (2-8),
¢ Y(ca) = 0. But

¢ Yew) = (c)a = la = a

hence, « = 0. Thus we see that if ¢ is a scalar and « a vector such that
ca = 0, then either ¢ is the zero scalar or « is the zero vector.
If @ is any vector in V, then

0=0=(10—1a=la+ (—Da=a+ (-1«
from which it follows that
(2-10) (—a = —a

Finally, the associative and commutative properties of vector addition
imply that a sum involving a number of vectors is independent of the way
in which these vectors are combined and associated. For example, if
ay, ag, a3, as are vectors in V, then

(0 + ag) + (o5 + ) = [oe + (o1 + a5)] +

and such a sum may be written without confusion as
ay + a; + a3 + ag

Definition. A vector 8 in V is said to be a linear combination of the

vectors ay, . . ., an in 'V provided there exist scalars ¢y, . . ., ¢ in F such that
B = cion + - + Coon
n
S
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Other extensions of the associative property of vector addition and
the distributive properties 4(¢) and 4(d) of scalar multiplication apply
to linear combinations:

}%1 ciai + g dia; = f) (¢ + di)oui
i= 1 1=1

1=1
n n

C X Ci; = 3 (CC.’)(X,‘.
1=1 1=1

Certain parts of linear algebra are intimately related to geometry.
The very word ‘space’ suggests something geometrical, as does the word
‘vector’ to most people. As we proceed with our study of vector spaces,
the reader will observe that much of the terminology has a geometrical
connotation. Before concluding this introductory section on vector spaces,
we shall consider the relation of vector spaces to geometry to an extent
which will at least indicate the origin of the name ‘vector space.’” This
will be 4 brief intuitive discussion.

Let us consider the vector space R3. In analytic geometry, one iden-
tifies triples (z1, s, 1) of real numbers with the points in three-dimensional
Euclidean space. In that context, a vector is usually defined as a directed
line segment PQ, from a point P in the space to another point @. This
amounts to a careful formulation of the idea of the ‘arrow’ from P to Q.
As vectors are used, it is intended that they should be determined by
their length and direction. Thus one must identify two directed line seg-
ments if they have the same length and the same direction.

The directed line segment PQ, from the point P = (z1, x2, x3) to the
point @ = (w1, ¥s, ¥3), has the same length and direction as the directed
line segment from the origin O = (0, 0, 0) to the point (y; — x1, Y2 — X2,
Y3 — x3). Furthermore, this is the only segment emanating from the origin
which has the same length and direction as P@Q. Thus, if one agrees to
treat only vectors which emanate from the origin, there is exactly one
vector associated with each given length and direction.

The vector OP, from the origin to P = (x, x», x3), is completely de-
termined by P, and it is therefore possible to identify this vector with the
point P. In our definition of the vector space K3, the vectors are simply
defined to be the triples (x, =3, z3).

Given points P = (z1, T3, x3) and Q = (yi, ¥s, ¥3), the definition of
the sum of the vectors OP and OQ can be given geometrically. If the
vectors are not parallel, then the segments OP and OQ determine a plane
and these segments are two of the edges of a parallelogram in that plane
(see Figure 1). One diagonal of this parallelogram extends from O to a
point S, and the sum of OP and OQ is defined to be the vector OS. The
coordinates of the point S are (z; + %1, T2 + Y2, x5 + y3) and hence this
geometrical definition of vector addition is equivalent to the algebraic
definition of Example 1.
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Sixy +y1, {2 + Y2, X3 +¥3)

-

P(x1, X2 X3}

Qly1. Y2 ¥3)

Figure 1

Scalar multiplication has a simpler geometric interpretation. If ¢ is
a real number, then the product of ¢ and the vector OP is the vector from
the origin with length |c| times the length of OP and a direction which
agrees with the direction of OP if ¢ > 0, and which is opposite to the
direction of OP if ¢ < 0. This scalar multiplication just yields the vector
OT where T = (cxy, cxs, ¢vs), and is therefore consistent with the algebraic
definition given for R*.

From time to time, the reader will probably find it helpful to ‘think
geometrically’ about vector spaces, that is, to draw pictures for his own
benefit to illustrate and motivate some of the ideas. Indeed, he should do
this. However, in forming such illustrations he must bear in mind that,
because we are dealing with vector spaces as algebraic systems, all proofs
we give will be of an algebraic nature.

Exercises
1. If F is a field, verify that F'» (as defined in Example 1) is a vector space over
the field F.
2. If V is a vector space over the field F, verify that
(on + o) + (a3 + as) = [z + (a3 + )] +
for all vectors ay, as, a3, and ay in V.

3. If C is the field of complex numbers, which vectors in C® are linear combina~
tions of (1,0, —1), (0, 1, 1), and (1, 1, 1)?
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4, Let V be the set of all pairs (z, ¥) of real numbers, and let F be the field of
real numbers. Define

(@,9) + (xyy) = @+ 2,9 + 1)
c(z,y) = (cz,y).
Is V, with these operations, a vector space over the field of real numbers?

5. On R», define two operations

a@f=a-4

Cra = —Cca.

The operations on the right are the usual ones. Which of the axioms for a vector
space are satisfied by (R*, @, -)?

6. Let V be the set of all complex-valued functions f on the real line such that
(for all ¢ in R)

f(=t = 1.
The bar denotes complex conjugation. Show that V, with the operations

(F+9)® = 1O + 9@)
@) () = o)

is a vector space over the field of 7eal numbers. Give an example of a function in V
which is not real-valued.

7. Let V be the set of pairs (2, y) of real numbers and let F be the field of real
numbers. Define
(,y) + (2, ) = (x + 21, 0)
C(x: y) = (CIL‘, 0)-

Is V, with these operations, a vector space?

2.2. Subspaces

In this section we shall introduce some of the basic concepts in the
study of vector spaces.

Definition. Let V be a vector space over the field F. A subspace of V
18 a subset W of 'V which 1s itself a vector space over F with the operations of
vector addition and scalar multvplication on V.

A direct check of the axioms for a vector space shows that the subset
W of V is a subspace if for each o« and 8 in W the vector « + 8 is again
in W; the 0 vector is in W; for each « in W the vector (—«a) is in W; for
each a in W and each scalar ¢ the vector ca is in W. The commutativity
and associativity of vector addition, and the properties (4)(a), (b), (c),
and (d) of scalar multiplication do not need to be checked, since these
are properties of the operations on V. One can simplify things still further.
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Theorem 1. A non-empty subset W of V is a subspace of V if and only
if for each pair of vectors a, 8 in W and each scalar ¢ in F the vector ca + 8
is again in W.

Proof. Suppose that W is a non-empty subset of V such that
cee + 3 belongs to W for all vectors a, 8 in W and all scalars ¢ in F. Since
W is non-empty, there is a vector p in W, and hence (—1)p + p = 0 is
in W.Thenif eisanyvectorin W and ¢ any scalar, the vectorca = ca + 0
isin W. In particular, (—1)a = —aisin W. Finally, if « and 8 are in W,
then a + 8 = la + Bisin W. Thus W is a subspace of V.

Conversely, if W is a subspace of V, « and 8 are in W, and ¢ is a scalar,
certainly ca + 8isin W. |

Some people prefer to use the ca + 3 property in Theorem 1 as the
definition of a subspace. It makes little difference. The important point
is that, if W is a non-empty subset of V such that ca + Bisin V for all «,
Bin W and all ¢ in F, then (with the operations inherited from V) W isa
vector space. This provides us with many new examples of vector spaces.

ExampLE 6.

(a) If V is any vector space, V is a subspace of V; the subset con-
sisting of the zero vector alone is a subspace of V, called the zero sub-
space of V.

(b) In F» the set of n-tuples (a1, . . ., z,) with z; = 0 is a subspace;
however, the set of n-tuples with z; = 1 4 a5 is not a subspace (n > 2).

(¢) The space of polynomial functions over the field F is a subspace
of the space of all functions from F into F.

(d) An n X n (square) matrix A over the field F is symmetric if
Ay = Aj; for each 7 and j. The symmetric matrices form a subspace of
the space of all n X n matrices over F.

(e) An n X n (square) matrix A over the field C of complex num-
bers is Hermitian (or self-adjoint) if

Ap = A,

for each j, k, the bar denoting complex conjugation. A 2 X 2 matrix is
Hermitian if and only if it has the form

|: 2 x+iy]
x — 1y w

where 2, ¥, 2, and w are real numbers. The set of all Hermitian matrices
is not a subspace of the space of all n X n matrices over C. For if 4 is
Hermitian, its diagonal entries Ay;, As, . . ., are all real numbers, but the
diagonal entries of ¢A are in general not real. On the other hand, it is easily
verified that the set of n X n complex Hermitian matrices is a vector
space over the field R of real numbers (with the usual operations).
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ExampLE 7. The solution space of a system of homogeneous
linear equations. Let 4 be an m X n matrix over F. Then the set of all
n X 1 (column) matrices X over F such that AX = 0 is a subspace of the
space of all n X 1 matrices over F. To prove this we must show that
AX 4+ Y) =0whendX =0,AY = 0, and c is an arbitrary scalar in F.
This follows immediately from the following general fact.

Lemma. If Aisanm X n matriz over F and B, C are n X p matrices
over F then

2-11) A(dB + C) = d(AB) + AC
for each scalar d in F.

Proof. [A@B + O)]s = 2 Au(dB + Ol
= 3 (dAaBij + AaCy;)
k
=d %: AaBi; + Ek AaClj

= d(AB)i; + (AC);;
= [d(AB) + AC)s. |

Similarly one can show that (dB + C)4 = d(BA) + CA4, if the
matrix sums and products are defined.

Theorem 2. Let V be a vector space over the field ¥. The intersection
of any collection of subspaces of V is a subspace of V.

Proof. Let {W,} be a collection of subspaces of V, and let W =
M W, be their intersection. Recall that W is defined as the set of all ele-

ments belonging to every W, (see Appendix). Since each W, is a subspace,
each contains the zero vector. Thus the zero vector is in the intersection
W, and W is non-empty. Let a and 8 be vectors in W and let ¢ be a scalar.
By definition of W, both « and 8 belong to each W,, and because each W,
is a subspace, the vector (ca 4 8) is in every W, Thus (ca + B) is again
in W. By Theorem 1, W is a subspace of V. |

From Theorem 2 it follows that if S is any collection of vectors in V,
then there is a smallest subspace of V which contains S, that is, a sub-
space which contains S and which is contained in every other subspace
containing S.

Definition. Let S be a set of vectors in a vector space V. The subspace
spanned by S is defined to be the intersection W of all subspaces of V which
contain S. When S is a finite set of vectors, S = {ay, ag, . . ., an}, we shall
stmply call W the subspace spanned by the vectors a1, g, . . ., an.
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Theorem 3. The subspace spanned by a non-empty subset S of a vector
space V 1is the set of all linear combinations of vectors in S.

Proof. Let W be the subspace spanned by S. Then each linear
combination

a = Tioq + Taog + **+ + Tmotm

of vectors oy, @z, . . ., an in S is clearly in W. Thus W contains the set L
of all linear combinations of vectors in S. The set L, on the other hand,
contains S and is non-empty. If @, 8 belong to L then « is a linear
combination,

a = Tioq + Toag + +++ + Tmotm

of vectors a; in S, and 8 is a linear combination,

B=ub +YB2+ - + YnfBn

of vectors 8, in S. For each scalar c,
catf=2 (cx)ai + Z Yibs.
i= =

Hence ca + B belongs to L. Thus L is a subspace of V.

Now we have shown that L is a subspace of ¥V which contains S, and
also that any subspace which contains S contains L. It follows that L is
the intersection of all subspaces containing S, i.e., that L is the subspace
spanned by the set S. |

Definition. If Sy, S, . . ., Sk are subsets of a vector space V, the set of
all sums

a1t as+ oo+ oax

of vectors a; in S; is called the sum of the subsets Si, Sy, . . ., Sk and s de-
noted by

T
or by

k
Si.
i=1
If Wy, W, ..., W, are subspaces of V, then the sum
W=Wit Wt -+ W,

is easily seen to be a subspace of V which contains each of the subspaces
W .. From this it follows, as in the proof of Theorem 3, that W is the sub-
space spanried by the union of Wy, W,, ..., Wy

ExampLE 8. Let F be a subfield of the field C' of complex numbers.
Suppose
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o = (1; 2; 07 3, 0)
o2 = (0) 0’ 174) 0)
as = (0,0,0,0,1).

By Theorem 3, a vector « is in the subspace W of F? spanned by ai, ae, a3
if and only if there exist scalars ci, ¢z, ¢3 in F such that

a = cia1 + Cay + csa.
Thus W consists of all vectors of the form
a = (c1, 2¢1, €2, 3¢t + 4c2, C3)

where ci, ¢, ¢s are arbitrary scalars in F. Alternatively, W can be described
as the set of all 5-tuples

o = (111, T2, T3y Ty xb)
with z; in F such that

Ty = 2.’171
Ty = 3.’51 + 4:83.

Thus (=3, —6, 1, —5, 2) is in W, whereas (2, 4, 6, 7, 8) is not.
ExampLE 9. Let F be a subfield of the field C of complex numbers,

and let V be the vector space of all 2 X 2 matrices over F. Let W, be the
subset of V consisting of all matrices of the form

2 ]

z 0

where z, y, 2z are arbitrary scalars in F. Finally, let W; be the subset of V
consisting of all matrices of the form

5 V]

0 vy

where z and y are arbitrary scalars in F. Then W, and W, are subspaces
of V. Also

V=W+W,

a b a b 0 0
I:c d] - [c O] + [0 d]‘
The subspace W, (N W, consists of all matrices of the form
[x O:I'
00
ExampLE 10. Let A be an m X n matrix over a field F. The row

vectors of A arethe vectorsin F" givenby a; = (Aq,...,4m),1=1,...,
m. The subspace of F» spanned by the row vectors of A is called the row

because
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space of A. The subspace considered in Example 8 is the row space of the
matrix

1 2 0 30

A=]10 01 4 0

0 00 01

It is also the row space of the matrix
1 2 0 3 0
0 01 4 0
B=l'o 00 o1

—4 —8 1 -8 0

ExampLE 11. Let V be the space of all polynomial functions over F.
Let S be the subset of V consisting of the polynomial functions f, fi, fo, - - .
defined by

fn(x)=:l:", n=0,1,2,....
Then V is the subspace spanned by the set S.

Exercises

1. Which of the following sets of vectors @ == (ay, ..., a,) in R* are subspaces
of R* (n > 3)?
(a) all @ such that a, > 0;
(b) all @ such that a, + 3a; = as;
(c) all @ such that a, = ai;
(d) all @ such that aiaz = 0;
(e) all @ such that a, is rational.
2. Let V be the (real) vector space of all functions f from R into R. Which of the
following sets of functions are subspaces of V?
(a) all f such that f(z2) = f(z)?;
(b) all f such that f(0) = f(1);
(¢) all f such that f(3) = 1 + f(=5);
(d) all f such that f(—1) = 0;
(e) all f which are continuous.

3. Is the vector (3, —1, 0, —1) in the subspace of R® spanned by the vectors
(2,-1,8,2),(=1,1,1, =3),and (1, 1,9, = 5)?

4. Let W be the set of all (1, 2, T3, 4, 75) in R® which satisfy
2zy — Tyt dwg — T4 = ()
) -+ %13 - x5=0
92 — 32 + 623 — 324 — 325 = 0.

Find a finite set of vectors which spans W,

39
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5. Let I be a field and let n be a positive integer (n > 2). Let V be the vector
space of all n X n matrices over F. Which of the following sets of matrices A in V
are subspaces of V?

(a) all invertible A;

(b) all non-invertible A;

(c) all A4 such that AB = BA, where B is some fixed matrix in V;
(d) all A such that A2 = A.

6. (a) Prove that the only subspaces of R! are R! and the zero subspace.

(b) Prove that a subspace of R? is R? or the zero subspace, or consists of all
scalar multiples of some fixed vector in R2, (The last type of subspace is, intuitively,
a straight line through the origin.)

(c¢) Can you describe the subspaces of R%?

7. Let W, and W, be subspaces of a vector space V such that the set-theoretic
union of Wy and W, is also a subspace. Prove that one of the spaces W; is contained
in the other.

8. Let V be the vector space of all functions from R into R; let V. be the
subset of even functions, f(—x) = f(z); let V, be the subset of odd functions,

f(~x) = —f(x).

(a) Prove that V, and V, are subspaces of V.
(b) Prove that V. + V, = V.
(¢) Prove that V,N V, = {0}.

9. Let W, and W, be subspaces of a vector space V such that W, + W, =V
and Wy N W, = {0}. Prove that for each vector « in V there are unique vectors
arin Wy and a; in W, such that o = a1 + .

2.3. Bases and Dimension

We turn now to the task of assigning a dimension to certain vector
spaces. Although we usually associate ‘dimension’ with something geomet-
rical, we must find a suitable algebraic definition of the dimension of a
vector space. This will be done through the concept of a basis for the space.

Definition. Let V be a vector space over F. A subset S of V is said to
be linearly dependent (or simply, dependent) if there exist distinct vectors
ay oy ..., an tn S and scalars ¢y, ¢y . . ., €y tn F, not all of which are 0,
such that

cion + ceag - v + Cpoy = 0.

A set which is not linearly dependent is called linearly independent. If
the set S contains only finitely many vectors ay, s, . . ., an, we sometimes say
that oy, @y, ..., a, are dependent (or independent) instead of saying S is
dependent (or independent).
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The following are easy consequences of the definition.

1. Any set which contains a linearly dependent set is linearly de-
pendent.

2. Any subset of a linearly independent set is linearly independent.

3. Any set which contains the 0 vector is linearly dependent; for
1-0=0.

4, A set S of vectors is linearly independent if and only if each finite
subset of S is linearly independent, i.e., if and only if for any distinet
vectors ay, . . ., a, of S, ¢y + -+ - + ¢,a, = 0 implies each ¢; = 0.

Definition. Let V be a vector space. A basis for V is a linearly inde-
pendent set of vectors in V which spans the space V. The space V 1s finite-
dimensional if it has a finite basis.

ExampLE 12. Let F be a subfield of the complex numbers. In F3 the
vectors

a=( 3,0, —3)
a=(-11, 2)
o3 = ( 4, 2, _2)
a=( 2,1, 1)

are linearly dependent, since

201 + 203 — a3 +0 - ay = 0.
The vectors

€1 = (1; 0; 0)
€2 = (O) 1; 0)
€3 = (0) 01 1)

are linearly independent

ExampLE 13. Let F be a field and in F let S be the subset consisting

of the vectors e, €, . . ., €. defined by

a=(1,00,...,0)

e=1(010...,0)

e =(0,0,0,...,1).
Let xy, @2, . . ., x, be scalars in F and put a@ = z16 + Zaes + - -+ + Trén.
Then
(2-12) a = (T, Ty« o vy Tn)
This shows that e,...,e, span F». Since a = 0 if and only if x; =
Ty = -+ =z, =0, the vectors ¢, . .., ¢, are linearly independent. The
set S = {e1, ..., €. is accordingly a basis for F», We shall call this par-

ticular basis the standard basis of F*.
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ExampLE 14. Let P be an invertible n X n matrix with entries in
the field F. Then Py, . . ., P,, the columns of P, form a basis for the space
of column matrices, F'7%1, We see that as follows. If X is a column matrix,
then

P.X=S(31P1+ e +ann

Since PX = 0 has only the trivial solution X = 0, it follows that
{Py, ..., P,} is a linearly independent set. Why does it span F=*1? Let ¥
be any column matrix. If X = P—'Y, then V = PX, that is,

Y=.’131P1+ . +$nPn.
So {Py, ..., P,} is a basis for F»x1,

ExamrLe 15. Let A be an m X n matrix and let S be the solution
space for the homogeneous system AX = 0 (Example 7). Let R be a row-
reduced echelon matrix which is row-equivalent to A. Then S is also the
solution space for the system RX = 0. If R has r non-zero rows, then the
system of equations RX = 0 simply expresses r of the unknowns zy, . . . , Z»
in terms of the remaining (n — r) unknowns z,. Suppose that the leading
non-zero entries of the non-zero rows occur in columns ky, ..., k,. Let J
be the set consisting of the n — r indices different from ky, . . ., k,:

J={1,...,n — {ky, ..., ko}.
The system RX = 0 has the form
Ly + ?’: cl,-xj = 0

x, + ? Crit; =0

where the ¢;; are certain scalars. All solutions are obtained by assigning
(arbitrary) values to those z,’s with j in J and computing the correspond-
ing values of ay,, . . ., 4. For each j in J, let E; be the solution obtained
by setting z; = 1 and z; = 0 for all other 7 in J. We assert that the (n — )
vectors E;, 7 in J, form a basis for the solution space.

Since the column matrix £; has a 1 in row j and zeros in the rows
indexed by other elements of J, the reasoning of Example 13 shows us
that the set of these vectors is linearly independent. That set spans the
solution space, for this reason. If the column matrix 7, with entries
ty, . .+, ts, is in the solution space, the matrix

N = E tjEj
J
is also in the solution space and is a solution such that z; = ¢; for each

j in J. The solution with that property is unique; hence, N = T and T is
in the span of the vectors £;.
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ExampLE 16. We shall now give an example of an infinite basis. Let
F be a subfield of the complex numbers and let V be the space of poly-
nomial functions over F. IRecall that these functions are the functions
from F into F which have a rule of the form

f@) = c+caz+ - + caam

Let fi(z) = a1, k = 0,1, 2, . ... The (infinite) set {fo, f1, f2, - - -} is a basis
for V. Clearly the set spans V, because the function f (above) is

f=cafot+afi+ - + cufn

The reader should see that this is virtually a repetition of the definition
of polynomial function, that is, a function f from F into F is a polynomial
function if and only if there exists an integer n and scalars ¢, . . . , ¢, such
that f = cofo + - - - + ¢.fn. Why are the functions independent? To show
that the set {fo, fi, fo, . . .} is independent means to show that each finite
subset of it is independent. It will suffice to show that, for each n, the set
{for . .., fa} is independent. Suppose that

cofo+ -+ +cafn = 0.
This says that
Cot+cx+ - Fcax"=0

for every z in F; in other words, every z in F is a root of the polynomial
f@) = co+ c1x + -+ + cac®. We assume that the reader knows that a
polynomial of degree n with complex coefficients cannot have more than n
distinet roots. It follows that ¢o = ¢, = «-- = ¢, = 0.

We have exhibited an infinite basis for V. Does that mean that V is
not finite-dimensional? As a matter of fact it does; however, that is not
immediate from the definition, because for all we know V might also have
a finite basis. That possibility is easily eliminated. (We shall eliminate it
in general in the next theorem.) Suppose that we have a finite number of
polynomial functions gy, . . ., ¢.. There will be a largest power of 2 which
appears (with non-zero coefficient) in ¢:1(x), . . ., ¢.(z). If that power is £k,
clearly fi41(@) = 2**!is not in the linear span of ¢1,...,¢. So V is not
finite-dimensional.

A final remark about this example is in order. Infinite bascs have
nothing to do with ‘infinite linear combinations.” The reader who feels an
irresistible urge to inject power series

o
E Ck.’lik
k=0

into this example should study the example carefully again. If that does
not effect a cure, he should consider restricting his attention to finite-
dimensional spaces from now on.
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Theorem 4. Let V be a vector space which is spanned by a finite set of
vectors B1, Bsy - - -, Bm- Then any independent set of vectors in 'V s finite and
contains no more than m elements.

Proof. To prove the theorem it suffices to show that every subset
S of V which contains more than m vectors is linearly dependent. Let S be
such a set. In S there are distinct vectors oy, @, . .., o, where n > m.
Since 8, . . ., Bn span V, there exist scalars A;; in F such that

aj = 472?1 A,’jﬁ,‘.

For any n scalars a;, @2, . . ., T, we have

n

E Xy
J=1

Ty + oo A Teen

3 z; gl A

jsl =

Il

=3 § (A yz;)B:
1i=1

j=11i=
= % (g A'ijxj)ﬁi-
=1 \7j=1

Since n > m, Theorem 6 of Chapter 1 implies that there exist scalars
x1, Ly . + -, T, DOt all 0 such that

7

Hence xy0y + 200 + -+ + %o, = 0. This shows that S is a linearly
dependent set. |

Aij.?:jmo, ISiSm.
=1

Corollary 1. If V is a finite-dimensional vector space, then any two
bases of V have the same ( finite) number of elements.

Proof. Since V is finite-dimensional, it has a finite basis

{ﬁll ﬁﬂ) L] Bm}~
By Theorem 4 every basis of V is finite and contains no more than m
elements. Thus if {a, as, . .., a,} is a basis, n < m. By the same argu-

ment, m < n. Hencem = n. |

This corollary allows us to define the dimension of a finite-dimensional

" vector space as the number of elements in a basis for V. We shall denote

the dimension of a finite-dimensional space V by dim V. This allows us
to reformulate Theorem 4 as follows.

Corollary 2. Let V be a finite-dimensional vector space and let n ==
dim V. Then
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(a) any subset of V which contains more than n wvectors is linearly
dependent,
(b) no subset of V which contains fewer than n vectors can span V.

ExampLE 17. If F is a field, the dimension of F* is n, because the
standard basis for F* contains n vectors. The matrix space F™" has
dimension mn. That should be clear by analogy with the case of F», be-
cause the mn matrices which have a 1 in the 7, j place with zeros elsewhere
form a basis for F™<, If A is an m X n matrix, then the solution space
for A has dimension n — r, where r is the number of non-zero rows in a
row-reduced echelon matrix which is row-equivalent to 4. See Example 15.

If V is any vector space over F, the zero subspace of V is spanned by
the vector 0, but {0} is a linearly dependent set and not a basis. For this
reason, we shall agree that the zero subspace has dimension 0. Alterna-
tively, we could reach the same conclusion by arguing that the empty set
is a basis for the zero subspace. The empty set spans {0}, because the
intersection of all subspaces containing the empty set is {0}, and the
empty set is linearly independent because it contains no vectors.

Lemma. Let S be a linearly independent subset of a vector space V.
Suppose B 1s a vector in 'V which is not in the subspace spanned by S. Then
the set obtained by adjoining G to S is linearly independent.

Proof. Suppose ay, . . ., a, are distinct vectors in S and that
01a1+ ce +cmam+b‘ = 0.

Then b = 0; for otherwise,

ﬂ-—-(—%)a1+~~+(—9§)am

and B is in the subspace spanned by S. Thus ¢y + -+ + cmom = 0, and
since S is a linearly independent set each ¢; = 0. |

Theorem 5. If W is a subspace of a finite-dimensional vector space V,
every linearly independent subset of W 1s finite and is part of a (finite) basis
for W,

Proof. Suppose Sy is a linearly independent subset of W. If S is
a ‘inearly independent subset of W containing S, then S is also a linearly
independent subset of V; since V is finite-dimensional, S contains no more
than dim V elements.

We extend S, to a basis for W, as follows. If S, spans W, then Sy is a
basis for W and we are done. If Sy does not span W, we use the preceding
lemma to find a vector 8; in W such that the set S; = Sy U {81} is inde-
pendent. If S; spans W, fine. If not, apply the lemma to obtain a vector 8,
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in W such that S, = S; U {B:} is independent. If we continue in this way,
then (in not more than dim V steps) we reach a set

Sm= SOU {61)- . )Bm}
which is a basis for W. |

Corollary 1. If W s a proper subspace of a finite-dimensional vector
space V, then W 1s finite-dimensional and dim W < dvm V.

Proof. We may suppose W contains a vector @ # 0. By Theorem
5 and its proof, there is a basis of W containing a which contains no more
than dim V elements. Hence W is finite-dimensional, and dim W < dim V.
Since W is a proper subspace, there is a vector 8 in V which is not in W.
Adjoining 8 to any basis of W, we obtain a linearly independent subset
of V. Thus dim W < dim V. ||

Corollary 2. In a finite-dimensional vector space V every non-empty
linearly tndependent set of vectors is part of a basts.

Corollary 3. Let A be an n X n matrix over a field I, and suppose the
row vectors of A form a linearly independent set of vectors in F», Then A us
invertible.

Proof. Let oy, @y, . . ., a, be the row vectors of A, and suppose
W is the subspace of F» spanned by aj, @, . . ., @, Since aj, ag, . . ., aa
are linearly independent, the dimension of W is n. Corollary 1 now shows
that W = F». Hence there exist scalars B;; in F such that

€; = ;‘_,B,-ja,-, IS'LS’H
i=1
where {e, €, - . ., &} is the standard basis of F». Thus for the matrix B
with entries B;; we have
BA =1 |

Theorem 6. If W1 and W, are finite-dimensional subspaces of a vector

space V, then Wy 4+ W, is finite-dimensional and
dim Wi + dim Wy = dim (W1 N Wy) + dim (W1 + W,).

Proof. By Theorem 5 and its corollaries, W, (M W, has a finite
basis {ay, . .., e} which is part of a basis

{a1, ey O, 61, ey ﬁm} for W1

and part of a basis

{fay, oy am vy, ..., vap for Wa
The subspace W, + W, is spanned by the vectors

Qly o v oy Qg ﬁly'-';IBm; Yoo 0y Un
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and these vectors form an independent set. For suppose
2o+ 2yB;+ Zzy, =0.
Then
— 2z, = 2xia; + 2 y,B;
which shows that 2 z,v, belongs to W, As 2 z,y, also belongs to W, it
follows that
2 2eYr = 2 cia;

for certain scalars ¢y, . . ., cv. Because the set

{al’---)ak’ Y1, - - w’yn}
is independent, each of the scalars 2 = 0. Thus

Drios + 2 yiBi =0
and since
{a])' . ')ak’ 1817' . '!677}}

is also an independent set, each z; = 0 and each y; = 0. Thus,

{al,"',ak) 617"'}:37’” 717"‘77‘!},}
is a basis for W{ 4+ W,. Finally

dim W, 4+ dim W, = (k 4+ m) + (k + n)
=k+ (m+k+n)
= dim (Wlﬂ Wz) + dim (W1+W2)- l

Let us close this section with a remark about linear independence
and dependence. We defined these concepts for sets of vectors. It is useful
to have them defined for finite sequences (ordered nm-tuples) of vectors:
ay...,a, We say that the vectors a), . . ., a, are linearly dependent
if there exist scalars ¢y, . . ., ¢,, not all 0, such that ¢ja; + -+« + ¢ran = 0.
This is all so natural that the reader may find that he has been using this
terminology already. What is the difference between a finite sequence
ay...,a, and a set {aj ..., a,? There are two differences, identity
and order.

If we discuss the set {ay, ..., a,}, usually it is presumed that no
two of the vectors ay, . .., a, are identical. In a sequence ay, . . ., a, all
the a’s may be the same vector. If a; = «; for some 7 5 7, then the se-
quence ay, . . ., a, Is linearly dependent:

a; + (—l)aj = 0

Thus, if oy, ..., a, are linearly independent, they are distinct and we
may talk about the set {aj, ..., a,} and know that it has n vectors in it.
So, clearly, no confusion will arise in discussing bases and dimension. The
dimension of a finite-dimensional space V is the largest n such that some
n-tuple of vectors in V is linearly independent—and so on. The reader

47



48

Vector Spaces Chap. 2

who feels that this paragraph is much ado about nothing might ask him-
self whether the vectors

a = (e, 1)

a, = (V110, 1)
are linearly independent in R2,

The elements of a sequence are enumerated in a specific order. A set
is a collection of objects, with no specified arrangement or order. Of
course, to describe the set we may list its members, and that requires
choosing an order. But, the order is not part of the set. The sets {1, 2, 3, 4}
and {4, 3, 2, 1} are identical, whereas 1, 2, 3, 4 is quite a different sequence
from 4, 3, 2, 1. The order aspect of sequences has no bearing on ques-
tions of independence, dependence, etc., because dependence (as defined)
is not affected by the order. The sequence ay, . . ., a; is dependent if and
only if the sequence aj, . . ., a, is dependent. In the next section, order
will be important.

Exercises

1. Prove that if two vectors are linearly dependent, one of them is a scalar
multiple of the other.

2. Are the vectors

o) = (1; 1,2, 4)’ Qay = (2) -1, ‘51 2)
az = (1, —1, —4,0), as = (2, 1, 1, 6)

linearly independent in E4?
3. Find a basis for the subspace of R*spanned by the four vectors of Exercise 2.
4. Show that the vectors
a=(1,0,-1), ar=(1,2,1), «az=(0,-3,2)

form a basis for R®. Express each of the standard basis vectors as linear combina-
tions of ay, as, and as.

5. Find three vectors in R® which are linearly dependent, and are such that
any two of them are linearly independent.

6. Let V be the vector space of all 2 X 2 matrices over the field F. Prove that V
has dimension 4 by exhibiting a basis for V which has four elements.

7. Let V be the vector space of Exercise 6. Let Wi be the set of matrices of the

fOrm
[ z]
y

and let W, be the set of matrices of the form

[ <]
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(a) Prove that W, and W, are subspaces of V.
(b) Find the dimensions of Wy, Wi, W, + Ws, and Wi N Wo.

8. Again let V be the space of 2 X 2 matrices over F. Find a basis {41, Az, 43, A4}
for V such that A = A; for each j.

9. Let V be a vector space over a subfield F of the complex numbers. Suppose
a, 3, and v are linearly independent vectors in V. Prove that (a« + 8), (8 + ),
and (v + «) are linearly independent.

10. Let V be a vector space over the field F. Suppose there are a finite number
of vectorsay, . . ., @, in V which span V., Prove that V is finite-dimensional.

11. Let V be the set of all 2 X 2 matrices A with complex entries which satisfy
An + A = 0.

(a) Show that V is a vector space over the field of real numbers, with the
usual operations of matrix addition and multiplication of a matrix by a scalar.

(b) Find a basis for this vector space.

(¢) Let W be the set of all matrices A in V such that Ay = —ZA;; (the bar
denotes complex conjugation). Prove that W is a subspace of V and find a basis
for W.

12. Prove that the space of all m X n matrices over the field ' has dimension mn,
by exhibiting a basis for this space.

13. Discuss Exercise 9, when V is a vector space over the field with two elements
described in Exercise 5, Section 1.1,

14, Let V be the set of real numbers. Regard V as a vector space over the field
of rational numbers, with the usual operations. Prove that this vector space is not
finite-dimensional.

49

2.4. Coordinates

One of the useful features of a basis ® in an n-dimensional space V is
that it essentially enables one to introduce coordinates in V analogous to
the ‘natural coordinates’ x; of a vector @ = (y,. .., x,) in the space F™
In this scheme, the coordinates of a vector « in V relative to the basis ®
will be the scalars which serve to express « as a linear combination of the
vectors in the basis. Thus, we should like to regard the natural coordinates
of a vector a in F* as being defined by « and the standard basis for F~;
however, in adopting this point of view we must exercise a certain amount
of care. If

a= (T, ...,%L,) = 2 T

and ® is the standard basis for F», just how are the coordinates of « deter-
mined by ® and a? One way to phrase the answer is this. A given vector a
has a unique expression as a linear combination of the standard basis
vectors, and the ¢th coordinate z; of « is the coefficient of ¢; in this expres-
sion. From this point of view we are able to say which is the 7th coordinate
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because we have a ‘natural’ ordering of the vectors in the standard basis,
that is, we have a rule for determining which is the ‘first’ vector in the
basis, which is the ‘second,” and so on. If ® is an arbitrary basis of the
n-dimensional space V, we shall probably have no natural ordering of the
vectors in ®, and it will therefore be necessary for us to impose some
order on these vectors before we can define ‘the ith coordinate of « rela-
tive to ®.” To put it another way, coordinates will be defined relative to
sequences of vectors rather than sets of vectors.

Definition. If V s a finite-dimensional vector space, an ordered basis
forV is a finite sequence of vectors which is linearly independent and spans V.

If the sequence «y, . .., a, is an ordered basis for V, then the set
{ay, . . ., a,} is a basis for V. The ordered basis is the set, together with
the specified ordering. We shall engage in a slight abuse of notation and
describe all that by saying that

(B={a1,...,an}

is an ordered basis for V.
Now suppose V is a finite-dimensional vector space over the field F
and that

® = {o, ..., o
is an ordered basis for V. Given « in V, there is a unique n-tuple
(%1, . + ., x,) of scalars such that

n
a = 2 Ty,
1

7=

The n-tuple is unique, because if we also have

o = E 20
iwl

then

n

2 (xi—2)a; =0

i=1
and the linear independence of the «; tells us that z; — z; = 0 for each 7.
We shall call z; the ith coordinate of o relative to the ordered basis

® = {al,...,an}.
If

B = _é Yioi
then
atB= 2 @+ yu

so that the 7th coordinate of (a 4 8) in this ordered basis is (z: + ¥)-
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Similarly, the ith coordinate of (ca) is cxi. One should also note that every
n-tuple (z, . . ., r,) in F" is the n-tuple of coordinates of some vector in
V, namely the vector

n
2 X0,
i=1

To summarize, each ordered basis for V determines a one-one
correspondence
a_)(xl,---;xn)

between the set of all vectors in V and the set of all n-tuples in F». This
correspondence has the property that the correspondent of (a + ) is the
sum in F* of the correspondents of o and 8, and that the correspondent
of (ca) is the product in F» of the scalar ¢ and the correspondent of «.

One might wonder at this point why we do not simply select some
ordered basis for V and describe each vector in V by its corresponding
n-tuple of coordinates, since we would then have the convenience of oper-
ating only with n-tuples. This would defeat our purpose, for two reasons.
First, as our axiomatic definition of vector space indicates, we are attempt-
ing to learn to reason with vector spaces as abstract algebraic systems.
Second, even in those situations in which we use coordinates, the signifi-
cant results follow from our ability to change the coordinate system, i.e.,
to change the ordered basis.

Frequently, it will be more convenient for us to use the coordinate
matrix of « relative to the ordered basis ®:

Xy
X =
Ln
rather than the n-tuple (zy, . .., z,) of coordinates. To indicate the de-
pendence of this coordinate matrix on the basis, we shall use the symbol
[a]a

for the coordinate matrix of the vector « relative to the ordered basis ®.
This notation will be particularly useful as we now proceed to describe
what happens to the coordinates of a vector o as we change from one
ordered basis to another.

Suppose then that V is n-dimensional and that

®={a...,a,}) and ® = {ai,...,an}
are two ordered bases for V. There are unique scalars P;; such that
(2-13) aj= 2 Pyja, 1<j<n
i=1

Let 23, . . ., z; be the coordinates of a given vector « in the ordered basis
®’. Then
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a =2zl + -+ + zhom

L
E e ]
i=1

n , n
2 z; 2 Pija

i=1 i=1

3 3 (P

j=1i=1
=2 <E Pijl‘;) .
i=1 \j=1
Thus we obtain the relation
(2-14) a= 2 (E P,’,‘ZI};) ;.
i=1 \j=1
Since the coordinates zy, Zy, . . ., Z. of @ in the ordered basis ® are uniquely

determined, it follows from (2-14) that

n

(2-15) X; = E Pi,-x§, 1 ;<_ 7 S n.
=1

Let P be the n X n matrix whose 4, j entry is the scalar P,;, and let X and
X’ be the coordinate matrices of the vector a in the ordered bases ® and
®'. Then we may reformulate (2-15) as

(2-16) X = PX’.

Since ® and ®’ are linearly independent sets, X = 0if and only if X’ = 0.
Thusfrom (2-16) and Theorem 7 of Chapter 1, it followsthat P isinvertible.
Hence

(2-17) X' = PtX,

If we use the notation introduced above for the coordinate matrix of a
vector relative to an ordered basis, then (2-16) and (2-17) say

[ale = Plae
[a]ay = P—‘[a]m.

Thus the preceding discussion may be summarized as follows.
Theorem 7. Let V be an n-dimensional vector space over the field F,

and let ® and ®' be two ordered bases of V. Thenthere is a unique, necessarily
invertible, n X n matriz P with entries in F such that

) [a¢la = Plale
(ii) [e)e = P [ale

for every vector a tn V. The columns of P are given by

Pi=[ofls, i=1...,n
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To complete the above analysis we shall also prove the following
result.

Theorem 8. Suppose P is an n X n tnvertible matriz over F. Let V
be an n-dimensional vector space over F, and let ® be an ordered basis of V.
Then there is a unique ordered basts ®' of V such that

@) [¢]e = Plale
(ii) [aler = P~'[als
for every vector a tn V.
Proof. Let ® consist of the vectors aj,...,a, If ® =
{a1, ..., an} is an ordered basis of V for which (i) is valid, it is clear that

n

’

aj = E Pija;.
i=1

Thus we need only show that the vectors «j, defined by these equations,
form a basis. Let @ = P~ Then

2 Qi = 2 Qi Z Pija
j i i
=2 2 PiQik a
J 1
PiiQinY et
‘? (:2 JQJk) o

[

= .
Thus the subspace spanned by the set
® = {ai,...,an

contains ® and hence equals V. Thus ®’ is a basis, and from its definition
and Theorem 7, it is clear that (i) is valid and hence also (ii). ||

ExamprLE 18. Let F be a field and let
o= (T, Toy ..., Tn)
be a vector in F™. If ® is the standard ordered basis of F*,
® = {e,. .., €
the coordinate matrix of the vector « in the basis ® is given by

)
T2

2

[alg =
Ln,
ExaMpLE 19. Let R be the field of the real numbers and let 6 be a
fixed real number. The matrix

cos 8 —sin @
P = [sin 6  cos 0]
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is invertible with inverse,
- cosf sin 6 _
P [—sin 6 cosé

Thus for each 8 the set ® consisting of the vectors (cos 6, sin ), (—sin 6,
cos 6) is a basis for R?; intuitively this basis may be described as the one
obtained by rotating the standard basis through the angle 6. If « is the

vector (z;, x2), then
[o] [— "o ][ 1]
® sinf cos 0|,

1= x,¢080 + xz55in 6
Ty = —x;8in @ + x cos 6.

or

ExampLE 20. Let F be a subfield of the complex numbers. The matrix

-1 4 5
P = 0 2 -3
00 8]
is invertible with inverse
-1 2 i
P = 0 3 +&
00 %]
Thus the vectors
“i = (_1) 0: 0)
a=(4 20

forma basis ®’ of F3. The coordinates x1, x$, z5 of the vector a = (z3, x2, 73)
in the basis ®' are given by

i —x; + 225 + Yy -1 2 &l

14 p— 1 ks _—
T2 | = 222 + T.%x:i = 0 % T% T2 |
x4 1xs 0 0 % |l

In particular,
(3,2, —8) = —10af — 3a3 — ai.

Exercises

1. Show that the vectors

(1; I)Oy 0)) Qg = (0; 051!1)

(1,0,0, 4), as = (0,0,0,2)

form a basis for B4 Find the coordinates of each of the standard basis vectors
in the ordered basis {a1, s, o, ).

([

ay
[e4]
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2. Find the coordinate matrix of the vector (1, 0, 1) in the basis of C? consisting
of the vectors (21, 1, 0), (2, —1, 1), (0,1 47, 1 — 2), in that order.

3. Let ® = {ay, @y, a3} be the ordered basis for R? consisting of
a; = (1,0, -1), a2=(1)1;1)) ag = (1)0;0)
What are the coordinates of the vector (a, b, ¢) in the ordered basis B?

4. Let W be the subspace of C3 spanned by a; = (1,0,7) and ap = (1 + ¢, I, —1).
(a) Show that oy and a; form a basis for W.
(b) Show that the vectors 8, = (1, 1,0) and 8 = (1,¢,1 + 1) are in W and
form another basis for W.

(c) What are the coordinates of @; and a; in the ordered basis {8,, 3z} for W?
5. Let @ = (1, z2) and 8 = (y1, ¥2) be vectors in R?such that
T + xy2 = 0, 4=yt yi=1

Prove that @ = {a, 8} is a basis for R2 Find the coordinates of the vector (a, b)
in the ordered basis B = {a, 8}. (The conditions on @ and 8 say, geometrically,
that a and 8 are perpendicular and each has length 1.)

6. Let V be the vector space over the complex numbers of all functions from R
into C, i.e., the space of all complex-valued functions on the real line. Let fi(z) = 1,
fao(x) = €=, fi(x) = e7i=,

(a) Provethat f), fo, and f; are linearly independent.

(b) Let gi(x) = 1, g2(x) = cos z, gs(z) = sin z. Find aninvertible3 X 3 matrix
P such that

gi = él Pifs.
7. Let V be the (real) vector space of all polynomial functions from R into R

of degree 2 or less, i.e., the space of all functions f of the form

f(@) = ¢ + cix + cox®
Let ¢ be a fixed real number and define

p@) =1, @@ =z+t g =(z+ )%

Prove that ® = {g1, gs, g5} is a basis for V. If

f@) = co+ ez + c?

what are the coordinates of f in this ordered basis ®?

56

2.5. Summary of Row-Equivalence

In this section we shall utilize some elementary facts on bases and
dimension in finite-dimensional vector spaces to complete our discussion
of row-equivalence of matrices. We recall that if A is an m X n matrix
over the field F the row vectors of A are the vectors oy, ..., a, in F*
defined by

a; = Ay, ..., 4i)
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and that the row space of A is the subspace of F* spanned by these vectors.
The row rank of A4 is the dimension of the row space of A.
If P is a k X m matrix over F, then the product B = PAisak X n

matrix whose row vectors jy, . . ., B are linear combinations
Bi = Paoy + -+ + Pimotm

of the row vectors of A. Thus the row space of B is a subspace of the row
space of 4. If P is an m X m invertible matrix, then B is row-equivalent
to A so that the symmetry of row-equivalence, or the equation A = P~'B,
implies that the row space of A is also a subspace of the row space of B.

Theorem 9. Row-equivalent matrices have the same row space.

Thus we see that to study the row space of A we may as well study
the row space of a row-reduced echelon matrix which is row-equivalent
to A. This we proceed to do.

Theorem 10. Let R be a non-zero row-reduced echelon matrixz. Then
the mon-zero row vectors of R form a basis for the row space of R.
Proof. Let py, ..., p, be the non-zero row vectors of R:
' pi = (Ril; sy Riﬂ)'

Certainly these vectors span the row space of F; we need only prove they
are linearly independent. Since R is a row-reduced echelon matrix, there

are positive integers ky, . . ., k, such that, forz < r
@) RG ) =0 if j<k
(2-18) (b) R(, k;) = b
) k< -+ <y
Suppose 8 = (by, ..., b,) is a vector in the row space of R:
(2"19) B =ep+ - + Cpr
Then we claim that ¢; = bi. For, by (2-18)
(2-20) bi, = 3 oRG, k;)
i=1
= Zr) €045
i=1
= Cj.
In particular, if 3 = 0, i.e., if ¢;p1 + + -+ + ¢pr = 0, then ¢; must be the
k;th coordinate of the zero vector so that ¢; = 0, 7= 1,...,r. Thus
Piy. . ., py are linearly independent. ||

Theorem 11. Let m and n be positive integers and let F be a field.
Suppose W is a subspace of F» and dim W < m. Then there is precisely one
m X n row-reduced echelon matrix over I which has W as its row space.
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Proof. There is at least one m X n row-reduced echelon matrix
with row space W. Since dim W < m, we can select some m vectors
ay, . ..,a, in W which span W. Let A be the m X n matrix with row
vectors ay, . . ., a, and let R be a row-reduced echelon matrix which is
row-equivalent to A. Then the row space of R is W.

Now let R be any row-reduced echelon matrix which has W as its row
space. Let py, . . ., p, be the non-zero row vectors of R and suppose that
the leading non-zero entry of p; occurs in column ki, ¢ = 1,...,r. The
vectors py, . . ., pr form a basis for W. In the proof of Theorem 10, we
observed that if 8 = (b, ..., b,) isin W, then

B = cp + -+ + ¢rpr,

and ¢; = bg,; in other words, the unique expression for 8 as a linear com-
bination of py, . . ., pri8

(2-21) B=3 bupe
=1

Thus any vector gis determined if one knows the coordinates bz, =1, ...,
r. For example, p, is the unique vector in W which has k,th coordinate 1
and k;th coordinate 0 for ¢ ¢ s.

Suppose B is in W and g ¢ 0. We claim the first non-zero coordinate
of 8 oceurs in onc of the columns k.. Since

B = ‘21 bkip‘i
and 8 # 0, we can write

(2-22) 8= 3 bups b #0,

g

From the conditions (2-18) one has R;; = 0if ¢ > sand j < k.. Thus
B=(0,...,0, bgy...,ba), br, # 0

and the first non-zero coordinate of 8 occurs in column k,. Note also that
for each &k, s = 1, ..., r, there exists a vector in W which has a non-zero
k.th coordinate, namely p,.

It is now clear that R is uniquely determined by W. The description
of R in terms of W is as follows. We consider all vectors 8 = (by, ..., b,)
in W. If g = 0, then the first non-zero coordinate of 8 must occur in some
column ¢:

B=1(,...,0, b,...,b,), b, # 0.
Let ki, . . ., k. be those positive integers ¢ such that there is some 8 # 0
in W, the first non-zero coordinate of which occurs in column ¢. Arrange
ki, ..., k. in the order k; < k2 < .-+ < k,. For each of the positive

integers k, there will be one and only one vector p, in W such that the
ksth coordinate of p; is 1 and the k;th coordinate of p, is O for ¢ = s. Then
R is the m X n matrix which has row vectors p, . . ., p, 0,...,0. |
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Corollary. Each m X n matriz A is row-equinalent to one and only
one row-reduced echelon matrix.

Proof. We know that A is row-equivalent to at least one row-
reduced echelon matrix R. If A is row-equivalent to another such matrix
R’, then R is row-equivalent to R’; hence, R and R’ have the same row
space and must be identical. |

Corollary. Let A and B be m X n matrices over the field I'. Then A
and B are row-equivalent if and only if they have the same row space.

Proof. We know that if A and B are row-equivalent, then they
have the same row space. So suppose that A and B have the same row
space. Now A is row-equivalent to a row-reduced echelon matrix B and
B is row-equivalent to a row-reduced echelon matrix R’. Since A and B
have the same row space, R and R’ have the same row space. Thus B = R’
and A is row-equivalent to B. |

To summarize—if A and B are m X n matrices over the field F, the
following statements are equivalent:

1. A and B are row-equivalent.
2. A and B have the same row space.
3. B = PA, where P is an invertible m X m matrix.

A fourth equivalent statement is that the homogeneous systems
AX =0 and BX = 0 have the same solutions; however, although we
know that the row-equivalence of A and B implies that these systems
have the same solutions, it seems best to leave the proof of the converse
until later.

2.6. Computations Concerning Subspaces

We should like now to show how elementary row operations provide
a standardized method of answering certain concrete questions concerning
subspaces of F». We have already derived the facts we shall need. They
are gathered here for the convenience of the reader. The discussion applies
to any n-dimensional vector space over the field F, if one selects a fixed

ordered basis ® and describes each vector ain V by the n-tuple (xy, . . ., x,)
which gives the coordinates of « in the ordered basis ®&.
Suppose we are given m vectors ay, . . ., a,, in F*. We consider the

following questions.

1. How does one determine if the vectors ey, ..., a, are linearly
independent? More generally, how does one find the dimension of the
subspace W spanned by these vectors?
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2. Given 8 in F», how does one determine whether 8 is a linear com-
bination of ay, . . ., am, i.e., whether 8 is in the subspace W?
3. How canone give an explicit description of the subspace W?

The third question is a little vague, since it does not specify what is
meant by an ‘explicit description’; however, we shall clear up this point
by giving the sort of description we have in mind. With this deseription,
questions (1) and (2) can be answered immediately.

Let A be the m X n matrix with row vectors a;:

a; = (Aﬂ, PR ,Ai,,).
Perform a sequence of elementary row operations, starting with A and
terminating with a row-reduced echelon matrix B. We have previously

described how to do this. At this point, the dimension of W (the row space
of A) is apparent, since this dimension is simply the number of non-zero

row vectors of R. If py, ..., p, are the non-zero row vectors of I, then
® = {py,...,pr is a basis for W. If the first non-zero coordinate of p; is
the k;th one, then we have fors < r

(a) R@E,j) =0, if j<ki

(b) R, k)) = &

(c) ki < -0 <k

The subspace W consists of all vectors

B=Clpl+ s +Crpr

r
= E Ci(R“, ey Riﬂ).
i=1
The coordinates by, . . ., b, of such a vector 3 are then
r
(2-23) b = 3 clbi
im1
In particular, by, = c¢;, and so if 8 = (b, ..., bs) is a linear combination

of the p,, it must be the particular linear combination

(2-24) f=2 bisps.
The conditions on 8 that (2-24) should hold are
(2-25) bi= 2 Ray J=1...,n

i=1
Now (2-25) is the explicit description of the subspace W spanned by
ay, . . ., 0 that is, the subspace consists of all vectors 8 in F» whose co-
ordinates satisfy (2-25). What kind of description is (2-25)? In the first
place it describes W as all solutions 8 = (by, ..., b,) of the system of

homogeneous linear equations (2-25). This system of equations is of a
very special nature, because it expresses (n — r) of the coordinates as
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linear combinations of the r distinguished coordinates by, . . ., b. One
has complete freedom of choice in the coordinates by, that is, if ¢, . . ., ¢

are any r scalars, there is one and only one vector 8 in W which has ¢; as
its k;th coordinate.

The significant point here is this: Given the vectors a;, row-reduction
is a straightforward method of determining the integersr, k, . . ., k, and
the scalars R;; which give the description (2-25) of the subspace spanned
by o4, ..., am One should observe as we did in Theorem 11 that every
subspace W of F» has a description of the type (2-25). We should also
point out some things about question (2). We have already stated how
one can find an invertible m X m matrix P such that R = PA, in Section
1.4. The knowledge of P enables one to find the scalars z,, . . ., m such
that

B = 211+ -+ + Tmotm

when this is possible. For the row vectors of R are given by
pi = 2 Pija;
i=1
so that if B isa linear combination of the «;, we have

B = Er br.ps
i=1

-z bk.g Pyja;
= =1

~ 3 3 buPuo

j=1li=1
and thus XT; == 2 bk,-P,','
i=1

is one possible choice for the z; (there may be many).

The question of whether 8 = (b, ..., b,) is a linear combination of
the «;, and if so, what the scalars z; are, can also be looked at by asking
whether the system of equations

ElAﬁx,-=b,-, j=1,...,’l’L
has a solution and what the solutions are. The coeflicient matrix of this
system of equations is the n X m matrix B with column vectorsay, . . . , am
In Chapter 1 we discussed the use of elementary row operations in solving
a system of equations BX = Y. Let us consider one example in which we
adopt both points of view in answering questions about subspaces of F.

ExampLe 21. Let us pose the following problem. Let W be the sub-
space of R* spanned by the vectors
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a=(1,2,21)
Qg == (0 2 0 )
a3 = ( 2 O _4 3)-
(a) Prove that ay, s, a3 form a basis for W, i.e., that these vectors

are linearly independent.

(b) Let 8 = (by, by, bs, ba) be a vector in W. What are the coordinates
of B relative to the ordered basis {o1, as, as}?

(¢) Let

ai = (1; 0; 2; 0)
a = (0,2,0,1)
a = (0,0,0,3).

Show that of, a3, o) form a basis for W.

(d) If gisin W, let X denote the coordinate matrix of 8 relative to
the a-basis and X’ the coordinate matrix of 8 relative to the o’~-basis. Find
the 3 X 3 matrix P such that X = PX’ for every such 8.

To answer these questions by the first method we form the matrix 4
with row vectors oy, as, a3, find the row-reduced echelon matrix B which
is row-equivalent to A and simultaneously perform the same operations
on the identity to obtain the invertible matrix @ such that R = QA

1 2 21 10 20
0 2 0 1|-R=]01 00
-2 0 —4 3 0 0 01

1 00 6 —6 0
01 0[-@Q=21f-2 5 —1
00 1 4 —4 2

(a) Clearly R has rank 3, so a;, @ and a3 are independent.

(b) Which vectors 8 = (b, by, bs, bs) are in W? We have the basis
for W given by py, ps, ps, the row vectors of R. One can see at a glance that
the span of p;, ps, p3 consists of the vectors 8 for which b; = 2b,. For such
a 8 we have

B = bipr + bepz + baps
[bb b2) b4]R
[bi by ba]QA

= nioq + Taap + Taerg

i

Where Ly = [b] b2 b4:|Q¢I

2= b~ %bz + 3b4
(2-26) Ty = —by + by — 2by
3 = — $bg + 3ba
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(¢) The vectors ai, as, a3 are all of the form (y1, Y2, ¥s, ya) With y3 = 2y,

and thus they are in W. One can see at a glance that they are independent.
(d) The matrix P has for its columns
Pj = [ajls

where ® = {1, a3, a3}. The equations (2-26) tell us how to find the co-
ordinate matrices for ai, o}, af. For example with 8 = a1 we have b; = 1,
b2=0,b3=2,b4=0,and

o= 1-30)+30= 1

2= —1+§0) — §0) = —1
n=  —0)+10) = o

Thus of = @ — as. Similarly we obtain o = ay and a} = 2a; — 205 + as.

Hence
1 0 2
P=|~11 -2
0 0 1

Now let us see how we would answer the questions by the second
method which we described. We form the 4 X 3 matrix B with column
vectors a;, ay, as:

1 0 -2
2 2 0
B = 2 0 —4
11 3

We inquire for which yi, ¥s, ¥3, ¥4 the system BX = Y has a solution.

1 0 -2 yﬂ [1 0 -2 %

2 2 0 v . 0 2 4 y, — 2y .

2 0 —4 ys 00 0 ¥ — 2y

1 1 3 Y4 _O 1 5 Ys — Y1
1 0 -2 V1| [1 0 0 w— 3y + 3w
0 0 —6 y»—2y|__ |0 0 1 22ys — y2)
01 5 Ys— 1 0 —uy+ &2 — 3us
00 0 Y3 — 2y1_ _0 00 Ys — 2y1

Thus the condition that the system BX = Y have a solution is y; = 2y,.
So 8 = (by, by bs, by) is in W if and only if bs = 2by. If 8 is in W, then the
coordinates (z;, x3, 3) in the ordered basis {a;, az, a3} can be read off from
the last matrix above. We obtain once again the formulas (2-26) for those
coordinates.

The questions (¢) and (d) are now answered as before.
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ExampLE 22. We consider the 5 X 5 matrix

1 2 0 30
12 -1 =10
A=10 0 1 4 0
2 4 1 10 1
00 0 01

and the following problems concerning A

(a) Find an invertible matrix P such that PA is a row-reduced
echelon matrix R.

(b) Find a basis for the row space W of A.

(¢) Say which vectors (by, by, b3, by, bs) are in W.

