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Preface 
to the English Translation 

This is a concise guide to basic sections of modern functional analysis. Included are 
such topics as the principles of Banach and Hilbert spaces, the theory of multinormed 
and uniform spaces, the Riesz-Dunford holomorphic functional calculus, the Fredholm 
index theory, convex analysis and duality theory for locally convex spaces. 

With standard provisos the presentation is self-contained, exposing about a hun-
dred famous "named" theorems furnished with complete proofs and culminating in 
the Gelfand-Nalmark-Segal construction for C*-algebras. 

The first Russian edition was printed by the Siberian Division of "Nauka" Pub-
lishers in 1983. Since then the monograph has served as the standard textbook on 
functional analysis at the University of Novosibirsk. 

This volume is translated from the second Russian edition printed by the Sobolev 
Institute of Mathematics of the Siberian Division of the Russian Academy of Sciences· 
in 1995. It incorporates new sections on Radon measures, the Schwartz spaces of 
distributions, and a supplementary list of theoretical exercises and problems. 

This edition was typeset using AMS-'lEX, the American Mathematical Society's 
'lEX system. 

To clear my conscience completely, I also confess that := stands for the definor, 
the assignment operator, <J marks the beginning of a (possibly empty) proof, and [> 

signifies the end of the proof. 

s. K utateladze 



Preface 
to the First Russian Edition 

As the title implies, this book treats functional analysis. At the turn of the century 
the term "functional analysis" was coined by J. Hadamard who is famous among 
mathematicians for the formula of the radius of convergence of a power series. The 
term "functional analysis" was universally accepted then as related to the calculus of 
variations, standing for a new direction of analysis which was intensively developed by 
V. Volterra, C. Arzela, S. Pincherle, P. Levy, and other representatives of the French 
and Italian mathematical schools. J. Hadamard's contribution to the present discipline 
should not be reduced to the invention of the word "functional" (or more precisely to 
the transformation of the adjective into a proper noun). J. Hadamard was fully aware 
of the relevance of the rising subject. Working hard, he constantly advertised problems, 
ideas, and methods just evolved. In particular, to one of his students, M. Frechet, he 
suggested the problem of inventing something that is now generally acclaimed as the 
theory of metric spaces. In this connection it is worth indicating that neighborhoods 
pertinent to functional analysis in the sense of Hadamard and Volterra served as 
precursors to Hausdorff's famous research, heralding the birth of general topology. 

Further, it is essential to emphasize that one of the most attractive, difficult, and 
important sections of classical analysis, the calculus of variations, became the first 
source of functional analysis. 

The second source of functional analysis was provided by the study directed to 
creating some algebraic theory for functional equations or, stated strictly, to simplify-
ing and formalizing the manipulations of "equations in functions" and, in particular, 
linear integral equations. Ascending to H. Abel and J. Liouville, the theory of the 
latter was considerably expanded by works of I. Fredholm, K. Neumann, F. Noether, 
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A. Poincare, et al. The efforts of these mathematicians fertilized soil for D. Hilbert's 
celebrated research into quadratic forms in infinitely many variables. His ideas, devel-
oped further by F. Riesz, E. Schmidt, et al., were the immediate predecessors of the 
axiomatic presentation of Hilbert space theory which was undertaken and implemented 
by J. von Neumann and M. Stone. The resulting section of mathematics h.as vigor-
ously influenced theoretical physics, first of all, quantum mechanics. In this regard 
it is instructive as well as entertaining to mention that both terms, "quantum" and 
"functional," originated in the same year, 1900. 

The third major source of functional analysis encompassed Minkowski's geometric 
ideas. His invention, the apparatus for the finite-dimensional geometry of convex bod-
ies, prepared the bulk of spatial notions ensuring the modern development of analysis. 
Elaborated by E. Helly, H. Hahn, C. Caratheodory, I. Radon, et al., the idea of convex-
ity has eventually shaped the fundamentals of the theory of locally convex spaces. In 
turn, the latter has facilitated the spread of distributions and weak derivatives which 
were recognized by S. L. Sobolev as drastically changing all tools of mathematical 
physics. In the postwar years the geometric notion of convexity has conquered a new 
sphere of application for mathematics, viz., social sciences and especially economics. 
An exceptional role in this process was performed by linear programming discovered 
by L. V. Kantorovich. 

The above synopsis of the history of functional analysis is schematic, incomplete, 
and arbitrary (for instance, it casts aside the line of D. Bernoulli's superposition prin-
ciple, the line of set functions and integration theory, the line of operational calculus, 
the line of finite differences and fractional derivation, the line of general analysis, and 
many others). These demerits notwithstanding, the three sources listed above reflect 
the main, and most principal, regularity: functional analysis has synthesized and pro-
moted ideas, concepts, and methods from classical sections of mathematics: algebra, 
geometry, and analysis. Therefore, although functional analysis verbatim means anal-
ysis of functions and functionals, even a superficial glance at its history gives grounds 
to claim that functional analysis is algebra, geometry, and analysis of functions and 
functionals. 

A more viable and penetrating explanation for the notion of functional analy-
sis is given by the Soviet Encyclopedic Dictionary: "Functional analysis is one of the 
principal branches of modern mathematics. It resulted from mutual interaction, unifi-
cation, and generalization of the ideas and methods stemming from all parts of classical 
mathematical analysis. It is characterized by the use of concepts pertaining to various 
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abstract spaces such as vector spaces, Hilbert spaces, etc. It finds diverse applications 
in modern physics, especially in quantum mechanics." 

The S. Banach treatise Theorie des Operationes Lineares, printed half a century 
ago, inaugurated functional analysis as an essential activity in mathematics. Its influ-
ence on the development of mathematics is seminal: Omnipresent, Banach's ideas, 
propounded in the book, captivate the realm of modern mathematics. 

An outstanding contribution toward progress in functional analysis was made by 
the renowned Soviet scientists: I. M. Gelfand, L. V. Kantorovich, M. V. Keldysh, A. 
N. Kolmogorov, M. G. KreIn, L. A. Lyusternik, and S. L. Sobolev. The characteristic 
feature of the Soviet school is that its research on functional analysis is always con-
ducted in connection with profound applied problems. The research has expanded the 
scope of functional analysis which becomes the prevailing language of the applications 
of mathematics. 

The next fact is demonstrative: In 1948 even the title of Kantorovich's insightful 
article Functional Analysis and Applied Mathematics was considered paradoxical, but 
it provided a basis for the numerical mathematics of today. And in 1974 S. L. Sobolev 
stated that "to conceive the theory of calculations without Banach spaces is just as 
impossible as trying to conceive of it without the use of computers". 

The exponential accumulation of knowledge within functional analysis is now 
observed alongside a sharp rise in demand for the tools and concepts of the discipline. 
The resulting conspicuous gap widens permanently between the current level of anal-
ysis and the level fixed in the literature accessible to the reading community. To alter 
this ominous trend is the purpose of the present book. 

Preface 
to the Second Russian Edition 

For more than a decade the monograph has served as a reference book for compul-
sory and optional courses in functional analysis at Novosibirsk State University. This 
time span proves that the principles of compiling the book are legitimate. The present 
edition is enlarged with sections addressing the fundamentals of distribution theory. 
Theoretical exercises are supplemented and the list of references is updated. Also, 
inaccuracies, mostly indicated by my colleagues, have been corrected. 

I seize the opportunity to express my gratitude to all those who helped me in the 
preparation of the book. My pleasant debt is to acknowledge the financial support of 
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the Sobolev Institute of Mathematics of the Siberian Division of the Russian Acade-
my of Sciences, the Russian Foundation for Fundamental Research, the International 
Science Foundation and the American Mathematical Society during the compilation 
of the second edition. 
March, 1995 S. Kutateladze 



Chapter 1 
An Excursion into Set Theory 

1.1. Correspondences 
1.1.1. DEFINITION. Let A and B be sets and let F be a subset of the product 

A X B := {(a, b): a E A, b E B}. Then F is a correspondence with the set 
of departure A and the set of arrival B or just a correspondence from A (in )to B. 

1.1.2. DEFINITION. For a correspondence F C A x B the set 

dom F:= D(F):= {a E A: (3b E B) (a, b) E F} 

is the domain (of definition) of F and the set 

im F:= R(F):= {b E B: (3a E A) (a, b) E F} 

is the codomain of F, or the range of F, or the image of F. 
1.1.3. EXAMPLES. 

(1) If F is a correspondence from A into B then 

F- I := {(b, a) E B x A: (a, b) E F} 

is a correspondence from B into A which is called inverse to F or the inverse of F. 
It is obvious that F is the inverse of F- I . 

(2) A relation F on A is by definition a subset of A2, i.e. a correspondence 
from A to A (in words: "F acts in A"). 

(3) Let Fe A x B. Then F is a single-valued correspondence if for all 
a E A the containments (a, bI ) E F and (a, b2 ) E F imply bI = b2 • In particular, 
if U C A and Iu:= {(a, a) E A2 : a E U}, then Iu is a single-valued correspond-
ence acting in A and called the identity relation (over U on A). A single-valued 
correspondence F C A x B with dom F = A is a mapping of A into B or a map-
ping from A (in)to B. The terms "function" and "map" are also in current usage. 
A mapping Fe A x B is denoted by F : A --+ B. Observe that here dom F always 
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coincides with A whereas im F may differ from B. The identity relation Iu on A is 
a mapping if and only if A = U and in this case Iu is called the identity mapping 
in U or the diagonal of U2. The set Iu may be treated as a subset of U x A. 
The resulting mapping is usually denoted by L : U -+ A and is called the identical 
embedding of U into A. It is said that "F is a correspondence from A onto B" 
if im F = B. Finally, a correspondence F C X x Y is one-to-one whenever the 
correspondence F-I C B x A is single-valued. 

( 4) Occasionally the term "family" is used instead of "mapping." Namely, 
a mapping F : A -+ B is a family in B (indexed in A by F), also denoted by (ba)aEA 
or a 1--+ ba (a E A) or even (ba). Specifically, (a, b) E F if and only if b = ba. 
In the sequel, a subset U of A is often treated as indexed in itself by the identical 
embedding of U into A. It is worth recalling that in set theory a is an element or 
a member of A whenever a E A. In this connection a family in B is also called 
a family of elements of B or a family of members of B. By way of expressiveness 
a family or a set of numbers is often addressed as numeric. Also, common abusage 
practices the identification of a family and its range. This sin is very enticing. 

(5) Let F C A x B be a correspondence and U c A. The restriction of F 
to U, denoted by Flu, is the set Fn(U x B) C U x B. The set F(U):= im Flu 
is the image of U under F. . 

If a and b are elements of A and B then F( a) = b is usually written instead 
of F( {a}) = {b}. Often the parentheses in the symbol F( a) are omitted or replaced 
with other symbols. For a subset U of B the image F-I(U) of U under F-I is 
the inverse image of U or the preimage of U under F. So, inverse images are just 
images of inverses. 

(6) Given a correspondence F C A x B, assume that A is the product 
of Al and A 2, i.e. A = Al X A 2. Fixing al in Al and a2 in A2, consider the sets 

F(aI' . ):= {(a2, b) E A2 x B: «aI, a2), b) E F}; 
F(·, a2):= {(aI, b) E Al x B: «aI, a2), b) E F}. 

These are the partial correspondences of F. In this regard F itself is often sym-
bolized as F( . , . ) and referred to as a correspondence in two arguments. This 
beneficial agreement is effective in similar events. 

1.1.4. DEFINITION. The composite correspondence or composition of corre-
spondences F C A x B and Gee x D is the set 

GoF:= {(a, d) E A x D: (3b) (a, b) E F & (b, d) E G}. 

The correspondence G 0 F is considered as acting from A into D. 
1.1.5. REMARK. The scope of the concept of composition does not diminish 

if it is assumed in 1.1.4 from the very beginning that B = C. 
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1.1.6. Let F be a correspondence. Then F 0 F-1 :) lim F. Moreover, the 
equality F 0 F-1 = lim F holds if and only if Fldom F is a mapping. <]1> 

1.1.7. Let F C A x B and G c B x C. Further assume U C A. Then the 
correspondence G 0 F c A x C satisfies the equality G 0 F(U) = G(F(U)). <]1> 

1.1.8. Let F C A x B, G c B xC, and H c C x D. Then the correspondences 
H 0 (G 0 F) c A x D and (H 0 G) 0 F C A x D coincide. <]1> 

1.1.9. REMARK. By virtue of 1.1.8, the symbol HoG 0 F and the like are 
defined soundly. 

1.1.10. Let F, G, and H be correspondences. Then 

HoGoF= U F-\b)xH(e). 
(b,c)EG 

<] (a, d) E HoGoF {:? (3(b, e) E G) (e, d) E H & (a, b) E F {:? 

(3 (b, e) E G) a E F-l(b) & dE H(e) I> 

1.1.11. REMARK. The claim of 1.1.10, together with the calculation intended 
as its proof, is blatantly illegitimate from a formalistic point of view as based on 
ambiguous or imprecise information (in particular, on Definition 1.1.1!). Experi-
ence justifies treating such a criticism as petty. In the sequel, analogous convenient 
(and, in fact, inevitable) violations of formal purity are mercilessly exercised with 
no circumlocution. 

1.1.12. Let G and F be correspondences. Then 

Go F = U F-l(b) x G(b). 
bEimF 

<] Insert H:= G, G:= limP and F:= F into 1.1.10. I> 

1.2. Ordered Sets 
1.2.1. DEFINITION. Let 0' be a relation on a set X, i.e. 0' C X2. Reflex-

ivity for 0' means the inclusion 0' :) Ix; transitivity, the inclusion 0' 0 0' C 0'; 

antisymmetry, the inclusion 0' n 0'-1 c Ix; and, finally, symmetry, the equality 
0' = 0'-1. 

1.2.2. DEFINITION. A preorder is a reflexive and transitive relation. A sym-
metric preorder is an equivalence. An order (partial order, ordering, etc.) is 
an anti symmetric preorder. For a set X, the pair (X, 0'), with 0' an order on X, is 
an ordered set or rarely a poset. The notation x :::;.,. y is used instead of y E o'(x). 
The terminology and notation are often simplified and even abused in common 
parlance: The underlying set X itself is called an ordered set, a partially ordered 
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set, or even a poset. It is said that "x is less than y," or "y is greater than x," 
or "x ~ y," or "y 2: x," or "x is in relation (1 to y," or "x and y belong to (1," 

etc. Analogous agreements apply customarily to a preordered set, i.e. to a set 
furnished with a preorder. The convention is very propitious and extends often 
to an arbitrary relation. However, an equivalence is usually denoted by the signs 
like "'. 

1.2.3. EXAMPLES. 
(1) The identity relation; each subset Xo of a set X bearing a relation (1 

is endowed with the (induced) relation (10 := (1 n Xo x Xo. 
(2) If (1 is an order (preorder) in X, then (1-1 is also an order (preorder) 

which is called reverse to (1. 

(3) Let I : X -+ Y be a mapping and let 7 be a relation on Y. Consider 
the relation 1-1 070 I appearing on X. By 1.1.10, 

f- 1 070 f = U f- 1(Y1) x f-1(yZ)' 
(Yl ,Y2) Er 

Hence it follows that (Xl, XZ) E 1-1 070 I {:} (f(X1), I(xz» E 7. Thus, if 7 

is a preorder then 1-1 0 7 0 I itself is a preorder called the preimage or inverse 
image of 7 under I. It is clear that the inverse image of an equivalence is also 
an equivalence. Whereas the preimage of an order is not always antisymmetric. 
In particular, this relates to the equivalence 1-1 0 f (= 1-1 0 ly 0 f). 

( 4) Let X be an arbitrary set and let w be an equivalence on X. Define 
a mapping rp : X -+ &,(X) by rp(x) := w(x). Recall that &,(X) stands for 
the powerset of X comprising all subsets of X and also denoted by 2x. Let 
X := X/w := im rp be the quotient set or factor set of X by w or modulo w. 
A member of X/w is usually referred to as a coset or equivalence class. The 
mapping rp is the coset mapping (canonical projection, quotient mapping, etc.). 
Note that rp is treated as acting onto X. Observe that 

w = rp-l 0 rp = U rp-l(x) X rp-l(x). 
xEX 

Now let f : X -+ Y be a mapping. Then f admits factorization through X; i.e., 
there is a mapping 7 : X -+ Y (called a quotient of f by w) such that 7 0 rp = f 
if and only if w C f- 1 0 f. <11> 

(5) Let (X, (1) and (Y, 7) be two preordered sets. A mapping I: X -+ Y 
is increasing or isotone (i.e., x ~(T y =? I(x) ~r I(y» whenever (1 C 1-1 070 I. 
That f decreases or is antitone means (1 C 1-1 07-1 0 f. <11> 

1.2.4. DEFINITION. Let (X, (1) be an ordered set and let U C X. An ele-
ment x of X is an upper bound of U (write x 2: U) if U c (1-1(x). In particular, 
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x ~ 0. An element x of X is a lower bound of U (write x S U) if x is an upper 
bound of U in the reverse order (1-1. In particular, x S 0. 

1.2.5. REMARK. Throughout this book liberties are taken with introduc-
ing concepts which arise from those stated by reversal, i.e. by transition from 
a (pre)order to the reverse (pre)order. Note also that the definitions of upper and 
lower bounds make sense in a preordered set. 

1.2.6. DEFINITION. An element x of U is greatest or last if x ~ U and x E U. 
When existent, such element is unique and is thus often referred to as the greatest 
element of U. A least or first element is defined by reversal. 

1.2.7. Let U be a subset of an ordered set (X, (1) and let 7ru(U) be the 
collection of all upper bounds of U. Suppose that a member x of X is the greatest 
element of U. Then, first, x is the least element of 7ru(U); second, (1(x) n U = 
{x}. <ll> 

1.2.8. REMARK. The claim of 1.2.7 gives rise to two generalizations of the 
concept of greatest element. 

1.2.9. DEFINITION. Let X be a (preordered) set and let U eX. A supremum 
of U in X is a least upper bound of U, i.e. a least element of the set of all upper 
bounds of U. This element is denoted by supx U or in short sup U. Certainly, 
in a poset an existing supremum of U is unique and so it is in fact the supremum 
of U. An infimum, a greatest lower bound inf U or infx U is defined by reversal. 

1.2.10. DEFINITION. Let U be a subset of an ordered set (X, (1). A member x 
of X is a maximal element of U if (1( x) n U = {x}. A minimal element is again 
defined by reversal. 

1.2.11. REMARK. It is important to make clear the common properties and 
distinctions of the concepts of greatest element, maximal element, and supremum. 
In particular, it is worth demonstrating that a "typical" set has no greatest element 
while possibly possessing a maximal element. 

1.2.12. DEFINITION. A lattice is an ordered set with the following property: 
each pair (Xl, X2) of elements of X has a least upper bound, Xl V X2 := sup{ Xl, X2}, 

the join of Xl and X2, and a greatest lower bound, Xl 1\ X2 := inf {Xl, X2}, the meet 
of Xl and X2. 

1.2.13. DEFINITION. A lattice X is complete if each subset of X has a supre-
mum and an infimum in X. 

1.2.14. An ordered set X is a complete lattice if and only if each subset of X 
has a least upper bound. <ll> 

1.2.15. DEFINITION. An ordered set (X, (1) is filtered upward provided that 
X 2 = (1-1 0 (1. A downward-filtered set is defined by reversal. A nonempty poset 
is a directed set or simply a direction if it is filtered upward. 
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1.2.16. DEFINITION. Let X be a set. A net or a (generalized) sequence in X 
is a mapping of a direction into X. A mapping of the set N of natural numbers, 
N = {1,2,3 ... }, furnished with the conventional order, is a (countable) sequence. 

1.2.17. A lattice X is complete if and only if each upward-filtered subset of X 
has a least upper bound. <It> 

1.2.18. REMARK. The claim of 1.2.17 implies that for calculating a supre-
mum of each subset it suffices to find suprema of pairs and increasing nets. 

1.2.19. DEFINITION. Let (X, a) be an ordered set. It is said that X is 
ordered linearly whenever X 2 = a U a-I. A nonempty linearly-ordered subset 
of X is a chain in X. A nonempty ordered set is called inductive whenever its 
every chain is bounded above (i.e., has an upper bound). 

1.2.20. Kuratowski-Zorn Lemma. Each inductive set contains a maximal 
element. 

1.2.21. REMARK. The Kuratowski-Zorn Lemma is equivalent to the axiom 
of choice which is accepted in set theory. 

1.3. Filters 
1.3.1. DEFINITION. Let X be a set and let fJI, a nonempty subset of 9'(X), 

consist of nonempty elements. Such fJI is said to be a filterbase (on X) if fJI 
is filtered downward. Recall that 9'(X) is ordered by inclusion. It means that 
a greater subset includes a smaller subset by definition; this order is always pre-
sumed in 9'(X). 

1.3.2. A subset fJI of 9'(X) is a filterbase if and only if 
(1) fJI i= 0 and 0 rt fJI; 
(2) B l , B2 E fJI =} (3B E fJI) Be Bl n B2 • 

1.3.3. DEFINITION. A subset $ of 9'(X) is a filter (on X) if there is a fil-
terbase fJI such that $ is the set of all supersets of fJI; i.e., 

$ = fil fJI:= {C E 9'(X): (3B E fJI) Be C}. 

In this case fJI is said to be a base for the filter $ (so each filterbase is a filter 
base). 

1.3.4. A subset $ in 9'(X) is a filter if and only if 
(1) $ i= 0 and 0 rt $; 
(2) (A E $ & A C B C X) =} B E $; 
(3) AI, A2 E $ =} Al nA2 E $. <It> 
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1.3.5. EXAMPLES. 
(1) Let F C X x Y be a correspondence and let .9B be a downward-filtered 

subset of &,(X). Put F(.9B):= {F(B): B E .9B}. It is easy to see that F(.9B) is 
filtered downward. The notation is alleviated by putting F(.9B):= fil F(.9B). If § 
is a filter on X and B n dom F i- 0 for all B E §, then F( §) is a filter (on Y) 
called the image of § under F. In particular, if F is a mapping then the image 
of a filter on X is a filter on Y. 

(2) Let (X, a) be a direction. Clearly, .9B: = {a( x): x EX} is a filter-
base. For a net F : X -t Y, the filter fil F(.9B) is the tail filter of F. Let (X, a) 
and F : X -t Y be another direction and another net in Y. If the tail filter of F 
includes the tail filter of F then F is a subnet (in a broad sense) of the net F. 
If there is a subnet (in a broad sense) G : X -t X of the identity net «X)XEX 
in the direction (X, a)) such that F = FoG, then F is a subnet of F (sometimes 
F is addressed as a Moore subnet or a strict subnet of F). Every subnet is a sub net 
in a broad sense. It is customary to speak of a net having or lacking a subnet with 
some property. 

1.3.6. DEFINITION. Let §(X) be the collection of all filters on X. Take 
§l, §2 E §(X). Say that §l is finer than §2 or §2 refines §l (in other words, 
§l is coarser than §2 or §l coarsens §2) whenever §l ::::> §2. 

1.3.7. The set §(X) with the relation "to be finer" is a poset. <ll> 

1.3.8. Let JV be a direction in §(X). Then JV has a supremum §o := 
supJV. Moreover, §o = U{§: § E JV}. 

<l To prove this, it is necessary to show that §o is a filter. Since JV is not 
empty it is clear that §o i- 0 and 0 ~ §o. If A E §o and B ::::> A then, choosing 
§ in JV for which A E §, conclude that B E § C §o. Given AI, A2 E §o, 
find an element § of JV satisfying AI, A2 E §, which is possible because JV is 
a direction. By 1.3.4, Al n Az E § C §o. I> 

1.3.9. DEFINITION. An ultrafilter is a maximal element of the ordered set 
§(X) of all filters on X. 

1.3.10. Each filter is coarser than an ultrafilter. 
<l By 1.3.8, the set of filters finer than a given filter is inductive. Recalling the 

Kuratowski-Zorn Lemma completes the proof. I> 

1.3.11. A filter § is an ultrafilter if and only if for all A c X either A E § 
orX\A E §. 

<l ::::}: Suppose that A ¢ § and B := X \ A ¢ §. Note that A i- 0 and 
B i- 0. Put §l := {C E &,(X): Au C E §}. Then A ¢ § ::::} 0 ¢ §l and 
B E §l ::::} §l i- 0. The checking of 1.3.4 (2) and 1.3.4 (3) is similar. Hence, §l 
is an ultrafilter. By definition, §l ::::> §. In addition, § is an ultrafilter and so 
§l = §. Observe that B ¢ § and B E §, a contradiction. 
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¢:: Take $1 E $(X) and let $1 :::) $. If A E $1 and A ¢ $ then X\A E $ 
by hypothesis. Hence, X\A E $1; i.e., 0 = An(X\A) E $1, which is impossible. I> 

1.3.12. If f is a mapping from X into Y and $ is an ultrafilter on X then 
f( $) is an ultrafilter on Y. <II> 

1.3.13. Let ~:= ~!Fo:= {$ E $(X): $ C $o} for $0 E $(X). Then 
~ is a complete lattice. 

<I It is obvious that $0 is the greatest element of ~ and {X} is the least 
element of ~. Therefore, the empty set has a supremum and an infimum in ~: 
in fact, sup0 = inf ~ = {X} and inf0 = sup~ = $0. By 1.2.17 and 1.3.8, 
it suffices to show that the join $1 V $2 is available for all $1, $2 E ~. Consider 
$:= {AI n A2 : Al E $1, A2 E $2}. Clearly, $ C $0 while $ :::) $1 and 
$ :::) $2. Thus to verify the equality $ = $1 V $2, it is necessary to establish 
that $ is a filter. 

Plainly, $ i- 0 and 0 ¢ $. It is also immediate that (B1 , B2 E $ =? 
B1 n B2 E $). Moreover, if C :::) Al n A2 where Al E $1 and A2 E $2, then 
C = {AI n Ad u C = (AI U C) n (A2 U C). Since Al U C E $1 and A2 U C E $2, 
conclude that C E $. Appealing to 1.3.4, complete the proof. I> 

Exercises 
1.1. Give examples of sets and nonsets as well as set-theoretic properties and non-set-

theoretic properties. 
1.2. Is it possible for the interval [0, 1] to be a member of the interval [0, I]? For the 

interval [0, 2]? 
1.3. Find compositions of the simplest correspondences and relations: squares, disks 

and circles with coincident or distinct centers in jRM X ]RN for all feasible values of M and N. 
1.4. Given correspondences R, S, and T, demonstrate that 

(R U S)-1 = R-1 U S-1; (R n S)-1 = R-1 n S-1; 
(R U S) 0 T = (R 0 T) U (S 0 T); R 0 (S U T) = (R 0 S) U (R 0 T); 
(RnS) 0 T C (Ro T) n (S oT); Ro (S nT) C (Ro S) n (R 0 T). 

1.5. Assume X C X x X. Prove that X = 0. 
1.6. Find conditions for the equations ~A = B and A~ = B to be solvable for ~ 

in correspondences or in functions. 

lences? 

1. 7. Find the number of equivalences on a finite set. 
1.8. Is the intersection of equivalences also an equivalence? And the union of equiva-

1.9. Find conditions for commutativity of equivalences (with respect to composition). 
1.10. How many orders and preorders are there on two-element and three-element sets? 

List all of them. What can you say about the number of preorders on a finite set? 
1.11. Let F be an increasing idempotent mapping of a set X into itself. Assume that F 

dominates the identity mapping: F ~ Ix. Such an F is an abstract closure operator or, briefly, 
an (upper) envelope. Study fixed points of a closure operator. (Recall that an element:c is a fixed 
point of F if F(:c) = :c.) 



Exercises 9 

1.12. Let X and Y be ordered sets and M(X, Y), the set of increasing mappings from 
X to Y with the natural order (specify the latter). Prove that 

(1) (M(X, Y) is a lattice) {:} (Y is a lattice); 
(2) (M(X, Y) is a complete lattice) {:} (Y is a complete lattice). 

1.13. Given ordered sets X, Y, and Z, demonstrate that 
(1) M(X, Y X Z) is isomorphic with M(X, Y) x M(Y, Z); 
(2) M(X x Y, Z) is isomorphic with M(X, M(Y, Z)). 

1.14. How many filters are there on a finite set? 
1.15. How do the least upper and greatest lower bounds of a set of filters look like? 
1.16. Let 1 be a mapping from X onto Y. Prove that each ultrafilter on Y is the image 

of some ultrafilter on X under I. 
1.17. Prove that an ultrafilter refining the intersection of two filters is finer than either 

of them. 
1.18. Prove that each filter is the intersection of all ultrafilters finer than it. 

1.19. Let d be an ultrafilter on N containing cofinite subsets (a cofinite subset is 
a subset with finite complement). Given :z:, yEs:= lW.N, put:z: "'.<If y:= (3A E d) :z:IA = yiA' 

Denote *lW.:= lW.N /"'.<If. For t E lW. the notation *t symbolizes the coset with the constant sequence t 
defined as t(n):= t (n EN). Prove that *lW. \ {*t : t E lW.} :f: 0. Furnish *lW. with algebraic and 
order structures. How are the properties of lW. and *lW. related to each other? 



Chapter 2 
Vector Spaces 

2.1. Spaces and Subspaces 
2.1.1. REMARK. In algebra, in particular, modules over rings are studied. 

A module X over a ring A is defined by an abelian group (X, +) and a repre-
sentation of the ring A in the endomorphism ring of X which is considered as left 
multiplication· : A X X ---+ X by elements of A. Moreover, a natural agreement is 
presumed between addition and multiplication. With this in mind, the following 
phrase is interpreted: "A module X over a ring A is described by the quadruple 
(X, A, +, . )." Note also that A is referred to as the ground ring of X. 

2.1.2. DEFINITION. A basic field is the field JR of real numbers or the field C 
of complex numbers. The symbol IF stands for a basic field. Observe that JR is 
treated as embedded into C in a standard (and well-known) fashion so that the 
operation Re of taking the real part of a number sends C onto the real axis, R. 

2.1.3. DEFINITION. Let IF be a field. A module X over IF is a vector space 
(over IF). An element of the ground field IF is a scalar in X and an element of X 
is a vector in X or a point in X. So, X is a vector space with scalar field IF. 
The operation + : X x X ---+ X is addition in X and . : IF x X ---+ X is scalar 
multiplication in X. We refer to X as a real vector space in case IF = JR and as 
a complex vector space, in case IF = C. A more complete nomenclature consists 
of (X, IF, +, .), (X, JR, +, .), and (X, C, +, .). Neglecting these subtleties, 
allow X to stand for every vector space associated with the underlying set X. 

2.1.4. EXAMPLES. 
(1) A field IF is a vector space over IF. 
(2) Let (X, IF, +, .) be a vector space. Consider (X, IF, +, .*), where 

.* : (A, x) 1-+ A * x for A E IF and x EX, the symbol A * standing for the conventional 
complex conjugate of A. The so-defined vector space is the twin of X denoted 
by X*. If IF := JR then the space X and the twin of X, the space X*' coincide. 

(3) A vector space (Xo, IF, +, .) is called a subspace of a vector space 
(X, IF, +, .), if Xo is a subgroup of X and scalar multiplication in Xo is the re-
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striction of that in X to IF x Xo. Such a set Xo is a linear set in X, whereas X is 
referred to as an ambient space (for Xo). It is convenient although not perfectly 
puristic to treat Xo itself as a subspace of X. Observe the important particularity 
of terminology: a linear set is a subset of a vector space (whose obsolete title is 
a linear space). To call a subset of whatever space X a set in X is a mathematical 
idiom of long standing. The same applies to calling a member of X a point in X. 
Furthermore, the neutral element of X, the zero vector of X, or simply zero of X, 
is considered as a subspace of X and is denoted by O. Since 0 is not explicitly 
related to X, all vector spaces including the basic fields may seem to have a point 
in common, zero. 

(4) Take (XdeE3, a family of vector spaces over IF, and let X":= neE3 Xe 
be the product of the underlying sets, i.e. the collection of mappings x : 3 -t 

UeE3Xe such that xe := x(e) E Xe as e E 3 (of course, here 3 is not empty). 
Endow X" with the coordinatewise or pointwise operations of addition and scalar 
multiplication: 

(Xl + X2)(e):= XI(e) + X2(e) (Xl, X2 E X", e E 3); 
(,\. x)(e):=,\· x(e) (x EX", ,\ E IF, e E 3) 

(below, as a rule, we write '\x and sometimes X'\ rather than ,\ . x). The so-
constructed vector space X" over IF is the product of (Xe)eE3. If 3:= {I, 2, ... ,N} 
then Xl x X 2 X •.. X XN:= X". In the case Xe = X for all e E 3, the designation 
X 3 := X" is used. Given 3:= {I, 2, ... ,N}, put XN := X". 

(5) Let (Xe)eE3 be a family of vector spaces over IF. Consider their direct 
sum .3lO := LeE3 Xe· By definition, .3lO is the subset of X":= neE3 Xe which 
comprises all Xo such that xo(3 \ 3 0 ) C 0 for a finite subset 3 0 C 3 (routinely 
speaking, 3 0 is dependent on xo). It is easily seen that .3lO is a linear set in X". 
The vector space associated with .3lO presents a subspace ofthe product of (Xe)eE3 
and is the direct .'!Um of (Xe){E=:' 

(6) Given a subspace (X, IF, +, .) of a vector space (Xo, IF, +, .), 
introduce 

""Xo:= {(Xl, X2) E X2: Xl - x2 E X o}. 
Then ""Xo is an equivalence on X. Denote X":= X/""xo and let cp: X -t X" be 
the coset mapping. Define operations on X" by letting 

Xl + X2:= cp(cp-l(xd + cp-l(X2» (Xl, x2 E X"); 
'\x:= cp('\cp-1(x» (x E X", ,\ ElF). 

Here, as usual, for subsets Sl and S2 of X, a subset A of IF, and a scalar '\, 
a member of IF, it is assumed that 

Sl + S2:= +{Sl x S2}; 
AS1:= . (A x Sl); ,\Sl:= {A}Sl' 
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Thus :!£ is furnished with the structure of a vector space. This space, denoted 
by X/Xo, is the quotient (space) of X by Xo or the factor space of X modulo Xo. 

2.1.5. Let X be a vector space and let Lat (X) stand for the collection of all 
subspaces of X. Ordered by inclusion, Lat (X) presents a complete lattice. 

<l It is clear that infLat(X) = 0 and supLat(X) = X. Further, the inter-
section of a nonempty set of subspaces is also a subspace. By 1.2.17, the proof is 
complete. t> 

2.1.6. REMARK. With Xl, X 2 E Lat (X), the equality Xl V X 2 = Xl + X 2 
holds. It is evident that inf g = n{Xo: Xo E g} for a nonempty subset g 
of Lat (X). Provided that g is filtered upward, sup g = U {Xo : Xo E g}. <It> 

2.1.7. DEFINITION. Subspaces Xl and X 2 of a vector space X split X into 
(algebraic) direct sum decomposition (in symbols, X = Xl EEl X 2), if Xl /\ X 2 = 0 
and Xl V X 2 = X. In this case X 2 is an (algebraic) complement of Xl to X, and 
Xl is an (algebraic) complement of X 2 to X. It is also said that Xl and X 2 are 
(algebraically) complementary to one another. 

2.1.8. Each subspace of a vector space has an algebraic complement. 
<l Take a subspace Xl of X. Put 

g:= {Xo E Lat (X): Xo /\ Xl = O}. 

Obviously, 0 E g. Given a chain go in g, from 2.1.6 infer that Xl /\ sup go = 0, 
i.e. sup go E g. Thus g is inductive and, by 1.2.20, g has a maximal element, 
say, X 2. If x EX \ (Xl + X 2) then 

(X2 + {Ax: A E If}) /\ Xl = O. 

Indeed, if X2 + AX = Xl with Xl E XI, X2 E X 2 and A E IF, then AX E Xl + X 2 and 
so A = O. Hence, Xl = X2 = 0 as Xl /\X2 = O. Therefore, X 2 + {Ax: A E IF} = X 2 
because X 2 is maximal. It follows that X = O. At the same time, it is clear that 
X =1= O. Finally, Xl V X 2 = Xl + X 2 = X. t> 

2.2. Linear Operators 
2.2.1. DEFINITION. Let X and Y be vector spaces over IF. A correspondence 

T C X x Y is linear, if T is a linear set in X x Y. A linear operator on X (or 
simply an operator, with linearity apparent from the context) is a mapping of X 
and a linear correspondence simultaneously. If need be, we distinguish such a T 
from a linear single-valued correspondence S with dom S =1= X and say that Tis 
given on X or T is defined everywhere or even T is a total operator, whereas 
S is referred to as not-everywhere-defined or partially-defined operator or even 
a partial operator. In the case X = Y, a linear operator from X to Y is also called 
an operator in X or an endomorphism of X. 
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2.2.2. A correspondence T C X x Y is a linear operator from X to Y if and 
only if dom T = X and 

2.2.3. The set !L'(X, Y) of alllinear operators carrying X into Y constitutes 
a vector space, a subspace of Y x. <1[> 

2.2.4. DEFINITION. A member of !L'(X, IF') is a linear functional on X, 
and the space X#:= !L'(X, IF') is the (algebraic) dual of X. A linear functional 
on X* is a *-linear or conjugate-linear functional on X. If the nature of IF' needs 
specifying, then we speak of real linear functionals, complex duals, etc. Evidently, 
when IF' = lR the term "*-linear functional" is used rarely, if ever. 

2.2.5. DEFINITION. A linear operator T, a member of !L'(X, Y), is an (al-
gebraic) isomorphism (of X and Y, or between X and Y) if the correspondence 
T-l is a linear operator, a member of !L'(Y, X). 

2.2.6. DEFINITION. Vector spaces X and Yare (algebraically) isomorphic, 
in symbols X ~ Y, provided that there is an isomorphism between X and Y. 

2.2.7. Vector spaces X and Yare isomorphic if and only if there are operators 
T E !L'(X, Y) and S E !L'(Y, X) such that SoT = Ix and To S = Iy (in this 
event S = T-l and T = S-l). <1[> 

2.2.8. REMARK. Given vector spaces X, Y, and Z, take T E !L'(X, Y) and 
S E !L'(Y, Z). The correspondence SoT is undoubtedly a member of !L'(X, Z). 
For simplicity every composite operator SoT is denoted by juxtaposition ST. 
Observe also that the taking of composition (S, T) 1-+ ST is usually treated as the 
mapping 0 : !L'(Y, Z) x !L'(X, Y) -+ !L'(X, Z). In particular, if iff C !L'(Y, Z) 
and T E !L'(X, Y) then we let iff 0 T:= o( iff x {T}). One of the reasons behind the 
convention is that juxtaposition in the endomorphism space !L'(X):= !L'(X, X) 
of X which comprises all endomorphisms of X transforms !L'(X) into a ring (and 
even into an algebra, the endomorphism algebra of X, d. 5.6.2). 

2.2.9. EXAMPLES. 
(1) If T is a linear correspondence then T-l is also a linear correspond-

ence. 
(2) If Xl is a subspace of a vector space X and X 2 is an algebraic 

complement of Xl then X 2 is isomorphic with X/Xl. Indeed, if c.p : X -+ X/Xl 
is the coset mapping then its restriction to X 2 , i.e. the operator X2 1-+ c.p(X2) with 
X2 E X 2 , implements a desired isomorphism. <1[> 

(3) Consider &::= IleE:::: Xe, the product ofvector spaces (Xe)eES. Take 
a coordinate projection, i.e. a mapping Pre: &: -+ Xe defined by Pre x:= xe. 
Clearly, Pre is a linear operator, Pre E !L'(&:, Xe). Such an operator is often 
treated as an endomorphism of &:, a member of !L'(&:), on implying a natural 
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isomorphism between ~ and X~, where ~:= TI"ES X., with X.,:= 0 if." =1= e 
and X~:= X~. 

( 4) Let X := Xl EB X 2. Since + -1 is an isomorphism between X and 
Xl x X 2, we may define PI, P2 E 2(X) as PI := PXdlX2 := PrIO(+-I) and 
P2 := PX2 11x1 := Pr2 0(+ -1). The operator PI is the projection of X onto Xl 
along X 2 and P2 is the complementary projection to PI or the complement of PI 
(in symbols, P2 = pt). In turn, PI is complementary to P2, and P2 projects X 
onto X 2 along Xl. Observe also that PI + P2 = Ix. Moreover, Pl:= PIPI = PI, 
and so a projection is an idempotent operator. Conversely, every idempotent P 
belonging to 2(X) projects X onto P(X) along P-I(O). 

For T E 2(X) and P a projection, the equality PT P = T P holds if and only 
if T(Xo) C Xo with Xo = im P (read: Xo is invariant under T). <II> 

The equality TPX1 ll x2 = PXdlx2T holds whenever both Xl and X 2 are in-
variant under T, and in this case the direct sum decomposition X = Xl EB X 2 
reduces T. The restriction of T to Xl is acknowledged as an element TI of 2(Xd 
which is called the part of T in Xl. If T2 E 2(X2) is the part of Tin X 2, then T 
is expressible in matrix form 

Namely, an element x of Xl EBX2 is regarded as a "column vector" with components 
Xl and X2, where Xl = PXdlx2X and X2 = PXdlX2Xj matrices are multiplied 
according to the usual rule, "rows by columns." The product of T and the column 
vector x, i.e. the vector with components TIXI and T2X2, is certainly considered 
as Tx (in this case, we also write TXI and TX2). In other words, T is identified 
with the mapping from Xl X X 2 to Xl X X 2 acting as 

( :~) ~ (~l ~2) (:~) . 
In a similar way we can introduce matrix presentation for general operators con-
tained in 2(XI EB X 2, Yi EB Y2). <II> 

(5) A finite subset C of X is linearly independent (in X) provided that 
L:eEG Aee = 0, with Ae E IF (e E C), implies Ae = 0 for all e E C. An arbitrary 
subset C of X is linearly independent if every finite subset of C is linearly inde-
pendent. A Hamel basis (or an algebraic basis) for X is a linearly independent set 
in X maximal by inclusion. Each linearly independent set is contained in a Hamel 
basis. All Hamel bases have the same cardinality called the dimension of X and 
denoted by dim X. Every vector space is isomorphic to the direct sum of a family 
(IF)~ES with:::: of cardinality dimX. Suppose that Xl is a subspace of X. The codi-
mension of Xl is the dimension of XI Xl, with codim Xl standing for the former. 
If X = Xl EB X 2 then codim Xl = dimX2 and dimX = dimXI + codim Xl. <II> 
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2.3. Equations in Operators 
2.3.1. DEFINITION. Given T E 2(X, Y), define the kernel ofT as ker T:= 

T-1(0), the cokernel ofT as coker T:= Y/ im T, and the coimage ofT as coim T:= 
X/ker T. Agree that an operator T is an monomorphism whenever ker T = O. 
An operator T is an epimorphism in the case of the equality im T = Y. 

2.3.2. An operator is an isomorphism if and only if it is a monomorphism 
and an epimorphism simultaneously. <]1> 

2.3.3. REMARK. Below use is made of the concept of commutative diagram. 
So the phrase, "The following diagram commutes," 

Ql 

X--Y 

encodes the containments Ql E 2(X, Y), Q2 E 2(Y, W), Q3 E 2(X, W), 
Q4 E 2(V, Y) and Q5 E 2(V, W), as well as the equalities Q2Ql = Q3 and 
Q5 = Q2 Q 4· 

2.3.4. DEFINITION. A diagram X ~ Y ~ Z is an exact sequence (at the 
term Y), if ker S = im T. A sequence ... -+ X k- 1 -+ X k -+ Xk+l -+ ... is exact 
at Xk, if for all k the subsequence Xk-l -+ X k -+ Xk+l (symbols of operators are 
omitted), and is exact if it is exact at every term (except the first and the last, 
if any). 

2.3.5. EXAMPLES. 
(1) An exact sequence X ~ Y ~ Z is semi-exact, i.e. ST = O. The 

converse is not true. 
(2) A sequence 0 -+ X ~ Y is exact if and only if T is a monomorphism. 

(Throughout the book 0 -+ X certainly denotes the sole element of 2(0, X), zero 
(cf. 2.1.4 (3)).) 

(3) A sequence X ~ Y -+ 0 is exact if and only if T is an epimorphism. 
(Plainly, the symbol Y -+ 0 again stands for zero, the single element of 2(Y, 0).) 

(4) An operator T from X to Y, a member of 2(X, Y), is an isomor-
phism if and only if 0 -+ X ~ Y -+ 0 is exact. 

(5) Suppose that Xo is a subspace of X. Let t : Xo -+ X stand for 
the identical embedding of X 0 into X. Consider the quotient space X/X 0 and let 
cp : X -+ X / Xo be the corresponding coset mapping. Then the sequence 

• 'P / o -+ Xo ----7 X ----7 X Xo -+ 0 
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is exact. (On similar occasions the letters t and c.p are usually omitted.) In a sense, 
this sequence is unique. Namely, consider a so-called short sequence 

O-X~Y~Z-o 

and assume that it is exact. Putting Yo:= im T, arrange the following commuta-
tive diagram 

T S 
O-X-Y-Z-O 

o - Yo - Y -YjYo- 0 
where a, /3, and 'Yare some isomorphisms. In other words, a short exact sequence 
actually presents a subspace and the corresponding quotient space. <It> 

(6) Every T in 2'(X, Y) generates the exact sequence 

o - ker T - X ~ Y _ coker T - 0 

which is called the canonical exact sequence for T. 
2.3.6. DEFINITION. Given To E 2'(Xo, Y), with Xo a subspace of X, call 

an operator T from X to Y an extension of To (onto X, in symbols, T :::> To), 
provided that To = Tt, where t : Xo - X is the identical embedding of Xo 
into X. 

2.3.7. Let X and Y be vector spaces and let Xo be a subspace of X. Then 
each To in .2'(Xo, Y) has an extension T in 2'(X, Y). 

<l Putting T:= ToPxo, where PXo is a projection onto X o, settles the claim. t> 

2.3.8. Theorem. Let X, Y, and Z be vector spaces. Take A E 2'(X, Y) 
and B E 2'(X, Z). The diagram 

A 
X-Y 

~l~ 
Z 

is commutative for some ~ in 2'(Y, Z) if and only if ker ACker B. 
<l :::}: It is evident that ker ACker B in case B = ~ A. 
~: Set ~:= BoA-I. Clearly, ~ 0 A(x) = B 0 (A- I 0 A)x = B(x + ker A) = 

Bx. Show that .:to:= ~hm A is a linear operator. It suffices to check that ~ is 
single-valued. Suppose that y E im A and ZI, Z2 E ~(y). Then ZI = BXI, Z2 = 
BX2 and AXI = AX2 = y. By hypothesis B(XI - X2) = 0; therefore, ZI = Z2. 
Applying 2.3.7, find an extension ~ of .:to to Y. t> 
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2.3.9. REMARK. Provided that the operator A is an epimorphism, there is 
a unique solution !r in 2.3.8. It is the right place to emphasize that the phrase, 
"There is a unique !r," implies that !r is available as well as unique. 

2.3.10. Every linear operator T admits a unique factorization through its 
coimage; i.e., there is a unique quotient T of T by the equivalence "'codim T. 

<l Immediate from 2.3.8 and 2.3.9. D> 

2.3.11. REMARK. The operator T is sometimes called the monoquotient of T 
and treated as acting onto im T. In this connection, observe that T is expressible 
as the composition T = LTr.p, with r.p an epimorphism, T an isomorphism, and L 
a monomorphism; i.e., the following diagram commutes: 

T 
coim T--im T 

T x .y 

2.3.12. Let X be a vector space and let fo, !I, ... ,IN belong to X#. The 
functional fo is a linear combination of !I, ... , fN (i.e., fo = ~f=1 Adj with Aj 
in IF) if and only if ker fo ::) nf=l ker fJ. 

<l Define the linear operator (!I, ... ,IN) : X --+ IFN by (!I, ... ,fN)X:= 
(!I (x), ... , f N (x». Obviously, ker (!I , ... ,IN) = nf=l ker fJ. Now apply 2.3.8 to 
the problem 

(f" ... ,fN) N X 'IF 

~ 
on recalling what IFN# is. D> 

2.3.13. Theorem. Let X, Y, and Z be vector spaces. Take A E ~(Y, X) 
and B E ~(Z, X). The diagram 

A 
X-Y 

Z 

is commutative for some !r in ~(Z, Y) if and only if im A ::) im B. 
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<1 =}: im B = B(Z) = A('?£(Z)) C A(Y) = im A. 
-¢=: Let Yo be an algebraic complement of ker A to Y and Ao := Alyo. Then Ao 

is an isomorphism between Yo and im A. The operator .?£:= lA01 B is obviously 
a sought solution, with l the identical embedding of Yo into Y. I> 

2.3.14. REMARK. Provided that the operator A is a monomorphism, there 
is a unique operator .?£ in 2.3.13. <11> 

2.3.15. REMARK. Theorems 2.3.8 and 2.3.13 are in "formal duality." One 
results from the other by "reversing arrows," "interchanging kernels and images," 
and "passing to reverse inclusion." 

2.3.16. Snowflake Lemma. Let S E 2'(Y, Z) and T E 2'(X, Y). There 
are unique operators 0:1, ... ,0:6 such that the following diagram commutes: 

0 0 
\ 0:2 I 
ker ST • ker S 

0:/ \ T 
/ ,,\3 

0 -+-kerT 'X .y --- coker T- O 

S~ Is 
Z 

/\ 
coker S - coker ST 

Moreover, the sequence 

o -+ ker T ~ ker ST ~ ker S ~ coker T ~ coker ST ~ coker S -+ 0 

is exact. <11> 

Exercises 
2.1. Give examples of vector spaces and nonvector spaces. Which constructions lead to 

vector spaces? 
2.2. Study vector spaces over the two-element field 1::2. 
2.3. Describe vector spaces with a countable Hamel basis. 
2.4. Prove that there is a discontinuous solution f : JR -+ JR to the function equation 

f(x + y) = /(z) + /(y) (x, y E JR). 

How to visualize such an f graphically? 
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2.5. Prove that the algebraic dual to the direct sum of (Xe) is presentable as the product 
of the algebraic duals of (Xe). 

2.6. Let X :J Xo :J Xoo. Prove that the spaces X/Xoo and (X/Xo)/(Xoo/Xo) are 
isomorphic. 

2.7. Define the "double sharp" mapping by the rule 

Show that this mapping embeds a vector space X into the second dual X## . 

i.e., 
2.8. Prove that finite-dimensional spaces and only such spaces are algebraically reJlezivej 

##(X) = X## <=> dimX < +00. 
2.9. Are there any analogs for a Hamel basis in general modules? 
2.10. When does a sum of projections present a projection itself? 
2.11. Let T be an endomorphism of some vector space which satisfies the conditions 

Tn-l I- 0 and Tn = 0 for a natural n. Prove that the operators TO, T, ... ,Tn-l are linearly 
independent. 

2.12. Describe the structure of a linear operator defined on the direct sum of spaces 
and acting into the product of spaces. 

2.13. Find conditions for unique solvability of the following equations in operators 
~A = B and A~= B (here the operator ~ is unknown). 

2.14. What is the structure of the spaces of bilinear operators? 
2.15. Characterize the real vector space that results from neglecting multiplication 

by imaginary scalars in a complex vector space (cf. 3.7.1). 
2.16. Given a family of linearly independent vectors (z.).E£', find a family offunctionals 

(Z~).E£' satisfying the following conditions: 

(z. I z~) = 1 (e E G)j 

(z.1 z~) = 0 (e, e' E G, e I- e'). 

2.17. Given a family of linearly independent functionals (Z~).E£" find a family of vec-
tors (z.).E£' satisfying the following conditions: 

(z. I z~) = 1 (e E G)j 

(z. I z~) = 0 (e, e' E G, e I- e'). 

2.18. Find compatibility conditions for simultaneous linear equations and linear inequal-
ities in real vector spaces. 

2.19. Consider the commutative diagram 

w---- X..:!.. y---- z 
cd ,8t it cSt 
- -T - -
W----X---- Y----Z 

with exact rows and such that 0/ is an epimorphism, and cS is a monomorphism. Prove that 
ker i = T(ker,8) and 'f-1(im i) = im,8. 



Chapter 3 
Convex Analysis 

3.1. Sets in Vector Spaces 

3.1.1. DEFINITION. Let r be a subset of ]F2. A subset U of a vector space is 
a r-set in this space (in symbols, U E (r)) if (AI, A2) E r '* AIU + A2U C U. 

3.1.2. EXAMPLES. 
(1) Every set is in (0). (Hence, (0) is not a set.) 
(2) If r:= ]F2 then a nonempty r -set is precisely a linear set in a vector 

space. 
(3) If r := lR.2 then a nonempty r -set in a vector space X is a real subspace 

of X. 
(4) By definition, a cone is a nonempty r-set with r :=~. In other 

words, a nonempty set K is a cone if and only if K + K c K and aK c K for all 
ex E lR.+. A nonempty lR.~ \ O-set is sometimes referred to as a nonpointed cone; and 
a nonempty lR.+ x O-set, as a nonconvex cone. (From now on we use the convenient 
notation lR.+:= {t E lR.: t 20}.) 

(5) A nonempty r-set, for r:= {(AI, A2) E]F2 : Al +A2 = I}, is an affine 
variety or a fiat. If Xo is a subspace of X and x E X then x + Xo := {x} + Xo is 
an affine variety in X. Conversely, if L is an affine variety in X and x E L then 
L - x:= L + {-x} is a linear set in X. <It> 

(6) If r:= {(AI, A2) E ]F2: IAII + IA21 ::; I} then a nonempty r-set is 
absolutely convex. 

(7) If r:= {(A, 0) E ]F2 : IAI::; I} then a nonempty r-set is balanced. 
(In the case ]F := lR. the term "star-shaped" is occasionally employed; the word 
"symmetric" can also be found.) 

(8) A set is convexifit is a r-set for r:= {(AI, A2) E]R2: Al 20, A2 20, 
Al + A2 = I}. 

(9) A conical segment or conical slice is by definition a nonempty r-set 
with r:= {(AI, A2) E ~: Al + A2 ::; I}. A set is a conical segment if and only 
if it is a convex set containing zero. <It> 
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(10) Given r c IF2, observe that X E (r) for every vector space X 
over IF. Note also that in 3.1.2 (1)-3.1.2 (9) the set r is itself a r-set. 

3.1.3. Let X be a vector space and let tf: be a family of r-sets in X. Then 
n{u: U E im tf:} E (r). Provided that im tf: is filtered upward (by inclusion), 
U{U: U E im tf:} E (r). <It> 

3.1.4. REMARK. The claim of 3.1.3 means in particular that the collection 
of r-sets of a vector space, ordered by inclusion, presents a complete lattice. 

3.1.5. Let X and Y be vector spaces and let U and V be r-sets, with U c X 
and V c Y. Then U x V E (r). 

<l If U or V is nonempty then U x V = 0, and there is nothing to prove. 
Now take UI, U2 E U, VI, V2 E V, and (AI, A2) E r. Find AIUl + A2U2 E U and 
AIV2 + A2Vl E V. Hence, (AIUl + A2U2, AIVI + A2V2) E U x V. t> 

3.1.6. DEFINITION. Let X and Y be vector spaces and r c IF2. A correspond-
ence T C X x Y is a r-correspondence provided that T E (r). 

3.1.7. REMARK. When a r-set bears a specific attribute, the latter is pre-
served for naming a r-correspondence. With this in mind, we speak about linear 
and convex correspondences, affine mappings, etc. The next particularity of the 
nomenclature is worth memorizing: a convex function of one variable is not a con-
vex correspondence, save trivial cases (cf. 3.4.2). 

3.1.8. Let T C X x Y be a rl-correspondence and let U c X be a r 2 -set. 
Ifr2 c r l then T(U) E (r2 ). 

<l Take Yl, Y2 E T(U). Then (Xl, yd E T and (X2' Y2) E T with some 
Xl, X2 E U. Given (AI, A2) E r 2 , observe that Al(Xl, yd + A2(X2, Y2) E T, 
because by hypothesis (AI, A2) E rl. Finally, infer that AIYl + A2Y2 E T(U). t> 

3.1.9. The composition ofr-correspondences is also a r-correspondence. 
<J Let Fe X x V and G C W x Y, with F, G E (r). Note that 

(Xl, Yl)EGoF{::}(3vd (Xl, vdEF&(Vl' Yl)EG; 
(X2' Y2) EGo F {::} (3V2) (X2' V2) E F & (V2' Y2) E G. 

To complete the proof, "multiply the first row by AI; the second, by A2, where 
(AI, A2) E r; and sum the results." t> 

3.1.10. If subsets U and V of a vector space are r-sets for some r c IF2 then 
aU + (3V E (r) for all a, (3 E IF. 

<l The claim is immediate from 3.1.5,3.1.8, and 3.1.9. t> 

3.1.11. DEFINITION. Let X be a vector space and let U be a subset of X. 
For r c IF2 the r -hull of U is the set 

Hr(U):= n{V eX: V E (r), V:J U}. 
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3.1.12. The following statements are valid: 
(1) Hr(U) E (r); 
(2) Hr(U) is the least r-set including U; 
(3) Ut C Uz ~ Hr(Ut ) C Hr(Uz); 
(4) U E (r) ¢:} U = Hr(U); 
(5) Hr(Hr(U)) = Hr(U). <It> 

3.1.13. The Motzkin formula holds: 
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Hr(U) = U{Hr(Uo): Uo is a finite subset ofU}. 

<l Denote the right side of the Motzkin formula by V. Since Uo C U; applying 
3.1.12 (3), deduce that Hr(Uo) C Hr(U); and, hence, Hr(U) :::::> V. By 3.1.12 (2), 
it is necessary (and, surely, sufficient) to verify that V E (r). The last follows 
from 3.1.3 and the inclusion Hr(Uo) U Hr(Ut) C Hr(Uo U Ut ). t> 

3.1.14. REMARK. The Motzkin formula reduces the problem of describing 
arbitrary r-hulls to calculating r-hulls of finite sets. Observe also that r-hulls 
for concrete rs have special (but natural) designations. For instance, if r := 
{(.At, .Az) E ~: .At +.A2 = I}, then the term "convex hull" is used and co(U) 
stands for Hr(U). If U 1= 0, the notation for HlF2(U) is lin (U); moreover, it is 
natural and convenient to put lin (0):= O. The subspace lin (U) is called the linear 
span of U. The concepts of affine hull, conical hull, etc. are introduced in a similar 
fashion. Note also that the convex hull of a finite set of points comprises their 
convex combinations; i.e., 

3.2. Ordered Vector Spaces 
3.2.1. DEFINITION. Let (X, JR, +, .) be a vector space. A preorder a on X 

is compatible with vector structure if a is a cone in XZ; in this case X is an ordered 
vector space. (It is more precise to call (X, JR, +, ., a) a preordered vector space, 
reserving the term "ordered vector space" for the case in which a is an order.) 

3.2.2. If X is an ordered vector space and a is the corresponding preorder 
then a(O) is a cone and a(x) = x + a(O) for all x E X. 

<l By 3.1.3, a(O) is a cone. The equality (x, y) = (x, x) + (0, y - x) yields 
the equivalence (x, y) E a ¢:} y - x E a(O). t> 

3.2.3. Let K be a cone in a vector space X. Denote 

a:={(x, y)EX2 : y-XEK}. 
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Then a is a preorder compatible with vector structure and K coincides with the 
cone a(O) of positive elements of X. The relation a is an order if and only 
if K n (-K) = O. 

<I It is clear that 0 E K:::} Ix C a and K +K C K :::} aoa C a. Furthermore, 
a-I = {(x, y) E X2: x - Y E K}. Therefore, a n a-I C Ix {:} K n (-K) = O. 
To show that a is a cone, take (Xl, yd, (X2' Y2) E a and al, a2 E lR+. Find 
alYl + a2Y2 - (alxl + a2x2) = al(Yl - xd + a2(Y2 - X2) E alK + a2K C K. I> 

3.2.4. DEFINITION. A cone K is an ordering cone or a salieni cone provided 
that K n ( - K) = O. 

3.2.5. REMARK. By virtue of 3.2.2 and 3.2.3, assigning a preorder to X is 
equivalent to distinguishing some cone of positive elements in it which is the pos-
itive cone of X. The structure of an ordered vector space arises from selecting 
an ordering cone. Keeping this in mind, we customarily call a pair (X, X+) with 
positive cone X+, as well as X itself, a (pre)ordered vector space. 

3.2.6. EXAMPLES. 
(1) The space of real-valued functions JR.=: with the positive cone JR.~:= 

(JR.+)=: constituted by the functions assuming only positive values has the "natural 
order." 

(2) Let X be an ordered vector space with positive cone X+. If Xo is 
a subspace of X then the order induced in Xo is defined by the cone Xo n X+. 
In this way Xo is considered as an ordered vector space, a subspace of X. 

(3) If X and Yare preordered vector spaces then T E 2'(X, Y) is 
a positive operator (in symbols, T 2: 0) whenever T(X+) C Y+. The set 2'+(X, Y) 
of all positive operators is a cone. The linear span of 2'+(X, Y) is denoted 
by 2'r(X, Y), and a member of 2'r(X, Y) is called a regular operator. 

3.2.7. DEFINITION. An ordered vector space is a vector lattice or a Riesz 
space if the ordered set of its vectors presents a lattice. 

3.2.8. DEFINITION. A vector lattice X is called a Kantorovich space or briefly 
a K -space if X is boundedly order complete or Dedekind complete, which means 
that each nonempty bounded above subset of X has a least upper bound. 

3.2.9. Each nonempty bounded below subset of a Kantorovich space has 
a greatest lower bound. 

<I Let U be bounded below: x ::; U for some x. So, -x 2: -U. Applying 3.2.8, 
find sup( -U). Obviously, - sup( -U) = inf U. I> 

3.2.10. If U and V are nonempty bounded above subsets of a K -space then 

sup(U + V) = sup U + sup V. 
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<I If U or V is a singleton then the equality is plain. The general case follows 
from the associativity of least upper bounds. Namely, 

sup(U + V) = sup{sup(u + V): u E U} 
= sup{ u + sup V: u E U} = sup V + sup{ u: u E U} 

= sup V + sup U. I> 

3.2.11. REMARK. The derivation of 3.2.10 is valid for an arbitrary ordered 
vector space provided that the given sets have least upper bounds. The equality 
sup >..U = >.. sup U for >.. E R+ is comprehended by analogy. 

3.2.12. DEFINITION. For an element x of a vector lattice, the positive part 
of x is x+:= x V 0, the negative part of x is x_:= (-x)+, and the modulus of x is 
Ixl:=xV(-x). 

3.2.13. If x and y are elements of a vector lattice then 

x + y = x V y + x 1\ y. 

<I X + y - x 1\ y = x + y + (-x) V (-y) = y V X I> 

3.2.14. x = x+ - X_j Ixl = x+ + x_. 
<I The first equality follows from 3.2.13 on letting y:= O. Furthermore, Ixl = 

x V (-x) = -x + (2x) V ° = -x + 2x+ = -x(x+ - x_) + 2x+ = x+ + x_. I> 

3.2.15. Interval Addition Lemma. If x and yare positive elements of a vec-
tor lattice X then 

[0, x + y) = [0, x) + [0, y). 

(As usual, [u, v):= O'(u) n O'-l(v) is the (order) interval with endpoints u and v.) 

<I The inclusion [0, x)+[O, y) C [0, x+y) is obvious. Assume that ° ::; Z ::; x+y 
and put Zl := Z 1\ x. It is easy that Zl E [0, x). Now if Z2 := Z - Zl then Z2 ~ ° 
and Z2 = z-zl\x = z+(-z)V(-x) = OV(z-x)::; OV(x+y-x) = OVy = y. I> 

3.2.16. REMARK. The conclusion of the Interval Addition Lemma is often 
referred to as the Riesz Decomposition Property. 

3.2.17. Riesz-Kantorovich Theorem. Let X be a vector space and let Y 
be a K-space. The space of regular operators 2'r(X, Y), ordered by the cone 
of positive operators 2'+(X, Y), is a K -space. <II> 



3.3. Extension of Positive Functionals and Operators 

3.3. Extension of Positive Functionals and Operators 

3.3.1. COUNTEREXAMPLES. 
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(1) Let X be B([O, 1], JR.), the space ofthe bounded real-valued functions 
given on [0, 1]; and let Xo be C([O, 1], JR.), the subspace of X comprising all 
continuous functions. Put Y := Xo and equip X o, X, and Y with the natural 
order (cf. 3.2.6 (1) and 3.2.6 (2)). Consider the problem of extending the identical 
embedding To : Xo ---T Y to a positive operator T in .2"+ (X, Y). If the problem had 
a solution T, then each nonempty bounded set ~ in Xo would have a least upper 
bound sUPxo ~ calculated in Xo· Namely, sUPxo ~ = Tsupx~, where sup X ~ is 
the least upper bound of ~ in X; whereas, undoubtedly, Y fails to be a K -space. 

(2) Denote by s:= JR.N the sequence space and furnish s with the nat-
ural order. Let c be the subspace of s comprising all convergent sequences, the 
convergent sequence space. Demonstrate that the positive functional fo : c ---T JR. 
defined by fo(x):= limx(n) has no positive extension to s. Indeed, assume that 
fES#, f2.0andf"Jfo. Putxo(n):=nandxk(n):=kAnfork, nEN. Plainly, 
fO(Xk) = k; moreover, f(xo) 2. f(Xk) 2. 0, since Xo 2. Xk 2. 0, a contradiction. 

3.3.2. DEFINITION. A subspace Xo of an ordered vector space X with pos-
itive cone X+ is massive (in X) if Xo + X+ = X. The terms "coinitial" or 
"minorizing" are also in common parlance. 

3.3.3. A subspace Xo is massive in X if and only if for all x E X there are 
elements Xo and XO in Xo such that Xo ~ x ~ xo. <II> 

3.3.4. Kantorovich Theorem. H X is an ordered vector space, Xo is mas-
sive in X, and Y is a K -space; then each positive operator To, a member of 
.2"+(Xo, Y), has a positive extension T, a member of .2"+ (X, Y). 

<I STEP I. First, let X:= Xo EB XI, where Xl is a one-dimensional subspace, 
Xl := {ax: 0' E JR.}. Since Xo is massive and To is positive, the set U:= {ToxO : 
x O E X o, X O 2. x} is nonempty and bounded below. Consequently, there is some 
11 such that 11:= inf U. Assign Tx:= {Toxo + 0'11: x = Xo + ax, Xo E X o, 0' E JR.}. 
It is clear that T is a single-valued correspondence. Further, T "J To and dom T 
= X. So, only the positivity of T needs checking. If x = Xo + ax and x 2. 0, then 
the case of 0' equal to 0 is trivial. If 0' > ° then x 2. -xo/O'. This implies that 
-Toxo/O' ~ 11, i.e., Tx E Y+. In a similar way for 0' < 0 observe that x ~ -xo/O'. 
Thus, 11 ~ -Toxo/O' and, finally, Tx = Toxo + 0'11 E Y+. 

STEP II. Now let ~ be the collection of single-valued correspondences S c 
X x Y such that S "J To and S(X+) c Y+. By 3.1.3, ~ is inductive in order 
by inclusion and so, by the Kuratowski-Zorn Lemma, ~ has a maximal element T. 
If x E X \ dom T, apply the result of Step I with X := dom T EB Xl, Xo := 
dom T, To:= T and Xl := {ax: 0' E JR.} to obtain an extension of T. But T is 
maximal, a contradiction. Thus, T is a sought operator. I> 
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3.3.5. REMARK. When Y := JR, Theorem 3.3.4 is sometimes referred to as 
the Kre1:n-Rutman Theorem. 

3.3.6. DEFINITION. A positive element x is discrete whenever [0, x] = [0, l]x. 
3.3.7. Ifthere is a discrete functional on (X, X+) then X = X+ - X+. 
<l Let T be such a functional and :r:= X+ - X+. Take f E X#. It suffices 

to check that ker f :::> :r =} f = O. Evidently, T + f E [0, T]; i.e., T + f = aT 
for some a E [0, 1]. If Tlx = 0 then 2T E [0, T]. Hence, T = 0 and f = o. Now 
if T(xo) -=I- 0 for some Xo E :r, then 0 = 1 and f = o. I> 

3.3.B. Discrete Kre'1n-Rutman Theorem. Let X be a massive subspace 
of an ordered vector space X and let To be a discrete functional on Xo. Then 
there is a discrete functional T on X extending To. 

<l Adjust the proof of 3.3.4. 
STEP I. Observe that the exhibited functional T is discrete. For, if T' E [0, T] 

then there is some a E [0, 1] such that T'(xo) = aT(xo) for all Xo E Xo and so 
(T - T')(xo) = (1- o)T(xo). Estimating, find 

T'(x) :::; inf{T'(xo): xO 2: x, xO E Xo} = oT(x); 
(T - T')(x) :::; inf{(T - T')(xo): xO 2: x, xO E Xo} = (1 - o)T(x). 

Therefore, T' = aT and [0, T] C [0, l]T. The reverse inclusion is always true. 
Thus, T is discrete. 

STEP II. Let g be the same as in the proof of 3.3.4. Consider gd, the set 
comprising all S in <f such that the restriction Sidom S is a discrete functional 
on dom S. Show that gd is inductive. To this end, take a chain go in gd and 
put S:= u{ So: So E go}; obviously, S E g. Verifying the discreteness of S will 
complete the proof. 

Suppose that 0 :::; s' (xo) :::; S( xo) for all Xo E (dom S)+ and S' E (dom S)#. 
If S(xo) = 0 for all Xo then S' = OS, as was needed. In the case S(xo) -=I- 0 for some 
xo E (dom S)+ choose So E go such that So(xo) = S(xo). Since So is discrete, 
deduce that S'(x') = oS(x') for all x' E dom So. Furthermore, 0 = S'(xo)/S(xo); 
i.e., a does not depend on the choice of So. Since go is a chain, infer that S' = as. I> 

3.4. Convex Functions and Sublinear Functionals 
3.4.1. DEFINITION. The semi-extended real line lR" is the set JR. with some 

greatest element +00 adjoined formally. The following agreements are effective: 
0'.( +00):= +00 (a E JR+) and +00 + x:= x + (+00):= +00 (x E lR"). 

3.4.2. DEFINITION. Let f : X ~ lR" be a mapping (also called an extended 
function). The epigraph of f is the set 

epi f:= {(x, t) E X x JR: t 2: f(x)}. 
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The effective domain of definition or simply the domain of f is the set 

dom f:= {x EX: f(x) < +=}. 
3.4.3. REMARK. Inconsistency in overusing the symbol dom f is illusory. 

Namely, the effective domain of definition of f : X ~ R: coincides with the domain 
of definition of the single-valued correspondence f n X X JR.. We thus continue to 
write f : X ~ JR., omitting the dot in the symbol R." whenever dom f = X. 

3.4.4. DEFINITION. If X is a real vector space then a mapping f : X ~ JR.. 
is a convex function provided that the epigraph epi f is convex. 

3.4.5. A function f : X ~ R." is convex if and only if the Jensen inequality 
holds: 

f(QlXl + Q2 X2) :::; Qd(xI) + Q2!(X2) 

for all 0.1, 0.22::0, 0.1 + 0.2 = 1 and Xl, X2 EX. 
<l =}: Take 0.1, 0.2 2:: 0, 0.1 + 0.2 = 1. If either of Xl and X2 fails to 

belong to dom f then the Jensen inequality is evident. Let Xl, X2 E dom f. 
Then (Xl, f(Xl)) E epi f and (X2, f(X2)) E epi f. Appealing to 3.1.2 (8), find 
Ql(Xl, f(xI) + Q2(X2, f(X2)) E epi f. 

{:::: Take (Xl, tt) E epi f and (X2' t2) E epi f, i.e. tl 2:: f(xd and t2 2:: f(X2) 
(if dom f = 0 then f(x) = += (x E X) and epi f = 0). Applying the Jensen 
inequality, observe the containment (Q}X} + Q2X2, Q}t} + Q2tZ) E epi f for all 
Q}, 0.2 2:: 0, 0.1 + 0.2 = 1. I> 

3.4.6. DEFINITION. A mapping p : X ~ JR.. is a sublinear functional provided 
that epi p is a cone. 

tion. 

3.4.7. If dom p i= ° then the following statements are equivalent: 
(1) p is a sublinear functional; 
(2) p is a convex function that is positively homogeneous: 

p(Qx) = Qp(x) for all 0. 2:: ° and X E X; 
(3) ifQ}, 0.2 E JR.+ and Xl, X2 E X, then 

P(QlXl + Q2 X2) :::; QlP(Xt} + Q2P(X2); 
(4) p is a positively homogeneous functional that is subadditive: 

P(XI + X2) :::; p(xt} + p(X2) (Xl, X2 EX). <ll> 

3.4.8. EXAMPLES. 
(1) A linear functional is sublinear; an affine functional is a convex func-

(2) Let U be a convex set in X. Define the indicator function 8 (U) 
X ~ JR.. of U as the mapping 

8(U)(x):= { 0, 

+=, 
if X E U 
if X 1. U. 
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It is clear that 6(U) is a convex function. If U is a cone then 6(U) is a sublinear 
function. If U is an affine set then 6(U) is an affine function. 

(3) The sum of finitely many convex functions and the supremum (or 
upper envelope) of a family of convex functions (calculated pointwise, i.e. in (JR')X) 
are convex functionals. Sublinear functionals have analogous properties. 

(4) The composition of a convex function with an affine operator, i.e. 
an everywhere-defined single-valued affine correspondence, is a convex function. 
The composition of a sublinear functional with a linear operator is sublinear. 

3.4.9. DEFINITION. If U and V are subsets of a vector space X then U ab-
.'Jorbs V if V c nU for some n E N. A set U is absorbing (in X) if it absorbs every 
point of X; i.e., X = UnENnU. 

3.4.10. Let T C X x Y be a linear correspondence with im T = Y. If U is 
absorbing (in X) then T(U) is absorbing (in Y). 

<I Y = T(X) = T(UnEwnU) = UnENT(nU) = UnEwnT(U) I> 

3.4.11. DEFINITION. Let U be a subset of a vector space X. An element x 
belongs to the core of U (or x is an algebraically interior point of U) if U - x is 
absorbing in X. 

3.4.12. H f : X -+ JR' is a convex function and x E core dom f then for all 
hEX there is a limit 

f'(x)(h):= lim f(x + ah) - f(x) = inf f(x + ah) - f(x). 
"'lO a ",>0 a 

Moreover, the mapping f' (x) : h 1-+ f' (x)h is a sublinear functional f' (x) : X -+ JR, 
the directional derivative of f at x. 

<I Set cp(a):= f(x + ah). By 3.4.8 (4), cp : JR -+ JR' is a convex function and 
o E core dom cpo The mapping a 1-+ (cp(a) - cp(O))ja (a > 0) is increasing and 
bounded above; i.e., cp'(O)(l) is available. By definition, f'(x)(h) = cp'(O)(l). 

Given (3 > 0 and h E H, successively find 

f'(x)((3h) = inf f(x + a(3h) - f(x) = (3inf f(x + a(3h) - f(x) = (3f'(x)(h). 
a a(3 

Moreover, using the above result, for hI, h2 E X infer that 

f'(x)(h 1 + h2 ) = 2 lim f (x + 1 ha(h1 + h2 )) - f(x) 
"'!O a 

. f e h(x + aht) + 1 h(x + ah2 )) - f(x) = 2 hm ---'--'----'----'-----'-'----'--'-
"'!O a 

1· f(x+aht)-f(x) l' f(x+ah 2 )-f(x) < 1m + 1m ::...."..--~--':.....:....--'-
- "'!O a "'!O a 

= f'(x)(ht) + f'(x)(h 2 ). 

