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Preface

These are notes for the lecture course “Functional Analysis I” held by the
second author at ETH Ziirich in the fall semester 2015. Prerequisites are
the first year courses on Analysis and Linear Algebra, and the second year
courses on Complex Analysis, Topology, and Measure and Integration.

The material of Subsection|1.3.3|on elementary Hilbert space theory, Sub-
section [5.4.2] on the Stone—Weierstral Theorem, and the appendices on the
Lemma of Zorn and Tychonoff’s Theorem has not been covered in the lec-
tures. These topics were assumed to have been covered in previous lecture
courses. They are included here for completeness of the exposition.

The material of Subsection [2.4.4] on the James space, Section [5.5( on the
functional calculus for bounded normal operators, Chapter [6] on unbounded
linear operators, Subsection [7.3.2lon Banach space valued L? functions, Sub-
section on self-adjoint and unitary semigroups, and Section [7.4] on an-
alytic semigroups was not part of the lecture course (with the exception of
some of the basic definitions in Chapter [0 that are relevant for infinitesimal
generators of strongly continuous semigroups, namely, parts of Section 6.2/ on
the dual of an unbounded operator on a Banach space and Subsection [6.3.1
on the adjoint of an unbounded operator on a Hilbert space).

7 June 2017 Theo Buhler
Dietmar A. Salamon
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Introduction

Classically, functional analysis is the study of function spaces and linear op-
erators between them. The relevant function spaces are often equipped with
the structure of a Banach space and many of the central results remain valid
in the more general setting of bounded linear operators between Banach
spaces or normed vector spaces, where the specific properties of the concrete
function space in question only play a minor role. Thus, in the modern guise,
functional analysis is the study of Banach spaces and bounded linear opera-
tors between them, and this is the viewpoint taken in the present manuscript.
This area of mathematics has both an intrinsic beauty, which we hope to
convey to the reader, and a vast number of applications in many fields of
mathematics. These include the analysis of PDEs, differential topology and
geometry, symplectic topology, quantum mechanics, probability theory, geo-
metric group theory, dynamical systems, ergodic theory, and approximation
theory, among many others. While we say little about specific applications,
they do motivate the choice of topics covered in this book, and our goal is
to give a self-contained exposition of the necessary background in abstract
functional analysis for many of the relevant applications.

The manuscript is addressed primarily to third year students of mathe-
matics or physics, and the reader is assumed to be familiar with first year
analysis and linear algebra, as well as complex analysis and the basics of point
set topology and measure and integration. For example, this manuscript does
not include a proof of completeness and duality for LP spaces.

There are naturally many topics that go beyond the scope of the present
manuscript, such as Sobolev spaces and PDEs, which would require a book on
its own and, in fact, very many books have been written about this subject;
here we just refer the interested reader to [I1, (15 [16]. We also restrict the
discussion to linear operators and say nothing about nonlinear functional
analysis. Other topics not covered include the Fourier transform (see [2], 32]
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54]), maximal regularity for semigroups (see [51]), the space of Fredholm
operators on an infinite-dimensional Hilbert space as a classifying space for
K-theory (see [5 0, [7, 28]), Quillen’s determinant line bundle over the space of
Fredholm operators (see [46l, [52]), and the work of Gowers [17] and Argyros—
Haydon [4] on Banach spaces on which every bounded linear operator is the
sum of scalar multiple of the identity and a compact operator. Here is a
description of the content of the book, chapter by chapter.

Chapter [1] discusses some basic concepts that play a central role in the
subject. It begins with a section on metric spaces and compact sets which
includes a proof of the Arzela—Ascoli theorem. It then moves on to establish
some basic properties of finite-dimensional normed vector space spaces and
shows, in particular, that a normed vector space is finite-dimensional if and
only if the unit ball is compact. The first chapter also introduces the dual
space of a normed vector space, explains several important examples, and
contains an introduction to elementary Hilbert space theory. It then intro-
duces Banach algebras and shows that the group of invertible elements is an
open set. It closes with a proof of the Baire category theorem.

Chapter [2| is devoted to the three fundamental principles of functional
analysis. They are the Uniform Boundedness Principle (a pointwise bounded
family of bounded linear operators on a Banach space is bounded), the Open
Mapping Theorem (a surjective bounded linear operator between Banach
spaces is open), and the Hahn-Banach Theorem (a bounded linear func-
tional on a linear subspace of a normed vector space extends to a bounded
linear functional on the entire normed vector space). An equivalent formu-
lation of the Open Mapping Theorem is the Closed Graph Theorem (a linear
operator between Banach spaces is bounded if and only if it has a closed
graph) and a corollary is the Inverse Operator Theorem (a bijective bounded
linear operator between Banach spaces has a bounded inverse). A slightly
stronger version of the Hahn—Banach theorem, with the norm replaced by
a quasi-seminorm, can be reformulated as the geometric assertion that two
convex subsets of a normed vector space can be separated by a hyperplane
whenever one of them has nonempty interior. The chapter also discusses
reflexive Banach spaces and includes an exposition of the James space.

The subject of Chapter |3| are the weak topology on a Banach space X
and the weak™ topology on its dual space X*. With these topologies X
and X* are locally convex Hausdorff topological vector spaces and the chapter
begins with a discussion of the elementary properties of such spaces. The
central result of the third chapter is the Banach—Alaoglu Theorem which
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asserts that the unit ball in the dual space is compact with respect to the
weak™® topology. This theorem has important consequences in many fields of
mathematics. The chapter also contains a proof of the Banach-Dieudonné
Theorem which asserts that a linear subspace of the dual space of a Banach
space is weak™ closed if and only if its intersection with the closed unit
ball is weak* closed. A consequence of the Banach—Alaoglu Theorem is
that the unit ball in a reflexive Banach space is weakly compact, and the
Eberlein-Smulyan Theorem asserts that this property characterizes reflexive
Banach spaces. The Krein—Milman Theorem asserts that every nonempty
compact convex subset of a locally convex Hausdorff topological vector space
is the closed convex hull of its extremal points. Combining this with the
Banach—Alaoglu Theorem, one can prove that every homeomorphism of a
compact metric space admits an invariant ergodic Borel probability measure.
Some properties of such ergodic measures can be derived from an abstract
functional analytic ergodic theorem which is also established in this chapter.

The purpose of Chapter {4 is to give a basic introduction to Fredholm
operators and their indices including the stability theorem. A Fredholm
operator is a bounded linear operator between Banach spaces that has a
finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between two
Banach spaces, with respect to the topology induced by the operator norm.
It also asserts that the sum of a Fredholm operator and a compact operator is
again Fredholm and has the same index as the original operator. The chapter
includes an introduction to the dual of a bounded linear operator, a proof of
the closed image theorem which asserts that an operator has a closed image
if and only if its dual does, an introduction to compact operators which map
the unit ball to pre-compact subsets of the target space, a characterization
of Fredholm operators in terms of invertibility modulo compact operators,
and a proof of the stability theorem for Fredholm operators.

The purpose of Chapter [5|is to study the spectrum of a bounded linear
operator on a real or complex Banach space. A first preparatory section
discusses complex Banach spaces and the complexifications of real Banach
spaces, the integrals of continuous Banach space valued functions on com-
pact intervals, and holomorphic operator valued functions. The chapter then
introduces the spectrum of a bounded linear operator, examines its elemen-
tary properties, discusses the spectra of compact operators, and establishes
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the holomorphic functional calculus. The remainder of this chapter deals
exclusively with operators on Hilbert spaces, starting with a discussion of
complex Hilbert spaces and the spectra of normal and self-adjoint opera-
tors. It then moves on to C* algebras and the continuous functional calculus
for self-adjoint operators, which takes the form of an isomorphism from the
C* algebra of complex valued continuous functions on the spectrum to the
smallest C* algebra containing the given operator. The next topic is the
Gelfand representation and the extension of the continuous functional cal-
culus to normal operators. The chapter also contains a proof that every
normal operator can be represented by a projection valued measure on the
spectrum, and that every self-adjoint operator is isomorphic to a direct sum
of multiplication operators on L? spaces.

Chapter [0] is devoted to unbounded operators and their spectral theory.
The domain of an unbounded operator on a Banach space is a linear subspace.
In most of the relevant examples the domain is dense and the operator has a
closed graph. The chapter includes a discussion of the dual of an unbounded
operator and an extension of the closed image theorem to this setting. It
then examines the basic properties of the spectra of unbounded operators.
The remainder of the chapter deals with unbounded operators on Hilbert
spaces and their adjoints. In particular, it extends the functional calculus
and the spectral measure to unbounded self-adjoint operators.

Stongly continuous semigroups of operators are the subject of Chapter [7]
They play an important role in the study of many linear partial differential
equations such as the heat equation, the wave equation, and the Schrodinger
equation, and they can be viewed as infinite-dimensional analogues of the
exponential matrix S(¢) := e*4. In all the relevant examples the operator A
is unbounded. It is called the infinitesimal generator of the strongly con-
tinuous semigroup in question. A central result in the subject is the Hille—
Yosida—Phillips Theorem which characterizes the infinitesimal generators of
strongly continuous semigroups. The dual semigroup is not always strongly
continuous. It is, however, strongly continuous whenever the Banach space
in question is reflexive. The proof requires an understanding of the subtle
properties of strongly and weakly measurable functions with values in a Ba-
nach space. The chapter closes with a study of analytic semigroups and their
infinitesimal generators.

Each of the seven chapters ends with a problem section, which we hope
will give the interested reader the opportunity to deepen their understanding
of the subject.



Chapter 1

Foundations

This introductory chapter discusses some of the basic concepts that play a
central role in the subject of Functional Analysis. In a nutshell, functional
analysis is the study of normed vector spaces and bounded linear operators.
Thus it merges the subjects of linear algebra (vector spaces and linear maps)
with that of point set topology (topological spaces and continuous maps).
The topologies that appear in functional analysis will in many cases arise
from metric spaces. We begin in Section by recalling the basic definitions
and list several examples of Banach spaces that will be used to illustrate the
theory throughout the book. The central topic is the study of compact sets
and the main results are the characterization of sequentially compact sub-
sets of a metric space in terms of open covers and the Arzela—Ascoli theorem
which gives a compactness criterion for subsets of the space of continuous
functions on a compact metric space. Section moves on to the study of
finite-dimensional normed vector spaces. It shows that any two norms on
a finite-dimensional vector space are equivalent, and that a normed vector
space is finite-dimensional if and only if the unit ball is compact. The section
also contains a brief introduction to bounded linear operators and to product
and quotient spaces. Section introduces the dual space of a normed vec-
tor space, explains several important examples, and contains an introduction
to elementary Hilbert space theory, including a proof of the Cauchy—Schwarz
inequality and the Riesz representation theorem. Section examines some
basic properties of power series in Banach algebras. It shows, via the ge-
ometric series, that the space of invertible operators on a Banach space is
open and that the map that assigns to an invertible operator its inverse is
continuous. The Baire category theorem is the subject of Section [I.5]

5



6 CHAPTER 1. FOUNDATIONS

1.1 Metric Spaces and Compact Sets

This section begins by recalling the basic definitions of a metric space and
a Banach space and gives several important examples of Banach spaces. It
then moves on to the study of compact subsets of a metric space and shows
that sequential compactness is equivalent to the condition that every open
cover has a finite subcover (Theorem [I.4). The second main result of this
section is the Arzela—Ascoli theorem, which characterizes the precompact
subsets of the space of continuous functions from a compact metric space
to another metric space, equipped with the supremum metric, in terms of
equicontinuity and pointwise precompactness (Theorem .

1.1.1 Banach Spaces

Definition 1.1 (Metric Space). A metric space is a pair (X, d) consisting
of a set X and a function

d: X xX —=R

that satisfies the following axioms.

(M1) d(z,y) > 0 for all x,y € X, with equality if and only if x = y.

(M2) d(z,y) = d(y,x) for all z,y € X.

(M3) d(x,2) < d(z,y) +d(y, z) for all x,y,z € X.

A function d : X x X — R that satisfies these axioms is called a distance
function and the inequality in (M3) is called the triangle inequality. A
subset U C X of a metric space (X,d) is called open (or d-open) if, for
every x € U, there exists a constant € > 0 such that the open ball

B.(z) := B:(z,d) :={y € X |d(z,y) < e}

(centered at x with radius €) is contained in U. The set of d-open subsets
of X will be denoted by

U (X,d):={U C X|U is d-open}.

It follows directly from the definitions that the collection % (X, d) C 2%
of d-open sets in a metric space (X,d) satisfies the axioms of a topology
(i.e. the empty set and the set X are open, arbitrary unions of open sets are
open, and finite intersections of open sets are open). A subset F of a metric
space (X, d) is closed (i.e. its complement is open) if and only if the limit
point of every convergent sequence in F' is itself contained in F'.
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Recall that a Cauchy sequence in a metric space (X, d) is a sequence
(Zn)nen with the property that, for every € > 0, there exists an ny € N, such
that any two integers n, m > ng satisfy the inequality d(z,,x,,) < €. Recall
also that a metric space (X, d) is called complete if every Cauchy sequence
in X converges.

The most important metric spaces in the field of functional analysis are
the normed vector spaces.

Definition 1.2 (Banach Space). A normed vector space is a pair
(X, ||-|l) consisting of a real vector space X and a function X — R : xz +— ||z
satisfying the following.

(N1) ||z]| > 0 for all z € X, with equality if and only if x = 0.

(N2) || Az]| = M| ||z]| for all z € X and X\ € R.

(N3) |z +yll < llzll + llyll for all z,y € X

Let (X, ||]]) be a normed vector space. Then the formula

d(z,y) = [l =y (1.1)

for x;y € X defines a distance function on X. The resulting topology is
denoted by % (X, ||-||) := % (X,d). X is called a Banach space if the metric
space (X, d) is complete, i.e. if every Cauchy sequence in X converges.

Here are six examples of Banach spaces.

Example 1.3. (i) Fix a real number 1 < p < co. Then the vector space R"
of all n-tuples x = (z1,...,x,) of real numbers is a Banach space with the

norm-function
n 1/p
x|, == (lei!”)
i=1

for x = (xy1,...,2,) € R". For p = 2 this is the Euclidean norm. Another
norm is given by ||z|| := max;—1,__,|z;| for x = (21,...,2,) € R™

(ii) For 1 < p < oo the set of p-summable sequences of real numbers is

denoted by
P = {x = (2;)ien € RN‘ Z|a:i]p < oo} .
i=1

This is a Banach space with the norm [[z|, := (S22 |z P) /P for & € 7.
Likewise, the space ¢ C RN of bounded sequences is a Banach space with
the supremum norm ||z := sup,cy|z;| for o = (2;)ien € €.
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(iii) Let (M, A, p) be a measure space, i.e. M is aset, A C 2M is a o-algebra,
and p: A — [0,00] is a measure. Fix a constant 1 < p < co. A measurable
function f: M — R is called p-integrable if [, [f[’ du < co and the space
of p-integrable functions on M will be denoted by

LP(p) == {f : M—>R‘f is measurable and / |fIPdu < oo}.
M

The function £P(u) — R : f = [|f||, defined by

191, = ([ 11 dn) " (12)

is nonnegative and satisfies the triangle inequality (Minkowski’s inequality).
However, in general it is not a norm, because |[f||, = 0 if and only if f
vanishes almost everywhere (i.e. on the complement of a set of measure
zero). To obtain a normed vector space, one considers the quotient

LP(p) := LP () [~

where

f~g PN f = g almost everywhere.

The function f ~ [ f|[, descends to this quotient space and, with this
norm, LP(u) is a Banach space (see [50, Theorem 4.9]). In this example
it is often convenient to abuse notation and use the same letter f to denote
a function in £P(u) and its equivalence class in the quotient space LP(u).

(iv) Let (M, A, ) be a measure space, denote by £°(u) the space of bounded
measurable functions, and denote by

L () o= L>(p)/~

the quotient space, where the equivalence relation is again defined by equality
almost everywhere. Then the formula

1]l :=esssup|f| =inf {c> 0| f < c almost everywhere} (1.3)

defines a norm on L*>(u), and L>(u) is a Banach space with this norm.
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(v) Let M be a topological space. Then the space Cy(M) of bounded con-
tinuous functions f : M — R is a Banach space with the supremum norm

| fllo := sup|f(p)|
peEM

for f € Ob(M)

(vi) Let (M,.A) be a measurable space, i.e. M is a set and A C 2M is a
o-algebra. A signed measure on (M, A) is a function x4 : A — R that
satisfies p(0) = 0 and is o-additive, i.e. p(J, Ai) = > ooy u(A;) for every
sequence of pairwise disjoint measurable sets A; € A. The space M (M, A)
of signed measures on (M, .A) is a Banach space with the norm given by

[l = [pl(M) = jlelg(u(fl) — u(M\ A)). (1.4)

for p € M(M, A) (see [50, Exercise 5.34]).

1.1.2 Compact Sets

Let (X,d) be a metric space and fix a subset K C X. Then the restric-
tion of the distance function d to K x K is a distance function, denoted
by dx :=d|gxx : K x K — R, so (K,dg) is a metric space in its own right.
The metric space (X, d) is called (sequentially) compact if every sequence
in X has a convergent subsequence. The subset K is called (sequentially)
compact if (K, dg) is compact, i.e. if every sequence in K has a subsequence
that converges to an element of K. It is called precompact if its closure
is sequentially compact. Thus K is compact if and only if it is precompact
and closed. The subset K is called complete if (K, dk) is a complete metric
space, i.e. if every Cauchy sequence in K converges to an element of K. It is
called totally bounded if it is either empty or, for every ¢ > 0, there exist
finitely many elements &4, ..., &, € K such that

K c|JB:(&).

i=1

The next theorem characterizes the compact subsets of a metric space (X, d)
in terms of the open subsets of X. It thus shows that compactness depends
only on the topology % (X, d) induced by the distance function d.
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Theorem 1.4 (Characterization of Compact Sets). Let (X,d) be a
metric space and let K C X. Then the following are equivalent.

(i) K is sequentially compact.
(i) K is complete and totally bounded.

(iii) Every open cover of K has a finite subcover.
Proof. See page [13] m

Let (X, %) be a topological space. Then condition (iii) in Theorem
is used to define compact subsets of X. Thus a subset K C X is called
compact if every open cover of K has a finite subcover. Here an open cover
of K is a collection (U;);e; of open subsets U; C X, indexed by the elements
of a nonempty set I, such that K C (J,.; U;, and a finite subcover is a fi-
nite collection of indices 4y, ...,4, € I such that K C U;; U---U U, . Thus
Theorem asserts that a subset of a metric space (X, d) is sequentially com-
pact if and only if it is compact as a subset of the topological space (X, %)
with % = % (X,d). A subset of a topological space is called precompact
if its closure is compact. Elementary properties of compact sets include the
fact that every compact subset of a Hausdorff space is closed, that every
closed subset of a compact set is compact, and that the image of a compact
set under a continuous map is compact (see [30, [40]).

We give two proofs of Theorem [1.4f The first proof is more straight
forward and uses the axiom of dependent choice. The second proof is taken
from Herrlich [19, Prop 3.26] and only uses the axiom of countable choice.

The axiom of dependent choice asserts that, if X is a nonempty
set and A : X — 2%X is a map that assigns to each element x € X a
nonempty subset A(x) C X, then there exists a sequence (X )rey in X such
that x;11 € A(xg) for all £ € N.

In the axiom of dependent choice the first element of the sequence (xj)ren
can be prescribed. To see this, fix an element x; € X, define X as the set
of all tuples of the form X = (n,xy,...,x,) with n € N and x;, € A(x;_1)
for k = 2,...,n, and define A(X) := {(n + 1,x1,...,%0,X) | x € A(x,)}
for x = (n,xq,...,%x,) € X. Then X is nonempty and :&(SE) is nonempty for
every X € X. Now apply the axiom of dependent choice to A.

The axiom of countable choice asserts that, if (A)en is a sequence of
nonempty subsets of a set A, then there exists a sequence (aj)ren in A such
that ap € Ay for all k£ € N. It follows from the axiom of dependent choice
by taking X := N x A and A(k,a) := {k+ 1} X A4, for (k,a) € N x A.
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Lemma 1.5. Let (X, d) be a metric space and let K C X. Then the following
are equivalent.

(i) Every sequence in K has a Cauchy subsequence.

(i) K is totally bounded.

Proof. We prove that (ii) implies (i). Thus assume that K is totally bounded
and let (x,),en be a sequence in K. We prove that there exists a sequence
of infinite subsets N D 77 D T, D - - - such that, for all k,m,n € N,

m,n € Ty, - ATy, ) < 27 (1.5)

Since K is totally bounded, it follows from the axiom of countable choice that
there exists a sequence of ordered finite subsets Sy = {&k1,- .., Ekm, } C K
such that K C ;" By-r-1(&;) for all k € N. Since x, € K for all n € N,
there must exist an index ¢ € {1,...,m4} such that the open ball By ,4(& ;)
contains infinitely many of the elements x,,. Let i; be the smallest such index
and define the set

Ty :={neN|z, € Byu(&,)}

This set is infinite and satisfies d(z,, xm) < d(@n, &14y) + d(E1iys Tm) < 1/2
for all m,n € T;. Now fix an integer k > 2 and suppose, by induction,
that Ty_; has been defined. Since Tj_; is an infinite set, there must exist
an index ¢ € {1,...,m;} such that the ball By-r-1(&;) contains infinitely
many of the elements x, with n € Tj_;. Let iy be the smallest such index
and define
Ty = {n €Ty 1 ‘ Ty € BQ—kfl (gk,lk)}

This set is infinite and satisfies d(z,,, ) < d(2n, &y ) +d(Exiy,, Tm) < 277 for
all m,n € Tj. This completes the induction argument and the construction
of a decreasing sequence of infinite sets T}, C N that satisfy (L.5)).

We prove that (x,)neny has a Cauchy subsequence. By there exists
a sequence of positive integers n; < ng < n3z < --- such that ny € Ty for
all £k € N. Such a sequence can be defined by the recursion formula

ny ;= min 7}, Nkt := min {n e T ‘ n > nk}
for k € N. It follows that ny,n, € T}, and hence
Ad(Tp,, Tp,) < 27F for 0 > k> 1.

Thus the subsequence (x,, )ken is a Cauchy sequence.
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We prove that (i) implies (ii), following [19, Prop 3.26]. We argue indi-
rectly and assume that K is not totally bounded and hence also nonempty.
Then there exists a constant € > 0 such that K does not admit a finite cover
by balls of radius €, centered at elements of K. We prove in three steps that
there exists a sequence in K that does not have a Cauchy subsequence.

Step 1. Forn € N define the set

Koim (e my g | 0T €L ) and i),

then d(z;,z;) > ¢

There is a sequence (Ty)ren 1 K such that (Tpm-1)/241; - - - » Tnnt1)/2) € Ky
for every integer n > 1.

We prove that K, is nonempty for every n € N. For n = 1 this holds
because K is nonempty. If it is empty for some n € N then there exists
an integer n > 1 such that K, # () and K,,; = . In this case, choose an
element (z1,...,2,) € K,. Since K, 41 =0, this implies K C J_, B:(z;),
contradicting the choice of e. Since K,, # () for all n € N, the existence of a
sequence (zx)ren as in Step 1 follows from the axiom of countable choice.

Step 2. For every collection of n — 1 elements yy,...,y,—1 € K, there is an
integer i such that @ <i< ”("TH) and d(y;,x;) > 5 forj=1,...,n—1.
Otherwise, there exists a map v : {@ +1,..., ”("TH)} —{1,...,n—1}

such that d(x;, y,¢)) < § for all i. Since the target space of v has smaller car-
dinality than the domain, there is a pair ¢ # j in the domain with v(i) = v(j)
and so d(x;, x;) < d(2i, Yu(iy) + d(Yu(j), ¢j) < €, in contradiction to Step 1.

Step 3. There exists a subsequence (xy, )nen Such that ky =1 and

(n—1)n k< n(n+1)

9 = 9 ) d(ka7xk:n) Z

form<n. (1.6)

DO ™

Define k£ := 1, fix an integer n > 2, and assume, by induction, that the
integers ki, ko, ..., k,_1 have been found such that holds with n re-
placed by any number n’ € {2,...,n — 1}. Then, by Step 2, there exists a
unique smallest integer &, such that @ <k, < @ and d(zy,,, Tk,) > 5
for m =1,...,n— 1. This proves the existence of a subsequence (x, )nen
that satisfies .

The sequence (xg, )nen in Step 3 does not have a Cauchy subsequence.
This shows that (i) implies (ii) and completes the proof of Lemma|l.5|  [J
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First proof of Theorem[1.J We prove that (i) implies (iii). Assume that K
is nonempty and sequentially compact and let {U;};c; be an open cover of K.
Here [ is a nonempty index set and the map I — 2% : i — U; assigns to each
index 7 an open set U; C X such that K C J,.; U;. We prove in two steps
that there exist finitely many indices 41, ... ,1%,, € I such that K C U;n:l Ui,

Step 1. There exists a constant € > 0 such that, for every x € K, there
exists an index i € I such that B.(z) C U;.

Assume, by contradiction, that there is no such constant € > 0. Then
Ve>0 dxe K Viel B(x) ¢ U,.

Take ¢ = 1/n for n € N. Then the set {x € K| By/,(z) ¢ U, for all i € I} is
nonempty for every n € N. Hence the axiom of countable choice asserts that
there exists a sequence x,, € K such that

Bijn(z,) ¢ U; forallm e Nand all ¢ € 1. (1.7)

Since K is sequentially compact, there exists a subsequence (z,, )ren that
converges to an element x € K. Since K C |J,;.; Ui, there exists an i € [
such that x € U;. Since U; is open, there is an ¢ > 0 such that B.(x) C U;.
Since z = limj_,o T, , there is a k € N such that d(z,z,,) < § and nik <.
Thus By, (Tn,) C Bzj2(wy,) C B-(x) C U; in contradiction to (L.7).

Step 2. There exist indices iy, ..., iy, € I such that K C U;nzl Ui, -

Assume, by contradiction, that this is wrong. Let € > 0 be the constant in
Step 1. We prove that there are sequences x,, € K and i, € I such that

n—1
for alln € N (with n > 2 for the second condition). Choose z; € K. Then, by
Step 1, there exists an index i; € I such that B.(x;) C U;,. Now suppose, by
induction, that z1, ..., x; and iy, ..., i have been found such that holds
forn < k. Then K ¢ U;,U---UU;,. Choose an element x4, € K\ (U;,U---U
Ui,). By Step 1, there exists an index 4,41 € I such that B.(xp41) C Uy, .
Thus the existence of sequences x,, and 7,, that satisfy follows from the
axiom of dependent choice.

By we have d(x,,zr) > € for k # n, so (,)nen does not have a
convergent subsequence, contradicting (i). This shows that (i) implies (iii).
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We prove that (iii) implies (ii). Thus assume that every open cover of K
has a finite subcover. Assume that K is nonempty and fix a constant € > 0.
Then the sets B.(§) for £ € K form a nonempty open cover of K. Hence there
exist finitely many elements &, ..., &, € K such that K C J", B.(&). This
shows that K is totally bounded.

We prove that K is complete. Let (z,)neny be a Cauchy sequence in K
and suppose, by contradiction, that (x,),en does not converge to any element
of K. Then no subsequence of (z,),en can converge to any element of K.
Thus, for every £ € K, there is an ¢ > 0 such that B.(§) contains only
finitely many of the z,. For & € K let £(¢) > 0 be half the supremum
of the set of all € € (0,1] such that #{n € N|z,, € B.(§)} < co. Then the
set {n € N|z, € B.(e)(€)} is finite for every & € K. Thus {B.(¢)(§)}¢ex is an
open over of K that does not have a finite subcover, in contradiction to (iii).
This shows that (iii) implies (ii).

That (ii) implies (i) follows from Lemma (1.5 and this completes the first
proof of Theorem [I.4] ]

The above proof of Theorem requires the axiom of dependent choice
and only uses the implication (i) = (i) in Lemma [1.5] The second proof
follows [19, Prop 3.26]. It only requires the axiom of countable choice, but
uses both directions in Lemma, [L.5]

Second Proof of Theorem[I.4. Every sequentially compact metric space is
complete, because a Cauchy sequence converges if and only if it has a con-
vergent subsequence. Hence the equivalence of (i) and (ii) in Theorem
follows directly from Lemma [1.5]

We prove that (ii) implies (iii). Assume that K is complete and totally
bounded. Suppose, by contradiction, that there is an open cover {U, };e; of K
that does not have a finite subcover. Then K # (). For n,m € N define

Kc|/ Bl/n(xj)} :

j=1

Amm = {(l’l,...,xm) e K™

Then, for every n € N, there exists an m € N such that A, ,, # 0, because K
is totally bounded and nonempty. For n € N let m,, € N be the smallest
positive integer such that A,, ,,, # 0. Then, by the axiom of countable choice,
there is a sequence

= (Tn1, -y Tomn) € Anmn for n € N.
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Next we construct a sequence (Y, )nen in K such that the intersection

() Bipw(yw) N K
v=1

cannot be covered by finitely many of the sets U; for any n € N. For n =1
define y; := x5, where

k::min{je {1,...,m}

the set By(x1,;) N K cannot
be covered by finitely many U; |-

Assume, by induction, that yi,...,y,_1 have been chosen such that the
set ﬂz;i Bi/,(y,) N K cannot be covered by finitely many of the U; and
define y,, := 2,1, where

the set By /n(2n,;) N ﬂﬁ;ll Bip(y) N K
cannot be covered by finitely many U; |~

k::min{j e{l,...,m,}

This completes the construction of the sequence (y,)nen. It satisfies

1 2
4+ -< — forn>m > 1,
n

A(Yn, Ym
(Un, Ym) < -

1
m
because B /n(Yn) N B jm(ym) # 0. Hence (yp)nen is a Cauchy sequence in K.
Since K is complete, the limit
y = lim y,
n—oo

exists and is an element of K. Choose an index i* € [ such that y* € U«
and choose a constant €* > 0 such that

Bg* (y*> C Ul*

Then
Bl/n<yn) C Bs* (y*) C Uz*

for n sufficiently large in contradiction to the choice of y,. This proves
that (ii) implies (iii).

That (iii) implies (ii) was shown in the first proof without using any
version of the axiom of choice. This completes the second proof of Theo-

rem [.4]. n
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It follows immediately from Theorem that every compact metric space
is separable. Here are the relevant definitions.

Definition 1.6. Let X be a topological space. A subset S C X is called
dense in X if its closure is equal to X or, equivalently, every nonempty open
subset of X contains an element of S. The space X is called separable if
it admits a countable dense subset. (A set is called countable if it is either
finite or countably infinite.)

Corollary 1.7. Every compact metric space is separable.

Proof. Let n € N. Since X is totally bounded by Theorem there exists
a finite set S,, C X such that X = U{eSn Bi/n(§). Hence S := (J,,cn S 1s a
countable dense subset of X. O]

Corollary 1.8. Let (X,d) be a metric space and let A C X. Then the
following are equivalent.

(1) A is precompact.

(i) Every sequence in A has a subsequence that converges in X .

(iii) A is totally bounded and every Cauchy sequence in A converges in X.

Proof. That (i) implies (ii) follows directly from the definitions.

We prove that (ii) implies (iii). By (ii) every sequence in A has a Cauchy
subsequence and so A is totally bounded by Lemma If (xp)nen is a
Cauchy sequence in A, then by (ii) there exists a subsequence (zy,);en that
converges in X, and so the original sequence converges in X because a Cauchy
sequence converges if and only if it has a convergent subsequence.

We prove that (iii) implies (i). Let (2,)nen be a sequence in the closure A
of A. Then, by the axiom of countable choice, there exists a sequence (ay)nen
in A such that d(z,,a,) < 1/n for all n € N. Since A is totally bounded,
it follows from Lemma that the sequence (a,)neny has a Cauchy subse-
quence (ap,)ien. This subsequence converges in X by (iii). Denote its limit
by a. Then a € A and a = lim;_, apn, = lim;_, x,,. Thus A is sequentially
compact. This proves Corollary [1.8 O
Corollary 1.9. Let (X, d) be a complete metric space and let A C X. Then
the following are equivalent.

(i) A is precompact.
(i) Every sequence in A has a Cauchy subsequence.
(iii) A is totally bounded.

Proof. This follows directly from the definitions and Corollary [I.8] n
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1.1.3 The Arzela—Ascoli Theorem

It is a recurring theme in functional analysis to understand which subsets of
a Banach space or topological vector space are compact. For the standard
Euclidean space (R, ||-||,) the Heine-Borel Theorem asserts that a subset
of R™ is compact if and only if it is closed and bounded. This continues to
hold for every finite-dimensional normed vector space and, conversely, every
normed vector space in which the closed unit ball is compact is necessarily
finite-dimensional (see Theorem below). For infinite-dimensional Ba-
nach spaces this leads to the problem of characterizing the compact subsets.
Necessary conditions are that the subset is closed and bounded, however,
these conditions can no longer be sufficient. For the Banach space of contin-
uous functions on a compact metric space a characterization of the compact
subsets is given by a theorem of Arzela and Ascoli which we explain next.

Let (X, dx) and (Y, dy) be metric spaces and assume that X is compact.
Then the space

C(X,Y):={f:X = Y| [ is continuous}
of continuous maps from X to Y is a metric space with the distance function

d(f,9) == Sup dy(f(x),g(x))  for f,g € C(X,Y). (1.9)

This is well defined because the function X — R : z +— dy (f(z), g(z)) is con-
tinuous and hence is bounded because X is compact. That satisfies the
axioms of a distance function follows directly from the definitions. When X is
nonempty, the metric space C'(X,Y") with the distance function is com-
plete if and only if Y is complete, because the limit of a uniformly convergent
sequence of continuous functions is again continuous.

Definition 1.10. A subset % C C(X,Y) is called equi-continuous if, for
every € > 0, there is a 6 > 0 such that, for all x,2’ € X and all f € .7,

dx(z,2') <0 = dy (f(z), f(2)) <e.
It is called pointwise compact if, for every x € X, the set
F(@) = {f(a)| ] € 7}

s a compact subset of Y. It is called pointwise precompact if, for every
x € X, the set F(x) has a compact closure in'Y .
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Since every continuous map defined on a compact metric space is uni-
formly continuous, every finite subset of C'(X,Y") is equi-continuous.

Theorem 1.11 (Arzela—Ascoli). Let (X,dx) be a compact metric space,
let (Y,dy) be a metric space, and let F C C(X,Y). Then the following are
equivalent.

1) % is precompact.
(i) p D

(ii) .7 is pointwise precompact and equi-continuous.

Proof. We prove that (i) implies (ii). Thus assume % is precompact. That .#
is pointwise precompact follows from the fact that the evaluation map

C(X,)Y) =Y : frev.(f) :=f(x)

is continuous for every x € X. Since the image of a precompact set under
a continuous map is again precompact (Exercise , it follows that the
set Z (z) = ev,(F) is a precompact subset of Y for every z € X.