(d) Find the coordinate matrix of each vector (by, by, bs, bs, bs) in W
in the ordered basis chosen in (b).

(e) Write each vector (by, b, bs, by, bs) in W as a linear combination
of the rows of 4.

(f) Give an explicit description of the vector space V of all 5 X 1
column matrices X such that AX = 0.

(g) Find a basis for V.

(h) For what 5 X 1 column matrices ¥ does the equation AX = V
have solutions X?

To solve these problems we form the augmented matrix A’ of the
system AX = Y and apply an appropriate sequence of row operations
to A’.

12 0 0 12 0 30 n

1 2 —1 —1 0 00 —1 —4 0 —y+u

00 1 40 w|—|00 1 40 Ys —

2 4 1 10 1 y 00 1 41 -2 +u

00 0 0 1 s 00 0 01 s

12 0 3 0 n

01 40 Y — Ys

00000 —yt+wty|—

00001 —3ynt+y+us

(0 00 01 Ys
1 2030 0
001 40 Y1 — Y
00001 Ys
000O0O —th + Y2+ ys
¢ 00 00 —-3y+wytys—1ys
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(a) If
Y1
Y1 — Yo
Ys
=+ Y2 + Y3
=31+ Yo + Ys — s

PY

for all Y, then
1
1 -
P = 0
-1
-3

hence PA is the row-reduced echelon matrix

=D = O
S = OO0
o O C 0O

0
0
1
0
-1

<

Il

=

o

=
cCooww
oo ~=oO

It should be stressed that the matrix P is not unique. There are, in fact,
many invertible matrices P (which arise from different choices for the
operations used to reduce A’) such that PA = R.
(b) As a basis for W we may take the non-zero rows
pm=(1 2 0 3 0)
=0 0 1 4 0)
=0 0 0 0 1)
of R.
(¢) The row-space W consists of all vectors of the form

B

i

c1p1 + cap2 + C3ps
(01, 201, Co, 361 + 402, 03)

where ¢, ¢, ¢3 are arbitrary scalars. Thus (by, by, bs, by, bs) 1s in W if and
only if

(bl, b2: b3; b4; bﬁ) = blPl + b3P2 + bapa
which is true if and only if

b2 = 2b1

by = 3b; + 4bs.
These equations are instances of the general system (2-25), and using
them we may tell at a glance whether a given vector lies in W. Thus
(=5, —10, 1, —11, 20) is a linear combination of the rows of A, but
(1,2, 3,4,5) is not.

(d) The coordinate matrix of the vector (by, 2b,, bs, 3b1 + 4bs, bs) in

the basis {p1, py, ps} is evidently
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by
bs |
bs

() There are many ways to write the vectors in W as linear combi-
nations of the rows of A. Perhaps the easiest method is to follow the first
procedure indicated before Example 21:

B = (b], 2b1, bs, 3bl -+ 4b3) bﬁ)
[b.l; b3’ b5’ 0, 0] ‘R
[by, b3, bs, 0,0] - PA

1 000 0
1 =100 0

= [byby5,0,0]] 0 0 0 0 1|-4
-1 110 0
-3 101 -1

= [b1 + b3, —b3, 0,0, bs] - 4.
In particular, with 8 = (=5, —10, 1, —11, 20) we have

1 2 0 3 0
12 -1 -1 0
B=(—4,-1,0020)]0 0 1 4 0|
2 4 1 10 1
00 0 01

(f) The equations in the system RX = 0 are

1+ 2w2 + 34 = 0
X3 + 4134 =0
Ty = 0
Thus V consists of all columns of the form
—2xy — 324
T2
X = '—41'4
o

0

where x: and x4 are arbitrary.
(g) The columns

form a basis of V. This is an example of the basis described in Example 15.
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(h) The equation AX = Y has solutions X if and only if

—¥% + Y2 + Ys =0
-3+ Ye+ys—ys = 0.

Exercises

1. Let s < nand A an s X n matrix with entries in the field F. Use Theorem 4
(not its proof) to show that there is a non-zero X in F»X! such that AX = 0.

2. Let
a = (1,1,-2,1), a,=(3,0,4,—-1), a3=(—1,2,5,2).
Let
a=(4,-509 -7, B=@31,-44), v=(-1,1,01).
(a) Which of the vectors &, 8, 7 are in the subspace of R4 spanned by the a;?

(b) Which of the vectors e, 3, v are in the subspace of C* spanned by the a;?
(¢) Does this suggest a theorem?

3. Consider the vectors in B4 defined by
a = (_1r07 1:2): Qs = (3; 4’ —27 5)7 ag = (1141 0; 9)

Find a system of homogeneous linear equations for which the space of solutions
is exactly the subspace of B4 spanned by the three given vectors.

4. In C3 let
o = (1,0, —1), a=((1+11-—171), a3 = (4,1, 1),
Prove that these vectors form a basis for C3. What are the coordinates of the
vector (a, b, ¢) in this basis?
5. Give an explicit description of the type (2-25) for the vectors
B = (bb bz, b3; b4: bﬁ)
in R% which are linear combinations of the vectors
a=(1,0,21, —1), a, = (—1,2, —4,2,0)
a3 = (2, —1,5,2,1), a=(2,1,3,5,2).
6. Let V be the real vector space spanned by the rows of the matrix
3 21 0 9 0
1 7 -1 =2 -1
2 14 0 6 1
6 42 -1 13 0
(a) Find a basis for V.
(b) Tell which vectors (1, 22, 3, 4, T5) are elements of V.

(c) If (a1, 2 a3, T4, x5) is in V what are its coordinates in the basis chosen in
part (a)?

7. Let A be an m X n matrix over the field 7, and consider the system of equa-
tions AX = Y. Prove that this system of equations has a solution if and only if
the row rank of A is equal to the row rank of the augmented matrix of the system.



3. Linear Transformations

3.1. Linear Transformations

We shall now introduce linear transformations, the objects which we

shall study in most of the remainder of this book. The reader may find it
helpful to read (or reread) the discussion of functions in the Appendix,
since we shall freely use the terminology of that discussion.

Definition. Let V and W be vector spaces over the field I'. A linear

transformation from V into W s a function T from V into W such that

T(ca + B8) = ¢(Ta) + TR

for all a and B in V and all scalars ¢ in F.

ExampLE 1. If V is any vector space, the identity transformation
I, defined by Ia = «, is a linear transformation from V into V. The

zero transformation 0, defined by Oa = 0, is a linear transformation
from V into V.

ExampLE 2. Let F be a field and let V' be the space of polynomial
functions f from F into F, given by

f@) =co+ax+ - + art

Df)(x) = c1 + 2¢cor + -+« + kexr® L

Then D is a linear transformation from V into V—the differentiation
transformation.
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ExampLE 3. Let A be a fixed m X n matrix with entries in the field F.
The function T defined by T(X) = AX is a linear transformation from
F»1 into F=x1, The function U defined by U(a) = aA is a linear trans-
formation from Fm™ into F»,

ExampLE 4. Let P be a fixed m X m matrix with entries in the field /'
and let Q be a fixed n X n matrix over F. Define a function T from the
space F™<r into itself by T(A) = PAQ. Then T is a linear transformation
from F™" into F™%» because

T(cA + B) = P(cA + B)Q

(¢cPA + PB)Q
¢PAQ + PBQ
¢T(4) + T(B).

[l

i

i

ExampLE 5. Let R be the field of real numbers and let V be the space
of all functions from R into R which are conttnuous. Define T by

(TH(@) = [ 5t at.

Then T is a linear transformation from V into V. The function Tf is
not only continuous but has a continuous first derivative. The linearity
of integration is one of its fundamental properties.

The reader should have no difficulty in verifying that the transfor-
mations defined in Examples 1, 2, 3, and 5 are linear transformations. We
shall expand our list of examples considerably as we learn more about
linear transformations.

It is important to note that if T is a linear transformation from V
into W, then T(0) = 0, one can see this from the definition because

T(0) = T + 0) = T(0) + T(0).

This point is often confusing to the person who is studying linear algebra
for the first time, since he probably has been exposed to a slightly different
use of the term ‘linear function.” A brief comment should clear up the
confusion. Suppose V is the vector space R'. A linear transformation from
V into V is then a particular type of real-valued function on the real line R.
In a caleulus course, one would probably call such a function linear if its
graph is a straight line. A linear transformation from R! into R}, according
to our definition, will be a function from R into R, the graph of which is a
straight line passing through the origin.

In addition to the property T(0) = 0, let us point out another property
of the general linear transformation T. Such a transformation ‘preserves’
linear combinations; that is, if a, . . ., a, are vectors in Vand ¢, . . ., Ca
are scalars, then

T(ciey + <+ + caatn) = ci(Tar) + -+ + ca(Tan).
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This follows readily from the definition. For example,

T(clal + Czaz) = Cl(TOq) + T(Czaz)
= cl(Tcn) + Cz(Taz)‘

Theorem 1. Let V be a finite-dimensional vector space over the field F
andlet {au, . . ., a,} be an ordered basis for V. Let W be a vector space over the
same field F and let By, . . . , B be any vectors in W. Then there is precisely
one linear transformation T from V into W such that

Taj=3j, j=1,...,ll.
Proof. Toprove there is some linear transformation T with Ta; =
B; we proceed as follows. Given « in V, there is a unique n-tuple (zy, . . ., x,)

such that
(44 =x1a1—|— +$n0tn.

For this vector « we define
Ta = 2181 + -+ + Tufh.

Then T is a well-defined rule for associating with each vector « in V a
vector Ta in W. From the definition it is clear that Ta; = B; for each j.
To see that T is linear, let

B=1tyioa+ -+ + Yoo
be in V and let ¢ be any scalar. Now
ca+ B = (ct1 + yr)ar + -+ - + (e + Yn)an
and so by definition
T(ca + B) = (cx1 + y0)B1 + -+ + (cTn + Yu)Bn.
On the other hand,

o(Ta) + T8 = ¢ 3 aipi + 2 v
= él (cx; + Y:)Bs
and thus B
T(ca + B) = c(Ta) + TB.

If U is a linear transformation from V into W with Ua; = 8, j =

n
1, ..., n, then for the vector @« = I z;a; we have
i=1

Ua = U(é Iiai)
i=1

II
..
[(NUE
8
>
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so that U is exactly the rule T which we defined above. This shows that the
linear transformation 7' with T'a; = 8; is unique. ||

Theorem 1 is quite elementary; however, it is so basic that we have
stated it formally. The coneept of function is very general. If V and W are
(non-zero) vector spaces, there is a multitude of functions from V into W.
Theorem 1 helps to underscore the fact that the functions which are linear
are extremely special.

ExampLE 6. The vectors
oy = (1) 2)
ay = (3, 4)
are linearly independent and therefore form a basis for k2. According to
Theorem 1, there is a unique linear transformation from R? into R® such
that
Taw = (3,2,1)
Taz = (6, 5, 4)
If so, we must be able to find 7'(e1). We find scalars ¢;, ¢s such that ¢ =

cioq + ceae and then we know that Te = ¢,Ton + 2T If (1,0) =
cai(1, 2) + c2(3,4) then ¢; = —2 and ¢; = 1. Thus

= (0’ 1’ 2)-

il

ExampLE 7. Let T be a linear transformation from the m-tuple space
F™ into the n-tuple space F. Theorem 1 tells us that T is uniquely de-
termined by the sequence of vectors 8, . . ., B» Where
Bi=Te, <=1,...,m.

In short, T is uniquely determined by the images of the standard basis
vectors. The determination is

a= (T ..., Tm)
Ta=zf1+ -+ + Tnbm.
If B is the m X n matrix which has row vectors By, . . ., B, this says that
Ta = aB,
In other words, if 8; = (By, . . ., Bi), then
By --- B
T(xy, o, Tn) = 21+ Tn) )
Bmi -+ B

This is a very explicit description of the linear transformation. In Section
3.4 we shall make a serious study of the relationship between linear trans-
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formations and matrices. We shall not pursue the particular description
Ta = aB because it has the matrix B on the right of the vector o, and that
can lead to some confusion. The point of this example is to show that we
can give an explicit and reasonably simple description of all linear trans-
formations from F” into F»,

If T is a linear transformation from V into W, then the range of T is
not only a subset of W ; it is a subspace of W. Let Rr be the range of T, that
is, the set of all vectors 8 in W such that 8 = T« for some « in V. Let 8,
and #; be in Rz and let ¢ be a scalar. There are vectors a; and a2 in V such
that Ta; = 81 and Tay, = B.. Since T is linear

T(cas + ag) = cTas + Tz
= ¢f1 + Be,

which shows that ¢8, + 8: is also in Ry.

Another interesting subspace associated with the linear transformation
T is the set N consisting of the vectors a in V such that Ta = 0. It is a
subspace of V because

(a) T(0) = 0, so that N is non-empty;
(b) if Tay = Tap = 0, then

T(ca1 + O!g) = CTCu -'I'- Ta2
=c0+0
=0
so that ca; + ag is in N.

Definition. Let V and W be vector spaces over the field I' and let T
be a linear transformation from V into W. The null space of T is the set
of all vectors a in V such that Ta = 0.

If 'V 1s finite-dimensional, the rank of T s the dimension of the range
of T and the nullity of T 1s the dimension of the null space of T.

The following is one of the most important results in linear algebra.

Theorem 2. Let V and W be vector spaces over the field I' and let T be
a linear transformation from V tnto W. Suppose that V is finite-dimensional.
Then
rank (T) + nullity (T) = dim V.
Proof. Let {ay, ..., o4} be a basis for N, the null space of T.
There are vectors ay41, . - -, a, in V such that {ay, . . ., a,} is a basis for V.
We shall now prove that {Tayqy, . .., Ta,} is a basis for the range of 7.
The vectors Tay, . . ., T, certainly span the range of T', and since Te; = 0,
for j < k, we see that Tay, . . ., Ta, span the range. To see that these
vectors are independent, suppose we have scalars ¢; such that

3 cTa) = 0.

t=kt1
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This says that
T( an Ciai) =0

i=k+1
n
and accordingly the vector @ = 3 ¢ias is in the null space of T. Since
i=k+1
ay, . .., a; form a basis for N, there must be scalars by, . . ., b, such that
k
a = E b..'ot,‘.
i=1
Thus

k n
2 bii— I cjaj=0

i=1 j=kA1
and since ay, . . ., @, are linearly independent we must have
blz"'=bk=0k+l‘—'“'=cn=0-

If r is the rank of T, the fact that Tayy, . . ., Ta, form a basis for
the range of T tells us that r = n — k. Since & is the nullity of T and n is
the dimension of V, we are done. ||

Theorem 3. If A is an m X n mairiz with eniries in the field F, then
row rank (A) = column rank (A).

Proof. Let T be the linear transformation from F»<! into F=x1
defined by T(X) = AX. The null space of T is the solution space for the
system AX = 0, i.e., the set of all column matrices X such that AX = 0.
The range of T is the set of all m X 1 column matrices ¥ such that AX =
Y has a solution for X. If A,,. .., A, are the columns of A, then

AX = 2141+ - + Zada

so that the range of T is the subspace spanned by the columns of A. In
other words, the range of T is the column space of A. Therefore,

rank (T) = column rank (4).

Theorem 2 tells us that if S is the solution space for the system AX = 0,
then
dim S + column rank (4) = n.

We now refer to Example 15 of Chapter 2. Our deliberations there
showed that, if r is the dimension of the row space of A, then the solution
space S has a basis consisting of n — r vectors:

dim S = n — row rank (4).
Itis now apparent that ‘

row rank (4) = column rank (4). |

The proof of Theorem 3 which we have just given depends upon
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explicit calculations concerning systems of linear equations. There is a
more conceptual proof which does not rely on such calculations. We shall
give such a proof in Section 3.7.

Exercises

1. Which of the following functions 7" from R2?into R? are linear transformations?

(@) T(z, x2) = (1 + 21, 22);

(b) T(zy x2) = (22, 71);

() T(z, ) = (2}, 2);

(d) T(zy, x2) = (sin 21, x2);

(e) T(zy, Ty) = (xl — 25, 0).
2. Find the range, rank, null space, and nullity for the zero transformation and
the identity transformation on a finite-dimensional space V.

3. Describe the range and the null space for the differentiation transformation
of Example 2. Do the same for the integration transformation of Example 5.

4. Is there a linear transformation T from R? into R? such that T'(1, —1,1) =
(1,0) and T(1,1,1) = (0, 1)?
5. If
oy = (1; —1)) Bl = (1; 0)
Ay = (2, —1), ,32 = (O, 1)
g = (—3; 2); :83 = (1) 1)
is there a linear transformation T from R?into R? such that Ta; = 3; for ¢ = 1, 2
and 3?
6. Describe explicitly (as in Exercises 1 and 2) the linear transformation T’ from
F?into F? such that Te = (a, b), Tes = (¢, d).
7. Let F be a subfield of the complex numbers and let T be the function from
I3 into F? defined by
T(x1, 22, T3) = (T1 — T2 + 223, 221 + 22y —T1 — 222 + 213).

(a) Verify that T is a linear transformation.

(b) If (a,b,c) is a vector in F3, what are the conditions on @, b, and ¢ that
the vector be in the range of T? What is the rank of T'?

(¢) What are the conditions on @, b, and ¢ that (a, b, ¢) be in the null space
of T? What is the nullity of T'?

8. Describe explicitly a linear transformation from R? into R® which has as its
range the subspace spanned by (1,0, —1) and (1, 2, 2).

9. Let V be the vector space of all n X n matrices over the field F, and let B
be a fixed n X n matrix. If

T(4) = AB — BA
verify that T is a linear transformation from V into V.

10. Let V be the set of all complex numbers regarded as a vector space over the
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field of real numbers (usual operations). Find a function from V into V which is
a linear transformation on the above vector space, but which is not a linear trans-
formation on €'\, i.e., which is not complex linear.

11. Let V be the space of n X 1 matrices over I and let W be the space of m X 1
matrices over . Let A be a fixed m X n matrix over F' and let T be the linear
transformation from V into W defined by T(X) = AX. Prove that T is the zero
transformation if and only if A is the zero matrix.

12. Let V be an n-dimensional vector space over the field ' and let T be a linear
transformation from V into V such that the range and null space of T are identical.
Prove that n is even. (Can you give an example of such a linear transformation 7'?)

13. Let V be a vector space and T a linear transformation from V into V. Prove
that the following two statements about T' are equivalent.

(a) The intersection of the range of T and the null space of T is the zero
subspace of V.

(b) If T(Ta) = 0, then Ta = 0.

3.2. The Algebra of Linear Transformations

In the study of linear transformations from V into W, it is of funda-
mental importance that the set of these transformations inherits a natural
vector space structure. The set of linear transformations from a space V
into itself has even more algebraic structure, because ordinary composition
of functions provides a ‘multiplication’ of such transformations. We shall
explore these ideas in this section.

Theorem 4. Let V and W be vector spaces over the field I. Let T and
U be linear transformations from V into W. The function (T + U) defined by

(T + U)(a) = Ta + Ua

1s a linear transformation from V into W. I'f ¢ 1s any element of ¥, the function
(cT) defined by
(cT)(a) = c(Ta)

18 a linear transformation from V into W. The set of all linear transformations
from V into W, together with the addition and scalar multiplication defined
above, is a vector space over the field F.

Proof. Suppose T and U are linear transformations from V into
W and that we define (T + U) as above. Then

(T + U)(ca + B) = T(ca + B) + Ulca + B)
c(Ta) + T8 + c(Ua) + Up
c(Ta+ Ua) + (T8 + UB)
(T + U)a) + (T + U)(B)

which shows that (7' 4 U) is a linear transformation. Similarly,
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(cT)(da + B) = c[T(da + B)]
cld(Ta) + T8
cd(Ta) + c(TB)
dlc(Ta)] + ¢(TB)
= d[(cT)a] + (cT)B

which shows that (¢T) is a linear transformation.

To verify that the set of linear transformations of V into W (together
with these operations) is a vector space, one must directly check each of
the conditions on the vector addition and scalar multiplication. We leave
the bulk of this to the reader, and content ourselves with this comment:
The zero vector in this space will be the zero transformation, which sends
every vector of V into the zero vector in W; each of the properties of the
two operations follows from the corresponding property of the operations
in the space W. ||

We should perhaps mention another way of looking at this theorem.
If one defines sum and scalar multiple as we did above, then the set of
all functions from V into W becomes a vector space over the field . This
has nothing to do with the fact that V is a vector space, only that V is a
non-empty set. When V is a vector space we can define a linear transforma-
tion from V into W, and Theorem 4 says that the linear transformations
are a subspace of the space of all functions from V into W.

We shall denote the space of linear transformations from V into W
by L(V, W). We remind the reader that L(V, W) is defined only when V
and W are vector spaces over the same field.

Theorem 5. Let V be an n-dimensional vector space over the field F,
and let W be an m-dimensional vector space over F. Then the space L(V, W)
18 finite-dimensional and has dimension mn.

Proof. Let
® = {a,..., .} and (B’={61,...,6m}

be ordered bases for V and W, respectively. For each pair of integers (p, ¢)
with 1 < p <m and 1 < ¢ < n, we define a linear transformation E?¢

from V into W by
{0, if 1#¢
By If ©T=g¢

= 6iqﬂp'

According to Theorem 1, there is a unique linear transformation from V
into W satisfying these conditions. The claim is that the mn transforma-
tions E?-2 form a basis for L(V, W).

Let T be a linear transformation from V into W. Foreachyj,1 < j < n,

E?(a;)
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let Ay, . . ., Amj be the coordinates of the vector T'a; in the ordered basis
®’, i.e.,
"

(3-1) Ta; = 2 A piByp

pe
We wish to show that
(3-2) T=735 3 A,Bm

p=1g¢=1

Let U be the linear transformation in the right-hand member of (3-2).
Then for each j
Ua; = 23 Apb?9(a))
P q

= 2 2 ApdisBy
P q

2z Am’ﬁp
p=1
= Toz,-

and consequently U = T. Now (3-2) shows that the E?.« span L(V, W);
we must prove that they are independent. But this is clear from what
we did above; for, if the transformation

U=33A4,FE?
)
is the zero transformation, then Ua; = 0 for each j, so
m
Z ApiB,=0
p=1
and the independence of the 8, implies that A,; = O for every p and j. ||

Theorem 6. Let V, W, and Z be vector spaces over the field ¥. Let T
be a linear transformation from V into W and U a linear transformation
from W into Z. Then the composed function UT defined by (UT)(a) =
U(T(a)) ts a linear transformation from V into Z.

Proof.

(UT)(ca + B) = U[T(ca + B)]
UlTa + TB)
= c[U(Ta)] + U(TB)

= ¢(UT)(a) + (UT)(®). |

In what follows, we shall be primarily concerned with linear trans-
formation of a vector space into itself. Since we would so often have to
write ‘T’ is a linear transformation from V into V,” we shall replace this
with ‘T is a linear operator on V.’

Definition. IfV is a vector space over the field I, a linear operator on
V is a linear transformation from V into V.
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In the case of Theorem 6 when V = W = Z, so that U and T are
linear operators on the space V, we see that the composition UT is again
a linear operator on V. Thus the space L(V, V) has a ‘multiplication’
defined on it by composition. In this case the operator T'U is also defined,
and one should note that in general UT # TU, i.e., UT — TU # 0. We
should take special note of the fact that if T is a linear operator on V then
we can compose T with T. We shall use the notation 7% = T'T, and in
general T* = T --- T (n times) forn =1, 2, 3,. ... We define T° = I if
T 0.

Lemma. Let V be a vector space over the field F; let U, T, and T, be
linear operators on V; let ¢ be an element of F.
(a) IU = UI = U;
(b) U(Ty 4 T) = UTy + UTy; (T, + T2)U = TWU + T.U;
(¢) ¢(UTy) = (cU)T; = U(cTh).
Proof. (a) This property of the identity function is obvious. We
have stated it here merely for emphasis.
(b) [U(Ty + T)](e) = U[(Ty + T2)(a)]
= U(Tla + Tza)
= U(The) + U(T:)
(UTy)(@) + (UTs)(a)
so that U(T1 + T:) = UT, + UT,. Also

(T1 + T2)Ul(@) = (Ty + T2)(Ua)
T(Ua) + T:(Ua)
= (TWU)(a) + (T:U)(e)
so that (T, + T2)U = T\U + T.U. (The reader may note that the proofs
of these two distributive laws do not use the fact that T and T are linear,
and the proof of the second one does not use the fact that U is linear either.)
(c) We leave the proof of part (c) to the reader. ||

i

The contents of this lemma and a portion of Theorem 5 tell us that
the vector space L(V, V), together with the composition operation, is
what is known as a linear algebra with identity. We shall discuss this in
Chapter 4.

ExampLE 8. If A is an m X n matrix with entries in F, we have the
linear transformation T defined by T(X) = AX, from F» into Fm1, If
B is a p X m matrix, we have the linear transformation U from F~¥! into
F»t defined by U(Y) = BY. The composition UT is easily described:

(UT)(X) = U(T(X))
U(AX)
= B(4X)
= (BA)X.
Thus UT is ‘left multiplication by the produet matrix BA.

7
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ExampLE 9. Let F be a field and V the vector space of all polynomial
functions from F into F. Let D be the differentiation operator defined in
Example 2, and let T be the linear operator ‘multiplication by z’:

(TH)(z) = zf(x).
Then DT # TD. In fact, the reader should find it easy to verify that
DT — TD = I, the identity operator.
Even though the ‘multiplication’ we have on L(V, V) is not commu-
tative, it is nicely related to the vector space operations of L(V, V).

ExamriE 10. Let ® = {a, ..., a,} be an ordered basis for a vector
space V. Consider the linear operators E?¢ which arose in the proof of
Theorem 5:

Er(q;) = 850

These n? linear operators form a basis for the space of linear operators on V.
What is E77E7*? We have

(BB ) (@) = Era(baa)
= 6ieEp'q<ar)

= 5,;35,.(1(21;-
Therefore,
0, if r=gq
D,y TS —
Erb Ere, if g=r.

Let T be a linear operator on V. We showed in the proof of Theorem 5
that if

A; = [Tejle
A. = [Al;- . -,An]
then
T=334,Em"
P q
If

U=ZZ Bk

is another linear operator on V, then the last lemma tells us that
TU = (T2 ApE?9)(Z Z BuE)

P q T
=3XEZ quBmEp,qEr.s'
P g 1 8

As we have noted, the only terms which survive in this huge sum are the
terms where ¢ = 7, and since E?7E™* = E?.* we have

TU = ZZ (Z ApBr)EP”
p s T
= 3 3 (AB),Ere.
p 8

Thus, the effect of composing T’ and U is to multiply the matrices 4 and B.
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In our discussion of algebraic operations with linear transformations
we have not yet said anything about invertibility. One specific question of
interest is this. For which linear operators 7" on the space V does there
exist a linear operator T-! such that TT-! = T-'T = I?

The function T' from V into W is called invertible if there exists a
function U from W into V such that UT is the identity function on V and
TU is the identity function on W. If T is invertible, the function U is
unique and is denoted by T-!. (See Appendix.) Furthermore, 7T is invertible
if and only if

1. T'is1:1, that is, Ta = T8 implies a = 8;
2. T is onto, that is, the range of T is (all of) W.

Theorem 7. Let V and W be vector spaces over the field F and let T
be a linear transformation from V into W. If T s tnvertible, then the inverse
Sfunction T-! is a linear transformation from W onto V.

Proof. We repeat ourselves in order to underscore a point. When
T is one-one and onto, there is a uniquely determined inverse function 7!
which maps W onto V such that T-!T is the identity function on V, and
TT-! is the identity function on W. What we are proving here is that if a
linear function 7' is invertible, then the inverse T is also linear.
Let 8, and 8, be vectors in W and let ¢ be a scalar. We wish to show
that

T—I(CBI + Ba) = T8 + T 1B
Let a; = T718,, ¢ = 1, 2, that is, let a; be the unique vector in V such that
Ta; = Bi. Since T is linear,
T(car + az) = cTay + Toy
= ¢B + Ba.
Thus ca; + a, is the unique vector in V which is sent by T into c¢B8:1 + #
and so

T=YcBy + B2) = car + ay
c(T18,) + T8,

and T-!is linear. |

Suppose that we have an invertible linear transformation T' from V
onto W and an invertible linear transformation U from W onto Z. Then UT
is invertible and (UT)~! = T-'U~ That conclusion does not require the
linearity nor does it involve checking separately that UT is 1:1 and onto.
All it involves is verifying that T-'U~! is both a left and a right inverse for
UT.

If T is linear, then T'(@ — 8) = Ta — T8;hence, Ta = T if and only
if T(a — B) = 0. This simplifies enormously the verification that 7 is 1:1.
Let us call a linear transformation T nen-singular if Ty = 0 implies
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v = 0, i.e., if the null space of T is {0}. Evidently, T'is 1:1 if and only if T
is non-singular. The extension of this remark is that non-singular linear
transformations are those which preserve linear independence.

Theorem 8. Let T be a linear transformation from V into W. Then
T is non-singular +f and only if T carries each linearly tndependent subset of
V onto a linearly independent subset of W.

Proof. First suppose that T is non-singular. Let S be a linearly
independent subset of V. If a, . . ., i are vectors in S, then the vectors
Tay, . . ., Tax are linearly independent; for if

Cl(TOll) + e 4 Ck(Tak) = ()
then
T(Clal + o Ckﬂlk) = ()

and since T is non-singular
aart+ - +oar =0

from which it follows that each ¢; = 0 because S is an independent set.
This argument shows that the image of .S under T is independent.

Suppose that 7' carries independent subsets onto independent subsets.
Let a be a non-zero vector in V. Then the set S consisting of the one vector
« is independent. The image of S is the set consisting of the one vector Ta,
and this set is independent. Therefore Te # 0, because the set consisting
of the zero vector alone is dependent. This shows that the null space of T is
the zero subspace, i.e., T is non-singular. ||

ExampLE 11. Let F be a subfield of the complex numbers (or a field of
characteristic zero) and let V be the space of polynomial functions over F.
Consider the differentiation operator D and the ‘multiplication by z’
operator T, from Example 9. Since D sends all constants into 0, D is
singular; however, V is not finite dimensional, the range of D is all of V,
and it is possible to define a right inverse for D. For example, if E is the
indefinite integral operator:

E(Co+clx+---+cnz")=60z+%clx2+---+

7 i 1 cnxn+l
then E is a linear operator on V and DE = I. On the other hand, ED = [
because ED sends the constants into 0. The operator T is in what we might
call the reverse situation. If zf(z) = 0 for all z, then f = 0. Thus T is non-
singular and it is possible to find a left inverse for 7. For example if U is
the operation ‘remove the constant term and divide by «’:

Ulco+cex+ - +ex®) =a+cx+ - + cax!
then U is a linear operator on ¥V and UT = I. But TU # I since every
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function in the range of TU is in the range of T, which is the space of
polynomial functions f such that f(0) = 0.

ExampLE 12. Let F be a field and let T be the linear operator on F?
defined by

T(xy, 22) = (24 + 3, 21).
Then T is non-singular, because if T'(x;, x2) = 0 we have

Tt 2= 0
I1=0

so that x; = 2 = 0. We also see that T is onto; for, let (2}, z;) be any
vector in 2. To show that (z,, 2;) is in the range of T we must find scalars
21 and z, such that
T+ T = g
X1 = 29
and the obvious solution is x; = 2,, T3 = 2; — 2. This last computation
gives us an explicit formula for 71, namely,

T“l(zl, 22) = (Zz, 21 — zz).

We have seen in Example 11 that a linear transformation may be
non-singular without being onto and may be onto without being non-
singular. The present example illustrates an important case in which that
cannot happen.

Theorem 9. Let V and W be finite-dimensional vector spaces over the
field F suchthat dim V = dim W. If T is a linear transformation from V into
W, the following are equivalent:

(1) T s tnvertible.
(i) T 4s non-singular.
(iii) T <s onto, that ts, the range of T is W.

Proof. Letn = dim V = dim W. From Theorem 2 we know that
rank (T') -+ nullity (T') = n.

Now T is non-singular if and only if nullity () = 0, and (since n = dim
W) the range of T is W if and only if rank (T") = n. Since the rank plus the
nullity is n, the nullity is O precisely when the rank is n. Therefore T is
non-singular if and only if T(V) = W. So, if either condition (ii) or (iii)
holds, the other is satisfied as well and T is invertible. ||

We caution the reader not to apply Theorem 9 except in the presence
of finite-dimensionality and with dim ¥ = dim W. Under the hypotheses
of Theorem 9, the conditions (i), (ii), and (iii) are also equivalent to these.

(iv) If {ea, ..., an} tsbasisfor V, then {Tay, ..., Tan} ts a basts for
W.
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(v) There is some basis {ay, . - ., aa} for V such that {Tay, . . ., Tan}
s a basts for W.

We shall give a proof of the equivalence of the five conditions which
contains a different proof that (i), (i), and (iii) are equivalent.

(1) = (ii). If T is invertible, T is non-singular. (ii) = (iii). Suppose
T is non-singular. Let {ai, ..., as} be a basis for V. By Theorem 8,
{Tay, ..., Tas} is a linearly independent set of vectors in W, and since
the dimension of W is also n, this set of vectors is a basis for W. Now let 3
be any vector in W. There are scalars ¢y, . . ., ¢, such that

8= Cl(Tal) + . + C”(Ta,,)
== T(Clal + et + Cnan)

which shows that 8 is in the range of T'. (iii)) =& (iv). We now assume that
T is onto. If {ea1, ..., as} is any basis for V, the vectors Tay, ..., Ta,
span the range of T, which is all of W by assumption. Since the dimension
of W isn, thesenvectorsmustbelinearly independent, thatis, must comprise
a basis for W. (iv) = (v). This requires no comment. (v) = (i). Suppose
there is some basis {ay, ..., a,} for V such that {Tay, ..., Ta,} is a
basis for W. Since the T'a; span W, it is clear that the range of T is all of W.
If @ = cioy + -+ + caan is in thenull space of T, then

T(cren + -+ + Caan) =0
or

c(Tan) + -+ + ca(Tan) =0

and since the Ta; are independent each ¢; = 0, and thus @ = 0. We have
shown that the range of T is W, and that T is non-singular, hence T is
invertible.

The set of invertible linear operators on a space V, with the operation
of composition, provides a nice example of what is known in algebra as
a ‘group.” Although we shall not have time to discuss groups in any detail,
we shall at least give the definition.

Definition. A group consists of the following.

1. A set G;
2. A rule (or operation) which associates with each pair of elements x,
y in G an element xy in G in such a way that
(a) x(yvz) = (xy)z, for all x, y, and z in G (assoctativity);
(b) thereis an element e in G such that ex = xe = X, for every x in G;
(c) to each element x in G there corresponds an element x~'in G such
that xx™! = x7x = e.

We have seen that composition (U, T) = UT associates with each
pair of invertible linear operators on a space V another invertible operator
on V. Composition is an associative operation. The identity operator I



Sec. 3.2 The Algebra of Linear Transformations 83

satisfies IT = TJ for each T, and for an invertible T there is (by Theorem
7) aninvertible linear operator 7! such that T7-! = T-'1" = I. Thus the
set of invertible linear operators on V, together with this operation, is a
group. The set of invertible » X n matrices with matrix multiplica-
tion as the operation is another example of a group. A group is called
commutative if it satisfies the condition zy = yx for each z and y. The
two examples we gave above are not commutative groups, in general. One
often writes the operation in a commutative group as (z,y) 9z + ¥,
rather than (z,y) = ry, and then uses the symbol 0 for the ‘identity’
element e. The set of vectors in a vector space, together with the operation
of vector addition, is a commutative group. A field can be described as a
set with two operations, called addition and multiplication, which is a
commutative group under addition, and in which the non-zero elements
form a commutative group under multiplication, with the distributive
law z(y + 2) = zy + xz holding.

Exercises

1. Let 7 and U be the linear operators on R? defined by
T(xls x?) = (132, xl) and (](xly .272) = (xls 0)'

(a) How would you describe T' and U geometrically?
(b) Give rules like the ones defining 7' and U for each of the transformations
(U+m),UT,TU, T?, U™

2. Let T be the (unique) linear operator on C® for which
Te, = (1,0,i), Tea=(011), Te&=(,1,0).

Is T invertible?

3. Let T be the linear operator on R? defined by

T(zs, To, T5) = (321, Ty — T, 221 + 22 + T3).

Is T invertible? If so, find a rule for 7! like the one which defines 7.

4. For the linear operator T of Exercise 3, prove that

(T2 — I)(T —3I) =0.

5. Let (' be the complex vector space of 2 X 2 matrices with complex entries.

Let
1 -1
B=[_, 4]

and let T be the linear operator on C?<? defined by T(4) = BA. What is the
rank of T? Can you describe 72?

6. Let T be a linear transformation from R?® into R?, and let U be a linear trans-
formation from R? into R% Prove that the transformation UT is not invertible.
Generalize the theorem.
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7. Find two linear operators T and U on R? such that TU = 0 but UT # 0.

8. Let V bea vector space over the field F and T a linear operator on V. If T2 = 0,
what can you say about the relation of the range of T to the null space of T'?
Give an example of a linear operator T on R2 such that 7% = 0 but 7 # 0.

9. Let T be a linear operator on the finite-dimensional space V. Suppose there
is a linear operator U on V such that TU = I. Prove that T is invertible and
U = T~% Give an example which shows that this is false when V is not finite-
dimensional. (Hint: Let T = D, the differentiation operator on the space of poly-
nomial functions.)

10. Let A be anm X n matrix with entries in F and let T be the linear transforma-
tion from F~<! into F7x! defined by T(X) = AX. Show that if m < n it may
happen that T is onto without being non-singular. Similarly, show that if m > n
we may have T non-singular but not onto.

11. Let V be a finite-dimensional vector space and let T be a linear operator on V.
Suppose that rank (7% = rank (T'). Prove that the range and null space of T are
disjoint, i.e., have only the zero vector in common.

12. Let p, m, and n be positive integers and F a field. Let V be the space of m X n
matrices over F and W the space of p X n matrices over F. Let B be a fixed p X m
matrix and let T be the linear transformation from V into W defined by
T(A) = BA. Prove that T is invertible if and only if p = m and B is an invertible
m X m matrix.

3.3. Isomorphism

If V and W are vector spaces over the field F, any one-one linear
transformation T of V onto W is called an isomorphism of V onto W.
If there exists an isomorphism of ¥V onto W, we say that V is isomorphic
to W.

Note that V is trivially isomorphic to V, the identity operator being
an isomorphism of ¥ onto V. Also, if V is isomorphic to W via an iso-
morphism T, then W is isomorphic to V, because 7'-! is an isomorphism
of W onto V. The reader should find it easy to verify that if V is iso-
morphic to W and W is isomorphic to Z, then V is isomorphic to Z. Briefly,
isomorphism is an equivalence relation on the class of vector spaces. If
there exists an isomorphism of V onto W, we may sometimes say that V
and W are isomorphic, rather than V is isomorphic to W. This will cause
no confusion because V is isomorphic to W if and only if W is isomorphic
to V.

Theorem 10. Every n-dimensional vector space over the field F is iso-
morphic to the space F=.

Proof. Let V be an n-dimensional space over the field F and let
® = {ay...,a,} be an ordered basis for V. We define a function T
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from V into F», as follows: If & is in V, let Ta be the n-tuple (z, . . ., Za)
of coordinates of « relative to the ordered basis @, i.e., the n-tuple such
that

a = Ti00+ -+ Tpda.

In our discussion of coordinates in Chapter 2, we verified that this T is
linear, one-one, and maps V onto Fr. ||

For many purposes one often regards isomorphic vector spaces as
being ‘the same,’ although the vectors and operations in the spaces may
be quite different, that is, one often identifies isomorphic spaces. We
shall not attempt a lengthy discussion of this idea at present but shall
let the understanding of isomorphism and the sense in which isomorphic
spaces are ‘the same’ grow as we continue our study of vector spaces.

We shall make a few brief comments. Suppose T' is an isomorphism
of V onto W. If S is a subset of V, then Theorem 8 tells us that S is linearly
independent if and only if the set T(S) in W is independent. Thus in
deciding whether S is independent it doesn’t matter whether we look at S
or T'(S). From this one sees that an isomorphism is ‘dimension preserving,’
that is, any finite-dimensional subspace of V has the same dimension as its
image under 7. Here is a very simple illustration of this idea. Suppose A
is an m X n matrix over the field F. We have really given two definitions
of the solution space of the matrix A. The first is the set of all n-tuples
(z1, . .., x,) in F» which satisfy each of the equations in the system A X =
0. The second is the set of all n X 1 column matrices X such that AX = 0.
The first solution space is thus a subspace of F» and the second is a subspace
of the space of all n X 1 matrices over F. Now there is a completely
obvious isomorphism between F* and F™<, namely,

Ty
(@1, ..., 20) =

Ty,
Under this isomorphism, the first solution space of A is carried onto the
second solution space. These spaces have the same dimension, and so
if we want to prove a theorem about the dimension of the solution space,
it is immaterial which space we choose to discuss. In fact, the reader
would probably not balk if we chose to identify F* and the space of n X 1
matrices. We may do this when it is convenient, and when it is not con-
venient we shall not.

Exercises

1. Let V be the set of complex numbers and let /' be the field of real numbers.
With the usual operations, V is a vector space over F. Bescribe explicitly an iso-
morphism of this space onto R2.
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2. Let V be a vector space over the field of complex numbers, and suppose there
is an isomorphism T of V onto (3. Let au, as, as, as be vectors in V such that
Ta, = (1: 0, 7’); Tay = (—21 1_+ % 0)7
Toy = (—]: 1 1): Tay = <\/27 7:7 3)‘
(a) Isa, in the subspace spanned by a; and a;?
(b) Let W, be the subspace spanned by a; and a,, and let W, be the subspace
spanned by a; and ay. What is the intersection of W, and W?
(¢) Find a basis for the subspace of V spanned by the four vectors a;.
3. Let W be the set of all 2 X 2 complex Hermitian matrices, that is, the set

of 2 X 2 complex matrices A such that A, = A} (the bar denoting complex
conjugation). As we pointed out in Example 6 of Chapter 2, W is a vector space
over the field of real numbers, under the usual operations. Verify that

t+z y+iz]

Yy~ t—=zx

(xl y) 2, t) - [

is an isomorphism of R* onto W.
4. Show that I’ is isomorphic to ™,

5. Let V be the set of complex numbers regarded as a vector space over the
field of real numbers (Ixercise 1). We define a function 7 from V into the space
of 2 X 2 real matrices, as follows. If z = x 4 1y with = and y real numbers, then

_[z+7y 5y :|
T(z)_[—IOy z=Ty

(a) Verify that T is a one-one (real) linear transformation of V into the
space of 2 X 2 real matrices.

(b) Verify that T(z122) = T(21) T(22).

(¢) How would you describe the range of T'?

6. Let V and W be finite-dimensional vector spaces over the field F. Prove that
V and W are isomorphic if and only if dim V = dim W.

7. Let V and W be vector spaces over the field ' and let U be an isomorphism
of V onto W. Prove that T — UTU~!is an isomorphism of L(V, V) onto L(W, W).

3.4. Representation of Transformations
by Matrices

Let V be an n-dimensional vector space over the field ¥ and let W
be an m-dimensional vector space over F. Let & = {aj, ..., as; be an
ordered basis for V and & = {8y, ..., B} an ordered basis for W. If T
is any linear transformation from V into W, then T is determined by its
action on the vectors a;. Each of the n vectors Ta; is uniquely expressible
as a linear combination

(3-3) Taj = '21 Aq,'jBi
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of the B, the scalars Ay;, ..., An; being the coordinates of 7T'«; in the
ordered basis ®’. Accordingly, the transformation 7 is determined by
the mn scalars A;; via the formulas (3-3). The m X n matrix A defined
by A (1, j) = Ay is called the matrix of T relative to the pair of ordered
bases & and ®'. Our immediate task is to understand explicitly how
the matrix A determines the linear transformation 7.

If « = 2y01 + -+ - + Z,a, 18 a vector in V, then
Ta = 7‘(2 .’c,»a,-)
i=1
= 3 z;(Ta;)
i=1
= 2 r; T A
=1 i=1

i

m n
2 (E Ai]'x1'> 61:‘
11 \j=1
If X is the coordinate matrix of « in the ordered basis ®, then the com-
putation above shows that A X is the coordinate matrix of the vector T«
in the ordered basis ®’, because the scalar
n

Aijxj
=1

J
is the entry in the ¢th row of the column matrix AX. Let us also observe
that if A is any m X n matrix over the field F, then
(3-4) T<E fb‘ﬂj) = 3 <E Aiﬂj) Bi

i=1 i=1 \j=1
defines a linear transformation 7' from V into W, the matrix of which is
A, relative to B, €’. We summarize formally :

Theorem 11. Let V be an n-dimenstonal vector space over the field F
and W an m-dimensional vector space over F. Let B be an ordered basts for
V and &' an ordered basis for W. For each linear transformation T from V
into W, there 1s an m X n matrix A with entries in I such that

[Tale = Alals

for every vector a in V. Furthermore, T — A s a one-one correspondence
between the set of all linear transformations from V into W and the set of
all m X n matrices over the field I

The matrix A which is associated with T in Theorem 11 is called the
matrix of 7T relative Lo Lhe ordered bases ®, ®'. Note that Equation
(3-3) says that A is the matrix whose columns A,, ..., A, are given by

‘Aj = [Taj](B'a ] = ]., PP (B
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If U is another linear transformation from V into Wand B = [By, . . ., B,]
is the matrix of U relative to the ordered bases ®, &’ then cA + B is the
matrix of ¢T + U relative to ®, ®’. That is clear because

¢4; + B; = [Tl + [Uasle
= [CTCIJ' + UD:,‘](B'
= [(cT + U)ajle-

Theorem 12. Let V be an n-dimensional vector space over the field F
and let W be an m-dimensional vector space over F. For each pair of ordered
bases B, ®' for V and W respectively, the function which assigns to a linear
transformation T its matrix relative to ®, ®’ is an isomorphism between the
space L(V, W) and the space of all m X n matrices over the field F.

Proof. We observed above that the function in question is linear,
and as stated in Theorem 11, this function is one-one and maps L(V, W)
onto the set of m X n matrices. ||

We shall be particularly interested in the representation by matrices
of linear transformations of a space into itself, i.e., linear operators on a
space V. In this ease it is most convenient to use the same ordered basis
in each case, that is, to take & = ®’. We shall then call the representing
matrix simply the matrix of 7 relative to the ordered basis ®. Since
this concept will be so important to us, we shall review its definition. If T
is a linear operator on the finite-dimensional vector space V and ® =
{a, . . ., as} is an ordered basis for V, the matrix of T relative to & (or, the
matrix of T in the ordered basis ®) is the n X n matrix A whose entries
A;j are defined by the equations

(3—5) Ta,- =2 A;’jai, ] = 1, ce gy N
i=1

One must always remember that this matrix representing 7' depends upon
the ordered basis ®, and that there is a representing matrix for 7' in each
ordered basis for V. (For transformations of one space into another the
matrix depends upon two ordered bases, one for V and one for W.) In order
that we shall not forget this dependence, we shall use the notation

(T]s

for the matrix of the linear operator T in the ordered basis &. The manner
in which this matrix and the ordered basis describe 7' is that for each a in V

[Tale = [T]gla]a.

ExampLE 13. Let V be the space of n X 1 column matrices over the
field F; let W be the space of m X 1 matrices over F; and let A be a fixed
m X m matrix over F. Let T be the linear transformation of V into W
defined by T(X) = AX. Let ® be the ordered basis for V analogous to the
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standard basis in F*, i.e., the ¢th vector in ® in the n X 1 matrix X; with
a 1 in row 7 and all other entries 0. Let ®&' be the corresponding ordered
basis for W, i.e., the jth vector in ®’ is the m X 1 matrix V; with a 1 in row
j and all other entries 0. Then the matrix of T relative to the pair ®, ®’ is
the matrix A itself. This is clear because the matrix AX; is the jth column
of A.

ExampLE 14. Let F be a field and let T be the operatoron F2defined by

T(I], .1;2) = (.’171, 0)

It is easy to see that T is a linear operator on F2 Let ® be the standard
ordered basis for F2, ® = {e, €}. Now

Te = T(1,0) = (1,0) = le + Oes
Tez T(O, 1) = (0, 0) = 061 + 062

so the matrix of T in the ordered basis ® is

(T)e = I:(l) 8]

ExampLE 15. Let V be the space of all polynomial functions from R
into R of the form

i

f(x) = co + cix + cox? + cs2?

that is, the space of polynomial functions of degree three or less. The
differentiation operator D of Example 2 maps V into V, since D is ‘degree
decreasing.’ Let ® be the ordered basis for V consisting of the four functions
f1, foy S5, fa defined by fj(x) = zi~1. Then

(Df)() = 0, Df, = 0f1 4+ 0f, + 0fs + 0Of,

(Dfﬂ)(x) = 1, Df, 1f, + 0f, + Ofs + 0f4

(Dfs)(x) = 2z, Dfs = Ofy + 2fs + 0fs + Ofs

(Dfy)(x) = 372, Df, = 0fi + Of; + 3fs + 0fs
so that the matrix of D in the ordered basis ® is

0

010
0020
Pla=|g 0 0 3|
00 0 O

We have seen what happens to representing matrices when transfor-
mations are added, namely, that the matrices add. We should now like
to ask what happens when we compose transformations. More specifically,
let V, W, and Z be vector spaces over the field F of respective dimensions
n, m, and p. Let T be a linear transformation from V into W and U a linear
transformation from W into Z. Suppose we have ordered bases

® = {ay,...,a, ® = {By...,0Bmn, ®" = {v1,..., Vs
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for the respective spaces V, W, and Z. Let A be the matrix of T relative
to the pair ®, ® and let B be the matrix of U relative to the pair ®’, ®".
It is then easy to see that the matrix C of the transformation UT relative
to the pair ®, ®" is the product of B and 4; for, if @ is any vector in V
[Tale = Al
(U(Te)]e = B[Tals

and so

[(UT)(e)]e” = BA[alg
and hence, by the definition and uniqueness of the representing matrix,
we must have C = BA. One can also see this by carrying out the computa-
tion

(UT)(a;) = U(Tay)

U ( § Akjﬂk)
k=1

g A (UB)
b=1

i

m P
> A 2z By

k=1 i=1

» m
z (E BikAkj> Yi

i1 \ps=1

]

so that we must have

(3—6) Cij = k12n)1 BikAkj.

We motivated the definition (3-6) of matrix multiplication via operations
on the rows of a matrix. One sees here that a very strong motivation for
the definition is to be found in composing linear transformations. Let us
summarize formally.

Theorem 13. Let V, W, and Z be finite-dimensional vector spaces over
the field F; let T be a linear transformation from V into W and U a linear
transformation from W into Z. If ®, ®’, and ®" are ordered bases for the
spaces V, W, and Z, respectively, if A is the matriz of T relative to the pair
®, ®, and B is the matriz of U relative to the pair ®', ®”, then the matrix
of the composition UT relative to the pair , ®" s the product matriz C = BA.

We remark that Theorem 13 gives a proof that matrix multiplication
is associative-—a proof which requires no caleculations and is independent
of the proof we gave in Chapter 1. We should also point out that we proved
a special case of Theorem 13 in Example 12.

It is important to note that if T and U are linear operators on a
space V and we are representing by a single ordered basis ®, then Theorem
13 assumes the simple form [UT]g = [U]g[T]e. Thus in this case, the
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correspondence which ® determines between operators and matrices is not
only a vector space isomorphism but also preserves products. A simple
consequence of this is that the linear operator T is invertible if and only if
[T]g is an invertible matrix. For, the identity operator I is represented by
the identity matrix in any ordered basis, and thus

UT =TU =1
is equivalent to
(Ula[T)e = [T]a[Ule = I.
Of course, when T is invertible
(T-Js = [T)a"

Now we should like to inquire what happens to representing matrices
when the ordered basis is changed. For the sake of simplicity, we shall
consider this question only for linear operators on a space V, so that we
can use a single ordered basis. The specific question is this. Let T be a
linear operator on the finite-dimensional space V, and let

®={ay...,an) and ® = {ad,...,an}

be two ordered bases for V. How are the matrices [T]g and [T]g related?

As we observed in Chapter 2, there is a unique (invertible) n X n matrix P
such that

(3-7) [a]e = Pla]e

for every vector @ in V. It is the matrix P = [Py, ..., P.] where P; =
[a})s. By definition

(3-8) [Tals = [T]ela)a.
Applying (3-7) to the vector T, we have
(3-9) (Talg = P[Tale.

Combining (3-7), (3-8), and (3-9), we obtain

[TlzPlale = P[Tals
or
PA[T)aPlele = [Tals

and so it must be that
(3-10) [Tle = P T]eP.

This answers our question.
Before stating this result formally, let us observe the following. There
is a unique linear operator U which carries 63 onto ®’, defined by

’ T~
Ua; = oy, Jj=1...,n

This operator U is invertible since it carries a basis for V onto a basis for
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V. The matrix P (above) is precisely the matrix of the operator U in the

ordered basis ®. For, P is defined by
n
aj = 3 Pya;
i=1
and since Ua; = «f, this equation can be written

Ua; =

Ve

I)i]‘a,'.
1

2

So P = [Ulg, by definition.

Theorem 14. Let V be a finite-dimensional vector space over the field F,

and let

®={ay...,anp and ® = {aj, ...

be ordered bases for V. Suppose T is a linear operator on V. If P = [Py, .

P.] 2s the n X n matriz with columns P; = [&f]a, then

[Tlg = P~![T]aP.

.« vy

Alternatively, if U is the invertible operator on V defined by Ueq; = af, j =

1,...,n, then

[Tle = [Ula'[Tla[Uls.

ExampLE 16. Let T be the linear operator on R? defined by T'(x, x2) =
(21, 0). In Example 14 we showed that the matrix of T in the standard

ordered basis B = {e, €} is

[T]s = [(1) g:l

Suppose ®’ is the ordered basis for R? consisting of the vectorsef = (1, 1),

€ = (2,1). Then
e; = at e
e = 26+ e

12
P=[1 1:|'

-1 2]
=7 ]

[Tle = P~ [T]aP

-1 2'[1 0][

=L 1 —1Jlo o

-1 2‘[1 2]

=L 1 -1]lo o

[—1 —27
1 2]

so that P is the matrix

By a short computation

Thus
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We can easily check that this is correct because
T = (1,0) = —ea + €
Te = (2,0) = —2 + 2.

ExampLE 17. Let V be the space of polynomial functions from R into
R which have ‘degree’ less than or equal to 3. As in Example 15, let D be
the differentiation operator on V, and let

® = {fl)f21f37f4}
be the ordered basis for V defined by fi(z) = 1. Let ¢t be a real number
and define g;(z) = (z + t)*, that is

g1=f1
ga = tfl +f2
gs = t¥fy + 2tfs + f
g = 31 + 3t + 3ifs + fu
Since the matrix
1 ¢t t2 8
0 1 2t 3t?
P= 0 0 1 3t
00 0 1
is easily seen to be invertible with
1 —t {? —t3
0 1 -2t 3t?
PP=lo 0o 1 -3
o 0 O 1
it follows that &' = {g1, g2, ¢s, ¢s} is an ordered basis for V. In Example 15,
we found that the matrix of D in the ordered basis ® is
0100
0 0 20
Dla =19 0 0 3
0 00O
The matrix of D in the ordered basis ®’ is thus
1 —¢ t2 &[0 1 0 OYf1 ¢ ¢ 3
0O 1 -2t 32110 0 2 Of||0 1 2t 3¢
PPDlP =10 o 1 —s|lo oo s|loo 1 3
L0 0 0 1JLO 0 0 0JLO O O 1
[1 —t ¢ &[0 1 2t 3¢
{0 1 -2t 32110 0 2 6t
“lo o 1 =3t (|0 0 0 3
LO 0 0 1JL0 0 0 O
0 1 0 0
_ 10 0 2 0:|
100 0 3]
L0 0 0 O
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Thus D is represented by the same matrix in the ordered bases @ and ®’.
Of course, one can see this somewhat more directly since

Dy, =
Dg; = g
Dygs = 2g,
Dg4 = 393.

This example illustrates a good point. If one knows the matrix of a linear
operator in some ordered basis ® and wishes to find the matrix in another
ordered basis ®', it is often most convenient to perform the coordinate
change using the invertible matrix P; however, it may be a much simpler
task to find the representing matrix by a direct appeal to its definition.

Definition. Let A and B be n X n (square) matrices over the field F.
W e say that B is similar to A over I' if there s an invertible n X n matriz
P over F such that B = P~'AP.

According to Theorem 14, we have the following: If V is an n-dimen-
sional vector space over F and ® and ®' are two ordered bases for V,
then for each linear operator T on V the matrix B = [T']g/ is similar to
the matrix A = [T]g. The argument also goes in the other direction.
Suppose A and B are n X n matrices and that B is similar to A. Let
V be any n-dimensional space over F and let @ be an ordered basis for V.
Let T be the linear operator on V which is represented in the basis ® by
A.If B = P-14P, let ®' be the ordered basis for V obtained from ® by P,
Le.,

n
’
@y = 2 Pija.'.
i=1

Then the matrix of T in the ordered basis ®’ will be B.

Thus the statement that B is similar to A means that on each n-
dimensional space over F the matrices A and B represent the same linear
transformation in two (possibly) different ordered bases.

Note that each n X n matrix A is similar to itself, using P = I; if
B is similar to A, then A is similar to B, for B = P~'AP implies that
A = (P~Y)~"'BP-1;if B is similar to A and C is similar to B, then C is similar
to A, for B = P7'AP and C = Q@-'BQ imply that C = (PQ)'A(PQ).
Thus, similarity is an equivalence relation on the set of n X n matrices
over the field F. Also note that the only matrix similar to the identity
matrix I is I itself, and that the only matrix similar to the zero matrix is
the zero matrix itself.
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Exercises

1. Let T be the linear operator on C? defined by T(zi, z2) = (23, 0). Let ® be
the standard ordered basis for C? and let ®’ = {a, a2} be the ordered basis defined
by ay = (1, Z), a2 = (-’L, 2)

(a) What is the matrix of T relative to the pair &, ®'?
(b) What is the matrix of T relative to the pair ®’, ®?
(c) What is the matrix of T in the ordered basis ®'?

(d) What is the matrix of T in the ordered basis {a, a1} ?

2. Let T be the linear transformation from R® into R? defined by
T(wh T2, .'133) = (131 + T, 2(53 - xl)-

(a) If B is the standard ordered basis for R® and ®’ is the standard ordered
basis for B2, what is the matrix of T relative to the pair &3, ®"?

