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Preface

Probability is common sense reduced to calculation

Laplace

This book is an outgrowth of our involvement in teaching an introductory prob-
ability course (“Probabilistic Systems Analysis”) at the Massachusetts Institute
of Technology.

The course is attended by a large number of students with diverse back-
grounds, and a broad range of interests. They span the entire spectrum from
freshmen to beginning graduate students, and from the engineering school to the
school of management. Accordingly, we have tried to strike a balance between
simplicity in exposition and sophistication in analytical reasoning. Our key aim
has been to develop the ability to construct and analyze probabilistic models in
a manner that combines intuitive understanding and mathematical precision.

In this spirit, some of the more mathematically rigorous analysis has been
just sketched or intuitively explained in the text, so that complex proofs do not
stand in the way of an otherwise simple exposition. At the same time, some of
this analysis is developed (at the level of advanced calculus) in theoretical prob-
lems, that are included at the end of the corresponding chapter. Furthermore,
some of the subtler mathematical issues are hinted at in footnotes addressed to
the more attentive reader.

The book covers the fundamentals of probability theory (probabilistic mod-
els, discrete and continuous random variables, multiple random variables, and
limit theorems), which are typically part of a first course on the subject. It
also contains, in Chapters 4-6 a number of more advanced topics, from which an
instructor can choose to match the goals of a particular course. In particular, in
Chapter 4, we develop transforms, a more advanced view of conditioning, sums
of random variables, least squares estimation, and the bivariate normal distribu-

vii



viii Preface

tion. Furthermore, in Chapters 5 and 6, we provide a fairly detailed introduction
to Bernoulli, Poisson, and Markov processes.

Our M.I.T. course covers all seven chapters in a single semester, with the ex-
ception of the material on the bivariate normal (Section 4.7), and on continuous-
time Markov chains (Section 6.5). However, in an alternative course, the material
on stochastic processes could be omitted, thereby allowing additional emphasis
on foundational material, or coverage of other topics of the instructor’s choice.

Our most notable omission in coverage is an introduction to statistics.
While we develop all the basic elements of Bayesian statistics, in the form of
Bayes’ rule for discrete and continuous models, and least squares estimation, we
do not enter the subjects of parameter estimation, or non-Bayesian hypothesis
testing.

The problems that supplement the main text are divided in three categories:

(a) Theoretical problems: The theoretical problems (marked by *) constitute
an important component of the text, and ensure that the mathematically
oriented reader will find here a smooth development without major gaps.
Their solutions are given in the text, but an ambitious reader may be able
to solve many of them, especially in earlier chapters, before looking at the
solutions.

(b) Problems in the text: Besides theoretical problems, the text contains several
problems, of various levels of difficulty. These are representative of the
problems that are usually covered in recitation and tutorial sessions at
M.I.T., and are a primary mechanism through which many of our students
learn the material. Our hope is that students elsewhere will attempt to
solve these problems, and then refer to their solutions to calibrate and
enhance their understanding of the material. The solutions are posted on
the book’s www site

http://www.athenasc.com/probbook.html

(c) Supplementary problems: There is a large (and growing) collection of ad-
ditional problems, which is not included in the book, but is made available
at the book’s www site. Many of these problems have been assigned as
homework or exam problems at M.I.T., and we expect that instructors
elsewhere will use them for a similar purpose. While the statements of
these additional problems are publicly accessible, the solutions are made
available from the authors only to course instructors.

We would like to acknowledge our debt to several people who contributed
in various ways to the book. Our writing project began when we assumed re-
sponsibility for a popular probability class at M.I.T. that our colleague Al Drake
had taught for several decades. We were thus fortunate to start with an organi-
zation of the subject that had stood the test of time, a lively presentation of the
various topics in Al’s classic textbook, and a rich set of material that had been
used in recitation sessions and for homework. We are thus indebted to Al Drake
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for providing a very favorable set of initial conditions.
We are thankful to the several colleagues who have either taught from the

draft of the book at various universities or have read it, and have provided us
with valuable feedback. In particular, we thank Ibrahim Abou Faycal, Gustavo
de Veciana, Eugene Feinberg, Bob Gray, Muriel Médard, Jason Papastavrou,
Ilya Pollak, David Tse, and Terry Wagner.

The teaching assistants for the M.I.T. class have been very helpful. They
pointed out corrections to various drafts, they developed problems and solutions
suitable for the class, and through their direct interaction with the student body,
they provided a robust mechanism for calibrating the level of the material.

Reaching thousands of bright students at M.I.T. at an early stage in their
studies was a great source of satisfaction for us. We thank them for their valu-
able feedback and for being patient while they were taught from a textbook-in-
progress.

Last but not least, we are grateful to our families for their support through-
out the course of this long project.

Dimitri P. Bertsekas, dimitrib@mit.edu
John N. Tsitsiklis, jnt@mit.edu

Cambridge, Mass., May 2002
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2 Sample Space and Probability Chap. 1

“Probability” is a very useful concept, but can be interpreted in a number of
ways. As an illustration, consider the following.

A patient is admitted to the hospital and a potentially life-saving drug is
administered. The following dialog takes place between the nurse and a
concerned relative.

RELATIVE: Nurse, what is the probability that the drug will work?
NURSE: I hope it works, we’ll know tomorrow.
RELATIVE: Yes, but what is the probability that it will?
NURSE: Each case is different, we have to wait.
RELATIVE: But let’s see, out of a hundred patients that are treated under
similar conditions, how many times would you expect it to work?
NURSE (somewhat annoyed): I told you, every person is different, for some
it works, for some it doesn’t.
RELATIVE (insisting): Then tell me, if you had to bet whether it will work
or not, which side of the bet would you take?
NURSE (cheering up for a moment): I’d bet it will work.
RELATIVE (somewhat relieved): OK, now, would you be willing to lose two
dollars if it doesn’t work, and gain one dollar if it does?
NURSE (exasperated): What a sick thought! You are wasting my time!

In this conversation, the relative attempts to use the concept of probability
to discuss an uncertain situation. The nurse’s initial response indicates that the
meaning of “probability” is not uniformly shared or understood, and the relative
tries to make it more concrete. The first approach is to define probability in
terms of frequency of occurrence, as a percentage of successes in a moderately
large number of similar situations. Such an interpretation is often natural. For
example, when we say that a perfectly manufactured coin lands on heads “with
probability 50%,” we typically mean “roughly half of the time.” But the nurse
may not be entirely wrong in refusing to discuss in such terms. What if this
was an experimental drug that was administered for the very first time in this
hospital or in the nurse’s experience?

While there are many situations involving uncertainty in which the fre-
quency interpretation is appropriate, there are other situations in which it is
not. Consider, for example, a scholar who asserts that the Iliad and the Odyssey
were composed by the same person, with probability 90%. Such an assertion
conveys some information, but not in terms of frequencies, since the subject is
a one-time event. Rather, it is an expression of the scholar’s subjective be-
lief. One might think that subjective beliefs are not interesting, at least from a
mathematical or scientific point of view. On the other hand, people often have
to make choices in the presence of uncertainty, and a systematic way of making
use of their beliefs is a prerequisite for successful, or at least consistent, decision
making.
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In fact, the choices and actions of a rational person, can reveal a lot about
the inner-held subjective probabilities, even if the person does not make conscious
use of probabilistic reasoning. Indeed, the last part of the earlier dialog was an
attempt to infer the nurse’s beliefs in an indirect manner. Since the nurse was
willing to accept a one-for-one bet that the drug would work, we may infer
that the probability of success was judged to be at least 50%. And had the
nurse accepted the last proposed bet (two-for-one), that would have indicated a
success probability of at least 2/3.

Rather than dwelling further into philosophical issues about the appropri-
ateness of probabilistic reasoning, we will simply take it as a given that the theory
of probability is useful in a broad variety of contexts, including some where the
assumed probabilities only reflect subjective beliefs. There is a large body of
successful applications in science, engineering, medicine, management, etc., and
on the basis of this empirical evidence, probability theory is an extremely useful
tool.

Our main objective in this book is to develop the art of describing un-
certainty in terms of probabilistic models, as well as the skill of probabilistic
reasoning. The first step, which is the subject of this chapter, is to describe
the generic structure of such models, and their basic properties. The models we
consider assign probabilities to collections (sets) of possible outcomes. For this
reason, we must begin with a short review of set theory.

1.1 SETS

Probability makes extensive use of set operations, so let us introduce at the
outset the relevant notation and terminology.

A set is a collection of objects, which are the elements of the set. If S is
a set and x is an element of S, we write x ∈ S. If x is not an element of S, we
write x /∈ S. A set can have no elements, in which case it is called the empty
set, denoted by Ø.

Sets can be specified in a variety of ways. If S contains a finite number of
elements, say x1, x2, . . . , xn, we write it as a list of the elements, in braces:

S = {x1, x2, . . . , xn}.
For example, the set of possible outcomes of a die roll is {1, 2, 3, 4, 5, 6}, and the
set of possible outcomes of a coin toss is {H, T}, where H stands for “heads”
and T stands for “tails.”

If S contains infinitely many elements x1, x2, . . ., which can be enumerated
in a list (so that there are as many elements as there are positive integers) we
write

S = {x1, x2, . . .},
and we say that S is countably infinite. For example, the set of even integers
can be written as {0, 2,−2, 4,−4, . . .}, and is countably infinite.
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Alternatively, we can consider the set of all x that have a certain property
P , and denote it by

{x |x satisfies P}.

(The symbol “|” is to be read as “such that.”) For example, the set of even
integers can be written as {k | k/2 is integer}. Similarly, the set of all scalars x
in the interval [0, 1] can be written as {x | 0 ≤ x ≤ 1}. Note that the elements x
of the latter set take a continuous range of values, and cannot be written down
in a list (a proof is sketched in the end-of-chapter problems); such a set is said
to be uncountable.

If every element of a set S is also an element of a set T , we say that S
is a subset of T , and we write S ⊂ T or T ⊃ S. If S ⊂ T and T ⊂ S, the
two sets are equal, and we write S = T . It is also expedient to introduce a
universal set, denoted by Ω, which contains all objects that could conceivably
be of interest in a particular context. Having specified the context in terms of a
universal set Ω, we only consider sets S that are subsets of Ω.

Set Operations

The complement of a set S, with respect to the universe Ω, is the set {x ∈
Ω |x /∈ S} of all elements of Ω that do not belong to S, and is denoted by Sc.
Note that Ωc = Ø.

The union of two sets S and T is the set of all elements that belong to S
or T (or both), and is denoted by S ∪ T . The intersection of two sets S and T
is the set of all elements that belong to both S and T , and is denoted by S ∩ T .
Thus,

S ∪ T = {x |x ∈ S or x ∈ T},

and
S ∩ T = {x |x ∈ S and x ∈ T}.

In some cases, we will have to consider the union or the intersection of several,
even infinitely many sets, defined in the obvious way. For example, if for every
positive integer n, we are given a set Sn, then

∞⋃
n=1

Sn = S1 ∪ S2 ∪ · · · = {x |x ∈ Sn for some n},

and
∞⋂

n=1

Sn = S1 ∩ S2 ∩ · · · = {x |x ∈ Sn for all n}.

Two sets are said to be disjoint if their intersection is empty. More generally,
several sets are said to be disjoint if no two of them have a common element. A
collection of sets is said to be a partition of a set S if the sets in the collection
are disjoint and their union is S.
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If x and y are two objects, we use (x, y) to denote the ordered pair of x
and y. The set of scalars (real numbers) is denoted by �; the set of pairs (or
triplets) of scalars, i.e., the two-dimensional plane (or three-dimensional space,
respectively) is denoted by �2 (or �3, respectively).

Sets and the associated operations are easy to visualize in terms of Venn
diagrams, as illustrated in Fig. 1.1.

S

T

Ω

T

Ω Ω

S S

T

(a) (b)

S

T

Ω

(c)

S

T

Ω

(d) (e)

U S

T
Ω

(f )

U

Figure 1.1: Examples of Venn diagrams. (a) The shaded region is S ∩ T . (b)
The shaded region is S ∪ T . (c) The shaded region is S ∩ T c. (d) Here, T ⊂ S.
The shaded region is the complement of S. (e) The sets S, T , and U are disjoint.
(f) The sets S, T , and U form a partition of the set Ω.

The Algebra of Sets

Set operations have several properties, which are elementary consequences of the
definitions. Some examples are:

S ∪ T = T ∪ S, S ∪ (T ∪ U) = (S ∪ T ) ∪ U,
S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U), S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U),

(Sc)c = S, S ∩ Sc = Ø,
S ∪ Ω = Ω, S ∩ Ω = S.

Two particularly useful properties are given by De Morgan’s laws which
state that (⋃

n

Sn

)c

=
⋂
n

Sc
n,

(⋂
n

Sn

)c

=
⋃
n

Sc
n.

To establish the first law, suppose that x ∈ (∪nSn)c. Then, x /∈ ∪nSn, which
implies that for every n, we have x /∈ Sn. Thus, x belongs to the complement
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of every Sn, and xn ∈ ∩nSc
n. This shows that (∪nSn)c ⊂ ∩nSc

n. The converse
inclusion is established by reversing the above argument, and the first law follows.
The argument for the second law is similar.

1.2 PROBABILISTIC MODELS

A probabilistic model is a mathematical description of an uncertain situation.
It must be in accordance with a fundamental framework that we discuss in this
section. Its two main ingredients are listed below and are visualized in Fig. 1.2.

Elements of a Probabilistic Model

• The sample space Ω, which is the set of all possible outcomes of an
experiment.

• The probability law, which assigns to a set A of possible outcomes
(also called an event) a nonnegative number P(A) (called the proba-
bility of A) that encodes our knowledge or belief about the collective
“likelihood” of the elements of A. The probability law must satisfy
certain properties to be introduced shortly.

Experiment

Sample space
(Set of possible outcomes)

Event A

Event B

A B
Events

P(A)

P(B)

Probability
law

Figure 1.2: The main ingredients of a probabilistic model.

Sample Spaces and Events

Every probabilistic model involves an underlying process, called the experi-
ment, that will produce exactly one out of several possible outcomes. The set
of all possible outcomes is called the sample space of the experiment, and is
denoted by Ω. A subset of the sample space, that is, a collection of possible
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outcomes, is called an event.† There is no restriction on what constitutes an
experiment. For example, it could be a single toss of a coin, or three tosses,
or an infinite sequence of tosses. However, it is important to note that in our
formulation of a probabilistic model, there is only one experiment. So, three
tosses of a coin constitute a single experiment, rather than three experiments.

The sample space of an experiment may consist of a finite or an infinite
number of possible outcomes. Finite sample spaces are conceptually and math-
ematically simpler. Still, sample spaces with an infinite number of elements are
quite common. For an example, consider throwing a dart on a square target and
viewing the point of impact as the outcome.

Choosing an Appropriate Sample Space

Regardless of their number, different elements of the sample space should be
distinct and mutually exclusive so that when the experiment is carried out,
there is a unique outcome. For example, the sample space associated with the
roll of a die cannot contain “1 or 3” as a possible outcome and also “1 or 4”
as another possible outcome, because we would not be able to assign a unique
outcome when the roll is a 1.

A given physical situation may be modeled in several different ways, de-
pending on the kind of questions that we are interested in. Generally, the sample
space chosen for a probabilistic model must be collectively exhaustive, in the
sense that no matter what happens in the experiment, we always obtain an out-
come that has been included in the sample space. In addition, the sample space
should have enough detail to distinguish between all outcomes of interest to the
modeler, while avoiding irrelevant details.

Example 1.1. Consider two alternative games, both involving ten successive coin
tosses:

Game 1: We receive $1 each time a head comes up.

Game 2: We receive $1 for every coin toss, up to and including the first time
a head comes up. Then, we receive $2 for every coin toss, up to the second
time a head comes up. More generally, the dollar amount per toss is doubled
each time a head comes up.

† Any collection of possible outcomes, including the entire sample space Ω and
its complement, the empty set Ø, may qualify as an event. Strictly speaking, however,
some sets have to be excluded. In particular, when dealing with probabilistic models
involving an uncountably infinite sample space, there are certain unusual subsets for
which one cannot associate meaningful probabilities. This is an intricate technical issue,
involving the mathematics of measure theory. Fortunately, such pathological subsets
do not arise in the problems considered in this text or in practice, and the issue can be
safely ignored.
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In game 1, it is only the total number of heads in the ten-toss sequence that mat-
ters, while in game 2, the order of heads and tails is also important. Thus, in
a probabilistic model for game 1, we can work with a sample space consisting of
eleven possible outcomes, namely, 0, 1, . . . , 10. In game 2, a finer grain description
of the experiment is called for, and it is more appropriate to let the sample space
consist of every possible ten-long sequence of heads and tails.