It remains to prove that .# is equi-continuous. Assume .% is nonempty
and fix a constant ¢ > 0. Since the set .Z is totally bounded by Lemma [I.5]
there exist finitely many maps fi,..., f,, € % such that

ycu&mm. (1.10)

Since X is compact, each function f; is uniformly continuous. Hence there
exists a constant § > 0 such that, for all i € {1,...,m} and all z,2" € X,

dx(z,2') <§ — dy (fi(x), fi(z")) < &/3. (1.11)

Now let f € .# and let z,2’ € X such that dx(z,2") < J. Then it follows
from that there is an index ¢ € {1,...,m} such that d(f, f;) < /3.
Thus dy (f(x), fi(x)) < /3 and dy (f(2'), fi(2")) < /3. Moreover, it follows
from that dy (fi(x), fi(z')) < e/3. Hence, by the triangle inequality,

dy (f(x), f(2")) < dy(f(2), fi(x)) + dy (fi(z), fi(x))) + dy (fi(2"), f(2"))
<e/3+¢/3+¢e/3=¢.

This shows that .7 is equi-continuous,
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We prove that (ii) implies (i). Assume X and Y are nonempty, let (z)xen
be a dense sequence in X (Corollary[L.7)), and let (f,,)nen be a sequence in .Z.
We prove in three steps that (f,,).en has a convergent subsequence.

Step 1. There exists a subsequence (g;)ien Of (fn)nen Such that the se-
quence (gi(g))ien converges in'Y for every k € N.

Since .Z (xy) is precompact for each k, it follows from the axiom of depen-
dent choice (page that there is a sequence of subsequences ( f,, ,)ien such
that, for each k& € N, the sequence (f,,,,)ien is a subsequence of (fy, ,)ien
and the sequence (fy,,,(2x))ien converges in Y. Thus the diagonal subse-
quence g; := fp,, satisfies the requirements of Step 1.

Step 2. Let g; be as in Step 1. Then (g;)ien s a Cauchy sequence in C(X,Y).

Fix a constant € > 0. Then, by equi-continuity, there exists a constant § > 0
such that, for all f € .% and all z,2' € X,

dx(z,z") <o — dy (f(x), f(2") < e/3. (1.12)

Since the balls Bs(xy) form an open cover of X, there exists an m € N such
that X = ;- , Bs(zy). Since (gi(zx))ien is a Cauchy sequence for each k,
there exists an N € N such that, for all 7, j, k € N, we have

1<k<m, 1,j>N — dy (gi(xk), gj(xr)) < €/3. (1.13)

We prove that d(g;, g;) < ¢ for all 7,7 > N. To see this, fix an element z € X.
Then there exists an index k € {1,...,m} such that dx(z,z;) <J. This

implies dy (gi(x), g:(zx)) < €/3 for all i € N, by (1.12), and so

dy (gi(z), g;(v)) < dy(gi(2), gi(zr)) + dy (9i(xk), gj (1)) + dy (gj(z1), g;())
<e/3+¢/3+¢/3=¢

for all 7,7 > N by (1.13)). Hence d(g;, g;) = maxex dy(gi(x), gj(x)) < € for
all 7,7 > N and this proves Step 2.

Step 3. The subsequence (g;)ien in Step 1 converges in C(X,Y).

Let z € X. By Step 2, (g;(x))ien is a Cauchy sequence in .% (z). Since .#(x)
is a precompact subset of Y, the sequence (g;(x));en has a convergent subse-
quence and hence converges in Y. Denote the limit by g(x) := lim; . ¢:().
Then the sequence g; converges uniformly to g by Step 2 and so g € C'(X,Y).

Step 3 shows that every sequence in .% has a subsequence that converges
to an element of C'(X,Y). Hence .# is precompact by Corollary [L.8 This
proves Theorem [I.T1] O
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Corollary 1.12 (Arzela—Ascoli). Let (X,dx) be a compact metric space,
let (Y,dy) be a metric space, and let F C C(X,Y). Then the following are
equivalent.

(i) Z is compact.

(ii) Z is closed, pointwise compact, and equi-continuous.

(iii) .7 is closed, pointwise precompact, and equi-continuous.

Proof. That (i) implies (ii) follows from Theorem because every com-
pact subset of a metric space is closed, and the image of a compact set under
a continuous map is compact. Here the continuous map in question is the
evaluation map C(X,Y) — Y : f — f(x) associated to x € X. That (ii)
implies (iii) is obvious. That (iii) implies (i) follows from Theorem be-
cause a subset of a metric space is compact if and only if it is precompact
and closed. This proves Corollary [I.12] O

When the target space Y is the Euclidean space (R, |-||,) in part (i) of
Example [1.3] the Arzela—Ascoli Theorem takes the following form.

Corollary 1.13 (Arzela—Ascoli). Let (X, d) be a compact metric space and
let # C C(X,R"). Then the following holds.

(i) F is precompact if and only if it is bounded and equi-continuous.
(ii) .Z is compact if and only if it is closed, bounded, and equi-continuous.

Proof. Assume % is precompact. Then % is equi-continuous by Theo-
rem [1.11], and is bounded, because a sequence whose norm tends to infinity
cannot have a convergent subsequence. Conversely, assume .% is bounded
and equi-continuous. Then, for each z € X, the set .# (z) C R” is bounded
and therefore is precompact by the Heine-Borel Theorem. Hence .# is pre-
compact by Theorem [1.11] This proves (i). Part (ii) follows from (i) and the
fact that a subset of a metric space is compact if and only if it is precompact
and closed. This proves Corollary [I.13] O

Exercise 1.14. This exercise shows that the hypothesis that X is compact
cannot be removed in Corollary [[.13] Consider the Banach space Cj(R) of
bounded continuous real-valued functions on R with the supremum norm.
Find a closed bounded equi-continuous subset of C,(R) that is not compact.

There are many versions of the Arzela—Ascoli Theorem. For example,
Theorem [I.11], Corollary [I.12], and Corllary continue to hold, with the
appropriate notion of equi-continuity, when X is any compact topological
space. This is the content of the following exercise.
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Exercise 1.15. Let X be a compact topological space and let Y be a metric
space. Then the space C'(X,Y") of continuous functions f : X — Y is a metric
space with the distance function (1.9). A subset .# C C(X,Y) is called
equi-continuous if, for every x € X and every € > 0, there exists an open
neighborhood U C X of x such that dy(f(x), f(z')) < e for all 2 € U and
all f € F.

(a) Prove that the above definition of equi-continuity agrees with the one in
Definition [1.10] whenever X is a compact metric space.

(b) Prove the following variant of the Arzela—Ascoli Theorem for compact
topological spaces X.

Arzela—Ascoli Theorem. Let X be a compact topological space and let'Y
be a metric space. A set F C C(X,Y) is precompact if and only if it is
pointwise precompact and equi-continuous.

Hint 1: If .% is precompact, use the argument in the proof of Theorem [I.11
to show that .# is pointwise precompact and equi-continuous.

Hint 2: Assume .% is equi-continuous and pointwise precompact.

Step 1. The set F:={f(z)|z € X, f € F} CY is totally bounded.
Show that F is precompact (Exercise [1.60) and use Corollary [1.§]

Step 2. The set F is totally bounded.
Let € > 0. Cover F by finitely many open balls V4, ..., V, of radius £/3 and
cover X by finitely many open sets Uy, ..., U, such that

sup supdy(f(z), f(z') <e/3  fori=1,...,m.
zx'€eU; fEF

For any function a: {1,...,m} — {1,...,n} define
ya = {fEﬁ‘f(Ul)ﬂVa(l) %@fOI'Z:l,,m}

Prove that d(f,g) = sup,cx dy(f(x),g(x)) <e for all f,g € .#,. Let A be
the set of all a such that %, # (. Prove that . = (J ., % and choose a
collection of functions f, € .%,, one for each o € A.

Step 3. The set .F is precompact.

Use Lemma [I.5] and Step 3 in the proof of Theorem to show that every
sequence in .# has a subsequence that converges in C'(X,Y).

In contrast to what one might expect from Exercise there is also a
version of the Arzela—Ascoli theorem for the space of continuous functions
from an arbitrary topological space X to a metric space Y. This version uses
the compact-open topology on C'(X,Y’) and is explained in Exercise |3.63]
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1.2 Finite-Dimensional Banach Spaces

The purpose of the present section is to examine finite-dimensional normed
vector spaces with an emphasis on those properties that distinguish them
from infinite-dimensional normed vector spaces, which are the main subject
of functional analysis. Finite-dimensional normed vector spaces are complete,
their linear subspaces are closed, linear functionals on them are continuous,
and their closed unit balls are compact. Theorem below shows that
this last property characterizes finite-dimensionality. Before entering into
the main topic of this section, it is convenient to first introduce the concept
of a bounded linear operator.

1.2.1 Bounded Linear Operators

The second fundamental concept in functional analysis, after that of a Banach
space, is the notion of a bounded linear operator. In functional analysis it
is common practice to use the term linear operator instead of linear map,
although both terms have the exact same meaning, namely that of a map
between vector spaces that preserves addition and scalar multiplication. The
reason lies in the fact that the relevant normed vector spaces in applications
are often function spaces and then the elements of the space on which the
operator acts are themselves functions. If domain and target of a linear
operator are normed vector spaces, it is natural to impose continuity with
respect to the norm topologies. This underlies the following definition.

Definition 1.16 (Bounded Linear Operator).
Let (X, |I|lx) and (Y.||-]ly-) be real normed vector spaces. A linear operator
A: X =Y is called bounded if there exists a constant ¢ > 0 such that

|Az|ly < cllz|| for all x € X. (1.14)

The smallest constant ¢ > 0 that satisfies (1.14)) is called the operator norm
of A and is denoted by

| Az]]
JAll = 1Al zxyy = sup =
sex\{op llzllx

(1.15)

A bounded linear operator with values in Y = R is called a bounded linear
functional on X. The space of bounded linear operators from X toY 1is
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denoted bff]
LIX)Y)={A: X >Y ‘ A is linear and bounded} .

Then (L(X,Y), [I'lz(xy)) s a normed vector space. The resulting topology
on L(X,Y) is called the uniform operator topology.

Theorem 1.17. Let (X, ||-||) and (Y, |||ly) be real normed vector spaces
and let A : X =Y be a linear operator. The following are equivalent.

(i) A is bounded.

(ii) A is continuous.

(iii) A is continuous at x = 0.

Proof. We prove that (i) implies (ii). If A is bounded then
|Az — Ax'|ly, = |A(z — 2")[ly < [|A]l |z — 2l|

for all x,2’ € X and so A is Lipschitz-continuous. Since every Lipschitz-
continuous function is continuous, this shows that (i) implies (ii). That (ii)
implies (iii) follows directly from the definition of continuity.

We prove that (iii) implies (i). Thus assume A is continuous at = = 0.
Then it follows from the -9 definition of continuity with e = 1 that there
exists a constant 0 > 0 such that, for all x € X,

lzllx <o = [Az]ly < 1.

This implies || Az, < 1 for every x € X with ||z|y = J. Now let z € X\ {0}.
Then H5||a:||_}1x||x = 0 and so HA((5||ZL‘||;<1I)HX < 1. Multiply both sides of
this last inequality by 61 ||z||y to obtain the inequality

|Az|ly < 67" ||zl for all z € X.
This proves Theorem [I.17] O

Recall that the kernel and image of a linear operator A : X — Y
between real vector spaces are the linear subspaces defined by
ker(A) :={z € X | Az =0} C X,
im(A) :={Az|z € X} CY.
If X and Y are normed vector spaces and A : X — Y is a bounded linear

operator, then the kernel of A is a closed subspace of X by Theorem [I.17]
However, its image need not be a closed subspace of Y.

! Many authors use the notation B(X,Y) for the space of bounded linear operators.
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Equivalent Norms

Definition 1.18. Let X be a real vector space. Two norms ||-|| and |-’
on X are called equivalent if there exists a constant ¢ > 1 such that

1
~Jlall < ol < clle|  forallx € X
C

Exercise 1.19. (i) This defines an equivalence relation on the set of all norm
functions on X.

(ii) Two norms ||| and ||-||' on X are equivalent if and only if the identity
maps id : (X, [-]) = (X,]]]) and id : (X, ||-]|) = (X,]]|) are bounded
linear operators.

(iii) Two norms ||-|| and ||-| on X are equivalent if and only if they induce
the same topologies on X, i.e. Z (X, |-|) = Z (X, |-]").

(iv) Let ||| and ||-|" be equivalent norms on X. Show that (X, ||-||) is
complete if and only if (X, ||-||") is complete.

1.2.2 Finite-Dimensional Normed Vector Spaces

Theorem 1.20. Let X be a finite-dimensional real vector space. Then any
two norms on X are equivalent.

Proof. Choose an ordered basis eq,...,e, on X and define

n n
E |z;|? for x = g Xi€4, x; € R.
i—1 i=1

This is a norm on X. We prove in two steps that every norm on X is
equivalent to ||-||,. Fix any norm function X — R : 2z — ||z||.

[l =

Step 1. There is a constant ¢ > 0 such that ||z|| < c||z||, for all x € X.

Define ¢ := /3.7, |les]|? and let 2 = 3" | xe; with x; € R. Then, by the
triangle inequality for ||-|| and the Cauchy—Schwarz inequality on R", we have

n n n
2
lzll <Y Jaillleall < 4| DLzl | D lleall” = cll]l,
i=1 1 i=1

1=

This proves Step 1.
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Step 2. There is a constant 6 > 0 such that 6 ||z||, < ||z|| for all z € X.

The set S := {z € X| ||z|[, =1} is compact with respect to |||, by the
Heine-Borel Theorem, and the function S — R : z + ||z|| is continuous
by Step 1. Hence there is an element xy € S such that ||zo|| < [|z|| for all

z € S. Define § := ||zo|| > 0. Then every nonzero vector x € X satisfies
||x||;1x € S, hence |||x||gle > 0, and hence |[z|| > 0 ||z|,. This proves
Step 2 and Theorem [1.20] O

Theorem has several important consequences that are special to
finite-dimensional normed vector spaces and do not carry over to infinite
dimensions.

Corollary 1.21. FEvery finite-dimensional normed vector space is complete.

Proof. This holds for the Euclidean norm on R™ by a theorem in first year
analysis, which follows rather directly from the completeness of the real num-
bers. Hence, by Theorem and part (iv) of Exercise [1.19] it holds for
every norm on R"™. Thus it holds for every finite-dimensional normed vector
space. O]

Corollary 1.22. Let (X, ||-||) be a normed vector space. Then every finite-
dimensional linear subspace of X is a closed subset of X.

Proof. Let Y C X be a finite-dimensional linear subspace and denote by
||-|ly- the restriction of the norm on X to the subspace Y. Then (Y, ||-||y) is
complete by Corollary and hence Y is a closed subset of X. [

Corollary 1.23. Let (X, ||]|) be a finite-dimensional normed vector space
and let K C X. Then K s compact if and only if K s closed and bounded.

Proof. This holds for the Euclidean norm on R"™ by the Heine-Borel Theorem.
Hence it holds for every norm on R" by Theorem [1.20 Hence it holds for
every finite-dimensional normed vector space. ]

Corollary 1.24. Let (X, |||yx) and (Y, ||-|ly) be normed vector spaces and
suppose dim X < co. Then every linear operator A : X — Y is bounded.

Proof. Define the function X — Rz — ||z||, by
HxHA = H33||X+||AxHY for x € X.

This is a norm on X. Hence, by Theorem [1.20] there exists a constant ¢ > 1
such that ||z||, < c|jz|y for all € X. Hence A is bounded. O
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The above four corollaries spell out some of the standard facts in finite-
dimensional linear algebra. The following four examples show that in none of
these four corollaries the hypothesis of finite-dimensionality can be dropped.
Thus in functional analysis one must dispense with some of the familiar
features of linear algebra. In particular, linear subspaces need no longer be
closed subsets and linear maps need no longer be continuous.

Example 1.25. (i) Consider the space X := C([0,1]) of continuous real
valued functions on the closed unit interval [0, 1]. Then the formulas

W= sop 170 1= [150F)

for f € C([0,1]) define norms on X. The space C([0,1]) is complete with
|||, but not with [-||,. Thus the two norms are not equivalent. Exercise:
Find a sequence of continuous functions f,, : [0, 1] — R that is Cauchy with
respect to the L2-norm and has no convergent subsequence.

(ii) The space Y := C*(]0,1]) of continuously differentiable real valued func-
tions on the closed unit interval is a dense linear subspace of C([0,1]) with
the supremum norm and so is not a closed subset of (C([0,1]),|-[|..)-

(iii) Consider the closed unit ball B := {f € C([0,1]) | || f|l., < 1}in C([0, 1))
with respect to the supremum norm. This set is closed and bounded, but
not equi-continuous. Hence it is not compact by the Arzela—Ascoli Theorem
(see Corollary [1.13). More explicitly, consider the sequence f, € B defined
by fn(t) :=sin(2"nt) for n € N and 0 <t < 1. It satisfies [|f, — fu| > 1
for n # m and hence does not have any convergent subsequence. More gen-
erally, Theorem below shows that the compactness of the unit ball char-
acterizes the finite-dimensional normed vector spaces.

(iv) Let (X, |-]|) be an infinite-dimensional normed vector space and choose
an unordered basis £ C X such that |e]| = 1 for all e € E. Thus every
nonzero vector x € X can be uniquely expressed as a finite linear combina-
tion z = Zle xie; with ey, ..., e, € E pairwise distinct and z; € R\ {0}.
By assumption £ is an infinite set. (The existence of an unordered basis
requires the Lemma of Zorn or, equivalently, the axiom of choice by Theo-
rem - ) Choose any unbounded function A : E — R and define the linear
map @, : X — R by CI)A(Z _ Ti€;) = Zle A(e;)x; for all £ € N, all pair-
wise distinct /-tuples of basis vectors eq,...,e, € E, and all z,..., 2, € R.
Then @, : X — R is an unbounded linear functional.
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Theorem 1.26. Let (X, ||-||) be a normed vector space and denote the closed
unit ball and the closed unit sphere in X by

B:={zeX||az] <1}, Si={zeX| |zl =1}.

Then the following are equivalent.
(i) dim X < oc.

(ii) B is compact.

(iii) S is compact.

Proof. That (i) implies (ii) follows from Corollary and that (ii) im-
plies (iii) follows from the fact that a closed subset of a compact set in a
topological space is compact.

We prove that (iii) implies (i). We argue indirectly and show that if X
is infinite-dimensional then S is not compact. Thus assume X is infinite-
dimensional. We claim that there exists a sequence z; € X such that

||| = 1, |z — ;]| > 5 for all 4,5 € N with ¢ # j. (1.16)

This is then a sequence in S that does not have any convergence subsequence
and so it follows that S is not compact.

To prove the existence of a sequence in X satisfying we argue by
induction and use the axiom of dependent choice. For 7 = 1 choose any ele-
ment x1 € S. If zy,..., 2 € S have been constructed such that ||2z; — z;|| > 3
for ¢ # 7, consider the subspace Y C X spanned by the vectors xq,..., xg.
This is a closed subspace of X by Corollary and is not equal to X
because dim X = oco. Hence Lemma below asserts that there exists a
vector = 41 € S such that ||z —y| > 3 for all y € Y and hence, in
particular, ||zj11 — ;|| > % for ¢ =1,...,k. This completes the induction
step and shows, by the axiom of dependent choice (see page , that there
exists a sequence x; € X that satisfies for i # 7.

More precisely, take
X = |_| S*

keN

and, for every x = (xy,...,2;) € S*, define A(x) as the set of all k + 1-
tuplesy = (z1,..., 2, x) € S such that ||z — z;]| > Jfori=1,..., k. The
above argument shows that this set is nonempty for all x € X and so the
existence of the required sequence (x;);eny in S follows from the axiom of
dependent choice. This proves Theorem [1.26] ]
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Lemma 1.27 (Riesz Lemma). Let (X, ||-||) be a normed vector space and
let Y C X be a closed linear subspace that is not equal to X. Fix a constant

0<od<l.
Then there exists a vector x € X such that
=1 inf [lx — vyl >1-29.
lell =1, inf flo =yl 2
Proof. Let xyp € X \'Y. Then
d = inf — >0
inf [|lzo — ]l

because Y is closed. Choose yo € Y such that

o — ol < —
x J— [
0 — Yol > 1—¢
and define
_ o — Yo
z0 — ol

Then ||z|| =1 and

I = 120 — 4o — l|ro — wol| ¥l
on-yoﬂ
d
= lwo — woll
>1—-94

=

for all y € Y. This proves Lemma [1.27] O

Theorem leads to the question of how one can characterize the com-
pact subsets of an infinite-dimensional Banach space. For the Banach space
of continuous functions on a compact metric space with the supremum norm
this question is answered by the Arzela—Ascoli Theorem (Corollary .
The Arzela—Ascoli Theorem is the source of many other compactness results
in functional analysis.
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1.2.3 Quotient and Product Spaces

Quotient Spaces

Let (X, |]-]]) be a real normed vector space and let Y C X be a closed
subspace. Define an equivalence relation ~ on X by

x~x = ¥ —xzeY.
Denote the equivalence class of an element x € X under this equivalence
relation by [z] ==z +Y = {z +y ’ y € Y} and denote the quotient space by

X)Y ={z+Y|zreX}.

For x € X define
= inf ||z + ) 1.17
H[x]HX/Y ;£Y Iz +ylly (1.17)

Then X/Y is a real vector space and the formula defines a norm
function on X/Y. (Exercise: Prove this.) The next lemma is the key step
in the proof that if X is a Banach space so the quotient space X/Y for every
closed linear subspace Y C X.

Lemma 1.28. Let X be a normed vector space and let Y C X be a closed
linear subspace. let (x;)ien be a sequence in X such that ([x;])ien is a Cauchy
sequence in X /Y with respect to the norm . Then there exists a sub-
sequence (x; )ken and a sequence (Yg)ken in Y such that (x;, + Yr)ken 1S a
Cauchy sequence in X.

Proof. Choose i1 := 1 and let 75 > i; be the smallest integer bigger than ;
such that infyey ||z, — 2, +ylly < 27'. Once iy,...,4 have been con-
structed, choose i1 > i to be the smallest integer bigger than i; such that
infycy Hxlk — Ty, t yH 5 < 2%, This completes the inductive construction
of the subsequence (z;, )ren. Now use the Axiom of Countable Choice to find
a sequence (1 )gen in Y such that me — T, + nk”X < 27% for all k € N.
Define
y1 := 0, Yk = —M1 — -+ — Ng—1 for k > 2.

Then

szk + Yk — Ligyr — yk-‘rlHX = ‘ Lip = Ly +77k||X < 2_k

for all k& € N and hence (x;, + yi)ren is a Cauchy sequence. This proves
Lemma [1.28| O]
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Theorem 1.29 (Quotient Space). Let X be a normed vector space and let
Y C X be a closed linear subspace. Then the following holds.

(i) The map m: X — X/Y defined by n(z) := [x] =x+Y forx € X is a
surjective bounded linear operator.

(i) Let A : X — Z be a bounded linear operator with values in a normed

vector space Z such that' Y C ker(A). Then there ezists a unique bounded
linear operator Ay : XY — Z such that Agom = A.

(iii) If X is a Banach space then X/Y is a Banach space.

Proof. Part (i) follows directly from the definitions.
To prove part (ii) observe that the operator Ay : X/Y — Z, given by

Aglx] := Az for x € X,
is well defined whenever Y C ker(A). It is obviously linear and it satisfies
[Aofz]llz = [A(z + )l 2 < [[All |z + yllx

for all x € X and all y € Y. Take the infimum over all y € Y to obtain the
inequality

[Aolz]l|; < inf [[A[l|lz + yllx = [ Al 2]l x v
yey

for all x € X. This proves part (ii).

To prove part (iii), assume X is complete and let (x;);en be a sequence
in X such that ([z;]);en is a Cauchy sequence in X/Y with respect to the
norm ([1.17). By Lemma there exists a subsequence (x;, )ren and a
sequence (Yx)ren in Y such that (x;, + yk)ren is a Cauchy sequence in X.
Since X is a Banach space, there exists an element = € X such that

Jim flr — @i, = yellx = 0.

Hence

i (o = iy = Jim i 1= 24, +ylly =0
Thus the subsequence ([x;, ])ken converges to [x] in X/Y. Since a Cauchy
sequence converges whenever it has a convergent subsequence, this proves

Theorem [1.29 O
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Product Spaces

Let X and Y be normed vector spaces. Then the product space X x Y
admits the structure of a normed vector space. However, there is no canoncial
norm on this product space although it has a canonical product topology
(page . Examples of norms that induce the product topology are

I@y)ll, = (el + Iyl ", 1<p<oo, (1.18)
and
(2, Y)ll oo == max {{[z]|x , [[ylly } (1.19)
forre X andyeY.
Exercise 1.30. (i) Show that the norms in and are all equiv-

alent and induce the product topology on X x Y.

(ii) Show that the product space X x Y, with any of the norms in (1.18])
or (1.19)), is a Banach space if and only if X and Y are Banach spaces.

1.3 The Dual Space

1.3.1 The Banach Space of Bounded Linear Operators

This section returns to the normed vector space £(X,Y) of bounded linear
operators from X to Y introduced in Definition [I.16, The next theorem
shows that £(X,Y) is complete whenever the target space Y is complete,
even if X is not complete.

Theorem 1.31. Let X be a normed vector space and let Y be a Banach
space. Then L(X,Y) is a Banach space with respect to the operator norm.

Proof. Let (Ap)nen be a Cauchy sequence in £(X,Y). Then
[Ane = Amz|ly = [(An — An)zlly < [[An = An|l 2]l
for all x € X and all m,n € N. Hence (A, ),en is a Cauchy sequence in Y
for every x € X. Since Y is complete, this implies that the limit
Az = lim A,z (1.20)

n—o0

exists for all z € X. This defines a map A : X — Y. That it is linear follows
from the definition, the fact that the limit of a sum of two sequences is the
sum of the limits, and the fact that the limit of a product of a sequence with
a scalar is the product of the limit with the scalar.
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It remains to prove that A is bounded and that lim, ., [|[A — A, = 0.
To see this, fix a constant ¢ > 0. Since (A4, ),en is a Cauchy sequence with
respect to the operator norm, there exists an integer ng € N such that

m,n € N, m,n > ng = |Am — Anl| <e.
This implies
Az — Ayl = T}Lg%o [Amz — Anz|ly

< limsup [[Ap — An| [l x (1.21)

m—00

<el=llx
for every x € X and every integer n > ny. Hence
[Az]ly < [|Az = Anglly + | Anezlly < (€ + 1A, 1) [l x

for all z € X and so A is bounded. It follows also from ([1.21)) that, for ev-
ery € > 0, there is an ng € Nsuch that ||[A — A, || < e for every integer n > ny.
Thus lim,, . [|[A — A,|| = 0 and this proves Theorem |1.31] O

1.3.2 Examples of Dual Spaces

An important special case is where the target space Y is the real axis. Then
Theorem |1.31] asserts that the space

X* = L(X,R) (1.22)

of bounded linear functionals A : X — R is a Banach space for every normed
vector space X (whether or not X is itself complete). The space of bounded
linear functionals on X is called the dual space of X. The dual space of
a Banach space plays a central role in functional analysis. Here are several
examples of dual spaces.

Example 1.32 (Dual Space of a Hilbert Space). Let H be a Hilbert
space, i.e. H is a Banach space and the norm on H arises from an inner
product H x H — R : (z,y) — (z,y) via ||z|]| = /(x,z). Then every
element y € H determines a linear functional A, : H — R defined by

Ay(z) = (z,y) for z € H. (1.23)

It is bounded by the Cauchy—Schwarz inequality (Lemma|1.40)) and the Riesz
Representation Theorem asserts that the map H — H* : y — A, is an
isometric isomorphism (Theorem [1.43]).
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Example 1.33 (Dual Space of L?(u)). Let (M, A, 1) be a measure space
and fix a constant 1 < p < co. Define the number 1 < ¢ < co by

11
4+ >=1 (1.24)
poq

Then the Holder inequality asserts that the product of two functions
f € LP(n) and g € L9(u) is p-integrable and satisfies the inequality

L/’fgdu\g TR (1.25)
M

(See [B0, Theorem 4.1].) This implies that every g € L%(u) determines a
bounded linear functional Ay : LP(1) — R defined by

AAﬂtz/Lfgmt for f & L7(n) (1.26)

It turns out that
HAgHL(LP(M),R) = Hqu
for all g € L) (see [50, Theorem 4.33]) and that the map

L) = LP(p)* 2 g = Ay

is an isometric isomorphism (see [50, Thm 4.35]). The proof relies on the
Radon-Nikodym Theorem (see [50, Thm 5.4]).
This result extends to the case p = 1 and shows that the natural map

L®(u) — L'(p)* g — Ay

is an isometric isomorphism if and only if the measure space (M, A, u) is
localizable. In particular, the dual space of L!(u) is isomorphic to L>(u)
whenever (M, A, ) is a o-finite measure space. (See [50, Def 4.29] for the
relevant definitions.) However, the dual space of L>(u) is in general much
larger than L'(p), i.e. the map

L) = L¥(n)" s g = A,

in (1.26) is an isometric embedding but is typically far from surjective.
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Example 1.34 (Dual Space of 7). Fix a number 1 < p < co and consider
the Banach space P of p-summable sequences of real numbers, equipped with
the norm

p 1/p
[l = (Zm'p) for z = (2;)ien € .
i=1

(See part (ii) of Example[1.3]) This is the special case of the counting measure
on M = N in Example [1.33| and so the dual space of ¢ is isomorphic to ¢9,
where 1/p+ 1/qg = 1. Here is a proof in this special case.

Associated to every sequence y = (y;)ien € 7 is a bounded linear func-
tional A, : /# — R, defined by

Ay(@) =) iy (1.27)

for x = (z;)ien € . It is well defined by the Holder inequality ((1.25)).
Namely, in this case the Holder inequality takes the form

o0
> Lzl < llll, Iyl
=1

for x = (2;)ieny € P and y = (yi)ien € 7 and hence the limit

in exists. Thus, for each y € ¢4, the map
Ay P =R
in is well defined and linear and satisfies the inequality
Ay (@) < ]l lyll,
for all x € ¢?. Thus A, is a bounded linear functional on (¥ for every y € ¢4

with norm

A (z
A= sup Bl

xeer\{0} Hﬂpr
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Hence the formula ([1.27)) defines a bounded linear operator
0T — () y = Ay, (1.28)

In fact, it turns out that [|A,[| = [lyll, for all y € £9. To see this, fix a
nonzero element y = (y;);en € €7 and consider the sequence z = (x;);en,
defined by z; := |y;|7 'sign(y;) for i € N, where sign(y;) := 1 when y; > 0
and sign(y;) := —1 when y; < 0. Then |z]? = |y;|CVP = |3;|9 and thus

00 1-1/q 00 00
1
], = (ZI%I") =l Aye) =D my = |l = [lyll?.
=1 =1 =1

This shows that .
A @)
lll, w2

and so [[Ay| = [ly[[,- Thus the map (1.28) is an isometric embedding.
We prove that it is surjective. For i € N define

e; = (0ij)jen (1.29)

where ¢;; denotes the Kronecker symbol, i.e. §;; := 1 for i = j and ¢;; := 0
for i # j. Then e; € 7 for every ¢ € N and the subspace span{e; |i € N} of
all (finite) linear combinations of the e; is dense in 7. Let A : ? — R be
a nonzero bounded linear functional and define y; := A(e;) for ¢ € N. Since
A # 0 there is an ¢ € N such that y; # 0. Consider the sequences

1Ayl = = llyll

&n = Z|yi|q_lsign(yz-)ei e’ Ny 1= Zyiei e for n € N.
i=1

i=1

Since (¢ — 1)p = q, they satisfy

n 1-1/q n
&1, = <Z|yz‘|q> =lmalf7 AG) =D [wil = lImall?,
=1 i=1

and so

n 1/q
A&,
Sul) =, = 28 <

for n € N sufficiently large. Thus y = (y;);en € ¢9. Since Ay(e;) = A(e;) for
all i € N and the linear subspace span{e; |i € N} is dense in ¢, it follows
that A, = A. This proves that the map ([1.27) is an isometric isomorphism.
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Example 1.35 (Dual Space of ¢!). The discussion of Example extends
to the case p = 1 and shows that the natural map

(% (0 iy A,

defined by is a Banach space isometry. Here ¢ C RY is the space
of bounded sequences of real numbers equipped with the supremum norm.
(Exercise: Prove this by adapting Example to the case p = 1.)

There is an analogous map ¢' — ((*)* : y — A,. This map is again
an isometric embedding of Banach spaces, however, it is far from surjective.
The existence of a linear functional on /*° that cannot be represented by a
summable sequence can be established via the Hahn—-Banach Theorem.

Example 1.36 (Dual Space of ¢j). Consider the closed linear subspace
of £>° which consists of all sequences of real numbers that converge to zero.
Denote it by

1—00

co = {x = (zi)iew € RY

lim z; — o} Nl (1.30)

This is a Banach space with the supremum norm ||z := sup;cy|z;|. Every
summable sequence y = (y;)ieny € ¢! defines a linear functional A, : ¢ — R
via (1.27). It is bounded and ||A,|| < |ly||, because

Ay(@)] <D el < llelloe Y lil = lell 1yl
=1 =1

for all x € ¢g. Thus the map
0t =y A, (1.31)

is a bounded linear operator. In fact, it is an isometric isomorphism of
Banach spaces. To see this, fix an element y = (y;)iey € ¢' and define
g; :=sign(y;) for i € N. Thus ¢; = 1 when y; > 0 and ¢; = —1 when y; < 0.
For n € N define &, := >  €;e; € ¢, where ¢; € ¢ is defined by .
Then Ay(&,) = > 0 lyi| and [|&, ]| = 1. Thus [|[A,]| > D7 |y for alln € N,

hence

A= D Tyl = Nyl = 1A
i=1

and so ||Ay|| = [ly||;- This shows that the linear map (1.31]) is an isometric
embedding and, in particular, is injective.
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We prove that the map is surjective. Let A : ¢g — R be a nonzero
bounded linear functional and define the sequence y = (y;)ien € RY by
y; == A(e;) for i € N where ¢; € ¢ is the sequence in (1.29). As before,
define &, := Y7, sign(y;)e; € ¢o for n € N. Then |[|€,|| = 1 for n sufficiently
large and therefore

Z|yz| = A(&) < ||A] for all n € N.
i—1

This implies ||y||, = > ooy lyi] < Al and so y € €', Since Ay(e;) = y; = Ale;)
for all i € N and the linear subspace span{e; |i € N} is dense in ¢q (prove
this!), it follows that A, = A. Hence the map (L.31]) is a Banach space
isometry and so ¢, = (1.