Appealing to 3.4.7, end the proof. I> 
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3.5. The Hahn-Banach Theorem 
3.5.1. DEFINITION. Let X be a real vector space and let f : X -+ lR: be 

a convex function. The subdifferential of f at a point x in dom f is the set 

8x(f):= {I E X# : (Vy E X) ley) -lex) :::; fey) - f(x)}. 

3.5.2. EXAMPLES. 
(1) Let p: X -+ JR' be a sublinearfunctional. Put 8(p):= 8o(p). Then 

8(p) = {I E X# : (V x E X) l(x):::; p(x)}; 
8x(p) = {t E 8(p): lex) = p(x)}. 

(2) If I E X# then 8(l) = 8x(l) = {I}. 
(3) Let Xo be a subspace of X. Then 

8(b'(Xo)) = {I E X# : ker I J X o}. 

( 4) If f : X -+ JR' is a convex function then 

8x(f) = 8(f'(x)) 

whenever x E core dam f. <ll> 

3.5.3. Hahn-Banach Theorem. Let T E 2'(X, Y) be a linear operator 
and let f : Y -+ JR' be a convex function. If x E X and Tx E core dam f then 

8x(f 0 T) = 8Tx(f) 0 T. 

<l By 3.4.10 it follows that x E core dam f. From 3.5.2 (4) obtain 8x (f 0 T) = 
8((f 0 T)'(x)). Moreover, 

(f 0 T)'(x)(h) = lim (f 0 T)(x + ah) - (f 0 T)(x) 
oLO a 

= lim f(Tx + aTh) - f(Tx) = f' (Tx )(Th) 
oLO a 

for hEX. Put p:= f'(Tx). By 3.4.12, p is a sublinear functional. Whence, on 
appealing again to 3.5.2 (4), infer that 

8(p) = 8(f'(Tx)) = 8 Tx (f); 
8(p 0 T) = 8((f 0 T)'(x)) = 8x(f 0 T). 
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Thereby, the only claim left unproven is the equality 

8(p 0 T) = 8(p) 0 T. 

If IE 8(p)oT (i.e., 1= hoT, where hE 8(p)) then hey) ~ p(y) for all y E Y. 
In particular, lex) E h(Tx) ~ p(Tx) = po T(x) for all x E X and so I E 8(p 0 T). 
This argument yields the inclusion 8(p) 0 T c 8(p 0 T). 

Now take I E 8(poT). IfTx = 0 then lex) ~ p(Tx) = p(O) = OJ i.e., lex) ~ O. 
The same holds for -x. Therefore, lex) = OJ in other words, ker I :) ker T. Hence, 
by 2.3.8, I = It 0 T for some h E y#. Putting Yo := T(X), observe that the 
functional h 0 £ belongs to 8(p 0 £), with £ the identical embedding of Yo into Y. 
With 8(po£) c 8(p)0£ proven, observe that 110£ = 120£ for some h E 8(p), which 
consequently yields 1= hoT = II 0 £ 0 T = 12 0 £ 0 T = 12 0 Tj i.e., IE 8(p) 0 T. 

Thus, to complete the proof of the Hahn-Banach Theorem, showing that 
8(p 0 £) C 8(p) 0 £ is in order. 

Take an element 10 in 8(p 0 £) and consider the functional To : (Yo, t) I--t 

t - lo(yo) given on the subspace !Do:= Yo x JR of!D:= Y x JR. Equip!D with the 
cone !D+:= epi p. Note that, first, !Do is massive since 

(y, t) = (0, t - p(y)) + (y, p(y)) (y E Y, t E JR). 

Second, by 3.4.2, t ~ p(yo) for (Yo, t) E !Do n!D+, and so To (Yo , t) = t -Io(yo) ~ OJ 
i.e., To is a positive functional on !Do. By 3.3.4, there is a positive functional T 
defined on !D which is an extension of To. Put l(y):= T( -y, 0) for y E Y. It is 
clear that 10£ = 10 . Furthermore, T(O, t) = To(O, t) = t. Hence, 0 ~ T(y, p(y)) = 
p(y) -ley), i.e., IE 8(p). t> 

3.5.4. REMARK. The claim of Theorem 3.5.3 is also referred to as the formula 
for a linear change-of-variable under the subdifferential sign or the Hahn-Banach 
Theorem in subdifferential form. Observe that the inclusion 8(p 0 £) C 8(p) 0 £ 
is often referred to as the Hahn-Banach Theorem in analytical form or the Dom-
inated Extension Theorem and verbalized as follows: "A linear functional given 
on a subspace of a vector space and dominated by a sublinear functional on this 
subspace has an extension also dominated by the same sublinear functional." 

3.5.5. Corollary. If Xo is a subspace of a vector space X and p : X --t JR is 
a sublinear functional then the (asymmetric) Hahn-Banach formula holds: 

8(p + 8(Xo)) = 8(p) + 8(8(Xo)). 

<l It is obvious that the left side includes the right side. To prove the reverse 
inclusion, take 1 E 8(p + 8(Xo)). Then 10£ E 8(p 0 £), where £ is the identical 
embedding of Xo into X. By 3.5.3, 10£ E 8(p) 0 £, i.e., 10£ = h 0 £ for some 
h E 8(p). Put h:= 1- II. By definition, find 12 0 £ = (1- 11) 0 £ = 10£ - It 0 £ = 0, 
i.e., ker 12 :) Xo. As was mentioned in 3.5.2 (3), this means 12 E 8(8(Xo)). t> 
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3.5.6. Corollary. If f : X ~ lR' is a linear functional and x E core dom f 
then 8x (f) =I- 0. 

<I Let p:= f'(x) and let t : 0 ~ X be the identical embedding of 0 to X. 
Plainly, 0 E 8(po t), i.e., 8(po t) =I- 0. By the Hahn-Banach Theorem, 8(p) =I- 0 
(otherwise, 0 = 8(p) 0 t = 8(po t)). To complete the proof, apply 3.5.2 (4). t> 

3.5.7. Corollary. Let II, h : X ~ JR' be convex functions. Assume further 
that x E core dom II n core dom h. Then 

<I Let PI := fUx) and P2 := f~(x). Given Xl, X2 E X, define p(Xl' X2):= 
Pl(xd + P2(X2) and t(xt):= (Xl, xI). Using 3.5.2 (4) and 3.5.3, infer that 

8x (fl + h) = 8(Pl + P2) = 8(p 0 t) 
= 8(p) 0 t = 8(Pl) + 8(P2) = 8x (fI) + 8x (h). t> 

3.5.8. REMARK. Corollary 3.5.6 is sometimes called the Nonempty Subdif-
ferential Theorem. On the one hand, it is straightforward from the Kuratowski-
Zorn Lemma. On the other hand, with Corollary 3.5.6 available, demonstrate 
8(p 0 T) = 8(p) 0 T as follows: Define PT(Y):= inf{p(y + Tx) - l(x): x EX}, 
where I E 8(p) and the notation of 3.5.3 is employed. Check that PT is sublin-
ear and every it in 8(PT) satisfies the equality I = It 0 T. Thus, the Nonempty 
Sub differential Theorem and the Hahn-Banach Theorem in sub differential form 
constitute a precious (rather than vicious) circle. 

3.6. The KreIn-Milman Theorem 
3.6.1. DEFINITION. Let X be a real vector space. Putting 

define the correspondence seg C X 2 x X that assigns to each pair of points the open 
segment joining them. If U is a convex set in X and segu is the restriction of seg 
to U2, then a convex subset V of U is extreme in U if segijl (V) C V2. An extreme 
subset of U is sometimes called a face in U. A member X of U is an extreme point 
in U if {x} is an extreme subset of U. The set of extreme points of U is usually 
denoted by ext U. 

3.6.2. A convex subset V is extreme in U if and only if for all Ul, U2 E U and 
01, 02 > 0, 01 + 02 = 1, the containment 0lUl + 02U2 E V implies that Ul E V 
and U2 E V. <It> 
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3.6.3. EXAMPLES. 
(1) Let p : X -7 lR' be a sublinear functional and let a point x of X 

belong to dom p. Then 8x (p) is an extreme subset of 8(p). 
<I For, if alit +a212 E 8x (p) and 11, 12 E 8(p), where aI, a2 > 0, al +a2 = 1; 

then ° = p(x) - (alit(x) + a2h(x)) = al(p(x) - Il(x)) + a2(p(x) - 12(X)) 2: 0. 
Moreover,p(x)-lt(x) 2: ° andp(x)-12(x) 2: 0. Hence, 11 E 8x (p) and 12 E 8x (p).1> 

(2) Let W be an extreme set in V and let V be in turn an extreme set 
in U. Then W is an extreme set in U. <II> 

(3) If X is an ordered vector space then a positive element x of X is 
discrete if and only if the cone {ax: a E R+} is an extreme subset of X+. 

<I ¢::: If ° :::; Y :::; x then x = 1 h(2y) + 1 h(2(x - y)). Therefore, by 3.6.2, 
2y = ax and 2(x - y) = f3x for some a, f3 E R+. Thus, 2x = (a + f3)x. The case 
x = ° is trivial. Now if x#-o then 0< h E [0, 1] and, consequently, [0, x] C [0, l]x. 
The reverse inclusion is evident. 

=}: Let [0, x] = [0, l]x, and suppose that ax = alYl + a2Y2 for a 2: 0; 
aI, a2 > 0, al + a2 = 1 and Yl, Y2 E X+. If a = ° then alYl E [0, x] and 
a2Y2 E [0, x]; hence, Yl is a positive multiple of x; the same is valid for Y2. 
In the case a > ° observe that (0<1/ o<)Yl = tx for some t E [0, 1]. Finally, 
(0<2/0<)Y2 = (1 - t)x. I> 

(4) Let U be a convex set. A convex subset V of U is a cap of U, if U\ V 
is convex. A point x in U is extreme if and only if {x} is a cap of U. <II> 

3.6.4. Extreme and Discrete Lemma. Let p : X -7 R be a sublinear 
functional and I E 8(p). Assign!Z':= X X R, !Z'+:= epi p, and T, : (x, t) 1-+ 

t - lex) (x EX, t E R). Then the functional I is an extreme point of 8(p) if and 
only if T, is a discrete functional. 

<I =}: Consider T' E !Z'# such that T' E [0, T,]. Put 

t l := T'(O, 1), 
tz:= (T, - T')(O, 1), 

11(X):= T'(-x, 0); 
12( x):= (T/ - T')( -x, 0). 

It is clear that tl 2: 0, t2 2: 0, tl + t2 = 1; it E 8(tlP), 12 E 8(t2P), and it + 12 = I. 
If tl = ° then 11 = 0; i.e., T' = ° and T' E [0, I]T/. Now if t2 = ° then tl = 1; i.e., 
T' = T/, and so T' E [0, I]T/. Assume that t l , t2 > 0. In this case 1 /t1 it E 8(p) 
and 1/t2h E 8(p); moreover, I = tl (1/t1Il) +t2 (1/t212)' Since, by hypothesis, 
I E ext 8(p), from 3.6.2 it follows that it = itl; i.e., T' = tlT/. I> 

¢::: Let I = alit + a212, where II, 12 E 8(p) and aI, a2 > 0, al + a2 = 1. 
The functionals T':= a 1T/1 and T":= a2T/2 are positive; moreover, T' E [0, T,], 
since T' + Til = T,. Therefore, there is some f3 E [0, 1] such that T' = f3T/. At the 
point (0,1), find al = f3. Hence, II = l. By analogy, 12 = I. <II> 
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3.6.5. Kre'tn-Milman Theorem. Let T E 2'(X, Y) be a linear operator 
and let f : Y -+ IR' be a convex function. If x E X and Tx E core dom f then 

ext Ox (f 0 T) C (ext a Tx (f)) 0 T. 

<l Start arguing as in the proof of the Hahn-Banach Theorem: Put p:= f' (Tx) 
and observe that the only claim left to checking is the inclusion ext o(p 0 T) c 
(ext o(p)) 0 T. Take I E ext o(p 0 T). Since ext o(p 0 T) c o(p 0 T) c o(p) 0 T, 
there is some f in o(p) such that 1= f 0 T. Denote by fo the restriction of f to 
Yo := im T and notice that fo E ext o(p 0 t), with t the identical imbedding of Yo 
into Y. 

Now in ~:= Y x IR consider ~+ := epi p and introduce the space ~o := Yo x R 
Note that ~+ n ~o = epi (p 0 t). Applying 3.6.4 with X := ~o, 1:= fo, and 
p:= po t, observe that Tio is a discrete functional on ~o; moreover, ~o is massive 
in ~ (cf. the proof of 3.5.3). By 3.3.8, find a discrete extension S E ~# of Tio ' 
Evidently, S = Tg , where g(y):= S( -y, 0) for y E Y. Appealing again to 3.6.4, 
infer that 9 E ext o(p). By construction, lex) = f(Tx) = fo(Tx) = g(Tx) for all 
x E X. Finally, 1 E (ext o(p)) 0 T. C> 

3.6.6. Corollary. If p : X -+ IR is a sublinear functional then for every x 
in X there is an extreme functional I , a member of ext a (p), such that I (x) = p( x ). 

<l From 3.6.5 it is easy that ext o(p) i= 0 for every p (cf. 3.5.6). Using this 
and 3.4.12, choose I in ext ox(p'(x)). Applying 3.5.2 (2) and 3.5.2 (4), obtain 
I E ext ox(p). By 3.6.3 (1), ox(p) is extreme in o(p). Finally, 3.6.3 (2) implies 
that I is an extreme point of o(p). C> 

3.7. The Balanced Hahn-Banach Theorem 
3.7.1. DEFINITION. Let (X, IF, +, .) be a'vector space over a basic field IF. 

The vector space (X, IR, +, ·IIR xx) is called the real carrier or realijication 
of (X, IF, +, .) and is denoted by XIR. 

3.7.2. DEFINITION. Given a linear functional f on a vector space X, define 
the mapping IRe f : x 1--4 Re f( x) (x E X). The real part map or realijier is the 
mapping IRe : (X#)IR -+ (XIR)#' 

3.7.3. The real part map IRe is a linear operator and, moreover, an isomor-
phism of (X#)IR onto (XIR)#' 

<l Only the case IF:= C needs verifying, because IRe is the identity mapping 
when F:= IR. 

Undoubtedly, IRe is a linear operator. Check that IRe is a monomorphism and 
an epimorphism simultaneously (cf. 2.3.2). 

If IRef = 0 then 0 = Ref(ix) = Re(if(x)) = Re(i(Ref(x) + iImf(x))) = 
- 1m f( x). Hence, f = 0 and so IRe is a monomorphism. 
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Now take 9 E (XJR)# and put f(x):= g(x)-ig(ix). Evidently, f E 2'(XJR, CJR) 
and Ref(x) = g(x) for x E X. It is sufficient to show that f(ix) = if(x), 
because this equality implies f E X#. Straightforward calculation shows f( ix) = 
g(ix) + ig(x) = i(g(x) - ig(ix)) = if(x), which enables us to conclude that lRe is 
also an epimorphism. t> 

3.7.4. DEFINITION. The lear trap map or complexifier is the inverse lRe-1 : 

(XJR)# -+ (X#)JR of the real part map. 
3.7.5. REMARK. By 3.7.3, for the complex scalar field 

lRe-lg: x 1--+ g(x) - ig(ix) (g E (XJR)#, x EX). 

In the case of the reals, f:= lR, the complexifier lRe-1 is the identity operator. 
3.7.6. DEFINITION. Let (X, f, +, .) be a vector space over f. A seminorm 

on X is a function p : X -+ lR· such that dom p =1= 0 and 

for Xl, X2 E X and AI, A2 E f. 
3.7.7. REMARK. A semi norm is a sublinear functional (on the real carrier 

of the space in question). 
3.7.S. DEFINITION. If p : X -+ R: is a semi norm then the balanced subdiffer-

ential of p is the set 

!a!(p):= {I E X#: !/(x)!:::: p(x) for all x EX}. 

3.7.9. Balanced Subdifferential Lemma. Let p: X -+ lR· be a seminorm. 
Then 

lal(p) = lRe-l(a(p)); lRe(lal(p)) = a(p) 

for the subdifferentials lal(p) and a(p) ofp. 
<l If f:= lR then the equality lal(p) = 8(p) is easy. Furthermore, in this case 

lRe is the identity operator. 
Let F := C. If 1 E 181(p) then (lRel)(x) = Rel(x) ::; I/(x)1 ::; p(x) for all 

x E X; i.e., lRe(181(p)) C 8(p). Take 9 E 8(p) and put f:= lRe-lg. If f(x) = 0 
then If(x)1 ::; p(x); for f(x) =1= 0 set 8:= If(x)llf(x). Thereby If(x)1 = 8f(x) = 
f(8x) = Ref(8x) = g(8x) ::; p(8x) = 18Ip(x) = p(x), since 181 = 1. Finally, 
f E 181(p)· [> 

3.7.10. Let X be a vector space, let p : X -+ lR be a seminorm, and let Xo 
be a subspace of X. The asymmetric balanced Hahn-Banach formula holds: 

181(p + <5(Xo)) = 181(p) + 181(8(Xo)). 
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<I From 3.7.9,3.5.5, and the results of Section 3.1 obtain 

181(p + 8(Xo)) = JRe- l (8(p + 8(Xo») = JRe- l (8(p) + 8(8(Xo») 
= JRe- l (8(p» + JRe- l (8(8(Xo») = 181(p) + 181(8(Xo)). t> 
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3.7.11. H X and Y are vector spaces, T E ~(X, Y) is a linear operator, and 
p : Y -+ JR is a seminorm; then poT is also a seminorm and, moreover, 

181(p 0 T) = 181(p) 0 T. 

<I Applying 2.3.8 and 3.7.10, successively infer that 

181(p 0 T) = 181(p + 8(im T» 0 T = (181(p) + 181(8(im T») 0 T 

= 181(p) 0 T + 181(8(im T» 0 T = 181(p) 0 T. t> 

3.7.12. REMARK. If T is the identical embedding of a subspace and the 
ground field is C then 3.7.11 is referred to as the Sukhomlinov-Bohnenblust-Sobczyk 
Theorem. 

3.7.13. Balanced Hahn-Banach Theorem. Let X be a vector space. As-
sume further that p : X -+ JR is a seminorm and Xo is a subspace of X. H 10 
is a linear functional given on Xo such that 110(xo)1 ~ p(xo) for Xo E X o, then 
there is a linear functional 1 on X such that l(xo) = lo(xo) whenever Xo E Xo and 
II(x)1 ~ p(x) for all x E X. <It> 

3.8. The Minkowski Functional and Separation 
3.8.1. DEFINITION. Let iii stand for the extended real axis or extended Te-

als (i.e., iii denotes JR. with the least element -00 adjoined formally). If X is 
an arbitrary set and f : X -+ iR is a mapping; then, given t E iii, put 

{f ~ t}:= {x EX: f(x) ~ t}; 

{f = t}:= f-l(t); 

{f < t}:= {f ~ t} \ {f = t}. 

Every set of the form {f ~ t}, {f = t}, and {f < t} is a level set or Lebesque set 
of f. 

3.8.2. Function Recovery Lemma. Let T C iii and let t 1-+ Ut (t E T) be 
a family of subsets of X. There is a function f : X -+ iii such that 

{f < t} C Ut C {f ~ t} (t E T) 

if and only if the mapping t 1-+ Ut increases. 
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<J ::::}: Suppose that T contains at least two elements sand t. (Otherwise there 
is nothing left to proof.) If s < t then 

Us C {f :::; s} C {f < t} CUt. 

¢::: Define a mapping f : X ---7 iii by setting f(x):= inf{t E T: x E Ud. If 
{f < t} is empty for t E T then all is clear. If x E {f < t} then f(x) < +00, and 
so there is some sET such that x E Us and s < t. Thus, {f < t} C Us CUt. 
Continuing, for x E Ut find f( x) :::; t; i.e., Ut C {f :::; t}. I> 

3.8.3. Function Comparison Lemma. Let f, g : X ---7 iii be functions 
defined by (Ut)tET and (Vi)tET as follows: 

{f < t} C Ut C {f :::; t}; 

{g < t} C vt C {g :::; t} (t E T). 
IfT is dense in iii (i.e., (V r, t E iii, r < t) (3 SET) (r < s < t)) then the inequality 
f :::; g (in iiix; i.e., f(x) :::; g(x) for x E X) holds if and only if 

(tl' t2 E T & tl < t2) ::::} vtl C Ut2 • 

<J ::::}: This is immediate from the inclusions 

vtl C {g :::; tI} C {f :::; tI} C {f < t2} C Ut2 • 

¢::: Assume that g(x) i= +00 (if not, f(x) :::; g(x) for obvious reasons). Given 
t E lR. such that g( x) < t < +00, choose t l , t2 E T so as to satisfy the conditions 
g(x) < h < t2 < t. Now 

x E {g < tI} C vtl C Ut2 C {f :::; t2} c {f < t}. 
Thus, f(x) < t. Since t is arbitrary, obtain f(x) :::; g(x). I> 

3.8.4. Corollary. If T is dense in iii and the mapping t f-+ Ut (t E T) in-
creases then there is a unique function f : X ---7 iii such that 

{f < t} C Ut C {f :::; t} (t E T). 

Moreover, the level sets of f may be presented as follows: 

{f < t} = u {Us: s < t, sET}; 

{f :::; t} = n{Ur : t < r, rET} (t E iii). 
<J It is immediate from 3.8.2 and 3.8.3 that f exists and is unique. If s < t 

and sET then Us C {f :::; s} C {f < t}. If now f(x) < t then, since T is dense, 
there is an element s in T such that f(x) < s < t. Therefore, f E {f < s} C Us, 
which proves the formula for {f < t}. 

Suppose that r > t, rET. Then {f:::; t} C {f < r} CUr. In turn, if x E Ur 
for rET, r > t; then f(x) :::; r for all r > t. Hence, f(x) :::; t. I> 
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3.8.5. Let X be a vector space and let S be a conical segment in X. Given 
t E JR, put Ut := 0 if t < 0 and Ut := tS if t 2: O. The mapping t I--t Ut (t E JR) 
lncreases. 

<l If 0 ~ tl < t2 and x E tIS then x E Cl jt2)t2S, Hence, x E t2S, t> 

3.8.6. DEFINITION. The Minkowski functional or the gauge function or sim-
ply the gauge of a conical segment S is a functional PS : X --t JR such that 

iPs < t} c tS c iPs ~ t} (t E JR+) 

and {p < O} = 0. (Such a functional exists and is unique by 3.8.2, 3.8.4, and 
3.8.5.) In other words, 

ps(x) = inf{t > 0: x E tS} (x EX). 

3.8.7. Gauge Theorem. The Minkowski functional of a conical segment is 
a sublinear functional assuming positive values. Conversely, if P is a sublinear 
functional assuming positive values then the sets {p < I} and {p ~ I} are conical 
segments. Moreover, p is the Minkowski functional of each conical segment S such 
that {p < I} eSc {p ~ I}. 

<l Consider a conical segment S and its Minkowski functional PS. Let x EX. 
The inequality ps( x) 2: 0 is evident. TaJf~ a > O. Then 

ps(ax) = inf{t > 0: ax E tS} = inf {t > 0: x E tjaS} 
=inf{a,B> 0: xE,BS, ,B>O} 

= ainf{,B > 0: x E ,BS} = aps(x). 

To start checking that PS is subadditive, take Xl, X2 E X. Noting the inclusion 
iIS + t 2S C (tl + t2)S for t I , t2 > 0, in view of the identity 

successively infer that 

PS(XI + X2) = inf{t > 0: Xl + X2 E tS} 
~ inf{t: t = tl + t2; tI, t2 > 0, xl E tIS, X2 E t 2S} 

= inf{tl > 0: xl E tIS} + inf{t2 > 0: X2 E t 2S} = ps(xI) + PS(X2). 

Let p : X --t JR' be an arbitrary sublinear functional with positive values and 
let {p < I} eSc {p ~ I}. Given t E JR+, put Vi:= {p < t} and Ut := tS; given 
t < 0, put Vi:= Ut := 0. Plainly, 

iPs < t} CUt C iPs ~ t}; {p < t} C Vi c {p ~ t} 
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for t E IR. If 0 ::; tl < t2 then vtl = {p < ttl = tdp < I} C tl S = Uh C Ut2 . 

Moreover, Ut1 C tdp::; I} C {p ::; ttl C {p < t2} C vt 2 • Therefore, by 3.8.3 and 
3.8.4, p = PS. t> 

3.8.8. REMARK. A conical segment S in X is absorbing in X if and only 
if dom PS = X. Also, Ps is a seminorm whenever S is absolutely convex. Con-
versely, for every seminorm p the sets {p < I} and {p ::; I} are absolutely con-
vex. <It> 

3.8.9. DEFINITION. A subspace H of a vector space X is a hypersubspace 
in X if XI H is isomorphic to the ground field of X. An element of X I H is 
called a hyperplane in X parallel to H. By a hyperplane in X we mean an affine 
variety parallel to some hypersubspace of X. An affine variety H is a hyperplane 
if H - h is a hypersubspace for some (and, hence, for every) h in H. If necessary, 
a hyperplane in the real carrier of X is referred to as a real hyperplane in X. 

3.8.10. Hyperplanes in X are exactly level sets of nonzero elements of X#. <It> 

3.8.11. Separation Theorem. Let X be a vector space. Assume further 
that U is a nonempty convex set in X and L is an affine variety in X. If L n U = 0 
then there is a hyperplane H in X such that H :::> L and H n core U = 0. 

<l Without loss of generality, it may be supposed that core U i- 0 (otherwise 
there is nothing left unproven) and, moreover, 0 E core U. Take x ELand put 
Xo := L - x. Consider the quotient space XI XO and the corresponding coset 
mapping <p : X --t XIXo. Applying 3.1.8 and 3.4.10, observe that <p(U) is an ab-
sorbing conical segment. Hence, by 3.8.7 and 3.8.8, the domain of the Minkowski 
functional p:= Pcp(U) is the quotient XjXo; moreover, 

<p( core U) C core <p(U) C {p < I} C <p(U). 

In particular, this entails the inequality p(<p(x)) 2:: 1, since <p(x) t/. <p(U). 
Using 3.5.6, find a functional j in ox(p 0 <p); now the Hahn-Banach Theorem 

implies 

Put H:= {7 = po <p( x)}. It is clear that H is a real hyperplane and, undoubtedly, 
H :::> L. Appealing to 3.5.2 (1), conclude that Hncore U = 0. Now let f:= IRe-Ij 
and H:= {f = f(x)}. There is no denying that L C He H. Thus, the hyperplane 
H provides us with what was required. t> 

3.8.12. REMARK. Under the hypotheses of the Separation Theorem, it may 
be assumed that core Un L = 0. Note also that Theorem 3.8.11 is often referred 
to as the Hahn-Banach Theorem in geometric form or as the Minkowski-Ascoli-
Mazur Theorem. 
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3.8.13. DEFINITION. Let U and V be sets in X. A real hyperplane H in X 
separates U and V if these sets lie in the different halfspaces defined by H; i.e., 
if there is a presentation H = {f :::; t}, where f E (XIR)# and t E JR, such that 
V C {f :::; t} and U C {f ~ t}:= {-f :::; -t}. 

3.8.14. Eidelheit Separation Theorem. If U and V are convex sets such 
that core V # 0 and U n core V = 0, then there is a hyperplane separating U 
and V and disjoint from core V. <II> 

Exercises 
3.1. Show that a hyperplane is precisely an affine set maximal by inclusion and other 

than the whole space. 
3.2. Prove that every affine set is an intersection of hyperplanes. 
3.3. Prove that the complement of a hyperplane to a real vector space consists of two 

convex sets each of which coincides with its own core. The sets are named open hal/spaces. The 
union of an open halfspace with the corresponding hyperplane is called a closed hal/space. Find 
out how a halfspace can be prescribed. 

3.4. Find possible presentations of the elements of the convex hull of a finite set. What 
use can be made of finite dimensions? 

3.5. Given sets Sl and S2, let S:= UO<>.<l ),Sl n (1 - ),)S2. Prove that S is convex 
whenever so are Sl and S2. - -

3.6. Calculate the Minkowski functional of a halfspace or a cone and of the convex hull 
of the union or intersection of conical segments. 

3.7. Let S:= {p + q ~ I}, where p and q are the Minkowski functionals of the conical 
segments Sp and Sq. Express S via Sp and Sq. 

3.S. Describe sublinear functionals with domain JRN. 
3.9. Calculate the subdifferential of the upper envelope of a finite set of linear or sub-

linear functionals. 
3.10. Let p and q be sublinear functionals in general position, i.e. such that dom p -

dom q = dom q - dom p. Prove the symmetric Hahn-Banach formula (cf. 3.5.7): 8(p + q) = 
8(p) + 8(q). 

3.11. Let p, q : X -+ JR be total (= everywhere-defined) sublinear functionals on X. 
Then the equality holds: 8(p V q) = co (8(p) U 8(q)). 

3.12. Find the Minkowski functional of a ball in a Hilbert space whose center of sym-
metry is not necessarily the zero of the space. 

3.13. A symmetric square 2 X 2-matrix is called positive, provided that its eigenvalues 
are positive. Does the resulting order in the space of such matrices agree with vector structure? 
Does it define the structure of a Kantorovich space? 

3.14. Each ordered vector space admits a nonzero positive linear functional, doesn't it? 
3.15. What are the means for transforming JRN into a Kantorovich space? 
3.16. Under what conditions does the claim of the Hahn-Banach Theorem in analytical 

form hold for a partial (= not-everywhere-defined) sublinear functional? 
3.17. Find the extreme points of the subdifferential of the conventional norm on 100 , 

3.1S. Find possible generalizations of the Hahn-Banach Theorem for a mapping acting 
into a Kantorovich space. 

3.19. Given a set G in a space X, define the Hormander transform H(G) of Gas 
H(G) = Hz, t) E X X JR: z E tG}. 

Study the properties of the Hormander transform on the collection of all convex sets. 



Chapter 4 
An Excursion into Metric Spaces 

4.1. The Uniformity and Topology of a Metric Space 
4.1.1. DEFINITION. A mapping d : X 2 -+ R+ is a metric on X if 

(1) d(x, y)=O<*X=Yi 
(2) d(x, y) = dey, x) (x, y E X)i 
(3) d(x, y) ~ d(x, z) + d(z, y) (x, y, z EX). 

The real d(x, y) is usually referred to as the distance between x and y. The pair 
(X, d) is a metric space. In this situation, it is convenient to take the liberty 
of calling the underlying set X a metric space. An element of a metric space X is 
also called a point of X. 

4.1.2. A mapping d : X2 -+ R+ is a metric if and only if 
(1) {d ~ O} = IXi 
(2) {d ~ t} = {d ~ t}-l (t E R+); 
(3) {d~tdo{d~t2}C{d~tl+t2} (tt, t2ER+). 

<I Items 4.1.2 (1)-4.1.2 (3) reformulate 4.1.1 (1)-4.1.1 (3). I> 

4.1.3. DEFINITION. Let (X, d) be a metric space and take c E R+ \ 0, 
a strictly positive real. The relation Be := Bd,e := {d ~ c} is the closed cylin-

o 0 

der of size c. The set Be:= Bd,e:= {d < c} is the open cylinder of size c. The 
image Be(x) of a point x under the relation Be is called the closed ball with cen-

o 
ter x and radius c. By analogy, the set Be(x) is the open ball with center x and 
radius c. 

4.1.4. In a non empty metric space open cylinders as well as closed cylinders 
form bases for the same filter. <II> 

4.1.5. DEFINITION. The filter on X2 with the filterbase of all cylinders of 
a nonempty metric space (X, d) is the metric uniformity on X. It is denoted 
by ~x, ~d, or even ~, if the space under consideration is implied. Given X:= 0, 
put ~X:= {0}. An element of ~x is an entourage on X. 



4.1. The Uniformity and Topology of a Metric Space 

4.1.6. If Ol/ is a metric uniformity then 
(1) Ol/ C fil {Ix}; 
(2) U E Ol/ ::::} U- 1 E Ol/; 
(3) (\lU E Ol/) (3V E Ol/) Vo V C U; 
(4) n{u: U E Ol/} = Ix. <II> 
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4.1.7. REMARK. Property 4.1.6 (4) reflecting 4.1.1 (1) is often expressed as 
follows: "Ol/ is a Hausdorff or separated uniformity." 

4.1.8. Given a space X with uniformity Ol/x, put 

r(x):= {U(x): U E Ol/}. 

Then r( x) is a filter for every x in X. Moreover, 
(1) rex) C fil {x}; 
(2) (\lU E rex»~ (3V E rex) & V c U) (\ly E V) U E r(y). <II> 

4.1.9. DEFINITION. The mapping r : x I---t rex) is the metric topology on X. 
An element of r( x) is a neighborhood of x or about x. More complete designations 
for the topology are also in use: rx, r('W), etc. 

4.1.10. REMARK. All closed balls centered at x form a base for the neigh-
borhood filter of x. The same is true of open balls. Note also that there are 
disjoint (= nonintersecting) neighborhoods of different points in X. This prop-
erty, ciphered in 4.1.6 (4), reads: "rx is a Hausdorff or separated topology." 

4.1.11. DEFINITION. A subset G of X is an open set in X whenever G is 
a neighborhood of its every point (i.e., G E Op(r) '¢:} ((\Ix E G) G E rex»~). 
A subset F of X is a closed set in X whenever its complement to X is open 
(in symbols, FECI (r) '¢:} (X \ F E Op (r»). 

4.1.12. The union of a family of open sets and the intersection of a finite 
family of open sets are open. The intersection of a family of closed sets and the 
union of a finite family of closed sets are closed. <II> 

4.1.13. DEFINITION. Given a subset U of X, put 
o 

int U:= U:= U{G E Op(rx): G C U}; 
cl U:= U:= n{F E CI(rx): F:J U}. 

The set int U is the interior of U and its elements are interior points of U. The 
set cl U is the closure of U and its elements are adherent to U. The exterior of U 
is the interior of X \ U; the elements of the former are exterior to U. A boundary 
point of U is by agreement a point of X neither interior nor exterior to U. The 
collection of all boundary points of U is called the boundary of U or the frontier 
of U and denoted by fr U or au. 

4.1.14. A set U is a neighborhood about x if and only if x is an interior point 
of U. <II> 



42 Chapter 4. An Excursion into Metric Spaces 

4.1.15. REMARK. In connection with 4.1.14, the set 0p(T) is also referred 
to as the topology of U, since T is uniquely determined from Op ( T). The same 
relates also to CI ( T ), the collection of all closed sets in X. 

4.1.16. DEFINITION. A filterbase fJ6 on X converges to x in X or x is a limit 
of fJ6 (in symbols, fJ6 ~ x) if fil fJ6 is finer than the neighborhood filter of Xj i.e., 
fil fJ6 J T(X). 

4.1.17. DEFINITION. A net or (generalized) sequence (Xe)eES converges to x 
(in symbols, xe ~ x) if the tail filter of (xe) converges to x. Other familiar terms 
and designations are freely employed. For instance, x = lime xe and x is a limit 
of (xe) as e ranges over 3. 

4.1.18. REMARK. A limit of a filter, as well as a limit of a net, is unique 
in a metric space X. This is another way of expressing the fact that the topology 
of X is separated. <II> 

4.1.19. For a nonempty set U and a point x the following statements are 
equivalent: 

(1) x is an adherent point ofUj 
(2) there is a filter $ such that $ ~ x and U E $j 
(3) there is a sequence (Xe)eES whose entries are in U and which con-

verges to x. 
<I (1) =} (2): Since x is not exterior to U, the join $ := T(X) V fil {U} is 

available of the pair of the filters T( x) and fil {U}. 
(2) =} (3): Let $ ~ x and U E $. Direct $ by reverse inclusion. Take 

Xv E V n U for V E $. It is clear that Xv ~ x. 
(3) =} (1): Let V be a closed set. Take a sequence (Xe)eE3 in V such that 

xe ~ x. In this case it suffices to show that x E V, which is happily evident. 
Indeed, were x in X \ V we would find at least one e E 3 such that xe EX \ V. I> 

4.1.20. REMARK. It may be assumed that $ has a countable base in 4.1.19 
(2), and 3:= N in 4.1.19 (3). This property is sometimes formulated as follows: 
"In metric spaces the first axiom of count ability is fulfilled." 

4.2. Continuity and Uniform Continuity 
4.2.1. If f : X ~ Y and TX and Ty are topologies on X and Y then the 

following conditions are equivalent: 
(1) G E Op(Ty) =} f-I(G) E 0p(TX)j 
(2) FE CI(Ty) =} f-l(F) E CI(Tx)j 
(3) f(TX(X)) J Ty(J(x)) for all x E Xj 
(4) (x E X & $ ~ x) =} (J($) ~ f(x)) for a filter $j 
(5) f(xe) ~ f(x) for every point x and every sequence (xe) convergent 

to x. 
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<I The equivalence (1) ¢} (2) follows from 4.1.11. It remains to demonstrate 
that (1) '* (3) '* (4) '* (5) '* (2). 

(1) '* (3): If V E ry(l(x)) then W := int V E Op(ry) and f(x) E W. 
Hence, f-l(W) E Op(rx) and x E f-l(W). In other words, f-l(W) E rx(x) 
(see 4.1.14). Moreover, f-l(V) :J f-l(W) and, consequently, f-l(V) E rx(x). 
Finally, V :J f(l-l (V)). 

(3) '* (4): Given $ --+ x, by Definition 4.1.16 fil $ :J rx(x). From the 
hypothesis infer that f($) :J f(rx(x)) :J ry(l(x)). Appealing to 4.1.16, again 
reveal the sought instance of convergence, f( $) --+ f( x). 

(4) '* (5): The image of the tail filter of (Xe)eE2 under f is coarser than the 
tail filter of (I( xe) )eE2. 

(5) '* (2): Take a closed set Fin Y. If F = 0 then f-l(F) is also empty and, 
hence, closed. Assume F nonempty and let x be an adherent point of f-l(F). 
Consider a sequence (Xe)eE2 converging to x and consisting of points in f-l(F) 
(the claim of 4.1.19 yields existence). Then f(xe) E F and f(xe) --+ f(x). Another 
citation of 4.1.19 guarantees that f(x) E F and, consequently, x E f-l(F). [> 

4.2.2. DEFINITION. A mapping satisfying one (and hence all) of the equiva-
lent conditions 4.2.1 (1)-4.2.1 (5) is continuous. If 4.2.1 (5) holds at a fixed point x 
then f is said to be continuous at x. Thus, f is continuous on X whenever f is 
continuous at every point of X. 

4.2.3. Every composition of continuous mappings is continuous. 

<I Apply 4.2.1 (5) thrice. [> 

4.2.4. Let f: X --+ Y and let 'Wx and 'Wy be uniformities on X and Y. The 
following statements are equivalent: 

(1) (VV E 'Wy ) (3U E 'Wx ) ((Vx, y)(x, y) E U '* (I(x), fey)) E V); 
(2) (VV E o//y) f- l 0 V 0 f E o//x; 
(3) r('Wx) :J 'Wy, with r : x 2 --+ Y defined as fX : (x, y) I-t 

(I(x), fey)); 
(4) (VV E 'Wy ) r-l(V) E 'Wx; i.e., r-l('Wy) c 'Wx . 

<I By 1.1.10, given U C X 2 and V C y2, observe that 

= {(x, y) E X2: (I(x), fey)) E V} = r-l(V); 

fouof-l= U f(uI)xf(U2) 
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4.2.5. DEFINITION. A mapping f : X -+ Y satisfying one (and hence all) 
of the equivalent conditions 4.2.4 (1)-4.2.4 (4) is called uniformly continuous (the 
term "uniform continuous" is also in common parlance). 

4.2.6. Every composition of uniformly continuous mappings is uniformly con-
tinuous. 

<] Consider f: X -+ Y, g: Y -+ Z and h:= go f: X -+ Z. Plainly, 

hX(x, y) = (h(x), h(y)) = (g(J(x)), g(J(y))) = gX(J(x), f(y)) = gX 0 fX(x, y) 

for all x, y E X. Hence, by 4.2.4 (3) hX(Cil/x ) = gX(r(Cil/x)) J gX(Cil/y) J Cil/z, 
meaning that h is uniformly continuous. I> 

4.2.7. Every uniformly continuous mapping is continuous. <]1> 

4.2.8. DEFINITION. Let g be a set of mappings from X into Y and let Cil/x 
and Cil/y be the uniformities in X and Y. The set g is equicontinuous if 

(\IV E Cil/Y) n f- l 0 Vo f E Cil/x . 
lEg 

4.2.9. Every equicontinuous set consists of uniformly continuous mappings. 
Every finite set of uniformly continuous mappings is equicontinuous. <]1> 

4.3. Semicontinuity 
4.3.1. Let (Xl, dd and (X2' d2) be metric spaces, and.¥:= Xl x X 2 • Given 

x:= (Xl, X2) and y:= (Yl, Y2), put 

Tben d is a metric on :Z". Moreover, for every X:= (Xl, X2) in :Z" tbe presentation 
bolds: 

TX(X) = fil{Ul X U2 : Ul E TXl(Xl), U2 E TX 2 (X2)}. <]1> 

4.3.2. DEFINITION. The topology TX is called the product of TXl and TX 2 or 
the product topology of Xl x X 2. This topology on Xl x X 2 is denoted by TXl x TX 2 • 

4.3.3. DEFINITION. A function f : X -+ lR" is lower semicontinuous if its 
epigraph epi f is closed in the product topology of X x JR. 

4.3.4. EXAMPLES. 
(1) A continuous real-valued function f: X -+ JR is lower semicontinuous. 
(2) If fe : X -+ lR" is lower semi continuous for all e E 3, then the 

upper envelope f( x):= sup {fe ( x): e E 3} (x E X) is also lower semicontinuous. 
A simple reason behind this is the equality epi f = neE2 epi fe. 
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4.3.5. A function J : X -t R is lower semicontinuous if and only if 

x EX=:;. J(x) = lim inf J(y). 
y~x 

Here, as usual, 
lim inf J(y):= lim J(y):= sup inf J(U) 
y~x y~x UEr(x) 

is the lower limit of J at x (with respect to r(x)). 
<1 =:;.: If x ¢ dom J then (x, t) ¢ epi J for all t E JR. Hence, there is a neigh-

borhood Ut of x such that inf J(Ut ) > t. This implies that limy~x inf J(y) = 
+00 = J(x). Suppose that x E dom f. Then inf J(V) > -00 for some neighbor-
hood V of x. Choose c > 0 and for an arbitrary U in r(x) included in V find Xu 
in U so that inf J(U) ~ J(xu) - c. By construction, Xu E dom J and, moreover, 
Xu -t x (by implication, the set of neighborhoods of x is endowed with the con-
ventional order by inclusion, cf. 1.3.1). Put tu := inf J(U) + c. It is clear that 
tu -t t:= limy~xinfJ(y) +c. Since (xu, tu) E epi J, from the closure property 
of epi J obtain (x, t) E epi J. Thus, 

lim inf J(y) + c ~ J(x) ~ lim inf J(y). 
y~x y~x 

'¢=:: If (x, t) ¢ epi J then 

t < lim inf J(y) = sup inf J(U). 
y-+x UEr(x) 

Therefore, inf J(U) > t for some neighborhood U of x. It follows that the comple-
ment of epi J to X x JR is open. I> 

4.3.6. REMARK. The property, stated in 4.3.5, may be accepted as an initial 
definition of lower semi continuity at a point. 

4.3.7. A function J : X -t JR is continuous if and only if both J and - J are 
lower semicontinuous. <11> 

4.3.8. A function J : X -t JR. is lower semicontinuous if and only if for every 
t E JR the level set {f :::; t} is closed. 

<1 ::}: If x ¢ {f :::; t} then t < J(x). By 4.3.5, t < inf J(U) in a suitable 
neighborhood U about x. In other words, the complement of {f :::; t} to X is 
open. 

'¢=:: Given limy-+x inf J(y) :::; t < J( x) for some x E X and t E JR, choose c > 0 
such that t + c < J(x). Repeating the argument of 4.3.5, given U E r(x) take 
a point Xu in Un {f :::; inf J(U) + c}. Undoubtedly Xu E {f :::; t + c} and Xu -t x, 
a contradiction. I> 
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4.4. Compactness 
4.4.1. DEFINITION. A subset C of X is called a compact set whenever for 

every subset rB' of Op (TX) with the property C C U{ G: G E rB'} there is a finite 
subset rB'0 in rB' such that still C C U {G: G E 6O}. 

4.4.2. REMARK. Definition 4.4.1 is verbalized as follows: "A set is compact 
if its every open cover has a finite subcover." The terms "covering" and "subcov-
ering" are also in current usage. 

4.4.3. Every closed subset of a compact set is also compact. Every compact 
set is closed. <ll> 

4.4.4. REMARK. With regard to 4.4.3, it stands to reason to use the term 
"relatively compact set" for a set whose closure is compact. 

4.4.5. Weierstrass Theorem. The image of a compact set under a contin-
uous mapping is compact. 

<l The inverse images of sets in an open cover of the image compose an open 
cover of the original set. I> 

4.4.6. Each lower semicontinuous real-valued function, defined on a nonempty 
compact set, assumes its least value; i.e., the image of a compact domain has a least 
element. 

<l Suppose that f : X -+ R and X is compact. Let to := inf f(X). In the case 
to = +00 there is nothing left to proof. If to < +00 then put T:= {t E lR.: t > to}. 
The set Ut := {f ::::: t} with t E T is nonempty and closed. Check that n{Ut : 
t E T} is not empty (then every element x of the intersection meets the claim: 
f(x) = inf f(X)). Suppose the contrary. Then the sets {X \ Ut : t E T} compose 
an open cover of X. Refining a finite subcover, deduce n{Ut : t E To} = 0. 
However, this equality is false, since UtI n U t2 = U tI 1\t2 for t l , t2 E T. I> 

4.4.7. Bourbaki Criterion. A space is compact if and only if every ultra-
filter on it converges (cf. 9.4.4). 

4.4.8. The product of compact sets is compact. 
<l It suffices to apply the Bourbaki Criterion twice. [> 

4.4.9. Cantor Theorem. Every continuous mapping on a compact set is 
uniformly continuous. <ll> 

4.5. Completeness 
4.5.1. If ~ is a filterbase on X then {B2: B E ~} is a filterbase (and a base 

for the filter ~X) on X2. 
<l (BI x Bd n (B2 x B2) J (BI n B2) x (BI n B2) [> 
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4.5.2. DEFINITION. Let %'X be a uniformity on X. A filter ~ is called 
a Cauchy filter or even Cauchy (the latter might seem preposterous) if ~x J %'x. 
A net in X is a Cauchy net or a fundamental net if its tail filter is a Cauchy filter. 
The term "fundamental sequence" is treated in a similar fashion. 

4.5.3. REMARK. If V is an entourage on X and U is a subset of X then U is 
V -small whenever U2 C V. In particular, U is Be-small (or simply 6-small) if and 
only if the diameter of U, diam U:= sup(U2 ), is less than or equal to 6. In this 
connection, the definition of a Cauchy filter is expressed as follows: "A filter is 
a Cauchy filter if and only if it contains arbitrarily small sets." 

4.5.4. In a metric space the following conditions are equivalent: 
(1) every Cauchy filter converges; 
(2) each Cauchy net has a limit; 
(3) every fundamental sequence converges. 

<I The implications (1) =} (2) =} (3) are obvious; therefore, we are left with 
establishing (3) =} (1). 

Given a Cauchy filter~, let Un in ~ be a BI/n-small set. Put Vn:= UI n ... n 
Un and take Xn E Vn. Observe that VI J V2 J ... and diam Vn ::; 1 I n. Hence, 
(x n ) is a fundamental sequence. By hypothesis it has a limit, x:= limxn . Check 
that ~ -+ x. To this end, choose no E N such that d(xm, x) ::; 1 hn as m ~ no. 
Then for all n E N deduce that d(xp, y) ::; diam Vp ::; 1 hn and d(xp, x) ::; 1 hn 
whenever p:= no V 2n and y E Vp. It follows that y E Vp =} d(x, y) ::; 1 In; i.e., 
Vp C B1/n(x). In conclusion, ~ J r(x). I> 

4.5.5. DEFINITION. A metric space satisfying one (and hence all) of the 
equivalent conditions 4.5.4 (1 )-4.5.4 (3) is called complete. 

4.5.6. Cantor Criterion. A metric space X is complete if and only if every 
nonempty downward-filtered family of nonempty closed subsets of X whose diam-
eters tend to zero has a point of intersection. 

<I =}: If !JIJ is such a family then by Definition 1.3.1 !JIJ is a filterbase. By hy-
pothesis, !JIJ is a base for a Cauchy filter. Therefore, there is a limit: !JIJ -+ x. The 
point x meets the claim. 

'¢::: Let ~ be a Cauchy filter. Put !JIJ:= {cl V: V E ~}. The diameters ofthe 
sets in !JIJ tend to zero. Hence, there is a point x such that x E cl V for all V E ~. 
Plainly, ~ -+ x. Indeed, let V be an e h-small member of ~ and y E V. Some 
y' in V is such that d(x, y') ::; e h. Therefore, d(x, y) ::; d(x, y') + d(y', y) ::; 6. 
Consequently, V C Be(x) and so Be(x) E ~. I> 

4.5.7. Nested Ball Theorem. A metric space is complete if and only if 
every nested ( = decreasing by inclusion) sequence of balls whose radii tend to zero 
has a unique point of intersection. <II> 
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4.5.8. The image of a Cauchy filter under a uniformly continuous mapping is 
a Cauchy filter. 

<I Let a mapping I act from a space X with uniformity 'Wx into a space Y with 
uniformity 'Wyand let $ be a Cauchy filter on X. If V E 'Wy then, by Definition 
4.2.5, 1-1 0 V 0 I E 'Wx (cf. 4.2.4 (2)). Since $ is a Cauchy filter, U2 C 1-1 0 V 0 I 
for some U E $. It turns out that I(U) is V-small. Indeed, 

u 
(Ul,U2)EU2 

= 10 U2 01-1 C 10 (1-1 0 V 0 f) 0 1-1 = (101-1) 0 V 0 (I 0 1-1) c u, 

because, by 1.1.6, 101-1 = lim f C ly. t> 

4.5.9. The product of complete spaces is complete. 
<I The claim is immediate from 4.5.8 and 4.5.4. t> 

4.5.10. Let Xo be dense in X (i.e., cl Xo = X). Assume further that 10 
Xo -+ Y is a uniformly continuous mapping from Xo into some complete space Y. 
Then there is a unique uniformly continuous mapping I : X -+ Y extending 10 j 
i.e., Ilxo = 10. 

<I For x E X, the filter $z:= {U n Xo: U E TX(X)} is a Cauchy filter on Xo. 
Therefore, 4.5.8 implies that lo($x) is a Cauchy filter on Y. By the completeness 
of Y, there is a limit y E Yj that is, lo($z) -+ y. Moreover, this limit is unique 
(cf. 4.1.18). Define f(x):= y. Checking uniform continuity for I readily completes 
the proof. t> 

4.5.11. DEFINITION. An isometry or isometric embedding or isometric map-
ping of X into X is a mapping 1_: (X, d) -+ (X, J) such that _d = do fX. 
A mapping I i~ an isometry onto X if I is an isometry of X_into X and, more-
over, im I = X. The expressions, "an isometry of X and X" or "an isometry 
between X and X" and the like, are also in common parlance. 

4.5.12. Hausdorff Completion Theorem. If(X, d) is a metric space then 
there are a complete metric space (X, d) and an isometry L : (X, d) -+ (X, d) 
onto a dense subspace of (X, d). The space (X, d) is unique to within isometry 
in the following sense: The diagram 

L __ 

(X,d) - (X,d) 

~ lw 
(Xt,dt) 
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commutesforsomeisometryiI!: (X, d) -t (Xl, dJ), wheretl: (X, d) -t (Xl, dl ) 

is an isometry of X onto a dense subspace of a complete space (Xl, dl). 
<1 Uniqueness up to isometry follows from 4.5.10. For, if iI!o := tl 0 t -1 then 

iI!o is an isometry of the dense subspace t(X) of X onto the dense subspace tl(X) 
of Xl. Let iI! be the uniq~e extension of !o to the whole of X. It is sufficient 
to show that iI! acts onto Xl. Take Xl in Xl. This element is the limit of some 
sequence (tl(Xn)), with Xn EX. Clearly, the sequence (xn) is fundamental. Thus, 
(t(xn )) is a fundamental sequence in X. Let x:= limt(xn ), X E X. Proceed as 
follows: iI!(x) = lim iI!O(t(xn)) = limtl 0 CI(t(Xn)) = limtl(xn) = Xl. 

We now sketch out the proof that X exists. Consider the set &: of all fun-
damental sequences in X. Define some equivalence relation in X by putting 
Xl '" X2 {:} d(XI(n), X2(n)) -t O. Assign X := &:1'" and d(<p(xt), <p(X2)):= 
lim d(XI (n), x2(n)), where <p : &: -t X is the coset mapping. An isometry 
t: (X, d) -t (X, d) is immediate: t(x):= <pen ~ x (n EN)). I> 

4.5.13. DEFINITION. The space (X, d) introduced in Theorem 4.5.12, as 
well as each space isomorphic to it, is called a completion of (X, d). 

4.5.14. DEFINITION. A set Xo in a metric space (X, d) is said to be complete 
if the metric space (Xo, dl x 2), a subspace of (X, d), is complete. o 

4.5.15. Every closed subset of a complete space is complete. Every complete 
set is closed. <11> 

4.5.16. If Xo is a subspace of a complete metric space X then a completion 
of Xo is isometric to the closure of Xo in X. - -

<1 Let X:= cl Xo and let t : Xo -t X be the identical embeddinl5; It is evident 
that t is an isometry onto a dense subspace. Moreover, by 4.5.15 X is complete. 
Appealing to 4.5.12 ends the proof. I> 

4.6. Compactness and Completeness 

4.6.1. A compact space is complete. <11> 

4.6.2. DEFINITION. Let U be a subset of X and V E 'Wx . A set E in X is 
a V-net for U if U c VeE). 

4.6.3. DEFINITION. A subset U of X is a totally bounded set in X if for 
every V in 'Wx there is a finite V-net for U. 

4.6.4. If for every V in 'W a set U in X has a totally bounded V -net then U 
is totally bounded. 

<1 Let V E 'Wx and WE 'Wx be such that WoW c V. Take a totally bounded 
W-net F for U; i.e., U C W(F). Since F is totally bounded, there is a finite W-net 
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E for F; that is, Fe WeE). Finally, 

U C W(F) C W(W(E)) = Wo WeE) c VeE); 

i.e., E is a finite V-net for U. I> 

4.6.5. A subset U of X is totally bounded if and only if for every V in tWx 
there is a family U1 , •.• ,Un of subsets of U such that U = U1 U ... U Un and each 
of the sets U1, ... , Un is V -smal1. <]1> 

4.6.6. REMARK. The claim of 4.6.5 is verbalized as follows: "A set is totally 
bounded if and only if it has finite covers consisting of arbitrarily small sets." 

4.6.7. Hausdorff Criterion. A set is compact if and only if it is complete 
and totally bounded. <]1> 

4.6.8. Let C(Q, IF) be the space of continuous functions with domain a com-
pact set Q and range a subset oflF. Furnish this space with the Chebyshev metric 

d(f, g):= sup dJF(f(x), g(x)):= sup II(x) - g(x)1 (f, 9 E C(Q, IF)); 
xEQ xEQ 

and, given () E %'JF, put 

Uo:={(f, g)EC(Q, IF)2: goI-1 C(}}. 

Then %'d = fil {U 0: () E %'JF}. <]1> 

4.6.9. The space C(Q, IF) is complete. <]1> 

4.6.10. Ascoli-Arzelit Theorem. A subset 0' ofC(Q, IF) is relatively com-
pact if and only if 0" is equicontinuous and the set U{g( Q): 9 E O"} is totally 
bounded in IF. 

<] =}: It is beyond a doubt that U{g( Q): 9 E O"} is totally bounded. To 
show equicontinuity for 0' take () E %'JF and choose a symmetric entourage ()' such 
that ()' 0 ()' 0 ()' c (). By the Hausdorff Criterion, there is a finite Uo,-net 0" for 0'. 
Consider the entourage U E %'Q defined as 

U:= n 1-1 0 ()' 0 I 
JE£' 

(cf. 4.2.9). Given 9 E 0' and lEg' such that go 1-1 C ()', observe that 

()' = ()'-1 J (g 0 1-1 )-1 = (f-l )-1 0 g-1 = I 0 g-l. 

Moreover, the composition rules for correspondences and 4.6.8 imply 

gX (U) = 9 0 U 0 g-1 ego (f-l 0 ()' 0 f) 0 g-1 
C (g 0 1-1) 0 ()' 0 (f 0 g-l) C ()' 0 ()' 0 ()' C (). 
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Since g is arbitrary, the resulting inclusion guarantees that g is equicontinuous. 
{:=: By 4.5.15, 4.6.7, 4.6.8, and 4.6.9, it is sufficient to construct a finite Ue-net 

for g given () E %'IF. Choose ()' E %'IF such that ()' 0 ()' 0 ()' C () and find an open 
symmetric entourage U E %'Q from the condition 

U c n g-I 0 ()' 0 g 
gEe 

(by the equicontinuity property of g, such an U is available). The family {U(x) : 
x E Q} clearly forms an open cover of Q. By the compactness of Q, refine a finite 
sub cover {U(xo): Xo E Qo}. In particular, from 1.1.10 derive 

lQ C U U(xo) x U(xo) 
xoEQo 

= U U-I(xo) X U(xo) = U 0 lQo 0 U. 

The set {glQo : g E g} is totally bounded in JF'Qo. Consequently, there is a finite 
()'-net for this set. Speaking more precisely, there is a finite subset g' of g with 
the following property: 

for every g in g and some I in g'. Using the estimates, successively infer that 

go 1-1 = go IQ 01-1 ego (U 0 IQo 0 U) 0 1-1 
ego (g-I 0 ()' 0 g) 0 lQo 0 (1-1 0 ()' 0 f) 0 I-I 

= (g 0 g-I) 0 ()' 0 (g 0 lQo 0 I-I) 0 ()' 0 (I 0 I-I) 
= lim gO ()' 0 (g 0 lQo 0 I-I) 0 ()' 0 lim f 

C ()' 0 ()' 0 ()' c (). 

Thus, by 4.6.8, g' is a finite Ue-net for g. I> 

4.6.11. REMARK. It is an enlightening exercise to translate the proof of the 
Ascoli-Arzela Theorem into the "c:-8" language. The necessary vocabulary is 
in hand: "() and Ue stand for c:," "()' is ~ /3," and "8 is U." It is also rewarding 
and instructive to find generalizations of the Ascoli-Arzela Theorem for mappings 
acting into more abstract spaces. 
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4.7. Baire Spaces 
4.7.1. DEFINITION. A set U is said to be nowhere dense or rare whenever its 

closure lacks interior points; i.e., int cl U = 0. A set U is meager or a set of first 
category if U is included into a countable union of rare sets; i.e., U C UnOIUn 
with int cl Un = 0. A nonmeager set (which is not of first category by common 
parlance) is also referred to as a set of second category. 

4.7.2. DEFINITION. A space is a Baire space if its every nonempty open set 
is nonmeager. 

4.7.3. The following statements are equivalent: 
(1) X is a Baire space; 
(2) every countable union of closed rare sets in X lacks interior points; 
(3) the intersection of a countable family of open everywhere dense sets 

(i.e., dense in X) is everywhere dense; 
(4) the complement of each meager set to X is everywhere dense. 

<l (1) ~ (2): If U:= UnENUn, Un = cl Un, and int Un = 0 then U is mea-
ger. Observe that int U C U and int U is open; hence, int U as a meager set is 
necessarily empty, for X is a Baire space. 

(2) ~ (3): Let U:= nnENGn, where Gn's are open and cl Gn = X. Then 
X \ U = X \ nnEN Gn = UnEN(X \ Gn ). Moreover, X \ Gn is closed and int (X \ 
Gn ) = 0 (since cl Gn = X). Therefore, int (X \ U) = 0, which implies that the 
exterior of U is empty; i.e., U is everywhere dense. 

(3) ~ (4): Let U be a meager set in X; i.e., U C UnENUn and int cl Un = 0. 
It may be assumed that Un = cl Un. Then Gn := X \ Un is open and everywhere 
dense. By hypothesis, nnEN Gn = X \ UnEN Un is everywhere dense. Moreover, 
the set is included into X \ U, and so X \ U is everywhere dense. 

( 4) ~ (1): If U is nonempty open set in X then X \ U is not everywhere dense. 
Consequently, U is nonmeager. t> 

4.7.4. REMARK. In connection with 4.7.3 (4), observe that the complement 
of a meager set is (sometimes) termed a residual or comeager set. A residual set 
in a Baire space is nonmeager. 

4.7.5. Osgood Theorem. Let X be a Baire space and let (fe : X -+ R)eEs 
be a family of lower semicontinuous functions such that sup{fe( x): ~ E 3} < +00 
for all x EX. Then each nonempty open set G in X includes a nonempty open 
subset Go on which (fdeEs is uniformly bounded above; i.e., sUPxEGo sup{fe(x) : 
~ E 3} ::; +00. <It> 

4.7.6. Baire Category Theorem. A complete metric space is a Baire space. 
<l Let G be a nonempty open set and Xo E G. Suppose by way of contradiction 

that G is meager; i.e., G C UnEN Un, where int Un = 0 and Un = cl Un. Take 
co > 0 satisfying Beo(xo) C G. It is obvious that U1 is not included into Beo/2(XO)' 
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Consequently, there is an element Xl in B"0/2 (xo) \ Ul . Since Ul is closed, find 61 

satisfying 0 < 61 ::; "oh and B"l(xd n Ul = 0. Check that BeJxI) c B"o(xo). 
For, if d( Xl, yd ::; 61, then d(Yl, XO) ::; d(Yl, Xl) + d( Xl, XO) ::; 61 + eo h, because 
d(Xl, xo) ::; eo h. The ball B"l/2(xd does not lie in U2 entirely. It is thus possible 
to find X2 E B"l/2(xd \ U2 and 0 < C2 ::; "1 h satisfying B"2(X2) n U2 = 0. It is 
easy that again B"'2(X2) C BeJxd. Proceeding by induction, obtain the sequence 
of nested balls Beo(xo) :J Bel (xd :J B"2(X2) :J ... ; moreover, 6 n+l ::; "n h and 
Ben(xn) n Un = 0. By the Nested Ball Theorem, the balls have a common point, 
X := limxn . Further, X f. UnENUn; and, hence, X rf. G. On the other hand, 
X E Beo(xo) C G, a contradiction. t> 

4.7.7. REMARK. The Baire Category Theorem is often used as a "pure exis-
tence theorem." As a classical example, consider the existence problem for con-
tinuous nowhere differentiable functions. 

Given f : [0,1] -+ lR and X E [0,1), put 

D f( ) ·-1· . ff(x+h)-f(x). + x.- Imm h ' 
hto 

D+f() 1· f(x+h)-f(x) 
X := Imsup h . hto 

The elements D+f(x) and D+ f(x) of the extended axis R are the lower right and 
upper right Dini derivatives of f at x. Further, let D stand for the set of functions 
fin C([O, 1], lR) such that for some x E [0, 1) the elements D+f(x) and D+ f(x) 
belong to lR; i.e., they are finite. Then D is a meager set. Hence, the functions 
lacking derivatives at every point of (0, 1) are everywhere dense in C([O, 1], lR). 
However, the explicit examples of such functions are not at all easy to find and 
grasp. Below a few of the most popular are listed: 

van der Waerden's function: ~ ((4nx)) 
~ 4n ' n=O 

with ((x)) := (x - [xl) 1\ (1 + [x]- x), the distance from x to the whole number 
nearest to x; 

+00 1 
Riemann's function: L 2 sin (n27rx); 

n n=O 
and, finally, the historically first 

00 

Weierstrass's function: L bn cos (an 7rx), 
n=O 

with a an odd positive integer, 0 < b < 1 and ab > 1 + 3". h. 
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4.8. The Jordan Curve Theorem and Rough Drafts 
4.8.1. REMARK. In topology, in particular, many significant and curious facts 

of the metric space R2 are scrutinized. Here we recall those of them which are of 
use in the sequel and whose role is known from complex analysis. 

4.8.2. DEFINITION. A (Jordan) arc is a homeomorphic image of a (nonde-
generate) interval of the real axis. Recall that a homeomorphism or a topological 
mapping is by definition a one-to-one continuous mapping whose inverse is also 
continuous. A ( simple Jordan) loop is a homeomorphic image of a circle. Concepts 
like "smooth loop" are understood naturally. 

4.8.3. Jordan Curve Theorem. If 'Y is a simple loop in R2 then there are 
open sets G1 and G2 such that 

G1 U G2 = R2 \ 'Yj 'Y = 8G1 = 8G2 • <It> 

4.8.4. REMARK. Either G1 or G2 in 4.8.3 is bounded. Moreover, each of the 
two sets is connectedj i.e., it cannot be presented as the union of two nonempty 
disjoint open sets. In this regard the Jordan Curve Theorem is often read as 
follows: "A simple loop divides the plane into two domains and serves as their 
mutual boundary." 

4.8.5. DEFINITION. Let D1 , ••• ,Dn and D be closed disks (= closed balls) 
in the plane which satisfy D 1 , ... ,Dn c int D and Dm n D" = 0 as m t= k. The 
set 

n 

D\ U int D" 
10=1 

is a holey disk or, more formally, a perforated disk. A subset of the plane which is 
diffeomorphic (= "smoothly homeomorphic") to a holey disk is called a connected 
elementary compactum. The union of a finite family of pairwise disjoint connected 
elementary compacta is an elementary compactum. 

4.8.6. REMARK. The boundary 8F of an elementary compact urn F com-
prises finitely many disjoint smooth loops. Furthermore, the embedding of F into 
the (oriented) plane R2 induces on F the structure of an (oriented) manifold with 
(oriented) boundary 8F. Observe also that, by 4.8.3, it makes sense to specify the 
positive orientation of a smooth loop. This is done by indicating the orientation 
induced on the boundary of the compact set surrounded by the loop. 

4.8.7. If K is a compact subset of the plane and G is a nonempty open set 
that includes K then there is a nonempty elementary compactum F such that 

K C int Fe F c G. <It> 

4.8.8. DEFINITION. Every set F appearing in 4.8.7 is referred to as a rough 
draft for the pair (K, G) or an oriented envelope of Kin G. 
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Exercises 
4.1. Give examples of metric spaces. Find methods for producing new metric spaces. 
4.2. Which filter on X2 coincides with some metric uniformity on X? 
4.3. Let S be the space of measurable functions on [0, 1) endowed with the metric 

1 

d( )._/ I/(t)-g(t)1 dt 
I, g.- 1 + I/(t) - g(t)1 (I, g E S) 

o 

with some natural identification implied (specify it!). Find the meaning of convergence in the 
space. 

4.4. Given a, (3 E WN , put 

dCa, (3):= 1/ min {k E W : ak :f. (3kl· 

Check that d is a metric and the space WN is homeomorphic with the set of irrational numbers. 
4.5. Is it possible to metrize pointwise convergence in the sequence space? In the func-

tion space IF[O, 1) ? 
4.6. How to introduce a reasonable metric into the countable product of metric spaces? 

Into an arbitrary product of metric spaces? 
4.7. Describe the function classes distinguishable by erroneous definitions of continuity 

and uniform continuity. 
4.8. Given nonempty compact subsets A and B of the spaces ]W.N, define 

dCA, B):= (sup inf Ix - YI) V (sup inf Ix - YI) . 
xEA yEB yEB xEA 

Show that d is a metric. The metric is called the Hausdorff metric. What is the meaning 
of convergence in this metric? 

4.9. Prove that nonempty compact convex subsets of a compact convex set in ]W.N con-
stitute a compact set with respect to the Hausdorff metric. How does this claim relate to the 
Ascoli-Arzela Theorem? 

4.10. Prove that each lower semicontinuous function on ]W.N is the upper envelope 
of some family of continuous functions. 

4.11. Explicate the interplay between continuous and closed mappings (in the product 
topology) of metric spaces. 

4.12. Find out when a continuous mapping of a metric space into a complete metric 
spaces is extendible onto a completion of the initial space. 

4.13. Describe compact sets in the product of metric spaces. 
4.14. Let (Y, d) be a complete metric spaces. A mapping F : Y --+ Y is called expanding 

whenever d(F(x), F(y» ~ (3d(x, y) for some (3 > 1 and all x, y E Y. Assume that an expanding 
mapping F : Y --+ Y acts onto Y. Prove that F is one-to-one and possesses a sole fixed point. 

4.15. Prove that no compact set can be mapped isometrically onto a proper part of it. 
4.16. Show normality of an arbitrary metric space (see 9.3.11). 
4.17. Under what conditions a countable subset of a complete metric spaces is nonmea-

ger? 
4.18. Is it possible to characterize uniform continuity in terms of convergent sequences? 

4.19. In which metric spaces does each continuous real-valued function attain the supre-
mum and infimum of its range? When is it bounded? 



Chapter 5 
Multinormed and Banach Spaces 

5.1. Seminorms and Multinorms 
5.1.1. Let X be a vector space over a basic field IF and let p : X -+ lR: be 

a seminorm. Then 
(1) dom p is a subspace of Xj 
(2) p(x) 20 for all x E Xj 
(3) the kernel ker p:= {p = O} is a subspace in Xj 

o 
(4) the sets Bp:= {p < I} and Bp:= {p ~ I} are absolutely conveXj 

moreover, p is the Minkowski functional of every set B such that 
o 

o 
(5) X = dom p if and only if B p is absorbing. 

<I If Xl, X2 E dom p and aI, a2 ElF then by 3.7.6 

Hence, (1) holds. Suppose to the contrary that (2) is falsej i.e., p(x) < 0 for some 
X EX. Observe that 0 ~ p( x) + p( -x) < p( -x) = p( x) < 0, a contradiction. The 
claim of (3) is immediate from (2) and the subadditivity of p. The validity of (4) 
and (5) has been examined in part (cf. 3.8.8). What was left unproven follows 
from the Gauge Theorem. t> 

5.1.2. Ifp, q: X -+ JR. are twoseminorms then theinequalityp::; q (in (JR.)X) 
holds if and only if Bp J B q. 

<I '*: Evidently, {q ::; I} C {p ::; I}. 
'*=: In view of 5.1.1 (4), observe that p = PBp and q = PBq. Take tl, t2 E JR 

such that tl < t2. If tl < 0 then {q ~ ttl = 0, and so {q ::; ttl C {p ~ t2}. 
If tl 20 then tlBq C tlBp C t2Bp. Thus, by 3.8.3, p ::; q. t> 

5.1.3. Let X and Y be vector spaces, let T C X x Y be a linear correspond-
ence, and let p : Y -+ JR. be a seminorm. If PT( x ) : = inf p 0 T( x) for x E X then 
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PT : X -+ R· is a seminorm and the set BT := T-l(Bp) is absolutely convex. 
In addition, PT = PBT. 

<l Given Xl, X2 E X and al, a2 E Jr, infer that 

::::; inf p(alT(xl) + a2T(x2» ::::; inf(!al!p(T(xt» + !a2!p(T(X2») 

= !al!PT(xl) + !a2!PT(x2); 

i.e., PT is a seminorm. 
The absolute convexity of BT is a consequence of 5.1.1 (4) and 3.1.8. If x E BT 

then (x, y) E T for some y E Bp. Hence, PT(X) ::::; p(y) ::::; 1; that is, BT C BPT . 
o 

If in turn x E BPT then PT(X) = inf{p(y): (x, y) E T} < 1. Thus, there is some 
o 

y E T(x) such that p(y) < 1. Therefore, x E T-l(Bp) C T-l(Bp) = BT. Finally, 
o 
BpT C BT C BpT . Referring to 5.1.1 (4), conclude that PBT = PT· I> 

5.1.4. DEFINITION. The seminorm PT, constructed in 5.1.3, is the inver8e 
image or preimage of P under T. 

5.1.5. DEFINITION. Let P : X -+ R be a seminorm (by 3.4.3, this implies that 
dom P = X). A pair (X, p) is referred to as a 8eminormed 8pace. It is convenient 
to take the liberty of calling X itself a seminormed space. 

5.1.6. DEFINITION. A multinorm on X is a nonempty set (a subset of RX) 
of everywhere-defined seminorms. Such a multinorm is denoted by 9J1x or simply 
by 9J1, if the underlying vector space is clear from the context. A pair (X, 9J1x), 
as well as X itself, is called a multinormed 8pace. 

5.1.7. A set 9J1 in (R·)X is a multinorm if and only if (X, p) is a seminormed 
space for every P E 9J1. <ll> 

5.1.8. DEFINITION. A multinorm 9J1x is a Hau8dorff or 8eparated multinorm 
whenever for all x E X, x -:j; 0, there is a semi norm P E 9J1x such that p( x) -:j; O. 
In this case X is called a H aU8dorff or 8eparated multinormed 8pace. 

5.1.9. DEFINITION. A norm is a Hausdorff multinorm presenting a singleton. 
The sole element of a norm on a vector space X is also referred to as the norm 
on X and is denoted by II . II or (rarely) by II . II x or even II . ! X II if it is necessary 
to indicate the space X. A pair (X, !!. II) is called a normed 8pace; as a rule, the 
same term applies to X. 

5.1.10. EXAMPLES. 
(1) A seminormed space (X, p) can be treated as a multinormed space 

(X, {p}). The same relates to a normed space. 
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(2) If mt is the set of all (everywhere-defined) seminorms on a space X 
then mt is a Hausdorff multinorm called the finest multinorm on X. 

(3) Let (Y, 91) be a multinormed space, and let T C X x Y be a linear 
correspondence such that dom T = X. By 3.4.10 and 5.1.1 (5), for every P in 91 the 
seminorm PT is defined everywhere, and hence mt:= {PT: P E 1J1} is a multinorm 
on X. The multinorm 91 is called the inverse image or preimage of 91 under 
the correspondence T and is (sometimes) denoted by IJ1T. Given T E 2'(X, Y), 
set mt:= {p 0 T: P E 1J1} and use the natural notation 91 0 T := mt. Observe 
in particular the case in which X is a subspace Yo of Y and T is the identical 
embedding L : Yo -+ Y. At this juncture Yo is treated as a multinormed space with 
multinorm 91 0 L. Moreover, the abuse of the phrase "91 is a multinorm on Yo" is 
very convenient. 

(4) Each basic field IF is endowed, as is well known, with the standard 
norm I . I : IF -+ R, the modulus of a scalar. Consider a vector space X and 
f E X#. Since f : X -+ IF, it is possible to define the inverse image of the norm 
on IF as pJ{ x):= If( x) I (x E X). If .0£ is some subspace of X# then the multinorm 
a(X, .0£):= {PI: f E .o£} is the weak multinorm on X induced by .0£. 