Sequential Models

Many experiments have an inherently sequential character, such as for example
tossing a coin three times, or observing the value of a stock on five successive
days, or receiving eight successive digits at a communication receiver. It is then
often useful to describe the experiment and the associated sample space by means
of a tree-based sequential description, as in Fig. 1.3.

1
1 2

2

3

3

4

4

Tree-based sequential
description

Sample space 
for a pair of rolls

1st roll

2nd roll

1,1
1,2
1,3
1,4

1

2

3

4

Root

Leaves

Figure 1.3: Two equivalent descriptions of the sample space of an experiment
involving two rolls of a 4-sided die. The possible outcomes are all the ordered pairs
of the form (i, j), where i is the result of the first roll, and j is the result of the
second. These outcomes can be arranged in a 2-dimensional grid as in the figure
on the left, or they can be described by the tree on the right, which reflects the
sequential character of the experiment. Here, each possible outcome corresponds
to a leaf of the tree and is associated with the unique path from the root to
that leaf. The shaded area on the left is the event {(1, 4), (2, 4), (3, 4), (4, 4)}
that the result of the second roll is 4. That same event can be described by the
set of leaves highlighted on the right. Note also that every node of the tree can
be identified with an event, namely, the set of all leaves downstream from that
node. For example, the node labeled by a 1 can be identified with the event
{(1, 1), (1, 2), (1, 3), (1, 4)} that the result of the first roll is 1.

Probability Laws

Suppose we have settled on the sample space Ω associated with an experiment.
Then, to complete the probabilistic model, we must introduce a probability
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law. Intuitively, this specifies the “likelihood” of any outcome, or of any set of
possible outcomes (an event, as we have called it earlier). More precisely, the
probability law assigns to every event A, a number P(A), called the probability
of A, satisfying the following axioms.

Probability Axioms

1. (Nonnegativity) P(A) ≥ 0, for every event A.

2. (Additivity) If A and B are two disjoint events, then the probability
of their union satisfies

P(A ∪ B) = P(A) + P(B).

More generally, if the sample space has an infinite number of elements
and A1, A2, . . . is a sequence of disjoint events, then the probability of
their union satisfies

P(A1 ∪ A2 ∪ · · ·) = P(A1) + P(A2) + · · · .

3. (Normalization) The probability of the entire sample space Ω is
equal to 1, that is, P(Ω) = 1.

In order to visualize a probability law, consider a unit of mass which is
“spread” over the sample space. Then, P(A) is simply the total mass that was
assigned collectively to the elements of A. In terms of this analogy, the additivity
axiom becomes quite intuitive: the total mass in a sequence of disjoint events is
the sum of their individual masses.

A more concrete interpretation of probabilities is in terms of relative fre-
quencies: a statement such as P(A) = 2/3 often represents a belief that event A
will occur in about two thirds out of a large number of repetitions of the exper-
iment. Such an interpretation, though not always appropriate, can sometimes
facilitate our intuitive understanding. It will be revisited in Chapter 7, in our
study of limit theorems.

There are many natural properties of a probability law, which have not been
included in the above axioms for the simple reason that they can be derived
from them. For example, note that the normalization and additivity axioms
imply that

1 = P(Ω) = P(Ω ∪ Ø) = P(Ω) + P(Ø) = 1 + P(Ø),

and this shows that the probability of the empty event is 0:

P(Ø) = 0.
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As another example, consider three disjoint events A1, A2, and A3. We can use
the additivity axiom for two disjoint events repeatedly, to obtain

P(A1 ∪ A2 ∪ A3) = P
(
A1 ∪ (A2 ∪ A3)

)
= P(A1) + P(A2 ∪ A3)
= P(A1) + P(A2) + P(A3).

Proceeding similarly, we obtain that the probability of the union of finitely many
disjoint events is always equal to the sum of the probabilities of these events.
More such properties will be considered shortly.

Discrete Models

Here is an illustration of how to construct a probability law starting from some
common sense assumptions about a model.

Example 1.2. Consider an experiment involving a single coin toss. There are
two possible outcomes, heads (H) and tails (T ). The sample space is Ω = {H, T},
and the events are

{H, T}, {H}, {T}, Ø.

If the coin is fair, i.e., if we believe that heads and tails are “equally likely,” we
should assign equal probabilities to the two possible outcomes and specify that
P({H}) = P({T}) = 0.5. The additivity axiom implies that

P
(
{H, T}

)
= P

(
{H}

)
+ P

(
{T}

)
= 1,

which is consistent with the normalization axiom. Thus, the probability law is given
by

P
(
{H, T}

)
= 1, P

(
{H}

)
= 0.5, P

(
{T}

)
= 0.5, P(Ø) = 0,

and satisfies all three axioms.
Consider another experiment involving three coin tosses. The outcome will

now be a 3-long string of heads or tails. The sample space is

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}.

We assume that each possible outcome has the same probability of 1/8. Let us
construct a probability law that satisfies the three axioms. Consider, as an example,
the event

A = {exactly 2 heads occur} = {HHT, HTH, THH}.

Using additivity, the probability of A is the sum of the probabilities of its elements:

P
(
{HHT, HTH, THH}

)
= P

(
{HHT}

)
+ P

(
{HTH}

)
+ P

(
{THH}

)
=

1

8
+

1

8
+

1

8

=
3

8
.
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Similarly, the probability of any event is equal to 1/8 times the number of possible
outcomes contained in the event. This defines a probability law that satisfies the
three axioms.

By using the additivity axiom and by generalizing the reasoning in the
preceding example, we reach the following conclusion.

Discrete Probability Law

If the sample space consists of a finite number of possible outcomes, then the
probability law is specified by the probabilities of the events that consist of
a single element. In particular, the probability of any event {s1, s2, . . . , sn}
is the sum of the probabilities of its elements:

P
(
{s1, s2, . . . , sn}

)
= P(s1) + P(s2) + · · · + P(sn).

Note that we are using here the simpler notation P(si) to denote the prob-
ability of the event {si}, instead of the more precise P({si}). This convention
will be used throughout the remainder of the book.

In the special case where the probabilities P(s1), . . . ,P(sn) are all the same
(by necessity equal to 1/n, in view of the normalization axiom), we obtain the
following.

Discrete Uniform Probability Law

If the sample space consists of n possible outcomes which are equally likely
(i.e., all single-element events have the same probability), then the proba-
bility of any event A is given by

P(A) =
number of elements of A

n
.

Let us provide a few more examples of sample spaces and probability laws.

Example 1.3. Consider the experiment of rolling a pair of 4-sided dice (cf. Fig.
1.4). We assume the dice are fair, and we interpret this assumption to mean that
each of the sixteen possible outcomes [pairs (i, j), with i, j = 1, 2, 3, 4], has the same
probability of 1/16. To calculate the probability of an event, we must count the
number of elements of the event and divide by 16 (the total number of possible
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outcomes). Here are some event probabilities calculated in this way:

P
(
{the sum of the rolls is even}

)
= 8/16 = 1/2,

P
(
{the sum of the rolls is odd}

)
= 8/16 = 1/2,

P
(
{the first roll is equal to the second}

)
= 4/16 = 1/4,

P
(
{the first roll is larger than the second}

)
= 6/16 = 3/8,

P
(
{at least one roll is equal to 4}

)
= 7/16.

1
1 2

2

3

3

4

4

Sample space for a
pair of rolls

1st roll

2nd roll

Event = {the first roll is equal to the second}
Probability = 4/16

Event = {at least one roll is a 4}
Probability = 7/16

Figure 1.4: Various events in the experiment of rolling a pair of 4-sided dice,
and their probabilities, calculated according to the discrete uniform law.

Continuous Models

Probabilistic models with continuous sample spaces differ from their discrete
counterparts in that the probabilities of the single-element events may not be
sufficient to characterize the probability law. This is illustrated in the following
examples, which also indicate how to generalize the uniform probability law to
the case of a continuous sample space.

Example 1.4. A wheel of fortune is continuously calibrated from 0 to 1, so the
possible outcomes of an experiment consisting of a single spin are the numbers in
the interval Ω = [0, 1]. Assuming a fair wheel, it is appropriate to consider all
outcomes equally likely, but what is the probability of the event consisting of a
single element? It cannot be positive, because then, using the additivity axiom, it
would follow that events with a sufficiently large number of elements would have



Sec. 1.2 Probabilistic Models 13

probability larger than 1. Therefore, the probability of any event that consists of a
single element must be 0.

In this example, it makes sense to assign probability b − a to any subinter-
val [a, b] of [0, 1], and to calculate the probability of a more complicated set by

evaluating its “length.”† This assignment satisfies the three probability axioms and
qualifies as a legitimate probability law.

Example 1.5. Romeo and Juliet have a date at a given time, and each will arrive
at the meeting place with a delay between 0 and 1 hour, with all pairs of delays
being equally likely. The first to arrive will wait for 15 minutes and will leave if the
other has not yet arrived. What is the probability that they will meet?

Let us use as sample space the unit square, whose elements are the possible
pairs of delays for the two of them. Our interpretation of “equally likely” pairs of
delays is to let the probability of a subset of Ω be equal to its area. This probability
law satisfies the three probability axioms. The event that Romeo and Juliet will
meet is the shaded region in Fig. 1.5, and its probability is calculated to be 7/16.

0 1

1

1/4

1/4 x

y

M

Figure 1.5: The event M that Romeo and Juliet will arrive within 15 minutes
of each other (cf. Example 1.5) is

M =
{

(x, y)
∣∣ |x − y| ≤ 1/4, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

}
,

and is shaded in the figure. The area of M is 1 minus the area of the two unshaded
triangles, or 1 − (3/4) · (3/4) = 7/16. Thus, the probability of meeting is 7/16.

† The “length” of a subset S of [0, 1] is the integral
∫

S
dt, which is defined, for

“nice” sets S, in the usual calculus sense. For unusual sets, this integral may not be
well defined mathematically, but such issues belong to a more advanced treatment of
the subject. Incidentally, the legitimacy of using length as a probability law hinges on
the fact that the unit interval has an uncountably infinite number of elements. Indeed,
if the unit interval had a countable number of elements, with each element having
zero probability, the additivity axiom would imply that the whole interval has zero
probability, which would contradict the normalization axiom.



14 Sample Space and Probability Chap. 1

Properties of Probability Laws

Probability laws have a number of properties, which can be deduced from the
axioms. Some of them are summarized below.

Some Properties of Probability Laws

Consider a probability law, and let A, B, and C be events.

(a) If A ⊂ B, then P(A) ≤ P(B).

(b) P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

(c) P(A ∪ B) ≤ P(A) + P(B).

(d) P(A ∪ B ∪ C) = P(A) + P(Ac ∩ B) + P(Ac ∩ Bc ∩ C).

These properties, and other similar ones, can be visualized and verified
graphically using Venn diagrams, as in Fig. 1.6. Note that property (c) can be
generalized as follows:

P(A1 ∪ A2 ∪ · · · ∪ An) ≤
n∑

i=1

P(Ai).

To see this, we apply property (c) to the sets A1 and A2 ∪ · · · ∪ An, to obtain

P(A1 ∪ A2 ∪ · · · ∪ An) ≤ P(A1) + P(A2 ∪ · · · ∪ An).

We also apply property (c) to the sets A2 and A3 ∪ · · · ∪ An, to obtain

P(A2 ∪ · · · ∪ An) ≤ P(A2) + P(A3 ∪ · · · ∪ An).

We continue similarly, and finally add.

Models and Reality

The framework of probability theory can be used to analyze uncertainty in a
wide variety of physical contexts. Typically, this involves two distinct stages.

(a) In the first stage, we construct a probabilistic model, by specifying a prob-
ability law on a suitably defined sample space. There are no hard rules to
guide this step, other than the requirement that the probability law con-
form to the three axioms. Reasonable people may disagree on which model
best represents reality. In many cases, one may even want to use a some-
what “incorrect” model, if it is simpler than the “correct” one or allows for
tractable calculations. This is consistent with common practice in science
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and engineering, where the choice of a model often involves a tradeoff be-
tween accuracy, simplicity, and tractability. Sometimes, a model is chosen
on the basis of historical data or past outcomes of similar experiments,
using methods from the field of statistics.

BcAc

A B

(a)

(c)

A B

C
B

U

AcU U

C

(b)

A B

B

U

A B

U

Ac

Figure 1.6: Visualization and verification of various properties of probability
laws using Venn diagrams. If A ⊂ B, then B is the union of the two disjoint
events A and Ac ∩ B; see diagram (a). Therefore, by the additivity axiom, we
have

P(B) = P(A) + P(Ac ∩ B) ≥ P(A),

where the inequality follows from the nonnegativity axiom, and verifies prop-
erty (a).

From diagram (b), we can express the events A ∪ B and B as unions of
disjoint events:

A ∪ B = A ∪ (Ac ∩ B), B = (A ∩ B) ∪ (Ac ∩ B).

Using the additivity axiom, we have

P(A ∪ B) = P(A) + P(Ac ∩ B), P(B) = P(A ∩ B) + P(Ac ∩ B).

Subtracting the second equality from the first and rearranging terms, we obtain
P(A∪B) = P(A)+P(B)−P(A∩B), verifying property (b). Using also the fact
P(A ∩ B) ≥ 0 (the nonnegativity axiom), we obtain P(A ∪ B) ≤ P(A) + P(B),
verifying property (c).

From diagram (c), we see that the event A ∪ B ∪ C can be expressed as a
union of three disjoint events:

A ∪ B ∪ C = A ∪ (Ac ∩ B) ∪ (Ac ∩ Bc ∩ C),

so property (d) follows as a consequence of the additivity axiom.
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(b) In the second stage, we work within a fully specified probabilistic model and
derive the probabilities of certain events, or deduce some interesting prop-
erties. While the first stage entails the often open-ended task of connecting
the real world with mathematics, the second one is tightly regulated by the
rules of ordinary logic and the axioms of probability. Difficulties may arise
in the latter if some required calculations are complex, or if a probability
law is specified in an indirect fashion. Even so, there is no room for ambi-
guity: all conceivable questions have precise answers and it is only a matter
of developing the skill to arrive at them.

Probability theory is full of “paradoxes” in which different calculation
methods seem to give different answers to the same question. Invariably though,
these apparent inconsistencies turn out to reflect poorly specified or ambiguous
probabilistic models. An example, Bertrand’s paradox, is shown in Fig. 1.7.

.

.

A

.
B

C

midpoint 
of ABchord through C

(a)

at angle Φ
chord 

V

Φ

(b)

Figure 1.7: This example, presented by L. F. Bertrand in 1889, illustrates the
need to specify unambiguously a probabilistic model. Consider a circle and an
equilateral triangle inscribed in the circle. What is the probability that the length
of a randomly chosen chord of the circle is greater than the side of the triangle?
The answer here depends on the precise meaning of “randomly chosen.” The two
methods illustrated in parts (a) and (b) of the figure lead to contradictory results.

In (a), we take a radius of the circle, such as AB, and we choose a point
C on that radius, with all points being equally likely. We then draw the chord
through C that is orthogonal to AB. From elementary geometry, AB intersects
the triangle at the midpoint of AB, so the probability that the length of the chord
is greater than the side is 1/2.

In (b), we take a point on the circle, such as the vertex V , we draw the
tangent to the circle through V , and we draw a line through V that forms a random
angle Φ with the tangent, with all angles being equally likely. We consider the
chord obtained by the intersection of this line with the circle. From elementary
geometry, the length of the chord is greater that the side of the triangle if Φ is
between π/3 and 2π/3. Since Φ takes values between 0 and π, the probability
that the length of the chord is greater than the side is 1/3.
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A Brief History of Probability

• B.C. Games of chance were popular in ancient Greece and Rome, but
no scientific development of the subject took place, possibly because
the number system used by the Greeks did not facilitate algebraic
calculations. The development of probability based on sound scientific
analysis had to await the development of the modern arithmetic system
by the Hindus and the Arabs in the second half of the first millennium,
as well as the flood of scientific ideas generated by the Renaissance.

• 16th century. Girolamo Cardano, a colorful and controversial Italian
mathematician, publishes the first book describing correct methods for
calculating probabilities in games of chance such as dice and cards.

• 17th century. A correspondence between Fermat and Pascal touches
upon several interesting probability questions, and motivates further
study in the field.