Example 1.37 (Dual Space of C'(M)). Let M be a second countable com-
pact Hausdorff space, so M is metrizable [40]. Denote by B C 2™ its Borel
o-algebra, i.e. the smallest o-algebra containing the open sets. Consider
the Banach space C'(M) of continuous real valued functions on M with the
supremum norm and denote by M (M) the Banach space of signed Borel
measures 4 : B — R with the norm in equation (1.4)) (see Example [1.3)).
Every signed Borel measure p : B — R determines a bounded linear func-

tional A, : C(M) — R defined by

AL (f) = /Mfdu for f € C(M). (1.32)

The Hahn Decomposition Theorem asserts that for every signed Borel mea-
sure i : B — R there exists a Borel set P C M such that u(BN P) > 0
and p(B \ P) < 0 for every Borel set B C M (see [50, Thm 5.19]). Since
every Borel measure on M is regular (see [50, Def 3.1 and Thm 3.18]) this
can be used to show that [[Aul ;¢ r) = 1l - Now every bounded linear
functional A : C(M) — R can be expressed as the difference of two positive
linear functionals A* : C'(M) — R (see [50, Ex 5.35]). Hence it follows from
the Riesz Representation Theorem (see [50, Cor 3.19]) that the linear map
M(M) — C(M)* : p— A, is an isometric isomorphism.

Exercise 1.38. Let X be an infinite-dimensional normed vector space and
let A: X — R be a nonzero linear functional. The following are equivalent.
(i) A is bounded.

(ii) The kernel of A is a closed linear subspace of X.

(iii) The kernel of A is not dense in X.
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1.3.3 Hilbert Spaces

This subsection introduces some elementary Hilbert space theory. It shows
that every Hilbert space is isomorphic to its own dual space.

Definition 1.39 (Inner Product). Let H be a real vector space. A bilinear
map
HxH—R:(z,y) = (x,y) (1.33)

is called an inner product if it is symmetric, i.e. (z,y) = (y,x) for all
z,y € H and positive definite, i.e. (x,z) > 0 for all x € H \ {0}. The
norm associated to an inner product (1.33) is the function

H—=R:xw|z] =+ (z,2). (1.34)

Lemma 1.40 (Cauchy—Schwarz Inequality). Let H be a real vector space
equipped with an inner product (1.33) and the norm (1.34). The inner product
and norm satisfy the Cauchy—Schwarz inequality

(= 9)| < =]l ]yl (1.35)

and the triangle inequality
2 +yll < =]l + [yl (1.36)

for all z,y € H. Thus (1.34) is a norm on H.

Proof. The Cauchy—Schwarz inequality is obvious when x = 0 or y = 0.
Hence assume  # 0 and y # 0 and define € := ||z|| " = and 5 := |y|| ' v.
Then ||£]| = ||n]| = 1. Hence

This implies [(£, )| < 1 and hence |{z,y)| < ||z|| ||y||- In turn it follows from
the Cauchy-Schwarz inequality that

lz +ylI” = ll2ll® + 2z, ) + Iyl
2 2
< [l + 2l ly[l + ll]
2
= (=l + [yl

This proves the triangle inequality (1.36) and Lemma [1.40] O
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Definition 1.41 (Hilbert Space). An inner product space (H,(-,-)) is
called a Hilbert space if the norm (1.34)) is complete.

Example 1.42. Let (M, A, ;1) be a measure space. Then H := L*(p) is a
Hilbert space. The inner product is induced by the bilinear map

C2) % L2(1) 5 R - (F.9) = {F. ) = /M fgdu.  (137)

It is well defined because the product of two L2-functions f, g : M — R is in-
tegrable by the Cauchy—Schwarz inequality. That it is bilinear and symmetric
follows directly from the properties of the Lebesgue integral. In general, it is
not positive definite. However, it descends to a positive definite symmetric
bilinear form on the quotient space

L2(p) = L*(p) [~

where the equivalence relation is defined by equality almost everywhere as
in part (iii) of Example [1.3] The inner product on L?() induced by
is called the L? inner product. The norm associated to this inner product
is the L? norm in with p = 2. By [50, Theorem 4.9] the space L?(u) is
complete with this norm and hence is a Hilbert space.

Special cases are the Euclidean space (R",||-||2) in part (i) of Example[L.3]
associated to the counting measure on the set M = {1,...,n}, and the

space /% in part (ii) of Example associated to the counting measure on
the set M = N.

Theorem 1.43 (Riesz). Let H be a Hilbert space and let A : H — R be a
bounded linear functional. Then there exists a unique element y € H such
that

A(z) = (y,x) forall x € H. (1.38)
This element y € H satisfies
(y, @
Jyll = sup 22y, (1.30)
0#£x€eH ||ZE||

Thus the map H — H* : y — (y,-) is an isometry of normed vector spaces.

Theorem 1.44. Let H be a Hilbert space and let E C H be a nonempty
closed convexr subset. Then there exists a unique element xqg € E such that
lzol| < ||| for all x € E.

Proof. See page [41] [
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Theorem implies Theorem [I.43 We prove existence. If A = 0 then
y = 0 satisfies (1.38)). Hence assume A # 0 and define

E:={re H|A(z)=1}.

Then E # () because there exists an element £ € H such that A(§) # 0
and hence z := A({)"'¢ € E. The set E is a closed because A : H — R is
continuous, and it is convex because A is linear. Hence Theorem |1.44| asserts
that there exists an element o € E such that

|zo|| < ||zl for all x € F.
We prove that
xeH, Az)=0 == (xg,z) = 0. (1.40)

To see this, fix an element x € H such that A(z) = 0. Then 2, + tx € E for
all t € R. This implies

zol|” < [Jzo + tz||” = ||zo||” + 2t (o, z) + t*||z||>  for all teR.

Thus the differentiable function ¢ — ||z + tx||? attains its minimum at ¢ = 0
and so its derivative vanishes at ¢ = 0. Hence

d
0= pr . | zo + t:sz = 2(zg, x)

and this proves (|1.40)).

Now define
Zo

Yi=—s.
[l o]

Fix an element # € H and define A := A(z). Then A(z—Azy) = A(z)—\ = 0.
Hence it follows from ((1.40)) that

0 = (0,7 — ATg) = (0, T) — Al|m0]|?.
This implies

_ <x07 .’ﬂ)
o]

(v, ) — A= A2).

Thus y satisfies (1.38)).
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We prove (|1.39)). Assume y € H satisfies ((1.38)). If y = 0 then A = 0 and
so |ly|| = 0 = ||A]|. Hence assume y # 0. Then

lyl* _ Aly) A(z)]
Iyl = = < sup = [IA][-
Iyl Nyl oeen (1]

Conversely, it follows from the Cauchy—Schwarz inequality that

[A()] = Ky, =) < [lyllll=]
for all z € H and hence ||A|| < ||y||. This proves (1.39).

We prove uniqueness. Assume y, z € H satisfy

(y,2) = (z,z) = Az)
for all z € H. Then (y — z,xz) =0 for all x € H. Take z := y — z to obtain

ly —2lP={y—2zy—2)=0
and so y — z = 0. This proves Theorem (1.43 assuming Theorem [1.44] ]

Proof of Theorem[1.44] Define
§ :=inf {||z]| |z € E}.

We prove uniqueness. Fix two elements zg, x; € E with ||z = ||x1] = 6.
Then %(zo + z1) € E because E is convex and so |lzo + z1]| > 2. Thus

2o — z1]|* = 2||zo||® + 2|21 ]|* — ||lzo + 21]|* = 467 — ||zo + 21> < 0

and therefore x¢y = x;.

We prove existence. Choose a sequence x; € E such that lim; ., ||2;|| = 9.
We prove that z; is a Cauchy sequence. Fix a constant € > 0. Then there
exists an integer 7o € N such that
2
R
Let 7,5 € N such that ¢ > 7y and 7 > iy. Then %(mz + z;) € E because E is
convex and hence ||z; + x;|| > 26. This implies

teN, >4 = l:l|* < 6%+

2 2 2 2
lzi — 2517 = 2[Ja|]” + 2 [|a5]]” — [|lzs + 24
2
< 4(5%%) 4% = &2,

Thus z; is a Cauchy sequence. Since H is complete the limit xy := lim;_, . x;
exists. Moreover xy € F because FE is closed and ||z¢|| = d because the Norm
function ([1.34)) is continuous. This proves Theorem [1.44] O
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1.4 Banach Algebras

We begin the discussion with a result about convergent series in a Banach
space. It extends the basic assertion in first year analysis that every abso-
lutely convergent series of real numbers converges. We will use Lemma [1.45
to study power series in a Banach algebra.

Lemma 1.45 (Convergent Series). Let (X,||-||) be a Banach space and
let (z;)ien be a sequence in X such that

>l < o
i=1
Then the sequence &, == x; in X converges. Its limit is denoted by
Zl‘i = lim Zm, (1.41)
n—oo
i=1 i=1

Proof. Define s,, :== Y., ||z;|| for n € N. This sequence is nondecreasing and
converges by assumption. Moreover, for every pair of integers n > m > 1,

we have [|§, = Emll = 113220 pq @ill < 220001 |2l = 80 — sm- Hence (§n)nen
is a Cauchy sequence in X. Since X is complete, this sequence converges,
and this proves Lemma [1.45] O

Definition 1.46 (Banach Algebra). A real (respectively complex) Banach
algebra is a pair consisting of a real (respectively complex) Banach space
(A, ||-]|) and a bilinear map A x A — A : (a,b) — ab (called the product)

that is associative, i.e.

(ab)c = a(bc) forall a,b,c € A, (1.42)
and satisfies the inequality
|ab]| < [|al| ||0]] for all a,b € A. (1.43)

A Banach algebra A is called commutative if ab = ba for all a,b € A. It
is called unital if there exists an element 1 € A\ {0} such that

la=al=a  foralac A (1.44)

The unit 1, if it ewists, is uniquely determined by the product. An ele-
ment a € A of a unital Banach algebra A is called invertible if there ex-
ists an element b € A such that ab=ba = 1. The element b, if it exists,
is uniquely determined by a, is called the inverse of a, and is denoted
by a=! :=b. The invertible elements form a group G C \A.
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Example 1.47. (i) The archetypal example of a Banach algebra is the
space L(X) := L(X, X) of bounded linear operators from a Banach space X
to itself with the operator norm (Definition and Theorem [1.31). This
Banach algebra is unital whenever X # {0} and the unit is the identity.
It turns out that the invertible elements of £(X) are the bijective bounded
linear operators from X to itself. That the inverse of a bijective bounded
linear operator is again a bounded linear operator is a nontrivial result. It
follows from the Open Mapping Theorem proved in Section below.

(ii) An example of a commutative unital Banach algebra is the space of
real valued bounded continuous functions on a nonempty topological space
equipped with the supremum norm and pointwise multiplication.

(iii) A third example of a unital Banach algebra is the space ¢'(Z) of bi-
infinite summable sequences (z;);ez of real numbers with the convolution
product defined by (x * y); := ZjeZ z;y;—j for z,y € (1(Z).

(iv) A fourth example of a Banach algebra is the space L'(R") of Lebesgue
integrable functions on R” (modulo equality almost everywhere), where mul-
tiplication is given by convolution (see [50, Section 7.5]). This Banach alge-
bra does not admit a unit. A candidate for a unit would be the Dirac delta
function at the origin which is not actually a function but a measure. The
convolution product extends to the space of signed Borel measures on R"
and they form a commutative unital Banach algebra.

Let A be a complex Banach algebra and let
f(z) = Z 2" (1.45)
n=0

be a power series with complex coefficients ¢,, € C and convergence radius
1

P Tsup, e

> 0. (1.46)
Choose an element a € A with |ja|| < p. Then the sequence (¢,a")nen

satisfies the inequality Y~ |lc,a”|| < |col |1 1] + Do0eqlenl Jal|™ < oo and so
the sequence &, := Y . ¢;a’ converges by Lemma [1.450 Denote the limit by

fla) = cpa” (1.47)

for a € A with ||a|| < p. When the power series f has real coefficients, this
definition extends to real Banach algebras.
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Exercise 1.48. The map f : {a € A| ||a|| < p} — A defined by is
continuous. Hint: For n € N define f, : X — X by f.(a) := >, ca’.
Prove that f,, is continuous. Prove that the sequence f,, converges uniformly
to f on the set {a € A| ||a|| < r} for every r < p.

Theorem 1.49 (Inverse). Let A be a real unital Banach algebra.
(i) For every a € A the limit

ro = lim [Ja”"|['"" = inf [|a"||'" < ||a] (1.48)
n—o00 neN

exists. It is called the spectral radius of a.
(ii) If a € A satisfies r, < 1 then the element 1 — a is invertible and

M—a)" =) a" (1.49)

(iii) The group G C A of invertible elements is an open subset of A and the
map G — G : a — a~ ' is continuous. More precisely, if a € G and b € A
satisfy |la —bl|la™t| < 1, thenbe€ G and b= =57 (1 —a'b)"a™' and

||bfl - CL71|| < ||CL B bH||CL71||2 ||a71||
1= {la—=blfla=t]’ la —bl[fla~t]]"

Proof. We prove part (i). Let a € A, define r := inf,cy||a™||*/™ > 0, and fix
a real number ¢ > 0. Choose m € N such that ||a™||'/™ < r + ¢ and define

?
M := max ( o ) .
(=0,1,...m—1 \r + ¢

Fix two integers £k > 0 and 0 < ¢ <m — 1 and let n := km + {. Then

= flata |

b7 < = | (1.50)

la

{/n mHk/n

< [lal["™ [la
< Jlaf 7" (r + &)

_ <r||i||€>”" r40)

< MY (r 4 €).

Since lim,_,oo M'/™ = 1, there is an integer ny € N such that [|a”||'/™ < r+2¢
for every integer n > ny. Hence the limit r, in ((1.48)) exists and is equal to 7.
This proves part (i).
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We prove part (ii). Let a € A and assume 7, < 1. Choose a real number
a such that r, < a < 1. Then there exists an ng € N such that [|a"||'/™ < a
for every integer n > ng. Hence

la"|| < a™  for every integer n > ny.
This implies Y - [la™|| < oo, so the sequence
b, = Z at
i=0
converges by Lemma [1.45] Denote the limit by b. Since
bo(1—a) = (1—a)b, =1 —a"*
for all n € N and lim,, 4 [Ja” || < lim,, ;0 o™ = 0, it follows that

b(l—a)=(1—-a)b=1.

Hence 1 — a is invertible and (1 — a)~! = b. This proves part (ii).
We prove part (iii). Fix an element a € G and let b € A such that

la = bl la™ ]| < 1.

Then |1 —a'b|| <1 and hence

alb=1-1-a'b)eg, (a'p)'=> (1—-a'd)"
n=0
by part (ii). Hence b = a(a™'b) € G and

[e.9]

b =) (1—-a'b)"a

n=0

and so

oo
o~ =o' < D lla—bf" et
n=1

la — bla™"*
1 —la = blf[la=t]

Thus B),-1-1(a) C G and the map B,y -1(a) = G : b b~! is continuous.
This proves part (iii) and Theorem [1.49] O
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Definition 1.50 (Invertible Operator). Let X and Y be Banach spaces.
A bounded linear operator A : X — Y s called invertible, if there exists a
bounded linear operator B :' Y — X such that

BA = 1y, AB = 1y.
The operator B is uniquely determined by A and is denoted by
B=:A1
It is called the inverse of A. When X =Y, the space of invertible bounded
linear operators in L(X) is denoted by

Aut(X) := {A € L(X) | there is a B € L(X) such that AB = BA =1} .

The spectral radius of a bounded linear operator A € L(X) is the real
number r4 > 0 defined by

= Tin A" = inf 47" < |A] (1.51)

Corollary 1.51 (Spectral Radius). Let X andY be Banach spaces. Then
the following holds.

(i) If A € L(X) has spectral radius r4 < 1 then

Ix —AeAut(X),  (Iy— ZA”

(ii) Aut(X) is an open subset of L(X) with respect to the norm topology and
the map Aut(X) — Aut(X) : A A~ is continuous.

(iii) Let A, P € L(X,Y) be bounded linear operators. Assume A is invertible
and | P||||A7Y|| < 1. Then A — P is invertible,

(A-P) ' = i(A‘lP)”A‘l, (1.52)

and i
[PII[A~]

-1
I < :

L—[[P[flA=H]
Proof. Assertions (i) and (ii) follow from Theorem with A = L(X).
To prove part (iii), observe that [|[A™'P|| < ||A7Y|||P]| < 1. Hence it follows

from part (i) that the operator Iy — A_lP is invertible and that its inverse is
given by (Ix — A™! ) = 0 (A7 P)*. Multiply this identity by A~! on

the right to obtain . The inequality (1.53) follows directly from (L.52)

and the limit formula for a geometric series. This proves Corollary O

I(A=P)~" =

(1.53)
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1.5 The Baire Category Theorem

The Baire category theorem is a powerful tool in functional analysis. It pro-
vides conditions under which a subset of a complete metric space is dense. In
fact, it describes a class of dense subsets such that every countable intersec-
tion of sets in this class belongs again to this class and hence is still a dense
subset. Here are the relevant definitions.

Definition 1.52 (Baire Category). Let (X, d) be a metric space.

(i) A subset A C X is called nowhere dense if the interior of its closure A
15 empty.

(ii) A subset A C X is said to be meagre if it is a countable union of
nowhere dense subsets of X .

(iii) A subset A C X is said to be nonmeagre if it is not meagre.

(iv) A subset A C X is called residual if its complement is meagre.

This definition does not exclude the possibility that X might be the empty
set, in which case every subset of X is both meagre and residual. In the liter-
ature meagre sets are often called of the first category, nonmeagre sets are
called of the second category, and residual sets are called comeagre. The
next lemma summarizes some elementary consequences of these definitions.
Lemma 1.53. Let (X, d) be a metric space. Then the following holds.

(i) A subset A C X is nowhere dense if and only if its complement X \ A
contains a dense open subset of X.

(i) If B C X is meagre and A C B then A is meagre.

(iii) If A C X is nonmeagre and A C B C X then B is nonmeagre.

(iv) Every countable union of meagre sets is again meagre.

(v) Every countable intersection of residual sets is again residual.

(vi) A subset of X is residual if and only if it contains a countable intersec-
tion of dense open subsets of X .

Proof. The complement of the closure of a subset of X is the interior of the
complement and vice versa. Thus
X\ int(4) = X\ A =int(X \ A).

This shows that a subset A C X is nowhere dense if and only if the interior
of X \ A is dense in X, i.e. X \ A contains a dense open subset of X. This
proves (i). Parts (ii), (iii), (iv), and (v) follow directly from the definitions.
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We prove (vi). Let R C X be a residual set and define A := X \ R. Then
there is a sequence of nowhere dense subsets A; C X such that A = JZ, A;.
Define U; :== X \ A; = int(X \ 4;). Then U; is a dense open set by (i) and

ﬁUi:X\GECX\GAi:X\A:R.
=1 =1 =1

Conversely, suppose that there is a sequence of dense open subsets U; C X
such that ()2, U; C R. Define A; := X \ U; and A := |J;°, A;. Then 4; is
nowhere dense by (i) and hence A is meagre by definition. Moreover,

o0

X\RCX\ﬁUi:U(X\Ui):OAi:A.

i=1 i=1
Hence X \ R is meagre by part (ii) and this proves Lemma [1.53] O

Lemma 1.54. Let (X,d) be a metric space. The following are equivalent.
(i) Every residual subset of X is dense.
(i) If U C X is a nonempty open set then U is nonmeagre.

(iii) If A; C X is a sequence of closed sets with empty interior then their
union has empty interior.

(iv) If U; C X is a sequence of dense open sets then their intersection is
dense in X.

Proof. We prove that (i) implies (ii). Assume (i) and let U C X be a
nonempty open set. Then its complement X \ U is not dense and so is
not residual by (i). Hence U is not meagre.

We prove that (ii) implies (iii). Assume (ii) and let A; be a sequence
of closed subsets of X with empty interior. Then their union A is meagre.
Hence the interior of A is also meagre by part (ii) of Lemma[l.53] Hence the
interior of A is empty by (ii).

We prove that (iii) implies (iv). Assume (iii) and let U; be a sequence
of dense open subsets of X. Define A; := X \ U;. Then A; is a sequence
of closed subsets of X with empty interior. Hence A := J;°, A; has empty
interior by (iii). Hence R := (2, U; = o (X \ 4;) = X \ A is dense.

We prove that (iv) implies (i). Assume (iv) and let R C X be residual.
Then, by part (vi) of Lemma there exists a sequence of dense open
subsets U; C X such that (1), U; C R. By (iv) the set (,. U; is dense in X
and hence so is R. This proves Lemma [1.54] O
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Theorem 1.55 (Baire Category Theorem). Let (X,d) be a nonempty
complete metric space. Then the following holds.

(1) Every residual subset of X is dense.

(i) If U C X is a nonempty open set then U is nonmeagre.

(iii) If A; C X is a sequence of closed sets with empty interior then their
union has empty interior.

(iv) If U; C X is a sequence of open dense sets then their intersection is
dense in X.

(v) Every residual subset of X is nonmeagre.

Proof. The first four assertions are equivalent by Lemma [1.54]

We prove that (ii) implies (v). Let R C X be aresidual set. Then X \ R is
meagre by definition. If the set R were meagre as well, then X = (X \ R)U R
would also be meagre by part (iv) of Lemma [1.53] and this would contradict
part (ii) because X is nonempty. Thus R is nonmeagre.

We prove part (iv). Thus assume that U; C X is a sequence of dense
open sets. Fix an element xyp € X and a constant £g > 0. We must prove
that Be,(xo) N[ ;e Ui # 0. We claim that there exist sequences

xy, € Uy, 0<ep<2F k=1,2,3,..., (1.54)

such that
Bak (Ik) c U,N ng_l (ZEk_1> (155)

for every integer k > 1. For k = 1 observe that U; N B, (o) is a nonempty
open set because Uj is dense in X. Choose any element z; € Uy N Be, ()
and choose £ > 0 such that ey < 1/2 and B., (x1) C Uy N B.,(20). Once x5y
and €;,_1 have been found for some integer £ > 2, use the fact that Uy is dense
in X to find z; and ¢, such that and hold.

More precisely, this argument requires the axiom of dependent choice (see
page . Define the set

X = {(k,x,e) | keN, reX,0<e<2% B.(2) cUp ﬂBEO(xO)}
and define the map A : X — 2% by
Ak, z,¢) = {(k’,w’,e’) EX|K =k+1, Bo(@) C Bg(g;)}

for (k,z,e) € X. Then X # () and A(k,z,e) # 0 for all (k,z,e) € X,
because U, is open and dense in X for all k. Hence the existence of the
sequences x; and ¢, follows from the axiom of dependent choice.
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Now let z; € Uy and ¢, > 0 be sequences that satisfy (1.54)) and (|1.55)).
Then d(xy, 7p_1) < ep_1 < 217% for all k € N. Hence

~

-1

-1
d(xy, ) < d(x;, xi1) < ZQ‘i < ok
i=k

i

Il
B

for all k,¢ € N with ¢ > k. Thus (xy)ken is a Cauchy sequence in X. Since X
is complete the sequence (zy)ren converges. Denote its limit by

¥ = lim ;.
k—o0

Since zy € B, (xy) for every ¢ > k it follows that
" € B, (z) C Uy for all k € N.

Moreover,

xt € Bel(xl) C Bgﬂ(l’o).

This shows that the intersection B.,(zo) N[ ;o U; is nonempty for all zy € X
and all eg > 0. Hence the set ﬂf; U; is dense in X as claimed. This proves

part (iv) and Theorem [L.55] O

The desired class of dense subsets of our nonempty complete metric space
is the collection of residual sets. Every residual set is dense by part (i) of The-
orem [1.55| and every countable intersection of residual sets is again residual
by part (v) of Lemma . It is often convenient to use the characterization
of a residual set as one that contains a countable intersection of dense open
sets in part (vi) of Lemma [1.53] A very useful consequence of the Baire
Category Theorem is the assertion that a nonempty complete metric space
cannot be expressed as a countable union of nowhere dense subsets (part (ii)
of Theorem with U = X)).

We emphasize that, while the assumption of the Baire Category Theo-
rem (completeness) depends on the distance function in a crucial way, the
conclusion (every countable intersection of dense open subsets is dense) is
purely topological. Thus the Baire Category Theorem extends to many met-
ric spaces that are not complete. All that is required is the existence of a
complete distance function that induces the same topology as the original
distance function.
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Example 1.56. Let (M, d) be a complete metric space and let X C M be
a nonempty open set. Then the conclusions of the Baire Category Theo-
rem hold for the metric space (X, dx) with dy :=d|xxx : X x X — [0, 00),
even though (X,dy) may not be complete. To see this, let U; C X be
a sequence of dense open subsets of X, choose zog € X and ¢y > 0 such
that B.,(z9) C X, and repeat the argument in the proof of Theorem [L.55]
to show that B.,(zo) N[Ny, Ui # 0. All that is needed is the fact that the
closure Be, (x) that contains the sequence zy, is complete with respect to the
induced metric.

Example 1.57. The conclusions of the Baire Category Theorem hold for the
topological vector space X := C*°([0,1]) of smooth functions f : [0,1] — R,
equipped with the C'* topology. By definition, a sequence f,, € C*([0,1])
converges to f € C*°([0, 1]) with respect to the C* topology if and only if, for
each integer ¢ > 0, the sequence of /th derivatives fy(f) :[0,1] = R converges
uniformly to the (th derivative f : [0,1] — R as n tends to infinity. This
topology is induced by the distance function

dtg) =3 20—
T T IO - 60

where ||ul|, := supg<;<; |u(t)| denotes the supremum norm of a continuous
function u : [0,1] — R, and (C*°([0, 1]), d) is a complete metric space.

Example 1.58. A residual subset of R" may have Lebesgue measure zero.
Namely, choose a bijection N — Q™ : k — z and, for € > 0, define

U, = U By-r(xy).
k=1

This is a dense open subset of R” and its Lebesgue measure is less than (2¢)".
Hence R := ﬂf; Uii is a residual set of Lebesgue measure zero and its
complement

A::R"\R:U(Rn\Ul/i)

is a meagre set of full Lebesgue measure.

Example 1.59. The conclusions of the Baire category theorem do not hold
for the metric space X = Q of rational numbers with the standard distance
function given by d(z,y) := |x — y| for x,y € Q. Every one element subset
of X is nowhere dense and every subset of X is both meagre and residual.



52 CHAPTER 1. FOUNDATIONS

1.6 Problems

Exercise 1.60 (Precompact sets). Let X and Y be topological spaces such
that Y is Hausdorff. Let f : X — Y be a continuous map and let A C X be a
precompact subset of X (i.e. its closure A is compact). Prove that B := f(A)
is a precompact subset of Y. Hint: Show that f(A) C B. If A is compact
and Y is Hausdorff show that f(A) = B.

Exercise 1.61 (Totally bounded sets). Let A be a subset of a metric
space. Show that A is totally bounded if and only if A is totally bounded.

Exercise 1.62 (Complete and closed subspaces). Let (X, dx) be a met-
ric space, let Y C X be a subset, and denote by dy := dx|yxy the induced
distance function on Y. Prove the following.

(a) If (Y, dy) is complete then Y is a closed subset of X.
(a) If (X,dx) is complete and Y C X is closed then (Y, dy) is complete.

Exercise 1.63 (Completion). Let (X, d) be a metric space. A completion
of (X, d) is a triple (X, d, ¢), consisting of a complete metric space (X, d) and
an isometric embedding ¢ : X — X with a dense image.

(a) Every completion (X, d, ¢) of (X, d) has the following universality prop-
erty: If (Y, dy) is a complete metric space and ¢ : X — Y is a 1-Lipschitz
map (i.e. a Lipschitz continuous map with Lipschitz constant one), then
there exists a unique 1-Lipschitz map ¢ : X — Y such that ¢ = ¢ o .

(b) If (X1,d;, 1) and (_7 g,c_ig,_LQ) are completions of (X, d) then there exists
a unique isometry v : X; — Xo such that ¥ o1 = 1o.

(c) (X,d) admits a completion. Hint: The space C,(X) of bounded con-
tinuous functions f : X — R is a Banach space with the supremum norm.

Let g € X and, for x € X define f, € Cy(X) by

Jo(y) == d(y,x) — d(y, zo) for y € X.

Prove that the map X — Cy(X) : x — f, is an isometric embedding and
that the closure of its image is a completion of (X, d).

(d) Let (X, d) be a complete metric space and let ¢ : X — X be a 1-Lipschitzz
map that satisfies the universality property in (a). Prove that (X,d,¢) is a
completion of (X, d).

Exercise 1.64. The completion of a normed vector space is a Banach space.
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Exercise 1.65. This exercise shows that the supremum in the definition of
the operator norm need not be a maximum. Let X := C([—1,1]) be the
space of continuous functions f : [—1,1] — R equipped with the supremum
norm and define the bounded linear functional A : C([—1,1]) — R by

:/O f(t)dt—/_lf(t)dt for f € C([-1,1]).

Prove that there does not exist a function f € C([—1, 1]) such that || f|| =
and [A(f)] = [[All = 2.

Exercise 1.66 (The space of continuously differentiable functions).
Let I := [0, 1] be the unit interval and denote by C*(I) the space of contin-
uously differentiable functions f : I — R (with one-sided derivativs at ¢t = 0
and ¢ = 1). Define

£l = swp F(©)]+ sup [F(O]  for feCUD). (150)

0<t<

(a) Prove that C''() is a Banach space with the norm (1.56)).

(b) Show that the inclusion ¢ : C'(I) — C(I) is a bounded linear operator.
(c) Let B C C'(I) be the unit ball. Show that +(B) has compact closure.
(d) Is «(B) a closed subset of C(I)?

(e) Does the linear operator ¢ : C*(I) — C(I) have a dense image?
Exercise 1.67 (Integration against a kernel).

Let I :=10,1], let K : I x I — R be a continuous function, and define the
linear operator Tk : C(I) — C(I) by

(T f)(t /Kts ds for f e C(I)and 0 <t < 1.
Prove that Tk is continuous. Let B C C(I) be the unit ball and prove that

its image Tk (B) has a compact closure in C(I).

Exercise 1.68 (Fekete’s Lemma). Let («,),en be a sequence of real num-
bers and suppose that there exists a constant ¢ > 0 such that

Qi <y + Q4 € for all n,m € N.

Prove that lim,,_ ., a,,/n = inf,eya,/n. Here both sides of the equation
may be minus infinity. Compare this with part (i) of Theorem by tak-
ing a, := log ||a™].
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Exercise 1.69. Let A be a unital Banach algebra and let a,b € A such
that 1 — ab is invertible. Prove that 1 — ba is invertible. Hint: An explicit
formula for the inverse of 1 — ba in terms of the inverse of 1 — ab can be
guessed by expanding (1 — ab)™! and (1 — ba)~! formally as gemetric series
as in Theorem [1.49]

Exercise 1.70 (Cantor’s Intersection Theorem). The diameter of a
nonempty subset A of a metric space (X, d) is define by
diam(A) := sup d(z,y). (1.57)

z,y€A

(a) Prove that a metric space is complete if and only if every nested se-
quence A; D Ay D Az D -+ of nonempty closed subsets A,, C X satisfying
lim,, ., diam(A,) = 0 has a nonempty intersection (consisting of a single
point).

(b) Find an example of a complete metric space and a nested sequence of
nonempty closed bounded sets whose intersection is empty. Hint: Consider
the unit sphere in an infinite-dimensional Hilbert space.

Exercise 1.71 (Convergence along arithmetic sequences).
Let f:[0,00) — R be a continuous functions such that

lim f(nt)=0 for all £ > 0.
n—oo

Prove that lim, ,, f(z) = 0. Hint: Fix a constant ¢ > 0 and show that
the set A, := {t > 0| |f(mt)| < ¢ for every integer m > n} has a nonempty
interior for some n € N (using the Baire Category Theorem [1.55). Assume
without loss of generality that [a,b] C A, for 0 < a < b with n(b—a) > a.
Deduce that |f(z)| < e for all x > na.

Exercise 1.72. Prove that the set
R:={f:[0,1] = R| f is continuous and nowhere differentiable }

is residual in the Banach space C([0,1]) and hence is dense. (This result is
due to Stefan Banach and was proved in 1931.) Hint: Prove that the set

fls) = [(t)

s—t

U, = feC(0,1])| sup

s#t

’>nforallt€[0,1]

is open and dense in C(([0,1]) for every n € N and that (>, U, C R.
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The proof of the Baire Category Theorem uses the axiom of dependent
choice. A theorem of Blair asserts that the Baire Category Theorem is equiv-
alent to the axiom of dependent choice. That the axiom of dependent choice
follows from the Baire Category Theorem is the content of the next exercise.

Exercise 1.73 (Baire Category Theorem and Dependent Choice).
Let X be a nonempty set and let A : X — 2% be a map which assigns to
each x € X a nonempty subset A(x) C X. Use Theorem to prove that
there is a sequence (X, )nen in X such that x,,11 € A(x,) for all n € N,

Hint: Denote by X := X the set of all sequences £ = (X, )ney in X and
define the function d: X x X — [0,00) by d(£,&) := 0 and

d(é,m):=2"",  n:=min{k € N|x; # ys},

for every pair of distinct sequences & = (X,)nen, ) = (Yn)nen € X. Prove
that (X, d) is a complete metric space. For k € N define

Uy, := {5 = (Xn)nen € X"

Prove that U, is a dense open subset of X for every k € N and deduce that the
set R := [Nyeny Uk is nonempty. Construct the desired sequence as a suitable
subsequence of an element £ = (X, )neny € R.

there is an integer ¢ > k
such that x, € A(xg)

Exercise 1.74. (a) Sets with the Baire property. A subset B of a
topological space is said to have the Baire property if there exists an open
set U such that the symmetric difference BAU = (B\ U) U (U \ B) is
meagre, i.e. B and U differ by a meagre set (see Definition . Prove that
the collection of all sets with the Baire property is the smallest o-algebra
containing the Borel sets and the meagre sets.

(b) Pettis’ Lemma. Let X be a Banach space and let B C X be a non-
meagre subset that has the Baire property. Prove that the set B — B is a
neighborhood of the origin. In particular, if B is a linear subspace of X
then B=X. Hint: Let U be an open subset of X such that BAU is
meagre. Show that U # (), fix an element z € U, and find an open neigh-
borhood V' of the origin such that 4+ V —V C U. For every v € V show
that U N (v+ U) # 0 and deduce that BN (v+ B) # 0.