(b) If ® = {oy, o, 3} and ®' = {@,, B,}, where
ay = (1,0, —1), oz = 1,1,1), as=(1,0,0), Br=(0,1), B = (1) 0)
what is the matrix of T relative to the pair ®, (®'?

3. Let T be a linear operator on F», let A be the matrix of T in the standard
ordered basis for /'», and let W be the subspace of F* spanned by the column
vectors of A. What does W have to do with T'?

4. Let V be a two-dimensional vector space over the field /', and let B be an
ordered basis for V. If T is a linear operator on V and

a b
(Tls = [c d]
prove that T? — (e« + d)T + (ad — be)l = 0.

5. Let T be the linear operator on R®, the matrix of which in the standard ordered

basis is
1 21
A= |: 01 1j|~
-1 3 4

Find a basis for the range of T and a basis for the null space of T.
6. Let T be the linear operator on R? defined by
T(z1, x2) = (—Za 21).

(a) What is the matrix of T in the standard ordered basis for R??
(b) What is the matrix of T' in the ordered basis ® = {ay, as}, wherea, = (1, 2)
and ap = (1, —=1)?

(c) Prove that for every real number ¢ the operator (T — cI) is invertible.
(d) Prove that if ® is any ordered basis for R?and [T]g = A, then 4,345 # 0.

7. Let T be the linear operator on R? defined by
T(xyy T2y T3) = (321 + 23, — 2y + T9, — 71 + 222 + 473).
(a) What is the matrix of T in the standard ordered basis for R%?

96
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(b) What is the matrix of T in the ordered basis
{0y, a2, a3}
whereay = (1,0, 1), as = (=1,2,1), and a5 = (2, 1, 1)?
(¢) Prove that T is invertible and give a rule for T-! like the one which de-
fines T.

8. Let 6 be a real number. Prove that the following two matrices are similar
over the field of complex numbers:

[coa 6 ~—sin O:I’ [e"" 0 ]
sinf  cosf 0 ¢
(Hint: Let T be the linear eperator on ('? which is represented by the first matrix

in the standard ordered basis. Then find vectors a; and a; such that Toy = e%ay,
Tos = e ay, and {oy, oz} is a basis.)

9. Let V be a finite-dimensional vector space over the field F and let S and T
be linear operators on V. We ask: When do there exist ordered bases ® and ®'
for V such that [S]a = [T]a’? Prove that such bases exist if and only if there is
an invertible linear operator U on V such that T = USU™L, (Outline of proof:
If (Slg = [T)w’, let U be the operator which carries ® onto ®' and show that
S = UTU-. Conversely, if T = USU™! for some invertible U, let ® be any
ordered basis for V and let ®’ be its image under U. Then show that [S]g = [T]&".)

10. We have seen that the linear operator T on R? defined by T'(zi, z2) = (x1,0)
is represented in the standard ordered basis by the matrix

1 0
a=[y o}
This operator satisfies T2 = T. Prove that if S is a linear operator on R? such that

S2= 8, then 8 =0, or 8§ = I, or there is an ordered basis ® for R? such that
[Sls = A (above).

11. Let W be the space of all n X 1 column matrices over a field F. If A is an
n X n matrix over F, then A defines a linear operator L, on W through left
multiplication: L4(X) = AX. Prove that every linear operator on W is left multi-
plication by some n X nm matrix, i.e., is L4 for some A.

Now suppose V is an n-dimensional vector space over the field ', and let ®
be an ordered basis for V. For each « in V, define Ua = [a]g. Prove that U is an
isomorphism of V onto W. If T is a linear operator on V, then UTU! is a linear
operator on W. Accordingly, UTU ! is left multiplication by some n X n matrix 4.
What is A?

12. Let V be an n-dimensional vector space over the field F, and let ® =
{ay, . . ., as} be an ordered basis for V.
(a) According to Theorem 1, there is a unique linear operator T on V such that

¥

Ta;‘mai-{-l; j=1,..-,n—1, Tan=0'

What is the matrix A of T in the ordered basis ®?

(b) Prove that T» = 0 but 7! # 0.

(¢) Let S be any linear operator on V such that S* = 0 but S»! »£ 0. Prove
that there is an ordered basis ®’ for V such that the matrix of S in the ordered
basis ®’ is the matrix A of part (a).
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(d) Prove that if M and N are n X m matrices over ¥ such that M» = N» = 0
but M»~1 5 0 £ N*~1 then M and N are similar.

13. Let V and W be finite-dimensional vector spaces over the field F and let T
be a linear transformation from V into W. If

® = {a1,...,as} and ® = {By...,0Bus
are ordered bases for V and W, respectively, define the linear transformations E»:¢

as in the proof of Theorem 5: E?¢(a;) = 0:8p. Then the E79¢ 1 < p < m,
1 £ ¢ £ n, form a basis for L(V, W), and so

m n
T= 3 Z ApkEr?
p=1g=1
for certain scalars A,, (the coordinates of T in this basis for L(V, W)). Show that
the matrix A with entries A(p, q) = Ay, is precisely the matrix of T relative to
the pair (B, &'
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3.5. Linear Functionals

If V is a vector space over the field F, a linear transformation f from V
into the scalar field F is also called a linear functional on V. If we start
from scratch, this means that f is a function from V into F such that

flea + B) = df(a) + 1(8)

for all vectors @ and 8 in V and all scalars ¢ in F. The concept of linear
functional is important in the study of finite-dimensional spaces because
it helps to organize and clarify the discussion of subspaces, linear equations,
and coordinates.

ExampLE 18. Let F be a field and let a,, . . ., a, bescalarsin F. Define

a function f on F* by
f(xly- . -7xn) = 01$1+ +anxn-
Then f is a linear functional on F= It is the linear functional which is
represented by the matrix [a; --- a,] relative to the standard ordered
basis for F» and the basis {1} for F:
ai=f(€])) ]=1,,n

Every linear functional on F* is of this form, for some scalars ay, . . ., a,.

That is immediate from the definition of linear functional because we define
a; = f(e;) and use the linearity

. f@y...,za) =f (? xje,)
= JE zif (¢;)

= 2 a;x;.
j
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ExampLE 19. Here is an important example of a linear functional.
Let n be a positive integer and F a field. If A is an n X n matrix with
entries in F, the trace of A is the scalar

trd =Au+ A+ -+ + A

The trace function is a linear functional on the matrix space F»** because

tr (cA + B) '2":1 (cAsi + Bui)

c % A+ % B
i=1 i=1
=c¢trAd + tr B.

ExampLE 20. Let V be the space of all polynomial functions from the
field F into itself. Let ¢ be an element of F. If we define

L.(p) = p(t)

then I, is a linear functional on V. One usually describes this by saying
that, for each ¢, ‘evaluation at ¢’ is a linear functional on the space of
polynomial functions. Perhaps we should remark that the fact that the
functions are polynomials plays no role in this example. Evaluation at ¢
is a linear functional on the space of all functions from F into F.

ExampiE 21. This may be the most important linear functional in
mathematics. Let [a, b] be a closed interval on the real line and let C([a, b])
be the space of continuous real-valued functions on [a, b]. Then

Lig) = [’ o) at

defines a linear functional L on C([a, b]).
If V is a vector space, the collection of all linear functionals on V

forms a vector space in a natural way. It is the space L(V, F). We denote
this space by V* and call it the dual space of V:

V* = L(V, F).
If V is finite-dimensional, we can obtain a rather explicit description

of the dual space V*. From Theorem 5 we know something about the
space V*, namely that

dim V* = dim V.
Let ® = {ay,...,an} be a basis for V. According to Theorem 1, there
is (for each 7) a unique linear functional f; on ¥ such that
(3-11) filay) = 0.
In this way we obtain from ® a set of n distinct linear functionalsf, . . ., f,

on V. These functionals are also linearly independent. For, suppose
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(3-12) f= él oife
Then

fla) = 2 cfias)

n
= 3 ¢y
i=1
= Cj.
In particular, if f is the zero functional, f(a;) = 0 for each j and hence
the scalars c¢; are all 0. Now fy, ..., f, are n linearly independent func-
tionals, and since we know that V* has dimension n, it must be that

®* = {fi,...,f} is a basis for V*. This basis is called the dual basis
of ®.

Theorem 15. Let V be a finite-dimenstonal vector space over the field F,

and let ® = {ay,..., an} be a basis for V. Then there is a unique dual
basis ®* = {f1, ..., fa} for V* such that fi(e;) = 8;;. For each linear func-
tional f on V we have
(3—13) = _21 f(oti)fi

]

and for each vector a 1n V we have
(3'14) a = 'El fi(a)ai.
i=

Proof. Wehave shown above that thereis a unique basis which is
‘dual’ to ®. If f is a linear functional on V, then f is some linear combination
(3-12) of thef;, and as we observed after (3-12) the scalars ¢;must be given
by ¢; = f(a;). Similarly, if
a= 2 Tia;
i=1
is a vector in V, then

fila) = él zifi(as)

n
2 Z:0i5
1= 1

so that the unique expression for a as a linear combination of the a; is
n
o= _El Ji(e)ai. l
i=

Equation (3-14) provides us with a nice way of describing what the
dual basis is. It says, if ® = {a1, ..., as} is an ordered basis for V and
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®* = {fy,...,f.} is the dual basis, then f; is precisely the function
which assigns to each vector @ in V the ¢th coordinate of « relative to the
ordered basis ®. Thus we may also call the f; the coordinate functions for
®. The formula (3-13), when combined with (3-14) tells us the following:
If fis in V*, and we let f(e:) = @i, then when

o =x1a1+ R +xnan
we have

(3-15) fla) = qn + -+ + a2,

In other words, if we choose an ordered basis ® for ¥V and describe each
vector in V by its n-tuple of coordinates (zy, . . ., x,) relative to &, then
every linear functional on V has the form (3-15). This is the natural
generalization of Example 18, which is the special case V = F» and ® =

{fly ey en}‘

ExampLE 22, Let V be the vector space of all polynomial functions
from R into R which have degree less than or equal to 2. Let ¢, ¢, and (s
be any three distinct real numbers, and let

Li(p) = p(ts)-

Then Ly, L, and Ls are linear functionals on V. These functionals are
linearly independent; for, suppose

L = ¢iLy + c2La + c3ls.

If L = 0,i.e., if L(p) = 0foreach pin V, then applying L to the particular
polynomial ‘functions’ 1, z, % we obtain

a+c+c=0
ticy + taca + tica = 0
t%CI -+ t3cs + iz = 0

From this it follows that ¢; = ¢2 = ¢; = 0, because (as a short computation
shows) the matrix

1 1 1
hob 4
& 4 8

is invertible when t, ¢, and {3 are distinet. Now the L; are independent,
and since V has dimension 3, these functionals form a basis for V*. What
is the basis for V, of which this is the dual? Such a basis {p, p2, ps} for V
must satisfy

Lip;) = 8
or

pi(ts) = &;j.

These polynomial functions are rather easily seen to be
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(x — t)(x — ta)
(h — t) (1 — o)

(=) —ty)
P = G0 G = )

(x —_ tl)(x - tg)
(ts — t)(ts — to)

The basis {p1, ps, ps} for V is interesting, because according to (3-14) we
have for each p in V

p = plt)p + pll)p: + p(s)ps.

Thus, if ci, ¢z, and c3 are any real numbers, there is exactly one polynomial
function p over R which has degree at most 2 and satisfies p(t;) = ¢;, j =
1, 2, 3. This polynomial function is p = cip1 + cep2 + capa.

Now let us discuss the relationship between linear functionals and
subspaces. If f is a non-zero linear functional, then the rank of f is 1 because
the range of f is a non-zero subspace of the scalar field and must (therefore)
be the scalar field. If the underlying space V is finite-dimensional, the rank
plus nullity theorem (Theorem 2) tells us that the null space N, has
dimension

ni(z) =

Pa(-’b) =

dim N, = dim V — 1.

In a vector space of dimension 7, a subspace of dimension n — 1 is called
a hyperspace. Such spaces are sometimes called hyperplanes or subspaces
of codimension 1. Is every hyperspace the null space of a linear functional?
The answer is easily seen to be yes. It is not much more difficult to show
that each d-dimensional subspace of an n-dimensional space is the inter-
section of the null spaces of (n — d) linear functionals (Theorem 16 below).

Definition. If V is a vector space over the field F and S is a subset of V,
the annihilator of S is the set S° of linear functionals f on V such that
f(a) = 0 for every a in S.

It should be clear to the reader that S° is a subspace of V*, whether
S is a subspace of V or not. If S is the set consisting of the zero vector
alone, then S® = V*. If S = V, then S* is the zero subspace of V*. (Thisis
easy to see when V is finite-dimensional.)

Theorem 16. Let V be a finite-dimensional vector space over the field F,
and let W be a subspace of V. Then

dim W + dim W = dim V.

Proof. Let k be the dimension of W and {ay, . . ., ax} a basis for
W. Choose vectors ax41, . . . , o, in V such that {ay, . . ., a,} is a basis for
V. Let {fi,. .., f.} be the basis for V* which is dual to this basis for V.
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The claim is that {fy+1, . - ., f.} is a basis for the annihilator W?*. Certainly
f: belongs to W° for ¢ > k + 1, because

filej) = 8y
and 8;; = 0ifz 2 £ 4+ 1 andj < k; from this it follows that, forz > k + 1,
fi(a@) = 0 whenever « is a linear combination of @y, . . ., ax. The functionals

fess, ..., fu are independent, so all we must show is that they span We,
Suppose f is in V*. Now

f= Elf(ai)fz‘
so that if fisin W¥we have f(a;) = 0 for7 < k and
f= ia%ﬂf(ai)fb

We have shown that if dim W = k and dim V = n then dim W?* =
n—k |

Corollary. Tf W s a k-dimensional subspace of an n-dimensional vector
space V, then W s the intersection of (n — k) hyperspaces in V.

Proof. This is a corollary of the proof of Theorem 16 rather than
its statement. In the notation of the proof, W is exactly the set of vectors «
such that fi(@) =0, 2=k + 1,...,n. Incasek = n — 1, W is the null
space of f,. ||

Corollary. If Wy and W, are subspaces of a finite-dimensional vector
space, then W, = W, if and only if WY = W3,

Proof. If W, = W, then of course W§ = W3. If W, = W, then
one of the two subspaces contains a vector which is not in the other.
Suppose there is a vector o which is in W, but not in Wi. By the previous
corollaries (or the proof of Theorem 16) there is a linear functional f such
that f(8) = 0 for all 8 in W, but f(a) ¢ 0. Then f is in W9 but not in W3
and W9 = Wy |

In the next section we shall give different proofs for these two corol-
laries. The first corollary says that, if we select some ordered basis for the
space, each k-dimensional subspace can be described by specifying (n — k)
homogeneous linear conditions on the coordinates relative to that basis.

Let us look briefly at systems of homogeneous linear equations from
the point of view of linear functionals. Suppose we have a system of linear
equations,

Apry + -+ + Ay, =0

Ar;tlxl + et + Afr;nxn = (
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for which we wish to find the solutions. If we let f;, 2 = 1, . .., m, be the
linear functional on F* defined by

fi@y ... @) = dami 4+ - + AinZa

then we are seeking the subspace of F'» of all « such that
file) =0, i=1L...,m

In other words, we are seeking the subspace annihilated by fi, . . ., fn.
Row-reduction of the coefficient matrix provides us with a systematic
method of finding this subspace. The n-tuple (A, ..., Ai,) gives the
coordinates of the linear functional f; relative to the basis which is dual
to the standard basis for F*. The row space of the coefficient matrix may
thus be regarded as the space of linear functionals spanned by fy, . . ., fa.
The solution space is the subspace annihilated by this space of functionals.

Now one may look at the system of equations from the ‘dual’ point
of view. That is, suppose that we are given m vectors in F»

ai = (Au,. .., Ad:u)
and we wish to find the annihilator of the subspace spanned by these
vectors. Since a typical linear functional on F* has the form
f@y .00y %a) = a1+ o0+ Caa
the condition that f be in this annihilator is that
j%lAijCj=0, i=1,...,m

that is, that (c;, .. ., c.) be a solution of the system AX = 0. From this
point of view, row-reduction gives us a systematic method of finding the
annihilator of the subspace spanned by a given finite set of vectors in F.

ExampLe 23. Here are three linear functionals on R4:

fl(xly T3y T3, 174) = Ty + 2232 + 21133 ‘+" Xy
fa(@y, o, T3y, T4) = 2z5 + 24
fa(®1, g, 3, 24) = — 2y — 41y + 34,

The subspace which they annihilate may be found explicitly by finding the
row-reduced echelon form of the matrix

1 2 21
A = 0 2 0 1}
-2 0 —4 3

A short calculation, or a peek at Example 21 of Chapter 2, shows that

1020
R=]01 0 Of
0 0 01
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Therefore, the linear functionals
g1(zy, Ty, X3, Tg) = Ty + 224
go(T, Ta, Ty, Ty) = Ty
ga(Z1, Toy T3, Tg) = T4
span the same subspace of (R*)* and annihilate the same subspace of R*
as do fy, f2, fs. The subspace annihilated consists of the vectors with
Iy = —2.’173
Ty = x4 = 0.

ExampLE 24. Let W be the subspace of R® which is spanned by the
vectors

aQ = (2; _2: 3: 4, _1): az = (0; 0, —1, =2, 3)
ay = (—1,1, 2,5, 2), as = (1, —1, 2,3, 0).
How does one describe W°, the annihilator of W? Let us form the 4 X 5

matrix A with row vectors a;, as, as, as, and find the row-reduced echelon
matrix B which is row-equivalent to A:

2 -2 3 4 —1 1 -1 0 -1 0
-1 1 2 5 2 0 01 2 0
A4=190 o0 -1 -2 3|”F=lo o0 o 1f
1 -1 2 3 0 0 00 00
If f is a linear functional on R5:
5
f(xll"'lx5)=_21 (2]
j=

then f is in W if and only if f(a:) = 0,2 = 1, 2, 3, 4, i.e., if and only if

7

5
AijC,'=0, ISlS4

=1

This is equivalent to

5
2 Rijc; = 0, 1<:<3
j=1

or
aa—c2—ci=10
Cs+264=0
C5=0.

We obtain all such linear functionals f by assigning arbitrary values to
¢z and ¢4, say ¢z = a and ¢4 = b, and then finding the corresponding ¢, =
a—+b,cs = —2b ¢; = 0. So WO consists of all linear functionals f of the
form

Sy, @a, T3, 24, T5) = (@ + D)ay + axp — 2bx5 + b,
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The dimension of W* is 2 and a basis {f1, f2} for W° can be found by first
takinga = 1, b = 0 and then a = 0, b = 1:

fl(xly v -)xi) = I +172
falxy, ..o, x5) = 21 — 235 + 4.
The above general f in W0 is f = af) + bfe.

Exercises

1. In R3,letay = (1,0, 1), oz = (0,1, —2), a3 = (—1, —1,0).
(a) If fis a linear functional on R® such that
fle) =1,  flaa) = =1,  flew) =3,
and if @ = (a, b, ¢), find f(a).
(b) Describe explicitly a linear functional f on R® such that
flar) = flas) = 0 but flaz) #= 0.
(c) Let f be any linear functional such that
flen) = flaz) = 0 and f(as) # 0.
If @ = (2, 3, —1), show that f(a) & 0.
2. Let ® = {a1, a2, a3} be the basis for C? defined by
a; = (1,0, —1), a = (1,1,1), a3 = (2,2,0).
Find the dual basis of ®.

3. If A and B are n X n matrices over the field F, show that trace (AB) = trace
(BA). Now show that similar matrices have the same trace.

4. Let V be the vector space of all polynomial functions p from R into B which
have degree 2 or less:
p(x) = ¢y + 1z + cox®

Define three linear functionals on V by
1 2 -1
) = [ p@dn, 5 = [Pp@dz,  si) = [T e dn.
Show that {f, f2, fs} is a basis for V* by exhibiting the basis for V of which it is

the dual.

5. If A and B are n X n complex matrices, show that AB — BA = [ is im-
possible.

6. Let m and n be positive integers and F a field. Let f}, . . ., f» be linear func-
tionals on F», For a in F* define

Ta = (fl(a), e ;fm(a))

Show that T is a linear transformation from F* into F™. Then show that every
linear transformation from F= into F™ is of the above form, for some fi, . . ., fm.

7. Let ax = (1,0, —1, 2) and @y = (2, 3, 1, 1), and let W be the subspace of R*
spanned by a, and a,. Which linear functionals f:

106
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f(x1, Toy 23, T4) = 11 + cozs + caxs + caxy
are in the annihilator of W?

8. Let W be the subspace of RB% which is spanned by the vectors
a1 = 6 + 26 + &, ay = €+ 3e3 + 3e4 1 €5
a3 = € + 4e + b + 4es + €5

Find a basis for W°.

9. Let V be the vector space of all 2 X 2 matrices over the field of real numbers,

and let
2 =2
B= [—1 1]‘

Let W be the subspace of V consisting of all A4 such that AB = 0. Let f be a linear
functional on V which is in the annihilator of W. Suppose that f(I) = 0 and
f(C) = 3, where I is the 2 X 2 identity matrix and

-3 1]
Find f(B).

10. Let F be a subfield of the complex numbers. We define # linear functionals
on I’ (n > 2) by
n

Je(@y ooy 20) = 21 (k = fzj, 1<k <

What is the dimension of the subspace annihilated by fi, . . ., fa?

11. Let W, and W, be subspaces of a finite-dimensional vector space V.
(a) Prove that (W, + Wy)° = Wi N Wi,
(b) Prove that (W, N\ Wy)0 = W9 + W3,

12, Let V be a finite-dimensional vector space over the field ' and let W be a
subspace of V. If f is a linear functional on W, prove that there is a linear functional
g on V such that g(a) = f(a) for each « in the subspace W.

13. Let F be a subfield of the field of complex numbers and let V be any vector
space over I. Suppose that f and ¢ are linear functionals on V such that the func-
tion A defined by A(a) = f(a)g(a) is also a linear functional on V. Prove that
eitherf = 0 or g = 0.

14. Let F be a field of characteristic zero and let V be a finite-dimensional vector

space over F. If ay, . . ., am are finitely many vectors in V, each different from the
zero vector, prove that there is a linear functional f on V such that
flai) # 0, t=1...,m.

15. According to Exercise 3, similar matrices have the same trace. Thus we can
define the trace of a linear operator on a finite-dimensional space to be the trace
of any matrix which represents the operator in an ordered basis. This is well-
defined since all such representing matrices for one operator are similar.

Now let V be the space of all 2 X 2 matrices over the field ¥ and let P be a
fixed 2 X 2 matrix. Let T be the linear operator on V defined by T(A) = PA.
Prove that trace (T) = 2 trace (P).
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16. Show that the trace functional on n X n matrices is unique in the following
sense. If W is the space of n X n matrices over the field F' and if f is a linear func-
tional on W such that f(4AB) = f(BA) for each A and B in W, then f is a scalar
multiple of the trace function. If, in addition, f(I) = =, then f is the trace function.
17. Let W be the space of n X n matrices over the field F, and let W, be the sub-
space spanned by the matrices C' of the form C = AB — BA. Prove that W is
exactly the subspace of matrices which have trace zero. (Hint: What is the dimen-
sion of the space of matrices of trace zero? Use the matrix ‘units,’ i.e., matrices with

exactly one non-zero entry, to construct enough linearly independent matrices of
the form AB — BA.)

3.6. The Double Dual

One question about dual bases which we did not answer in the last
section was whether every basis for V* is the dual of some basis for V. One
way to answer that question is to consider V**, the dual space of V*,

If a is a vector in V, then a induces a linear functional L, on V*

defined b
mee L) =f@, f i V%

The fact that L, is linear is just a reformulation of the definition of linear
operations in V*:

Lalcf + 9) = (f + 9)(a)

(f)(e) + g(a)

f(a) + g(@)

cLa(f) + La(g)-

If V is finite-dimensional and « # 0, then L, # 0; in other words, there
exists a linear functional f such that f(a) # 0. The proof is very simple
and was given in Section 3.5: Choose an ordered basis ® = {ay, . . ., an}
for V such that ey = a and let f be the linear functional which assigns to
each vector in V its first coordinate in the ordered basis ®.

Theorem 17. Let V be a finite-dimensional vector space over the field F.
For each vector o in 'V define

L.(f) = f(a), f in V*
The mapping o« = L, is then an tsomorphism of V onto V**.

Proof. We showed that for each a the function L, is linear.
Suppose  and B arein V and cisin F, and let ¥y = ca + 8. Then for each f

in V*
Ly(f) = f(v)
= f(ca + B)
= cf(a) + f(8)
= cLa(f) + Ls(f)
and so

Lﬂy = CLa + Lﬂ.
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This shows that the mapping @ = L, is a linear transformation from V
into V**. This transformation is non-singular; for, according to the
remarks above L, = 0 if and only if « = 0. Now a = L, is a non-singular
linear transformation from V into V**, and since

dim V** = dim V* = dim V

Theorem 9 tells us that this transformation is invertible, and is therefore
an isomorphism of V onto V**. |

Corollary. Let V be a finite-dimensional vector space over the field F.
If L vs a linear functional on the dual space V* of V, then there is a unique
vector o tn 'V such that

L) = f(a)

for every f in V*,

Corollary. Let V be a finite-dimensional vector space over the field F.
Each basis for V* is the dual of some basis for V.

Proof. Let 8* = {fy, ..., f.} be a basis for V*. By Theorem 15,
there is a basis {Ly, . . ., L,} for V** such that

Li(f5) = b
Using the corollary above, for each 7 there is a vector a; in V such that
Li(f) = f(e)

for every f in V* i.e., such that L; = L,,. It follows immediately that
{ay, ..., an} is a basis for V and that ®&* is the dual of this basis. ||

In view of Theorem 17, we usually identify « with L, and say that V
‘is’ the dual space of V* or that the spaces V, V* are naturally in duality
with one another. Each is the dual space of the other. In the last corollary
we have an illustration of how that can be useful. Here is a further illustra-
tion.

If E is a subset of V*, then the annihilator E° is (technically) a subset
of V**, If we choose to identify V and V** as in Theorem 17, then E°is a
subspace of V, namely, the set of all « in V such that f(a) = 0 forallfin E.
In a corollary of Theorem 16 we noted that each subspace W is determined
by its annihilator W° How is it determined? The answer is that W is the
subspace annihilated by all f in W9, that is, the intersection of the null
spaces of all f’s in W?. In our present notation for annihilators, the answer
may be phrased very simply: W = (W?%)°,

Theorem 18. If S s any subset of a finite-dimensional vector space V,
then (S°)° is the subspace spanned by S.
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Proof. Let W be the subspace spanned by S. Clearly W = S¢,
Therefore, what we are to prove is that W = W%, We have given one
proof. Here is another. By Theorem 16

dim W + dim W0 = dim V
dim W° + dim W% = dim V*

and since dim V = dim V* we have
dim W = dim W%,
Since W is a subspace of W, we see that W = W, |

The results of this section hold for arbitrary vector spaces; however,
the proofs require the use of the so-called Axiom of Choice. We want to
avoid becoming embroiled in a lengthy discussion of that axiom, so we shall
not tackle annihilators for general vector spaces. But, there are two results
about linear functionals on arbitrary vector spaces which are so fundamen-
tal that we should include them.

Let V be a vector space. We want to define hyperspaces in V. Unless
V is finite-dimensional, we cannot do that with the dimension of the
hyperspace. But, we can express the idea that a space N falls just one
dimension short of filling out V, in the following way:

1. N is a proper subspace of V;
2. if W is a subspace of V which contains N, then either W = N or
W = V.

Conditions (1) and (2) together say that N is a proper subspace and there
is no larger proper subspace, in short, N is a maximal proper subspace.

Definition. 1fV is a vector space, a hyperspace in V 7s a mazimal
proper subspace of V.

Theorem 19. I1ff{ is a non-zero linear functional on the vector space V,
then the null space of f 1s a hyperspace in V. Conversely, every hyperspace in V
1s the null space of a (not unique) non-zero linear functional on V.

Proof. Let f be a non-zero linear functional on V and N; its null
space. Let o be a vector in V which is not in Ny, i.e., a vector such that
f(a) # 0. We shall show that every vectorin V is in the subspace spanned
by Ny and a. That subspace consists of all vectors

v+ cay ¥in Ny, cin F.

Let g8 be in V. Define
_ [(8)
f(a)

4
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which makes sense because f(a) # 0. Then the vector ¥y = 8 — ca is in N,
since
f(v) = f(B = ca)
= {)(B) — cf(@)

So 8 is in the subspace spanned by N; and a.

Now let N be a hyperspace in V. Fix some vector @ which is not in N,
Since N is a maximal proper subspace, the subspace spanned by N and «
is the entire space V. Therefore each vector 8 in V has the form

B =5+ ca, vin N, cin F.
The vector ¥ and the scalar ¢ are uniquely determined by 8. If we have also
B =74+ ca, 4 inN,c in F.
then
(" —ca=v—7.
If ¢/ — ¢ # 0, then « would be in N; hence, ¢’ = ¢ and v = v. Another
way to phrase our conclusion is this: If g is in V, there is a unique scalar c

such that 8 — ca is in N. Call that scalar g(B8). It is easy to see that g is a
linear functional on V and that N is the null space of g. |

Lemma. Iff and g are linear functionals on a vector space V, then g
15 a scalar multiple of f if and only if the null space of g contains the null space
of 1, that is, if and only if f(a) = 0 tmplies g(a) = 0.

Proof. If f = 0 then ¢ = 0 as well and ¢ is trivially a scalar
multiple of f. Suppose f # 0 so that the null space N, is a hyperspace in V.
Choose some vector « in V with f(a) # 0 and let

= e
fa)
The linear functional A = g — cf is 0 on N/, since both f and g are 0 there,
and h(a) = g(a) — ¢f(a) = 0. Thus A is 0 on the subspace spanned by N;
and a—and that subspace is V. We conclude that A = 0, i.e., that g =
of |

Theorem 20. Let g, fy, . . ., f, be linear functionals on a vector space V
with respective null spaces N, Ny, . . ., Ny. Then g is a linear combination of
fi, . .., fr of and only if N contains the intersection Ny (N -+ - (N N,

Proof. If g = aifi + --- + ¢f, and fia) = 0 for each 7, then
clearly g(a) = 0. Therefore, N contains Ny -« N N,.

We shall prove the converse (the ‘if’ half of the theorem) by induction
on the number 7. The preceding lemma handles the case r = 1. Suppose we
know the result forr = k — 1, and let f}, . . ., fi be linear functionals with
null spaces Ny, . .., N such that Ny --- M Ni is contained in N, the
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null space of ¢g. Let ¢, f1, . . ., ft—1 be the restrictions of ¢, f1,. .., fi_1 to
the subspace Ni. Then ¢/, fi, ..., fi-1 are linear functionals on the vector
space N Furthermore, if « is a vector in N4 and fila) = 0,7 =1,.. .,

k —1, then a is in N; N - N Nt and so ¢’(e) = 0. By the induction
hypothesis (the case r = k — 1), there are scalars ¢; such that

g =oafi+ -+ aafioi
Now let

k=1
(3-16) h=g9g— 2% ¢fs
i=1

Then A is a linear functional on V and (3-16) tells us that h(a) = 0 for
every a in N By the preceding lemma, A is a scalar multiple of fi. If A =
Ckfk, then

3
9= Zcfi |
i=1

Exercises

1. Let n be a positive integer and F a field. Let W be the set of all vectors
(%1, ..., %, in Frsuch that 2, + - -+ + z, = 0.
(a) Prove that W* consists of all linear functionals f of the form

n
f(x1’° . .,.27") = C_zlxi-
i=

(b) Show that the dual space W* of W can be ‘naturally’ identified with the
linear functionals
f(xly' ..,In) = 61$1+ e +cnxn
on I which satisfy ¢, + <+« 4+ ¢a = O.

2. Use Theorem 20 to prove the following. If W is a subspace of a finite-dimen-
sional vector space V and if {g,, ..., g} is any basis for W?¢, then

W = ﬁ Ng‘.
i=1
3. Let S be a set, F a field, and V(S; F) the space of all functions from S into F':
(f+ 9= = f(z) + g(z)
€N(z) = ¢f(x).
Let W be any n-dimensional subspace of V(S; F). Show that there exist points
Iy, ..., T, in S and functions fi, . . ., f» in W such that fi(z;) = i

111

3.7. The Transpose of a Linear

Transformation

Suppose that we have two vector spaces over the field F, V, and W,
and a linear transformation T from V into W. Then T induces a linear
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transformation from W* into V*, as follows. Suppose ¢ is a linear functional
on W, and let

(3-17) fla) = g(Ta)

for each o in V. Then (3-17) defines a function f from V into F, namely,
the composition of T, a function from V into W, with g, a function from
W into F. Since both T and ¢ are linear, Theorem 6 tells us that f is also
linear, i.e., f is a linear functional on V. Thus T provides us with a rule T'
which associates with each linear functional g on W a linear functional
f = Ttg on V, defined by (3-17). Note also that 7" is actually a linear
transformation from W* into V*; for, if g1 and ¢, are in W* and c is a scalar

[Tt(cqr + g2)](e) (cgr + 92)(Ta)
ci(Ta) + go(Ta)
= ¢(T'g1)(a) + (T'g2)(ex)

so that T(cgy + ¢2) = ¢T'g1 + T'g,. Let us summarize.

Theorem 21. Let V and W be vector spaces over the field F. For each
linear transformation T from V into W, there is a unique linear transformation
Tt from W* into V* such that

(T'g) () = g(Ta)
for every g in W* and a in V.

We shall call T" the transpose of 7. This transformation T" is often
called the adjoint of T'; however, we shall not use this terminology.

Theorem 22. Let V and W be vector spaces over the field ¥, and let T
be a linear transformation from V tnto W. The null space of T* is the annihi-
lator of the range of T. If V and W are finite-dimenstional, then

1) rank (T%) = rank (T)
(ii) the range of T* is the annihilator of the null space of T.

Proof. If g is in W*, then by definition
(T*g)(a) = g(Ta)

for each a in V. The statement that g is in the null space of T'* means that
g(Ta) = 0 for every a« in V. Thus the null space of T is precisely the
annihilator of the range of 7'.

Suppose that V and W are finite-dimensional, say dim V = n and
dim W = m. For (i): Let r be the rank of T, i.e., the dimension of the range
of T. By Theorem 16, the annihilator of the range of T then has dimension
(m — r). By the first statement of this theorem, the nullity of T'* must be
(m — r). But thensince T is a linear transformation on an m-dimensional
space, the rank of Ttism — (m — r) = r, and so T and T* have the same
rank. For (ii): Let N be the null space of T. Every functional in the range
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of T" is in the annihilator of N; for, suppose f = T*g for some g in W*; then,
ifaisin N
fl@) = (T'g)(a) = g(Ta) = ¢(0) = O.
Now the range of T' is a subspace of the space N? and
dim N° = n — dim N = rank (T) = rank (7"%)

so that the range of T* must be exactly N°. |

Theorem 23. Let V and W be finite-dimenstonal vector spaces over the
field F. Let ® be an ordered basis for V with dual basis ®*, and let ®' be an
ordered basis for W with dual basis &'*. Let T be a linear transformation
from V into W ; let A be the matriz of T relative to ®, & and let B be the matrix
of Tt relative to ®'*, ®*. Then Bi; = Aji.

Proof. Let
(B={a1,...,an}, (B,={Bl;-")ﬂM}J
®* = {fly"';fﬂ}; B™* = {gly-'-;gm}°

By definition,
Ta; = ,ElAijﬂi, J

Il
—
s
-
3

Tg; '21 Biifs, ji=1...,m

On the other hand,
(T'g;) (i) = gi(Tews)

g ( § Akiﬁk)
k=1

3 Arigi(Br)
k=1

m
S Ak
k=1

= Aji.
For any linear functional f on V
f=2 fla)fi.

If we apply this formula to the functional f = T"g; and use the fact that
(Tg;)(as) = Aji, we have

T'9i = Z Al

from which it immediately follows that B;; = Aj;. |

118
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Definition. If A is an m X n matriz over the field F, the transpose of
A s the n X m matriz At defined by Af; = Aj;.

Theorem 23 thus states that if T is a linear transformation from V
into W, the matrix of which in some pair of bases is 4, then the transpose
transformation 7' is represented in the dual pair of bases by the transpose
matrix A

Theorem 24. Let A be any m X n matriz over the field F. Then the
row rank of A is equal to the column rank of A.

Proof. Let ® be the standard ordered basis for F* and ®’ the
standard ordered basis for F™. Let T be the linear transformation from F=»
into F™ such that the matrix of T relative to the pair ®, ®' is 4, i.e.,

T(xl;-- ':xn) = (yb- . ‘;ym)
where

n
yi = 2 Ay,
i=1

The column rank of A is the rank of the transformation 7, because the
range of T consists of all m-tuples which are linear combinations of the
column vectors of 4.

Relative to the dual bases ®* and ®*, the transpose mapping 7' is
represented by the matrix A*. Since the columns of A¢ are the rows of A,
we see by the same reasoning that the row rank of 4 (the column rank of A¢)
is equal to the rank of T*. By Theorem 22, T' and T have the same rank,
and hence the row rank of 4 is equal to the column rank of A. |

Now we see that if A is an m X n matrix over F and T is the linear
transformation from F» into F™ defined above, then

rank (T') = row rank (4) = column rank (4)

and we shall call this number simply the rank of 4.

ExampLE 25. This example will be of a general nature—more dis-
cussion than example. Let V be an n-dimensional vector space over the
field F, and let T be a linear operator on V. Suppose & = {ay, ..., as}
is an ordered basis for V. The matrix of T in the ordered basis ® is defined
to be the n X n matrix 4 such that

n
Taj = 3 Ao
j=1

in other words, A;; is the 7th coordinate of the vector T'a; in the ordered
basis ® If {fy, ..., f.} is the dual basis of ®, this can be stated simply

Aij = fi(Taj).
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Let us see what happens when we change basis. Suppose
® = {ady ..., on}

is another ordered basis for V, with dual basis {fj, ..., fi}. If B is the
matrix of T in the ordered basis ®’, then

Bi; = fi(Taj).
Let U be the invertible linear operator such that Ua; = ). Then the
transpose of U is given by UYf; = f.. It is easy to verify that since U is
invertible, so is U* and (U*)~! = (U~?)% Thusfi = (U)Y,i=1,...,n.
Therefore,

Bi; = [(U™):](Ta))

= f{(U'Ta))

= fi(U_lTUaj).
Now what does this say? Well, f;(U='T'Ua;) is the 7, j entry of the matrix
of U7'TU in the ordered basis . Our computation above shows that this
scalar is also the 7, j entry of the matrix of T in the ordered basis ®'. In
other words

[Tle = [U"'TU]s

(U-]a[T]alUls
= [Ula'(T]e[Uls

and this is precisely the change-of-basis formula which we derived earlier.

Exercises

1. Let F be a field and let f be the linear functional on F2 defined by f(zy, 22) ==
az; + bza. For each of the following linear operators T, let g = T, and find
g(zy, T2).

(a) T(2y, 932) = (x4, 0):
(b) T(zy, 1) = (—x2 11);
(¢) T(zy, 22) = (T1 — Ty, 71 + 72).
2. Let V be the vector space of all polynomial functions over the field of real

numbers. Let a and b be fixed real numbers and let f be the linear functional on V
defined by

i® = [ p(a) da.

If D is the differentiation operator on V, what is Dif?

3. Let V be the space of all n X n matrices over a field F and let B be a fixed
n X n matrix. If T is the linear operator on V defined by T(A) = AB — BA,
and if f is the trace function, what is T%f?

4, Let V be a finite-dimensional vector space over the field F and let T be a
linear operator on V. Let ¢ be a scalar and suppose there is a non-zero vector «
in V such that Ta = ca. Prove that there is a non-zero linear functional f on V
such that T = cf.

116
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5. Let A be an m X n matrix with real entries. Prove that A = 0 if and only
if trace (4*4) = 0.
6. Let n be a positive integer and let V be the space of all polynomial functions

over the field of real numbers which have degree at most n, i.e., functions of the
form

f@) =e+eaz+ - + cuam

Let D be the differentiation operator on V. Find a basis for the null space of the
transpose operator D°,

7. Let V be a finite-dimensional vector space over the field F. Show that 7 — T
is an isomorphism of L(V, V) onto L(V*, V*).
8. Let V be the vector space of 7 X n matrices over the field F.
(a) If Bis a fixed n X n matrix, define a function fz on V by fz(4) = trace
(BtA). Show that fz is a linear functional on V.
(b) Show that every linear functional on V is of the above form, i.e., is fz
for some B.
(¢) Show that B = fg is an isomorphism of V onto V*,



4. Polynomials

4.1. Algebras

The purpose of this chapter is to establish a few of the basic prop-
erties of the algebra of polynomials over a field. The discussion will be
facilitated if we first introduce the concept of a linear algebra over a field.

Definition. Let F be a field. A linear algebra over the field I is a
vector space G over ¥ with an additional operation called multiplication of
vectors which assoctates with each pair of vectors a, 8 in G a vector af in
@ called the product of a and 8 in such a way that

(a) multvplication ts assoctative,
a(By) = (aB)y
(b) multiplication vs distributive with respect to addition,
aBf+v) =af+ ay and (a+B)y = ay+ By
(¢) for each scalar ¢ in F,
c(aB) = (ca)f = a(ch).
If there s an element 1 1n @ such that la = al = a for each a in @,

we call @ a linear algebra with identity over I, and call 1 the identity
of @. The algebra @ is called commutative if af = Ba for all « and B in Q.

ExampLE 1. The set of n X n matrices over a field, with the usual
operations, is a linear algebra with identity; in particular the field itself
is an algebra with identity. This algebra is not commutative if n > 2.
The field itself is (of course) commutative.
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ExampLE 2. The space of all linear operators on a vector space, with
composition as the produect, is a linear algebra with identity. It is com-
mutative if and only if the space is one-dimensionai.

The reader may have had some experience with the dot product and
cross product of vectors in K3 If so, he should observe that neither of
these products is of the type described in the definition of a linear algebra.
The dot product is a ‘scalar produect, that is, it associates with a pair of
vectors a scalar, and thus it is certainly not the type of product we are
presently discussing. The cross product does associate a vector with each
pair of vectors in R3; however, this is not an associative multiplication.

The rest of this section will be devoted to the construction of an
algebra which is significantly different from the algebras in either of the
preceding examples. Let F be a field and S the set of non-negative in-
tegers. By Example 3 of Chapter 2, the set of all functions from S into
F is a vector space over F. We shall denote this vector space by F*. The
vectors in F* are therefore infinite sequences f = (fy, f1, fo, . . .) of scalars
fiin F.If g = (90, 91, g2, - . .), g: in F, and a, b are scalars in F, af + bg is
the infinite sequence given by

(4-1) af + bg = (afy + bgo, afi + bgy, af; + by, . . .).

We define a product in F* by associating with each pair of vectors f and
g in F* the vector fg which is given by

n
(4'2) (fg)n = 'zof‘igﬂ—’i’ n = 0; 1; 2; LR
Thus

fg = (fogo, fog1 + frgo, Joge + frgr + fogo, - - 2)
and as
@ = Z gifni = Eoffgn—i = (fg)n

forn = 0,1,2,..., it follows that multiplication is commutative, fg = gf.
If h also belongs to F=, then

i

[Goh)e = 2 (fo)ihoi

z ( ‘Eof jgi-j)hn—i

im0 \j=

3 5 fiioihns

1=0;=0

n n-—j
2 Ji Z gihneiy
J=0 =0

2 1iah)ss = L],
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forn =0,1,2 ..., sothat

(4-3) (fg)h = f(gh).

We leave it to the reader to verify that the multiplication defined by (4-2)
satisfies (b) and (c) in the definition of a linear algebra, and that the
vector 1 = (1,0,0, . ..) serves as an identity for F=. Then F*, with the
operations defined above, is a commutative linear algebra with identity
over the field F.

The vector (0,1,0,...,0,...) plays a distinguished role in what
follows and we shall consistently denote it by x. Throughout this chapter
z will never be used to denote an element of the field F. The product of
with itself n times will be denoted by x2» and we shall put z° = 1. Then

z?2 = (0,0,1,0,...), 22 =1(0,0,0,1,0,...)

and in general for each integer k > 0, (%) = 1 and (2*), = 0 for all non-
negative integers n # k. In concluding this section we observe that the
set consisting of 1, z, % ... is both independent and infinite. Thus the
algebra F* is not finite-dimensional.

The algebra F*~ is sometimes called the algebra of formal power

series over F. The element f = (fo, f1, fo, . . .) is frequently written
(4-4) =3 fan

This notation is very convenient for dealing with the algebraic operations.
When used, it must be remembered that it is purely formal. There are no
‘infinite sums’ in algebra, and the power series notation (4-4) is not in-
tended to suggest anything about convergence, if the reader knows what
that is. By using sequences, we were able to define carefully an algebra
in which the operations behave like addition and multiplication of formal
power series, without running the risk of confusion over such things as
infinite sums.
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4.2. The Algebra of Polynomials

We are now in a position to define a polynomial over the field F.

Definition. Let F[x] be the subspace of F* spanned by the vectors
1, x, x%, . ... An element of F[x] s called a polynomial over F.

Since F[r] consists of all (finite) linear combinations of 2 and its
powers, a non-zero vector f in F* is a polynomial if and only if there is
an integer n > 0 such that f, # 0 and such that fi = 0 for all integers
k > n; this integer (when it exists) is obviously unique and is called the
degree of f. We denote the degree of a polynomial f by deg f, and do
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not assign a degree to the 0-polynomial. If f is a non-zero polynomial of
degree n it follows that

(4-5) f=/f+ fix+ fox? + - + faxr,  fa#=O.

The scalars fo, fi, . - ., fn are sometimes called the coefficients of f, and
we may say that f is a polynomial with coefficients in F. We shall call
polynomials of the form c2® scalar polynomials, and frequently write ¢
for c2% A non-zero polynomial f of degree n such that f, = 1 is said to
be a monic polynomial.

The reader should note that polynomials are not the same sort of
objects as the polynomial functions on F which we have discussed on
several occasions. If F' contains an infinite number of elements, there is a
natural isomorphism between F[r] and the algebra of polynomial func-
tions on F. We shall discuss that in the next section. Let us verify that
F[z] is an algebra.

Theorem 1. Let f and g be non-zero polynomzals over . Then

(i) fg s a non-zero polynomial;
(i) deg (fg) = deg f + deg g;
(iii) fg is a monic polynomial if both f and g are monic polynomials;
(iv) fg 7s a scalar polynomial if and only if both f and g are scalar
polynomzals;

(v) iff +g#0,
deg (f + g) < maz (deg f, deg g).

Proof. Suppose f has degree m and that g has degree n. If k is a
non-negative integer,
mtntk
(FPmtnte = ‘20 SiGminte—i-
i=

In order that figminik—i # 0, it is necessary that ¢ < m and m + n +
k — 7 < n. Hence it is necessary that m 4+ k < 7 < m, which implies
k = 0 and 7 = m. Thus

(4-6) (S min = fugn
and
(4'7) (fg)m+n+k = 0, k> 0.

The statements (i), (ii), (iii) follow immediately from (4-6) and (4-7),
while (iv) is a consequence of (i) and (ii). We leave the verification of (v)
to the reader. |

Corollary 1. The set of all polynomials over a given field ¥ equipped
with the operations (4-1) and (4-8) is a commutative linear algebra with
identity over F.
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Proof. Since the operations (4-1) and (4-2) are those defined in
the algebra F» and since F[x] is a subspace of F*, it suffices to prove that
the product of two polynomials is again a polynomial. This is trivial when
one of the factors is 0 and otherwise follows from (i). ||

Corollary 2. Suppose f, g, and h are polynomials over the field F' such
that f = 0 and fg = fh. Then g = h.
Proof. Since fg = fh, f(g — h) = 0, and as f = 0 it follows at
once from (i) thatg — h = 0. ||

Certain additional facts follow rather easily from the proof of Theorem
1, and we shall mention some of these.
Suppose

f= 2 fat and g= 3T g
i=0 i=0
Then from (4-7) we obtain,

(4-8) f="% (2 fwer o

5=0

The reader should verify, in the special case f = cz™, ¢ = dz" with ¢, d in
F, that (4-8) reduces to

(4-9) (ca™) (dz™) = cdamt=,

Now from (4-9) and the distributive laws in F[z], it follows that the
product in (4-8) is also given by

(4-10) S fagset
wi

where the sum is extended over all integer pairs 7, j such that 0 < 7 < m,
and 0 < j < n.

Definition. Let @ be a linear algebra with identity over the field F. We
shall denote the tdentity of @ by 1 and make the convention that o = 1 for
n
each o tn Q. Then to each polynomial f = T fix' over F and o in @ we asso-
i=0
ctate an element f(a) in @ by the rule

@) = 3 fial,
i=0

ExampLE 3. Let C be the field of complex numbers and let f = z2 + 2.
(a) If @ = C and 2z belongs to C, f(z) = 2% + 2, in particular f(2) = 6

JEE

and
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(b) If @ is the algebra of all 2 X 2 matrices over C and if
1 0
B=|_ 5]

SR R B g

() If @ is the algebra of all linear operators on C?® and T is the ele-
ment of @ given by

then

T(ey, oy c3) = (i\/é ¢y €3, 1V 2 Cy)
then f(T) is the linear operator on C* defined by
f(T)(cy, €2, 3) = (0, 3¢y, 0).
(d) If @ is the algebra of all polynomials over C and ¢ = 2 4+ 3q,
then f(g) is the polynomial in @ given by
flg) = —7 + @izt 4 28
The observant reader may notice in connection with this last example

that if f is a polynomial over any field and z is the polynomial (0, 1,0, . . .)
then f = f(z), but he is advised to forget this fact.

Theorem 2. Let T be a field and @ be a linear algebra with identity
over F. Suppose f and g are polynomials over ¥, that a is an element of Q,
and that c belongs to F. Then

(i) (cf + g)(a) = cf(a) + gla);
(i) (fg)(a) = f(a)g(a).

Proof. As (i) is quite easy to establish, we shall only prove (ii).
Suppose

f= _gofixi and ¢ = éo g;xi.
By (4-10), B
fg = Z figixt?
Y
and hence by (i),
(f9)(@) = 2 figiaiti
)

- (& re)(20)
= fla)g(a). |
Exercises

1. Let F' be a subfield of the complex numbers and let A be the following 2 X 2
matrix over F
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For each of the following polynomials f over F, compute f(A).
@ f=at—-z+4+2;
(b) f=a*—1;
(¢) f=a2—=bx 4+ 7.

2. Let T be the linear operator on R? defined by
T(x1, T2, T3) = (T1, Tay —22 — T3).
Let f be the polynomial over R defined by f = —z® + 2. Find f(T).

3. Let A be an n X n diagonal matrix over the field , i.e., a matrix satisfying
A;; = 0for v # j. Let f be the polynomial over F defined by

f=(@—4n) - (@ = 4un).
What is the matrix f(A4)?

4. If f and ¢ are independent polynomials over a field /' and k is a non-zero
polynomial over F', show that fA and gh are independent.

5. If Fis a field, show that the product of two non-zero elements of F'* is non-zero.

6. Let S be a set of non-zero polynomials over a field . If no two elements of S
have the same degree, show that S is an independent set in F[z].

7. If a and b are elements of a field /' and a # 0, show that the polynomials 1,
ax + b, (ax + b)?, (ax + b)3, ... form a basis of F[x].

8. If F is a field and & is a polynomial over F of degree > 1, show that the map-
ping f ~—> f(h) is a one-one linear transformation of F[z] into F[z]. Show that this
transformation is an isomorphism of F[z] onto F[2] if and only if deg A = 1.

9. Let I be a subfield of the complex numbers and let T, D be the transformations
on F{z] defined by

T(% c,xi) — % _ci_xi‘f'l
=0 el tt

n . n . .
D X oot )= T deah

=0 1=}

and

(a) Show that T is a non-singular linear operator on F[z]. Show also that T
is not invertible.

(b) Show that D is a linear operator on F[z] and find its null space.

(c¢) Show that DT = I, and TD # I.

(d) Show that T[(Tf)g) = (Tf)(Tg) — T[f(Tg)] for all f, g in F[z].

(e) State and prove a rule for D similar to the one given for T in (d).

(f) Suppose V is a non-zero subspace of F[z] such that Tf belongs to V for
each fin V. Show that V is not finite-dimensional.

(g) Suppose V is a finite-dimensional subspace of F[z]. Prove there is an
integer m > 0 such that D"f = 0 for each f in V.
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4.3. Lagrange Interpolation

Throughout this section we shall assume F is a fixed field and that
to, t1, . . ., tn are n + 1 distinct elements of F. Let V be the subspace of
F[z] consisting of all polynomials of degree less than or equal to n (to-
gether with the 0-polynomial), and let L; be the function from V into F
defined for f in V by

Li(f) = f(t), 0<Li<n

By part (i) of Theorem 2, each L; is a linear functional on V, and one of
the things we intend to show is that the set consisting of Lo, Ly, . . ., L,
is a basis for V*, the dual space of V.

Of course in order that this be so, it is sufficient (cf. Theorem 15 of

Chapter 3) that {Lo, Ly, . . ., L,} be the dual of a basis {Po, Py, . . ., Pa}
of V. There is at most one such basis, and if it exists it is characterized by
(4-11) Lji(P:) = Pi(t)) = 6.

The polynomials

@ —t) (@ =t (@ = b)) - (L)
@12) P = T T = ) = s - (= 1)

T — i
- 1.(=)
iwi \bi — 4

are of degree n, hence belong to V, and by Theorem 2, they satisfy (4-11).
If f = 2 ¢iP,, then for each j
i

(4-13) f(tj) = 2 Cipi(tj) = ¢j.

Since the 0-polynomial has the property that 0(t) = 0 for each ¢ in F, it
follows from (4-13) that the polynomials Py, Py, . . ., P. are linearly in-
dependent. The polynomials 1, z, . . ., z* form a basis of V and hence the
dimension of V is (n + 1). So, the independent set {Po, Py, ..., Pn}
must also be a basis for V. Thus for each fin V

(4-14) i= 2 ftP.

The expression (4-14) is called Lagrange’s interpolation formula. Set-
ting f = z7 in (4-14) we obtain

xi = é (t:)7Ps.
i=0
Now from Theorem 7 of Chapter 2 it follows that the matrix
1 & & --- &
2 P n
(4-15) 1 t:1 tzl : t:l

1 t, &2 ---
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is invertible. The matrix in (4-15) is called a Vandermonde matrix; it
is an interesting exercise to show directly that such a matrix is invertible,
when &, t), . . ., t, are n + 1 distinct elements of F.

If f is any polynomial over F we shall, in our present discussion, de-
note by f~ the polynomial function from F into F taking each ¢ in F into
f@®). By definition (cf. Example 4, Chapter 2) every polynomial function
arises in this way; however, it may happen that f~ = ¢~ for two poly-
nomials f and g such that f ¢ ¢g. Fortunately, as we shall see, this un-
pleasant situation only occurs in the case where F is a field having only
a finite number of distinct elements. In order to describe in a precise way
the relation between polynomials and polynomial functions, we need to
define the product of two polynomial functions. If f, ¢ are polynomials
over F, the product of f~ and ¢~ is the function f~¢~ from F into F given by

(4-16) (f~g)@&) = f~Og~(®), tinF.
By part (ii) of Theorem 2, (fg)(¢t) = f(t)g(t), and hence

(f9)=@) = f~()g~(t)
for each ¢t in F. Thus f79~ = (fg)~, and is a polynomial function. At this
point it is a straightforward matter, which we leave to the reader, to verify
that the vector space of polynomial functions over F becomes a linear
algebra with identity over F if multiplication is defined by (4-16).

Definition. Let F be a field and let @ and @~ be lincar algebras over I.
The algebras @ and @~ are said to be isomorphic if there is a one-to-one map-
ping a = o~ of @ onto @ such that

(a) (ca + dB)™ = ca™ + dB~

(b) (aB)” = o™~
for all @, B 1n @ and all scalars ¢, d in F. The mapping a = a~ is called an
isomorphism of @ onto @~. An tsomorphism of @ onto @~ s thus a vector-

space isomorphism of @ onto @~ which has the additional property (b) of
‘preserving’ products.

ExampLE 4. Let V be an n-dimensional vector space over the field F.
By Theorem 13 of Chapter 3 and subsequent remarks, each ordered basis
® of V determines an isomorphism 7 — [T]g of the algebra of linear
operators on V onto the algebra of n X n matrices over F. Suppose now
that U is a fixed linear operator on V and that we are given a polynomial

n .
f= 2 cxt
1=0
with coefficients ¢; in F. Then

W) = 2 el
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and since T'— [T]g is a linear mapping
Fs = 3 e U,

Now from the additional fact that
[T"Ts)e = [Th]e[T:]e
for all Ty, Ty in L(V, V) it follows that
(Ue = (Ule), 2ZLi<n

As this relation is also valid for 7 = 0, 1 we obtain the result that

(4-17) ()]s = f([U]e).

In words, if U is a linear operator on V, the matrix of a polynomial in U,
in a given basis, is the same polynomial in the matrix of U.

Theorem 3. If ¥ is a field containing an infinite number of distinct
elements, the mapping f = ™ 7s an 1somorphism of the algebra of polynomials
over F onto the algebra of polynomial functions over F.

Proof. By definition, the mapping is onto, and if f, ¢ belong to
F[z] it is evident that

(¢f +dg)~ =df~ + dg~

for all scalars ¢ and d. Since we have already shown that (fg)~ = f~¢g~, we
need only show that the mapping is one-to-one. To do this it suffices by
linearity to show that f~ = 0 implies f = 0. Suppose then that f is a poly-
nomial of degree n or less such that f' = 0. Let &, &, ..., beany n + 1
distinct elements of F. Since f~ =0, f(¢;,) = 0fori=20,1,...,n, and it
is an immediate consequence of (4-14) that f = 0. ||

From the results of the next section we shall obtain an altogether
different proof of this theorem.

Exercises

1. Use the Lagrange interpolation formula to find a polynomial f with real co-
efficients such that f has degree < 3 and f(~1) = —6, f(0) =2, f(1) = =2,
f(2) = 6.

2. Let e, B, v, 6 be real numbers. We ask when it is possible to find a polynomial f
over R, of degree not more then 2, such that f(—~1) = «, f(1) = 8, f(3) = v and
f(0) = 8. Prove that this is possible if and only if

3a + 68~y —8=0.