• 18th century. Jacob Bernoulli studies repeated coin tossing and in-
troduces the first law of large numbers, which lays a foundation for
linking theoretical probability concepts and empirical fact. Several
mathematicians, such as Daniel Bernoulli, Leibnitz, Bayes, and La-
grange, make important contributions to probability theory and its use
in analyzing real-world phenomena. De Moivre introduces the normal
distribution and proves the first form of the central limit theorem.

• 19th century. Laplace publishes an influential book that establishes
the importance of probability as a quantitative field and contains many
original contributions, including a more general version of the central
limit theorem. Legendre and Gauss apply probability to astronomi-
cal predictions, using the method of least squares, thus pointing the
way to a vast range of applications. Poisson publishes an influential
book with many original contributions, including the Poisson distri-
bution. Chebyshev, and his students Markov and Lyapunov, study
limit theorems and raise the standards of mathematical rigor in the
field. Throughout this period, probability theory is largely viewed as
a natural science, its primary goal being the explanation of physical
phenomena. Consistently with this goal, probabilities are mainly in-
terpreted as limits of relative frequencies in the context of repeatable
experiments.

• 20th century. Relative frequency is abandoned as the conceptual foun-
dation of probability theory in favor of the axiomatic system that
is universally used now. Similar to other branches of mathematics,
the development of probability theory from the axioms relies only on
logical correctness, regardless of its relevance to physical phenomena.
Nonetheless, probability theory is used pervasively in science and en-
gineering because of its ability to describe and interpret most types of
uncertain phenomena in the real world.
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1.3 CONDITIONAL PROBABILITY

Conditional probability provides us with a way to reason about the outcome
of an experiment, based on partial information. Here are some examples of
situations we have in mind:

(a) In an experiment involving two successive rolls of a die, you are told that
the sum of the two rolls is 9. How likely is it that the first roll was a 6?

(b) In a word guessing game, the first letter of the word is a “t”. What is the
likelihood that the second letter is an “h”?

(c) How likely is it that a person has a disease given that a medical test was
negative?

(d) A spot shows up on a radar screen. How likely is it that it corresponds to
an aircraft?

In more precise terms, given an experiment, a corresponding sample space,
and a probability law, suppose that we know that the outcome is within some
given event B. We wish to quantify the likelihood that the outcome also belongs
to some other given event A. We thus seek to construct a new probability law,
which takes into account the available knowledge and which, for any event A,
gives us the conditional probability of A given B, denoted by P(A |B).

We would like the conditional probabilities P(A |B) of different events A to
constitute a legitimate probability law, that satisfies the probability axioms. The
conditional probabilities should also be consistent with our intuition in important
special cases, e.g., when all possible outcomes of the experiment are equally likely.
For example, suppose that all six possible outcomes of a fair die roll are equally
likely. If we are told that the outcome is even, we are left with only three possible
outcomes, namely, 2, 4, and 6. These three outcomes were equally likely to start
with, and so they should remain equally likely given the additional knowledge
that the outcome was even. Thus, it is reasonable to let

P(the outcome is 6 | the outcome is even) =
1
3
.

This argument suggests that an appropriate definition of conditional probability
when all outcomes are equally likely, is given by

P(A |B) =
number of elements of A ∩ B

number of elements of B
.

Generalizing the argument, we introduce the following definition of condi-
tional probability:

P(A |B) =
P(A ∩ B)

P(B)
,
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where we assume that P(B) > 0; the conditional probability is undefined if the
conditioning event has zero probability. In words, out of the total probability of
the elements of B, P(A |B) is the fraction that is assigned to possible outcomes
that also belong to A.

Conditional Probabilities Specify a Probability Law

For a fixed event B, it can be verified that the conditional probabilities P(A |B)
form a legitimate probability law that satisfies the three axioms. Indeed, non-
negativity is clear. Furthermore,

P(Ω |B) =
P(Ω ∩ B)

P(B)
=

P(B)
P(B)

= 1,

and the normalization axiom is also satisfied. To verify the additivity axiom, we
write for any two disjoint events A1 and A2,

P(A1 ∪ A2 |B) =
P

(
(A1 ∪ A2) ∩ B

)
P(B)

=
P((A1 ∩ B) ∪ (A2 ∩ B))

P(B)

=
P(A1 ∩ B) + P(A2 ∩ B)

P(B)

=
P(A1 ∩ B)

P(B)
+

P(A2 ∩ B)
P(B)

= P(A1 |B) + P(A2 |B),

where for the third equality, we used the fact that A1 ∩ B and A2 ∩ B are
disjoint sets, and the additivity axiom for the (unconditional) probability law.
The argument for a countable collection of disjoint sets is similar.

Since conditional probabilities constitute a legitimate probability law, all
general properties of probability laws remain valid. For example, a fact such as
P(A ∪ C) ≤ P(A) + P(C) translates to the new fact

P(A ∪ C |B) ≤ P(A |B) + P(C |B).

Let us also note that since we have P(B |B) = P(B)/P(B) = 1, all of the con-
ditional probability is concentrated on B. Thus, we might as well discard all
possible outcomes outside B and treat the conditional probabilities as a proba-
bility law defined on the new universe B.

Let us summarize the conclusions reached so far.
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Properties of Conditional Probability

• The conditional probability of an event A, given an event B with
P(B) > 0, is defined by

P(A |B) =
P(A ∩ B)

P(B)
,

and specifies a new (conditional) probability law on the same sample
space Ω. In particular, all known properties of probability laws remain
valid for conditional probability laws.

• Conditional probabilities can also be viewed as a probability law on a
new universe B, because all of the conditional probability is concen-
trated on B.

• In the case where the possible outcomes are finitely many and equally
likely, we have

P(A |B) =
number of elements of A ∩ B

number of elements of B
.

Example 1.6. We toss a fair coin three successive times. We wish to find the
conditional probability P(A |B) when A and B are the events

A = {more heads than tails come up}, B = {1st toss is a head}.

The sample space consists of eight sequences,

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT},

which we assume to be equally likely. The event B consists of the four elements
HHH, HHT, HTH, HTT , so its probability is

P(B) =
4

8
.

The event A ∩ B consists of the three elements HHH, HHT, HTH, so its proba-
bility is

P(A ∩ B) =
3

8
.

Thus, the conditional probability P(A |B) is

P(A |B) =
P(A ∩ B)

P(B)
=

3/8

4/8
=

3

4
.
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Because all possible outcomes are equally likely here, we can also compute P(A |B)
using a shortcut. We can bypass the calculation of P(B) and P(A∩B), and simply
divide the number of elements shared by A and B (which is 3) with the number of
elements of B (which is 4), to obtain the same result 3/4.

Example 1.7. A fair 4-sided die is rolled twice and we assume that all sixteen
possible outcomes are equally likely. Let X and Y be the result of the 1st and the
2nd roll, respectively. We wish to determine the conditional probability P(A |B),
where

A =
{
max(X, Y ) = m

}
, B =

{
min(X, Y ) = 2

}
,

and m takes each of the values 1, 2, 3, 4.
As in the preceding example, we can first determine the probabilities P(A∩B)

and P(B) by counting the number of elements of A ∩ B and B, respectively, and
dividing by 16. Alternatively, we can directly divide the number of elements of
A ∩ B with the number of elements of B; see Fig. 1.8.

1
1 2

2

3

3

4

4

All outcomes equally likely

Probability = 1/16

1st roll X

2nd roll Y

B

Figure 1.8: Sample space of an experiment involving two rolls of a 4-sided die.
(cf. Example 1.7). The conditioning event B = {min(X, Y ) = 2} consists of the
5-element shaded set. The set A = {max(X, Y ) = m} shares with B two elements
if m = 3 or m = 4, one element if m = 2, and no element if m = 1. Thus, we have

P
(
{max(X, Y ) = m}

∣∣ B
)

=

{
2/5, if m = 3 or m = 4,

1/5, if m = 2,

0, if m = 1.

Example 1.8. A conservative design team, call it C, and an innovative design
team, call it N, are asked to separately design a new product within a month. From
past experience we know that:

(a) The probability that team C is successful is 2/3.

(b) The probability that team N is successful is 1/2.
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(c) The probability that at least one team is successful is 3/4.

Assuming that exactly one successful design is produced, what is the probability
that it was designed by team N?

There are four possible outcomes here, corresponding to the four combinations
of success and failure of the two teams:

SS: both succeed, FF : both fail,
SF : C succeeds, N fails, FS: C fails, N succeeds.

We are given that the probabilities of these outcomes satisfy

P(SS) + P(SF ) =
2

3
, P(SS) + P(FS) =

1

2
, P(SS) + P(SF ) + P(FS) =

3

4
.

From these relations, together with the normalization equation

P(SS) + P(SF ) + P(FS) + P(FF ) = 1,

we can obtain the probabilities of all the outcomes:

P(SS) =
5

12
, P(SF ) =

1

4
, P(FS) =

1

12
, P(FF ) =

1

4
.

The desired conditional probability is

P
(
FS

∣∣ {SF, FS}
)

=

1

12
1

4
+

1

12

=
1

4
.

Using Conditional Probability for Modeling

When constructing probabilistic models for experiments that have a sequential
character, it is often natural and convenient to first specify conditional prob-
abilities and then use them to determine unconditional probabilities. The rule
P(A∩B) = P(B)P(A |B), which is a restatement of the definition of conditional
probability, is often helpful in this process.

Example 1.9. Radar Detection. If an aircraft is present in a certain area, a
radar correctly registers its presence with probability 0.99. If it is not present, the
radar falsely registers an aircraft presence with probability 0.10. We assume that
an aircraft is present with probability 0.05. What is the probability of false alarm
(a false indication of aircraft presence), and the probability of missed detection
(nothing registers, even though an aircraft is present)?

A sequential representation of the experiment is appropriate here, as shown
in Fig. 1.9. Let A and B be the events

A = {an aircraft is present},
B = {the radar registers an aircraft presence},
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and consider also their complements

Ac = {an aircraft is not present},
Bc = {the radar does not register an aircraft presence}.

The given probabilities are recorded along the corresponding branches of the tree de-
scribing the sample space, as shown in Fig. 1.9. Each possible outcome corresponds
to a leaf of the tree, and its probability is equal to the product of the probabilities
associated with the branches in a path from the root to the corresponding leaf. The
desired probabilities of false alarm and missed detection are

P(false alarm) = P(Ac ∩ B) = P(Ac)P(B |Ac) = 0.95 · 0.10 = 0.095,

P(missed detection) = P(A ∩ Bc) = P(A)P(Bc |A) = 0.05 · 0.01 = 0.0005.

P(B
| A) =

 0.9
9

P(A) = 0.05
P(B c| A) = 0.01

P(B
| A

c ) =
 0.1

0

P(B c| A c
) = 0.90

False alarm

Missed detection

Aircraft present

Aircraft not present

P(Ac) = 0.95

Figure 1.9: Sequential description of the experiment for the radar detection
problem in Example 1.9.

Extending the preceding example, we have a general rule for calculating
various probabilities in conjunction with a tree-based sequential description of
an experiment. In particular:

(a) We set up the tree so that an event of interest is associated with a leaf.
We view the occurrence of the event as a sequence of steps, namely, the
traversals of the branches along the path from the root to the leaf.

(b) We record the conditional probabilities associated with the branches of the
tree.

(c) We obtain the probability of a leaf by multiplying the probabilities recorded
along the corresponding path of the tree.
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In mathematical terms, we are dealing with an event A which occurs if and
only if each one of several events A1, . . . , An has occurred, i.e., A = A1 ∩ A2 ∩
· · · ∩An. The occurrence of A is viewed as an occurrence of A1, followed by the
occurrence of A2, then of A3, etc., and it is visualized as a path with n branches,
corresponding to the events A1, . . . , An. The probability of A is given by the
following rule (see also Fig. 1.10).

Multiplication Rule

Assuming that all of the conditioning events have positive probability, we
have

P
(
∩n

i=1 Ai

)
= P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P

(
An | ∩n−1

i=1 Ai

)
.

The multiplication rule can be verified by writing

P
(
∩n

i=1 Ai

)
= P(A1) ·

P(A1 ∩ A2)
P(A1)

· P(A1 ∩ A2 ∩ A3)
P(A1 ∩ A2)

· · · P
(
∩n

i=1 Ai

)
P

(
∩n−1

i=1 Ai

) ,

. . .
P(A1) P(A3 |A1  ∩ A2)P(A2 |A1)

Event A1  ∩ A2 ∩ A3

P(An |A1  ∩ A2 ∩     ∩  An−1)

A1 A2 An−1 AnA3

Event A1  ∩ A2 ∩     ∩  An
. . .

. . .

Figure 1.10: Visualization of the multiplication rule. The intersection event
A = A1 ∩ A2 ∩ · · · ∩ An is associated with a particular path on a tree that
describes the experiment. We associate the branches of this path with the events
A1, . . . , An, and we record next to the branches the corresponding conditional
probabilities.

The final node of the path corresponds to the intersection event A, and
its probability is obtained by multiplying the conditional probabilities recorded
along the branches of the path

P(A1 ∩ A2 ∩ · · · ∩ A3) = P(A1)P(A2 |A1) · · ·P(An |A1 ∩ A2 ∩ · · · ∩ An−1).

Note that any intermediate node along the path also corresponds to some inter-
section event and its probability is obtained by multiplying the corresponding
conditional probabilities up to that node. For example, the event A1 ∩ A2 ∩ A3

corresponds to the node shown in the figure, and its probability is

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2 |A1)P(A3 |A1 ∩ A2).
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and by using the definition of conditional probability to rewrite the right-hand
side above as

P(A1)P(A2 |A1)P(A3 |A1 ∩ A2) · · ·P
(
An | ∩n−1

i=1 Ai

)
.

For the case of just two events, A1 and A2, the multiplication rule is simply the
definition of conditional probability.

Example 1.10. Three cards are drawn from an ordinary 52-card deck without
replacement (drawn cards are not placed back in the deck). We wish to find the
probability that none of the three cards is a heart. We assume that at each step,
each one of the remaining cards is equally likely to be picked. By symmetry, this
implies that every triplet of cards is equally likely to be drawn. A cumbersome
approach, that we will not use, is to count the number of all card triplets that
do not include a heart, and divide it with the number of all possible card triplets.
Instead, we use a sequential description of the experiment in conjunction with the
multiplication rule (cf. Fig. 1.11).

Define the events

Ai = {the ith card is not a heart}, i = 1, 2, 3.

We will calculate P(A1 ∩ A2 ∩ A3), the probability that none of the three cards is
a heart, using the multiplication rule

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2 |A1)P(A3 |A1 ∩ A2).

We have

P(A1) =
39

52
,

since there are 39 cards that are not hearts in the 52-card deck. Given that the
first card is not a heart, we are left with 51 cards, 38 of which are not hearts, and

P(A2 |A1) =
38

51
.

Finally, given that the first two cards drawn are not hearts, there are 37 cards which
are not hearts in the remaining 50-card deck, and

P(A3 |A1 ∩ A2) =
37

50
.

These probabilities are recorded along the corresponding branches of the tree de-
scribing the sample space, as shown in Fig. 1.11. The desired probability is now
obtained by multiplying the probabilities recorded along the corresponding path of
the tree:

P(A1 ∩ A2 ∩ A3) =
39

52
· 38

51
· 37

50
.
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Not a heart
39/52

38/51

37/50

Not a heart

Not a heart

Heart

Heart

Heart

13/52

13/51

13/50 Figure 1.11: Sequential description
of the experiment in the 3-card se-
lection problem of Example 1.10.

Note that once the probabilities are recorded along the tree, the probability
of several other events can be similarly calculated. For example,

P(1st is not a heart and 2nd is a heart) =
39

52
· 13

51
,

P(1st two are not hearts and 3rd is a heart) =
39

52
· 38

51
· 13

50
.

Example 1.11. A class consisting of 4 graduate and 12 undergraduate students
is randomly divided into 4 groups of 4. What is the probability that each group
includes a graduate student? We interpret “randomly” to mean that given the
assignment of some students to certain slots, any of the remaining students is equally
likely to be assigned to any of the remaining slots. We then calculate the desired
probability using the multiplication rule, based on the sequential description shown
in Fig. 1.12. Let us denote the four graduate students by 1, 2, 3, 4, and consider
the events

A1 = {students 1 and 2 are in different groups},
A2 = {students 1, 2, and 3 are in different groups},
A3 = {students 1, 2, 3, and 4 are in different groups}.

We will calculate P(A3) using the multiplication rule:

P(A3) = P(A1 ∩ A2 ∩ A3) = P(A1)P(A2 |A1)P(A3 |A1 ∩ A2).