(c) Borel measurable linear operators. Let f: X — Y be a Borel mea-
surable linear operator from a Banach space X to a separable normed vector
space Y. Prove that f is continuous. Hint: B := {z € X | | f(2)|y < 1/2}
is a nonmeagre Borel set.
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Chapter 2

Principles of Functional
Analysis

This chapter is devoted to the three fundamental principles of functional
analysis. The first is the Uniform Boundedness Principle in Section 2.1} It
asserts that every pointwise bounded family of bounded linear operators on
a Banach space is bounded. The second is the Open Mapping Theorem in
Section [2.2] It asserts that every surjective bounded linear operator between
two Banach spaces is open. An important corollary is the Inverse Operator
Theorem which asserts that every bijective bounded linear operator between
two Banach spaces has a bounded inverse. An equivalent result is the Closed
Graph Theorem which asserts that a linear operator between two Banach
spaces is bounded if and only if its graph is a closed linear subspace of the
product space. The third fundamental principle in functional analysis is
the Hahn-Banach Theorem in Section [2.3] It asserts that every bounded
linear functional on a linear subspace of a normed vector space extends to
a bounded linear functional on the entire normed vector space. A slightly
stronger version of the Hahn—-Banach theorem, in which the norm is replaced
by a quasi-seminorm, can be reformulated as the geometric assertion that
two convex subsets of a normed vector space can be separated by a closed
hyperplane whenever one of them has nonempty interior. The final section
of this chapter discusses reflexive Banach spaces and includes an exposition
of the James space.

57
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2.1 Uniform Boundedness

Let X be a set. A family {f;};c; of functions f; : X — Y}, indexed by a set [
and each taking values in a normed vector space Y;, is called pointwise

bounded, if
sup || fi(z)ly, < oo for all z € X. (2.1)
iel

Theorem 2.1 (Uniform Boundedness). Let X be a Banach space, let I
be any set, and, for each v € I, let let Y; be a normed vector space and
let A; : X =Y, be a bounded linear operator. Assume that the operator fam-
ily {A;i}ier is pointwise bounded. Then sup;¢; || A;|| < oco.

Proof. See page |59, m

Lemma 2.2. Let (X,d) be a nonempty complete metric space, let I be any
set, and, for each 1 € I, let f; : X — R be a continuous function. Assume
that the family { f;}icr is pointwise bounded. Then there exists a point xo € X
and a number € > 0 such that

sup sup |fi(z)| < occ.
1€l x€B:(x0)

Proof. For n € N and i € I define the set

Foi = {:v e X ‘ Ifi(2)] < n}

This set is closed because f; is continuous. Hence the set

Fpi=()Fui= {xEX

i€l

supl fi(z)] < n}

iel
is closed for every n € N. Moreover,

X=JF,

neN

because the family {f;}icr is pointwise bounded. Since (X, d) is a nonempty
complete metric space, it follows from the Baire Category Theorem [1.55]
that the sets F,, cannot all be nowhere dense. Since these sets are all
closed, there exists an integer n € N such that F,, has nonempty interior.
Hence there exists an integer n € N, a point xg € X, and a number € > 0
such that B.(zg) C F,. Hence sup;c;sup,ep, ()| fi(7)| < n and this proves
Lemma 2.2 ]



2.1. UNIFORM BOUNDEDNESS 99

Proof of Theorem[2.1. Define the function fi: X — R by fi(z) := [[Aizlly,
for x € X and i € I. Then f; is continuous for each i and the family {f;}ics
is pointwise bounded by assumption. Since X is a Banach space, Lemma
asserts that there exists a vector xg € X and a constant € > 0 such that

ci=sup sup [[Agzly, <oo.
1€l z€B:(x0)

Hence, for all z € X and all ¢ € I, we have
le—mlly <= = ldaly, <e (22)
Let i € I and x € X such that [|z||yx = 1. Then [[A;(xo £ex)|y, < c and so

1
[ Aiz|y, = % [ Ai(zo + ex) — Ai(zo — ex)|ly,

1 1
< o i +en)ly, + o [ Ai(zo — )y, < ‘

5
Hence
| Az Y; c
[ Asl| = = sup [ Aixfly, < - (2.3)
zeX\{0} H’iEHX HxZHEXX=1 c
for all i € I and this proves Theorem [2.1] O

Remark 2.3. The above argument in the proof of Theorem [2.1] which asserts
that (2.2)) implies (2.3]), can be rewritten as the inequality
sup || Az]ly = || A] (2.4)
le—zgll x <e

for all A € L(X,Y), all zp € X, and all ¢ > 0. With this understood,
one can prove the Uniform Boundedness Theorem as follows (see Sokal [57]).
Let {A;}icr be a sequence of bounded linear operators A; : X — Y; such
that sup;¢; ||4;|| = co. Then the axiom of countable choice asserts that there
is a sequence i,, € I such that ||A; || > 4" for all n € N. Now use the axiom
of dependent choice, and the estimate with A = A;, and € = 1/3", to
find a sequence x,, € X such that, for all n € N,

1 21
n — 4dn— <_7 Az n > Az .
on=nilly € 500 MAuzally, 2 2501143
Then (z,)nen is a Cauchy sequence and hence converges to an element z* € X
such that [|z* — 2, |y < 345 Thus [|4;, 2%y, > (2 — 3) 5 [|Ai ]l = #(3)" for
all n € N and so the operator family {A4;};c; is not pointwise bounded. This

argument circumvents the Baire Category Theorem.




60 CHAPTER 2. PRINCIPLES OF FUNCTIONAL ANALYSIS

The Uniform Boundedness Theorem is also known as the Banach—Stein-
haus Theorem. A useful consequence is that the limit of a pointwise conver-
gent sequence of bounded linear operators is again a bounded linear operator.
This is the content of Theorem 2.5 below.

Definition 2.4. Let X and Y be normed vector spaces. A sequence of
bounded linear operators A; : X — Y, 1 € N, is said to converge strongly
to a bounded linear operator A : X — Y if Ax = lim;_ .o, A;x for all z € X.

Theorem 2.5 (Banach—Steinhaus). Let X and Y be Banach spaces and
let A; : X =Y, 1 €N, be a sequence of bounded linear operators. Then the
following are equivalent.

(i) The sequence (A;x)ien converges in'Y for every x € X.

(ii) sup,ey ||Ail] < oo and there is a dense subset D C X such that (A;x)ien
1s a Cauchy sequence in'Y for every x € D.

(iii) sup;ey ||Aill < oo and there is a bounded linear operator A : X — Y
such that A; converges strongly to A and ||Al| < liminf, || A4;]|-

The equivalence of (i) and (iii) continues to hold when Y is not complete.
The equivalence of (ii) and (iii) continues to hold when X is not complete.
Proof. That (iii) implies both (i) and (ii) is obvious.

We prove that (i) implies (iii). Since convergent sequences are bounded,
the sequence (4;);en is pointwise bounded. Since X is complete it follows
from Theorem that sup,ey ||Ai]] < oo. Define the map A : X — Y
by Az :=lim;_,, A;x for x € X. This map is linear and

|zl = Jim |14l = lminf | Aally < lminf A el (25

for all z € X. Hence A is bounded and ||A]| < liminf; , [|A4;]] < oo.

We prove that (ii) implies (iii). Define ¢ := sup,y [|4i|| < co. Let 2 € X
and & > 0. Choose £ € D such that ¢ ||z — || < 5. Since (Ai§)ien is a Cauchy
sequence, there exists an integer ng € N such that [|A{ — A&l < § for
all 7,7 € N with 7,7 > ng. This implies

[Aiz = Ajlly, < [lAie — Allly + ([ A€ — AjElly + 14,6 — Ajelly

< Al llz = €l + 1A4:€ = As€lly + 1A IS — 2l x
< 2l =€y +IAE - Aglly <5 +5=¢
for all i, 7 € N with 4,7 > ng. Hence (A;x);en is a Cauchy sequence and so

it converges because Y is complete. The limit operator A satisfies (2.5)) and
this proves Theorem [2.5| O
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Example 2.6. This example shows that the hypothesis that X is complete
cannot be removed in Theorems 2.1 and 2.5 Consider the space

X::{x:(:ci)ieNeRN]ElnENViGN:izn - .Clﬁi:()}

with the supremum norm ||z|| := sup,cy|2;|. This is a normed vector space.
It is not complete, but is a linear subspace of £ whose closure X = c¢q is
the subspace of sequences of real numbers that converge to zero. Define the
linear operators A, : X — X and A: X — X by

Apx = (21,2129, ... ,0n2,,0,0,- ), Az = (iz;)ien

for n € N and = = (;);eny € X. Then Az = lim,_,o, A,z for every z € X
and ||A,|| = n for every n € N. Thus the sequence {A,z},en is bounded for
every * € X, the linear operator A is not bounded, and the sequence A,
converges strongly to A.

Corollary 2.7 (Bilinear Map). Let X be a Banach space and let Y and Z
be normed vector spaces (over R or C). Let B : X XY — Z be a bilinear
map. Then the following are equivalent.

(i) B is bounded, i.e. there is a constant ¢ > 0 such that

1Bz, y)ll 7 < ellzllx llylly

forallz € X and ally €Y.

(i) B is continuous.

(iii) For every x € X the linear map Y — Z : y — B(x,y) is continuous
and, for everyy € Y, the linear map X — Z : x — B(x,y) is continuous.
Proof. 1f (i) holds then B is locally Lipshitz continuous and hence is con-
tinuous. Thus (i) implies (ii). That (ii) implies (iii) is obvious. We prove
that (iii) implies (i). Thus assume (iii), define

S:=A{yeY|lyly =1},

and, for y € S, define the linear operator A, : X — Z by A,(z) := B(z,y).
This operator is continuous by (iii) and hence is bounded by Theorem [L.17]
Now fix an element x € X. Then the linear map ¥ — 7 : y — Az =
B(x,y) is continuous by (iii) and hence sup ¢ [|A,]| , < 0o by Theorem|1.17]
Hence ¢ := sup,c5 [|Ay|| < oo by Theorem H Thus

|B(z,y)||l,, < cllz|y forall z € X and all y € S.
This implies (i) and completes the proof of Corollary . ]
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2.2 Open Mappings and Closed Graphs

2.2.1 The Open Mapping Theorem

A map f: X — Y between topological spaces is called open if the image of
every open subset of X under f is an open subset of Y.

Theorem 2.8 (Open Mapping Theorem). Let X,Y be Banach spaces
and let A : X =Y be a surjective bounded linear operator. Then A is open.

Proof. See page |64} O

The key step in the proof of Theorem [2.8|is the next lemma, which asserts
that the closure A(B) of the image of the open unit ball B C X under a
surjective bounded linear operator A : X — Y contains an open ball in Y
centered at the origin. Its proof relies on the Baire Category Theorem [1.55
Lemma below asserts that if an open ball in Y centered at the origin is

contained in A(B) then it is contained in A(B).
Lemma 2.9. Let X, Y, and A be as in Theorem [2.8 Then there exists a
constant § > 0 such that
fye | lully <9} c [Arle € X, ally <1} (26)
Proof. For C C'Y and A > 0 define AC' := {\y |y € C'}. Consider the sets
B:={z e X||z|y <1}, C:=AB)={Az|z € X, ||z]|yx <1}.

Then X = J,cynB and so Y = |J,, oy A(nB) = J,,cy nC because A is sur-
jective. Since Y is complete, at least one of the sets nC' is not nowhere dense,
by the Baire Category Theorem . Hence the set nC' has a nonempty in-
terior for some n € N and this implies that the set 271C has a nonempty
interior. Choose yy € Y and 0 > 0 such that

B(§<y0) c2-1C.

We claim that (2.6) holds with this constant 6. To see this, fix an ele-
ment y € Y such that ||y||- < d. Then yp+y € 271C and yo € 271C. Hence
there exist sequences x;, z) € 27! B such that

Yo +y = lim Ax;, gy = lim Az,
i—00 i—00

Hence 7} — x; € B, so A2}, — x;) € O, and y = lim;_, A(2} — ;) € C.
Thus (2.6 holds as claimed. This proves Lemma . O]
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Lemma 2.10. Let X and Y be Banach spaces and let A : X — Y be a
bounded linear operator. If 6 > 0 and

{yeY||ylly <é} c{Az|z € X, ||lz[|y <1}, (2.7)

then
{yeY||lyly <o} c {Az|z e X, [lz]|y <1}. (2.8)
Proof. The proof is based on the following observation.

Claim. Lety € Y such that ||ly|ly < 0. Then there exists a sequence (Ty)ken,
in X such that

o —
foolly < ey < S g —108 oo
o |
||y—Ax0—---—Amk||Y<% fork=0,1,2,....

We prove the claim by an induction argument. By (2.7 the closed ball of
radius ¢ in Y is contained in the closure of the image under A of the open
ball of radius one in X. Hence every nonzero vector y € Y satisfies

ye{Av|ze X, [afy <67 ylly }- (2.10)

Fix an element y € Y such that ||y, < ¢ and define € := ¢ — ||y[|,, > 0.
Then, by (2.10), there exists a vector zyp € X such that ||zoy <" |ylly
and ||y — Azl <27t Use again with y replaced by y — Axg to find
a vector x1 € X such that ||z1||y <ed 1271 and |y — Azg — Azy]ly < 272
Once the vectors zg, ..., x; have been found such that holds, we have
lly — Zf:o Awi|ly < e27%! and so, by (2.10)), there is a vector 441 € X such
that ||z < e6727% 1 and |jy — S8, Aw; — Azpp |y < €272, Hence
the existence of a sequence (xy)gen, in X that satisfies follows from the
axiom of dependent choice (see page . This proves the claim.

Now fix an element y € Y such that ||y||y, < 0. By the claim, there is
a sequence (T)ken, in X that satisfies and hence Y~ ||kl < 1. It
then follows from Lemmathat the limit  := >~ ;x5 = limy_0o Zf:o T
exists. This limit satisfies the inequality |z|y < > o llzellx < 1 as well
as Ax = limy_, Zf:o Az; =y. Here the last equation follows from ([2.9)).
This proves the inclusion and Lemma m ]
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Proof of Theorem[2.8, Let 6 > 0 be the constant of Lemma [2.9 and_denote
by B C X be the open unit ball. Then B;(0;Y) € A(B) by Lemma [2.9) and
hence Bs(0;Y) C A(B) by Lemma[2.10]

Now fix an open set U C X. Let yy € A(U) and choose zg € U such
that Azg = yo. Since U is open there is an € > 0 such that B.(x¢) C U.
We prove that Bj.(yo) C A(U). Choose y € Y such that ||y — yol|y < de.
Then ||[e™*(y — vo)|ly < ¢ and hence there exists an element £ € X such that

€l <1, A& =<'y — wo).

This implies y = yo+c Al = A(zo+e€) € A(U), because xo+<€ € B:(zy) C U.
Thus we have proved that, for every yo € A(U), there exists a number € > 0
such that Bs.(yo) € A(U). Hence A(U) is an open subset of Y and this
proves Theorem [2.8 O

If A: X — Y is a surjective bounded linear operator between Banach
spaces, then it descends to a bijective bounded linear operator from the
quotient space X/ ker(A) to Y (see Theorem[1.29). The next corollary asserts
that the induced operator A : X/ker(A) — Y has a bounded inverse whose
norm is bounded above by § !, where the constant § > 0 is as in Lemma .

Corollary 2.11. Let X, Y, and A be as in Theorem[2.§ and let § > 0 be
the constant of Lemma[2.9. Then

: -1

inf el <0 ol for ity €Y (2.11)
Proof. Let y € Y and choose a constant ¢ > ¢! [ly|ly. Then |¢c 'yl <4
and so, by Lemma [2.9 and Lemma [2.10] there exists an element ¢ € X such
that AS = c¢ 'y and ||¢]|y < 1. Hence z := ¢ satisfies ||z|, = c |||l < ¢
and Ax = cA¢ = y. This proves (2.11) and Corollary [2.11] O

An important consequence of the open mapping theorem is the special
case of Corollary where A is bijective.

Theorem 2.12 (Inverse Operator Theorem). Let X and Y be Banach
spaces and let A : X — 'Y be a bijective bounded linear operator. Then the
inverse operator A=t 1Y — X is bounded.

Proof. By Theorem the linear operator A : X — Y is open. Hence its
inverse is continuous and is therefore bounded by Theorem [I.17] Alterna-
tively, use Corollary to deduce that [[A7Y|| < 67!, where 6 > 0 is the
constant of Lemma [2.9] O
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Example 2.13. This example shows that the hypothesis that X and Y are
complete cannot be removed in Theorems and 2.12] As in Example 2.6
let X C £ be the subspace of sequences x = (zj)ren of real numbers that
vanish for sufficiently large k, equipped with the supremum norm. Thus X
is a normed vector space but is not a Banach space. Define the operator
A: X = X by Az := (k7 2 )pen for © = (23)reny € X. Then A is a bijective
bounded linear operator but its inverse is unbounded.

Example 2.14. Here is another example where X is complete and Y is not.
Let X =Y = C([0,1]) be the space of continuous functions f : [0,1] — R
equipped with the norms

1l = sup [FO Iflly = / @ dt
0<t<1 0

Then X is a Banach space, Y is a normed vector space, and the identity map
A=1id: X — Y is a bijective bounded linear operator with an unbounded
inverse.

Example 2.15. Here is an example where Y is complete and X is not.
This example requires the axiom of choice. Let Y be an infinite-dimensional
Banach space and choose an unbounded linear functional ® : Y — R. The
existence of such a linear functional is shown in part (iv) of Example [L.25]
and its kernel is a dense linear subspace of Y by Exercise [1.38, Define the
normed vector space (X, ||-||y) by

Xo=A(z,t) e Y xR[®(x) =0}, (=, D)]x := llzlly +[1]

for (z,t) € X. Then X is not complete. Choose a vector yy € Y such that
®(yo) = 1 and define the linear map A: X — Y by

Alx,t) ==z +tyy  for (z,t) € X.
Then A is a bijective bounded linear operator. Its inverse is given by
Ay = (y — (y)yo, P(y))
for y € H and hence is unbounded.

Example [2.15] relies on a decomposition of a Banach space as a direct
sum of two linear subspaces where one of them is closed and the other is
dense. The next corollary establishes an important estimate for a pair of
closed subspaces of a Banach space X whose direct sum is equal to X.
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Corollary 2.16. Let X be a Banach space and let X1, Xo C X be two closed
linear subspaces such that X = X1 @ Xo, t.e. X1N Xy = {0} and every vector
r € X can be written as x = x1 + 19 with x1 € X, and 9 € X5. Then there
exists a constant ¢ > 0 such that

@1 ]| + flz2ll < cllz1 + 22 (2.12)
for all x1 € X1 and all x5 € X5.

Proof. The vector space X; x X5 is a Banach space with the norm function
X1 x Xy = [0,00) 1 (21, 22) = [[(z1, 22) || := [|21]| + [|2]|

(see Exercise and the linear operator A : X; x Xy — X, defined by
Az, 29) 1= x1 + 9 for (x1,29) € X; X Xo, is bijective by assumption and
bounded by the triangle inequality. Hence its inverse is bounded by the
Inverse Operator Theorem [2.12] This proves Corollary O

2.2.2 The Closed Graph Theorem

It is often interesting to consider linear operators on a Banach space X whose
domains are not the entire Banach space but instead are linear subspaces
of X. In most of the interesting cases the domains are dense linear subspaces.
Here is a first elementary example.

Example 2.17. Let X := C([0,1]) be the Banach space of continuous real
valued functions f : [0,1] — R equipped with the supremum norm. Let

dom(A) := C'([0,1]) = {f : [0,1] — R f is continuously differentiable}
and define the linear operator A : dom(A) — X by
Af =f  for feC([0,1)).
The linear subspace dom(A4) = C*([0,1]) is dense in X = C([0,1]) by the
Weierstrafl approximation theorem. Moreover, the graph of A, defined by
graph(A) := {(f,g) € X x X[ f € dom(A), g = Af},

is a closed linear subspace of X x X. Namely, if f,, € C*([0, 1]) is a sequence
of continuously differentiable functions such that the pair (f,,, Af,) converges
to (f,g) in X x X, then f, converges uniformly to f and f/ converges uni-
formly to ¢, and hence f is continuously differentiable with f’ = ¢ by the
fundamental theorem of calculus.
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Here is a general definition of operators with closed graphs.

Definition 2.18 (Closed Operator). Let X and Y be Banach spaces, let
dom(A) C X be linear subspace, and let A : dom(A) — Y be a linear
operator. The operator A is called closed if its graph

graph(A) := {(z,y) € X x Y |z € dom(A), y = Az} (2.13)

is a closed linear subspace of X x'Y . Explicitly, this means that, if (x,)nen
is a sequence in the domain of A such that x, converges to a vector v € X
and and Az, converges to a vector y € Y, then z € dom(A) and y = Ax.
The graph norm of A on the vector space dom(A) is the norm function
dom(A) — [0,00) : z — ||z|| , defined by

2]l 4 = llellx + [[Az]ly (2.14)
for x € dom(A).

Note that a linear operator A : X D dom(A) — Y is always a bounded
linear operator with respect to the graph norm. In Example the graph
norm of A on dom(A) = C*([0,1]) agrees with the usual C' norm

Ifller = swp £ + swp [F@] - for feC(DA). (215)

0<t<1
and C'([0,1]) is a Banach space with this norm.

Exercise 2.19. Let X and Y be Banach spaces and let A : dom(A) — Y be
a linear operator, defined on a linear subspace dom(A) C X. Prove that the
graph of A is a closed subspace of X x Y if and only if dom(A) is a Banach
space with respect to the graph norm.

The notion of an unbounded linear operator with a dense domain will
only become relevant much later in this manuscript when we deal with the
spectral theory of linear operators (see Chapter @ For now it is sufficient
to consider linear operators from a Banach space X to a Banach space Y
that are defined on the entire space X, rather than just a subspace of X. In
this situation it turns out that the closed graph condition is equivalent to
boundedness. This is the content of the Closed Graph Theorem, which can
be derived as a consequence of the Open Mapping Theorem and vice versa.
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Theorem 2.20 (Closed Graph Theorem). Let X andY be Banach spaces
and let A: X —Y be a linear operator. Then A is bounded if and only if its
graph is a closed linear subspace of X x Y.

Proof. Assume first that A is bounded. Then A is continuous by Theo-
rem m Hence, if (z,)nen 18 a sequence in X such that x, converges to
r € X and Az, converges to y € Y, we must have y = lim,,_,o, Az, = Ax
and hence (z,y) € graph(A).

Conversely, suppose that I' := graph(A) = (:c, y) € X XY ‘ Yy = Ax} is a
closed linear subspace of X x Y. Then I" is a Banach space with the norm

1@ y)llr = llellx + Myl for (z,y) €T

and the projection
m:I'—= X, m(z,y) == for (z,y) €T,
is a bijective bounded linear operator. Its inverse is the linear map
i X =T, 7 Y(z) = (v, Az) for z € X,

and is bounded by the Inverse Operator Theorem [2.12, Hence there exists a
constant ¢ > 0 such that ||z|| + || Az|ly = |71 (2)|p < c|lz||y for all z € X.
Thus A is bounded and this proves Theorem [2.20] O

Exercise 2.21. (i) Derive the Inverse Operator Theorem from the
Closed Graph Theorem [2.20]

(ii) Derive the Open Mapping Theorem from the Inverse Operator The-
orem m Hint: Consider the induced operator A : X/ker(A) — Y and
use Theorem [1.29]

Example 2.22. (i) The hypothesis that X is complete cannot be removed
in Theorem 2.20] Let X := C'([0,1]) and Y := C([0,1]), both equipped
with the supremum norm, and define A: X — Y by Af := f’. Then A is
unbounded and has a closed graph (see Example .

(ii) The hypothesis that Y is complete cannot be removed in Theorem [2.20}
Let X be an infinite-dimensional Banach space, let ® : X — R be an un-
bounded linear functional, define Y := ker ® x R with ||(z, )|y := ||z]|yx + |¢]
for (z,t) € Y, choose an element xy € X such that ®(z) = 1, and define the
linear operator A : X — Y by Az := (x — ®(z)xo, P(z)) for x € X. Then A
is unbounded and has a closed graph (see Example [2.15)]).
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Let X and Y be Banach spaces and let A : X — Y be a linear operator.
The Closed Graph Theorem asserts that the following are equivalent.

(i) A is continuous, i.e. for every sequence (z,)neny in X and all z € X

lim z, =z — Az = lim Ax,.

n—oo n—oo

(ii) A has a closed graph, i.e. for every sequence (x,,)nen in X and all z,y € X

lim x, ==z

oo — Axr = lim Ax,.
lim Az, =y n—yo0
n—oo

Thus the closed graph condition is much easier to verify for linear operators
than boundedness. Examples are the next two corollaries.

Corollary 2.23 (Hellinger—Toeplitz Theorem). Let H be a real Hilbert
space and let A: H — H be a symmetric linear operator i.e.

(x, Ay) = (Az,y) for all x,y € H. (2.16)
Then A is bounded.

Proof. By Theorem [2.20] it suffices to prove that A has a closed graph. Thus
assume that (z,)nen is a sequence in H and z,y € H are vectors such that
lim,, o x, = x and lim,,_,, Az, = y. Then

(y,z) = lim (Ax,, z) = lim (x,, Az) = (z, Az) = (Az, 2)
n—oo n—oo

for all z € H and hence Az = y. This proves Corollary [2.23] ]

Corollary 2.24 (Douglas Factorization [12]). Let X, Y, Z be Banach
spaces and let A : X — Y and B : Z — Y be bounded linear operators.
Assume A is injective. Then the following are equivalent.

(i) im(B) C im(A).

(ii) There exists a bounded linear operator T : Z — X such that AT = B.

Proof. 1f (i) holds then im(B) = im(AT) C im(A). Conversely, suppose that
im(B) C im(A) and define T := A~'oB : Z — X. Then T is a linear operator
and AT = B. We prove that T has a closed graph. To see this, let (z,)nen
be a sequence in Z such that the limits z := lim,,_,o 2, and z := lim,, o, Tz,
exist. Then Ar = lim,,_,, ATz, = lim,_,. Bz, = Bz and hence v = T'z.

Thus T has a closed graph and hence is bounded by Theorem [2.20] [

The hypothesis that A is injective cannot be removed in Corollary
For example, take X = (* Y = Z = (> /¢y and B = id. Then the projection
A 0> — (> /¢ does not have a bounded right inverse (see Exercise [2.84)).
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2.2.3 Closeable Operators

For a linear operator that is defined on a proper linear subspace it is an
interesting question whether it can be extended to a linear operator with a
closed graph. Such linear operators are called closeable.

Definition 2.25 (Closeable Operator). Let X and Y be Banach spaces,
let dom(A) C X be a linear subspace, and let A : dom(A) — Y be a linear
operator. The operator A is called closeable if there exists a closed linear
operator A" : dom(A’) — Y on a subspace dom(A") C X such that

dom(A) C dom(A), A'z = Az for all x € dom(A). (2.17)

Lemma 2.26 (Characterization of Closeable Operators).

Let X and Y be Banach spaces, let dom(A) C X be a linear subspace, and
let A:dom(A) =Y be a linear operator. Then the following are equivalent.
(i) A is closeable.

(ii) The projection wx : graph(A) — X onto the first factor is injective.
(iii) If (zp)nen is a sequence in dom(A) and y € Y is a vector such that
lim,, oo x,, = 0 and lim,,_,o, Ax,, =y then y = 0.

Proof. That (i) implies (iii) follows from the fact that y = A’0 = 0 for every
closed extension A" : dom(A’) — Y of A.

We prove that (iii) implies (ii). The closure of any linear subspace of a
normed vector space is again a linear subspace. Hence graph(A) is a linear
subspace of X x Y and the projection mx : graph(A) — X onto the first
factor is a linear map by definition. By (iii) the kernel of this linear map is
the zero subspace and hence it is injective.

We prove that (ii) implies (i). Define

dom(A) := 7y (gnTh(A)) C X.
This is a linear subspace and the map 7y : ngh(A) — dom(A’) is bijective
by (ii). Denote its inverse by 75" : dom(A’) — graph(A) and denote by
my : graph(A4) = Y
the projection onto the second factor. Then
A =7y orny tdom(A) - Y

is a linear operator, its graph is the subspace graph(A) of X xY, and -
holds because graph(A) C graph(A’). This proves Lemma M
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Example 2.27. Let H = L?(R) and define A : dom(A) — R by

dom(A) := {f € L*(R) there exists a constant ¢ > 0 such that }

f(t) =0 for almost all t € R\ [—¢, (]

and Af := [*_f(t)dt for f € dom(A). This linear functional is not closeable
by Lemma 2.26* The sequence f,, € dom(A), given by f,(t) :=  for [t| <n
and f,(t) := 0 for [t| > n satisfies || fu||;2 = 2 and Af, =2 for all n € N.

Example 2.28. Let H = L*(R) and define A : dom(A) — R by
dom(A) := C.(R), Af = f(0)

for f € C.(R) (the space of compactly supported continuous real valued
functions f : R — R). This linear functional is not closeable by Lemma [2.26]
because there exists a sequence of continuous functions f, : R — R with
compact support such that f,,(0) =1 and || fu||;2 < & for all n € N.

Exercise 2.29 (Linear Functionals). Let X be a real Banach space,
let Y C X be a linear subspace, and let A : Y — R be a linear functional.
Show that A is closeable if and only if A is bounded. Hint: Use the Hahn—
Banach Theorem (Corollary in Section [2.3| below.

Example 2.30 (Symmetric Operators). Let H be a Hilbert space and
let A:dom(A) — H be a linear operator, defined on a dense linear sub-
space dom(A) C H. Suppose A is symmetric, i.e.

(x, Ay) = (Az,y) for all z,y € dom(A). (2.18)

Then A is closeable. To see this, choose a sequence z, € dom(A) such
that lim,_, ||z,|| = 0 and the sequence Az, converges to an element y € H
as n tends to infinity. Then

(y,z) = lim (Az,, z) = lim (z,, Az) =0

n—oo n—oo

for all z € dom(A). Since dom(A) is a dense subspace of H, there exists a
sequence z; € dom(A) that converges to y as ¢ tends to infinity. Hence

Iyll* = (. y) = lim (y, ) = 0

and so y = 0. Thus A is closeable by Lemma [2.26]
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Example 2.31 (Differential Operators). This example shows that every
differentiable operator is closeable. Let €2 C R™ be a nonempty open set, fix
a constant 1 < p < oo, and consider the Banach space X := LP(§) (with
respect to the Lebesgue measure on 2). Then the space

dom(A) := C5°(Q)

of smooth functions v : 2 — R with compact support is a dense linear
subspace of LP(Q2) (see [50, Thm 4.15]). Let m € N and, for every multi-

index o = (g, ..., ) € N§ with |a| = a3+ -+ a, <m,let aq : @ - R
be a smooth function. Define the operator A : Cg°(Q2) — LP(Q2) by
Au = Z an,0%u, (2.19)
laj<m
where the sum runs over all multi-indices a = (o, ..., a,) € Nj with |a] <m

and 0% = aL‘ We prove that A is closeable.

x‘flmax?ﬁ"
To see this, define the constant 1 < ¢ < oo by 1/p+ 1/¢ = 1 and define
the formal adjoint of A as the operator B : C§°(§2) — L%(2), given by

Buv = Z (—1)9%(auv)

laf<m

for v € C§°(R™). Then integration by parts shows that

/Q v(Au) = /Q (Bv)u (2.20)

for all u, v € C§°(2). Now let u, € C§°(£2) be a sequence of smooth functions
with compact support and let v € LP(2) such that

lim g, =0, Jim [lo— Augll, = 0.

Then, for every test function ¢ € C5°(Q2), we have

k—o0

/ngﬁv = lim /Qqﬁ(Auk) = klg& Q(qu)uk = 0.

Since C§°(Q) is dense in L?(12), this implies that [, ¢v = 0 for all ¢ € LI(Q).
Now take ¢ := sign(v)|v[P~" € LI(Q) to obtain [,|v[’ = 0 and hence v
vanishes almost everywhere. Hence it follows from Lemma that the
linear operator A : C§°(2) — LP(2) is closeable as claimed.
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2.3 Hahn—Banach and Convexity

2.3.1 The Hahn—Banach Theorem

The Hahn—Banach theorem deals with bounded linear functionals on a sub-
space of a Banach space X and asserts that every such functional extends to
a bounded linear functional on all of X. This theorem continues to hold in
the more general setting where X is any real vector space and boundedness
is replaced by a bound relative to a given quasi-seminorm on X.

Definition 2.32 (Quasi-seminorm). Let X be a real vector space. A func-
tion p: X — R is called quasi-seminorm if it satisfies

plz+y) <plx)+ply),  pAzr) = Ap(z) (2.21)

for all x,y € X and all X\ > 0. It is called a seminorm if it is a quasi-
seminorm and p(Azx) = |A|p(x) for allx € X and all A € R. A seminorm has
nonnegative values, because 2p(x) = p(x) + p(—x) > p(0) =0 for all x € X.
Thus a seminorm satisfies all the axioms of a norm except nondegeneracy
(i.e. there may be nonzero elements x € X such that p(z) =0).

Theorem 2.33 (Hahn—Banach). Let X be a normed vector space and
let p: X = R be a quasi-seminorm. Let Y C X be a linear subspace and
let :Y = R be a linear functional such that ¢(x) < p(z) for all x €Y.
Then there exists a linear functional ® : X — R such that

Oy = ¢, O(x) < p(x) foralzeX.
Proof. See page (74l ]

Lemma 2.34. Let X, p, Y, and ¢ be as in Theorem . Let xg € X\ Y
and define Y' :=Y @ Rxq. Then there exists a linear functional ¢' : Y — R
such that ¢'ly = ¢ and ¢'(x) < p(zx) for allxz € Y'.

Proof. An extension ¢’ : Y’ — R of the linear functional ¢ : ¥ — R is
uniquely determined by its value a := ¢'(z9) € R on zy. This extension
satisfies the required condition ¢'(x) < p(z) for all z € Y if and only if

o(y) + Aa < ply + Axo) for all y € Y and all A € R. (2.22)
If this holds then

o(y) £a < ply £ xo) forally € Y. (2.23)
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Conversely, if (2.23) holds and A > 0, then

O(y) + Aa =X (¢(A'y) +a) < Ap(A 'y + 20) = p(y + Axo),

#y) — Aa = A (6(A"'y) —a) < Ap(A My — x0) = ply — Azo).
This shows that (2.22) is equivalent to (2.23]). Thus it remains to find a real
number a € R that satisfies (2.23)). Equivalently, a must satisfy

o(y) —ply —w0) <a<ply+mz) —oy) forallyeV. (2.24)

To see that such a number exists, fix two vectors y,y" € Y. Then

o(y) +o(y) = oy +v')
<ply+vy)
=ply +zo+y — x0)
< ply + o) + p(y' — z0).
Thus
oY) — p(y' — o) < p(y + 30) — O(y)

for all y,7' € Y and this implies

sup (¢(y') — p(y' — w0)) < inf (p(y + 20) — ¢(y)).

y'eY yeyY
Hence there exists of a real number a € R that satisfies (2.24)) and this proves
Lemma [2.34] O

Proof of Theorem [2.35. Define the set

Z is a linear subspace of X and
P =< (Z,)| V:Z — Ris a linear functional such that
Y CZ ¢y = ¢, and () < p(z) forall x € Z

This set is partially ordered by the relation

Zw) < (Z) £ ZcZand ;=9

for (Z,¢),(Z',¢'") € &. A chain in & is a totally ordered subset € C Z.
Every nonempty chain 4 C &2 has a supremum (Zy, 1)g) given by
Zo= |J 2, dola):=4¢() forall (Z,9) €€ andallx € Z.
(Zah)e?