(5) Let (X, p) be a seminormed space. Assume further that Xo is a sub-
space of X and c.p : X -+ XI Xo is the coset mapping. The linear correspondence 
c.p-l is defined on the whole of XI Xo. Hence, the semi norm P",-l appears, called the 
quotient seminorm of P by Xo and denoted by Px/xo' The space (XIXo, px/xo ) 
is called the quotient space of (X, p) by Xo. The definition of quotient space for 
an arbitrary multinormed space requires some subtlety and is introduced in 5.3.11. 

(6) Let X be a vector space and let mt C (R')X be a set of semi norms 
on X. In this case mt can be treated as a multinorm on the space Xo := n{ dom P : 
P E mt}. More precisely, thinking of the multinormed space (Xo, {P. : P E mt}), 
where L is the identical embedding of Xo into X, we say: "mt is a multinorm," or 
"Consider the (multinormed) space specified by mt." The next example is typical: 
The family of semi norms 

{ pO/,p(f):= sup IxO/a P f(x)l: a and f3 are mUlti-indices} 
",ERN 

specifies the (multinormed) space of infinitely differentiable functions on RN de-
creasing rapidly at infinity (such functions are often called tempered, cf. 10.11.6). 

(7) Let (X, 11·11) and (Y, 11·11) be normed spaces (over the same ground 
field IF). Given T E 2'(X, Y), consider the operator norm of T, i.e. the quantity 

IITxll 
IITII:= sup{IITxll: x E X, IIxll :s:; I} = :~~ Txf' 

(From now on, in analogous situations we presume 0 10 := 0.) 
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It is easily seen that II . II : £l(X, Y) -+ R" is a seminorm. Indeed, putting 
Bx:= {1I'lIx ~ I} for TI , T2 E £l(X, Y) and aI, a2 ElF, deduce that 

IlaITI + a2T211 = sup 1I·II<>lTl+<>2T2(Bx) 
= sup 11·11((aITI + a2T2)(Bx)) ~ sup IlaITI(Bx) + a2T2(Bx)11 

~ laII sup 11·IIT1 (Bx) + la21 sup 1I·IIT2(Bx) = laII IITIII + la21 IIT211· 

The subspace B(X, Y), the effective domain of definition of the above semi-
norm, is the space 01 bounded operators; and an element of B(X, Y) is a bounded 
operator. Observe that a shorter term "operator" customarily implies a bounded 
operator. It is clear that B(X, Y) is a normed space (under the operator norm). 
Note also that Tin £l(X, Y) is bounded if and only if T maintains the normative 
inequality; i.e., there is a strictly positive number K such that 

IITxlly ~ K Ilxllx (x EX). 

Moreover, IITII is the greatest lower bound of the set of K s appearing in the nor-
mative inequality. <ll> 

(8) Let X be a vector space over IF and let 11·11 be a norm on X. Assume 
further that X':= B(X, IF) is the (normed) dual of X, i.e. the space of bounded 
functionals Is with the dual norm 

I/(x)1 
IIIII = sup{l/(x)l: Ilxll ~ I} = :~~ W' 

Consider X":= (X')':= B(X', IF), the second dual of X. Given x E X and 
f E X', put x" := t(x) : f f-+ f(x). Undoubtedly, t(x) E (X')# = £l(X', IF). 
In addition, 

Ilx"ll = Ilt(x)11 = sup{lt(x)(f)I: 1I/IIxI ~ I} 
= sup{lf(x)l: (Vx EX) If(x)1 ~ Ilxll x } = sup{lf(x)l: f E 181(11 '1Ix)} = Ilxll x . 

The final equality follows for instance from Theorem 3.6.5 and Lemma 3.7.9. 
Thus, t( x) E X" for every x in X. It is plain that the operator t : X -+ X", 
defined as t : x f-+ t(x), is linear and bounded; moreover, t is a monomorphism and 
IltX11 = Ilxll for all x EX. The operator t is referred to as the canonical embedding 
of X into the second dual or more suggestively the double prime mapping. As 
a rule, it is convenient to treat x and x":= tX as the same element; i.e., to consider 
X as a subspace of X". A normed space X is reflexive if X and X" coincide (under 
the indicated embedding!). Reflexive spaces possess many advantages. Evidently, 
not all spaces are reflexive. Unfortunately, such is C([D, 1], IF) which is irreflexive 
(the term "nonreflexive" is also is common parlance). <ll> 
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5.1.11. REMARK. The constructions, carried out in 5.1.10 (8), show some 
symmetry or duality between X and X'. In this regard, the notation (x, f):= 
(x If):= f(x) symbolizes the action of x E X on f E X, (or the action of f on x). 
To achieve and ensure the utmost conformity, it is a common practice to denote 
elements of X' by symbols like x'; for instance, (x I x') = (x, x') = x'(x). 

5.2. The Uniformity and Topology of a Multinormed 
Space 

5.2.1. Let (X, p) be a seminormed space. Given Xl, x2 E X, put dp(XI' X2) 
:= P(XI - X2)' Then 

(1) dp (X2) c ~+ and {d ~ O} J Ix; 
(2) {dp ::; t} = {dp ~ t}-l and {dp ~ t} = t{dp ~ I} (t E 1R+ \ 0); 
(3) {dp ~ td a {dp ~ t2} c {dp ~ tl + t2} (tI, t2 E 1R+); 
(4) {dp ~ td n {dp ~ tz} J {dp ~ tl 1\ t2} (tl' t2 E 1R+); 
(5) P is a norm {::} dp is a metric. <ll> 

5.2.2. DEFINITION. The uniformity of a seminormed space (X, p) is the filter 
o//p:= fil { {dp ~ t}: t E 1R+ \ OJ. 

5.2.3. IfO//p is the uniformity of a seminormed space (X, p) then 
(1) o//p C fil {Ix}; 
(2) U E o//p =} U- l E o//p; 
(3) (V U E o//p) (3 V E o//p) Va V C U. <ll> 

5.2.4. DEFINITION. Let (X, Wl) be a multinormed space. The filter all := 
sup{o//p : pErot} is called the uniformity of X (the other designations are 
o//!m, O//X, etc.). (By virtue of 5.2.3 (1) and 1.3.13, the definition is sound.) 

5.2.5. If (X, Wl) is a multinormed space and all is the uniformity of X then 
(1) all C fil {Ix}; 
(2) U E all =} U- l E all; 
(3) (VU E all) (3V E all) Va V C U. 

<l Examine (3). Given U E all, by 1.2.18 and 1.3.8 there are semi norms 
PI,'" ,Pn E Wl such that U = o//{Pl, ... ,Pn} = o//Pl V ... V o//pn' Using 1.3.13, find 
sets Uk E o//Pk satisfying U J UI n ... n Un· Applying 5.2.3 (3), choose Vk E o//Pk 
so as to have Vk 0 Vk C Uk. It is clear that 

(VI n ... n Vn) a (VI n ... n Vn) C VI 0 VI n ... n Vn a Vn 
cUln ... nun . 

Moreover, VI n ... n Vn E o//Pl V ... V o//pn C all. I> 

5.2.6. A multinorm rot on X is separated if and only if so is the uniformity 
o//!m; i.e., n{v: V E o//ood = Ix. 
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<I =>: Let (x, y) ¢ Ix; i.e., x i= y. Then p(x - y) > 0 for some semi norm p 
in rot Hence, (x, y) ¢ {dp :::; l/2p(x - y)}. But the last set is included in %'p, 
and thus in %'!JJl. Consequently, X 2 \ Ix C X 2 \ n{v: V E %'rod. Furthermore, 
Ix c n{v: V E %'!JJl}. 

'¢::: If p( x) = 0 for all p E VR then (x, 0) E V for every V in %'!JJl. Hence, 
(x, 0) E Ix by hypothesis. Therefore, x = O. t> 

5.2.7. Given a space X witb uniformity %'x, define 

T(X):= {U(x): U E %'x} (x EX). 

Tben T( x) is a filter for every x EX. Moreover, 
(1) T(X) C fil {x}; 
(2) (VU E T(X)) (3V E T(X) & V c U) (Vy E V) V E T(y), 

<I All is evident (cf. 4.1.8). t> 

5.2.8. DEFINITION. The mapping T : x 1-+ T( x) is called the topology of 
a multinormed space (X, VR); a member of T(X) is a neighborhood about x. The 
designation for the topology can be more detailed: TX, T!JJl, T( %'!JJl), etc. 

5.2.9. Tbe following presentation bolds: 

TX(X)=SUp{Tp(X): pEVRx} 

for all x EX. <It> 

5.2.10. If X is a multinormed space tben 

U E T(X) {=} U - x E TX(O) 

for all x EX. 
<I By 5.2.9 and 1.3.13, it suffices to consider a seminormed space (X, p). 

In this case for every c: > 0 the equality holds: {dp :::; c:}(x) = c:Bp + x, where 
Bp:= {p:::; I}. Indeed, if p(y-x):::; c: then y = c:(c:-l(y-x»+x and c:-l(y-x) E 
Bp. In turn, if y E cBp + x, then p(y - x) = inf{t > 0: y - x E tBp} :::; c. t> 

5.2.11. REMARK. The proof of 5.2.10 demonstrates that in a seminormed 
space (X, p) a key role is performed by the ball with radius 1 and centered at zero. 
The ball bears the name of the unit ball of X and is denoted by B p , B x, etc. 

5.2.12. A multinorm VRx is separated if and only if so is tbe topology TX; 
i.e., given distinct Xl and X2 in X, tbere are neigbborboods UI in TX(Xt} and U2 
in TX(X2) sucb tbat UI n U2 = 0. 
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<l =>: Let Xl i- X2 and let c:= p(Xl-X2) > 0 for P E 9J1x. Put Ul := Xl +e hBp 
and U2 := X2 + e h Bp. By 5.2.10, Uk E 7X(Xk). Verify that Ul n U2 = 0. 
Indeed, if y E Ul n U2 then P(XI - y) ::; e hand p(X2 - y) ::; e h. Therefore, 
P(XI - X2) ::; 2 h C < C = p(Xl - X2), which is impossible. 

{=:: If (Xl, X2) E n{v: V E %'x} then X2 E n{V(xt): V E %'x}. Thus, 
Xl = X2 and, consequently, 9J1x is separated by 5.2.6. I> 

5.2.13. REMARK. The presence of a uniformity and the corresponding topol-
ogy in a multinormed space readily justifies using uniform and topological concepts 
such as uniform continuity, completeness, continuity, openness, closure, etc. 

5.2.14. Let (X, p) be a seminormed space and let Xo be a subspace of X. 
The quotient space (X/Xo, px/xo) is separated if and only if Xo is closed. 

<l =>: If X rf. Xo then cp(x) i- 0 where, as usual, cp : X -+ X/Xo is the coset 
mapping. By hypothesis, 0 i- c:= px/xo(cp(x)) = p",,-l(cp(X)) = inf{p(x + xo) : 
Xo E X o}. Hence, the ball X + e h Bp does not meet Xo and X is an exterior point 
of Xo. Thus, Xo is closed. 

{=:: Suppose that x is a nonzero point of X/Xo and x = cp(x) for some X 
in X. If px/xo(x) = 0 then 0 = inf{p(x - xo): Xo E X o}. In other words, there 
is a sequence (x n ) in Xo converging to x. Consequently, by 4.1.19, X E Xo and 
x = 0, a contradiction. I> 

5.2.15. The closure of a r-set is a r-set. 
<l Given U E (r), suppose that U i- 0 (otherwise there is nothing worthy 

of proving). By 4.1.9, for x, y E cl U there are nets (x-y) and (y-y) in U such that 
X-y -+ X and y-y -+ y. If (a, (3) E r then ax-y + (3y-y E U. Appealing to 4.1.19 
again, infer ax + (3y = lime ax-y + (3y-y) E cl U. I> 

5.3. Comparison Between Topologies 
5.3.1. DEFINITION. If 9J1 and 1)1 are two multinorms on a vector space then 

9J1 is said to be finer or stronger than 1)1 (in symbols, 9J1 ?- 1)1) if %'!)Jt ::J %'<)1. 
If 9J1 ?- 1)1 and 1)1 ?- 9J1 simultaneously, then 9J1 and 1)1 are said to be equivalent 
(in symbols, 9J1 rv 1)1). 

5.3.2. Multinorm Comparison Theorem. For multinorms 9J1 and IJ1 on 
a vector space X the following statements are equivalent: 

(1) 9J1?- I)1j 
(2) the inclusion 7!)Jt (x) ::J 7<)1 (x) holds for all X E X j 

(3) 7!)Jt(0)::J 7<)1(0); 
(4) (V q E 1)1) (3pl,'" ,Pn E 9J1) (3cl, ... ,cn E R+ \ 0) 

Bq ::J Cl BPi n ... n cnBPn j 
(5) (Vq E 1)1) (3pl,'" ,Pn E 9J1) (3t > 0) q::; t(Pl V ... V Pn) (with 

respect to the order of the K -space jRX). 



5.3. Comparison Between Topologies 

<l The implications (1) =} (2) =} (3) =} (4) are evident. 
(4) =} (5): Applying the Gauge Theorem (cf. 5.1.2), infer that 

q ::; PBp1/"l V ... V PBpn/<n = C / elPI) V ... V C / enPn) 

::; C/el)V ... VC/en)P1 V ... Vpn. 
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(5) =} (1): It is sufficient to check that ml )- {q} for a seminorm q in 91. 
If V E ~q then V J {dq ::; c} for some c > O. By hypothesis 

with suitable PI, ... ,Pn E ml and t > O. The right side of this inclusion is an ele-
ment of ~Pl V ... V ~Pn = ~{Pl'''' ,Pn} C ~!m. Hence, V is also a member of ~!m. t> 

5.3.3. DEFINITION. Let p, q : X -+ lR. be two seminorms on X. Say that P 
is finer or stronger than q and write P )- q whenever {p} )- {q}. The equivalence 
of seminorms P '" q is understood in a routine fashion. 

5.3.4. p)- q {:} (3 t > 0) q ::; tp {:} (3 t 2: 0) Bq J tBp; 

<l Everything follows from 5.3.2 and 5.1.2. t> 

5.3.5. Riesz Theorem. If p, q : IF N -+ lR. are seminorms on the nnite-dimen-
sional space IF N then P )- q {:} ker P C ker q. <It> 

5.3.6. Corollary. All norms in nnite dimensions are equivalent. <It> 

5.3.7. Let (X, ml) and (Y, 1)1) be multinormed spaces, and let T be a linear 
operator, a member of 2'(X, Y). The following statements are equivalent: 

(1) 1)1 0 T -( ml; 
(2) TX(~x) J ~y and TX-I(~y) C ~x; 
(3) x EX=} T(TX(X)) J Ty(Tx); 
(4) T(TX(O)) J Ty(O) and TX(O) J T-I(Ty(O)); 
( 5 ) (V q E 1)1) (3 PI , ... ,Pn E ml) q 0 T -( PI V ... V Pn. <It> 

5.3.8. Let (X, 1I·!!x) and (Y, II· lIy) be normed spaces and let T be a linear 
operator, a member of 2'(X, Y). The following statements are equivalent: 

(1) T is bounded (that is, T E B(X, Y)); 
(2) II· IIx )- II . lIy 0 T; 
(3) T is uniformly continuous; 
(4) T is continuous; 
(5) T is continuous at zero. 

<l Each of the claims is a particular case of 5.3.7. t> 
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5.3.9. REMARK. The message of 5.3.7 shows that it is sometimes convenient 
to substitute for 9R a multinorm equivalent to 9R but filtered upward (with respect 
to the relation 2: or >-). For example, we may take the multi norm 9R:= {sup9Ro : 
9Ro is a nonempty finite subset of 9R}. Observe that unfiltered multinorms should 
be treated with due precaution. 

5.3.10. COUNTEREXAMPLE. Let X:= IFs; and let Xo comprise all constant 
functions; i.e., Xo := IF1, where 1 : e t--+ 1 (e E 3). Set 9R:= {pe: e E 3}, 
with pe(x):= Ix(OI (x E IF S ). It is clear that 9R is a multinorm on X. Now let 
cp : X ---t XIXo stand for the coset mapping. Undoubtedly, 9R",,-1 consists of the 
sole element, zero. At the same time 9R",,-1 is separated. 

5.3.11. DEFINITION. Let (X, 9R) be a multinormed space and let Xo be 
a subspace of X. The multinorm 9R",,-1, with cp : X ---t XI XO the coset mapping, 
is referred to as the quotient multinorm and is denoted by 9Rx /xo ' The space 
(XIXo, 9Rx /xo ) is called the quotient space of X by Xo. 

5.3.12. The quotient space XIXo is separated if and only if Xo is closed. <It> 

5.4. Metrizable and N ormable Spaces 
5.4.1. DEFINITION. A multinormed space (X, 9R) is metrizable if there is 

a metric d on X such that %'!lJt = %'d. Say that X is normable if there is a norm 
on X equivalent to the initial multinorm 9R. Say that X is countably normable 
if there is a countable multinorm on X equivalent to the initial. 

5.4.2. Metrizability Criterion. A multinormed space is metrizable if and 
only if it is countably normable and separated. 

<I '*: Let %'!lJt = %'d. Passing if necessary to the multinorm 9R, assume that 
for every n in N it is possible to find a seminorm Pn in 9R and tn > 0 such that 
{d :$ lin} :> {dpn :$ tn}. Put 1)1:= {Pn: n EN}. Clearly, 9R >- 1)1. If V E %'!lJt 
then V :> {d :$ lin} for some n E N by the definition of metric uniformity. Hence, 
by construction, V E %'Pn C %'!lJt, i.e., 9R -< 1)1. Thus, 9R rv 1)1. The uniformity %'d 
is separated, as indicated in 4.1. 7. Applying 5.2.6, observe that %'!lJt and %'<Jl are 
both separated. 

~: Passing if necessary to an equivalent multinorm, suppose that X, the space 
in question, is count ably normed and separated; that is, 9R:= {Pn: n E N} and 
9R is a Hausdorff multi norm on X. Given Xl, X2 EX, define 

(the series on the right side of the above formula is dominated by the convergent 
series I:~l 1 12k, and so d is defined soundly). 
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Check that d is a metric. It suffices to validate the triangle inequality. For 
a start, put a(t):= t(l + t)-l (t E 1R+). It is evident that a'(t) = (1 + t)-2 > o. 
Therefore, a increases. Furthermore, a is subadditive: 

a(tl + t2) = (h + t2)(1 + tl + t2)-1 

= h(l + h + t2)-1 + t2 (1 + tl + t2)-1 ::; tl(l + td- l + t 2 (l + t2)-1 

= a(td + a(t2). 

Thus, given x, y, z E X, infer that 

00 1 00 1 
d(x, y) = L 2ka(Pk(X - V)) ::; L 2ka(Pk(X - z) + Pk(Z - V)) 

k=l k=l 
00 1 ::; L 2k (a(Pk(x - z)) + a(Pk(z - V))) = d(x, z) + d(z, V)· 

k=l 

It remains to established that %'d and %'m coincide. 
First, show that %'d C %'m. Take a cylinder, say, {d ::; c}; and let (x, y) E 

{dp1 ::; t} n ... n {dpn ::; t}. Since a is an increasing function, deduce that 

d( ~ 1 Pk(X-y) ~ 1 Pk(x-y) 
x, y) = ~ 2k 1 + Pk(X - y) + k~l 2k -l..:..+-p-'-k...,..(x----'--'--y...,..) 

t n l 00 1 t 1 
::; 1 + t L 2k + L 2k ::; 1 + t + 2n . 

k=l k=n+l 
Since t(l + t)-l + 2-n tends to zero as n -t 00 and t -t 0, for appropriate t and n 
observe that (x, y) E {d ::; c}. Hence, {d ::; c} E %'m, which is required. 

Now establish that 'Wm C 'Wd • To demonstrate the inclusion, given Pn E 9J1 
and t > 0, find c > 0 such that {dpn ::; t} J {d ::; c}. For this purpose, take 

1 t c·----.- 2n 1 + t' 
which suffices, since from the relations 

holding for all x, y E X it follows that Pn (x - y) ::; t. t> 
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5.4.3. DEFINITION. A subset V of a multinormed space (X, !.m) is a bounded 
set in X if sup p(V) < +00 for all p E !.m which means that the set p(V) is bounded 
above in R for every semi norm p in 9R. 

5.4.4. For a set V in (X, !.m) the following statements are equivalent: 
(1) V is bounded; 
(2) for every sequence (Xn)nEN in V and every sequence (An)nEN in IF 

such that An -t 0, the sequence (AnXn) vanishes: AnXn -t 0 
(i.e., P(AnXn) -t 0 for each seminorm p in 9R); 

(3) every neighborhood of zero absorbs V. 

<I (1) =? (2): P(AnXn) S IAnlp(xn) S IAnlsupp(V) -t O. 
(2) =? (3): Let U E TX(O) and suppose that U fails to absorb V. From 

Definition 3.4.9, it follows that (V n E N) (3 Xn E V) Xn ¢ nU. Thus, 1/ n Xn ¢ U 
for all n E N; i.e., e / n xn) does not converge to zero. 

(3) =? (1): Given p E !.m, find n E N satisfying V C nBp • Obviously, 
sup p(V) S sup p( nBp) = n < +00. I> 

5.4.5. Kolrnogorov Norrnability Criterion. A multinormed space is 
normable if and only if it is separated and has a bounded neighborhood about 
zero. 

<I =?: It is clear. 
{=: Let V be a bounded neighborhood of zero. Without loss of generality, 

it may be assumed that V = Bp for some seminorm p in the given multinorm !.m. 
Undoubtedly, p -<!.m. Now if U E T!JJl(O) then nU ::l V for some n E N. Hence, 
U E Tp(O). Using Theorem 5.3.2, observe that p >-!.m. Thus, p rv !.m; and, 
therefore, p is also separated by 5.2.12. This means that p is a norm. I> 

5.4.6. REMARK. Incidentally, 5.4.5 shows that the presence of a bounded 
neighborhood of zero in a multinormed space X amounts to the "seminormability" 
ofX. 

5.5. Banach Spaces 

5.5.1. DEFINITION. A Banach space is a complete normed space. 
5.5.2. REMARK. The concept of Frechet space, complete metrizable multi-

normed space, serves as a natural abstraction of Banach space. It may be shown 
that the class of Fn!chet spaces is the least among those containing all Banach 
spaces and closed under the taking of countable products. <II> 

5.5.3. A normed space X is a Banach space if and only if every norm conver-
gent (= absolutely convergent) series in X converges. 
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<I ::::}: Let 2::::11Ixnll < +00 for some (countable) sequence (xn). Then the 
sequence of partial sums Sn := Xl + ... + Xn is fundamental because 

m m 

for m > k. 
~: Given a fundamental sequence (x n), choose an increasing sequence (nk)kEN 

such that IIxn - xmll::; 2-k as n, m 2: nk. Then the series xn1 +(xn2 -xnJ+(xna-
x n2 ) + ... converges in norm to some x; i.e., xnk -+ x. Observe simultaneously 
that Xn -+ x. t> 

5.5.4. If X is a Banach space and Xo is a closed subspace of X then the 
quotient space XI XO is also a Banach space. 

<I Let r.p : X -+ !Z:= XIXo be the coset mapping. Undoubtedly, for every 
x E !Z there is some x E r.p-1(x) such that 211xll 2: IIxll 2: IIxli. Hence, given 
2:::'=1 x n, a norm convergent series in !Z, it is possible to choose Xn E r.p-1(xn) 
so that the norm series 2:::'=1 IIxnll be convergent. According to 5.5.3, the sum 
X:= 2:::'=1 xn is available. Ifx:= r.p(x) then 

n n 

x- LXk ::; X - LXk -+ o. 
k=l k=l 

Appealing to 5.5.3 again, conclude that !Z is a Banach space. t> 

5.5.5. REMARK. The claim of 5.5.3 may be naturally translated to semi-
normed spaces. In particular, if (X, p) is a complete seminormed space then the 
quotient space X / ker p is a Banach space. <II> 

5.5.6. Theorem. If X and Y are normed spaces and X i= 0 then B(X, Y), 
the space of bounded operators, is a Banach space if and only if so is Y. 

<I ~: Consider a Cauchy sequence (Tn) in B(X, Y). By the normative inequal-
ity, IITmx - TkxlI ::; IITm - Tkll IIxll -+ 0 for all x E X; i.e., (Tnx) is fundamental 
in Y. Thus, there is a limit Tx:= limTnx. Plainly, the so-defined operator Tis 
linear. By virtue of the estimate "ITmil - IITk II I ::; IITm - Tkll the sequence (IITnll) is 
fundamental in IR and, hence, bounded; that is, SUPn IITnil < +00. Therefore, pass-
ing to the limit in IITnxlI::; supn II Tn II IIxII, obtain IITII < +00. It remains to check 
that IITn - Til -+ O. Given € > 0, choose a number no such that IITm - Tn II ::; € h 
as m, n 2: no. Further, for x E Bx find m 2: no satisfying IITmx - TxII ::; € h. 
Then IITnx - TxII ::; IITnx - TmxlI + IITmx - TxII ::; IITn - Tmll + IITmx - TxII ::; € 

as n 2: no. In other words, IITn - Til = sup{llTnx - TxII: x E Bx} ::; € for all 
sufficiently large n. 
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'*: Let (Yn) be a Cauchy sequence in Y. By hypothesis, there is a norm-one 
element x in X; i.e., x has norm 1: Ilxll = 1. Applying 3.5.6 and 3.5.2 (1), find 
an element x' E 181(11 . II) satisfying (x, x') = Ilxll = 1. Obviously, the rank-
one operator (with range of dimension 1) Tn := x, 0 Yn : x 1-+ (x, x')Yn belongs 
to B(X, Y), since IITnl1 = Ilx/IIIIYnll· Hence, IITm - Tkll = Ilx' 0 (Ym - Yk)ll= 
Ilx/IIIlYm - Ykll = IIYm - Ykll, i.e., (Tn) is fundamental in B(X, Y). Assign T:= 
lim Tn. Then IITx - Tnxll = IITx - Ynll ::; liT - Tnllllxll -+ O. In other words, Tx 
is the limit of (Yn) in Y. I> 

5.5.7. Corollary. The dual of a normed space (furnished with the dual 
norm) is a Banach space. <11> 

5.5.8. Corollary. Let X be a normed space; and let L: X -+ X", the double 
prime mapping, be the canonical embedding of X into the second dual X". Then 
the closure cl L(X) is a completion of X. 

<1 By virtue of 5.5.7, X" is a Banach space. By 5.1.10 (8), L is an isometry 
from X into X". Appealing to 4.5.16 ends the proof. I> 

5.5.9. EXAMPLES. 
(1) "Abstract" examples: a basic field, a closed subspace of a Banach 

space, the product of Banach spaces, and 5.5.4-5.5.8. 
(2) Let Iff be a nonempty set. Given x E IF£, put IIxlloo:= sup Ix(Iff)I. The 

space 100 ( Iff) := loo( Iff, IF):= dom II . 1100 is called the space of bounded functions 
on Iff. The designations B( Iff) and B( Iff, IF) are also used. For Iff := N, it is 
customary to put m:= 100:= 100 ( Iff). 

(3) Let a set Iff be infinite, i.e. not finite, and let § stand for a filter on Iff. 
By definition, x E c (Iff, §) {::? (x E loo( Iff) and x( §) is a Cauchy filter on IF). 
In the case Iff:= Nand § is the finite complement filter (comprising all cofinite sets 
each of which is the complement of a finite subset) of N, the notation c:= c( Iff, §) 
is employed, and c is called the space of convergent sequences. In c( Iff, §) the 
subspace co(lff, §):= {x E c(lff, §): x(§) -+ O} is distinguished. If § is 
the finite complement filter then the shorter notation Co (Iff) is used and we speak 
of the space of functions vanishing at infinity. Given Iff:= N, write Co := co( Iff). 
The space Co is referred to as the space of vanishing sequences. It is worth keeping 
in mind that each of these spaces without further specification is endowed with 
the norm taken from the corresponding space 100 ( Iff, §). 

(4) Let S:= (Iff, X, 1) be a system with integration. This means that 
X is a vector sublattice of R£, with the lattice operations in X coincident with 
those in R£, and J : X -+ R is a (pre)integral; i.e., J E X! and J Xn 10 whenever 
Xn E X and xn(e) 10 for e E Iff. Moreover, let f E IF£ be a measurable mapping 
(with respect to S) (as usual, we may speak of almost everywhere finite and almost 
everywhere defined measurable functions). 

Denote ut;,(J):= (J IfIP)1 /p for p ;::: 1, where J is the corresponding Lebesgue 
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extension of the initial integral f. (The traditional liberty is taken of using the 
same symbol for the original and its successor.) 

An element of dom .Ai is an integrable or summable function. The integrabil-
ity of f E IF,c is equivalent to the integrability of its real part Re f and imaginary 
part 1m f, both members of lR.,c. For the sake of completeness, recall the definition 

N(g):= inf {sup J Xn : (xn) eX, Xn ::; Xn+l, (\:f e E 6") Ig(e)1 = li~ xn(e)} 

for an arbitrary g in IF,c. If IF = lR. then dom.Ai obviously presents the closure 
of X in the normed space (dom N, N). 

The Holder inequality is valid: 
.Ai (J g) ::; .%p (J).%pl (g), 

with p' the conjugate exponent of p, i.e. 1/ p + 1/ p' = 1 for p > l. 
<l This is a consequence of the Young inequality, xy - x P / p ::; ypl / p' for all 

x, y E lR+, applied to Ifl/.%p(J) and Igl/.%pl(g) when ./ij,(J) and ./ij,1(g) are both 
nonzero. If ./ij,(J)./ij,1 (g) = 0 then the Holder inequality is beyond a doubt. !> 

The set 2'p:= dom .%p is a vector space. 

<l If + glP ::; (If I + Igl)P ::; 2P(lfl V Igl)P = 2P(lf1 P V IgIP) :::; 2P(lf1 P + IgI P) !> 

The function .%p is a seminorm, satisfying the Minkowski inequality: 

./ij,(J + g) ::; ./ij,(J) + ./ij,(g). 
<l For p = 1, this is trivial. For p > 1 the Minkowski inequality follows from 

the presentation 

whose right side is the upper envelope of a family of seminorms. To prove the 
above presentation, using the Holder inequality, note that g:= If( /pl lies in 2'q 
when .%p(J) > 0; furthermore, .%p(J) = .Ai (Jg)/.%pl (g). Indeed, .Ai(Jg) = 
f Ifl P Ipl+l = .%p(J)P, because P / pI + 1 = P (1 - 1/ p) + 1 = p. Continue arguing 
to find .%pI (g)pl = f IgIP' = f IflP = .%p(J)P, and so .%pl(g) = .%p(J/lpl. Finally, 

P p I I p-Plpl p(l-ll I) .Ai(Jg)/.%pI(g) = .%p(J) /.%p(J) p = .%p(J) = .%p(J) p = .%p(J). !> 

The quotient space 2'p/ ker.%p, together with the corresponding quotient 
norm II . lip, is called the space of p-summable functions or Lp space with more 
complete designations Lp(S), Lp(6", X, j), etc. 

Finally, if a system with integration S arises from inspection of measurable 
step functions on a measure space (n, d, /l) then it is customary to write 
Lp(n, tzI, /l), Lp(n, /l) and even Lp(/l), with the unspecified parameters clear 
from the context. 
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Riesz-Fisher Completeness Theorem. Each Lp space is a Banach space. 
<l We sketch out the proof. Consider t:= L:~1 J¥;(/k), where /k E .2"p. Put 

an := L:~=1 /k and Sn:= L:~=1 Ifkl· It is seen that (sn) has positive entries and 
increases. The same is true of (s~). Furthermore, J s~ ::; t P < +00. Hence, 
by the Levy Monotone Convergence Theorem, for almost all e E g there exists 
a limit g(e):= lims~(e), with the resulting function g a member of .2"1. Putting 
h(e):= gl/p(e), observe that hE.2"p and sn(e) -----+ h(e) for almost all e E g. The 
inequalities lanl ::; Sn ::; h imply that for almost all e E g the series L:~1 fk(e) 
converges. For the sum fo( e) the estimate holds: Ifo( e)1 ::; h( e). Hence, it may 
be assumed that fo E .2"p. Appealing to the Lebesgue Dominated Convergence 

11 
Theorem, conclude that J¥;(an - fo) = (J Ian - fol P ) p -----+ O. Thus, in the 
seminormed space under consideration each seminorm convergent series converges. 
To complete the proof, apply 5.5.3-5.5.5. [> 

If S is the system of conventional summation on gj i.e., X:= L:eE£ lR is the 
direct sum of suitably many copies of the ground field lR and J x:= L:eE£ x( e), then 
Lp comprises all p-summable families. This space is denoted by lp( g). Further, 

IIxllp:= (L:eE£lx(e)IP)l/p. In the case g:= N the notation lp is used and lp is 
referred to as the space of p-summable sequences. 

(5) Define Loo as follows: Let X be an ordered vector space and let 
e E X+ be a positive element. The seminormpe associated with e is the Minkowski 
functional of the order interval [-e, e], i.e., 

Pe(x):= inf{t > 0: -te::; x::; tel. 

The effective domain of definition of Pe is the space of bounded elements (with 
respect to e)j the element e itself is referred to as the strong order-unit in Xe. 
An element of ker Pe is said to be nonarchimedean (with respect to e). The 
quotient space Xe/ ker Pe furnished with the corresponding quotient seminorm 
is called the normed space of bounded elements (generated by e in X). For ex-
ample, C(Q, lR), the space of continuous real-valued functions on a nonempty 
compact set Q, presents the normed space of bounded elements with respect 
to 1 := lQ : q t-t 1 (q E Q) (in itself). In lR£ the same element 1 generates 
the space 100 ( g). 

Given a system with integration S:= (g, X, J), assume that 1 is measurable 
and consider the space of functions acting from g into IF and satisfying 

.hoo(f):= inf{t > 0: If I ::; tI} < +00, 

where::; means "less almost everywhere than." This space is called the space 
of essentially bounded functions and is labelled with .2"00' To denote the quotient 
space .2"00/ ker .hoo and its norm the symbols Loo and II . 1100 are in use. 
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It is in common parlance to call the elements of Leo (like the elements of 2'eo) 
essentially bounded functions. The space Leo presents a Banach space. <ll> 

The space Leo, as well as the spaces C(Q, IF), lp(g), co(g), c, lp, and 
Lp (p ;::: 1), also bears the unifying title "classical Banach space." Nowadays 
a Lindenstrauss space which is a space whose dual is isometric to Ll (with respect 
to some system with integration) is also regarded as classical. It can be shown 
that a Banach space X is classical if and only if the dual X, is isomorphic to one 
of the Lp spaces with p ;::: l. 

(6) Consider a system with integration S:= (g, X, J) and let p ;::: l. 
Suppose that for every e in g there is a Banach space (Ye , II ·lIyJ. Given an arbi-
trary element! in I1eE&' Ye, define III!III : e 1-+ 11!(e)lly •. Put Np(f):= inf{JY;,(g) : 
9 E 2'p, 9 ;::: III!III}. It is clear that dom Np is a vector space equipped with the 
semi norm Np. The sum of the family in the sense of Lp or simply the p-sum 
of (Ye)eE&' (with respect to the system with integration S) is the quotient space 
dom Np/ker Np under the corresponding (quotient) norm 111·lllp ' 

The p-sum of a family of Banach spaces is a Banach space. 
<l If L:~l Np(/k) < +00 then the sequence (Sn:= L:~=l 111!klll) tends to some 

almost everywhere finite positive function 9 and Np(g) < +00. It follows that for 
almost all e E g the sequence (sn(e)) (i.e., the series L:~lllfk(e)IIYJ converges. 
By the completeness of Ye , the seriesaL.~l !k(e) converges to some sum !o(e) 
in Ye with II!o(e)lly. ~ gee) for almost every e E g. Therefore, it may be assumed 
that !o E dom Np. Finally, Np O=~=l!k - !o) ~ L:~n+l Np(fk) --+ O. I> 

In the case when g:= N with conventional summation, for the sum!D of a se-
quence of Banach spaces (Yn)nEN (in the sense of Lp) the following notation is 
often employed: 

with p the type of summation. An element fJ in !D presents a sequence (Yn)nEN 
such that Yn E Yn and 

In the case Ye:= X for all e E g, where X is some Banach space over IF, put §p:= 
dom Np and Fp:= §p/ ker Np. An element of the so-constructed space is a vector 
field or a X-valued function on g (having a p-summable norm). Undoubtedly, Fp 
is a Banach space. At the same time, if the initial system with integration contains 
a nonmeasurable set then extraordinary elements are plentiful in Fp (in particular, 
for the usual Lebesgue system with integration Fp f- Lp). In this connection the 
functions with finite range, assuming each value on a measurable set, are selected 
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in §p. Such a function, as well as the corresponding coset in Fp, is a simple, finite-
valued or step function. The closure in Fp of the set of simple functions is denoted 
by Lp (or more completely Lp(X), Lp(S, X), Lp(n, PI, Il), Lp(n, Il), etc.) and is 
the space of X-valued p-summable functions. Evidently, Lp(X) is a Banach space. 

It is in order to illustrate one of the advantages of these spaces for p = 1. First, 
notice that a simple function f can be written as a finite combination of charac-
teristic functions: 

f = L Xf-l(X)X, 
xEimf 

where f-l(x) is a measurable set as x E im f, with XE(e) 
XE(e) = 0 otherwise. Moreover, 

J III fill = J L IIXf-l(x)XII 
xEimf 

1 for e E E and 

= J L Xf-l(x) Ilxll = L Ilxll J Xf-l(X) < +00. 
xEim f xEimf 

Next, associate with each simple function f some element in X by the rule 

J f:= L J Xf-l(x)X. 
xEimf 

Straightforward calculation shows that the integral J defined on the subspace 
of simple functions is linear. Furthermore, it is bounded because 

= J L Ilxll Xf-l(X) = J Illflll· 
xEimf 

By virtue of 4.5.10 and 5.3.8, the operator J has a unique extension to an element 
of B(Ll(X), X). This element is denoted by the same symbol, f (or fg, etc.), and 
is referred to as the Bochner integral. 

(7) In the case of conventional summation, the usage of the scalar theory 
is preserved for the Bochner integral. Namely, the common parlance favours the 
term "sum of a family" rather than "integral of a summable function," and the 
symbols pertinent to summation are perfectly welcome. What is more important, 
infinite dimensions bring about significant complications. 
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Let (xn) be a family of elements of a Banach space. Its summability (in the 
sense of the Bochner integral) means the summability of the numeric family (lIx n 11), 
i.e. the norm convergence of (xn) as a series. Consequently, (xn) has at most 
count ably many nonzero elements and may thus be treated as a (countable) se-
quence. Moreover, 2:::'=lllxnll < +00; i.e. the series Xl + X2 + ... converges in 
norm. By 5.5.3, for the series sum x = 2::::"=1 Xn observe that x = limo 80, where 
80:= 2::nEO Xn is a partial sum and () ranges over the direction of all finite sub-
sets of N. In this case, the resulting x is sometimes called the unordered sum of 
(xn), whereas the sequence (xn) is called unconditionally or unorderly summable 
to x (in symbols, x = 2::nEN xn). Using these terms, observe that summability in 
norm implies unconditional summability (to the same sum). If dimX < +00 then 
the converse holds which is the Riemann Theorem on Series. The general case is 
explained by the following deep and profound assertion: 

Dvoretzky-Rogers Theorem. In an arbitrary infinite-dimensional Banach 
space X, for every sequence of positive numbers (t n ) such that 2::::"=1 t; < +00 
there is an unconditionally summable sequence of elements (xn) with Ilxnll = tn 
for all n E N. 

In this regard for a family of elements (Xe)eE6' of an arbitrary multinormed 
space (X, 9)1) the following terminology is accepted: Say that (Xe)eE6' is summable 
or unconditionally summable (to a sum x) and write x:= 2::eE6' Xe whenever x is 
the limit in (X, 9)1) of the corresponding net of partial sums 80, with () a finite 
subset of tf:; i.e., 80 -t X in (X, 9)1). If for every p there is a sum 2::eE,cP(Xe) 
then the family (Xe)eE6' is said to be multinorm summable (or, what is more exact, 
fundamentally summable, or even absolutely fundamental). 

In conclusion, consider a Banach space!D and T E B(X, !D). The operator T 
can be uniquely extended to an operator from L1(X) into L1 (!D) by putting Tf : 
e f-.-+ Tf(e) (e E tf:) for an arbitrary simple X-valued function f. Then, given 
f E L 1(X), observe that Tf E L 1 (!D) and f6' Tf = T Ie f. This fact is verbalized 
as follows: "The Bochner integral commutes with every bounded operator." <It> 

5.6. The Algebra of Bounded Operators 
5.6.1. Let X, Y, and Z be normed spaces. If T E 2'(X, Y) and S E 

2'(Y, Z) are linear operators then IISTII :::; IISIIIITII; i.e., the operator norm is 
submultiplicative. 

<I Given x E X and using the normative inequality twice, infer that 

IISTxl1 :::; IISII IITxll:::; IISII IITllllxll· t> 

5.6.2. REMARK. In algebra, in particular, (associative) algebras are studied. 
An algebra (over IF) is a vector space A (over IF) together with some associative 
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multiplication 0 : (a, b) 1--+ ab (a, b E A). This multiplication must be distributive 
with respect to addition (i.e., (A, +, 0) is an (associative) ring) and, moreover, the 
operation 0 must agree with scalar multiplication in the following sense: ,\( ab) = 
(,\a)b = a('\b) for all a, b E A and ,\ E IF. A displayed notation for an algebra is 
(A, IF, +, ., 0). However, just like on the other occasions it is customary to use 
the term "algebra" simply for A. 

5.6.3. DEFINITION. A normed algebra (over a ground field) is an associative 
algebra (over this field) together with a submultiplicative norm. A Banach algebra 
is a complete normed algebra. 

5.6.4. Let B(X) := B(X, X) be the space of bounded endomorphisms of 
a normed space X. The space B(X) with the operator norm and composition 
as multiplication presents a normed algebra. If X -=I 0 then B(X) has a neutral 
element (with respect to multiplication), the identity operator Ix; i.e., B(X) is 
an algebra with unity. Moreover, II Ix II = 1. The algebra B(X) is a Banach algebra 
if and only if X is a Banach space. 

<l If X = 0 then there is nothing left to proof. Given X -=I 0, apply 5.5.6. t> 

5.6.5. REMARK. It is usual to refer to B(X) as the algebra of bounded opera-
tors in X or even as the (bounded) endomorphism algebra of X. In connection with 
5.6.4, given ,\ E IF, it is convenient to retain the same symbol ,\ for '\Ix. (In par-
ticular, 1 = Io = O!) For X -=I 0 this procedure may be thought as identification 
of IF with lFIx. 

5.6.6. DEFINITION. If X is a normed space and T E B(X) then the spectral 
radius of T is the number r(T):= inf {IITnll' In : n E N} (The rationale of this 
term will transpire later (cf. 8.1.12).) 

5.6.7. The norm ofT is greater than the spectral radius ofT. 

<l Indeed, by 5.6.1, the inequality IITn II :s; IITr is valid. t> 

5.6.8. The Gelfand formula holds: 

reT) = lim v'IITnll. 

<I Take e > 0 and let 8 E N satisfy IITsl1 :s; reT) + e. Given n E N with n 2: 8, 

observe the presentation n = k( n)8 + l( n) with k( n), I( n) E Nand 0 :s; I( n) :s; 8-1. 
Hence, 

IITnl1 = IITk(n)ST/(n)1I :s; IITsllk(n) IIT/(n)11 

:s; (1 V IITII V ... V IITs-IID IITsllk(n) = M IITsllk(n) . 
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Consequently, 

1/ 1/ k(n)/ reT) :::; IITnl1 n:::; M n IIT"II n 
1 / k(n)./ 1/ (n-I(n))/ :::;M n(r(T)+c:) n =M n(r(T)+c:) n. 

Since M1/n -+ 1 and (n-I(n»/n -+ 1, find r(T):::; limsupllTn l1 1/n :::; reT) +c:. 
The inequality liminf/lTnll1/n ;::: reT) is evident. Recall that c: is arbitrary, thus 
completing the proof. I> 

5.6.9. Neumann Series Expansion Theorem. With X a Banach space 
and T E B(X), the following statements are equivalent: 

(1) the Neumann series 1 + T + T2 + ... converges in the operator norm 
of B(X); 

(2) IITkl1 < 1 for some k and N; 
(3) reT) < 1. 

If one of the conditions (1)-(3) holds then 2:~o Tk = (1 - T)-I. 
<l (1) => (2): With the Neumann series convergent, the general term (Tk) tends 

to zero. 
(2) => (3): This is evident. 
(3) => (1): According to 5.6.8, given a suitable c: > 0 and a sufficiently large 

kEN, observe that reT) :::; IITk 111 /k :::; reT) + c: < 1. In other words, some tail 
of the series 2:~o IITkl1 is dominated by a convergent series. The completeness 
of B(X) and 5.5.3 imply that 2:~o Tk converges in B(X). 

Now let S:= 2:~o Tk and Sn:= 2:~=o Tk. Then 

S(l- T) = limSn (1- T) = lim(l + T + ... + Tn) (1- T) = lim(l- Tn+I) = 1; 
(1 - T)S = lim(1- T)Sn = lim(l- T)(l + T + ... + Tn) = lim (1 - Tn+I) = 1, 

because Tn -+ O. Thus, by 2.2.7 S = (1 - T)-I. I> 

5.6.10. Corollary. If IITII < 1 then (1 - T) is invertible (= has a bounded 
inverse); i.e., the inverse correspondence (1 - T)-I is a bounded linear operator. 
Moreover, 11(1 - T)-III :::; (1 - IITII)-I. 

<l The Neumann series converges and 
00 00 

11(1- T)-III :::; L IITkl1 :::; L IITllk = (1 -IITII)-I. I> 
k=O k=O 

5.6.11. Corollary. If 111 - Til < 1 then T is invertible and 

111-T- I II< III-Til . 
- 1-111- Til 
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<I By Theorem 5.6.9, 

00 00 

k=l k=O 

Hence, 

00 00 00 

IIT- 1 - 111 = L(1- T)k ~ L 11(1- T)kll ~ L 111 - Tllk. t> 
k=l k=l k=l 

5.6.12. Banach Inversion Stability Theorem. Let X and Y be Banach 
spaces. The set of invertible operators Inv (X, Y) is open. Moreover, the inversion 
T 1-+ T-1 acting from Inv (X, Y) to Inv (Y, X) is continuous. 

<I Take S, T E B(X, Y) such that T-1 E B(Y, X) and liT-III liS - Til ~ 1 h. 
Consider the operator T- 1 S in B(X). Observe that 

Hence, by 5.6.11, (T- 1 S)-l belongs to B(X). Put R:= (T- 1 S)-lT-1. Clearly, 
R E B(Y, X) and, moreover, R = S-1(T-1 )-IT-1 = S-l. Further, 

IIS-111-IIT-111 ~ IIS-1 - T- 1 11 
= IIS-1(T - S)T-111 ~ liS-III liT - SIIIIT-111 ~ 1/2 lis-III. 

This implies liS-III ~ 21IT-111, yielding the inequalities 

5.6.13. DEFINITION. If X is a Banach space over IF and T E B(X) then 
a scalar ,\ E IF is a regular or resolvent value of T whenever (,\ - T)-l E B(X). 
In this case put R(T, ,\):= (,\ - T)-l and say that R(T, ,\) is the resolvent of T 
at'\. The set of the resolvent values of T is denoted by res (T) and called the 
resolvent set of T. The mapping'\ 1-+ R(T, ,\) from res (T) into B(X) is naturally 
called the resolvent of T. The set IF\ res (T) is referred to as the spectrum of T and 
is denoted by Sp(T) or cr(T). A member of Sp(T) is said to be a spectral value 
of T (which is enigmatic for the time being). 

5.6.14. REMARK. If X = 0 then the spectrum of the only operator T = 0 
in B(X) is the empty set. In this regard, in spectral analysis it is silently presumed 
that X i= o. In the case X i= 0 for IF:= lR. the spectra of some operators can also 
be void, whereas for IF:= C it is impossible (cf. 8.1.11). <It> 
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5.6.15. The set res (T) is open. If AO E res (T) then 

<Xl 

R(T, A) = 2) -l)k(A - Ao)k R(T, Ao)k+1 
k=O 

in some neighborhood of AO. If IAI > IITII then A E res (T) and the expansion 

1 <Xl Tk 
R(T, A) = >: L Ak 

k=O 

holds. Moreover,IIR(T, A)II-+ 0 as IAI-+ +00. 
<3 Since II (A - T) - (AO - T) II = I A - AO I, the openness property of res (T) 

follows from 5.6.12. Proceed along the lines 

A - T = (A - AO) + (AO - T) = (AO - T)R(T, Ao)(A - AO) + (AO - T) 
= (AO - T)((A - Ao)R(T, AO) + 1) = (AO - T)(l - (( -l)(A - Ao)R(T, Ao))). 

In a suitable neighborhood of AO, from 5.6.9 derive 

R(T, A) = (A - T)-l 
<Xl 

= (1 - (( -l)(A - Ao)R(T, AO)))-l(AO - T)-l = L( -l)k(A - Ao)k R(T, Ao)k+1. 
k=o 

According to 5.6.9, for IAI > IITII there is an operator (1 - T / A) -1 presenting 
the sum of the Neumann series; i.e., 

It is clear that 

<Xl Tk 
1 ( T )-1 1 " R(T, A) = >: 1 - fA = >: L.t If· 

k=O 

1 1 
IIR(T, A)II S 1>:1. 1- ~TII/IAI· I> 

5.6.16. The spectrum of every operator is compact. <31> 

5.6.17. REMARK. It is worth keeping in mind that the inequality IAI > reT) 
is a necessary and sufficient condition for the convergence of the Laurent series, 
R(T, A) = L:~o Tk / Ak+1, which expands the resolvent of T at infinity. 

5.6.18. An operator S commutes with an operator T if and only if S com-
mutes with the resolvent of T. 
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<I =}: ST = TS =} S(A - T) = AS - ST = AS - TS = (A - T)S =} 

R(T, A)S(A - T) = S =} R(T, A)S = S R(T, A) (A E res (T)). 
~: SR(T, AO) = R(T, AO)S =} S = R(T, AO)S(AO - T) =} (AO - T)S = 

S(AO - T) =} TS = ST. I> 

5.6.19. If A, J1, E res (T) then the first resolvent equation, the Hilbert identity, 
holds: 

R(T, A) - R(T, J1,) = (J1, - A)R(T, J1,)R(T, A). 
<I "Multiplying the equality J1, - A = (J1, - T) - (A - T), first, by R(T, A) from 

the right and, second, by R(T, J1,) from the left," successively infer the sought 
identity. I> 

5.6.20. If A, J1, E reseT) then R(T, A)R(T, J1,) = R(T, J1,)R(T, A). <II> 

5.6.21. For A E res (T) the equality holds: 

d~kR(T, A) = (-l)kk!R(T, A)k+l. <II> 

5.6.22. Composition Spectrum Theorem. The spectra Sp(ST) and 
Sp(TS) may differ only by zero. 

<I It suffices to establish that 1 rf. Sp(ST) =} 1 rf. Sp(TS). Indeed, from 
A rf. Sp( ST) and A i- 0 it will follow that 

1 rf. 1/,x Sp(ST) =} 1 rf. Sp C / ,xST) =} 1 rf. Sp C / ,xTS) =} A rf. Sp(TS). 

Therefore, consider the case 1 rf. Sp(ST). The formal Neumann series expan-
sIOns 

(1 - ST)-l '" 1 + ST + (ST)(ST) + (ST)(ST)(ST) + ... , 
T(l - ST)-IS '" TS + TSTS + TSTSTS + ... '" (1 - TS)-l -1 

lead to conjecturing that the presentation is valid: 

(1 - TS)-l = 1 + T(l - ST)-l S 

(which in turn means 1 rf. Sp(TS)). Straightforward calculation demonstrates the 
above presentation, thus completing the entire proof: 

(1 + T(l - ST)-l S)(l - TS) = 1 + T(l - ST)-IS - TS + T(l - ST)-l( -ST)S 
= 1 + T(l- ST)-IS - TS + T(l- ST)-I(l- ST -l)S 
= 1 + T(l- ST)-IS - TS + TS - T(l- ST)-IS = 1; 

(1 - TS)(l + T(l - ST)-l S) = 1 - TS + T(l - ST)-l S + T( -ST)(l - ST)-l S 
= 1- TS + T(l- ST)-IS + T(l- ST -1)(1- ST)-IS 
= 1- TS + T(l- ST)-IS + TS - T(l- ST)-IS = 1. I> 
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Exercises 
5.1. Prove that a normed space is finite-dimensional if and only if every linear functional 

on the space is bounded. 
5.2. Demonstrate that it is possible to introduce a norm into each vector space. 
5.3. Show that a vector space X is finite-dimensional if and only if all norms on X are 

equivalent to each other. 
5.4. Demonstrate that all separated multinorms introduce the same topology in a finite-

dimensional space. 
5.5. Each norm on ]R.N is appropriate for norming the product of finitely many normed 

spaces, isn't it? 
5.6. Find conditions for continuity of an operator acting between multinormed spaces 

and having finite-dimensional range. 
5.7. Describe the operator norms in the space of square matrices. When are such norms 

comparable? 
S.S. Calculate the distance between hyperplanes in a normed space. 
5.9. Find the general form of a continuous linear functional on a classical Banach space. 
5.10. Study the question of reflexivity for classical Banach spaces. 
5.11. Find the mutual disposition of the spaces Ip and Ipl as well as Lp and Lpl. When 

is the complement of one element of every pair is dense in the other? 
5.12. Find the spectrum and resolvent of the Volterra operator (the taking of a primi-

tive), a projection, and a rank-one operator. 
5.13. Construct an operator whose spectrum is a prescribed nonempty compact set in C. 
5.14. Prove that the identity operator (in a nonzero space) is never the commutator 

of any pair of operators. 
5.15. Is it possible to define some reasonable spectrum for an operator in a multinormed 

space? 
5.16. Does every Banach space over IF admit an isometric embedding into the space 

C(Q, IF), with Q a compact space? 
5.17. Find out when Lp(X)' = Lpl(X'), with X a Banach space. 
S.lS. Let (Xn) be a sequence of normed spaces and let 

be their co-sum (with the norm Ilxll = sup{ IIxnll : n E N} induced from the loo-sum). Prove that 
Xo is separable if and only if so is each of the spaces X n . 

5.19. Prove that the space C(p)[O, 1] presents the sum of a finite-dimensional subspace 
and a space isomorphic to C[O, 1]. 



Chapter 6 
Hilbert Spaces 

6.1. Hermitian Forms and Inner Products 
6.1.1. DEFINITION. Let H be a vector space over a basic field IF. A mapping 

f : H2 -t IF is a hermitian form on H provided that 
(1) the mapping f( " y) : x I-t f(x, y) belongs to H# for every y in Yj 
(2) f(x, y) = f(y, x)* for all x, y E H, where ..\ I-t ..\* is the natu-

ral involution in lFj that is, the taking of the complex conjugate of 
a complex number. 

6.1.2. REMARK. It is easy to see that, for a hermitian form f and each x 
in H the mapping f(x, .) : y I-t (x, y) lies in Hf, where H* is the twin of H 
(see 2.1.4 (2)). Consequently, in case IF:= lR every hermitian form is bilinear, i.e., 
linear in each argument; and in case IF:= C, sesquilinear, i.e., linear in the first 
argument and *-linear in the second. 

6.1.3. Every hermitian form f satisfies the polarization identity: 

f(x+y, x+y)-f(x-y, x-y)=4Ref(x, y) (x, YEH). 

<I f(x + y, x + y) = f(x, x) + f(x, y) + f(y, x) + f(y, y) 
- f(x - y, x - y) = f(x, x) - f(x, y) - f(y, x) + f(y, y) 

2(f(x, y) + f(y, x)) t> 

6.1.4. DEFINITION. A hermitian form f is positive or positive semidefinite 
provided that f(x, x) ~ 0 for all x E H. In this event, write (x, y):= (x I y):= 
f(x, y) (x, y E H). A positive hermitian form is usually referred to as a semi-
inner product on H. A semi-inner product on H is an inner product or a (positive 
definite) scalar product whenever (x, x) = 0 => x = 0 with x E H. 

6.1.5. The Cauchy-Bunyakovskiz-Schwarz inequality holds: 

I(x, yW ~ (x, x)(y, y) (x, y E H). 
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<l If (x, x) = (y, y) = 0 then 0:::; (x+ty, x+ty) = t(x, y)* +t*(x, y). Letting 
t:= -(x, y), find that -21(x, y)12 ~ 0; i.e., in this case the claim is established. 

If, for definiteness, (y, y) i= 0; then in view of the estimate 

0:::; (x + ty, x + ty) = (x, x) + 2tRe(x, y) + t2(y, y) (t E JR.) 

conclude that Re(x, y)2 :::; (x, x)(y, y). 
If (x, y) = 0 then nothing is left to proof. If (x, y) i= 0 then let 0 := 

I(x, y)1 (x, y)-l and x:= Ox. Now 101 = 1 and, furthermore, 

(x, x) = (Ox, Ox) = OO*(x, x) = IOI2(x, x) = (x, x); 
I(x, y)1 = O(x, y) = (Ox, y) = (x, y) = Re(x, y). 

Consequently, I(x, y)i2 = Re(x, y)2 :::; (x, x)(y, y). [> 

6.1.6. If ( " .) is a semi-inner product on H then the mapping II . II : x t-+ 

(x, X)l h is a seminorm on H. 
<l It suffices to prove the triangle inequality. Applying the Cauchy-Bunyakov-

ski'i-Schwarz inequality, observe that 

Ilx + Yll2 = (x, x) + (y, y) + 2Re(x, y) 
:::; (x, x) + (y, y) + 211xll lIyll = (lIxll + Ilyll?· [> 

6.1.7. DEFINITION. A space H endowed with a semi-inner product (', .) 
and the associate seminorm II . II is a pre-Hilbert space. A pre-Hilbert space H is 
a Hilbert space provided that the seminormed space (H, 11·11) is a Banach space. 

6.1.B. In a pre-Hilbert space H, the Parallelogram Law is effective 

which reads: the sum of the squares of the lengths of the diagonals equals the sum 
of the squares of the lengths of all sides. 

<l Ilx + Yll2 = (x + y, x + y) = IIxl12 + 2Re(x, y) + IIY112; 
IIx - Yl12 = (x - y, x - y) = IIxll2 - 2Re(x, y) + IIyl12 [> 

6.1.9. Von Neumann-Jordan Theorem. If a seminormed space (H, II . II) 
obeys the Parallelogram Law then H is a pre-Hilbert space; i.e., there is a unique 
semi-inner product (', .) on H such that Ilxll = (x, X)l h for all x E H. 
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<l Considering the real carrier HJR of H and x, Y E HJR, put 

Given the mapping ( " Y)JR, from the Parallelogram Law successively derive 

(Xl, Y)IR + (X2' Y)JR 
= 1/4 (11xl + YII2 -IIXI - YII2 + IIX2 + YII2 -IIX2 _ Y1I2) 

= 1/4 ((IIXI + YII2 + IIX2 + Y1I2) - (IIXI _ YII2 + IIX2 _ YII2)) 
= 1 /4 C h(II(XI + y) + (X2 + Y)1I2 + IIXI - x2112) 

_1 h (II(XI - y) + (X2 - Y)1I2 + IIXI - x2112)) 
= 1/4 Chlixi + x2 +2y1I 2 -lhllxl +X2 - 2y1I 2) 

= 1 h (11<Xl+X2) h + yI12 _II< X I-X2) h _ Y112) 

= 2 «xt+x2)h, Y)IR' 

In particular, (X2' Y)JR = 0 in case X2 := 0, i.e. Ih(XI, Y)IR 
Analogously, given Xl := 2XI and X2 := 2X2, infer that 

Since the mapping ( " Y)IR is continuous for obvious reasons, conclude that 
(', Y)JR E (HIR)#' Put 

where lRe- 1 is the complexifier (see 3.7.5). 
In case !F:= IR it is clear that (x, y) = (x, Y)JR = (y, x) and (x, x) = IIx1l 2; 

i.e., nothing is to be proven. On the other hand, if !F:= C then 

(x, y) = (x, Y)IR - i(ix, Y)IR. 

This entails sesquilinearity: 

sInce 

(y, x) = (y, X)IR - i(iy, x)JR = (x, Y)IR - i(x, iY)1R 
=(x, Y)IR+i(ix, Y)IR=(X, y)*, 

(x, iY)1R = I /4 (lix + iyII 2 - IIx - iY1I2) 
= 1/4 (Iilily - ixll2 -1- ililix + Y1I2) = -(ix, Y)JR. 
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Furthermore, 

(x, x) = (x, x)JR - i(ix, x)JR 
= IIx211- i/4 (Ilix + xl1 2 -Ilix - x1l 2 ) 

= IIxll2 (1- i/4 (11 + il2 -11- iI2)) = Ilxll 2. 

The claim of uniqueness follows from 6.1.3. [> 

6.1.10. EXAMPLES. 

83 

(1) A Hilbert space is exemplified by the L2 space (over some system with 
integration), the inner product introduced as follows (j, g):= J fg* for f, g E L2. 
In particular, (x, y):= L:eE8' xeY: for x, y E l2(6"). 

(2) Assume that H is a pre-Hilbert space and ( " .): H2 --t IF is a semi-
inner product on H. It is clear that the real carrier HJR with the semi-inner 
product (', ')JR : (x, y) 1-+ Re(x, y) presents a pre-Hilbert space with the norm 
of an element of H independent of whether it is calculated in H or in HJR. The pre-
Hilbert space (HJR, (', . )JR) is the realification or decomplexification of (H, (', . )). 
In turn, if the real carrier of a seminormed space is a pre-Hilbert space then 
the process of complexification leads to some natural pre-Hilbert structure of the 
original space. 

(3) Assume that H is a pre-Hilbert space and H* is the twin vector 
space of H. Given x, y E H*, put (x, y)*:= (x, y)*. Clearly, (', .)* is a semi-
inner product on H *. The resulting pre-Hilbert space is the twin of H, with the 
denotation H* preserved. 

(4) Let H be a pre-Hilbert space and let Ho := ker II . II be the kernel 
of the semi norm II . lion H. Using the Cauchy-Bunyakovskil'-Schwarz inequality, 
Theorem 2.3.8 and 6.1.10 (3), observe that there is a natural inner product on 
the quotient space H/Ho: If XI:= <p(xI) and X2:= <p(X2), with Xl, x2 E Hand 
<p: H --t H/Ho the coset mapping, then (Xl, X2):= (Xl, X2). Moreover, the pre-
Hilbert space H / Ho may be considered as the quotient space of the seminormed 
space (H, 11·11) by the kernel of the semi norm 11·11. Thus, H / Ho is a Hausdorff space 
referred to as the Hausdorff pre-Hilbert space associated with H. Completing the 
normed space H/Ho, obtain a Hilbert space (for instance, by the von Neumann-
Jordan Theorem). The so-constructed Hilbert space is called associated with the 
original pre-Hilbert space. 

(5) Assume that (He)eE8' is a family of Hilbert spaces and H is the 2-sum 
ofthe family; i.e., h E H if and only if h:= (he)eE8', where he E He for e E 6" and 

'/ 
IIhll:= (2: Il hel1 2 ) 2 < +00. 

eE8' 
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By 5.5.9 (6), H is a Banach space. Given f, g E H, on successively applying the 
Parallelogram Law, deduce that 

1 Iz (Ilf + gl12 + Ilf _ g112) 

= 1 Iz (L life + gel1 2 + + L life - ge11 2) 
eE,c eE,c 

= L liz (life + gel1 2 + life - ge11 2) = L (11fe1l 2 + Ilgell 2) = IIfl12 + IIg112. 

Consequently, H is a Hilbert space by the von Neumann-Jordan Theorem. The 
space H, the Hilbert sum of the family (He)eE,c, is denoted by tJJeE,cHe. With 
rf!:= N, it is customary to use the symbol HI tJJ H2 tJJ ... for H. 

(6) Let H be a Hilbert space and let S be a system witb integration. 
Tbe space L2(S, H) comprising all H-valued square-integrable functions is also 
a Hilbert space. <It> 

6.2. Orthoprojections 
6.2.1. Let Ue be a convex subset oftbe spbericallayer (r +E)BH \ rBH witb 

r, E > 0 in a Hilbert space H. Tben tbe diameter of Ue vanisbes as E tends to o. 
<l Given x, y E Ue , on considering that 1 Iz(x + y) E Ue and applying the 

Parallelogram Law, for E ~ r infer that 

Ilx - Yl12 = 2 (lI x ll 2 + lIyln - 411(x+ y ) Iz 112 

~ 4(r + E)2 - 4r2 = 8rE + 4E2 ~ 12rE. t> 

6.2.2. Levy Projection Theorem. Let U be a nonempty closed convex set 
in a Hilbert space H and x E H \ U. Tben tbere is a unique element Uo of U sucb 
tbat 

Ilx - uoll = inf{llx - ull: u E U}. 

<l Put Ue := {u E U: Ilx - ull ~ inf IIU - xii +E}. By 6.2.1, the family (Ue)e>O 
constitutes a base for a Cauchy filter in U. t> 

6.2.3. DEFINITION. The element Uo appearing in 6.2.2 is the best approxima-
tion to x in U or the projection of x to U. 

6.2.4. Let Ho be a closed subspace of a Hilbert space H and x E H \ Ho. 
An element Xo of Ho is tbe projection of x to Ho if and only if (x - Xo, ho) = 0 
for every ho in H o. 
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<I It suffices to consider the real carrier (Ho)JR of Ho. The convex function 
f(h o) := (ho - x, ho - x) is defined on (Ho)JR. Further, Xo in Ho serves as the 
projection of x to Ho if and only if 0 E oxo (1). In view of 3.5.2 (4) this containment 
means that (x - Xo, ho) = 0 for every ho in Ho, because f'(xo) = 2(xo - x, .). I> 

6.2.5. DEFINITION. Elements x and y of H are orthogonal, in symbols x 1.. y, 
if (x, y) = o. By U.l.. we denote the subset of H that comprises all elements 
orthogonal to every point of a given subset U; i.e., 

U.l..:= {y E H : (V x E U) x 1.. y}. 

The set U.l.. is the orthogonal complement or orthocomplement of U (to H). 
6.2.6. Let Ho be a closed subspace of a Hilbert space H. The orthogonal 

complement of Ho, the set Ht, is a closed subspace and H = Ho EEl Ht. 
<I The closure property of Ht in H is evident. It is also clear that Ho /\ Ht = 

Ho n Ht = o. We are left with showing only that Ho V Ht = Ho + Ht = H. 
Take an element h of H \ Ho. In virtue of 6.2.2 the projection ho of H to Ho is 
available and, by 6.2.4, h - ho E Ht. Finally, h = ho + (h - ho) E Ho + Ht. I> 

6.2.7. DEFINITION. The projection onto a (closed) subspace Ho along Ht is 
the orthoprojection onto Ho, denoted by PHo. 

6.2.8. Pythagoras Lemma. x 1.. y => IIx + Yl12 = IIxl12 + IIYIl2. <II> 

6.2.9. Corollary. The norm of an orthoprojection is at most one: (H =I 0 
& Ho =I 0) => IIPHo II = 1. <II> 

6.2.10. Orthoprojection Theorem. For an operator P in £(H) such that 
p 2 = P, the following statements are equivalent: 

(1) P is the orthoprojection onto Ho:= im P; 
(2) Ilhll:::: 1 =} IIPhli :::: 1; 
(3) (Px, pdy) = 0 for all x, y E H, with p d the complement of P, i.e. 

p d = IH - Pj 
(4) (Px, y) = (x, Py) for x, y E H. 

<I (1) => (2): This is observed in 6.2.9. 
(2) => (3): Let H I := ker P = im pd. Take x E Ht. Since x = Px + pdx and 

x 1.. pdx; therefore, IIxl12 ;::: IIPxl12 = (x-pdx, x-pdx ) = (x, x)-2Re(x, pdx )+ 
(pd x , pdx ) = IIxl1 2 + IIpd x l12. Whence pdx = 0; i.e., x E im P. Considering 6.2.6, 
from HI = ker P and Ht C im P deduce the equalities Ht = im P = Ho. Thus 
(Px, pd y) = 0 for all x, y E H, since Px E Ho and pdy E HI. 

(3) => (4): (Px, y) = (Px, py+pdy) = (Px, Py) = (Px, py)+(pdx , Py) = 
(x, Py). 

(4) => (1): Show first that Ho is a closed subspace. Let ho := lim hn with 
hn E Ho, i.e. Phn = hn . For every x in H, from the continuity property of the 
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functionals ( ., x) and ( ., Px) successively derive 

(ho, x) = lim (hn, x) = lim(Phn, x) = lim(hn, Px) = (Pho, x). 

Whence (ho - Pho, ho - Pho) = 0; i.e., ho E im P. 
Given x E Hand ho E H o, now infer that (x - Px, ho) = (x - Px, Pho) = 

(P(x - Px), ho) = (Px - p2X, ho) = (Px - Px, ho) = o. Therefore, from 6.2.4 
obtain Px = PHoX. t> 

6.2.11. Let PI, and P2 be orthoprojections with PIP2 = o. Then P2 PI = o. 
<l PIP2 = 0 => im P2 C ker PI => im PI = (ker Pt).l. C (im P2 ).l. = ker P2 => 

P2 PI = 0 t> 

6.2.12. DEFINITION. Orthoprojections PI and P2 are orthogonal, in symbols, 
PI .1 P2 or P2 .1 PI, provided that PIP2 = O. 

6.2.13. Theorem. Let PI, . .. ,Pn be orthoprojections. The operator P := 
PI + ... + Pn is an orthoprojection if and only if P, .1 Pm for l #- m. 

<l =>: First, given an orthoprojection Po, observe that IIPoxl12 = (Pox, Pox) = 
(P~x, x) = (Pox, x) by Theorem 6.2.10. Consequently, 

n n 

k=l k=l 

for x E Hand l #- m. 
In particular, putting x:= P,X, observe that 

<:=: Straightforward calculation shows that P is an idempotent operator. Indeed, 

Furthermore, in virtue of6.2.10 (4), (Pkx, y) = (x, PkY) and so (Px, y) = (x, Py). 
It suffices to appeal to 6.2.10 (4) once again. t> 

6.2.14. REMARK. Theorem 6.2.13 is usually referred to as the pairwise or-
thogonality criterion for finitely many orthoprojections. 
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6.3. A Hilbert Basis 
6.3.1. DEFINITION. A family (X e )eE8' of elements of a Hilbert space H is 

orthogonal, if el -# e2 '* X e1 1.. x e2 • By specification, a subset G' of a Hilbert 
space H is orthogonal if so is the family (e )eE,g'. 

6.3.2. Pytbagoras Tbeorem. An orthogonal family (Xe)eE,g' of elements of 
a Hilbert space is (unconditionally) summable if and only if the numeric family 
(1IxeI12)eE,g' is summable. Moreover, 

<l Let S(J := L:eE,g' Xe, where () is a finite subset of G'. By 6.2.8, IIs(J11 2 = 
L:eE(J Ilxe 112. Given a finite subset ()f of G' which includes (), thus observe that 

Ils(J1 - s(J1I 2 = Ils(JI\(J1I 2 = L II xell 2 • 

eE(J'\(J 

In other words, the fundamentalness of (s(J) amounts to the fundamentalness of 
the net of partial sums of the family (lixe 11 2)eE,g'. On using 4.5.4, complete the 
proof. I> 

6.3.3. Ortboprojection Summation Tbeorem. Let (Pe)eE,g' be a family 
of pairwise orthogonal orthoprojections in a Hilbert space H. Then for every x 
in H the family (PeX)eE,g' is (unconditionally) summable. Moreover, the operator 
Px:= L:eE,g' Pex is the orthoprojection onto the subspace 

<l Given a finite subset () of G', put S(J := L:eE(J Pe. By Theorem 6.2.13, S(J is 
an orthoprojection. Hence, in view of 6.2.8, IIs(Jx11 2 = L:eE(J IIPexI1 2 ::; IIxII 2 

for every x in H. Consequently, the family (IiPexII 2)eE,g' is summable (the net 
of partial sums is increasing and bounded). By the Pythagoras Theorem, there 
is a sum Px := L:eE,g' Pex; i.e., Px = lim(J S(JX. Whence p 2 x = lim(J s(JPx = 
lim(J S(J lim(J1 S(JIX = lim(J lim(J1 S(JS(JIX = lim(J lim(J1 S(Jn(J'X = lim(J S(JX = Px. Finally, 
IIPxll = Illim(J s(Jxll = lim(J Ils(Jxll ::; Ilxll and, moreover, p 2 = P. Appealing to 
6.2.10, conclude that P is the orthoprojection onto im P. 

If x E im P, i.e., Px = x; then x = L:eE,g' Pex and by the Pythagoras Theorem 
L:eE,g' IIPexll 2 = IIxII 2 = IIPxI1 2 < +00. Since Pex E He (e E G'); therefore, x E .Ye. 
If Xe E He and L:eE,g' IIxe 112 < +00 then for X:= L:eE,g' Xe (existence follows from 
the same Pythagoras Theorem) observe that x = L:eE,g' Xe = L:eE,g' Pexe = Px; 
i.e., x E im P. Thus, im P = .Ye. I> 
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6.3.4. REMARK. This theorem may be treated as asserting that the space.Yt' 
and the Hilbert sum of the family (He)eE<C are isomorphic. The identification is 
clearly accomplished by the Bochner integral presenting the process of summation 
in this case. 

6.3.5. REMARK. Let h in H be a normalized or unit or norm-one element; 
i.e., IIhll = 1. Assume further that Ho := lFh is a one-dimensional subspace of H 
spanned over ho. For every element x of H and every scalar .x, a member of IF, 
observe that 

(x - (x, h)h, .xh) = .x*((x, h) - (x, h))(h, h) = O. 

Therefore, by 6.2.4, PHo = (" h) 0 h. To denote this orthoprojection, it is 
convenient to use the symbol (h). Thus, (h) : x f-+ (x, h)h (x E H). 

6.3.6. DEFINITION. A family of elements of a Hilbert space is called orthonor-
mal (or orthonormalized) if, first, the family is orthogonal and, second, the norm 
of each member of the family equals one. Orthonormal sets are defined by speci-
fication. 

6.3.7. For every orthonormal subset <f of H and every element x of H, the 
family ((e)x )eE<C is (unconditionally) summable. Moreover, the Bessel inequality 
holds: 

IIxl1 2 ~ L I(x, eW· 
eE<C 

<I It suffices to refer to the Orthoprojection Summation Theorem, for 

2 2 

IIxll 2 ~ L (e) x = L (x, e)e = L II(x, e)eI1 2 • I> 
eE<C eE<C eE<C 

6.3.8. DEFINITION. An orthonormal set <f in a Hilbert space H is a Hilbert 
basis (for H) if x = LeE<c(e)x for every x in H. An orthonormal family of elements 
of a Hilbert space is a Hilbert basis if the range of the family is a Hilbert basis. 