We have

P(A1) =
12

15
,

since there are 12 student slots in groups other than the one of student 1, and there
are 15 student slots overall, excluding student 1. Similarly,

P(A2 |A1) =
8

14
,
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since there are 8 student slots in groups other than those of students 1 and 2, and
there are 14 student slots, excluding students 1 and 2. Also,

P(A3 |A1 ∩ A2) =
4

13
,

since there are 4 student slots in groups other than those of students 1, 2, and 3,
and there are 13 student slots, excluding students 1, 2, and 3. Thus, the desired
probability is

12

15
· 8

14
· 4

13
,

and is obtained by multiplying the conditional probabilities along the corresponding
path of the tree of Fig. 1.12.

Students 1 & 2 are
in different groups 

12/15

Students 1, 2, & 3 are
in different groups 

8/14

Students 1, 2, 3, & 4 are
in different groups 

4/13

Figure 1.12: Sequential descrip-
tion of the experiment in the stu-
dent problem of Example 1.11.

Example 1.12. The Monty Hall Problem. This is a much discussed puzzle,
based on an old American game show. You are told that a prize is equally likely to
be found behind any one of three closed doors in front of you. You point to one of
the doors. A friend opens for you one of the remaining two doors, after making sure
that the prize is not behind it. At this point, you can stick to your initial choice,
or switch to the other unopened door. You win the prize if it lies behind your final
choice of a door. Consider the following strategies:

(a) Stick to your initial choice.

(b) Switch to the other unopened door.

(c) You first point to door 1. If door 2 is opened, you do not switch. If door 3 is
opened, you switch.

Which is the best strategy? To answer the question, let us calculate the probability
of winning under each of the three strategies.

Under the strategy of no switching, your initial choice will determine whether
you win or not, and the probability of winning is 1/3. This is because the prize is
equally likely to be behind each door.

Under the strategy of switching, if the prize is behind the initially chosen
door (probability 1/3), you do not win. If it is not (probability 2/3), and given that
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another door without a prize has been opened for you, you will get to the winning
door once you switch. Thus, the probability of winning is now 2/3, so (b) is a better
strategy than (a).

Consider now strategy (c). Under this strategy, there is insufficient informa-
tion for determining the probability of winning. The answer depends on the way
that your friend chooses which door to open. Let us consider two possibilities.

Suppose that if the prize is behind door 1, your friend always chooses to open
door 2. (If the prize is behind door 2 or 3, your friend has no choice.) If the prize
is behind door 1, your friend opens door 2, you do not switch, and you win. If the
prize is behind door 2, your friend opens door 3, you switch, and you win. If the
prize is behind door 3, your friend opens door 2, you do not switch, and you lose.
Thus, the probability of winning is 2/3, so strategy (c) in this case is as good as
strategy (b).

Suppose now that if the prize is behind door 1, your friend is equally likely to
open either door 2 or 3. If the prize is behind door 1 (probability 1/3), and if your
friend opens door 2 (probability 1/2), you do not switch and you win (probability
1/6). But if your friend opens door 3, you switch and you lose. If the prize is behind
door 2, your friend opens door 3, you switch, and you win (probability 1/3). If the
prize is behind door 3, your friend opens door 2, you do not switch and you lose.
Thus, the probability of winning is 1/6 + 1/3 = 1/2, so strategy (c) in this case is
inferior to strategy (b).

1.4 TOTAL PROBABILITY THEOREM AND BAYES’ RULE

In this section, we explore some applications of conditional probability. We start
with the following theorem, which is often useful for computing the probabilities
of various events, using a “divide-and-conquer” approach.

Total Probability Theorem

Let A1, . . . , An be disjoint events that form a partition of the sample space
(each possible outcome is included in exactly one of the events A1, . . . , An)
and assume that P(Ai) > 0, for all i. Then, for any event B, we have

P(B) = P(A1 ∩ B) + · · · + P(An ∩ B)
= P(A1)P(B |A1) + · · · + P(An)P(B |An).

The theorem is visualized and proved in Fig. 1.13. Intuitively, we are par-
titioning the sample space into a number of scenarios (events) Ai. Then, the
probability that B occurs is a weighted average of its conditional probability
under each scenario, where each scenario is weighted according to its (uncondi-
tional) probability. One of the uses of the theorem is to compute the probability
of various events B for which the conditional probabilities P(B |Ai) are known or
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B

A1  ∩ B

A1

A2 A3

B

B

B

Bc

Bc

Bc

A1

A2

A3

A2  ∩ B

A3  ∩ B

Figure 1.13: Visualization and verification of the total probability theorem. The
events A1, . . . , An form a partition of the sample space, so the event B can be
decomposed into the disjoint union of its intersections Ai ∩ B with the sets Ai,
i.e.,

B = (A1 ∩ B) ∪ · · · ∪ (An ∩ B).

Using the additivity axiom, it follows that

P(B) = P(A1 ∩ B) + · · · + P(An ∩ B).

Since, by the definition of conditional probability, we have

P(Ai ∩ B) = P(Ai)P(B |Ai),

the preceding equality yields

P(B) = P(A1)P(B |A1) + · · · + P(An)P(B |An).

For an alternative view, consider an equivalent sequential model, as shown
on the right. The probability of the leaf Ai ∩B is the product P(Ai)P(B |Ai) of
the probabilities along the path leading to that leaf. The event B consists of the
three highlighted leaves and P(B) is obtained by adding their probabilities.

easy to derive. The key is to choose appropriately the partition A1, . . . , An, and
this choice is often suggested by the problem structure. Here are some examples.

Example 1.13. You enter a chess tournament where your probability of winning
a game is 0.3 against half the players (call them type 1), 0.4 against a quarter of
the players (call them type 2), and 0.5 against the remaining quarter of the players
(call them type 3). You play a game against a randomly chosen opponent. What
is the probability of winning?

Let Ai be the event of playing with an opponent of type i. We have

P(A1) = 0.5, P(A2) = 0.25, P(A3) = 0.25.

Let also B be the event of winning. We have

P(B |A1) = 0.3, P(B |A2) = 0.4, P(B |A3) = 0.5.
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Thus, by the total probability theorem, the probability of winning is

P(B) = P(A1)P(B |A1) + P(A2)P(B |A2) + P(A3)P(B |A3)

= 0.5 · 0.3 + 0.25 · 0.4 + 0.25 · 0.5

= 0.375.

Example 1.14. You roll a fair four-sided die. If the result is 1 or 2, you roll once
more but otherwise, you stop. What is the probability that the sum total of your
rolls is at least 4?

Let Ai be the event that the result of first roll is i, and note that P(Ai) = 1/4
for each i. Let B be the event that the sum total is at least 4. Given the event A1,
the sum total will be at least 4 if the second roll results in 3 or 4, which happens
with probability 1/2. Similarly, given the event A2, the sum total will be at least
4 if the second roll results in 2, 3, or 4, which happens with probability 3/4. Also,
given the event A3, you stop and the sum total remains below 4. Therefore,

P(B |A1) =
1

2
, P(B |A2) =

3

4
, P(B |A3) = 0, P(B |A4) = 1.

By the total probability theorem,

P(B) =
1

4
· 1

2
+

1

4
· 3

4
+

1

4
· 0 +

1

4
· 1 =

9

16
.

The total probability theorem can be applied repeatedly to calculate proba-
bilities in experiments that have a sequential character, as shown in the following
example.

Example 1.15. Alice is taking a probability class and at the end of each week
she can be either up-to-date or she may have fallen behind. If she is up-to-date in
a given week, the probability that she will be up-to-date (or behind) in the next
week is 0.8 (or 0.2, respectively). If she is behind in a given week, the probability
that she will be up-to-date (or behind) in the next week is 0.4 (or 0.6, respectively).
Alice is (by default) up-to-date when she starts the class. What is the probability
that she is up-to-date after three weeks?

Let Ui and Bi be the events that Alice is up-to-date or behind, respectively,
after i weeks. According to the total probability theorem, the desired probability
P(U3) is given by

P(U3) = P(U2)P(U3 |U2) + P(B2)P(U3 |B2) = P(U2) · 0.8 + P(B2) · 0.4.

The probabilities P(U2) and P(B2) can also be calculated using the total probability
theorem:

P(U2) = P(U1)P(U2 |U1) + P(B1)P(U2 |B1) = P(U1) · 0.8 + P(B1) · 0.4,
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P(B2) = P(U1)P(B2 |U1) + P(B1)P(B2 |B1) = P(U1) · 0.2 + P(B1) · 0.6.

Finally, since Alice starts her class up-to-date, we have

P(U1) = 0.8, P(B1) = 0.2.

We can now combine the preceding three equations to obtain

P(U2) = 0.8 · 0.8 + 0.2 · 0.4 = 0.72,

P(B2) = 0.8 · 0.2 + 0.2 · 0.6 = 0.28,

and by using the above probabilities in the formula for P(U3):

P(U3) = 0.72 · 0.8 + 0.28 · 0.4 = 0.688.

Note that we could have calculated the desired probability P(U3) by con-
structing a tree description of the experiment, by calculating the probability of
every element of U3 using the multiplication rule on the tree, and by adding. How-
ever, there are cases where the calculation based on the total probability theorem is
more convenient. For example, suppose we are interested in the probability P(U20)
that Alice is up-to-date after 20 weeks. Calculating this probability using the mul-
tiplication rule is very cumbersome, because the tree representing the experiment is
20-stages deep and has 220 leaves. On the other hand, with a computer, a sequential
calculation using the total probability formulas

P(Ui+1) = P(Ui) · 0.8 + P(Bi) · 0.4,

P(Bi+1) = P(Ui) · 0.2 + P(Bi) · 0.6,

and the initial conditions P(U1) = 0.8, P(B1) = 0.2, is very simple.

Inference and Bayes’ Rule

The total probability theorem is often used in conjunction with the following
celebrated theorem, which relates conditional probabilities of the form P(A |B)
with conditional probabilities of the form P(B |A), in which the order of the
conditioning is reversed.

Bayes’ Rule

Let A1, A2, . . . , An be disjoint events that form a partition of the sample
space, and assume that P(Ai) > 0, for all i. Then, for any event B such
that P(B) > 0, we have

P(Ai |B) =
P(Ai)P(B |Ai)

P(B)

=
P(Ai)P(B |Ai)

P(A1)P(B |A1) + · · · + P(An)P(B |An)
.
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To verify Bayes’ rule, note that P(Ai)P(B |Ai) and P(Ai |B)P(B) are
equal, because they are both equal to P(Ai ∩ B). This yields the first equality.
The second equality follows from the first by using the total probability theorem
to rewrite P(B).

Bayes’ rule is often used for inference. There are a number of “causes”
that may result in a certain “effect.” We observe the effect, and we wish to infer
the cause. The events A1, . . . , An are associated with the causes and the event B
represents the effect. The probability P(B |Ai) that the effect will be observed
when the cause Ai is present amounts to a probabilistic model of the cause-effect
relation (cf. Fig. 1.14). Given that the effect B has been observed, we wish to
evaluate the probability P(Ai |B) that the cause Ai is present.

Effect:
shade  observed

Cause 1:
malignant tumor

Cause 3:
other

Cause 2:
nonmalignant
tumor

B

A1

A2 A3

A1  ∩ BB

B

Bc

Bc

Bc

A1

A2

A3

A2  ∩ B

A3  ∩ BB

Figure 1.14: An example of the inference context that is implicit in Bayes’
rule. We observe a shade in a person’s X-ray (this is event B, the “effect”) and
we want to estimate the likelihood of three mutually exclusive and collectively
exhaustive potential causes: cause 1 (event A1) is that there is a malignant tumor,
cause 2 (event A2) is that there is a nonmalignant tumor, and cause 3 (event
A3) corresponds to reasons other than a tumor. We assume that we know the
probabilities P(Ai) and P(B |Ai), i = 1, 2, 3. Given that we see a shade (event
B occurs), Bayes’ rule gives the conditional probabilities of the various causes as

P(Ai |B) =
P(Ai)P(B |Ai)

P(A1)P(B |A1) + P(A2)P(B |A2) + P(A3)P(B |A3)
, i = 1, 2, 3.

For an alternative view, consider an equivalent sequential model, as shown
on the right. The probability P(A1 |B) of a malignant tumor is the probability
of the first highlighted leaf, which is P(A1 ∩ B), divided by the total probability
of the highlighted leaves, which is P(B).

Example 1.16. Let us return to the radar detection problem of Example 1.9 and
Fig. 1.9. Let

A = {an aircraft is present},
B = {the radar registers an aircraft presence}.
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We are given that

P(A) = 0.05, P(B |A) = 0.99, P(B |Ac) = 0.1.

Applying Bayes’ rule, with A1 = A and A2 = Ac, we obtain

P(aircraft present | radar registers) = P(A |B)

=
P(A)P(B |A)

P(B)

=
P(A)P(B |A)

P(A)P(B |A) + P(Ac)P(B |Ac)

=
0.05 · 0.99

0.05 · 0.99 + 0.95 · 0.1

≈ 0.3426.

Example 1.17. Let us return to the chess problem of Example 1.13. Here, Ai is
the event of getting an opponent of type i, and

P(A1) = 0.5, P(A2) = 0.25, P(A3) = 0.25.

Also, B is the event of winning, and

P(B |A1) = 0.3, P(B |A2) = 0.4, P(B |A3) = 0.5.

Suppose that you win. What is the probability P(A1 |B) that you had an opponent
of type 1?

Using Bayes’ rule, we have

P(A1 |B) =
P(A1)P(B |A1)

P(A1)P(B |A1) + P(A2)P(B |A2) + P(A3)P(B |A3)

=
0.5 · 0.3

0.5 · 0.3 + 0.25 · 0.4 + 0.25 · 0.5

= 0.4.

Example 1.18. The False-Positive Puzzle. A test for a certain rare disease is
assumed to be correct 95% of the time: if a person has the disease, the test results
are positive with probability 0.95, and if the person does not have the disease,
the test results are negative with probability 0.95. A random person drawn from
a certain population has probability 0.001 of having the disease. Given that the
person just tested positive, what is the probability of having the disease?

If A is the event that the person has the disease, and B is the event that the
test results are positive, the desired probability, P(A |B), is

P(A |B) =
P(A)P(B |A)

P(A)P(B |A) + P(Ac)P(B |Ac)

=
0.001 · 0.95

0.001 · 0.95 + 0.999 · 0.05

= 0.0187.
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Note that even though the test was assumed to be fairly accurate, a person who has
tested positive is still very unlikely (less than 2%) to have the disease. According
to The Economist (February 20th, 1999), 80% of those questioned at a leading
American hospital substantially missed the correct answer to a question of this type.
Most of them said that the probability that the person has the disease is 0.95!

1.5 INDEPENDENCE

We have introduced the conditional probability P(A |B) to capture the partial
information that event B provides about event A. An interesting and important
special case arises when the occurrence of B provides no such information and
does not alter the probability that A has occurred, i.e.,

P(A |B) = P(A).

When the above equality holds, we say that A is independent of B. Note that
by the definition P(A |B) = P(A ∩ B)/P(B), this is equivalent to

P(A ∩ B) = P(A)P(B).

We adopt this latter relation as the definition of independence because it can be
used even if P(B) = 0, in which case P(A |B) is undefined. The symmetry of
this relation also implies that independence is a symmetric property; that is, if
A is independent of B, then B is independent of A, and we can unambiguously
say that A and B are independent events.

Independence is often easy to grasp intuitively. For example, if the occur-
rence of two events is governed by distinct and noninteracting physical processes,
such events will turn out to be independent. On the other hand, independence
is not easily visualized in terms of the sample space. A common first thought
is that two events are independent if they are disjoint, but in fact the opposite
is true: two disjoint events A and B with P(A) > 0 and P(B) > 0 are never
independent, since their intersection A ∩ B is empty and has probability 0.

Example 1.19. Consider an experiment involving two successive rolls of a 4-sided
die in which all 16 possible outcomes are equally likely and have probability 1/16.

(a) Are the events

Ai = {1st roll results in i}, Bj = {2nd roll results in j},
independent? We have

P(Ai ∩ Bj) = P
(
the result of the two rolls is (i, j)

)
=

1

16
,

P(Ai) =
number of elements of Ai

total number of possible outcomes
=

4

16
,

P(Bj) =
number of elements of Bj

total number of possible outcomes
=

4

16
.



Sec. 1.5 Independence 35

We observe that P(Ai ∩Bj) = P(Ai)P(Bj), and the independence of Ai and
Bj is verified. Thus, our choice of the discrete uniform probability law (which
might have seemed arbitrary) models the independence of the two rolls.