Hence it follows from the Lemma of Zorn Lemma that &2 has a maximal
element (Z,1). By Lemma every such maximal element satisfies Z = X
and this proves Theorem [2.33 O
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A special case of the Hahn—-Banach theorem is where the quasi-seminorm p
is actually a norm. In this situation the Hahn-Banach theorem is an existence
result for bounded linear functionals on real and complex normed vector
spaces. It takes the following form.

Corollary 2.35 (Real Case). Let X be a normed vector space over R,
let Y C X be a linear subspace, let ¢ :Y — R be a linear functional, and
let ¢ > 0 such that |p(x)| < cl|z|| for allx € Y. Then there exists a bounded
linear functional ® : X — R such that

Dly = o, |(x)| < cllz]| forallx € X.

Proof. By Theorem with p(z) := c||z||, there exists a linear functional
® : X — R such that ®|y = ¢ and ®(z) < cljz| for all z € X. Since
O(—x) = —P(x) it follows that |[P(x)| < ¢||z| for all x € X and this proves
Corollary 2.35] O

Corollary 2.36 (Complex Case). Let X be a normed vector space over C,
let Y C X be a linear subspace, let ) :' Y — C be a complex linear functional,
and let ¢ > 0 such that |(z)| < c||z|| for all x € Y. Then there exists a
bounded complex linear functional ¥ : X — C such that

Uly =1, |V (z)| <cllz|| forallzeX.

Proof. By Corollary there exists a real linear functional ® : X — R such
that ®|x = Ret and |®(x)| < c||z]| for all x € X. Define ¥ : X — C by

U(x) = o(z) —iP(ix) for x € X.
Then ¥ : X — C is complex linear and, for all x € Y, we have
U(x) = ®(x)—id(iz)
= Re(¢(2)) — iRe(y(ix))
= Re(y(z)) —iRe(iy(z))
= Re(¢(2)) + ilm(¢(z))
= Y(z).

To prove the estimate, fix a vector x € X such that ¥(z) # 0 and choose a
real number # € R such that e = |¥(z)|™" ¥(z). Then

1T (z)] = e VW(z) = V(e 2) = B(e ) < c ||e_i9$H =c||z] .

Here the third equality follows from the fact that W(e7%z) is real. This
proves Corollary [2.36] ]
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2.3.2 Positive Linear Functionals

The Hahn—Banach Theorem has many important applications. The first is
an extension theorem for positive linear functionals on ordered vector spaces.
Recall that a partial order is a transitive, anti-symmetric, reflexive relation.

Definition 2.37 (Ordered Vector Space). An ordered vector space is
a pair (X, X), where X is a real vector space and <X is a partial order on X
that satisfies the following two axioms for all x,y,z € X and all X € R.

(01) If 0z and 0 < X then 0 < Ax.

(02) Ifr gy thenz+2<y+ 2.

In this situation the set P := {x € X |0 < z} is called the positive cone.
A linear functional ® : X — R is called positive if (x) > 0 for all x € P.

Theorem 2.38 (Hahn—Banach for Positive Linear Functionals).
Let (X, <) be an ordered vector space and let P C X be the positive cone.
Let Y C X be a linear subspace satisfying the following condition.

(O3) For each x € X there exists ay € Y such that x < y.

Let ¢ : Y — R be a positive linear functional, i.e. ¢(y) >0 for ally € Y NP.
Then there is a positive linear functional ® : X — R such that ®|y = ¢.
Proof. The proof has three steps.

Step 1. For every x € X the set {y € Y|z < y} is nonempty and the
restriction of ¢ to this set is bounded below.

Fix an element x € X. Then the set {y € Y |z < y} is nonempty by (O3).
It follows also from (O3) that there exists a yo € Y such that —z < —yo.
Thus we have yo < x by (02). If y € Y satisfies = < y, then yy < y and this
implies ¢(yo) < &(y), because ¢ is positive. This proves Step 1.

Step 2. By Step 1 the formula
p(x) =inf{op(y)|lyeY,x gy} forzeX (2.25)

defines a function p : X — R. This function is a quasi-seminorm and satis-
fies p(y) = ¢(y) for ally €Y.

Let 1,29 € X and € > 0. For ¢+ = 1,2 choose y; € Y such that z; < y;
and ¢(y;) < p(z;) + /2. Then x1 + x9 < @1 + y2 < Y1 + y2 by (02), and so

p(x1 +22) < Oy +y2) = d(y1) + d(y2) < p(z1) + p(z2) +e.
This implies p(x; + z2) < p(x1) + p(as) for all z1, 20 € X.
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Now let z € X and A > 0. Then {y e Y| \x <y} ={ \ylye Y,z <5y}
by (O1) and hence

p(Ar) = inf ¢(y) = inf ¢(Ay) = inf Ap(y) = Ap(z).
Az=y <y Ty
Moreoer p(0) = 0 by definition, and hence p is a quasi-seminnorm. The for-
mula p(y) = ¢(y) for y € Y follows directly from the definition of p in (2.25)
and this proves Step 2.

Step 3. We prove Theorem [2.38

By Step 2 and the Hahn—Banach Theorem there exists a linear func-
tional ® : X — R such that ®|y = ¢ and ®(z) < p(x) for all x € X. If
z € P then —z < 0 €Y, hence &(—z) < p(—z) <0, and so (x) > 0. This
proves Theorem [2.38] [

Exercise 2.39. Give a direct proof of Theorem [2.38 using the Lemma of
Zorn. Hint: If (X, X) is an ordered vector space, Y C X is a linear subspace
satisfying (O3), ¢ :' Y — R is a positive linear functional, and ro € X \'Y,
then there is a positive linear functional v : Y ®Rxo — R such that ¥|y = ¢.
To see this, find a real number a € R that satisfies the conditions

rosy = a<o@y)
and
Yy < o = o(y) <a
forally e Y.
Exercise 2.40. This exercise shows that the assumption (O3) cannot be

removed in Theorem [2.38] The space X := BC(R) of bounded continuous
real valued functions on R is an ordered vector space with

def
<

=g f(t) <g(t) forallteR.

The subspace Y := C.(R) of compactly supported continuous functions does
not satisfy (O3) and the positive linear functional

C’C(R)—>R:fr—>/oo f(t)dt

does not extend to a positive linear functional on BC(R). Hint: Every
positive linear functional on BC(R) is bounded with respect to the sup-norm.
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2.3.3 Separation of Convex Sets

The second application of the Hahn-Banach theorem concerns a pair of dis-
joint convex sets in a normed vector space. They can be separated by a
hyperplane whenever one of them has nonempty interior (see Figure .
The result and its proof carry over to general topological vector spaces (see

Theorem below).

Figure 2.1: Two convex sets, separated by a hyperplane.

Theorem 2.41 (Separation of Convex Sets). Let X be a real normed
vector space and let A, B C X be nonempty disjoint convex sets such that
int(A) # 0. Then there is a nonzero bounded linear functional A : X — R
and a ¢ € R such that A(xz) > ¢ for all x € A and A(x) < ¢ for all x € B.
Every such functional satisfies A(x) > ¢ for all x € int(A).

Proof. See page 79, m

Exercise 2.42. This exercise shows that the hypothesis that one of the con-
vex sets has nonempty interior cannot be removed in Theorem [2.41] Consider
the Hilbert space H = ¢? and define

dneNVieN
A::{xefz i<n — xi>0},B::{x€€2

Show that A, B are nonempty disjoint convex subsets of £? with empty inte-
rior whose closures agree. If A : 2 — R is a bounded linear functional and ¢
is a real number such that A(z) > cfor allz € A and A(x) < cforall z € B,
show that A =0 and ¢ = 0.

Exercise 2.43. Define A := {x € *|x; =0 for i > 1} and
B:={z = ()2, € R"||iz; — i3] <y for all i > 1} c

Show that A, B are nonempty disjoint closed convex subsets of #2 and A — B
is dense in ¢2. Deduce that A, B cannot be separated by an affine hyperplane.

1<n = x; =0
1>n = x; >0

neNVieN }
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Lemma 2.44. Let X be a normed vector space and let A C X be a convex
set. Thenint(A) and A are convex. Moreover, if int(A) # () then A C int(A).

Proof. The proof of convexity of int(A) and A is left as an exercise (see also
Lemma [3.10). Let zy € int(A) and choose § > 0 such that Bs(zo) C A. If
x € A, then the set U, := {tx + (1 —t)y |y € Bs(zo), 0 <t < 1} C Ais open
and hence x € U, C int(4). O

Lemma 2.45. Let X be a normed vector space, let A C X be a conver set
with nonempty interior, let A : X — R be a nonzero bounded linear func-
tional, and let ¢ € R such that A(x) > ¢ for all x € int(A). Then A(z) > ¢
for all z € A and A(z) > ¢ for all x € int(A).

Proof. Since A is convex and has nonempty interior, we have A C int(A) by
Lemma [2.44] and so A(z) > ¢ for all z € A because A is continuous. Now
let = € int(A), choose zy € X such that A(zg) =1, and choose ¢t > 0 such
that x —txg € A. Then A(z) =t + Az —tzg) > t+c>c. O

Proof of Theorem (2.41. The proof has three steps.

Step 1. Let X be a real normed vector space, let U C X be a nonempty
open convex set such that 0 ¢ U, and define P := {tx|x € U, t € R, t > 0}.
Then P is a convex subset of X and satisfies the following.

(P1) If x € P and A > 0 then \x € P.

(P2) If x,y € P thenx+y € P.

(P3) Ifx € P and —x € P then x = 0.

If 2,y € P\ {0} choose xo,xl 6 U and tg,t; > 0 such that z = tgzy and
y = t121; then 2 : = (ty +1t1)z € P.
This proves (P2). That P satlsﬁes (P1) is obvious and that it satisfies (P3)
follows from the fact that 0 ¢ U. By (P1) and (P2) the set P is convex.

Step 2. Let X and U be as in Step 1. Then there exists a bounded linear
functional A : X — R such that A(x) >0 for allz € U.

Let P be as in Step 1. Then it follows from (P1), (P2), (P3) that the relation

f
Ty &L y—x€bP

defines a partial order < on X that satisfies (O1) and (02).
Let xy € U. Then the linear subspace Y := Rz, satisfies (O3). Namely,
if x € X then xp — tx € U C P for t > 0 sufficiently small and so z <t xy.
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Moreover, the linear functional Y — R : tz +— t is positive by (P3). Hence,
by Theorem [2.38] there is a linear functional A : X — R such that A(tzg) = ¢
for all t € R and A(z) > 0 for all z € P. We prove that this functional is
bounded. Choose 6 > 0 such that Bs(zy) C P, and let € X with ||z| < 1.
Then ¢ — dx € P, hence A(zg — dz) > 0, and hence A(z) < 6 'A(zg) =61
Thus |[A(z)] <67 ||z| for all z € X. Since U C P, we have A(z) >0 for
all z € U, and so A(z) > 0 for all z € U by Lemma [2.45]

Step 3 We prove Theorem (2.4 1]

Let X, A, B be as in Theorem [2.41] Then U := int(4) — B is a nonempty
open convex set and 0 ¢ U. Hence, by Step 2, there exists a bounded linear
functional A : X — R such that A(x) > 0 for all z € U. Thus A(z) > A(y)
for all x € int(A) and all y € B. This implies A(z) > ¢ 1= sup,5 A(y) for
all z € int(A). Hence A(z) > ¢ for all z € A and A(z) > ¢ for all = € int(A)
by Lemma [2.45, This proves Theorem [2.41] O]

Definition 2.46 (Hyperplane). Let X be a real normed vector space. A
hyperplane in X is a closed linear subspace of codimension one. An affine
hyperplane is a translate of a hyperplane.

Exercise 2.47. Show that H C X is an affine hyperplane if and only if
there exists a nonzero bounded linear functional A : X — R and a real num-
ber ¢ € R such that H = A~!(c).

Let X, A, B,A,c be as in Theorem [2.41 Then H := A~!(c) is an affine
hyperplane that separates the convex sets A and B. It divides X into two
connected components such that the interior of A is contained in one of them
and B is contained in the closure of the other.

Corollary 2.48. Let X be a real Banach space and let A C X be an open
convex set such that 0 ¢ A. Let Y C X be a linear subspace such that
Y NA=0. Then there is a hyperplane H C X such that

YCH  HNA=.

Proof. Assume without loss of generality that Y is closed, consider the quo-
tient X’ := X/Y, and denote by m : X — X’ the obvious projection. Then 7
is open by Theorem so A’ :=7(A) C X’ is an open convex set that does
not contain the origin. Hence Theorem [2.41] asserts that there is a bounded
linear functional A’ : X’ — R such that A’(z') > 0 for all 2/ € A’. Hence
A:=Aorm: X — Ris a bounded linear functional such that ¥ C ker(A)
and A(xz) > 0 for all z € A. So H := ker(A) is the required hyperplane. [
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Corollary 2.49. Let X be a real normed vector space and let A C X be a
nonempty open convex set. Then A is the intersection of all open half-spaces
containing A. (An open half-space is a set of the form {z € X | A(z) > ¢}
where A : X — R is a nonzero bounded linear functional and c € R.)

Proof. Let y € X \ A. Then, by Theorem with B = {y}, there is a
A € X* and a ¢ € R such that A(z) > ¢ for all x € A and A(y) < c¢. Hence
there is an open half-space containing A but not y. ]

Corollary 2.50. Let X be a real normed vector space and let A, B C X be
disjoint nonempty convex sets such that A is closed and B is compact. Then
there exists a bounded linear functional A : X — R such that

inf A(z) > sup A(y).
Inf Ax) > sup Ay)

Proof. We prove first that

0:= inf — > 0.
xeglyEBllx yll
Choose sequences z,, € A and y, € B such that lim, . ||z, — y.|| = 9.

Since B is compact, we may assume, by passing to a subsequence if necessary,
that the sequence (y,)nen converges to an element y € B. If 6 = 0 it would
follow that the sequence (z, — yn)neny converges to zero, so the sequence
Ty = Yn + (T, — yn) converges to y, and so y € A, because A is closed,
contradicting the fact that AN B = (. Thus § > 0 as claimed. Hence

U= Bs(x)
€A
is an open convex set that contains A and is disjoint from B. Thus, by
Theorem [2.41], there is a bounded linear functional A : X — R such that

A(x) > c:=supA(y) for all z € U.
yeB

Choose £ € X such that [[£]] < ¢ and € := A(§) > 0. Then every z € A
satisfies v — £ € U and hence

Az)—e=ANz—-¢&) >c
This proves Corollary [2.50} ]

Exercise 2.51. Let X be a real normed vector space and let A C X be a
nonempty convex set. Prove that A is the intersection of all closed half-spaces
of X containing A.
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2.3.4 The Closure of a Linear Subspace

The third application of the Hahn—Banach Theorem is a characterization of
the closure of a linear subspace of a real normed vector space X. Recall that
the dual space of X is the space

X* = L(X,R)

of real valued bounded linear functionals on X. At this point it is convenient
to introduce an alternative notation for the elements of the dual space. De-
note a bounded linear functional on X by x* : X — R and denote the value
of this linear functional on an element z € X by

(x* ) = x*(x).

This notation is reminiscent of the inner product on a Hilbert space and
there are in fact many parallels between the pairing

X*x X =5 R: (2% 2) — (¥, x) (2.26)

and inner products on Hilbert spaces. Recall that X* is a Banach space with
respect to the norm

. ¥, )
[z*|| :== sup
zeX\{0} ||$||

(see Theorem [1.31]). Tt follows directly from ([2.27) that
(=%, 2)| < [l=7[ || (2.28)

for z* € X~ (2.27)

for all z* € X* and all x € X, in analogy to the Cauchy—Schwarz inequality.
Hence the pairing (2.26)) is continuous by Corollary 2.7

Definition 2.52 (Annihilator). Let X be a real normed vector space. For
any subset S C X define the annihilator of S as the space of bounded linear
functionals on X that vanish on S and denote it by

Sti={a" € X*|(z*,2) =0 for allz € S}. (2.29)

Since the pairing ([2.26)) is continuous, the annihilator St is a closed linear
subspace of X* for every subset S C X. As before, the closure of a subset
Y C X is denoted by Y.
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Theorem 2.53. Let X be a real normed vector space, let Y C X be a linear
subspace, and let xy € X \'Y. Then

§:=d(zo,Y):= ;g£ |zo —yl| >0 (2.30)

and there exists a bounded linear functional x* € Y+ such that
l*|| =1, (x*,z9) = 0.

Proof. We prove first that the number ¢ in is positive. Suppose by
contradiction that 6 = 0. Then, by the axiom of countable choice, there
exists a sequence (Y, )nen in Y such that ||zg — y,|| < 1/n for all n € N. This
implies that 7, converges to x, and hence 2y € Y, in contradiction to our
assumption. This shows that § > 0 as claimed.

Now define the subspace Z C X by

Z:=Y ®Rag={y+tzg|yeY, tcR}
and define the linear functional ¥ : Z — R by
Uy + txg) := Ot forye Y and t € R.

This functional is well defined because zo ¢ Y. It satisfies ¢(y) =0 for
all y € Y and ¢ () = §. Moreover, if y € Y and t € R\ {0}, then

[y +txo)| _ Jt]0 0

= = <1.
ly +txoll  ly +txoll [ty + ol ~

Here the last inequality follows from the definition of 9. With this under-
stood, it follows from Corollary that there exists a bounded linear func-
tional z* € X™* such that

l*|| <1, (x* ) = Y(z) for all x € Z.

The norm of x* is actually equal to one because

¥ (0 + y)] 9]

o) > sup LEEIN gy 1L
sy Two+yll — yer Two + 9l

by definition of . Moreover,
<SE*7:CO> = T/J(xo) = 57 <£IZ'*, y> = ¢(Z/) =0 for all Yy e Y.
This proves Theorem [2.53] O
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Corollary 2.54. Let X be a real normed vector space and let xy € X \ {0}.
Then there exists a bounded linear functional x* € X* such that

[l =1, (2" x0) = [lzoll -
Proof. This follows directly from Theorem with Y := {0}. O

The next corollary characterizes the closure of a linear subspace and gives
rise to a criterion for a linear subspace to be dense.

Corollary 2.55 (Closure of a Linear Subspace). Let X be a real normed
vector space, let' Y C X be a linear subspace, and let x € X. Then

reY — (x*,2) =0 for all v* € Y+,

Proof. If z € Y and z* € Y then there is a sequence (Yn)nen in Y that
converges to x and so (x*,z) = lim, (2", y,) = 0. If x ¢ Y then there is

an element z* € Y+ such that (z*,z) > 0 by Theorem [2.53] O

Corollary 2.56 (Dense Linear Subspaces). Let X be a real normed vector
space and let Y C X be a linear subspace. Then'Y is dense in X if and only
if Y+ = {0}.

Proof. Tt follows from Corollary that Y = X if and only if (z*,2) =0
for all z* € Y+ and all x € X, and this is equivalent to Y+ = {0}. O

The next corollary asserts that the dual space of a quotient is a subspace
of the dual space and the dual space of a subspace is a quotient of the dual
space.

Corollary 2.57 (Dual Spaces of Subspaces and Quotients). Let X be
a real normed vector space and let Y C X be a linear subspace. Then the
following holds

(i) The linear map
XYt =Y [2f] = 2ty (2.31)

1s an isometric isomorphism.

(i) Assume Y 1is closed and let m : X — X/Y be the canonical projection,
given by w(x) :=x +Y for x € X. Then the linear map

(X/)Y) =Y : A= Aon (2.32)

1s an isometric isomorphism.
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Proof. We prove part (i). The linear map

X" =Y ' oty
vanishes on Y+ and hence descends to the quotient X*/Y+. The resulting
map ([2.31) is injective by definition. Now fix any bounded linear functional
y* € Y*. Then Corollary asserts that there is a bounded linear functional
x* € X* such that

=y, =1yl
Moreover, if £&* € X* is any other bounded linear functional such that
& ly =y*, then ||€*|| > ||y*]] = ||z*||. Hence z* minimizes the norm among

all bounded linear functionals on X that restrict to y* on Y. Thus
lz* + Y ey = N2l = [ly* I

and this shows that the map (2.31)) is an isometric isomorphism.

We prove part (ii). Fix a bounded linear functional A : X/Y — R and
define * := Aomw : X — R. Then z* is a bounded linear functional on X
and x*|y = 0. Thus z* € Y. Conversely, fix an element z* € Y. Then z*
vanishes on Y and hence descends to unique linear map A : X/Y — R such
that A o = 2*. To prove that A is bounded, observe that

Az +Y) =" z) ="z +y) < |z"|| [z +yl
for all z € X and all y € Y, hence

(Al +Y)| < [l2*]| inf [l +yl| = [[=*[| [z + Y] )y
yey

for all x € X, and hence ||A|| < ||z*||. Conversely

(@7, 2) = Mo +Y) < [|Al[llz + Yl <IA]ll2]
for all z € X and so ||z*|| < ||A||. Hence the linear map (2.32)) is an isometric
isomorphism. This proves Corollary [2.57] ]

Corollary 2.58. Let X be a real normed vector space and let' Y C X be a

closed linear subspace. Then
inf ||z"+&7|| = sup & y) for all z* € X* (2.33)
ey yeyY\{0} H?JH

and

; (2%, x)
[z*]| = sup -
z€X\Y infyey |z + vyl

Proof. This follows directly from Corollary [2.57] O

forallz* € Y*. (2.34)
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2.3.5 Complemented Subspaces

A familiar observation in linear algebra is that, for every subspace Y C X
of a finite-dimensional vector space X, there exists another subspace Z C X
such that X =Y & Z. This continues to hold for infinite-dimensional vector
spaces. However, it does not hold, in general, for closed subspaces of normed
vector spaces. Here is the relevant definition.

Definition 2.59 (Complemented Subspace). Let X be a real normed
vector space. A closed subspace Y C X is called complemented if there
exists a closed subspace Z C X such that Y NZ ={0} and X =Y & Z. A
bounded linear operator P : X — X s called a projection if P?> = P.

Exercise 2.60. Let X be a Banach space and let Y C X be closed linear
subspace and let 7 : X — X/Y be the canonical projection. (Warning:
The term projection is used here with two different meanings.) Prove that
the following are equivalent.

(i) Y is complemented.

(ii) There is a projection P : X — X such that im(P) =Y.

(iii) There is a bounded linear operator 7" : X/Y — X such that 7 o T = id.
(The operator T, if it exists, is called a right inverse of 7.)

Hint: For (i) = (ii) use Corollary [2.16] For (ii) = (i) define Z := ker(P).
For (ii) = (iii) define T'[z] := x — Px. For (iii) = (ii) define P := 1—-To.
Lemma 2.61. Let X be a normed vector space and let Y C X be a closed
linear subspace such that dim(Y) < oo or dim(X/Y) < oco. Then Y is
complemented.

Proof. First assume n := dim(X/Y) < oo and choose vectors x,...,z, € X
whose equivalence classes [z;] := z; + Y form a basis of X/Y. Then the
linear subspace Z := span{xy,...,z,} is closed by Corollary and satis-
fies X =Y @ Z. Now assume n := dimY < oo and choose a basis z1,...,x,
of Y. By the Hahn-Banach Theorem (Corollary there exist bounded
linear functionals x7j,...,z} € X* that satisfy (z},z;) = d;;. Then the sub-

space Z :={z € X |(zf,z) =0fori=1,...,n} is a closed by Theorem [I.17]
and satisfies X =Y & Z, because x — Y . (¢}, x)x; € Z forallz € X. [

There are examples of closed subspaces of infinite-dimensional Banach
spaces that are not complemented. The simplest such example is the sub-
space c¢g C ¢°°. Phillips’ Lemma asserts that it is not complemented. The
proof is outlined in Exercise below.
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2.3.6 Orthonormal Bases

Definition 2.62. Let H be an infinite-dimensional Hilbert space over R. A
sequence (e;)ien in H is called a (countable) orthonormal basis if

s ) dfi=, o
(€i,€j) = 65 = { 0. ifits foralli,j € N, (2.35)
r€ H, (e,z)=0 forallieN — x = 0. (2.36)

If (e;)ien 1s an orthonormal basis, then (2.35|) implies that the e; are linearly
independent and (2.36)) asserts that the set E := span({e; |i € N}) is a dense

linear subspace of H (Corollary[2.50)).

Exercise 2.63. Show that an infinite-dimensional Hilbert space H admits a
countable orthonormal basis if and only if it is separable. Hint: Assume H
is separable. Choose a dense sequence, construct a linearly independent
subsequence spanning a dense subspace, and use Gram-Schmidt.

Exercise 2.64. Let H be a separable Hilbert space and let {e;};en be an
orthonormal basis. Prove that the map (2 — H : z = (2;)ien = 20y Ti€i
is well defined (i.e. &, :== Y ", 2;¢; is a Cauchy sequence in H for all z € (?)
and defines a Hilbert space isometry. Deduce that
=Y (e,x)er,  |a|* =D (ez)*> forallz € H. (2.37)
i=1 =1
Example 2.65. The ¢; := (8;j)jen, ¢ € N, form an orthonormal basis of ¢2.

Example 2.66 (Fourier Series). The functions ey(t) = e** k € Z,
form an orthonormal basis of the complex Hilbert space L*(R/Z,C). It is
equipped with the complex valued Hermitian inner product

(f,9) ::/0 F(t)g(t) dt for f,g € L*(R/Z,C), (2.38)

that is complex anti-linear in the first variable and complex linear in the
second variable. To verify completeness, one can fix a continuous function
[ :R/Z — C, define f, := > ;_  (ex, f)ex for n € Ny, and prove that the
sequence n~(fo+ fi+- -+ fn_1) converges uniformly to f (Fejér’'s Theorem).

Example 2.67. The functions s,(t) := v/2sin(nnt), n € N, form an or-
thonormal basis of L?([0,1]) and so do the the functions cy(t) := 1 and
cn(t) := V2cos(mnt), n € N. Exercise: Use completeness in Example m
to verify the completeness axiom for these two orthonormal bases.
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2.4 Reflexive Banach Spaces

2.4.1 The Bidual Space

Let X be a real normed vector space. The bidual space of X is the dual
space of the dual space and is denoted by

X* = (X*) = L(X",R).

There is a natural map ¢ = tx : X — X** which assigns to every element
x € X the linear functional ¢(z) : X* — R whose value at 2* is obtained by
evaluating the bounded linear functional x* : X — R at the point x € X.
Thus the map ¢ : X — X** is defined by

vx)(z") == (x, x) (2.39)
for v € X and z* € X*. It is a consequence of the Hahn—Banach Theorem
that the linear map ¢ : X — X** is an isometric embedding.

Lemma 2.68. Let X be a real normed vector space. Then the linear map
t: X — X* is an isometric embedding. In particular, for every x € X,

¥, T

ol = sup L2,
ex\{oy 17|

Proof. That the map ¢ : X — X™ is linear follows directly from the defi-

nition. To prove that it preserves the norm, fix a nonzero vector xy € X.
Then, by Corollary [2.54] there exists a bounded linear functional zj € X*

(2.40)

such that ||zj|| = 1 and (zf, o) = ||zo||. Hence
| (5, o) (2", 20)|
lzoll = =7 < llelzo)| = sup 7 < ol
5 ex\foy [l

Here the last inequality follows from (2.28)). This proves Lemma [2.68| O

Corollary 2.69. Let X be a real normed vector space and let Y C X be a
closed linear subspace. Then, for every x € X,

. o
inf |x+y||= sup I - >|
yey z*eY1\{0} |||

(2.41)

Proof. The left hand side of equation (2.41)) is the norm of the equivalence
class [z] = z + Y in the quotient space X/Y. The right hand side is the
norm of the bounded linear functional vx/y(z+Y) : (X/Y)* =Y+ — R (see

Corollary [2.57)). Hence equation ([2.41]) follows from Lemma with X
replaced by X/Y. This proves Corollary [2.69] O
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2.4.2 Reflexive Banach Spaces

Definition 2.70 (Reflexive Banach Space). A real normed vector space
X s called reflexive if the isometric embedding ¢ : X — X** in 1S
bijective. A reflexive normed vector space is necessarily complete by Theo-
rem [L.71.

Theorem 2.71. Let X be a Banach space. Then the following holds.

(1) X s reflezive if and only if X* is reflexive.

(i) If X is reflexive and Y C X is a closed linear subspace, then the sub-
space Y and the quotient space XY are reflexive.

Proof. We prove part (i). Assume X is reflexive and let A : X** — R be a
bounded linear functional. Define

¥ =Aoi1: X = R,
where ¢+ = 1, : X — X™ is the isometric embedding in (2.39)). Since X

is reflexive, this map ¢ is bijective. Fix an element x** € X** and define
x:= (") € X. Then
Ax™)=Aou(x) = (x%,z) = (1(x),z") = (™, z").

Here the first and last equation follow from the fact that x** = i(x), the
second equation follows from the definition of x* = A o, and the third
equation follows from the definition of the map ¢ in (2.39). This shows that

A = ix(z")

where tx+ : X* — X** is the isometric embedding in with X replaced
by X*. This shows that the dual space X* is reflexive.

Conversely, assume X* is reflexive. The subspace ¢(X) of X** is complete
by Lemma and is therefore closed. We prove that «(X) is a dense
subspace of X**. To see this, let A : X*™ — R be any bounded linear
functional on X™** that vanishes on the image of ¢, so that Aot = 0. Since X*
is reflexive, there exists an element z* € X™* such that

for every x** € X**. Since A ot = 0, this implies
(z%,2) = (u(x),2") = A((x)) =0

for all x € X, hence * = 0, and hence A = 0. Thus the annihilator of
the linear subspace ¢«(X) C X** is zero, and so ¢(X) is dense in X** by
Corollary [2.561 Hence +(X) = X** and this proves part (i).
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We prove part (ii). Assume X is reflexive and let Y C X be a closed
linear subspace. We prove first that Y is reflexive. Define the linear operator

m: X" =Y*

by
m(x*) == x|y for ¥ € X™.

Fix an element y** € Y** and define x** € X** by
¥ =yTom: X" = R.
Since X is reflexive, there exists a unique element y € X such that
ix(y) =

Every element z* € Y satisfies 7(z*) = 0 and hence

—~

(", y) ex(y), =)

™ x)

—~

*k

y*rom x*)

i
O~ /=

In other words, (z*,y) = 0 for all z* € Y+ and so y € Y = Y by Corol-
lary 2.55l Now fix any element y* € Y*. Then Corollary asserts that
there exists an element z* € X* such that y* = 2*|y = 7(2*) and so

ko

y, ("))
")
t(y), «7)

™,y

S
S

)
* >‘

<
<

Hence vy (y) = y™. Since y** € Y** was chosen arbitrary, this proves that YV
is reflexive.
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We prove that the quotient space
Z=X/Y
is reflexive. Denote by m: X — X/Y the canonical projection given by
m(x):=[z]=2x+Y forz e X
and define the linear operator T : Z* — Y+ by
Tz =z"om: X =Y for z* € Z*.

Note that Tz* € Y+ because (T2*)(y) = 2*(w(y)) = 0 for all y € Y. More-
over, T is an isometric isomorphism by Corollary [2.57

Now fix an element z** € Z**. then the map z™ oT7! : Y+ — R is
a bounded linear functional on a linear subspace of X*. Hence, by Corol-
lary there exists a bounded linear functional x** : X* — R such that

(™, 2*) = (27, T 1o*) for all z* € Y.
This condition on x** can be expressed in the form

(™, 2" o) = (2™, 2%) for all z* € Z*.

Since X is reflexive, there exists an element = € X such that tx(z) = x**.

Define
z:=z] =m(x) € Z.

Then, for all z* € Z*, we have

kk

(z,2") = (2™, z"om)

t(x),z" o)

2, m(x))

*

2% z).

(
= < o
= ("om 1)
(
(

This shows that tz(z) = 2**. Since z** € Z** was chosen arbitray, it follows
that Z is reflexive. This proves Theorem [2.71] O]
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Example 2.72. (i) Every finite-dimensional normed vector space X is re-
flexive, because dim X = dim X* = dim X** (see Corollary |1.24]).

(ii) Every Hilbert space H is reflexive by Theorem [1.43] Exercise: The
composition of the isomorphisms H = H* = H** is the map in ([2.39)).

(iii) Let (M, A, 1) be a measure space and let 1 < p,q < oo such that
1/p+1/q=1. Then LP(u)* = L9(p) (Example and hence the Banach
space LP(u) is reflexive. Exercise: The composition of the isomorphisms
LP(p) = L9(p)* = LP(u)™ is the map in (2.39).

(iv) Let ¢g C € be the subspace of sequences z = (z;);ey of real numbers
that converge to zero, equipped with the supremum norm. Then the map
0t — ¢y — Ay, which assigns to every summable sequence y = (y;)ien € '
the bounded linear functional A, : ¢g — R given by Ay(x) := > o2, zy; for
T = (x;);en € co, is a Banach space isometry (see Example[1.36]). Hence cj* &
(01)* =2 ¢ (see Example [1.35)), and therefore ¢y is not reflexive. Exercise:
The composition of the isometric embedding ¢ : ¢y — ¢ in with the
Banach space isometry cj* = ¢*° is the canonical inclusion.

(v) The Banach space ¢! is not reflexive. To see this, denote by ¢ C ¢
the space of Cauchy sequences of real numbers and consider the bounded
linear functional that assigns to each Cauchy sequence x = (x;);eny € c its
limit lim;_,, x;. By the Hahn—-Banach Theorem this functional extends to a
bounded linear functional A : (> — R (see Corollary , which does not
belong to the image of the inclusion ¢ : £1 — (£1)*™ = (£>°)*.