6.3.9. An orthonormal set <f is a Hilbert basis for H if and only if lin (<f), 
the linear span of <f, is dense in H. <II> 

6.3.10. DEFINITION. A subset <f of a Hilbert space is said to meet the Steklov 
condition if <f.L = O. 

6.3.11. Steklov Theorem. An orthonormal set <f is a Hilbert basis if and 
only if <f meets the Steklov condition. 

<I =>: Let hE <f.L. Then h = LeE<c(e)h = LeE<c(h, e)e = LeE<C0 = O. 
{::::: For x E H, in virtue of 6.3.3 and 6.2.4, x - LeE<c(e)x E <f.L. I> 

6.3.12. Theorem. Each Hilbert space has a Hilbert basis. 
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<l By the Kuratowski-Zorn Lemma, each Hilbert space H has an orthonormal 
set I! maximal by inclusion. If there were some h in H \ Ho, with Ho := cllin (I!); 
then the el~ment h1 := h-PHoh would be orthogonal to every element in I!. Thus, 
for H -=J. 0 we would have I! U {llh1 11-1 hd = I!. A contradiction. In case H = 0 
there is nothing left to proof. t> 

6.3.13. REMARK. It is possible to show that two Hilbert bases for a Hilbert 
space H have the same cardinality. This cardinality is the Hilbert dimension of H. 

6.3.14. REMARK. Let (Xn)nEN be a countable sequence of linearly indepen-
dent elements of a Hilbert space H. Put Xo:= 0, eo:= 0 and 

n-l 

Yn:= Xn - L(ek)xn, 
k=O 

Yn 
en := IIYnll (n EN). 

Evidently, (Yn, ek) = 0 for 0 :S k :S n - 1 (for instance, by 6.2.13). Also, Yn -=J. 0, 
since H is infinite-dimensional. Say that the orthonormal sequence (en )nEN results 
from the sequence (Xn)nEN by the Gram-Schmidt orthogonalization process. Using 
the process, it is easy to prove that a Hilbert space has a countable Hilbert basis 
if and only if the space has a countable dense subset; i.e., whenever the space is 
separable. <It> 

6.3.15. DEFINITION. Let I! be a Hilbert basis for a space H and x E H. 
The numeric family x:= (Xe)eE<f," in jF&', given by the identity xe:= (x, e), is the 
Fourier coefficient family of x with respect to I! or the Fourier transform of X 
(relative to I!). 

6.3.16. Riesz-Fisher Isomorphism Theorem. Let I! be a Hilbert basis 
for H. Tbe Fourier transform § : x 1---+ X (relative to I!) is an isometric isomor-
pbism of H onto 12(1!). Tbe inverse Fourier transform, tbe Fourier summation 
§-1 : 12(1!) -t H, acts by tbe rule §-I(X):= L:eE&' xee for x:= (Xe)eE&' E 12(1!). 
Moreover, for all x, Y E H tbe Parseval identity bolds: 

(x, y) = L xefJ.*· 
eE&' 

<l By the Pythagoras Theorem, the Fourier transform acts in 12( I!). By Theo-
rem 6.3.3, ~ is an epimorphism. By the Steklov Theorem, ~ is a monomorphism. ----It is beyond a doubt that §-I X = x for x E Hand §-I(x) = x for x E 12(1!). 
The equality 

IIxII 2 = L IIxII 2 = IIxell~ (x E H) 
eE&' 
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follows from the Pythagoras Theorem. At the same time 

6.3.17. REMARK. The Parseval identity shows that the Fourier transform 
preserves inner products. Therefore, the Fourier transform is a unitary operator 
or a Hilbert-space isomorphism; i.e., an isomorphism preserving inner products. 
This is why the Riesz-Fisher Theorem is sometimes referred to as the theorem 
on Hilbert isomorphy between Hilbert spaces (of the same Hilbert dimension). 

6.4. The Adjoint of an Operator 
6.4.1. Riesz Prime Theorem. Let H be a Hilbert space. Given x E H, put 

x' := ( ., x). Then the prime mapping x t-t x' presents an isometric isomorphism 
of H* onto H'. 

<l It is clear that x = 0 => x' = O. If x i= 0 then 

Ily'llB' = sup I(y, x)l::; sup IIYII IIxll ::; Ilxll; 
liyli9 liyli9 

Ilx'llB' = sup I(y, x)1 ~ W/nxli' x)1 = Ilxll· 
lIyli9 

Therefore, x t-t x' is an isometry of H * into H'. Check that this mapping is 
an epimorphism. 

Let 1 E H' and Ho := ker I i= H (if there no such I then nothing is to be 
proven). Choose a norm-one element e in Ht and put grad 1:= I(e)*e. If x E Ho 
then 

(grad I)'(x) = (x, grad I) = (x, I(e)*e) = I(e)**(x, e) = o. 
Consequently, for some a in IF and all x E H in virtue of2.3.12 (grad I)'(x) = al(x). 
In particular, letting x:= e, find 

(grad I)'(e) = (e, grad I) = I(e)(e, e) = al(e); 

i.e., a = 1. t> 

6.4.2. REMARK. From the Riesz Prime Theorem it follows that the dual 
space H' possesses a natural structure of a Hilbert space and the prime mapping 
x t-t x' implements a Hilbert space isomorphism from H* onto H'. The inverse 
mapping now coincides with the gradient mapping I t-t grad I constructed in the 
proof of the theorem. Implying this, the claim of 6.4.1 is referred to as the theorem 
on the general form of a linear functional in a Hilbert space. 
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6.4.3. Each Hilbert space is reflexive. 
<l Let t : H --+ H" be the double prime mapping; i.e. the canonical embedding 

of H into the second dual H" which is determined by the rule x" (1) = t( x )( 1) = 
lex), where x E H and I E H' (see 5.1.10 (8)). Check that t is an epimorphism. 
Let f E H". Consider the mapping y 1-+ fey') for y E H. It is clear that this 
mapping is a linear functional over H * and so by the Riesz Prime Theorem there 
is an element x E H = H** such that (y, x)* = (x, y) = fey') for every y in H. 
Observe that t(x)(y') = y'(x) = (x, y) = fey') for all y E H. Since by the Riesz 
Prime Theorem y 1-+ y' is a mapping onto H', conclude that t(x) = f. t> 

6.4.4. Let H t and H2 be Hilbert spaces and T E B(Ht, H2). Then there is 
a unique mapping T* : H2 --+ H t such that 

(Tx, y) = (x, T*y) 

for all x E H t and y E H2. Moreover, T* E B(H2' Ht) and IIT*II = IITII. 
<l Let y E H2. The mapping x 1-+ (Tx, y) is the composition y' 0 T; i.e., 

it presents a continuous linear functional over H t . By the Riesz Prime Theorem 
there is precisely one element x of H t for which x' = y' 0 T. Put T*y := x. 
It is clear that T* E !L'(H2' Ht). Furthermore, using the Cauchy-Bunyakovskil-
Schwarz inequality and the normative inequality, infer that 

I(T*y, T*y)1 = I(TT*y, y)1 ~ IITT*yllllyll ~ IITIIIIT*YII lIyll· 

Hence, IIT*YII ~ IITII lIyll for all y E H2 ; i.e., IIT*II ~ IITII. At the same time 
T = T**:= (T*)*; i.e., IITII = IIT**II ~ IIT*II. t> 

6.4.5. DEFINITION. For T E B(Ht, H2), the operator T*, the member of 
B(H2' Ht ) constructed in 6.4.4, is the adjoint of T. The terms like "hermitian-
conjugate" and "Hilbert-space adjoint" are also in current usage. 

6.4.6. Let H t and H2 be Hilbert spaces. Assume further that S, T E 
B(Ht, H2) and A E IF. Then 

(1) T** = T; 
(2) (S+T)* =S*+T*j 
(3) (AT)* = A*T*; 
(4) IIT*TII = IITII2. 

<l (1)-(3) are obvious properties. If Ilxll ~ 1 then 

IITxl12 = (Tx, Tx) = I(Tx, Tx)1 = I(T*Tx, x)1 ~ IIT*Txll Ilxll ~ IIT*TII. 
Furthermore, using the submultiplicativity of the operator norm and 6.4.4, infer 
IIT*TII ~ IIT*IIIITIl = IITII2, which proves (4). t> 
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6.4.7. Let H l , Hz, and H3 be three Hilbert spaces. Assume further that 
T E B(Hl' Hz) and S E B(Hz, H3). Then (ST)* = T*S*. 

<l (STx, z) = (Tx, S*z) = (x, T*S*z) (x E Hl , Z E H3) I> 

6.4.8. DEFINITION. Consider an elementary diagram Hl ~ H 2 . The dia-
gram Hl :£:.- Hz is the adjoint of the initial elementary diagram. Given an ar-
bitrary diagram composed of bounded linear mappings between Hilbert spaces, 
assume that each elementary sub diagram is replaced with its adjoint. Then the 
resulting diagram is the adjoint or, for suggestiveness, the diagram star of the 
initial diagram. 

6.4.9. Diagram Star Principle. A diagram is commutative if and only if so 
is its adjoint diagram. 

<l Follows from 6.4.7 and 6.4.6 (1). I> 

6.4.10. Corollary. An operator T is invertible if and only ifT* is invertible. 
Moreover, T*-l = T-h . <ll> 

6.4.11. Corollary. 1fT E B(H) then ,\ E Sp(T) {:} ,\* E Sp(T*). <ll> 

6.4.12. Sequence Star Principle(cf. 7.6.13). A sequence 

is exact if and only if so is the sequence star 

6.4.13. DEFINITION. An involutive algebra or *-algebra A (over a ground 
field IF) is an algebra with an involution *, i.e. with a mapping a 1-+ a* from A 
to A such that 

(1) a** = a (a E A); 
(2) (a+b)*=a*+b*(a, bEA); 
(3) ('\a)* = '\*a* (,\ E IF, a E A); 
(4) (ab)* = b*a* (a, bE A). 

A Banach algebra A with involution * satisfying lIa*all = Ilaliz for all a E A is 
a C* -algebra. 

6.4.14. The endomorphism space B(H) of a Hilbert space H is a C*-algebra 
(with the composition of operators as multiplication and the taking of the adjoint 
of an endomorphism as involution). <ll> 
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6.5. Hermitian Operators 
6.5.1. DEFINITION. Let H be a Hilbert space over a ground field IF. An el-

ement T of B(H) is a hermitian operator or selfadjoint operator in H provided 
that T = T*. 

6.5.2. Rayleigh Theorem. For a hermitian operator T the equality holds: 

IITII = sup I(Tx, x)l· 
IIxll9 

<l Put t:= sup{I(Tx, x)l: Ilxll ~ I}. It is clear that I(Tx, x)1 ~ IITxllllxll ~ 
IITII provided IIxll ~ 1. Thus, t ~ IITII· 

Since T = T*; therefore, (Tx, y) = (x, Ty) = (Ty, x)* = (y, Tx)*; i.e., 
(x, y) 1-+ (Tx, y) is a hermitian form. Consequently, in virtue of 6.1.3 and 6.1.8 

4Re(Tx, y)=(T(x+y), x+y)-(T(x-y), x-y) 
~ t(lIx + Yl12 + Ilx _ Y112) = 2t(llxll 2 + IIYI12). 

If Tx = 0 then it is plain that IITxll ~ t. Assume Tx :f:. O. Given IIxll ~ 1 and 
putting y:= IITxll-1Tx, infer that 

IITxl1 = IITxl1 (II~:II' II~:II) 
= (Tx, y) = Re(Tx, y) ~ 1/2 t (11x112 + rX/IITxll 112) ~ t; 

i.e., IITII = sup{IITxll: IIxll ~ I} ~ t. t> 

6.5.3. REMARK. As mentioned in the proof of 6.5.2, each hermitian opera-
tor T in a Hilbert space H generates the hermitian form hex, y):= (Tx, y). 
Conversely, let f be a hermitian form, with the functional f( ., y) continuous for 
every y in H. Then by the Riesz Prime Theorem there is an element Ty of H such 
that f(·, y) = (Ty)'. Evidently, T E .!L'(H) and (x, Ty) = f(x, y) = fey, x)* = 
(y, Tx)* = (Tx, y). It is possible to show that in this case T E B(H) and T = T*. 
In addition, f = h. Therefore, the condition T E B(H) in Definition 6.5.1 can 
be replaced with the condition T E .!L'(H) (the Hellinger-Toeplitz Theorem). 

6.5.4. Weyl Criterion. A scalar A belongs to the spectrum of a hermitian 
operator T if and only if 

inf IIAX - Txll = O. 
IIxll=l 

<l :::}: Put t := inf{IIAx - Txll: x E H, Ilxll = I} > O. Demonstrate 
that A 1. Sp(T). Given an x in H, observe that IIAx - Txll ~ tllxll. Thus, first, 
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(A-T) is a monomorphism; second, Ho:= im(A-T) is a closed subspace (because 
II(A-T)xm -(A-T)Xkll ~ tllxm -xkll; i.e., the inverse image of a Cauchy sequence 
is a Cauchy sequence); and, third, which is final, (A - T)-1 E B(H) whenever 
H = Ho (in such a situation IIR(T, >')11 ~ t-1 ). Suppose to the contrary that 
H =I- Ho. Then there is some y in Hd- satisfying lIyll = 1. For all x E H, note that 
0= (>.x - Tx, y) = (x, >.*y - Ty); i.e., A*y = Ty. Further, >.* = (Ty, y)/(y, y) 
and the hermiticity of T guarantees>. * E R. Whence>. * = >. and y E ker (>. - T). 
We arrive at a contradiction: 1 = IIYII = 11011 = o. 

{=: If >. i. Sp(T) then the resolvent of Tat >., the member R(T, >.) of B(H), 
is available. Hence, inf{ii>.x - Txll: Ilxll = I} ~ IIR(T, >')11-1 . t> 

6.5.5. Spectral Endpoint Theorem. Let T be a hermitian operator in 
a Hilbert space. Put 

mT:= inf (Tx, x), MT:= sup (Tx, x). 
IIzll=1 IIzll=1 

Then Sp(T) c [mT' MT) and mT, MT E Sp(T). 
<I Considering that the operator T - Re>. is hermitian in the space H under 

study, from the identity 

infer the inclusion Sp(T) C R by 6.5.4. Given a norm-one element x of H and 
invoking the Cauchy-Bunyakovski'l-Schwarz inequality, in case A < mT deduce 
that 

ii>.x - Txll = lI>'x - Txll IIxll ~ I(>'x - Tx, x)1 
=I>'-(Tx, x)I=(Tx, x)-A~mT->'>O. 

On appealing to 6.5.4, find>. E res (T). In case A > MT, similarly infer that 

ii>.x - Txll ~ I(>'x - Tx, x)1 = I>' - (Tx, x)1 = >. - (Tx, x) ~ >. - MT > O. 

Once again>. E res (T). Finally, Sp(T) C [mT' MT). 
Since (Tx, x) E R for x E H; therefore, in virtue of 6.5.2 

IITII = sup{I(Tx, x)l: IIxll ~ I} 
= sup{(Tx, x) V (-(Tx, x»: IIxll $ I} = MT V (-mT). 

Assume first that >.:= IITII = MT. If IIxll = 1 then 

ii>.x - Txll2 = >.2 - 2A(Tx, x) + IITxll2 $ 211TII2 - 2I1TII(Tx, x). 



6.6. Compact Hermitian Operators 95 

In other words, the next estimate holds: 

inf IIAX - TxI12 :s 211TII inf (IITII- (Tx, x)) = o. 
11.,11=1 11",11=1 

Using 6.5.4, conclude that A E Sp(T). 
Now consider the operator S:= T - mT. It is clear that Ms = MT - mT 2 0 

and ms = mT - mT = o. Therefore, IISII = Ms and in view of the above 
Ms E SpeS). Whence it follows that MT belongs to Sp(T), since T = S + mT 
and MT = Ms + mT. It suffices to observe that mT = -M-T and Sp(T) = 
- Sp( -T). t> 

6.5.6. Corollary. The norm of a hermitian operator equals the radius of its 
spectrum (and the spectral radius). <It> 

6.5.7. Corollary. A hermitian operator is zero if and only if its spectrum 
consists of zero. <It> 

6.6. Compact Hermitian Operators 
6.6.1. DEFINITION. Let X and Y be Banach spaces. An operator T, a mem-

ber of 2(X, Y), is called compact (in symbols, T E X(X, Y)) if the image 
T(Bx) of the unit ball Bx of X is relatively compact in Y. 

6.6.2. REMARK. Detailed study of compact operators in Banach spaces is 
the purpose of the Riesz-Schauder theory to be exposed in Chapter 8. 

6.6.3. Let T be a compact hermitian operator. If 0 #- A E Sp(T) then A is 
an eigenvalue ofT; i.e., ker(A - T) #- o. 

<I By the Weyl Criterion, .xxn - TXn -t 0 for some sequence (xn) such that 
Ilxnll = 1. Without loss of generality, assume that the sequence (Txn) converges to 
y:= lim Tx n . Then from the identity AXn = (AXn - Txn)+ TXn obtain that there is 
a limit (AX n ) and y = limAxn . Consequently, Ty = T(limAxn) = AlimTxn = >..y. 
Since Ilyll = IAI, conclude that y is an eigenvector of T, i.e. y E ker(A - T). t> 

6.6.4. Let Al and A2 be distinct eigenvalues of a hermitian operator T. As-
sume further that Xl and X2 are eigenvectors with eigenvalues Al and A2 (i.e., 
Xs E ker (As - T), s:= 1, 2). Then Xl and X2 are orthogonal. 

<I (Xl, X2) = 11 (TXl' X2) = >.\ (Xl, TX2) = ~(Xl' X2) t> 

6.6.5. For whatever strictly positive c, there are only finitely many eigenvalues 
of a compact hermitian operator beyond the interval [-c, cJ. 

<I Let (An)nEN be a sequence of pairwise distinct eigenvalues of T satisfying 
IAnl > c. Further, let Xn be an eigenvector corresponding to An and such that 
IIxnll = 1. By virtue of 6.6.4 (Xk' xm) = 0 for m =1= k. Consequently, 

IITx m - TXkll2 = IITxml12 + IITxkl12 = A!. + Ai 22c2; 
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i.e., the sequence (TXn)nEN is relatively compact. We arrive at a contradiction to 
the compactness property of T. t> 

6.6.6. Spectral Decomposition Lemma. Let T be a compact hermitian 
operator in a Hilbert space H and 0 t= oX E Sp(T). Put H>.:= ker (oX-T). Then H>. 
is finite-dimensional and the decomposition H = H>. EB Hi: reduces T. Moreover, 
the matrix presentation holds 

where the operator T>., the part of T in Hi:, is hermitian and compact, with 
Sp(T>.) = Sp(T) \ {.x}. 

<I The subspace H>. is finite-dimensional in view of the compactness of T. 
Furthermore, H>. is invariant under T. Consequently, the orthogonal complement 
Hi: of H>. is an invariant subspace of T* (coincident with T), since h E Hi: '* 
(Vx E H>.) x..l h =} (Vx E H>.) 0 = (h, Tx) = (T*h, x) =} T*h E Hi:. 

The part of T in H>. is clearly oX. The part T>. of T in Hi: is undoubtedly 
compact and hermitian. Obviously, for Jl t= oX, the operator 

is invertible if and only if so is Jl - T).,. It is also clear that ). is not an eigenvalue 
of T>.. t> 

6.6.7. Hilbert-Schmidt Theorem. Let H be a Hilbert space and let T be 
a compact hermitian operator in H. Assume further that P)., is the orthoprojection 
onto ker (). - T) for)' E Sp (T). Then 

<I Using 6.5.6 and 6.6.6 as many times as need be, for every finite subset () 
of Sp(T) obtain the equality 

It suffices to refer to 6.6.5. t> 
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6.6.8. REMARK. The Hilbert-Schmidt Theorem provides essentially new in-
formation, as compared with the case of finite dimensions, only if the operator T 
has infinite-rank, that is, the dimension of its range is infinite or, which is the same, 
Ht is an infinite-dimensional space, where Ho:= ker T. In fact, if the operator T 
has finite rank (i.e., its range is finite-dimensional) then, since the subspace Ht is 
isomorphic with the range of T, observe that 

n n 

T = L Ak(ek) = L Ake~ @ ek, 
k=I k=I 

where AI, ... ,An are nonzero points of Sp(T) counted with multiplicity, and 
{ eI, ... ,en} is a properly-chosen orthonormal basis for H t. 

The Hilbert-Schmidt Theorem shows that, to within substitution of series for 
sum, an infinite-rank compact hermitian operator looks like a finite-rank operator. 
Indeed, for A ::f= Il, where A and Il are nonzero points of Sp(T), the eigenspaces 
HA and H JJ are finite-dimensional and orthogonal. Moreover, the Hilbert sum 
EB>.ESp(T)\oHA equals Ht = cl im T, because Ho = (im T)l.. Successively se-
lecting a basis for each finite-dimensional space H A by enumerating the eigen-
values in decreasing order of magnitudes with multiplicity counted; i.e., putting 
Al := A2:= ... := Adirn H),! := AI, Adirn H).l +1 := ... := Adirn H).l +dirn H).2 := A2, etc., 
obtain the decomposition H = Ho EB HAl EB HA2 EB .•. and the presentation 

00 00 

T = L Ak(ek) = L Ake~ @ ek, 
k=I k=I 

where the series is summed in operator norm. <It> 

6.6.9. Theorem. Let T in X(HI' H 2 ) be an infinite-rank compact operator 
from a Hilbert space HI to a Hilbert space H2 . There are orthonormal families 
(ekhEl" in HI, (JkhEN in H 2 , and a numeric family (Ilk hEN in lR.+ \ 0, Ilk 1 0, 
such that tbe following presentation bolds: 

00 

T= Lllke~@!k. 
k=I 

<l Put S:= T*T. It is clear that S E B(HI ) and S is compact. Furthermore, 
(Sx, x) = (T*Tx, x) = (Tx, Tx) = IITxI12. Consequently, in virtue of 6.4.6, Sis 
hermitian and Ho := ker S = ker T. Observe also that SpeS) c 1R+ by Theorem 
6.5.5. 

Let (ekhEN be an orthonormal basis for Ht comprising all eigenvalues of S 
and let (Ak )kEN be a corresponding decreasing sequence of strictly positive eigen-
values Ak > 0, kEN (cf. 6.6.8). Then every element x E HI expands into the 
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Fourier series 
00 

x - PHoX = L)x, ek)ek. 
k=l 
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Therefore, considering that T PHo = 0 and assigning /-lk:= y'):k and ik:= /-l;lTek, 
find 

00 00 00 

Tx = 2)x, ek)Tek = ~)x, ek)/-lk Tek = L/-lk(X, ek)ik. 
k=l k=l /-lk k=l 

The family (Jk)kEN is orthonormal because 

( ) ( Ten Tem) 1 in, im = --, -- = --(Ten, Tem) 
/-In /-lm /-In/-lm 

= _l_(T*Ten, em) = _l_(Sen, em) 
/-In/-lm /-In/-lm 

= _-l--(..\nen, em) = /-In (en, em). 
/-In, /-lm /-lm 

Successively using the Pythagoras Theorem and the Bessel inequality, argue as 
follows: 

00 00 

k=n+l k=n+l 

Since ..\k 1 0, finally deduce that 

6.6.10. REMARK. Theorem 6.6.9 means in particular that a compact oper-
ator (and only a compact operator) is an adherent point of the set of finite-rank 
operators. This fact is also expressed as follows: "Every Hilbert space possesses 
the approximation property." 
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Exercises 

6.1. Describe the extreme points of the unit ball of a Hilbert space. 
6.2. Find out which classical Banach spaces are Hilbert spaces and which are not. 
6.3. Is a quotient space of a Hilbert space also a Hilbert space? 
6.4. Is it true that each Banach space may be embedded into a Hilbert space? 
6.5. Is it possible that the (bounded) endomorphism space of a Hilbert space presents 

a Hilbert space? 
6.6. Describe the second (= repeated) orthogonal complement of a set in a Hilbert 

space. 
6.7. Prove that no Hilbert basis for an infinite-dimensional Hilbert space is a Hamel 

basis. 
6.S. Find the best approximation to a polynomial of degree n + 1 by polynomials of 

degree at most n in the L2 space on an interval. 

adjoint. 

6.9. Prove that z ..l. y if and only if Ilz+yW = IIzW + IlyW and liz +iY112 = IIzll2 + IIYI12. 
6.10. Given a bounded operator T, prove that 

(ker T)l. = cl im T* , (im T)l. = ker T*. 

6.11. Reveal the interplay between hermitian forms and hermitian operators (cf. 6.5.3). 
6.12. Find the adjoint of a shift operator, a multiplier, and a finite-rank operator. 
6.13. Prove that an operator between Hilbert spaces is compact if and only if so is its 

6.14. Assume that an operator T is an isometry. Is T* an isometry too? 
6.15. A partial isometry is an operator isometric on the orthogonal complement of its 

kernel. What is the structure of the adjoint of a partial isometry? 
6.16. What are the extreme points of the unit ball of the endomorphism space of 

a Hilbert space? 
6.17. Prove that the weak topology of a separable Hilbert space becomes metrizable 

if restricted onto the unit ball. 
6.lS. Show that an idempotent operator P in a Hilbert space is an orthoprojection 

if and only if P commutes with P*. 
6.19. Let (akl)k,IEN be an infinite matrix such that akl ~ 0 for all k and l. Assume 

further that there are also Pk and (3, "f > 0 satisfying 

00 00 

Then there is some T in B(l2) such that (ek, ed 
characteristic function of k, a member of N. 

akl and IITII = y'jh, where ek is the 



Chapter 7 
Principles of Banach Spaces 

7.1. Banach's Fundamental Principle 
7.1.1. Lemma. Let U be a convex set witb nonempty interior in a multi-

normed space: int U -;. 0. Tben 
(1) O::;a<l*ael U+(l-a)intUcintUj 
(2) core U = int Uj 
(3) el U = el int Uj 
(4) int el U = int U. 

<I (1): For Uo E int U, the set int U - Uo is an open neighborhood of zero 
in virtue of 5.2.10. Whence, given 0 ::; a < 1, obtain 

ael U = el aU c aU + (1- a)(int U - uo) 
= aU + (1- a)int U - (1 - a)uo 

C aU + (1 - a)U - (1 - a)uo C U - (1 - a)uo. 

Thus, (1 - a)uo + ael U C U and so U in eludes (1 - a)int U + ael U. The last 
set is open as presenting the sum of a el U and (1 - a) int U, an open set. 

(2): Undoubtedly, int U C core U. If Uo E int U and u E core U then u = 
auo + (1- a)ul for some Ul in U and 0 < a < 1. Since Ul Eel U, from (1) deduce 
that u E int U. 

(3): Clearly, el int U c el U for int U C U. If, in turn, u E el Uj then, 
choosing Uo in the set int U and putting Ua := auo + (1 - a )u, infer that U a -t u 
as a -t 0 and U a E int U when 0 < a < 1. Thus, by construction u E el int U. 

(4): From the inelusions int U cUe el U it follows that int U C int el U. 
If now u E int el U then, in virtue of (2), u E core el U. Consequently, taking Uo 
in the set int U again, find Ul E cl U and 0 < a < 1 satisfying u = auo + (1- a )Ul' 
Using (1), finally infer that u E int U. t> 

7.1.2. REMARK. In the case of finite dimensions, the condition int U -;. 0 
may be omitted in 7.1.1 (2) and 7.1.1 (4). In the opposite case, the presence of 
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an interior point is an essential requirement, as shown by numerous examples. For 
instance, take U:= Beo n X, where Co is the space of vanishing sequences and X is 
the subspace of terminating sequences in co, the direct sum of count ably many 
copies of a basic field. Evidently, core U = 0 and at the same time cl U = Beo. <It> 

7.1.3. DEFINITION. A subset U of a (multi )normed space X is an ideally 
convex set in X, if U is closed under the taking of countable convex combinations. 
More precisely, U is ideally convex iffor all sequences (an )nEN and (un )nEN, with 
an E 1R+, L::'=1 an = 1 and Un E U such that the series L::'=1 anun converges 
in X to some u, the containment holds: u E U. 

7.1.4. EXAMPLES. 
(1) Translation (by a vector) preserves ideal convexity. <It> 

(2) Every closed convex set is ideally convex. <It> 

(3) Every open convex set is ideally convex. 
<l Take an open and convex U. If U = 0 then nothing is left to proof. If U f- 0 

then by 7.1.4 (1) it may be assumed that 0 E U and, consequently, U = {pu < I}, 
where PU is the Minkowski functional of U. Let (un )nEN and (an )nEN be sequences 
in U and in 1R+ such that L:::'=1 an = 1, with the element u:= L::'=1 anun failing 
to lie in U. By virtue of 7.1.4 (2), u belongs to cl U = {pu ~ I} and so pu( u) = 1. 
On the other hand, it is clear that pu(u) ~ 2::::'=1 anPU(Un ) ~ 1 = 2::::'=1 an 
(cf. 7.2.1). Thus, 0 = 2::::'=:I(an - anPu(un )) = 2::::'=1 a n(1 - pu(un )). Whence 
an = 0 for all n E No We arrive at a contradiction. t> 

(4) The intersection of a family of ideally convex sets is ideally con-
vex. <It> 

(5) Every convex subset of a finite-dimensional space is ideally con-
vex. <It> 

7.1.5. Banach's Fundamental Principle. In a Banach space, each ideally 
convex set with absorbing closure is a neighborhood of zero. 

<l Let U be such a set in a Banach space X. By hypothesis X = UnEN n cl U. 
By the Baire Category Theorem, X is nonmeager and so there is some n in N 
such that int n cl U f- 0. Therefore, int cl U = 1/ n int n cl U f- 0. By hypothesis 
o E core cl U. Consequently, from 7.1.1 it follows that 0 E int cl U. In other 
words, there is aD> 0 such that cl U J oBx. Consequently, 

Using the above implication, show that U J C /zBx . 
Let Xo E C /2B x. Putting E: := 2, choose Yl E 1/ eU from the condition 

IIYI - Xo II ~ l/zeo. Thus obtain an element Ul of U such that Ill/zul - Xo II ~ 
l/zeo = 1/40. 
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Now putting Xo := _1/ 2Ul + Xo and €:= 4 and applying the argument of the 
preceding paragraph, find an element U2 of U satisfying 111/4 u2 + 1 h U l - Xo II :S 
1 heb = 1/ 8 b. Proceeding by induction, construct a sequence (Un)nEN ofthe points 
of U which possesses the property that the series 2::::'=11 hnUn converges to Xo. 
Since 2::::'=1 1/ 2n = 1 and the set U is ideally convex, deduce Xo E U. t> 

7.1.6. For every ideally convex set U in a Banach space the following four 
sets coincide: the core of U, the interior of U, the core of the closure of U and the 
interior of the closure of U. 

<I It is clear that int U c core U C core cl U. If U E core cl U then cl (U - u) 
equal to cl U -u is an absorbing set. An ideally convex set translates into an ideally 
convex set (cf. 7.1.4 (1)). Consequently, U -u is a neighborhood of zero by Banach's 
Fundamental Principle. By virtue of 5.2.10, u belongs to int U. Thus, int U = 
core U = core cl U. Using 7.1.1, conclude that int cl U = int U. t> 

7.1.7. The core and the interior of a closed convex set in a Banach space 
coincide. 

<I A closed convex set is ideally convex. t> 

7.1.8. REMARK. Inspection ofthe proof of 7.1.5 shows that the condition for 
the ambient space to be a Banach space in 7.1.7 is not utilized to a full extent. 
There are examples of incomplete normed spaces in which the core and interior of 
each closed convex set coincide. A space with this property is called barreled. The 
concept of barreledness is seen to make sense also in multinormed spaces. Barreled 
multinormed spaces are plentiful. In particular, such are all Frechet spaces. 

7.1.9. COUNTEREXAMPLE. Each infinite-dimensional Banach space contains 
absolutely convex, absorbing and not ideally convex sets. 

<I Using, for instance, a Hamel basis, take a discontinuous linear functional f. 
Then the set {If I :S I} is what was sought. t> 

7.2. Boundedness Principles 
7.2.1. Let p: X --t lR be a sublinear functional on a normed space (X, 11·11). 

The following conditions are equivalent: 
(1) p is uniformly continuous; 
(2) p is continuous; 
(3) p is continuous at zero; 
( 4) {p:S I} is a neighborhood of zero; 
(5) Ilpll:= sup{lp(x)l: Ilxll:S I} < +00; i.e., p is bounded. 

<I The implications (1) => (2) => (3) => (4) are immediate. 
(4) => (5): There is some t > 0 such that C 1 Bx C {p:S I}. Given II xII :S 1, 

thus find p( x) :S t. In addition, the inequality -pC -x) :S p( x) implies that -pC x) :S 
t for x E B x. Finally, Ilpll :S t < +00. 
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(5) =} (1): From the subadditivity of p, given x, y E X, observe that 

p(x) - p(y) ~ p(x - V); p(y) - p(x) ~ p(y - x). 

Whence Ip(x) - p(y)1 ~ p(x - y) V p(y - x) ~ Ilpllllx - YII. t> 

7.2.2. Gelfand Theorem. Every lower semicontinuous sublinear functional 
witb domain a Banacb space is continuous. 

<l Let p be such a functional. Then the set {p ~ I} is closed (cf. 4.3.8). Since 
dom p is the whole space; therefore, by 3.8.8, {p ~ I} is an absorbing set. By 
Banach's Fundamental Principle {p ~ I} is a neighborhood of zero. Application 
to 7.2.1 completes the proof. t> 

7.2.3. REMARK. The Gelfand Theorem is stated amply as follows: "If X is 
a Banach space then each of the equivalent conditions 7.2.1 (1)-7.2.1 (5) amounts 
to the statement: 'p is lower semi continuous on X.'" Observe immediately that 
the requirement dom p = X may be slightly relaxed by assuming dom p to be 
a nonmeager linear set and withdrawing the condition for X to be a Banach space. 

7.2.4. Equicontinuity Principle. Suppose tbat X is a Banacb space and Y 
is a (semi)normed space. For every nonempty set g of continuous linear operators 
from X to Y tbe following statements are equivalent: 

(1) g is pointwise bounded; i.e., for all x E X the set {Tx: T E g} is 
bounded in Y; 

(2) g is equicontinuous. 
<l (1) =} (2): Put q(x) := sup{p(Tx) T E g}, with p the (semi)norm 

of Y. Evidently, q is a lower semi continuous sublinear functional and so by the 
Gelfand Theorem IIqll < +00; i.e., p(T(x - V)) ~ Ilqll IIx - yll for all T E g. 
Consequently, TX-l({dp ~ c}) C {dll'lI ~ c:/llqll} for every T in g, where c: > 0 is 
taken arbitrarily. This means the equicontinuity property of g. 

(2) =} (1): Straightforward. t> 

7.2.5. Uniform Boundedness Principle. Let X be a Banach space and 
let Y be a normed space. For every nonempty family (Te )eEs of bounded operators 
the following statements are equivalent: 

(1) x EX=} sUPeEsllTexl1 < +00; 
(2) sUPeEsliTel1 < +00. 

<l It suffices to observe that 7.2.5 (2) is another expression for 7.2.4 (2). t> 

7.2.6. Let X be a Banach space and let U be a subset of X'. Then tbe 
following statements are equivalent: 

(1) U is bounded in X'; 
(2) for every x in X tbe numeric set {(x I x'): x' E U} is bounded in IF. 

<l This is a particular case of 7.2.5. t> 
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7.2.7. Let X be a normed space and let U be a subset of X. Then the 
following statements are equivalent: 

(1) U is bounded in X; 
(2) for every x' in X' the numeric set {{x I x'} : x E U} is bounded in Jr. 

<l Only (2) => (1) needs examining. Observe that X' is a Banach space 
(cf. 5.5.7) and X is isometrically embedded into X" by the double prime map-
ping (cf. 5.1.10 (8)). So, the claim follows from 7.2.6. t> 

7.2.8. REMARK. The message of 7.2.7 (2) may be reformulated as "U is 
bounded in the space (X, a(X, X'))" or, in view of 5.1.10 (4), as "U is weakly 
bounded." The duality between 7.2.6 and 7.2.7 is perfectly revealed in 10.4.6. 

7.2.9. Banach-Steinhaus Theorem. Let X and Y be Banach spaces. As-
sume further that (Tn)nEN, Tn E B(X, Y), is a sequence of bounded operators. 
Put E:= {x EX: 3IimTnx}. The following conditions are equivalent: 

(1) E=X; 
(2) sUPnEN IITnll < +00 and E is dense in X. 

Under either (and, hence, both) of the conditions (1) and (2) the mapping To 
X ~ Y, defined as Tox:= lim Tnx, presents a bounded linear operator and liTo II ::; 
liminf II Tn II· 

<l If E = X then, of course, cl E = X. In addition, for every x in X the 
sequence (TnX)nEN is bounded in Y (for, it converges). Consequently, by the 
Uniform Boundedness Principle sUPnEN IITnl1 < +00 and (1) => (2) is proven. 

If (2) holds and x E X then, given x E E and m, kEN, infer that 

IITmx - TkXl1 = IITm x - Tm x + Tm x - Tk X + Tkx - TkXIl 
::; IITmx - Tmxll + IITmx - TkXII + IITkx - TkXIl 
::; IITmllllx - xII + IITm x - TkXl1 + IITkllllx - xii 

::; 2 sup II Tn II Ilx - xII + IITmx - TkXII· 
nEN 

Take 1£ > 0 and choose, first, x E E such that 2suPn IITnllllx - xII ::; "12, and, 
second, n E N such that IITmx - TkXII ::; ., 12 for m, k ~ n. By virtue of what was 
proven IITmx - TkXIl ::; 1£; i.e., (TnX)nEN is a Cauchy sequence in Y. Since Y is 
a Banach space, conclude that x E E. Thus, (2) => (1) is proven. 

To complete the proof it suffices to observe that 

for all x EX, because every norm is a continuous function. t> 
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7.2.10. REMARK. Under the hypotheses of the Banach-Steinhaus Theorem, 
the validity of either of the equivalent items 7.2.9 (1) and 7.2.9 (2) implies that 
(Tn) converges to To compactly on X (= uniformly on every compact subset of X). 
In other words, 

sup IITnx - Toxil --+ 0 
zEQ 

for every (nonempty) compact set Q in X. 
<I Indeed, it follows from the Gelfand Theorem that the sublinear functional 

Pn(X):= sup{IITmx - ToxlI: m ~ n} is continuous. Moreover, Pn(X) ~ Pn+I(X) 
and Pn (x) --+ 0 for all x EX. Consequently, the claim follows from the Dini 
Theorem: "Each decreasing sequence of continuous real functions which converges 
pointwise to a continuous function on a compact set converges uniformly." I> 

7.2.11. Singularity Fixation Principle. Let X be a Banach space and let 
Y be a normed space. If (Tn)nEN is a sequence of operators, Tn E B(X, Y) 
and SUPn IITnll = +00 then there is a point x of X satisfying SUPn IITnxll = +00. 

The set of such points "fixing a singularity" is residual. 
<I The first part of the assertion is contained in the Uniform Boundedness 

Principle. The second requires referring to 7.2.3 and 4.7.4. I> 

7.2.12. Singularity Condensation Principle. Let X be a Banach space 
and let Y be a normed space. If (Tn,m)n,mEN is a family of operators, Tn E 
B(X, Y), such that SUPn IITn,mll = +00 for every mEN then there is a point x 
of X satisfying supn IITn,mxlI = +00 for all mEN. <II> 

7.3. The Ideal Correspondence Principle 
7.3.1. Let X and Y be vector spaces. A correspondence F C X X Y is convex 

if and only if for Xl, X2 E X and 01, 02 E lR+ such that 01 + 0:2 = 1, the inclusion 
holds: 

F(OIXI + 02X2) J olF(xd + 02F(X2). 

<I~: If (Xl, yd, (X2' Y2) E F and 01, 02 ~ 0, 01 +02 = 1, then 01Y+02Y2 E 
F(OIXI + 02X2) since YI E F(XI) and Y2 E F(X2)' 

=>: If either Xl or X2 fails to enter in dom F then there is nothing to prove. If 
YI E F(xd and Y2 E F(X2) with Xl, X2 E dom F then OI(XI, yJ)+02(X2, Y2) E F 
for OJ, 02 ~ 0, 01 + 02 = 1 (cf. 3.1.2 (8)). I> 

7.3.2. REMARK. Let X and Y be Banach spaces. It is clear that there are 
many ways for furnishing the space X X Y with a norm so that the norm topology 
be coincident with the product of the topologies TX and Ty. For instance, it is 
possible to put lI(x, y)II:= IIxlix + lIylly; i.e., to define the norm on X X Y as that 
of the I-sum of X and Y. Observe immediately that the concept of ideally convex 
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set has a linear topological character: the class of objects distinguished in a space 
is independent of the way of introducing the space topology; in particular, the class 
remains invariant under passage to an equivalent (multi)norm. In this connection 
the next definition is sound. 

7.3.3. DEFINITION. A correspondence F C X x Y, with X and Y Banach 
spaces, is called ideally convex or, briefly, ideal if F is an ideally convex set. 

7.3.4. Ideal Correspondence Lemma. The image of a bounded ideally 
convex set under an ideal correspondence is an ideally convex set. 

<l Let F c X x Y be an ideal correspondence and let U be a bounded ideally 
convex set in X. If U n dom F = 0 then F(U) = 0 and nothing is left unproven. 
Let now (Yn)nEN C F(U); i.e., Yn E F(xn), where Xn E U and n E N. Let, finally, 
(an) be a sequence of positive numbers such that L::"=l an = 1 and, moreover, 
there is a sum of the series y:= L::"=l anYn in Y. It is beyond a doubt that 

00 00 00 

I: Ilanxnll = I: anllxnll :::; I: an sup IIUIl = sup IIUIl < +00 
n=l n=l n=l 

in view of the boundedness property of U. Since X is complete, from 5.5.3 it 
follows that X contains the element x := L::"=l anxn. Consequently, (x, y) = 
L::"=l an(xn , Yn) in the space X x Y. Successively using the ideal convexity of F 
and U, infer that (x, y) E F and x E U. Thus, Y E F(U). l> 

7.3.5. Ideal Correspondence Principle. Let X and Y be Banach spaces. 
Assume further that F C X x Y is an ideal correspondence and (x, y) E F. 
A correspondence F carries each neighborhood of x onto a neighborhood about y 
if and only if y E core F(X). 

<l =}: This is obvious. 
~: On account of 7.1.4 it may be assumed that x = 0 and y = O. Since each 

neighborhood of zero U includes c:Bx for some c: > 0, it suffices to settle the case 
U:= Bx. Since U is bounded; by 7.3.4, F(U) is ideally convex. To complete the 
proof, it suffices to show that F(U) is an absorbing set and to cite 7.1.6. 

Take an arbitrary element y of Y. Since by hypothesis 0 E core F(X), there 
is a real a in IR+ such that ay E F(X). In other words, ay E F(X) for some x 
in X. If IIxll :::; 1 then there is nothing to prove. If Ilxll > 1 then A:= IIxll-1 < 1. 
Whence, using 7.3.1, infer that 

aAy = (1 - A)O + )..ay E (1 - A)F(O) + AF(x) 
C F((l - A)O + AX) = F(AX) C F(Bx) = F(U). 

Here use was made of the fact that II)..xll = 1; i.e., Ax E Bx. l> 
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7.3.6. REMARK. The property of F, described in 7.3.5, is referred to as the 
openness of F at (x, y). 

7.3.7. REMARK. The Ideal Correspondence Principle is formally weaker that 
Banach's Fundamental Principle. Nevertheless, the gap is tiny and can be eas-
ily filled in. Namely, the conclusion of 7.3.5 remains valid if we suppose that 
y E core cl F(X), on additionally requiring ideal convexity from F(X). The re-
quirement is not too stringent and certainly valid provided that the domain of F 
is bounded in virtue of 7.3.4. As a result of this slight modification, 7.1.5 becomes 
a particular case of 7.3.5. In this connection the claim of 7.3.5 is often referred to 
as Banach's Fundamental Principle for a Correspondence. 

7.3.8. DEFINITION. Let X and Y be Banach spaces and let Fe X X Y be 
a correspondence. Then F is called closed if F is a closed set in X x Y. 

7.3.9. REMARK. For obvious reasons, a closed correspondence is often re-
ferred to as a closed-graph correspondence. 

7.3.10. A correspondence F is closed if and only if for all sequences (x n ) in X 
and (Yn) in Y sucb tbat Xn E dom F, Yn E F(xn) and Xn ~ x, Yn ~ y, it follows 
tbat x E dom F and Y E F(x). <II> 

7.3.11. Assume tbat X and Y are Banacb spaces and Fe X x Y is a closed 
convex correspondence. Furtber, let (x, y) E F and Y E core im F. Tben F 
carries eacb neigbborbood of x onto a neigbborbood about y. 

<l A closed convex set is ideally convex and so all follows from 7.3.5. I> 

7.3.12. DEFINITION. A correspondence Fe X xY is called open if the image 
of each open set in X is an open set in Y. 

7.3.13. Open Correspondence Principle. Let X and Y be Banacb spaces 
and let F c X x Y be an ideal correspondence, witb im F an open set. Tben F 
is an open correspondence. 

<l Let U be an open set in X. If y E F(U) then there is some x in U such 
that (x, y) E F. It is clear that y E core im F. By the criterion of 7.3.5 F(U) is 
a neighborhood of y because U is a neighborhood of x. This means that F(U) is 
an open set. I> 

7.4. Open Mapping and Closed Graph Theorems 

7.4.1. DEFINITION. A member T of ..2"(X, Y) is a homomorphism, if T E 
B(X, Y) and T is an open correspondence. 

7.4.2. Assume tbat X is a Banacb space, Y is a normed space and T is 
a bomomorpbism from X to Y. Tben im T = Y and Y is a Banacb space. 
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<l It is obvious that im T = Y. Presuming T to be a monomorphism, observe 
that T-l E .2"(Y, X). Since T is open, T- l belongs to B(Y, X), which ensures the 
completeness of Y (the inverse image of a Cauchy sequence in a subset is a Cauchy 
sequence in the inverse image of the subset). In the general case, consider the 
coimage coim T:= XI ker T endowed with the quotient norm. In virtue of 5.5.4, 
coim T is a Banach space. In addition, by 2.3.11 there is a unique quotient T 
of T by coim T, the monoquotient of T. Taking account of the definition of 
quotient norm and 5.1.3, conclude that T is a homomorphism. Furthermore, T is 
a monomorphism by definition. It remains to observe that im T = im T = Y. t> 

7.4.3. REMARK. As regards the mono quotient T: coim T --+ Y of T, it may 
be asserted that IITII = IITII. <It> 

7.4.4. Banach Homomorphism Theorem. Every bounded epimorphism 
from one Banach space onto the other is a homomorphism. 

<l Let T E B(X, Y) and im T = Y. On applying the Open Correspondence 
Principle to T, complete the proof. t> 

7.4.5. Banach Isomorphism Theorem. Let X and Y be Banach spaces 
and T E B(X, Y). If T is an isomorphism of the vector spaces X and Y, i.e. 
ker T = 0 and im T = Yj then T- l E B(Y, X). 

<l A particular case of 7.4.4. t> 

7.4.6. REMARK. The Banach Homomorphism Theorem is often referred to as 
the Open Mapping Theorem for understandable reasons. Theorem 7.4.5 is briefly 
formulated as follows: "A continuous (algebraic) isomorphism of Banach spaces 
is a topological isomorphism." It is also worth observing that the theorem is 
sometimes referred to as the Well-Posedness Principle and verbalized as follows: 
"If an equation Tx = y, with T E B(X, Y) and X and Y Banach spaces, is 
uniquely solvable given an arbitrary right sidej then the solution x depends con-
tinuously on the right side y." 

7.4.7. Banach Closed Graph Theorem. Let X and Y be Banach spaces 
and let T in .2"(X, Y) be a closed linear operator. Then T is continuous. 

<l The correspondence T-l is ideal and T- l (Y) = X. t> 

7.4.8. Corollary. Suppose that X and Yare Banach spaces and T is a linear 
operator from X to Y. The following conditions are equivalent: 

(1) T E B(X, Y)j 
(2) for every sequence (Xn)nEN in X, together with some x in X and y 

in Y satisfying Xn --+ x and TX n --+ y, it happens that y = Tx. 
<I (2): This is a reformulation of the closure property of T. t> 

7.4.9. DEFINITION. A subspace Xl of a Banach space X is complemented 
(rarely, a topologically complemented), if Xl is closed and, moreover, there is 
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a closed subspace X 2 such that X = Xl $X2 (i.e., Xl /\X2 = 0 and Xl V X 2 = X). 
These Xl and X 2 are called complementary to one another. 

7.4.10. Complementation Principle. For a subspace Xl of some Banach 
space X one of the following conditions amounts to the other: 

(1) Xl is complemented; 
(2) Xl is the range of a bounded projection; i.e., there is a member P 

of B(X) such that p 2 = P and im P = Xl. 

<I (1) =} (2): Let P be the projection of X onto Xl along X 2 (cf. 2.2.9 (4». 
Let (Xn)nEN be a sequence in X with Xn -t x and PXn -t y. It is clear that 
PXn E Xl for n E N. Since Xl is closed, by 4.1.19 y E Xl. Similarly, the condition 
(x n - PXn E X 2 for n E N) implies that x - y E X 2 • Consequently, P(x - y) = o. 
Furthermore, y = Py; i.e., y = Px. It remains to refer to 7.4.8. 

(2) =} (1): It needs showing only that Xl equal to im P is closed. Take 
a sequence (Xn)nEN in Xl such that Xn -t x in X. Then PXn -t Px in view of the 
boundedness of P. Obtain PXn = Xn, because Xn E im P and P is an idempotent. 
Finally, x = Px, i.e. x E Xl, what was required. t> 

7.4.11. EXAMPLES. 
(1) Every finite-dimensional subspace is complemented. <It> 

(2) The space Co is not complemented in 100 • 

<I It turns out more convenient to work with X := loo(Q) and Y := co(Q), 
where Q is the set of rational numbers. Given t E lR, choose a sequence (In) 
of pairwise distinct rational numbers other than t and such that In -t t. Let 
Qt:= {In: n EN}. Observe that Qtl n Qt ll is a finite set if t' 1= til. 

Let Xt be the coset containing the characteristic function of Qt in the quo-
tient space X/Y and V:= {Xt: t E lR}. Since Xt' 1= Xt" for t' 1= til, the set V is 
uncountable. Take f E (X/Y)' and put Vf:= {v E V: f(v) 1= a}. It is evident 
that Vf = UnENVf(n), where Vf(n):= {v E V: If(v)1 ~ lin}. Given mEN and 
pairwise distinct VI, ... ,Vm in Vf( n), put 0k:= If( vk )1/ f( Vk) and x:= 2:~=1 0kVk 
to find IIxll ~ 1 and IIfll ~ If(x)1 = 12:;;'=lokf(Vk)1 = 12:;;'=llf(vk)11 ~ min. 
Hence, Vf( n) is a finite set. Consequently, Vf is countable. Whence it follows 
that for every countable subset F of (X/Y)' there is an element v of V satisfying 
(V f E F) f( v) = o. At the same time the countable set of the coordinate projec-
tions Oq : x ~ x(q) (q E Q) is total over loo(Q); i.e., (V q E Q) Oq(x) = 0 =} x = 0 
for x E loo(Q). It remains to compare the above observations. t> 

(3) Every closed subspace of a Hilbert space is complemented in virtue 
of 6.2.6. Conversely, if, in an arbitrary Banach space X with dimX ~ 3, each 
closed subspace is the range of some projection P with IIPII ~ 1; then X is 
isometrically isomorphic to a Hilbert space (this is the Kakutani Theorem). The 
next fact is much deeper: 
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Lindenstrauss-Tzafriri Theorem. A Banach space having every closed 
subspace complemented is topologically isomorphic to a Hilbert space. 

7.4.12. Sard Theorem. Suppose that X, Y, and Z are Banach spaces. Take 
A E B(X, Y) and B E B(Y, Z). Suppose further that im A is a complemented 
subspace in Y. The diagram 

A 
X-Y 

~l~ 
Z 

is commutative for some ~ in B(Y, Z) if and only if ker ACker B. 

<l Only -<= needs examining. Moreover, in the case im A = Y the sole member 
!to of £(Y, Z) such that !tOA = B is continuous. Indeed, ~-l(U) = A(B-l(U)) 
for every open set U in Z. The set B-l(U) is open in virtue of the boundedness 
property of B, and A(B-l(U)) is open by the Banach Homomorphism Theorem. 
In the general case, construct !to E B(im A, Z) and take as ~ the operator !tOP, 
where P is some continuous projection of Y onto im A. (Such a projection is 
available by the Complementation Principle.) I> 

7.4.13. Phillips Theorem. Suppose that X, Y, and Z are Banach spaces. 
Take A E B(Y, X) and B E B(Z, X). Suppose further that ker A is a comple-
mented subspace ofY. The diagram 

A 
X---Y 

Z 

is commutative for some ~ in B(Z, Y) if and only if im A :::> im B. 

<l Once again only -<= needs examining. Using the definition of complemented 
subspace, express Y as the direct sum of ker A and Yo, where Yo is a closed 
subspace. By 5.5.9 (1), Yo is a Banach space. Consider the part AD of A in Yo. 
Undoubtedly, im AD = im A :::> im B. Consequently, by 2.3.13 and 2.3.14 the 
equation Ao!tO = B has a unique solution !to := A;;-l. It suffices to prove that 
the operator !to, treated as a member of £(Z, Yo), is bounded. 

The operator !to is closed. Indeed (cf. 7.4.8), if Zn -+ Z and A;;-l BZn -+ Y 
then BZn -+ Bz, since B is bounded. In addition, by the continuity of AD, the 
correspondence A;;-l C X X Yo is closed; and so 7.3.10 yields the equality y = 
A;;-l Bz. I> 
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7.4.14. REMARK. We use neither the completeness of Z in proving the Sard 
Theorem nor the completeness of X in proving the Phillips Theorem. 

7.4.15. REMARK. The Sard Theorem and the Phillips Theorem are in "for-
mal duality"; i.e., one results from the other by reversing arrows and inclusions 
and substituting ranges for kernels (cf. 2.3.15). 

7.4.16. Two Norm Principle. Let a vector space be complete in each of 
two comparable norms. Then the norms are equivalent. 

<l For definiteness, assume that II ·112 r II . 111 in X. Consider the diagram 
Ix 

(X,II·lId --- (X,II·1I2) 

~ 1~ 
(X,II·lId 

By the Phillips Theorem some continuous operator ~ makes the diagram com-
mutative. Such an operator is unique: it is Ix. [> 

7.4.17. Graph Norm Principle. Let X and Y be Banach spaces and let T 
in 2'(X, Y) be a closed operator. Given x E X, define the graph norm of x as 
IIxllgr T:= IIxlix + IITxlly· Then II . IIgr T '" II . IIx. 

<l Observe that the space (X, 1I·lIgr T) is complete. Further, 1I·lIgr T 2: 1I·lIx. 
It remains to refer to the Two Norm Principle. [> 

7.4.18. DEFINITION. A normed space X is a Banach range, if X is the range 
of some bounded operator given on some Banach space. 

7.4.19. Kato Criterion. Let X be a Banach space and X = Xl ffiX2, where 
Xl, X 2 E Lat (X). The subspaces Xl and X 2 are closed if and only if each of them 
is a Banach range. 

<l =}: A corollary to the Complementation Principle. 
¢=: Let Z be a some Banach range, i.e. Z = T(Y) for some Banach space Y 

and T E B(Y, Z). Passing, if need be, to the monoquotient of T, we may assume 
that T is an isomorphism. Put IIzllo:= IIT-lzlly. It is clear that (Z, 11·110) is 
a Banach space and IIzll = IITT-I zll :s; IITIlIIT-l zll = IITllllzllo; i.e., 11·110 r II· liz. 
Applying this construction to Xl and X 2 , obtain Banach spaces (Xl, II· lid and 
(X2' 11·112). Now 1I·lIk r 1I·lIx on Xk for k:= 1,2. 

Given Xl E Xl and X2 E X 2, put IIXI + x2110:= IIxllll + IIx2112' Thereby we 
introduce in X some norm II . II that is stronger than the initial norm II . IIx. 
By construction (X, II ·110) is a Banach space. It remains to refer to 7.4.16. [> 
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7.5. The Automatic Continuity Principle 
7.5.1. Lemma. Let f : X -+ R be a convex function on a (multi)normed 

space X. The following statements are equivalent: 
(1) U:= int dom f =1= 0 and flu is a continuous function; 
(2) there is a nonempty open set V such that sup f(V) < +00. 

<I (1) =} (2): This is obvious. 
(2) =} (1): It is clear that U =1= 0. Using 7.1.1, observe that each point u of U 

has a neighborhood W in which f is bounded above, i.e. t:= sup feW) < +00. 
Without loss of generality, it may be assumed that u := 0, f( u) := 0 and W is 
an absolutely convex set. From the convexity of f, for every a E ~+ such that 
a ~ 1 and for an arbitrary v in W, obtain 

f(av) = f(av + (1- a)O) ~ af(v) + (1- a)f(O) = af(v); 
f(av) + af( -v) ~ f(av) + f(a( -v)) 

= 2e /21 (av) + 1 hf( -av)) ~ 2f(0) = o. 
Therefore, If(aW)1 ~ at, which implies that f is continuous at zero. I> 

7.5.2. Corollary. If x E int dom f and f is continuous at x then the sub-
differential ax (J) contains only continuous functionals. 

<I If IE ox(J) then (Vx EX) l(x)a:s, lex) + f(x) - f(x) and so I is bounded 
above on some neighborhood about x. Consequently, I is continuous at x by 7.5.1. 
From 5.3.7 derive that I is continuous. I> 

7.5.3. Corollary. Every convex function on a nnite-dimensional space is 
continuous on the interior of its domain. <II> 

7.5.4. DEFINITION. A function f : X -+ R is called ideally convex if epi f is 
an ideal correspondence. 

7.5.5. Automatic Continuity Principle. Every ideally convex function 
on a Banach space is continuous on the core of its domain. 

<I Let f be such a function. If core dom f = 0 then there is nothing to 
prove. If x E core dom f then put t := f(x) and F := (epi f)-I C R x X. 
Applying the Ideal Correspondence Principle, find a b > 0 from the condition 
F(t+BIR) ~ x+bBx. Whence, in particular, infer the estimate f(x+bBx) ~ t+ 1. 
In virtue of 7.5.1, f is continuous on int dom f. Since x E int dom f; therefore, 
by Lemma 7.1.1, core dom f = int dom f. I> 

7.5.6. REMARK. Using 7.3.6, it is possible to prove that an ideally convex 
function f, defined in a Banach space on a subset with nonempty core, is locally 
Lipschitz on int dom f. In other words, given Xo E int dom f, there are a positive 
number L and a neighborhood U about Xo such that IIf(x) - f(xo)II ~ Lllx - xoll 
whenever x E U. <II> 



7.5. The Automatic Continuity Principle 113 

7.5.7. Corollary. Let f : X -+ K be an ideally convex function on a Banach 
space X and x E core dom f. Then the directional derivative f' (x) is a continuous 
sublinear functional and ox(J) c X'. 

<I Apply the Automatic Continuity Principle twice. t> 

7.5.8. REMARK. In view of 7.5.7, in studying a Banach space X, only contin-
uous functionals on X are usually admitted into the sub differential of a function 
f : X -+ K at a point x; i.e., we agree to define 

Proceed likewise in (multi)normed spaces. If a need is felt to distinguish the "old" 
(wider) sub differential, a subset of X# , from the "new" (narrower) sub differential, 
a subset of X'; then the first is called algebraic, whereas the second is called 
topological. With this in mind, we refer to the facts indicated in 7.5.2 and 7.5.7 as 
to the Coincidence Principle for algebraic and topological subdifferentials. Observe 
finally that if f:= p is a seminorm on X then, for similar reasons, it is customary 
to put lol(p):= lol(p) n X'. 

7.5.9. Ideal Hahn-Banach Theorem. Let f : Y -+ JR.' be an ideally 
convex function on a Banach space Y. Further, let X be a normed space and 
T E B(X, Y). If a point x in X is such that Tx E core dom f then 

Ox(J 0 T) = OTx(J) 0 T. 

<I The right side of the sought formula is included into its left side for obvious 
reasons. If I in X, belongs to ox(J 0 T), then by the Hahn-Banach Theorem there 
is an element II of the algebraic sub differential of f at Tx for which 1 = II 0 T. 
It suffices to observe that, in virtue of 7.5.7, II is an element of Y' and so it is 
a member of the topological sub differential OTx(J). t> 

7.5.10. Balanced Hahn-Banach Theorem. Suppose that X and Yare 
normed spaces. Given T E B(X, Y), let p : Y -+ JR. be a continuous seminorm. 
Then 

lol(p 0 T) = 181(p) 0 T. 
<I If I E 181(p 0 T) then I = II 0 T for some it in the algebraic balanced 

sub differential of p (cf. 3.7.11). From 7.5.2 it follows that it is continuous. Thus, 
181(p 0 T) c 181(p) 0 T. The reverse inclusion raises no doubts. t> 

7.5.11. Continuous Extension Principle. Let Xo be a subspace of X and 
let 10 be a continuous linear functional on Xo. Then there is a continuous linear 
functional 1 on X extending 10 and such that 11111 = 111011. 

<I Take p:= 11101111 . II, and consider the identical embedding t : Xo -+ X. 
On account of 7.5.10, 10 E 181(p 0 t) = 181(p) 0 t = 111011181(11' II) 0 to It suffices to 
observe that 181(11'lIx) = Bx'. t> 
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7.5.12. Topological Separation Theorem. Let U be a convex set with 
nonempty interior in a space X. If L is an affine variety in X and L n int U = 0 
then there is a closed hyperplane H in X such that H J L and H n int U = 0. <][> 

7.5.13. REMARK. When applying Theorem 7.5.12, it is useful to bear in mind 
that a closed hyperplane is precisely a level set of a nonzero continuous linear 
functional. <Ie> 

7.5.14. Corollary. Let Xo be a subspace of X. Then 

clXo=n{kerf: fEX', kerfJXo}. 

<I It is clear that U E X' & ker f J Xo) =} ker f J cl Xo. If Xo 1:. cl Xo 
then there is an open convex neighborhood about Xo disjoint from cl Xo. In virtue 
of 7.5.12 and 7.5.13 there is a functional fo, a member of (XIR)' , such that ker fo J 
cl Xo and fo(xo) = 1. From the properties of the complexifier infer that the 
functionallRe- 1 fo vanishes on Xo and differs from zero at the point Xo. It is also 
beyond a doubt that the functional is continuous. e> 

7.6. Prime Principles 
7.6.1. Let X and Y be (multi)normed vector spaces (over the same ground 

field IF). Assume further that X' and Y' are the duals of X and Y respectively. 
Take a continuous linear operator T from X to Y. Then y' 0 T E X, for y' E Y' 
and the mapping y' 1--+ y' 0 T is a linear operator. <Ie> 

7.6.2. DEFINITION. The operator T' : Y' -+ X', constructed in 7.6.1, is the 
dual or transpose of T : X -+ Y. 

7.6.3. Theorem. The prime mapping T 1--+ T' implements a linear isometry 
of the space B(X, Y) into the space B(Y', X'). 

<I The prime mapping is clearly a linear operator from B(X, Y) to 2'(Y', X'). 
Furthermore, since Ilyll = sup{ll(y): 1 E 101(11· II)}; therefore, 

IIT'II = sup{IIT'y'lI: lIy'lI:S I} 
= sup{ly'(Tx)l: lIy'lI:S 1, IIxll :S I} = sup{IITxll: IIxll:S I} = IITII, 

what was required. e> 

7.6.4. EXAMPLES. 
(1) Let X and Y be Hilbert spaces. Take T E B(X, Y). Observe first 

that, in a plain sense, T E B(X, Y) {:} T E B(X*, Y*). Denote the prime mapping 
of X by (.)~ : X* -+ X', i.e., x 1--+ x' := (., x); and denote the prime mapping 
of Y by (-)y : Y* -+ Y', i.e., y 1--+ y':= (., y). 
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The adjoint of T, the member T* of B(Y, X), and the dual of T, the mem-
ber T' of B(Y', X'), are related by the commutative diagram: 

T· 
X*+--Y* 

O~! ! Oy 
X'~Y' 

<I Indeed, it is necessary to show the equality T'y' = (T*y)' for y E Y. Given 
x EX, by definition observe that 

T'y'(x) = y'(Tx) = (Tx, y) = (x, T*y) = (T*y)'(x). 

Since x is arbitrary, the proof is complete. I> 

(2) Let £ : Xo --. X be the identical embedding of Xo into X. Then 
£' : X --. X~. Moreover, £'(x')(xo) = x'(xo) for all Xo E Xo and x' E X' and £' is 
an epimorphism; i.e., X, ~ X~ --. 0 is an exact sequence. <II> 

7.6.5. DEFINITION. Let an elementary diagram X ~ Y be given. The dia-
gram Y' ~ X' is referred to as resulting from setting primes or as the diagram 
prime of the original diagram or as the dual diagram. If primes are set in every 
elementary subdiagram in an arbitrary diagram composed of bounded linear op-
erators in Banach spaces, then the so-obtained diagram is referred to as dual or 
resulting from setting primes in the original diagram. The term "diagram prime" 
is used for suggestiveness. 

Til 
7.6.6. Double Prime Lemma. Let X" ----t Y" be the diagram that results 

from setting primes in the diagram X ~ Y twice. Then the following diagram 
commutes: 

X~Y 
" ! !" 

Til X" ----t Y" 

Here " : X --. X" and " : Y --. Y" are the respective double prime mappings; i.e. 
the canonical embeddings of X into X" and of Y into Y" (cl. 5.1.10 (8». 

<I Let x EX. We have to prove that T"x" = (Tx)". Take y' E Y'. Then 

T"x"(y') = x"(T'y') = T'y'(x) = y'(Tx) = (Tx)"(y'). 

Since y' E Y' is arbitrary, the proof is complete. I> 

7.6.7. Diagram Prime Principle. A diagram is commutative if and only 
if so is its diagram prime. 
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<l It suffices to convince oneself that the triangles 

X~Y X'~Y' 
R". /s R',,- /s' 

Z Z' 
are commutative or not simultaneously. Since R = ST ::::} R' = (ST)' = T' S'; 
therefore, the commutativity of the triangle on the left entails the commutativity 
of the triangle on the right. If the latter commutes then by what was already 
proven R" = S"T". Using 7.6.6, argue as follows: (Rx)" = R"x" = S"T"x" = 
S"(T"x") = S"(Tx)" = (STx)" for all x E X. Consequently, R = ST. t> 

7.6.8. DEFINITION. Let Xo be a subspace of X and let .;to be a subspace 
of X'. Put 

xt:= {f E X': ker f :J Xo} = 181(b'(Xo)); 
.l.;to:= {x EX: f E.;tO::::} f(x) = O} = n{ker f: f E .;to}. 

The subspace xt is the (direct) polar of X o, and the subspace .l.;to is the reverse 
polar of .;to. A less exact term "annihilator" is also in use. 

7.6.9. DEFINITION. Let X and Y be Banach spaces. An arbitrary element T 
of B(X, Y) is a normally solvable operator, if im T is a closed subspace of Y. The 
natural term "closed range operator" is also in common parlance. 

7.6.10. An operator T, a member of B(X, Y), is normally solvable if and 
only ifT is a homomorphism, when regarded as acting from X to im T. 

<l ::::}: The Banach Homomorphism Theorem. 
'¢=:: Refer to 7.4.2. t> 

7.6.11. Polar Lemma. Let T E B(X, Y). Then 
(1) (im T).l = ker(T'); 
(2) if T is normally solvable then 

im T = .1 ker (T'), (ker T).l = im (T'). 

<l (1): y' E ker (T') <=> T'y' = 0 
<=> ("Ix E X) T'y'(x) = 0 <=> ("Ix E X) y'(Tx) = 0 <=> y' E (im T).l. 

(2): The equality cl im T = .1 ker(T') follows from 7.5.13. Furthermore, 
by hypothesis im T is closed. 

If x' = T'y' and Tx = 0 then x'(x) = T'y'(x) = y'(Tx) = 0, which means 
that x' E (ker T).l. Consequently, im(T') C (ker T).l. Now take x' E (ker T).l. 
Considering the operator T acting onto im T, apply the Sard Theorem to the left 
side of the diagram 

X~ imT 
x' ". 1 y~ 

IF 

~Y 

/y' 
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As a result of this, obtain y~ in (im T)' such that y~ 0 T = x'. By the 
Continuous Extension Principle there is an element y' of Y' satisfying y' ::) y~. 
Thus, x' = T'y', i.e. x' E im(T'). I> 

7.6.12. Hausdorff Theorem. Let X and Y be Banach spaces. Assume 
further that T E B(X, Y). Then T is normally solvable if and only if T' is 
normally solvable. 

<l =?: In virtue of 7.6.11 (2), im(T') = (ker T)1.. Evidently, the subspace 
(ker T)1. is closed. 

¢::: To begin with, suppose cl im T = Y. It is clear that 0 = Y 1. = (cl im T)1. 
= (im T)1. = ker (T') in virtue of 7.6.11. By the Banach Isomorphism Theorem 
there is some S E B(im (T'), Y') such that ST' = IY'. The case r:= IISII = 0 is 
trivial. Therefore, it may be assumed that IIT'y'll ~ l/rIlY'1i for all y' E Y'. 

Show now that cl T( B x) ::) 1 hrBy. With this at hand, from the ideal con-
vexity of T( B x) it is possible to infer that T( B x) ::) 1/ 4rBy. The last inclusion 
implies that T is a homomorphism. 

Let y 1. cl T(Bx). Then y does not belong to some open convex set including 
T(Bx). Passing, if need be, to the real carriers of X and Y, assume that IF':= 
JR.. Applying the Topological Separation Theorem, find some nonzero y' in Y' 
satisfying 

lIy'lIlIyll ~ y'(y) ~ sup y'(Tx) = IIT'y'li ~ l/rlly'II· 
IIxll9 

Whence IIyll ~ 1/ r > 1 hr. Therefore, the sought inclusion is established and the 
operator T is normally solvable under the above supposition. 

Finally, address the general case. Put Yo := cl im T and let t : Yo -t Y 
be the identical embedding. Then T = /f, where T : X -t Yo is the operator 
acting by the rule Tx = Tx for x E X. In addition, im(T') = im(T't') = 
T'(im(t')) = T' (Yri) , because t'(Y') = Y~ (cf. 7.6.4 (2)). Thus, 'I' is a normally 
solvable operator. By what was proven, T is normally solvable. It remains to 
observe that im T = im T. I> 

7.6.13. Sequence Prime Principle. A sequence 
Tk T k +1 

... -t Xk-l ----f Xk ----f Xk+l -t ... 

is exact if and only if so is the sequence prime 

X , T~ X' T~+l , 
... +- k-l f--- k f--- X k+1 +- '" . 

<l =?: Since im Tk+l = ker Tk+2; therefore, Tk+l is normally solvable. Using 
the Polar Lemma, conclude that 
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=}: By the Hausdorff Theorem Tk+l is normally solvable. Once again appeal-
ing to 7.6.11 (2), infer that 

Since Tk is normally solvable by Theorem 7.6.12; therefore, im Tk IS a closed 
subspace. Using 7.5.14, observe that 

Here account was taken of the fact that ker Tk+l itself is a closed subspace. I> 

7.6.14. Corollary. For a normally solvable operator T, tbe following iso-
morpbisms bold: (ker T)' ~ coker (T') and (coker T)' ~ ker (T'). 

<I By virtue of 2.3.5 (6) the sequence 

T o -+ ker T -+ X ----+ Y -+ coker T -+ 0 

is exact. From 7.6.13 obtain that the sequence 

o -+ (coker T)' -+ y' ~ X' -+ (ker T)' -+ 0 

is exact. I> 

7.6.15. Corollary. T is an isomorpbism {o} T' is an isomorpbism. <II> 

7.6.16. Corollary. Sp(T) = Sp(T'). <II> 

Exercises 

7.1. Find out which linear operators are ideal. 
7.2. Establish that a separately continuous bilinear form on a Banach space is jointly 

continuous. 
7.3. Is a family of lower semicontinuous sublinear functionals on a Banach space uni-

formly bounded on the unit ball? 
7.4. Let X and Y be Banach spaces and T : X ..... Y. Prove that IITxlly ~ tllxllx for 

some strictly positive t and all x E X if and only if ker T = 0 and im T is a complete set. 
7.5. Find conditions for normal solvability of the operator of multiplication by a function 

in the space of continuous functions on a compact set. 
7.6. Let T be a bounded epimorphism of a Banach space X onto h(C). Show that 

ker T is complemented. 
7.7. Establish that a uniformly closed subspace of C([a, bJ) composed of continuously 

differentiable functions (i.e., elements of C(l)([a, b])) is finite-dimensional. 
7 .S. Let X and Y be different Banach spaces, with X continuously embedded into Y. 

Establish that X is a meager subset of Y. 
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7.9. Let Xl and X2 be nonzero closed subspaces of a Banach space and Xl n X2 = O. 
Prove that the sum Xl + X2 is closed if and only if the next quantity 

is strictly positive. 
7.10. Let (amn) be a double countable sequence such that there is a sequence (z(m») of 

elements of 11 for which all the series 2::=1 amnZ~m) fail to converge in norm. Prove that there 
is a sequence z in It such that the series 2::=1 amnzn fail to converge in norm for all mEN. 

7.11. Let T be an endomorphism of a Hilbert space H which satisfies (Tz I y) = (z I Ty) 
for all z, y E H. Establish that T is bounded. 

7.12. Let a closed cone X+ in a Banach space X be reprodu.cing: X = X+ - X+. Prove 
that there is a constant t > 0 such that for all z E X and each presentation z = Zl - Z2 with 
Zl, Z2 E X+, the estimates hold: IIz111 $ tllzll and IIz211 $ tllzll. 

7.13. Let lower semicontinuous sublinear functionals p and q on a Banach space X be 
such that the cones dom p and dom q are closed and the subspace dom p - dom q = dom q - dom p 
is complemented in X. Prove that 

8(p + q) = 8(p) + 8(q) 

in the case of topological subdifferentials (cf. Exercise 3.10). 
7.14. Let p be a continuous sublinear functional defined on a normed space X and 

let T be a continuous endomorphism of X. Assume further that the dual T' of T takes the 
subdifferential 8 (p) into itself. Establish that 8 (p) contains a fixed point of T'. 

7.15. Given a function /: X ....... llt on a (multi)normed space X, put 

/*(z'):= sup{(z I z') - fez) : z E dom f} (z' EX'); 

/**(z):=sup{(zlz')-/*(z'): z'EdomU*)} (zEX). 

Find conditions for / to satisfy / = r* . 
7.16. Establish that 100 is complemented in each ambient Banach space. 
7.17. A Banach space X is called primary, if each of its infinite-dimensional comple-

mented subspaces is isomorphic to X. Verify that Co and Ip (1 $ P $ +00) are primary. 
7.18. Let X and Y be Banach spaces. Take an operator T, a member of B(X, Y), such 

that im Tis nonmeager. Prove that T is normally solvable. 

7.19. Let Xo be a closed subspace of a normed space X. Assume further that Xo and 
XI XO are Banach spaces. Show that X itself is a Banach space. 



Chapter 8 
Operators in Banach Spaces 

8.1. Holomorphic Functions and Contour Integrals 
B.1.l. DEFINITION. Let X be a Banach space. A subset A of the ball Bx' 

in the dual space X, is called norming (for X) if IIxll = sup{ll(x)l: I E A} 
for all x E X. If each subset U of X satisfies sup IIUIl < +00 on condition that 
sup{ll(u)l: u E U} < +00 for alII E A, then A is a fully norming set. 