(b) Are the events

A = {1st roll is a 1}, B = {sum of the two rolls is a 5},

independent? The answer here is not quite obvious. We have

P(A ∩ B) = P
(
the result of the two rolls is (1,4)

)
=

1

16
,

and also

P(A) =
number of elements of A

total number of possible outcomes
=

4

16
.

The event B consists of the outcomes (1,4), (2,3), (3,2), and (4,1), and

P(B) =
number of elements of B

total number of possible outcomes
=

4

16
.

Thus, we see that P(A ∩ B) = P(A)P(B), and the events A and B are
independent.

(c) Are the events

A = {maximum of the two rolls is 2}, B = {minimum of the two rolls is 2},

independent? Intuitively, the answer is “no” because the minimum of the
two rolls conveys some information about the maximum. For example, if the
minimum is 2, the maximum cannot be 1. More precisely, to verify that A
and B are not independent, we calculate

P(A ∩ B) = P
(
the result of the two rolls is (2,2)

)
=

1

16
,

and also

P(A) =
number of elements of A

total number of possible outcomes
=

3

16
,

P(B) =
number of elements of B

total number of possible outcomes
=

5

16
.

We have P(A)P(B) = 15/(16)2, so that P(A ∩ B) �= P(A)P(B), and A and
B are not independent.
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Conditional Independence

We noted earlier that the conditional probabilities of events, conditioned on
a particular event, form a legitimate probability law. We can thus talk about
independence of various events with respect to this conditional law. In particular,
given an event C, the events A and B are called conditionally independent
if

P(A ∩ B |C) = P(A |C)P(B |C).

To derive an alternative characterization of conditional independence, we use the
definition of the conditional probability and the multiplication rule, to write

P(A ∩ B |C) =
P(A ∩ B ∩ C)

P(C)

=
P(C)P(B |C)P(A |B ∩ C)

P(C)

= P(B |C)P(A |B ∩ C).

We now compare the preceding two expressions, and after eliminating the com-
mon factor P(B |C), assumed nonzero, we see that conditional independence is
the same as the condition

P(A |B ∩ C) = P(A |C).

In words, this relation states that if C is known to have occurred, the additional
knowledge that B also occurred does not change the probability of A.

Interestingly, independence of two events A and B with respect to the
unconditional probability law, does not imply conditional independence, and
vice versa, as illustrated by the next two examples.

Example 1.20. Consider two independent fair coin tosses, in which all four
possible outcomes are equally likely. Let

H1 = {1st toss is a head},
H2 = {2nd toss is a head},
D = {the two tosses have different results}.

The events H1 and H2 are (unconditionally) independent. But

P(H1 |D) =
1

2
, P(H2 |D) =

1

2
, P(H1 ∩ H2 |D) = 0,

so that P(H1 ∩ H2 |D) �= P(H1 |D)P(H2 |D), and H1, H2 are not conditionally
independent.



Sec. 1.5 Independence 37

Example 1.21. There are two coins, a blue and a red one. We choose one of
the two at random, each being chosen with probability 1/2, and proceed with two
independent tosses. The coins are biased: with the blue coin, the probability of
heads in any given toss is 0.99, whereas for the red coin it is 0.01.

Let B be the event that the blue coin was selected. Let also Hi be the event
that the ith toss resulted in heads. Given the choice of a coin, the events H1 and
H2 are independent, because of our assumption of independent tosses. Thus,

P(H1 ∩ H2 |B) = P(H1 |B)P(H2 |B) = 0.99 · 0.99.

On the other hand, the events H1 and H2 are not independent. Intuitively, if we
are told that the first toss resulted in heads, this leads us to suspect that the blue
coin was selected, in which case, we expect the second toss to also result in heads.
Mathematically, we use the total probability theorem to obtain

P(H1) = P(B)P(H1 |B) + P(Bc)P(H1 |Bc) =
1

2
· 0.99 +

1

2
· 0.01 =

1

2
,

as should be expected from symmetry considerations. Similarly, we have P(H2) =
1/2. Now notice that

P(H1 ∩ H2) = P(B)P(H1 ∩ H2 |B) + P(Bc)P(H1 ∩ H2 |Bc)

=
1

2
· 0.99 · 0.99 +

1

2
· 0.01 · 0.01 ≈ 1

2
.

Thus, P(H1 ∩H2) �= P(H1)P(H2), and the events H1 and H2 are dependent, even
though they are conditionally independent given B.

As mentioned earlier, if A and B are independent, the occurrence of B does
not provide any new information on the probability of A occurring. It is then
intuitive that the non-occurrence of B should also provide no information on the
probability of A. Indeed, it can be verified that if A and B are independent, the
same holds true for A and Bc (see the end-of-chapter problems).

We now summarize.

Independence

• Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

If in addition, P(B) > 0, independence is equivalent to the condition

P(A |B) = P(A).
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• If A and B are independent, so are A and Bc.

• Two events A and B are said to be conditionally independent,
given another event C with P(C) > 0, if

P(A ∩ B |C) = P(A |C)P(B |C).

If in addition, P(B ∩ C) > 0, conditional independence is equivalent
to the condition

P(A |B ∩ C) = P(A |C).

• Independence does not imply conditional independence, and vice versa.

Independence of a Collection of Events

The definition of independence can be extended to multiple events.

Definition of Independence of Several Events

We say that the events A1, A2, . . . , An are independent if

P

(⋂
i∈S

Ai

)
=

∏
i∈S

P(Ai), for every subset S of {1, 2, . . . , n}.

For the case of three events, A1, A2, and A3, independence amounts to
satisfying the four conditions

P(A1 ∩ A2) = P(A1)P(A2),
P(A1 ∩ A3) = P(A1)P(A3),
P(A2 ∩ A3) = P(A2)P(A3),

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3).

The first three conditions simply assert that any two events are independent,
a property known as pairwise independence. But the fourth condition is
also important and does not follow from the first three. Conversely, the fourth
condition does not imply the first three; see the two examples that follow.

Example 1.22. Pairwise Independence does not Imply Independence.
Consider two independent fair coin tosses, and the following events:
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H1 = {1st toss is a head},
H2 = {2nd toss is a head},
D = {the two tosses have different results}.

The events H1 and H2 are independent, by definition. To see that H1 and D are
independent, we note that

P(D |H1) =
P(H1 ∩ D)

P(H1)
=

1/4

1/2
=

1

2
= P(D).

Similarly, H2 and D are independent. On the other hand, we have

P(H1 ∩ H2 ∩ D) = 0 �= 1

2
· 1

2
· 1

2
= P(H1)P(H2)P(D),

and these three events are not independent.

Example 1.23. The Equality P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3) is not
Enough for Independence. Consider two independent rolls of a fair six-sided
die, and the following events:

A = {1st roll is 1, 2, or 3},
B = {1st roll is 3, 4, or 5},
C = {the sum of the two rolls is 9}.

We have

P(A ∩ B) =
1

6
�= 1

2
· 1

2
= P(A)P(B),

P(A ∩ C) =
1

36
�= 1

2
· 4

36
= P(A)P(C),

P(B ∩ C) =
1

12
�= 1

2
· 4

36
= P(B)P(C).

Thus the three events A, B, and C are not independent, and indeed no two of these
events are independent. On the other hand, we have

P(A ∩ B ∩ C) =
1

36
=

1

2
· 1

2
· 4

36
= P(A)P(B)P(C).

The intuition behind the independence of a collection of events is anal-
ogous to the case of two events. Independence means that the occurrence or
non-occurrence of any number of the events from that collection carries no
information on the remaining events or their complements. For example, if the
events A1, A2, A3, A4 are independent, one obtains relations such as

P(A1 ∪ A2 |A3 ∩ A4) = P(A1 ∪ A2)

or
P(A1 ∪ Ac

2 |Ac
3 ∩ A4) = P(A1 ∪ Ac

2);

see the end-of-chapter problems.
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Reliability

In probabilistic models of complex systems involving several components, it is
often convenient to assume that the behaviors of the components are uncoupled
(independent). This typically simplifies the calculations and the analysis, as
illustrated in the following example.

Example 1.24. Network Connectivity. A computer network connects two
nodes A and B through intermediate nodes C, D, E, F, as shown in Fig. 1.15(a).
For every pair of directly connected nodes, say i and j, there is a given probability
pij that the link from i to j is up. We assume that link failures are independent
of each other. What is the probability that there is a path connecting A and B in
which all links are up?

F

(b)

Series connection

1 2 3

Parallel connection

1

2

3

(a)

A B

C

E

D

0.9

0.8

0.95

0.9

0.85

0.75

0.95

Figure 1.15: (a) Network for Example 1.24. The number next to each link
indicates the probability that the link is up. (b) Series and parallel connections
of three components in a reliability problem.

This is a typical problem of assessing the reliability of a system consisting of
components that can fail independently. Such a system can often be divided into
subsystems, where each subsystem consists in turn of several components that are
connected either in series or in parallel; see Fig. 1.15(b).

Let a subsystem consist of components 1, 2, . . . , m, and let pi be the prob-
ability that component i is up (“succeeds”). Then, a series subsystem succeeds
if all of its components are up, so its probability of success is the product of the
probabilities of success of the corresponding components, i.e.,

P(series subsystem succeeds) = p1p2 · · · pm.

A parallel subsystem succeeds if any one of its components succeeds, so its prob-
ability of failure is the product of the probabilities of failure of the corresponding
components, i.e.,

P(parallel subsystem succeeds) = 1 − P(parallel subsystem fails)

= 1 − (1 − p1)(1 − p2) · · · (1 − pm).
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Returning now to the network of Fig. 1.15(a), we can calculate the probabil-
ity of success (a path from A to B is available) sequentially, using the preceding
formulas, and starting from the end. Let us use the notation X → Y to denote the
event that there is a (possibly indirect) connection from node X to node Y . Then,

P(C → B) = 1 −
(
1 − P(C → E and E → B)

)(
1 − P(C → F and F → B)

)
= 1 − (1 − pCEpEB)(1 − pCF pFB)

= 1 − (1 − 0.8 · 0.9)(1 − 0.95 · 0.85)

= 0.946,

P(A → C and C → B) = P(A → C)P(C → B) = 0.9 · 0.946 = 0.851,

P(A → D and D → B) = P(A → D)P(D → B) = 0.75 · 0.95 = 0.712,

and finally we obtain the desired probability

P(A → B) = 1 −
(
1 − P(A → C and C → B)

)(
1 − P(A → D and D → B)

)
= 1 − (1 − 0.851)(1 − 0.712)

= 0.957.

Independent Trials and the Binomial Probabilities

If an experiment involves a sequence of independent but identical stages, we say
that we have a sequence of independent trials. In the special case where there
are only two possible results at each stage, we say that we have a sequence of
independent Bernoulli trials. The two possible results can be anything, e.g.,
“it rains” or “it doesn’t rain,” but we will often think in terms of coin tosses and
refer to the two results as “heads” (H) and “tails” (T ).

Consider an experiment that consists of n independent tosses of a coin, in
which the probability of heads is p, where p is some number between 0 and 1. In
this context, independence means that the events A1, A2, . . . , An are indepen-
dent, where Ai = {ith toss is a head}.

We can visualize independent Bernoulli trials by means of a sequential
description, as shown in Fig. 1.16 for the case where n = 3. The conditional
probability of any toss being a head, conditioned on the results of any preced-
ing tosses is p, because of independence. Thus, by multiplying the conditional
probabilities along the corresponding path of the tree, we see that any particular
outcome (3-long sequence of heads and tails) that involves k heads and 3 − k
tails has probability pk(1− p)3−k. This formula extends to the case of a general
number n of tosses. We obtain that the probability of any particular n-long
sequence that contains k heads and n − k tails is pk(1 − p)n−k, for all k from 0
to n.

Let us now consider the probability

p(k) = P(k heads come up in an n-toss sequence),
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p

p

p

p

p

p

p

HH

HT
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H

T

1 − p

1 − p

1 − p

1 − p

1 − p

1 − p

1 − p

HHH

HH T

H T H

HT T

T H H

T H T

T TH

T T T

Prob = p2(1 − p)

Prob = p3

Prob = p(1 − p)2

Prob = p2(1 − p)

Prob = p2(1 − p)

Prob = p(1 − p)2

Prob = p(1 − p)2

Prob = (1 − p)3

Figure 1.16: Sequential description of an experiment involving three indepen-
dent tosses of a coin. Along the branches of the tree, we record the corresponding
conditional probabilities, and by the multiplication rule, the probability of ob-
taining a particular 3-toss sequence is calculated by multiplying the probabilities
recorded along the corresponding path of the tree.

which will play an important role later. We showed above that the probability
of any given sequence that contains k heads is pk(1 − p)n−k, so we have

p(k) =
(

n

k

)
pk(1 − p)n−k,

where we use the notation(
n

k

)
= number of distinct n-toss sequences that contain k heads.

The numbers
(
n
k

)
(called “n choose k”) are known as the binomial coefficients,

while the probabilities p(k) are known as the binomial probabilities. Using a
counting argument, to be given in Section 1.6, we can show that(

n

k

)
=

n!
k! (n − k)!

, k = 0, 1, . . . , n,

where for any positive integer i we have

i! = 1 · 2 · · · (i − 1) · i,

and, by convention, 0! = 1. An alternative verification is sketched in the end-of-
chapter problems. Note that the binomial probabilities p(k) must add to 1, thus
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showing the binomial formula

n∑
k=0

(
n

k

)
pk(1 − p)n−k = 1.

Example 1.25. Grade of Service. An internet service provider has installed c
modems to serve the needs of a population of n customers. It is estimated that at a
given time, each customer will need a connection with probability p, independently
of the others. What is the probability that there are more customers needing a
connection than there are modems?

Here we are interested in the probability that more than c customers simul-
taneously need a connection. It is equal to

n∑
k=c+1

p(k),

where

p(k) =

(
n

k

)
pk(1 − p)n−k

are the binomial probabilities. For instance, if n = 100, p = 0.1, and c = 15, the
desired probability turns out to be 0.0399.

This example is typical of problems of sizing a facility to serve the needs of a
homogeneous population, consisting of independently acting customers. The prob-
lem is to select the facility size to achieve a certain threshold probability (sometimes
called grade of service) that no user is left unserved.

1.6 COUNTING

The calculation of probabilities often involves counting the number of outcomes
in various events. We have already seen two contexts where such counting arises.

(a) When the sample space Ω has a finite number of equally likely outcomes,
so that the discrete uniform probability law applies. Then, the probability
of any event A is given by

P(A) =
number of elements of A

number of elements of Ω
,

and involves counting the elements of A and of Ω.

(b) When we want to calculate the probability of an event A with a finite
number of equally likely outcomes, each of which has an already known
probability p. Then the probability of A is given by

P(A) = p · (number of elements of A),
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and involves counting the number of elements of A. An example of this type
is the calculation of the probability of k heads in n coin tosses (the binomial
probabilities). We saw in the preceding section that the probability of each
distinct sequence involving k heads is easily obtained, but the calculation
of the number of all such sequences is somewhat intricate, as will be seen
shortly.

While counting is in principle straightforward, it is frequently challenging;
the art of counting constitutes a large portion of the field of combinatorics. In
this section, we present the basic principle of counting and apply it to a number
of situations that are often encountered in probabilistic models.

The Counting Principle

The counting principle is based on a divide-and-conquer approach, whereby the
counting is broken down into stages through the use of a tree. For example,
consider an experiment that consists of two consecutive stages. The possible
results of the first stage are a1, a2, . . . , am; the possible results of the second
stage are b1, b2, . . . , bn. Then, the possible results of the two-stage experiment
are all possible ordered pairs (ai, bj), i = 1, . . . , m, j = 1, . . . , n. Note that the
number of such ordered pairs is equal to mn. This observation can be generalized
as follows (see also Fig. 1.17).

Leaves

. . . . . . 

. . . . . . 

. . . . . . 

. . . 

Stage 1 Stage 2 Stage 3 Stage 4

choices choices choices choices
n1 n2 n3 n4

. . . 

Figure 1.17: Illustration of the basic counting principle. The counting is carried
out in r stages (r = 4 in the figure). The first stage has n1 possible results. For
every possible result of the first i − 1 stages, there are ni possible results at the
ith stage. The number of leaves is n1n2 · · ·nr. This is the desired count.
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The Counting Principle

Consider a process that consists of r stages. Suppose that:

(a) There are n1 possible results at the first stage.

(b) For every possible result of the first stage, there are n2 possible results
at the second stage.

(c) More generally, for any possible results of the first i − 1 stages, there
are ni possible results at the ith stage.

Then, the total number of possible results of the r-stage process is

n1n2 · · ·nr.