3. Let F Dbe the field of real numbers,
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=

Il
=3 W W\
oce o
cwoo
— o oo

p=(z—2)(x— 3)(z—1).
(a) Show that p(A) = 0.
(b) Let P, Py, P; be the Lagrange polynomials for #; = 2, ty = 3, {3 = 1,
Compute E; = P;(A),1 =1, 2, 3.
(¢) Show that By + Es+ E; =1, E;E; =0if1 = j, E? = E,.
(d) Show that A = 2E, 4+ 3E; + E,.

4, Let p = (z — 2)(x — 3)(z — 1) and let T be any linear operator on R* such
that p(T) = 0. Let Py, P,, P; be the Lagrange polynomials of Exercise 3, and let
E; = PyT),v =1, 2, 3. Prove that

E1+E2+E3=I, EiEi=0 lf 1:?5],
E? = E; and T = 2E,+ 3E:,+ E,.

5. Let n be a positive integer and I a field. Suppose A is an n X n matrix over F
and P is an invertible n X n matrix over F. If f is any polynomial over F, prove
that

f(P'AP) = P7Y(A)P.

6. Let I be a field. We have considered certain special linear functionals on F[z]
obtained via ‘evaluation at ¢':

L(f) = f(®.
Such functionals are not only linear but also have the property that L(fg) =
L(f)L(g). Prove that if L is any linear functional on F[z] such that

L(fg) = L(f)L(g)
for all f and g, then either L = 0 or there is a ¢ in F such that L(f) = f(¢) for all f.

4.4. Polynomial Ideals

In this section we are concerned with results which depend primarily
on the multiplicative structure of the algebra of polynomials over a field.

Lemma. Suppose f and d are non-zero polynomials over a field I' such
that deg d < deg . Then there exists a polynomial g in I [x] such that either

f—dg =0 or deg (f —dg) <degf.

Proof. Suppose

m—1
f = aa™+ I at an # 0
=0

1=

and that

n—1
d =ba*+ T b, ba # 0.
i=0
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Then m > n, and

f— <%l">x’"‘”d =0 or deg I:f' - <Z—"">x’"‘"d:| < deg f.

n n

Thus we may take g = (%1"> zm |

n

Using this lemma we can show that the familiar process of ‘long
division’ of polynomials with real or complex coefficients is possible over
any field.

Theorem 4. If f, d are polynomials over a field F and d vs different
from O then there exist polynomials q, r in F[x] such that

(i) f =dq+r.
(ii) eitherr = 0 or deg r < deg d.

The polynomials q, r satisfying (i) and (i) are unique.

Proof. If fis0 or deg f < deg d we may take ¢ = 0 and r = f. In
case f # 0 and deg f > deg d, the preceding lemma shows we may choose
a polynomial g such that f — dg = 0 or deg (f — dg) < deg f. If f —
dg # 0 and deg (f — dg) > deg d we choose a polynomial A such that
(f — dg) — dh =0 or

deg [f — d(g + h)] < deg (f — dg).

Continuing this process as long as necessary, we ultimately obtain poly-
nomials ¢, 7 such that r = 0 or deg r < deg d, and f = dq + r. Now sup-
pose we also have f = dg + r where 7, = 0 or deg 7 < degd. Then
dg+r=dqu +r,anddlg — q) = —r.1fg — q # Othend(g — q) #
0 and

degd + deg (¢ — q) = deg (ri — 7).

But as the degree of r, — r is less than the degree of d, this is impossible
and ¢ — qt = 0. Hence alsor, —r = 0. |

Definition. Let d be a non-zero polynomial over the field ¥. If f s in
F[x], the preceding theorem shows there is at most one polynomial q in F[x]
such that f = dq. If such a q exists we say that d divides f, that f is divisible
by d, that f is @ multiple of d, and call q the quotient of f and d. We
also write q = f/d.

Corollary 1. Let f be a polynomial over the field F, and let ¢ be an ele-
ment of ¥. Then f is divisible by x — ¢ if and only if f(c) = 0.

Proof. By the theorem, f = (x — ¢)g + r where r is a scalar
polynomial. By Theorem 2,

fle) = 0glc) + r(c) = r(c).
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Hence » = 0 if and only if f(c) = 0. |

Definition. Let I be a field. An element ¢ in F is said to be a root or
a zero of a given polynomial f over F if f(c) = 0.

Corollary 2. A polynomial f of degree n over a field F' has at most n roots
n F.

Proof. The result is obviously true for polynomials of degree 0
and degree 1. We assume it to be true for polynomials of degree n — 1. If
a is a root of f, f = (x — a)q where ¢ has degree n — 1. Since f(b) = 0 if
and only if a = b or ¢(b) = 0, it follows by our inductive assumption that
f has at most n roots. ||

The reader should observe that the main step in the proof of Theorem
3 follows immediately from this corollary.

The formal derivatives of a polynomial are useful in discussing mul-
tiple roots. The derivative of the polynomial

f=c+az+ -+ caan
is the polynomial
J'=c+ 2z + -+ + nexm .

We also use the notation Df = f’. Differentiation is linear, that is, D is a
linear operator on F[x]. We have the higher order formal derivatives
f" = D¥, f® = D3, and so on.

Theorem 5 (Taylor’s Formula). Let F be a field of characteristic
zere, ¢ an element of ¥, and n a positive integer. If f s a polynomial over f
with deg f < n, then

(D)

f= éo‘T!f‘ (©)(x — o)~

Proof. Taylor’s formula is a consequence of the binomial theorem
and the linearity of the operators D, D? ..., D" The binomial theorem
is easily proved by induction and asserts that

(@a+b)m = § <7]?> am*k bt

where

<m)_ m! _mm—=1)---(m—k+1)
k) klm—k)! 1.2k
is the familiar binomial coefficient giving the number of combinations of
m objects taken k at a time. By the binomial theorem

am=[c+ (@ — o))"
= k§0 (?) vk (z — c)*

=c+memH e —c)+ -+ @—o)"
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and this is the statement of Taylor’s formula for the case f = z™. If

n
f= 2 aum
m={)

then
D¥(c) = Z an(D*z™)(c)

and

3 D*f(c)

32— o= §§amW ©)(z — o)F

20,2 27 () — oy
m k .

]

™

=/ 1

It should be noted that because the polynomials 1, (zx — ¢),...,
(x — c)» are linearly independent (cf. Exercise 6, Section 4.2) Taylor’s
formula provides the unique method for writing f as a linear combination
of the polynomials (x — ¢)* (0 < k£ < n).

Although we shall not give any details, it is perhaps worth mentioning
at this point that with the proper interpretation Taylor’s formula is also
valid for polynomials over fields of finite characteristic. If the field F has
finite characteristic (the sum of some finite number of 1’s in F is 0) then
we may have k! = 0 in F, in which case the division of (D*) (c) by k!is
meaningless. Nevertheless, sense can be made out of the division of D*f
by k!, because every coeflicient of D*f is an element of F multiplied by an
integer divisible by k! If all of this seems confusing, we advise the reader
to restrict his attention to fields of characteristic 0 or to subfields of the
complex numbers.

If ¢ is a root of the polynomial f, the multiplicity of ¢ as a root of
f is the largest positive integer r such that (x — ¢)” divides f.

The multiplicity of a root is clearly less than or equal to the degree
of f. For polynomials over fields of characteristic zero, the multiplicity
of ¢ as a root of f is related to the number of derivatives of f that are 0 at c.

Theorem 6. Let I be a field of characteristic zero and f a polynomial
over I with deg f < n. Then the scalar ¢ is a root of f of multiplicity r if and
only if

(DH)(e) =0, 0<k<r-—1
(Drf)(e) # 0.

Proof. Suppose that r is the multiplicity of ¢ as a root of f. Then
there is a polynomial g such that f = (z — ¢)’g and g(c¢) # 0. For other-
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wise f would be divisible by (x — ¢)*!, by Corollary 1 of Theorem 4. By
Taylor’s formula applied to g

f=e—o |2 0 0 - o)

_ —r (Dmg) (CL’ C)H'm
0

m=

Since there is only one way to write f as a linear combination of the powers
(x — ¢)* (0 <k < n) it follows that

0if0<k<r—1

(D) (e) Drrgle) .
kI T | DErgle <k<

Y ifr<k<n
Therefore, D*f(c) =0 for 0 < k <r — 1, and D’f(c) = g(c) # 0. Con-
versely, if these conditions are satisfied, it follows at once from Taylor’s
formula that there is a polynomial g such that f = (z — ¢)7g and g(c) # 0.
Now suppose that r is not the largest positive integer such that (z — c)”
divides f. Then there is a polynomial A such that f = (x — ¢)™+%h. But
this implies g = (z — ¢)h, by Corollary 2 of Theorem 1; hence g(c) = 0,
a contradiction. |

Definition. Let I' be a field. An ideal in F[x] is a subspace M of
F[x] such that fg belongs to M whenever f is in F[x] and g s in M.

ExampLE 5. If F is a field and d is a polynomial over F, the set
M = dF[z], of all multiples df of d by arbitrary f in F[z], is an ideal. For
M is non-empty, M in fact contains d. If f, g belong to F[z] and c is a
scalar, then
c(df) — dg = d(cf — g)
belongs to M, so that M is a subspace. Finally M contains (df)g = d(fg)
as well. The ideal M is called the principal ideal generated by d.

ExampLE 6. Let d, . . ., d.be a finite number of polynomials over F.
Then the sum M of the subspaces dF[z] is a subspace and is also an ideal.
For suppose p belongs to M. Then there exist polynomials fi, . . ., f» in
F[z] such that p = difi + -+« + dufa. If g is an arbitrary polynomial

over F, then
pg = di(fig) + - + du(fug)
so that pg also belongs to M. Thus M is an ideal, and we say that M is the
ideal generated by the polynomials, di, . . ., dn.
ExampLE 7. Let F be a subfield of the complex numbers, and con-

sider the ideal
= (z + 2)F[z] + (z* + 8z + 16)F[z].

131
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We assert that M = F[z]. For M contains
22+ 82 + 16 — z(z + 2) = 6z + 16

and hence M contains 6z + 16 — 6(x + 2) == 4, Thus the scalar poly-
nomial 1 belongs to M as well as all its multiples.

Theorem 7. If F is a field, and M s any non-zero ideal in F[x], there
18 a unique monic polynomial d in F[x] such that M is the principal ideal
generated by d.

Proof. By assumption, M contains a non-zero polynomial; among
all non-zero polynomials in M there is a polynomial d of minimal degree.
We may assume d is monic, for otherwise we can multiply d by a scalar to
make it monic. Now if f belongs to M, Theorem 4 shows that f = dq¢ + r
where r = 0 or deg r < deg d. Since d is in M, dq and f — dq = r also
belong to M. Because d is an element of M of minimal degree we cannot
have deg r < deg d, so r = 0. Thus M = dF[z]. If g is another monic
polynomial such that M = gF[z], then there exist non-zero polynomials
p, q such that d = gp and ¢ = dq. Thus d = dpq and

degd = degd + degp + degq.

Hence degp = degqg = 0, and as d, g are monic, p = ¢ = 1. Thus
d=g. |

It is worth observing that in the proof just given we have used a
special case of a more general and rather useful fact; namely, if p is a non-
zero polynomial in an ideal M and if f is a polynomial in M which is not
divisible by p, then f = pq + r where the ‘remainder’ r belongs to M, is
different from 0, and has smaller degree than p. We have already made
use of this fact in Example 7 to show that the scalar polynomial 1 is the
monic generator of the ideal considered there. In principle it is always
possible to find the monic polynomial generating a given non-zero ideal.
For one can ultimately obtain a polynomial in the ideal of minimal degree
by a finite number of successive divisions.

Corollary. If py, ..., pa are polynomials over a field I, not all of
which are 0, there 1s a unique monic polynomial d in F[x] such that

(a) d is in the ideal generated by p1, . - . , Pn;

(b) d divides each of the polynomials p;.
Any polynomial satisfying (a) and (b) necessarily satisfies

(e) d s divistble by every polynomial which divides each of the poly-
nomials py, . . ., Pa.

Proof. Let d be the monic generator of the ideal
mF[z] + -+ + paFlz].
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Every member of this ideal is divisible by d; thus each of the polynomials
p; is divisible by d. Now suppose f is a polynomial which divides each of
the polynomials pi, ..., p,. Then there exist polynomials g, ..., g
such that p; = fg:;, 1 < 7 < n. Also, since d is in the ideal

pF(z] + -+ + p.Fz],
there exist polynomials qi, . . ., ¢, in F[2] such that

d=pgi+ - + Pugn
Thus
d = floq + - + gngnl.

We have shown that d is a monic polynomial satisfying (a), (b), and (c).
If d’ is any polynomial satisfying (a) and (b) it follows, from (a) and the
definition of d, that d’ is a scalar multiple of d and satisfies (c) as well.
Finally, in case d’ is a monic polynomial, we haved’ = d. ||

Definition. If py, ..., pn are polynomials over a field F, not all of
which are 0, the monic generator d of the ideal

piF[x] + -+ 4+ paF[x]

s called the greatest common divisor (g.c.d.) of p1, ..., pa. This
terminology 1is justified by the preceding corollary. We say that the poly-
nomaals py, . . ., pn are relatively prime if their greatest common divisor
1s 1, or equivalently if the ideal they generate is all of F[x].

ExampLE 8. Let C be the field of complex numbers. Then

(a) g.ed. (x + 2, 22 4+ 8z + 16) = 1 (see Example 7);
(b) g.ed. ((z — 2)%(zx + 1), (z — 2)@*+ 1)) = (z — 2)(z + 7). For,
the ideal

(r — 2)%x + )F[z] + (z — 2)(z* + 1)F[z]
contains
(=22 +1) —(x—2)@2+ 1) = (= —2)@ +9)(F —2).
Hence it contains (x — 2)(x + ), which is monic and divides both
(x —2)2(x+17) and (z — 2)(z? 4 1).
ExampLE 9. Let F be the field of rational numbers and in F[z] let
M be the ideal generated by
(x — Dz + 2)% (z + 2)2(x — 3), and (x — 3).
Then M contains
iz +2)2[(x — 1) — (z — 3)] = (z + 2)?

and since

@+2)=@-3=+7 17
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M contains the scalar polynomial 1. Thus M = F[z] and the polynomials
@-DE+2?2 (@+2)4z—3), and (-3

are relatively prime.

Exercises

1. Let Q be the field of rational numbers. Betermine which of the following subsets
of Q[z] are ideals. When the set is an ideal, find its monic generator.
(a) all f of even degree;
(b) all f of degree > 5;
(c) all f such that f(0) = 0;
(d) all f such that f(2) = f(4) = 0;
(e) all f in the range of the linear operator 7' defined by

Ci i+l
(2 cixt -~ 0 i T lx .
2. Find the g.c.d. of each of the following pairs of polynomials
(@) 225 — 23 — 32% — 62+ 4, 24 + 23 — 22 — 25 — 2;
(b) 3z¢+ 822 — 3, 23 + 22% + 3z + 6
(¢) 2t — 22® — 222 — 22— 3,28 + 622 + 7z + 1.
3. Let A be an n X n matrix over a field F. Show that the set of all polynomials
fin F[z] such that f(4) = 0 is an ideal.

4. Let F be a subfield of the complex numbers, and let

1 =2
1=s 73}

Find the monic generator of the ideal of all polynomials f in F[z] such that
f4) =0.

5. Let F be a field. Show that the intersection of any number of ideals in F[z]
is an ideal.

6. Let F be a field. Show that the ideal generated by a finite number of poly-
nomials fi, . . ., f» in F[z] is the intersection of all ideals containing fi, . - ., fa.

7. Let K be a subfield of a field F, and suppose f, g are polynomials in K[z].
Let Mk be theideal generated by fand ¢ in K[z] and M be the ideal they generate
in F[z]. Show that M x and My have the same monic generator.

4.5. The Prime Factorization

of a Polynomial

In this section we shall prove that each polynomial over the field F
can be written as a product of ‘prime’ polynomials. This factorization
provides us with an effective tool for finding the greatest common divisor
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of a finite number of polynomials, and in particular, provides an effective
means for deciding when the polynomials are relatively prime.

Definition. Let ' be a field. A polynomial f in ¥[x] is said to be
reducible over I if there exist polynomials g, h in ¥F[x] of degree > 1 such
that f = gh, and if not, f is said to be irreducible over F. A non-scalar
irreducible polynomial over I¢ is called a prime polynomial over I', and we
sometimes say tt is a prime in T[x].

ExampLE 10. The polynomial a2 4 1 is reducible over the field C' of
complex numbers. For

4+ 1l=(@x+)x—1

and the polynomials & 4+ ¢, £ — ¢ belong to C[z]. On the other hand,
x? 4 1 isirreducible over the field % of real numbers. For if

2241 = (ax + d)(a’r + b)
with a, a’, b, b’ in R, then
aa’ =1, ab’ + ba’ =0, bo' = 1.

These relations imply a? + b? = 0, which is impossible with real numbers
a and b, unless a = b = 0.

Theorem 8. Let p, f, and g be polynomials over the field F. Suppose
that p is a prime polynomial and that p divides the product fg. Then either p
dwides f or p divides g.

Proof. It is no loss of generality to assume that p is a monic prime
polynomial. The fact that p is prime then simply says that the only monic
divisors of p are 1 and p. Let d be the g.c.d. of f and p. Then either
d = 1 ord = p, since d is a monic polynomial which divides p. If d = p,
then p divides f and we are done. So suppose d = 1, i.e., suppose f and p
are relatively prime. We shall prove that p divides g. Since (f, p) = 1,
there are polynomials fo and po such that 1 = fof + pep. Multiplying by ¢,
we obtain

9 = fofg + popg
= (fg)fo + p(pog).

Since p divides fg it divides (fg)fy, and certainly p divides p(pog). Thus
p dividesg. |

Corollery. If p is a prime and divides a product {, - - - f, then p divides
one of the polynomials fy, . . ., fa

Proof. The proof is by induction. When n = 2, the result is simply
the statement of Theorem §. Suppose we have proved the corollary for
n = k, and that p divides the product fy - - fiy1 of some (K + 1) poly-
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nomials. Since p divides (fi - -+ fi)feq1, either p divides fi1 or p divides
fi+ - fu. By the induction hypothesis, if p divides f; - - - fi, then p divides
fiforsome j, 1 < j < k. So we see that in any case p must divide some f;,
1<;<k+1 1

Theorem 9. If T is a field, a non-scalar monic polynomial in F[x] can
be factored as a product of monic primes in F[x] in one and, except for order,
only one way.

Proof. Suppose f is a non-scalar monic polynomial over F. As
polynomials of degree one are irreducible, there is nothing to prove if
deg f = 1. Suppose f has degree n > 1. By induction we may assume the
theorem is true for all non-scalar moniec polynomials of degree less than n.
If f is irreducible, it is already factored as a product of monic primes, and
otherwise f = gh where ¢ and h are non-scalar monic polynomials of
degree less than n. Thus g and h can be factored as products of monic
primes in F[z] and hence so can f. Now suppose

f=p1--- pm= ql h-.qn
where pi, ..., P, and qi, ..., g, are monic primes in F[z]. Then p,

divides the product ¢ --- ¢.. By the above corollary, p, must divide
some ¢.. Since ¢; and p,, are both monic primes, this means that

(4-16) qi = Dm.
From (4-16) we see that m = n = 1 if either m = 1 or n = 1. For

degf = .21 deg p; = ‘El deg q;.
i= j=

In this case there is nothing more to prove, so we may assume m > 1 and
n > 1. By rearranging the ¢’s we can then assume p,. = ¢a., and that

D1 Pm—1Pm = Q1 ' Qn—1Dm.
Now by Corollary 2 of Theorem 1 it follows that

DL DPmat = Q1 Qna
As the polynomial p; :-: pm—i has degree less than =, our inductive
assumption applies and shows that the sequence ¢, . . ., ¢u—1 is at most
a rearrangement of the sequence py, . . ., pm—1. This together with (4-16)
shows that the factorization of f as a product of monic primes is unique
up to the order of the factors. |

In the above factorization of a given non-scalar monic polynomial f,
some of the monic prime factors may be repeated. If py, ps, . . ., D are
the distinct monic primes occurring in this factorization of f, then

(4-17) f = pi'ps - pF,

the exponent n; being the number of times the prime p; occurs in the
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factorization. This decomposition is also clearly unique, and is called
the primary decomposition of f. It is easily verified that every monic
divisor of f has the form

(4-18) plps -+ P, 0 < m; < na

From (4-18) it follows that the g.c.d. of a finite number of non-scalar

monic polynomials fy, . . ., fs is obtained by combining all those monic

primes which occur simultaneously in the factorizations of fy, ..., fs
The exponent to which each prime is to be taken is the largest for which
the corresponding prime power is a factor of each fi If no (non-trivial)
prime power is a factor of each f;, the polynomials are relatively prime.

ExampLE 11. Suppose F is a field, and let a, b, ¢ be distinct elements
of F. Then the polynomials £ — a, x — b, © — ¢ are distinct monic primes
in F[z]. If m, n, and s are positive integers, (x — ¢)* is the g.c.d. of the
polynomials.

(@ —b)*(x—¢) and (z — a)™(x — ¢)*
whereas the three polynomials
z—-bx—cr, @—a™z-—c" &—am—->br

are relatively prime.

Theorem 10. Let f be a non-scalar monic polynomial over the field F

and let
f = p’ll‘ [ p{"k
be the prime factorization of f. For each j, 1 < j <k, let
f; = /o = I pi
i=j
Then fy, . . ., fx are relatively prime.
Proof. We leave the (easy) proof of this to the reader. We have

stated this theorem largely because we wish to refer to it later. |

Theorem 11. Let f be a polynomial over the field I with derivative f'.
Then f is a product of distinct irreducible polynomials over ¥ if and only if
f and f/ are relatively prime.

Proof. Suppose in the prime factorization of f over the field F
that some (non-scalar) prime polynomial p is repeated. Then f = p2h for
some A in F{z]. Then

J'=p'h + 2pp'h
and p is also a divisor of f”. Hence f and f” are not relatively prime.
Now suppose f = p1 - -+ pr, Where py, . . ., D are distinct non-scalar
irreducible polynomials over F. Let f; = f/p;. Then

ff=pfi+pifs + -+ + pife

187
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Let p be a prime polynomial which divides both f and f’. Then p = p; for
some ¢. Now p; divides f; for j # ¢, and since p; also divides

k
=2 pif;
j=1

we see that p; must divide pifi. Therefore p; divides either f; or pi. But p;
does not divide f; since py, - - - , Px are distinct. So p: divides pi. This is
not possible, since p; has degree one less than the degree of p; We con-
clude that no prime divides both f and f’, or that, f and f’ are relatively
prime. |

Definition. The field F is called algebraically closed if every prime
polynomial over F has degree 1.

To say that F is algebraically closed means every non-scalar irreduc-
ible monic polynomial over F is of the form (z — ¢). We have already
observed that each such polynomial is irreducible for any F. Accordingly,
an equivalent definition of an algebraically closed field is a field F such
that each non-scalar polynomial f in F[z] can be expressed in the form

f = C(il) — cl)m N (I . Ck)m
where ¢ is a scalar, ¢, . . ., ¢ are distinct elements of F, and ny, ..., n
are positive integers. Still another formulation is that if f is a non-scalar
polynomial over F, then there is an element ¢ in F such that f(c) = 0.

The field R of real numbers is not algebraically closed, since the poly-
nomial (22 + 1) is irreducible over R but not of degree 1, or, because
there is no real number ¢ such that ¢2 + 1 = 0. The so-called Funda-
mental Theorem of Algebra states that the field C' of complex numbers is
algebraically closed. We shall not prove this theorem, although we shall
use it somewhat later in this book. The proof is omitted partly because
of the limitations of time and partly because the proof depends upon a
‘non-algebraic’ property of the system of real numbers. For one possible
proof the interested reader may consult the book by Schreier and Sperner
in the Bibliography.

The Fundamental Theorem of Algebra also makes it clear what the
possibilities are for the prime factorization of a polynomial with real
coefficients. If f is a polynomial with real coeflicients and ¢ is a complex
root of f, then the complex conjugate ¢ is also a root of f. Therefore, those
complex roots which are not real must occur in conjugate pairs, and the
entire set of roots has the form {t,, . . ., &, ¢1, &, . - -, ¢, G} wherety, . . ., &
arereal and ¢, . . ., ¢ are non-real complex numbers. Thus f factors

f=cx—t) - (—tpr - ps
where p; is the quadratic polynomial

pi= (T = ¢)(x — T).
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These polynomials p:; have real coefficients. We conclude that every
irreducible polynomial over the real number field has degree 1 or 2. Each
polynomial over R is the product of certain linear factors, obtained from
the real roots of f, and certain irreducible quadratic polynomials.

Exercises

1. Let p be a monic polynomial over the field F, and let f and g be relatively
prime polynomials over F. Prove that the g.c.d. of pf and pg is p.

2, Assuming the Fundamental Theorem of Algebra, prove the following, If f and
g are polynomials over the field of complex numbers, then g.c.d. (f,¢g) = 1 if and
only if f and g have no common root.

3. Let D be the differentiation operator on the space of polynomials over the
field of complex numbers. Let f be a monic polynomial over the field of complex
numbers. Prove that

f=@—c) - (z—0a)
where ¢, . . ., ¢k are distinct complex numbers if and only if f and Df are relatively
prime. In other words, f has no repeated root if and only if f and Df have no com-
mon root, (Assume the Fundamental Theorem of Algebra.)

4. Prove the following generalization of Taylor’s formula. Let f, g, and A be
polynomials over a subfield of the complex numbers, with deg f < n. Then

1@ = B 5100 = b

(Here f(g) denotes ‘f of g.”)

For the remaining exercises, we shall need the following definition. If f, g,
and p are polynomials over the field ¥ with p £ 0, we say that f is congruent to ¢
modulo p if (f — ¢) is divisible by p. If f is congruent to ¢ modulo p, we write

f = gmod p.
5. Prove, forany non-zero polynomial p, that congruence modulo p is an equiva-
lence relation.

(a) It is reflexive: f = f mod p.

(b) It is symmetric: if f = g mod p, then ¢ = f mod p.

(c) Itis transitive:if f = gmodp and g = A mod p, then f = h mod p.

6. Suppose f = ¢ mod p and f1 = g; mod p.
(a) Prove that f 4+ fi = ¢ + g1 mod p.
(b) Prove that ff; = gg» mod p.

7. Use Exercise 7 to prove the following. If f, g, 2, and p are polynomials over the
field F and p # 0, and if f = g mod p, then A(f) = h(g) mod p.

8. If p is an irreducible polynomial and fg = 0 mod p, prove that either
f=0modp or g = 0mod p. Give an example which shows that. this is false if p
is not irreducible.
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5. Determinants

5.1. Commutative Rings

In this chapter we shall prove the essential facts about determinants
of square matrices. We shall do this not only for matrices over a field, but
also for matrices with entries which are ‘scalars’ of a more general type.
There are two reasons for this generality. First, at certain points in the
next chapter, we shall find it necessary to deal with determinants of
matrices with polynomial entries. Second, in the treatment of determi-
nants which we present, one of the axioms for a field plays no role, namely,
the axiom which guarantees a multiplicative inverse for each non-zero
element. For these reasons, it is appropriate to develop the theory of
determinants for matrices, the entries of which are elements from a com-
mutative ring with identity.

Definition. A ring is a set K, together with two operations (x, y) =
x + y and (x, y) = Xy satisfying

(a) K is a commutative group under the operation (x,y) = x + y (K
18 a commutative group under addition);

(b) (xy)z = x(yz) (multiplication is associative);

(€) x(y +2) =xy +xz; (y+2z)x =yx + zx (the two distributive
laws hold).

If xy = yx for all x and y in K, we say that the ring K is commutative.
If there is an element 1 in K such that 1x = x1 = x for each x, K 1s said
to be a ring with identity, and 1 is called the identity for K.

140
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We are interested here in commutative rings with identity. Such a
ring can be described briefly as a set K, together with two operations
which satisfy all the axioms for a field given in Chapter 1, except possibly
for axiom (8) and the condition 1 # 0. Thus, a field is a commutative
ring with non-zero identity such that to each non-zero x there corresponds
an element x~! with zz—! = 1. The set of integers, with the usual opera-
tions, is a commutative ring with identity which is not a field. Another
commutative ring with identity is the set of all polynomials over a field,
together with the addition and multiplication which we have defined for
polynomials.

If K is a commutative ring with identity, we define an m X n matrix
over K to be afunction 4 from the set of pairs (7, j) of integers, 1 < 7 < m,
1 £ j < n, into K. As usual we represent such a matrix by a rectangular
array having m rows and n columns. The sum and product of matrices
over K are defined as for matrices over a field

(4 + B)i; = Ay + By;
(AB);; = %Aichki

the sum being defined when 4 and B have the same number of rows and
the same number of columns, the product being defined when the number
of columns of A is equal to the number of rows of B. The basic algebraic
properties of these operations are again valid. For example,

AB + C) = AB + AC, (AB)C = A(BC), ete.

As in the case of fields, we shall refer to the elements of K as scalars.
We may then define linear combinations of the rows or columns of a
matrix as we did earlier. Roughly speaking, all that we previously did for
matrices over a field is valid for matrices over K, excluding those results
which depended upon the ability to ‘divide’ in K.

5.2. Determinant Functions

Let K be a commutative ring with identity. We wish to assign to
each n X n (square) matrix over K a scalar (element of K) to be known
as the determinant of the matrix. It is possible to define the determinant
of a square matrix A by simply writing down a formula for this determi-
nant in terms of the entries of A. One can then deduce the various prop-
erties of determinants from this formula. However, such a formula is
rather complicated, and to gain some technical advantage we shall proceed
as follows. We shall define a ‘determinant function’ on K" as a function
which assigns to each n X n matrix over K a scalar, the function having
these special properties. It is linear as a function of each of the rows of the
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matrix: its value is 0 on any matrix having two equal rows; and its value
on the n X n identity matrix is 1. We shall prove that such a function
exists, and then that it is unique, i.e., that there is precisely one such
function. As we prove the uniqueness, an explicit formula for the determi-
nant will be obtained, along with many of its useful properties.

This section will be devoted to the definition of ‘determinant function’
and to the proof that at least one such function exists.

Definition. Let K be a commutative ring with identity, n a positive
integer, and let D be a function which assigns to each n X n matriz A over K
a scalar D(A) in K. We say that D s n-linear if for each i, 1 <i < n,
D is a linear function of the ith row when the other (n — 1) rows are held fized.

This definition requires some clarification. If D is a function from
K7 into K, and if ay, . . ., a, are the rows of the matrix A4, let us also
write

D(A) = D(al, e ey C!,.)

that is, let us also think of D as the function of the rows of A. The state-
ment that D is n-linear then means
(5-1) D(ay, ... ,coi+ aty...,a,) = cD(ar, ..., a0...,a)

+D(ay ... 00 ...,a,).
If we fix all rows except row ¢ and regard D as a function of the ith row,
it is often convenient to write D(a;) for D(A). Thus, we may abbreviate
(5-1) to

D(ca; + ai) = ¢D(a;) + D(ct)

so long as it is clear what the meaning is.

ExampLE 1. Let ki, . .., k, be positive integers, 1 < k; < n, and
let a be an element of K. For each n X n matrix A over K, define
(6-2) D(A) = ad(1, ky) - A(n, ka).

Then the function D defined by (5-2) is n-linear. For, if we regard D as a
function of the ith row of A, the others being fixed, we may write

D(a;) = A3, k)b

where b is some fixed element of K. Let af = (44, ..., Afs). Then we
have
D(ca; + aif)

[cA(, k) + A'(5, ka)b
cD(e;) + D(a).

Thus D is a linear function of each of the rows of 4.
A particular n-linear function of this type is

D(A) = A11A22 te Amt-
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In other words, the ‘product of the diagonal entries’ is an n-linear function
on Km=n,

ExampLE 2. Let us find all 2-linear functions on 2 X 2 matrices over
K. Let D be such a function. If we denote the rows of the 2 X 2 identity
matrix by e, €, we have
D(A) = D(Anea + Ane, Ana + Axne).
Using the fact that D is 2-linear, (5-1), we have
D(A) = AuD(e, Ane + Ane) + A1D(e, Anea + Axne)
= A11A21D(61, 61) + A11A22D(61, 62)
+ A12A21D(€2, 61) + A12A22D(62, 62)-
Thus D is completely determined by the four scalars
D(e, &), D(e, ), D(er, &), and D(e, €2).
The reader should find it easy to verify the following. If a, b, ¢, d are any
four scalars in K and if we define
D(A) = Andna + Andpb + Ardac + Adand
then D is a 2-linear function on 2 X 2 matrices over K and
D(e, @) = a, D(ey €2) = b
D(eg, &) = ¢, D(es, &2) = d.

Lemma. A linear combination of n-linear functions is n-linear.

Proof. It suffices to prove that a linear combination of two
n-linear functions is n-linear. Let D and E be n-linear functions. If a and b
belong to K, the linear combination aD + bE is of course defined by

(@D 4+ bE)(A) = aD(A) + bE(A).
Hence, if we fix all rows except row ¢
(aD + bE)(cos + a1) = aD(ca; + at) + bE(cos + o)

acD(a)) + aD(ai) + beE(a:) + bE(a))
claD + bE)(a:) + (aD + bE)(ad). |

If K is a field and V is the set of n X n matrices over K, the above
lemma says the following. The set of n-linear functions on V is a subspace
of the space of all functions from V into K.

ExamprLE 3. Let D be the function defined on 2 X 2 matrices over
K by

(5-3) D(A) = A11A22 - A12A21.
Now D is the sum of two functions of the type described in Example 1:
D = Di+ D

Di(A) = AnAsxn
Do(4) = —Anpda.
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By the above lemma, D is a 2-linear function. The reader who has had
any experience with determinants will not find this surprising, since he
will recognize (5-3) as the usual definition of the determinant of a 2 X 2
matrix. Of course the function D we have just defined is not a typical
2-linear function, It has many special properties. Let us note some of these
properties. First, if I is the 2 X 2 identity matrix, then D(I) = 1, i.e,,
D(ey, €) = 1. Second, if the two rows of A are equal, then

D(A4) = AnAy — A1An = 0.

Third, if A’ is the matrix obtained from a 2 X 2 matrix 4 by interchang-
ing its rows, then D(4’) = —D(4); for

D(A") = Al,45 — Al2An
= Andiy — ApAu
= —D(4).

Definition. Let D be an n-linear function. We say D is alternating
(or alternate) if the following two conditions are satisfied:

(a) D(A) = 0 whenever two rows of A are equal.
(b) If A’ is a matriz obtained from A by interchanging two rows of A,
then D(A’) = —D(A).

We shall prove below that any n-linear function D which satisfies (a)
automatically satisfies (b). We have put both properties in the definition
of alternating n-linear function as a matter of convenience. The reader
will probably also note that if D satisfies (b) and A is a matrix with two
equal rows, then D(4) = —D(A). It is tempting to conclude that D
satisfies condition (a) as well. This is true, for example, if K is a field in
which 1 4+ 1 = 0, but in general (a) is not a consequence of (b).

Definition. Let K be a commutative ring with identity, and let n be a
posttive tnteger. Suppose D is a function from n X n matrices over K into

K. We say that D is a determinant function if D is n-linear, alternating,
and D) = 1.

As we stated earlier, we shall ultimately show that there is exactly
one determinant function on n X n matrices over K. This is easily seen
for 1 X 1 matrices A = [a] over K. The function D given by D(4) = a
is a determinant function, and clearly this is the only determinant func-
tion on 1 X 1 matrices. We are also in a position to dispose of the case
n = 2. The function

D(A) = Andyn — AnAa

was shown in Example 3 to be a determinant function. Furthermore, the
formula exhibited in Example 2 shows that D is the only determinant
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function on 2 X 2 matrices. For we showed that for any 2-linear function D

D(A) = AnAnD(ey, &) + Anda:D(es, )
4+ ApAnD(es, &) + A12d2D (e, e).
If D is alternating, then

D{e, &) = D(es, &0) = 0
and
D(Ez, €1) = —D(él, 62) = —D(I)

If D also satisfies D(I) = 1, then
D(A) = Anda — Aprda.

ExameLe 4. Let F be a field and let D We any alternating 3-linear
function on 3 X 3 matrices over the polynomial ring F[z].

Let
x 0 —x?
A=]0 1 0 |
10 x3

If we denote the rows of the 3 X 3 identity matrix by e, e, €, then
D(A) = D(ze — %, €, 6 + T%e).
Since D is linear as a function of each row,
D(A) = zD(e, €, &1 + x3€3) — 22D(e3, €2, & + T3€3)
= zD(ey, €, &) + 22D (e, €, €2) — 12D (ey, €2, &1) — TD(e3, €3, €).
Because D is alternating it follows that
D(A) = (x* + 22)D(e, €, ).

Lemma. Let D be a 2-linear function with the property that D(A) = 0
for all 2 X 2 matrices A over K having equal rows. Then D is alternating.

Proof. What we must show is that if 4 is a 2 X 2 matrix and A’
is obtained by interchanging the rows of 4, then D(A’) = —D(A). If the
rows of A are  and #, this means we must show that D(8, o) = —D(a, 8).
Since D is 2-linear,

D(a+ 8, a+ B) = D(a, a) + D(e, B) + D(B, @) + D(B, B).
By our hypothesis D(a + 8, @ + 8) = D(a, @) = D(8, 8) = 0. S0
0 =D(a,8) + DB, w).
Lemma. Let D be an n-linear function on n X n matrices over K.

Suppose D has the property that D(A) = 0 whenever two adjacent rows of
A are equal. Then D s alternating.

Proof. We must show that D(A) = 0 when any two rows of 4
are equal, and that D(4’) = —D(4) if A’ is obtained by interchanging
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some two rows of A. First, let- us suppose that A’ is obtained by inter-
changing two adjacent rows of A. The reader should see that the argument
used in the proof of the preceding lemma extends to the present case and
gives us D(A”) = —D(A).

Now let B be obtained by interchanging rows ¢ and j of A, where
72 < j. We can obtain B from A by a succession of interchanges of pairs of
adjacent rows. We begin by interchanging row ¢ with row (¢ + 1) and
continue until the rows are in the order

Oty o v oy Didy Cigdy o o oy Oy Qg Oljpdy « o o 5 Ol
This requires &k = j — 7 interchanges of adjacent rows. We now move «;
to the 7th position using (¢ — 1) interchanges of adjacent rows. We have

thus obtained B from A by k& 4 (k — 1) = 2k — 1 interchanges of adja~
cent rows. Thus

D(B) = (—1)*1D(4) = —D(A).

Suppose 4 is any n X n matrix with two equal rows, say a; = a;
with 7 < 4. If j = ¢ + 1, then A has two equal and adjacent rows and
D({A) =0. If 7 > ¢+ 1, we interchange a;y1 and a; and the resulting
matrix B has two equal and adjacent rows, so D{B) = 0. On the other
hand, D(B) = —D(A), hence D(4) = 0. §

Definition. If n > 1 and A is an n X n matrix over K, we let A(ilj)
denote the (n — 1) X (n — 1) matriz obtained by deleting the ith row and
jth column of A. If D is an (n — 1)-linear function and A 78 an n X n
matriz, we put Di;(A) = DIA(i]j}].

Theorem 1. Let n > 1 and let D be an alternating (n — 1)~linear
Junetion on (n — 1} X (n — 1) matrices over K. For each j, 1 £j < n,

the function E; defined by

(5-4) E;(A) = él (—1)A;D;;(A)

s an alternating n-linear function on n X n matrices A. If D is a determi-

nant function, so is each E;

Proof. If A is an n X n matrix, D;;(A) is independent of the 7th
row of A. Since D is (n — 1)-linear, it is clear that D,; is linear as a fune-
tion of any row except row 3. Therefore A,;D;;(A) is an n-linear function
of A. A linear combination of #n-linear functions is »-linear; hence, E; is
n-linear. To prove that £; is alternating, it will suffice to show that
E;(A) = 0 whenever A has two equal and adjacent rows. Suppose ax =
ey I 4 7 k and ¢ # k + 1, the matrix A(¢]7) has two equal rows, and
thus D;;(A) = 0. Therefore

EjA) = (=1A5D(A) 4 (=LA gD gy (A4 )-
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Since ax = a1,
Ai; = Agyp; and Akl = AG +109.
Clearly then E;(4) = 0.

Now suppose D is a determinant function. If 1 is the n X n identity
matrix, then I™(j|7) is the (n — 1) X (n — 1) identity matrix [P,
Since I = §;;, it follows from (5-4) that
(5-5) E].(I(n)) = D(I(n-—l))_

Now D(I*-D) =1, so that E;(I™) =1 and E; is a determinant func-
tion. |

Corollary. Let K be a commutative ring with identity and let n be a
posttive integer. There exists at least one determinant function on Knx»,
Proof. We have shown the existence of a determinant function
on 1 X 1 matrices over K, and even on 2 X 2 matrices over K. Theorem 1
tells us explicitly how to construct a determinant function on n X n
matrices, given such a function on (n — 1) X (n — 1) matrices. The
corollary follows by induction. ||

ExampLE 5. If B is a 2 X 2 matrix over K, we let

|B| = BnBzz - 312321.

Then |B| = D(B), where D is the determinant function on 2 X 2 matrices.
We showed that this function on K is unique. Let

Ay A An
A=|Ay Ay Ay
Ay Az As
be a 3 X 3 matrix over K. If we define F\, E,, E; as in (5-4), then
A22 A23 A12 A13 A12 AIB
5- J = — A A
G-6) B = Aufy gl T Anlg, gl T A4, 4y
A21 A'za A11 Am Au A13
5. B(A) = — 4 -4
G-D - Bald) = =duy g | A 4y T A, 4y
A21 A22 All AIZ All A12
5- 0(A) = A —A 4 :
68 Bi(4) By Aw A Anl T A Aw

It follows from Theorem 1 that E), E,, and Ej; are determinant functions.
Actually, as we shall show later, E; = E, = Ej3 but this is not yet appar-
ent even in this simple case. It could, however, be verified directly, by
expanding each of the above expressions. Instead of doing this we give
some specific examples.

(a) Let K = R[z] and

z—1 z? s
A = 0 z—2 1 .
[ ] 0 r—3
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Then
r — 2 1
B =a-nf 07 1 )-@-De-26-3
0 1 T —]_ w\'{
= —p? -
B = -z lve-2f ot 7,
=(@x—1)(z—2)@x —3)
and
0 z—2] |g—1 gz r—1 z?
E. = — —_
1(d) =29 7 | o tlre=3ry T,
= (z — 1)(z — 2)(x — 3).
(b) Let K = R and
010
1 00
Then
10
0 1
Ex(A) = L ol = 1
0 1
E;(A) = —li o = 1.
Exercises

1. Each of the following expressions defines a function D on the set of 3 X 3
matrices over the field of real numbers. In which of these cases is D a 3-linear
function?

(a) D(A) = An + Agn + Asg;

(b) D(A) = (Al.l)2 + 3A11A22;

(¢) D(A) = ApAndas;

(d) D(A) = AzAnds 4 5AnAnis;
(&) D(4) = 0;

(f) D(4) = 1.

2. Verify directly that the three functions #,, E,, E; defined by (5-6), (5-7), and
(5-8) are identical.

3. Let K be a commutative ring with identity. If 4 is a 2 X 2 matrix over K,
the classical adjoint of 4 is the 2 X 2 matrix adj 4 defined by

: A22 _AIZ]
A= -
ad] [_Aﬂ All

If det denotes the unique determinant function on 2 X 2 matrices over K, show
that
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(a) (adj A)A = A(adj A) = (det A)T;
(b) det (adj A) = det (A4);
(c) adj (A?t) = (adj A):.

(A* denotes the transpose of A4.)

4. Let A be a 2 X 2 matrix over a field F. Show that A is invertible if and only
if det A ¢ 0. When A is invertible, give a formula for A%

5. Let A be a 2 X 2 matrix over a field F, and suppose that A% = 0. Show for
each scalar ¢ that det (eI — 4) = c2

6. Let K be a subfield of the complex numbers and n a positive integer. Let

Jy ««.,jnand k,, ..., k, be positive integers not exceeding n. For an n X n
matrix A over K deﬁne

D(A) = A(jr, k) A(jo, ko) =+ + A(jny k).
Prove that D is n-linear if and only if the integers jy, . . ., j» are distinct.

7. Let K be a commutative ring with identity. Show that the determinant func-
tion on 2 X 2 matrices A over K is alternating and 2-linear as a function of the
columns of 4.

8. Let K be a commutative ring with identity. Define a function D on 3 X 3
matrices over K by the rule

~ An Am] B [Azl ] [ Azz].
D(A) = Au det [A32 A33 Am dEt An + Au det An  Am

Show that D is alternating and 3-linear as a function of the columns of A.

9. Let K be a commutative ring with identity and D an alternating n-linear
function on » X n matrices over K. Show that

(@) D(A) = 0, if one of the rows of 4 is 0.

(b) D(B) = D(A), if B is obtained from A by adding a scalar multiple of
one row of A to another.

10. Let F be a field, 4 a 2 X 3 matrix over F, and (¢, ¢;, ¢s) the vector in F?
defined by

Ap A
AZZ A%’

A13 All

- , All Am
A23 A21

£y ==
Azl A22

¢ =

Show that

(a) rank (A) = 2if and only if (ci, ¢, €5) # O;

(b) if A has rank 2, then (¢, co, ¢3) is a basis for the solution space of the
system of equations AX = 0.

11. Let K be a commutative ring with identity, and let D be an alternating 2-linear
function on 2 X 2 matrices over K., Show that D(A) = (det A)D(I) for all 4.
Now use this result (no computations with the entries allowed) to show that
det (AB) = (det A)(det B) for any 2 X 2 matrices A and B over K.

12. Let F be a field and D a function on n X n matrices over F (with valuesin F).
Suppose D(AB) = D(A)D(B) for all A, B. Show that either D(A) = 0 for all 4,
or D(J) = 1. In the latter case show that D(A) # 0 whenever A is invertible.

13. Let R be the field of real numbers, and let D be a function on 2 X 2 matrices
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over R, with values in R, such that D(AB) = D(A)D(B) for all A, B. Suppose

also that b ([? (I)D = D ([(1) ﬂ)

Prove the following.

(a) D) = 0;

(b) D(A) = 0if A2 = 0;

(¢) D(B) = —D(4) if Bis obtained by interchanging the rows (or columns)
of A4;

(d) D(A) = 0 if one row (or one column) of A is 0;

(e) D(A) = 0 whenever A is singular.
14. Let A be a 2 X 2 matrix over a field /. Then the set of all matrices of the
form f(A), where f is a polynomial over F, is a commutative ring K with identity.
If Bisa 2 X 2 matrix over K, the determinant of B is then a 2 X 2 matrix over F,
of the form f(A). Suppose I is the 2 X 2 identity matrix over ¥ and that B is the

2 X 2 matrix over K
B _ [A hd An[ —A12I ]_
B —A21[ A - A22[

Show that det B = f(A), where f = 2% — (A + Ax)x + det A, and also that
f(4) = 0.

5.3. Permutations and the Uniqueness
of Determinants

In this section we prove the uniqueness of the determinant function
on n X n matrices over K. The proof will lead us quite naturally to con-
sider permutations and some of their basic properties.

Suppose D is an alternating n-linear function on n X n matrices over

K. Let A be an n X n matrix over K with rows a), ag, - - - , a,. If we de-
note the rows of the n X n identity matrix over K by e, €, < - - , €, then
(5-9) a;= 2 AW 1<i<n

j=1
Hence

D) = D (z AW e asy - - - aﬂ)
J
= EA(I!J)D<€]) Qgy . . .y an)-
J
If we now replace ay by T A(2, k)e:, we see that
k

D<€j7 Ay . v vy Oln) =2 A(Z) k)D<€jJ €y« o v an)-
k

Thus
D(A) = _EkA(l,j)A (2, k)D(ej, €xy -« - 5 ).
I
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In D(ej, &, . . ., @) we next replace as by 3 A (3, )¢, and so on. We finally
obtain a complicated but theoretically important expression for D(A4),
namely

(5-10) DA) =
> N A(l) kl)A (27 k?) e A(ny kn)D(eku €kay v+« Ekn)'

ki, k2o ..,

In (5-10) the sum is extended over all sequences (ki, ks, . . ., k) of positive
integers not exceeding n. This shows that D is a finite sum of functions of
the type described by (5-2). It should be noted that (5-10) is a consequence
just of assumption that D is n-linear, and that a special case of (5-10) was
obtained in Example 2. Since D is alternating,

D(Gku €kay « « .+, ekn) =0

whenever two of the indices k; are equal. A sequence (ki ks, . . ., k»)
of positive integers not exceeding n, with the property that no two of
the k; are equal, is called a permutation of degree n. In (5-10) we need
therefore sum only over those sequences which are permutations of
degree n.

Since a finite sequence, or n-tuple, is a function defined on the first »
positive integers, a permutation of degree n may be defined as a one-one

function from the set {1,2,...,n} onto itself. Such a function ¢ corre-
sponds to the n-tuple (¢1, ¢2, . . ., on) and is thus simply a rule for order-
ing 1, 2,...,nin some well-defined way.

If D is an alternating n-linear function and 4 is an » X n matrix
over K, we then have

(5-11) D(A) =X A1, 01) .-+ A(n, on)D(es, . . ., €on)

where the sum is extended over the distinet permutations ¢ of degree n.
Next we shall show that

(5-12) D(esty ..., €n) = =D(e, ..., €)

where the sign &= depends only on the permutation ¢. The reason for this
is as follows. The sequence (o1, 02, ..., on) can be obtained from the
sequence (1,2,...,n) by a finite number of interchanges of pairs of
elements. For example, if ¢1 # 1, we can transpose 1 and o1, obtaining
(¢1,...,1,...). Proceeding in this way we shall arrive at the sequence
(¢, ..., on) after n or less such interchanges of pairs. Since D is alter-
nating, the sign of its value changes each time that we interchange two
of therowse; and ¢;. Thus, if we passfrom (1, 2, ..., n) to (¢l, ¢2,. .., on)
by means of m interchanges of pairs (z, j), we shall have

D(G,,l, “ ey €¢m) = (—l)mD(él, ey én).
In particulaxj, if D is a determinant function

(5-13) D(esty -« + 5 €n) = (—1)m
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where m depends only upon o, not upon D. Thus all determinant func-
tions assign the same value to the matrix with rows eq, . . ., €, and this
value is either 1 or —1.

Now a basic fact about permutations is the following. If ¢ is a per-
mutation of degree n, one can pass from the sequence (1,2,...,n) to
the sequence (¢l,02,...,0n) by a succession of interchanges of pairs,
and this can be done in a variety of ways; however, no matter how it is
done, the number of interchanges used is either always even or always
odd. The permutation is then called even or odd, respectively. One
defines the sign of a permutation by

sgno = [ 1, ifesiseven
L—1, if ¢isodd
the symbol ‘1’ denoting here the integer 1.

We shall show below that this basic property of permutations can be
deduced from what we already know about determinant functions. Let
us assume this for the time being. Then the integer m occurring in (5-13)
is always even if ¢ is an even permutation, and is always odd if ¢ is an odd
permutation. For any alternating n-linear function D we then have

D(esty . . .y €m) = (sgno)D(ey . . ., €n)
and using (5-11)

(5-14) D) = I:E (sgno)A(1l,¢1) -+- A(n, an):l D).

Of course I denotes the n X n identity matrix.
From (5-14) we see that there is precisely one determinant function
on n X n matrices over K. If we denote this function by det, it is given by

(5-15) det (4) = X (sgn 0)A(1, g1) --- A(n, on)

the sum being extended over the distinct permutations ¢ of degree n. We
can formally summarize as follows.

Theorem 2. Let K be a commutative ring with tdentity and let n be a
posttive tnteger. There is precisely one determinant function on the set of
n X n matrices over K, and it is the function det defined by (5-15). If D s
any alternating n-linear function on Kn<n, then for each n X n matriz A

D(A) = (det A)D(I).

This is the theorem we have been seeking, but we have left a gap in
the proof. That gap is the proof that for a given permutation ¢, when we
pass from (1,2,...,n) to (¢1,02,...,0n) by interchanging pairs, the
number of interchanges is always even or always odd. This basic com-
binatorial fact can be proved without any reference to determinants;
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however, we should like to point out how it follows from the existence of
a determinant function on n X n matrices.
Let us take K to be the ring of integers. Let D be a determinant

function on n X n matrices over K. Let ¢ be a permutation of degree n,

and suppose we pass from (1,2,...,n) to (¢l,¢2,..., on) by m inter-
changes of pairs (7, 7), 7 # 7. As we showed in (5-13)

(=1)™ = D(ess, « « - 5 €n)
that is, the number (—1)™ must be the value of D on the matrix with
FOWS €1y - + - 5 €one 1T

Diey, . ..y em) =1,

then m must be even. If

D(eq, ..., €mn) = —1,
then m must be odd.

Since we have an explicit formula for the determinant of an n X n
matrix and this formula involves the permutations of degree n, let us
conclude this section by making a few more observations about permu-
tations. First, let us note that there are precisely n! =1 - 2 - .- n permu-
tations of degree n. For, if ¢ is such a permutation, there are n possible
choices for ¢1; when this choice has been made, there are (n — 1) choices
for ¢2, then (n — 2) choices for ¢3, and so on. So there are

nn—1)n—-2)---2-1=n!

permutations ¢. The formula (5-15) for det (A4) thus gives det (A4) as a
sum of n! terms, one for each permutation of degree n. A given term is a
product
A1, ql) --- A(n, on)

of n entries of A, one entry from each row and one from each column,
and is prefixed by a ‘+’ or ‘—’ sign according as ¢ is an even or odd
permutation.

When permutations are regarded as one-one functions from the set
{1,2,...,n} onto itself, one can define a product of permutations. The
product of ¢ and = will simply be the composed function o7 defined by

(07) (@) = a(r(2)).
If € denotes the identity permutation, «(¢) = %, then each ¢ has an inverse
¢! such that

ool = g7l = e

One can summarize these observations by saying that, under the opera-
tion of composition, the set of permutations of degree n is a group. This
group is usually called the symmetric group of degree n.
From the point of view of products of permutations, the basic prop-
"erty of the sign of a permutation is that

(5-16) sgn (1) = (sgn o)(sgn 7).
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In other words, o7 is an even permutation if ¢ and 7 are either both even
or both odd, while o7 is odd if one of the two permutations is odd and the
other is even. One can see this from the definition of the sign in terms of
successive interchanges of pairs (z,7). It may also be instructive if we
point out how sgn (o7) = (sgno)(sgns) follows from a fundamental
property of determinants.

Let K be the ring of integers and let ¢ and 7 be permutations of
degree n. Let ¢, . . . , €, be the rows of the n X n identity matrix over K,
let A be the matrix with rows €., . . ., e;s, and let B be the matrix with
TOWS €1, . - + , €&n Lhe tth row of A contains exactly one non-zero entry,
namely the 1 in column r¢. From this it is easy to see that e, is the 7th
row of the product matrix AB. Now

det (A) = sgn, det (B) = sgn o, and det (AB) = sgn (o1).

So we shall have sgn (¢7) == (sgn o)(sgn 7) as soon as we prove the
following.

Theorem 3. Let K be a commutative ring with identity, and let A and
B be n X n matrices over K. Then

det (AB) = (det A)(det B).

Proof. Let B be a fixed n X n matrix over K, and for each n X n
matrix A define D(A4) = det(4B). If we denote the rows of 4 by a1, .. .,
an, then

Doy, ..., as) = det (auB,...,aB).

Here «;B denotes the 1 X n matrix which is the product of the 1 X n
matrix o; and the n X n matrix B. Since

(ca; + at)B = ca;B + aiB

and det is n-linear, it is easy to see that D is n-linear. If a; = a;, then
a:B = a;B, and since det is alternating,

Doy ...,a,) =0.

Hence, D is alternating. Now D is an alternating n-linear function, and
by Theorem 2

D(A) = (det A)D(I).
But D(I) = det (IB) = det B, so
det (AB) = D(A) = (det A)(det B). ||
The fact that sgn (¢7) = (sgn o) (sgn 7) is only one of many corollarics

to Theorem 3. We shall consider some of these corollaries in the next
section.
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Exercises

1. If K is a commutative ring with identity and A is the matrix over K given by
0 e b
A=|—-a 0 ¢
-b —c O

2. Prove that the determinant of the Vandermonde matrix

1 a a?
[1 b b2:|
1 ¢ ¢
is (b — a)(c — a)(c — b).

3. List explicitly the six permutations of degree 3, state which are odd and which
are even, and use this to give the complete formula (5-15) for the determinant of a
3 X 3 matrix.

show that det A = 0.

4. Let o and 7 be the permutations of degree 4 defined by ol = 2, ¢2 = 3,
73=4,04=1,71 =3,72=1,73 = 2,74 = 4.
(a) Is ¢ odd or even? Is 7 odd or even?
(b) Find o7 and 70.

5. If A is an invertible n X n matrix over a field, show that det 4 # 0.

6. Let A be a 2 X 2 matrix over a field. Prove that det (I + A) = 1 4 det 4
if and only if trace (4) = 0.

7. An n X n matrix 4 is called triangular if A;; = 0 whenever 7 > j or if
A;; = 0 whenever © < j. Prove that the determinant of a triangular matrix is the
product Ay Az -+ An, of its diagonal entries.

8. Let A be a 3 X 3 matrix over the field of complex numbers. We form the
matrix I — A with polynomial entries, the ¢, j entry of this matrix being the
polynomial 8z — Ay If f = det (zI — A), show that f is a monic polynomial
of degree 3. If we write

f=@=—ca)@—c)@—c)
with complex numbers ¢;, ¢;, and ¢;, prove that
¢+ ¢y + ¢z = trace (A) and cicacs = det A.

9. Let n be a positive integer and F a field. If ¢ is a permutation of degree n,

prove that the function
T(xyy ..oy Ta) = @oty« « « ) Tan)
is an invertible linear operator on F*,

10. Let F be a field, n a positive integer, and S the set of n X n matrices over F.
Let V be the vector space of all functions from S into /. Let W be the set of alter-
nating n-linear functions on S. Prove that W is a subspace of V. What is the dimen-
sion of W?
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11. Let T be a linear operator on F*. Define
Dr(ay,. .o, an) = det (Tay, . .., Tan).
(a) Show that Dr is an alternating n-linear function.

(b) If
¢ =det (Te,..., Te,)
show that for any n vectors o, . . ., o, we have
det (Tay, ..., Tan) = cdet (ay, ..., an).

(c) If ® is any ordered basis for F* and A is the matrix of T in the ordered
basis ®, show that det A = c.