B.1.2. EXAMPLES. 
(1) The ball Bx' is a fully norming set in virtue of 5.1.10 (8) and 7.2.7. 
(2) If Ao is a (fully) norming set and Ao C At C Bx' then At itself is 

a (fully) norming set. 
(3) The set ext Bx' of the extreme points of Bx' is norming in virtue 

of the KreIn-Milman Theorem in sub differential form and the obvious equality 
Bx' = 181(11 . IIx) which has already been used many times. However, ext Bx' 
can fail to be fully norming (in particular, the possibility is realized in the space 
C([O, 1], R». <11> 

( 4) Let X and Y be Banach spaces (over the same ground field IF) and 
let Ay be a norming set for Y. Put 

AB:= {6(y~x): y' E Ay, x E Bx}, 

where 6(y~x)(T):= y'(Tx) for y' E Y, x E X and T E B(X, Y). It is clear that 

i.e., 8(y~x) E B(X, Y)'. Furthermore, given T E B(X, Y), infer that 

IITII = sup{IITxll: IIxll:::; 1} = sup{ly'(Tx)l: y' E Ay, IIxll :::; 1} 
= sup{16(y~x)(T)I: 8(y~x) E AB}. 

Therefore, AB is a norming set for B(X, Y). If Ay is a fully norming set then AB 
is also a fully norming set. Indeed, if U is such that the numeric set {ly'(Tx)1 : 
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T E U} is bounded in JR for all x E Bx and y' E Ay, then by hypothesis the 
set {Tx: T E U} is bounded in Y for every x in X. By virtue of the Uniform 
Boundedness Principle it means that sup 11U11 < +00. 

8.1.3. Dunford-Hille Theorem. Let X be a complex Banach space and 
let A be a fully norming set for X. Assume further that J : ~ -+ X is an X -va-
lued function with domain ~ an open (in CIR ~ JR2) subset of C. The following 
statements are equivalent: 

(1) for every Zo in ~ there is a limit 

lim J(z) - J(zo). , 
Z--+Zo z - Zo 

(2) for all Zo E ~ and 1 E A there is a limit 

1. loJ(z)-loJ(zo) 
1m ; 

Z--+Zo Z - Zo 

i.e., the function 10 J : ~ -+ C is holomorphic for 1 E A. 
<l (1) =} (2): This is obvious. 
(2) =} (1): For the sake of simplicity assume that Zo = 0 and J( zo) = O. 

Consider the disk of radius 2c: centered at zero and included in ~; i.e., 2c:1D> C ~, 
where ID>:= Be:= {z E C: Izi ::; I} is the unit disk. As is customary in complex 
analysis, treat the disk c:1D> as an (oriented) compact manifold with boundary c:'Ir, 
where 'Iris the (properly oriented) unit circle 'Ir:= {z E C: Izi = I} in the complex 
plane CIR. Take Zl, Z2 E c:1D> \ 0 and the holomorphic function 10 J (the functionall 
lies in A). Specifying the Cauchy Integral Formula, observe that 

10 J(Zk) = ~ j 10 J(z) dz (k:= 1, 2). 
Zk 21l"Z Z(Z-Zk) 

2<:11" 

If now Zl i- Z2 then, using the condition Iz - zkl ;::: c: (k:= 1, 2) for z E 2c:'Ir and 
the continuity property of the function 10 J on ~, find 

_1_. _1 j 10 J(z) ( 1 _ 1 ) dz 
Zl - Z2 21l"i z(z - zt) z(z - Z2) 

2<:11" 

j loJ(z) 1 dz ::;M sup IloJ(z)1 <+00 z(z - zt)(z - Z2) zE2<:1I" 
2<:11" 
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for a suitable M > O. Since A is a fully norming set, conclude that 

sup 1 II J(zt) _ J(Z2) II < +00. 
%1 #%2;%1,%2#0 IZI - Z21 Zl Z2 
1%11~e,I%21~e 

This final inequality ensures that the sought limit exists. I> 

8.1.4. DEFINITION. A mapping J: ~ -+ X satisfying 8.1.3 (1) (or, which is 
the same, 8.1.3 (2) for some fully norming set A) is called holomorphic. 

8.1.5. REMARK. A meticulous terminology is used sometimes. Namely, if J 
satisfies 8.1.3 (1) then J is called a strongly holomorphic Junction. If J satisfies 
8.1.3 (2) with A:= Bx' then J is called weakly holomorphic. Under the hypotheses 
of 8.1.3 (2) and 8.1.2 (4), i.e. for J : ~ -+ B(X, Y), Ay:= BY' and the corre-
sponding A:= AB, the expression, "J is weakly operator holomorphic," is employed. 
With regard to this terminology, the Dunford-Hille Theorem is often referred to 
as the Holomorphy Theorem and verbalized as follows: "A weakly holomorphic 
function is strongly holomorphic." 

8.1.6. REMARK. It is convenient in the sequel to use the integrals of the 
simplest smooth X-valued forms J(z)dz over the simplest oriented manifolds, the 
boundaries of elementary planar compacta (cf. 4.8.5) which are composed of finitely 
many disjoint simple loops. An obvious meaning is ascribed to the integrals: 
Namely, given a loop 'Y, choose an appropriate (smooth) parametrization 'l1 : '[' -+ 'Y 
(with orientation accounted for) and put 

J J(z)dz:= J J 0 'l1d'l1, 
"Y 'll' 

with the integral treated for instance as a suitable Bochner integral (cf. 5.5.9 
(6)). The soundness of the definition is beyond a doubt, since the needed Bochner 
integral exists independently of the choice of the parametrization 'l1. 

8.1.7. Cauchy-Wiener Integral Theorem. Let ~ be an nonempty open 
subset of tbe complex plane and let J : ~ -+ X be a bolomorpbic X-valued 
function, witb X a Banacb space. Assume furtber tbat F is a rougb draft for tbe 
pair (0, ~). Tben J J(z)dz = O. 

8F 

Moreover, 
J(zo) = ~ J J(z) dz 

271'z Z - Zo 
8F 

for Zo E int F. 
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<l By virtue of 8.1.3 the Bochner integrals exist. The sought equalities follow 
readily from the validity of their scalar versions basing on the Cauchy Integral 
Formula, the message of 8.1.2 (1) and the fact that the Bochner integral commutes 
with every bounded functional as mentioned in 5.5.9 (6). t> 

8.1.8. REMARK. The Cauchy-Wiener Integral Theorem enables us to infer 
analogs of the theorems of classical complex analysis for X -valued holomorphic 
functions on following the familiar patterns. 

8.1.9. Taylor Series Expansion Theorem. Let J : ~ ~ X be a holo-
morphic X -valued function, with X a Banach space, and take Zo E ~. In every 
open disk U:= {z E C: Iz - Zo 1 < E} such that cl U lies in ~, the Taylor series 
expansion holds (in a compactly convergent power series, cf. 7.2.10): 

00 

J(z) = I>n(Z - zot, 
n=O 

where the coefficients Cn , members of X, are calculated by the formulas: 

Cn =_l_J J(z) dz=~dnJ(zo. 
27ri (z - Zo )n+l n! dzn ) 

au 
<l The proof results from a standard argument: Expand the kernel u 1-+ 

(u - Z)-l of the formula 

J(z) = ~ J J(u) du (z E cl U) 
27rZ U - z 

au' 

in the powers of z - Zo; i.e., 

1 1 ~ (z - zo)n 
(u-zo)(l- ~=~~) - n=o(u-zo)n+l· u-z 

The last series converges uniformly in u E aU'. (Here U' = U + qD for some 
q > 0 such that cl U' c ~.) Taking it into account that sup IIJ(aU')1I < +00 
and integrating, arrive at the sought presentation of J(z) for z E cl U. Applying 
this to U' and using 8.1. 7, observe that the power series under study converges 
in norm at every point of U'. This yields uniform convergence on every compact 
subset of U', and so on U. t> 

8.1.10. Liouville Theorem. If an X-valued function J : C ~ X, with X 
a Banach space, is holomorphic and sup IIJ(C)II < +00 then J is a constant map-
ping. 
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<I Considering the disk e;ll) with e; > 0 and taking note of 8.1.9, infer that 

l/cnll :::; sup II/(z)II' e;-n :::; sup II/(C)II' e;-n 
zEe1I' 

for all n E N and e; > O. Therefore, en = 0 for n E N. I> 

8.1.11. Each bounded endomorphism of a nonzero complex Banach space has 
a nonempty spectrum. 

<I Let T be such an endomorphism. If Sp(T) = 0 then the resolvent R(T, .) is 
holomorphic on the entire complex plane C, for instance, by 5.6.21. Furthermore, 
by 5.6.15, IIR(T, A)II ---t 0 as IAI ---t +00. By virtue of 8.1.10 conclude that 
R(T, .) = O. At the same time, using 5.6.15, observe that R(T, A)(A - T) = 1 
for IAI > IITII. A contradiction. I> 

8.1.12. The Beurling-Gelland lormula holds: 

r(T) = sup{IAI: A E Sp(T)} 

for all T E B(X), with X a complex Banach space; i.e., the spectral radius of 
an operator T coincides with the radius of the spectrum ofT. 

<I It is an easy matter that the spectral radius r(T) is greater than the radius 
of the spectrum of T. So, there is nothing to prove if r(T) = O. Assume now that 
r(T) > O. Take A E C so that IAI > sup{IILI: IL E Sp(T)}. Then the disk of radius 
IAI-1 lies entirely in the domain of the holomorphic function (cf. 5.6.15) 

{ R(T, z-1), for z i= 0 and z-1 E res (T) 
I(z):= 

0, for z = o. 
Using 8.1.9 and 5.6.17, conclude that IAI-1 < r(T)-1. Consequently, IAI > r(T). I> 

8.1.13. Let K be a nonempty compact subset ofC. Denote by H(K) the set 
of all functions holomorphic in a neighborhood of K (i.e., I E H(K) {::} f : 
dom f ---t Cis a holomorphic function with dom I:J K). Given ft, h E H(K), let 
the notation ft '" h mean that it is possible to find an open subset ~ of dom 11 n 
dom h satisfying K C ~ and ft I~ = h I~· Then'" is an equivalence in H(K). <II> 

8.1.14. DEFINITION. Under the hypotheses of 8.1.13, put £,(K):= H(K)/",. 
The element 7 in £,(K) containing a function I in H(K) is the germ of Ion K. 

8.1.15. Let 7, 9 E £,(K). Take ft, h E 7 and g1, g2 E g. Put 

x E dom ft n dom g1 =} Cf'1(X):= ft(x) + g1(X), 
x E dom h n dom g2 =} Cf'2(X):= h(x) + 92(X). 

Then Cf't, Cf'2 E H(K) and CP1 = CP2' 



8.2. Holomorphic Functions and Contour Integrals 125 

<I Choose open sets ~1 and ~2 such that K C ~1 C dom h n dom 12 and 
K C ~2 C dom gl ndom g2, with hlgo)l = 12lgo)l and gIigo)2 = g21go)2· Observe now 
that 'PI and 'P2 agree on ~1 n ~2. t> 

8.1.16. DEFINITION. The coset, introduced in 8.1.15, is the sum of the germs 
11 and 12. It is denoted by 11 + 12. The product of germs and multiplication of 
a germ by a complex number are introduced by analogy. 

8.1.17. The set £(l<) with operations defined in 8.1.16 is an algebra. <II> 

8.1.18. DEFINITION. The algebra £(K) is the algebra of germs of holomor-
phic functions on a compact set K. 

8.1.19. Let K be a compact subset of C, and let R : C \ l< -+ X be an 
X -valued holomorphic function, with X a Banach space. Further, take 1 E £( K) 
and h, 12 E T If Fl is a rough draft for the pair (K, dom h) and F2 is a rough 
draft for the pair (K, dom h) then 

J h(z)R(z)dz = J 12(z)R(z)dz. 
8F1 8F2 

<I Let K C ~ C int Fl n int F2, with '?J open and h I go) = 12 19o). Choose 
a rough draft F for the pair (K, D). Since hR is holomorphic on dom h \ l< and 
12R is holomorphic on dom 12 \ K, infer the equalities 

J h(z)R(z)dz = J h(z)R(z)dz, 
8F 8Fl 

J 12(z)R(z)dz = J 12(z)R(z)dz 
8F 8F2 

(from the nontrivial fact of the validity of their scalar analogs). Since hand 12 
agree on '?J, the proof is complete. t> 

8.1.20. DEFINITION. Under the hypotheses of 8.1.19, given an element h 
in £(K), define the contour integral of h with kernel R as the element 

f h(z)R(z)dz:= J JCz)R(z)dz, 
8F 

where h = 1 and F is a rough draft for the pair (K, dom f). 
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8.1.21. REMARK. The notation h(z) in 8.1.20 is far from being ad hoc. It is 
well justified by the fact that w: = It (z) = h (z) for every point z in K and every 
two members It and h of a germ h. In this connection the element w is said to 
be the value of h at z, which is expressed in writing as h(z) = w. It is also worth 
noting that the function R in 8.1.2 may be assumed to be given only in U \ K, 
where int U ::) K. 

8.2. The Holomorphic Functional Calculus 
8.2.1. DEFINITION. Let X be a (nonzero) complex Banach space and let T 

be a bounded endomorphi.'3m of X; i.e., T E B(X). For h E £(Sp(T)), the 
contour integral with kernel the resolvent R(T, .) of T is denoted by 

f%Th:= ~ f h(z)R(T, z)dz 
27l'z 

and called the Riesz-Dunford integral (of the germ h). If f is a function holomor-
phic in a neighborhood about Sp(T) then put f(T):= f%T f:= f%T f. We also use 
more suggestive designations like 

f(T) = ~ f fez) dz. 
27l'Z z - T 

8.2.2. REMARK. In algebra, in particular, various representations of mathe-
matical objects are under research. It is convenient to use the primary notions of 
representation theory for the most "algebraic" objects, namely, algebras. Recall 
the simplest of them. 

Let Al and A2 be two algebras (over the same field). A morphism from Al 
to A2 or a representation of Al in A2 (rarely, over A 2) is a multiplicative linear 
operator 9t, i.e. a member 9t of 2"(AI' A2) such that 9t(ab) = 9t(a)9t(b) for all 
a, bE AI. The expression, "T represents Al in A 2," is also in common parlance. 
A representation 9t is called faithful if ker 9t = O. The presence of a faithful 
representation 9t : Al -t A2 makes it possible to treat Al as a subalgebra of A 2. 

If A2 is a (sub)algebra of the endomorphism algebra 2"(X) of some vector 
space X (over the same field), then a morphism of Al in A2 is referred to as 
a (linear) representation of Al on X or as an operator representation of AI. The 
space X is then called the representation space for the algebra AI. 

Given a representation 9t, suppose that the representation space X for A has 
a subspace Xl invariant under all operators 9t(a), a E A. Then the representation 
9tI : A -t 2'(Xd arises naturally, acting by the rule 9tI(a)xI = 9t(a)xI for 
Xl E Xl and a E A and called a subrepresentation of 9t (induced in Xd. If X = 
Xl Eli X2 and the decomposition reduces each operator 9t(a) for a E A, then it 
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is said that the representation 9t reduces to the direct sum of subrepresentations 
9tl and 9t2 (induced in Xl and X 2 ). We mention in passing the significance 
of studying arbitrary irreducible representations, each of which has only trivial 
subrepresentations by definition. 

8.2.3. Gelfand-Dunford Theorem. Let T be a bounded endomorphism 
of a Banach space X. The Riesz-Dunford integral ~T represents the algebra of 
germs of holomorphic functions on the spectrum of T on the space X. Moreover, 
if J(z) = L:~=o cnzn (in a neighborhood about Sp(T» then J(T) = L:~=o cnTn 
(summation is understood in the operator norm of B(X». 

<I There is no doubt that ~T is a linear operator. Check the multiplicativity 
property of ~T. To this end, take II' 12 E £(Sp(T)) and choose rough drafts 
Fl and F2 such that Sp(T) c int Fl C Fl C int F2 C F2 C ~, with the functions 
h in II and h in 12 holomorphic on ~. 

U sing the obvious properties of the Bochner integral, the Cauchy Integral 
Formula and the Hilbert identity, successively infer the chain of equalities 

~TII 0 ~T12 = h(T)h(T) = -21 . -21 . J h(ZlT) dZl 0 J h(Z2T) dZ2 
11"Z 11"Z Zl - Z2 -

8F1 8F2 

= 2~i 2~i J ( J h(zt}R(T, Zt}dZl ) h(Z2)R(T, z2)dz2 
8F2 8F1 

= 2~i 2~i J J h(Zl)h(Z2)R(T, zt}R(T, z2)dz2dzl 
8F1 8F2 

- _1 ~ J J / ( )/ ( )R(T, zt}-R(T, z2)d d - 2 . 2 . 1 Zl 2 Z2 Z2 Zl 
11"Z 11"Z Z2 - Zl 

8F1 8F2 

1 J (1 J h (Zl) ) --2' h(Z2) -2' dZl R(T, z2)dz2 
11"Z 11"Z Z2 - Zl 

8F2 8Fl 

= 2~i J h(zdh(zdR(T, zl)dz1 - 0 = Jlh(T) = ~T(11/2)' 
'Y 

Choose a circle 'Y : = c'll" that lies in res (T) as well as in the (open) disk of 
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convergence of the series J(z) = L:~=o cnzn. From 5.6.16 and 5.5.9 (6) derive 

1 ~ JJ( ) -n-ITnd ~ ( 1 J J(z) d ) Tn ~ Tn = 27l"i ~""Y z Z Z = ~ 27l"i ""y zn+t Z = ~ Cn 

in virtue of 8.1.9. t> 

8.2.4. REMARK. Theorem 8.2.3 is often referred to as the Principal Theorem 
of the holomorphic functional calculus. 

8.2.5. Spectral Mapping Theorem. For every function f holomorphic 
in a neighborhood about the spectrum of an operator T in B(X), the equality 
holds: 

J(Sp(T)) = Sp(J(T)). 

<l Assume first that A E Sp(J(T)) and f-I(A) n Sp(T) = 0. Given z E 
(C \ f- I (A)) n dom f, put g(z):= (A - fez ))-1. Then 9 is a holomorphicfunction 
on a neighborhood of Sp(T), satisfying g(5: - 7) = (X - 7)g = Ie. Using 8.2.3, 
observe that A E res (J(T)), a contradiction. Consequently, J-I(A) n Sp(T) i- 0; 
i.e., Sp(J(T)) C J(Sp(T)). 

Now take A E Sp(T). Put 

Ai- z => g(z):= J(Al = ~(z); g(A):= f'(A). 

Clearly, 9 is a holomorphic function (the singularity is "removed"). From 8.2.3 
obtain 

g(T)(A - T) = (A - T)g(T) = J(A) - J(T). 

Consequently, if J(A) E res (J(T)) then the operator R(J(T), J(A))g(T) is inverse 
to A - T. In other words, A E res (T), which is a contradiction. Thus, 

J(A) E C \ res (J(T)) = Sp(J(T)); 

i.e., J(Sp(T)) C Sp(J(T)). t> 

8.2.6. Let K be a nonempty compact subset of C and let 9 : dom 9 --t C be 
a holomorphic function with dom 9 :::> K. Given J E H(g(K)), put '9(7):= Jog. 
Then '9 is a representation of the algebra £'(g(K)) in the algebra £,(K). <It> 
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8.2.7. Dunford Theorem. For every function g : dom g -+ C bolomorpbic 
in tbe neigbborbood dom g about tbe spectrum Sp(T) of an endomorphism T of 
a Banacb space X, tbe following diagram of representations commutes: 

<I Let 7 E £(g(Sp(T))) with J : ~ -+ C such that J E 7 and ~ J g(Sp(T)) = 
Sp(g(T)). Let Fl be a rough draft for the pair (Sp(g(T)), ~) and let F2 be a rough 
draft for the pair (Sp(T), g-l(int FI))' It is clear that now g(8F2) C int Fl and, 
moreover, the function Z2 I-t (Zl - g(Z2))-1 is defined and holomorphic on int F2 
for Zl E 8F1 . Therefore, by 8.2.3 

1 J R(T, Z2) R(g(T), zt} = -2 . ( ) dZ2 (Zl E 8Ft). 
7rt ZI - g Z2 

8F2 

From this equality, successively derive 

1 J J(zt} 1 1 J ( J R(T, Z2) ) ~g(T) J = -2 . (T) dZ1 = -2 . -2' J( zt} ( ) dZ2 dZ1 
7rt Zl - g 7rt 7rt ZI - g Z2 

8F1 8F1 8F2 

Since g(Z2) E int Fl for Z2 E 8F2 by construction; therefore, the Cauchy Integral 
Formula yields the equality 

Consequently, 

8.2.8. REMARK. The Dunford Theorem is often referred to as the Composite 
Function Theorem and written down symbolically as J 0 geT) = J(g(T)). 
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8.2.9. DEFINITION. A subset u of Sp(T) is a clopen or i801ated part or rarely 
an exclave of Sp(T), if u and its complement u' := Sp(T) \ u are closed. 

8.2.10. Let u be a elopen part of Sp(T) and let XtT be some function that 
equals 1 in an open neighborhood of u and 0 in an open neighborhood of u'. 
Further, assign 

1 f xu(z) Pu:= xu(T):= -2' -Tdz. 
1l'Z z-

Then Puis a projection in X and the (elosed) subspace Xu := im PtT is invariant 
underT. 

<l Since x! = xu, it follows from 8.2.3 that xu(T)2 = xu(T). Furthermore, 
T = BiTIe, where Ie : z ~ z. Hence TPtT = PuT (because Iexu = xule). 
Consequently, in virtue of 2.2.9 (4), Xu is invariant under T. c> 

8.2.11. DEFINITION. The projection Puis the Rie8z projection or the Rie8z 
idempotent corresponding to u. 

8.2.12. Spectral Decomposition Theorem. Let u be a elopen part of 
the spectrum of an operator T in B(X). Then X splits into the direct sum 
decomposition of the invariant subspaces X = Xu E9 Xu' which reduces T to 
matrix form 

T rv (TO' 0) o TO', , 

with the part TO' of T in Xu and the part TO', of T in Xu' satisfying 

Sp(TtT) = u, Sp(Tu') = u'. 

<l Since Xu + xu' = XSp(T) = Ie, in view of 8.2.3 and 8.2.10 it suffices 
to establish the claim about the spectrum of TO'. 

From 8.2.5 and 8.2.3 obtain 

u U 0 = xuIc(Sp(T)) = Sp(xuIc(T)) = Sp(BiT(xuIc)) 
= Sp(BiTXu 0 BiTIc) = Sp(PuT). 

Moreover, in matrix form 

PtTT rv (~ ~). 
Let A be a nonzero complex number. Then 

A _ P T rv (A - TtT 0 ) 
0' 0 A j 
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i.e., the operator ,\ - PuT is not invertible if and only if the same is true of the 
operator ,\ - Tu. Thus, 

Sp(Tu) \ 0 c Sp(P.,.T) \ 0 = (a U 0) \ 0 c a. 

Suppose that 0 E Sp(Tu) and 0 ~ a. Choose disjoint open sets (gu and (gul 
so that a C (gu, 0 ~ (gu and a' C (gul, and put 

1 
z E (gu => h(z):= -; z 
z E (gul => h(z):= O. 

By 8.2.3, h(T)T = Th(T) = PU • Moreover, since li:xu = xuh, the decomposition 
X = Xu EEl Xul reduces h(T) and h(T)uTu = Tuh(T)u = 1 for the part h(T)u 
of h(T) in Xu. So, Tu is invertible; i.e., 0 ~ Sp(Tu). We thus arrive at a contra-
diction which implies that 0 E a. In other words, Sp(Tu) C a. 

Observe now that res (T) = res (Tu) n res (Tul ). Consequently, by the above 

Sp(T) = C \ res (T) = C \ (res (Tu) n res (T.,./» 
= (C \ res (Tu» U (C \ res (Tul» = Sp(Tu) U Sp(Tul ) C a U a' = Sp(T). 

Considering that a n a' = 0, complete the proof. I> 

8.2.13. Riesz-Dunford Integral Decomposition Theorem. Let a be 
a clop en part of Sp (T) for an endomorpbism T of a Banacb space X. Tbe direct 
sum decomposition X = Xu EEl Xul reduces tbe representation &IT of tbe algebra 
£(Sp(T» in X to tbe direct sum of tbe representations &lu and &lui. Moreover, 
tbe following diagrams of representations commute: 

Here xua):= xu! and xula):= X.,.I! for! E H(Sp(T» are tbe representations 
induced by restricting! onto a and a'. <ll> 
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8.3. The Approximation Property 
8.3.1. Let X and Y be Banach spaces. For K E 2'(X, Y) the following 

statements are equivalent: 
(1) the operator K is compact: K E X(X, Y); 
(2) there are a neighborhood of zero U in X and a compact subset V 

ofY such that K(U) C V; 
(3) the image under K of every bounded set in X is relatively compact 

in Y; 
(4) the image under K of every bounded set in X is totally bounded 

in Y; 
(5) for each sequence (Xn)nEN of points of the unit ball Bx, the sequence 

(K Xn)nEN has a Cauchy subsequence. <ll> 

8.3.2. Theorem. Let X and Y be Banach spaces over a basic field IF. Then 
(1) X(X, Y) is a closed subspace of B(X, Y); 
(2) for all Banach spaces Wand Z, it holds that 

B(Y, Z) 0 X(X, Y) 0 B(W, X) C X(W, Z); 

l.e., if S E B(W, X), T E B(Y, Z) and K E X(X, Y) then 
TKS E X(W, Z); 

(3) IF E X(IF):= X(IF, IF). 
<l That X(X, Y) is a subspace of B(X, Y) follows from 8.3.1. If Kn E 

X(X, Y) and Kn -+ K; then, given £ > 0, for n sufficiently large observe that 
IIKx - Knxll ::::; 11K - Knllllxli ::::; £ whenever x E Bx. Therefore, Kn(Bx) serves 
as an c:-net (= Be-net) for K(Bx). It remains to refer to 4.6.4 and thus complete 
the proof of the closure property of X(X, Y). The other claims are evident. I> 

8.3.3. REMARK. Theorem 8.3.2 is often verbalized as follows: "The class of 
all compact operators is an operator ideal." Behind this lies a conspicuous analogy 
with the fact that X(X):= X(X, X) presents a closed bilateral (two-sided) ideal 
in the (bounded) endomorphism algebra B(X); i.e., X(X) 0 B(X) c X(X) and 
B(X) 0 X(X) c X(X). 

8.3.4. Calkin Theorem. The ideals 0, X(l2), and B(l2) exhaust the list of 
closed bilateral ideals in the endomorphism algebra B( l2) of the Hilbert space l2. 

8.3.5. REMARK. In view of 8.3.4 it is clear that a distinguishable role in op-
erator theory should be performed by the algebra B(X)j X(X) called the Calkin 
algebra (on X). The performance is partly delivered in 8.5. 

8.3.6. DEFINITION. An operator T, a member of 2'(X, Y), is called a finite-
rank operator provided that T E B(X, Y) and im T is a finite-dimensional sub-
space of Y. In notation: T E F(X, Y). A hasty term "finite-dimensional opera-
tor" would abuse consistency since T as a subspace of X x Y is usually infinite-
dimensional. 
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8.3.7. The linear span of the set of (bounded) rank-one operators comprises 
all finite-rank operators: 

T E F(X, Y) 
n 

<=> (3 x~, ... ,x~ E X') (3 Yl, ... ,Yn E Y) T = I>~ ® Yk. <11> 
k=l 

8.3.8. DEFINITION. Let Q be a (nonempty) compact set in X. Given T E 
B(X, V), put 

IITIIQ:= sup IIT(Q)II· 

The collection of all seminorms B(X, Y) of type II . IIQ is the Aren8 multinorm 
in B(X, V), denoted by X8(X,Y)' The corresponding topology is the topology of 
uniform convergence on compact 8et8 or the compact-open topology (cf. 7.2.10). 

8.3.9. Grothendieck Theorem. Let X be a Banach space. The following 
conditions are equivalent: 

(1) for every c > 0 and every compact set Q in X there is a finite-rank 
endomorphism T of X, a member of F(X):= F(X, X), such that 
IITx - xII :s: c for all x E Q; 

(2) for every Banach space W, the subspace F(W, X) is dense in the 
space B(W, X) with respect to the Arens multinorm X8(W,X); 

(3) for every Banach space Y, the subspace F(X, Y) is dense in the 
space B(X, Y) with respect to the Arens multinorm X8(X,Y)' 

<1 It is clear that (2) =} (1) and (3) =} (1). Therefore, we are to show only 
that (1) =} (2) and (1) =} (3). 

(1) =} (2): If T E B(W, X) and Q is a nonempty compact set in W then, 
in view of the Weierstrass Theorem, T( Q) is a nonempty compact set in X. So, 
for c > 0, by hypothesis there is a member To of F(X) such that liTo - IxIIT(Q) = 
IIToT - TIIQ :s: c. Undoubtedly, ToT E F(W, X). 

(1) =} (3): Let T E B(X, V). If T = 0 then there is nothing to be proven. 
Let T =1= 0, c > 0 and Q be a nonempty compact set in X. By hypothesis there 
is a member To of F(X) such that liTo - IxlIQ :s: cIlTII-1 . Then IITTo - TIIQ :s: 
IITllliTo - IxllQ :s: c. Furthermore, TTo E F(X, V). I> 

8.3.10. DEFINITION. A Banach space satisfying one (and hence all) of the 
equivalent conditions 8.3.9 (1)-8.3.9 (3) is said to possess the approximation prop-
erty. 

8.3.11. Grothendieck Criterion. A Banach space X possesses the approx-
imation property if and only if, for every Banach space W, the equality holds: 
cl F(W, X) = X(W, X), with the closure taken in operator norm. 
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8.3.12. REMARK. For a long time there was an unwavering (and yet un-
provable) belief that every Banach space possesses the approximation property. 
Therefore, P. Enflo's rather sophisticated example of a Banach space lacking the 
approximation property was acclaimed as sensational in the late seventies of the 
current century. Now similar counterexamples are in plenty: 

8.3.13. SZANKOWSKI COUNTEREXAMPLE. The space B(lz) lacks the approx-
imation property. 

8.3.14. DAVIS-FIGIEL-SZANKOWSKI COUNTEREXAMPLES. The spaces Co 
and lp with p =I- 2 have closed subspaces lacking the approximation property. 

8.4. The Riesz-Schauder Theory 
8.4.1. e-Perpendicular Lemma. Let Xo be a closed subspace of a Banach 

space X and X =I- Xo. Given an e > 0, there is an e-perpendicular to Xo in X j i.e., 
an element x" in X such that II x" II = 1 and d( x,,, Xo):= inf dn.n ( {x,,} x Xo) ~ I-e. 

<l Take 1 > e and x E X \ Xo. It is clear that d:= d(x, Xo) > O. Find 
x, in the subspace Xo satisfying Ilx - x'II::; d/(l - e), which is possible because 
d/(l- e) > d. Put X,,:= (x - x')llx - x'II-I. Then Ilx,,1I = 1. Finally, for Xo E X o, 
observe that 

II xo - x,,11 = IIxo - II: = ::1111 

= Ilx' ~ xll ll (lIx - x'llxo + x') - xii ~ ~~,~oli ~ 1 - e. C> 

8.4.2. Riesz Criterion. Let X be a Banach space. The identity operator 
in X is compact if and only if X is finite-dimensional. 

<l Only the implication =} needs proving. If X fails to be finite-dimensional, 
then select a sequence of finite-dimensional subspaces Xl C X 2 C ... in X such 
that X n+I =I- Xn for all n E N. In virtue of 8.4.1 there is a sequence (xn) satisfying 
Xn+I E Xn+I, IIxn+III = 1 and d(Xn+I, Xn) ~ 112, namely, some sequence of 112-
perpendiculars to Xn in Xn+I . It is clear that d(xm, Xk) ~ 112 for m =I- k. In other 
words, the sequence (x n ) lacks Cauchy subsequences. Consequently, by 8.3.1 the 
operator Ix is not compact. c> 

8.4.3. Let T E X(X, Y), with X and Y Banach spaces. The operator Tis 
normally solvable if and only if T has finite rank. 

<l Only the implication =} needs examining. 
Let Yo := im T be a closed subspace in Y. By the Banach Homomorphism 

Theorem, the image T(Bx) of the unit ball of X is a neighborhood of zero in Yo. 
Furthermore, in virtue of the compactness property of T, the set T(Bx) is rela-
tively compact in Yo. It remains to apply 8.4.2 to Yo. c> 
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8.4.4. Let X be a Banach space and ]{ E £(X). Then the operator 1 - ]{ 
is normally solvable. 

<l Put T := 1 - ]{ and Xl := ker T. Undoubtedly, Xl is finite-dimensional 
by 8.4.2. In accordance with 7.4.11 (1) a finite-dimensional subspace is comple-
mented. Denote a topological complement of Xl to X by X 2 • Considering that 
X 2 is a Banach space and T(X) = T(X2), it suffices to verify that IITxl1 2 tllxll for 
some t > 0 and all x E X 2 • In the opposite case, there is a sequence (x n ) such that 
Ilxnll = 1, Xn E X 2 and TXn -t O. Using the compactness property of ]{, we may 
assume that (]{xn) converges. Put y:= lim]{xn. Then the sequence (xn) con-
verges to y, because y = lim(Txn + ]{x n ) = limxn. Moreover, Ty = limTxn = OJ 
i.e., y E Xl. It is beyond a doubt that y E X 2 . Thus, Y E Xl nX2 j i.e., y = O. We 
arrive at a contradiction: Ilyll = lim Ilxn II = 1. t> 

8.4.5. For whatever strictly positive 6, there are only finitely many eigenvalues 
of a compact operator beyond the disk centered at zero and having radius 6. 

<l Suppose by way of contradiction that there is a sequence (An)nEN of pair-
wise distinct eigenvalues of a compact operator ]{, with I An I 2 6 for all n E Nand 
6 > O. Suppose further that Xn satisfying 0 i- Xn E ker (An - ]{) is an eigenvector 
with eigenvalue An. Establish first that the set {Xn: n E N} is linearly inde-
pendent. To this end, assume the set {XI, ... ,xn } linearly independent. In case 
Xn+l = L~=l akXk, we would have 0 = (An+l -]{)Xn+l = L~=l ak(An+1 - Ak)Xk. 
Consequently, ak = 0 for k:= 1, ... ,n. Whence the false equality Xn+l = 0 would 
ensue. 

Put X n := lin({xI, ... ,xn }). By definition Xl C X 2 C ... j moreover, as was 
proven, X n+l i- Xn for n E N. By virtue of 8.4.1 there is a sequence (Xn) such that 
Xn+l E Xn+I, IIXn+111 = 1 and d(Xn+I' Xn) 2 l/z. For m > k, straightforward 
calculation shows that z:= (Am+l -]{)Xm+l E Xm and Z+]{Xk E Xm +Xk C X m. 
Consequently, 

II]{xm+1 - ]{xkll = 11- Am+IXm+1 + ]{Xm+l + Am+IXm+1 - ]{xkll 
= IIAm+IXm+1 - (z + ]{xk)11 2 IAm+lld(xm+l, Xm) 2 e /z. 

In other words, the sequence (]{xn ) has no Cauchy subsequences. t> 

8.4.6. Schauder Theorem. Let X and Y be Banach spaces (over the same 
ground field IF). Then 

]{ E £(X, Y) {:} ]{' E £(Y', X'). 

<l =}: Observe first of all that the restriction mapping x' f--t X'IBx implements 
an isometry of X' into loo(Bx). Therefore, to check that ]{'(Byt) is relatively 
compact we are to show the same for the set V:= {]{'y'IBx : y' E By,}. Since 



136 Chapter 8. Operators in Banach Spaces 

K'y'IBX(X) = y' 0 KIBx(X) = y'(Kx) for x E Bx and y' E By', consider the 
o 

compact set Q:= cl K(Bx) and the mapping K : C(Q, IF) -+ loo(Bx) defined 
o 0 

by the rule Kg : x ~ g(Kx). Undoubtedly, the operator K is bounded and, 
hence, continuous. Now put S := {y'IQ: y' E BY'}. It is clear that S is 
simultaneously an equicontinuous and bounded subset of C(Q, IF). Consequently, 
by the Ascoli-Arzela Theorem, S is relatively compact. From the Weierstrass 

o 
Theorem derive that K(S) is a relatively compact set too. It remains to observe 

o 0 

that Ky'lQ = K'y'IBx for y' E BY'; i.e., K(S) = V. 
-¢::: If K' E X(Y', X') then, as is proven, K" E X(X", Y"). By the Double 

Prime Lemma, K"lx = K. Whence it follows that the operator K is compact. [> 

8.4.7. Every nonzero point of the spectrum of a compact operator is isolated 
(i.e., such a point constitutes a elopen part of the spectrum). 

<l Taking note of 8.4.4 and the Sequence Prime Principle, observe that each 
nonzero point of the spectrum of a compact operator K is either an eigenvalue 
of K or an eigenvalue of the dual of K. Using 8.4.5 and 8.4.6, conclude that, for 
each strictly positive c, there are only finitely many points of Sp(K) beyond the 
disk centered at zero and having radius c. [> 

8.4.8. Riesz-Schauder Theorem. The spectrum of a compact operator K 
in an infinite-dimensional space contains zero. Each nonzero point of the spectrum 
of K is isolated and presents an eigenvalue of K with the corresponding eigenspace 
finite-dimensional. 

<l Considering 1<, a compact endomorphism of a Banach space X, we must 
only demonstrate the implication 

0-# A E Sp(K) =} ker(A - K) -# o. 
First, settle the case IF := C. Note that {A} is a clopen part of Sp(K). 

Putting g(z):= 1/ z in some neighborhood about A and g(z):= 0 for z in a suitable 
neighborhood about {A}', observe that X{.\} = gfe. Thus, by 8.2.3 and 8.2.10, 
p{.\} = g(K)K. By virtue of 8.3.2 (2), p{.\} E X(X). From 8.4.3 it follows that 
im P{.\} is a finite-dimensional space. It remains to invoke the Spectral Decompo-
sition Theorem. 

In the case of the reals, IF:= JR., implement the process of complexification. 
Namely, furnish the space X 2 with multiplication by an element of C which is 
introduced by the rule i(x, y):= (-y, x). The resulting complex vector space 
is denoted by X EB iX. Define the operator K (x, y): = (K x, K y) in the space 
X EB iX. Equipping X EB iX with an appropriate norm (cf. 7.3.2), observe that 
the operator K is compact and A E Sp(K). Consequently, A is an eigenvalue of K 
by what was proven. Whence it follows that A is an eigenvalue of K. [> 
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8.4.9. Theorem. Let X be a complex Banach space. Given T E B(X), 
assume further that J : C -+ C is a holomorphic function vanishing only at zero 
and such that J(T) E X(X). Then every nonzero point A of the spectrum ofT is 
isolated and the Riesz projection p{~} is compact. 

<J Suppose the contrary; i.e., find a sequence (An)nEN of distinct points of Sp(T) 
such that An -+ A¥-O (in particular, X is infinite-dimensional). Then J(An) -+ 

J(A) and J(A) ¥- 0 by hypothesis. By the Spectral Mapping Theorem, Sp(f(T» = 
J(Sp(T». Thus, by 8.4.8, J(An) = J(A) for all sufficiently large n. Whence it 
follows that J(z) = J(A) for all z E C and so J(T) = J(A). By the Riesz Criterion 
in this case X is finite-dimensional. We come to a contradiction meaning that A is 
an isolated point of Sp(T). Letting g(z):= J(z)-l in some neighborhood about A 
disjoint from zero, infer that 97 = X{~}. Consequently, by the Gelfand-Dunford 
Theorem, p{~} = g(T)J(T); i.e., in virtue of 8.3.2 (2) the Riesz projection p{~} is 
compact. t> 

8.4.10. REMARK. Theorem 8.4.9 is sometimes referred to as the Generalized 
Riesz-Schauder Theorem. 

8.5. Fredholm Operators. 
8.5.1. DEFINITION. Let X and Y be Banach spaces (over the same ground 

field IF). An operator T, a member of B(X, Y), is a Fredholm operator (in symbols, 
T E $r(X, Y» if ker T:= T-I(O) and coker T:= Y/ im T are finite-dimensional; 
i.e., if the following quantities, called the nullity and the deficiency of T, are finite: 

a(T):= nul T:= dim ker T; (3(T):= def T:= dim coker T. 

The integer ind T := aCT) - (3(T), a member of Z, is the index or, fully, the 
Fredholm index of T. 

8.5.2. REMARK. In the Russian literature, a Fredholm operator is usually 
called a Noether operator, whereas the term "Fredholm operator" is applied only 
to an index-zero Fredholm operator. 

8.5.3. Every Fredholm operator is normally solvable. 
<J Immediate from the Kato Criterion. t> 

8.5.4. For T E B(X, Y), the equivalence holds: 

T E $r(X, Y) ¢:} T' E $r(Y', X'). 

Moreover, ind T = - ind T'. 
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<I By virtue of 2.3.5 (6), 8.5.3, 5.5.4 and the Sequence Prime Principle, the 
next pairs of sequences are exact simultaneously: 

T o ---t ker T ---t X -----+ Y ---t coker T ---t 0; 
T' o +- (ker T)' +- X' - Y' +- (coker T)' +- 0; 

o ---t ker (T') ---t Y' ~ X' ---t coker (T') ---t 0; 

o +- (ker (T'))' +- Y .I- X+-C coker (T'))' +- O. 

Moreover, aCT) = f3(T') and f3(T) = aCT') (cf. 7.6.14). t> 

8.5.5. An operator T is an index-zero Fredholm operator if and only if so is 
the dual of T. 

<I This is a particular case of 8.5.4. t> 

8.5.6. Fredbolm Alternative. For an index-zero Fredholm operator T 
either of the following mutually exclusive events takes place: 

(1) The homogeneous equation Tx = 0 has a sole solution, zero. The 
homogeneous conjugate equation T'y' = 0 has a sole solution, zero. The equa-
tion Tx = y is solvable and has a unique solution given an arbitrary right side. 
The conjugate equation T'y' = x' is solvable and has a unique solution given 
an arbitrary right side. 

(2) The homogeneous equation Tx = 0 has a nonzero solution. The ho-
mogeneous conjugate equation T'y' = 0 has a nonzero solution. The homogeneous 
equation Tx = 0 has finitely many linearly independent solutions Xl, ••• ,Xn . The 
homogeneous conjugate equation T'y' = 0 has finitely many linearly independent 
solutions yi, . .. ,y~. . 

The equation Tx = y is solvable if and only if yi(y) = ... = y~(y) = O. 
Moreover, the general solution x is the sum of a partial solution Xo and the general 
solution of the homogeneous equation; i.e., it has the form 

n 

X = Xo + L AkXk (Ak E 1). 
k=l 

The conjugate equation T'y' = x' is solvable if and only if X'(XI) = = 
x'(xn ) = O. Moreover, the general solution y' is the sum of a partial solution y~ 
and the general solution of the homogeneous equation; i.e., it has the form 

n 

, , ""' ' y =Yo+ L...t I-'kYk 
k=l 

<I This is a reformulation of 8.5.5 with account taken of the Polar Lemma. t> 



8.5. Fredholm Operators 139 

8.5.7. EXAMPLES. 
(1) If T is invertible then T is an index-zero Fredholm operator. 
(2) Let T E ~(IF n, IF m). Let rank T:= dim im T be the rank of T. 

Then aCT) = n-rank T and J3(T) = m-rank T. Consequently, T E § r(IF n, IF m) 
and ind T = n - m. 

(3) Let T E B(X) and X = Xl EB X 2 • Assume that this direct sum 
decomposition of X reduces T to matrix form 

T~ (~l ~2). 
Undoubtedly, T is a Fredholm operator if and only if its parts are Fredholm 

operators. Moreover, aCT) = a(Tt) + a(Tz) and J3(T) = J3(Tt) + J3(Tz); i.e., 
ind T = ind TI + ind Tz. <ll> 

8.5.8. Fredholm Theorem. Let K E X(X). Then 1 - K is an index-zero 
Fredholm operator. 

<l First, settle the case IF := C. If 1 rt. Sp(K) then 1 - K is invertible and 
ind(l - K) = o. If 1 E Sp(K) then in virtue of the Riesz-Schauder Theorem 
and the Spectral Decomposition Theorem there is a decomposition X = Xl EB Xz 
such that Xl is finite-dimensional and 1 rt. Sp(Kz), with Kz the part of Kin X z. 
Furthermore, 

1 - K ~ (1 -0 KI 1 _0 K z ) . 

By 8.5.7 (2), ind (1 - K I ) = 0 and, by 8.5.7 (3), ind (1 - K) = ind (1 - K I ) + 
ind(l- K z) = o. 

In the case of the reals, IF := JR, proceed by way of complexification as in 
the proof of 8.4.8. Namely, consider the operator K(x, y):= (Kx, Ky) in the 
space X EB iX. By above, ind (1 - K) = O. Considering the difference between JR 
and ee, observe that a(l - K) = a(l - K) and 13(1 - K) = 13(1 - 1<). Finally, 
ind(l- K) = O. I> 

8.5.9. DEFINITION. Let T E B(X, Y). An operator L, a member of B(Y, X), 
is a left approximate inverse of T if LT -1 E X(X). An operator R, a member of 
B(Y, X), is a right approximate inverse of T if TR - 1 E X(Y). An operator S, 
a member of B(Y, X), is an approximate inverse of T if S is simultaneously 
a left and right approximate inverse of T. If an operator T has an approximate 
inverse S then T is called approximately invertible. The terms "regularizer" and 
"parametrix" are all current in this context with regard to S. 

8.5.10. Let Land R be a left approximate inverse and a right approximate 
inverse of T, respectively. Then L - R E feY, X). 

<l LT = 1 + Kx (Kx E f(X)) => LTR = R+ KxR; 
TR = 1 + Ky (Ky E feY)) => LTR = L + LKy I> 
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8.5.11. 1f L is a left approximate inverse of T and K E f(Y, X) then L + K 
is also a left approximate inverse of T. 

<I (L + K)T - 1 = (LT - 1) + KT E f(X) ~ 

8.5.12. An operator is approximately invertible if and only if it has a right 
approximate inverse and a left approximate inverse. 

<I Only the implication {= needs examining. Let Land R be a left approximate 
inverse and a right approximate inverse of T, respectively. By 8.5.10, K:= L - R E 
f(Y, X). Consequently, by 8.5.11, R = L - K is a left approximate inverse of T. 
Thus, R is an approximate inverse of T. ~ 

8.5.13. REMARK. The above shows that, in the case X = Y, an operator S 
is an approximate inverse of T if and only if i.p(S)i.p(T) = i.p(T)i.p(S) = 1, where 
i.p : B(X) --+ B(X)/f(X) is the coset mapping to the Calkin algebra. In other 
words, a left approximate inverse is the inverse image of a left inverse in the Calkin 
algebra, etc. 

8.5.14. Noether Criterion. An operator is a Fredholm operator if and only 
if it is approximately invertible. 

<I =?: Let T E $"r(X, Y). Using the Complementation Principle, consider 
the decompositions X = ker T EI1 Xl and Y = im T EI1 YI and the respective finite-
rank projections P which carries X onto ker T along Xl and Q which carries Y 
onto YI along im T. It is clear that the restriction TI := Tlxl is an invertible 
operator TI : Xl --+ im T. Put S:= TI- 1(1 - Q). The operator S may be viewed 
as a member of B(Y, X). Moreover, it is beyond a doubt that ST + P = 1 and 
TS+Q=l. 

{=: Let S be an approximate inverse of T; i.e., ST = 1 + Kx and TS = 
1 + K y for appropriate compact operators Kx and Ky. Consequently, ker T C 
ker (1 + Kx); i.e., ker T is finite-dimensional since so is ker (1 + Kx) in virtue 
of 8.5.8. Furthermore, im T J im (1 + K y); and so the range of T is of finite 
co dimension because 1 + K y is an index-zero Fredholm operator. ~ 

8.5.15. Corollary. 1fT E $"r(X, Y) and S is an approximate inverse of T 
then S E $"r(Y, X). <I~ 

8.5.16. Corollary. The product of Fredholm operators is itself a Fredholm 
operator. 

<I The composition of approximate inverses (taken in due succession) is an ap-
proximate inverse to the composition of the originals. ~ 

8.5.17. Consider an exact sequence 
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of finite-dimensional vector spaces. Then the Euler identity holds: 
n I:( _l)k dimXk = O. 

k=l 
<l For n = 1 the exactness of the sequence 0 -+ Xl -+ 0 means that Xl = 0, 

and for n = 2 the exactness of 0 -+ Xl -+ X 2 -+ 0 amounts to isomorphy between 
Xl and X 2 (cf. 2.3.5 (4)). Therefore, the Euler identity is beyond a doubt for 
n:= 1,2. 

Suppose now that for m ::; n - 1, where n > 2, the desired identity is already 
established. The exact sequence 

T n -2 X o -+ Xl -+ X 2 -+ ... -+ X n - 2 ---+ n-l T n _ 1 X 0 ----+ n-+ 

reduces to the exact sequence 
T n _ 2 k 'T' o -+ Xl -+ X 2 -+ ... -+ X n - 2 ----t er .Ln-l -+ O. 

By hypothesis, 
n-2 L:( _l)k dimXk + (-It-1 dimker Tn- l = O. 
k=l 

Furthermore, since Tn- l is an epimorphism, 

dimXn- 1 = dimker Tn- l + dimXn. 

Finally, 

n-2 

0= L:( _l)k dimXk + (-It- l (dimXn_1 - dimXn ) 

k=l 
n 

= L:( _l)k dimXk. [> 

k=l 
8.5.18. Atkinson Theorem. The index of the product of Fredholm opera-

tors equals the sum of the indices of the factors. 
<l Let T E $r(X, Y) and S E $r(Y, Z). By virtue of 8.5.16, ST E 

$r(X, Z). Using the Snowflake Lemma, obtain the exact sequence of finite-
dimensional spaces 

o -+ ker T -+ ker ST -+ ker S -+ coker T -+ coker ST -+ coker S -+ o. 
Applying 8.5.17, infer that 

aCT) - neST) + o(S) - j3(T) + j3(ST) - j3(S) = 0; 

whence ind (ST) = ind S + ind T. [> 
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8.5.19. Corollary. Let T be a Fredholm operator and let S be an approxi-
mate inverse ofT. Then ind T = - ind S. 

<l ind(ST) = ind(l + K) for some compact operator K. By Theorem 8.5.8, 
1 + K is an index-zero Fredholm operator. I> 

8.5.20. Compact Index Stability Theorem. The property of being 
a Fredholm operator and the index of a Fredholm operator are preserved un-
der compact perturbations: ifT E $r(X, Y) and K E X(X, Y) then T + K E 
$r(X, Y) and ind(T + K) = ind T. 

<l Let S be an approximate inverse to T; i.e., 

ST = 1 + Kx; TS = 1 + K y 

with some Kx E X(X) and Ky E X(Y) (that S exists is ensured by 8.5.14). 
It is clear that 

SeT + K) = ST + SK = 1 + Kx + SK E 1 + X(X); 
(T + K)S = TS + KS = 1 + Ky + KS E 1 + X(Y); 

i.e., S is an approximate inverse of T+K. By virtue of 8.5.14, T+K E $r(X, Y). 
Finally, from 8.5.19 infer the equalities ind (T + K) = - ind S and ind T = 
-ind S. I> 

8.5.21. Bounded Index Stability Theorem. The property of being 
a Fredholm operator and the index of a Fredholm operator are preserved under 
sufficiently small bounded perturbations: the set $r(X, Y) is open in the space 
of bounded operators, and the index of a Fredholm operator ind : $ r( X, Y) -t Z 
is a continuous function. 

<l Let T E $r(X, Y). By 8.5.14 there are operators S E B(Y, X), Kx E 
X(X) and Ky E X(Y) such that 

ST=l+Kx; TS=l+Ky. 

If S = 0 then the spaces X and Yare finite-dimensional by the Riesz Criterion, 
i.e., nothing is left to proof: it suffices to refer to 8.5.7 (2). If S i- 0 then for all 
V E B(X, Y) with IIVII < l/IISII, from the inequality of 5.6.1 it follows: IISVII < 1 
and IIV SII < 1. Consequently, in virtue of 5.6.10 the operators 1 + SV and 1 + V S 
are invertible in B(X) and in B(Y), respectively. 

Observe that 

(1 + SV)-l SeT + V) = (1 + SV)-I(l + Kx + SV) 
= 1 + (1 + SV)-l Kx E 1 + X(X); 
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i.e., (1 + SV)-lS is a left approximate inverse of T + V. By analogy, show that 
S(1 + V S)-l is a right approximate inverse of T + V. Indeed, 

(T + V)S(1 + VS)-l = (1 + Ky + VS)(1 + VS)-l 
= 1 + Ky(1 + VS)-l E 1 + X(Y). 

By 8.5.12, T + V is approximately invertible. In virtue of 8.5.14, T + V E 
$r(X, Y). This proves the openness property of $r(X, Y). When left and 
right approximate inverses of a Fredholm operator W exist, each of them is an ap-
proximate inverse to W (cf. 8.5.12), Therefore, from 8.5.19 and 8.5.18 obtain 

ind(T + V) = -ind«1 + SV)-lS) 
= -ind(1 + SV)-l - ind S = -ind S = ind T 

(because (1 + SV)-l is a Fredholm operator by 8.5.7 (1». This means that the 
Fredholm index is continuous. t> 

8.5.22. Nikol'skiY Criterion. An operator is an index-zero Fredholm oper-
ator if and only if it is the sum of an invertible operator and a compact operator. 

<I ~: Let T E $r(X, Y) and ind T = O. Consider the direct sum decom-
positions X = Xl $ ker T and Y = im T $ Yi. It is beyond a doubt that the 
operator Tl , the restriction of T to Xl, implements an isomorphism between Xl 
and im T. Furthermore, in virtue of 8.5.5, dim Yl = f3(T) = aCT); i.e., there is 
a natural isomorphism Id : ker T --4 Yl . Therefore, T admits the matrix presen-
tation 

T ~ (~l ~) = (~ I~) + (~ _ ~d ) . 
¢:::: If T:= S + K with K E £(X, Y) and S-l E B(Y, X) then, by 8.5.20 

and 8.5.7 (1), ind T = ind(S + K) = ind S = O. t> 

8.5.23. REMARK. Let Inv (X, Y) stand as before for the set of all invertible 
operators from X to Y (this set is open by Theorem 5.6.12). Denote by §(X, Z) 
the set of all Fredholm operators acting from X to Y and having index zero. The 
Nikol'skil Criterion may now be written down as 

§(X, Y) = Inv (X, Y) + X(X, Y). 

As is seen from the proof of 8.5.22, it may also be asserted that 

§(X, Y) = Inv (X, Y) + F(X, Y), 

where, as usual, F(X, Y) is the subspace of B(X, Y) comprising all finite-rank 
operators. <It> 
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Exercises 
8.1. Study the Riesz-Dunford integral in finite-dimensions. 
8.2. Describe the kernel of the Riesz-Dunford integral. 
8.3. Given n E N, let In be a function holomorphic in a neighborhood U about the 

spectrum of an operator T. Prove that the uniform convergence of (In) to zero on U follows 
from the convergence of (In (T)) to zero in operator norm. 

8.4. Let rT be an isolated part of the spectrum of an operator T. Assume that the 
part rT' := Sp(T) \ rT is separated from rT by some open disk with center a and radius r so that 
rT C {z E IC: Iz - al < r}. Considering the Riesz projection P", prove that 

P" = lim (1- z-n(T _ a)n)-l; 
n 

x E im(P,,) ¢} limsupll(a - T)nxill/n < r. 
n 

8.5. Find conditions for a projection to be a compact operator. 
8.6. Prove that every closed subspace lying in the range of a compact operator in a Ba-

nach space is finite-dimensional. 
8.7. Prove that a linear operator carries each closed linear subspace onto a closed set 

if and only if the operator is normally solvable and its kernel is finite-dimensional or finite-
codimensional (the latter means that the kernel has a finite-dimensional algebraic complement). 

8.8. Let 1 ~ p < r < +00. Prove that every bounded operator from lr to lp or from Co 
to lp is compact. 

8.9. Let H be a separable Hilbert space. Given an operator T in B(H) and a Hilbert 
basis (en) for H, define the Hilbert-Schmidt norm as 

(Examine soundness!) An operator with finite Hilbert-Schmidt norm is a Hilbert-Schmidt oper-
ator. Demonstrate that an operator T is a Hilbert-Schmidt operator if and only if T is compact 
and L::=1 A~ < +00, where (An) ranges over the eigenvalues of some operator (T*T)ll2 (define 
the latter!). 

8.10. Let T be an endomorphism. Then 

If there is a number n satisfying im (Tn) = im (Tn+l) then say that T has finite descent. The 
least number n with which stabilization begins is the descent of T, denoted by d(T). By analogy, 
considering the kernels 

introduce the concept of ascent and the denotation a(T). Demonstrate that, for an operator T 
with finite descent and finite ascent, the two quantities, a(T) and d(T), coincide. 

8.11. An operator T is a Riesz-Schauder operator, if T is a Fredholm operator and has 
finite descent and finite ascent. Prove that an operator T is a Riesz-Schauder operator if and 
only if T is of the form T = U + V, where U is invertible and V is of finite rank (or compact) 
and commutes with U. 
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8.12. Let T be a bounded endomorphism of a Banach space X which has finite descent 
and finite ascent, r := aCT) = d(T). Prove that the subspaces im (Tr) and ker (Tr) are closed, 
the decomposition X = ker (Tr) EB im (Tr) reduces T, and the restriction of T to im (Tr) IS 

invertible. 
8.13. Let T be a normally solvable operator. If either of the next quantities is finite 

aCT) := dim ker T, (J(T) := dim coker T, 

then T is called semi-Fredholm. Put 

Prove that 

<1>+ (X):= {T E B(X): im T E CI (X), aCT) < +oo}; 

<I>_(X):= {T E B(X): im T E CI (X), (J(T) < +=}. 

T E <1>+ (X) <=> T' E <1>_ (X'); 

T E <I>_(X) <=> T' E <I>+(X'). 

8.14. Let T be a bounded endomorphism. Prove that T belongs to <1>+ (X) if and only 
if for every bounded but not totally bounded set U, the image T(U) is not a totally bounded set 
in X. 

8.15. A bounded endomorphism T in a Banach space is a Riesz operator, if for every 
nonzero complex>. the operator (>. - T) is a Fredholm operator. Prove that T is a Riesz operator 
if and only if for all >. E C, >. I' 0, the following conditions are fulfilled: 

(1) the operator (>. - T) has finite descent and finite ascent; 
(2) the kernel of (>. - T)k is finite-dimensional for every kEN; 
(3) the range of (>. - T)k has finite deficiency for kEN, 

and, moreover, all nonzero points of the spectrum of T are eigenvalues, with zero serving as the 
only admissible limit point (that is, for whatever strictly positive e, there are only finitely many 
points of Sp(T) beyond the disk centered at zero with radius e). 

8.16. Establish the isometric isomorphisms: (X/Y)' ~ yl. and X'/Yl. ~ Y' for Ba-
nach spaces X and Y such that Y is embedded into X. 

8.17. Prove that for a normal operator T in a Hilbert space and a holomorphic func-
tion I, a member of H(Sp(T)), the operator I(T) is normal. (An operator is normal if it 
commutes with its adjoint, cf. 11.7.1.) 

8.18. Show that a continuous endomorphism T of a Hilbert space is a Riesz operator 
if and only if T is the sum of a compact operator and a quasinilpotent operator. (Quasinilpotency 
of an operator means triviality of its spectral radius.) 

8.19. Given two Fredholm operators Sand T, members of $"r(X, Y), with ind S = 
ind T, demonstrate that there is a Jordan arc joining Sand T within $"r(X, Y). 



Chapter 9 
An Excursion into General Topology 

9.1. Pretopologies and Topologies 
9.1.1. DEFINITION. Let X be a set. A mapping T X -+ 9'(9'(X» IS 

a pretopology on X if 
(1) x EX=> T(X) is a filter on Xj 
(2) xEX=>T(x)Cfil{x}. 

A member of T(X) is a (pre)neighborhood about x or of x. The pair (X, T), as well 
as the set X itself, is called a pretopological space. 

9.1.2. DEFINITION. Let .o/"(X) be-the collection of all pretopologies on X. 
If Tl, T2 E .0/"( X) then Tl is said to be stronger than T2 or finer than T2 (in symbols, 
Tl ~ T2) provided that x EX=> Tl(X) :J T2(X). Of course, T2 is weaker or coarser 
than Tl. 

9.1.3. The set .9"(X) with the relation "to be stronger" presents a complete 
lattice. 

<I If X = 0 then .o/"(X) = {0} and there is nothing to be proven. If X i= 0 
then refer to 1.3.13. c> 

9.1.4. DEFINITION. A subset G of X is an open set in X, if G is a (pre )neigh-
borhood of its every point (in symbols, G E Op (T) {:} (V x E G) (G E T( x))). 
A subset F of X is a closed set in X if the complement of F to X is open; that is, 
FE CI(T) {:} X \ FE 0p(T). 

9.1.5. The union ofa family of open sets and the intersection ofa finite family 
of open sets are open. The intersection of a family of closed sets and the union 
of a finite family of closed sets are closed. <lC> 

9.1.6. Let (X, T) be apretopological space. Given x E X, put 

U E t( T )( x) {:} (3 V E Op ( T » x E V & U :J V. 

The mapping t( T) : x ~ t( T )( x) is a pretopology on X. <lC> 
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9.1. 7. DEFINITION. A pretopology T on X is a topology if T = t( T). The pair 
(X, T), as well as the underlying set X itself, is then called a topological space. 
The set of all topologies on X is denoted by the symbol T (X). 

9.1.8. EXAMPLES. 
(1) A metric topology. 
(2) The topology of a multinormed space. 
(3) Let To := inf .o/(X). It is clear that To(X) = {X} for x E X. Conse-

quently, 0p(To) = {0, X} and so To = t(To); i.e., To is a topology. This topology 
is called trivial, or antidiscrete, or even indiscrete. 

(4) Let TO:= sup.o/(X). It is clear that TO(X) = fil {x} for x E X. 
Consequently, Op (TO) = 2x and so TO = t( TO); i.e., TO is a topology. This 
topology is called discrete. 

(5) Let Op be a collection of subsets in X which is stable under the 
taking of the union of each of its subfamilies and the intersection of each of its 
finite subfamilies. Then there is a unique topology T on X such that Op ( T) = Op . 

<l Put T(X) := fil {V E Op : x E V} for x E X (in case X = 0 there is 
nothing to prove). Observe that T( x) -=J 0 since the intersection of the empty 
family equals X (d. inf 0 = +00). From the construction derive that t( T) = T 
and Op C 0p(T). If G E Op(T) then G = U{V: V E Op, V c G} and so 
G E Op by hypothesis. The claim of uniqueness raises no doubts. I> 

9.1.9. Let the mapping t : .o/(X) - .o/(X) act by the rule t : T 1---+ t(T). 
Then 

(1) im t = T(X); i.e., T E .o/(X):::} t(T) E T(X); 
(2) Tl ::; T2 :::} t(Tl) ::; t(T2) (T1, T2 E .o/(X)); 
(3) tot = t; 
(4) T E .o/(X) :::} t(T) ::; T; 
(5) Op(T) = Op(t(T» (T E .o/(X). 

<l The inclusion Op (T) :J Op (t( T» holds because it is easier to be open in T. 
The reverse inclusion Op (T) C Op (t( T» follows from the definition of t( T). The 
equality Op ( 1') = Op (t( T}) makes everything evident. I> 

9.1.10. A pretopology l' on X is a topology if and only if 

(VU E T(x»(3V E T(X) & V c U)(Vy) (y E V:::} V E T(Y» 

for x E X. 
<l Straightforward from 9.1.9 (5). I> 

9.1.11. Let 1'1, 1'2 E T(X). The following statements are equivalent: 
(1) 1'1 21'2; 

(2) Op(Tl):J Op(T2); 
(3) Cl ( 1'1) :J Cl ( 1'2). <ll> 
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9.1.12. REMARK. As follows from 9.1.8 (5) and 9.1.11, the topology of a space 
is uniquely determined from the collection of its open sets. Therefore, the set 
Op (X) itself is legitimately called the topology of the space X. In particular, 
the collection of open sets of a pretopological space (X, T) makes X into the 
topological space (X, t( T» with the same open sets in stock. Therefore, given 
a pretopology T, the topology t( T) is usually called the topology associated with T. 

9.1.13. Theorem. The set T (X) of all topologies on X with the relation 
"to be stronger" presents a complete lattice. Moreover, for every subset C of T (X) 
the equality holds: 

sUPT (X) C = sup 3'(X) C. 

<I Evidently, t(SUP3'(X) C) ~ sUP3'(X) t(C) ~ sUP3'(X) C ~ t(SUP3'(X) C). 
Thus, T := sUP3'(X) C belongs to T (X). It is clear that T ~ C. Furthermore, 
if TO ~ C and TO E T (X) then TO ~ T and so T = SUPT (X) C. It remains to refer 
to 1.2.14. I> 

9.1.14. REMARK. The explicit formula for the greatest lower bound of C is 
more involved: 

infT (X) C = t(inf 3'(X) C). 

However, the matter becomes simpler when the topologies are given by means of 
their collections of open sets in accordance with 9.1.12. Namely, 

U E Op (infT (X) C) {:} ('liT E C) U E Op(T). 

In other words, 
Op (infT (X) C) = n 0p(T). 

rEtC 

In this connection it is in common parlance to speak of the intersection of the 
set C of topologies (rather than of the greatest lower bound of C). <II> 

9.2. Continuity 
9.2.1. REMARK. The presence of a topology on a set obviously makes it pos-

sible to deal with such things as the interior and closure of a subset, convergence 
of filters and nets, etc. We have already made use of this circumstance while in-
troducing multinormed spaces. Observe for the sake of completeness that in every 
topological space the following analogs of 4.1.19 and 4.2.1 are valid: 

9.2.2. BirkhoffTheorem. For a nonempty subset U and a point x ofa topo-
logical space the following statements are equivalent: 

(1) x is an adherent point ofU; 
(2) there is some filter containing U and converging to x; 
(3) there is a net of elements of U which converges to x. <II> 
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9.2.3. For a mapping f between topological spaces the following conditions 
are equivalent: 

(1) the inverse image under f of an open set is open; 
(2) the inverse image under f of a closed set is closed; 
(3) the image under f of the neighborhood filter of an arbitrary point x 

is coarser than the neighborhood filter of f(x); 
(4) for all x, the mapping f transforms each filter convergent to x into 

a filter convergent to f( x); 
(5) for all x, the mapping f sends a net that converges to x to a net 

that converges to f(x). <It> 

9.2.4. DEFINITION. A mapping acting between topological spaces X and Y 
and satisfying one (and hence all) of the equivalent conditions 9.2.3 (1)-9.2.3 (5) 
is called continuous. A continuous one-to-one mapping f from X onto Y whose 
inverse f- 1 acts continuously from Y to X is a homeomorphism or a topological 
mapping or a topological isomorphism between X and Y. 

9.2.5. REMARK. If f : (X, TX) --+ (Y, Ty) meets 9.2.3 (5) at some point x 
in X then it is customary to say that f is continuous at x (cf. 4.2.2). Observe 
that the difference is immaterial between the definitions of the continuity property 
at a point of X and the general continuity property (on X). Indeed, if we let 
Tz(X):= TX(X) and Tz(X):= fil {x} for x E X, x i- x, then the continuity property 
of f at x (with respect to the topology TX in X) amounts to that of f : (X, Tz)--+ 
(Y, Ty) (at every point of the space X with topology T z ). 

9.2.6. Let Tl, T2 E T (X). Then Tl ~ T2 if and only if Ix : (X, Tt) --+ (X, T2) 
is continuous. <It> 

9.2.7. Let f: (X, T) --+ (Y, w) be a continuous mapping and let Tl E T(X) 
and WI E T (Y) be such that Tl ~ T and w ~ WI. Then f : (X, TI) --+ (Y, wI) is 
continuous. 

<I By hypothesis the following diagram commutes: 

(X,T) 
Ix i 
(X,TI) 

~ (Y,w) 
!!y 

~ (Y,Wl) 

It suffices to observe that every composition of continuous mappings is continu-
ous. t> 

9.2.8. Inverse Image Topology Theorem. Let f : X --+ (Y, w). Put 

TO:={TET(X): f:(X, T)--+(Y, w)iscontinuous}. 

Then the topology f-l(w):= infTo belongs to To. 
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<l From 9.2.3 (1) it follows that 

r E To {:> (x EX:::} f-l(w(f(x))) C rex)). 

Let rex) := f-l(w(f(x))). Undoubtedly, t(r) = r. Furthermore, f(r(x)) = 
f(f-l(w(f(x)))) ~ w(f(x))j i.e., r E To by 9.2.3 (3). Thus, f-l(W) = r. t> 

9.2.9. DEFINITION. The topology f-l(w) is the inverse image of wunder 
a mapping f or simply the inverse image topology under f. 

9.2.10. REMARK. Theorem 9.2.8 is often verbalized as follows: "The inverse 
image topology under a mapping is the weakest topology on the set of departure 
in which the mapping is continuous." Moreover, it is easy for instance from 9.1.14 
that the open sets of the inverse image topology are precisely the inverse images 
of open sets. In particular, (xe -+ x in f-l(w)) {:> (f(xe) -+ f(x) in w)j likewise, 
($ -+ x in f-l(w)) {:> (f($) -+ f(x) in w) for a filter $. <It> 

9.2.11. Image Topology Theorem. Let f : (X, r) -+ Y. Put 

no:={wET(Y): f:(X, r)-+(Y, w) is continuous}. 

Then the topology f( r) := sup no belongs to no. 
<l Appealing to 9.1.13, observe that 

f(r)(y) = (SUPT(Y) no)(y) = (suP~(Y) no)(y) = sup{w(y): wE no} 

for y E Y. By virtue of 9.2.3 (3), 

wE no {:> (x EX:::} f(r(x)) ::) W(f(x))). 

Comparing the formulas, infer that fer) E no. t> 

9.2.12. DEFINITION. The topology fer) is the image of r under a mapping f 
or simply the image topology under f. 

9.2.13. REMARK. Theorem 9.2.11 is often verbalized as follows: "The image 
of a topology under a mapping is the strongest topology on the set of arrival 
in which the mapping is continuous." 

9.2.14. Theorem. Let (fe : X -+ (Ye, We))eE3 be a family of mappings. 
Further, put r:= SUPeE3lil(we). Then r is the weakest (= least) topology on X 
making all the mappings fe (e E 3) continuous. 

<l Using 9.2.8, note that 

(fe : (X, r) -+ (Ye, we) is continuous) {:> r ~ ft(we). t> 

9.2.15. Theorem. Let (fe : (Xe, re) -+ Y)eE3 be a family of mappings. 
Further, assign w:= infeE3 fe(re). Then w is the strongest (= greatest) topology 
on Y making all the mappings Ie (e E 3) continuous. 



9.3. Types of Topological Spaces 151 

<I Appealing to 9.2.11, conclude that 

9.2.16. REMARK. The messages of 9.2.14 and 9.2.15 are often referred to as 
the theorems on topologizing by a family of mappings. 

9.2.17. EXAMPLES. 
(1) Let (X, T) be a topological space and let Xo be a subset of X. 

Denote the identical embedding of Xo into X by l : Xo -+ X. Put To:= [-l(T). 
The topology TO is the induced topology (by T in Xo), or the relative or subspace 
topology; and the space (X 0, TO) is a subspace of (X, T). 

(2) Let (X{, T{){E3 be a family of topological spaces and let X := 
I1{E3 X{ be the product of (X{){E3. Put T:= sUP{E3 Pre1( T{), where Pr{ : X -+ 
X{ is the coordinate projection (onto X{); i.e., Pr{ x = x{ (~ E 3). The topology T 

is the product topology or the product of the topologies (T{ ){E3, or the Tychonoff 
topology of X. The space (X, T) is the Tychonoff product of the topological spaces 
under study. In particular, if X{:= [0, 1] for all ~ E 3 then X:= [0, 1]3 (with the 
Tychonoff topology) is a Tychonoff cube. When 3:= N, the term "Hilbert cube" 
is applied. 

9.3. Types of Topological Spaces 

9.3.1. For a topological space the following conditions are equivalent: 
(1) every singleton of the space is closed; 
(2) the intersection of all neighborhoods of each point in the space con-

sists solely of the point; 
(3) each one of any two points in the space has a neighborhood disjoint 

from the other. 

<I To prove, it suffices to observe that 

YEcl{x}{:}(VVET(Y)) xEV{:}xEn{V: VET(Y)}, 

where x and yare points of a space with topology T. t> 

9.3.2. DEFINITION. A topological space satisfying one (and hence all) of the 
equivalent conditions 9.3.1 (1)-9.3.1 (3), is called a separated space or a T 1-space. 
The topology of a Trspace is called a separated topology or (rarely) a T1-topology. 

9.3.3. REMARK. By way of expressiveness, one often says: "A T 1-space is 
a space with closed points." 
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9.3.4. For a topological space the following conditions are equivalent: 
(1) each filter has at most one limit; 
(2) the intersection of all closed neighborhoods of a point in the space 

consists of the sole point; 
(3) each one of any two points of the space has a neighborhood disjoint 

from some neighborhood of the other point. 
<l (1) =? (2): If y E nUEr(z) cl U then un V f:. 0 for all V E r(y), provided 

that U E r( x). Therefore, the join $:= r( x) V r(y) is available. Clearly, $ --+ x 
and $ --+ y. By hypothesis, x = y. 

(2) =? (3): Let x, y E X, x f:. y (if such points are absent then either X = 0 
or X is a singleton and nothing is left unproven). There is an neighborhood U 
in r( x) such that U = cl U and y rf. U. Consequently, the complement V of U 
to X is open. Furthermore, Un V = 0. 

(3) =? (1): Let $ be a filter on X. If $ --+ x and $ --+ y then $ :J rex) 
and $ :J r(y). Thus, Un V f:. 0 for U E rex) and V E r(y), which means that 
x = y. t> 

9.3.5. DEFINITION. A topological space satisfying one (and hence all) of the 
equivalent conditions 9.3.4 (1)-9.3.4 (3) is a Hausdorff space or a T 2-space. A nat-
ural meaning is ascribed to the term "Hausdorff topology." 

9.3.6. REMARK. By way of expressiveness, one often says: "A T 2-space is 
a space with unique limits." 

9.3.7. DEFINITION. Let U and V be subsets of a topological space. It is said 
that V is a neighborhood of U or about U, provided int V :J U. If U is nonempty 
then all neighborhoods of U constitute some filter that is the neighborhood filter 
of U. 

9.3.S. For a topological space the following conditions are equivalent: 
(1) the intersection of all closed neighborhoods of an arbitrary closed set 

consists only of the members of the set; 
(2) the neighborhood filter of each point has a base of closed sets; 
(3) if F is a closed set and x is a point not in F then there are disjoint 

neighborhoods of F and x, respectively. 
<l (1) =? (2): If x E X and U E rex) then V:= X \int U is closed and x rf. v. 