Example 1.26. The Number of Telephone Numbers. A telephone number
is a 7-digit sequence, but the first digit has to be different from 0 or 1. How many
distinct telephone numbers are there? We can visualize the choice of a sequence
as a sequential process, where we select one digit at a time. We have a total of 7
stages, and a choice of one out of 10 elements at each stage, except for the first
stage where we only have 8 choices. Therefore, the answer is

8 · 10 · 10 · · · 10︸ ︷︷ ︸
6 times

= 8 · 106.

Example 1.27. The Number of Subsets of an n-Element Set. Consider
an n-element set {s1, s2, . . . , sn}. How many subsets does it have (including itself
and the empty set)? We can visualize the choice of a subset as a sequential process
where we examine one element at a time and decide whether to include it in the set
or not. We have a total of n stages, and a binary choice at each stage. Therefore
the number of subsets is

2 · 2 · · · 2︸ ︷︷ ︸
n times

= 2n.

It should be noted that the Counting Principle remains valid even if each
first-stage result leads to a different set of potential second-stage results, etc. The
only requirement is that the number of possible second-stage results is constant,
regardless of the first-stage result.

In what follows, we will focus primarily on two types of counting arguments
that involve the selection of k objects out of a collection of n objects. If the order
of selection matters, the selection is called a permutation, and otherwise, it is
called a combination. We will then discuss a more general type of counting,
involving a partition of a collection of n objects into multiple subsets.
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k-permutations

We start with n distinct objects, and let k be some positive integer, with k ≤ n.
We wish to count the number of different ways that we can pick k out of these
n objects and arrange them in a sequence, i.e., the number of distinct k-object
sequences. We can choose any of the n objects to be the first one. Having chosen
the first, there are only n− 1 possible choices for the second; given the choice of
the first two, there only remain n − 2 available objects for the third stage, etc.
When we are ready to select the last (the kth) object, we have already chosen
k − 1 objects, which leaves us with n − (k − 1) choices for the last one. By the
Counting Principle, the number of possible sequences, called k-permutations,
is

n(n − 1) · · · (n − k + 1) =
n(n − 1) · · · (n − k + 1)(n − k) · · · 2 · 1

(n − k) · · · 2 · 1

=
n!

(n − k)!
.

In the special case where k = n, the number of possible sequences, simply called
permutations, is

n(n − 1)(n − 2) · · · 2 · 1 = n!.

(Let k = n in the formula for the number of k-permutations, and recall the
convention 0! = 1.)

Example 1.28. Let us count the number of words that consist of four distinct
letters. This is the problem of counting the number of 4-permutations of the 26
letters in the alphabet. The desired number is

n!

(n − k)!
=

26!

22!
= 26 · 25 · 24 · 23 = 358, 800.

The count for permutations can be combined with the Counting Principle
to solve more complicated counting problems.

Example 1.29. You have n1 classical music CDs, n2 rock music CDs, and n3

country music CDs. In how many different ways can you arrange them so that the
CDs of the same type are contiguous?

We break down the problem in two stages, where we first select the order of
the CD types, and then the order of the CDs of each type. There are 3! ordered se-
quences of the types of CDs (such as classical/rock/country, rock/country/classical,
etc.), and there are n1! (or n2!, or n3!) permutations of the classical (or rock, or
country, respectively) CDs. Thus for each of the 3! CD type sequences, there are
n1! n2! n3! arrangements of CDs, and the desired total number is 3! n1! n2! n3!.
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Combinations

There are n people and we are interested in forming a committee of k. How
many different committees are possible? More abstractly, this is the same as the
problem of counting the number of k-element subsets of a given n-element set.
Notice that forming a combination is different than forming a k-permutation,
because in a combination there is no ordering of the selected elements.
Thus for example, whereas the 2-permutations of the letters A, B, C, and D are

AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,

the combinations of two out of these four letters are

AB, AC, AD, BC, BD, CD.

(Since the elements of a combination are unordered, BA is not viewed as being
distinct from AB.)

To count the number of combinations, we observe that selecting a k-
permutation is the same as first selecting a combination of k items and then
ordering them. Since there are k! ways of ordering the k selected items, we
see that the number n!/(n − k)! of k-permutations is equal to the number of
combinations times k!. Hence, the number of possible combinations, is equal to

n!
k! (n − k)!

.

Let us now relate the above expression to the binomial coefficient, which
was denoted by

(
n
k

)
and was defined in the preceding section as the number of

n-toss sequences with k heads. We note that specifying an n-toss sequence with
k heads is the same as selecting k elements (those that correspond to heads) out
of the n-element set of tosses, i.e., a combination of k out of n objects. Hence,
the binomial coefficient is also given by the same formula and we have(

n

k

)
=

n!
k! (n − k)!

.

Example 1.30. The number of combinations of two out of the four letters A, B,
C, and D is found by letting n = 4 and k = 2. It is(

4

2

)
=

4!

2! 2!
= 6,

consistently with the listing given earlier.
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It is worth observing that counting arguments sometimes lead to formulas
that are rather difficult to derive algebraically. One example is the binomial
formula

n∑
k=0

(
n

k

)
pk(1 − p)n−k = 1,

discussed in Section 1.5. In the special case where p = 1/2, this formula becomes

n∑
k=0

(
n

k

)
= 2n,

and admits the following simple interpretation. Since
(
n
k

)
is the number of k-

element subsets of a given n-element subset, the sum over k of
(
n
k

)
counts the

number of subsets of all possible cardinalities. It is therefore equal to the number
of all subsets of an n-element set, which is 2n.

Partitions

Recall that a combination is a choice of k elements out of an n-element set
without regard to order. Thus, a combination can be viewed as a partition of
the set in two: one part contains k elements and the other contains the remaining
n − k. We now generalize by considering partitions into more than two subsets.

We are given an n-element set and nonnegative integers n1, n2, . . . , nr,
whose sum is equal to n. We consider partitions of the set into r disjoint subsets,
with the ith subset containing exactly ni elements. Let us count in how many
ways this can be done.

We form the subsets one at a time. We have
(

n
n1

)
ways of forming the

first subset. Having formed the first subset, we are left with n − n1 elements.
We need to choose n2 of them in order to form the second subset, and we have(
n−n1

n2

)
choices, etc. Using the Counting Principle for this r-stage process, the

total number of choices is(
n

n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − · · · − nr−1

nr

)
,

which is equal to

n!
n1! (n − n1)!

· (n − n1)!
n2! (n − n1 − n2)!

· · · (n − n1 − · · · − nr−1)!
(n − n1 − · · · − nr−1 − nr)!nr!

.

We note that several terms cancel and we are left with

n!
n1!n2! · · ·nr!

.
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This is called the multinomial coefficient and is usually denoted by(
n

n1, n2, . . . , nr

)
.

Example 1.31. Anagrams. How many different words (letter sequences) can be
obtained by rearranging the letters in the word TATTOO? There are six positions
to be filled by the available letters. Each rearrangement corresponds to a partition
of the set of the six positions into a group of size 3 (the positions that get the letter
T), a group of size 1 (the position that gets the letter A), and a group of size 2 (the
positions that get the letter O). Thus, the desired number is

6!

1! 2! 3!
=

1 · 2 · 3 · 4 · 5 · 6
1 · 1 · 2 · 1 · 2 · 3 = 60.

It is instructive to derive this answer using an alternative argument. (This
argument can also be used to rederive the multinomial coefficient formula; see
the end-of-chapter problems.) Let us write TATTOO in the form T1AT2T3O1O2

pretending for a moment that we are dealing with 6 distinguishable objects. These
6 objects can be rearranged in 6! different ways. However, any of the 3! possible
permutations of T1, T1, and T3, as well as any of the 2! possible permutations of
O1 and O2, lead to the same word. Thus, when the subscripts are removed, there
are only 6!/(3! 2!) different words.

Example 1.32. A class consisting of 4 graduate and 12 undergraduate students
is randomly divided into four groups of 4. What is the probability that each group
includes a graduate student? This is the same as Example 1.11 in Section 1.3, but
we will now obtain the answer using a counting argument.

We first determine the nature of the sample space. A typical outcome is a
particular way of partitioning the 16 students into four groups of 4. We take the
term “randomly” to mean that every possible partition is equally likely, so that the
probability question can be reduced to one of counting.

According to our earlier discussion, there are(
16

4, 4, 4, 4

)
=

16!

4! 4! 4! 4!

different partitions, and this is the size of the sample space.
Let us now focus on the event that each group contains a graduate student.

Generating an outcome with this property can be accomplished in two stages:

(a) Take the four graduate students and distribute them to the four groups; there
are four choices for the group of the first graduate student, three choices for
the second, two for the third. Thus, there is a total of 4! choices for this stage.

(b) Take the remaining 12 undergraduate students and distribute them to the
four groups (3 students in each). This can be done in(

12

3, 3, 3, 3

)
=

12!

3! 3! 3! 3!



50 Sample Space and Probability Chap. 1

different ways.

By the Counting Principle, the event of interest can occur in

4! 12!

3! 3! 3! 3!

different ways. The probability of this event is

4! 12!

3! 3! 3! 3!

16!

4! 4! 4! 4!

.

After some cancellations, we find that this is equal to

12 · 8 · 4
15 · 14 · 13 ,

consistent with the answer obtained in Example 1.11.

Here is a summary of all the counting results we have developed.

Summary of Counting Results

• Permutations of n objects: n!.

• k-permutations of n objects: n!/(n − k)!.

• Combinations of k out of n objects:
(

n

k

)
=

n!
k! (n − k)!

.

• Partitions of n objects into r groups, with the ith group having ni

objects: (
n

n1, n2, . . . , nr

)
=

n!
n1!n2! · · ·nr!

.

1.7 SUMMARY AND DISCUSSION

A probability problem can usually be broken down into a few basic steps:

(a) The description of the sample space, that is, the set of possible outcomes
of a given experiment.

(b) The (possibly indirect) specification of the probability law (the probability
of each event).

(c) The calculation of probabilities and conditional probabilities of various
events of interest.
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The probabilities of events must satisfy the nonnegativity, additivity, and nor-
malization axioms. In the important special case where the set of possible out-
comes is finite, one can just specify the probability of each outcome and obtain
the probability of any event by adding the probabilities of the elements of the
event.

Given a probability law, we are often interested in conditional probabilities,
which allow us to reason based on partial information about the outcome of
the experiment. We can view conditional probabilities as probability laws of a
special type, under which only outcomes contained in the conditioning event can
have positive conditional probability. Conditional probabilities can be derived
from the (unconditional) probability law using the definition P(A |B) = P(A ∩
B)/P(B). However, the reverse process is often convenient, that is, first specify
some conditional probabilities that are natural for the real situation that we wish
to model, and then use them to derive the (unconditional) probability law.

We have illustrated through examples three methods for calculating prob-
abilities:

(a) The counting method. This method applies to the case where the num-
ber of possible outcomes is finite, and all outcomes are equally likely. To
calculate the probability of an event, we count the number of elements of
the event and divide by the number of elements of the sample space.

(b) The sequential method. This method applies when the experiment has a
sequential character, and suitable conditional probabilities are specified or
calculated along the branches of the corresponding tree (perhaps using the
counting method). The probabilities of various events are then obtained
by multiplying conditional probabilities along the corresponding paths of
the tree, using the multiplication rule.

(c) The divide-and-conquer method. Here, the probabilities P(B) of vari-
ous events B are obtained from conditional probabilities P(B |Ai), where
the Ai are suitable events that form a partition of the sample space and
have known probabilities P(Ai). The probabilities P(B) are then obtained
by using the total probability theorem.

Finally, we have focused on a few side topics that reinforce our main themes.
We have discussed the use of Bayes’ rule in inference, which is an important
application context. We have also discussed some basic principles of counting
and combinatorics, which are helpful in applying the counting method.
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P R O B L E M S

SECTION 1.1. Sets

Problem 1. Consider rolling a six-sided die. Let A be the set of outcomes where the
roll is an even number. Let B be the set of outcomes where the roll is greater than 3.
Calculate and compare the sets on both sides of De Morgan’s laws

(A ∪ B)c = Ac ∩ Bc,
(
A ∩ B

)c
= Ac ∪ Bc.

Problem 2. Let A and B be two sets.

(a) Show that

Ac = (Ac ∩ B) ∪ (Ac ∩ Bc), Bc = (A ∩ Bc) ∪ (Ac ∩ Bc).

(b) Show that
(A ∩ B)c = (Ac ∩ B) ∪ (Ac ∩ Bc) ∪ (A ∩ Bc).

(c) Consider rolling a six-sided die. Let A be the set of outcomes where the roll
is an odd number. Let B be the set of outcomes where the roll is less than 4.
Calculate the sets on both sides of the equality in part (b), and verify that the
equality holds.

Problem 3.* Prove the identity

A ∪
(
∩∞

n=1 Bn

)
= ∩∞

n=1(A ∪ Bn).

Solution. If x belongs to the set on the left, there are two possibilities. Either x ∈ A,
in which case x belongs to all of the sets A ∪ Bn, and therefore belongs to the set on
the right. Alternatively, x belongs to all of the sets Bn in which case, it belongs to all
of the sets A ∪ Bn, and therefore again belongs to the set on the right.

Conversely, if x belongs to the set on the right, then it belongs to A ∪ Bn for all
n. If x belongs to A, then it belongs to the set on the left. Otherwise, x must belong
to every set Bn and again belongs to the set on the left.

Problem 4.* Cantor’s diagonalization argument. Show that the unit interval
[0, 1] is uncountable, i.e., its elements cannot be arranged in a sequence.

Solution. Any number x in [0, 1] can be represented in terms of its decimal expansion,
e.g., 1/3 = 0.3333 · · ·. Note that most numbers have a unique decimal expansion,
but there are a few exceptions. For example, 1/2 can be represented as 0.5000 · · · or
as 0.49999 · · ·. It can be shown that this is the only kind of exception, i.e., decimal
expansions that end with an infinite string of zeroes or an infinite string of nines.
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Suppose, to obtain a contradiction, that the elements of [0, 1] can be arranged
in a sequence x1, x2, x3, . . ., so that every element of [0, 1] appears in the sequence.
Consider the decimal expansion of xn:

xn = 0.a1
na2

na3
n · · · ,

where each digit ai
n belongs to {0, 1, . . . , 9}. Consider now a number y constructed as

follows. The nth digit of y can be 1 or 2, and is chosen so that it is different from the
nth digit of xn. Note that y has a unique decimal expansion since it does not end with
an infinite sequence of zeroes or nines. The number y differs from each xn, since it has
a different nth digit. Therefore, the sequence x1, x2, . . . does not exhaust the elements
of [0, 1], contrary to what was assumed. The contradiction establishes that the set [0, 1]
is uncountable.

SECTION 1.2. Probabilistic Models

Problem 5. Out of the students in a class, 60% are geniuses, 70% love chocolate,
and 40% fall into both categories. Determine the probability that a randomly selected
student is neither a genius nor a chocolate lover.

Problem 6. A six-sided die is loaded in a way that each even face is twice as likely
as each odd face. All even faces are equally likely, as are all odd faces. Construct a
probabilistic model for a single roll of this die and find the probability that the outcome
is less than 4.

Problem 7. A four-sided die is rolled repeatedly, until the first time (if ever) that an
even number is obtained. What is the sample space for this experiment?

Problem 8.* Bonferroni’s inequality.

(a) Prove that for any two events A and B, we have

P(A ∩ B) ≥ P(A) + P(B) − 1.

(b) Generalize to the case of n events A1, A2, . . . , An, by showing that

P(A1 ∩ A2 ∩ · · · ∩ An) ≥ P(A1) + P(A2) + · · · + P(An) − (n − 1).

Solution. We have P(A ∪ B) = P(A) + P(B) − P(A ∩ B) and P(A ∪ B) ≤ 1, which
implies part (a). For part (b), we use De Morgan’s law to obtain

1 − P(A1 ∩ · · · ∩ An) = P
(
(A1 ∩ · · · ∩ An)c

)
= P(Ac

1 ∪ · · · ∪ Ac
n)

≤ P(Ac
1) + · · · + P(Ac

n)

=
(
1 − P(A1)

)
+ · · · +

(
1 − P(An)

)
= n − P(A1) − · · · − P(An).
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Problem 9.* The inclusion-exclusion formula. Show the following generaliza-
tions of the formula

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

(a) Let A, B, and C be events. Then,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(B∩C)−P(A∩C)+P(A∩B∩C).