(d) What do you think is a reasonable name for the scalar ¢?
12. If ¢ is a permutation of degree n and A4 is an n X n matrix over the field F

with row vectors ay, . . ., an, let (A4) denote the n X n matrix with row vectors
gty « 2 oy Aons

(a) Prove that ¢(AB) = ¢(A)B, and in particular that ¢(4) = o(I)A.

(b) If T is the linear operator of Exercise 9, prove that the matrix of T in
the standard ordered basis is a(I).

(¢) Is ¢~X(I) the inverse matrix of o(I)?

(d) Is it true that o(A) is similar to A?
13. Prove that the sign function on permutations is unique in the following sense.
If f is any function which assigns to each permutation of degree n an integer, and
if f(67) = f(6)f(7), then f is identically 0, or f is identically 1, or f is the sign
function.

5.4. Additional Properties of Determinants

In this section we shall relate some of the useful properties of the
determinant function on n X n matrices. Perhaps the first thing we should
point out is the following. In our discussion of det A, the rows of A have
played a privileged role. Since there is no fundamental difference between
rows and columns, one might very well expect that det A is an alternating
n-linear function of the columns of A. This is the case, and to prove it,
it suffices to show that

(5-17) det (4%) = det (4)

where A*¢ denotes the transpose of A.
If 5 is a permutation of degree n,

A1, 01) = Al(oi, 7).
From the expression (5-15) one then has
det (4%) = T (sgno)A(sl, 1) -+ A(on, n).

When i = 6=, A (04, 3) = A(j, o). Thus
Al 1) - A(on, n) = A(1, ™) - -+ A(n, o~'n).
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Since oo! is the identity permutation,

(sgno)(sgno™) =1 or sgn(c~) = sgn (o).
Furthermore, as ¢ varies over all permutations of degree n, so does o~
Therefore

det (4% = 3 (sgne A, ¢711) --- A(n, ¢7In)

= det A

proving (5-17).

On certain occasions one needs to compute specific determinants.
When this is necessary, it is frequently useful to take advantage of the
following fact. If B is obtained from A by adding a multiple of one row of A
to another (or a multiple of one column to another), then

(5-18) det B = det A.

We shall prove the statement about rows. Let B be obtained from A by
adding ca; to a;, where ¢ < j. Since det is linear as a function of the 7th row

det B =detA + cdet (a1, ... ,05,...,a,...,an)
= det 4.

Another useful fact is the following. Suppose we havean n» X » matrix

Of the block fOI‘m
0 C

where A is anr X r matrix, C is an s X s matrix, Bis r X s, and 0 denotes
the s X r zero matrix. Then

(5-19) det [g g] = (det 4)(det C).

To prove this, define

A B
D, B, C) = det [0 c]'

If wefix A and B, then D is alternating and s-linear as a function of the
rows of C. Thus, by Theorem 2

D(4A, B, C) = (det C)D(A, B, I)

where [ is the s X s identity matrix. By subtracting multiples of the rows
of 7 from the rows of B and using the statement above (5-18), we obtain

D4, B, I) = D(4,0, ]).

Now D(4, 0, I) is clearly alternating and r-linear as a function of the rows
of A. Thus
D(A,0,I) = (det A)D(, 0, I).
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But D(I,0,I) =1, so

D(A, B,C) = (det C)D(A, B, I)
= (det C)D(4, 0, I)
= (det C)(det A).

By the same sort of argument, or by taking transposes

(5-20) det [‘g %] — (det 4)(det C).

ExampLE 6. Suppose K is the field of rational numbers and we wish
to compute the determinant of the 4 X 4 matrix

1 -1 2 3

2 2 0 2
el I |
1 2 3 0

By subtracting suitable multiples of row 1 from rows 2, 3, and 4, we
obtain the matrix

1 -1 2 3
0 4 —4 —4
0 5 -9 -—13
0 3 1 =3

which we know by (5-18) will have the same determinant as A. If we

subtract & of row 2 from row 3 and then subtract £ of row 2 from row 4,
we obtain

1 -1 2 3
0 4 —4 —4
B=1o 0 -1 -8
0 0 4 0

and again det B = det A. The block form of B tells us that
1 —1||—4 -8
ditA =detB = ’0 4H 4 O’ = 4(32) = 128.

Now let n > 1 and let A be an n X n matrix over K. In Theorem 1,
we showed how to construct a determinant function on n X n matrices,
given one on (n — 1) X (n — 1) matrices. Now that we have proved the
uniqueness of the determinant function, the formula (5-4) tells us the
following. If we fix any column index j,

det A = 3 (—1)"*A, det A(d])).
i=1

The scalar (—1)*+/ det A (¢j) is usually called the 7, j cofactor of A or
the cofactor of the 7, j entry of A. The above formula for det A is then
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called the expansion of det A by cofactors of the jth column (or sometimes
the expansion by minors of the jth column). If we set

Ci; = (—1)Hidet A(2)j)
then the above formula says that for each j

det A = é A,‘jC,'j
1=1

where the cofactor C;jis (—1)#7 times the determinant of the (n — 1) X
(n — 1) matrix obtained by deleting the 7th row and jth column of A4.
If 7 # k, then
% AaCii = 0.
i=1
For, replace the jth column of A by its kth column, and call the resulting
matrix B. Then B has two equal columns and so det B = 0. Since B(¢|j) =

A(4]7), we have

0 =detB

3 (—1)#*B,; det B(ilj)
=1

3 (—1)#idy det A (i]j)
=1

= .2 Aikoij-
t=1
These properties of the cofactors can be summarized by
(5-21) ,21 AaCs; = jp det A.
i=

The n X n matrix adj A, which is the transpose of the matrix of co-
factors of A4, is called the classical adjoint of A. Thus

(5-22) (adj A)s; = Cji = (—1)" det A(jl).
The formulas (5-21) can be summarized in the matrix equation
(5-23) (adj A)A = (det A)I.

We wish tosee that A(adj A) = (det A)I also. Since A4(¢|7) = A(j|),
we have
(—1)+ det A 4|j) = (—1)7*i det A(jl)
which simply says that the 7, j cofactor of A¢is the j, ¢ cofactor of A. Thus
(5-24) adj (A*) = (adj A)*
By applying (5-23) to A¢, we obtain
(adj AY)At = (det A = (det A)I

and transposing
A(adj AY)t = (det A)1.
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Using (5-24), we have what we want:
(5-25) A(adj A) = (det A)I.

As for matrices over a field, an n X n matrix A over K is called
invertible over K if there is an n X n matrix A=! with entries in K
such that AA=! = A~'A = I. If such an inverse matrix exists it is unique;
for the same argument used in Chapter 1 shows that when BA = AC =1
we have B = C. The formulas (5-23) and (5-25) tell us the following about
invertibility of matrices over K. If the element det A has a multiplicative
inverse in K, then A is invertible and A~! = (det A)~'adj A is the unique
inverse of A. Conversely, it is easy to see that if A is invertible over K,
the element det A4 is invertible in K. For, if BA = I we have

1 = det I = det (AB) = (det A)(det B).
What we have proved is the following.

Theorem 4. Let A be an n X n matrix over K. Then A is tnvertible
over K if and only if det A is tnvertible tn K. When A s invertible, the unique
inverse for A 1s

A1 = (det A)~ladjA.

In particular, an n X n matriz over a field is tnvertible if and only if its
determinant is different from zero.

We should point out that this determinant criterion for invertibility
proves that an n X n matrix with either a left or right inverse is invertible.
This proof is completely independent of the proof which we gave in Chap-
ter 1 for matrices over a field. We should also like to point out what in-
vertibility means for matrices with polynomial entries. If K is the poly-
nomial ring F[z], the only elements of K which are invertible are the
non-zero scalar polynomials. For if f and ¢ are polynomials and fg = 1,
we have deg f + degg = 0 so that deg f = degg = 0, i.e., f and g are
scalar polynomials. So an n X n matrix over the polynomial ring F[z] is
invertible over F[z] if and only if its determinant is a non-zero scalar
polynomial.

ExampLE 7. Let K = R[z], the ring of polynomials over the field of
real numbers. Let

x4z 41 _ 2 — 1 x+2.
A"[x—1 1]’ B‘[x2—2x+3 x:l

Then, by a short computation, det A = z + 1 and det B = —6. Thus 4
is not invertible over K, whereas B is invertible over K. Note that

. 1 —x — 1 —— z -z — 2
adJA'[—x+1 x2+x:|’ aLdJB"[—acz+2x—3 x“—lJ
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and (adj A)A = (x + 1)I, (adj B)B = —61. Of course,
1 __1 T —r — 2 )
B = 6|:—x2+2x—3 1—x2:|

ExampLE 8. Let K be the ring of integers and

1 2
a=[5 1]
Then det A = —2 and

. 4 -2
adj A = [_3 1]-

Thus A is not invertible as a matrix over the ring of integers; however,
we can also regard A as a matrix over the field of rational numbers. If we
do, then A is invertible and

1 4 =2 -2 1
=[5 1= %]'

In connection with invertible matrices, we should like to mention one
further elementary fact. Similar matrices have the same determinant,
that is, if P is invertible over K and B = P-'AP, then det B = det A.
This is clear since

det (P71AP) = (det P~1)(det A)(det P) = det A.

This simple observation makes it possible to define the determinant of
a linear operator on a finite dimensional vector space. If T is a linear
operator on V, we define the determinant of T to be the determinant of
any n X n matrix which represents T in an ordered basis for V. Since all
such matrices are similar, they have the same determinant and our defini-
tion makes sense. In this connection, see Exercise 11 of section 5.3.

We should like now to discuss Cramer’s rule for solving systems of
linear equations. Suppose 4 is an n X n matrix over the field F and we
wish to solve the system of linear equations AX = Y for some given
n-tuple (Y1, . . ., ¥,). If AX = Y, then

(adj A)AX = (adj A)Y
and so
(det A)X = (adj A)Y.
Thus

2 (adj A)jy:

1=1

(det A)zx;

= 3 (=1)iy; det A(dl)).
i=1
This last expression is the determinant of the n X n matrix obtained by
replacing the jth column of A by Y. If det A = 0, all this tells us nothing;
however, if det A ¢ 0, we have what is known as Cramer’s rule. Let 4
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be an n X n matrix over the field F such that det A # 0. If y, .. ., y.
are any scalars in F, the unique solution X = A-'Y of the system of
equations AX = Y is given by

x‘=detBj’ = 1 n
77 det A J 1

where B; is the n X n matrix obtained from A by replacing the jth column
of A by Y.

In concluding this chapter, we should like to make some comments
which serve to place determinants in what we believe to be the proper
perspective. From time to time it is necessary to compute specific deter-
minants, and this section has been partially devoted to techniques which
will facilitate such work. However, the principal role of determinants in
this book is theoretical. There is no disputing the beauty of facts such as
Cramer’s rule. But Cramer’s rule is an inefficient tool for solving systems
of linear equations, chiefly because it involves too many computations.
30 one should concentrate on what Cramer’s rule says, rather than on
how to compute with it. Indeed, while reflecting on this entire chapter,
we hope that the reader will place more emphasis on understanding what
the determinant function is and how it behaves than on how to compute
determinants of specific matrices.

Exercises

L. Use the classical adjoint formula to _compute the inverses of each of the fol-
lowing 3 X 3 real matrices.

-2 3 2 cosd 0O —siné
6 0 3| 0 1 0
4 1 -1 sinf O cos 6

2. Use Cramer’s rule to solve each of the following systems of linear equations
over the field of rational numbers.

a) z+ y+ z=11

2r — 6y — 2= 0
3z+4y+22= 0.
b)y3z—-2y= 7
3y—2z2= 6
3z — 2z = —1.
3. Ann X n matrix 4 over a field F is skew-symmetricif A* = —A. If A isa

skew-symmetric n X n matrix with complex entries and n is odd, prove that
det A = 0.

4. An n X n matrix A over a field F is called orthogonal if AA¢=1.1If A is
orthogonal, show that det A = 4-1. Give an example of an orthogonal matrix
for whichdet A = —1.
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5. An n X n matrix A over the field of complex numbers is said to be unitary
if AA* =] (A* denotes the conjugate transpose of A). If A is unitary, show
that |det 4| = 1.

6. Let T and U be linear operators on the finite dimensional vector space V. Prove
(a) det (TU) = (det T)(det U);
(b) T is invertible if and only if det T 54 0.

7. Let A be an n X n matrix over K, a commutative ring with identity. Suppose
A has the block form

A, 0 e 0
4|0 4 -0
0 0 - A

where 4 ; is an r; X r; matrix. Prove
det A = (det A,)(det Ap) -+ (det A).

8. Let V be the vector space of n X n matrices over the field F. Let B be a fixed
element of V and let T's be the linear operator on V defined by Ts(4) = AB — BA.
Show that det Tz = 0.

9. Let A be an n X n matrix over a field, 4 # 0. If r is any positive integer
between 1 and n, an r X r submatrix of 4 isany » X r matrix obtained by deleting
(n — r) rows and (n — r) columns of 4. The determinant rank of A is the
largest positive integer r such that some r X r submatrix of A has a non-zero
determinant. Prove that the determinant rank of A is equal to the row rank of
A (= column rank 4).

10. Let A be an n X n matrix over the field F. Prove that there are at most n
distinct scalars ¢ in F such that det (¢ — A) = 0.

11. Let A and B be n X n matrices over the field F. Show that if A is invertible
there are at most n scalars ¢ in F for which the matrix ¢cA + B is not invertible.

12, If V is the vector space of n X n matrices over F and B is a fixed n X n matrix
over F, let Lg and Rp be the linear operators on V defined by Ls(4) = BA and
Rp(A) = AB. Show that

(a) det Lg = (det B)";

(b) det Rp = (det B)™.

13. Let V be the vector space of all n X n matrices over the field of complex
numbers, and let B be a fixed n X n matrix over C. Define a linear operator M p
on V by Ms(A) = BAB*, where B* = B*. Show that

det M5 = |det B|?~,

Now let H be the set of all Hermitian matrices in V, A being Hermitian if
A = A* Then H is a vector space over the field of real numbers. Show that the
function T defined by Ts(A) = BAB* is a linear operator on the real vector
space H, and then show that det T's = |det B|**. (Hint: In computing det T's,
show that V has a basis consisting of Hermitian matrices and then show that
det TB = det 4MB.)
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14. Let A, B, C, D be commuting n X n matrices over the field F. Show that the
determinant of the 2n X 2n matrix

A B]

¢ D

is det (AD — BC).

5.5. Modules

If K is a commutative ring with identity, a module over K is an alge-
braic system which behaves like a vector space, with K playing the role

of the scalar field. To be precise, we say that V is a mmodule over K (or a
K-module) if

1. there is an addition (@, 8) 9 @ + 8 on V, under which V is a
commutative group;

2. there is a multiplication (¢, @) = ca of elements « in V and ¢ in K
such that

(Cl + Cg)a = G + Cox
clar + @) = caq + cap
(clcg)a = 01(62a)
la = a.

For us, the most important K-modules will be the n-tuple modules K™.
The matrix modules K™%» will also be important. If V is any module, we
speak of linear combinations, linear dependence and linear independence,
just as we do in a vector space. We must be careful not to apply to V any
vector space results which depend upon division by non-zero scalars, the
one field operation which may be lacking in the ring K. For example, if
ai, . . ., o are linearly dependent, we cannot conclude that some «; is a
linear combination of the others. This makes it more difficult to find bases
in modules.

A basis for the module V is a linearly independent subset which
spans (or generates) the module. This is the same definition which we gave
for vector spaces; and, the important property of a basis ® is that each
element of V can be expressed uniquely as a linear combination of (some
finite number of) elements of ®. If one admits into mathematics the Axiom
of Choice (see Appendix), it can be shown that every vector space has a
basis. The reader is well aware that a basis exists in any vector space
which is spanned by a finite number of vectors. But this is not the case
for modules. Therefore we need special names for modules which have
bases and for modules which are spanned by finite numbers of elements.

Definition. The K-module V 1s called a free module if it has a basts.
If V has a finite basis containing n elements, then V is called a free K-module
with n generators.
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Definition. The module V is finitely generated uf it contains a finite
subset which spans V. The rank of a finitely generated module s the smallest
integer k such that some k elements span V.

We repeat that a module may be finitely generated without having
a finite basis. If V is a free K-module with n generators, then V is isomor-
phic to the module K= If {8,,...,8,} is a basis for V, there is an iso-
morphism which sends the vector ¢8 + -+ + ¢.3. onto the n-tuple
(cy, . . ., ¢y) in K™ It is not immediately apparent that the same module V
could not also be a free module on & generators, with £ £ n. In other
words, it is not obvious that any two bases for ¥V must contain the same
number of elements. The proof of that fact is an interesting application
of determinants.

Theorem 5. Let K be a commutative ring with identity. If V is a free
K-module with n generators, then the rank of V s n.

Proof. We are to prove that ¥V cannot be spanned by less than
n of its elements. Since V is isomorphic to K", we must show that, if
m < n, the module K" is not spanned by n-tuples ay, . . ., an. Let A be
the matrix with rows ay, . . ., a,,. Suppose that each of the standard basis
vectors €, . . ., € is a linear combination of aj, . . ., a,. Then there exists
a matrix P in K»*" such that

PA =1

where I is the n X n identity matrix. Let A be the n X n matrix obtained
by adjoining n — m rows of 0’s to the bottom of 4, and let P be any n X n
matrix which has the columns of P as its first n columns. Then

PA =1.
Therefore det A # 0. But, since m < n, at least one row of 4 has all 0
entries. This contradiction shows that «;, . . ., an do not span K». ||

It is interesting to note that Theorem 5 establishes the uniqueness
of the dimension of a (finite-dimensional) vector space. The proof, based
upon the existence of the determinant function, is quite different from the
proof we gave in Chapter 2. From Theorem 5 we know that ‘free module
of rank n’ is the same as ‘free module with n generators.’

If V is a module over K, the dual module V* consists of all linear
functions f from V into K. If V is a free module of rank n, then V* is also
a free module of rank n. The proof is just the same as for vector spaces.

If {B1,. .., B} is an ordered basis for V, there is an associated dual basis
{f1, . - ., fa} for the module V*. The function f; assigns to each a in V its
7th coordinate relative to {8y, . . ., B} :

a = fila)Bi + -+ + fa(a)Bn.

If f is a linear function on V, then

F=fBfi + -+ + f(Ba)fn
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5.6. Multilinear Functions

The purpose of this section is to place our discussion of determinants
in what we believe to be the proper perspective. We shall treat alternating
multilinear forms on modules. These forms are the natural generalization
of determinants as we presented them. The reader who has not read (or
does not wish to read) the brief account of modules in Section 5.5 can still
study this section profitably by consistently reading ‘vector space over F
of dimension n’ for ‘free module over K of rank n.’

Let K be a commutative ring with identity and let V be a module
over K. If r is a positive integer, a function Lfrom V"=V XV X --- XV
into K is called multilinear if L(qy, . .., o) is linear as a function of
each a; when the other «;’s are held fixed, that is, if for each ¢

Lo, ...,cos + Bi...,00) = cL(ogy ..., ...,0 +

Liay, ..., B85 ..., 0).
A multilinear function on V7 will also be called an r-linear form on V
or a multilinear form of degree r on V. Such functions are sometimes
called r-tensors on V. The collection of all multilinear functions on
V7 will be denoted by M7(V). If L and M are in M7(V), then the sum
L+ M:

L+ My ..,a,) =Lloy,...,0) +M(agy ..., )
is also multilinear; and, if ¢ is an element of K, the produect cL:
(cL)(ay ..., ) = cL(ay, ..., 0)

is multilinear. Therefore M7(V) is a K-module—a submodule of the
module of all functions from V7 into K.

If r =1 we have M'(V) = V* the dual module of linear functions
on V. Linear functions can also be used to construct examples of multi-
linear forms of higher order. If fi, . . ., f. are linear functions on V, define

Llay...,ae) = fl(al)f2(a2) o frlan).

Clearly L is an r-linear form on V.

ExampLE 9. If V is a module, a 2-linear form on V is usually called a
bilinear form on V. Let A be an n X n matrix with entries in K. Then

LX,Y) =V'AX
defines a bilinear form L on the module K»*!, Similarly,
M(e, B) = aAp'

defines a bilinear form M on K*.

ExampLE 10. The determinant function associates with each n X n
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matrix A an element det A in K. If det A is considered as a function of
the rows of A4
det A = D(ayy ..., )

then D is an n-linear form on K~
IExavpre 11. It is easy to obtain an algebraic expression for the
general r-linear form on the module K* If ay, ..., a, are vectors in V

and 4 is the » X n matrix with rows a, . . ., a,, then for any function L
in Mr(K™),

n
L(al) RN ar) = L(zlAljeJ': A2y 0 v sy ar)
=

i

T AyL(e, oy o)
1=

n n

3 AIJ-L(Q, 3 Aue, . . a)
j=1 J=1

I

n n
21 kEI AyAnL(es, &, asy . . .y ay)

j-.=
n

= kz . A AuL(e, e, 0y . . ., ar).
k=

If wereplace as, . . ., @, in turn by their expressions as linear combinations
of the standard basis vectors, and if we write A (z, 7) for A;;, we obtain the
following:

(5-20)  Liey...,a) = 3 AW - Al )L - - ).

Jbse ., dr=

In (5-26), there is one term for each r-tuple J = (ji, . . ., j») of positive
integers between 1 and n. There are n” such r-tuples. Thus L is completely
determined by (5-26) and the particular values:

cr = Llej, ..., ¢,)
assigned to the n” elements (¢, . . ., ¢,). It is also easy to see that if for
each r-tuple J we choose an element cs of K then
(5'27) L(aly LS ar) = ?A(l)]l) tte A(?',j,)CJ

defines an r-linear form on K*.

Suppose that L is a multilinear function on V= and M is a multilinear
function on V¢ We define a function L ) M on V+& by

(5-28) (L@ Mo, ..oy omps) = Loy, o ooy andM (G, -+« 5 Orgs)-
If we think of V7ts as V7 X V*, then for a in V7 and 8 in V*
(L ® M)(a, B) = L()M(B).
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It is clear that L ® M is multilinear on V7*. The function L Q) M is
called the tensor product of L and M. The tensor product is not com-
mutative. In fact, M @ L # L ® M unless L = 0 or M = 0; however,
the tensor product does relate nicely to the module operations in M?
and M=

Lemma. Let L, L, be r-linear forms on V, let M, M, be s-linear forms
on V and let ¢ be an element of K.

(@) (cL+L)®M =c¢(LOM) + L ® M;

(b) L® (eM + Miy) = ¢(LOM) + L ® M.

Proof. Exercise.

Tensoring is associative, i.e., if L, M and N are (respectively) r-, s-
and ¢-linear forms on V, then

L@M)Y®XN=LQ® M ®N).
This is immediate from the fact that the multiplication in K is associative.
Therefore, if Li, Ly, ..., Ly are multilinear functions on Vr, ... V7
then the tensor product
L=L{ - @ L
is unambiguously defined as a multilinear function on V7, where r =

7 + -+ + r.. We mentioned a particular case of this earlier. If fi, . . . , fr
are linear functions on V, then the tensor product

L=H® - ®f
Lla, ..., a) = filar) -+ - frlar).

is given by

Theorem 6. Let K be a commutative ring with tdentity. If V is a free
K-module of rank n then M*(V) is a free K-module of rank n*; in fact, if
{fy, . .., f.} is a basis for the dual module V*, the n* tensor products

f]l@".®f5r; 1Sjlﬁn,---,1éjrén
form a basis for M*(V).
Proof. Let {f1,...,f.} be an ordered basis for V* which is dual
to the basis {8i,. .., 8.} for V. For each vector « in V we have
a = fl(a)ﬁl + .- +fn(a)6n-
We now make the calculation carried out in Example 11. If L is an r-linear
formon V and oy, . . ., a, are elements of V, then by (5-26)

L(al; LR ] ar) = X E . fjl(al) e j}-(ar)L(Bju AL ) ﬁjr)'
Jly e v vy Jr
In other words,

(5-29) L= 3% LBy--BiMi® - ®fi

e seddr
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This shows that the n” tensor products
(5-30) E;=f® - ®J
given by the r-tuples J = (j3,...,7,) span the module M7(V). We see

that the various r-forms E; are independent, as follows. Suppose that for
each J we have an element ¢s in K and we form the multilinear function

(5-31) L =2 cEs

Notice that if I = (4y,. .., %), then

. N _Jo, I#J
EJ(Bm---;Bzr)— U_’ I=J.

Therefore we see from (5-31) that
(5-32) cr = L(Igin s ey Bir)-
In particular, if L = 0 then ¢; = 0 for each r-tuple I. |

Definition. Let L be an r-linear form on a K-module V. We say that L
is alternating if L(ay, . . ., &) = 0 whenever oz = a; with i # j.

If L is an alternating multilinear function on V7, then
Loy, . .oy, o) = —Lloa, ..o 05, .0, Q.. ., )

In other words, if we transpose two of the vectors (with different indices)
in the rtuple (a, ..., a,) the associated value of L changes sign. Since
every permutation ¢ is a product of transpositions, we see that L(a, . . . ,
o) = (sgno) Llay, ..., a,).

We denote by A7(V) the collection of all alternating r-linear forms
on V. It should be clear that A7(V) is a submodule of M (V).

ExampLe 12. Earlier in this chapter, we showed that on the module
K™ there is precisely one alternating n-linear form D with the property
that D(e, ..., e) = 1. We also showed in Theorem 2 that if L is any
form in A*(K") then
L= L(61, ey e,,)D.

In other words, A*(K") is a free K-module of rank 1. We also developed
an explicit formula (5-15) for D. In terms of the notation we are now
using, that formula may be written

(5-33) D=3@gna)fa® ++ @ fon
where fi, . . ., f, are the standard coordinate functions on K* and the sum
is extended over the n! different permutations ¢ of the set {1,..., n}.

If we write the determinant of a matrix 4 as

det A = I (sgno) A(el, 1) --- A(on, n)

169



170

Determinants Chap. 5

then we obtain a different expression for D:
(5-34) D(ay ..., &) =2 (sgno) filen) -+ falaon)

=3 (Sgn 0‘) L(aal) PR adn)
where L = i ® + -+ @ fa

There is a general method for associating an alternating form with
a multilinear form. If L is an r-linear form on a module V and if ¢ is a
permutation of {1,...,7}, we obtain another r-linear function L, by
defining
L,(al, e ey ar) = L(aal, “ ey a").

If L happens to be alternating, then L, = (sgn ¢)L. Now, for each L in
M~(V) we define a function L in Mr(V) by

(5-35) mL =3 (sgn o)L,
that is,
(5-36) (m.L)(c1, . .., ) = 2 (sgno) L(aoy, . . ., am).

Lemma. w 1s a linear transformation from M*(V) into AX(V). If L
is in A*(V) then m.L = r!L.

Proof. Let r be any permutation of {1, ..., r}. Then
(mL)(atrty . .« yary) = 2 (sgn o) L(aray, « « « , ror)

= (sgnt) T (sgn70) Larey, - . ., Qrar).
As ¢ runs (once) over all permutations of {1, . . ., 7}, so does ro. Therefore,
(mL)(any . . oy ) = (sgn 7)(r,L) (e, . . ., ).
Thus =.L is an alternating form.
If L is in A7(V), then L(am,. .., o) = (sgno) L(ay, . .., a) for

each ¢; hence =,L = r!L. |

In (5-33) we showed that the determinant function D in A*(K™) is
D=mnH® - ®@f)

where fi, . . ., f. are the standard coordinate functions on K»® There is
an important remark we should make in connection with the last lemma.
If K is a field of characteristic zero, such that r! is invertible in K, then
w maps M7(V) onto A"(V). In fact, in that case it is more natural from one
point of view to use the map m = (1/r!)7 rather than , because m is a
projection of M7(V) onto A7(V), i.e., a linear map of M~(V) onto A™(V)
such that x1(L) = L if and only if L is in A7(V).
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Theorem 7. Let K be a commutative ring with identity and let V be
a free K-module of rank n. If r > n, then A"(V) = {0}. If1 < r < n, then

A*(V) s a free K-module of rank (?)

Proof. Let {By,...,B.} be an ordered basis for V with dual
basis {fy, ..., fs}. If Lisin M~(V), we have

(5‘37) L = ?L(Bjn ey Bj')fil ® tee @f:h

where the sum extends over all r-tuples J = (jy, ..., 7, of integers be-
tween 1 and n. If L is alternating, then

L(ﬁ]’u ceey Bjr) =0

whenever two of the subscripts j; are the same. If r > n, then in each
r-tuple J some integer must be repeated. Thus A7(V) = {0} if » > n.

Now suppose 1 < r < n. If L is in A(V), the sum in (5-37) need be
extended only over the r-tuples J for which j;, . . ., 7, are distinct, because
all other terms are 0. Each r-tuple of distinet integers between 1 and n is
a permutation of an r-tuple J = (jy, ...,Jr) such that j; < --- <j,.
This special type of r-tuple is called an r-shuffle of {1, . .., n}. There are

(n) _ n!
r)  rln—r)!
such shuffles.

Suppose we fix an r-shuffle J. Let L; be the sum of all the terms in
(5-37) corresponding to permutations of the shuffle J. If ¢ is a permutation
of {1,...,r}, then

L(Bjm vy ler) = (Sgn 0') L(Bjn ey ﬁjv)-

Thus

(5-38) Ly = LB, ...,B8i)Ds
where

(5-39) Dy =2 (sgno) fin @ -+ ® fi

=m(fi® - @)
We see from (5-39) that each Dy is alternating and that

(5-40) L= 3 L@,...,6,)Ds
shuffles J

for every L in A7(V). The assertion is that the (?) forms D; constitute a

basis for A7(V). We have seen that they span A7(V). It is easy to see that
they are independent, as follows. If I = (41,...,7,) and J = (Jy,. - . ) Jr)

are shuffles, then

1, I=J
(5'41) DJ(BI'U LIRS 611) = {0’ I 5 J
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Suppose we have a scalar c¢; for each shuffle and we define
L = E CJDJ.
J

From (5-40) and (5-41) we obtain

cr = LBiy. .., B
In particular, if L = 0 then ¢; = 0 for each shuffle 7. ||

Corollary. If V is a free K-module of rank n, then A*(V) is a free
K-module of rank 1. If T s a linear operator on V, there is a unique element
¢ tn K such that

L(Tay, ..., Tan) = cL(a, ..., an)
for every alternating n-linear form L on V.
Proof. If L is in A*(V), then clearly
Le(ey, o .oy o) = L(Tey, ..., Tay)

defines an alternating n-linear form Lr. Let M be a generator for the rank
1 module A*(V). Each L in A*(V) is uniquely expressible as L = aM for
some a in K. In particular, M+ = c¢M for a certain ¢. For L = aM we have

LT (aﬂI)T
aMr

a(cM)
c(aM)
=cL. |

Of course, the element cin the last corollary is called the determinant
of T. From (5-39) for the case r = n (when there is only one shuffle
J =(1,...,n)) we see that the determinant of T is the determinant of
the matrix which represents T in any ordered basis {81, ..., Ba}. Let us
see why. The representing matrix has 7, j entry

Ay = fi(TBy)
so that

Dy(TBy, ..., TB,) = 2 (sgno) A(1, 01) --- A(n, on)

= det 4.
On the other hand,
Dy(TB,. . ., TB.) = (det T) Dy(By, . . ., Bn)
= det T.

The point of these remarks is that via Theorem 7 and its corollary we
obtain a definition of the determinant of a linear operator which does not
presume knowledge of determinants of matrices. Determinants of matrices
can be defined in terms of determinants of operators instead of the other
way around.
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We want to say a bit more about the special alternating r-linear
forms Dy, which we associated with a basis {fi, ..., f.} for V*in (5-39).
It is important to understand that Ds(ay, . . ., «,) is the determinant of
a certain r X r matrix. If

Aifzfj(ai)y ISZST,ISJSW«,
that is, if

aizAilBI+"'+Ain6m ]-S"'ST
and J is the r-shuffle (j, . . ., j,), then

(5-42) Dy(a, . .., ) = Z (sgno) A(L, jo) - -+ A(n, Jon)

A, gy - AQ, 50
= det : : -
A(rygr) -+ A(r, gv)
Thus Dy(ay, . . ., a,) is the determinant of the r X r matrix formed from
columns jy, . . ., j, of the » X n matrix which has (the coordinate n-tuples

of) ey, . . ., a, 88 its rows. Another notation which is sometimes used for
this determinant is

A ay .. ., a,).
0By -+ + 1 Bi)

In this notation, the proof of Theorem 7 shows that every alternating

(5-43) Di(ary ..o yo) =

r-linear form L can be expressed relative to a basis {8y, ..., 8.} by the
equation

Aoy v . oy )
(5-44)  L(ay,...,00) = T L =LB,...,B).

n< <gy a(ﬁjn e :ij)

5.7. The Grassman Ring

Many of the important properties of determinants and alternating
multilinear forms are best described in terms of a multiplication operation
on forms, called the exterior product. If L and M are, respectively, alter-
nating r and s-linear forms on the module V, we have an associated product
of L and M, the tensor product L ) M. This is not an alternating form
unless L = 0 or M = 0; however, we have a natural way of projecting it
into Ar+#(V). It appears that

(5-45) L-M=m(L®M)

should be the ‘natural’ multiplication of alternating forms. But, is it?
Let us take a specific example. Suppose that V is the module K* and
J1, . .., f. are the standard coordinate functions on K. If 7 # j, then

fi - fi = m(fi ® f)
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is the (determinant) function
Dii=fi®fi =i ®Ff
given by (5-39). Now suppose k is an index different from ¢ and j. Then
Dij - fe = m[(fi ®fi — f; ® f) ® fi]
([ @ i © fe) — ma(f; © fi © fi)-

The proof of the lemma following equation (5-36) shows that for any
r-linear form L and any permutation ¢ of {1,.. ., r}

T(Lq) = sgn o m(L)
Hence, D;; - fi = 2m(f; ® f; ® fi). By a similar computation, f; - D =
2m3(f: ® £ ® fi). Thus we have
(fi 13 - fe=for (J5- )
and all of this looks very promising. But there is a catch. Despite the
computation that we have just completed, the putative multiplication in

(5-45) is not associative. In fact, if I is an index different from <, j, k, then
one can calculate that

Di; - Du = 4m(f: © F; ® f ® f1)
Dij+ fo) - i = 6m(fs @ F; @ fi @ Sf).

and that

Thus, in general

Forf) - S-S = [(fi- 1) - fu] - o

and we see that our first attempt to find a multiplication has produced a
non-associative operation.

The reader should not be surprised if he finds it rather tedious to give
a direct verification of the two equations showing non-associativity. This
is typical of the subject, and it is also typical that there is a general fact
which considerably simplifies the work.

Suppose L is an r-linear form and that M is an s-linear form on the
module V. Then

Tris((m:L) ® (M) = m44(Z (3gn o) (sgn 7)L, @ M)
= 3 (sgn o) (sgn 7)m,4s(L, ® M,

where ¢ varies over the symmetric group, S,, of all permutations of
{1,...,r}, and 7 varies over S,. Each pair ¢, 7 defines an element (o, 7)
of 8,4, which permutes the first » elements of {1,...,r + s} according
to ¢ and the last s elements according to 7. It is clear that

sgn (o, 7) = (sgn o)(sgn 7)
and that

(L®M)ow = L: ® L.
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Therefore

7rr+s[(7rrL) ® (WsM)J = E sgn (o, 7) Trds [(L ® M) (U,T)J'

Now we have already observed that
sgn (O'y 'T)7rr+s[(L @ M) (v.r)] = 7r7+s(L @ ]”)
Thus, it follows that
(5-46) i (L) @ (wM)] = rls! wp (L @ M).
This formula simplifies a number of computations. For example, suppose
we have an r-shuflle I = (33, ...,%,) and s-shuffle J = (5;,...,7,). To
make things simple, assume, in addition, that
< < << e <
Then we have the associated determinant functions
Dr = w(E1)
DJ Ws(EJ)
where E7 and E; are given by (5-30). Using (5-46), we see immediately that
D] . D,] 7rr+s[7rr(EI) @ W,(EJ)]
ristm, (Er ® EJ).
Since Ey §) Ey = Eryy, it follows that
Dr- Dy = r's!Dyyy.

This suggests that the lack of associativity for the multiplication (5-45)
results from the fact that Dy - D; # Djyyy. After all, the product of D
and Dy ought to be Dy ;. To repair the situation, we should define a new
product, the exterior product (or wedge product) of an alternating
r-linear form L and an alternating s-linear form M by

(5-47) LAM= T—L—, il L @ M).

We then have

i

Dr A Dy = Dyy;

for the determinant functions on K*», and, if there is any justice at all, we
must have found the proper multiplication of alternating multilinear
forms. Unfortunately, (5-47) fails to make sense for the most general case
under consideration, since we may not be able to divide by r!s! in the
ring K. If K is a field of characteristic zero, then (5-47) is meaningful, and
onecan proceed quite rapidly to show that the wedge product is associative.

Theorem 8. Let K be a field of characteristic zero and V a vector space
over K. Then the exterior product is an associative operation on the alternating
multilinear forms on V. In other words, if L, M, and N are alternating
multilinear forms on V of degrees v, s, and t, respectively, then
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LAM)AN=LAMAN).

Proof. Tt follows from (5-47) that ¢d(L A M) = ¢L A dM for
any scalars ¢ and d. Hence

rlsltI[(L A M) A N] = ris(L A M) A tIN
and since w«(N) = ¢IN, it results that
rIsWI[(L A M) A N] = myo(L @D M) A w(N)

= (_r"—il——s)dll Trpop el Tras(L @ M) @ m(N)].

From (5-46) we now see that

rIs((L A M) A N] = mpu L O M @ N).
By a similar computation

rIstI[L A (M A N)] = Tisiel L O M @ N)

and therefore, (L A M) AN =L A (M AN). |

Now we return to the general case, in which it is only assumed that K
is a commutative ring with identity. Our first problem is to replace (5-47)
by an equivalent definition which works in general. If L and M are alter-
nating multilinear forms of degrees r and s respectively, we shall construct
a canonical alternating multilinear form L A M of degree r + s such that

rIs L A M) = mp (L Q M).
Let us recall how we define ., (L ® M). With each permutation ¢

of {1,...,r+ s} we associate the multilinear function
(5-48) (sgn o) (L @ M),
where

(L @ M),(Otl, ey ar+s) = (L ® M)(ao'l) sy aﬂ(H-SJ)

and we sum the functions (5-48) over all permutations o. There are (r + s)!
permutations; however, since L and M are alternating, many of the func-
tions (5-48) are the same. In fact there are at most

(r+9)!

rls!

distinet functions (5-48). Let us see why. Let S,+; be the set of permuta-
tions of {1,...,r + s}, ie., let S, be the symmetric group of degree
r 4+ s. As in the proof of (5-46), we distinguish the subset G that consists
of the permutations ¢ which permute the sets {1,...,r} and {r+ 1, ...,
r 4 s} within themselves. In other words, ¢ is in (' if 1 < o7 < r for each
1 between 1 and r. (It necessarily follows that » + 1 < g5 < r + s for
each j between r + 1 and r + s.) Now @ is a subgroup of S,,,, that is, if
o and 7 are in G then o7 1is in G. Evidently G has r!s! members.



Sec. 5.7 The Grassman Ring

We have a map
Seis 5 MrH(V)

¥(o) = (sgno)(L ® M),.
Since L and M are alternating,
v(v) =L®M

for every v in G. Therefore, since (Ne)r = N7o for any (r + s)-linear form
N on V, we have

defined by

Y(ry) = ¥(7), 7in Srte v in G.
This says that the map y is constant on each (left) coset G of the sub-
group G. If 7; and 7 are in 8,4, the cosets G and 7,G are either identical
or disjoint, according as rz ' 71 is in @ or is not in G. Each coset contains
r!s! elements; hence, there are

(r+ 9)!

rls!

distinet cosets. If S;.,/G denotes the collection of cosets then ¢ defines
a function on S,,./G, i.e., by what we have shown, there is a function ¢
on that set so that

¥r) = §(6)
for every 7 in S,4,. If H is a left coset of G, then ¥(H) = y(r) for every
7in H.
We now define the exterior product of the alternating multilinear
forms L and M of degrees r and s by setting

(5-49) LAM=32@H

where H varies over S,.,/G. Another way to phrase the definition of
L A M isthefollowing. Let S be any set of permutationsof {1,...,r 4+ s}
which contains exactly one element from each left coset of G. Then

(5-50) LAM=Z(sgno)(L@® M),

where o varies over S. Clearly
rS'LAM = m.(L K M)

so that the new definition is equivalent to (5-47) when K is a field of
characteristic zero.

Theorem 9. Let K be a commutative ring with identity and let V be
a module over K. Then the exterior product is an assoctative operation on the
alternating multilinear forms on V. In other words, if L, M, and N are
alternating multilinear forms on V of degrees r, s, and t, respectively, then

(LAM)AN=LAM AN).
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Proof. Although the proof of Theorem 8 does not apply here,
it does suggest how to handle the general case. Let G(r, s, {) be the sub-
group of S,,,,: that consists of the permutations which permute the sets

a...,rh r+L...,r+s8, r+s+1,...,r+s+ 1t}
within themselves. Then (sgn p)(L @ M ® N), is the same multilinear
function for all x in a given left coset of G(r, s, ). Choose one element
from each left coset of G(r, s, t), and let E be the sum of the corresponding
terms (sgn p)(L ® M @ N),. Then E is independent of the way in which
the representatives u are chosen, and
rlslt! E = 1!'7+3+¢(L @ M @ N)
We shall show that (L A M) A Nand L A (M A N) are both equal to E.
Let G(r + s, t) be the subgroup of S,,... that permutes the sets
{,...,7r+s,{r+s+1,...,7r+s+ 1t}

within themselves. Let T be any set of permutationsof {1,...,r 4+ s + ¢}
which contains exactly one element from each left coset of G(r + s, t).
By (5-50)

(LANM)AN=Z(sgnn)[L AM)®N]

where the sum is extended over the permutations 7 in T. Now let G(r, s)
be the subgroup of S,, that permutes the sets

a,...,75 {r+1,...,r+ s}

within themselves. Let S be any set of permutations of {1,...,r + s}
which contains exactly one element from each left coset of G(r, s). From
(5-50) and what we have shown above, it follows that

(LANM)AN =Z(sgno)(sgnr)[(L® M), ® NI

o7

where the sum is extended over all pairs o, = in S X T. If we agree to
identify each s in S,,, with the element of S, which agrees with ¢ on
{,...,7 4+ s} and is the identity on {r +s+1,...,r + s + ¢}, then
we may write

(LAM)AN =3sgn (@) [(L®M®N).]

But,
[(L@MDN)] = (LOM®P N

Therefore
(LAM)AN=3sgn(ra)(LOME® N
Now suppose we have
T101 = To02 Y

with ¢;in S, #; in T, and v in G(r, s, t). Then 73! 71 = opyoi !, and since
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oyyei ! lies in G(r + s, £), it follows that 7, and ; are in the same left coset
of G(r + s, t). Therefore, 71 = 79, and o} = gyy. But this implies that a;
and ¢, (regarded as elements of S,,,) lie in the same coset of G(r, s); hence
o1 = a3. Therefore, the products 7o corresponding to the

r+s+ )0+ 9!
(r+ 9! rls!

pairs (7, ¢) in T X S are all distinct and lie in distinct cosets of G(r, s, ).
Since there are exactly

(r+ s+ 1)
risit!

left cosets of G(r,s,?) in S, e it follows that (L A M) A N = E. By
an analogous argument, L A (M A N) = E as well. |

ExampLE 13. The exterior product is closely related to certain for-
mulas for evaluating determinants known as the Laplace expansions.
Let K be a commutative ring with identity and n a positive integer. Sup-
pose that 1 < r < n, and let L be the alternating r-linear form on K=
defined by

All v Alr
L(as, ..., a) = det o
Arl e Ar’r
If s = n — rand M is the alternating s-linear form
Aigen o+ A
M(ali-"ya3)=det ‘ :
As(r+1) ct Asn

then L A M = D, the determinant function on K» This is immediate
from the fact that L A M is an alternating n-linear form and (as can be
seen)

(L N M)(E1, .. .,6") = 1.

If we now describe L A M in the correct way, we obtain one Laplace
expansion for the determinant of an n X n matrix over K.

In the permutation group S,, let G be the subgroup which permutes
the sets {1,...,7} and {r+ 1,...,n} within themselves. Each left
coset of G contains precisely one permutation ¢ suchthatesl < 62 < ... <
or and o(r + 1) < ... < on. The sign of this permutation is given by

Sgn ¢ = (_ l)ul—k‘ cart(r(r—1)/2)
The wedge product L A M is given by
(LA M), ...,an) = 2 (sgn o)Lasy, . .., de)M(qstrin)s « + + Q)

where the sum is taken over a collection of ¢’s, one from each coset of G.
Therefore,
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(L A M)(:O!l, R an) = .<2 < ey L(aj,, ey aj,)M(akl, ey Ol]c,)
<<
where
es = (= 1)t HikGe=1/2)
ki = 0’(1’ + 'L)
In other words,
A1 Apell[Aersr o Apn
detd = 2 e
P Ay o Al Ak o Ak
This is one Laplace expansion. Others may be obtained by replacing the
sets {1,...,r} and {r+1,...,n} by two different complementary

sets of indices.

If V is a K-module, we may put the various form modules A7(V)
together and use the exterior product to define a ring. For simplicity, we
shall do this only for the case of a free K-module of rank n. The modules
A7(V) are then trivial for r > n. We define

A(V) = A(V)DAV) D -+ D Ax(V).

This is an external direct sum—something which we have not discussed
previously. The elements of A(V) are the (n + 1)-tuples (Ly,. . ., L,)
with L, in A7(V). Addition and multiplication by elements of K are defined
as one would expect for (n + 1)-tuples. Incidentally, A%(V) = K. If we
identify A7(K) with the (n + 1)-tuples (0,...,0,L,0,...,0) where L
is in A7(K), then A7(K) is a submodule of A(V) and the direct sum
decomposition

A(V) = A(V) D --- D ANY)
holds in the usual sense. Since A7(V) is a free K-module of rank (7:>; we

see that A(V) is a free K-module and

rank A(V) §; (n)

r=0 r

=2,

The exterior product defines a multiplication in A(V): Use the exterior
product on forms and extend it linearly to A(V). It distributes over the
addition of A(V) and gives A(V) the structure of a ring. This ring is the
Grassman ring over V*. It is not a commutative ring, e.g., if L, M are
respectively in A7 and A, then

LAM=(=1)*M A L.

But, the Grassman ring is important in several parts of mathematics.



6. Elementary

Canonical Forms

6.1. Introduction

We have mentioned earlier that our principal aim is to study linear
transformations on finite-dimensional vector spaces. By this time, we have
seen many specific examples of linear transformations, and we have proved
a few theorems about the general linear transformation. In the finite-
dimensional case we have utilized ordered bases to represent such trans-
formations by matrices, and this representation adds to our insight into
their behavior. We have explored the vector space L(V, W), consisting of
the linear transformations from one space into another, and we have
explored the linear algebra L(V, V), consisting of the linear transformations
of a space into itself.

In the next two chapters, we shall be preoccupied with linear operators.
Our program is to select a single linear operator T on a finite-dimensional
vector space V and to ‘take it apart to see what makes it tick.” At this
early stage, it is easiest to express our goal in matrix language: Given the
linear operator T, find an ordered basis for V in which the matrix of T
assumes an especially simple form.

Here is an illustration of what we have in mind. Perhaps the simplest
matrices to work with, beyond the scalar multiples of the identity, are the
diagonal matrices:

Cy 0 0 [ ]
0 Ce 0 0
(6-1) D=0 0 ¢ 0
000 o
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Let T be a linear operator on an n-dimensional space V. If we could find
an ordered basis & = {ay, ..., ay} for V in which T were represented by
a diagonal matrix D (6-1), we would gain considerable information about T'.
For instance, simple numbers associated with T, such as the rank of T or
the determinant of T, could be determined with little more than a glance
at the matrix D. We could describe explicitly the range and the null space
of T. Since [T]g = D if and only if

(6‘2) Tak = CpQk, k= 1, PR ()

the range would be the subspace spanned by those a’s for which ¢ # 0
and the null space would be spanned by the remaining ai’s. Indeed, it
seems fair to say that, if we knew a basis ® and a diagonal matrix D such
that [T)s = D, we could answer readily any question about T which
might arise.

Can each linear operator T be represented by a diagonal matrix in
some ordered basis? If not, for which operators T does such a basis exist?
How can we find such a basis if there is one? If no such basis exists, what
is the simplest type of matrix by which we can represent T'? These are some
of the questions which we shall attack in this (and the next) chapter. The
form of our questions will become more sophisticated as we learn what
some of the difficulties are.

6.2. Characteristic Values

The introductory remarks of the previous section provide us with a
starting point for our attempt to analyze the general linear operator T'.
We take our cue from (6-2), which suggests that we should study vectors
which are sent by T into scalar multiples of themselves.

Definition. Let V be a vector space over the field F and let T be a linear
operator on V. A characteristic value of T 7s a scalar ¢ in F such that
there is a non-zero vector a itn V with Ta = ca. If ¢ is a characteristic value of
T, then

(a) any a such that Ta = ca s called a characteristic vector of T
assoctated with the characteristic value c;

(b) the collection of all a such that Ta = ca is called the characteristic
space assoctated with c.

Characteristic values are often called characteristic roots, latent roots,
eigenvalues, proper values, or spectral values. In this book we shall use
only the name ‘characteristic values.’

If T is any linear operator and c is any scalar, the set of vectors a such
that Ta = ca is a subspace of V. It is the null space of the linear trans-
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formation (T — cI). We call ¢ a characteristic value of T if this subspace
is different from the zero subspace, i.e., if (T" — cI) fails to be 1:1. If the
underlying space V is finite-dimensional, (T — ¢I) fails to be 1:1 precisely
when its determinant is different from 0. Let us summarize.

Theorem 1. Let T be a linear operator on a finite-dimensional space V
and let ¢ be a scalar. The following are equivalent.

() ¢ s a characteristic value of T.
(i1) The operator (T — cI) vs singular (not tnvertible).
(iii) det (T — cI) = 0.

The determinant criterion (iii) is very important because it tells us
where to look for the characteristic values of T. Since det (T — cI) is a
polynomial of degree n in the variable ¢, we will find the characteristic
values as the roots of that polynomial. Let us explain carefully.

If ® is any ordered basis for V and A = [T]s, then (T' — ¢I) is in-
vertible if and only if the matrix (4 — cI) is invertible. Accordingly, we
make the following definition.

Definition. If A is an n X n matrix over the field F, a characteristic
value of A in F is a scalar ¢ in F such that the matriz (A — cl) is singular
(not invertible).

Since ¢ is a characteristic value of A if and only if det (A — ¢I) = 0,
or equivalently if and only if det (¢ — A) = 0, we form the matrix
(zI — A) with polynomial entries, and consider the polynomial f =
det (xI — A). Clearly the characteristic values of 4 in F are just the
scalars ¢ in F such that f(¢) = 0. For this reason f is called the charac-
teristic polynomial of 4. It is important to note that f is a monic poly-
nomial which has degree exactly n. This is easily seen from the formula
for the determinant of a matrix in terms of its entries.

Lemma. Similar matrices have the same characteristic polynomial.
Proof. If B = P-1AP, then

det (zI — B) = det (xI — P—'AP)
= det (P~Y(zI — A)P)
= det P! - det (zI — A) - det P
=det (xI — A4). 1

This lemma enables us to define sensibly the characteristic polynomial
of the operator T as the characteristic polynomial of any n X n matrix
which represents T in some ordered basis for V. Just as for matrices, the
characteristic values of T will be the roots of the characteristic polynomial
for T. In particular, this shows us that T cannot have more than n distinct
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characteristic values. It is important to point out that 7' may not have any
characteristic values.

ExampLE 1. Let T be the linear operator on R? which is represented
in the standard ordered basis by the matrix

0 -1
a=[7 Yo}
The characteristic polynomial for T' (or for A) is

det (zI — A) =

z 1 _ ,
-1 z‘—x + 1.

Since this polynomial has no real roots, T has no characteristic values.
If U is the linear operator on C? which is represented by A in the standard
ordered basis, then U has two characteristic values, ¢ and —7. Here we
see a subtle point. In discussing the characteristic values of a matrix
A, we must be careful to stipulate the field involved. The matrix A above
has no characteristic values in R, but has the two characteristic values
tand —zin C.

ExampLE 2. Let A be the (real) 3 X 3 matrix

3 1 —1
2 2 —-1}
2 2 0

Then the characteristic polynomial for A is
x~3 -1 1
-2 z-2 1
-2 -2 =z

=28 — b2+ 8 —4 = (z— 1)z — 2)=

Thus the characteristic values of A are 1 and 2.

Suppose that T is the linear operator on R? which is represented by 4
in the standard basis. Let us find the characteristic vectors of T associated
with the characteristic values, 1 and 2. Now

21 -1
A—-I=|21 -1}
2 2 -1

It is obvious at a glance that A — I has rank equal to 2 (and hence T' — I
has nullity equal to 1). So the space of characteristic vectors associated
with the characteristic value 1 is one-dimensional. The vector a; = (1, 0, 2)
spans the null space of T' — I. Thus Ta = « if and only if « is a scalar
multiple of a1, Now consider

11 -1

A-2[=(2 0 -1}
2 2 =2
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Evidently A — 2I also has rank 2, so that the space of characteristic
vectors associated with the characteristic value 2 has dimension 1. Evi-
dently T'a = 2« if and only if « is a scalar multiple of ay = (1, 1, 2).

Definition. Let T be a linear operator on the finite-dimensional space .

V. We say that T is diagonalizable if there is a basis for V each vector
of which is a characteristic vector of T.

The reason for the name should be apparent; for, if there is an ordered
basis B = {ay, . .., a,} for V in which each «; is a characteristic vector of
T, then the matrix of T' in the ordered basis ® is diagonal. If Ta; = ciau,
then

ag 0 -+ 0
(T = 0 02 0
HE
We certainly do not require that the scalars ¢y, . . ., ¢» be distinct; indeed,

they may all be the same scalar (when T is a scalar multiple of the identity
operator).

One could also define T to be diagonalizable when the characteristic
vectors of T' span V. This is only superficially different from our definition,
since we can select a basis out of any spanning set of vectors.

For Examples 1 and 2 we purposely chose linear operators T on K"
which are not diagonalizable. In Example 1, we have a linear operator on
R? which is not diagonalizable, because it has no characteristic values.
In Example 2, the operator 7' has characteristic values; in fact, the charac-
teristic polynomial for T' factors completely over the real number field:
f = (x — 1) — 2)% Nevertheless T fails to be diagonalizable. There is
only a one-dimensional space of characteristic vectors associated with each
of the two characteristic values of T. Hence, we cannot possibly form a
basis for £ which consists of characteristic vectors of T'

Suppose that T is a diagonalizable linear operator. Let ¢y, . . ., ¢k be
the distinct characteristic values of T'. Then there is an ordered basis ® in
which T is represented by a diagonal matrix which has for its diagonal
entries the scalars c;, each repeated a certain number of times. If ¢; is
repeated d; times, then (we may arrange that) the matrix has the block
form

o, 0 -+ 0
0 el -+ O
(6-3) [T](B = : 02: : :

where I; is the d; X djidentity matrix. From that matrix we see two things.
First, the characteristic polynomial for T is the product of (possibly
repeated) linear factors:
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f=@—c)h-.. (x — ce)

If the scalar field F is algebraically closed, e.g., the field of complex num-
bers, every polynomial over F can be so factored (see Section 4.5); however,
if F is not algebraically closed, we are citing a special property of T when
we say that its characteristic polynomial has such a factorization. The
second thing we see from (6-3) is that d;, the number of times which ¢, is
repeated as root of f, is equal to the dimension of the space of characteristic
vectors associated with the characteristic value ¢;. That is because the
nullity of a diagonal matrix is equal to the number of zeros which it has on
its main diagonal, and the matrix [T — ¢;I]g has d; zeros on its main
diagonal. This relation between the dimension of the characteristic space
and the multiplicity of the characteristic value as a root of f does not seem
exciting at first; however, it will provide us with a simpler way of deter-
mining whether a given operator is diagonalizable.

Lemma. Suppose that Ta = ca. If f is any polynomial, then f(T)a =
f(c)a.

Proof. Exercise.

Lemma. Let T be a linear operator on the finite~-dimensional space V.
Let ¢y, . . ., ck be the distinct characteristic values of T and let W; be the space
of characteristic vectors associated with the characteristic value c;. If W =
W, + .-+ + Wy, then .

dimW = dim Wi + - -+ + dim Wy

In fact, if ®B; 1s an ordered basis for Wy, then ® = (®,, . . ., Bk) 18 an ordered
basts for W.

Proof. The space W = W, + --- + W, is the subspace spanned
by all of the characteristic vectors of T. Usually when one forms the sum
W of subspaces W;, one expects that dim W < dim W; + --. 4+ dim W
because of linear relations which may exist between vectors in the various
spaces. This lemma states that the characteristic spaces associated with
different characteristic values are independent of one another.

Suppose that (for cach 7) we have a vector 8; in W,, and assume that
B+ -+ + Be = 0. We shall show that 8; = 0 for each 7. Let f be any
polynomial. Since T8; = c:8;, the preceding lemma tells us that

0=F(T)0=FfT)B+ - +f(T)B
= f(a)B1 + -+ + f(ck)Br.

Choose polynomials fi, . . ., fe such that

T 1; ’L=.7
fz(cj)—au'{o’ i J.
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Then
0 = f{T)0 = 2 8:;8;
J
= ﬁi~
Now, let ®; be an ordered basis for W; and let ® be the sequence
® = (®y,...,®). Then ® spans the subspace W = W+ --. + W,

Also, ® is a linearly independent sequence of vectors, for the following
reason. Any linear relation between the vectors in ® will have the form
B1+ -+ 4+ B = 0, where 8; is some linear combination of the vectors in
®;. From what we just did, we know that 8; = 0 for each 7. Since each ®;
is linearly independent, we see that we have only the trivial linear relation
between the vectors in &. |

Theorem 2. Let'T be a linear operator on a finite-dimensional space V.
Let ¢y, . . ., ck be the distinct characteristic values of T and let W; be the null
space of (T — e;I). The following are equivalent.

(i) T s diagonalizable.
(ii) The characteristic polynomzal for T s
= (x— )it (x = o)
anddsz, = di,i = 1,.. .,k.
(iii) dem Wy + -+ - 4+ dim Wx = dim V.