By hypothesis there is a set F in Cl ( r) such that x rf. F and int F :J V. Put 
G:= X \ F. Clearly, G E rex). Moreover, G c X \ int F = cl(X \ int F) C 
X \ V C int U C U. Consequently, cl G cU. 

(2) =? (3): If x E X and FE Cl(r) with x rf. F then X\F E rex). Thus, there 
is a closed neighborhood U in r( x) lying in X \ F. Thus, X \ U is a neighborhood 
of F disjoint from U. 

(3) =? (1): If F E Cl(r) and int G:J F =? Y E cl G, then UnG f:. 0 for every 
U in r(y) and every neighborhood G of F. This means that y E F. t> 
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9.3.9. DEFINITION. A T 3 -space is a topological space satisfying one (and 
hence all) of the equivalent conditions 9.3.8 (1)-9.3.8 (3). A separated T3-space is 
called regular. 

9.3.10. Urysohn Little Lemma. For a topological space the following con-
ditions are equivalent: 

(1) the neighborhood filter of each nonempty closed set has a base of 
closed sets; 

(2) if two closed sets are disjoint then they have disjoint neighborhoods. 

<l (1) =} (2): Let FI and F2 be closed sets in some space X with FI n F2 = 0. 
Put G:= X \ Fl. Obviously, G is open and G J F2. If F2 = 0, then there is 
nothing to be proven. It may be assumed consequently that F2 of. 0. Then there 
is a closed set V2 such that G J V2 J int V2 J F2. Put VI := X \ V2. It is clear 
that VI is open, and VI n V2 = 0. Moreover, VI J X \ G = X \ (X \ FI) = Fl. 

(2) =} (1): Let F = cl F, G = int G and G J F. Put FI := X \ G. Then 
FI = cl FI and so there are open sets U and UI satisfying Un UI = 0, with FeU 
and FI CUI. Finally, cl U C X \ UI eX \ FI = G. c> 

9.3.11. DEFINITION. A T4-space is a topological space meeting one (and 
hence both) of the equivalent conditions 9.3.10 (1) and 9.3.10 (2). A separated 
T 4 -space is called normal. 

9.3.12. Continuous Function Recovery Lemma. Let a subset T be dense 
in R and let t ~ Ut (t E T) be a family of subsets of a topological space X. There 
is a unique continuous function f : X -+ R such that 

{f < t} C Ut C {f ::; t} (t E T) 

if and only if 
(t, sET & t < s) =} cl Ut C int Us. 

<l =}: Take t < s. Since {f ::; t} is closed and {f < s} is open, the inclusions 
hold: 

cl Ut C {f ::; t} C {f < s} C int Us. 

{:::: Since Ut C cl Ut C int Us C Us for t < s, the family t ~ Ut (t E T) 
increases by inclusion. Therefore, f exists by 3.8.2 and is unique by 3.8.4. Consider 
the families t ~ Vi := cl Ut and t ~ Wt := int Ut . These families increase 
by inclusion. Consequently, on applying 3.8.2 once again, find functions g, h : 
X -+ R satisfying 

{g < t} C Vi c {g ::; t}, {h < t} C W t C {h ::; t} 
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for all t E T. If t, sET and t < s, then in view of 3.8.3 

Wt = int Ut C Ut C Us ::} I ~ hj 
lit = cl Ut C int Us = Ws ::} h ~ gj 

Ut C Us C cl Us = Vs ::} 9 ~ f. 

So, 1= 9 = h. Taking account of 3.8.4 and 9.1.5 and given t E iR, find 

{f<t}={h<t}=U{Ws: s<t, sET}EOp(rx)j 
{f ~ t} = {g ~ t} = n{Vs: t < s, sET} E CI(rx). 

These inclusions readily provide continuity for I. [> 

9.3.13. Urysohn Great Lemma. Let X be a T4-space. Assume further 
that F is a closed set in X and G is a neighborhood ofF. Then there is a continuous 
function I : X ---t [0, 1] such that I(x) = ° for x E F and I(x) = 1 for x rf. G. 

<I Put Ut := 0 for t < ° and Ut := X for t > 1. Consider the set T of the 
dyadic-rational points ofthe interval [0, l]j i.e., T:= UnENTn with Tn:= {k2-n+1 : 

k:= 0, 1, ... ,2n - 1 }. It suffices to define Ut for all tin T so that the family t 1--+ Ut 
(t E T:= T U (iR \ [0, 1])) satisfy the criterion of 9.3.12. This is done by way 
of induction. 

If t E T17 i.e., t E {O, l}j then put Uo := F and U1 := G. Assume now 
that, for t E Tn and n ~ 1, some set Ut has already been constructed, satisfying 
cl U, C int Us whenever t, s E Tn and t < s. Take t E Tn+1 and find the two 
points t, and tr in Tn nearest to t: 

t,:= sup{s E Tn: S ~ t}j 
tr:= inf{s E Tn: t ~ s}. 

If t = t, or t = t r , then Ut exists by the induction hypothesis. If t =I- t, and 
t =I- tr, then t, < t < tr and again by the induction hypothesis cl Ut, C int Utr . 
By virtue of 9.3.11 there is a closed set Ut such that 

cl Ut, C int Ut C Ut = cl Ut C int Utr . 

It remains to show that the resulting family satisfies the criterion of 9.3.12. 
To this end, take t, s E Tn+! with t < s. If tr = Sl, then for s > Sl 

by construction 
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For t < tr = SI similarly deduce the following: 

If tr < SI then, on using the induction hypothesis, infer that 

what was required. I> 

9.3.14. Urysohn Theorem. A topological space X is a T4-space if and only 
if to every pair of disjoint closed sets FI and F2 in X tbere corresponds a continuous 
function f : X ~ [0, 1] sucb tbat f(x) = 0 for x E FI and f(x) = 1 for x E F2 • 

<l =}: It suffices to apply 9.3.13 with F:= FI and G:= X \ F2 . 

{=: If FI n F2 = 0 and FI and F2 are closed sets, then for a corresponding 
function f the sets G I := {f < I h} and G2 := {f > I h} are open and disjoint. 
Moreover, GI :) FI and G2 :) F2 • I> 

9.3.15. DEFINITION. A topological space X is a T 31/2 -space, if to a closed 
set F in X and a point x not in F there corresponds a continuous function f : 
X ~ [0, 1] such that f(x) = 1 and y E F =} fey) = o. A separated T 31/2-space is 
a Tychonoff space or a completely regular space. 

9.3.16. Every normal space is a Tycbonoff space. 
<l Straightforward from 9.3.1 and 9.3.14. I> 

9.4. Compactness 
9.4.1. Let ~ be a Elterbase on a topological space and let 

cl~:=n{clB: BE~} 

be tbe set of adberent points of ~ (also called tbe adberence of ~). Tben 
(1) cl ~ = cl fil ~; 
(2) ~ ~ x =} x E cl ~; 
(3) (~is an ultraElter and x E cl ~) =} ~ -t x. 

<l Only (3) needs demonstrating, since (1) and (2) are evident. Given U E r( x) 
and B E ~, observe that Un B =I- 0. In other words, the join § := rex) V 
~ is available. It is clear that § -t x. Furthermore, § = ~, because ~ is 
an ultrafilter. I> 

9.4.2. DEFINITION. A subset C of a topological space X is a compact set 
in X if each open cover of C has a finite sub cover (d. 4.4.1). 
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9.4.3. Theorem. Let X be a topological space and let C be a subset of X. 
The following statements are equivalent: 

(1) C is compact; 
(2) if a filterbase fJO lacks adherent points in C then there is a member 

B of fJO such that B n C = 0; 
(3) each filterbase containing C has an adherent point in C; 
(4) each ultrafilter containing C has a limit in C. 

<I (1) =} (2): Since cl fJO n C = 0; therefore, C C X \ cl fJO. Thus, C C 
X \ n{cl B: B E fJO} = U{X \ cl B: B E fJO}. Consequently, there is a finite 
subset fJOo of fJO such that C c U{ X \ cl Bo : Bo E fJOo} = X \ n{ cl Bo : Bo E fJOo}. 
Let B E fJO satisfy B C n{Bo: Bo E fJOo} C n{cl Bo: Bo E fJOo}. Then 
CnBCCn(n{clBo: Bo EfJOo})=0. 

(2) =} (3): In case C = 0, there is nothing to be proven. If C "# 0, then for 
BE fJO by hypothesis B n C "# 0 because C E fJO. Thus, cl fJO n C "# 0. 

(3) =} (4): It suffices to appeal to 9.4.1. 
(4) =} (1): Assume that C "# 0 (otherwise, nothing is left to proof). 
Suppose that C is not compact. Then there is a set tff of open sets such that 

C C U{ G: G E tff} and at the same time, for every finite subset tffo of tff, the 
inclusion C C U{G: G E 6"o} fails. Put 

fJO:= { n X \ G: tffo is a finite subset of tff} . 
GE'£o 

It is clear that fJO is a filterbase. Furthermore, 

cl fJO = n{cl B: BE fJO} = n{X \ G: G E tff} 
= X \ U{G: G E tff} C X \ c. 

Now choose an ultrafilter $ that is coarser than fJO, which is guaranteed by 1.3.10. 
By supposition each member of fJO meets C. We may thus assume that C E $ 
(adjusting the choice of $, if need be). Then $ -t X for some x in C and 
so, by 9.4.1 (2), cl $ n C "# 0. At the same time cl $ C cl fJO. We arrive 
at a contradiction. I> 

9.4.4. REMARK. The equivalence (1) {:} (4) in Theorem 9.4.3 is called the 
Bourbaki Criterion and verbalized for X = C as follows: "A space is compact if and 
only if every ultrafilter on it converges" (cf. 4.4.7). An ultranet is a net whose 
tail filter is an ultrafilter. The Bourbaki Criterion can be expressed as follows: 
"Compactness amounts to convergence of ultranets." Many convenient tests for 
compactness are formulated in the language of nets. For instance: "A space X is 
compact if and only if each net in X has a convergent subnet." 



9.4. Compactness 157 

9.4.5. Weierstrass Theorem. The image of a compact set under a contin-
uous mapping is compact (cf. 4.4.5). <It> 

9.4.6. Let Xo be a subspace of a topological space X and let C be a subset 
of Xo. Then C is compact in Xo if and only ifC is compact in X. 

<I =?: Immediate from 9.4.5 and 9.2.17 (1). 
{:::: Let [$ be a filterbase on Xo. Further, let V := clxo [$ stand for the 

adherence of [$ relative to Xo. Suppose that VnC = 0. Since [$ is also a filterbase 
on X, it makes sense to speak of the adherence W:= clx [$ of [$ relative to X. 
It is clear that V = W n Xo and, consequently, W n C = 0. Since C is compact 
in X, by 9.4.3 there is some B in [$ such that B n C = 0. Using 9.4.3 once again, 
infer that C is compact in Xo. t> 

9.4.7. REMARK. The claim of 9.4.6 is often expressed as follows: "Compact-
ness is an absolute concept." It means that for C to be or not to be compact 
depends on the topology induced in C rather than on the ambient space induc-
ing the topology. For that reason, it is customary to confine study to compact 
spaces, i.e. to sets "compact in themselves." A topology T on a set C, making C 
into a compact space, is usually called a compact topology on C. Also, such C is 
referred to as "compact with respect to 7." 

9.4.8. Tychonoff Theorem. The Tychonoff product of compact spaces is 
compact. 

<I Let X:= IleEs Xe be the product of such spaces. If at least one of the 
spaces Xe is nonempty then X = 0 and nothing is left to proof. Let X i- 0 
and let § be an ultrafilter on X. By 1.3.12, given ~ E 2: and considering the 
coordinate projection Pre: X -t Xe, observe that Pre(§) is an ultrafilter on Xe. 
Consequently, in virtue of 9.4.3 there is some xe in Xe such that Pre(§) -t xe. 
Let x : ~ 1---* xe. It is clear that § -t x (cf. 9.2.10). Appealing to 9.4.3 once more, 
infer that X is compact. t> 

9.4.9. Every closed subset of a compact space is compact. 

<I Let X be compact and C E Cl (X). Assume further that § is an ultrafilter 
on X and C E §. By Theorem 9.4.3, § has a limit x in X: that is, § -t X. 

By the Birkhoff Theorem, x E cl C = C. Using 9.4.3 again, conclude that C is 
compact. t> 

9.4.10. Every compact subset of a Hausdorff space is closed. 

<I Let C be compact in a Hausdorff space X. If C = 0 then there is nothing 
to prove. Let C i- 0 and x E cl C. By virtue of 9.2.2 there is a filter §o on X 
such that C E §o and §o -t x. Let § be an ultrafilter finer than §o. Then 
§ -t X and C E §. By 9.4.3, § has a limit in C. By 9.3.4 every limit in X is 
unique. Consequently, x E C. t> 
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9.4.11. Let f : (X, 7) -t (Y, w) be a continuous one-to-one mapping with 
f(X) = Y. If 7 is a compact topology and w is a Hausdorff topology, then f is 
a homomorphism. 

<I It suffices to establish that f- 1 is continuous. To this end, we are to demon-
strate that FECI ( 7) ::::} f( F) E CI (w). Take FECI ( 7). Then F is compact 
by 9.4.9. Successively applying 9.4.5 and 9.4.10, infer that f(F) is closed. [> 

9.4.12. Let 71 and 72 be two topologies on a set X. If (X, 71) is a compact 
space and (X, 72) is a Hausdorff space with 71 ~ 72, then 71 = 72. <1[> 

9.4.13. REMARK. The message of 9.4.12 is customarily verbalized as follows: 
"A compact topology is minimal among Hausdorff topologies." 

9.4.14. Theorem. Every Hausdorff compact space is normal. 
<I Let X be the space under study and let fJB be some filter base on X. Assume 

further that U is a neighborhood of cl fJB. It is clear that X \ int U is compact 
(cf. 9.4.9) and cl fJB n (X \ int U) = 0. By Theorem 9.4.3 there is a member B 
of fJB such that B n (X \ int U) = 0; i.e., B C U. Putting, if need be, fJB:= {cl B : 
B E fJB}, we may assert that cl B CU. 

To begin with, take x E X and put fJB:= 7( x). By virtue of 9.3.4, cl fJB = {x} 
and, consequently, the filter 7( x) has a base of closed sets. Thus, X is regular. 

Now take nonempty closed subset F of X. Take as fJB the neighborhood filter 
of F. By 9.3.8, cl fJB = F, and, as is already established, fJB has a base of closed 
sets. In accordance with 9.3.9, X is a normal space. [> 

9.4.15. Corollary. Each Hausdorff compact space is (to within a homeo-
morphism) a closed subset of a Tychonoff cube. 

<I The compactness property of a closed subset of a Tychonoff cube follows 
from 9.4.8 and 9.4.9. Moreover, every cube is a Hausdorff space and so such is 
each of its subspaces. 

N ow take some Hausdorff compact space X. Let Q be the collection of all 
continuous function from X to [0, 1]. Define the mapping \If : X -t [0, 1]Q as 
\If(x)(f) := f(x) where x E X and f E Q. From 9.4.14 and 9.3.14 infer that 
\If carries X onto \If(X) in a one-to-one fashion. Furthermore, \If is continuous. 
Application to 9.4.11 completes the proof. [> 

9.4.16. REMARK. Corollary 9.4.15 presents a part of a more general asser-
tion. Namely, a Tychonoff space is (to within a homeomorphism) a subspace 
of a Tychonoff cube. <1[> 

9.4.17. REMARK. Sometimes a Hausdorff compact space is also called a com-
pactum (cf. 4.5 and 4.6). 

9.4.1S. Diedonne Lemma. Let F be a closed set and let G1 , ... , G n be 
open sets in a normal topological space, with F C G1 U ... U G n . There are closed 
sets F1, ... ,Fn such that F = F1 U ... U Fn and Fk C Gk (k:= 1, ... ,n). 
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<I It suffices to settle the case n : = 2. For k : = 1, 2 the set Uk : = F \ G k is closed. 
Moreover, UI n U2 = 0. By 9.3.10 there are open VI and V2 such that UI C VI, 
U2 C V2 and VI n V2 = 0. Put Fk := F \ Vk. It is clear that Fk is closed and 
Fk C F\Uk = F\(F\Gk) C Gk for k:= 1,2. Finally, F I UF2 = F\(VI UV2 ) = F. t> 

9.4.19. REMARK. From 9.3.14 we deduce that under the hypotheses of 9.4.18 
there are continuous functions hI, ... ,hn : X -t [0, 1] such that hklG1 = 0 and 

k 

L:~=I hk(X) = 1 for every point x in some neighborhood about F. (As usual, 
G~:= X \ Gd 

9.4.20. DEFINITION. A topology is called locally compact if each point pos-
sesses a compact neighborhood. A locally compact space is a set furnished with 
a Hausdorff locally compact topology. 

9.4.21. A topological space is locally compact if and only if it is bomeomor-
pbic witb a punctured compactum (= a compactum witb a deleted point), i.e. tbe 
complement of a singleton to a compactum. 

<I {=: In virtue of the Weierstrass Theorem it suffices to observe that each 
point of a punctured compactum possesses a closed neighborhood (since every 
compactum is regular). It remains to make use of 9.4.9 and 9.4.6. 

=>: Put the initial space X in X":= Xu {oo}, adjoining to X a point 00 taken 
elsewhere. Take the complements to X· of compact subsets of X as a base for the 
neighborhood filter about 00. A neighborhood of a point x of X in X· is declared 
to be a superset of a neighborhood of x in X. If 21 is an ultrafilter in X· and K 
is a compactum in X then 21 converges to a point in K provided that K E 21. 
If 21 contains the complement of each compactum K in X to X, then 21 converges 
to 00. t> 

9.4.22. REMARK. If a locally compact space X is not compact in its own 
right then X· of 9.4.20 is the one-point or Alexandroff compactijication of X. 

9.5. Uniform and Multimetric Spaces 
9.5.1. DEFINITION. Let X be a nonempty set and let %'X be a filter on X2. 

The filter %'X is a uniformity on X if 
(1) %'X C fil {Ix}; 
(2) U E %'X => U- I E 'PIx; 
(3) (\I U E 'PIx )(3 V E 'PIx) V 0 V CU. 

The uniformity of the empty set is by definition {0}. The pair (X, 'PIx), as well 
as the underlying set X, is called a uniform space. 

9.5.2. Given a uniform space (X, 'PIx), put 

x EX=> T(X):= {U(x): U E 'PIx}. 

Tbe mapping T : x 1--+ T( x) is a topology on X. 
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<I Clearly, T is a pretopology. If W E T(X) then W = U(x) for some U 
in 'f/x. Choose a member V of 'f/x so that V 0 V C U. If y E Vex) then V(y) C 
V(V(x)) = V 0 Vex) c U(x) c W. In other words, the set W is a neighborhood 
about y for every y in Vex). Therefore, Vex) lies in int W. Consequently, int W 
is a neighborhood about x. It remains to refer to 9.1.6. I> 

9.5.3. DEFINITION. The topology T appearing in 9.5.2 is the topology of 
the uniform space (X, 'f/x) under consideration or the uniform topology on X. It 
is also denoted by T( 'f/x), TX, etc. 

9.5.4. DEFINITION. A topological space (X, T) is called uniformizable pro-
vided that there is a uniformity 'f/ on X such that T coincides with the uniform 
topology T( 'f/). 

9.5.5. EXAMPLES. 
(1) A metric space (with its metric topology) is uniformizable (with its 

metric uniformity). 
(2) A multinormed space (with its topology) is uniformizable (with its 

uniformi ty). 
(3) Let J : X -+ (Y, 'f/y) and f-l('f/y ):= JX-l('f/y), where as usual 

r(Xl, X2):= (f(xt}, J(X2)) for (Xl, X2) E X2. Evidently, J-l('f/y) is a unifor-
mity on X. Moreover, 

The uniformity J- l ('f/y ) is the inverse image of 'f/y under J. Therefore, the 
inverse image of a uniform topology is uniformizable. 

(4) Let (Xe, o/I'e)eEs be a family of uniform spaces. Assume further that 
X:= IleES Xe is the product of the family. Put 'f/x := sUPeES Pre-I (o/I'e). The 
uniformity o/I'x is the Tychonoff uniformity. It is beyond a doubt that the uniform 
topology T('f/X) is the Tychonoff topology of the product of (Xe, T(o/I'e))eES. <II> 

(5) Each Hausdorff compact space is uniformizable in a unique fashion. 
<I By virtue of 9.4.15 such a space X may be treated as a subspace of a Ty-

chonoff cube. From 9.5.5 (3) and 9.5.5 (4) it follows that X is uniformizable. 
Since each entourage of a uniform space includes a closed entourage; therefore, the 
compactness property of the diagonal Ix of X 2 implies that every neighborhood 
of Ix belongs to 'f/x. On the other hand, each entourage is always a neighborhood 
of the diagonal. I> 

(6) Assume that X and Yare nonempty sets, 'f/y is a uniformity on Y 
and fJB is an upward-filtered subset of 9i'(X). Given B E fJB and () E o/I'y, put 

UB,(J:= {(f, g) E YX x yX : go IB 0 J- l C ()}. 

Then 'f/ := fil {U B,(J: B E fJB, () E 'f/y} is a uniformity on Y x. This uniformity 
has a cumbersome (but exact) title, the "uniformity of uniform convergence on the 
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members of !II." Such is, for instance, the uniformity of the Arens multinorm 
(cf. 8.3.8). If !II is the collection of all finite subsets of X, then all coincides 
with the Tychonoff uniformity on Y x. This uniformity is called weak, and the 
corresponding uniform topology is called the topology of pointwise convergence 
or, rarely, that of simple convergence. If ~ is a singleton {X}, then the uniformity 
all is called strong and the corresponding topology 7(0//) in yX is the topology 
of uniform convergence on X. 

9.5.6. REMARK. It is clear that, in a uniform (or uniformizable) space, the 
concepts make sense such as uniform continuity, total boundedness, completeness, 
etc. It is beyond a doubt that in such a space the analogs of 4.2.4-4.2.9,4.5.8,4.5.9, 
and 4.6.1-4.6.7 are preserved. It is a rewarding practice to ponder over a possibility 
of completing a uniform space, to validate a uniform version of the Hausdorff 
Criterion, to inspect the proof of the Ascoli-Arcela Theorem in an abstract uniform 
setting, etc. 

9.5.7. DEFINITION. Let X be a set and put JR+ := {x E JR.: x ~ a}. 
A mapping d : X2 ~ JR+ is called a semimetric or a pseudometric on X, provided 
that 

(1) d(x, x) = a (x E X)j 
(2) d(x, y) = dey, x) (x, y E X)j 
(3) d(x, y) S; d(x, z) + d(z, y) (x, y, z EX). 

A pair (X, d) is a semimetric space. 
9.5.B. Given a semimetric space (X, d), let o//d:= fil {{d S; c}: c > a}. Then 

o//d is a uniformity. <It> 

9.5.9. DEFINITION. Let 9Jt be a (nonempty) set of semimetrics on X. Then 
the pair (X, 9Jt) is a multimetric space with multimetric 9Jt. The multimetric 
uniformity on X is defined as o//!Ul := sup{ 'Wd: dE 9Jt}. 

9.5.10. DEFINITION. A uniform space is called multimeirizable, if its unifor-
mity coincides with some multimetric uniformity. A multimetrizable topological 
space is defined by analogy. 

9.5.11. Assume that X, Y, and Z are sets, T is a dense subset of i", and 
(UdtET and (Vt)tET are increasing families of subsets of X x Z and Z x Y, re-
spectively. Then there are unique functions f : X x Z ~ i", g : Z x Y ~ i" and 
h : X x Y ~ i" such that 

{f < t} C Ut C {f S; t}, {g < t} C Vt c {g S; t}, 
{h < t} C Vt 0 Ut C {h ::; t} (t E T). 

Moreover, the presentation holds: 

hex, y) = inf{f(x, z) V g(z, y): z E Z}. 
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<I The sought functions exist by 3.8.2. The claim of uniqueness is straightfor-
ward from 3.8.4. The presentation of h via f and 9 raises no doubts. t> 

9.5.12. DEFINITION. Let f : X x Z -+ iR and 9 : Z x Y -+ R. The function h, 
given by 9.5.11, is called the V-convolution (read: vel-convolution) of f and 9 and 
is denoted by 

fDvg(x, y):= inf{f(x, z) V g(z, y): z E Z}. 

By analogy, the +-convolution of f and 9 is defined by the rule 

fD+g(x, y):= inf{f(x, z) + g(z, y): z E Z}. 

9.5.13. DEFINITION. A mapping f : X 2 -+ R:" is a K -ultrametric with 
K E R, K ~ 1, if 

(1) f(x, x) = 0 (x E X)j 
(2) f(x, y) = fey, x) (x, y E X)j 
(3) l/Kf(x, u)~I(x, y)Vf(y, z)Vl(z, u)(x, y, z, UEX). 

9.5.14. REMARK. Condition 9.5.13 (3) is often referred to as the (strong) 
ultrametric inequality. In virtue of 9.5.12 this inequality may be rewritten as 
K-l 1 ~ I DvfDvl· 

9.5.15. 2-Ultrametric Lemma. To every 2-ultrametric 1: X2 -+ R:" there 
corresponds a semimetric d such that 1 hf ~ d ~ f. 

<I Let it:= 1 and In+l:= InD+l (n EN). Then 

fn+l(X, y) ~ fn(x, y) + fey, y) = fn(x, y) (x, y EX). 

Thus, (fn) is a decreasing sequence. Put 

d(x, y):= limfn(x, y) = inf fn(x, y). 
nEN 

Since 
d(x, y) ~ hn(x, y) = fnD+ln(x, y) ~ fn(x, z) + fn(z, y), 

for n E N, it follows that d(x, y) ~ d(x, z) + d(z, y). The validity of 9.5.7 (1) 
and 9.5.7 (2) is immediate. 

We are left with proving that 1 hf ~ d. To this end, show that fn ~ 1 hI for 
n E N. Proceed by way of induction. 

The desired inequalities are obvious when n:= 1,2. Assume now that f ~ 
it ~ ... ~ fn ~ Ihf and at the same time fn+l(X, y) < 1 hf(x, y) for some 
(x, y) in X2 and n ~ 2. 
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For suitable ZI, ... , Zn in X by construction 

t:=f(x, zd+f(zl, z2)+ .. ·+f(zri-l, zn)+f(zn, y) 
< 1 hf(x, y). 
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If f(x, zd 2: t h then t h 2: f(ZI, Z2) + ... + f(zn, y) 2: 1 hf(ZI, y). It follows 
that t 2: f(x, ZI) and t 2: f(ZI, y). On account of 9.5.13 (3), 1 hf(x, y) ::; 
f(x, ZI) V f(ZI, y) ::; t. Whence we come to 1 hf(x, y) > t 2: 1 hf(x, y), which 
is false. 

Thus, f(x, zd < t h. Find mEN, m < n, satisfying 

f(x, zd+ ... +f(zm-l, zm)<th; 

f(x, ZI)+ ... +f(Zm, zm+d 2: th· 

This is possible, since assuming m = n would entail the false inequality f( Zn, y) 2: 
t h. (We would have t h 2: f(x, ZI) + ... + f(Zn-l, Zn) 2: 1 hf(x, zn) and so 
1 hf(x, y) > t 2: f(x, zn) V f(zn, y) 2: 1 hf(x, y).) 

We obtain the inequality 

Using the induction hypothesis, conclude that 

f(x, zm) ::; 2(f(x, zd + ... + f(Zm-l, zm)) ::; t; 
f(zm, Zm+d ::; t; 

f(Zm+l, y) ::; 2(f(zm+l' Zm+2) + ... + f(zn, y)) ::; t. 

Consequently, by the definition of 2-ultrametric 

1 hf(x, y) ::; f(x, zm) V f(zm, Zm+l) V f(Zm+l, y) ::; t 

< 1 hf(x, y). 

We arrive at a contradiction, completing the proof. I> 

9.5.16. Theorem. Every uniform space is multimetrizable. 
<l Let (X, 'PL'x) be a uniform space. Take V E 'PL'x. Put VI := V n V-I. If now 

- --1 Vn E 'PL'x then find a symmetric entourage V = V ,a member of 'PL'x, satisfying 
V 0 V 0 V C Vn. Define Vn+1 := V. Since by construction 
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therefore, (Vn)nEN is a decreasing family. 
Given t E R, define a set Ut by the rule 

0, t<O 
Ix, t=O 

Ut := Vlnf{nEN: t~2-n}, O<t<l 
VI, t=l 
X2 , t> l. 

By definition, the family t I-t Ut (t E R) increases. Consider a unique function 
f : X2 --+ R satisfying the next conditions (cf. 3.8.2 and 3.8.4) 

{f < t} C Ut C {f ~ t} (t E R). 

If Wt := Uu for t E R then 

for s < t. Consequently, in virtue of 3.8.3 and 9.2.1 the mapping f is a 2-ultra-
metric. 

Using 9.5.15, find a semimetric dv such that 1 Iz/ ~ dv ~ f. Clearly, 
%'dv = fil {Vn: n EN}. Also, it is also beyond a doubt that %'m = %'X for 
the multimetric 001:= {dv : V E %'x}. t> 

9.5.17. Corollary. A topological space is uniformizable if and only if it is 
a T 31 h -space. <It> 

9.5.1B. Corollary. A Tychonoff space is the same as a separated multimetric 
space. <It> 

9.6. Covers, and Partitions of Unity 
9.6.1. DEFINITION. Let C and $ be covers of a subset of U in X; i.e., 

C, $ C [jIJ(X) and U C (UC) n (U$). It is said that $ coarsens C or C 
refines $, if each member of C is included in some member of $; i.e., (\I E E C) 
(3 FE $) E C F. It is also said that C is a refinement of $. Observe that if $ 
is a subcover of C (i.e., $ C C) then C refines $. 

9.6.2. DEFINITION. A cover C of a set X is called locally finite (with respect 
to a topology T on X), if each point in X possesses a neighborhood (in the sense 
of T) meeting only finite many members of C. In the case of the discrete topology 
on X, such a cover is called point finite. If X is regarded as furnished with 
a prescribed topology T then, speaking of a locally finite cover of X, we imply the 
topology T. 
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9.6.3. Lefscbetz Lemma. Let g be a point finite open cover of a normal 
space X. Then there is an open cover {G E: E E g} such that cl GEe E for all 
EEg. 

<l Let the set S comprise the mappings S : g -+ Op (X) such that UsC g) = X 
and for E E g either seE) = E or cl seE) c E. Given functions SI and S2, put 
SI ~ S2:= (V E E g) (sl(E) '" E =} s2(E) = sl(E)). It is evident that (S, ~) is 
an ordered set and ftC E S. Show that S is inductive. 

Given a chain So in S, for all E E g put so(E) := n{s(E): s E So}. 
If So (E) = E then s( E) = E for all s E So. If the case So (E) '" E observe that 
so(E) = n{s(E): seE) '" E, s E So}. 

Since the order of So is linear, infer that so(E) = seE) for s E So with 
seE) '" E. Hence, so(g) C Op(X) and So ;::: So. It remains to verify that So 
is a cover of X (and so So E S). By the hypothesis of point finiteness, given 
x EX, there are some E1 ,. •. ,En in g such that x E El n ... n En and x 1:. E 
for the other members E of g. If SeEk) = Ek for some k, then there is nothing 
to prove, for x E Uso(g). In the case when SO(Ek) '" Ek for every k, there are 
SI, ... ,Sn E So meeting the conditions sk(Ek) '" Ek (k:= 1,2 ... ,n). Since So is 
a chain, it may be assumed that Sn ;::: {SI,'" ,sn-d. Moreover, x E sn(E) C E 
for an appropriate E in g. It is clear that E E {E1 , ••• ,En} (because x 1:. E for 
the other members E of g). Since so(E) = sn(E), it follows that x E So (E). 

By the Kuratowski-Zorn Lemma there is a maximal element sin S. Take 
E E g. If F:= X \ Uscg \ {E}), then F is closed and seE) is a neighborhood 
of F. For a suitable G in Op (X) by 9.3.10 Fe G c cl G c seE). Put s(E):= G 
and seE) := seE) for E '" E (E E g). It is clear that s E S. If seE) = E, 
then s ;::: s and so s = s. Moreover, seE) c cl G c seE) = E; i.e., cl seE) c E. 
If seE) '" E, then cl seE) c E by definition. Thus, s is a sought cover. t> 

9.6.4. DEFINITION. Let f be a numeric or scalar-valued function on a topo-
logical space X, i.e. f: X -+ IF. The set supp(f) := cl {x EX: f(x) '" O} 
is the support of f. If supp (f) is a compact set then f is a compactly-supported 
function or a function of compact support. The designation spt (f) := supp (f) is 
used sometimes. 

9.6.5. Let (fe)eEtC be a family of numeric functions on X and let g := 
{Supp(fe): e E g} be the family of their supports. If g is a point finite cover 
of X then the family (fe)eEtC is summable pointwise. If in addition g is locally 
finite and every member of (fe)eEtC is continuous, then the sum L:eEtC fe is also 
continuous. 

<l It suffices to observe that in a suitable neighborhood about a point in X 
only finitely many members of the family (fe)eEtC are distinct from zero. t> 

9.6.6. DEFINITION. It is said that a family offunctions (f : X -+ [0, l])fEF is 
a partition of unity on a subset U of X, if the supports of the members of the family 
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composes a point finite cover of X, and L.fEFf(x) = 1 for all x E U. The empty 
family of functions in this context is treated as summable to unity at each point. 
The term "continuous partition of unity" and the like are understood naturally. 

9.6.7. DEFINITION. Let C be a cover of a subset U of a topological space 
and let F be a continuous partition of unity on U. If the family of supports 
{supp (I): f E F} refines C then F is a partition of unity 8ubordinate to C. 
A possibility of finding such an F for C is also verbalized as follows: "C admits 
a partition of unity." 

9.6.8. Each locally finite open cover of a normal space admits a partition 
of unity. 

<I By the Lefschetz Lemma, such a cover {Ue: e E 3} has an open refinement 
{~: e E 3} satisfying the condition cl Ve C Ue for all e E 3. By the Urysohn 
Theorem, there is a continuous function ge : X -t [0, 1) such that ge( x) = 1 for 
x E Ve and ge(x) = 0 for x E X \ Ue· Consequently, supp(ge) CUe. In virtue 
of 9.6.5 the family (ge)eEB is summable pointwise to a continuous function g. 
Moreover, g(x) > 0 for all x E X by construction. Put Ie:= gdg (e E 3). The 
family (Ie )eEB is what we need. [> 

9.6.9. DEFINITION. A topological space X is called paracompact, if each cover 
of X has a locally finite open refinement. 

9.6.10. REMARK. The theory of para compactness contains deep and surpris-
ing facts. 

9.6.11. Theorem. Every metric space is paracompact. 
9.6.12. Theorem. A Hausdorff topological space is paracompact if and only 

if its every open cover admits a partition of unity. 
9.6.13. REMARK. The metric space RN possesses a number of additional 

structures providing a stock of well-behaved, 8mooth (= infinitely differentiable) 
functions (cf. 4.8.1). 

9.6.14. DEFINITION. A mollifier or a mollifying kernel on RN is a real-valued 
smooth function a having unit (Lebesque) integral and such that a(x) > 0 for 
Ixl < 1 and a(x) = 0 for Ixl ~ 1. In this event, supp(a) = {x E RN: Ixl:S; I} is 
the (unit Euclidean) ball B:= ERN. 

9.6.15. DEFINITION. A delta-like 8equence is a family of real-valued (smooth) 
functions (b.:)",>o such that, first, lim",-+o(sup I supp (b",) I) = 0 and, second, the 
equality holds JRN b",(x)dx = 1 for all c > O. The terms "6-sequence" and "6-like 
sequence" are also in current usage. Such a sequence is often assumed countable 
without further specification. 

9.6.16. EXAMPLE. The function a(x) := texp{-{lxI2 - 1)-1) is taken as 
a most popular mollifier when extended by zero beyond the open ball int B, with 
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the constant t determined from the condition JIRN a( x) dx = 1. Each mollifier 
generates the delta-like sequence a.,(x):= c:-Na(x/c:) (x E JRN). 

9.6.17. DEFINITION. Let f E L1,loc (JR N ); i.e., let f be a locally integrable 
junction, that is, a function whose restriction to each compact subset of JR N is 
integrable. For a compactly-supported integrable function 9 the convolution f * 9 
is defined as 

f*g(x):= J f(x-y)g(y)dy (XEJRN). 
IRN 

9.6.1B. REMARK. The role of a mollifying kernel and the corresponding delta-
like sequence (a., ).,>0 becomes clear from inspecting the aftermath of applying 
the smoothing process f ~ (f * a., ).,>0 to a function f belonging to ~ ,loc (JR N) 
(cf. 10.10.7 (5)). 

9.6.19. The following statements are valid: 
(1) to every compact set K in the space JR N and every neighborhood U 

of K there corresponds a truncator (= a bump function) 'I/J:= 'l/JK,U, 
i.e. a smooth mapping'I/J : JRN -T [0, 1] such that K C int {'IjJ = I} 
and supp('I/J) C U; 

(2) assume that U1 , ... ,Un E Op(JR N) and U1 U ... U Un is a neighbor-
hood of a compact set K; there are smooth functions 'l/Jl, ... ,'l/Jn : 
JRN -T [0, 1] such that SUpp('l/Jk) C Uk and L:~=l 'l/Jk(X) = 1 for x 
in some neighborhood of K. 

<l (1) Put c::= d(K, JRN \ U):= inf{lx - yl: x E K, y f/. U}. It is clear that 
c: > O. Given f3 > 0, denote the characteristic function of K + c:lm by Xp. Take 
a delta-like sequence (b'Y )'Y>o of positive functions and put 'I/J := XP * b'Y. When 
"( :::; f3 and f3 + "( :::; c: with "(:= sup 1 supp (b'Y )1, observe that 'I/J is a sought function. 

(2) By the Diedonne Lemma there are closed sets Fk, with Fk C Uk, compos-
ing a cover of K. Put Kk:= FknK and choose some truncators 'l/Jk:= 'l/JKk,Uk. The 
functions 'l/Jk/ L:~=l 'l/Jk (k:= 1, ... ,n), defined on {L:~=l 'l/Jk > O}, meet the claim 
after extension by zero onto {L:~=l 'l/Jk = O} and multiplication by a truncator 
corresponding to an appropriate neighborhood of K. I> 

9.6.20. Countable Partition Theorem. Let tff be a family of open sets 
in JR N and n := utff. There is a countable partition of unity which is composed 
of smooth compactly-supported functions on JRN and subordinate to the cover tff 
ofn. 

<l Refine from tff a countable locally finite cover A of n with compact sets so 
that the family (a:= int a)"'EA be also an open cover of n. Choose an open cover 
(V"')",EA of n from the condition cl V", c a for a E A. In virtue of 9.6.19 (1) there 
are truncators ~'" := 'l/Jcl Va,a. Putting 'I/J",(x) := ~",(x)/ L:"'EA ~",(x) for x E n 
and 'I/J",( x):= 0 for x E JR N \ n, arrive to a sought partition. I> 
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9.6.21. REMARK. It is worth observing that the so-constructed partition 
of unity ('¢OI.)OI.EA possesses the property that to each compact subset [{ of n 
there correspond a finite subset Ao of A and a neighborhood U of [{ such that 
2:OI.EAo ¢OI.(x) = 1 for all x E U (cf. 9.3.17 and 9.6.19 (2)). 

Exercises 
9.1. Give examples of pretopological and topological spaces and constructions leading 

to them. 
9.2. Is it possible to introduce a topology by indicating convergent filters or sequences? 
9.3. Establish relations between topologies and preorders on a finite set. 
9.4. Describe topological spaces in which the union of every family of closed sets is 

closed. What are the continuous mappings between such spaces? 
9.5. Let (It : X -+ (Yt , Tt»tES be a family of mappings. A topology u on X is called 

admissible (in the case under study), if for every topological space (Z, w) and every mapping 
9 : Z -+ X the following statement holds: 9 : (Z, w) -+ (X, u) is continuous if and only if so 
is each mapping It 0 9 (~ E 3). Demonstrate that the weakest topology on X making every 
It (~ E 3) continuous is the strongest admissible topology (in the case under study). 

9.6. Let (It : (Xt' ut ) -+ Y)tES be a family of mappings. A topology Ton Y is called 
admissible (in the case under study), if for every topological space (Z, w) and every mapping 
9 : Y -+ Z the following statement is true: 9 : (Y, T) -+ (Z, w) is continuous if and only if each 
mapping 9 0 It (~ E 3) is continuous. Demonstrate that the strongest topology on Y making 
every It (~ E 3) continuous is the weakest admissible topology (in the case under study). 

9.7. Prove that in the Tychonoff product of topological spaces, the closure of the product 
of subsets of the factors is the product of closures: 

9.S. Show that a Tychonoff product is a Hausdorff space if and only if so is every factor. 
9.9. Establish compactness criteria for subsets of classical Banach spaces. 
9.10. A Hausdorff space X is called H-closed, if X is closed in every ambient Hausdorff 

space. Prove that a regular H-closed space is compact. 
9.11. Study possibilities of compactifying a topological space. 
9.12. Prove that the Tychonoff product of uncountably many real axes fails to be a nor-

mal space. 
9.13. Show that each continuous function on the product of compact spaces depends 

on at most count ably many coordinates in an evident sense (specify it!). 
9.14. Let A be a compact subset and let B be a closed subset of a uniform space, with 

An B = 0. Prove that V(A) n V(B) = 0 for some entourage V. 
9.15. Prove that a completion (in an appropriate sense) of the product of uniform spaces 

is uniformly homeomorphic (specify!) to the product of completions of the factors. 
9.16. A subset A of a separated uniform space is called precompact if a completion of A 

is compact. Prove that a set is precompact if and only if it is totally bounded. 
9.17. Which topological spaces are metrizable? 
9.18. Given a uniformizable space, describe the strongest uniformity among those in-

ducing the initial topology. 

9.19. Verify that the product of a paracompact space and a compact space is paracom-
pact. Is paracompactness preserved under general products? 



Chapter 10 
Duality and Its Applications 

10.1. Vector Topologies 
10.1.1. DEFINITION. Let (X, IF, +, .) be a vector space over a basic field IF. 

A topology T on X is a topology compatible with vector structure or, briefly, a vector 
topology, if the following mappings are continuous: 

+ : (X x X, r x T) -+ (X, T), 
. : (IF x X, 'TJF x r) -+ (X, T). 

The space (X, T) is then referred to as a topological vector space. 
10.1.2. Let TX be a vector topology. Tbe mappings 

XI-+X+Xo, X 1-+ ax (xo EX, aEIF\O) 

are topological isomorpbisms in (X, TX). <It> 

10.1.3. REMARK. It is beyond a doubt that a vector topology T on a space X 
possesses the next "linearity" property: 

T(ax+,By)=aT(x)+,BT(Y) (a, ,BEIF\O; x, yEX), 

where in accordance with the general agreements (cf. 1.3.5 (1)) 

U O/x+{jy E aTe x) + ,BT(Y) 
{:} (3 Ux E T(X) & Uy E r(y)) aUx + ,BUy C UO/x+{jy. 

In this regard a vector topology is often called a linear topology and a topological 
vector space, a linear topological space. This terminology should be used on the 
understanding that a topology may possess the "linearity" property while failing 
to be linear. For instance, such is the discrete topology of a nonzero vector space. 
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10.1.4. Theorem. Let X be a vector space and let JV be a filter on X. 
There is a vector topology T on X such that JV = T(O) if and only if the following 
conditions are fulfilled: 

(1) JV+JV=JV; 
(2) JV consists of absorbing sets; 
(3) JV has a base of balanced sets. 

Moreover, T(X) = x + JV for all x E X. 
<l =}: Let T be a vector topology and JV = T(O). From 10.1.2 infer that 

T(X) = x + JV for x E X. It is also clear that (1) reformulates the continuity 
property of addition at zero (of the space X2). Condition (2) may be rewritten 
as T]F(O)x :J JV for every x in X, which is the continuity property of the mapping 
0: 1-+ o:x at zero (of the space JR) for every fixed x in X. Condition (3) with 
account taken of (2) may in turn be rendered in the form T]F(O)JV = JV, which is 
the continuity property of scalar multiplication at zero (of the space IF x X) . 

.;:::: Let JV be a filter satisfying (1)-(3). It is evident that JV C fil {O}. Put 
T(X):= x +JV. Then T is a pretopology. From the definition of T and (1) it follows 
that T is a topology, with every translation continuous and addition continuous 
at zero in X2. Thus, addition is continuous at every point of X2. The validity 
of (2) and (3) means that the mapping (,\, x) 1-+ Ax is jointly continuous at zero 
and continuous at zero in the first argument with the second argument fixed. 
By virtue of the identity 

Ax - Aoxo = Ao(X - xo) + (A - Ao)xo + (A - Ao)(x - xo), 

we are left with examining the continuity property of scalar multiplication at zero 
in the second argument with the first argument fixed. In other words, it is neces-
sary to show that AJV :J JV for A E IF. With this in mind, find n E N such that 
IAI :s n. Let V in JV and Win JV be such that W is balanced and WI + ... + Wn C 
V, where Wk:= W. Then AW = n (A/nW) C nW C WI + ... + Wn C V. l> 

10.1.5. Theorem. The set VT (X) of all vector topologies on X presents 
a complete lattice. Moreover, 

SUPVT (X) g = sUPT (X) g 

for every subset g ofVT (X). 
<l Let r:= SUPT (X) g. Since for T E g each translation by a vector is a topolog-

ical isomorphism in (X, T); therefore, this mapping is a topological isomorphism in 
(X, r). Using 9.1.13, observe that the filter reO) meets conditions 10.1.4 (1)-10.1.4 
(3), since these conditions are fulfilled for every filter T(O) with T E g. It remains 
to refer to 1.2.14. l> 
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10.1.6. Theorem. Tbe inverse image of a vector topology under a linear 
operator is a vector topology. 

<l Take T E 2'(X, Y) and w E VT(Y). Put T:= T- 1 (w). If x"( -+ x and 
y"( -+ y in (X, T) then by 9.2.8 Tx-y -+ Tx and Ty"( -+ Ty. So T(x"( + y-y) -+ 
T(x + y). This means in virtue of 9.2.10 that X-y + y"( -+ X + y in (X, T). Thus, 
T(X) = x + T(O) for all x E X and, moreover, T(O) + T(O) = T(O). Successively 
applying 3.4.10 and 3.1.8 to the linear correspondence T- 1 , observe that the filter 
T(O) = T-1(w(0)) consists of absorbing sets and has a base of balanced sets. The 
reason is as follows: by 10.1.4 the filter w(O) possesses these two properties. Once 
again using 10.1.4, conclude that T E VT (X). t> 

10.1.7. Tbe product of vector topologies is a vector topology. 
<l Immediate from 10.1.5 and 10.1.6. t> 

10.1.8. DEFINITION. Let A and B be subsets of a vector space. It is said 
that A is B-stable if A + B C A. 

10.1.9. To every vector topology T on X tbere corresponds a unique unifor-
mity %'T baving a base of Ix-stable sets and sucb tbat T = T(%'T)' 

<l Given U E T(O), put Vu:= {(x, y) E X2: y-x E U}. Observe the obvious 
properties: 

Ix c Vu; Vu + Ix = Vu; (Vu )-1 = V-u; 
Vu1nu, C VU1 n Vu,; VU1 0 Vu, C VUdU, 

for all U, U1 , U2 E T(O). Using 10.1.4, infer that o//T := fil {Vu: U E T(O)} is 
a uniformity and T = T( o//T)' It is also beyond a doubt that o//T has a base of 
Ix-stable sets. 

If now all is another uniformity such that T( all) = T, and W is some Ix-stable 
entourage in %'j then W = VW(o). Whence the sought uniqueness follows. c> 

10.1.10. DEFINITION. Let (X, T) be a topological vector space. The unifor-
mity o//T) constructed in 10.1.9, is the uniformity of X. 

10.1.11. REMARK. Considering a topological vector space, we assume it to 
be furnished with the corresponding uniformity without further specification. 

10.2. Locally Convex Topologies 
10.2.1. DEFINITION. A vector topology is locally convex if the neighborhood 

filter of each point has a base of convex sets. 
10.2.2. Theorem. Let X be a vector space and let JV be a filter on X. 

Tbere is a locally convex topology T on X sucb tbat JV = T(O) if and only if 
(1) l/zJV = JV; 
(2) JV bas a base of absorbing absolutely convex sets. 
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<1 :::;..: By virtue of 10.1.2 the mapping x f-+ 2x is a topological isomorphism. 
This means that 1 h.A/ =.A/. Now take U E .A/. By hypothesis there is a convex 
set V in .A/ such that V C U. Applying 10.1.4, find a balanced set W satisfying 
We V. Using the Motzkin formula and 3.1.14, show that the convex hull co(W) 
is absolutely convex. Moreover, W C co(W) eVe U. 

{:=: An absolutely convex set is balanced. Consequently,.A/ satisfies 10.1.4 
(2) and 10.1.4 (3). If V E .A/ and W is a convex set, W E .A/ and W C V; then 
1 h W E .A/. Furthermore, 1 h W + 1 h W eWe V because of the convexity 
property of W. This means that .A/ +.A/ =.A/. It remains to refer to 10.1.4. I> 

10.2.3. Corollary. The set LCT (X) of all locally convex topologies on X 
is a complete lattice. Moreover, 

SUPLCT (X) g = SUPT (X) g 

for every subset g of LCT (X). <11> 

10.2.4. Corollary. The inverse image of a locally convex topology under 
a linear operator is a locally convex topology. <11> 

10.2.5. Corollary. The product of locally convex topologies is a locally con-
vex topology. <11> 

10.2.6. The topology of a multinormed space is locally convex. <11> 

10.2.7. DEFINITION. Let T be a locally convex topology on X. The set of all 
everywhere-defined continuous seminorms on X is called the mirror (rarely, the 
spectrum) of T and is denoted by Wlr . The multinormed space (X, Wlr ) is called 
associated with (X, T). 

10.2.8. Tbeorem. Each locally convex topology coincides with the topology 
of the associated multinormed space. 

<1 Let T be a locally convex topology on X and let w:= T(Wlr ) be the topology 
of the associated space (X, Wlr ). Take V E T(O). By 10.2.2 there is an absolutely 
convex neighborhood B of zero, B E T(O), such that Be V. In virtue of 3.8.7 

{p B < I} C B C {p B :s; I}. 

It is obvious that PB is continuous (cf. 7.5.1); i.e., PB E Wlr, and so {PB < I} E 
w(O). Consequently, V E w(O). Using 5.2.10, infer that w(x) = x + w(O) ::::> 
x + T(O) = T(X); i.e., w 2: T. Furthermore, T 2: w by definition. I> 

10.2.9. DEFINITION. A vector space, endowed with a separated locally con-
vex topology, is a locally convex space. 

10.2.10. REMARK. Theorem 10.2.8 in slightly trimmed form is often verbal-
ized as follows: "The concept of locally convex space and the concept of sepa-
rated multinormed space have the same scope." For that reason, the terminology 
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connected with the associated multinormed space is lavishly applied to studying 
a locally convex space (cf. 5.2.13). 

10.2.11. DEFINITION. Let 7 be a locally convex topology on X. The symbol 
(X, 7)' (or, in short, X') denotes the subspace of X# that comprises all continuous 
linear functionals. The space (X, 7)' is the dual (or 7-duaf) of (X, 7). 

10.2.12. (X, 7)' = U {181(p): P E 9JtT }. <1[> 

10.2.13. Prime Theorem. The prime mapping 7 t-t (X, 7)' from LCT (X) 
to Lat (X#) preserves suprema; i.e., 

(X, supg)' = sup {(X, 7)': 7Eg} 

for every subset g ofLCT(X). 
<I If g = 0 then sup g is the trivial topology 70 of X and, consequently, 

(X, 70)' = 0 = infLat(X#) = sUPLat(X#) 0. By virtue of9.2.7 the prime mapping 
increases. Given a nonempty g, from 2.1.5 infer that 

(X, sup g)' ~ sup {(X, 7)': 7 E g}. 

If f E (X, sup g)" then in view of 10.2.12 and 9.1.13 there are topologies 
71, ... ,7n E g such that f E (X, 71 V ... V 7 n )'. Using 10.2.12 and 5.3.7, find 
PI E 9JtT1 ,··· ,Pn E 9JtTn satisfying f E 181(pl V ... V Pn). Recalling 3.5.7 and 3.7.9, 
observe that 181(pl + ... + Pn) = 181(pd + ... + 181(Pn). Finally, 

f E (X, 7d' + ... + (X, 7 n )' = (X, 7t)' V ... V (X, 7 n )'. [> 

10.3. Duality Between Vector Spaces 
10.3.1. DEFINITION. Let X and Y be vector spaces over the same ground 

field IF. Assume further that there is fixed a bilinear form (or, as it is called 
sometimes, a bracketing) (,1,) acting from X x Y to IF, i.e. a mapping linear 
in each of its arguments. Given x E X and y E Y, put 

(x 1 : y t-t (x 1 y), 
1 y) : x t-t (x 1 y), 

(. 1 : X ___.. IF Y, 

I'): Y ---..IFX, 

The mappings (. 1 and I,) are the bra-mapping and the ket-mapping of the initial 
bilinear form. By analogy, a member of (X 1 is a bra-functional on X and a member 
of 1 Y) is a ket-functional on Y. 

10.3.2. The bra-mapping and the ket-mapping are linear operators. <][> 
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10.3.3. DEFINITION. A bracketing of some vector spaces X and Y is a pair-
ing, if its bra-mapping and ket-mapping are monomorphisms. In this case we say 
that X and Yare (set) in duality, or present a duality pair, or that Y is the 
pair-dual of X, etc. This is written down as X +-+ Y. Each of the bra-mapping 
and the ket-mapping is then referred to as dualization. For suggestiveness, the 
corresponding pairing of some spaces in duality is also called their duality bracket. 

10.3.4. EXAMPLES. 
(1) Let X +-+ Y with duality bracket (-I,), Given (y, x) E Y x X, 

put (y 1 x) := (x 1 y). It is immediate that the new bracketing is a pairing of Y 
and X. Moreover, the pairs of dualizations with respect to the old (direct) and 
new (reverse) duality brackets are the same. It thus stands to reason to draw 
no distinction between the two duality brackets unless in case of an emergency 
(cf. 10.3.3). For instance, Y is the pair-dual of X in the direct duality bracket 
if and only if X is the pair-dual of Y in the reverse duality bracket. Therefore, 
the hair-splitting is neglected and a unified term "pair-dual" is applied to each 
of the spaces in duality, with duality treated as a whole abstract phenomenon. 
Observe immediately that the mapping (x 1 y)IR:= Re (x 1 y) sets in duality the real 
carriers XIR and YIR. By way of taking liberties, the previous notation is sometimes 
reserved for the arising duality XIR +-+ YIR; i.e., it is assumed that (x 1 y):= (x 1 Y)IR, 
on considering x and y as members of the real carriers. 

(2) Let H be a Hilbert space. The inner product on H sets Hand H* 
in duality. The prime mapping is then coincident with the ket-mapping. 

(3) Let (X, r) be a locally convex space and let X' be the dual of X. 
The natural evaluation mapping (x, x') f-t X'(X) sets X and X' in duality. 

(4) Let X be a vector space and let X#:= 2"(X, IF) be the (algebraic) 
dual of X. It is clear that the evaluation mapping (x, x#) f-t x# (x) sets the 
spaces in duality. 

10.3.5. DEFINITION. Let X +-+ Y. The inverse image in X of the Tychonoff 
topology on IF Y under the bra-mapping, further denoted by a(X, Y), is the bra-
topology or the weak topology on X induced by Y. The bra-topology a(Y, X) 
of Y +-+ X is the ket-topology of X +-+ Y or the weak topology on Y induced by X. 

10.3.6. The bra-topology is the weakest topology making every ket-functional 
continuous. The ket-topology is the weakest topology making every bra-functional 
continuous. 

<l x-y ~ x (in a(X, Y» {:} (x-y 1 ~ (x 1 (in IF Y ) {:} (Vy E Y) (x-y 1 (y) ~ 
(x 1 (y) {:} (Vy E Y) (x-y 1 y) ~ (x 1 y) {:} (Vy E Y) 1 y)(x-y) ~ 1 y)(x) {:} (Vy E Y) 
x-y ~ x (in 1 y) -1 (7'JF» [> 

10.3.7. REMARK. The notation a(X, Y) agrees perfectly with that of the 
weak multi norm in 5.1.10 (4). Namely, a(X, Y) is the topology of the multinorm 
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{I(·I y)l: y E Y}. Likewise, a(Y, X) is the topology of the multinorm {I(x 1·)1 : 
x EX}. <ll> 

10.3.8. Tbe spaces (X, a(X, Y)) and (Y, a(Y, X)) are locally convex. 
<l Immediate from 10.2.4 and 10.2.5. I> 

10.3.9. Dualization Theorem. Eacb dualization is an isomorpbism between 
tbe pair-dual and tbe weak dual of tbe pertinent member of a duality pair. 

<l Consider a duality pair X ~ Y. We are to prove exactness for the sequences 

0-+ X J.:1(Y, a(Y, X))' -+ 0; 0 -+ Y ~(X, a(X, Y))' -+ o. 
Since the ket-mapping of X ~ Y is the bra-mapping of Y ~ X, it suffices to show 
that the first sequence is exact. The bra-mapping is a monomorphism by definition. 
Furthermore, from 10.2.13 and 10.3.6 it follows that 

(Y, a(Y, X))' = (Y, sup{(x 1-1(1lF): x EX})' 
=sup{(Y, (xl-1 (1lF))': xEX}=lin({(Y, f- 1(1lF))': fE(XI})=(XI, 

since in view of 5.3.7 and 2.3.12 (Y, f-1 (1lF))' = {Af: ,\ E IF} (f E y#). I> 

10.3.10. REMARK. Theorem 10.3.9 is often referred to as the theorem on the 
general form of a weakly continuous functional. Here a useful convention reveals 
itself: apply the base form "weak" when using objects and properties that are 
related to weak topologies. Observe immediately that, in virtue of 10.3.9, Example 
10.3.4 (3) actually lists all possible duality brackets. That is why in what follows 
we act in accordance with 5.1.11, continuing the habitual use of the designation 
(x, y):= (x 1 y), since it leads to no misunderstanding. For the same reason, given 
a vector space X, we draw no distinction between the pair-dual of a space X 
and the weak dual of X. In other words, considering a duality pair X ~ Y, 
we sometimes identify X with (Y, a(Y, X))' and Y with (X, a(X, Y))', which 
justifies writing X' = Y and Y' = X. 

10.3.11. REMARK. A somewhat obsolete convention relates to X ~ X' with 
X a normed space. The ket-topology a(X', X) is customarily called the weak* 
topology (read: weak-star topology) in X', which reflects the concurrent notation 
X* for X'. The term "weak*" proliferates in a routine fashion elsewhere. 

10.4. Topologies Compatible with Duality 
10.4.1. DEFINITION. Take a duality pair X ~ Y and let T be a locally convex 

topology on X. It is said that T is compatible with duality (between X and Y 
by pairing X ~ Y), provided that (X, T)' = 1 Y). A locally convex topology 
w on Y is compatible with duality (by pairing X ~ Y), if w is compatible with 
duality (by pairing Y ~ X); i.e., if the equality holds: (Y, w)' = (X I. A unified 
concise term "compatible topology" is also current in each of the above cases. 
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10.4.2. Weak topologies are compatible. 
<l Follows from 10.3.9. I> 

10.4.3. Let reX, Y) stand for the least upper bound of the set of all locally 
convex topologies on X compatible with duality (between X and Y). Then the 
topology reX, Y) is also compatible. 

<l Denote the set of all compatible topologies on X by tC. Theorem 10.2.13 
readily yields the equalities 

(X, reX, Y))' = sup{(X, r)': r E tC} = sup{1 Y): r E tC} = I Y), 

because tC is nonempty by 10.4.2. I> 

10.4.4. DEFINITION. The topology reX, Y), constructed in 10.4.3 (i.e., the 
finest locally convex topology on X compatible with duality by pairing X f-t Y), 
is the Mackey topology (on X induced by X f-t Y). 

10.4.5. Mackey-Arens Theorem. A locally convex topology r on X is 
compatible with duality between X and Y if and only if 

a(X, Y) ::; r ::; reX, Y). 

<l By 10.2.13 the prime mapping r J-+ (X, r)' preserves suprema and, in par-
ticular, increases. Therefore, given r in the interval of topologies, from 10.4.2 
and 10.4.3 obtain 

I Y) = (X, a(X, Y)) C (X, r)' C (X, reX, Y))' = I Y). 

The remaining claim is obvious. I> 

10.4.6. Mackey Theorem. All compatible topologies have the same 
bounded sets in stock. 

<l A stronger topology has fewer bounded sets. So, to prove the theorem 
it suffices to show that if some set U is weakly bounded in X (= is bounded in the 
bra-topology) then U is bounded in the Mackey topology. 

Take a semi norm P from the mirror of the Mackey topology and demonstrate 
that p(U) is bounded in JR. Put Xo:= XI ker P and Po:= PX/ker p' By 5.2.14, Po is 
clearly a norm. Let 'f! : X -t Xo be the coset mapping. It is beyond a doubt that 
'f!(U) is weakly bounded in (Xo, Po). From 7.2.7 it follows that 'f!(U) is bounded 
in the norm Po. Since Po O'f! = p; therefore, U is bounded in (X, p). I> 

10.4.7. Corollary. Let X be a normed space. Then the Mackey topology 
reX, X') coincides with the initial norm topology on X. 

<l It suffices to refer to the Kolmogorov Normability Criterion implying that 
the space X with the topology reX, X') finer than the original topology is 
normable. Appealing to 5.3.4 completes the proof. I> 
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10.4.8. Strict Separation Theorem. Let (X, r) be a locally convex space. 
Assume further that K and V are nonempty convex subsets of X with K compact, 
V closed and K n V = 0. Then there is a functional J, a member of (X, r)', such 
that 

sup ReJ(K) < infReJ(V). 

<I A locally convex space is obviously a regular space. Since K is compact, 
it thus follows that, for an appropriate convex neighborhood of zero, say W, the 
set U:= K + W does not meet V (it suffices to consider the filterbases comprising 
all subsets of the form K + Wand V + W, with W a closed neighborhood of zero). 
By 3.1.10, U is convex. Furthermore, K c int U = core U. By the Eidelheit 
Separation Theorem, there is a functional I, a member of (XJR)#, such that the 
hyperplane {I = I} in XJR separates V from U and does not meet the core of U. 
Obviously, I is bounded above on Wand so I E (XJR, r)' by 7.5.1. If J:= JRe-1 [ 

then, of view of 3.7.5, J E (X, r)'. It is clear that J is a sought functional. t> 

10.4.9. Mazur Theorem. All compatible topologies have the same closed 
convex sets in stock. 

<I A stronger topology has more closed sets. So, to prove the theorem it suffices 
in view of 10.4.5 to show that if U is a convex set closed in the Mackey topology 
then U is weakly closed. The last claim is beyond a doubt since by Theorem 
10.4.8 U is the intersection of weakly closed sets of the form {Re J ::; t}, with J 
a (weakly) continuous linear functional and t E JR. t> 

10.5. Po lars 
10.5.1. DEFINITION. Let X and Y be sets and let F C X x Y be a corre-

spondence. Given a subset U of X and a subset V of Y, put 

7l"(U):= 7l"F(U):= {y E Y: F-1(y) J U}; 
7l"-l(V):= 7l"Fl(V):= {x EX: F(u) J V}. 

The set 7l"(U) is the (direct) polar of U (under F), and the set 7l"-l(V) is the 
(reverse) polar of V (under F). 

10.5.2. The following statements are valid: 
(1) 7l"(u):= 7l"({u}) = F(u) and 7l"(U) = n"EU7l"(U); 
(2) 7l"(UeESUe) = neES7l"(Ue); 
(3) 7l"Fl(V) = 7l"F-l(V); 
(4) U1 c U2 ::::} 7l"(U1) J 7l"(U2 ); 

(5) U x V c F::::} (V C 7l"(U) & U C 7l"-l(V); 
(6) U C 7l"-l(7l"(U». <It> 
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10.5.3. Akilov Criterion. A subset U of X is the polar of some subset ofY 
if and only if given x E X \ U there is an element y in Y such that 

<l =}: If U = 7r-1 (V) then U = nvEv7r-1(V) by 10.5.2 (1). 
-¢=: The inclusion U C 7r- 1 (y) means that y E 7r(U). Thus, by hypothesis 

U = n yE7r(U)7r-1(y) = 7r-1(7r(U)). I> 

10.5.4. Corollary. The set 7r-1(7r(U)) is the (inclusion) least polar greater 
than U. <ll> 

10.5.5. DEFINITION. The set 7rF1(7rF(U)) is the bipolar of a subset U (under 
the correspondence F). 

10.5.6. EXAMPLES. 
(1) Let (X, a) be an ordered set and let U be a subset of X. Then 7rCT(U) 

is the collection of all upper bounds of U (cf. 1.2.7). 
(2) Let (H, (.,' )H) be a Hilbert space and F := {(x, y) E H2 : 

(x, Y)H = o}. Then 7r(U) = 7r-1(U) = U.l. for every subset U of H. The 
bipolar of U in this case coincides with the closed linear span of U, that is, the 
closure of the linear span of U. 

(3) Let X be a normed space and let X' be the dual of X. Consider 
F:= {(x, x'): x'(x) = o}. Then 7r(Xo) = xt and 7r-1(~O) = .l..?Co for a subspace 
Xo of X and a subspace .?Co of X' (cf. 7.6.8). Moreover, 7r-1(7r(Xo)) = cl Xo 
by 7.5.14. 

10.5.7. DEFINITION. Let X +-t Y. Put 

pol: = {(x, y) E X X Y: Re (x I y) :::; I}; 
abs pol:= {(x, y) E X X Y: I(x I y)1 :::; I}. 

To refer to direct or inverse polars under pol, we use the unified term "polar" (with 
respect to X +-t Y) and the unified designations 7r(U) and 7r(V). In the case of the 
correspondence abs pol, we speak of absolute po lars (with respect to X +-t Y) and 
write UO and VO (for U C X and V C Y). 

10.5.8. Bipolar Theorem. The bipolar 7r2(U):= 7r( 7r(U)) is the (inclusion) 
least weakly closed conical segment greater than U. 

<l Straightforward from 1004.8 and the Akilov Criterion. I> 

10.5.9. Absolute Bipolar Theorem. The absolute bipolar uoo:= (UO)O is 
the (inclusion) least weakly closed absolutely convex set greater than U. 

<l It suffices, first, to observe that the polar of a balanced set U coincides with 
the absolute polar of U and, second, to apply 10.5.8. I> 
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10.6. Weakly Compact Convex Sets 
10.6.1. Let X be a locally convex real vector space and let p : X ---t lIt be 

a continuous sublinear functional on X. Then the (topological) subdifferential 
8(p) is compact in the topology u(X', X). 

<3 Put Q:= n~EX[-p(-x), p(x)] and endow Q with the Tychonofftopology. 
Evidently 8(p) C Q, with the Tychonoff topology on Q and u(X', X) inducing 
the same topology on 8(p). It is beyond a doubt that the set 8(p) is closed in Q 
by the continuity of p. Taking note of the Tychonoff Theorem and 9.4.9, conclude 
that 8(p) is a u(X', X)-compact set. I> 

10.6.2. The balanced subdifferential of each continuous seminorm is weakly 
compact. <31> 

10.6.3. Theorem. Let X be a real vector space. A subset U of X# is the 
subdifferential of a (unique total) sublinear functional Su : X ---t lIt if and only if U 
is nonempty, convex and u(X#, X)-compact. 

<3 =>: Let U = 8(su) for some suo The uniqueness of Su is ensured by 3.6.6. 
In view of 10.2.12 it is easy that the mirror of the Mackey topology reX, X#) is 
the strongest multinormon X (cf. 5.1.10 (2». Whence we infer that the functional 
Su is continuous with respect to reX, X#). In virtue of 10.6.1 the set U is compact 
in u(X#, X). The convexity and nonemptiness of U are obvious. 

{=: Put su(x):= sup{l(x): 1 E U}. Undoubtedly, Su is a sublinearfunctional 
and dom Su = X. By definition, U C 8( su). If 1 E 8( su) and I rt U, then by the 
Strict Separation Theorem and the Dualization Theorem sue x) < I( x) for some x 
in X. This is a contradiction. I> 

10.6.4. DEFINITION. The sublinear functional su, constructed in 10.6.3, is 
the 8upporting function of U. The term "support function" is also in current 
usage. 

10.6.5. KreYn-Milman Theorem. Each compact convex set in a locally 
convex space is the closed convex hull ( = the closure of the convex hull) of the set 
of its extreme points. 

<3 Let U be such a subset of a space X. It may be assumed that the space 
X is real and U =1= 0. By virtue of 9.4.12, U is compact with respect to the 
topology u(X, X'). Since u(X, X') is induced in X by the topology u(X'#, X') 
on X'# j therefore, U = B( su). Here (d. 10.6.3) Su : X, ---t lIt acts by the rule 
su(x'):= supx'(U). By the KreIn-Milman Theorem in sub differential form, the 
set ext U of the extreme points of U is not empty. The closure of the convex hull 
of ext U is a subdifferential by Theorem 10.6.3. Moreover, this set has Su as its 
supporting function, thus coinciding with U (cf. 3.6.6). I> 

10.6.6. Let X +-+ Y and let S be a conical segment in X. Assume further 
that ps is the Minkowski functional of S. The polar 1['(S) is the inverse image 
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of the (algebraic) subdifferential 8(ps) under the ket-mapping; i.e., 

If 5 is absolutely convex, then the absolute polar 5° is the inverse image of the 
(algebraic) balanced subdifferentiaI181(ps) under the ket-mapping; i.e., 

<l If Y E YlR and Y E I 8(ps) )Jil then I Y)lR belongs to 8(ps). Hence, Re (x I y) = 
(xIY)lR = IY)lR(x) ~ ps(x) ~ 1 for x E 5, because 5 C {ps ~ 1} by the Gauge 
Theorem. Consequently, Y E 7r(5). 

If, in turn, Y E 7r(5) then I Y)lR belongs to 8(ps). Indeed, 1 > ps(a-1x) for 
all x in XlR and a> ps(x); i.e., a-Ix E {ps < 1} C 5. Whence (a-1xIY)lR = 
Re (a- l x I y) = a-IRe (x I y) ~ 1. Finally, observe that I Y)lR(x) ~ a. Since a 
is arbitrary, this inequality means that I Y)lR(x) ~ ps(x). In other words, Y E 
I 8(Ps))JiI, which implies that 7r(5) = 18(ps))JiI . The remaining claim follows 
from the properties of the complexifier (cf. 3.7.3 and 3.7.9). [> 

10.6.7. Alaoglu-Bourbaki Theorem. The polar of a neighborhood of zero 
of each compatible topology is a weakly compact convex set. 

<l Let U be a neighborhood of zero in a space X and let 7r(U) be the polar of U 
(with respect to X ~ X'). Since U J {p ~ 1} for some continuous seminorm p, 
by 10.5.2 (4), 7r(U) C 7r( {p ~ 1}) = 7r(Bp) = B;. Using 10.6.6 and recalling that 
p is the Minkowski functional of Bp, obtain the inclusion 7r(U) C 181(p). By virtue 
of 10.6.2 the topological balanced sub differential 181(p) is a(X', X)-compact. 
By definition 7r(U) is weakly closed. To infer the a(X', X)-compactness of 7r(U), 
it remains to appeal to 9.4.9. The convexity property of 7r(U) is beyond a doubt. [> 

10.7. Reflexive Spaces 
10.7.1. Kakutani Criterion. A normed space is reflexive if and only if its 

unit ball is weakly compact. 
<l =}: Let X be reflexive, i.e. "(X) = X". In other words, the image of X 

under the double prime mapping coincides with X". Since the ball Bx" is the 
polar of the ball Bx' with respect to X" ~ X'; therefore, Bx" is a a(X", X')-
compact set by the Alaoglu-Bourbaki Theorem. It remains to observe that Bx" is 
(the image under the double prime mapping of) Bx, and a(X, X') is (the inverse 
image under the double prime mapping of) a(X", X'). 

~: Consider the duality pair X" ~ X'. By definition, the ball Bx" presents 
the bipolar of Bx (more precisely, the bipolar of (Bx )"). Using the Absolute 
Bipolar Theorem and observing that the weak topology a(X, X') is induced in X 
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by the topology u(X", X'), conclude that Ex" = Ex (because of the obvious 
convexity and closure properties of Ex, the latter following from compactness 
since X is separated). Thus, X is reflexive. I> 

10.7.2. Corollary. A space X is reflexive if and only if every bounded closed 
convex set in X is weakly compact. <11> 

10.7.3. Corollary. Every closed subspace of a reflexive space is reflexive. 

<1 By the Mazur Theorem, such a subspace and, hence, the unit ball of it are 
weakly closed. It thus suffices to apply the Kakutani Criterion twice. I> 

10.7.4. Pettis Theorem. A Banach space and its dual are (or are not) re-
flexive simultaneously. 

<1 If X is reflexive then u(X', X) coincides with u(X', X"). Therefore, 
by the Alaoglu-Bourbaki Theorem, Ex' is u(X', X")-compact. Consequently, 
X, is reflexive. If, in turn, X' is reflexive, then so is X" by what was proven. 
However, X, as a Banach space, is a closed subspace of X". Thus, X is reflexive 
by 10.7.3. I> 

10.7.5. James Theorem. A Banach space is reflexive if and only if each 
continuous (real) linear functional attains its supremum on the unit ball of the 
space. 

10.8. The Space C(Q, JR) 
10.8.1. REMARK. Throughout Section 10.8 let Q stand for a nonempty Haus-

dorff compact space, denoting by C( Q, JR.) the set of continuous real-valued func-
tions on Q. Unless specified otherwise, C(Q, JR.) is furnished with the natu-
ral pointwise algebraic operations and order and equipped with the sup-norm 
II· 11:= II ·1100 related to the Chebyshev metric (cf. 4.6.8). Keeping this in mind, 
we treat the statements like "C(Q, JR.) is a vector lattice," "C(Q, JR.) is a Ba-
nach algebra," etc. Other structures, if ever introduced in C( Q, JR.), are specified 
deliberately. 

10.8.2. DEFINITION. A subset L of C(Q, JR.) is a sublattice (in C(Q, JR.)) if 
II V h ELand II 1\ h E L for II, h E L, where, as usual, 

II V h(q):= II(q) V h(q), 
II 1\ h(q):= II(q) 1\ h(q) (q E Q). 

10.8.3. REMARK. Observe that to be a sublattice in C(Q, JR.) means more 
than to be a lattice with respect to the order induced from C(Q, JR.). 
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10.8.4. EXAMPLES. 
(1) 0, C(Q, 1R), and the closure of a sublattice. 
(2) The intersection of each family of sublattices is also a sublattice. 
(3) Let L be a sublattice and let Qo be a subset of Q. Put 

LQo:= {f E C(Q, 1R): (3g E L) g(q) = f(q) (q E Qo)}. 