(vi) Let (M, d) be a compact metric space and let X = C'(M) be the Banach
space of continuous real valued functions on M equipped with the supremum
norm (see part (v) of Example [1.3). Suppose M is an infinite set. Then
C(M) is not reflexive. To see this, let A = {ay,a,...} C M be a countably
infinite subset such that (a;);en is a Cauchy sequence and a; # a; for i # j.
Then Ca(M) = {f € C(M)| fla =0} is a closed linear subspace of M,
and the quotient C'(M)/C4(M) is isometrically isomorphic to the space ¢ of
Cauchy sequences of real numbers via C(M)/Ca(M) — c: [f] — (f(a:))2;.
Theorem [2.71|shows that ¢ is not reflexive, because the closed subspace ¢y C ¢
is not reflexive by (iv) above. Hence the quotient space C'(M)/C4(M) is not
reflexive, and hence C'(M) is not reflexive, by Theorem

(vii) The dual space of the space C'(M) in (vi) is isomorphic to the Banach
space M(M) of signed Borel measures on M (see Example [1.37)). Since
C(M) is not reflexive, neither is the space M (M) by Theorem [2.71]
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2.4.3 Separable Banach Spaces

Recall that a normed vector space is called separable if it contains a count-
able dense subset (see Definition . Thus a Banach space X is separable
if and only if there exists a sequence eq, eg,€3,... in X such that the linear
subspace of all (finite) linear combinations of the e; is dense in X. If such a
sequence exists, the required countable dense subset can be constructed as
the set of all rational linear combinations of the e;.

Theorem 2.73. Let X be a normed vector space. Then the following holds.
(i) If X* is separable then X is separable.
(ii) If X is reflexive and separable then X* is separable.

Proof. We prove part (i). Thus assume X* is separable and choose a dense
sequence (z});eny in X*. Choose a sequence x; € X such that

1
|z = 1, (xf,2;) > 3 [ for all i € N.

Let Y C X be the linear subspace of all finite linear combinations of the z;.
We prove that Y is dense in X. To see this, fix any element z* € Y*. Then

there is a sequence 7 € N such that lim;_ ., ‘ z* —aj || = 0. This implies
< 2||zf, — 2| i || = 2|2, — 2

The last term on the right converges to zero as k tends to infinity, and hence
2* = limy o 7, = 0. This shows that Y+ = {0}. Hence Y is dense in X by
Corollary and this proves part (i). If X is reflexive and separable then
X** is separable, and so X* is separable by (i). This proves part (ii) and
Theorem [2.73 O

Example 2.74. (i) Finite-dimensional normed vector spaces are separable.
(ii) The space 7 is separable for 1 < p < oo, and (£!)* = (> is not separable.
The subspace ¢y C £° of all sequences that converge to zero is separable.
(iii) Let M be a second countable locally compact Hausdorff space, denote
by B C 2M its Borel o-algebra, and let p : B — [0,00] be a locally finite
Borel measure. Then the space LP(u) is separable for 1 < p < oo. (See for
example [50, Thm 4.13].)

(iv) Let (M, d) be a compact metric space. Then the Banach space C'(M) of
continuous functions with the supremum norm is separable. Its dual space
M(M) of signed Borel measures is in general not separable.
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2.4.4 The James Space

In 1950 Robert C. James [23 24] discovered a remarkable example of a
non-reflexive Banach space J that is isometrically isomorphic to its bidual
space J**. In this example the image of the canonical isometric embedding
t:J — J™in is a closed subspace of codimension one. Our exposition
follows Megginson [38].

Recall that ¢y C £°° is the Banach space of all sequences (;);cny € RY
that converge to zero, equipped with the supremum norm ||z ||o := sup;ey |
for © = (2;)ieny € co. By Example the dual space of ¢ is isomorphic
to the space ¢! of absolutely summable sequences of real numbers with
the norm ||z||; := Y02 |:] for = (z;);en € ¢'. Recall also that €% is the
Hilbert space of all square summable sequences of real numbers with the
norm ||zl := (Z;’Z1|mi|2)l/2 for & = (z;)sen € (2.

Definition 2.75 (The James Space).

Let P C 2N be the collection of all nonempty finite subsets of N and write the
elements of P in the form p = (p1,p2,...,pk) with 1 < p; < pg < +-+ < py.
For each p = (p1,p2,-..,pr) € P and each sequence x = (z;);en of real
numbers define the number ||z||, € [0,00) by ||z]|p := 0 when k =1 and by

k—1
1 2 2
“pr = 5 <Z ’xpj - xpj+1| + |ka - xp1| ) (2‘42)
j=1

when k > 2. The James space is the normed vector space defined by

J = {[L’ € co| sup [z, < oo} (2.43)
PEP

and

]l ; := sup [, (2.44)
PEP
forx e J.
Before moving on to the main result of this section (Theorem [2.81)) we

explore some of the basic properties of the James space. This is the content
of the next five lemmas.



2.4. REFLEXIVE BANACH SPACES 95

Lemma 2.76. The set J in (2.43) is a linear subspace of cy and ||-||; is a
norm on J. With this norm J is a Banach space. Moreover,

|zl < llzll; < V212l for all z € c, (2.45)
and thus (> C J C c.

Proof. By definition, we have ||z +y[[; < [|z[; + |ly|l; and [[Az||; = [Al||=]|s
for all z,y € ¢y and all A € R. Hence J is a linear subspace of ¢.

We prove (2.45)). To prove the first inequality in let p=(i,7) € P.
Then |z; — zj| = ||z||p < ||z||s for all € ¢y and all 7,5 € N with ¢ < j.
Hence |z;| = lim;_o0|z; — x| < ||z||; for all z € ¢y and all i € N. Now fix
any element p = (p1,pa,...,pr) € P. Then

k—1
212 = 53" Jay, = @y, [P+ = 2, — 3l
P 2 by Pj+1 2 Pk p1
j=1
k—1 k—1
2 2 2 2
< |$Pj’ +Z|$Pj+1| +|xpk| +|xp1|
j=1 j=1

k
=23 |a,|* < 2]z
Jj=1

for all # € ¢y. Take the supremum over all p € P to obtain ||z||; < v2||z|..
This proves . By there are natural inclusions ¢ C J C ¢y. More-
over, it follows from that ||z||; # 0 for every z € J\ {0} and so
(J,||-|l7) is a normed vector space.

We prove that J is complete. Let (z,),eny be a Cauchy sequence in J.
Then (||, ||s)nen is a Cauchy sequence in R, so the limit C' := lim,, o ||2x]|
exists. Moreover, (z,)nen 18 @ Cauchy sequence in ¢y by and hence
converges in the supremum norm to an element x € ¢y. Thus

lelly = Jim [lzall, < lim o], = C

for all p € P. Take the supremum over all p € P to obtain z € J. We must
prove that lim,,_,||x, — z||; = 0. To see this, fix a number € > 0 and choose
an integer ng € N such that ||z, —z,,||; < /2 for all integers m,n > ny. Then
|2n — 2||p = liMpsoo |70 — Zm|lp < SUPspo |70 — Zm|ls < €/2 for all p € P
and all n > ng. Hence ||z, — z||; = supyep |7, — 2|, < €/2 < ¢ for every
integer n > ng. This shows that lim,, .||z, — z||; = 0 and completes the
proof of Lemma [2.76] O
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The next goal is to prove that ¢? is dense in J. For this it is convenient to
introduce another norm on J. For each sequence x = (x;);en of real numbers
and each p = (p1,ps; ..., pxr) € P define [[z|[|, := |z,,| in the case k=1 and

k—1
1 9 2 2
el = 5(1%\ 3 [, = a0 +|xpkr) (2.4

j=1

in the case k > 2. Denote the supremum of these numbers over all p € P by
llzlll ; := sup (=[], (2.47)
peP

This is a norm on J that is equivalent to ||-||;. Care must be taken. The
second estimate in (2.48]) below holds for 2 € ¢y but not for all x € ¢°°.

Lemma 2.77. Every x € cq satisfies the inequalities

1
7 el < Ml < flll - (2.48)
Moreover, the function J — [0,00) : & — |||z||; is a norm.

Proof. Let x € ¢y and p = (p1,...,pr) € P. Then

k
2 2
Z |$pj - xijrl‘ + ‘xpk - xpll

j=1

DN | —

2
2l =

2 2 2
}'Z'Pj - xpj+1’ + |$pk‘ + meH

E

j=1
2
= 2[5 < 2[l,-

Take the supremum over all p € P to obtain the inequality ||z||, < V2| z||,-
Now define q,, := (p1, - - ., px, n) for every integer n > p;. Then

k
1 2
2 2 2
|||xH|p = 9 (Z “r’Pj - CCPj-s—l’ + |xpk| + |xp1| )

j=1

k
o1 2 2 2
= lim - (Z |xpj - xpj-!—l‘ + |xpk _pnl + |pn - xp1| )
j=1

. 2 2
= Jim ]2, < ]2

Take the supremum over all p € P to obtain the inequality ||z||, < [|z||,.
This proves Lemma [2.77] O
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Lemma 2.78. The subspace (? is dense in J.

Proof. Fix a nonzero element x € J and a real number £ > 0, and choose a
constant 0 < ¢ < [||z||; such that

26|z, < €. (2.49)

We claim that there are elements n € N and p = (p1,...,px) € P such that
sup [z <0, lell, > ll=ll; =6, pe=n. (2.50)

Namely, choose n € N such that sup;~,, |z;| < and po = (p1,...,pk-1) € P

such that [|z[f,, > [l=[l; —d. Next choose p > p_1 so large that p, > n
and the tuple p := (p1, ..., px) satisfies

2
Mﬂbz\NMMM—%MMAP+%MMA—me+%WmP>Mﬂb—&

Then increase n, if necessary, to obtain p, = n.
Define £ := (x1,...,2,,0,...). We prove that

llz —&ll, <e. (2.51)

To see this, let 9 = (q1,...,q) € P. If ¢p <n then ||z — ||, = 0. Thus

assume ¢, > n, let j € {1,...,¢} be the smallest element such that ¢; > n,
and define q' := (¢j, ¢j+1,---,q) € P. Then

llz = €llq = Nl - (2.52)

Now consider the tuple p’ := (p1,...,Dk, ¢, ¢j+1:---,q) € P. By (2.50)), it
satisfies the inequality

iz > =],

= 2l + Nl + & |p, = 2g,|* = § g > = § |y,
> (llelly, — 6)* — 6 + ll=lI?,
= llzlI2 — 26\l + ll=ll?-

This implies H|x|||z, < 20|||z|| ; and hence

= €lllq = Mllq < /20llll, <e

by (2.49) and (2.52)). Take the supremum over all elements q € P to obtain
the inequality (2.51f). By (2.51)) the set cyo of all finite sequences is dense
in J and so is the subspace ¢2. This proves Lemma [2.78 O
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The following lemma shows that the standard basis vectors e; := (d;;) jen
form a Schauder basis of J (see Exercise [2.95]).

Lemma 2.79. For each n € N define the projection 11, - J — J by

I, (z) := Zmiei for x = (x;)ien € J. (2.53)
i=1
Then
(@)l < l=ll;, o= a(2)ll; < []l, (2.54)
for alln € N and all x € J, and
lim ||z —1II,(x)||, =0 (2.55)
n—oo
forall x € J.

Proof. We prove . Fix an element x € J, a positive integer n, and an
element p = (p1,...,px) € P. Il pp < nthen [|[IL,(2)], = [|=||, and, if p1 > n,
then [|IL,(x)[|, = 0. Thus assume p; < n < py, let £ € {1,...,k — 1} be the
largest element such that p, < n, and define q := (py,...,p¢). Then

2 2 2 2 2
(@)l = llllq = 3 |70, — 2o ™ + 53 |2 + 5 2|

2
= [l=lllq

2
< [lll;

by Lemma 2.77 Thus |[IL,(2)]|, < [lz]; for all p € P and this proves the
first inequality in (2.54]). To prove the second inequality in , observe
that ||z —IL,(z)||, = [[z]|, whenever p; >n and [z —II,(2)||, = 0 when-
ever pr < n. Thus assume p; <n < pg, let £ €{2,...,k} be the smallest
element such that p, > n, and define q := (py, ..., px). Then

lz = (@)l = ll2lly = 5 12, = 2o ]” + 5 |25, " + 5 | |

. 2
= ll=lllg

2
< |l=Il;

by Lemma . Thus ||z — I, ()|, < [|z|; for all p € P and this proves
the second inequality in ([2.54)).

We prove (2.55). When = € (2 this follows from (2.45). Since (2 is
dense in J by Lemma @, it follows from the estimate ED and the
Banach—Steinhaus Theorem E that holds for all z € J. This proves
Lemma 2.79 O
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With this preparation we are in a position to examine the dual space of
the James space J. Fix a bounded linear functional A : J — R. By (2.45)),
the inclusion ¢*> — J is a bounded linear operator and, by Lemm
it has a dense image. Thus the composition of A with this inclusion is a
bounded linear functional A|e : 2 — R. Hence, by the Riesz Representation
Theorem , there exists a unique sequence y = (y;)ien € 2 such that

A(z) = Zyzxz = (y, ) for all z € ¢* C J, (2.56)
i=1

and, conversely, A is uniquely determined by this sequence y € ¢2. Thus the
dual space of J can be identified with the space of all y € £? such that

= sup |(y, 7]
0£zEl? ||x||J

By (2.45)) and (2.57)), every y € J* satisfies the inequalities

ly < . (2.57)

1
7 1ylly < llyll - <llyll;- (2.58)

Thus there are canonical inclusions
trcJCcrPcJCe.

At this point it is convenient to make use of two concepts that will only be
introduced in Chapters [3] and [4l These are the dual operator A* : Y* — X*
of a bounded linear operator A : X — Y (Definition 4.1)) and the weak*
topology on the dual space of a Banach space (Example . A useful fact is
that the dual operator has the same operator norm as the original operator
(Lemma . Under our identification of J* with a subspace of £2, the dual
operator of the projection II,, : J — J in is the operator

I, : J* — J*, IL,(y) := Zyiei for y = (y;)ieny € J™. (2.59)

=1

Thus it follows from the estimates in (2.54)) that

M) < Mlllye s My = (@)l e < lyll (2.60)
for all y € J* and all n € N. Moreover, the dual space of ¢y can be identified
with ¢! (Example and the dual operator of the inclusion J < ¢, is then
the inclusion ¢! < J*. Hence it follows from general considerations that ¢!
is dense in J* with respect to the weak* topology (Theorem [4.8)). The next
lemma shows that ¢! is dense in J* with respect to the norm topology.
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Lemma 2.80. Every y € J* satisfies

Tim ly =T (y)l . = 0. (2.61)
Proof. Fix an element y € J*. We prove that
Y, T
= [ly = ()l sup 1o (2.62)

ebs, Tl

n(T)=

for all n € N. To see this, fix an integer n € N and recall from Lemma
that ||z —IL,(z)||; < ||z||; for all z € J. Hence

y—1L,(y), x y,x — 1, (z
=)l = sup =IO g, 7= Ta(o)
omes Il S =L@,
|y, z)| y—1IL,(y), z)
9, 7) < sup i ( ‘ley—ﬂn(y) J*
no,fé(if‘:]o ||x||J 0#zeJ ||3U||J

This proves the second equality in (2.62)). This equality also shows that the
sequence (&, )nen 1S nonincreasing. Thus we have proved .

Now suppose, by contradiction, that lim,,_,., &, = inf,ene, > 0. Choose
a constant 0 < € < inf,cye,. Then, by and the axiom of countable
choice, there exists a sequence of sequences z,, = (2, ;)ien € J such that

IL,(z,) =0, |z, =1, (y,x,) > € (2.63)

for all n € N. Since ¢y is dense in J by Lemma the sequence can be
chosen such that x, € ¢y for all n € N. By Lemma each element z,
satisfies ||z, ||, < ||z,||; = 1. Define the map x : N — N by

k(n) :=max{i € N|z,,; # 0} for n € N. (2.64)

Then x(n) > n for all n € N. Next define the sequence n; € N by ny :=1

and nj4q = k(n;) > n; for j € N, and define the sequence & = (&);en € ¢

by & :=0 and

é . :L‘nj,i
7 ]

This sequence converges to zero because |2, ;| < 1 for all 7 and j. Moreover,

it follows from (12.63] m m, and (| m ) that

ng

k—
<y7an (5) - Z zgz Z y’ n] > Z fOF all k’ € N (266)

1=1 =

for j € Nand n; +1 <i <njy = k(ny). (2.65)
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Now let p = (p1,...,pe) € P. If pr = 1 then [[¢]l, = ll¢ll,,.. ,,) in the

.....

case £ > 2 and [|€][|, = 0 in the case £ = 1. Thus assume p; > 2 and define
J = {j € N| there exists an i € {1,...,¢} such that n; <p; <nj}.
Then J # (). Let m := max J and define
kj:=min{i e {1,...,0}|n; <p; <njn},
lio=max{ie {l,...,0}|n; <pi<nj},
p; = (pkj,u-,pzj)
for each j € J. Then {1,...,¢} = U,c;{kj,...,¢;} because p; > 2, and

€y, = 3~ a3 sl < 57 s, =57

for all 7 € J by (2.48) and (2.63|). Hence

L by —1
2N = 16|+ 3" Y1 — s+ D |60 — G |” + 16|
m#AJET i=k; =k
0;-1
2 2 2
< QZ |§pkj‘ + Z‘gpz - Epi+1‘ + }gpej}
jeTJ ’iij
— 1> [lell?,
jeT
1
<4y =
jeT ‘72
< %WQ

Take the supremum over all p € P and use Lemma to obtain

2
wbsﬁmmzwm@mms¢¥<m
PEP 3

and so £ € J. It then follows from Lemma that

2
I, @1, < el <y f2x

for all £ € N, in contradiction to the fact that the sequence (y,1I,, (£)) is
unbounded by (2.66]). This proves Lemma [2.80} O
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We are now in a position to prove the main result of this subsection.

Theorem 2.81 (James). The James space J is isometrically isomorphic to
its bidual space J** and the image of the canonical inclusion v : J — J** has
codimension one in J**.

Proof. The proof has seven steps.
Step 1. Let A : J* — R be a bounded linear functional and define

zi = N(e;) forieN.

Then z := (z;)ien € £,

A(ILa(y)) = (y, n(2)) (2.67)
for alln € N and all y € J*, and
Aly) = lim (y, L, (2)) (2.68)
for all y € J*.
For every i € N we have |(e;, e;)| =1 = ||e;]| ; and thus
1< HeiHJ* = sup |<LL’, 61>| R ‘xl| < su HxHoo <1
otaes 7l orees [2ll; ™ oraes [l

by Lemma [2.76] Hence ||e;
|2l = [Aea)| < (A} les

g« = L for all « € N. This implies

Jx = ||AH

for all i € N and so z € ¢*°. Now let y = (y;)ien € J*. Then
AIL(y) =D yile) = Y wyizi = (y,1,(2))  foralln € N
i=1 i=1

and this proves (2.67)). It follows from (2.61)) and (2.67) that
Tim [A(y) — (. T1,(2)] = lim [A(y 11, (s)]
< i ]y - ()

= 0.

J*

This proves (2.68)) and Step 1.
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Step 2. Let A: J* — R and z € £>° be as in Step 1. Then

sup max{||z,, [I=/l,} < [IA[l- (2.69)
peEP

Fix an element p = (p1,...,pr) € P and choose an integer n > pg. Then

max{ | z[|, , [[ 2]l } = max{[[TL,(2) |, , [T (2)lll }
< M (2)ll,
II
oy [l
oryes Iyl
A(IT,
oy AL )
oryesr Yl
Al |1,
oy 1AL ()
0#yeJ* Hy

< [JA]]

J*

IN

J*

Here the second step follows from Lemma [2.77] the third step follows from
Lemma the fourth step follows from ([2.67)), and the last step follows

from ([2.60]). This proves (2.69) and Step 2.

Step 3. Let z = (2;)ien € £ be a bounded sequence such that

sup max{|[z[|, , [zl } < oo (2.70)
peP

Then z is a Cauchy sequence and the sequence x = (x;)ien, defined by

A= lim 2, rii=2z— A forieN, (2.71)

Jj—00
is an element of J.

Suppose, by contradiction, that z is not a Cauchy sequence. Then there exist
two subsequences (2, )ien and (2, )ien converging to different limits. Passing
to further subsequences we may assume that p; < ¢; < p;41 for all « € N and
that there exists a constant € > 0 such that [z, — z,| > ¢ for all 4,5 € N,
For n € N consider the tuple p, := (p1,q1,---,Pn,¢). Then |z, > \V/ne
for all n € N, in contradiction to . This shows that z is a Cauchy
sequence. Now the sequence z in converges to zero, by definition, and

satisfies ||z ; = suppep |2, = suppep [12]], < o0 by (2.70). Hence x € J
and this proves Step 3.
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Step 4. Let z = (z;)ien € (> be a bounded sequence that satisfies (2.70)) and
let X\ € R and x € J be given by (2.71)). Then the limit

n—oo n—0o0

Aly) = lim (y,I1,(2)) = lim (y, 1L, (2)) + A lim Zy (2.72)

exists for every y € J* and defines a linear functional A : J* — R.

That the sequence (D>, yi)nen converges for y € ¢! is obvious. Moreover,
the subspace ¢! is dense in J* by Lemma [2.80] and

Z Yi
i=1

for all n € N. Here 1,, :== (1,...,1,0,...) denotes the sequence whose first n
entries are equal to one, followed by zeros. Hence the sequence of functionals

= [T, )| < [l 1Yl 5+ = [yl -

JS—=-R:y—=y+ -+ yn

is uniformly bounded and converges for all y belonging to the dense sub-
space /' C J*. Thus it follows from the Banach-Steinhaus Theorem that
the sequence (D7 | yi)nen converges for all y € J*. Hence it follows from

Step 3 and Lemma [2.79| that the limit in ([2.72)) exists for all y € J* and this
proves Step 4.

Step 5. Let z € (> be a sequence that satisfies (2.70) and let A : J* — R
be the linear map defined by (2.72) in Step 4. Then A is a bounded linear
functional on J* and its norm is

[A[] = sup max{||z[|,, , [ 2][}- (2.73)
peEP
We prove that
A
[Aly) < supmax{||z[,, [|z[l,} for all y € J*\ {0}. (2.74)
ly J* p€EP

To see this, note first that
|z[| ; = sup [|z]|,, = sup max{||z|, , [[=[|,}- (2.75)
peP peP

for all z € J by Lemma [2.77
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Next we prove the inequality

sup max{{[| L, (2)|, , [T (2)[l,} < sup max{]|z]l, , [l12]l,}- (2.76)
peP pEP

for all n € N. To see this, fix elements p = (p1,...,px) € P and n € N.
Then |, (2)]lp = [n(2)lll, = 0 whenever py >n, and || (2)[ll, = [l =ll,
and ||IL,(2)|p = ||z]|p whenever p, < n. Thus assume p; <n < p;, and de-
note by ¢ € {1,...,k — 1} the largest number such that p, < n. Consider the
element q := (p1,...,pr) € P. It satisfies

2 | TLa(2)ll = 20T (=)l

(-1
2 2 2
= |2 " + Z |ij - ij+1‘ + 2,
j=1
2
= 2|=]llg-

This proves (2.76]).
Now take x = I1,,(z). Then, by (2.75) and ([2.76]),

|(y, IL,(2))]

< ||IL,(2) ||
ly J

J*
= sup max{|[IL, ()|, , [T (2)l, }
peEP

< sup max{||z||, , [l|=[ll,}
peEP

for all y € J*\ {0} and all n € N. Take the limit n — oco. Then it follows
from the definition of A in Step 4 via equation (2.72)) that

AW _ [ T (2))]

= lim ————— < supmax{||z 2

for all y € J*\ {0}. This proves (2.74). Thus A : J* — R is a bounded linear
functional. Now take the supremum over all y € J*\ {0} to obtain

Ay
< supmax{||z|, . Izl }-
ZJHJ peP

[All = sup
0#yeJ*

The converse inequality was established in Step 2 and this proves Step 5.
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Step 6. The canonical inclusion v : J — J** has a codimension-one image.

By Step 1, Step 2, Step 4, and Step 5, the bidual space of J is naturally
isomorphic to the space

J = {z ere

supmasc{]|z]l, Izl } < oo} .
pPEP

The correspondence assigns to a sequence z € J** the bounded linear func-
tional A : J* — R given by . That it is well defined for every z € J**
was proved in Step 4, that it is bounded was proved in Step 5, and that every
bounded linear functional on J* is of this form was proved in Steps 1 and 2.
It was also proved in Step 5 that the identification of J** with the dual space
of J* is an isometry with respect to the norm on J**, defined by

121 o := supmax{|[z]l,, [l=[l,}  for z € J*.

PEP

Under this identification, the canonical inclusion ¢ : J — J** is the obvious
inclusion of J into J** as a subset. It is an isometric embedding by the gen-

eral observation in Lemma (see also Lemma and equation ([2.75])).

Moreover, the constant sequence 1:= (1,1,1,...) is a unit vector in J**
and J** = J & R1 by Step 3. This proves Step 6.

Step 7. The map
J = T x = (2)ien = (Tig1 — T1)ien

1 an isometric isomorphism.

The map is bijective by Step 3. If x = (2;)ieny € J and z = (2;)ieny € J** are
related by the conditions

r; = — lim zj, Tix1 — X1 = 2 for i € N,
j—o0
then
Hz”(pl,...,pk) = H:UH(p1+1,...,pk+1)7 |||ZW(p1,...,pk) = Hx“(l,lerl,...,karl)

for all (p1,...,px) € P, and hence

[zl ; = sup [zl = sup max{][z[|, . [Iz[l,} = 2] - -
PEP PEP

This proves Step 7 and Theorem [2.81] O]
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Remark 2.82. (i) Let X be a real Banach space and let (e;);eny be a
Schauder basis of X. This means that, for every x € X, there exists a
unique sequence (z;);ey € RY such that

n
n—00
i=1

Associate to every Schauder basis is a unique sequence of bounded linear
functionals ] € X* such that (e}, e;) = d;; for all i, j € N (see Exercise[2.95).
Thus the sequence z; = (ef, z) is characterized by the condition (2.77)). A
Schauder basis is called normalized if ||e;|| = 1 for all ¢ € N. Associated to
every Schauder basis and every n € N is a projection II,, : X — X via

= 0. (2.77)

I, (z) := Z(ef, x)e; for z € X. (2.78)
i=1

The operator sequence II,, € £(X) is bounded by Exercise A Schauder
basis (€;);en is called monotone if ||[IL,|| < 1 for all n € N. It is called
shrinking if lim,_, ||II}(z*) — 2*||y. = 0 for every 2* € X* and so the
sequence (e} );en is a Schauder basis of X*. It is called boundedly complete
if, for every sequence (;);eny € RY such that sup,cy ||Y 1, zi€il| < oo, the
sequence » . | x;e; converges in X.
(ii) By Lemma the standard basis (e;);eny of the James space J is a
normalized monotone Schauder basis and, by Lemma [2.80] it is shrinking.
It is not boundedly complete, because the constant sequence x; = 1 satisfies
13" eill , = 1, however, the sequence ", e; does not converge in J.

(iii) The standard basis (e;);en of the dual space J* is again normalized and
monotone. One can deduce from Lemma that this basis is boundedly
complete. However, it is not shrinking, because the closure of the span of
the dual sequence in J** is the proper subspace J C J** by Theorem [2.81]

(iv) A theorem of Robert C. James asserts that a Banach space X with a
Schauder basis (e;);en is reflexive if and only if the basis is both shrinking
and boundedly complete.

(v) A Schauder basis (e;);en of a Banach space X is called unconditional
if the sequence (e4(;))ien is a Schauder basis for every bijection o : N — N.
The James space J does not admit an unconditional Schauder basis.

(vi) There are many examples of Schauder bases, such as any orthonormal
basis of a separable Hilbert space, which is always normalized, monotone,
unconditional, shrinking, and boundedly complete.
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(vii) The reader may verify that the standard basis of ¢ for 1 < p < oo
is normalized, monotone, unconditional, boundedly complete, and shrinking.
For p = 1 it is still normalized, monotone, unconditional, and boundedly
complete, but no longer shrinking. The Banach space ¢ does not admit a
Schauder basis, because it is not separable.

(viii) There exist separable Banach spaces that do not admit Schauder bases.
Examples are Banach spaces that do not have the approximation property

(see Exercises and [4.30)).

Remark 2.83. (i) A complex structure on a real Banach space X is a
bounded linear operator I : X — X such that I? = —1. Such a complex
structure induces a complex structure I** : X** — X** on the bidual space
such that the canonical inclusion ¢ : X — X** satisfies

tol =1"oy.

Thus the complex structure descends to the quotient space X**/¢(X). In the
case of the James space X = J, this quotient has one real dimension. Hence
it does not admit a complex structure, and neither does the James space J.
(ii) Consider the product X := J x J* of the James space J with its dual,
equipped with the norm

I, )l x o= A/ ll=ll5 + [lyll5- for (z,y) € J x J".

This space is isometrically isomorphic to its dual space X* by Theorem [2.81]
However, it is not reflexive.

(iii) The James space J is an example of a non-reflexive Banach space whose
bidual space is separable.

(iv) Another question answered in the negative by the James space is of
whether a separable Banach space that is isometrically isomorphic to its
bidual space must be reflexive. The James space satisfies both conditions,
but is not reflexive.

(v) The James space J is an example of an infinite-dimensional Banach space
that is not isomorphic to the product space

X =JxJ

(equipped with any product norm as in Subsection [1.2.3]). This is because
the canonical inclusion ¢ : X — X** has codimension two by Theorem [2.81]
Morover, X admits a complex structure and J does not.
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2.5 Problems

Exercise 2.84 (Phillips’ Lemma). Prove that the subspace
co C 1~

of all sequences of real numbers that converge to zero is not complemented.
This result is due to Phillips [42]. The hints are based on [3, p45].
Hint 1: There exists an uncountable collection {A;}ier of infinite subsets
A; C N such that A; N Ay is a finite set for all i,i" € I such that i #1i'.

For example, take

I:=R\Q,
choose a bijection N — Q : n +— a,, choose sequences (n;x)ren in N, one for
each 7 € I, such that limy o a,,, =i foralli € I =R \ Q, and define
A, ={n;|ke N} CN for ¢ € I.

Hint 2: Let Q : (*° — (> be a bounded linear operator with ¢y C ker(Q).
Then there ezists an infinite subset A C N such that Q(x) = 0 for every
sequence x = (z;)jen € (> that satisfies x; =0 for all j € N\ A.

The set A can be taken as one of the sets A; in Hint 1. Argue by
contradiction and suppose that, for each i € I, there exists a sequence
z; = (xij)jen € € such that

Q(z;) #0, |zl =1, z;; =0 for all j € N\ A;.

Define the maps @,, : £*° — R by Q(z) =: (Qn(2))nen for x € £>°. For each
pair of integers n, k € N define the set

L= {i € T11Qu(wi)| = 1/k}.

Fix a finite set I’ C I, and consider the value of the operator @) on the
element & := )., g;x; with ¢; := sign(Q,(x;)). Use the fact that the set

B :={j € N|3i,i' € I' such that i # i’ and x;; # 0 # x;;}

is finite to deduce that |Q(z)| < ||Q] and so #I,,, < k||Q|| for all n,k € N.
This contradicts the fact that the set I = Un,kEN I, ;; is uncountable.

Hint 3: There is no bounded linear operator Q : {>° — (> with ker(Q) = ¢.
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Exercise 2.85. This exercise shows that the uniform boundedness principle,
the open mapping theorem, and the closed graph theprem do not extend to
normed vector spaces that are not complete. Let X = R*> be the vector space
of sequences x = (z;);en of real numbers with only finitely many nonzero
terms. For x € X define

o0
=]y == Z |zl , 2], = sup |2, -
i=1 ieN

(a) For n € N define the linear functional A, : X — R by A, (z) := nz,.
Then A,, is bounded for all n € N and sup,,cy |An(x)] < oo for all z € X,
however, sup,,cy [|[An| 5« = 0o (for either norm on X).

(b) The identity operator id : (X, ||-|l;) — (X, |‘|l) is bounded but does
not have a bounded inverse.

(c) The identity operator id : (X, ||-||..) = (X,]|-|;) has a closed graph but
is not bounded.

Exercise 2.86 (Zabreiko’s Lemma). Let X be a Banach space and let
p : X — R be a seminorm (see Definition [2.32)). Then the following are
equivalent.

(i) p is continuous.
(ii) There exists a constant ¢ > 0 such that p(z) < c||z|| for all x € X.

(iii) The seminorm p is countably subadditive, i.e.

p (Z %) < ZP(%)

for every absolutely convergent series © = ) °, z; in X.

Hint: To prove that (iii) implies (ii), define the sets

A, ={z e X|plx) <n}, Fp:={z e X|pzx) <n}

for n € N. Show that F}, is convex and symmetric for each n. Use the Baire
Category Theorem to prove that there exists an n € N such that F),
contains the open unit ball B := {z € X | ||z|| < 1}. Prove that B C A, by
mimicking the proof of the open mapping theorem (Lemma .

Exercise 2.87. Deduce the uniform boundedness principle, the open map-
ping theorem, and the closed graph theorem from Zabreiko’s Lemma.
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Exercise 2.88 (Fourier series of continuous functions). This exercise
shows that there exist continuous functions whose Fourier series do not con-
verge uniformly. Denote by C'(R/27Z) be the space of continuous 27-periodic
complex valued functions f : R — C equipped with the supremum norm.
(a) For n € N the Dirichlet kernel D,, € C(R/27Z) is defined by

n

D, (t) = Z e = % for t € R. (2.79)

k=—n

Prove that || D,/ > 23>0 .
(b) The nth Fourier expansion of a function f € C(R/27Z) is defined by

(Fa(M)() = (Dux f)l2) = Y /O ' (t)e*0) dt (2.80)

k=—n

for x € R. Prove that the operator
Fn: C(R/27Z) — C(R/27Z)

has the operator norm || F,|| = || Dyl ;1.

(c) Deduce from the Uniform Boundedness Principle that there exists
a function f € C(R/27Z) such that the sequence F,,(f) does not converge
uniformly.

Exercise 2.89 (Fourier series of integrable functions). The Fourier
coefficients of a complex valued integrable function f € L'([0, 2n]) are

R 2
f(k) = /0 e U f(t) dt for ke Z (2.81)

and the Fourier series of f is .7 (f) := (J?(k))keZ'
(a) Prove the Riemann—Lebesque Lemma, which asserts that
lim ’f(k)) —0
|k|—o00
for all f € L([0,2x],C).
(b) Denote by ¢(Z) C £>°(Z) the closed subspace of all bi-infinite sequences
of complex numbers that converge to zero as |k| tends to infinity. Prove that

the bounded linear operator .% : L'([0,27]) — ¢o(Z) has a dense image but

is not surjective. Hint: Investigate the Fourier coefficients of the Dirichlet
kernels in Exercise 2.88]
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Exercise 2.90 (Banach Limits). Let (> be the Banach space of bounded
sequences of real numbers with the supremum norm as in part (ii) of Exam-
ple and define the shift operator T : (> — (> by

Tz = (Tpi1)nen for x = () nen € €°°.
Consider the subspace
YVi=im(id—T)={z —Tx|xz € (~}.

Prove the following.