Proof. We have observed that (1) implies (ii). If the characteristic
polynomial f is the product of linear factors, as in (ii), then dy + .-+ +
dr = dim V. For, the sum of the d/s is the degree of the characteristic
polynomial, and that degree is dim V. Therefore (ii) implies (iii). Suppose
(iii) holds. By the lemma, we must have V = W, + ... + W, i.e., the
characteristic vectors of T span V. |

The matrix analogue of Theorem 2 may be formulated as follows. Let
A be an n X n matrix with entries in a field F, and let ¢y, . . ., cx be the
distinct characteristic values of 4 in F. For each ¢z, let W, be the space of
column matrices X (with entries in F) such that

(4 ~cah)X =0,

and let ®; be an ordered basis for W,. The bases ®;,, . . . , B« collectively
string together to form the sequence of columns of a matrix P:

P=[PI,PQ,...]=((B]’-..,G?)k).

The matrix A4 is similar over F to a diagonal matrix if and only if P is a
square matrix. When P is square, P is invertible and P~1AP is diagonal.

ExampLE 3. Let T be the linear operator on R? which is represented in
the standard ordered basis by the matrix
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5 —6 —6
A=|-1 4 2f
3 —6 —

Let us indicate how one might compute the characteristic polynomial,
using various row and column operations:

z— 95 6 6 zT— 5 0 6
1 z—4 =2 |=] 1 z—-2 =2
-3 6 z+ 4 -3 2—2 z+4
z—5 0 6
=@x—2)| 1 1 -2
-3 -1 z+ 4
z—5 0 6
=(x—-2)| 1 1 -2
-2 0 z+2
z — 5 6
=@=2 -2 x+2‘
= (z — 2)(x? — 3z + 2)
= (z — 2)¥(x — 1).

What are the dimensions of the spaces of characteristic vectors associated
with the two characteristic values? We have

4 —6 —6
A-I=|-1 3 2
3 —6 —5]

[ 3 —6 —6]
A-20=[-1 2 2
3 —6 —6]

We know that A — I is singular and obviously rank (A4 — I) > 2. There-
fore, rank (A — I) = 2. It is evident that rank (4 — 2I) = 1.

Let Wi, W, be the spaces of characteristic vectors associated with the
characteristic values 1, 2. We know that dim W, = 1 and dim W, = 2. By
Theorem 2, T is diagonalizable. It is easy to exhibit a basis for R? in which
T is represented by a diagonal matrix. The null space of (T — I) is spanned
by the vector ey = (3, —1, 3) and so {ai} is a basis for W;. The null space
of T — 2I (i.e., the space Ws) consists of the vectors (21, e, x3) with ; =
2z, + 2x;. Thus, one example of a basis for Wy is

az = (2; 1; 0)
as = (2,0,1).

If ® = {ai, az, a3}, then [T]g is the diagonal matrix



Sec. 6.2 Characteristic Values

1 00
D=0 2 of
0 0 2

The fact that T is diagonalizable means that the original matrix A4 is
similar (over R) to the diagonal matrix D. The matrix P which enables us
to change coordinates from the basis ® to the standard basis is (of course)
the matrix which has the transposes of ai, as, a3 as its column vectors:

3 2 2
P=|—-11 0}
3 01
Furthermore, AP = PD, so that
P-1AP = D.

Exercises

1. In each of the following cases, let T be the linear operator on R? which is
represented by the matrix A in the standard ordered basis for R? and let U be
the linear operator on C? represented by A in the standard ordered basis. Find the
characteristic polynomial for T and that for U, find the characteristic values of
each operator, and for each such characteristic value ¢ find a basis for the cor-
responding space of characteristic vectors.

B a2 aeD ]

2. Let V be an n-dimensional vector space over F. What is the characteristic
polynomial of the identity operator on V? What is the characteristic polynomial
for the zero operator?

3. Let A be an n X n triangular matrix over the field . Prove that the charac-
teristic values of A are the diagonal entries of 4, i.e., the scalars A .

4. Let T be the linear operator on R? which is represented in the standard ordered
basis by the matrix
-9 4 4
[ T 3 4}
—16 8 7

Prove that T is diagonalizable by exhibiting a basis for R?, each vector of which
is a characteristic vector of T.

5. Let
6 -3 =2
A= [ 4 -1 —2}
10 -5 -3

Is A similar over the field B to a diagonal matrix? Is 4 similar over the field C toa
diagonal matrix?
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6. Let T be the linear operator on R* which is represented in the standard ordered
basis by the matrix

0000
a 00 0}
0% 00
0 0 ¢ O
Under what conditions on a, b, and ¢ is T diagonalizable?

7. Let T be a linear operator on the n-dimensional vector space V, and suppose
that T has n distinct characteristic values. Prove that T is diagonalizable.

8. Let A and B be n X n matrices over the field F. Prove that if (I — AB) is
invertible, then I — BA is invertible and

(I —BA)"' =1+ B — AB)™'A.

9. Use the result of Exercise 8 to prove that, if A and B are n X n matrices
over the field F, then AB and BA have precisely the same characteristic values in F.

10. Suppose that A isa 2 X 2 matrix with real entries which is symmetric (4¢ = A).
Prove that A is similar over R to a diagonal matrix.

11. Let N be a 2 X 2 complex matrix such that N2 = 0. Prove that either N = 0
or N is similar over C to

0 07

1 0

12. Use the result of Exercise 11 to prove the following: If A is a 2 X 2 matrix
with complex entries, then A is similar over C to a matrix of one of the two types

[os] [iel

13. Let V be the vector space of all functions from R into R which are continuous,
i.e., the space of continuous real-valued functions on the real line. Let T be the
linear operator on V defined by

(1)) = [ 5w de
Prove that T has no characteristic values.
14. Let A be an n X n dtagonal matrix with characteristic polynomial
(T — e)d - (z — c)d,

where ¢y, . . ., ¢ are distinct. Let V be the space of n X n matrices B such that
AB = BA. Prove that the dimension of Visd} + --- + d3.

15. Let V be the space of n X n matrices over F. Let A be a fixed n X n matrix
over F. Let T be the linear operator ‘left multiplication by A’ on V. Is it true that
A and T have the same characteristic values?

6.3. Annihilating Polynomials

In attempting to analyze a linear operator T, one of the most useful
things to know is the class of polynomials which annihilate T. Specifically,
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suppose T is a linear operator on V, a vector space over the field F. If pisa
polynomial over F, then p(7') is again a linear operator on V. If ¢ is another
polynomial over F, then

(@ + o(T) = p(T) + o(T)
(pg)(T) = p(T)g(T).
Therefore, the collection of polynomials p which annihilate 7', in the sense
that
p(T) =0,

is an ideal in the polynomial algebra F[z]. It may be the zero ideal, i.e., it
may be that T’ is not annihilated by any non-zero polynomial. But, that
cannot happen if the space V is finite-dimensional.

Suppose T' is a linear operator on the n-dimensional space V. Look at
the first (n? + 1) powers of 7"

LT, T ..., T"

This is a sequence of n2 + 1 operators in L(V, V), the space of linear
operators on V. The space L(V, V) has dimension n% Therefore, that
sequence of n? + 1 operators must be linearly dependent, i.e., we have

col + T + --~+c,,aT"'=0

for some scalars ¢;, not all zero. So, the ideal of polynomials which annihilate
T contains a non-zero polynomial of degree n? or less.

According to Theorem 5 of Chapter 4, every polynomial ideal consists
of all multiples of some fixed monic polynomial, the generator of the ideal.
Thus, there corresponds to the operator 7' a monic polynomial p with this
property : If f is a polynomial over F, then f(T") = 0 if and only if f = pg,
where ¢ is some polynomial over F.

Definition. Let T bde a linear operator on a finite-dimensional vector
space V over the field F. The minimal polynomial for T s the (unique)
monic generator of the ideal of polynomials over F which annihilate T.

Thename ‘minimal polynomial’ stems from the fact that the generator
of a polynomial ideal is characterized by being the monic polynomial of
minimum degree in the ideal. That means that the minimal polynomial p
for the linear operator T is uniquely determined by these three properties:

(1) p is a monic polynomial over the scalar field F.

2) p(T) = 0.

(3) No polynomial over F which annihilates 7' has smaller degree than
p has.

If A is an n X n matrix over F, we define the minimal polynomial
for A in an analogous way, as the unique monic generator of the ideal of all
polynomials over F' which annihilate A. If the operator T is represented in
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some ordered basis by the matrix 4, then T and A have the same minimal
polynomial. That is because f(T') is represented in the basis by the matrix
f(A), so that f(T') = 0if and only if f(4) = 0.

From the last remark about operators and matrices it follows that
similar matrices have the same minimal polynomial. That fact is also clear
from the definitions because

f(P~1AP) = P-If(A)P

for every polynomial f.

There is another basic remark which we should make about minimal
polynomials of matrices. Suppose that 4 is an n X n matrix with entries
in the field F. Suppose that F, is a field which contains F as a subfield. (For
example, A might be a matrix with rational entries, while F, is the field of
real numbers. Or, 4 might be a matrix with real entries, while F; is the
field of complex numbers.) We may regard A either as an n X n matrix
over F or as an n X n matrix over F;. On the surface, it might appear that
we obtain two different minimal polynomials for A. Fortunately that is
not the case; and we must see why. What is the definition of the minimal
polynomial for A, regarded as an n X n matrix over the field F? We
consider all monic polynomials with coefficients in F which annihilate A,
and we choose the one of least degree. If f is a monic polynomial over F':

k=1
(6-4) f=x4 'Eo a;zi
j=

then f(A) = 0 merely says that we have a linear relation between the
powers of 4:

(6-5) A% + g AP A oo @A+ ad = 0.

The degree of the minimal polynomial is the least positive integer k£ such
that there is a linear relation of the form (6-5) between the powers I,
A, ..., Ak Furthermore, by the uniqueness of the minimal polynomial,
there is for that & one and only one relation of the form (6-5); i.e., once the
minimal &k is determined, there are unique secalars ay, . . ., ax—1 in F such
that (6-5) holds. They are the coefficients of the minimal polynomial.
Now (for each k) we have in (6-5) a system of n? linear equations for

the ‘unknowns’ ay, . . ., a;_1. Since the entries of A lie in F, the coefficients
of the system of equations (6-5) are in F. Therefore, if the system has a
solution with ay, . . ., ax_1 in F; it has a solution with ay, ..., a1 in F.

(See the end of Section 1.4.) It should now be clear that the two minimal
polynomials are the same.

What do we know thus far about the minimal polynomial for a linear
operator on an n-dimensional space? Only that its degree does not exceed
n?. That turns out to be a rather poor estimate, since the degree cannot
exceed n. We shall prove shortly that the operator is annihilated by its
characteristic polynomial. First, let us observe a more elementary fact.
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Theorem 3. Let T be a linear operator on an n-dimensional vector
space V [or, let A be an n X n matriz]. The characteristic and minimal
polynomials for T [for A] have the same roots, except for multiplicities.

Proof. Let p be the minimal polynomial for T. Let ¢ be a scalar.
What we want to show is that m(c) = 0 if and only if ¢ is a characteristic
value of 7.
First, suppose p(c) = 0. Then

p=(z—oc)g
where ¢ is a polynomial. Since deg ¢ < deg p, the definition of the minimal

polynomial p tells us that ¢(T") = 0. Choose a vector 8 such that g(T)8 = 0.
Let @ = ¢(T)B. Then

0 =p(T)8
= (T — cI)g(T)B
= (T — ¢

and thus, ¢ is a characteristic value of T.
Now, suppose that c is a characteristic value of T, say, Ta = ca with
a # 0. As we noted in a previous lemma,

p(T)e = p(c)e
Since p(T) = 0and @ £ 0, we have p(c) = 0. ||

Let T be a diagonalizable linear operator and let ¢y, . . ., ¢ be the
distinet characteristic values of T. Then it is easy to see that the minimal
polynomial for T is the polynomial

p=(@—c) @@=

If « is a characteristic vector, then one of the operators T — al, . . .,
T — cil sends a into 0. Therefore

T —=cd) -+ (T—cil)a=0

for every characteristic vector a. There is a basis for the underlying space
which consists of characteristic vectors of 7'; hence

p(T) = (T —cd) - (T —cl) = 0.

What we have concluded is this. If T is a diagonalizable linear operator,
then the minimal polynomial for T is a product of distinet linear factors.
As we shall soon see, that property characterizes diagonalizable operators.

ExampLE 4. Let’stry to find the minimal polynomials for the operators
in Examples 1, 2, and 3. We shall discuss them in reverse order. The oper-
ator in Example 3 was found to be diagonalizable with characteristic
polynomial

f=@&—-1k-2)"
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From the preceding paragraph, we know that the minimal polynomial for
T is
p=(x—1)(z— 2).
The reader might find it reassuring to verify directly that
A-INA—-2I)=0.

In Example 2, the operator T also had the characteristic polynomial
f = (z — 1)(z — 2)% But, this T is not diagonalizable, so we don’t know
that the minimal polynomial is (z — 1) (z — 2). What do we know about
the minimal polynomial in this case? From Theorem 3 we know that its
roots are 1 and 2, with some multiplicities allowed. Thus we search for p
among polynoraials of the form (z — 1)*(zx — 2)L,k > 1,1 > 1. Try (z — 1)
(z — 2):

21 —-171 1 -1
A-DUAa-2D=|(2 1 —1{|l2 0 -1
(2 2 —1]|l2 2 -2

[2 0 —17

=[(2 0 -1}

(4 0 —2

Thus, the minimal polynomial has degree at least 3. So, next we should try
either (z — 1)z — 2) or (x — 1)(z — 2)2. The second, being the charac-
teristic polynomial, would seem a less random choice. One can readily
compute that (A — I)(4 — 2I)2? = 0. Thus the minimal polynomial for T
is its characteristic polynomial.

In Example 1 we discussed the linear operator T on R? which is
represented in the standard basis by the matrix

0 -1
4= [1 o]'
The characteristic polynomial is 2 + 1, which has no real roots. To
determine the minimal polynomial, forget about T' and concentrate on A.
As a complex 2 X 2 matrix, A has the characteristic values ¢ and —i.
Both roots must appear in the minimal polynomial. Thus the minimal
polynomial is divisible by z? + 1. It is trivial to verify that A+ I = 0.
So the minimal polynomial is 22 + 1.

Theorem 4 (Cayley-Hamilton). Let T be a linear operator on a
finite dimensional vector space V. If f is the characteristic polynomial for T,
then f(T) = O0; in other words, the minimal polynomial divides the charac-
teristic polynomzal for T.

Proof. Later on we shall give two proofs of this result independent
of the one to be given here. The present proof, although short, may be
difficult to understand. Aside from brevity, it has the virtue of providing
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an illuminating and far from trivial application of the general theory of
determinants developed in Chapter 5.

Let K be the commutative ring with identity consisting of all poly-
nomials in 7. Of course, K is actually a commutative algebra with identity
over the scalar field. Choose an ordered basis {a, . . ., @,} for V, and let A
be the matrix which represents 7' in the given basis. Then

n
Ta; = 2T Ajiaj, 1<7<n
i=1
These equations may be written in the equivalent form
n
E (81;;'T - AjiI)aj = 0, 1 S 7 S n.
i=1

Let B denote the element of K with entries

B,-,- = 8ijT - Ajf[.

When n = 2
B = [T — Ayl —Aql ]
— Al T — Agl
and
det B = (T — Aul)(T — Asel) — A1eAnl

=T? — (Au + A2)T + (Auds — AnAn)l
=f(T)
where f is the characteristic polynomial:
f = x? — (trace A)x + det A.
For the case n > 2, it is also clear that
det B = f(T)

since f is the determinant of the matrix I — A whose entries are the
polynomials
(@l — A)ij = bz — Aji.
We wish to show thatf(T') = 0. In order thatf(T) be the zero operator,
it is necessary and sufficient that (det B)a, = O fork = 1, ..., n. By the
definition of B, the vectors ay, . . ., a, satisfy the equations

(6-6) 3 Bya;=0, 1<i<n.
i=1
When n = 2, it is suggestive to write (6-6) in the form
|:T — Anl —Aul ][al:l _ [O]
—Axl T — Apl | Laa]  LO

In this case, the classical adjoint, adj B is the matrix

g . [T b A22I A2II ]
T LAl T — Aul
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and

0 det B
wn[s]-an[s]
5 (s[2])

O:I.
0

In the general case, let B = adj B. Then by (6-6)

Hence, we have

% BkiBijaj =0
J=1

for each pair k, 7, and summing on ¢, we have

0= 3 I BuBijo;

=1 =1

i <§1 EkiBi;‘) aj.

i=1 7=

Now BB = (det B)I, so that

‘gl EkiBij = 5“‘ det B.
Therefore
0= 3 &jdet B)a
j=1
= (det B)a, 1<k<n |

The Cayley-Hamilton theorem is useful to us at this point primarily
because it narrows down the search for the minimal polynomials of various
operators. If we know the matrix A which represents T' in some ordered
basis, then we can compute the characteristic polynomial f. We know that
the minimal polynomial p divides f and that the two polynomials have the
same roots. There is no method for computing precisely the roots of a
polynomial (unless its degree is small); however, if f factors

6-7) f=(@—c)- - (z— cr)¥ ¢y, . . ., Ck distinet, d; 2> 1
then
(6-8) p=@—c)n - (x = c)™, 1<r;<d,

That is all we can say in general. If f is the polynomial (6-7) and has
degree n, then for every polynomial p as in (6-8) we can find an n X n
matrix which has f as its characteristic polynomial and p as its minimal
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polynomial. We shall not prove this now. But, we want to emphasize the
fact that the knowledge that the characteristic polynomial has the form
(6-7) tells us that the minimal polynomial has the form (6-8), and it tells us
nothing else about p.

ExamrLE 5. Let A be the 4 X 4 (rational) matrix

0101

1 010
A=lo 1 0 1]

1 010

The powers of A are easy to compute:

2 0 2 0]

c 2 0 2

=

4 2 0 20
L0 2 0 2]
[0 4 0 4]

4 0 40
3 — .

4 0 40 4
(4 0 4 0]

Thus A% = 44, ie., if p = 28 — 42 = z(z + 2)(x — 2), then p(4) = 0.
The minimal polynomial for A must divide p. That minimal polynomial is
obviously not of degree 1, since that would mean that A4 was a scalar
multiple of the identity. Hence, the candidates for the minimal polynomial
are: p, z(x + 2), z(x — 2), 22 — 4. The three quadratic polynomials can be
eliminated because it is obvious at a glance that A2 = —2A4, A2 = 24,
A? # 41. Therefore p is the minimal polynomial for A. In particular 0, 2,
and —2 are the characteristic values of A. One of the factors z, z — 2,
z + 2 must be repeated twice in the characteristic polynomial. Evidently,
rank (A) = 2. Consequently there is a two-dimensional space of charac-
teristic vectors associated with the characteristic value 0. From Theorem
2, it should now be clear that the characteristic polynomial is z2(x? — 4)
and that A is similar over the field of rational numbers to the matrix

0

0

ol
-2

oo O
(=T =]

0
0
0
0

Exercises

1. Let V be a finite-dimensional vector space. What is the minimal polynomial
for the identity operator on V? What is the minimal polynomial for the zero
operator?
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2. Let a, b, and ¢ be elements of a field F, and let A be the following 3 X 3 matrix

over F':
0 0 ¢
A=[1 0 b|
01 a

Prove that the characteristic polynomial for A is 2 — az® — bz — ¢ and that this
is also the minimal polynomial for A.

3. Let A be the 4 X 4 real matrix

1 1 00
-1 =1 00

A‘—z—z 2 1/
1 1 —-10

Show that the characteristic polynomial for A is z2(x — 1)? and that it is also
the minimal polynomial.

4, Is the matrix A of Exercise 3 similar over the field of complex numbers to a
diagonal matrix?

5. Let V be an n-dimensional vector space and let T be a linear operator on V.
Suppose that there exists some positive integer ¥ so that T* = 0. Prove that
T = 0.

6. Find a 3 X 3 matrix for which the minimal polynomial is 2.

7. Let n be a positive integer, and let V be the space of polynomials over R

which have degree at most n (throw in the 0-polynomial). Let D be the differentia-
tion operator on V. What is the minimal polynomial for D?

8. Let P be the operator on R? which projects each vector onto the z-axis, parallel
to the y-axis: P(z,y) = (z,0). Show that P is linear. What is the minimal poly-
nomial for P?

9. Let A be an n X n matrix with characteristic polynomial
f = (x — C])d“ . .(x — Ck)d*.

adi + « -+ + exdy = trace (A).
10. Let V be the vector space of n X n matrices over the field F. Let 4 be a fixed
n X m matrix. Let T be the linear operator on V defined by
T(B) = AB.
Show that the minimal polynomial for T is the minimal polynomial for 4.
11. Let A and B be n X n matrices over the field F. According to Exercise 9 of
Section 6.1, the matrices AB and BA have the same characteristic values. Do

they have the same characteristic polynomial? Do they have the same minimal
polynomial?

Show that

6.4. Invariant Subspaces

In this section, we shall introduce a few concepts which are useful in
attempting to analyze a linear operator. We shall use these ideas to obtain
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characterizations of diagonalizable (and triangulable) operators in terms
of their minimal polynomials.

Definition. Let V be a vector space and T a linear operator on V. If
W s a subspace of V, we say that W 1s invariant under T if for each vector
a itn W the vector Ta is in W, 1.e., if T(W) is contained in W.

ExampLE 6. If T is any linear operator on V, then V is invariant
under T, as is the zero subspace. The range of T and the null space of T
are also invariant under 7.

ExampLE 7. Let F be a field and let D be the differentiation operator
on the space F[z] of polynomials over F. Let n be a positive integer and
let W be the subspace of polynomials of degree not greater than n. Then W
is invariant under D. This is just another way of saying that D is ‘degree
decreasing.’

ExampLE 8. Here is a very useful generalization of Example 6. Let T
be a linear operator on V. Let U be any linear operator on V which com-
mutes with T, i.e., TU = UT. Let W be the range of U and let N be the
null space of U. Both W and N are invariant under 7. If « is in the range
of U, say o = UB, then Ta = T(UB) = U(TB) so that T'e is in the range
of U. If aisin N, then U(Ta) = T(Ua) = T(0) = 0; hence, Ta is in N.

A particular type of operator which commutes with T is an operator
U = ¢(T), where g is a polynomial. For instance, we might have U =
T — cl, where ¢ is a characteristic value of 7. The null space of U is
familiar to us. We see that this example includes the (obvious) fact that
the space of characteristic vectors of T associated with the characteristic
value ¢ is invariant under T,

ExampLE 9. Let T be the linear operator on R? which is represented
in the standard ordered basis by the matrix

0 —1
4= [1 0]‘
Then the only subspaces of £? which are invariant under T are £? and the
zero subspace. Any other invariant subspace would necessarily have
dimension 1. But, if W is the subspace spanned by some non-zero vector «,
the fact that W is invariant under 7' means that « is a characteristic
vector, but A has no real characteristic values.

When the subspace W is invariant under the operator T, then T
induces a linear operator T on the space W. The linear operator Ty is
defined by Tw(a) = 7(a), for a in W, but Tw is quite a different object
from 7T since its domain is W not V.

When V is finite-dimensional, the invariance of W under T has a
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simple matrix interpretation, and perhaps we should mention it at this
point. Suppose we choose an ordered basis € = {ai, ..., a,} for ¥ such
that ® = {ay, ..., a} is an ordered basis for W (r = dim W). Let 4 =
[T so that
Taj = T Ajjo
i=1

Since W is invariant under T, the vector Te; belongs to W for j < r. This
means that

(6~9) Taj- = 'Erl A,-}-a;, j S T.

In other words, Ay; = 0if 7 < randi>r.
Schematically, A has the block form

(6-10) A= [f; fJ

where B is an r X r matrix, C is an r X (n ~— r) matrix, and D is an
{n — r) X (n ~ r) matrix. The reader should note that according to
(6-9) the matrix B is precisely the matrix of the induced operator Ty in
the ordered basis ®’.

Most often, we shall carry out arguments about T and Ty without
making use of the block form of the matrix 4 in (6-10). But we should note
how certain relations between Ty and T are apparent from that block form.

Lemma. Let W be an invariant subspace fer T. The characteristic
polynomial for the restriction operator Tw divides the characteristic polynomial
for T. The minimal polynomial for Tw divides the minimal polynomial for T.

Proof. We have
B C
2=[o »]

where A = [T]g and B = [Tw]g'. Because of the block form of the matrix
det (2] — A) = det (zI — B) det (zI — D).

That proves the statement about characteristic polynomials. Notice that
we used [ to represent identity matrices of three different sizes.
The kth power of the matrix A has the block form

Bt Cy
k —
At = [o Dk]
where Ci is some r X (n — r} matrix. Therefore, any polynomial which

annihilates A also annihilates B (and D too). So, the minimal polynomial
for B divides the minimal polynomial for 4. |

Exampre 10. Let T be any linear operator on a finite-dimensional
space V. Let W be the subspace spanned by all of the characteristic vectors
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of T. Let ¢y, . . ., ¢ be the distinct characteristic values of T. For each 7,
let W, be the space of characteristic vectors associated with the charac-
teristic value ¢;, and let ®; be an ordered basis for W; The lemma before
Theorem 2 tells us that & = (®,, . . ., ) is an ordered basis for W. In
particular,

dim W = dim W, + ... 4+ dim W,.

Let ® = {a, ..., ar} so that the first few o’s form the basis ®;, the next
few ®,, and so on. Then

Ta,-=t,-a,;, ’i=1,...,7‘
where (ty,...,86) = (e, €y« ooy €y v v vy Chy Chy - - ., ) With ¢; repeated
dim W, times.
Now W is invariant under 7, since for each « in W we have
a = Tioq + + + T,
Ta = hxion + -+ - + 2.0,
Choose any other vectors a,y, . . ., a, in V such that ® = {ay, ..., an}

is a basis for V. The matrix of T relative to ® has the block form (6-10), and
the matrix of the restriction operator T relative to the basis ®' is

h 0 --- 0
B = () t2 ()
00 -

The characteristic polynomial of B (i.e., of Tw) is
g=@—c) - (x—c)

where e; = dim W ;. Furthermore, ¢ divides f, the characteristic polynomial
for T. Therefore, the multiplicity of ¢; as a root of f is at least dim W.

All of this should make Theorem 2 transparent. It merely says that T
is diagonalizable if and only if 7 = n, if and only if e, + -+ 4+ e = n. It
does not help us too much with the non-diagonalizable case, since we don’t
know the matrices C and D of (6-10).

Definition. Let W be an invariant subspace for T and let o be a vector
in V. The T-conductor of a into W is the set St(a; W), which consists of
all polynomials & (over the scalar field) such that g(T)a s in W.

Since the operator 7' will be fixed throughout most discussions, we
shall usually drop the subscript T and write S(e; W). The authors usually
call that collection of polynomials the ‘stuffer’ (das einstopfende Ideal).
‘Conductor’ is the more standard term, preferred by those who envision
a less aggressive operator ¢(7'), gently leading the vector a into W. In the
special case W = {0} the conductor is called the T-annihilator of .
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Lemma. If W s an invariant subspace for T, then W is invariant
under every polynomial in T. Thus, for each a tn V, the conductor S(a; W) s
an ideal in the polynomial algebra F[x].

Proof. If 8 isin W, then T8 is in W. Consequently, T(TB8) = T3
is in W. By induction, T%# is in W for each k. Take linear combinations to
see that f(T)8 is in W for every polynomial f.

The definition of S(a; W) makes sense if W is any subset of V. If W is
a subspace, then S(a; W) is a subspace of F[z], because

(of + 9)(T) = of(T) + g(T).

If W is also invariant under 7', let ¢ be a polynomial in S(a; W), i.e., let
g(T)a be in W, If f is any polynomial, then f(T)[g(T)a] will be in W. Since

(fo)(T) = f(T)g(T)

fgis in S(a; W). Thus the conductor absorbs multiplication by any poly-
nomial. ||

The unique monic generator of the ideal S(a; W) is also called the
T-conductor of a into W (the T-annihilator in case W = {0}). The
T-conductor of @ into W is the monic polynomial ¢ of least degree such that
g(T)a is in W. A polynomial f is in S(a; W) if and only if ¢ divides f. Note
that the conductor S(a; W) always contains the minimal polynomial for T';
hence, every T-conductor divides the minimal polynomial for T.

As the first illustration of how to use the conductor S(a; W), we shall
characterize triangulable operators. The linear operator T is called tri-
angulable if there is an ordered basis in which T is represented by a
triangular matrix.

Lemma. Let V be a finite-dimensional vector space over the field I.
Let T be a linear operator on V such that the minimal polynomial for T is a
product of linear factors

p=&=—=c)" - (x — )" ¢ in F.

Let W be a proper (W #= V) subspace of V which ts tnvariant under T. There
exists a vector a in V such that

(a) aisnotin W;
(b) (T =~ cl)a istn W, for some characteristic value ¢ of the operator T.
Proof. What (a) and (b) say is that the T-conductor of a into W
is a linear polynomial. Let 8 be any vector in V which is not in W. Let ¢ be

the T-conductor of 3 into W. Then ¢ divides p, the minimal polynomial
for T Since § is not in W, the polynomial ¢ is not constant. Therefore,

g=@=c) - (&~ c)
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where at least one of the integers e; is positive. Choose j so that ¢; > 0.
Then (z — ¢;) divides g:
g = (x s Cj)h.
By the definition of g, the vector @ = h(T)B cannot be in W. But
(T — ¢il)a = (T — c;[)K(T)B
= g(T)B
isin W. |

Theorem 5. Let V be a finite-dimensional vector space over the field I
and let T be a linear operator on V. Then T is triangulable if and only if the
minimal polynomial for T is a product of linear polynomials over I.

Proof. Suppose that the minimal polynomial factors
p = (2} — cl)rl e (I — Ck)“.

By repeated application of the lemma above, we shall arrive at an ordered

basis 8 = {ay,..., o} in which the matrix representing T is upper-
triangular:

A Q2 Qg - Qg

0 Q22 Q23 - Q(2p
(6-11) Tle =|0 0 ag -+ @

0 0 0 - aJ

Now (6-11) merely says that
(6-12) Ta,- = @1;01 + e + a;;og, 1 S ‘]. ‘_:: n

that is, Te; is in the subspace spanned by ey, . . ., @;. To find ey, . . ., an,
we start by applying the lemma to the subspace W = {0}, to obtain the
vector ;. Then apply the lemma to W, the space spanned by oy, and we
obtain as. Next apply the lemma to W, the space spanned by «; and as.

Continue in that way. One point deserves comment. After «;, . . ., a; have
been found, it is the triangular-type relations (6-12) for j =1,...,1
which ensure that the subspace spanned by ey, . . ., ;i is invariant under
T.

If T is triangulable, it is evident that the characteristic polynomial for
T has the form
f=@—ce)t - (x— ) ¢;in F.

Just look at the triangular matrix (6-11). The diagonal entries ayy, . . . , Gin
are the characteristic values, with ¢; repeated d; times. But, if f can be so
factored, so can the minimal polynomial p, because it divides f. ||

Corollary. Let F be an algebraically closed ficld, e.g., the complex num-
ber field. Every n X n matriz over F is stmilar over F to a triangular matriz.
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Theorem 6. Let V be a finite-dimensional vector space over the field F
and let T be a linear operator on V. Then T is diagonalizable if and only if the
minimal polynomial for T has the form

p=(x—e) e (x— o)
where ¢y, . . ., cx are distinct elements of F.

Proof. We have noted earlier that, if 7 is diagonalizable, its
minimal polynomial is a product of distinct linear factors (see the discussion
prior to Example 4). To prove the converse, let W be the subspace spanned
by all of the characteristic vectors of T, and suppose W = V. By thelemma
used in the proof of Theorem 5, there is a vector a not in W and a charac-
teristic value ¢; of T such that the vector

B= (T —cila
lies in W. Since 8 is in W,
B=PB~+ -+ B
where T'8; = ¢;0;, 1 < ¢ < k, and therefore the vector

MT)B = h(c)Br + -+ + h(ce)Br

is in W, for every polynomial h.

Now p = (z — ¢;)q, for some polynomial q. Also

q—q() = (=@ —ch
We have
¢(Te — g(cj)a = R(T)(T — ¢;)a = h(TE-
But A(T)B is in W and, since
0=pMTa = (T — ¢;I)g(T)e

the vector ¢(T)a is in W. Therefore, ¢(c;)a is in W. Since a is not in W, we
have g(¢;) = 0. That contradicts the fact that p has distinct roots. |

At the end of Section 6.7, we shall give a different proof of Theorem 6.
In addition to being an elegant result, Theorem 6 is useful in a computa-
tional way. Suppose we have a linear operator T, represented by the matrix
4 in some ordered basis, and we wish to know if T is diagonalizable. We
compute the characteristic polynomial f. If we can factor f:

f=(@— o) @ — )

we have two different methods for determining whether or not 7T is diago-
nalizable. One method is to see whether (for each 7) we can find d; inde-
pendent characteristic vectors associated with the characteristic value c..
The other method is to check whether or not (T — ¢iI) --- (T — cil) is
the zero operator.

Theorem 5 provides a different proof of the Cayley-Hamilton theorem.
That theorem is easy for a triangular matrix. Hence, via Theorem 5, we
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obtain the result for any matrix over an algebraically closed field. Any
field is a subfield of an algebraically closed field. If one knows that result,
one obtains a proof of the Cayley-Hamilton theorem for matrices over any
field. If we at least admit into our discussion the Fundamental Theorem of
Algebra (the complex number field is algebraically closed), then Theorem 5
provides a proof of the Cayley-Hamilton theorem for complex matrices,
and that proof is independent of the one which we gave earlier.

Exercises

1. Let T be the linear operator on R?, the matrix of which in the standard ordered

basis is
1 -1
4= [2 2]

(a) Prove that the only subspaces of R? invariant under T are R? and the
zero subspace.

(b) If U is the linear operator on C?, the matrix of which in the standard
ordered basis is 4, show that U has 1-dimensional invariant subspaces.

2. Let W be an invariant subspace for 7. Prove that the minimal polynomial
for the restriction operator Tw divides the minimal polynomial for T, without
referring to matrices.

3. Let ¢ be a characteristic value of T and let W be the space of characteristic
vectors associated with the characteristic value ¢. What is the restriction opera-

tor Tw?
0 10
A=[|2 =2 2|
2 -3 2

4. Let
Is A similar over the field of real numbers to a triangular matrix? If so, find such a
triangular matrix.

5. Every matrix A such that A2 = A is similar to a diagonal matrix.

6. Let T be a diagonalizable linear operator on the n-dimensional vector space V,
and let W be a subspace which is invariant under 7. Prove that the restriction
operator Tw is diagonalizable.

7. Let T be a linear operator on a finite-dimensional vector space over the field
of complex numbers. Prove that T is diagonalizable if and only if T is annihilated
by some polynomial over C' which has distinct roots.

8. Let T be a linear operator on V. If every subspace of V is invariant under T,
then T is a scalar multiple of the identity operator.

9. Let T be the indefinite integral operator

(mw=fmm
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on the space of continuous functions on the interval [0, 1]. Is the space of poly-
nomial functions invariant under T? The space of differentiable functions? The
space of functions which vanish at x = 4?

10. Let A bea 3 X 3 matrix with real entries. Prove that, if A isnot similar over R
to a triangular matrix, then . is similar over C to a diagonal matrix.

11. True or false? If the triangular matrix A is similar to a diagonal matrix, then
A is already diagonal.
12. Let T be a linear operator on a finite-dimensional vector space over an alge-
braically closed field 7. Let f be a polynomial over F. Prove that ¢ is a character-
istic value of f(T') if and ouly if ¢ = f(t), where ¢ is a characteristic value of T.
13. Let V be the space of n X n matrices over F. Let A be a fixed n X n matrix
over F. Let T and U be the linear operators on V defined by
T(B) = AB
U(B) = AB — BA.
(a) True or false? If A is diagonalizable (over F), then T is diagonalizable.
(b) True or false? If A is diagonalizable, then U is diagonalizable.

6.5. Simultaneous Triangulation;
Simultaneous Diagonalization

Let V be a finite-dimensional space and let & be a family of linear
operators on V. We ask when we can simultaneously triangulate or diago-
nalize the operators in ¥, i.e., find one basis @ such that all of the matrices
[Tla, T in $, are triangular (or diagonal). In the case of diagonalization, it
is necessary that & be a commuting family of operators: UT = TU for all
T, U in §. That follows from the fact that all diagonal matrices commute.
Of course, it is also necessary that each operator in & be a diagonalizable
operator. In order to simultaneously triangulate, each operator in & must
be triangulable. It is not necessary that § be a commuting family ; however,
that condition is sufficient for simultaneous triangulation (if each T can be
individually triangulated). These results follow from minor variations of
the proofs of Theorems 5 and 6.

The subspace W is invariant under (the family of operators) ¥ if
W is invariant under each operator in F.

Lemma. Let § be a commuting family of triangulable linear operators
on V. Let W be a proper subspace of V which is invariant under §. There
exists a vector o in V such that

(a) aismnotin W;
(b) for each T in F, the vector Ta is in the subspace spanned by a and W.

Proof. It is no loss of generality to assume that & contains only a
finite number of operators, because of this observation. Let {T, ..., Ty}
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be a maximal linearly independent subset of F, i.e., a basis for the subspace
spanned by . If « is a vector such that (b) holds for each T, then (b) will
hold for every operator which is a linear combination of T4, ..., T

By thelemma before Theorem 5 (this lemma for a single operator), we
can find a vector 81 (not in W) and a scalar ¢; such that (T'y — ¢ I)8:1isin W.
Let V1 be the collection of all vectors 8 in V such that (T, — ¢;I)Bisin W.
Then V; is a subspace of V which is properly larger than W. Furthermore,
V, is invariant under &, for this reason. If 7 commutes with T, then

(Ty — a)(TB) = T(Ty ~ cid)B.

If 3isin Vi, then (T, — ¢,I)8 is in W. Since W is invariant undereach 7T in
F, we have T(Th — )8 in W, i.e.,, T8 in Vi, for all 8in V; and all T'in §.

Now W is a proper subspace of V1. Let Ua be the linear operator on V:
obtained by restricting T’ to the subspace V. The minimal polynomial for
U, divides the minimal polynomial for 7'.. Therefore, we may apply the
lemma before Theorem 5 to that operator and the invariant subspace W.
We obtain a vector #;in V; (not in W) and a scalar ¢; such that (7, — ¢.I)B:
is in W. Note that

(a) B2 is not in W;
(b) (Thy — al)Brisin W
(¢) (T3 — col)Brisin W.

Let V, be the set of all vectors 8 in V; such that (T2 — cy[)8 is in W,
Then V; is invariant under ¥. Apply the lemma before Theorem 5 to Us,
the restriction of 7 to Vi. If we continue in this way, we shall reach a
vector @ = B, (not in W) such that (T; — ¢;Daisin W,j=1,...,r |

Theorem 7. Let V be a finite-dimensional vector space over the field F.
Let § be a commuting family of triangulable linear operators on V. There exists
an ordered basts for V such that every operator in ¥ is represented by a triangu~
lar matriz in that basis.

Proof. Given the lemma which we just proved, this theorem has
the same proof as does Theorem 5, if one replaces 7 by . |

Corollary. Let § be a commuting family of n X n matrices over an
algebraically closed field I. There exists a non-singular n X n matrix P with
entries in I' such that P=1AY s upper-triangular, for every matrix A in 5.

Theorem 8. Let § bec a commuting family of diagonalizable linear
operators on the finite-dimensional vector space V. There exists an ordered basts
for V such that every operator in § s represented in that basis by a diagonal
matriz.

Proof. We could prove this theorem by adapting the lemma
before Theorem 7 to the diagonalizable case, just as we adapted the lemma
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before Theorem 5 to the diagonalizable case in order to prove Theorem 6.
However, at this point it is easier to proceed by induction on the dimension
of V.

If dim V = 1, there is nothing to prove. Assume the theorem for
vector spaces of dimension less than 7, and let V be an n-dimensional space.
Choose any T in § which is not a scalar multiple of the identity. Let
¢y, . . ., Cx be the distinet characteristic values of T, and (for each 2) let W
be the null space of T — ¢,I. Fix an index 7. Then W, is invariant under
every operator which commutes with T. Let §; be the family of linear
operators on W, obtained by restricting the operators in § to the (invariant)
subspace W,. Each operator in &F; is diagonalizable, because its minimal
polynomial divides the minimal polynomial for the corresponding operator
in F. Since dim W, < dim V, the operators in &F; can be simultaneously
diagonalized. In other words, W has a basis ®; which consists of vectors
which are simultaneously characteristic vectors for every operator in ..

Since T is diagonalizable, the lemma before Theorem 2 tells us that
® = (®By ..., ®B s a basis for V. That is the basis we seek. ||

Exercises

1. Find an invertible real matrix P such that P-14P and P~1BP are both diago-
nal, where A and B are the real matrices

=

N R

2. Let § be a commuting family of 3 X 3 complex matrices. How many linearly
independent matrices can & contain? What about the n X n case?

3. Let T be a linear operator on an nm-dimensional space, and suppose that T
has n distinct characteristic values. Prove that any linear operator which commutes
with T is a polynomial in T'.

4. Let A, B, C, and D be n X n complex matrices which commute. Let E be the

2n X 2n matrix
_[4 B
£=[5 3]

Prove that det E = det (AD — BC).

5. Let I be a field, » a positive integer, and let V be the space of n X n matrices
over F. If 4 is a fixed n X n matrix over F, let T4 be the linear operator on V
defined by T4(B) = AB — BA. Consider the family of linear operators T4 ob-
tained by letting A vary over all diagonal matrices. Prove that the operators in
that family are simultaneously diagon: iizable.
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6.6. Direct-Sum Decompositions

As we continue with our analysis of a single linear operator, we shall
formulate our ideas in a slightly more sophisticated way—Iless in terms of
matrices and more in terms of subspaces. When we began this chapter, we
described our goal this way: To find an ordered basis in which the matrix
of T assumes an especially simple form. Now, we shall describe our goal
as follows: To decompose the underlying space V into a sum of invariant
subspaces for 7' such that the restriction operators on those subspaces are
simple.

Definition. Let Wy, . .., Wy be subspaces of the vector space V. We
say that Wy, . . ., Wi are independent if
ar+ - +ar =0, ai i Wi

implies that each a; s 0.

For k = 2, the meaning of independence is {0} intersection, i.e., W;
and W, are independent if and only if W, N\ W, = {0}. If k > 2, the
independence of Wy, ..., W, says much more than W, N --- N W, =
{0}. It says that each W; intersects the sum of the other subspaces W;
only in the zero vector.

The significance of independence is this. Let W = Wy + --- + Wy
be the subspace spanned by Wy, ..., W, Each vector « in W can be
expressed as a sum

a=a1+'-~—f—ak, a;in W,
If W,, ..., W, are independent, then that expression for « is unique; for if
a=pFf+ -+ 6 B:in W,

then 0 = (&t — By) + -+ + (ax — Bx), hence a; ~ B; = 0,7 = 1,.. ., k.
Thus, when Wy, . . ., W, are independent, we can operate with the vectors
in W as k-tuples (ay, . . ., a;), a; in W;, in the same way as we operate with
vectors in R* as k-tuples of numbers.

Lemma. Let V be a finite-dimensional vector space. Let Wy, . . ., Wi
be subspaces of Vandlet W = Wy 4 - + Wy The following are equivalent.

(a) Wy, ..., Wk are independent.
(b) For each j, 2 <j <k, we have

wWin Wi+ - + Wi) = {0}.

(c) If ®; vs an ordered basis for Wi, 1 <1 < Kk, then the sequence ® =
(®y, . .., ®x) is an ordered basis for W.
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Proof. Assume (a). Let a be a vector in the intersection W; N
(W1 + +-+ 4+ Wj_1). Then there are vectors ay, . . ., aj; with a; In W,
such that @ = a; + - -+ + a;_1. Since

at - t+aat(—a)+0+ - 4+0=0

and since Wy, . . ., W; are independent, it must be that a; = ag = - .. =
aj1 = a = 0

Now, let us observe that (b) implies (a). Suppose
O=ar+ - + ax, a;in W,
Let 7 be the largest integer 7 such that a; % 0. Then
0=o 4 - 4o a; # 0,

Thus a;j = —ay — + -+ — aj-; Is a non-zero vector in W; N\ (W, + --- +
Wi.a).

Now that we know (a) and (b) are the same, let us see why (a) is
equivalent to (¢). Assume (a). Let ®; be a basisfor W;, 1 <1 < k, and let
® = (®y, ..., ®B). Any linear relation between the vectors in @ will have
the form

Bit -+ B =0

where 83; is some linear combination of the vectors in ®;. Since Wy, . . ., Wy
are independent, each 3, is 0. Since each ®; is independent, the relation we
have between the vectors in ® is the trivial relation.

We relegate the proof that (c) implies (a) to the exercises (Exercise

2). 1

If any (and hence all) of the conditions of the last lemma hold, we
say that the sum W = W; + -+ 4+ W, is direct or that W is the direct
sum of Wy, ..., Wi and we write

W=W@® @ W

In the literature, the reader may find this direct sum referred to as an
independent sum or the interior direct sum of Wy, ..., Wy.

ExampLE 11. Let V be a finite-dimensional vector space over the field
F and let {a, ..., a,} be any basis for V. If W, is the one-dimensional
subspace spanned by a;, then V.= W1 @ --- P W,.

ExampLE 12. Let n be a positive integer and F a subfield of the com-
plex numbers, and let V be the space of all n X n matrices over F. Let
W1 be the subspace of all symmetric matrices, i.e., matrices A such that
At = A. Let W, be the subspace of all skew-symmetric matrices, i.e.,
matrices A such that A = —A. Then V = W, @ W,. If 4 is any matrix
in V, the unique expression for A as a sum of matrices, one in W, and the
other in Wy, is
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A=A+ A
A= %(A + A‘)
Ay = (A — AY.

ExampLE 13. Let T be any linear operator on a finite-dimensional
space V. Let ¢y, . . ., ¢k be the distinct characteristic values of T, and let
W be the space of characteristic vectors associated with the characteristic
value ¢;. Then Wy, . .., W, are independent. See the lemma before Theo-

rem 2. In particular, if T is diagonalizable, then V. = W@ -+ @ W..

Definition. If V is a vector space, a projection of V is a linear
operator E on V such that 2 = E.

Suppose that E is a projection. Let R be the range of £ and let N be
the null space of E.

1. The vector 3 is in the range R if and only if Eg = g3. If 8 = Eq,
then EB = E?a = Ea = . Conversely, if 8 = EB, then (of course) § is in
the range of E.

2.V=R®N.

3. The unique expression for a as a sum of vectors in B and N is
a=Ea+ (a — Ea).

From (1), (2), (3) it is easy to see the following. If R and N are sub-
spaces of V such that V = R @® N, there is one and only one projection
operator E which has range R and null space N. That operator is called the
projection on R along N.

Any projection E is (trivially) diagonalizable. If {ay, ..., as} is a
basis for R and {a,;1, . . ., a,} a basis for N, then the basis 8 = {a, . . .,

ay} diagonalizes E:
~ I 0

where [ is the X r identity matrix. That should help explain some of the
terminology connected with projections. The reader should look at various
cases in the plane R? (or 3-space, R?), to convince himself that the projec-
tion on R along N sends each vector into R by projecting it parallel to N.

Projections can be used to describe direct-sum decompositions of the
space V. For, suppose V.= W, @ --- @ W,. For each j we shall define
an operator E;on V. Let abein V,say a = ax + **+ + o with a; in W
Define Eja = a;. Then E; is a well-defined rule. It is easy to see that E; is
linear, that the range of E; is W;, and that E; = E;. The null space of E;
is the subspace

Wit oo + Wi+ Win+ - + W)

for, the statement that E;a = 0 simply means o; = 0, i.e., that « is actually
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a sum of vectors from the spaces W; with 7 # j. In terms of the projections
E; we have
(6-13) a=FEoaoa+ - + E
for each a in V. What (6-13) says is that

I=E+ -+ E.

Note also that if ¢ # j, then E;E; = 0, because the range of E; is the
subspace W, which is contained in the null space of E;. We shall now
summarize our findings and state and prove a converse.

Theorem 9. If V = W, @ - - - @ Wy, then there exist k linear opera-
tors Ky, . . ., Kk on 'V such that

() each E; is a projection (Ef = E;);
(ii) EsE; = 0, ¢f i # j;
(i) I = Ey+ -+ + Ex;
(iv) the range of E; vs Wi.

Conversely, if E,, . . ., Ex are k linear operators on V which satisfy conditions
(1), (i1), and (iil), and if we let W; be the range of Ei, then V. = Wi @D --- @D
Wi

Proof. We have only to prove the converse statement. Suppose
Ey, ..., E. are linear operators on V which satisfy the first three condi-
tions, and let W, be the range of E;. Then certainly

V=W+- 4+ W,;
for, by condition (iii) we have
a=FEa+ - + E
for each a in V, and E;a is in W;. This expression for « is unique, because if
a=o+ oo

with a; in W;, say a; = Ef;, then using (i) and (ii) we have

k
E,-a = 2 E,'a,‘

=1

i

k
2_31 E;EB;
= E3B;
= E,B;
= oy,

This shows that V is the direct sum of the W.. |
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Exercises

1. Let V be a finite-dimensional vector space and let W, be any subspace of V.
Prove that there is a subspace W, of V such that V.= W, @ W..

2. Let V be a finite-dimensional vector space and let Wy, . .., Wi be subspaces
of V such that
V=W+---4+ W, and dimV =dim W, + .- 4 dim W,.
Prove that V = W1 @ -+ @ W

3. Find a projection E which projects R? onto the subspace spanned by (1, —1)
along the subspace spanned by (1, 2).

4. If E; and E, are projections onto independent subspaces, then E, 4+ E; is a
projection. True or false?

5. If E is a projection and f is a polynomial, then f(E) = al + bE. What are
a and b in terms of the coefficients of f?

6. True or false? If a diagonalizable operator has only the characteristic values
0 and 1, it is a projection.

7. Prove that if F is the projection on R along N, then (I — E) is the projection
on N along R.

8. Let Ey,. . ., Exbelinear operators on the space V such that £, + - -+ + E = I.
(a) Prove that if E;E; = 0 for ¢ # j, then E? = E; for each <.
(b) In the case £ = 2, prove the converse of (a). That is, if Ey + E: = I and
E? = E\, E} = E,, then E\E, = 0.
9. Let V be a real vector space and E an idempotent linear operator on V, i.e.,
a projection. Prove that (I 4+ E) is invertible. Find (I + E)™.

10. Let F be a subfield of the complex numbers (or, a field of characteristic zero).
Let V be a finite-dimensional vector space over F. Suppose that Ei, ..., E
are projections of V and that Ey + --- + Ex = I. Prove that E;E; = 0 for¢ # j
(Hint: Use the trace function and ask yourself what the trace of a projection is.)

11. Let V be a vector space, let W, ..., W; be subspaces of V, and let
Vi=Wit o+ Wia+Wint+ -+ + W

Suppose that V = W, @ - @ W, Prove that the dual space V* has the direct-
sum decomposition V* = Vi@ --- @ V3.
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6.7. Invariant Direct Sums

We are primarily interested in direct-sum decompositions V =
W@ --- @ Wi, where each of the subspaces W, is invariant under some
given linear operator T. Given such a decomposition of ¥, T induces a
linear operator T'; on each W; by restriction. The action of T is then this.
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If @ is a vector in V, we have unique vectors oy, . . ., ax with o; in W; such
that
a=oa t "+ o
and then
Ta = Tvay + -+ + Ty

We shall describe this situation by saying that T is the direct sum of the
operators T4, ..., T It must be remembered in using this terminology
that the T'; are not linear operators on the space V but on the various
subspaces W,. The fact that V.= W, @ --- @ W, enables us to associate
with each @ in V a unique k-tuple (ay, . . ., ax) of vectors a; in W; (by a =
ar + +++ + o) in such a way that we can carry out the linear operations
in V by working in the individual subspaces W,. The fact that each W, is
invariant under 7T enables us to view the action of T as the independent
action of the operators 7'; on the subspaces W;. Our purpose is to study T
by finding invariant direct-sum decompositions in which the T'; are opera-
tors of an elementary nature.

Before looking at an example, let us note the matrix analogue of this
situation. Suppose we select an ordered basis #; for each W, and let ®
be the ordered basis for V consisting of the union of the ®; arranged in
the order ®, ..., B so that ® is a basis for V. From our discussion
concerning the matrix analogue for a single invariant subspace, it is easy
to see that if A = [T]g and A; = [T.]@,, then A has the block form

40 - 0
(6-14) A= ? ‘:42 ?
0 0 e Ag

In (6-14), A; is a d; X d; matrix (d; = dim W), and the 0’s are symbols
for rectangular blocks of scalar 0’s of various sizes. It also seems appro-
priate to describe (6-14) by saying that A is the direct sum of the matrices
Ay, ..., Ar

Most often, we shall describe the subspace W, by means of the associ-
ated projections E; (Theorem 9). Therefore, we need to be able to phrase
the invariance of the subspaces W; in terms of the E;.

Theorem 10. Let T be a linear operator on the space V, and let
Wy ..., Wxand E, ..., Ey be as in Theorem 9. Then a necessary and
sufficient condition that each subspace W; be tnvariant under T is that T
commute with each of the projections I;, 1.e.,

TE; = ET, i=1,...,k
Proof. Suppose T commutes with each E;. Let « be in W;. Then
Ej = o, and
Ta = T(E;a)
Ej(Ta)
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which shows that T« is in the range of I/}, i.e., that W; is invariant under T'.
Assume now that each W, is invariant under 7. We shall show that
TE; = I';T. Let @ be any vector in V. Then

a=FHa+ - + L
Ta = T+ - + T«

Since If;x is in W, which is invariant under T, we must have T(l:a) =
I8, for some vector #;. Then

EjTEiCC = E_/,Eqﬁl

_ 0, if 1=y
Eg;, i ©=7.
Thus .
ETa = ETE a4+ -+ + E,TEw
= E;B;
= Tl

This holds for each a in V, s¢ E;T' = TE;. |

We shall now describe a diagonalizable operator T' in the language of
invariant direct sum decompcsitions (projections which commute with 7).
This will be a great help to us in understanding some deeper decomposition
theorems later. The reader may feel that the description which we are
about to give is rather complicated, in comparison to the matrix formula-
tion or to the simple statement that the characteristic vectors of T span the
underlying space. But, he should bear in mind that this is our first glimpse
at a very effective method, by means of which various problems concerned
with subspaces, bases, matrices, and the like can be reduced to algebraic
calculations with linear operators. With a little experience, the efficiency
and elegance of this method of reasoning should become apparent.

Theorem 11. Let'T be alinear operator on a finite-dimensional space V.
If T is diagonalizable and if ci, . . ., cx are the distinct characteristic
values of T, then there exist linear operators By, . . ., Ex on V such that

Q) T=cE + -+ + ey
i) T=E+ -+ Eg
(i) EE; = 0,1 # j;
(iv) Ef = E; (E; 45 a projection);
(v) the range of E; is the characteristic space for T associated with c;.

Conversely, if there exist k distinct scalars ¢y, . . ., ex and k non-zero
linear operators L, . . ., Ey which satisfy conditions (i), (ii), and (iii), then
T is diagonalizable, c,, . . ., ¢, are the distinct characteristic values of T, and

conditions (iv) and (v) are satisfied also.

Proof. Suppose that T is diagonalizable, with distinct charac-
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teristic values ci, . . ., cx. Let W, be the space of characteristic vectors
associated with the characteristic value c¢;. As we have seen,

V=W1@-"®Wk.

Let Ey, . .., Ex be the projections associated with this decomposition, as
in Theorem 9. Then (ii), (iii), (iv) and (v) are satisfied. To verify (i),
proceed as follows. IFor each @ in V,

EFa+ -+ 4+ Eia

Il

a
and so
Ta

TEwa+ -+ + TEw
alha + -+ + ckEra.

In other words, T' = c1iEy + - -+ + ceEr.

Now suppose that we are given a linear operator T along with distinct
scalars ¢; and non-zero operators E; which satisfy (i), (ii) and (iii). Since
E.E; = 0 when 7 # j, we multiply both sides of I = E; + --- + Ei by
E; and obtain immediately Ef = E;. Multiplying T = a5y + - -+ + ckBx
by E;, we then have TE; = c¢;E;, which shows that any vector in the range
of E; is in the null space of (T — ¢.J). Since we have assumed that E; = 0,
this proves that there is a non-zero vector in the null space of (T' — ¢if),
i.e., that ¢, is a characteristic value of 7. Furthermore, the c; are all of the
characteristic values of T for, if ¢ is any scalar, then

T—cl=(—c)E~+ - + (cx — c)Ex

so if (T — ca = 0, we must have (¢; — ¢)E;a = 0. If « 1s not the zero
vector, then E.a # 0 for some ¢, so that for this ¢ we havec¢; — ¢ = 0.
Certainly T is diagonalizable, since we have shown that every non-
zero vector in the range of E; is a characteristic vector of T, and the fact
that I = E, 4+ --- 4+ E; shows that these characteristic vectors span V.
All that remains to be demonstrated is that the null space of (T' — ¢.I) is
exactly the range of E;. But this is clear, because if Ta = c;a, then

It

k
.21 ;i —c)Esa =0

i=
hence
(e; — c))Eja =0 for each j
and then
Eja =0, Jj# .

Since @ = Eija + --- + Exa, and E;a = 0 for j # 7, we have a = Eiq,
which proves that « is in the range of E;. |

One part of Theorem 9 says that for a diagonalizable operator T,
the scalars ¢y, . . ., ¢ and the operators Ejy, . . ., Ex are uniquely deter-
mined by conditions (i), (ii), (iii), the fact that the c; are distinct, and
the fact that the E; are non-zero. One of the pleasant features of the
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decomposition T' = ¢1E1 + -+ + cEy is that if ¢ is any polynomial over
the field F, then
g(T) = 9(c)Er + - - - + glcx) B

We leave the details of the proof to the reader. To see how it is proved one
need only compute T for each positive integer r. For example,

k k

T? = 2l T Cﬂ%
i=1 i=1
E ok

2 2 cicillL;

i=1y=1

k
> K

i=1

k
= 3 ﬁE@
i=1
The reader should compare this with g(4) where 4 is a diagonal matrix;
for then g(A) is simply the diagonal matrix with diagonal entries g(Au),

.y 9(Aan).
We should like in particular to note what happens when one applies
the Lagrange polynomials corresponding to the scalarscy, . . ., c:

o (x — Ci)
Pr= 2 o = <)

We have p;(c;) = 8:;, which means that

1

k
piT) = & 08

= E;

Thus the projections £; not only commute with T but are polynomials in
T.