Then LQo is a sublattice. Moreover, L C LQo. 
(4) Let Qo be a compact subset of Q. Given a sublattice L in C(Q, 1R), 

put 

Therefore, 
LQo = {J E C(Q, 1R): flQo E LIQJ· 

It is clear that LIQo is a sublattice of C(Qo, 1R). Furthermore, if L is a vector 
sub lattice of C(Q, 1R) (i.e., a vector subspace and simultaneously a sublattice 
of C(Q, 1R))j then LIQo is a vector sublattice of C(Qo, 1R) (certainly, if Qo =I- 0). 

(5) Let Q:= {I, 2}. Then C(Q, 1R) ~ 1R2 • Each nonzero vector sublattice 
of IR 2 is given as 

for some 0:1, 0:2 E 1R+. 
(6) Let L be a vector sublattice of C(Q, 1R). For q E Q, the alternative 

is offered: either L{q} = C(Q, 1R) or L{q} = {f E C(Q, 1R): f(q) = O}. If qI and 
q2 are distinct points of Q and LI{ } =I- 0, then by 10.8.4 (5) there are some 0:1, Ql,q2 
0:2 E 1R+ such that 

Moreover, if L contains a constant function other than zero (i.e. a nonzero multiple 
of the constantly-one function 1) then as 0:1 and 0:2 in the above presentation 
of L{ql,Q2} the unity, 1, may be taken. <It> 

10.8.5. Let L be a sublattice ofC(Q, 1R). A function f in C(Q, 1R) belongs 
to the closure of L if and only if for all e > 0 and (x, y) E Q2 there is a function 
l:= fZ,y,E in L satisfying the conditions 

lex) - f(x) < e, l(y) - fey) > -e. 

<I :::}: This is obvious. 
¢=: Basing it on 3.2.10 and 3.2.11, assume that f = o. Take e > o. Fix x E Q 

and consider the function gy:= fZ,y,E E L. Let Vy:= {g E Q : gy(q) > -e}. Then 
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Vy is an open set and y E Vy. By a standard compactness argument, there are 
YI, ... ,Yn E Q such that Q = VYl U ... U Vyn · Put Ix := gYl V ... V gYn' It is 
clear that Ix E L. Furthermore, Ix(x) < E: and Ix(Y) > -E: for all Y E Q. Now let 
Ux := {q E Q : Ix(q) < d· Then Ux is open and x E Ux' Using the compactness 
of Q once again, find Xl, ... ,Xm E Q such that Q = UXl U ... U Ux .... Finally, put 
1:= IXl 1\ ... 1\ Ix .... It is beyond a doubt that 1 ELand 11111 < E:. I> 

10.8.6. REMARK. The message of 10.8.5 is often referred to as the General-
ized Dini Theorem (cf. 7.2.10). 

10.8.7. Kakutani Lemma. Every sublattice L ofC(Q, JR.) is expressible as 

clL= 

<l The inclusion of cl L into cl (L {q, ,q2}) for all (ql, q2) E Q2 raises no doubts. 
If IE cl (L{Q"Q2}) for all such ql and q2, then by 10.8.5, I E cl L. I> 

10.8.8. Corollary. Every vector sublattice L of C(Q, JR.) is expressible as 

clL= 

<l Observe that every set of the form L {Q, ,Q2} is closed. I> 

10.8.9. DEFINITION. A subset U of]fQ separates the points of Q, if for all 
ql, q2 E Q such that ql i- q2 there is a function u E U assuming different values 
at ql and q2, i.e. u(qt) i- U(q2). 

10.8.10. Stone Theorem. If a vector sublattice ofC(Q, JR.) contains con-
stant functions and separates the points ofQ, then it is dense in C(Q, JR.). 

<l Given such a sublattice L, observe that 

for every pair (ql, q2) in Q2 (cf. 10.8.4 (6)). It remains to appeal to 10.8.8. I> 

10.8.11. Let tt E C(Q, JR.)'. Put 

.A'(tt):= {J E C(Q, JR.): [0, 1111 C ker ttl. 

Then there is a unique closed subset supp(tt) ofQ such that 
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<I By the Interval Addition Lemma 

[0, Ifll + [0, Igll = [0, If I + Igll· 

Thus, f, g E .Af(/1-) ::::} If I + Igl E .Af(/1-). Since .Af(/1-) is an order ideal; i.e., 
(f E .Af(/1-) & 0 ::; Igl ::; If I ::::} g E .Af(/1-)) , conclude that .Af(/1-) is a linear set. 
Moreover, .Af(/1-) is closed. Indeed, assuming fn 2:: 0, fn -t f and fn E .Af(/1-), for 
g E [0, fl find g 1\ f n -t g and g 1\ f n E [0, f nl· Whence it follows that /1-(g) = 0; 
i.e., f E .Af(/1-). 

Since .Af(/1-) is an order ideal, from 10.8.8 deduce that 

.Af(/1-) = n .Af(/1-){q}' 
qEQ 

Define the set supp (/1-) as 

q E supp(/1-) {:} .Af(/1-){q} =I C(Q, JR) {:} (f E .Af(/1-) ::::} f(q) = 0). 

It is beyond a doubt that supp (/1-) is closed. Moreover, the equalities hold: 

.Af(/1-) = n .Af(/1-){q} = {J E C(Q, JR): fl supp (,,) = o}. 
qEsupp (,,) 

The claim of uniqueness follows from the normality of Q (cf. 9.4.14) and the 
Urysohn Theorem. t> 

10.8.12. DEFINITION. The set supp (/1-) under discussion in 10.8.11 is the 
support of /1- (cf. 10.9.4 (5)). 

10.8.13. REMARK. If /1- is positive then 

.Af(/1-) = {f E C(Q, JR): /1-(lfl) = o}. 

Consequently, when /1-(fg) = 0 for all g E C(Q, JR), observe that fl () = o. 
supp " 

By analogy supp(/1-) = 0 {:} .Af(/1-) = C(Q, JR) {:} /1- = O. Therefore, it is quite 
convenient to work with the support of a positive functional. 

Let F be a closed subset of Q. It is said that F supports or carries /1- or 
that X \ F lacks /1- or is void of /1- if /1-(lfl) = 0 for every continuous function f 
with supp(f) c Q \ F. The support supp(/1-) of /1- carries /1-; moreover, supp(/1-) 
is included in every closed subset of Q supporting /1-. In other words, the support 
of /1- is the complement of the greatest open set void of /1- (cf. 10.10.5 (6)). 

It stands to reason to observe that in virtue of 3.2.14 and 3.2.15 to every 
bounded functional/1- there correspond some positive (and hence bounded) func-
tionals /1-+, /1--, and 1/1-1 defined as 

/1-+(f) = sup /1-[0, fl; /1--(f) = - inf /1-[0, fl; 1/1-1 = /1-+ + /1--, 

given f E C(Q, JR)+. 
Moreover, C(Q, JR)' is a Kantorovich space (cf. 3.2.16). <It> 
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10.8.14. The supports of f-l and If-ll coincide. 
<l By definition ,A/(f-l) = ,A/(If-l/). [> 
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10.8.15. Considering a E C(Q, JR) with 0:::; a:::; 1, define af-l: I t-+ f-l(af) for 
IE C(Q, JR) and f-l E C(Q, JR)'. Then laf-ll = alf-ll· 

<l Given I E C(Q, JR)+, infer that 

Furthermore, 

(af-l)+(f) = sup{f-l(ag): 0:::; g:::; f} :::; SUPf-l[O, all 
= f-l+(af) = af-l+(f). 

Consequently, (af-l)+ = af-l+, whence the claim follows. [> 

10.8.16. De Branges Lemma. Let A be a subalgebra ofC(Q, JR) contain-
ing constant functions. Take tt E ext (Al. nBC(Q,lR)'). Then the restriction of each 
member of A to the support of f-l is a constant function. 

<l If tt = 0 then supp(tt) = 0, and there is nothing to be proven. If tt =I 0 
then, certainly, 1If-l1i = 1. Take a E A. Since the subalgebra A contains constant 
functions, it suffices to settle the case in which 0 :::; a :::; 1 and 

q E supp(f-l) =} 0 < a(q) < 1. 

Put f-ll:= att and f-l2:= (1 - a)tt. It is clear that f-ll + f-l2 = f-l and the functionals 
f-ll and f-l2 are both nonzero. Moreover, 

1If-l1i :::; 1If-l11i + 1If-l211 

= sup f-l(af) + sup f-l((1 - a)g) = sup . f-l(al + (1 - a)g) :::; 1If-l1l, 
IIfll9 119119 IIf1l9,1I9119 

because it is obvious that 

aBc(Q,lR) + (1- a)Bc(Q,lR) C BC(Q,lR). 

Thus, 1If-l1i = lIf-li/i + 1If-l211· Since 

and ttl, tt2 E AJ.., conclude that f-ll = II f-lI/! tt· By 10.8.15, alf-ll = laf-ll = Ittll = 
lIf-lllllttl· Consequently, If-ll((a -1if-llIl1)g) = 0 for all g E C(Q, JR). Using 10.8.13 
and 10.8.14, infer that the function a is constant on the support of f-l. [> 
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10.8.17. Stone-Weierstrass Theorem. Let A be a subalgebra of the al-
gebra C(Q, JR.). Suppose that A contains constant functions and separates the 
points ofQ. Then A is dense in C(Q, JR.). 

<l Proceeding by way of contradiction, assume the contrary. By the Absolute 
Bipolar Theorem, the subspace A.L (coincident with AO) of C(Q, JR.)' is nonzero. 
Using the Alaoglu-Bourbaki Theorem, observe that A.L n Bc(Q,JR)1 is a nonempty 
absolutely convex weakly compact set. Thus, by the KreIn-Milman Theorem, the 
set has an extreme point, say, p,. 

Undoubtedly, p, is a nonzero functional. By the de Branges Lemma the sup-
port of p, fails to contain two distinct points, since A separates the points of Q. 
The support of p, is not a singleton, since p, annihilates constant functions. Thus, 
supp (p,) is empty. But then p, is zero (cf. 10.8.13). We arrive at a contradiction 
completing the proof. t> 

10.8.18. Corollary. The closure of a subalgebra of C(Q, JR.) is a vector 
sublattice of C( Q, JR.). 

<l Using the Stone-Weierstrass Theorem, find a polynomial Pn satisfying 

for all t E [-1, 1]. Then IPn (0) I ::; 1 hn. Therefore, the polynomial 

maintains the inequality IPnCt) -Itll ::; 1/ n when -1 ::; t ::; 1. By construction, Pn 
lacks the constant term. Now, if a function a lies in a subalgebra A of C(Q, R) 
and lIall ::; 1, then 

IPn ( a( q » - I a( q ) II ::; 1 / n (q E Q). 

Moreover, the function q t-+ Pn(a(q» is clearly a member of A. t> 

10.8.19. REMARK. Corollary 10.8.18 (together with 10.8.8) completely de-
scribes all closed sub algebras of C(Q, R). In turn, as the proof prompts, the 
claim of 10.8.18 is immediate on providing some sequence of polynomials which 
converges uniformly to the function t t-+ It I on the interval [-1, 1]. It takes no 
pains to demonstrate 10.8.17, with 10.8.18 available. 

'10.8.20. Tietze-Urysohn Theorem. Let Qo be a compact subset of a com-
pact set Q and fo E C(Qo, JR.). Then there is a function f in C(Q, R) such that 
flQo = fo. 

<l Suppose that Qo -I 0 (otherwise, there is nothing to prove). Consider the 
identical embedding t : Qo -+ Q and the bounded linear operator ~ : C(Q, JR.) -+ 

C( Qo, JR.) acting by the rule ~f:= f 0 to We have to show that ~ is an epimorphism. 
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It is beyond a doubt that im ~ is a sub algebra of C( Qo, 1R) separating the points 
of Qo and containing constant functions. In virtue of 10.8.17 it is thus sufficient 
(and, clearly, necessary) to examine the closure of im ~. 

Consider the monoquotient "£ of the operator ~ and the coset mapping c.p : 
C(Q, 1R) -+ coim ~. Given f E C(Q, 1R), put 

g:= (f Asuplf(Qo)11)v (-suplfCQo)11). 

By definition flQo = glQo; i.e., 1:= c.p(f) = c.p(g). Consequently, Ilgll > 11111· 
Furthermore, 

11111 = inf{ll h ll c (Q,IR): ~(h - f) = o} = inf{lI h ll c (Q,IR) : hlQo = flQJ 

2 inf{ll h IQo ll c (Q,IR): hlQo = flQJ = suplf(Qo)1 = Ilg1l211111· 

Therefore, 

11"£111 = lI~gll = lI~gllc(Qo,lR) 
= IIg 0 tlhQo,lR) = sup Ig(Qo)1 = IIgll = 11111; 

i.e., t IS an isometry. Successively applying 5.5.4 and 4.5.15, infer first that 
coim ~ is a Banach space and second that im"£ is closed in C(Qo, 1R). It suf-
fices to observe that im ~ = im "£. [> 

10.9. Radon Measures 
10.9.1. DEFINITION. Let n be a locally compact topological space. Put K(n) 

:= K(n, JF):= {J E C(n, IF): supp(f) is compact}. If Q is compact in n then 
let K(Q):= Kn(Q):= {J E K(n): supp(f) C Q}. The space K(Q) is furnished 
with the norm 11·1100' Given E E Open), put K(E):= U{K(Q): Q (§ E}. (The 
notation Q (§ E for a subset E of n means that Q is compact and Q lies in the 
interior of E relative to n.) 

10.9.2. The following statements are valid: 
(1) ifQ (§ nand f E C(Q, IF) then 

fl aQ = 0 {:} (3g E K(Q)) glQ = f; 

moreover, K(Q) is a Banach space; 
(2) let Q, Ql, and Q2 be compact sets and Q (§ Ql x Q2; the linear span 

in the space C(Q, JF) of the restrictions to Q of the functions like 
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Ul . U2( ql, q2):= Ul Q9 U2( ql, q2):= Ul (ql )U2( q2) with Us E K( Q s) is 
dense in C(Q, IF); 

(3) if n is compact then K(n) = C(n, IF); if n fails to be compact 
and is embedded naturally into C(n', IF), with n' := n U {oo} the 
Alexandroff compactification of n, then the space K(n) is dense 
in the hyperplane {J E C(n', IF): f( 00) = OJ; 

(4) the mapping E E Open) ~ K(E) E Lat(K(n)) preserves suprema; 
(5) for E', E" E Op (n) the following sequence is exact: 

0-+ K(E' nEil) £(EI,EII») K(E') x K(E") OW,EII») K(E' U E") -+ 0, 

with I(EI,EII)f:= (f, - f), and O"(EI,EII)(f, g):= f + g. 
<l (1): The boundary oQ of Q is at the same time the boundary of the exterior 

of Q, the set int (n \ Q). 
(2): The set under study is a subalgebra. Apply 9.3.13 and 10.8.17 (cf. 11.8.2). 
(3): It may be assumed that IF = JR. The claim will then follow from 10.8.8 

since K(n) is an order ideal separating the points of n' (d. 10.8.11). 
(4): Clearly, K(sup0) = K(0) = O. If ff C Open) and ff is filtered up-

ward then, for f E K(Uff), observe that supp (f) C E for some E E ff by the 
compactness of supp(f). Whence K(Uff) = U{K(E): E E ff}. To conclude, 
take E l , ... ,En E Open) and f E K(EI U ... U En). In accordance with 9.4.18 
there are some '¢k E K(Ek) such that 2:~=1 '¢k = 1. Moreover, f = 2:~=1 '¢kf 
and supp(f'¢k) C Ek (k:= 1, ... ,n). 

(5): This is straightforward from (4). t> 

10.9.3. DEFINITION. A functional J.L, a member of K(n, IF)#, is a measure 
(or, amply, a Radon IF-measure) on n, in symbols, J.L E Al(n) := Al(n, IF); if 
J.LIK(Q) E K(Q)' whenever Q E n. The following notation is current: 

J f dJ.L:= J f dJ.L:= J f(x)dJ.L(x):= J.L(f) (f E K(n)). 
fl 

The scalar J.L(f) is the integral of f with respect to J.L. In this connection J.L is also 
called an integral. 

10.9.4. EXAMPLES. 
(1) For q E n the Dirac measure f ~ f(q) (f E K(n)) presents a Radon 

measure. It is usually denoted by the symbol bq and called the delta-function at q. 
Suppose also that n is furnished with group structure so that the taking 

of an inverse q E n ~ q-l E n and the group operation (s, t) E n x n ~ st E n 
are continuous; i.e., n is a locally compact group. By b we denote be where e is the 
unity of n (recall the concurrent terms: "identity," "unit," and "neutral element," 
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all meaning the same: es = se = s for all sED). The nomenclature pertinent 
to addition is routinely involved in abelian (commutative) groups. 

Given a E D, acknowledge the operation of (left or right) translation or shift 
by a in K(D) (in fact, every function is shifted in D x IF): 

with f E K(D) and qED. Clearly, aT, Ta E 2"(K(D)). 
A propitious circumstance of paramount importance is the presence of a non-

trivial measure on D, a member of .A'(D, 1R), which is invariant under left (or 
right) translations. All (left )invariant Radon measures are proportional. Each 
nonzero (left)invariant positive Radon measure is a (left) Haar measure (rarely 
Haar integral). In the case of right translations, the term "(right) Haar measure" 
is in common parlance. In the abelian case, we speak only of a H aar measure and 
even of H aar measure, neglecting the necessity of scaling. The familiar Lebesque 
measure on IRN is Haar measure on the abelian group IRN. That is why the con-
ventional notation of Lebesque integration is retained in the case of an abstract 
Haar measure. In particular, the left-invariance condition is written down as 

J f(a- 1 x)dx = J f(x)dx (1 E K(D), a ED). 
!1 !1 

(2) Let M(D) := (K(D), II· 1100)'. A member of M(D) is a bounded 
Radon measure. It is clear that a bounded measure belongs to the space C(D', IF)' 
(cf. 10.9.2 (2)). 

(3) Given Ji E .A'(D), put Ji*(1) = Ji(1*)*, where J*(q):= f(q)* for qED 
and f E K(D). The measure Ji* is the conjugate of Ji. Distinction between Ji* 
and Ji is perceptible only if IF = C. In case Ji = Ji*, we speak of a real C-measure. 
It is clear that Ji = Ji1 + iJi2' where Ji1 and Ji2 are uniquely-determined real 
C-measures. In turn, each real C-measure is generates by two lR-measures (also 
called real measures), members of .A'(D, 1R), because K(D, C) coincides with 
the complexification K(D, 1R) EB iK(Q, 1R) of K(D, lR). The real lR-measures 
obviously constitute a Kantorovich space. Moreover, the integral with respect 
to such a measure serves as (pre )integral. So, an opportunity is offered to deal 
with the corresponding Lebesque extension and spaces of scalar-valued or vector-
valued functions (cf. 5.5.9 (4) and 5.5.9 (5)). We seize the opportunity without 
much ado and specification. 

To every Radon measure Ji we assign the positive measure IJiI that is defined 
for f E K(D, lR), f 2: 0, by the rule 

IJiI(1):= sup{IJi(g)l: 9 E K(D, IF), 191::; J}. 
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Observe that, in current usage, the word "measure" often means a positive mea-
sure, whereas a "general" measure is referred to as a signed measure or a charge. 

If fL and v are measures and IfLl /\ Ivl = 0 then fL and v are called disjoint or 
independent (of one another). A measure v is absolutely continuous with respect 
to fL on condition that v is independent of every measure independent of fl. Such 
a measure v may be given as v = ffL, where f E L 1 .1oc (fL) and the measure ffL 
having density f with respect to fL acts by the rule (ffL)(9):= fL(f9) (g E K(n)) 
(this is the Radon-Nikodym Theorem). 

(4) Given n' E Op (n) and fL E vIl(n), consider the restriction fLrI' := 
fLIK(rI') of fL to K(n'). The restriction operator fL I-t fLrI' from vIl(n) to vIl(n'), 
viewed as depending on a subset of n, meets the agreement condition: if nil c 
n' c nand fL E vIl(n) then fLrI" = (fLrI' )rl lI . This situation is verbalized as 
follows: "The mapping vIl : E E Op (n) I-t vIl(E) and the restriction operator 
(referred to jointly as the functor vIl) defines a presheaf (of vector spaces over n)." 
It stands to reason to convince oneself that the (values of the) restriction operator 
need not be an epimorphism. 

(5) Let E E Open) and fL E vIl(n). It is said that E lacks fL or is 
void of fL or that n \ E supports or carries fL if fLE = O. By 10.9.2 (4) there 
is a least closed set supp (fL) supporting fL, the support of fl. It may be shown 
that SUPP(fL) = supp(lfLl). The above definition agrees with 10.8.12. The Dirac 
measure bq is a unique Radon measure supported at {q} to within scaling. 

(6) Let n k be a locally compact space and fLk E vIl(nk) (k := 1,2). 
There is a unique measure fL on the product n l x n 2 such that 

J Ul(X)U2(y)dfL(X,y) = J ul(x)dfLl(X) J u2(y)dfL2(Y) 
rllXrl2 rI, rl2 

with Uk E K(nk). The next designations are popular: fLl x fL2 := fLl 18) fL2 := fl· 
Using 10.9.2 (4), infer that for f E K(nl x n 2 ) the value fLl x fL2(f) may be 
calculated by repeated integration (this is the Fubini Theorem). 

(7) Let G be a locally compact group, and fL, v E M( G). For f E K( G) 
the function j(s, t):= fest) is continuous and l(fL x v)(i)1 :S IlfLllllvllllflloo. This 
defines the Radon measure fL * v(f):= (fL X v)(j) (f E K( G)), the convolution of fL 
and v. Using vector integrals, obtain the presentations: 

fL * v = J bs * bt dfL(S)dv(t) = J bs * vdfL(S) = J fL * bt dv(t). 
GxG G G 

The space M( G) of bounded measures with convolution as multiplication, 
exemplifies a Banach convolution algebra. 



10.9. Radon Measures 191 

This algebra is commutative if and only if G is an abelian group. In that event 
the space Ll (G), constructed with respect to Haar measure m, also possesses a nat-
ural structure of a convolution algebra (namely, that of a subalgebra of M(G)). 
The algebra (Ll(G), *) is the group algebra of G. Thus, for I, g E Ll(G), 
the definitions of convolution for functions and measures agree with one another 
(cf. 9.6.17): (f * g)dm = Idm * gdm. By analogy, the convolution of J-l E M(G) 
and I E Ll(G) is defined as (J-l * f)dm:= J-l * (fdm); i.e., as the density of the 
convolution of J-l and Idm with respect to Haar measure dm. In particular, 

I*g = /(8" *g)I(x)dm(x) = / T,,(g)I(x)dm(x). 
G G 

Wendel Theorem. Let T E B(Ll(G)). Tben tbe following statements are 
equivalent: 

(i) tbere is a measure J-l E M(G) sucb tbat TI = J-l * I for IE Ll(G); 
(ii) T commutes witb translations: TTa = TaT for a E G, wbere Ta is 

a unique bounded extension to Ll (G) of translation by tbe element 
a in K(G); 

(iii) T(f * g) = (Tf) * 9 for I, 9 E Ll(G); 
(iv) T(f * 1/) = (Tf) * 1/ for 1/ E M(G) and I E Ll(G). 

10.9.5. DEFINITION. The spaces K(n) and Al(n) are set in duality (induced 
by the duality bracket K(n) f--? K(n)#). In this case, the space Al(n) is furnished 
with the topology a(Al(n), K(n)), usually called vague. The space K(n) is fur-
nished with the Mackey topology TK(fI):= T(K(n), Al(n)) (thereby, in particular, 
(K(n), TK(fI))' = Al(n)). The space of bounded measures M(n) is usually con-
sidered with the dual norm: 

11J-l11:= sup{IJ-l(f)I: 1111100::; 1, IE K(n)} (Ji E M(n)). 

10.9.6. Tbe topology TK(fI) is strongest among all locally convex topologies 
making tbe identical embedding of K(Q) to K(n) continuous for every Q witb 
Q ~ n (i.e., TK(fI) is tbe so-called inductive limit topology (cf. 9.2.15)). 

<l If T is the inductive limit topology and J-l E (K(n), T)' then by definition 
J-l E Al(n), because J-l 0 LK(q) is continuous for Q ~ n. In turn, for J-l E Al(n) 
the set Vq:= {f E K(Q): IJ-l(f) I ::; 1} is a neighborhood of zero in K(Q). From 
the definition of T, infer that U {Vq: Q ~ n} = {f E K(n): IJiU)I::; 1} is 
a neighborhood of zero in T. Thus, J-l E (K(n), T)' and T is compatible with 
duality. Therefore, T ::; TK(fI). 

On the other hand, if p is a seminorm in the mirror of the Mackey topology 
then p is the supporting function of a subdifferentiallying in Al(n). Consequently, 



192 Chapter 10. Duality and Its Applications 

the restriction q: = POt K( Q) of p to K ( Q) is lower semi continuous anyway. By the 
Gelfand Theorem (in view of the barreledness of K( Q)) the seminorm q is contin-
uous. Consequently, the identical embedding tK(Q) : K(Q) --+ (K(n), TK(O)) is 
continuous and T 2: TK(O) by the definition of inductive limit topology. t> 

10.9.7. A subset A of K(]R.N) is bounded (in the inductive limit topology), 
if sup IIAllco < +00 and, moreover, the supports of the members of A lie in a com-
mon compact set. 

<l Suppose to the contrary that, for some Q such that Q <s ]R.N, the inclusion 
A C K(Q) fails. In other words, for n E N there are some qn E ]R.N and an E A sat-
isfying an(qn) -:j:. 0 and Iqnl > n. Put B:= {nlan(qn)l- l 6'qn : n E N} and observe 
that this set of Radon measures is vaguely bounded and so the semi norm p(f):= 
sup{II-lI(lfl): I-l E B} is continuous. Moreover, p(an) 2: nlan(qn)l- l 6'qn(lan l) = n, 
which contradicts the boundedness property of A. t> 

10.9.8. REMARK. Let (fn) C K(]R.N). The notation fn ...... 0 symbolizes the 
K 

proposition (3 Q <s ]R.N)(Vn) supp(fn) C Q & IIfnllco --+ o. From 10.9.7 it is 
immediate that I-l E K(]R.N)# is a Radon measure if I-l(fn) --+ 0 whenever fn ...... o. 

K 
Observe also that the same holds for every locally compact n countable at infinity 
or a-compact, i.e. for n presenting the union of count ably many compact sets. 

10.9.9. REMARK. There is a sequence (Pn) of real-valued positive polyno-
mials on ]R. such that the measures Pndx converge vaguely to 6' as n --+ +00. 
Considering products of the measures, arrive at some polynomials Pn on the ]R.N, 
with (Pndx) converging vaguely to [) (here, as usual, dx:= dXl x ... X dXN is the 
Lebesque measure on ]R.N). Now, take f E K(]R.N) such that f is of class c(m) 

in some neighborhood of a compact set Q (i.e., f has continuous derivatives up 
to order m on Q). Arranging the convolutions (f * Pn ), obtain a sequence of poly-
nomials which approximates not only f but also the derivatives of f up to order 
m uniformly on Q. The possibility of such a reqularization is referred to as the 
Generalized Weierstrass Theorem in]R.N (cf. 10.10.2 (4)). 

10.9.10. Measure Localization Principle. Let tff be an open cover of n 
and let (I-lE)EEg be a family of Radon measures, I-lE E .4(E). Assume further 
that, for every pair (E', E") of the members of tff, the restrictions of I-lE' and I-lE" 
to E' n E" coincide. Then there is a unique measure I-l on n whose restriction to E 
equals I-lE for all E E tff. 

<l Using 10.9.2 (5), arrange the sequence 

L K(E' n E") ~ L K(E) ~ K(n) --+ 0, 
{E:E"} EEg 

E:E" Eg, E'¢E" 
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where t is generated by summation of the coordinate identical embeddings t(E',E") 
and (J' is the standard addition. Every direct sum is always assumed to be furnished 
with the inductive limit topology (cf. 10.9.6). 

Examine the exactness ofthe sequence. Since K(n) = UQ~nK(Q) and in view 
of 10.9.2 (4), it suffices to settle the case of a finite cover by checking exact-
ness at the second term. Thus, proceeding by induction, suppose that for every 
n-element cover {El' ... ,En} (n ~ 2) the following sequence is exact: 

n 

Kn ~ IT K(Ek) ~ K(EI U ... U En) -+ 0, 
k=l 

where tn is the "restriction" of t to K n, the symbol (J'n stands for addition and 

IT 
k<1 

k,IE{l, ... ,n} 

- -By hypothesis, im tn = ker (J'n· If (J'n+! (J, fn+l) = 0 where f:= (II,· .. ,fn), then 
(J'n1 = - fn+l and fn+l E K((EI U ... U En) n En+d. Since (J'n is an epimorphism 
by 10.9.2 (5), there are some Ok E K(Ek n En+I) such that (J'nO = - fn+l for 
0:= (01 , ... ,On)' Whence il- 0) E ker (J'n, and by hypothesis there is a member 
x of Kn such that tnX = f - O. Clearly, 

n 

K n+l = Kn x IT K(Ek n En+d 
k=l 

(to within isomorphism), x:= (x, 01 , ... ,On) E Kn+I, and tn+lX = (1, fn+d. 
Passing to the diagram prime (cf. 7.6.13), arrive at the exact sequence 

0-+ Al(n) ~ IT Al(E) ~ 

The proof is complete. c> 

IT 
{E',E"} 

E',E"E,c,E'#E" 

Al(E' nEil). 

10.9.11. REMARK. In topology, a presheaf recoverable from its patches or 
local data in the above manner is a sheaf In this regard, the claim of 10.9.10 is 
verbalized as follows: the presheaf n I-t Al(n) of Radon measures is a sheaf or, 
putting it more categorically, the functor Al is a sheaf (of vector spaces over n, 
cf. 10.9.4 (4)). 
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10.10. The Spaces ~(n) and ~'(n) 
10.10.1. DEFINITION. A compactly-supported smooth function f : RN --+ IF 

is a test function; in symbols, f E ~(RN) := ~(RN, IF). Given Q € RN and 
o E Op(RN), designate ~(Q) := {J E ~(RN): supp(f) C Q} and ~(O) := 
U{~(Q): Q € O}. 

10.10.2. The following statements are valid: 
(1) ~(Q) = 0 ¢} int Q = 0; 
(2) given Q € RN, put 

Ilflln,Q:= Lila" fIIC(Q) := 
"E(~)N 

"l+ ... +"N~n 

for a function f smooth in a neighborhood of Q (as usual, Z+ := 
Nu {O}); themultinorm9RQ:= {11'lln,Q: n E N} makes ~(Q) into 
a Frechet space; 

(3) the space of smooth functions Coo(O):= G"(O) on 0 in Op (R N) with 
the multinorm 9Ro:= {II 'IIn,Q: n E N, Q € O} is a Frechet space; 
moreover, ~(O) is dense in Coo(O); 

(4) if Ql € RN, Q2 € RM and Q € Ql X Q2; then the linear span 
in ~(Q) of the restrictions to Q of the functions like IIh(ql, q2):= 
II ® h(ql, q2):= II(Ql)h(q2), with qk E Qk and fk E ~(Qk)' is 
dense in ~(Q); 

(5) the mapping E E Op (0) 1--+ ~(E) E Lat (~( 0)) preserves suprema: 

~(E' nEil) = ~(E') n ~(E"), ~(E' U E") = ~(E') + ~(E"); 
~(UG") = 2"(U{~(E): E E G"}) (G" C Op(O)). 

Moreover, the next sequence is exact (cl. 10.9.2 (5)): 

o --+ ~(E' nEil) t(E~EII») ~(E') x ~(E") O'(E~EII») ~(E' U E") --+ O. 

<l (1) and (2) are obvious. 
(3): Choose a sequence (Qm)mEN such that Qm € 0, Qm € Qm+l and 

UmENQm = O. The multinorm {II . IIn,Qm : n E N, mEN} is countable and 
equivalent to 9Ro. A reference to 5.4.2 yields the metrizability of Coo(O). The 
completeness of Coo(O) raises no doubts. 

To show that ~(O) is dense in Coo(O), consider the truncator set Tr(O):= 
{1P E ~(O): 0 ~ 'I/J ~ I}. Make Tr(O) a direction on letting 'l/Jl ~ 'l/J2 ¢} 

supp('l/JI) C int {1P2 = 1}. It is clear that, for f E Coo(O), the net ('l/Jf)"'ETr(O) 
approximates f as is needed. 
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(4): Take q' E ]RN and q" E ]RM. Let a(q', q"):= a'(q')a"(q"), where a' 
and a" are mollifiers on ]RN and ]RM, respectively. Given f E 9&(Q), n E N, and 
c > 0, choose X from the condition Ilf - f *axlin,Q :=:; e h. Using the equicontinuity 
property of the family $:= {GO< f(q)Tq(a x ): lal:=:; n, q E Ql x Q2}, find finite 
sets 6,.' and 6,.", with 6,.' c Ql and 6,." C Q2, so that the integral of each function 
in $ be approximated to within 1 h(N + 1)-nc by a Riemann sum of it using 
the points of 6,.' x 6,.". This yields a function 1, a member of the linear span of 
9&(Ql) x 9&(Q2), which was sought; i.e., Ilf -11In,Q :=:; c. 

(5): Check this is as in 10.9.2 (4), on replacing 9.4.18 with 9.6.19 (2). I> 

10.10.3. REMARK. The Generalized Weierstrass Theorem may be applied 
to the demonstration of 10.10.2 (4), when combined with due truncation providing 
that the constructed approximation has compact support. 

10.10.4. DEFINITION. A functional u, a member of 9&(n, If)#, is a distribu-
tion or a generalized function whenever u I~(Q) E 9&'(Q):= 9&(Q)' for all Q <s n. 
This is expressed in writing as u E 9&'(n):= 9&'(n, If). Sometimes a reference is 
appended to the nature of the ground field If. 

The usual designations are as follows: (u, J):= (J I u):= u(J). Often we use 
the most suggestive and ubiquitous symbol 

J f(x)u(x)dx:= u(J) (J E 9&(n)). 

10.10.5. EXAMPLES. 
(1) Let 9 E Ll,loc(]RN) be a locally integrable function. The mapping 

ug(J):= J f(x)g(x)dx (J E 9&(n)) 

determines a distribution. A distribution of this type is regular. To denote a reg-
ular distribution ug , a more convenient symbol 9 is also employed. In this connec-
tion, we write ~(n) c 9&'(n) and u g = I g). 

(2) Every Radon measure is a distribution. Each positive distribution u 
(i.e., such that f 2: 0 => u(J) 2: 0) is determined by a positive measure. 

(3) A distribution u is said to has order at most m, if to every Q such 
that Q <s ]R N there corresponds a number tQ satisfying 

lu(J)1 :=:; tQllfllm,Q (J E 9&(Q)). 

The notions of the order of a distribution and of a distribution of finite order are 
understood in a matter-of-fact fashion. Evidently, it is false that every distribution 
has finite order. 
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(4) Let a be a multi-index, a E (Z+)N; and let u be a distribution, 
u E ~'(f!). Given f E ~(f!), put ([)O/u)(J):= (_l)IO/lu([)O/ f). The distribution 
[)O/u is the derivative of u (of order a). We also speak of generalized differentiation, 
of derivatives in the distribution sense, etc. and use the conventional symbols 
of differential calculus. 

A derivative (of nonzero order) of a Dirac measure is not a measure. At the 
same time 8 E ~'(IR) is the derivative of the H eaviside function 8( -1) := H, where 
H : IR -+ IR is the characteristic function of 1R+. If a derivative of a (regular) 
distribution u is some regular distribution u g , then g is a weak derivative of u 
or a generalized derivative of u in the Sobolev sense. For a test function, such 
a derivative coincides with its ordinary counterpart. 

(5) Given u E ~'(f!), put u*(J):= u(J*)*. The distribution u* is the 
conjugate of u. The presence of the involution * routinely justifies speaking of real 
distributions and complex distributions (cf. 10.9.3 (3». 

(6) Let E E Op (f!) and u E ~'(f!). For f E ~(E), the scalar u(f) 
is easily determined. This gives rise to the distribution UE, a member of ~'(E), 
called the restriction of u to E. The functor ~ is clearly a presheaf. 

Given u E ~'(f!) and E E Op(f!), say that E lacks or is void of u, if UE = O. 
By 10.10.4 (5), if the members of a family of open subsets of f! are void of u then 
so is the union of the family. The complement (to IR N) of the greatest open set 
void of u is the support of u, denoted by supp (u). Observe that supp ([)O/u) C 
supp (u). Moreover, a distribution with compact support (= compactly-supported 
distribution) has finite order. 

(7) Let u E ~'(f!) and f E Cc",(f!). If g E ~(f!) then fg E 9(f!). 
Put (Ju )(g) := u(J g). The resulting distribution fu is the product of f and u. 
Consider the truncator direction Tr(f!). If there is a limit limT/JETr (0) u(J1j;) then 
say that u applies to f. It is clear that a compactly-supported distribution u 
applies to every function in Coo(f!). Moreover, u E g'(f!):= Coo(f!)'. In turn, 
each element u of g'(f!) (cf. 10.10.2 (3» uniquely determines a distribution with 
compact support, which is implicit in the notation u E 9'(f!). 

If f E Coo(f!) and [)O/ fl supp (u) = 0 for all a, lal ~ m, where u is a compactly-
supported distribution of order at most m, then it is easy that u(J) = O. In con-
sequence, only linear combinations of a Dirac measure and its derivatives are 
supported at a singleton. <It> 

(8) Let f!I, f!2 E Op(IRN) and Uk E 9'(f!k). There is a unique distri-
bution u on f!I x f!2 such that u(hh) = uI(h)U2(h) for all fk E 9(f!k). The 
distribution is denoted by UI x U2 or UI ® U2. Using 10.10.2 (4), infer that for 
f E 9(f!I x f!2) the value u(J) of u at f appears from successive application of UI 
and U2. Strictly speaking, 
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More suggestive designations prompt the Fubini Theorem: 

J J f(x, Y)(U1 x U2)(X, y)dxdy 
111 Xl12 

It is worth noting that 

+ 
(9) Let u, v E ~'(R,N). Given f E ~(R,N), put f := f 0 +. It is 

+ 
clear that f E Coo(R, N X R, N). Say that the distributions U and v convolute or 
admit convolution or are convolutive provide that the product U x v applies to 

+ 
the function f C Coo(R,N X R,N) for each f in ~(R,N). It is easy (cf. 10.10.10) 

+ 
that the resulting linear functional f I--t (u X v)( f) (f E ~(R, N)) is a distribution 
called the convolution of U and v and denoted by U * v. It is beyond a doubt that 
the convolutions of functions (cf. 9.6.17) and measures on R,N (d. 10.9.4 (7)) are 
particular cases of the convolution of distributions. In some classes, every two 
distributions convolute. For instance, the space G"'(R,N) of compactly-supported 
distributions with convolution as multiplication presents an (associative and com-
mutative) algebra with unity the delta-function 8. Further, [)OI U = [)0I 8 * U and 
[)OI(U * v) = [)OIU * V = U * [)OI V • Moreover, the following remarkable equality, the 
Lions Theorem of Supports, holds: 

co(supp(U * v)) = co (supp (u)) + co (supp (v». 

It is worth emphasizing that the pairwise convolutivity of distributions fails in gen-
eral to guarantee the associativity of convolution (for instance, (1 * 8') * 8( -1) = 0 
whereas 1 * (8' * 8( -1)) = 1, with 1:= lIR). 

Each distribution u convolutes with a test function f, yielding some regular 
distribution (u * f)(x) = U(Tx(f-)), where f-:= 1 is the reflection of f; i.e., 
f -(x):= f( -x) (x E R,N). The operator u* : f I--t U * f from ~(R,N) to Coo(R,N) 
is continuous and commutes with translations: (U*)Tx = TxU* for x E R,N. It is 
easily seen that the above properties are characteristic of U*; i.e., if an operator T, 
a member of 2'( ~(R,N), Coo(R, N)), is continuous and commutes with translations, 
then there is a unique distribution U such that T = U*; namely, U(f):= (T' 8)(1) 
for f E ~(R,N) (cf. the Wendel Theorem). 
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10.10.6. DEFINITION. The spaces ~(n) and ~/(n) are set in duality (in-
duced by the duality bracket ~(n) H ~(n)#). Moreover, ~'(n) is furnished 
with the topology of the distribution space a( ~'(n), ~(n)), and ~(n) is furnished 
with the topology of the test function space, the Mackey topology T~ := T~(n) := 
T(~(n), ~/(n)). 

10.10.7. Let n E Op(]R.N). Then 
(1) T~ is the strongest of the locally convex topologies making the iden-

tical embedding of ~(Q) into ~(n) continuous for all Q IE n (i.e., 
T~ is the inductive limit topology); 

(2) a subset A of ~(n) is bounded if and only if A lies in ~(Q) for 
some Q such that Q IE n and is bounded in ~(Q); 

(3) a sequence (fn) converges to f in (~(n), T~) if and only if there 
is a compact set Q such that Q IE n, supp (fn) C Q, supp (f) c Q 
and (aa fn) converges to f uniformly on Q for every multi-index a 
(in symbols, fn -+> I); 

(4) an operator T, a member of ~(~(n), Y) with Y a locally convex 
space, is continuous if and only ifTfn -t 0 provided that fn -+> 0; 

(5) a delta-like sequence (bn) serves as a (convolution) approximate unity 
in ~(]R.N) as well as in ~/(]R.N); i.e., bn * f -+> f (in ~(]R.N)) and 
bn * U -t u (in ~/(]R.N)) for f E ~(]R.N) and u E ~/(]R.N). 

<l (1): This is established similarly as 10.9.6; and (2), by analogy with 10.9.7 
using the presentation of n as the union n = UnENQn, where Qn IE Qn+l for 
n E N. 

(3): Note that a convergent countable sequence is bounded, and apply 10.10.7 
(2) (d. 10.9.8). 

(4): In virtue of 10.10.7 (1) the continuity of T amounts to that of the restric-
tion TI ~(Q) for all Q IE n. By 10.10.2 (2) the space ~(Q) is metrizable. It remains 
to refer to 10.10.7 (3). 

(5): It is clear that all of the supports supp (bn * I) lie in some compact 
neighborhood about supp (f). Furthermore, for g E C(]R.N), it is evident that 
bn * g -t g uniformly on compact subsets of ]R.N. Applying this to aa f and 
considering (3), infer that bn * f -+> f· 

On account of 10.10.6 (8), observe the following: 

u(i) = (u * 1)(0) = lim(u * (bn * 1))(0) 
n 

= lim«u * bn ) * 1)(0) = lim(bn * u)(l) 
n n 



10.10. The Spaces ~(n) and ~'(n) 199 

10.10.8. REMARK. In view of 10.10.7 (3), for n E Op(JR.N ) and m E Z+ 
it is often convenient to consider the space ~(m)(n) := C~m\n) comprising all 
compactly-supported functions f whose derivatives 80< f are continuous for all 
10:1 ~ m. The space ~(m)(Q) := {f E ~(m)(n): supp(f) C Q} for Q <E n 
is furnished with the norm 11'llm,Q making it into a Banach space. In that event, 
~(m)(n) is endowed with the inductive limit topology. Thus, ~(O)(n) = K(n) and 
~(n) = nmEN~(m)(n). For a sequence (fn) to converge in ~(m)(n) means to con-
verge uniformly with all derivatives up to order m on some Q such that Q <E n 
and supp(fn) C Q for all sufficiently large n. Note that ~(m)(n)' comprises all 
distributions of order at most m. Correspondingly, 

~~(n):= U ~(m)(n)' 
mEN 

is the space of finite-order distributions. 
10.10.9. Let n E Op (JRN). Then 

(1) the space ~(n) is barreled; i.e., each barrel, a closed absorbing ab-
solutely convex subset, is a neighborhood of zero; 

(2) every bounded closed set in ~(n) is compact; i.e., ~(n) is a MonteZ 
space; 

(3) every absolutely convex subset of ~(n), absorbing each bounded set, 
is a neighborhood of zero; i.e., ~(n) is a bornological space; 

(4) the test functions are dense in the distribution space. 
<1 (1): A barrel V in ~(n) such that VQ:= V n ~(Q) is a barrel in ~(Q) for 

all Q <E n. Thus, VQ is a neighborhood of zero in ~(Q) (cf. 7.1.8). 
(2): Such a set lies in ~(Q) for some Q <E n by 10.10.7 (2). In virtue of 10.10.2 

(2), ~(Q) is metrizable. Applying 4.6.10 and 4.6.11 proves the claim. 
(3): This follows from the barreledness of ~(Q) for Q <E n. 
(4): Let gEl ~(nw, with the polar taken with respect to ~(n) f-+ ~'(n). 

It is clear that uf(9) = 0 for f E ~(n); i.e., J g(x)f(x) dx = O. Thus, 9 = O. 
It remains to refer to 10.5.9. I> 

10.10.10. Schwartz Theorem. Let (ukhEN be a sequence of distributions. 
Assume that for every f in ~(n) there is a sum 

00 

U(f):= L Uk(f). 
k=l 

Then U is a distribution and 

for every multi-index 0:. 
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<1 The continuity of U is guaranteed by 10.10.9 (1). Furthermore, for 1 E P(O) 
by definition (cf. 10.10.5 (4)) 

00 00 
8au(J) = u (( _1) laI 8a 1) = L Uk (( -1)laI8a1) = L 8aUk(J). t> 

k=l k=l 

10.10.11. Theorem. The functor pI is a sheaf. 
<1 It is immediate (cf. 10.9.10 and 10.9.11). t> 

10.10.12. REMARK. The possibility of recovering a distribution from local 
data, the Distribution Localization Principle stated in 10.10.11, admits clarification 
in view of the paracompactness of R.N. Namely, consider an open cover g of 0 
and a distribution U E P/(O) with local data (UE)EEg. Take a countable (locally 
finite) partition of unity ('l/Jk)kEN subordinate to g. Evidently, U = L:~1 'l/Jkuk, 
where Uk:= UEk and SUpp('l/Jk) C Ek (k EN). 

10.10.13. Theorem. Each distribution U on Q of order at most m may be 
expressed as sum of derivatives of Radon measures: 

where fla E 04'(0). 
<1 To begin with, assume that U has compact support. Let Q with Q (§ 0 be 

a compact neighborhood of supp(u). By hypothesis (cf. 10.10.5 (7) and 10.10.8) 

lu(J)1 :::; t L 118a 11100 (J E P(Q)) 
lal:<:;m 

for some t 2: O. 
Using 3.5.7 and 3.5.3, from 10.9.4 (2) obtain 

U = t L Va 0 8a = t L (-1)laI8ava 
lal:<:;m lal:<:;m 

for a suitable family (va)lal:<:;m, where Va E 181(11·1100)' 
Passing to the general case and invoking the Countable Partition Theorem, 

find a partition of unity ('l/Jk)kEN with 'l/Jk E P(Q) such that some neighborhoods Qk 
of SUpp('l/Jk) compose a locally finite cover of Q (d. 10.10.12). For each of the 
distributions ('l/JkuhEN it is already proven that 

'l/Jk U = L 8a flk,a, 
lal:<:;m 
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where every fLk,Ot is a Radon measure on n and sUPP(fLk,Ot) C Qk. 
From the Schwartz Theorem it is immediate that the sum 

00 

fLOt(J) := L fLk,Ot(J) 
k=1 

exists for all f E K(n). Moreover, the resulting distribution fLOt is a Radon mea-
sure. Once again appealing to 10.10.10, infer that 

which was required. ~ 
10.10.14. REMARK. The claim of 10.10.13 is often referred to as the theo-

rem on the general form of a distribution. Further abstraction and clarification 
are available. For instance, it may be verified that a compactly-supported Radon 
measure serves as a derivative (in the distribution sense) of suitable order of some 
continuous function. This enables us to view each distribution as a result of gen-
eralized differentiation of a conventional function. 

10.11. The Fourier Transform of a Distribution 
10.11.1. Let X be a nonzero functional over the space L1(]RN):= L1(]RN, C). 

The following statements are equivalent: 
(1) X is a character of the group algebra (L1(]RN), *)j i.e., X #- 0, 

X E L1 (lRN)' and 

(in symbols, X E X(L1(lR N », cf. 11.6.4)j 
(2) there is a unique vector t in ]RN such that 

x(J) = f(t):= (J * et)(O):= J f(x)ei(x,t) dx 
]RN 

for all f E L1 (lR N). 
<l (1) =? (2): Suppose that X(J)X(g) #- o. If x E]RN then 

X(c5x * f * g) = X(c5x * J)X(g) = X(c5x * g)x(J). 
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Put 1jJ( x) : = X(f) -1 X( i5x * f). This soundly defines some continuous mapping 
1jJ : R N -+ c.. Moreover, 

1jJ(x + y) 
= xU * 9 )-1 X( i5x+y * U * g)) = X(f)-1 X(g )-1 X( i5x * f * i5y * g) 

= X(f)-I X(i5x * f)X(g)-I X(i5 y * g) = 1jJ(x)1jJ(y) 

for x, y ERN; i.e., 1jJ is a (unitary) group character: 1jJ E X(RN). Calculus shows 
that 1jJ = et for some (obviously, unique) t E JR N. Further, by the properties of the 
Bochner integral 

xU)x(g) ~ xU, g) ~ X (j ('" g)/(x) dx ) 

= J X(i5x *g)f(x)dx = J f(x)X(g)1jJ(x)dx = X(g) J f(x)1jJ(x)dx. 
]RN ]RN ]RN 

Thus, 

xU) = J f(x)1jJ(x)dx U E L1(JRN)). 
]RN 

(2) =? (1): Given t E ]RN and treating f, 9 and f * 9 as distributions, infer 
that 

j;g(t) = uf*g(et) 

= J J f(x)g(y)et(x+y)dxdy= J f(x)et(x)dx J g(y)et(y)dy 
]RN ]RN ]RN]RN 

10.11.2. REMARK. The essential steps of the above argument remain valid 
for every locally compact abelian group G, and so there is a one-to-one correspond-
ence between the character space X( Ll (G)) of the group algebra and the set X( G) 
comprising all (unitary) group characters of G. Recall that such a character is 
a continuous mapping 1jJ : G -+ C satisfying 

\1jJ(x)\ = 1, 1jJ(x + y) = 1jJ(x)1jJ(y) (x, y E G). 
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Endowed with pointwise multiplication, the set 8:= X( G) becomes a commutative 
group. In virtue of the Alaoglu-Bourbaki Theorem, X( L1 (G)) is locally compact 
in the weak topology 0'(( L1 (G))', L1 (G)). So, 8 may be treated as a locally 
compact abelian group called the character group of G or the dual group of G. 
Each element q in G defines the character ~ :] E 8 r-+ (j(q) E e of the dual 

group 8. The resulting embedding of G into ~ is surprisingly an isomorphism 
of the locally compact abelian groups G and 8 (the Pontryagin-van Kampen 
Duality Theorem). 

10.11.3. DEFINITION. For a function f in L1(lR N), the mapping 1: ~N -t C, 
defined by the rule 

is the Fourier transform of f. 
10.11.4. REMARK. By way of taking convenient liberties, we customarily 

use the term "Fourier transform" expansively. First, it is retained not only for 
the operator § : L1(lRN) -t e]RN acting by the rule §f:= 1 but also for its 
modifications (cf. 10.11.13). Second, the Fourier transform § is identified with 
each operator §of := 1 0 (), where () is an automorphism (= isomorphism with 
itself) of JltN. Among the most popular are the functions: (}(x):= _(x) := -x, 
B(x):= 2"'(X):= 27l'X and B(x):= -2"'(X):= -27l'X (x E JltN). In other words, the 
Fourier transform is usually defined by one the following formulas: 

§_f(t) = J f(x)e-i(x,t) dx, 
]RN 

§2".f(t) = J f(x)e 21ri(X,t) dx, 
]RN 

§-2".f(t) = J f(x)e- 2".i(x,t) dx. 
]RN 

Since the character groups of isomoryhic groups are also isomorphic, there are 
grounds to using the same notation f for generally distinct functions § f, § _ f, 
and § ±21r f. The choice of the symbol ~ for §21r (§ -21r) dictates the denota-
tion v for §-21r (§21r) (cf. 10.11.12). 

10.11.5. EXAMPLES. 
(1) Let f : Jlt -t Jlt be the characteristic function of the interval [-1, 1]. 
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Clearly, iet) = 2t-l sin t. Observe that if k7r 2: to > 0 then 

00 

liet)1 dt 2: J liet)1 dt = ?; J 
[to,+oo) [k-n-,+oo) - [n1r,(n+l)1rj 
J liet)1 dt 

f J 21 sin tid f 1 2: (n+1)7r t=4 (n+1)7r=+00. 
n=k [n1r,(n+l)1rj n=k 

Thus, f 1. Ll(~). 
(2) For fELl (~N) the function f is continuous, with the inequality 

Ilflloo ~ Ilflh holding. 
<l The continuity of f follows from the Lebesque Dominated Convergence 

Theorem; and the boundedness of f, from the obvious estimate 

liet)1 ~ J If(x)1 dx = Ilflll (t E ~N). I> 

]RN 

(3) If f E Ll(~N), then If(t)1 --+ 0 as It I --+ +00 (= the Riemann-
Lebesque Lemma). 

<l The claim is obvious for compactly-supported step functions. It suffices 
to refer to 5.5.9 (6) and the containment § E B(Ll(JRN ), [oo(JRN)). I> 

(4) Let f E Ll(~N), c > 0, and fe(x) := f(cx) (x E JRN). Then 
fe(t) = c-Nf(t/e) (t E ~N). 

<l fe(t) = J f(cx)et(x)dx = c-N J f(cx)et/eCcx)dcx = cNfe/e) I> 
]RN ]RN 

(5) §(f*) = (§~f)*, -;;] = exf, and 0 = Txf for all f E Ll(~N) 
and x E JRN. 

<I We will only check the first equality. Since a*b = (ab*)* for a, b E C; 
on using the properties of conjugation and integration, given t E JR N, infer that 

§(f*)(t) = J f(x)ei(x,t) dx = ( J f(x)(ei(x,t))* dX) * 
]RN ]RN 

~ (1 f(x),-'«") dX) · ~ (ff-fnt ). 0 
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(6) Iff, 9 E Ll(1RN) then 

r;g = [gj J [g = J fg· 
]RN ]RN 

<l The first equality is straightforward from 10.11.1. The second, the multipli-
cation formula, follows on applying the Fubini Theorem: 

J [g = J J f(x)et(x) dxg(t) dt 
]RN ]RN ]RN 

= J ( J g(t)et(X)dt) f(x)dx = J fg· t> 

]RN ]RN ]RN 

(7) If [, f and 9 belong to Ll(1RN) then ([gr = f-* g. 
<l Given x ERN, observe that 

([gr(x) = J g(t)i(t)et(x)dt = J J g(t)f(y)et(y)et(x)dydt 
]RN ]RN]RN 

= J J f(y)g(t)et(x + y)dtdy 
]RN ]RN 

= J f(y)g(x+y)dy= J f(y-x)g(y)dy = f-*g(x). t> 

]RN ]RN 

$(801f) = iIOlltOl$f, 801 ($f) = iIOlI$(xOlf)j 

$21r( 801 f) = (27ri)10IItOl $21r f, 801 ( $21r f) = (27ri)10I1 $21r( x Ol f) 

(these equalities take the rather common liberty of designating x Ol := t Ol := (-)01 : 
TDN OIl OIN) Y E Jl'. t-t Yl ..... YN . 
<l It suffices (cf. 10.11.4) to examine only the first row. Since 801et = ilOlltOletj 

therefore, 

$(801 f)(t) = (et * 801 f)(O) 
= (801et * f)(O) = ilOlltOl(et * f)(0) = ilOlltOl i(t). 
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By analogy, on differentiating under the integral sign, infer that 

~1 ($J)(t) = 8~1 J f(x)ei(x,t) dx = J f(X) ix 1 ei(X,t) dx = $(ixd)(t). [> 

IRN IRN 

(9) If fN(X):= exp (-lhlxI2) for x E JRN, then iN = (27f( hfN. 

<l It is clear that 

N 
iN(t) = II J eitkxke-1hlxl~ dXk (t E JRN). 

k=l IR 

Consequently, the matter reduces to the case N = 1. Now, given y E JR, observe 
that 

~ J 1/ 2 . J 1/ ( .)2 1/ 2 JI(y) = e- 2X e'xy dx = e- 2 X-'Y - 2Y dx 

IR IR 

= JI(y) J e-1/2(x-iy)2 dx. 

IR 

To calculate the integral A that we are interested in, consider (concurrently ori-
ented) straight lines '\1 and '\2 parallel to the real axis JR in the complex plane 
CIR c::' JR2• Applying the Cauchy Integral Theorem to the holomorphic function 
f(z):= exp ( - Z2 h) (z E C) and a rectangular with vertices on '\1 and '\2 and 
properly passing to the limit, conclude that J)..J(z)dz = J)..2 f (Z)dz. Whence 
it follows that 

A = J e-1 h(x-iy)2 dx = J e-1 hx2 dx = y'2;. [> 

IR IR 

10.11.6. DEFINITION. The Schwartz space is the set of tempered (or rapidly 
decreasing) functions, cf. 10.11.17 (2), 

with the multinorm {p"",a: a, f3 E (Z+)N}, where P"",a(J):= Ilx"'8,a flloo. 
This space is treated as a subspace of the space of all functions from JR N to C. 
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10.11.7. The following statements are valid: 
(1) .9'(jRN) is a Fnkhet space; 
(2) the operators of multiplication by a polynomial and differentiation 

are continuous endomorphisms of .9'(jRN); 
(3) the topology .9'(jRN) may equivalently be given by the multinorm 

{Pn: n EN}, where 

Pn(f):= L 11(1 + I . 12taa flloo (f E .9'(jRN) 
lal~n 

(as usual, Ixl stands for the Euclidean norm of a vector x in jRN); 
(4) ~(jRN) is dense in .9'(jRN); furthermore, the identical embedding 

of ~(jRN) into .9'(jRN) is continuous and .9'(jRN)' C ~'(jRN); 
(5) .9'(jRN) C L1(jRN). 

<l We will check (4), because the other claims are easier. 
Take f E .9'(jRN) and let '!/J be a truncator in ~(jRN) such that BeN = 1}. 

Given x E jRN and e > 0, put '!/Je(x) := '!/J(ex), and fe = '!/Jef. Evidently, 
fe E ~(jRN). Let E > 0 and a, {3 E (Z+)N. It is an easy matter to show 
that sup{lIa1'('!/Je -1)1100: 'Y ~ (3, 'Y E (Z+)N} < +00 for 0 < e ~ 1. Considering 
that xa aP f( x) ---+ 0 as Ixl ---+ +00, find r > 1 satisfying Ixaap « '!/Je( x) -1 )f( x))1 < E 
whenever Ixl > r. Moreover, fe(x) - f(x) = ('!/J(~x) -l)f(x) = 0 for Ixl ~ ~-l. 
Therefore, 

Pa,p(fe - f) = sup IxaaP«'!/Je(x) - l)f(x))1 
Ixl>e- 1 

~ sup IxaaP«'!/Je(x) -l)f(x))1 < E 
Ixl>r 

for ~ ~ r-1. Thus, Pa,p(fe - f) ---+ 0 as ~ ---+ 0; i.e., fe ---+ f in .9'(jRN). The 
required continuity of the identical embedding raises no doubt. t> 

10.11.8. The Fourier transform is a continuous endomorphism of .9'(RN). 
<l Given f E ~(jRN), from 10.11.5 (8), 10.11.5 (2) and the Holder inequality 

obtain 

Thus, 

Whence it is easily seen that 1 E .9'(jRN) and the restriction of § to ~(Q) with 
Q ~ jRN is continuous. It remains to refer to 10.10.7 (4) and 10.11.7 (4). t> 
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10.11.9. Theorem. The repeated Fourier transform in the space .9"(JRN) is 
proportional to the reflection. 

<I Let f E .9"(JRN) and g(x):= fN(X) = exp(-lhlxI2). From 10.11.8 and 
10.11.7 derive that i, f, 9 E Ll(JRN) and so, by 10.11.5 (7), (igf = f-* g. Put 
ge(x):= g(c:x) for x E JRN and c: > o. Then for the same x, in view of 10.11.5 (4) 
find 

J g(ct)ict)et(x)dt= c:~ J f(y-x)g(D dy= J f(c:y-x)g(y)dy. 
~N ~N ~N 

Using 10.11.5 (9) and the Lebesque Dominated Convergence Theorem as c: -t 0, 
infer that 

g(O) J ict)et(x) dt = f( -x) J g(y) dy 
~N ~N 

= (21l"t h f(x) J e-lhlxl2 dx = (21l")N f( -x). 
~N 

Finally, $2 f = (21l")N r: [> 

10.11.10. Corollary. $i1r is the reflection and ($21r)-1 = $-21r. 
<I Given f E .9"(JRN) and t E JRN, deduce that 

f(-t) = (21l")N J ei(x,t)icx)dx = J e21ri(X,t)ic27rX)dx 
~N ~N 

Since $21rf-= $-21rf, the proof is complete. [> 

10.11.11. Corollary . .9"(JRN) is a convolution algebra (= an algebra with 
convolution as multiplication). 

<I For f, 9 E .9"(JRN) the product fg is an element of .9"(JRN) and so ig E 
.9"(JRN). From 10.11.5 (6) infer that $21r(f * g) E .9"(JRN) and, consequently, 
by 10.11.10, f * 9 = $-21r($21r(f * g)) E .9"(JRN). [> 

10.11.12. Inversion Theorem. The Fourier transform J:= $21r is a topo-
logical automorphism of the Schwartz space .9"(JR N), with convolution carried into 
pointwise multiplication. The inverse transform J-1 equals $ -21r, with pointwise 
multiplication carried into convolution. Moreover, the Parseval identity holds: 

J f g* = J ig* (f, 9 E .9"(JRN)). 
~N ~N 
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<I In view of 10.11.10 and 10.11.5 (5), only the sought identity needs examining. 
Moreover, given f and g, from 10.11.5 (7) and 10.11.7 (4), obtain (1g)(0) 
(J * g)(O). Using 10.11.5 (5), conclude that 

J fg* = (~(~-1 J)g*((O) = ((~-1 J)-* ~g*)(O) 
~N 

= J ~f(~g*)-dx = J ~f~-(9*) dx = J ~f(~g)*. t> 

~N ~N ~N 

10.11.13. REMARK. In view of 10.11.9, the theorem on the repeated Fourier 
transform, the following mutually inverse operators 

Jf(t) = 1 J f(x)ei(x,t) dx' 
(27rth ' 

~N 

J-1 f(x) = 1 J f(t)e-i(x,t) dt 
(27rt h 

~N 

are considered alongside~. In this case, an analog of 10.11.12 is valid on condition 
that convolution is redefined as f*g:= (27r)_N h f * 9 (1, 9 E L1(R N ». The 
merits of J and J -1 are connected with some simplification of 10.11.5 (8). In the 
case of ~, a similar goal is achieved by introducing the differential operator DOI.:= 
(27ri)-10I.IaOi. with a E (Z+)N. 

10.11.14. Plancherel Theorem. The Fourier transform in the Schwartz 
space .9'(RN) is uniquely extendible to an isometric automorphism of L 2 (RN). 

<I Immediate from 10.11.12 and 4.5.10 since .9'(RN) is dense in L 2 (R N). t> 

10.11.15. REMARK. The extension, guaranteed by 10.11.14, retains the pre-
vious name and notation. Rarely (in search of emphasizing distinctions and sub-
tleties) one speaks of the Fourier-Plancherel transform or the L 2 - Fourier trans-
form. It that event it stands to reason to specify the understanding of the integral 
formulas for ~f and ~-1 f with f E L2(RN) which are treated as the results 
of appropriate passage to the limit in L2 (R N ). 

10.11.16. DEFINITION. Let u E Y'(RN) := Y(RN)'. Such a distribution 
u is referred to as a tempered distribution (variants: a distribution of slow growth, 
a slowly increasing distribution, etc.). The space Y' (RN) of tempered distributions 
is furnished with the weak topology a(.9"(RN), .9'(RN» and is sometimes called 
the Schwartz space (as well as Y(RN». 
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10.11.17. EXAMPLES. 
(1) Lp(JR. N) C .9"(JR.N) for 1 :S P :S +00. 

<I Let f E Lp(JR.N), 'IjJ E .9'(JR.N), P < +00 and l/pl + l/p = 1. Using Holder 
inequality, for suitable positive K, K', and K" successively infer that 

11'ljJllpl:S (J l'ljJIP) lip + ( J 1(1 + IxI2)N(1 + IxI2)-N'IjJ(xW dX) lip 
B ]RN\B 

1 I P 

:S K'II'ljJlloo + 11(1 + I· 12)N'ljJlloo ( J (1 + ::12)NP) :S K"Pl('IjJ). 
]RN\B 

Once again using the Holder inequality, observe that 

IUf('IjJ)1 = 1('ljJlf)1 = J f'IjJ :S IIfllpll'IjJllp':S Kpl('IjJ). 
]RN 

The case P = +00 raises no doubts. r> 
(2) .9'(JR.N) is dense in .9" (JR.N). 

<I Follows from 10.11.7 (4),10.11.17 (1),10.11.7 (5), and 10.10.9 (4). r> 
(3) Let J.l E .4l'(JRN) be a tempered Radon measure; i.e., 

for some n E N. Evidently, J.l is a tempered distribution. 
(4) If U E .9"(JRN), f E .9'(JRN) and a E (Z+)N then fu E .9"(JR.N) 

and ao:u E .9"(JRN) in virtue of 10.11.7 (2). By a similar argument, putting 
DO:u(f):= (_l)lo:luDO: f for f E Y(JR N), infer that DO:u E Y'(JRN) and DO:u = 
(27l"i)- lo:lao:u. 

(5) Every compactly-supported distribution is tempered. 
<I In accordance with 10.10.5 (7) such u in qJ'(JRN) may be identified with 

a member of @"'(JRN). Since the topology of .9'(JRN) is stronger than that induced 
by the identical embedding in Coo(JR N), conclude that u E Y'(JR.N). r> 

(6) Let u E Y'(JRN). If f E .9'(JR.N) then u convolutes with f and 
u * f E .9'(JR N). In may be shown that u also convolutes with every distribution v, 
a member of @"'(JR N), and u * v E .9"(JRN). 
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(7) Take U E ~'(JRN) and x E lI~N. Let TxU:= (Lx)'U = U 0 Lx be 
the corresponding translation of u. A distribution U is periodic (with period x) if 
TxU = u. Every periodic distribution is tempered. Periodicity is preserved under 
differentiation and convolution. 

(8) If Un E .9"'(JRN) (u E N) and for every I E .9"(JRN) there is a sum 
u(f):= L:~=l un(f), then U E .9"'(JRN) and aau = L:~l aaun (cf. 10.10.10). 

10.11.18. Theorem. Eacb tempered distribution is tbe sum of derivatives 
of tempered measures. 

<l Let u E .9"'(JRN). On account of 10.11.7 (3) and 5.3.7, for some n E N 
and K > 0, observe that 

ju(f)j :s; K L 11(1 + j • j2 taa III"" (f E .9"(JRN)). 
1001~n 

From 3.5.3 and 3.5.7, for some /JOI E M(JR N), obtain 

u(f) = J /JOI (1 + j • j2taa I) (f E .9"(JRN)). 
1001~n 

Let VOI:= (_1)1 01 1(1 + j • j2)n/J0I. Then Vol is tempered and u = L:IOII~n aOlvOI . [> 

10.11.19. DEFINITION. For u E Y"(JR N), the distribution ~u acting as 

is the Fourier transform or, amply, the Fourier-Schwartz transform of u. 
10.11.20. Theorem. Tbe Fourier-Scbwartz transform ~ is a unique exten-

sion oftbe Fourier transform in .9"(JRN) to a topological automorpbism of Y"(JR N). 
Tbe inverse ~-l of ~ is a unique continuous extension of tbe inverse Fourier trans-
form in .9"(JRN). 

<l The Fourier-Schwartz transform in Y"(JRN) is the dual of the Fourier trans-
form in .9"(JRN). It remains only to appeal to 10.11.7 (5), 10.11.12,10.11.17 (2), 
and 4.5.10. [> 

Exercises 
10.1. Give examples of linear topological spaces and locally convex spaces as well as 

constructions leading to them. 
10.2. Prove that a Hausdorff topological vector space is finite-dimensional if and only 

if it is locally compact. 
10.3. Characterize weakly continuous sublinear functionals. 
10.4. Prove that the weak topology of a locally convex space is norm able or metrizable 

if and only if the space is finite-dimensional. 
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10.5. Describe weak convergence in classical Banach spaces. 
10.6. Prove that a normed space is finite-dimensional if and only if its unit sphere, 

comprising all norm-one vectors, is weakly closed. 
10.7. Assume that an operator T carries each weakly convergent net into a norm con-

vergent net. Prove that T has finite rank. 
10.S. Let X and Y be Banach spaces and let T be a linear operator from X to Y. 

Prove that T is bounded if and only if T is weakly continuous (i.e., continuous as a mapping 
from (X, u(X, X'» to (Y, u(Y, Y'))). 

10.9. Let 11·111 and 11·112 be two norms making X into a Banach space. Assume further 
that (X, II· IiI)' n (X, 11·112)' separates the points of X. Prove that these norms are equivalent. 

10.10. Let S act from Y' to X'. When does S serve as the dual of some operator from 
X to Y? 

10.11. What is the Mackey topology r(X, X#)? 
10.12. Let (Xd~E3 be a family of locally convex spaces, and let X := I1~E3 X{ be 

the product of the family. Validate the presentations: 

u(X, X') = II u(X~, X~); 
{E3 

r(X, X') = II r(X~, X~). 
~E3 

10.13. Let X and Y be Banach spaces and let T be a element of B(X, Y) satisfying 
im T = Y. Demonstrate that Y is reflexive provided so is X. 

10.14. Show that the spaces (X')" and (X")' coincide. 
10.15. Prove that the space Co has no infinite-dimensional reflexive subspaces. 
10.16. Let p be a continuous sublinear functional on Y, and let T E ~ (X, Y) be 

a continuous linear operator. Establish the following inclusion of the sets of extreme points: 
ext T'(8p) C T'(ext 8p). 

10.17. Let p be a continuous semi norm on X and let .'!£ be a subspace of X. Prove 
that f E ext (.'!£ 0 n 8p) if and only if the next equality holds: 

X = cl .'!£ + {p - f ~ I} - {p - f ~ I}. 

10.1S. Prove that the absolutely convex hull of a totally bounded subset of a locally 
convex space is also totally bounded. 

10.19. Establish that barreledness is preserved under passage to the inductive limit. 
What happens with other linear topological properties? 



Chapter 11 
Banach Algebras 

11.1. The Canonical Operator Representation 
11.1.1. DEFINITION. An element e of an algebra A is called a unity element 

if e i- 0 and ea = ae = a for all a E A. Such an element is obviously unique and 
is also referred to as the unity or the identity or the unit of A. An algebra A is 
unital provided that A has unity. 

11.1.2. REMARK. Without further specification, we only consider unital al-
gebras over a basic field IF. Moreover, for simplicity, it is assumed that IF:= C, 
unless stated otherwise. In studying a representation of unital algebras, we nat-
urally presume that it preserves unity. In other words, given some algebras Al 
and A 2, by a representation of Al in A2 we henceforth mean a morphism, a mul-
tiplicative linear operator, from Al to A2 which sends the unity element of Al 
to the unity element of A2 • 

For an algebra A without unity, the process of unitization or adjunction 
of unity is in order. Namely, the vector space de := A X C is transformed into an al-
gebra by putting (a, >. )(b, Il-):= (ab + Il-a + >'b, >'Il-), where a, b E A and >., Il- E C. 
In the normed case, it is also taken for granted that lI(a, >')II.<>"e:= lI allA + 1>'1. 

11.1.3. DEFINITION. An element aT in A is a right inverse of a if aaT = e. 
An element al of A is a left inverse of a if ala = e. 

11.1.4. If an element bas left and rigbt inverses tben tbe latter coincide. 
<I aT = (a/a)aT = al(aaT) = ale = al I> 

11.1.5. DEFINITION. An element a of an algebra A is called invertible, in 
writing a E Inv (A), if a has a left and right inverse. Denote a-I := aT = al. The 
element a-I is the inverse of a. A sub algebra (with unity) B of an algebra A is 
called pure or full or inverse-closed in A if Inv(B) = Inv(A) n B. 

11.1.6. Theorem. Let A be a Banacb algebra. Given a E A, put La : X 1--+ 

ax (x E A). Tben tbe mapping 

LA:=L:aI--+La (aEA) 
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is a faithful operator representation. Moreover, L(A) is a pure closed subalgebra 
of B(A) and L : A --t L(A) is a topological isomorphism. 

<l Clearly, 

L(ab) : x 1-+ Lab(x) = abx = a(bx) = La(Lbx) = (La)(Lb)x 

for x, a, bE A; i.e., L is a representation (because the linearity of L is obvious). 
If La = 0 then 0 = La( e) = ae = a, so that L is a faithful representation. To prove 
the closure property of the range L(A), consider the algebra Ar coinciding with A 
as a vector space and equipped with the reversed multiplication ab:= ba (a, bE A). 

Let R:= LA., i.e. Ra:= Ra : x 1-+ xa for a E A. Check that L(A) is in fact 
the centralizer of the range R(A), i.e. the closed subalgebra 

Z(im R):= {T E B(A): TRa = RaT (a E An. 

Indeed, if T E L(A), i.e. T = La for some a E A, then LaRb(x) = axb = 
Rb(La(x)) = RbLa(x) for all b E A. Hence, T E Z(R(A)). If, in turn, T E 
Z(R(A)) then, putting a:= Te, find 

LaX = ax = (Te)x = Rx(Te) = (RxT)e = (TRx)e = T(Rxe) = Tx 

for all x E A. Consequently, T = La E L(A). Thus, L(A) is a Banach sub algebra 
of B(A). 

For T = La there is a T-l in B(A). Put b:= T- 1 e and observe that ab = 
Lab = Tb = TT-1e = e. Moreover, ab = e =} aba = a =} T(ba) = Laba = aba = 
a = Lae = Te. Whence ba = e, because T is a monomorphism. Thus, L(A) is 
a sub algebra of A. 

By the definition of a Banach algebra, the norm is submultiplicative, providing 

IILII = sup{IILall: Ilall:::: I} = sup{llabll: Ilall:::: 1, Ilbll :::: I} :::: 1. 

Using the Banach Isomorphism Theorem, conclude that L is a topological isomor-
phism (i.e., L-1 is a continuous operator from L(A) onto A). I> 

11.1. 7. DEFINITION. The representation LA, constructed in 11.1.6, is the 
canonical operator representation of A. 

11.1.8. REMARK. The presence of the canonical operator representation al-
lows us to confine the subsequent exposition to studying Banach algebras with 
norm-one unity. 

For such an algebra A the canonical operator representation LA implements 
an isometric embedding of A into the endomorphism algebra B(A) or, in short, an 
isometric representation of A in B(A). In this case, LA implements an isometric 
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isomorphism between the algebras A and L(A). The same natural terminology is 
used for studying representations of arbitrary Banach algebras. Observe immedi-
ately that the canonical operator representation of A, in particular, justifies the 
use of the symbol A in place of Ae for A E C, where e is the unity of A (cf. 5.6.5). 
In other words, henceforth the isometric representation A 1--+ Ae is considered as 
the identification of C with the subalgebra Ce of A. 