(b) Let A1, A2, . . . , An be events. Let S1 = {i | 1 ≤ i ≤ n}, S2 = {(i1, i2) | 1 ≤ i1 <
i2 ≤ n}, and more generally, let Sm be the set of all m-tuples (i1, . . . , im) of
indices that satisfy 1 ≤ i1 < i2 < · · · < im ≤ n. Then,

P (∪n
k=1Ak) =

∑
i∈S1

P(Ai) −
∑

(i1,i2)∈S2

P(Ai1 ∩ Ai2)

+
∑

(i1,i2,i3)∈S3

P(Ai1 ∩ Ai2 ∩ Ai3) − · · · + (−1)n−1P (∩n
k=1Ak) .

Solution. (a) We use the formulas P(X ∪ Y ) = P(X) + P(Y ) − P(X ∩ Y ) and
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). We have

P(A ∪ B ∪ C) = P(A ∪ B) + P(C) − P
(
(A ∪ B) ∩ C

)
= P(A ∪ B) + P(C) − P

(
(A ∩ C) ∪ (B ∩ C)

)
= P(A ∪ B) + P(C) − P(A ∩ C) − P(B ∩ C) + P(A ∩ B ∩ C)

= P(A) + P(B) − P(A ∩ B) + P(C) − P(A ∩ C) − P(B ∩ C)

+ P(A ∩ B ∩ C)

= P(A) + P(B) + P(C) − P(A ∩ B) − P(B ∩ C) − P(A ∩ C)

+ P(A ∩ B ∩ C).

(b) Use induction and verify the main induction step by emulating the derivation of
part (a). For a different approach, see the problems at the end of Chapter 2.

Problem 10.* Continuity property of probabilities.

(a) Let A1, A2, . . . be an infinite sequence of events, which is “monotonically increas-
ing,” meaning that An ⊂ An+1 for every n. Let A = ∪∞

n=1An. Show that
P(A) = limn→∞ P(An). Hint: Express the event A as a union of countably
many disjoint sets.

(b) Suppose now that the events are “monotonically decreasing,” i.e., An+1 ⊂ An

for every n. Let A = ∩∞
n=1An. Show that P(A) = limn→∞ P(An). Hint: Apply

the result of part (a) to the complements of the events.

(c) Consider a probabilistic model whose sample space is the real line. Show that

P
(
[0,∞)

)
= lim

n→∞
P

(
[0, n]

)
and lim

n→∞
P

(
[n,∞)

)
= 0.



Problems 55

Solution. (a) Let B1 = A1 and, for n ≥ 2, Bn = An ∩ Ac
n−1. The events Bn are

disjoint, and we have ∪n
k=1Bk = An, and ∪∞

k=1Bk = A. We apply the additivity axiom
to obtain

P(A) =

∞∑
k=1

P(Bk) = lim
n→∞

n∑
k=1

P(Bk) = lim
n→∞

P(∪n
k=1Bk) = lim

n→∞
P(An).

(b) Let Cn = Ac
n and C = Ac. Since An+1 ⊂ An, we obtain Cn ⊂ Cn+1, and the events

Cn are increasing. Furthermore, C = Ac = (∩∞
n=1An)c = ∪∞

n=1A
c
n = ∪∞

n=1Cn. Using
the result from part (a) for the sequence Cn, we obtain

1 − P(A) = P(Ac) = P(C) = lim
n→∞

P(Cn) = lim
n→∞

(
1 − P(An)

)
,

from which we conclude that P(A) = limn→∞ P(An).

(c) For the first equality, use the result from part (a) with An = [0, n] and A = [0,∞).
For the second, use the result from part (b) with An = [n,∞) and A = ∩∞

n=1An = Ø.

SECTION 1.3. Conditional Probability

Problem 11. We roll two fair 6-sided dice. Each one of the 36 possible outcomes is
assumed to be equally likely.

(a) Find the probability that doubles are rolled.

(b) Given that the roll results in a sum of 4 or less, find the conditional probability
that doubles are rolled.

(c) Find the probability that at least one die roll is a 6.

(d) Given that the two dice land on different numbers, find the conditional probability
that at least one die roll is a 6.

Problem 12. A coin is tossed twice. Alice claims that the event of two heads is at
least as likely if we know that the first toss is a head than if we know that at least one
of the tosses is a head. Is she right? Does it make a difference if the coin is fair or
unfair? How can we generalize Alice’s reasoning?

Problem 13. We are given three coins: one has heads in both faces, the second has
tails in both faces, and the third has a head in one face and a tail in the other. We
choose a coin at random, toss it, and it comes heads. What is the probability that the
opposite face is tails?

Problem 14. A batch of one hundred items is inspected by testing four randomly
selected items. If one of the four is defective, the batch is rejected. What is the
probability that the batch is accepted if it contains five defectives?

Problem 15. Let A and B be events. Show that P(A∩B |B) = P(A |B), assuming
that P(B) > 0.
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SECTION 1.4. Total Probability Theorem and Bayes’ Rule

Problem 16. Alice searches for her term paper in her filing cabinet, which has n
drawers. She knows that she left her term paper in drawer j with probability pj > 0.
The drawers are so messy that even if she correctly guesses that the term paper is in
drawer i, the probability that she finds it is only di. Alice searches in a particular
drawer, say drawer i, but the search is unsuccessful. Conditioned on this event, show
that the probability that her paper is in drawer j, is given by

pj

1 − pidi
, if j �= i,

pi(1 − di)

1 − pidi
, if j = i.

Problem 17. How an inferior player with a superior strategy can gain an
advantage. Boris is about to play a two-game chess match with an opponent, and
wants to find the strategy that maximizes his winning chances. Each game ends with
either a win by one of the players, or a draw. If the score is tied at the end of the two
games, the match goes into sudden-death mode, and the players continue to play until
the first time one of them wins a game (and the match). Boris has two playing styles,
timid and bold, and he can choose one of the two at will in each game, no matter what
style he chose in previous games. With timid play, he draws with probability pd > 0,
and he loses with probability 1− pd. With bold play, he wins with probability pw, and
he loses with probability 1− pw. Boris will always play bold during sudden death, but
may switch style between games 1 and 2.

(a) Find the probability that Boris wins the match for each of the following strategies:
(i) Play bold in both games 1 and 2.
(ii) Play timid in both games 1 and 2.
(iii) Play timid whenever he is ahead in the score, and play bold otherwise.

(b) Assume that pw < 1/2, so Boris is the worse player, regardless of the playing
style he adopts. Show that with the strategy in (iii) above, and depending on
the values of pw and pd, Boris may have a better than a 50-50 chance to win the
match. How do you explain this advantage?

Problem 18. Two players take turns removing a ball from a jar that initially contains
m white and n black balls. The first player to remove a white ball wins. Develop a
recursive formula that allows the convenient computation of the probability that the
starting player wins.

Problem 19. Each of k jars contains m white and n black balls. A ball is randomly
chosen from jar 1 and transferred to jar 2, then a ball is randomly chosen from jar 2
and transferred to jar 3, etc. Finally, a ball is randomly chosen from jar k. Show that
the probability that the last ball is white is the same as the probability that the first
ball is white, i.e., it is m/(m + n).

Problem 20. We have two jars each containing initially n balls. We perform four
successive ball exchanges. In each exchange, we pick simultaneously and at random a
ball from each jar and move it to the other jar. What is the probability that at the
end of the four exchanges all the balls will be in the jar where they started?
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Problem 21. The prisoner’s dilemma. Two out of three prisoners are to be
released. One of the prisoners asks a guard to tell him the identity of a prisoner other
than himself that will be released. The guard refuses with the following rationale: at
your present state of knowledge, your probability of being released is 2/3, but after you
know my answer, your probability of being released will become 1/2, since there will
be two prisoners (including yourself) whose fate is unknown and exactly one of the two
will be released. What is wrong with the guard’s reasoning?

Problem 22. A two-envelopes puzzle. You are handed two envelopes, and you
know that each contains a positive integer dollar amount and that the two amounts are
different. The values of these two amounts are modeled as constants that are unknown.
Without knowing what the amounts are, you select at random one of the two envelopes,
and after looking at the amount inside, you may switch envelopes if you wish. A friend
claims that the following strategy will increase above 1/2 your probability of ending
up with the envelope with the larger amount: toss a coin repeatedly, let X be equal to
1/2 plus the number of tosses required to obtain heads for the first time, and switch
if the amount in the envelope you selected is less than the value of X. Is your friend
correct?

Problem 23. The paradox of induction. Consider a statement whose truth is
unknown. If we see many examples that are compatible with it, we are tempted to
view the statement as more probable. Such reasoning is often referred to as induc-
tive inference (in a philosophical, rather than mathematical sense). Consider now the
statement that “all cows are white.” An equivalent statement is that “everything that
is not white is not a cow.” We then observe several black crows. Our observations are
clearly compatible with the statement, but do they make the hypothesis “all cows are
white” more likely?

To analyze such a situation, we consider a probabilistic model. Let us assume
that there are two possible states of the world, which we model as complementary
events:

A : all cows are white,

Ac : 50% of all cows are white.

Let p be the prior probability P(A) that all cows are white. We make an observation
of a cow or a crow, with probability q and 1− q, respectively, independently of whether
event A occurs or not. Assume that 0 < p < 1, 0 < q < 1, and that all crows are black.

(a) Given the event B = {a black crow was observed}, what is P(A |B)?

(b) Given the event C = {a white cow was observed}, what is P(A |C)?

Problem 24.* Conditional version of the total probability theorem. Show
the identity

P(A |B) = P(C |B)P(A |B ∩ C) + P(Cc |B)P(A |B ∩ Cc),

assuming all the conditioning events have positive probability.

Solution. Using the conditional probability definition and the additivity axiom on the
disjoint sets A ∩ B ∩ C and A ∩ B ∩ Cc, we obtain
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P(C |B)P(A |B ∩ C) + P(Cc |B)P(A |B ∩ Cc)

=
P(B ∩ C)

P(B)
· P(A ∩ B ∩ C)

P(B ∩ C)
+

P(B ∩ Cc)

P(B)
· P(A ∩ B ∩ Cc)

P(B ∩ Cc)

=
P(A ∩ B ∩ C) + P(A ∩ B ∩ Cc)

P(B)

=
P

(
(A ∩ B ∩ C) ∪ (A ∩ B ∩ Cc)

)
P(B)

=
P(A ∩ B)

P(B)

= P(A |B).

Problem 25.* Let A and B be events with P(A) > 0 and P(B) > 0. We say that
an event B suggests an event A if P(A |B) > P(A), and does not suggest event A if
P(A |B) < P(A).

(a) Show that B suggests A if and only if A suggests B.

(b) Assume that P(Bc) > 0. Show that B suggests A if and only if Bc does not
suggest A.

(c) We know that a treasure is located in one of two places, with probabilities β and
1−β, respectively, where 0 < β < 1. We search the first place and if the treasure
is there, we find it with probability p > 0. Show that the event of not finding the
treasure in the first place suggests that the treasure is in the second place.

Solution. (a) We have P(A |B) = P(A ∩ B)/P(B), so B suggests A if and only if
P(A ∩ B) > P(A)P(B), which is equivalent to A suggesting B, by symmetry.

(b) Since P(B) + P(Bc) = 1, we have

P(B)P(A) + P(Bc)P(A) = P(A) = P(B)P(A |B) + P(Bc)P(A |Bc),

which implies that

P(Bc)
(
P(A) − P(A |Bc)

)
= P(B)

(
P(A |B) − P(A)

)
.

Thus, P(A |B) > P(A) (B suggests A) if and only if P(A) > P(A |Bc) (Bc does not
suggest A).

(c) Let A and B be the events

A = {the treasure is in the second place},
B = {we don’t find the treasure in the first place}.

Using the total probability theorem, we have

P(B) = P(Ac)P(B |Ac) + P(A)P(B |A) = β(1 − p) + (1 − β),
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so

P(A |B) =
P(A ∩ B)

P(B)
=

1 − β

β(1 − p) + (1 − β)
=

1 − β

1 − βp
> 1 − β = P(A).

It follows that event B suggests event A.

SECTION 1.5. Independence

Problem 26. A hunter has two hunting dogs. One day, on the trail of some animal,
the hunter comes to a place where the road diverges into two paths. He knows that
each dog, independently of the other, will choose the correct path with probability p.
The hunter decides to let each dog choose a path, and if they agree, take that one, and
if they disagree, to randomly pick a path. Is his strategy better than just letting one
of the two dogs decide on a path?

Problem 27. Communication through a noisy channel. A binary (0 or 1)
symbol transmitted through a noisy communication channel is received incorrectly
with probability ε0 and ε1, respectively (see Fig. 1.18). Errors in different symbol
transmissions are independent.

ε1
 1  1

 0  0

ε0

1 − ε0

1 − ε1

Figure 1.18: Error probabilities in a binary communication channel.

(a) Suppose that the channel source transmits a 0 with probability p and transmits a
1 with probability 1−p. What is the probability that a randomly chosen symbol
is received correctly?

(b) Suppose that the string of symbols 1011 is transmitted. What is the probability
that all the symbols in the string are received correctly?

(c) In an effort to improve reliability, each symbol is transmitted three times and
the received symbol is decoded by majority rule. In other words, a 0 (or 1) is
transmitted as 000 (or 111, respectively), and it is decoded at the receiver as a
0 (or 1) if and only if the received three-symbol string contains at least two 0s
(or 1s, respectively). What is the probability that a transmitted 0 is correctly
decoded?

(d) Suppose that the channel source transmits a 0 with probability p and transmits
a 1 with probability 1 − p, and that the scheme of part (c) is used. What is the
probability that a 0 was transmitted given that the received string is 101?

Problem 28. The king’s sibling. The king has only one sibling. What is the proba-
bility that the sibling is male? Assume that every birth results in a boy with probability
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1/2, independent of other births. Be careful to state any additional assumptions you
have to make in order to arrive at an answer.

Problem 29. Using a biased coin to make an unbiased decision. Alice and Bob
want to choose between the opera and the movies by tossing a fair coin. Unfortunately,
the only available coin is biased (though the bias is not known exactly). How can they
use the biased coin to make a decision so that either option (opera or the movies) is
equally likely to be chosen?

Problem 30. An electrical system consists of identical components that are oper-
ational with probability p, independently of other components. The components are
connected in three subsystems, as shown in Fig. 1.19. The system is operational if
there is a path that starts at point A, ends at point B, and consists of operational
components. This is the same as requiring that all three subsystems are operational.
What are the probabilities that the three subsystems, as well as the entire system, are
operational?
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A B

Figure 1.19: A system of identical components that consists of the three sub-
systems 1, 2, and 3. The system is operational if there is a path that starts at
point A, ends at point B, and consists of operational components.

Problem 31. Reliability of a k-out-of-n system. A system consists of n identical
components that are operational with probability p, independently of other compo-
nents. The system is operational if at least k out of the n components are operational.
What is the probability that the system is operational?

Problem 32. A power utility can supply electricity to a city from n different power
plants. Power plant i fails with probability pi, independently of the others.

(a) Suppose that any one plant can produce enough electricity to supply the entire
city. What is the probability that the city will experience a black-out?

(b) Suppose that two power plants are necessary to keep the city from a black-out.
Find the probability that the city will experience a black-out.

Problem 33. A cellular phone system services a population of n1 “voice users” (those
that occasionally need a voice connection) and n2 “data users” (those that occasionally
need a data connection). We estimate that at a given time, each user will need to be
connected to the system with probability p1 (for voice users) or p2 (for data users),
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independently of other users. The data rate for a voice user is r1 bits/sec and for a data
user is r2 bits/sec. The cellular system has a total capacity of c bits/sec. What is the
probability that more users want to use the system than the system can accommodate?

Problem 34. The problem of points. Telis and Wendy play a round of golf (18
holes) for a $10 stake, and their probabilities of winning on any one hole are p and
1−p, respectively, independently of their results in other holes. At the end of 10 holes,
with the score 4 to 6 in favor of Wendy, Telis receives an urgent call and has to report
back to work. They decide to split the stake in proportion to their probabilities of
winning had they completed the round, as follows. If pT and pW are the conditional
probabilities that Telis and Wendy, respectively, are ahead in the score after 18 holes
given the 4-6 score after 10 holes, then Telis should get a fraction pT /(pT + pW ) of the
stake, and Wendy should get the remaining pW /(pT + pW ). How much money should
Telis get? Note: This is an example of the, so-called, problem of points, which played
an important historical role in the development of probability theory. The problem
was posed by Chevalier de Méré in the 17th century to Pascal, who introduced the
idea that the stake of an interrupted game should be divided in proportion to the
players’ conditional probabilities of winning given the state of the game at the time of
interruption. Pascal worked out some special cases and through a correspondence with
Fermat, stimulated much thinking and several probability-related investigations.