(a) The subspace ¢y C £ of all sequences that converge to zero is contained
in the closure of Y.

(b) Let 1 = (1,1,1,...) € £* be the constant sequence with entries 1. Prove
that sup,en |1 + Zps1 — 25| > 1 for all z € £°° and deduce that

41,Y) = inf 1=yl =
(c) By the Hahn—Banach Theorem there exists a bounded linear func-
tional A : /> — R such that
A1) =1, Al =1, Az —Tz)=0 forall x € (™. (2.82)

Prove that any such functional has the following properties.

(i) A(Tz) = A(x) for all x € £,
(i) If = € £ satisfies =, > 0 for all n € N then A(x) > 0.

)

)

(iii) liminf, oo 2, < A(z) < limsup,, ., z, for all z € £>°.

(iv) If = € £ converges then A(z) = lim,, o0 @)

(d) Let A be as in (c¢). Find z,y € ¢ such that A(zxy) # A(z)A(y). Hint:
Consider the sequence z,, := (—1)" and show that A(z) =

(e) Let A be as in (c). Prove that there does not exist a sequence y € ¢!
such that A(z) = Y7 x,y, for all x € ¢*°. Hint: Any such sequence would
have nonnegative entries y,, > 0 by part (ii) in (c) and satisfy Y, y, = 1.
Hence 25:1 yn > 0 for some N € N in contradiction to part (iv) in (c).
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Exercise 2.91 (Minkowski functionals). Let X be a normed vector space
and let ¢' C X be a convex subset such that 0 € €. The Minkowski
functional of C' is the function p : X — [0, 00 defined by

p(z):=inf {A> 0|z € C} for v € X. (2.83)

The convex set C' is called absorbing if, for every x € X, there is a A > 0
such that A=z € C. Let p be the Minkowski functional of C.

(a) Prove that

plr+y) <pl)+ply),  pAz)= \p(z)

for all z,y € X and all A > 0.

(b) Prove that C' is absorbing if and only if p takes values in [0,00) and
hence is a quasi-seminorm (see Definition [2.32)).

(c) Suppose C' is absorbing. Find conditions on C' which ensure that p is a
seminorm or a norm. Do this both for real scalars and complex scalars.

(d) Prove that p is continuous if and only if zero is an interior point of C'.
In this case, show that

int(C’) :p_1<[071))7 U:p_l([o,l]).

Exercise 2.92. Let X be a normed vector space and let Y C X be a closed
subspace. Assume Y and X/Y are reflexive. Prove that X is reflexive.

Exercise 2.93 (Schatten’s projective tensor product). Let X and Y
be real normed vector spaces.

(a) For every normed vector space Z, the space B(X,Y; Z) of bounded bi-
linear maps B : X x Y — Z is a normed vector space with the norm

B(z,y
|B| = sup M
zeX\ {0} ||5L’||X ”yHY
yEY\{0}

for B € B(X,Y; 7).
(b) The map

B(X,Y;Z)— L(X,L(Y,Z)): B~ (z+ B(z,-))

is an isometric isomorphism.
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(c) Associated to every pair (z,y) € X x Y is a linear functional
xRy € B(X,Y;R)"
defined by (r ® y, B) := B(z,y) for B € B(X,Y;R). It satisfies

lz @yl = [zl lylly

Hint: Use the Hahn—Banach Theorem to prove the inequality ||z ® y| >
|lz]| « llylly- Namely, consider the bilinear functional B : X xY — R, defined
by B(z,y) := (z*, x)(y*, y) for suitable elements z* € X* and y* € Y* of the
dual spaces.

(d) Let X ® Y C B(X,Y;R)* be the smallest closed subspace containing
the image of the bilinear map X x Y — B(X,Y;R)*: (z,y) —» x ® y in (c).
Then, for every normed vector space Z, the map

LIX®Y,Z)—B(X,Y;Z): A— By
defined by Ba(z,y) == A(z ® y) for z,y € X and A € LIX ®Y,Z), is an

isometric isomorphism.

Exercise 2.94 (Strict convexity and Hahn-Banach extension).
(a) Prove Ruston’s Theorem: The following properties of a normed vector
space X are equivalent.

(i) If x,y € X satisfy x #y and ||z|| = ||y|]| =1 then ||z + y| < 2.

(i) If v,y € X satisfy x # 0 # y and ||x +y|| = ||z|| + ||y|| then x = Ay for
some A > 0.

(1i1) If x* € X* is a nonzero bounded linear functional then there exists at
most one element x € X such that ||z|| =1 and A(z) = ||A]].

The normed vector space X is called strictly convex if it satisfies these
equivalent conditions. Condition (i) says that the unit sphere contains no
nontrivial line segment. Condition (ii) says that equality in the triangle
inequality occurs only in the trivial situation. Condition (iii) says that the
support hyperplane Hy := {z € X | A(z) = ||A]|} meets the unit sphere in at
most one point. (Note that inf,cq, ||z] =1.)

(b) For which p is LP([0, 1]) strictly convex. Is C(]0, 1]) strictly convex?

(c) If X is a normed vector space such that X* is strictly convex, ¥ C X is
a linear subspace, and y* : Y — R is a bounded linear functional, then there
is a unique z* € X* such that z*|y = y* and ||z*|| = ||v*|.
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Exercise 2.95 (Schauder bases). Let X be a separable real Banach space
and let (e;);eny be a Schauder basis of X. This means that, for every x € X
there exists a unique sequence (z;);en of real numbers such that

Jim e =3
Let n € N and define the map IL, : X — X by
I (2) =) wies, (2.85)
i=1

for x € X, where (x;);en is the unique sequence that satisfies (2.84)).
(a) Prove that the operators II,, : X — X are linear and satisfy

M, o I, = I, o II,, = II,, (2.86)

= 0. (2.84)

for all integers n > m > 1. In particular, they are projections.
(b) Define a map X — [0,00) : z — [|z|| by the formula

llzll = sup [ (@)]]  for = € X. (2.87)
ne

Prove that this is a norm and that ||z|| < ||z]|| for all z € X.

(c) Prove that (X, [|-]|) is a Banach space. Hint: Let (z)ren be a Cauchy
sequence in (X, [|-|[). Then (x)ken is a Cauchy sequence in (X, [|]|) by (b).
Hence there is an z € X such that limg_,« ||z — zx|| = 0. Also, (IL,,(xk))ken is

a Cauchy sequence in (X, [|-]|) for all n. Thus there exists a sequence (&, )nen
in X such that limy_, [|§, — IL,(zx)|| = 0 for all n € N. Prove that

0,(&) = &m for all integers n > m > 1. (2.88)

(The restriction of II,, to every finite-dimensional subspace is continuous.)
Let € > 0. Choose ko € N such that ||zx — z|| < €/3 for all k,¢ > ko. Then
choose ng € N such that ||z, — II,,(zx,)|| < e/3 for all n > ny. Then

o = &all = Jim [z — o) | < lim (2l = g, | + low, = T ) < 2

for n > ng. Deduce that &, = I1,,(x) for all n and limy_,« ||z — x| = 0.
(d) Prove that there exists a constant ¢ > 0 such that
sup || I, (2)|| < ¢||=]| for all z € X. (2.89)
neN

Hint: Use parts (b) and (c¢) and the Open Mapping Theorem .
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Exercise 2.96 (The canonical inclusion). Let X be a normed vector
space and let 1y : X — X** be the canonical inclusion defined by (2.39).

(a) Show that (vx)*tx+ = idyx+ and determine the kernel of the projection
Pi=1x(1x)": X7 — X
(b) Assume X is complete. Show that X is reflexive if and only if
Lxs(tx)" = id e,

(c) Lipton’s Pullback. Let Y C X be a closed subspace and let j: Y — X
be the obvious inclusion. Then tx o) = j** oy : Y — X**. This map is an
isometric embedding of Y into X™* whose image is

txoj(Y)=j5"owy(Y)=1x(X)Nj=(Y™) C X™.

(d) Deduce from Lipton’s Pullback that Y is reflexive whenever X is reflexive.

k%

(e) Show that X is reflexive if and only if ¢x« = (tx)

Note. This exercise requires the notion of the dual operator, introduced in
Definition [4.1] below.



Chapter 3

The Weak and Weak*
Topologies

This chapter is devoted to the study of the weak topology on a Banach
space X and the weak™ topology on its dual space X*. With these topolo-
gies X and X* are locally convex Hausdorff topological vector spaces and the
elementary properties of such spaces are discussed in Section In partic-
ular, it is shown that the closed unit ball in X* is the weak* closure of the
unit sphere, and that a linear functional on X* is continuous with respect
to the weak™ topology if and only if it belongs to the image of the canonical
embedding ¢ : X — X**. The central result of this chapter is the Banach—
Alaoglu Theorem in Section [3.2| which asserts that the unit ball in the dual
space X* is compact with respect to the weak™ topology. This theorem has
important consequences in many fields of mathematics. Further properties
of the weak* topology on the dual space are established in Section [3.3 It
is shown that a linear subspace of X* is weak™® closed if and only if its in-
tersection with the closed unit ball is weak* closed. A consequence of the
Banach—Alaoglu Theorem is that the unit ball in a reflexive Banach space is
weakly compact. A theorem of Eberlein-Smulyan asserts that this property
characterizes reflexive Banach spaces (Section [3.4). The Krein-Milman The-
orem in Section asserts that every nonempty compact convex subset of
a locally convex Hausdorff topological vector space is the convex hull of its
extremal points. Combining the Krein-Milman Theorem with the Banach—
Alaoglu Theorem, one can prove that every homeomorphism of a compact
metric space admits an invariant ergodic Borel probability measure. Some
properties of such ergodic measures are explored in Section [3.6]

117
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3.1 Topological Vector Spaces

3.1.1 Definition and Examples

Recall that the product topology on a product X x Y of two topological
spaces X and Y is defined as the weakest topology on X x Y that contains all
subsets of the form U xV where U C X and V C Y are open. Equivalently, it
is the weakest topology on X x Y such that the projections 7x : X XY — X
and my : X x Y — Y are continuous.

Definition 3.1 (Topological Vector Space).
A topological vector space is a pair (X, %) where X is a real vector space
and % C 2% is a topology such that the structure maps

XXX —=X:(r,y)—ax+y, RxX —=X:(\z)—

are continuous with respect to the product topologies on X x X and R x X.
A topological vector space (X, %) is called locally convex if, for every open
set U C X and every x € U, there is an open set V C X such that

reV CU, V' is convex.

Example 3.2 (Strong Topology). Every normed vector space (X, [|-]|) is
a topological vector space with the topology %° := % (X, ||-]|) induced by
the norm as in Definition[I.2] This is sometimes called the strong topology
or norm topology to distinguish it from other weaker topologies discussed
below.

Example 3.3 (Smooth Functions). The space X := C*(2) of smooth
functions on an open subset (2 C R" is a locally convex Hausdorff topolog-
ical vector space. The topology is given by uniform convergence with all
derivatives on compact sets and is induced by the complete metric

o

||f—9\|cf(1<)
d(f,g) = 27* c.
59 = 2 T T gl

Here K, C () is an exhausting sequence of compact sets.

Example 3.4. Let X be a real vector space. Then (X, %) is a topological
vector space with % := {(), X}, but not with the discrete topology.
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Example 3.5 (Convergence in Measure). Let (M, A, 1) be a measure
space such that u(M) < oo, denote by L%(u) the vector space of all real
valued measurable functions on M, and define

L) = L%(n) [~

where the equivalence relation is given by equality almost everywhere. Define
a metric on L°(u) by

lf — gl 0

drg)= [ e o fg e L)
m1l+|f—yl

Then L°(u) is a topological vector space with the topology induced by d.

A sequence f,, € L°(u) converges to f € L(u) in this topology if and only if

it converges in measure, i.c.

JLIEOM({xEMan(:U)—f(x)] >e})=0 for all € > 0.

The topological vector space L°(u) with the topology of convergence in mea-
sure is not locally convex, in general. Exercise: Prove that every nonempty
open convex subset of LY([0,1]) is the whole space. Deduce that every con-
tinuous linear functional A : L°([0,1]) — R vanishes.

An important class of topological vector spaces is determined by sets of
linear functionals as follows. Fix a real vector space X and let

FC{f:X —R|fislinear}

be any set of linear functionals on X. Define %7 C 2% to be the weakest
topology on X such that every linear functional f € F is continuous. Then
the pre-image of an open interval under any of the linear functionals f € F
is an open subset of X. Hence so is the set

Vi={reXla < fi(x)<b fori=1,...,m}

for all m € N, all fi,...,f, € F, and all 2m-tuples of real numbers
ai,...,0m,b1,...,b, such that a; < b; for ¢ = 1,...,m. Denote the col-
lection of all subsets of X of this form by

meN, fi,...,fm €F,
A1ye vy, by, ..., b, €R, . (31)
a; <b;fori=1,...,m

Vr = ﬂ JiH (as, 0y)
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Lemma 3.6. Let X be a real vector space, let F C R¥ be a set of real valued
linear functionals on X, and let Ur C 2% be the weakest topology on X such
that all elements of F are continuous. Then the following holds.

(i) The collection Y& in (3.1)) is a basis for the topology Ur, i.e.
Ur ={UCX|VaxeU3IV € ¥r such that t € V C U}. (3.2)

(ii) (X, %F) is a locally convex topological vector space.

(iii) A sequence xz,, € X converges to an element xo € X with respect to the
topology Ur if and only if f(xg) = lim, o f(2z,) for all f € F.

(iv) The topological space (X, %r) is Hausdorff if and only if F separates
points, i.e. for every nonzero vector x € X there is a linear functional f € F

such that f(x) # 0.

Proof. Part (i) is an exercise with hints. Define the set = C 2% by the right
hand side of equation (3.2)). Then it follows directly from the definitions
that %r C 2% is a topology, that every linear function f : X — R in F
is continuous with respect to this topology, and that every other topology
9 C 2% with respect to which each element of F is continuous must contain
¥ and hence also %r. This proves part (i).

We prove part (ii). We prove first that scalar multiplication is continuous
with respect to Zr. Fix a set V € ¥F and let \g € R and xg € X such that
Xoxo € V. Then it follows from the definition of ¥ in that there exists
a constant 0 > 0 such that § # |Ag|, (Ao — d)zg € V, and (Ao + )xg € V.

Define ) .
= V V.
U= 5V "%

Then U € ¥ and 2y € U. Moreover, if z € U and A € R satisfies [A\— )| < 6,
then (\g—d)x € V and (Ag+d)z € V and hence \x € V', because V is convex.
This shows that scalar multiplication is continuous.

We prove that addition is continuous. Fix an element W € #% and let
X0, Yo € X such that xg + yo € W. Define the sets

1 1 1 1
U:= §(x0—y0)+§W, V.= §(y0—x0)+§W

Then U,V € ¥F by (3.1). Moreover, zy € U, yo € V and, for all € U and
all y € V we have x +y € W because W is convex. This shows that addition
is continuous. Hence (X, %) is a topological vector space. That (X, Zr) is
locally convex follows from the fact that the elements of % are all convex
sets. This proves part (ii).
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We prove part (iii). Fix a sequence (z,)nen in X and an element z € X.
Assume 1z, converges to xy with respect to the topology %». Let f e F
and fix a constant € > 0. Then the set U := {z € X ||f(z) — f(xo)| < e} is
an element of ¥z and hence of %7. Since zy € U, there exists a positive
integer ng such that x,, € U for every integer n > ny. Thus we have proved

VfeFYe>03nge NVneN: (n>ny = |f(z,) — flzo)] <e).

This means that lim,, .. f(x,) = f(xo) for all f € F.
Conversely suppose that lim, o f(z,) = f(x¢) for all f € F and fix a
set U € %= such that o € U. Then there exists a set

V= mfi_l((aia bi)) € Vr

such that zqg € V' C U. This means that a; < fi(zo) < b; fori =1,...,m.
Since lim,, o fi(z,) = fi(xo) for ¢ = 1,...,m, there is a positive integer ng
such that a; < fi(z,) < b; for every integer n > ng and every i € {1,...,m}.
Thus x, € V C U for every integer n > ng and this proves part (iii).

We prove part (iv). Assume first that X is Hausdorff and let x € X\ {0}.
Then there exists an open set U C X such that 0 € U and = ¢ U. Choose
aset V=", f '((a;,b;)) € ¥ such that 0 € V. C U. Since 0 € V it
follows that a; < 0 < b; for all ¢ € {1,...,m}. Since x ¢ V, there exists
index i € {1,...,m} such that f;(z) ¢ (a;,b;) and hence f;(x) # 0.

Conversely suppose that, for every z € X, there exists an element f € F
such that f(z) # 0. Let zg,z; € X such that xzy # x; and choose f € F such
that f(x; — xo) # 0. Choose £ > 0 such that 2¢ < |f(z1 — x¢)| and consider
the sets U; := {z € X ||f(z — z;)| < e} fori =0,1. Then Uy, U, € ¥ C Ur,
xg € Uy, x1 € Uy, and UyNU; = ). This proves part (iv) and Lemma (3.6, [

Example 3.7 (Product Topology). Let I be any set and consider the
space X := R’ of all functions = : I — R. This is a real vector space. For
i € I denote the evaluation map at i by m; : RI — R, ie. m(z) = x(i)
for x € R!. Then m; : X — R is a linear functional for every i € I. Let
7= {m; |i € I} be the collection of all these evaluation maps and denote by
U, the weakest topology on X such that the projection ; is continuous for
every ¢ € I. By Lemma this topology is given by and . It is
called the product topology on R!. Thus R/ is a locally convex Hausdorff
topological vector space with the product topology.
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Example 3.8 (Weak Topology). Let X be a real normed vector space.

(i) The weak topology on X is the weakest topology %™ C 2% with respect
to which every bounded linear functional A : X — R is continuous. It is the
special case of the topology %+ C 2% in Lemma , where F := X* is the
dual space. By Corollary the dual space separates points, i.e. for every
z € X \ {0} there is an z* € X* such that (z*,z) # 0. Hence Lemma
asserts that (X, Z") is a locally convex Hausdorff topological vector space.

(ii) By Theorem every bounded linear functional is continuous with
respect to the strong topology %* := % (X, ||-||) in Definition [1.2] Hence

wUY C U
The weak and strong topologies agree when X is finite-dimensional.

(iii) Let (z,)nen be a sequence in X and let x € X. Then, by Lemma [3.6]
x, converges weakly to x (i.e. in the weak topology) if and only if

(x* ) = lim (z*, x,) for all " € X™.
n—oo

In this case we write z,, —  or £ = wW—lim,,_, e Tn.
Example 3.9 (Weak* Topology). Let X be a real normed vector space

and let X* = L£(X,R) be its dual space.

(i) The weak* topology on X* is the weakest topology %™ C 2% with
respect to which the linear functional o(z) : X* — R in is continuous
for all x € X. It is the special case of the topology Zr C 2% in Lemma ,
where F := «(X) C X*. This collection of linear functionals separates
points, i.e. for every z* € X*\ {0} there is an element z € X such that
(x*,z) # 0. Hence Lemma asserts that (X*, ") is a locally convex
Hausdorff topological vector space.

(ii) Denote by %* C 2% the strong topology induced by the norm, and
denote by % C 2% the weak topology in Example Then

U™ CU™Y C U,
These weak and weak™ topologies agree when X is a reflexive Banach space.

(iii) Let (2)nen be a sequence in X* and let 2* € X*. Then, by Lemma [3.6]
x} converges to z* in the weak* topology if and only if

(x*,z) = lim (z}, x) for all z € X.
n—oo

. . w* .
In this case we write z;, — z* or 2* = w*—lim,,_, 7},
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3.1.2 Convex Sets

This subsection picks up the topic of separating a pair of nonempty disjoint
convex sets by a hyperplane. For normed vector spaces this problem was
examined in Section [2.3.3] The main result (Theorem and its proof
carry over almost verbatim to topological vector spaces (see Theorem .
The next lemma shows that the closure and interior of a convex subset of a
topological vector space are again convex.

Lemma 3.10. Let X be a topological vector space and let K C X be a convex
subset. Then the closure K and the interior int(K) are convex subsets of X .
Moreover, if int(K) # () then K C int(K).

Proof. We prove that int(K) is convex. Let xg,z; € int(K), choose a real
number 0 < A < 1, and define z) := (1 — A)xy + Az;. Choose open sets
Uy, U; C X such that xo C Uy C K and x1 C U; C K and define

UZ:(Uo—ZL‘Q)ﬂ(Ul—QTl):{$€X|[B0+1’€U0,SL'1+$€U1}.

Then U C X is an open set containing the origin such that zo + U C K and
1+ U C K. Since K is convex, this implies that x, 4+ U is an open subset
of K containing x,. Hence z, € int(K).

We prove that K is convex. Let zg,27 € K, choose a real number
0 < A <1, and define z) := (1 —X)zg+ Az1. Let U be an open neighborhood
of x). Then the set

W= {(yo,y1) € X x X[ (1 = Nyo+ 1 € U}

is an open neighborhood of the pair (z¢,x;), by continuity of addition and
scalar multiplication. Hence there exist open sets Uy, U; C X such that

xo € Uy, x1 € Uy, Uy x Uy CW.

Since o, 11 € K, the sets UyN K and U; N K are nonempty. Choose elements
yo € UyN K and y; € Uy N K. Then (yo,y1) € Up x Uy C W and hence
yn = (1=Nyo+Ay; € UNK. Thus UNK # () for every open neighborhood
U of zy and so z) € K.

We prove the last assertion. Assume int(K) # () and fix an element
x € K. Then the set U, := {tx + (1 —t)y|y € int(K), 0 < ¢ < 1} is open

and contained in K. Hence U, C int(K) and so x € U, C int(K). This
proves Lemma [3.10] [
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Theorem 3.11 (Separation of Convex Sets). Let X be a topological
vector space and let A, B C X be nonempty disjoint convex sets such that A
is open. Then there is a continuous linear functional A : X — R such that

A(z) > sup A(y) forall z € A.

yeB
Proof. Assume first that B = {0}. Then the set
P:={tx|xe A t>0}

satisfies the conditions (P1), (P2), (P3) on page Hence (X, <) is an
ordered vector space with the partial order defined by x <y iff y —x € P.
Let 9 € A. Then the linear subspace Y := Rz satisfies (O3) on page .
Hence Theorem [2.38] asserts that there exists a positive linear functional
A : X — R such that A(zg) = 1. If x € A then z —tzg € A for t > 0
sufficiently small because A is open and hence A(z) >t > 0.

We prove that A is continuous. To see this, define

U:={ze X|A(z) >0}
and fix an element x € U. Then
Vi={yeX|zo+Ax)(y—=x) e A}

is an open set such that x € V' C U. This shows that U is an open set and
hence, so is the set

A ((a,b)) = (azo + U) N (bxg — U)

for every pair of real numbers a < b. Hence A is continuous and this proves
the result for B = {0}.

To prove the result in general, observe that U := A—B C X is a nonempty
open convex set such that 0 ¢ U. Hence, by the special case, there is a
continuous linear functional A : X — R such that A(z) > 0 for all z € U.
Thus A(x) > A(y) for all z € A and all y € B. Define ¢ := sup 5 A(y) and
choose ¢ € X such that A(§) = 1. If z € A then, since A is open, there exists
a number § > 0 such that x — d¢ € A, and so A(x) = A(x — &)+ > c+ 9.
Hence A(x) > c for all z € A. This proves Theorem [3.11] O
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Theorem 3.12 (The Topology %r). Let X be a real vector space and let
F C{A: X = R|A is linear} be a linear subspace of the space of all linear
functionals on X. Let %r C 2% be the weakest topology on X such that each
A € F is continuous. This topology has the following properties.

(i) A linear functional A : X — R is continuous if and only if it has a closed
kernel if and only if A € F.

(ii) The closure of a linear subspace E C X is E = Nacr, Bcrer(s) Ker(A).
(iii) A linear subspace E C X is closed if and only if, for all x € X,

rekl = A(z) =0 for all A € F such that E C ker(A).

(iv) A linear subspace E C X is dense if and only if, for all A € F,
E C ker(A) - A=0.
Proof. See page [126 [

Lemma 3.13. Let X be a real vector space and let n € N. Then the following
holds for every n-tuple Ay,..., A, : X — R of linear independent linear
functionals on X.

(1) There exist vectors xy,...,x, € X such that
e L afi=y, .
Ai(z;) = 0i5 := { 0. ifi 4] fori,j=1,...,n. (3.3)

(ii) If A : X — R is a linear functional such that (), ker(A;) C ker(A) then
A € span{Ay,..., A}

Proof. The proof is by induction on n. Part (i) holds by definition for n = 1.
We prove that (i), implies (ii),, and (ii), implies (i), for all n € N.

Fix an integer n € N and assume (i),. Let A : X — R be a linear
functional such that (_, ker(A;) C ker(A). Since (i) holds for n, there exists
vectors x1,...,%, € N such that A;(xz;) = 0;; for i,j = 1,...,n. Fix an
clement z € X. Then  — Y7 Aj(x)z; € (;_, ker(A;) C ker(A) and this
implies A(z) = Y1, Aj(z)A(z;). Thus A =Y., A(z;)A;, so (ii) holds for n.

Now assume (ii),. Let Aj,...,A,11 : X — R be linearly indepen-
dent linear functionals and define Z; := [, ker(A;) for i = 1,...,n + 1.
Then A; ¢ span{A; | j # i} for i =1,...,n+1. Since (i) holds for n, this
implies that, for each ¢ € {1,...,n+ 1}, there exists a vector x; € Z; such
that A;(x;) = 1. Thus (i) holds with n replaced by n+ 1. This completes the
induction argument and the proof of Lemma [3.13 ]
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Lemma 3.14. Let X be a real vector space and let Ay,..., A, A : X — R
be linear functionals. Then the following are equivalent.

(i) N, ker(A;) C ker(A).

(i) A € span{Ay,..., A, }.

(iii) There exists a constant ¢ > 0 such that

A(z)] < ¢ max |A;(z)] forallx € X. (3.4)

.....

Proof. We prove that (i) implies (ii). Thus assume (i) and choose a max-
imal subset J C {1,...,n} such that the A; with j € J are linearly inde-
pendent. Then (._, ker(A;) = N, ker(A;) C ker(A) by (i) and so it follows
from Lemma that A € span{A; |7 € J}. Thus (ii) holds.

We prove that (ii) implies (iii). Thus assume (ii) and choose real num-
bers ¢1, ..., ¢, such that A =>""  ¢;A;. Define ¢ := 3" |¢;|. Then

n

cil\i(x

i=1

[A(2)| = < Z i [Ai(2)] < ¢ max [Ay(z)]

.....

for all x € X and so (iii) holds. That (iii) implies (i) is obvious and this
proves Lemma [3.14] O

Proof of Theorem[3.14. We prove (i). If A € F then A is continuous by def-
inition of the topology Ur. If A is continuous then A has a closed kernel by
definition of continuity. Thus it remains to prove that, if A has a closed kernel,
then A € F. Thus assume A has a closed kernel and, without loss of gener-
ality, that A # 0. Choose x € X such that A(z) = 1. Then z € X \ ker(A)
and the set X \ ker(A) is open. Hence there is an integer n > 0, a constant
e > 0, and elements Ay,..., A, € F\ {0} such that

V= {({y € X| |Mily) — Ni(z)| <&} C X\ ker(A).

i=1
We prove that
ﬂ ker(A;) C ker(A) (3.5)

Namely, choose an element y € X such that A;(y) =0 fori=1,...,n. Then
r+ty € V and so z+ty ¢ ker(A) for allt € R. Thus 1+tA(y) = A(z+ty) # 0
for all ¢ € R and this implies A(y) = 0. This proves . It follows from ((3.5))
and Lemma, that A € span{Ay,...,A,} C F and this proves part (i).
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We prove (ii). Let £ C X be a linear subspace. If A € F vanishes on
E then E C ker(A) because ker(A) is a closed subset of X that contains E.
Conversely, let € X \ E. Since (X, %) is locally convex by part (ii) of
Lemma , and X \ E is open, there exists a convex open set U € %7 such
that € U and UN E = {). Since U and E are convex, Theorem asserts
that there exists a continuous linear functional A : X — R such that

A(z) > 3161]12) A(y).

Since E is a linear subspace, this implies ' C ker(A). Since A € F by part (i),
it follows that @ ¢ (Nycr peyer(a) ker(A). This proves part (ii). Parts (iii)
and (iv) follows directly from (ii) and this proves Theorem [3.12] O

Theorem has several important consequences for the weak and weak™
topologies. These are summarized in the next two subsections.

3.1.3 Elementary Properties of the Weak Topology

There are many more strongly closed sets in an infinite-dimensional Banach
space than there are weakly closed sets. However, for convex sets both notions
agree. In particular, a linear subspace of a Banach space is closed if and only
if it is weakly closed.

Lemma 3.15 (Closed Convex Sets Are Weakly Closed). Let X be a
real normed vector space and let K C X be a convex subset. Then K is
closed if and only if it is weakly closed.

Proof. Let K C X be a closed convex set. We prove it is weakly closed. To
see this, fix an element zy € X \ K. Then there is a constant § > 0 such that
Bs(z9)NK = 0. By Theorem [2.41] with A := Bs(z¢) and B := K, there is an
z* € X* and a ¢ € R such that (z*,x) > ¢ for all © € Bs(z¢) and (z*,z) < c
for all x € K. Thus U := {z € X |(2*,z) > ¢} is a weakly open set that
contains xy and is disjoint from K. This shows that X \ K is weakly open
and hence K is weakly closed. Conversely, every weakly closed subset of X
is closed and this proves Lemma [3.15] O

Lemma 3.16 (Bounded linear functionals are weakly continuous).
Let X be a real normed vector space and let A : X — R be a linear functional.
Then A is continuous with respect to the norm topology on X if and only if
it 15 continuous with respect to the weak topology.

Proof. This follows from part (i) of Theorem [3.12] O
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At this point it is useful to introduce the concept of the pre-annihilator.

Definition 3.17 (Pre-Annihilator). Let X be a real normed vector space
and let T'C X* be any subset of the dual space X* = L(X,R). The set

T ={re X|{z*,2) =0 for all z* € T} (3.6)

is called the pre-annihilator or left annihilator or joint kernel of T'. It
15 a closed linear subspace of X .

Corollary 3.18 (Weak Closure of a Subspace). Let X be a real normed
vector space and let E C X be a linear subspace. Then the following holds.

(i) The closure of E is the subspace E = “(EL) and agrees with the weak
closure of F.

(ii) E is closed if and only if E is weakly closed if and only if E = ~(EL)
(iii) E is dense if and only if E is weakly dense if and only if E+ = {0}
Proof. The formula E = *(E*) for the closure of E is a restatement of
Corollary That this subspace is also the weak closure of E follows

from part (ii) of Theorem and also from Lemma [3.15| This proves (i).
Parts (ii) and (iii) follow directly from (i) and this proves Corollary O

The next lemma shows that the limit of a weakly convergent sequence in
a Banach space is contained in the closed convex hull of the sequence.

Definition 3.19. Let X be a real vector space and let S C X. The set

conv(S) := {Z i

i=1

i=1

s convex and 1s called the convex hull of S. If X is a topological vector
space then the closure of the convex hull of a set S C X is called the closed
convex hull of S and is denoted by conv(S).

Lemma 3.20 (Mazur). Let X be a real normed vector space and let z; € X
be a sequence that converges weakly to x. Then x € conv({x;|i € N}), i.e.
for every € > 0 there exists an n € N and real numbers Ay, ..., A\, such that

N >0 foralli, 20 =1, and |z = 0 Nz <e.

Proof. The set K := conv({z;|i € N}) is convex and hence, so is its (strong)
closure K by Lemma [3.10, Hence K is weakly closed by Lemma Since
x; € K converges weakly to z, by assumption, it follows that = € K. O]
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It follows from Lemmal[3.20] that the weak limit of every weakly convergent
sequence in the unit sphere S C X in a Banach space X is contained in the
closed unit ball B = conv(S) = conv(S). In fact, it turns out that B is the
weak closure of S whenever X is infinite-dimensional, and so % C %°.

Lemma 3.21 (Weak Closure of the Unit Sphere). Let X be an infinite-
dimensional real normed vector space and define

S:={xe X||z|] =1}, B:={zeX| |z| <1}. (3.8)
Then B 1s the weak closure of S.

Proof. The set B is weakly closed by Lemma [3.15| and hence contains the
weak closure of S. We prove that B is contained in the weak closure of S.
To see this, let xg € B and let U C X be a weakly open set containing z.
Then there exist elements z7, ...,z € X* and a constant € > 0 such that

Vi={re X||(z],x —zp)| <efori=1,...,n} CU.

Since X is infinite-dimensional, there is a nonzero vector £ € X such that
(xF,&) =0fori=1,...,n. Since ||zo|| <1 there exists a real number ¢ such
that [|zo + t£|| = 1. Hence zo+t£ € VNS and so UNS # (). Thus g belongs
to the weak closure of S and this completes the proof of Lemma [3.21] [

In view of Lemma |3.21] one might ask whether every element of B is the
limit of a weakly convergent sequence in S. The answer is negative in general.
For example, the next exercise shows that a sequence in ¢! converges weakly
if and only if it converges strongly. Thus the limit of every weakly convergent
sequence of norm one in ¢! has again norm one. The upshot is that the weak
closure of a subset of a Banach space is in general much bigger than the set
of all limits of weakly convergent sequences in that subset.

Exercise 3.22 (Shur’s Theorem). Let z,, = (2,,;):en, 7 € N, be a sequence
in ¢! that converges weakly to x = (1;);eny € ¢!. Prove that z, converges
strongly to z, i.e. limy, o |2, — 2|, = 0. (See also Exercise [3.61])

Exercise 3.23. Let X be a Banach space and suppose X* is separable. Let
S C X be a bounded set and let € X be an element in the weak closure of
S. Prove that there is a sequence (x,),en in S that converges weakly to z.

Exercise 3.24. Let X be a normed vector space. Prove that the map ¢ :
X — X* is continuous with respect to the weak topology on X and the
weak™® topology on X**.
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3.1.4 Elementary Properties of the Weak* Topology

When X is a Banach space and Y is a dense subspace, the dual spaces X*
and Y* are canonically isomorphic because every bounded linear functional
on Y extends uniquely to a bounded linear functional on X. The extension
has the same norm as the original linear functional on Y and hence the
canonical isomorphism X* — Y™ : 2* — 2*|y is an isometry. However, the
weak* topologies of X* and Y* may differ dramatically. Namely, by part (i)
of Theorem the space of weak* continuous linear functionals on Y* can
be identified with the original normed vector space Y and so may be much
smaller than the space of weak® continuous linear functionals on X*. In
other words, the completion of a normed vector space is a Banach space and
both spaces have the same dual space, however, their weak* topologies differ.
Thus great care must be taken when dealing with the weak™ topology of the
dual space of a normed vector space versus that of the dual space of a Banach
space.