11.2. The Spectrum of an Element of an Algebra 
11.2.1. DEFINITION. Let A be a Banach algebra and a E A. A scalar A in C 

is a resolvent value of a, in writing A E res (a)), if (A - a) E Inv (A). The resolvent 
R(a, A) of a at A is R(a, A):= A~a:= (A-a)-l. The set Sp(a):= C\res (a) is the 
spectrum of a, with a point of Sp(a) a spectral value of a. When it is necessary, 
more detailed designations like SPA ( a) are in order. 

11.2.2. For a E A the equalities hold: 

SpA(a) = SPL(A)(La) = Sp(La); 
LR(a, A) = R(La, A) (A E res (a) = res (La)). <It> 

11.2.3. Gelfand-Mazur Theorem. The field of complex numbers is up to 
isometric isomorphism the sole Banach division algebra (or skew field); i.e., each 
complex Banach algebra with norm-one unity and invertible nonzero elements has 
an isometric representation on C. 

<I Consider \]i : A 1--+ Ae, with e the unity of A and A E C. It is clear that 
\]i represents C in A. Take a E A. By virtue of 11.2.2 and 8.1.11, Sp(a) -# 0. 
Consequently, there is A E C such that the element (A - a) is not invertible; i.e., 
a = Ae by hypothesis. Hence, \]i is an epimorphism. Moreover, 1I\]i(A)1I = IIAel1 = 
IAIliell = IAI so that \]i is an isometry. t> 

11.2.4. Shilov Theorem. Let A be a Banach algebra and let B be a closed 
(unital) subalgebra of A. Then 

for all b E B. 
<I If b:= A - b E Inv (B) then surely b E Inv (A). Whence resB(b) C resA(b); 

i.e., 
SpB(b) = C \ resB(b) J C \ resA(b) = SpA(b). 

If A E aSpB(b) then b E OInv(B). Therefore, there is a sequence (bn ), 

bn E Inv (B), convergent to b. Putting t:= sUPnENllb;lll, deduce that 
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In other words, if t < +00 then there is a limit a:= lim b;;1 in B. Multiplication 
is jointly continuous, and so ab = ba = 1; i.e., bE Inv (B). Since Inv (B) is open 
by the Banach Inversion Stability Theorem and 11.1.6, arrive at a contradiction 
to the containment bE oInv (B). 

Therefore, it may be assumed (on dropping to a subsequence, if need be) that 
Ilb;;111 ---t +00. Put a n := Ilb;;1 r1 b;;1. Then 

Whence it follows that b is not invertible. Indeed, in the opposite case for a:= -,;-1 
it would hold that 

Finally, conclude that).. - b does not belong to Inv (A); i.e., ).. E SpA(b). Since 
).. is a boundary point of a larger set SpB(b); undoubtedly, ).. E oSpA(b). l> 

11.2.5. Corollary. If SpB(b) lac1s,~)nterior points tben SpB(b) = SpA(b). 
<l SpB(b) = oSPB(b) C oSPB(b) C oSPA(b) C SPA(b) c SpB(b) l> 

11.2.6. REMARK. The Shilov Theorem is often referred to as the Unremov-
able Spectral Boundary Theorem and verbalized as follows: "A boundary spectral 
value is unremovable." 

11.3. The Holomorphic Functional Calculus in Algebras 
11.3.1. DEFINITION. Let a be an element of a Banach algebra A, and let 

hE £(Sp(a)) be a germ of a holomorphic function on the spectrum of a. Put 

The element Blah of A is the Riesz-DunJord integral of h. If, in particular, f E 
H(Sp(a)) is a function holomorphic in a neighborhood about the spectrum of a, 
then f( a):= BlaT 

11.3.2. Gelfand-Dunford Theorem. Tbe Riesz-Dunford integral Bla rep-
resents tbe algebra of germs of bolomorpbic functions on tbe spectrum of an ele-
ment a of a Banacb algebra A in A. Moreover, if J(z):= L:~=o cnzn (in a neigb-
borbood ofSp(a)) tben f(a):= L:~=ocnan. 
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From 11.2.3, 8.2.1, and 11.2.2 obtain 

(Lgah)(b) = Lqahb = (gah)b 

= ~ f h(z)R(a, z)dzb = -21 . f h(z)R(a, z) bdz 
27rz 7rZ 

= ~fh(z)R(La, z)bdz = -21 . fh(Z)R(La, z)dzb 
27rz 7rZ 

= gLah(b) 

for all bE A. In particular, im L includes the range of.~La (.n"(Sp(a))). Therefore, 
the already-proven commutativity of the diagram 

:j(SP~ §t • 

. ~ 
B(A). L A 

implies that the following diagram also commutes: 

:.r~ 
L(A) L-1 • A 

It remains to appeal to 11.1.6 and the Gelfand-Dunford Theorem in an operator 
setting. c> 

11.3.3. REMARK. All that we have established enables us to use in the sequel 
the rules of the holomorphic functional calculus which were exposed in 8.2 for the 
endomorphism algebra B(X), with X a Banach space. 
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11.4. Ideals of Commutative Algebras 
11.4.1. DEFINITION. Let A be a commutative algebra. A subspace J of A is 

an ideal of A, in writing J <l A, provided that AJ c J. 
11.4.2. The set J(A) of all ideals of A, ordered by inclusion, is a complete 

lattice. Moreover, 

sup J(A) rff = sUPLat(A) rff, inf J(A) rff = infLat (A) rff, 

for every subset rff of J(A)j i.e., J(A) is embedded into the complete lattice Lat (A) 
of all subspaces of A with preservation of suprema and infima of arbitrary subsets. 

<I Clearly, 0 is the least ideal, whereas A is the greatest ideal. Furthermore, 
the intersection of ideals and the sum of finitely many ideals are ideals. It remains 
to refer to 2.1.5 and 2.1.6. I> 

11.4.3. Let Jo <l A. Assume further that r..p : A -+ AI Jo is the coset mapping 
of A onto the quotient algebra A:= AI Jo. Then 

J <l A => r..p(J) <l Aj J <l A => r..p-l(J) <l A. 

<I Since by definition ab:= r..p(r..p-l(a)r..p-l(b)) for a, b E A, the operator r..p is 
multiplicative: r..p( ab) = r..p( a )r..p( b) for a, b E A. Whence successively derive 

r..p(J) C Ar..p(J) = r..p(A)r..p(J) C r..p(AJ) c r..p(J)j 
r..p-l(J) c Ar..p-l(J) c r..p-l(r..p(A)J) = r..p-l(AJ) c r..p-l(J). I> 

11.4.4. Let J <l A and J i= O. The following conditions are equivalent: 
(1) A i= Jj 
(2) 1 rf. Jj 
(3) no element of J has a left inverse. <II> 

11.4.5. DEFINITION. An ideal J of A is called proper if J is other than A. 
A maximal element of the set of proper ideals (ordered by inclusion) is a maximal 
ideal. 

11.4.6. A commutative algebra is a division algebra if and only if it has no 
proper ideals other than zero. <II> 

11.4.7. Let J be a proper ideal of A. Then (J is maximal) ¢:} (AI J is a field). 
<I =>: Let J <l AI J. Then, by 11.4.3, r..p-l(J) <l A. Since, beyond a doubt, 

J c r..p-l(J)j therefore, either J = r..p-l(J) and 0 = r..p(J) = r..p(r..p-l(J)) = J, or 
A = r..p-l(J) and J = r..p(r..p-l(J)) = r..p(A) = AIJ in virtue of 1.1.6. Consequently, 
AI J has no proper ideals other than zero. It remains to refer to 11.4.6. 

-<=: Let Jo <l A and Jo c J. Then, by 11.4.3, r..p(Jo) <l AI J. In virtue of 11.4.6, 
either r..p( Jo) = 0 or r..p( Jo) = AI J. In the first case, Jo C r..p-l or..p( Jo) C r..p-l(O) = J 
and J = Jo. In the second case, r..p(Jo) = r..p(A)j i.e., A = Jo+J C Jo+Jo = J o CA. 
Thus, J is a maximal ideal. I> 
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11.4.8. Krull Tbeorem. Eacb proper ideal is included in some maximal 
ideal. 

~ Let Jo be a proper ideal of an algebra A. Assume further that iff is the set 
comprising all proper ideals J of A such that Jo c J. In virtue of 11.4.2 each 
chain iffo in iff has a least upper bound: sup iff = U {J: J E iffo}. By 11.4.4 
the ideal sup c&O is proper. Thus, iff is inductive and the claim follows from the 
Kuratowski-Zorn Lemma. I> 

11.5. Ideals of the Algebra C( Q, C) 
11.5.1. Minimal Ideal Tbeorem. Let J be an ideal oftbe algebra C(Q, C) 

of complex continuous functions on a compactum Q. Assume furtber tbat 

Qo:= n {J-l (0): IE J}; 
Jo:= {J E C(Q, C): int 1-1(0) :J Qo}. 

Tben Jo <1 C(Q, C) and Jo c J. 
~ Let Ql:= cl(Q \ 1-1(0» for a function I, a member of Jo. By hypothesis, 

Ql n Qo = 0. To prove the containment I E J it is necessary (and, certainly, 
sufficient) to find u E J satisfying u( q) = 1 for all q E Ql. Indeed, in that event 
uI= I· 

With this in mind, observe first that for q E Ql there is a function Iq in J such 
that Iq(q) #- O. Putting gq:= I; I q, where as usual I; : x I-t Iq(x)* is the conjugate 
of I q, observe that gq :::: 0 and, moreover, gq(q) > O. It is also clear that gq E J for 
q E Ql. The family (Uq)qEQl' with Uq:= {x E Ql : gq(x) > O}, is an open cover 
of Ql. Using a standard compactness argument, choose a finite subset {ql, ... ,qn} 
of Ql such that Ql C Uq, u ... U Uqn · Put g := gql + ... + gqn' Undoubtedly, 
g E J and g(q) > 0 for q E Ql. Let ho(q):= g(q)-l for q E Q1. By the Tietze-
Urysohn Theorem, there is a function h in C(Q, R) satisfying hlQl = ho. Finally, 
let u:= hg. This u is a sought function. 

We have thus demonstrated that Jo C J. Moreover, Jo is an ideal of C(Q, C) 
for obvious reasons. I> 

11.5.2. For every closed ideal J of tbe algebra C(Q, C) tbere is a unique 
compact subset Qo of Q sucb tbat 

J = J(Qo):= {J E C(Q, C): q E Qo =? I(q) = O}. 

~ Uniqueness follows from the Urysohn Theorem. Define Qo as m 11.5.1. 
Then, surely, J C J(Qo). Take IE J(Qo) and, given n E N, put 
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Once again using the Urysohn Theorem, find hn E C(Q, lR) satisfying 0:::; hn :::; 1 
withhnl Un =0 and hnl vn =1. Consider fn:= fh n. Since 

therefore, from 11.5.1 derive fn E J. It suffices to observe that fn -+ f by con-
struction. I> 

11.5.3. Maximal Ideal Theorem. A maximal ideal of C(Q, C) has the 
form 

J(q):= J( {q}) = {J E C(Q, C): f(q) = O}, 

with q a point ofQ. 
<l Follows from 11.5.2, because the closure of an ideal is also an ideal. I> 

11.6. The Gelfand Transform 
11.6.1. Let A be a commutative Banach algebra, and let J be a closed ideal 

of A other than A. Then the quotient algebra AI J, endowed with the quotient 
norm, is a Banach algebra. If cp : A -+ AI J is the coset mapping then cp( 1) is the 
unity of AI J, the operator cp is multiplicative and Ilcpli = 1. 

<l Given a, bE A, from 5.1.10 (5) derive 

IIcp(a)cp(b)IIA/J = inf{lIa'b'IIA: cp(a') = cp(a), cp(b') = cp(b)} 
:::; inf{lla'IIAIIb'IIA: cp(a') = cp(a), cp(b') = cp(b)} 

= IIcp(a)IIA/Jllcp(b)IIA/J. 

In other words, the norm of AI J is submultiplicative. Consequently, IIcp(1 )11 2: 1. 
Furthermore, 

IIcp(1)IIA/J = inf{llaIlA: cp(a) = cp(l)} :::; IIIIIA = 1; 

i.e., IIcp(I)1I = 1. Whence, in particular, the equality IIcpli = 1 follows. The 
remaining claims are evident. I> 

11.6.2. REMARK. The message of 11.6.1 remains valid for a noncommutative 
Banach algebra A under the additional assumption that J is a bilateral ideal of A; 
i.e., J is a subspace of A satisfying the condition AJ A C J. 

11.6.3. Let X : A -+ C be a nonzero multiplicative linear functional on A. 
Then X is continuous and IIxll = X(I) = 1 (in particular, X is a representation of A 
inC). 
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<l Since X -I 0; therefore, 0 -I X( a) X( al) = X( a )X(I) for some a in A. 
Consequently, X(I) = 1. If now a in A and A in C are such that IAI > Iiall, then 
A-a E Inv (A) (cf. 5.6.15). So,1 = X(I)x(A-a)x((A-a)-I). Whence X(A-a) -I 0; 
i.e., x(a) -I A. Thus, Ix(a)1 ::; lIall and Ilxll ::; 1. Since IIxll = IIxlllllll ~ IX(l)1 = 1, 
conclude that Ilxll = 1. !> 

11.6.4. DEFINITION. A nonzero multiplicative linear functional on an alge-
bra A is a character of A. The set of all characters of A is denoted by X(A), 
furnished with the topology of pointwise convergence (induced in X(A) by the 
weak topology a( A', A)) and called the character space of A. 

11.6.5. The character space is a compactum. 
<l It is beyond a doubt that X(A) is a Hausdorff space. By virtue of 11.6.3, 

X( A) is a a( A', A)-closed subset of the ball B A'. The latter is a( A', A)-compact 
by the Alaoglu-Bourbaki Theorem. It remains to refer to 9.4.9. !> 

11.6.6. Ideal and Character Theorem. Each maximal ideal of a commu-
tative Banach algebra A is the kernel of a character of A. Moreover, the mapping 
X 1--7 ker X from the character space X(A) onto the set M(A) of all maximal ideals 
of A is one-to-one. 

<l Let X E X(A) be a character of A. Clearly, ker X <J A. From 2.3.11 
it follows that the mono quotient X :",41 ker X -7 C of X is a monomorphism. 
In view of 11.6.1, X(l) = x(1) = 1; i.e., X is an isomorphism of A/ker X and C. 
Consequently, A/ ker X is a field. Using 11.4.7, infer that ker X is a maximal ideal; 
i.e., ker X E M(A). Now, let m E M(A) be some maximal ideal of A. It is clear that 
m C cl m, cl m <J A, and 11:- cl m (because 1 E Inv (A), and the last set is open 
by the Banach Inversion Stability Theorem and 11.1.6). Therefore, the ideal m is 
closed. Consider the quotient algebra A/m and the coset mapping r.p : A -7 A/m. 
In view of 11.4.7 and 11.6.1, Aim is a Banach field. By the Gelfand-Mazur 
Theorem, there is an isometric representation 1/J : A/m -7 C. Put X:= 1/J 0 r.p. It is 
evident that X E X(A) and ker X = X-I(O) = r.p-I(1/J- I(O)) = r.p-1(0) = m. 

To complete the proof, it suffices to show that the mapping X 1--7 ker X is 
one-to-one. Indeed, let ker Xl = ker X2 for XI, X2 E X(A). By 2.3.11 Xl = AX2 for 
some A E C. Furthermore, by 11.6.3,1 = XI(l) = AX2(1) = A. Finally, Xl = X2. !> 

11.6.7. REMARK. Theorem 11.6.6 makes it natural to furnish M(A) with the 
inverse image topology translated from X(A) to M(A) by the mapping X 1--7 ker X. 
In this regard, M(A) is referred to as the compact maximal ideal space of A. 
In other words, the character space and the maximal ideal space are often identified 
along the lines of 11.6.6. 

11.6.8. DEFINITION. Let A be a commutative Banach algebra and let X(A) 
be the character space of A. Given a E A and X E X(A), put a(x):= x(a). The 
resulting function a : X 1--7 a(x), defined on X(A), is the Gelfand transform of a. 
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The mapping a t---+ a, with a E A is the Gelfand transform of A, denoted by ~A 
(or ~). 

11.6.9. Gelfand 'lransform Theorem. The Gelfand transform ~A : a t---+ a 
is a representation of a commutative Banach algebra A in the algebra C(X(A), C). 
Moreover, 

Sp(a) = Sp(a) = a(X(A)), 
liall = rea), 

with a E A and r( a) standing for the spectral radius of a. 
<l The implications a E A => a E C(X(A), C), 1 = 1 and a, b E A => 

;:;b = ab follow from definitions and 11.6.3. The linearity of ~A raises no doubts. 
Consequently, the mapping ~A is a representation. 

To begin with, take A E Sp(a). Then A - a is not invertible, and so the ideal 
h.-a := A(A - a) is proper in virtue of 11.4.4. By the Krull Theorem, there is 
a maximal ideal m of A satisfying the condition m :::> h.-a. By Theorem 11.6.6, 
m = ker X for a suitable character X. In particular, X(A-a) = 0; i.e., A = AX(I) = 
X(A) = x(a) = a(x). Consequently, A E Sp(a). 

If, in turn, A E Sp(a) then (A - a) is not invertible in C(X(A), C); i.e., there 
is a character X E X(A) such that A = a(x). In other words, X(A - a) = O. Thus, 
the assumption A - a E Inv (A) leads to the following contradiction: 

1 = XCI) = X((A - a)-leA - a)) = X((A - a)-l )X(A - a) = O. 

Hence, A E Sp(a). Finally, Sp(a) = Sp(a). 
U sing the Beuding-Gelfand formula (cf. 11.3.3 and 8.1.12), infer that 

rea) = SUp{IAI: A E Sp(a)} = sup{IAI: A E Sp(a)} 
= Sup{IAI: A E a(X(A))} = sup{la(x)l: X E X(A)} = liali, 

what was required. t> 

11.6.10. The Gelfand transform ofa commutative Banach algebra A is an iso-
metric embedding if and only if IIa211 = lIall 2 for all a E A. 

<l =>: The mapping t t---+ t 2 , viewed as acting on ~+, and the inverse of the 
mapping on ~+ are both increasing. Therefore, from 10.6.9 obtain 

lia211 = lIa211c(x(A),1C) = sup la2 (x)1 = sup Ix(a2)1 
xEX(A) xEX(A) 

= sup Ix(a)x(a)1 = sup Ix(aW 
xEX(A) xEX(A) 

= ( sup Ix(a)I)2 = lIal12 = lIa11 2. 
xEX(A) 
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~: By the Gelfand formula, rea) = limllanI1 1 / n • In particular, observe that 
lIa2n II = Ilall 2n ; i.e., rea) = lIall· By 10.6.9, rea) = lIall, completing the proof. t> 

11.6.11. REMARK. It is interesting sometimes to grasp situations in which 
the Gelfand transform of A is faithful but possibly not isometric. The kernel 
of the Gelfand transform ~A is the intersection of all maximal ideals, called the 
radical of A. Therefore, the condition for ~A to be a faithful representation of A 
in C(X(A), C) reads: "A is semisimple" or, which is the same, "The radical of A 
is trivial." 

11.6.12. Theorem. For an element a of a commutative Banach algebra A 
the following diagram of representations commutes: ::r:;p(a)) 

A ~A. C(X(A), C) 

Moreover, f(a) = faa = f(a) for f E H(Sp(a)). 
<I Take X E X(A). Given z E res (a), observe that 

In other words, 

-- 1 1 1 R(a, z)(X) = -(X) = ~() = -~(X) = R(a, z)(X). z-a z-ax z-a 

Therefore, appealing to the properties of the Bochner integral (cf. 5.5.9 (6)) and 
given f E H(Sp(a)), infer that 

J(;;) = ~A a!3?af = C§A (2~i f f(z)R(a, Z)dZ) 

If If --= 27ri f(Z)C§A(R(a, z))dz = 27ri f(z)R(a, z))dz 

= 2~i f f(z)R(a, z)dz = !3?a(f) = f(a). 
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Furthermore, given X E X(A) and using the Cauchy Integral Formula, derive the 
following chain of equalities 

f oa(x) = f(a(x)) = f(x(a)) 

= _1 f fez) dz = _1 f X (ill) dz 
27ri z - x(a) 27ri z - a 

= ~x (f fez) dZ) = f(;)(x) = f(a)(x)· [> 
27rl Z - a 

11.6.13. REMARK. The theory of the Gelfand transform may be naturally 
generalized to the case of a commutative Banach algebra A without unity. Re-
tain Definitions 11.6.4 and 11.6.8 verbatim. A character X in X(A) generates 
some character Xe in X(.ofe) by the rule Xe(a, A):= x(a) + A (a E A, A E C). 
The set X(.ofe) \ {Xe: X E X(A)} is a singleton consisting of the sole element 
Xoo(a, A):= A (a E A, A E C). The space X(A) is locally compact (cf. 9.4.19), 
because the mapping X E X(A) I---> Xe E X(.ofe) \ {Xoo} is a homeomorphism. 
Moreover, ker Xoo = A x o. Consequently, the Gelfand transform of a commu-
tative Banach algebra without unity represents it in the algebra of continuous 
complex functions defined on a locally compact space and vanishing at infinity. 
Given the group algebra (LI(lR. N), *), observe that by 10.11.1 and 10.11.3 the 
Fourier transform coincides with the Gelfand transform, which in turn entails the 
Riemann-Lebesque Lemma as well as the multiplication formula 10.11.5 (6). 

11.7. The Spectrum of an Element of a C*-Algebra 
11.7.1. DEFINITION. An element a of an involutive algebra A is called her-

mitian if a* = a. An element a of A is called normal if a* a = aa*. Finally, 
an element a is called unitary if aa* = a*a = 1 (i.e. a, a* E Inv (A) with a-I = a* 
and a*-l = a). 

11.7.2. Hermitian elements of an involutive algebra A compose a real sub-
space of A. Moreover, for every a in A there are unique hermitian elements 
x, yEA such that a = x + iy. Namely, 

x = ~(a + a*), y = ;i(a - a*). 

Moreover, a* = x - iy. 
<l Only the claim of uniqueness needs examining. If a = Xl + iYI then, using 

the properties of involution (cf. 6.4.13), proceed as follows: a* = xi + (iyt)* = 
xi - iyr = Xl - iYI. Thus, Xl = X and YI = y. [> 
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11.7.3. The unity of A is a hermitian element of A. 
41* = 1*1 = 1*1** = (1*1)* = 1** = 1 t> 
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11.7.4. a E Inv(A) ¢} a* E Inv(A). Moreover, involution and inversion 
commute. 

4 For a E Inv(A) by definition aa-l = a-1a = 1. Consequently, a-ha* = 
a*a-h = 1*. Using 11.7.3, infer that a* E Inv(A) and a*-l = a-h. Repeating 
this argument for a:= a*, complete the proof. t> 

11.7.5. Sp(a*) = Sp(a)*. 4t> 
11. 7 .6. The spectrum of a unitary element of a C* -algebra is a subset of the 

unit circle. 
4 By Definition 6.4.13, lIa2 11 = Ila*all ::; lIa*lIlIall for an arbitrary a. In other 

words, lIall ::; lIa*lI· Therefore, from a = a** infer that lIall = lIa*lI. If now a is 
a unitary element, a* = a-\ then lIal1 2 = lIa*all = lIa-1all = 1. Consequently, 
lIall = lIa*1I = lIa-11l = 1. Whence it follows that Sp(a) and Sp(a-l ) both lie 
within the unit disk. Furthermore, Sp(a-l ) = Sp(a)-l. t> 

11.7.7. The spectrum of a hermitian element of a C* -algebra is real. 
4 Take a in A arbitrarily. From the Gelfand-Dunford Theorem in an algebraic 

setting derive 

( )
* 00 n 00 (n)* 00 *)n 

exp(a)* = "" ~ = "" _a_ = "" ~ = exp(a*). L...J n! L...J n! L...J n! n=O n=O n=O 

If now h = h * is a hermitian element of A then, applying the holomorphic 
functional calculus to a:= exp( ih), deduce that 

a* = exp(ih)* = exp«ih)*) = exp( -ih*) = exp( -ih) = a-I. 

Consequently, a is a unitary element of A, and by 11.7.6 the spectrum Sp(a) of A is 
a subset of the unit circle T. If ,X E Sp(h) then by the Spectral Mapping Theorem 
(also cf. 11.3.3) exp(i,X) E Sp(a) C T. Thus, 1 = I exp(i,X)I = I exp(iRe,X-Im ,X)I = 
exp(-Im,X). Finally, Im'x = 0; i.e.,'x E JR. t> 

11.7.8. DEFINITION. Let A be a C*-algebra. A sub algebra B of A is called 
a C*-subalgebra of A if b E B :::} b* E B. In this event, B is considered with the 
norm induced from A. 

11. 7 .9. Theorem. Every closed C* -subalgebra of a C* -algebra is pure. 
4 Let B be a closed (unital) C*-subalgebra of a C*-algebra A and b E B. 

If bE Inv(B) then it is easy that bE Inv(A). Let now bE Inv(A). From 11.7.4 
derive b* E Inv (A). Consequently, b*b E Inv (A) and the element (b*b)-l b* is a left 
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inverse of b. By virtue of 11.1.4, it means that b-1 = (b*b)-lb*. Consequently, 
to complete the proof it suffices to show only that (b*b)-l belongs to B. Since b*b 
is hermitian in B, the inclusion holds: SpB(b*b) C R (cf. 11.7.7). Using 11.2.5, 
infer that SpA(b*b) = SpB(b*b). Since 0 rt. SpA(b*b); therefore, b*b E Inv(B). 
Finally, bE Inv (B). t> 

11.7.10. Corollary. Let b be an element of a C*-algebra A and let B be 
some closed C*-subalgebra of A with b E B. Then 

11.7.11. REMARK. In view of 11.7.10, Theorem 11.7.9 is often referred to as 
the Spectral Purity Theorem for a C* -algebra. It asserts that the concept of the 
spectrum of an element a of a C* -algebra is absolute, i.e. independent of the choice 
of a C* -subalgebra containing a. 

11.8. The Commutative Gelfand-Nalmark Theorem 
11.8.1. The Banach algebra C(Q, C) with the natural involution I 1--+ 1*, 

where I*(q):= I(q)* for q E Q, is a C*-algebra. 

<l 11f* III = sup{ll(q)* l(q)l: q E Q} = sup{ll(q)12: q E Q} 
= (sup II( Q)1)2= 111112 t> 

11.8.2. Stone-Weierstrass Theorem. Every unital C*-subalgebra of the 
C*-algebra C(Q, C), which separates the points ofQ, is dense in C(Q, C). 

<I Let A be such a subalgebra. Since I E A =? f* E A; therefore, I E A =? 
Rei E A and so the set ReA:= {Rei: I E A} is a real subalgebra of C(Q, R). 
It is beyond a doubt that Re A contains constant functions and separates the 
points of Q. By the Stone-Weierstrass Theorem for C(Q, R), the sub algebra 
ReA is dense in C(Q, R). It remains to refer to 11.7.2. t> 

11.8.3. DEFINITION. A representation of a *-algebra agreeing with involu-
tion * is a *- representation. In other words, if (A, *) and (B, *) are involutive 
algebras and 9t : A -t B is a multiplicative linear operator, then 9t is called 
a *-representation of A in B whenever the following diagram commutes: 

A~B 
* 1 1 * 
A~B 

If 9t is also an isomorphism then 9t is a *-isomorphism of A and B. In the 
presence of norms in the algebras, the naturally understood terms "isometric 
*-representation" and "isometric *-isomorphism" are in common parlance. 
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11.8.4. Commutative Gelfand-Narmark Theorem. Tbe Gelfand trans-
form of a commutative C* -algebra A implements an isometric *-isomorpbism of A 
and C(X(A), C). 

<I Given a E A, observe that 

In virtue of 11.6.10 the Gelfand transform ~A is thus an isometry of A and a closed 
sub algebra A of C(X(A), C). Undoubtedly, A separates the points of X(A) and 
contains constant functions. 

By virtue of 11.6.9 and 11.7.7, h(X(A)) = Sp(h) C lR. for every hermitian 
element h = h* of A. Now, take an arbitrary element a of A. Using 11.7.2, write 
a = x + iy, where x and yare hermitian elements. The containments X(x) E lR. 
and X(y) E lR. hold for every character X, a member of X(A). 

With this in mind, successively infer that 

~A(a)*(x) = a*(x) = a(x)* = x(a)* = x(x + iy)* 
= (X(x) + iX(Y))* = X(x) - iX(Y) = X(x - iy) = x(a*) 

= ti*(X) = ~A(a*)(x) (X E X(A)). 

Consequently, the Gelfand transform ~A is a *-representation and, in particular, 
A is a C*-subalgebra of C(X(A), C). It remains to appeal to 11.8.2 and conclude 
that A = C(X(A), C). ~ 

11.8.5. Assume tbat 9l : A ---- B is a *-representation of a C* -algebra A 
in a C*-algebra B. Tben II9lall ~ Iiall for a E A. 

<I Since 9l(I) = 1; therefore, 9l(Inv(A)) C Inv(B). Hence, SpB(9l(a)) C 
SpA(a) for a E A. Whence it follows from the Beurling-Gelfand formula that the 
inequality r A(a) 2: rB(9t(a)) holds for the spectral radii. If a is a hermitian element 
of A then 9l( a) is a hermitian element of B, because 9l( a)* = 9l( a*) = 9l( a). If now 
Ao is the least closed C* -subalgebra containing a and Bo is an analogous subalgebra 
containing 9l(a), then Ao and Bo are commutative C*-algebras. Therefore, from 
Theorems 11.8.4 and 11.6.9 obtain 

119l(a)11 = 119l(a)IIBo = II~Bo(9l(a))11 = rBo(9l(a)) 
= rB(9l(a)) ~ r A(a) = r Ao(a) = II~Ao(a)11 = lIali. 

Given a E A, it is easy to observe that a*a is a hermitian element. Thus, 

119l(a)112 = 119l(a)*9l(a)11 = 119l(a*a)11 ~ lIa*all = Il a 11 2. ~ 

11.8.6. Spectral Theorem. Let a be a normal element of a C*-algebra A, 
witb Sp(a) tbe spectrum of a. Tbere is a unique isometric *-representation 9la 
ofC(Sp(a), C) in A sucb tbat a = 9la(Isp(a»)' 
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<I Let B be the least closed C* -sub algebra of A containing a. It is clear 
that the algebra B is commutative by the normality of a (this algebra presents 
the closure of the algebra of all polynomials in a and a*). Moreover, by 11.7.10, 
Sp(a) = SpA(a) = SpB(a). The Gelfand transform a:= ~B(a) of a acts from 
X(B) onto Sp(a) by 11.6.9 and is evidently one-to-one. Since X(B) and Sp(a) are 
compact sets; on using 9.4.11, conclude that a is a homeomorphism. Whence it is 

o 
immediate that the mapping ~ : f f-+ f 0 a implements an isometric *-isomorphism 
between C(Sp(a), C) and C(X(B), C). 

Using Theorem 11.3.2 and the connection between the Gelfand transform and 
the Riesz-Dunford integral which is revealed in 11.6.12, for the identity mapping 
observe that 

o 

a = /3i"h: = Ie 0 a = Ici"(X(B» 0 a = Iclsp(a) 0 a = ISp(a) 0 a = ~(Isp(a»). 

Now, put 
o 

~a:= ~iil o~. 

Clearly, ~a is an isometric embedding and a *-representation. Moreover, 

o 
~a(Isp(a») = ~iil 0 ~(Isp(a») = ~iil(a) = a. 

Uniqueness for such a representation ~a is guaranteed by 11.8.5 and the Stone-
Weierstrass Theorem implies that the C*-algebra C(Sp(a), C) is its least closed 
(unital) C*-subalgebra containing ISp(a). [> 

11.8.7. DEFINITION. The representation ~a : C(Sp(a), C) -+ A of 11.8.6 
is the continuous functional calculus (for a normal element a of A). The element 
~a(f) with f E C(Sp(a), C) is usually denoted by f(a). 

11.8.8. REMARK. Let f be a holomorphic function in a neighborhood about 
the spectrum of a normal element a of some C*-algebra A; i.e., f E H(Sp(a)). 
Then the element f( a) of A was defined by the holomorphic functional calculus. 
Retain the symbol f for the restriction of f to the set Sp(a). Then, using the 
continuous functional calculus, define the element ~a(f) := ~a UISp(a») of A. 
This element, as mentioned in 11.8.7, is also denoted by f(a). The use of the 
designation is by far not incidental (and sound in virtue of 11.6.12 and 11.8.6). 
Indeed, it would be weird to deliberately denote by different symbols one and the 
same element. This circumstance may be expressed in visual form. 

Namely, let 'Isp(a) stand for the mapping sending a germ h, a member 
of £(Sp(a», to its restriction to Sp(a); i.e., let hlsp(a) at a point z stand for 
the value of hat z (cf. 8.1.21). It is clear that 'ISp(a) : £(Sp(a)) -+ C(Sp(a), C). 



11.9. Operator *-Representations of a C*-Algebra 229 

The above connection between the continuous and holomorphic functional calcu-
luses for a normal element a of the C* -algebra A may be expressed as follows: The 
next diagram commutes 

11.9. Operator *-Representations of a C*-Algebra 
11.9.1. DEFINITION. Let A be a (unital) Banach algebra. An element s 

in A' is a state of A, in writing s E SeA), if Ilsll = s(l) = 1. For a E A, the set 
N(a):= {s(a): s E S(A)} is the numeric range of a. 

11.9.2. The numeric range of a positive function, a member of C(Q, C), lies 
in lR+ 

<l Let a 20 and Iisil = s(l) = 1. Wc,Lave to prove that sea) 2 o. Take Z E C 
and E > 0 such that the disk Be(z):= Z+E][)) includes a(Q). Then lIa-zll ~ E and, 
consequently, Is(a-z)1 ~ E. Hence, Is(a)-zi = Is(a)-s(z)1 ~ E; i.e., sea) E Be(z). 

Observe that 

n {Be(z): Be(z) J a(Q)} = cl co(a(Q)) C JR.+-

Thus, sea) E lR+. I> 

11.9.3. Lemma. Let a be a hermitian element of a C*-algebra. Then 
(1) Sp(a) C N(a); 
(2) Sp(a) C 1R+ ¢:} N(a) C 1R+. 

<l Let B be the least closed C* -subalgebra, of the algebra A under study, which 
contains a. It is evident that B is a commutative algebra. By virtue of 11.6.9, 
the Gelfand transform a:= ~n(a) provides a(X(B)) = SpB(a). In view of 11.7.10, 
SpB(a) = Sp(a). In other words, for A E Sp(a) there is a character X of B 
satisfying the condition x(a) = A. By 11.6.3, Ilxll = X(l) = 1. Using 7.5.11, find 
a norm-preserving extension s of X onto A. Then s is a state of A and s( a) = A. 
Finally, Sp(a) C N(a) (in particular, if N(a) C 1R+ then Sp(a) C JR.+). Now, let s 
stand for an arbitrary state of A. It is clear that the restriction sin is a state of B. 
It is an easy matter to show that a maps X(B) onto Sp(a) in a one-to-one fashion. 
Consequently, B may be treated as the algebra C(Sp(a), C). From 11.9.2 derive 
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sea) = sIB(a) 2: 0 for a 2: O. Thus, Sp(a) C 1R+ =* N(a) C 1R+, which ends the 
proof. t> 

11.9.4. DEFINITION. An element a of a C* -algebra A is called positive if a 
is hermitian and Sp(a) C 1R+. The set of all positive elements of A is denoted 
by A+. 

11.9.5. In each C*-algebra A the set A+ is an ordering cone. 
<l It is clear that N(a+b) C N(a)+N(b) and N(aa) = aN(a) for a, bE A and 

a E 1R+. Hence, 11.9.3 ensures the inclusion alA+ + a2A+ C A+ for aI, a2 E 1R+. 
Thus, A+ is a cone. If a E A+ n (-A+) then Sp(a) = O. Since a is a hermitian 
element, from Theorem 11.8.6 deduce that Iiall = O. I> 

11.9.6. To every hermitian element a of a C*-algebra A there correspond 
some elements a+ and a_ of A+ such that 

<l Everything is immediate from the continuous functional calculus. t> 

11.9.7. Kaplanski-Fukamija Lemma. An element a of a C*-algebra A is 
positive if and only if a = b* b for some b in A. 

<l =*: Let a E A+; i.e., a = a* and Sp(a) C 1R+. Then (cf. 11.8.6) there is 
a square root b:= Va. Moreover, b = b* and b*b = a. 

~: If a = b*b then a is hermitian. Therefore, in view of 11.9.6, it may be 
assumed that b*b = u - v, where uv = vu = 0 with u 2: 0 and v 2: 0 (in the 
ordered vector space (AIR, A+)). Straightforward calculation yields the equalities 

(bv)*bv = v*b*bv = vb*bv = v(u - v)v = (vu - v2)v = _v3 . 

Since v 2: 0, it follows that v3 2: 0; i.e., (bv)* bv ~ O. By Theorem 5.6.22, 
Sp((bv)*bv) and Sp(bv(bv)*) may differ only by zero. Therefore, bv(bv)* ~ O. 

In virtue of 11. 7.2, bv = al + ia2 for suitable hermitian elements al and a2. 
It is evident that ai, a~ E A+ and (bv)* = al - ia2. Using 11.9.5 twice, arrive 
at the estimates 

02: (bv)*bv + bv(bv)* = 2 (ai + a~) 2: O. 

By 11.9.5, al = a2 = 0; i.e., bv = O. Hence, _v3 = (bv)*bv = O. The second 
appeal to 11.9.5 shows v = O. Finally, a = b*b = u - v = u 2: 0; i.e., a E A+. I> 

11.9.8. Every state s of a C* -algebra A is hermitian; i.e., 

s(a*) = s(a)* (a E A). 
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<3 By Lemmas 11.9.7 and 11.9.3, s(a*a) 2: 0 for all a E A. Putting a:= a + 1 
and a:= a + i, successively infer that 

0::; s«a + l)*(a + 1)) = s(a*a + a + a* + 1) :::} sea) + s(a*) E Rj 
0::; s«a + i)*(a + i)) = s(a*a - ia + ia* + 1) :::} i( -sea) + s(a*)) E R. 

In other words, 

Ims(a) + 1m s(a*) = OJ Re( -sea)) + Re s(a*) = o. 
Whence it follows that 

s(a*) = Res(a*) + ilms(a*) = Res(a) - ilms(a) = s(a)*. r> 

11.9.9. Let s be a state of a C*-algebra A. Given a, bE A, denote (a, b),,:= 
s(b*a). Then ( ., .)" is a semi-inner product on A. 

<3 From 11.9.8 derive 

. (a, b)" = s(b*a) = s«a*b)*) = s(a*b)* = (b, a):. 

Hence, (., .)" is a hermitian form. Since a*a 2: 0 for a E A in virtue of 11.9.7, 
(a, a)" = s(a*a) 2: 0 by 11.9.3. Consequently, (., .)" is a positive-definite hermi-
tian form. r> 

11.9.10. GNS-Construction Tbeorem. To every state s of an arbitrary 
C*-algebra A there correspond a Hilbert space (H", (., . ),,), an element x" in Ha 
and a *-representation vt" : A -+ B(H,,) such that sea) = (vt,,(a)xa, x"),, for all 
a E A and the set {vt,,(a)xs : a E A} is dense in Hs. 

<3 In virtue of 11.9.9, putting (a, b)s:= s b*a) for a, b E A, obtain a pre-
Hilbert space (A, (., . )B). Let pB(a):= (a, a)B stand for the seminorm of the 
space. Assume that 'P" : A -+ AI ker PB is the coset mapping of A onto the 
Hausdorff pre-Hilbert space AI ker Ps associated with A. Assume further that 
lB : AI ker PB -+ HB is an embedding (for instance, by the double prime map-
ping) of AI ker PB onto a dense subspace of the Hilbert space HB associated with 
(A, (., . ),,) (cf. 6.1.10 (4)). The inner product in H" retains the previous notation 
( ., . )B. Therefore, in particular, 

(lS'Psa, lB'P"b)B = (a, b)" = s(b*a) (a, bE A). 

Given a E A, consider (the image under the canonical operator representation) 
La : b ~ ab (b E A). Demonstrate first that there are unique bounded operators 
La and vtB(a) making the following diagram commutative: 
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A~A/ ker Ps~Hs 
La t t La t ~s(a) 
A~A/ ker Ps~Hs 

A sought operator La is a solution to the equation :t'Ps = 'PsLa. Using 
2.3.8, observe next that the necessary and sufficient condition for solvability of the 
equation in linear operators consists in invariance of the subspace ker Ps under La. 
Thus, examine the inclusion La(ker Ps) C ker Ps. To this end, take an element b 
of ker Ps, i.e. Ps(b) = O. By definition and the Cauchy-Bunyakovskil-Schwarz 
inequality, deduce that 

0:::; (Lab, Lab)s = (ab, ab)s = s«ab)*ab) 
= s(b*a*ab) = (a*ab, b)s :::; ps(b)ps(a*ab) = 0; 

i.e., Lab E ker Ps. Uniqueness for La is provided by 2.3.9, since 'Ps is an epimor-
phism. Observe also that 'Ps is an open mapping (d. 5.1.3). Whence the continuity 
of La is immediate. Therefore, in virtue of 5.3.8 the correspondence ts 0 La 0 (ts)-l 
may be considered as a bounded linear operator from ts(A/ ker Ps) to the Banach 
space Hs. By 4.5.10 such an operator extends uniquely to an operator ~s(a) 
in B(Hs). 

Demonstrate now that ~s : a I-t ~s (a) is a sought representation. By 11.1.6, 
Lab = LaLb for a, b E A. Consequently, 

Since Lab is a unique solution to the equation :t'Ps = 'PsLab, infer the equality 
Lab = LaLb, which guarantees multiplicativity for ~s. The linearity of ~s may 
be verified likewise. Furthermore, 

i.e., ~s(l) = 1. 
For simplicity, put 'l/Js := ts'Ps. Then, on account taken of the definition 

of the inner product on Hs (cf. 6.1.10 (4)) and the involution in B(Hs) (d. 6.4.14 
and 6.4.5), given elements a, b, and y in A, infer that 

(~s(a*)'l/Jsx, 'l/JsY)s = ('l/JsLa*x, 'l/JsY)s 
= (La*x, Y)s = (a*x, Y)s = s(y*a*x) = s«ay)*x) = (x, ay)s 

= (x, LaY)s = ('l/Jsx, 'l/JsLaY)s = ('l/Jsx, ~s(a)'l/JsY)s = (~s(a)*'l/Jsx, 'l/JsY)s. 
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Now, since im tPs is dense in Hs it follows that 9ls(a*) = 9ls(a)* for all a in Aj 
i.e., 9ls is a *-representation. 

Let Xs:= tPs1. Then 

Consequently, the set {9ls(a)x s : a E A} is dense in Hs. Furthermore, 

11.9.11. REMARK. The construction, presented in the proof of 11.9.10, is 
called the GNS-construction or, in expanded form, the GelJand-Nazmark-Segal 
construction, which is reflected in the name of 11.9.10. 

11.9.12. Gelfand-NaYmark Theorem. Each C*-algebra has an isometric 
*-representation in the endomorphism algebra of a suitable Hilbert space. 

<l Let A be a C* -algebra. We have to find a Hilbert space H and an isometric 
*-representation 9l of A in the C* -algebra B( H) of bounded endomorphisms of H. 
For this purpose, consider the Hilbert sum H of the family of Hilbert spaces 
(Hs)sES(A) which exists in virtue of the GNS-Construction Theoremj i.e., 

H:= EB Hs={h:=(hS)SES(A)E II Hs: L IIhsllk.<+OO}. 
sES(A) 8ES(A) sES(A) 

Observe that the inner product of h := (hs)SES(A) and 9 := (gs)SES(A) IS 

calculated by the rule (cf. 6.1.10 (5) and 6.1.9): 

(h, g) = L (hs, gs)s. 
sES(A) 

Assume further that 9ls is a *-representation of A on the space HI! correspond-
ing to s in SeA). Since in view of 11.8.5 there is an estimate II9ls (a)IIB(H.) :s lIall 
for a E Aj therefore, given h E H, infer that 

L l19ls(a)h sllk.:S L l19ls(a)II~(H.)llhsllk.:s IIal1 2 L IIhsllk.· 
sES(A) sES(A) sES(A) 

Whence it follows that the expression 9l(a)h : S 1-+ 9ls(a)h s defines an el-
ement 9l(a)h of H. The resulting operator 9l(a) : h 1-+ 9l(a)h is a member 
of B(H). Moreover, the mapping 9l : a 1-+ 9l(a) (a E A) is a sought isometric 
*-representation of A. 
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Indeed, from the definition of 9l and the properties of 9ls for s E S(A), 
it follows easily that 9l is a *-representation of A in B( H). Check for instance 
that 9l agrees with involution. To this end, take a E A and h, g E H. Then 

(9l(a*)h, g) = L (9ls(a*)hs, gs)s 
sES(A) 

= L (9ls(a)*hs, gs)s = L (hs, 9ls(a)gs)s 
sES(A) sES(A) 

= (h, 9l(a)g) = (9l(a)* h, g). 

Since hand g in H are arbitrary, conclude that 9l( a*) = 9l( a)* . 
It remains to establish only that the *-representation 9l is an isometry, i.e. the 

equalities 119l(a)1I = lIall for all a E A. First, assume a positive. From the Spectral 
Theorem and the Weierstrass Theorem it follows that lIall E Sp(a). In virtue 
of 11.9.3 (1) there is a state s E S(A) such that s(a) = Iiali. Using the properties 
ofthe vector Xs corresponding to the *-representation 9ls (d. 11.9.10) and applying 
the Cauchy-Bunyakovski'l-Schwarz inequality, infer that 

II all = s(a) = (9ls(a)xs,xs)s :::; II9ls(a)xsIlH.llxsIIH. 
:::; II9ls(a)IIB(H.)lIxsll~. = l19ls(a)IIB(H.)(Xs,xs)s 

= II9ls(a)IIB(H.)(9ls(l)xs, xs)s = II9ls(a)IIB(H.)s(l) = II9ls(a)IIB(H.). 

From the estimates 119l(a)1I :2: l19ls(a)IIB(H.) and lIall :2: 119l(a)ll, the former 
obvious and the latter indicated in 11.8.5, derive 

Finally, take a E A. By the Kaplanski-Fukamija Lemma, a*a is positive. So, 

No further explanation is needed. I> 

Exercises 
11.1. Give examples of Banach algebras and non-Banach algebras. 
11.2. Let A be a Banach algebra. Take X E A# such that xU) = 1 and x(Inv (A)) C 

Inv (C). Prove that X is multiplicative and continuous. 
11.3. Let the spectrum Sp(a) of an element a of a Banach algebra A lie in an open 

set U. Prove that there is a number e > 0 such that Sp(a + b) C U for all b E A satisfying 
Ilbll ~ e. 
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11.4. Describe the maximal ideal spaces of the algebras C(Q, iC) and C(1)([O, 1], iC) 
with pointwise multiplication, and of the algebra of two-way infinite sum mabie sequences /1 (Z) 
with multiplication 00 

(a*b)(n):= L an_kbk· 
k=-oo 

11.5. Show that a member T of the endomorphism algebra B(X) of a Banach space X 
has a left inverse if and only if T is a monomorphism and the range of T is complemented in X. 

11.6. Show that a member T of the endomorphism algebra B(X) of a Banach space X 
has a right inverse if and only if T is an epimorphism and the kernel of T is complemented in X. 

11.7. Assume that a Banach algebra A has an element with disconnected spectrum 
(having a proper clop en part). Prove that A has a nontrivial idempotent. 

11.8. Let A be a unital commutative Banach algebra and let E be some set of maximal 
ideals of A. Such a set E is a boundary of A if 11;:J1100 = sup I;:J(E) 1 for all a E A. Prove that the 
intersection of all closed boundaries of A is also a boundary of A. This is the Shilov boundary 
of A. 

11.9. Let A and B be unital commutative Banach algebras, with B C A and 1B = 1A. 
Prove that each maximal ideal of the Shilov boundary of B lies in some maximal ideal of A. 

11.10. Let A and B be unital CO-algebras and let T be a morphism from A to B. 
Assume further that a is a normal element of A and f is a continuous function on SPA (a). 
Demonstrate that SPB(Ta) C SPA(a) and Tf(a) = f(Ta). 

11.11. Let f E A', with A a commutative CO-algebra. Show that f is a positive form 
(i.e., f(a'a) ~ 0 for a E A) if and only if IIfll = f(l). 

11.12. Describe extreme rays of the set of positive forms on a commutative CO-algebra. 
11.13. Prove that the algebras C( Ql, iC) and C( Q2, iC), with Ql and Q2 compact, are 

isomorphic if and only if Ql and Q2 are homeomorphic. 
11.14. Let a normal element a of a CO-algebra has real spectrum. Prove that a is 

hermitian. 
11.15. Using the continuous functional calculus, develop a spectral theory for normal 

operators in a Hilbert space. Describe compact normal operators. 
11.16. Let T be an algebraic morphism between CO-algebras, and IITII :c::; 1. Then 

T(a') = (Ta)' for all a. 
11.17. Let T be a normal operator in a Hilbert space H. Show that there are a hermitian 

operator S in H and a continuous function f : SpeS) -> rc such that T = f(S). Is an analogous 
assertion valid in CO-algebras? 

11.18. Let A and B be CO-algebras and let p be a *-monomorphism from A to B. Prove 
that p is an isometric embedding of A into B. 

11.19. Let a and b be hermitian elements of a CO-algebra A. Assume that ab = ba and, 
moreover, a :c::; b. Prove that f(a) :c::; feb) for (suitable restrictions of) every increasing continuous 
scalar function f over R 
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complex vector space, 2.1.3, 10 
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complexification, 8.4.8, 136 
complexifier, 3.7.4,34 
composite correspondence, 1.1.4, 2 
Composite Function Theorem, 

8.2.8, 129 
composition, 1.1.4, 2 
Composition Spectrum Theorem, 

5.6.22,78 
cone, 3.1.2 (4),20 
conical hull, 3.1.14, 22 
conical segment, 3.1.2 (9), 20 
conical slice, 3.1.2 (9), 20 
conjugate distribution, 10.10.5 (5), 196 
conjugate exponent, 5.5.9 (4),69 
conjugate-linear functional, 2.2.4, 13 
conjugate measure, 10.9.4 (3), 189 
connected elementary compactum, 

4.8.5,54 
connected set, 4.8.4, 54 
constant function, 5.3.10, 64; 

10.8.4 (6), 182 
Continuous Extension Principle, 

7.5.11, 113 
continuous function at a point, 4.2.2, 

43; 9.2.5, 149 
Continuous Function Recovery 

Lemma, 9.3.12, 153 
continuous functional calculus, 

11.8.7,228 
continuous mapping of a metric 

space, 4.2.2, 43 
continuous mapping of a topological 

space, 9.2.4, 149 
continuous partition of unity, 9.6.6, 166 
contour integral, 8.1.20, 125 
conventional summation, 5.5.9 (4), 70 
convergent filterbase, 4.1.16, 42 
convergent net, 4.1.17,42 
convergent sequence space, 3.3.1 (2), 25 
convex combination, 3.1.14, 22 
convex correspondence, 3.1.7,21 
convex function, 3.4.4, 27 

Subject Index 

convex hull, 3.1.14, 22 
convex set, 3.1.2 (8), 20 
convolution algebra, 10.9.4 (7), 190 
convolution of a measure and 

a function, 10.9.4 (7), 191 
convolution of distributions, 

10.10.5 (9), 197 
convolution of functions, 9.6.17, 167 
convolution of measures, 

10.9.4 (7), 190 
convolutive distributions, 

10.10.5 (9), 197 
coordinate projection, 2.2.9 (3), 13 
coordinatewise operation, 

2.1.4 (4), 11 
core, 3.4.11, 28 
correspondence, 1.1.1, 1 
correspondence in two arguments, 

1.1.3 (6), 2 
correspondence onto, 1.1.3 (3), 2 
coset, 1.2.3(4),4 
coset mapping, 1.2.3 (4),4 
countable convex combination, 

7.1.3, 101 
Countable Partition Theorem, 

9.6.20, 167 
countable sequence, 1.2.16, 6 
countably normable space, 5.4.1, 64 
cover of a set, 9.6.1, 164 
C· -algebra, 6.4.13, 92 
C·-subalgebra, 11.7.8,225 

Davis-Figiel-Szankowski 
Counterexample, 8.3.14, 134 

de Branges Lemma, 10.8.16, 185 
decomplexification, 6.1.10 (2), 83 
decomposition reduces an operator, 

2.2.9 (4),14 
decreasing mapping, 1.2.3, 4 
Dedekind complete vector lattice, 

3.2.8,23 
deficiency, 8.5.1, 137 
definor, ix 



Subject Index 

delta-function, 10.9.4 (1), 188 
delta-like sequence, 9.6.15, 166 
o-like sequence, 9.6.15, 166 
o-sequence, 9.6.15, 166 
dense set, 4.5.10, 48 
denseness, 4.5.10, 48 
density of a measure, 10.9.4 (3), 190 
derivative in the distribution sense, 

10.10.5 (4), 196 
derivative of a distribution, 10.10.5 (4), 

196 
descent, Ex. 8.10, 144 
diagonal, 1.1.3 (3), 2 
diagram prime, 7.6.5, 115 
Diagram Prime Principle, 7.6.7, 115 
diagram star, 6.4.8, 92 
Diagram Star Principle, 6.4.9, 92 
diameter, 4.5.3, 47 
Diedonne Lemma, 9.4.18, 158 
dimension, 2.2.9 (5), 14 
Dini Theorem, 7.2.10, 105 
Dirac measure, 10.9.4 (1), 188 
direct polar, 7.6.8, 116; 10.5.1, 177 
direct sum decomposition, 2.1.7, 12 
direct sum of vector spaces, 

2.1.4 (5), 11 
directed set, 1.2.15, 6 
direction, 1.2.15, 6 
directional derivative, 3.4.12, 28 
discrete element, 3.3.6, 26 
Discrete Krein-Rutman Theorem, 

3.3.8,26 
discrete topology, 9.1.8 (4), 147 
disjoint measures, 10.9.4 (3), 190 
disjoint sets, 4.1.10, 41 
distance, 4.1.1, 40 
distribution, 10.10.4, 195 
distribution applies to a function, 

10.10.5 (7), 196 
Distribution Localization Principle, 

10.10.12, 200 
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distribution of finite order, 10.10.5 (3), 
195 

distribution size at most m, 
10.10.5 (3), 195 

distribution of slow growth, 
10.11.16, 209 

distributions admitting convolution, 
10.10.5 (9), 197 

distributions convolute, 10.10.5 (9), 197 
division algebra, 11.2.3, 215 
domain, 1.1.2, 1 
Dominated Extension Theorem, 

3.5.4,30 
Double Prime Lemma, 7.6.6, 115 
double prime mapping, 5.1.10 (8), 59 
double sharp, Ex. 2.7, 19 
downward-filtered set, 1.2.15, 6 
dual diagram, 7.6.5, 115 
dual group, 10.11.2, 203 
dual norm of a functional, 5.1.10 (8), 

59 
dual of a locally convex space, 

10.2.11, 173 
dual of an operator, 7.6.2, 114 
duality bracket, 10.3.3, 174 
duality pair, 10.3.3, 174 
dualization, 10.3.3, 174 
Dualization Theorem, 10.3.9, 175 
Dunford-Hille Theorem, 8.1.3, 121 
Dunford Theorem, 8.2.7 (2), 129 
Dvoretzky-Rogers Theorem, 

5.5.9 (7), 73 
dyadic-rational point, 9.3.13, 154 

effective domain of definition, 3.4.2, 27 
Eidelheit Separation Theorem, 

3.8.14,39 
eigenvalue, 6.6.3 (4),95 
eigenvector, 6.6.3, 95 
element of a set, 1.1.3 (4),2 
elementary compact urn, 4.8.5, 54 
endomorphism, 2.2.1, 12; 8.2.1, 126 
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endomorphism algebra, 2.2.8, 13; 
5.6.5,74 

endomorphism space, 2.2.8, 13 
Enflo counterexample, 8.3.12, 134 
entourage, 4.1.5, 40 
envelope, Ex. 1.11, 8 
epigraph, 3.4.2, 26 
epimorphism, 2.3.1, 15 
e-net, 8.3.2, 132 
e-perpendicular, 8.4.1, 134 
e-Perpendicular Lemma, 8.4.1, 134 
Equicontinuity Principle, 7.2.4, 103 
equicontinuous set, 4.2.8, 44 
equivalence, 1.2.2, 3 
equivalence class, 1.2.3 (4), 4 
equivalent muitinorms, 5.3.1, 62 
equivalent seminorms, 5.3.3, 63 
estimate for the diameter of a spherical 

layer, 6.2.1, 84 
Euler identity, 8.5.17, 141 
evaluation mapping, 10.3.4 (3), 174 
everywhere-defined operator, 2.2.1, 12 
everywhere dense set, 4.7.3 (3),52 
exact sequence, 2.3.4, 15 
exact sequence at a term, 2.3.4, 15 
exclave, 8.2.9, 130 
expanding mapping, Ex. 4.14, 55 
extended function, 3.4.2, 26 
extended real axis, 3.8.1, 35 
extended reals, 3.8.1, 35 
extension of an operator, 2.3.6, 16 
exterior of a set, 4.1.13, 41 
exterior point, 4.1.13, 41 
Extreme and Discrete Lemma, 3.6.4, 32 
extreme point, 3.6.1, 31 
extreme set, 3.6.1, 31 

face, 3.6.1, 31 
factor set, 1.2.3(4),4 
faithful representation, 8.2.2, 126 
family, 1.1.3 (4),2 
filter, 1.3.3, 6 
filterbase, 1.3.1, 6 

finer cover, 9.6.1, 164 
finer filter, 1.3.6, 7 

Subject Index 

finer multinorm, 5.3.1, 62 
finer pretopology, 9.1.2, 146 
finer seminorm, 5.3.3, 63 
finest muitinorm, 5.1.10 (2), 58 
finite complement filter, 5.5.9 (3), 68 
finite descent, Ex. 8.10, 144 
finite-rank operator, 6.6.8, 97; 

8.3.6, 132 
finite-valued function, 5.5.9 (6), 72 
first category set, 4.7.1, 52 
first element, 1.2.6, 5 
fixed point, Ex. 1.11, 8 
flat, 3.1.2 (5), 20 
formal duality, 2.3.15, 18 
Fourier coefficient family, 6.3.15, 89 
Fourier-Plancherel transform, 

10.11.15, 209 
Fourier-Schwartz transform, 

10.11.19, 211 
Fourier series, 6.3.16, 89 
Fourier transform of a distribution, 

10.11.19, 211 
Fourier transform of a function, 

10.11.3, 203 
Fourier transform relative to a basis, 

6.3.15,89 
Frechet space, 5.5.2, 66 
Fredholm Alternative, 8.5.6, 138 
Fredholm index, 8.5.1, 137 
Fredholm operator, 8.5.1, 137 
Fredholm Theorem, 8.5.8, 139 
frontier of a set, 4.1.13, 41 
from A into/to B, 1.1.1, 1 
Fubini Theorem for distributions, 

10.10.5 (8), 197 
Fubini Theorem for measures, 

10.9.4 (6), 190 
full subalgebra, 11.1.5, 213 
fully norming set, 8.1.1, 120 
Function Comparison Lemma, 3.8.3, 36 
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function of class c(m), 10.9.9, 192 
function of compact support, 9.6.4, 165 
Function Recovery Lemma, 3.8.2, 35 
functor, 10.9.4 (4), 190 
fundamental net, 4.5.2, 47 
fundamental sequence, 4.5.2, 47 
fundamentally summable family 

of vectors, 5.5.9 (7), 73 

gauge, 3.8.6, 37 
gauge function, 3.8.6, 37 
Gauge Theorem, 3.8.7, 37 
f-correspondence, 3.1.6, 21 
f-hull, 3.1.11, 21 
f-set, 3.1.1, 20 
Gelfand-Dunford Theorem in 

an operator setting, 8.2.3, 127 
Gelfand-Dunford Theorem 

in an algebraic setting, 11.3.2, 216 
Gelfand formula, 5.6.8, 74 
Gelfand-Mazur Theorem, 11.2.3,215 
Gelfand-N aimark-Segal construction, 

11.9.11, 232 
Gelfand Theorem, 7.2.2, 103 
Gelfand transform of an algebra, 

11.6.8,222 
Gelfand transform of an element, 

11.6.8,221 
Gelfand Transform Theorem, 

11.6.9,222 
general form of a compact operator 

in Hilbert space, 6.6.9, 97 
general form of a linear functional 

in Hilbert space, 6.4.2, 90 
general form of a weakly continuous 

functional, 10.3.10, 175 
general position, Ex. 3.10, 39 
generalized derivative in the Sobolev 

sense, 10.10.5 (4), 196 
Generalized Dini Theorem, 10.8.6, 183 
generalized function, 10.10.4, 195 
Generalized Riesz-Schauder Theorem, 

8.4.10, 137 

generalized sequence, 1.2.16, 6 
Generalized Weierstrass Theorem, 

10.9.9, 192 
germ, 8.1.14, 124 
GNS-construction, 11.9.11, 232 
GNS-Construction Theorem, 

11.9.10, 231 
gradient mapping, 6.4.2, 90 
Gram-Schmidt orthogonalization 

process, 6.3.14, 89 
graph norm, 7.4.17, 111 
Graph Norm Principle, 7.4.17, 111 
greatest element, 1.2.6, 5 
greatest lower bound, 1.2.9, 5 
Grothendieck Criterion, 8.3.11, 133 
Grothendieck Theorem, 8.3.9, 133 
ground field, 2.1.3, 10 
ground ring, 2.1.1, 10 
group algebra, 10.9.4 (7), 191 
group character, 10.11.1,202 

Haar integral, 10.9.4 (1), 189 
Hahn-Banach Theorem, 3.5.3, 29 
Hahn-Banach Theorem in analytical 

form, 3.5.4, 30 
Hahn-Banach Theorem in geometric 

form, 3.8.12, 38 
Hahn-Banach Theorem 
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in subdifferential form, 3.5.4, 30 
Hamel basis, 2.2.9 (5), 14 
Hausdorff Completion Theorem, 

4.5.12,48 
Hausdorff Criterion, 4.6.7, 50 
Hausdorff metric, Ex. 4.8, 55 
Hausdorff multinorm, 5.1.8, 57 
Hausdorff multinormed space, 5.1.8, 57 
Hausdorff space, 9.3.5, 152 
Hausdorff Theorem, 7.6.12, 117 
Hausdorff topology, 9.3.5, 152 
H-closed space, Ex. 9.10, 168 
Heaviside function, 10.10.5 (4), 196 
Hellinger-Toeplitz Theorem, 6.5.3, 93 
hermitian element, 11.7.1,224 
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hermitian form, 6.1.1, 80 
hermitian operator, 6.5.1, 93 
hermitian state, 11.9.8, 230 
Hilbert basis, 6.3.8, 88 
Hilbert cube, 9.2.17 (2), 151 
Hilbert dimension, 6.3.13, 89 
Hilbert identity, 5.6.19, 78 
Hilbert isomorphy, 6.3.17, 90 
Hilbert-Schmidt norm, Ex. 8.9, 144 
Hilbert-Schmidt operator, 

Ex. 8.9,144 
Hilbert-Schmidt Theorem, 6.6.7, 96 
Hilbert space, 6.1.7, 81 
Hilbert-space isomorphism, 6.3.17, 90 
Hilbert sum, 6.1.10 (5), 84 
Holder inequality, 5.5.9 (4),69 
holey disk, 4.8.5, 54 
holomorphic function, 8.1.4, 122 
Holomorphy Theorem, 8.1.5, 122 
homeomorphism, 9.2.4, 149 
homomorphism, 7.4.1, 107 
Hormander transform, Ex. 3.19, 39 
hyperplane, 3.8.9, 38 
hypersubspace, 3.8.9, 38 

ideal, 11.4.1,217 
Ideal and Character Theorem, 

11.6.6,221 
ideal correspondence, 7.3.3, 106 
Ideal Correspondence Lemma, 

7.3.4, 106 
Ideal Correspondence Principle, 

7.3.5, 106 
Ideal Hahn-Banach Theorem, 

7.5.9, 113 
ideally convex function, 7.5.4, 112 
ideally convex set, 7.1.3, 101 
idempotent operator, 2.2.9(4), 14 
identical embedding, 1.1.3 (3), 2 
identity, 10.9.4, 188 
identity element, 11.1.1, 213 
identity mapping, 1.1.3 (3), 2 
identity relation, 1.1.3 (3), 1 

Subject Index 

image, 1.1.2, 1 
image of a filterbase, 1.3.5 (1), 7 
image of a set, 1.1.3 (5), 2 
image of a topology, 9.2.12, 150 
image topology, 9.2.12, 150 
Image Topology Theorem, 

9.2.11, 150 
imaginary part of a function, 

5.5.9(4),69 
increasing mapping, 1.2.3 (5), 4 
independent measure, 10.9.4 (3), 190 
index, 8.5.1, 137 
indicator function, 3.4.8 (2), 27 
indiscrete topology, 9.1.8 (3), 147 
induced relation, 1.2.3 (1), 4 
induced topology, 9.2.17(1),151 
inductive limit topology, 10.9.6, 191 
inductive set, 1.2.19, 6 
infimum, 1.2.9, 5 
infinite-rank operator, 6.6.8, 97 
infinite set, 5.5.9 (3), 68 
inner product, 6.1.4, 80 
integrable function, 5.5.9 (4),69 
integral, 5.5.9 (4),68 
integral with respect to a measure, 

10.9.3, 188 
interior of a set, 4.1.13, 41 
interior point, 4.1.13, 41 
intersection of topologies, 9.1.14, 148 
interval, 3.2.15, 24 
Interval Addition Lemma, 3.2.15, 24 
invariant subspace, 2.2.9 (4),14 
inverse-closed subalgebra, 11.1.5, 213 
inverse image of a muitinorm, 

5.1.10 (3), 58 
inverse image of a preorder, 1.2.3 (3), 4 
inverse image of a seminorm, 5.1.4, 57 
inverse image of a set, 1.1.3 (5), 2 
inverse image of a topology, 9.2.9, 150 
inverse image of a uniformity, 

9.5.5 (3), 160 
inverse image topology, 9.2.9, 150 



Subject Index 

Inverse Image Topology Theorem, 
9.2.8, 149 

inverse of a correspondence, 1.1.3 (1), 1 
inverse of an element in an algebra, 

11.1.5, 213 
Inversion Theorem, 10.11.12, 208 
invertible element, 11.1.5, 213 
invertible operator, 5.6.10, 75 
involution, 6.4.13, 92 
involutive algebra, 6.4.13, 92 
irreducible representation, 8.2.2, 127 
irreflexive space, 5.1.10 (8), 59 
isolated part of a spectrum, 8.2.9, 130 
isolated point, 8.4.7, 136 
isometric embedding, 4.5.11, 48 
isometric isomorphism of algebras, 

11.1.8, 215 
isometric mapping, 4.5.11, 48 
isometric representation, 11.1.8, 214 
isometric *-isomorphism, 11.8.3, 226 
isometric *-representation, 11.8.3, 226 
isometry into, 4.5.11, 48 
isometry onto, 4.5.11, 48 
isomorphism, 2.2.5, 13 
isotone mapping, 1.2.3, 4 

James Theorem, 10.7.5, 181 
Jensen inequality, 3.4.5, 27 
join, 1.2.12, 5 
Jordan are, 4.8.2, 54 
Jordan Curve Theorem, 4.8.3, 54 
juxtaposition, 2.2.8, 13 

Kakutani Criterion, 10.7.1, 180 
Kakutani Lemma, 10.8.7, 183 
Kakutani Theorem, 7.4.11 (3), 109 
Kantorovich space, 3.2.8, 23 
Kantorovich Theorem, 3.3.4, 25 
Kaplanski-Fukamija Lemma, 

11.9.7,230 
Kato Criterion, 7.4.19, 111 
kernel of an operator, 2.3.1, 15 
ket-mapping, 10.3.1, 173 

ket-topology, 10.3.5, 174 
Kolmogorov Normability Criterion, 

5.4.5,66 
KreIn-Milman Theorem, 10.6.5, 179 
KreIn-Milman Theorem 
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in sub differential form, 3.6.5, 33 
KreIn-Rutman Theorem, 3.3.5, 26 
Krull Theorem, 11.4.8, 219 
Kuratowski-Zorn Lemma, 1.2.20, 6 
K-space, 3.2.8, 23 
K-ultrametric, 9.5.13, 162 

last element, 1.2.6, 5 
lattice, 1.2.12, 5 
lear trap map, 3.7.4, 34 
least element, 1.2.6, 5 
Lebesque measure, 10.9.4 (1), 189 
Lebesque set, 3.8.1, 35 
Lefschetz Lemma, 9.6.3, 165 
left approximate inverse, 8.5.9, 139 
left Haar measure, 10.9.4 (1), 189 
left inverse of an element in an algebra, 

11.1.3, 213 
lemma on continuity of a convex 

function, 7.5.1, 112 
lemma on the numeric range 

of a hermitian element, 11.9.3, 229 
level set, 3.8.1, 35 
Levy Projection Theorem, 6.2.2, 84 
limit of a filterbase, 4.1.16, 42 
Lindenstrauss space, 5.5.9 (5), 71 
Lindenstrauss-Tzafriri Theorem, 

7.4.11 (3), 110 
linear change of a variable under the 

subdifferential sign, 3.5.4, 30 
linear combination, 2.3.12, 17 
linear correspondence, 2.2.1, 12; 

3.1.7,21 
linear functional, 2.2.4, 13 
linear operator, 2.2.1, 12 
linear representation, 8.2.2, 126 
linear set, 2.1.4 (3), 11 
linear space, 2.1.4 (3), 11 
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linear span, 3.1.14, 22 
linear topological space, 10.1.3, 169 
linear topology, 10.1.3, 169 
linearly independent set, 2.2.9 (5), 14 
linearly-ordered set, 1.2.19, 6 
Lions Theorem of Supports, 

10.10.5 (9), 197 
Liouville Theorem, 8.1.10, 123 
local data, 10.9.11, 193 
locally compact group, 10.9.4 (1), 188 
locally compact space, 9.4.20, 159 
locally compact topology, 9.4.20, 159 
locally convex space, 10.2.9, 172 
locally convex topology, 10.2.1, 171 
locally finite cover, 9.6.2, 164 
locally integrable function, 9.6.17, 167 
locally Lipschitz function, 7.5.6, 112 
loop, 4.8.2, 54 
lower bound, 1.2.4, 5 
lower limit, 4.3.5, 45 
lower right Dini derivative, 4.7.7, 53 
lower semicontinuous, 4.3.3, 44 
L2 -Fourier transform, 10.11.15, 209 

Mackey-Arens Theorem, 10.4.5, 176 
Mackey Theorem, 10.4.6, 176 
Mackey topology, 10.4.4, 176 
mapping, 1.1.3 (3), 1 
massive subspace, 3.3.2, 25 
matrix form, 2.2.9(4), 14 
maximal element, 1.2.10, 5 
maximal ideal, 11.4.5, 218 
maximal ideal space, 11.6.7, 221 
Maximal Ideal Theorem, 11.5.3, 220 
Mazur Theorem, 10.4.9, 177 
meager set, 4.7.1, 52 
measure, 10.9.3, 188 
Measure Localization Principle, 

10.9.10, 192 
measure space, 5.5.9 (4),69 
meet, 1.2.12, 5 
member of a set, 1.1.3 (4), 2 
metric, 4.1.1, 40 

Subject Index 

metric space, 4.1.1, 40 
metric topology, 4.1.9, 41 
metric uniformity, 4.1.5, 40 
Metrizability Criterion, 5.4.2, 64 
metrizable multinormed space, 

5.4.1, 64 
minimal element, 1.2.10, 5 
Minimal Ideal Theorem, 11.5.1, 219 
Minkowski-Ascoli-Mazur Theorem, 

3.8.12,38 
Minkowski functional, 3.8.6, 37 
Minkowski inequality, 5.5.9 (4),69 
minorizing set, 3.3.2, 25 
mirror, 10.2.7,172 
module, 2.1.1, 10 
modulus of a scalar, 5.1.10 (4),58 
modulus of a vector, 3.2.12, 24 
mollifier, 9.6.14, 166 
mollifying kernel, 9.6.14, 166 
monomorphism, 2.3.1, 15 
monoquotient, 2.3.11, 17 
Montel space, 10.10.9 (2), 199 
Moore subnet, 1.3.5 (2), 7 
morphism, 8.2.2, 126; 11.1.2, 213 
morphism representing an algebra, 

8.2.2, 126 
Motzkin formula, 3.1.13 (5), 22 
multimetric, 9.5.9, 161 
multimetric space, 9.5.9, 161 
multimetric uniformity, 9.5.9, 161 
multimetrizable topological space, 

9.5.10, 161 
multimetrizable uniform space, 

9.5.10, 161 
multinorm, 5.1.6, 57 
Multinorm Comparison Theorem, 

5.3.2,62 
multinorm summable family of vectors, 

5.5.9 (7), 73 
multinormed space, 5.1.6, 57 
multiplication formula, 10.11.5, 205 
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multiplication of a germ by a complex 
number, 8.1.16, 125 

multiplicative linear operator, 
8.2.2, 126 

natural order, 3.2.6 (1), 23 
negative part, 3.2.12, 24 
neighborhood about a point, 

9.1.1 (2), 146 
neighborhood about a point in a metric 

space, 4.1.9, 41 
neighborhood filter, 4.1.10, 41 
neighborhood filter of a set, 9.3.7, 152 
neighborhood of a set, 8.1.13 (2), 

124; 9.3.7, 152 
Nested Ball Theorem, 4.5.7,47 
nested sequence, 4.5.7, 47 
net, 1.2.16, 6 
net having a subnet, 1.3.5 (2), 7 
net lacking a subnet, 1.3.5 (2), 7 
Neumann series, 5.6.9, 75 
Neumann Series Expansion Theorem, 

5.6.9, 75 
neutral element, 2.1.4 (3), 11; 

10.9.4, 188 
Nikol'skir Criterion, 8.5.22, 143 
Noether Criterion, 8.5.14, 140 
nonarchimedean element, 

5.5.9 (5), 70 
non convex cone, 3.1.2 (4), 20 
Nonempty Subdifferential Theorem, 

3.5.8,31 
non-everywhere-defined operator, 

2.2.1, 12 
nonmeager set, 4.7.1, 52 
non pointed cone, 3.1.2(4),20 
nonreflexive space, 5.1.10 (8), 59 
norm, 5.1.9, 57 
norm convergence, 5.5.9 (7), 73 
normable multinormed space, 5.4.1, 64 
normal element, 11.7.1,224 
normal operator, Ex. 8.17,145 
normal space, 9.3.11, 153 
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normalized element, 6.3.5, 88 
normally solvable operator, 7.6.9, 116 
normative inequality, 5.1.10 (7), 59 
normed algebra, 5.6.3, 74 
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totally bounded, 4.6.3, 49 
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unitary operator, 6.3.17, 90 
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