Such calculations with polynomials in T can be used to give an
alternative proof of Theorem 6, which characterized diagonalizable opera-
tors in terms of their minimal polynomials. The proof is entirely inde-
pendent of our earlier proof.

If T is diagonalizable, T = ¢1E1 + - -+ + c.Lfx, then

g(T) = glc)Er + - -+ + 9(cx)Ex

for every polynomial g. Thus ¢(T") = 0 if and only if g(c;) = O for each <.
In particular, the minimal polynomial for T is

p=x—c) (@& — ).

Now suppose T is a linear operator with minimal polynomial p =
(x — ¢1) -+ (x — ci), where ¢, . . ., cx are distinct elements of the scalar
field. We form the Lagrange polynomials
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o (x — c)
P =1L, (e; — i)

We recall from Chapter 4 that p;(c;) = 8;; and for any polynomial ¢ of
degree less than or equal to (k — 1) we have

9 =glepr + -+ + glc)ps
Taking ¢ to be the scalar polynomial 1 and then the polynomial z, we have

l=pi+ - +m

(6-15) z=cp1+ -+ pr

(The astute reader will note that the application to z may not be valid
because k may be 1. But if k¥ = 1, T is a scalar multiple of the identity and
hence diagonalizable.) Now let E; = p;(T). From (6-15) we have
I=E+ -+ E:

T=cE+ - + ¢l

Observe that if 7 # j, then p.p; is divisible by the minimal polynomial p,
because p.p; contains every (z — ¢.) as a factor. Thus

(6-17) E.E; =0, 1% 7.

We must note one further thing, namely, that E; # 0 for each ¢. This
is because p is the minimal polynomial for T and so we cannot have
pi(T) = 0 since p; has degree less than the degree of p. This last comment,

together with (6-16), (6-17), and the fact that the ¢; are distinct enables us
to apply Theorem 11 to conclude that T is diagonalizable. ||

(6-16)

Exercises

1. Let E be a projection of V and let T be a linear operator on V. Prove that the
range of K is invariant under T if and only if ETE = TE. Prove that both the
range and null space of E are invariant under T if and only if ET = TE.

2. Let T be the linear operator on R? the matrix of which in the standard ordered
basis is
21
[0 24

Let W, be the subspace of B2 spanned by the vector ¢, = (1, 0).

(a) Prove that W, is invariant under T.

(b) Prove that there is no subspace W, which is invariant under T and which
is complementary to W,:

R:2=W,@D W
(Compare with Exercise 1 of Section 6.5.)

3. Let T be a linear operator on a finite-dimensional vector space V. Let R be
the range of T and let N be the null space of T. Prove that R and N are inde-
pendent if and only if V = R @ N.
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4. Let T be a linear operator on V. Suppose V=W, @ --- @ W,, where each

W, is invariant under T. Let T; be the induced (restriction) operator on W;.

(a) Prove that det (T') = clet (T) -- - det (T%).

(b) Prove that the characteristic polynomial for f is the product of the charac-
teristic polynomials for fy, . . ., fi.

(c) Prove that the minimal polynomial for T is the least common multiple
of the minimal polynomials for T4, ..., Tk (Hint: Prove and then use the cor-
responding facts about direct sums of matrices.)

5. Let T be the diagonalizable linear operator on R? which we discussed in
Example 3 of Section 6.2. Use the Lagrange polynomials to write the representing
matrix A in the form A = E; + 2E,, E, + E, = I, E\E, = 0.

6. Let A be the 4 X 4 matrix in Example 6 of Section 6.3. Find matrices E,, E;, E;
such that A = ¢\E) + ¢:Es + 3E3 Ey + Ey + Es = I, and E;E; = 0, 7 5 3.

7. In Exercises 5 and 6, notice that (for each ) the space of characteristic vectors
associated with the characteristic value ¢; is spanned by the column vectors of the
various matrices E; with j # 1. Is that a coincidence?

8. Let T be alinear operator on V which commutes with every projection operator
on V. What can you say about T?

9. Let V be the vector space of continuous real-valued functions on the interval
[—1, 1] of the real line. Let W. be the subspace of even functions, f(—z) = f(z),
and let W, be the subspace of odd functions, f(—z) = —f(z).

(a) Show that V.=W.P W..
(b) If T is the indefinite integral operator

@@ = [ 1) d

are W, and W, invariant under 7?7
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6.8. The Primary Decomposition Theorem

We are trying to study a linear operator 7' on the finite-dimensional
space V, by decomposing T into a direct sum of operators which are in
some sense elementary. We can do this through the characteristic values
and vectors of T in certain special cases, i.e., when the minimal polynomial
for T factors over the scalar field F into a product of distinct monic poly-
nomials of degree 1. What can we do with the general T? If we try to study
T using characteristic values, we are confronted with two problems. First,
T may not have a single characteristic value; this is really a deficiency in
the scalar field, namely, that it is not algebraically closed. Second, even if
the characteristic polynomial factors completely over F into a product of
polynomials of degree 1, there may not be enough characteristic vectors for
T to span the space V; this is clearly a deficiency in T. The second situation
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is illustrated by the operator T on F?3 (F any field) represented in the
standard basis by

2 0 0
A=|1 2 0|
00 -1

The characteristic polynomial for A is (zx — 2)2(z + 1) and this is plainly
also the minimal polynomial for A (or for T'). Thus T is not diagonalizable.
One sees that this happens because the null space of (T" — 2I) has dimen-
sion 1 only. On the other hand, the null space of (T' + I) and the null space
of (T — 2I)? together span V, the former being the subspace spanned by
e3 and the latter the subspace spanned by ¢ and e,.
This will be more or less our general method for the second problem.
If (remember this is an assumption) the minimal polynomial for T de-
composes
p = (1; —_ Cl)ﬂ cen (1; — ck)Tk

where ¢y, . . ., ¢ are distinct elements of F, then we shall show that the
space V is the direct sum of the null spaces of (T — ¢.I)", ¢ =1,...,k.
The hypothesis about p is equivalent to the fact that T is triangulable
(Theorem 5); however, that knowledge will not help us.

The theorem which we prove is more general than what we have
described, since it works with the primary decomposition of the minimal
polynomial, whether or not the primes which enter are all of first degree.
The reader will find it helpful to think of the special case when the primes
are of degree 1, and even more particularly, to think of the projection-type
proof of Theorem 6, a special case of this theorem.

Theorem 12 (Primary Decomposition Theorem). LetT be a linear
operator on the finite-dimenstonal vector space V over the field I. Let p be the
mantmal polynomzal for T,

p = pil .. p;‘:
where the p; are distinct irreducible monic polynomials over I and the r; are
positive integers. Let Wi be the null space of pi(T)", 1 = 1,...,k Then

N V=Wi®: - D W
(i1) each Wi is tnvariant under T;
(iii) ¢f T; ¢s the operator induced on W; by T, then the minimal poly-
nomzial for T; is pi.

Proof. Theidea of the proof is this. If the direct-sum decomposi-
tion (i) is valid, how can we get hold of the projections Ej, . . . , E) associ-
ated with the decomposition? The projection E; will be the identity on W,
and zero on the other W;. We shall find a polynomial k; such that h:(T) is
the identity on W; and is zero on the other W, and so that h(T) + --- +
he(T) = I, etc.
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For each 17, let

P i
Ji= =11 p;.
f 2 b
Since py, . . ., pr are distincet prime polynomials, the polynomialsfy, . . ., fi

are relatively prime (Theorem 10, Chapter 4). Thus there are polynomials
g1, - -+, g such that

.§1fz-gf = L

Note also that if ¢ # 7, then f.f; is divisible by the polynomial p, because
fif; contains each pin as a factor. We shall show that the polynomials
h; = fig:behavein the manner described in the first paragraph of the proof.
Let I, = hi(T) = fi(T)9:T). Since by + -+ + h = 1 and p divides
fif; for i # j, we have
E.E; =0, if @7

Thus the E; are projections which correspond to some direct-sum de-
composition of the space V. We wish to show that the range of E; is exactly
the subspace W.. It is clear that each vector in the range of E; is in W, for
if @ is in the range of F;, then a« = E,a and so

p{(T)"'a = pi(T)"'Eia
= pi(T)f(T)g:(T)a
=0

because p7if.g; is divisible by the minimal polynomial p. Conversely,
suppose that « is in the null space of p;(T)". If j 5 1, then f;g; is divisible
by pi and so f;(T)g;(T)a = 0, i.e., E;a = 0 for j # 4. But then it is im-
mediate that F.a = a, i.e., that « is in the range of E;. This completes the
proof of statement (i).

It is certainly clear that the subspaces W, are invariant under T.
If T; is the operator induced on W; by T, then evidently p.(T:)" = 0,
because by definition p;(T")" is 0 on the subspace W, This shows that the
minimal polynomial for T'; divides pi’. Conversely, let g be any polynomial
such that ¢g(T;) = 0. Then g(T)f:(T) = 0. Thus gf; is divisible by the
minimal polynomial p of T, i.e., pi¥f; divides gfi. It is easily seen that p7
divides g. Hence the minimal polynomial for T; is p7'. |}

Corollary. IfEy, . . ., Exarethe projections associated with the primary
decomposition of T, then each E; is a polynomial in T, and accordingly if a
linear operator U commutes with T then U commutes with each of the E;, i.e.,
each subspace W; 1s invariant under U.

In the notation of the proof of Theorem 12, let us take a look at the
special case in which the minimal polynomial for T is a product of first-
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degree polynomials, i.e., the case in which each p; is of the form
Pi = — ¢;. Now the range of E; is the null space W, of (T — cil)™.
Let us put D = ¢,y + - -+ + eFi. By Theorem 11, D is a diagonal-
izable operator which we shall call the diagonalizable part of T. Let us
look at the operator N = T' — D. Now

T=TE, + ---+ TE;
D=cb+ -+ ckr

N=(T—-caEi+ -+ + (T — cl)E:.

The reader should be familiar enough with projections by now so that he
sees that

N2= (T — c)2Ei + -+ + (T — cl)?Ex
and in general that
N = (T - ClI)TEl + e + (T - CkI)TEk-

When r > r; for each ¢, we shall have N” = 0, because the operator
(T — c¢I) will then be 0 on the range of E..

Definition. Let N be a linear operator on the vector space V. We say
that N s nilpotent if there is some positive integer r such that N* = 0.

Theorem 13. Let T be a linear operator on the finite-dimensional vector
space V over the field ¥. Suppose that the minimal polynomial for T de-
composes over I into a product of linear polynomials. Then there is a diago-
nalizable operator D on V and a nilpotent operator N on 'V such that

(i) T=D+ N,
(ii) DN = ND.

The diagonalizable operator D and the nilpotent operator N are uniquely
determined by (1) and (ii) and each of them is a polynomial in T.

Proof. We have just observed that we can write T = D + N
where D is diagonalizable and N is nilpotent, and where D and N not only
commute but are polynomials in 7. Now suppose that we also have T' =
D’ + N’ where D’ is diagonalizable, N’ is nilpotent, and D’N’ = N'D’.
We shall provethat D = D’ and N = N'.

Since D’ and N’ commute with one another and T = D’ 4+ N’, we
see that D’ and N’ commute with 7. Thus D’ and N’ commute with any
polynomial in T'; hence they commute with D and with N. Now we have

D4+ N=D+N'
or

D—-—D =N —N
and all four of these operators commute with one another. Since D and D’
are both diagonalizable and they commute, they are simultaneously
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diagonalizable, and D — D’ is diagonalizable. Since N and N’ are both
nilpotent and they commute, the operator (N’ — N) is nilpotent; for,
using the fact that N and N’ commute

(N' — N)yr = ,éo (;) (N")=i(—=N)i

and so when r is sufficiently large every term in this expression for
(N’ — N) will be 0. (Actusally, a nilpotent operator on an n-dimensional
space must have its nth power 0; if we take r = 2n above, that will be
large enough. It then follows that r = n is large enough, but this is not
obvious from the above expression.) Now D — D’ is a diagonalizable
operator which is also nilpotent. Such an operator is obviously the zero
operator; for since it is nilpotent, the minimal polynomial for this operator
is of the form z* for some r <{ m; but then since the operator is diagonaliza-
ble, the minimal polynomial cannot have a repeated root; hence »r = 1 and
the minimal polynomial is simply z, which says the operator is 0. Thus we
seethat D = D’ and N = N'. ||

Corollary. Let V be a finite-dimenstonal vector space over an algebra-
ically closed field F, e.g., the field of complex numbers. Then every linear
operator T on V can be written as the sum of a diagonalizable operator D
and a nilpotent operator N which commute. These operators D and N are
unique and each ts a polynomzal in T.

From these results, one sees that the study of linear operators on
vector spaces over an algebraically closed field is essentially reduced to
the study of nilpotent operators. For vector spaces over non-algebraically
closed fields, we still need to find some substitute for characteristic values
and vectors. It is a very interesting fact that these two problems can be
handled simultaneously and this is what we shall do in the next chapter.

In concluding this section, we should like to give an example which
illustrates some of the ideas of the primary decomposition theorem. We
have chosen to give it at the end of the section since it deals with differential
equations and thus is not purely linear algebra.

ExamprLE 14. In the primary decomposition theorem, it is not neces-
sary that the vector space V be finite dimensional, nor is it necessary for
parts (i) and (ii) that p be the minimal polynomial for 7. If T is a linear
operator on an arbitrary vector space and if there is a monic polynomial
p such that p(T) = 0, then parts (i) and (ii) of Theorem 12 are valid for T'
with the proof which we gave.

Let n be a positive integer and let V be the space of all n times con-
tinuously differentiable functions f on the real line which satisfy the
differential equation

223
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drf df df -
(6-18) E't';;'{"an«lzl“tnj—l- -I-a;%—}-aof—O
where ay, . . ., a,-1 are some fixed constants. If C, denotes the space of

n times continuously differentiable functions, then the space V of solutions
of this differential equation is a subspace of C,. If D denotes the differentia-
tion operator and p is the polynomial

p=2a"+anaz" '+ - +ax+ a
then V is the null space of the operator p(D), because (6-18) simply says
p(D)f = 0. Therefore, V is invariant under D. Let us now regard D as a
linear operator on the subspace V. Then p(D) = 0.
If we are discussing differentiable complex-valued functions, then C,

and V are complex vector spaces, and ay, . . ., G,—1 may be any complex
numbers. We now write

p = (x — Cl)n (2? _ck)u

where ¢y, . . ., ¢ are distinet complex numbers. If W; is the null space of
(D — ¢;I), then Theorem 12 says that
V=W@® ®W

In other words, if f satisfies the differential equation (6-18), then f is
uniquely expressible in the form

f=h+ -+

where f; satisfies the differential equation (D — ¢;I)"if; = 0. Thus, the
study of the solutions to the equation (6-18) is reduced to the study of
the space of solutions of a differential equation of the form

(6-19) (D — ¢Iyf = 0.

This reduction has been accomplished by the general methods of linear
algebra, i.e., by the primary decomposition theorem.

To describe the space of solutions to (6-19), one must know something
about differential equations, that is, one must know something about D
other than the fact that it is a linear operator. However, one does not need
to know very much. It is very easy to establish by induection on r that if f
is in C; then

(D — el)f = etD(e™)
that is,

%—th%@wxa&

Thus (D ~ cI)f = 0 if and only if D7(e=¢f) = 0. A function ¢ such that
Drg = 0, i.e., dg/dt" = 0, must be a polynomial function of degree (r — 1)
or less:

g(t) = by 4 b + -+ + byl 1,
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Thus f satisfies (6-19) if and only if f has the form
J(t) = etby + 0t + -+ + bpatr?).

Accordingly, the ‘functions’ e¢¢, te®, . . ., t""'e°t span the space of solutions

of (6-19). Since 1, ¢, ..., ! are linearly independent functions and the.

exponential function has no zeros, these r functions tet, 0 < j <r — 1,
form a basis for the space of solutions.
Returning to the differential equation (6-18), which is

p(®)f =0
p=(x—c)t- (& — )™

we see that the n functions imect, 0 <m <r;— 1, 1 <5<k, form a
basis for the space of solutions to (6-18). In particular, the space of solutions
is finite-dimensional and has dimension equal to the degree of the poly-
nomial p.

Exercises

1. Let T be a linear operator on R? which is represented in the standard ordered

basis by the matrix
6 —3 -2
|: 4 -1 -— 2i|-
10 -5 -3

Express the minimal polynomial p for T in the form @ = pip; where p, and p.
are monic and irreducible over the field of real numbers. Let W, be the null space
of p;(T). Find bases ®; for the spaces W, and W,. If T; is the operator induced on
Wi by T, find the matrix of T; in the basis ®; (above).

2. Let T be the linear operatcr on R?® which is represented by the matrix

31 —1
2 2 —~1
2 2 0

in the standard ordered basis. Show that there is a diagonalizable operator D
on R3 and a nilpotent operator N on R?® such that T = D + N and DN = ND.
Find the matrices of D and N in the standard basis. (Just repeat the proof of
Theorem 12 for this special case.)

3. If V is the space of all polynomials of degree less than or equal to n over a
field F, prove that the differentiation operator on V is nilpotent.

4. Let T be a linear operator on the finite-dimensional space V with characteristic
polynomial
f = (m — Cl)dl e (z — ck)dk

and minimal polynomial
p= (l‘ f— Cl)“ P (Z — ck)?‘k‘
Let W, be the null space of (T — ¢;I)r,
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(a) Prove that W, is the set of all vectors & in V such that (T — ¢;[)"a = 0
for some positive integer m (which may depend upon «).

(b) Prove that the dimension of W, is d;. (Hint: If T; is the operator induced
on W; by T, then T; — c:I is nilpotent; thus the characteristic polynomial for
T: — ¢ must be z¢ where ¢; is the dimension of W; (proof?); thus the charac-
teristic polynomial of T; is (¢ — ¢;)¢; now use the fact that the characteristic
polynomial for T is the product of the characteristic polynomials of the T; to show
that e; = d;.)

5. Let V be a finite-dimensional vector space over the field of complex numbers.
Let T be a linear operator on V and let D be the diagonalizable part of T. Prove
that if ¢ is any polynomial with complex coefficients, then the diagonalizable part
of g(T) is g(D).

6. Let V be a finite-dimensional vector space over the field F, and let T be a
linear operator on V such that rank (T) = 1. Prove that either T is diagonalizable
or T is nilpotent, not both.

7. Let V be a finite-dimensional vector space over F, and let T be a linear operator
on V. Suppose that T' commutes with every diagonalizable linear operator on V.
Prove that T is a scalar multiple of the identity operator.

8. Let V be the space of n X n matrices over a field F, and let A be a fixed n X n
matrix over F. Define a linear operator T' on V by T(B) = AB — BA. Prove
that if A is a nilpotent matrix, then T is a nilpotent operator.

9. Give an example of two 4 X 4 nilpotent matrices which have the same minimal
polynomial (they necessarily have the same characteristic polynomial) but which
are not similar.

10. Let T be a linear operator on the finite-dimensional space V,letp = pi* - - - P&
be the minimal polynomial for T, and let V.= W1 @ --. @ W, be the primary
decomposition for T, i.e., W; is the null space of p;(T)". Let W be any subspace
of V which is invariant under 7. Prove that

W=WNAW)QWNW) D W N Wy.

11. What’s wrong with the following proof of Theorem 13? Suppose that the
minimal polynomial for T is a product of linear factors. Then, by Theorem 5,
T is triangulable. Let ® be an ordered basis such that A = [T']g is upper-triangular.
Let D be the diagonal matrix with diagonal entries ay, . . . , @pn. Then A = D 4 N,
where N is strictly upper-triangular. Evidently N is nilpotent.

12. If you thought about Exercise 11, think about it again, after you observe
what Theorem 7 tells you about the diagonalizable and nilpotent parts of T'.

13. Let T be a linear operator on V with minimal polynomial of the form p»,
where p is irreducible over the scalar field. Show that there is a vector & in V
such that the T-annihilator of « is p*.

14. Use the primary decomposition theorem and the result of Exercise 13 to prove
the following. If 7 is any linear operator on a finite-dimensional vector space V,

then there is a vector @ in V with T-annihilator equal to the minimal polynomial
for T.

15. If N is a nilpotent linear operator on an n-dimensional vector space V, then
the characteristic polynomial for N is .



7. The Rational

and Jordan Forms

7.1. Cyclic Subspaces and Annihilators

Once again V is a finite-dimensional vector space over the field F
and T is a fixed (but arbitrary) linear operator on V. If « is any vector
in V, there is a smallest subspace of ¥V which is invariant under T and
contains «. This subspace can be defined as the intersection of all T-
invariant subspaces which contain «; however, it is more profitable at the
moment for us to look at things this way. If W is any subspace of V which
is invariant under T' and contains @, then W must also contain the vector
Ta; hence W must contain T(Ta) = T?«, T(T?a) = T3, etc. In other
words W must contain ¢g(T")x for every polynomial g over F. The set of all
vectors of the form g(T)a, with ¢ in F[x], is clearly invariant under T, and
1s thus the smallest T-invariant subspace which contains c.

Definition. If o 1s any vector in V, the T-cyclic subspace generated
by « is the subspace Z(a; T) of all vectors of the form g(T)a, g in IF[x].
I1fZ(a;' T) =V, then a 1s called a cyclic vector for T.

Another way of describing the subspace Z(«a; T) is that Z(e; T) is
the subspace spanned by the vectors T%a, k > 0, and thus « is a cyclic
vector for T if and only if these vectors span V. We caution the reader
that the general operator T has no cyclic vectors.

ExampLE 1. For any T, the T-cyclic subspace generated by the zero
vector is the zero subspace. The space Z(«; T) is one-dimensional if and
only if « is a characteristic vector for T. For the identity operator, every
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non-zero vector generates a one-dimensional cyclic subspace; thus, if
dim V > 1, the identity operator has no cyclic vector. An example of an
operator which has a cyclic vector is the linear operator T on F? which is
represented in the standard ordered basis by the matrix

[O O:|.

1 0

Here the cyclic vector (a cyclic vector) is e; for, if 8 = (a, b), then with
g = a+ bx we have 8 = g(T)a. For this same operator T, the cyclic
subspace generated by e is the one-dimensional space spanned by e,

because e is a characteristic vector of 7.
For any T and «, we shall be interested in linear relations

cx +caTa+ - +¢T*a =0

between the vectors T7a, that is, we shall be interested in the polynomials
g = ¢+ ax + --- + c2* which have the property that ¢(T)a = 0. The
set of all g in F[z] such that g(T)a = 0 is clearly an ideal in F[z]. It is also
a non-zero ideal, because it contains the minimal polynomial p of the
operator T (p(T)a = 0 for every a in V).

Definition. If o s any vector in V, the T-annihilator of « s the ideal
M(e; T) in F[x] consisting of all polynomials g over ¥ such that g(T)a = 0.
The unique monic polynomial p, which generates this ideal will also be
called the T-annihilator of «.

As we pointed out above, the T-annihilator p, divides the minimal
polynomial of the operator T. The reader should also note that deg (p.) > 0
unless a is the zero vector.

Theorem 1. Let o be any mon-zero vector in V and let p, be the
T-annzhilator of a.

(1) The degree of P« ts equal to the dimension of the cyclic subspace
Z(a; T).

(i) If the degree of pa is k, then the vectors a, Ta, T2, ..., T- la
form a basis for Z(a; T).

(ii1) If U s the lunear operator on Z(e; T) induced by T, then the minimal
polynomial for U s pa.

Proof. Let g be any polynomial over the field F. Write
g =Daq+ 7
where either 7 = 0 or deg (r) < deg (p.) = k. The polynomial p.g is in
the T-annihilator of @, and so
g(Ta = r(T)e

Since r = 0 or deg (r) < k, the vector r(T)a is a linear combination of
the vectors «, Te, ..., T*'a, and since g(T)a is a typical vector in
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Z(a; T), this shows that these k vectors span Z(a; T). These vectors are
certainly linearly independent, because any non-trivial linear relation
between them would give us a non-zero polynomial g such that g(T)a = 0
and deg (9) < deg (p.), which is absurd. This proves (i) and (ii).

Let U be the linear operator on Z(a; T) obtained by restricting T' to
that subspace. If g is any polynomial over F, then

Pa(U)g(T)a = pa(T)g(T)ex
9(T)pa(T)a

= ¢(T)0

= 0.
Thus the operator p,(U) sends every vector in Z(a; T) into 0 and is the
zero operator on Z(a; T'). Furthermore, if h is a polynomial of degree
less than k, we cannot have h(U) = 0, for then h(U)a = h(T)a = 0,
contradicting the definition. of p, This shows that p, is the minimal
polynomial for U. |

A particular consequence of this theorem is the following: If « happens
to be a cyclic vector for 7', then the minimal polynomial for 7 must have
degree equal to the dimension of the space V; hence, the Cayley-Hamilton
theorem tells us that the minimal polynomial for T' is the characteristic
polynomial for 7. We shall prove later that for any T there is a vector « in
V which has the minimal polynomial of T for its annihilator. It will then
follow that T has a cyclic vector if and only if the minimal and charac-
teristic polynomials for T' are identical. But it will take a little work for us
to see this.

Our plan is to study the general T' by using operators which have a
cyclic vector. So, let us take a look at a linear operator U on a space W
of dimension k£ which has a cyclic vector . By Theorem 1, the vectors

a, ..., Ula form a basis for the space W, and the annihilator p, of «
is the minimal polynomial for U (and hence also the characteristic poly-
nomial for U). If we let @; = Ui'a, ¢ = 1,.. ., k, then the action of U
on the ordered basis ® = {ay, . .., ax} is
(7_1) U;a,-=ai+1, 'l'=1,...,k—1

l/ak = —Cy — Cloz — "+ — Ck-10k
where p, =c+ ez + -+ + cex*! + 2*. The expression for Ua

follows from the fact that p,(U)a = 0, i.e.,
Uka + Ck—1 U1y + e + Can + Coax = 0.
This says that the matrix of U in the ordered basis ® is

000 --- 0 —¢
100 -+ 0 —c

(7-2) 016 .-+ 0 —c

000 - 1 —an
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The matrix (7-2) is called the companion matrix of the monic poly-
nomial p,.

Theorem 2. If U is a linear operator on the finite-dimensional space
W, then U has a cyclic vector if and only if there is some ordered basts for W
in which U s represented by the companion matriz of the minimal polynomial

for U.

Proof. We have just observed that if U has a cyclic vector, then
there is such an ordered basis for W. Conversely, if we have some ordered
basis {ai,...,a} for W in which U is reprcsented by the companion

matrix of its minimal polynomial, it is obvious that «; is a cyclic vector
for U. |

Corollary. If A s the companion matrix of a monic polynomzal p,
then p is both the minimal and the characteristic polynomzal of A.

Proof. One way to see this is to let U be the linear operator on
F* which is represented by 4 in the standard ordered basis, and to apply
Theorem 1 together with the Cayley-Hamilton theorem. Another method
is to use Theorem 1 to see that p is the minimal polynomial for 4 and to
verify by a direct calculation that p is the characteristic polynomial for
4. 1

One last commentif T is any linear operator on the space V and
a is any vector in V, then the operator U which T induces on the cyclic
subspace Z(a; T) has a cyclic vector, namely, a. Thus Z(a; T) has an
ordered basis in which U is represented by the companion matrix of p,,
the T-annihilator of a.

Exercises

1. Let T be a linear operator on F2 Prove that any non-zero vector which is not
a characteristic vector for T is a cyclic vector for 7. Hence, prove that either T
has a cyclic vector or T is a scalar multiple of the identity operator.

2, Let T be the linear operator on R* which is represented in the standard ordered

basis by the matrix
20 0
[0 ? o].
0 0 -1

Prove that T hasno cyclic vector. What is the T-cyclic subspace generated by the
vector (1, —1, 3)?

3. Let T be the linear operator on C'3 which is represented in the standard ordered

basis by the matrix
1 2 0
[_1 ’ _]
01 1
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Find the T-annihilator of the vector (1,0, 0). Find the T-annihilator of (1, 0, 7).

4. Prove that if T has a cyclic vector, then 7" has a cyclic vector. Is the converse
true?

5. Let V be an n-dimensional vector space over the field ', and let N be a nilpotent
linear operator on V. Suppose N*~! = 0, and let a be any vector in V such that
N =1q # 0. Prove that « is a cyclic vector for N. What exactly is the matrix of N
in the ordered basis {a, Na, ..., N*7la}?

6. Give a direct proof that if A is the companion matrix of the monic polynomial
P, then p is the characteristic polynomial for A.

7. Let V be an n-dimensional vector space, and let T be a linear operator on V.
Suppose that T is diagonalizable.

(a) If T has a eyclic vector, show that T has n distinet characteristic values.

(b) If T has n distinct characteristic values, and if {ay, ..., @} is a basis of

characteristic vectors for T, show that @ = ay + - -- + a, is a cyclic vector for T'.

8. Let T be a linear operator on the finite-dimensional vector space V. Suppose T
has a cyclic vector. Prove that if U is any linear operator which commutes with T,
then U is a polynomial in T

7.2. Cyclic Decompositions and
the Rational Form

The primary purpose of this section is to prove that if T' is any linear
operator on a finite-dimensional space V, then there exist vectorsay, . . ., a,
in V such that

V=2a;TP - PZa; T).

In other words, we wish to prove that V is a direct sum of T-cyclic sub-
spaces. This will show that T is the direct sum of a finite number of linear
operators, each of which has a cyclic vector. The effect of this will be to
reduce many questions about the general linear operator to similar ques-
tions about an operator which has a cyclic vector. The theorem which we
prove (Theorem 3) is one of the deepest results in linear algebra and has
many interesting corollaries.

The cyclic decomposition theorem is closely related to the following
question. Which T-invariant subspaces W have the property that there
exists a T-invariant subspace W’ such that V.= W@ W”? If W is any
subspace of a finite-dimensional space V, then there exists a subspace W’
such that V.= W @ W'. Usually there are many such subspaces W’ and
each of these is called complementary to W. We are asking when a T-
invariant subspace has a complementary subspace which is also invariant
under T.

Let us suppose that V.= W @ W’ where both W and W' are invariant
under T and then see what we can discover about the subspace W. Each
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vector 8 in V is of the form 8 = v + v’ where v is in W and v’ is in W',
If f is any polynomial over the scalar field, then

f(MB = f(T)y + f(T)y".
Since W and W’ are invariant under T, the vector f(T)y is in W and f(T)y’
is in W’. Therefore f(T)B is in W if and only if f(T)y’ = 0. What interests
us is the seemingly innocent fact that, if f(7)8 is in W, then f(T)8 = f(T)~.

Definition. Let T be a linear operator on a vector space V and let W
be a subspace of V. We say that W 1s T-admissible if

(i) W 1is tnvariant under T;
(i1) f f(T)B 2s tn W, there exists a vector v in W such that f(T)8 = f(T)y.

As we just showed, if W is invariant and has a complementary in-
variant subspace, then W is admissible. One of the consequences of Theo-
rem 3 will be the converse, so that admissibility characterizes those
invariant subspaces which have complementary invariant subspaces.

Let us indicate how the admissibility property is involved in the
attempt to obtain a decomposition

V=2;T)®D  DZ(ar T).

Our basic method for arriving at such a decomposition will be to inductively
select the vectors aj, . . ., @, Suppose that by some process or another we
have selected ay, . . ., @; and the subspace

W= Z(e; T) + - + Z(as; T)
is proper. We would like to find a non-zero vector ;1 such that
WiN Z(aj1; T) = {0}

because the subspace Wiy = W,; @D Z(ajz1; T) would then come at least
one dimension nearer to exhausting V. But, why should any such aj+
exist? If oy, . . ., @; have been chosen so that W; is a T-admissible subspace,
then it is rather easy to see that we can find a suitable a;;1. This is what
will make our proof of Theorem 3 work, even if that is not how we phrase
the argument.

Let W be a proper T-invariant subspace. Let us try to find a non-zero
vector « such that

(7-3) WNZa;T) = {0}

We can choose some vector 8 which is not in W. Consider the T-conductor
S(8; W), which consists of all polynomials g such that g(7")8 is in W. Recall
that the monic polynomial f = s(8; W) which generates the ideal S(3; W)
is also called the T'-conductor of 8 into W. The vector f(T)8 is in W. Now, if
W is T-admissible, there is a v in W with f(T)8 = f(T)y. Let a = 8 — v
and let g be any polynomial. Since 8 — ais in W, g(T)8 will be in W if and



Sec. 7.2 Cyclic Decomposttions and the Rational Form

only if ¢(T)a is in W; in other words, S(a; W) = S(8; W). Thus the
polynomial f is also the T-conductor of « into W. But f(T)a = 0. That
tells us that ¢(T)a is in W if and only if ¢g(T)a = 0, i.e., the subspaces
Z(a; T) and W are independent (7-3) and f is the T-annihilator of a.

Theorem 3 (Cyclic Decomposition Theorem). Let T be a linear
operator on a finite-dimensional vector space V and let Wy be a proper T-

admassible subspace of V. There exist non-zero vectors ay, . . ., a, tn 'V with
respective T-annihilators py, . . . , pr Such that

HV=WiDZe;T)D - D%(ar; T);

(i) px devides px-1, k = 2,...,r.
Furthermore, the integer r and the annshilators py, ..., pr are uniquely

determined by (i), (ii), and the fact that no ax is 0.

Proof. The proof is rather long; hence, we shall divide it into four
steps. For the first reading it may seem easier to take W, = {0}, although
it does not produce any substantial simplification. Throughout the proof,
we shall abbreviate f(T)g to f8.

Step 1. There exist non-zero vectors By, . . ., B: tn V such that
(@) V.=Wo+ ZB;T) + -+ + Z(B; T);
Md) if1 <k <rand
Wi =Wo+ Z@B;T) + -+ + Z(Bx; T)
then the conductor px = s(8x; Wk_1) has maximum degree among all T-
conductors into the subspace Wx_y, 1.e., for every k

deg px = maz deg s(a; Wi_y).
o 1n
This step depends only upon the fact that Wy is an invariant subspace.
If W is a proper T-invariant subspace, then

0 < max deg s(a; W) < dim V

and we can choose a vector 8 so that deg s(8; W) attains that maximum.
The subspace W + Z(8; T) is then T-invariant and has dimension larger
than dim W. Apply this process to W = W, to obtain 8. If Wy = Wy +
Z(By; T) is still proper, then apply the process to Wy to obtain 8;. Continue
in that manner. Since dim W, > dim Wi_;, we must reach W, = V in not
more than dim V steps.

Step 2. Let By, . . ., B be non-zero vectors which satisfy conditions
(a) and (b) of Step 1. Fix k, 1 < k < r. Let 8 be any vector in V and let
f =s(B; Wka). If

fB=8+ 2 aBy BimW;
1<i<k

then f divides each polynomial g; and By = fv,, where vq is in W,
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If £ = 1, this is just the statement that Wy is T-admissible. In order
to prove the assertion for k > 1, apply the division algorithm:
(7-4) gi = fhi + 14 r; =0 or degr; < degf.
We wish to show that r; = 0 for each 7. Let

k—1
(7-5) Yy=8- 21: hiBs.
Since v — B is in Wy,
s(v; Wimr) = 8(8; Wier) = f.

TFFurthermore
k-1
(7-6) fy = Bo+ ? 70

Suppose that some r, is different from 0. We shall deduce a contradiction.
Let 7 be the largest index z for which r; 3 0. Then

7-7) fy =80+ ]? rB;, r;#0 and degr; < degf.

Letp = s(y; W;-.1). Since W,_; contains W;_,, the conductorf = s(v; Wi—1)
must divide p:
p =Jy.

Apply g(T) to both sides of (7-7):
(7-8) Py = gfy = grifi + 9B+ = gribs
1<i<y

By definition, py isin W,_;, and the last two terms on the right side of (7-8)
are in W;_,. Therefore, gr;8; is in W;_;. Now we use condition (b) of Step 1:

deg (gr;) > deg s(B;; W;i-1)
= deg p;
> deg s(v; Wi_1)
= degp
= deg (fg).

Thus deg r; > deg f, and that contradicts the choice of ;. We now know
that f divides each ¢g; and hence that 3¢ = fy. Since W, is T-admissible,
Bo = fyo where v is in W,. We remark in passing that Step 2 is a strength-
ened form of the assertion that each of the subspaces Wi, Wy, ..., W, is
T-admissible.

Step 8. There exist non-zero vectors ai, ..., ar in V which
satisfy conditions (1) and (i) of Theorem 3.
Start with vectors 8, . . ., 8,asin Step 1. Fix k, 1 < k < r. We apply

Step 2 to the vector 8 = B« and the T-conductor f = p.. We obtain
(7-9) DB = Pivo + 2 prhibi
1<i <k
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where v is in Wy and Ay, . . ., hx_1 are polynomials. Let
(7-10) ar = P — Yo — l£§ . hiB:.
Since Bc — ax is in Wiy,

(7-11) s(aw; W) = 8(6e; Wir) = D
and since prax = 0, we have

(7-12) Wit N Z{aw; T) = {0}.

Because each ay satisfies (7-11) and (7-12), it follows that

We=We®DZ(a;T)D - -+ D Z(au; T)

and that p is the T-annihilator of ax. In other words, the vectors oy, . . ., a-
define the same sequence of subspaces Wi, Wy, ... as do the vectors
By, ..., 8- and the T-conductors pi = s(ax, Wi_1) have the same max-
imality properties (condition (b) of Step 1). The vectors ay, . . ., o, have
the additional property that the subspaces Wy, Z(a;; T'), Z(a2; T), . . . are
independent. It is therefore easy to verify condition (ii) in Theorem 3.
Since p;a; = 0 for each 4, we have the trivial relation

Drax = 0+ y4Tes] + -+ Prk—10k—1-

Apply Step 2 with By, ..., 8 replaced by a, ..., ax and with 8 = a.
Conclusion: p, divides each p; with ¢ < k.

Step 4. The number r and the polynomials py, . . . , pr are uniquely
determined by the conditions of Theorem 8.

Suppose that in addition to the vectors ay, . . ., @, in Theorem 3 we
have non-zero vectors vy, . . ., ¥ with respective T-annihilators g1, . - ., gs
such that
(7_13) V= W0®Z(71;T)® @Z('YS;T)

g divides g1, k=2...,s

We shall show that r = s and p; = ¢; for each 1.

It is very easy to see that p; = g,. The polynomial ¢, is determined
from (7-13) as the T-conductor of V into W,. Let S(V; W,) be the collection
of polynomials f such that f8 is in W, for every 8 in V, i.e., polynomials f
such that the range of f(T') is contained in Wy. Then S(V; W) is a non-zero
ideal in the polynomial algebra. The polynomial ¢, is the monic generator
of that ideal, for this reason. Each 3 in V has the form

B=60+f1'71+ v +fs’¥x

and so
g = gifo + 213 gif va

Since each ¢; divides ¢,, we have gry; = 0 for all 7 and ¢;8 = ¢:8 is in W,.
Thus ¢ is in S(V; W,). Since ¢, is the monic polynomial of least degree
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which sends v, into Wy, we see that g; is the monic polynomial of least degree
in the ideal S(V; W,). By the same argument, p; is the generator of that
ideal, so p; = #.

If f is a polynomial and W is a subspace of V, we shall employ the
shorthand fW for the set of all vectors fa with o in W. We have left to the
exercises the proofs of the following three facts.

1. fZ(a;T) = Z(fa; T).

2 V=Vi® - - @D Vi, where each V; is invariant under 7, then
fV=m® - ®fv

3. If a and v have the same T-annihilator, then fa and fy have the
same T-annihilator and (therefore)

dim Z(fa; T) = dim Z(fy; T').
Now, we proceed by induction to show that » = s and p; = ¢, for
1 =2,...,r. The argument consists of counting dimensions in the right
way. We shall give the proof that if » > 2 then p: = g¢o, and from that the
induction should be clear. Suppose that » > 2. Then

dim Wy + dim Z(e;; T) < dim V.
Since we know that p; = g1, we know that Z(a;; T') and Z(y:; T) have the
same dimension. Therefore,

dim Wy + dim Z(y1; T) < dim V

which shows that s > 2. Now it makes sense to ask whether or not p; = g2
From the two decompositions of V, we obtain two decompositions of the
subspace p.V:

PV = pWo @D Z(poes; T)

PV = :Wo @D Z(per; T) D - - @D Z(pays; T).

We have made use of facts (1) and (2) above and we have used the fact
that psa; = 0, ¢ > 2. Since we know that p, = g1, fact (3) above tells us
that Z(pea1; T) and Z(pey:; T') have the same dimension. Hence, it is
apparent from (7-14) that

dim Z(pey:; T) = 0, T2 2

We conclude that p2y: = 0 and g divides pe. The argument can be reversed
to show that p, divides go. Therefore p; = g2. |

(7-14)

Corollary. If T is a linear operator on a finite-dimensional vector
space, then every T-admissible subspace has a complementary subspace which
18 also tnvariant under T.

Proof. Let W, be an admissible subspace of V. If W, = V, the
complement we seek is {0}. If Wy is proper, apply Theorem 3 and let

We=Za;T)P -+ D Z(ar; T).
Then W} is invariant under 7 and V = Wo @ Ws. |
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Corollary. Let T be a linear operator on a finite-dimensional vector
space V.

(a) There exists a vector o tn V such that the T-annihilator of « is the
mintmal polynomial for T.

(b) T has a cyclic vector if and only if the characteristic and minimal
polynomzals for T are identical.

Proof. If V = {0}, the results are trivially true. If V = {0}, let
(7-15) V=2a;T)D - DZ(ar T)

where the T-annihilators py, . . ., p, aresuch that pyi divides pi, 1 < k <
r — 1. As we noted in the proof of Theorem 3, it follows easily that p; is the
minimal polynomial for T, i.e., the T-conductor of V into {0}. We have
proved (a).

We saw in Section 7.1 that, if T has a cyclic vector, the minimal
polynomial for T coincides with the characteristic polynomial. The content,
of (b) isin the converse. Choose any « as in (a). If the degree of the minimal
polynomial is dim V, then V = Z(«; T). |

Theorem 4 (Generalized Cayley-Hamilton Theorem). Let T be
a linear operator on a finite-dimensional vector space V. Let p and f be the
minimal and characteristic polynomials for T, respectively.

(1) p divides f.
(i1) p and f have the same prime factors, except for multiplicities.
(iii) If
(7-16) p =i g
18 the prime factorization of p, then
(7-17) f=fy...f
where d; ts the nullity of £;('T)r divided by the degree of f;.

Proof. We disregard the trivial case V = {0}. To prove (i) and
(ii), consider a cyclic decomposition (7-15) of V obtained from Theorem 3.
As we noted in the proof of the second corollary, p; = p. Let U; be the
restriction of T' to Z(a;; T). Then U, has a cyclic vector and so p; is both
the minimal polynomial and the characteristic polynomial for U;. There-
fore, the characteristic polynomial f is the produect f = p, - - - p,. That is
evident from the block form (6-14) which the matrix of T assumes in a
suitable basis. Clearly p; = p divides f, and this proves (i). Obviously any
prime divisor of p is a prime divisor of f. Conversely, a prime divisor of
f = p:i - p, must divide one of the factors p; which in turn divides p;.
Let (7-16) be the prime factorization of p. We employ the primary
decomposition theorem (Theorem 12 of Chapter 6). It tells us that, if V;
is the null space of f;(T), then
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(7-18) V=Vi® - PVs

and f7' is the minimal polynomial of the operator T';, obtained by restricting
T to the (invariant) subspace V. Apply part (ii) of the present theorem to
the operator T'.. Since its minimal polynomial is a power of the prime f;,
the characteristic polynomial for T; has the form f¥, where d; > r.. Obvi-
ously

~_dim V;
' degfi
and (almost by definition) dim V; = nullity f«T)". Since T is the direct
sum of the operators T4, ..., Tk the characteristic polynomial f is the
product
feftee gt

Corollary. If T s a nilpotent linear operator on a vector space of
dimension n, then the characteristic polynomzal for T 1s x™.

Now let us look at the matrix analogue of the cyclic decomposition
theorem. If we have the operator T and the direct-sum decomposition of
Theorem 3, let ®; be the ‘cyclic ordered basis’

{ai, Tai, ey Tk"_lai}

for Z(as; T). Here k; denotes the dimension of Z(a;; T'), that is, the degree
of the annihilator p;. The matrix of the induced operator T’ in the ordered
basis ®&; is the companion matrix of the polynomial p;. Thus, if we let ® be
the ordered basis for ¥V which is the union of the ®; arranged in the order

®y, . . ., ®;, then the matrix of T in the ordered basis & will be
A, O e 0

(7-19) a=|% A0
0 0 - 4,

where A; is the k; X k; companion matrix of p;. An n X n matrix 4,
which is the direct sum (7-19) of companion matrices of non-scalar monic
polynomials py, . .., p, such that p;y; divides p; for ¢ = 1,...,r — 1,
will be said to be in rational form. The cyclic decomposition theorem
tells us the following concerning matrices.

Theorem 5. Let F be a field and let B be an n X n matriz over F.
Then B is stmilar over the field F to one and only one matriz which is in
rational form.

Proof. Let T be the linear operator on F» which is represented by
B in the standard ordered basis. As we have just observed, there is some
ordered basis for F» in which T is represented by a matrix A in rational
form. Then B is similar to this matrix A. Suppose B is similar over F to



Sec. 7.2 Cyclic Decomposttions and the Rational Form

another matrix C which is in rational form. This means simply that there
is some ordered basis for F* in which the operator T is represented by the
matrix C. If C is the direct sum of companion matrices C; of monic poly-

nomials gy, . . ., g; such that ¢;4; divides g; forz = 1, ..., s — 1, then it
is apparent that we shall have non-zero vectors 8y, ...,8; in V with T'-
annihilators gy, . . ., g, such that

V=2@;T)® - DZ#;T).

But then by the uniqueness statement in the cyclic decomposition theorem,
the polynomials ¢; are identical with the polynomials p; which define the
matrix A. Thus C = 4. |

The polynomials py, ..., p, are called the invariant factors for
the matrix B. In Section 7.4, we shall describe an algorithm for calculating
the invariant factors of a given matrix B. The fact that it is possible to
compute these polynomials by means of a finite number of rational opera-
tions on the entries of B is what gives the rational form its name.

ExampLE 2. Suppose that V is a two-dimensional vector space over
the field F and T is a linear operator on V. The possibilities for the cyclic
subspace decomposition for T are very limited. For, if the minimal poly-
nomial for T has degree 2, it is equal to the characteristic polynomial for
T and T has a cyclic vector. Thus there is some ordered basis for V in
which T is represented by the companion matrix of its characteristic
polynomial. If, on the other hand, the minimal polynomial for T has degree
1, then T is a scalar multiple of the identity operator. If T' = cI, then for
any two linear independent vectors a; and az in V we have

V =2Z(a;T) D Z(az; T)
P = P2 =2x — cC.

For matrices, this analysis says that every 2 X 2 matrix over the field F
is similar over F to exactly one matrix of the types

[ [ =2l
0 ¢ 1 —a

ExampLe 3. Let T be the linear operator on E? which is represented
by the matrix

5 —6 —6
A=|-1 4 2
3 —6 —4

in the standard ordered basis. We have computed earlier that the char-
acteristic polynomial for T is f = (x — 1)(x — 2)? and the minimal
polynomial for T'is p = (x — 1)(x — 2). Thus we know that in the cyclic
decomposition for T the first vector ; will have p as its T-annihilator.
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Since we are operating in a three-dimensional space, there can be only one
further vector, as. It must generate a cyclic subspace of dimension 1, i.e.,
it must be a characteristic vector for 7. Its T-annihilator p; must be
(z — 2), because we must have pp. = f. Notice that this tells us im-
mediately that the matrix A is similar to the matrix

0 -2 0
B=]1 3 0
0 0 2

that is, that T is represented by B in some ordered basis. How can we find
suitable vectors a; and «,? Well, we know that any vector which generates
a T-cyclic subspace of dimension 2 is a suitable &;. So let’s just try e. We
have

Te = (5, —1,3)

which is not a scalar multiple of ¢; hence Z(e; T') has dimension 2. This
space consists of all vectors ae; + b(Te):

a(1,0,0) + b5, —1,3) = (a + 5b, —b, 3b)

or, all vectors (xy, xy, x3) satisfying x3 = —3z,, Now what we want is
a vector ap such that Ta; = 22 and Z(ay; T) is disjoint from Z(e; T').
Since a2 is to be a characteristic vector for T, the space Z («y; T') will simply
be the one-dimensional space spanned by «, and so what we require is that
a; not be in Z(e; T). If a = (x1, x5 3), one can easily compute that
Ta = 2« if and only if 21 = 22, + 2x;. Thus a2 = (2, 1, 0) satisfies Tae =
202 and generates a T-cyclic subspace disjoint from Z(e;; T'). The reader
should verify directly that the matrix of T in the ordered basis

{(1; 0; 0)7 (5; —17 3)) (2; ]-; 0)}

is the matrix B above.

ExampLE 4. Suppose that T is a diagonalizable linear operator on V.
It is interesting to relate a cyclic decomposition for 7' to a basis which
diagonalizes the matrix of T. Let ¢y, . . ., cx be the distinct characteristic
values of T and let V; be the space of characteristic vectors associated with
the characteristic value ¢;. Then

V=Vi® - D"
and if d; = dim V; then
f = (x —_ cl)dx e (I — Ck)d"
is the characteristic polynomial for T. If « is a vector in V, it is easy to
relate the cyclic subspace Z(a; T) to the subspaces Vi, . . ., Vi. There are
unique vectors By, . . ., B such that 3; is in V; and

a=p+  +h
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Since TB: = c¢iB:, we have

(7-20) f(T)a = fle)Br + + -+ + flci)Be

for every polynomial f. Given any scalars ¢, . . ., & there exists a poly-
nomial f such that f(c) = t;, 1 <7 < k. Therefore, Z(a; T) is just the
subspace spanned by the vectors 8y, . . ., 8. What is the annihilator of «?
According to (7-20), we have f(T)a = 0if and only if f(c;)B: = 0 for each <.
In other words, f(T)a = 0 provided f(¢;) = O for each 7 such that 8; = 0.
Accordingly, the annihilator of « is the product

(7-21) I (x —c).
B0
Now, let ®; = {8}, ..., B} be an ordered basis for V;. Let
T = max di.
We define vectors au, . . . , ar by
(7-22) o= 3 B 1<j<r.
di>j

The cyclic subspace Z(a;; T) is the subspace spanned by the vectors 8, as
1 runs over those indices for which d; > 7. The T-annihilator of «; is
(7-23) p; =T @ = c).
di>j
We have
V=2Zo;T)D - DZ(ar; T)

because each 8} belongs to one and only one of the subspaces Z(a1; T), . . .,
Z(a;; T)and @ = (®y, . . ., Bi) is a basis for V. By (7-23), p;41 divides p;.

Exercises

1. Let T be the linear operator on 2 which is represented in the standard ordered
basis by the matrix
00
[1 0]‘

Let o = (0, 1). Show that F? 5 Z(a,; T') and that there is no non-zero vector as
in F? with Z(ag; T') disjoint from Z(ay; T).
2. Let T be a linear operator on the finite-dimensional space V, and let B be

the range of 7.

(a) Prove that R has a complementary T-invariant subspace if and only if B
is independent of the null space N of T.

(b) If R and N are independent, prove that N is the unique T-invariant sub-
space complementary to R.

3. Let T be the linear operator on R® which is represented in the standard ordered

basis by the matrix
2 00
|:1 2 0:|-
0 0 3
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Let W be the null space of T — 21. Prove that W has no complementary T-invariant
subspace. (Hint: Let 8 = € and observe that (T — 2I)# is in W. Prove there is
no o in W with (T — 2I)8 = (T — 21)a.)

4, Let T be the linear operator on F* which is represented in the standard ordered
basis by the matrix

¢c 000
1 ¢ 0 o0l
01 ¢ O
0 0 1 ¢

Let W be the null space of T — cl.
(a) Prove that W is the subspace spanned by e,
(b) Find the monic generators of the ideals S(es; W), S(es; W), S(es; W),
S(e; W).
5. Let T be a linear operator on the vector space V over the field I. If f is a poly-

nomial over F and a is in V, let fa = f(T)a. If V,, ..., Vi are T-invariant sub-
spaces and V = V, @ --- @ Vi, show that

fV=Vi® - ®fVa
6. Let T, V, and F be as in Exercise 5. Suppose « and 3 are vectors in V which

have the same T-annihilator. Prove that, for any polynomial f, the vectors fa
and f@ have the same T-annihilator.

7. Find the minimal polynomials and the rational forms of each of the following
real matrices.

0 -1 —1 c 0 —1 6 g
1 0o o} 0c¢c 1) [ "930 sme].
_1 0 O __1 1 ¢ —Sin COS

8. Let T be the linear operator on K? which is represented in the standard ordered

basis by
3 —4 -4
-1 3 2 |
2 —4 =3
Find non-zero vectors aj, . . ., a, satisfying the conditions of Theorem 3.

9. Let A be the real matrix

1 3 3
A= 3 1 3:|-
-3 -3 -4

Find an invertible 3 X 3 real matrix P such that P~*AP is in rational form.

10. Let F be a subfield of the complex numbers and let T be the linear operator
on F* which is represented in the standard ordered basis by the matrix

2 000

OO ==
(3]
N OO

0
2
b

o
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Find the characteristic polynomial for T'. Consider the casesa = b = 1;a = b = 0;
« = 0,b = 1. In each of these cases, find the minimal polynomial for T' and non-
zero vectors ay, . . ., a, which satisfy the conditions of Theorem 3.

11. Prove that if A and B are 3 X 3 matrices over the field F, a necessary and
sufficient condition that A and B be similar over F is that they have the same
characteristic polynomial and the same minimal polynomial. Give an example
which shows that this is false for 4 X 4 matrices.

12. Let F be a subfield of the field of complex numbers, and let A and Bben X n
matrices over F. Prove that if A and B are similar over the field of complex num-
bers, then they are similar over F. (Hint: Prove that the rational form of A is the
same whether A is viewed as a matrix over F or a matrix over C; likewise for B.)

13. Let A be an n X n matrix with complex entries. Prove that if every character-
istic value of A is real, then A is similar to a matrix with real entries.

14. Let T be a linear operator on the finite-dimensional space V. Prove that there
exists a vector @ in V with this property. If f is a polynomial and f(T)a = 0,
then f(T) = 0, (Such a vector « is called a separating vector for the algebra of
polynomials in 7.) When T has a cyclic vector, give a direct proof that any cyeclic
vector is a separating vector for the algebra of polynomials in T

15. Let F be a subfield of the field of complex numbers, and let A be an n X n
matrix over F. Let p be the minimal polynomial for A. If we regard A as a matrix
over C, then A has a minimal polynomial f as an n X n matrix over C. Use a
theorem on linear equations to prove » = f. Can you also see how this follows from
the cyclic decomposition theorem?

16. Let A be an n X n matrix with real entries such that A2 4+ I = 0. Prove that
n is even, and if n = 2k, then A is similar over the field of real numbers to a matrix

Of the block fOI'm
I 0

where I is the & X k identity matrix.

17. Let T be a linear operator on a finite-dimensional vector space V. Suppose that
(a) the minimal polynomial for T is a power of an irreducible polynomial;
(b) the minimal polynomial is equal to the characteristic polynomial.
Show that no non-trivial T-invariant subspace has a complementary T-invari-
ant subspace.

18. If T is a diagonalizable linear operator, then every T-invariant subspace has
a complementary T-invariant subspace.

19. Let T be a linear operator on the finite-dimensional space V. Prove that T
has a cyclic vector if and only if the following is true: Every linear operator U
which commutes with T' is a polynomial in 7'

20. Let V be a finite-dimensional vector space over the field F, and let T be a
linear operator on V. We ask when it is true that every non-zero vector in V is a
cyclic vector for 7. Prove that this is the case if and only if the characteristic
polynomial for T is irreducible over F.
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21. Let A be an n X n matrix with real entries. Let T be the linear operator on R»
which is represented by A in the standard ordered basis, and let U be the linear
operator on C* which is represented by A in the standard ordered basis. Use the
result of Exercise 20 to prove the following: If the only subspaces invariant under
T are R» and the zero subspace, then U is diagonalizable.

7.3. The Jordan Form

Suppose that N is a nilpotent linear operator on the finite-dimen-
sional space V. Let us look at the cyclic decomposition for N which we
obtain from Theorem 3. We have a positive integer r and r non-zero vectors

ay . .., a in V with N-annihilators py, . . ., p,, such that
V=2a;N) D - ®Z(a;N)
and p;4; divides p; for7 = 1,...,r — L Since N isnilpotent, the minimal

polynomial is z* for some k& < n. Thus each p; is of the form p; = x*
and the divisibility condition simply says that

ky 2 ke 2 -0 2 ke

Of course, k; = k and k, > 1. The companion matrix of z* is the k: X k;
matrix

00 00
10 00
(7-24) =01 00
00 -~ 10

Thus Theorem 3 gives us an ordered basis for V in which the matrix of N
is the direct sum of the elementary nilpotent matrices (7-24), the sizes of
which decrease as 7 increases. One sees from this that associated with a
nilpotent n X n matrix is a positive integer r and = positive integers
ky, ..., k.such that &y + -+ 4+ k, = n and k; > kiy1, and these positive
integers determine the rational form of the matrix, i.e., determine the
matrix up to similarity.

Here is one thing we should like to point out about the nilpotent
operator N above. The positive integer r is precisely the nullity of N;
in fact, the null space has as a basis the r vectors

(7-25) Nki—lg,,
For, let @ be in the null space of N. We write « in the form
a =f1a1 + - +frar

where f; is a polynomial, the degree of which we may assume is less than
k.. Since Na = 0, for each 7 we have
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0 = N(flal)
= Nfi(N)a;
= (xfi)cx,'.
Thus zf; is divisible by z*, and since deg (f;) > k:; this means that
Ji = carki?
where ¢; is some scalar. But then
= ¢k~ ten) + -+ + ¢ (zb )

which shows us that the vectors (7-25) form a basis for the null space of N.
The reader should note that this fact is also quite clear from the matrix
point of view.