Problem 35. A particular class has had a history of low attendance. The annoyed
professor decides that she will not lecture unless at least k of the n students enrolled
in the class are present. Each student will independently show up with probability
pg if the weather is good, and with probability pb if the weather is bad. Given the
probability of bad weather on a given day, calculate the probability that the professor
will teach her class on that day.

Problem 36. Consider a coin that comes up heads with probability p and tails with
probability 1− p. Let qn be the probability that after n independent tosses, there have
been an even number of heads. Derive a recursion that relates qn to qn−1, and solve
this recursion to establish the formula

qn =
(
1 + (1 − 2p)n

)
/2.

Problem 37.* Gambler’s ruin. A gambler makes a sequence of independent bets.
In each bet, he wins $1 with probability p, and loses $1 with probability 1−p. Initially,
the gambler has $k, and plays until he either accumulates $n or has no money left.
What is the probability that the gambler will end up with $n?

Solution. Let us denote by A the event that he ends up with $n, and by F the event
that he wins the first bet. Denote also by wk the probability of event A, if he starts
with $k. We apply the total probability theorem to obtain

wk = P(A |F )P(F ) + P(A |F c)P(F c) = pP(A |F ) + qP(A |F c), 0 < k < n,

where q = 1−p. By the independence of past and future bets, having won the first bet
is the same as if he were just starting now but with $(k+1), so that P(A |F ) = wk+1

and similarly P(A |F c) = wk−1. Thus, we have wk = pwk+1 + qwk−1, which can be
written as

wk+1 − wk = r(wk − wk−1), 0 < k < n,
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where r = q/p. We will solve for wk in terms of p and q using iteration, and the
boundary values w0 = 0 and wn = 1.

We have wk+1 − wk = rk(w1 − w0), and since w0 = 0,

wk+1 = wk + rkw1 = wk−1 + rk−1w1 + rkw1 = w1 + rw1 + · · · + rkw1.

The sum in the right-hand side can be calculated separately for the two cases where
r = 1 (or p = q) and r �= 1 (or p �= q). We have

wk =

{
1 − rk

1 − r
w1, if p �= q,

kw1, if p = q.

Since wn = 1, we can solve for w1 and therefore for wk:

w1 =




1 − r

1 − rn
, if p �= q,

1

n
, if p = q,

so that

wk =




1 − rk

1 − rn
, if p �= q,

k

n
, if p = q.

Problem 38.* Let A and B be independent events. Use the definition of indepen-
dence to prove the following:

(a) The events A and Bc are independent.

(b) The events Ac and Bc are independent.

Solution. (a) The event A is the union of the disjoint events A∩Bc and A∩B. Using
the additivity axiom and the independence of A and B, we obtain

P(A) = P(A ∩ B) + P(A ∩ Bc) = P(A)P(B) + P(A ∩ Bc).

It follows that
P(A ∩ Bc) = P(A)

(
1 − P(B)

)
= P(A)P(Bc),

so A and Bc are independent.

(b) Apply the result of part (a) twice: first on A and B, then on Bc and A.

Problem 39.* Let A, B, and C be independent events, with P(C) > 0. Prove that
A and B are conditionally independent given C.

Solution. We have

P(A ∩ B |C) =
P(A ∩ B ∩ C)

P(C)

=
P(A)P(B)P(C)

P(C)

= P(A)P(B)

= P(A |C)P(B |C),
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so A and B are conditionally independent given C. In the preceding calculation, the
first equality uses the definition of conditional probabilities; the second uses the as-
sumed independence; the fourth uses the independence of A from C, and of B from C.

Problem 40.* Assume that the events A1, A2, A3, A4 are independent and that
P(A3 ∩ A4) > 0. Show that

P(A1 ∪ A2 |A3 ∩ A4) = P(A1 ∪ A2).

Solution. We have

P(A1 |A3 ∩ A4) =
P(A1 ∩ A3 ∩ A4)

P(A3 ∩ A4)
=

P(A1)P(A3)P(A4)

P(A3)P(A4)
= P(A1).

We similarly obtain P(A2 |A3 ∩A4) = P(A2) and P(A1 ∩A2 |A3 ∩A4) = P(A1 ∩A2),
and finally,

P(A1 ∪ A2 |A3 ∩ A4) = P(A1 |A3 ∩ A4) + P(A2 |A3 ∩ A4) − P(A1 ∩ A2 |A3 ∩ A4)

= P(A1) + P(A2) − P(A1 ∩ A2)

= P(A1 ∪ A2).

Problem 41.* Laplace’s rule of succession. Consider m + 1 boxes with the kth
box containing k red balls and m − k white balls, where k ranges from 0 to m. We
choose a box at random (all boxes are equally likely) and then choose a ball at random
from that box, n successive times (the ball drawn is replaced each time, and a new ball
is selected independently). Suppose a red ball was drawn each of the n times. What
is the probability that if we draw a ball one more time it will be red? Estimate this
probability for large m.

Solution. We want to find the conditional probability P(E |Rn), where E is the event
of a red ball drawn at time n+1, and Rn is the event of a red ball drawn each of the n
preceding times. Intuitively, the consistent draw of a red ball indicates that a box with
a high percentage of red balls was chosen, so we expect that P(E |Rn) is closer to 1
than to 0. In fact, Laplace used this example to calculate the probability that the sun
will rise tomorrow given that it has risen for the preceding 5,000 years. (It is not clear
how serious Laplace was about this calculation, but the story is part of the folklore of
probability theory.)

We have

P(E |Rn) =
P(E ∩ Rn)

P(Rn)
,

and by using the total probability theorem, we obtain

P(Rn) =

m∑
k=0

P(kth box chosen)
(

k

m

)n

=
1

m + 1

m∑
k=0

(
k

m

)n

,

P(E ∩ Rn) = P(Rn+1) =
1

m + 1

m∑
k=0

(
k

m

)n+1

.



64 Sample Space and Probability Chap. 1

For large m, we can view P(Rn) as a piecewise constant approximation to an integral:

P(Rn) =
1

m + 1

m∑
k=0

(
k

m

)n

≈ 1

(m + 1)mn

∫ m

0

xndx =
1

(m + 1)mn
· mn+1

n + 1
≈ 1

n + 1
.

Similarly,

P(E ∩ Rn) = P(Rn+1) ≈
1

n + 2
,

so that

P(E |Rn) ≈ n + 1

n + 2
.

Thus, for large m, drawing a red ball one more time is almost certain when n is large.

Problem 42.* Binomial coefficient formula and the Pascal triangle.

(a) Use the definition of
(

n
k

)
as the number of distinct n-toss sequences with k

heads, to derive the recursion suggested by the so called Pascal triangle, given in
Fig. 1.20.

(b) Use the recursion derived in part (a) and induction, to establish the formula(
n

k

)
=

n!

k! (n − k)!
.

( )( )

( )
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4
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Figure 1.20: Sequential calculation method of the binomial coefficients using the
Pascal triangle. Each term

(
n
k

)
in the triangular array on the left is computed

and placed in the triangular array on the right by adding its two neighbors in the
row above it (except for the boundary terms with k = 0 or k = n, which are equal
to 1).

Solution. (a) Note that n-toss sequences that contain k heads (for 0 < k < n) can be
obtained in two ways:

(1) By starting with an (n−1)-toss sequence that contains k heads and adding a tail
at the end. There are

(
n−1

k

)
different sequences of this type.
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(2) By starting with an (n − 1)-toss sequence that contains k − 1 heads and adding
a head at the end. There are

(
n−1
k−1

)
different sequences of this type.

Thus, (
n

k

)
=




(
n − 1

k − 1

)
+

(
n − 1

k

)
, if k = 1, 2, . . . , n − 1,

1, if k = 0, n.

This is the formula corresponding to the Pascal triangle calculation, given in Fig. 1.20.

(b) We now use the recursion from part (a), to demonstrate the formula(
n

k

)
=

n!

k! (n − k)!
,

by induction on n. Indeed, we have from the definition
(
1
0

)
=

(
1
1

)
= 1, so for n = 1 the

above formula is seen to hold as long as we use the convention 0! = 1. If the formula
holds for each index up to n − 1, we have for k = 1, 2, . . . , n − 1,(

n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)

=
(n − 1)!

(k − 1)! (n − 1 − k + 1)!
+

(n − 1)!

k! (n − 1 − k)!

=
k

n
· n!

k! (n − k)!
+

n − k

n
· n!

k! (n − k)!

=
n!

k! (n − k)!
,

and the induction is complete.

Problem 43.* The Borel-Cantelli lemma. Consider an infinite sequence of trials.
The probability of success at the ith trial is some positive number pi. Let N be the
event that there is no success, and let I be the event that there is an infinite number
of successes.

(a) Assume that the trials are independent and that
∑∞

i=1
pi = ∞. Show that

P(N) = 0 and P(I) = 1.

(b) Assume that
∑∞

i=1
pi < ∞. Show that P(I) = 0.

Solution. (a) The event N is a subset of the event that there were no successes in the
first n trials, so that

P(N) ≤
n∏

i=1

(1 − pi).

Taking logarithms,

log P(N) ≤
n∑

i=1

log(1 − pi) ≤
n∑

i=1

(−pi).
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Taking the limit as n tends to infinity, we obtain log P(N) = −∞, or P(N) = 0.
Let now Ln be the event that there is a finite number of successes and that the

last success occurs at the nth trial. We use the already established result P(N) = 0,
and apply it to the sequence of trials after trial n, to obtain P(Ln) = 0. The event Ic

(finite number of successes) is the union of the disjoint events Ln, n ≥ 1, and N , so
that

P(Ic) = P(N) +

∞∑
n=1

P(Ln) = 0,

and P(I) = 1.

(b) Let Si be the event that the ith trial is a success. Fix some number n and for every
i > n, let Fi be the event that the first success after time n occurs at time i. Note
that Fi ⊂ Si. Finally, let An be the event that there is at least one success after time
n. Note that I ⊂ An, because an infinite number of successes implies that there are
successes subsequent to time n. Furthermore, the event An is the union of the disjoint
events Fi, i > n. Therefore,

P(I) ≤ P(An) = P

(
∞⋃

i=n+1

Fi

)
=

∞∑
i=n+1

P(Fi) ≤
∞∑

i=n+1

P(Si) =

∞∑
i=n+1

pi.

We take the limit of both sides as n → ∞. Because of the assumption
∑∞

i=1
pi < ∞,

the right-hand side converges to zero. This implies that P(I) = 0.

SECTION 1.6. Counting

Problem 44. De Méré’s puzzle. A six-sided die is rolled three times independently.
Which is more likely: a sum of 11 or a sum of 12? (This question was posed by the
French nobleman de Méré to his friend Pascal in the 17th century.)

Problem 45. The birthday problem. Consider n people who are attending a
party. We assume that every person has an equal probability of being born on any day
during the year, independently of everyone else, and ignore the additional complication
presented by leap years (i.e., nobody is born on February 29). What is the probability
that each person has a distinct birthday?

Problem 46. An urn contains m red and n white balls.

(a) We draw two balls randomly and simultaneously. Describe the sample space and
calculate the probability that the selected balls are of different color, by using
two approaches: a counting approach based on the discrete uniform law, and a
sequential approach based on the multiplication rule.

(b) We roll a fair 3-sided die whose faces are labeled 1,2,3, and if k comes up, we
remove k balls from the urn at random and put them aside. Describe the sample
space and calculate the probability that all of the balls drawn are red, using a
divide-and-conquer approach and the total probability theorem.

Problem 47. We deal from a well-shuffled 52-card deck. Calculate the probability
that the 13th card is the first king to be dealt.
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Problem 48. Ninety students, including Joe and Jane, are to be split into three
classes of equal size, and this is to be done at random. What is the probability that
Joe and Jane end up in the same class?

Problem 49. Twenty distinct cars park in the same parking lot every day. Ten of
these cars are US-made, while the other ten are foreign-made. The parking lot has
exactly twenty spaces, all in a row, so the cars park side by side. However, the drivers
have varying schedules, so the position any car might take on a certain day is random.

(a) In how many different ways can the cars line up?

(b) What is the probability that on a given day, the cars will park in such a way
that they alternate (no two US-made are adjacent and no two foreign-made are
adjacent)?

Problem 50. Eight rooks are placed in distinct squares of an 8× 8 chessboard, with
all possible placements being equally likely. Find the probability that all the rooks are
safe from one another, i.e., that there is no row or column with more than one rook.

Problem 51. An academic department offers 8 lower level courses: {L1, L2, . . . , L8}
and 10 higher level courses: {H1, H2, . . . , H10}. A valid curriculum consists of 4 lower
level courses, and 3 higher level courses.

(a) How many different curricula are possible?

(b) Suppose that {H1, . . . , H5} have L1 as a prerequisite, and {H6, . . . H10} have L2

and L3 as prerequisites, i.e., any curricula which involve, say, one of {H1, . . . , H5}
must also include L1. How many different curricula are there?

Problem 52. How many 6-word sentences can be made using each of the 26 letters
of the alphabet exactly once? A word is defined as a nonempty (possibly jibberish)
sequence of letters.

Problem 53. Consider a group of n persons. A club consists of a special person from
the group (the club leader) and a number (possibly zero) of additional club members.

(a) Explain why the number of possible clubs is n2n−1.

(b) Find an alternative way of counting the number of possible clubs and show the
identity

n∑
k=1

k

(
n

k

)
= n2n−1.

Problem 54. We draw the top 7 cards from a well-shuffled standard 52-card deck.
Find the probability that:

(a) The 7 cards include exactly 3 aces.

(b) The 7 cards include exactly 2 kings.

(c) The probability that the 7 cards include exactly 3 aces or exactly 2 kings.

Problem 55. A parking lot contains 100 cars, k of which happen to be lemons. We
select m of these cars at random and take them for a testdrive. Find the probability
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that n of the cars tested turn out to be lemons.

Problem 56. A well-shuffled 52-card deck is dealt to 4 players. Find the probability
that each of the players gets an ace.

Problem 57.* Hypergeometric probabilities. An urn contains n balls, out of
which m are red. We select k of the balls at random, without replacement (i.e., selected
balls are not put back into the urn before the next selection). What is the probability
that i of the selected balls are red?

Solution. The sample space consists of the
(

n
k

)
different ways that we can select k out

of the available balls. For the event of interest to occur, we have to select i out of the
m red balls, which can be done in

(
m
i

)
ways, and also select k− i out of the n−m blue

balls, which can be done in
(

n−m
k−i

)
ways. Therefore, the desired probability is(

m

i

)(
n − m

k − i

)
(

n

k

) ,

for i ≥ 0 satisfying i ≤ m, i ≤ k, and k − i ≤ n − m. For all other i, the probability is
zero.

Problem 58.* Correcting the number of permutations for indistinguishable
objects. When permuting n objects, some of which are indistinguishable, different
permutations may lead to indistinguishable object sequences, so the number of distin-
guishable object sequences is less than n!. For example, there are six permutations of
the letters A, B, and C:

ABC, ACB, BAC, BCA, CAB, CBA,

but only three distinguishable sequences that can be formed using the letters A, D,
and D:

ADD, DAD, DDA.

(a) Suppose that k out of the n objects are indistinguishable. Show that the number
of distinguishable object sequences is n!/k!.

(b) Suppose that we have r types of indistinguishable objects, and for each i, ki

objects of type i. Show that the number of distinguishable object sequences is

n!

k1! k2! · · · kr!
.

Solution. (a) Each one of the n! permutations corresponds to k! duplicates which are
obtained by permuting the k indistinguishable objects. Thus, the n! permutations can
be grouped into n!/k! groups of k! indistinguishable permutations that result in the
same object sequence. Therefore, the number of distinguishable object sequences is
n!/k!. For example, the three letters A, D, and D give the 3! = 6 permutations

ADD, ADD, DAD, DDA, DAD, DDA,
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obtained by replacing B and C by D in the permutations of A, B, and C given earlier.
However, these 6 permutations can be divided into the n!/k! = 3!/2! = 3 groups

{ADD, ADD}, {DAD, DAD}, {DDA, DDA},

each having k! = 2! = 2 indistinguishable permutations.

(b) One solution is to extend the argument in (a) above: for each object type i, there are
ki! indistinguishable permutations of the ki objects. Hence, each permutation belongs
to a group of k1! k2! · · · kr! indistinguishable permutations, all of which yield the same
object sequence.

An alternative argument goes as follows. Choosing a distinguishable object se-
quence is the same as starting with n slots and for each i, choosing the ki slots to be
occupied by objects of type i. This is the same as partitioning the set {1, . . . , n} into
groups of size k1, . . . , kr, and the number of such partitions is given by the multinomial
coefficient.