Now what we wish to do is to combine our findings about nilpotent
operators or matrices with the primary decomposition theorem of Chapter
6. The situation is this: Suppose that T is a linear operator on V and that,
the characteristic polynomial for T factors over F as follows:

f=@—c) - (@—ca)h

where ¢, . . ., ¢ are distinet elements of F and d; 2> 1. Then the minimal
polynomial for T will be

P = (1; - Cl)“ . (x — Ck)”‘

where 1 < r; < d;. If W;is the null space of (T" — ¢, I), then the primary

decomposition theorem tells us that
V =W, @ e @ W,

and that the operator T'; induced on W; by T has minimal polynomial
(x — ¢;)". Let N, be the linear operator on W; defined by N; = T; — c.l.
Then N, is nilpotent and has minimal polynomial zr. On W, T acts like
N; plus the scalar ¢; times the identity operator. Suppose we choose a
basis for the subspace W; corresponding to the cyclic decomposition for
the nilpotent operator N,;. Then the matrix of 7'; in this ordered basis will
be the direct sum of matrices

¢c 0 -+« 00

1 ¢ -+« 0 0

(7-26) P P
¢

00 --- 1 ¢

each with ¢ = ¢;. Furthermore, the sizes of these matrices will decrease
as one reads from left to right. A matrix of the form (7-26) is called an
elementary Jordan matrix with characteristic value ¢. Now if we put
all the bases for the W, together, we obtain an ordered basis for V. Let
us describe the matrix A of T in this ordered basis.
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The matrix A is the direct sum

4, 0 -+ 0

(7-27) a=]% 4 -0
0 0 - 4,

of matrices A4;, . .., Ax. Each A4; is of the form
Ji? 0 -+e 0

4,=|0 0
0 0 e JO

where each J” is an elementary Jordan matrix with characteristic value
c¢;. Also, within each A, the sizes of the matrices J* decrease as 7 in-
creases. An n X n matrix A which satisfies all the conditions described
so far in this paragraph (for some distinct scalars ci, . . ., ¢x) will be said
to be in Jordan form.

We have just pointed out that if T is a linear operator for which the
characteristic polynomial factors completely over the scalar field, then
there is an ordered basis for V in which T is represented by a matrix which
is in Jordan form. We should like to show now that this matrix is some-
thing uniquely associated with 7', up to the order in which the charac-
teristic values of T are written down. In other words, if two matrices are
in Jordan form and they are similar, then they can differ only in that the
order of the scalars c; is different.

The uniqueness we see as follows. Suppose there is some ordered basis
for V in which T is represented by the Jordan matrix A described in the
previous paragraph. If A;is a d; X d: matrix, then d; is clearly the multi-
plicity of ¢; as a root of the characteristic polynomial for 4, or for T. In
other words, the characteristic polynomial for T is

f = (CE — cl)dl e (:U — Ck)dk.

This shows that ¢, . .., ¢ and dj, . . ., de are unique, up to the order in
which we write them. The fact that A is the direct sum of the matrices
A; gives us a direct sum decomposition V. = Wi @ --- @ W, invariant
under T'. Now note that W; must be the null space of (T' — ¢.I)", where
n = dim V; for, A; — c.I is clearly nilpotent and A; — c;I is non-singular
for j # 1. So we see that the subspaces W; are unique. If T'; is the operator
induced on W; by T, then the matrix A; is uniquely determined as the
rational form for (T'; — c.I).

Now we wish to make some further observations about the operator
T and the Jordan matrix A which represents T' in some ordered basis.
We shall list a string of observations:

(1) Every entry of A not on or immediately below the main diagonal
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is 0. On the diagonal of A occur the k distinct characteristic values
¢y, ..., ¢ of T. Also, ¢; is repeated d; times, where d; is the multiplicity
of ¢; as a root of the characteristic polynomial, i.e., d; = dim W,.

(2) For each 7, the matrix A; is the direct sum of n; elementary
Jordan matrices J{” with characteristic value c;. The number n; is pre-
cisely the dimension of the space of characteristic vectors associated with
the characteristic value ¢;. For, n; is the number of elementary nilpotent
blocks in the rational form for (T'; — ¢:[), and is thus equal to the dimen-
sion of the null space of (T — ¢;I). In particular notice that 7 is diag-
onalizable if and only if n; = d; for each 7.

(3) For each %, the first block J{® in the matrix A4; is an r; X r;
matrix, where 7; is the multiplicity of ¢; as a root of the minimal poly-
nomial for 7. This follows from the fact that the minimal polynomial for
the nilpotent operator (T'; — ¢;I) is x™.

Of course we have as usual the straight matrix result. If B is an
n X n matrix over the field F and if the characteristic polynomial for B
factors completely over F, then B is similar over F to an n X n matrix
A in Jordan form, and A is unique up to a rearrangement of the order
of its characteristic values. We call A the Jordan form of B.

Also, note that if F is an algebraically closed field, then the above
remarks apply to every linear operator on a finite-dimensional space over
F, or to every m X m matrix over F. Thus, for example, every n X n
matrix over the field of complex numbers is similar to an essentially unique
matrix in Jordan form.

ExampLE 5. Suppose T is a linear operator on C2% The characteristic
polynomial for T is either (x — ¢;)(x — ¢z) where ¢; and ¢, are distinct
complex numbers, or is (x — ¢)% In the former case, T is diagonalizable
and is represented in some ordered basis by

|:61 0].
0 Ce
In the latter case, the minimal polynomial for T may be (x — ¢), in which

case T = clI, or may be (x — c)?, in which case T is represented in some
ordered basis by the matrix
5 <]
1 ef

Thus every 2 X 2 matrix over the field of complex numbers is similar to
a matrix of one of the two types displayed above, possibly with ¢1 = ca.

ExampLE 6. Let A be the complex 3 X 3 matrix

20 0
A=|a 2 0 [
b ¢ -1
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The characteristic polynomial for A is obviously (xr — 2)*x + 1). Either
this is the minimal polynomial, in which case A is similar to

2 0 07
1 2 0
00 —1]
or the minimal polynomial is (x — 2)(z 4+ 1), in which case A4 is similar to
2 0 0]
0 2 0|
|0 0 —1]
Now
0 00O
A4A-2DAa+1) = |:3a 0 0:'
ac 0 O

and thus A is similar to a diagonal matrix if and only if a = 0.

ExaMpLE 7. Let

SO =N
SO NvOo
[SEN = e
N O OO

The characteristic polynomial for 4 is (zx — 2)4 Since A is the direct sum
of two 2 X 2 matrices, it is clear that the minimal polynomial for 4 is
(x — 2)% Now if a = 0 or if @ = 1, then the matrix 4 is in Jordan form.
Notice that the two matrices we obtain for a = 0 and @ = 1 have the
same characteristic polynomial and the same minimal polynomial, but
are not similar. They are not similar because for the first matrix the solu-
tion space of (A — 2I) has dimension 3, while for the second matrix it
has dimension 2.

ExampLE 8. Linear differential equations with constant coefficients
(Example 14, Chapter 6) provide a nice illustration of the Jordan form.
Let ao, . . ., a,—1 be complex numbers and let V be the space of all n times
differentiable functions f on an interval of the real line which satisfy the
differential equation

drf d~~'f df
e + a,a e + -+ al% + aof = 0.

Let D be the differentiation operator. Then V isinvariant under D, because
V is the null space of p(D), where

P=2xI"+ - + mzx + a

What is the Jordan form for the differentiation operator on V?
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Let ¢y, . . ., cx be the distinct complex roots of p:
p=(x—c)m - (x — )™

Let V; be the null space of (D — ¢;I)™, that is, the set of solutions to the
differential equation

(D = cl)if = 0.

Then as we noted in Example 15, Chapter 6 the primary decomposition
theorem tells us that

V="1® - DV

Let N be the restriction of D — ¢,Z to V;. The Jordan form for the oper-
ator D (on V) is then determined by the rational forms for the nilpotent
operators Ny, . . ., N, on the spaces Vy, . .., V..

So, what we must know (for various values of ¢) is the rational form
for the operator N = (D — ¢I) on the space V., which consists of the
solutions of the equation

(D — cI)yf = 0.

How many elementary nilpotent blocks will there be in the rational form
for N? The number will be the nullity of N, i.e., the dimension of the
characteristic space associated with the characteristic value ¢. That
dimension is 1, because any function which satisfies the differential
equation

Df = ¢f

is a scalar multiple of the exponential function h(z) = e==. Therefore, the
operator N (on the space V.) has a cyclic vector. A good choice for a
cyclic vector is ¢ = 2™ 'h:

g(x) = zrlec=,
This gives

Ng = (r — Dz~
N—lg = (r — D)k

The preceding paragraph shows us that the Jordan form for D (on
the space V) is the direct sum of £ elementary Jordan matrices, one for
each root ¢;.

Exercises

1. Let Ny and N, be 3 X 3 nilpotent matrices over the field F. Prove that N,
and N, are similar if and only if they have the same minimal polynomial.

2. Use the result of Exercise 1 and the Jordan form to prove the following: Let
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A and B be n X n matrices over the field F which have the same characteristic
polynomial

f = (x -_— cl)d.l vee (x —_— Ck)dk
and the same minimal polynomial. If no d; is greater than 3, then A and B are
similar.

3. If A is a complex 5 X 5 matrix with characteristic polynomial
f= (@ =2 + 7)1
and minimal polynomial p = (z — 2)¥« + 7), what is the Jordan form for A?

4. How many possible Jordan forms are there for a 6 X 6 complex matrix with
characteristic polynomial (x 4 2)%(z — 1)??

5. The differentiation operator on the space of polynomials of degree less than
or equal to 3 is represented in the ‘natural’ ordered basis by the matrix

1 00
00 2 0]
0 003
0 00O
What is the Jordan form of this matrix? (F a subfield of the complex numbers.)
6. Let A be the complex matrix
-2 00 0 0 07
12000 0
-1 0200 O
01020 O0f
11112 0
00001 -1

Find the Jordan form for 4.
7. If A isann X n matrix over the field F with characteristic polynomial
f=@—c)h (@ — o)t
what is the trace of A?
8. Classify up to similarity all 3 X 3 complex matrices A such that A% = I.
9. Classify up to similarity all n X n complex matrices A such that A» = I.

10. Let n be a positive integer, n > 2, and let N be an n X n matrix over the
field F such that N™ = 0 but N*7! % 0. Prove that N has no square root, i.e.,
that there is no n X n matrix A such that 42 = N.

11. Let N: and N, be 6 X 6 nilpotent matrices over the field F. Suppose that
N, and N, have the same minimal polynomial and the same nullity. Prove that
N, and N: are similar. Show that this is not true for 7 X 7 nilpotent matrices.

12. Use the result of Exercise 11 and the Jordan form to prove the following:
Let A and Bbe n X n matrices over the field F which have the same characteristic
polynomial

f= =) (= o
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and the same minimal polynomial. Suppose also that for each 7 the solution spaces
of (A — ¢;I) and (B — ¢;I) have the same dimension. If no d: is greater than 6,
then A and B are similar.

13. If N is a k X k elementary nilpotent matrix, i.e., N¥* = 0 but N¥1 # 0, show
that N¢ is similar to N. Now use the Jordan form to prove that every complex
n X n matrix is similar to its transpose.

14. What’s wrong with the following proof? If A is a complex n X n matrix
such that At = — A4, then A is 0. (Proof: Let J be the Jordan form of A. Since

At = —A Jt= —J, But J is triangular so that J¢ = —J implies that every
entry of J is zero. Since J = 0 and A is similar to J, we see that A = 0.) (Give
an example of a nen-zero A such that At = —A.)

15. If N is a nilpotent 3 X 3 matrix over C, prove that A =T + }N — }N?
satisfies A2 = I + N, i.e,, A is a square root of I + N. Use the binomial series for
(1 4 t)¥2 to obtain a similar formula for a square root of I + N, where N is any
nilpotent n X n matrix over C.

16. Use the result of Exercise 15 to prove that if ¢ is a non-zero complex number
and N is a nilpotent complex matrix, then (¢ + N) has a square root. Now use
the Jordan form to prove that every non-singular complex n X n matrix has a
square root.

261

7.4. Computation of Invariant Factors

Suppose that A is an n X n matrix with entries in the field F. We
wish to find a method for computing the invariant factors py, ..., pr
which define the rational form for A. Let us begin with the very simple
case in which A is the companion matrix (7.2) of a monic polynomial

P=2"+ Cuaz" '+ - + az + co

In Section 7.1 we saw that p is both the minimal and the characteristic
polynomial for the companion matrix A. Now, we want to give a direct
calculation which shows that p is the characteristic polynomial for 4. In
this case,

-z 00 0 co

—1 z 0 0 Cy

e
0 00 -« z ey
0 00 -+ —1 z+4cua

Add z times row n to row (n — 1). This will remove the z in the (n — 1,
n — 1) place and it will not change the determinant. Then, add z times
the new row (n — 1) to row (n — 2). Continue successively until all of
the z’s on the main diagonal have been removed by that process. The
result is the matrix
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oo --- 0 xn_l_...—*—clx-|-co1
-1 o0 --. 0 xn—-1+...+czx+cl
10 - 0 22+ --- +cxte

0 00 -« 0 224 cost+ Cos
0 oo --- -1 T+ Cuy

which has the same determinant as I — A. The upper right-hand entry
of this matrix is the polynomial p. We clean up the last column by adding
to it appropriate multiples of the other columns:

0 00 .- 0 »
-1 o0 --- 00
o —-10 --» 00
0 00 - 00
0 00 --- —-10

Multiply each of the first (n — 1) columns by —1 and then perform
(n — 1) interchanges of adjacent columns to bring the present column n
to the first position. The total effect of the 2n — 2 sign changes is to leave
the determinant unaltered. We obtain the matrix

p 0 0 0
010 0
(7-28) 00 1 0|
000 - 1

It is then clear that p = det (zI — A).

We are going to show that, for any n X n matrix A, there is a suc-
cession of row and column operations which will transform zI — A into
a matrix much like (7-28), in which the invariant factors of A appear
down the main diagonal. Let us be completely clear about the operations
we shall use.

We shall be concerned with F[z]™%», the collection of m X n matrices
with entries which are polynomials over the field F. If M is such a matrix,
an elementary row operation on M is one of the following

1. multiplication of one row of M by a non-zero scalar in F;

‘2. replacement of the rth row of M by row r plus f times row s, where
f is any polynomial over F and r # s;

3. interchange of two rows of M.

The inverse operation of an elementary row operation is an elementary
row operation of the same type. Notice that we could not make such an
assertion if we allowed non-scalar polynomials in (1). An m X m ele=-
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mentary matrix, that is, an elementary matrix in F[z]™>™, is one which
can be obtained from the m X m identity matrix by means of a single
elementary row operation. Clearly each elementary row operation on M
can be effected by multiplying M on the left by a suitable m X m ele-
mentary matrix; in fact, if e is the operation, then

e(M) = e(I)M.
Let M, N be matrices in F[z]™" We say that N is row-equivalent

to M if N can be obtained from M by a finite succession of elementary
row operations:

M=M= M= -5 M,=N.

Evidently N is row-equivalent to M if and only if M is row-equivalent to
N, so that we may use the terminology ‘M and N are row-equivalent.’
If N is row-equivalent to M, then

N =PM
where the m X m matrix P is a product of elementary matrices:
P=E - E.
In particular, P is an invertible matrix with inverse
P1=FE;' ... ETL
Of course, the inverse of E; comes from the inverse elementary row
operation.

All of this is just as it is in the case of matrices with entries in F. It
parallels the elementary results in Chapter 1. Thus, the next problem
which suggests itself is to introduce a row-reduced echelon form for poly-
nomial matrices. Here, we meet a new obstacle. How do we row-reduce
a matrix? The first step is to single out the leading non-zero entry of row 1
and to divide every entry of row 1 by that entry. We cannot (necessarily)
do that when the matrix has polynomial entries. As we shall see in the
next theorem, we can circumvent this difficulty in certain cases; however,
there is not any entirely suitable row-reduced form for the general matrix
in F[xz]™=», If we introduce column operations as well and study the type
of equivalence which results from allowing the use of both types of oper-

ations, we can obtain a very useful standard form for each matrix. The
basic tool is the following.

Lemma. Let M be a matriz in F [x]™" which has some non-zero eniry
in its first column, and let p be the greatest common divisor of the entries in
column 1 of M. Then M 1s row-equivalent to a matriz N which has

p
0
0

as its first column.
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Proof. We shall prove something more than we have stated.
We shall show that there is an algorithm for finding N, i.e., a preseription
which a machine could use to calculate N in a finite number of steps.
First, we need some notation.
Let M be any m X n matrix with entries in F[z] which has a non-
zero first column

i
My=1:}

I(M,) = min deg f;
fi#0

p(My) = g.ed. (fiy .+ - fm)-
Let 7 be some index such that degf; = I(M,). To be specific, let 7 be
the smallest index ¢ for which deg f; = I(M,). Attempt to divide each f;
by f;:
(7-30) fi = figi + 1y r;=0 or degr: < degf;.
For each ¢ different from 7, replace row ¢ of M by row 7 minus g; times
row j. Multiply row j by the reciprocal of the leading coefficient of f; and

then interchange rows j and 1. The result of all these operations is a matrix
M’ which has for its first column

Define

(7-29)

i
5]

(7-31) Ml ="
m

Tit1

T'm

where f; is the monic polynomial obtained by normalizing f; to have leading
coefficient 1. We have given a well-defined procedure for associating with
each M a matrix M’ with these properties.

(a) M’ is row-equivalent to M.
(b) p(M1) = p(M)).
(c) Either I(M1) < I(M,) or
p(My)
mi=| ?
0
It is easy to verify (b) and (c) from (7-30) and (7-31). Property (e¢)
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is just another way of stating that either there is some ¢ such that r; # 0
and deg r; < deg f; or else r; = 0 for all 7 and J, is (therefore) the greatest
common divisor of fi, . . ., fa.

The proof of the lemma is now quite simple. We start with the matrix
M and apply the above procedure to obtain M’. Property (c) tells us that
either M’ will serve as the matrix N in the lemma or I(M]) < I(M;). In
the latter case, we apply the procedure to M’ to obtain the matrix M =
(M"Y. If M is not a suitable N, we form M® = (M®)’, and so on. The
point is that the strict inequalities

IMy) > UMY > UM®P) > -

cannot continue for very long. After not more than {(M,) iterations of our
procedure, we must arrive at a matrix M ® which has the properties we
seek. ||

Theorem 6. Let P be an m X m matrixz with entries in the polynomial
algebra F [x]. The following are equivalent.

(i) P is invertible.

(i) The determinant of P is a non-zero scalar polynomial.
(i) P 7s row-equivalent to the m X m zdentity matriz.
(iv) P is a product of elementary matrices.

Proof. Certainly (i) implies (ii) because the determinant func-
tion is multiplicative and the only polynomials invertible in F[x] are the
non-zero scalar ones. As a matter of fact, in Chapter 5 we used the classical
adjoint to show that (i) and (ii) are equivalent. Our argument here pro-
vides a different proof that (i) follows from (ii). We shall complete the
merry-go-round

(i) — (i)
T 4
(iv) 4= (iid).
The only implication which is not obvious is that (iii) follows from (ii).
Assume (ii) and consider the first column of P. It contains certain
polynomials py, . . ., pm, and

ged. Py, ..., pm) =1
because any common divisor of py, . . ., p» must divide (the scalar) det P.
Apply the previous lemma to P to obtain a matrix
]. (12 o (175
(7-32) e=|"°
: B
0

which is row-equivalent to P. An elementary row operation changes the
determinant of a matrix by (at most) a non-zero scalar factor. Thus det @

<
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is a non-zero scalar polynomial. Evidently the (m — 1) X (m — 1)
matrix B in (7-32) has the same determinant as does . Therefore, we
may apply the last lemma to B. If we continue this way for m steps, we
obtain an upper-triangular matrix

1 Qg <+ Opm
S P
00 - 1

which is row-equivalent to R. Obviously R is row-equivalent to the m X m
identity matrix. |

Corollary. Let M and N be m X n matrices with entries in the poly-
nomzal algebra F[x]. Then N s row-equivalent to M if and only if
N =PM

where P is an tnvertible m X m matriz with entries in F[x].

We now define elementary column operations and column-
equivalence in a manner analogous to row operations and row-equivalence.
We do not need a new concept of elementary matrix because the class of
matrices which can be obtained by performing one elementary column
operation on the identity matrix is the same as the class obtained by
using a single elementary row operation.

Definition. The matriz N is equivalent {o the matriz M if we can
pass from M to N by means of a sequence of operations

M=M—=M=-=M=N

each of which is an elementary row operation or an elementary column
operation.

Theorem 7. Let M and N be m X n matrices with entries in the
polynomial algebra F[x]. Then N s equivalent to M if and only if

N = PMQ
where P 1s an tnvertible matriz in F(x]™™ and Q s an tnvertible matrix in

Flx]mn,

Theorem 8. Let A be an n X n matriz with entries in the field F,

and let py, ..., p: be the tnvariant factors for A. The matriz xI — A s
equivalent to the n X n diagonal matriz with diagonal entries piy . . ., Pn
1,1,...,1.

Proof. There exists an invertible n X n matrix P, with entries
in F, such that PAP~! is in rational form, that is, has the block form



Sec. 7.4 Computation of Invariant Factors

4, 0 - 0
papr— |9 A 0
0 0 .- 4,

where A; is the companion matrix of the polynomial p;. According to
Theorem 7, the matrix

(7-33) Pl — A)P=! = z] — PAP—
is equivalent to zI — A. Now
zl — A;l 0 [ 0

(7-31) o —pap=| O FoA 0

0 0 <ozl — A,

where the various I’s we have used are identity matrices of appropriate
sizes. At the beginning of this section, we showed that zI — A; is equiv-
alent to the matrix

p‘v 0 “ .o 0
0 1 - 0f

From (7-33) and (7-34) it is then clear that I — A is equivalent to a
diagonal matrix which has the polynomials p; and (n — r) 1’s on its main
diagonal. By a succession of row and column interchanges, we can arrange
those diagonal entries in any order we choose, for example: py, . . ., Pr

L,...,1 |

Theorem 8 does not give us an effective way of calculating the ele-
mentary divisors p, . . ., p, because our proof depends upon the cyeclic
decomposition theorem. We shall now give an explicit algorithm for re-
ducing a polynomial matrix to diagonal form. Theorem 8 suggests that
we may also arrange that successive elements on the main diagonal divide
one another.

Definition. Let N be a matriz in F[x]™<*. We say that N 7s in (Smith)
normal form f
(a) every eniry off the main diagonal of N s 0;

(b) on the main diagonal of N there appear (in order) polynomials
fi, . . ., fi such that fx divides fryy, 1 <k <1 — 1.

In the definition, the number [ is [ = min (m, n). The main diagonal
entriesare fp = Nu, kb = 1,...,L

Theorem 9. Let M be an m X n matrixz with entries in the polynomial
algebra F[x]. Then M 1s equivalent to a matriz N which is in normal form.
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Proof. If M = 0, there is nothing to prove. If M = 0, we shall
give an algorithm for finding a matrix M’ which is equivalent to M and
which has the form

(7-35) M =

where R is an (m — 1) X (n — 1) matrix and f; divides every entry of R.
We shall then be finished, because we can apply the same procedure to R
and obtain f, etc.

Let {(M) be the minimum of the degrees of the non-zero entries of M.
Find the first column which contains an entry with degree I(M) and
interchange that column with column 1. Call the resulting matrix M©,
W e describe a procedure for finding a matrix of the form

g 0 - 0
0
(7-36) S
0
which is equivalent to M®. We begin by applying to the matrix M® the
procedure of the lemma before Theorem 6, a procedure which we shall
call PL6. There results a matrix

pa - b
(7-37) Mo =0 ¢ df

0
If the entries a, . . ., b are all 0, fine. If not, we use the analogue of PL6

for the first row, a procedure which we might call PL6’. The result is a
matrix

q 0 - 0
a ¢ o €
(7-38) M®» =7 0 :
I;’ ('i/ . J};
where ¢ is the greatest common divisor of p, a, . . ., b. In producing M®,

we may or may not have disturbed the nice form of column 1. If we did,
we can apply PL6 once again. Here is the point. In not more than (M)
steps:

MO L 0P o P8 e
we must arrive at a matrix M® which has the form (7-36), because at
each successive step we have (M *+0) < [(M®)., We name the process
which we have just defined P7-36:

Mo E3 o
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In (7-36), the polynomial ¢ may or may not divide every entry of S.
If it does not, find the first column which has an entry not divisible by ¢
and add that column to column 1. The new first column contains both g
and an entry gh + r where r # 0 and deg r < deg g. Apply process P7-36
and the result will be another matrix of the form (7-36), where the degree
of the corresponding g has decreased.

It should now be obvious that in a finite number of steps we will
obtain (7-35), i.e., we will reach a matrix of the form (7-36) where the
degree of g cannot be further reduced. |

We want to show that the normal form associated with a matrix M
is unique. Two things we have seen provide clues as to how the poly-
nomials fi, . . ., fi in Theorem 9 are uniquely determined by M. First,
elementary row and column operations do not change the determinant
of a square matrix by more than a non-zero scalar factor. Second, ele-
mentary row and column operations do not change the greatest common
divisor of the entries of a matrix.

Definition. Let M be an m X n mairiz with entries in F[x]. If
1 £ k < min (m, n), we define 8x(M) o be the greatest common divisor of
the determinants of all k X k submatrices of M.

Recall that a k X k submatrix of M is one obtained by deleting some
m — k rows and some n — k columns of M. In other words, we select
certain k-tuples

I = (,...,%), 1< < - <pm
J=(j1)“‘)j’¢)! IS]1<"<JkSn

and look at the matrix formed using those rows and columns of M. We
are interested in the determinants

Mil.ix v Milfk
(7-39) Dy (M) = det| : .
Mg, -+~ My,

The polynomial 8,(M) is the greatest common divisor of the polynomials
D;,s(M), as I and J range over the possible k-tuples.

Theorem 10. If M and N are equivalent m X n matrices with entries
in Fx], then

(7-40) (M) = 5(IN), 1 <k < min (m, n).

Proof. 1t will suffice to show that a single elementary row oper-
ation e does not change 8. Since the inverse of ¢ is also an elementary row
operation, it will suffice to show this: If a polynomial f divides every
Dy (M), then f divides Dr,r(e(M)) for all k-tuples I and J.
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Since we are considering a row operation, let oy, . . ., oy, be the rows
of M and let us employ the notation
Dl(aiu ceey aik) = DI,J(M)'

Given I and J, what is the relation between Dz (M) and Dy, ;(e(M))?
Consider the three types of operations e:

(a) multiplication of row r by a non-zero scalar c;
(b) replacement of row 7 by row 7 plus ¢ times row s, r # s;
(c¢) interchange of rows 7 and s, r # s.

Forget about type (c) operations for the moment, and concentrate
on types (a) and (b), which change only row 7. If 7 is not one of the indices
1 . . ., I, then

Dr.s(e(M)) = Dr,s(M).

If r is among the indices 7y, . . ., %, then in the two cases we have
(a) DI.J(e(M)) =Dylayy ..., can ..., a’in)
=cDslag, . ..,0 ..., 0;)
= ¢Dr y(M);
(b) DI,J(&(M)) = Dl(ain ey 0t go .., a‘ik)
= Drg(M) + gDj(os, . . .y sy o v oy ).

Tor type (a) operations, it is clear that any f which divides Dy (M)
also divides Dr,;(e(M)). For the case of a type (c) operation, notice that

Dy(asy ... 00 ...,0;) =0, if s = ¢; for some j
Djy(ouy . o oy sy ... ,04) = £Df 4(M), if 8 # ¢; for all j.
The I’ in the last equation is the k-tuple (¢3,...,s, ..., %) arranged in

increasing order. It should now be apparent that, if f dividesevery Dy s(M),
then f divides every Dy j(e(M)).

Operations of type (¢) can be taken care of by roughly the same
argument or by using the fact that such an operation can be effected by
a sequence of operations of types (a) and (b). ||

Corollary. Each matrix M in F[x]™%® {s equivalent to precisely one
matriz N which 18 in normal form. The polynomials fy, . . . , f; which occur
on the main diagonal of N are

_ (M)
T s (M)

where, for convenience, we define d(M) = 1.

1 £k € min (m, n)

Proof. If N is in normal form with diagonal entries fi, . . ., f1,
it is quite easy to see that

&(N) = fifs - Jo l



Sec. 7.4 Computation of Invariant Factors

Of course, we call the matrix N in the last corollary the normal form
of M. The polynomials fy, . . ., fi are often called the invariant factors
of M.

Suppose that A isann X n matrix with entries in F, and let py, . . . , pr
be the invariant factors for A. We now see that the normal form of the
matrix zI — A has diagonal entries 1, 1,...,1,p, ..., p. The last
corollary tells us what py, . . ., p, are, in terms of submatrices of zI — 4.
The number n — risthe largest k£ such that §.(x] — A) = 1. The minimal
polynomial p; is the characteristic polynomial for A divided by the greatest
common divisor of the determinants of all (n — 1) X (n — 1) submatrices
of xI — A, ete.

Exercises

1. True or false? Every matrix in F[z]**" is row-equivalent to an upper-triangular
matrix.

2. Let T be a linear operator on a finite-dimensional vector space and let A be
the matrix of T in some ordered basis. Then T has a cyclic vector if and only if
the determinants of the (n — 1) X (n — 1) submatrices of zI — A are relatively
prime,

3. Let A be an n X n matrix with entries in the field F and let f,, . . ., f, be the
diagonal entries of the normal form of I — A. For which matrices 4 is f1 # 1?

4. Construct a linear operator T with minimal polynomial z2(z ~ 1)2 and charac-
teristic polynomial z%(x — 1) Describe the primary decomposition of the vector
space under T and find the projections on the primary components. Find a basis
in which the matrix of T is in Jordan form. Also find an explicit direct sum decom-
position of the space into T-cyclic subspaces as in Theorem 3 and give the invariant
factors.

5. Let T be the linear operator on R® which is represented in the standard
basis by the matrix

1 1 1 1 111 1
0 0 0 0 000 1
0 0 0 0 000 -1
a=l0 1 1 0 000 1f
0 0 0 1 100 0
o 1 1 1 110 1
0 -1 =1 =1 =101 -1
0 0 0 0 000 ©

(a) Find the characteristic polynomial and the invariant factors.

(b) Find the primary decomposition of R® under T and the projections on
the primary components. Find cyclic decompositions of each primary component
as in Theorem 3.
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(¢) Find the Jordan form of A.

(d) Find a direct-sum decomposition of R?® into T-cyclic subspaces as in
Theorem 3. (Hint: One way to do this is to use the results in (b) and an appropriate
generalization of the ideas discussed in Example 4.)

7.5. Summary; Semi-Simple Operators

In the last two chapters, we have been dealing with a single linear
operator T on a finite-dimensional vector space V. The program has been
to decompose T into a direct sum of linear operators of an elementary
nature, for the purpose of gaining detailed information about how T
‘operates’ on the space V. Let us review briefly where we stand.

We began to study T by means of characteristic values and charac-
teristic vectors. We introduced diagonalizable operators, the operators
which can be completely described in terms of characteristic values and
vectors. We then observed that 7 might not have a single characteristic
vector. Even in the case of an algebraically closed scalar field, when every
linear operator does have at least one characteristic vector, we noted that
the characteristic vectors of T need not span the space.

We then proved the cyclic decomposition theorem, expressing any
linear operator as the direct sum of operators with a cyclic vector, with
no assumption about the scalar field. If U is a linear operator with a cyclic

vector, there is a basis {a, . . ., a,} with
Ua,-=aj+1, j=1,...,n—1
Uan = —Ca; — Ciatg — *** — Cp—1Qpn.

The action of U on this basis is then to shift each a; to the next vector
aj, except that Ua, is some prescribed linear combination of the vectors
in the basis. Since the general linear operator T is the direct sum of a
finite number of such operators U, we obtained an explicit and reasonably
elementary description of the action of 7.

We next applied the cyclic decomposition theorem to nilpotent
operators. For the case of an algebraically closed scalar field, we combined
this with the primary decomposition theorem to obtain the Jordan form.
The Jordan form gives a basis {a, ..., a,} for the space V such that,
for each j, either Ta; is a scalar multiple of «; or Ta; = ca; + aj41. Such
a basis certainly describes the action of 7' in an explicit and elementary
manner.

The importance of the rational form (or the Jordan form) derives
from the fact that it exists, rather than from the fact that it can be com-
puted in specific cases. Of course, if one is given a specific linear operator
T and can compute its cyclic or Jordan form, that is the thing to do;
for, having such a form, one can reel off vast amounts of information
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about 7. Two different types of difficulties arise in the computation of
such standard forms. One difficulty is, of course, the length of the com-
putations. The other difficulty is that there may not be any method for
doing the computations, even if one has the necessary time and patience.
The second difficulty arises in, say, trying to find the Jordan form of a
complex matrix. There simply is no well-defined method for factoring the
characteristic polynomial, and thus one is stopped at the outset. The
rational form does not suffer from this difficulty. As we showed in Section
7.4, there is a well-defined method for finding the rational form of a given
n X n matrix; however, such computations are usually extremely lengthy.

In our summary of the results of these last two chapters, we have not
yet mentioned one of the theorems which we proved. This is the theorem
which states that if T is a linear operator on a finite-dimensional vector
space over an algebraically closed field, then T is uniquely expressible as
the sum of a diagonalizable operator and a nilpotent operator which
commute. This was proved from the primary decomposition theorem and
certain information about diagonalizable operators. It is not as deep a
theorem as the cyclic decomposition theorem or the existence of the
Jordan form, but it does have important and useful applications in certain
parts of mathematics. In concluding this chapter, we shall prove an
analogous theorem, without assuming that the sealar field is algebraically
closed. We begin by defining the operators which will play the role of the
diagonalizable operators.

Definition. Let V be a finite-dimensional vector space over the field F,
and let T be a linear operator on V. We say that T is semi-simple if every
T-invariant subspace has a complementary T-invariant subspace.

What we are about to prove is that, with some restriction on the
field F, every linear operator T is uniquely expressible in the form T =
S 4+ N, where S is semi-simple, N is nilpotent, and SN = NS. First,
we are going to characterize semi-simple operators by means of their
minimal polynomials, and this characterization will show us that, when F
is algebraically closed, an operator is semi-simple if and only if it is
diagonalizable.

Lemma. Let T be a linear operator on the finite-dimensional vector
space V, and let V.= Wi @ - -+ @ Wy be the primary decomposition for T.
In other words, if p vs the mintmal polynomial for T and p = pi' - - pi* s
the prime factorization of p, then W; is the null space of p;(T)"i. Let W be
any subspace of V which is invariant under T. Then

W=WNW)D- - DWN Wy

Proof. For the proof we need to recall a corollary to our proof
of the primary decomposition theorem in Section 6.8, If Ey, ..., Ey are
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the projections associated with the decomposition V. = W, @ ... @ W,,
then each E; is a polynomial in T. That is, there are polynomialshy, . . .,
such that E; = hi(T).

Now let W be a subspace which is invariant under T. If « is any

vector in W, thena = oy + -+ 4+ o, where ajisin W;, Now a; = Eja =
h;j(T)a, and since W is invariant under T, each a; is also in W. Thus each
vector a in W is of the form @ = a; 4+ -+ + oy, where «; is in the inter-

section W N W ;. This expression is unique, since V = W D -DWe
Therefore

W=WNW)D---@WNW). |

Lemma. Let T be a linear operator on V, and suppose that the minimal
polynomaal for T is irreducible over the scalar field F. Then T is semi-simple.

Proof. Let W be a subspace of V which is invariant under T.
We must prove that W has a complementary T-invariant subspace.
According to a corollary of Theorem 3, it will suffice to prove that if f is
a polynomial and 38 is a vector in V such that f(T)8 is in W, then there is
a vector a in W with f(T)8 = f(T)a. So suppose 8 isin V and f is a poly-
nomial such that f(T)8 isin W, If f(T)8 = 0, we let « = 0 and then a is a
vector in W with f(T)B = f(T)a. If f(T)8 # 0, the polynomial f is not
divisible by the minimal polynomial p of the operator T. Since p is prime,
this means that f and p are relatively prime, and there exist polynomials
g and h such that fg + ph = 1. Because p(T) = 0, we then have
f(T)g(T) = I. From this it follows that the vector 3 must itself be in the
subspace W; for

B =g(T)(T)8
= g(T)(f(T)B)

while f(T)8 is in W and W is invariant under 7. Take a = 8. ||

Theorem 11. Let T be a linear operator on the finite-dimenstonal vector
space V. A necessary and sufficient condition that T be semi-simple is that
the minimal polynomaial p for T be of the formp = p1 - - - px, Wherepy, . . ., Px
are distinct irreducible polynomials over the scalar field F.

Proof. Suppose T is semi-simple. We shall show that no irre-
ducible polynomial is repeated in the prime factorization of the minimal
polynomial p. Suppose the contrary. Then there is some non-scalar monic
polynomial g such that g2 divides p. Let W be the null space of the oper-
ator g(7T). Then W is invariant under T. Now p = g%k for some poly-
nomial h. Since ¢ is not a scalar polynomial, the operator g(T)a(T) is not
the zero operator, and there is some vector 8in V such that g(T)h(T)8 = 0,
i.e., (gh)8 # 0. Now (gh)8 is in the subspace W, since g(ghB) = g*hB =
pB = 0. But there is no vector « in W such that ghB = gha; for, if ais in W

(gh)a = (hg)a = h(ga) = h(0) = O.
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Thus, W cannot have a complementary T-invariant subspace, contra-
dicting the hypothesis that T is semi-simple.

Now suppose the prime factorization of p is p = p - - - pi, where
Py . .., pe are distinet irreducible (non-scalar) monic polynomials. Let

W be a subspace of V which is invariant under T. We shall prove that W'

has a complementary T-invariant subspace. Let V =W.,@® --- D W,
be the primary decomposition for T, i.e., let W; be the null space of p;(T).
Let T; be the linear operator induced on W; by T, so that the minimal
polynomial for 77; is the prime p;, Now W M W, is a subspace of W; which
is invariant under 7'; (or under 7). By the last lemma, there is a subspace
V;of W, such that W, = W N\ W,;) @ V; and V, is invariant under T,
(and hence under T'). Then we have

V=W,®:- OW:
=WNW) Vi@ - DWNW)D Ve
=WNW)+ - +WNW)DViD--- DV

By the first lemma above, W = W N W)@ -+ @ (W N W), so that
W =Vi® - @V, then V=W W and W’ is invariant under
T. |

Corollary. IfT is a linear operator on a finite-dimenstonal vector space
over an algebraically closed field, then T is semi-simple if and only of T s
diagonalizable.

Proof. If the scalar field F is algebraically closed, the monic
primes over F are the polynomials £ — ¢. In this case, T is semi-simple
if and only if the minimal polynomial for T is p = (x — ¢1) + - - (x — ¢x),
where ¢y, . . ., ¢ are distinct elements of F. This is precisely the criterion
for T to be diagonalizable, which we established in Chapter 6. |

We should point out that T is semi-simple if and only if there is some
polynomial f, which is a product of distinct primes, such that f(T) = 0.
This is only superficially different from the condition that the minimal
polynomial be a product of distinet primes.

We turn now to expressing a linear operator as the sum of a semi-
simple operator and a nilpotent operator which commute. In this, we
shall restrict the scalar field to a subfield of the complex numbers. The
informed reader will see that what is important is that the field F be a
field of characteristic zero, that is, that for each positive integer n the
sum 1 + --- 4 1 (n times) in F should not be 0. For a polynomial f over
F, we denote by f® the kth formal derivative of f. In other words,
f® = DFf, where D is the differentiation operator on the space of poly-
nomials. If ¢ is another polynomial, f(g) denotes the result of substituting
g in f, i.e., the polynomial obtained by applying f to the element g in the
linear algebra F[z].
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Lemma (Taylor’s Formula). Let F be a field of characteristic zero
and let g and h be polynomials over F. If f vs any polynomzal over F with
deg f < n, then

f@(h fm(h
f(g) = ) + FOM)(E — b) + o (g — )2+ o ) (g e
Proof. What we are proving is a generalized Taylor formula. The

reader is probably used to seeing the special case in which 4 = ¢, a scalar
polynomial, and ¢ = z. Then the formula says

J=71@) = 1) + fP)(= ~ ¢
f(?)(
+80

— C)”.

The proof of the general formula is just an application of the binomial
theorem

C)2+---+Jf%(!c)(x

(@ + ) = ¢t + ka1 4 LE D 1) R

For the reader should see that, since substitution and differentiation are
linear processes, one need only prove the formula when f = z*. The for-

n
mula for f = ¥ ea* follows by a linear combination. In the case f = z*
k=0

with k < n, the formula says
gk —h"+kh’°"1(g—~h)+———1—)h"‘2( —h)?+ -+ (g —hF
which is just the binomial expansion of
=[h+@-nk 1

Lemma. Let F be a subfield of the complex numbers, let f be a poly-
nomial over ¥, and let f' be the derivative of f. The following are equivalent:

(a) f is the product of duistinct polynomzals trreducible over F.
(b) f and f’ are relatively prime.
(¢) As a polynomial with complex coefficients, f has no repeated root.

Proof. Let us first prove that (a) and (b) are equivalent state-
ments about f. Suppose in the prime factorization of f over the field F that
some (non-scalar) prime polynomial p is repeated. Then f = p2h for some
hin F[z]. Then

f'=ph' + 2pp'h
and p is also a divisor of f’. Hence f and f’ are not relatively prime. We
conclude that (b) implies (a).
Now suppose f = p1 + -+ pr, where py, . . ., pi are distinet non-scalar
irreducible polynomials over F. Let f; = f/p;. Then

f =pifi+pife+ - + pife
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{.et p be a prime polynomial which divides both f and f’. Then p = p; for
some 2. Now p, divides f; for j # 4, and since p; also divides

k
"= 2 pifi
i=1

we see that p; must divide pif:. Therefore p; divides either f; or pi. But p;
does not divide f; since py, . . ., pr are distinet. So p; divides p:. This is
not possible, since p; has degree one less than the degree of p;. We con-
clude that no prime divides both f and f’, or that (f, f") = 1.

To see that statement (c¢) is equivalent to (a) and (b), we need only
observe the following: Suppose f and ¢ are polynomials over F, a subfield
of the complex numbers. We may also regard f and ¢ as polynomials with
complex coefficients. The statement that f and ¢g are relatively prime as
polynomials over F is equivalent to the statement that f and ¢ are rela-
tively prime as polynomials over the field of complex numbers. We leave
the proof of this as an exercise. We use this fact with ¢ = f’. Note that
(c) is just (a) when f is regarded as a polynomial over the field of complex
numbers. Thus (b) and (¢) are equivalent, by the same argument that
we used above. |

We can now prove a theorem which makes the relation between semi-
simple operators and diagonalizable operators even more apparent.

Theorem 12. Let I be a subfield of the field of complex numbers, let V
be a finite-dimensional vector space over ¥, and let T be a linear operator on
V. Let ® be an ordered basis for V and let A be the matriz of T in the ordered
basis . Then T is semi-simple if and only if the matrixz A is similar over the
field of complex numbers to a diagonal matriz.

Proof. Let p be the minimal polynomial for T. According to
Theorem 11, T is semi-simple if and only if p = p1 - -+ p. where py, . . ., D&
are distinct irreducible polynomials over F. By the last lemma, we see
that T is semi-simple if and only if p has no repeated complex root.

Now p is also the minimal polynomial for the matrix A. We know
that A is similar over the field of complex numbers to a diagonal matrix
if and only if its minimal polynomial has no repeated complex root. This
proves the theorem. |

Theorem 13. Let F be a subfield of the field of complex numbers, let V
be a finite-dimensional vector space over F, and let T be a linear operator on V.

There is a semi-simple operator S on V and a nilpotent operator N on V such
that

(i) T=S+N;
(i) SN = NS.
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Furthermore, the semi-simple S and nilpotent N satisfying (1) and (i) are
unique, and each s a polynomial in T.

Proof. Let pi' - -+ pi be the prime factorization of the minimal
polynomial for T, and letf = p; - - - pr. Let r be the greatest of the positive
integers ry, . . ., % Then the polynomial f is a product of distinet primes,
f7 is divisible by the minimal polynomial for T, and so

ATy = 0.

We are going to construct a sequence of polynomials: go, g1, g2, - - -

such that
iz~ 2 0)
i=0
is divisible by f*+L,n = 0,1, 2, . .. . We take go = 0 and then f(z — g¢of°) =
f(x) = fis divisible by f. Suppose we have chosen go, . . ., gn-1. Let
n—1
h=z— 2 gf
i=0
so that, by assumption, f(h) is divisible by f». We want to choose g, so that
f(h = gaf*)
is divisible by f**!. We apply the general Taylor formula and obtain
S — guf™) = f(h) — guf"f'(R) + f+'b

where b is some polynomial. By assumption f(h) = ¢f*. Thus, we see that
to have f(h — g.f*) divisible by f**! we need only choose g, in such a way
that (¢ — gaf’) is divisible by f. This can be done, because f has no re-
peated prime factors and so f and f* are relatively prime. If a and e are
polynomials such that af + ef’ = 1, and if we let g, = eg, then ¢ — gaS’
is divisible by f.

Now we have a sequence go, g1, ... such that f*+t! divides

f(x — % g,f7>. Let us take n = 7 — 1 and then since f(T')" =
i=e

1(7 =2, exmrry) = o
Let

N =3 gD = Z, DRIV

Since ;‘. g;f1 is divisible by f, we see that N = 0 and N is nilpotent. Let
j=1

S=T-N. Then f(S) = f(T — N) =0. Since f has distinct prime
factors, S is semi-simple.

Now we have T = S + N where S is semi-simple, N is nilpotent,
and each is a polynomial in 7. To prove the uniqueness statement, we
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shall pass from the scalar field F to the field of complex numbers. Let ®
be some ordered basis for the space V. Then we have

(Tle = [Sle + [(Na

while [S]g is diagonalizable over the complex numbers and [N]g is nil-
potent. This diagonalizable matrix and nilpotent matrix which commute
are uniquely determined, as we have shown in Chapter 6. |

Exercises

1. If N is a nilpotent linear operator on V, show that for any polynomial f the
semi-simple part of f(N) is a scalar multiple of the identity operator (F a subfield
of C).

2. Let F be a subfield of the complex numbers, V a finite-dimensional vector
space over ¥, and T a semi-simple linear operator on V. If f is any polynomial
over F, prove that f(T') is semi-simple.

3. Let T be a linear operator on a finite-dimensional space over a subfield of C.
Prove that T is semi-simple if and only if the following is true: If f is a polynomial
and f(T) is nilpotent, then f(T') = 0.
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8. Inner Product
Spaces

8.1. Inner Products

Throughout this chapter we consider only real or complex vector
spaces, that is, vector spaces over the field of real numbers or the field of
complex numbers. Our main object is to study vector spaces in which it
makes sense to speak of the ‘length’ of a vector and of the ‘angle’ between
two vectors. We shall do this by studying a certain type of scalar-valued
function on pairs of vectors, known as an inner product. One example of
an inner product is the scalar or dot product of vectors in R® The scalar
product of the vectors

@ = (1, 25, 73) and B = (Y1, Y2, Ys)

in R? is the real number

(alB) = myr + a2 + zsys.

Geometrically, this dot product is the product of the length of «, the
length of 8, and the cosine of the angle between a and 8. It is therefore
possible to define the geometric concepts of ‘length’ and ‘angle’ in B3 by
means of the algebraically defined scalar product.

An inner product on a vector space is a function with properties
similar to the dot product in R3, and in terms of such an inner product
one can also define ‘length’ and ‘angle.” Our comments about the general
notion of angle will be restricted to the concept of perpendicularity (or
orthogonality) of vectors. In this first section we shall say what an inner
product is, consider some particular examples, and establish a few basic
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properties of inner products. Then we turn to the task of discussing length
and orthogonality.

Definition. Let I be the field of real numbers or the field of complex
numbers, and V a vector space over F. An inner product on V s a function
which assigns to each ordered pair of vectors a, 8 in V a scalar (fB) in I in
such a way that for all o, 3, v in 'V and all scalars ¢

(@) (a+ Bly) = (alv) + Bl7);

(b) (cal) = c(alB);

() (Bla) = («[B), the bar denoting complex conjugation;

(d) (¢|e) > 03 a 0.

It should be observed that conditions (a), (b), and (¢) imply that

(e) (ales + ) = ¢(alB) + (alv).
One other point should be made. When F is the field R of real numbers,
the complex conjugates appearing in (c) and (e) are superfluous; however,
in the complex case they are necessary for the consistency of the condi-
tions. Without these complex conjugates, we would have the contradiction:

(al@) >0 and (iafie) = —1(a|a) > O.
In the examples that follow and throughout the chapter, F is either
the field of real numbers or the field of complex numbers.

ExampLE 1. On F* there is an inner product which we call the

standard inner product. It is defined on « = (z;,...,2,) and 8 =
(yl; I} yn) by
(8-1) (alB) = = z;7;.

J

When F = R, this may also be written
(a|f) = ?my‘yz'-

In the real case, the standard inner product is often called the dot or
scalar product and denoted by « - 8.

ExampLE 2. For a = (21, 7,) and 8 = (11, ¥2) in R2 let

(al8) = zin — 2 — Ty + 4220,

Since (ala) = (21 — 12)? + 323, it follows that (a/a) > 0 if a« # 0. Condi-
tions (a), (b), and (¢) of the definition are easily verified.

ExampLE 3. Let V be F™r, the space of all n X n matrices over F.
Then V is isomorphic to F* in a natural way. It therefore follows from
Example 1 that the equation

(4|B) = _Z;;AJ'EEJ'I:
24

271



272

Inner Product Spaces Chap. 8

defines an inner product on V. Furthermore, if we introduce the conjugate

transpose matrix B* where B}; = B, we may express this inner product
on F» in terms of the trace function:

(A|B) = tr (AB*) = tr (B*4).
For
tr (AB*) = Z (AB*);;

=2 2 AupBi;
ik

=2 2 AuBj.
ik

ExampLE 4. Let F™%! be the space of n X 1 (column) matrices over
F, and let Q be an n X n invertible matrix over F. For X, Y in F»<! get

(X]Y) = Y*Q*QX.

We are identifying the 1 X 1 matrix on the right with its single entry.
When @ is the identity matrix, this inner product is essentially the same
as that in Example 1; we call it the standard inner product on F»*1,
The reader should note that the terminology ‘standard inner product’ is
used in two special contexts. For a general finite-dimensional vector space
over F, there is no obvious inner product that one may call standard.

ExampLE 5. Let V be the vector space of all continuous complex-
valued functions on the unit interval, 0 < ¢ < 1. Let

(7lg) = [ 7050 at

The reader is probably more familiar with the space of real-valued con-
tinuous functions on the unit interval, and for this space the complex
conjugate on ¢ may be omitted.

ExampiE 6. This is really a whole class of examples. One may con-
struct new inner products from a given one by the following method.
Let V and W be vector spaces over F and suppose ( | ) is an inner product
on W. If T is a non-singular linear transformation from V into W, then
the equation

pr(a, B) = (Ta|TB)

defines an inner product pr on V. The inner product in Example 4 is a
special case of this situation. The following are also special cases.

(a) Let V be a finite-dimensional vector space, and let

® = {c, ...,
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be an ordered basis for V. Let e, . . ., €. be the standard basis vectors in
F», andlet T be the linear transformation from V into F» such that Ta; =
¢, ] =1,...,n In other words, let T be the ‘natural’ isomorphism of V
onto F* that is determined by ®. If we take the standard inner product
on F*, then

pr(Z T, D Yrew) = Z a0
7 k =1

Thus, for any basis for V there is an inner product on V with the property
(ajlow) = 8; in fact, it is easy to show that there is exactly one such
inner product. Later we shall show that every inner product on V is
determined by some basis ® in the above manner.

(b) We look again at Example 5 and take V = W, the space of
continuous functions on the unit interval. Let T be the linear operator
‘multiplication by t,’ that is, (Tf)(#) = #f(t), 0 <t < 1. It is easy to see
that T is linear. Also T is non-singular; for suppose Tf = 0. Then ¢f(t) = 0
for 0 <t < 1; hence f(t) = 0 for ¢t > 0. Since f is continuous, we have
J(0) = 0 as well, or f = 0. Now using the inner product of Example 5,
we construct a new inner product on V by setting

prif,0) = [ (THOTH® at
= [ rygyee

We turn now to some general observations about inner products.
Suppose V is a complex vector space with an inner product. Then for all
a,BinV

(al8) = Re (|B) + 7 Im (a|B)

where Re (¢|8) and Im («|3) are the real and imaginary parts of the
complex number («|B). If 2 is a complex number, then Im (2) = Re (—72).
It follows that

Im (al8) = Re [—i(alB)] = Re (afif).

Thus the inner product is completely determined by its ‘real part’ in
accordance with

(8-2) (a|g) = Re (a|B) + 7 Re (afiB).

Occasionally it is very useful to know that an inner product on a real
or complex vector space is determined by another function, the so-called
quadratic form determined by the inner product. To define it, we first
denote the positive square root of (a|a) by ||a|; ||« is called the nerm
of @ with respect to the inner product. By looking at the standard inner
products in R, ', R2 and R3, the reader should be able to convince him-
self that it is appropriate to think of the norm of « as the ‘length’ or
‘magnitude’ of a. The quadratic form determined by the inner product
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is the function that assigns to each vector « the scalar ||a|/2 It follows
from the properties of the inner product that

lle = Bl|? = |lo||> = 2 Re (lB) + ||8]|?

for all vectors o and 8. Thus in the real case
1 1
(89 (el8) = Hlee + B[z — 1 llec — I
In the complex case we use (8-2) to obtain the more complicated expression
84)  (al8) = Fllao+ 8llr = 7 lla = B2+ & lloc+ i8Il — & [Joc — 48]
4 4 4 4

Equations (8-3) and (8-4) are called the polarization identities. Note
that (8-4) may also be written as follows:

1 & . ,
(@) = § Z, i lla + 8]l

The properties obtained above hold for any inner product on a real
or complex vector space V, regardless of its dimension. We turn now to
the case in which V is finite-dimensional. As one might guess, an inner
product on a finite-dimensional space may always be described in terms
of an ordered basis by means of a matrix.

Suppose that V is finite-dimensional, that

® = {alx"':an}

is an ordered basis for V, and that we are given a particular inner product
on V; we shall show that the inner product is completely determined by
the values

(8-5) G = (oulay)
it assumes on pairs of vectors in ®. If @ = %xkak and 8 = T yjaj, then
j
(a8) = & noz|8)
= % i (ou|B)
= % i 2 Filowla;)
?
= 2 §,G e
7k
= Y*GX

where X, Y are the coordinate matrices of «, 8 in the ordered basis ®,
and G is the matrix with entries Gj = (ax|a;). We call G the matrix
of the inner product in the ordered basis ®. It follows from (8-5)
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that G is hermitian, i.e., that G = G*; however, G is a rather special kind
of hermitian matrix. For G must satisfy the additional condition

(8-6) X*GX > 0, X #0.

In particular, G must be invertible. For otherwise there exists an X 0
such that GX = 0, and for any such X, (8-6) is impossible. More explicitly,
(8-6) says that for any scalars xy, . . ., x, not all of which are 0

(8-7) 2;,0 zGpae > 0.
I

From this we see immediately that each diagonal entry of G must be
positive; however, this condition on the diagonal entries is by no means
sufficient to insure the validity of (8-6). Sufficient conditions for the
validity of (8-6) will be given later.

The above process is reversible; that is, if G is any n X n matrix over
F which satisfies (8-6) and the condition G = G*, then ( is the matrix in
the ordered basis ® of an inner product on V. This inner product is given
by the equation

(ofB) = Y*GX

where X and Y are the coordinate matrices of @ and 8 in the ordered
basis ®.

Exercises

1. Let V be a vector space and ( | ) an inner product on V.
(a) Showthat (0|8) = Oforall8in V.
(b) Show that if (¢8) = 0 forall 8in V, then @ = 0.

2. Let V be a vector space over F. Show that the sum of two inner products
on V is an inner product on V. Is the difference of two inner products an inner
product? Show that a positive multiple of an inner product is an inner product.

3. Describe explicitly all inner products on R! and on C1.
4. Verify that the standard inner product on #7 is an inner product.
5. Let ( | ) be the standard inner product on R2
(a) Let a = (1,2), 8 = (=1, 1). If v is a vector such that (a|y) = —1 and
(Bly) =3, find 1.
(b) Show that for any @ in R? we have a = (a|e)e + (aje) e

6. Let ( | ) bethe standard inner product on R?, and let T' be the linear operator
T(xy, 22) = (=29, 21). Now T is ‘rotation through 90 and has the property
that (¢|Ta) = 0 for all @ in R2 Find all inner products [ | ] on R? such that
[¢|Ta]) = 0 for each a.

7. Let ( | ) be the standard inner product on C2% Prove that there is no non-
zero linear operator on C? such that («|Ta) = 0 for every a in C% Generalize.
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8. Let A be a 2 X 2 matrix with real entries. For X, Y in R®1 let
fa(X,Y) = Y*AX.
Show that f4 is an inner product on R*! if and only if 4 = At} Ay > 0, A > 0,
and det A > 0.

9. Let V be a real or complex vector space with an inner product. Show that the
quadratic form determined by the inner product satisfies the parallelogram law

llee + BI1* + [l — Bli* = 2llarl[* + 2]|8I|

10. Let ( | ) be the inner product on R? defined in Example 2, and let ® be
the standard ordered basis for R% Find the matrix of this inner product relative
to ®.

11. Show that the formula

2 S
(;}a,:chk)bkz) jz,;c]'-l-k'f'l
defines an inner product on the space R[] of polynomials over the field R. Let W
be the subspace of polynomials of degree less than or equal to n. Restrict the above
inner product to W, and find the matrix of this inner product on W, relative to the
ordered basis {1, z, z%, . . ., z"}. (Hint: To show that the formula defines an inner
product, observe that

(o) = [ fatt) dt

and work with the integral.)

12. Let V be a finite-dimensional vector space and let ® = {ay, ..., as} be a
basis for V. Let ( | ) be an inner product on V. If ¢y, . .., ¢, are any n scalars,
show that there is exactly one vector @ in V such that (o) = ¢, 7 =1,...,n.

13. Let V be a complex vector space. A function J from V into V is called a
conjugation if J(a + B) = J(a) + J(B), J(ca) = &J(a), and J(J(a)) = @, for
all scalars c and all &, 8 in V. If J is a conjugation show that:

(a) The set W of all @ in V such that Ja = a is a vector space over R with
respect to the operations defined in V.

(b) Foreach ain V there exist unique vectors 3, v in W such that a = 8 + 1+,

14. Let V be a complex vector space and W a subset of V with the following
properties:
(a) W is a real vector space with respect to the operations defined in V.
(b) Foreach a in V there exist unique vectors 8, v in W such that a = 3 +