Corollary 3.25 (Weak* Continuous Linear Functionals). Let X be a
real normed vector space and let A : X* — R be a linear functional on its
dual space. Then the following are equivalent.

(i) A is continuous with respect to the weak* topology on X*.

(ii) The kernel of A is a weak* closed linear subspace of X*.

(iii) A belongs to the image of the inclusion ¢ : X — X** in , i.e. there
exists an element x € X such that A(x*) = (z*, x) for all x* € X*.

Proof. This follows directly from part (i) of Theorem and the definition
of the weak* topology in Example 3.9 O

Corollary 3.26 (Weak™* Closure of a Subspace). Let X be a real normed
vector space and let E C X* be a linear subspace of its dual space. Then the
following holds.

(i) The linear subspace (“E)* is the weak* closure of E.

(ii) E is weak* closed if and only if E = (*E)*

(iii) E is weak™* dense in X* if and only if *E = {0}.

Proof. By Corollary the pre-annihilator of E is the space of weak™ con-
tinuous linear functionals on X* that vanish on E. Hence part (i) follows

from part (ii) of Theorem [3.12] Part (ii) follow directly from (i). Part (iii)
follows from (i) and the fact that any subset S C X satisfies S* = X* if and

only if S C {0} by Corollary [2.35] This proves Corollary O
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Corollary 3.27 (Separation of Convex Sets). Let X be a real normed
vector space and let A, B C X* be nonempty disjoint convex set such that A
is weak™ open. Then there exists an element x € X such that

(x*,z) > sup (y*, x) for all z* € A.
y*eB

Proof. Theorem and Corollary O

Corollary 3.28 (Weak* Closure of the Unit Sphere). Let X be an
infinite-dimensional real normed vector space and define

St = {a e X'| ol =1}, B = {0t e Xl <1},
Then B* is the weak* closure of S*.

Proof. Define F, := {z* € X*| (z*,z) < 1} for € S (the unit sphere in X).
Then F, is weak™ closed for all z € S, and hence so is B* = [, .g Fh.

Now let K C X* be the weak™ closure of S*. The K C B* because B* is
a weak™® closed set containing S*, and B* C K because K is a weakly closed
set containing S* and B* is the weak closure of S* by Lemma [3.21] O

Corollary 3.29 (Goldstine’s Theorem). Let X be a real normed vector
space and v : X — X** be the inclusion (2.39)). Then the following holds.

(1) «(X) is weak™ dense in X**.
(ii) Assume X is infinite-dimensional and denote by S C X the closed unit
sphere. Then the weak* closure of 1(S) is the closed unit ball B** C X**.

Proof. By definition, we have ~4(X) = {0}, so (i) holds by Corollary [3.26
To prove (ii), assume X is infinite-dimensional, let B C X be the closed
unit ball, and let K C X** be the weak™ closure of ¢(S). Then the set
. HK) C X is weakly closed by Exercise and S C ( }(K). Hence
B C 1"Y(K) by Lemmal[3.21] hence ¢(B) C K, and so K is the weak™ closure
of 1(B). Thus K is convex by Lemmal[3.10] Now let z3* € X**\ K and choose
a convex weak* open neighborhood U C X** of #§* such that U N K = .
Then, by Corollary [3.27] there exists an element zj € X* such that
(aitsat) > sup (o, at) 2 suplla),at) = suple, ) = |
r**ecK zeS xeS

Hence ||z§*|| > 1 and so 23" ¢ B**. This shows that B** C K. The converse
inclusion holds because B** is weak* closed by Corollary [3.28 [

Corollary shows that, in contrast to the weak topology (Corol-
lary 3.18)) a closed linear subspace of X* is not necessarily weak™* closed.
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3.2 The Banach—Alaoglu Theorem

3.2.1 The Separable Case

We prove two versions of the Banach—Alaoglu Theorem. The first version
holds for separable normed vector spaces and asserts that every bounded
sequence in the dual space has a weak™ convergent subsequence.

Theorem 3.30 (Banach—Alaoglu: The Separable Case).
Let X be a separable real normed vector space. Then every bounded sequence
in the dual space X* has a weak™ convergent subsequence.

Proof. Let subset D = {x1,x9,x3,...} C X be a countable dense subset and
let (2})nen be a bounded sequence in X*. Then the standard diagonal se-
quence argument shows that there is a subsequence (z}, )ien such that the
sequence of real numbers ((z}; , 2x))ien converges for every k € N. More pre-
cisely, the sequence ({x},x1))nen is bounded and hence has a convergent
subsequence ((z7, |, 21))ien. Since the sequence ((z7, ,,%2))ien is bounded it
has a convergent subsequence ((z},, ,, Z2));en. Continue by induction and use
the axiom of dependent choice (see page to construct a sequence of sub-
sequences 7y, , )ien such that, for every k € N, (z,,,,, )ien is a subsequence
of (2, , )ien and the sequence ((z7, ,x))ien converges. Now consider the di-
agonal subsequence z, := z; . Then the sequence ({7} ,Zx))ien converges
for every k € N as claimed.

With this understood, it follows from the equivalence of (ii) and (iii)
in Theorem 2.5 with Y = R and A; replaced by the bounded linear func-
tional 7 : X — R, that there exists an element 2* € X* such that (z*,z) =
lim; oo (z;, , 7) for all z € X. Hence the sequence (), );en converges to 2* in
the weak* topology as claimed. This proves Theorem [3.30] O

Example 3.31. This example shows that the hypothesis that X is separable
cannot be removed in Theorem The Banach space X = ¢*° with the
supremum norm is not separable. For n € N define the bounded linear
functional A, : £ — R by A,(z) := x, for z = (x;)ieny € £°°. Then the
sequence (A,)nen in X* does not have a weak* convergent subsequence. To

see this, let n; < ny < ng < --- be any sequence of positive integers and
define the sequence = = (;);en € €*° by z; := 1 for i = ng;, with k& € N and by
z; := —1 otherwise. Then A, (z) = x,, = (—1)* and hence the sequence of

real numbers (A, (z))ren does not converge. Thus the subsequence (A, )ken
in X* does not converge in the weak™® topology.
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3.2.2 Invariant Measures

Let (M,d) be a compact metric space and let ¢ : M — M be a homeo-
morphism. Denote by B C 2™ the Borel og-algebra. The space C(M) of all
continuous functions f : M — R with the supremum norm is a separable
Banach space (Example and its dual space is isomorphic to the space
M(M) of signed Borel measures p1 : B — R (Example [1.37)), equipped with
the norm function ||u|| := suppeg(u(B) — (M \B)) for p € M(M). A Borel
measure 4 : B — [0, 00) is called a probability measure if ||| = u(M) = 1.
A probability measure p : B — [0, 1] is called ¢-invariant if

/M(foqﬁ)dp:/Mfd,u for all f € C(M). (3.9)

The set
- wu(B) >0 for all B € B,
M(¢) = {/‘ € M(M) ’ u(M) =1, and p satisfies ([3.9))

of ¢-invariant Borel probability measures is a weak* closed convex subset of
the unit sphere in M(M). The next lemma shows that it is nonempty.

(3.10)

Lemma 3.32. Fvery homeomorphism of a compact metric space admits an
wvaritant Borel probability measure.

Proof. Let ¢ : M — M be a homeomorphism of a compact metric space. Fix
an element xy € X and, for every integer n > 1, define the Borel probability
measure fi, : B — [0,1] by

n—1
1
/ fduy ==Y f(¢"(z0))  for f e C(M).
M "o
Here ¢° := id : M — M and ¢* := ¢ o--- 0 ¢ denotes the kth iterate

of ¢ for k € N. By Theorem |3.30 the sequence pu, has a weak* convergent
subsequence (fin, )ien. 1ts weak™® limit is a Borel measure p : B — [0, 00) such

that
||u||=/ 1du:lim/ Ldpin, = 1
M 1— 00 M

and
n;—1

1 & 1
7o 0=l S (6w = i - S 60 = [ 7

for all f € C(M). Hence u € M(¢). O
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3.2.3 The General Case

The second version of the Banach—Alaoglu Theorem applies to all real normed
vector spaces and asserts that the closed unit ball in the dual space is weak*
compact.

Theorem 3.33 (Banach—Alaoglu: The General Case).
Let X be a real normed vector space. Then the closed unit ball

B :={z" e X*| ||lz"|| < 1} (3.11)
in the dual space X* is weak™® compact.

Proof. This is an application of Tychonoff’s Theorem The parameter
space is I = X. Associated to each x € X is the compact interval

Ko o= [= =], =[] € R.
The product of these compact intervals is the space

K = H ={f: X = R||f(2)| < ||z|| forall z € X} Cc R,
rxeX
Define
L:={f:X — R|f is linear} c R¥.
The intersection of K and L is the closed unit ball
B :={z"e X"|||lz"]| <1} =LNK.

By definition, the weak* topology on B* = L N K is induced by the product
topology on R¥ (see Example . Moreover L is a closed subset of R¥
with respect to the product topology. To see this, fix elements z,y € X and
A € R and define the maps ¢, : R = R and ¢, , : R — R by

Goy(f) = f@+y) = f(@) = fly),  ©anrlf) = F(Ax) = Af(2).

By definition of the product topology, these maps are continuous and this
implies that the set

L= () ¢mO)n ] %200
z,yeX e X,AeR

is closed with respect to the product topology. Since K is a compact subset
of R¥ by Tychonoff’s Theorem and R¥X is a Hausdorff space by Exam-
ple 3.7, it follows that B* = L N K is a closed subset of a compact set and
hence is compact. This proves Theorem |3.33| O
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The next theorem characterizes the weak® compact subsets of the dual
space of a separable Banach space.

Theorem 3.34 (Weak* Compact Subsets). Let X be a separable Banach
space and let K C X*. Then the following are equivalent.

(1) K is weak™ compact.
(ii) K is bounded and weak* closed.

(iii) K is sequentially weak™® compact, i.e. every sequence in K has a
weak* convergent subsequence with limit in K.

(iv) K is bounded and sequentially weak™ closed, i.e. if x* € X* is the
weak™ limit of a sequence in K then z* € K.

The implications (i) <= (ii) and (it) = (iv) and (iit) = (iv) continue to
hold when X is not separable.

Proof. We prove that (i) implies (ii). Assume K is weak™ compact. Then K
is weak™® closed, because the weak™® topology on X* is Hausdorff. To prove
that K is bounded, fix an element x € X. Then the function

K—>R:x"— (% x)
is continuous with respect to the weak™ topology and hence is bounded. Thus

sup |(z*, z)| < 00 for all z € X.
z*eK

Hence it follows from the Uniform Boundedness Theorem [2.1] that

sup [|lz*[] < oo
rz*eK

and so K is bounded.
We prove that (ii) implies (i). Assume K is bounded and weak* closed.
Choose ¢ > 0 such that

|lz*|| < e forall 2" € K.

Since the set
B ={z" € X*| ||lz"|| < ¢}

is weak® compact by Theorem and K C c¢B* is weak™ closed, it follows
that K is weak™® compact.



136 CHAPTER 3. THE WEAK AND WEAK* TOPOLOGIES

We prove that (ii) implies (iii). Assume K is bounded and weak™ closed.
Let (z¥)nen be a sequence in K. This sequence is bounded by assumption
and hence, by Theorem [3.30] has a weak* convergent subsequence because X
is separable. Let * € X* be the weak™ limit of that subsequence. Since K is
weak™ closed it follows that * € K. Thus K is sequentially weak™ compact.

We prove that (iii) implies (iv). Assume K is sequentially weak™ compact.
Then K is bounded because every weak™® convergent sequence is bounded by
the Uniform Boundedness Theorem [2.1, Moreover K is sequentially weak*
closed by uniqueness of the weak* limit. (If z} € K converges to z* € X* in
the weak™ topology, then it has a subsequence that weak* converges to an
element y* € K and so z* = y* € K.)

We prove that (iv) implies (ii). Assume K is bounded and sequentially
weak* closed. We must prove that K is weak® closed. Let xf € X* be
an element of the weak*® closure of K. Choose a countable dense subset
{zx |k € N} of X. Then the set

U, = {x* c X"

1
[(z" — xg, xp)| < — forkzl,...,n}
n

is a weak™ open neighborhood of z for every n € N. Hence U, N K # ()
for all n € N and so it follows from the axiom of countable choice that there
exists a sequence (z7) ey in X* such that, for all n € N, we have 2% € U,NK.
This sequence satisfies |(x} — xf, zx)| < 1/n for all k,n € N such that n > k.
Thus

lim (x}, x) = (x5, xx) for all k£ € N.

n—o0

Since the sequence (z),eny in X* is bounded, and the sequence (xy)gen is
dense in X, it follows from Theorem [2.5 that

lim (x}, x) = (2, z) for all x € X.
n—oo

Hence (27),en is a sequence in K that weak™ converges to xj and so zj € K.
This proves Theorem O

Corollary 3.35. Let (M,d) be a compact metric space and let ¢ - M — M
be a homeomorphism. Then the set M(¢p) of ¢p-invariant Borel probability
measures on M is a weak™ compact conver subset of M(M) = C(M)*.

Proof. The set M(¢) is convex, bounded, and weak™ closed by definition (see
Section [3.2.2). Hence it is weak* compact by Theorem [3.34] O
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Example 3.36. The hypothesis that X is complete cannot be removed in
Theorem [3.34 Let coo be the space of all sequences © = (2;)jen € (™
with only finitely many nonzero entries, equipped with the supremum norm.
Its closure is the space ¢y C ¢*° in Example [I.36] and so its dual space
is isomorphic to £!. A sequence of bounded linear functionals A,, : cgo — R
converges to the bounded linear functional A : ¢y9 — R in the weak™® topology
if and only if lim,_,. A, (e;) = A(e;) for all @ € N, where e; := () en. For
n € N define A, : X — R by A,(z) := x, for z = (2;);en € X. Then nA,
converges to zero in the weak* topology, and hence K := {nA,, |n € N}U{0}
is an unbounded weak* compact subset of ¢, = ('

Example 3.37. The Banach space X = (> is not separable. We prove
that (i) does not imply (iii) and (iv) does not imply any of the other as-
sertions in Theorem for X =¢°°. The closed unit ball in (£*°)* is
weak™ compact by Theorem but is not sequentially weak* compact.
Namely, the bounded linear functional A, : /> — R, defined by A, (z) := z,
for v = (z;)ieny € € and n € N, has norm ||A,|| = 1 and the sequence
(Ap)nen in (€°°)* does not have a weak™ convergent subsequence by Exam-
ple Moreover, the bounded set K := {A, |n € N} C (£*°)* is sequen-
tially weak* closed, but is neither sequentially weak* compact nor weak*
compact. (Exercise: Find a sequence of weak™ open subsets U, C (£*)*

such that A, € U, \ U,, for all m,n € N with m # n.)

Example 3.38. Let M be a locally compact Hausdorftf space which is se-
quentially compact but not compact. (An example is an uncountable well-
ordered set M such that every element of M has only countably many
predecessors, equipped with the order topology, as in [50, Example 3.6].)
Now let § : M — Co(M)* be the embedding defined in Exercise below.
Then K :=6(M) is a sequentially weak™ compact set in Cy(M)* and is not
weak® compact. So (iii) does not imply (i) in Theorem for X = Co(M).

Exercise 3.39. Let M be a locally compact Hausdorff space. A continuous
function f : M — R is said to vanish at infinity if, for every ¢ > 0, there
is a compact set K C M such that sup,c | f(7)| < . Denote by Co(M)
the space of all continuous functions f : M — R that vanish at infinity.

(i) Prove that Cy(M) is a Banach space with the supremum norm.

(ii) Prove that the map § : M — Co(M)*, which assigns to each z € M
the bounded linear functional 6, : Co(M) — R given by d,(f) := f(x) for
f € Cy(M), is a homeomorphism onto its image §(M) C Cy(M)*, equipped
with the weak™ topology.
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3.3 The Banach—Dieudonné Theorem

This section is devoted to a theorem of Banach—Dieudonné which implies
that a linear subspace of the dual space of a Banach space X is weak™ closed
if and only if its intersection with the unit ball in X* is weak™ closed.

Theorem 3.40 (Banach—Dieudonné). Let X be a real Banach space and
let E C X* be a linear subspace of the dual space X* = L(X,R), and let
B* = {x* € X*|||z*|| < 1} be the closed unit ball in the dual space. Assume

ENnB*={z" e E||z"|| <1}
is weak™ closed and let xj; € X*\ E. Then

xl*réfEHx — a3l >0 (3.12)
and, if 0 < 0 < inf,«cp ||z* — x|, then there is a vector xg € X such that
(x5, o) = 1, o] < 071, (x*,20) =0 for all x* € E. (3.13)

Proof. See page |139, [
The last condition in (3.13]) asserts that zp is an element of the pre-
3.17)

annihilator *F (see Definition .

Corollary 3.41 (Weak* Closed Linear Subspaces). Let X be a real
Banach space and let E C X* be a linear subspace of its dual space. Then
the following are equivalent.

(i) E is weak™ closed.

(ii) £ N B* is weak™ closed.

(iii) (*E)* = E.

Proof. That (i) implies (ii) follows from the fact that the closed unit ball
B* C X* is weak* closed by Corollary [3.28]

We prove that (i) implies (iii). The inclusion E C (*E)* follows directly
from the definitions. To prove the converse, fix an element zj € X*\ E.
Then Theorem asserts that there exists a vector zo € “E such that
(x5, 20) # 0, and this implies zf ¢ (*E)*.

That (iii) implies (i) follows from the fact that, for every z € X, the linear
functional «(x) : X* — R in (2.39) is continuous with respect to the weak*

topology by definition, and so the set S* = (1, s ker(¢(z)) is a weak* closed
linear subspace of X* for every subset S C X (see also Corollary [3.26)). This

proves Corollary m
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Proof of Theorem [3.40. The proof has five steps.
Step 1. inf,«cp ||z* — 2§ > 0.

By assumption, the intersection E N B* is weak™ closed and hence is a
closed subset of X*. Let (z});en be a sequence in E that converges to an
element z* € X*. Then the sequence (z7);ey is bounded. Choose a con-
stant ¢ > 0 such that ||x}]] < c for all i € N. Then ¢ 'z} € EN B* for all ¢
and so ¢ 'z* = lim; ,,, c"'z} € EN B*. Hence x* € E. This shows that F
is a closed linear subspace of X*. Since zj ¢ E, this proves Step 1.

Step 2. Choose a real number
0<d< xuéfE |lz* — ]| - (3.14)

Then there exists a sequence of finite subsets S1,5,55... of the closed unit
ball B C X such that, for alln € N and all * € X*, we have

|z* — xj|| < on and
maxges, [(z* — x5, 2)| < ko = 2" ¢FE. (3.15)
forall k e Nwith1 <k <n

For n = 1 condition (3.15) holds by (3.14). Now fix an integer n > 1
and suppose, by induction, that the finite sets Si have been constructed for

k=1,...,n — 1 such that (3.15 holds. For every finite set S C B define

[ = @] < d(n+1),
E(S) =< z" € E| maxyeg, |(z* —xj, x)| <0k for k=0,1,...,n—1,
maxges|(x* — x5, )| < on

Define
R = ||lzg]| +6(n + 1).

Since E N B* is weak™ closed so is the set
K=RENB)={z"€E||z"| < R=|xj|]| +o(n+1)}.

Hence K is weak* compact by Theorem [3.34 Moreover, for every finite
set S C B, the set E(S) is the intersection of K with the weak* closed
sets {z* € X*| ||la* — x| < d(n+ 1)}, {z* € X*| maxes(ax* —zf, z) < dn},
and {z* € X*| max,eg, (¢v* — 2§, z) <k} for k = 0,1,...,n — 1. Hence
E(S) C K is a weak™ closed set for every finite set S C B.
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Now assume, by contradiction, that E(S) # () for every finite set S C B.
Then N“, E(S;) = E(U~, S;) for any m finite subsets Si,...,S,, C B.
Thus the collection

{E(S) ]S is a finite subset of B}

of weak™® closed subsets of K has the finite intersection property. Since K is
weak® compact, there is an element z* € X* such that z* € E(S) for every
finite set S C B. This element x* satisfies

{Eréasi(@ x5, x) < 9§

fork=1,...,n—1and

l2" = a5l = max |{z” — 25, 2)| < on

in contradiction to (3.15). This contradiction shows that there exists a finite
set S C B such that E(S) = (). With this understood, Step 2 follows from
the axiom of dependent choice (see page .

Step 3. Let d > 0 and S, C B forn € N be as in Step 2. Choose a sequence
(x;)ien in B such that

1
U ESn = {LUI,IQ,JI?,,...}.
neN
Then
sup |(z* — x5, z;)| > forallx* € E.
ieN

Let z* € E and choose an integer n > 6! ||z* — xj||. Then ||z* — 2| < dn
and therefore n > 2 by . Hence, by Step 2, there exists an integer
ke{l,...,n—1} and an element x € Sy such that |[(z* —zj,x)| > Jk.
Choose i € N such that k~'z = z;. Then |(z* — x}, ;)| > § and this proves
Step 3.

Step 4. Let (z;)ien be as in Step 3. Then lim;_,o ||z;|| = 0. Moreover, there
exists a summable sequence o = (ay)ien € ' such that

Zai<x3,xi> =1, Zai@:*,xi} =0 for all " € E, Z|O‘i| <46t
i=1 =1

i=1
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It follows directly from the definition that lim; . ||z;|| = 0. Define the
bounded linear operator 7' : X* — ¢ (with values in the Banach space
co C £ of sequences of real numbers that converge to zero) by

Tr* = ((x%, 7)) ey for 2™ € X™.
Then, by Step 3,

|Tz* —Txi||, >06  forallz” € E.

Hence it follows from the Hahn-Banach Theorem with Y = T(F) and
Example that there exists an element 3 = (ﬁl)leN € (' = ¢ such that

(B, Txy) > 9, (B, Tx*) =0 for all * € E~, 18], =

Hence the sequence o = (q;)ien € ' with entries oy := (3, Tx}) "' 8; fori € N
satisfies the requirements of Step 4.

Step 5. Let (z;)ien be the sequence in Step 3 and let (o;);en be the summable
sequence of real numbers in Step 4. Then the limit

o0 n
To = Z T = nh_}IIOlo Z T (3.16)
i=1 i=1

exists in X and satisfies the requirements of Theorem [3.40

Since ||z;|| < 1 for all i € N, we have

o [o¢]
D el < leal <67
=1 i=1

Since X is a Banach space, this implies that the limit (3.16)) exists and
satisfies ||xg]] < 67! (see Lemma [1.45). Moreover, by Step 4,

(x5, o) E ai(xh, zi) =1, (", z) E a(x*, z;) =

for all * € E. This proves Theorem [3.40 ]
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3.4 The Eberlein—-Smulyan Theorem

If X is a reflexive Banach space then the weak and weak™ topologies agree
on its dual space X* = L(X,R), hence the closed unit ball in X* is weakly
compact by the Banach—Alaoglu Theorem [3.33, and so the closed unit ball
in X is also weakly compact. The Eberlein-Smulyan Theorem asserts that
this property characterizes reflexivity. It also asserts that weak compactness
of the closed unit ball is equivalent to sequential weak compactness.

Theorem 3.42 (Eberlein—Smulyan). Let X be a real Banach space and
B:={zeX]| x| <1}

be the closed unit ball. Then the following are equivalent.

(i) X s reflezive.

(i) B is weakly compact.

(iii) B is sequentially weakly compact.

(iv) Every bounded sequence in X has a weakly convergent subsequence.

Proof. See page [144] O

Remark 3.43 (James’ Theorem). A theorem of Robert C. James [25]
asserts the following.

Let C C X be a nonempty bounded weakly closed subset of a Banach space
over the reals. Then C' is weakly compact if and only if every bounded linear
functional on X attains its mazimum over C.

That the condition is necessary for weak compactness follows from the fact
that every bounded linear functional on X is continuous with respect to the
weak topology (Lemma. The converse is highly nontrivial and requires
the construction of a bounded linear functional on X that fails to attain its
maximum over C' whenever C' is not weakly compact. This goes beyond the
scope of this book and we refer to the orginal paper by James [25] as well as
the work of Holmes [2I] and Pryce [45].

Combining James’ Theorem with Theorem [3.42] one obtains the following
result [26]. A Banach space X is reflexive if and only if, for every bounded
linear functional x* € X*, there exists an element x € X such that

lell =1, (2%, 2) = [l«"]].

If X is reflexive, the existence of such an element x can be deduced from the
Hahn-Banach Theorem (Corollary [2.54)).
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The proof of Theorem relies on Helly’s Theorem, a precurser to the
Hahn-Banach Theorem proved in 1921, which shows when a finite system of
linear equations has a solution.

Lemma 3.44 (Helly’s Theorem). Let X be a real normed vector space
and let x7,...,x;, € X* and c1,...,c, € R. Fix a number M > 0. Then the
following are equivalent.

(i) For every e > 0 there exists an x € X such that
|z|]| < M +e, (xf,x) =¢; fori=1,...,n. (3.17)

(ii) Every vector X = (A1,...,\,) € R™ satisfies the inequality

n n
*
i=1 =1

Proof. We prove that (i) implies (ii). Fix a constant ¢ > 0. By (i) there
exists a vector x € X such that (3.17) holds. Hence

=1 =1 i=1

Since € > 0 was chosen arbitrary, this proves (ii).

We prove that (ii) implies (i). Thus assume (ii) holds and suppose first
that x7,...,z} are linearly independent. Then, by Lemma [3.13] there exist
vectors xy, ..., %, € X such that (z},z;) = d;; for i,j =1,...,n. Define

<M . (3.18)

=1

< [J]] < (M +¢)

Z="{xt, . at)

We prove that Z+ = span{z},...,2"}. Let * € Z+. Then, for all z € X,

n

x — Z(xf,@xz €z

=1

and hence

n n

0= <$ r—> (af, x>xi> = <x - (@, x)x:r>

i=1 =1

This shows that z* = Y " (¢*, 2;)x} € span{z},... 25} for all z* € Z+.
The converse inclusion is obvious.
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Now define

n

xTr = E le’j.

j=1
Then (2}, x) = ¢; and every other solution of this equation has the form z+ z
with z € Z. Hence it follows from Corollary that

*
inf ||z +2z]| = sup M
2€Z z*eZt H’I. H

20 Aicil

st 132, Az
< M.
This proves (i) for linearly independent n-tuples i, ...,z € X*.
To prove the result in general, choose a subset J C {1,...,n} such that
the a} for j € J are linearly independent and span the same subspace as
xy,...,7,. Fix a constant ¢ > 0. Then, by what we have just proved,

there exists an € X such that ||z|| < M + ¢ and (2},7) =¢; for j € J.
Let ¢ € {1,...,n} \ J. Then there exist real numbers \; for j € J such

that >, Ajzj = 2. Hence >, ;\jcj =¢; by (3.18) and so (z7,z) = c;.
Thus « satisfies (3.17) and this proves Lemma [3.44] O

Proof of Theorem [3.43. 1If X is reflexive, then ¢ : X — X** is a Banach space
isometry, so «(B) = B*™ C X** is weak™® compact by Theorem and hence
B is weakly compact by Exercise [3.24] This shows that (i) implies (ii).

We prove that (ii) implies (i). Thus assume that the closed unit ball
B C X is weakly compact and fix an element z** € X**.

Claim. For every finite set S C X* there is an element z* € X* such that

||| < 2|z,  (2*,2) = (@™, z*) forallx€S.

To see this, write S = {z},..., 2"} and define ¢; := (™, z) fori = 1,...,n.
Then every vector A = (A1,...,\,) € R™ satisfies the inequality

n n n
)\ici T A%xz )\le
i=1 =1 =1

Thus the claim follows from Lemma with e := M = [|z**|| > 0.

= < [l
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We prove that x** belongs to the image of the inclusion ¢ : X — X**.
Denote by . C 2% the set of all finite subsets S C X*. For S € . define

K(S) :={z e X||lz]| < 2]j2™| and (z*,z) = (¢**,2") for all 2* € S} .

Then, for every finite set S C X, the set K(.5) is nonempty by the claim, is
weakly closed by definition, and is contained in ¢B, where ¢ := 2 ||z**||. The
set ¢B is weakly compact by (ii) and the collection {K(S)|S € .} has the
finite intersection property because

m

E(S) =K <Usi> #£0  forall S,...,5, €.7.
i=1

=1

Hence

() K(S)#0

Ses

and so there exists an x € X such that x € K(S) for all S C .#. This shows
that (z*, ) = (™, 2*) for all 2* € X*, and thus ™ = ¢(z). This shows
that (ii) implies (i).

We prove that (i) implies (iii). Assume first that X is separable as well
as reflexive. Then X™ is separable by Theorem and is reflexive by The-
orem . Let (z,)nen be a sequence in the closed unit ball B C X. Then
(t(xn))nen is a bounded sequence in X** and hence has a weak™ convergent
subsequence ((zy,))ien by Theorem [3.30] Hence the sequence (zy,);en con-
verges weakly to an element # € X by Exercise [3.24] Since z,, € B for all
1 € N it follows that € B by Lemma|3.20, This shows that B is sequentially
weakly compact whenever X is reflexive and separable.

Now assume X is reflexive and let (z,).eny be a sequence in B. Let
Y := span{z, |n € N} be the smallest closed subspace of X that contains
the sequence (x,,)n,en. Then Y is reflexive by Theorem and Y is separable
by definition. Hence the sequence (x,),en has a subsequence that converges
weakly to an element of B. Thus B is sequentially weakly compact. This
shows that (i) implies (iii).

We prove that (iii) implies (iv). If (z,)nen is @ bounded sequence, then
there exists a constant ¢ > 0 such that ||z,|| < ¢ for all n € N, hence the
sequence (¢ 'z, )nen in B has a weakly convergent subsequence by (iii), and
hence so does the original sequence (x,,)nen. This shows that (iii) implies (iv).
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We prove that (iv) implies (i). Thus assume (iv) and choose an element
xg* € X** such that ||zf*|| < 1. We prove in three steps that z* belongs to
the image of the inclusion ¢ : X — X** in (12.39)).

Step 1. Letn € N and z7, ...,z € X*. Then there is an x € X such that

||| <1, (xf,x) = (x5, x}) fori=1,...,n. (3.19)

)

Denote by S C X the unit sphere and recall from Corollary that the
weak* closure of ¢(S) is the closed unit ball B* C X**. For m € N the set

)

U, = {x** e X

1
(™ — 5", 2])| < - for i = 1,...,n}.

is a weak™ open neighborhood of z#* € B** and so Uy, N¢(S) # (). Hence, by
the axiom of countable choice, there is a sequence (z,,)men in X such that

*
%

1
|lzml =1, [(x], Ty — (x5, 27)| < p foralmeNandi=1,...,n.

By (iv), there exists a weakly convergent subsequence (x,,, )ken. Denote the
weak limit by . It satisfies ||z|| < 1 by Lemma and

(xf, ) :kh_{n (xf, Ty, ) = (T", ) fori=1,...,n.
o0

This proves Step 1.

Step 2. Define E := {a* € X* | (x}*,2*) = 0} and let B* C X* be the closed
unit ball. Then E'N B* is weak™ closed.
Fix an element zj in the weak™ closure of £ N B*. Then zj € B* by Theo-

rem [3.33 We must prove that zj; € E. Fix a constant ¢ > 0. We claim that
there are sequences z,, € B and x} € N B* such that, for all n € N,

(xi‘,xn>=<x3*,x;f>={ <x0,x0()), iz;? fori=0,...,n—1, (3.20)

(zr — x5, x:)| < € fori=1,...,n. (3.21)

By Step 1 there exists an element z; € B such that (xf,x;) = (af*, z}).
Thus z, satisfies for n = 1. Moreover, since z; belongs to the
weak™ closure of E'N B* there exists an element xj € F N B* such that
|(xy — xf, 21)| < e. Thus z7 satisfies forn = 1.
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Now let n € N and suppose that x; € B and x} € E'NB* have been found
for © = 1,...,n such that (3.20) and (3.21)) are satisfied. Then, by Step 1,
there is an element z,,.1 € B such that (x}, x,11) = (x§*, z}) for i =0, .
Furthermore, since xj belongs to the weak™ closure of EN B*, there ex1sts an
element z,, € EN B* such that (2}, —af,z;)| <efori=1,...,n+1.
By the axiom of dependent choice (see page , this shows that there exist
sequences z,, € B and z¥ € E'N B* that satisfy and (3.21).

Since ||z,|| < 1 for all n € N, it follows from (iv) that there exists a
weakly convergent subsequence (x,, )ken. Denote the limit by xy. Then

(xf, x0) = l};@(x;,xnk) (xg*,xy) =0 for all m € N. (3.22)

Here the second equation follows from (3.20) and the last equation follows
from the fact that 2}, € E N B* for m > 1. Moreover, Lemma [3.20] asserts
that x¢o € B and that there exists an m € N and A, ..., \,, € R such that

=1 i=1

(3.23)

Hence

[Ee

< ‘xo,xo Z)\ x5, x;)

< ixl
=1
i=1

< 2e.

Here the first step uses equation (|3.22)), the second step uses (3.23)), the third
step uses the equation (zj*, xj) = (xf, z;) in (3.20)), and the last step follows

from (3.21)), (3.22)), and (3.23]). Thus |[(x§*, z§)| < 2¢ for all € > 0, therefore

(xg*, x5) = 0, and so af € E'N B*. This proves Step 2.

ol o)
=1
+ Hi )\11’1 — X9
i=1

% —iUOH

(zo", w5) — (x5, 74)

Step 3. There exists an element xo € X such that 1(xg) = xj*.

By Corollary [3.41] the linear subspace E C X* in Step 2 is weak* closed.
(This is the only place in the proof where we use the fact that X is complete.)
Hence it follows from Corollary that there exists an element zp; € X
such that (z*,z0) = (xf*,2*) for all ¥ € X*. This proves Step 3 and
Theorem [3.42] O
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3.5 The Krein—Milman Theorem

The Krein—-Millman Theorem [311, 39] is a general result about compact con-
vex subsets of a locally convex Hausdorff topological vector space. It asserts
that every such convex subset is the closed convex hull of its set of extremal
points. Here are the relevant definitions.

Definition 3.45 (Extremal Point and Face). Let X be a real vector space
and let K C X be a nonempty convex subset. A subset F' C K 1is called a
face of K if F' is a nonempty convex subset of K and

$0,$1€K,0<)\<1,

(1=Nxg+ vy € F I Lo, 21 € F. (3.24)

An element © € K 1is called an extremal point of K if

$0,$1€K,0<)\<1,

(1= Nxg+ Aoy =2 = To=T1 = T. (3.25)

This means that the singleton F := {z} is a face of K or, equivalently, that
there is no open line segment in K that contains x (see Figure . Denote
the set of extremal points of K by

E(K) :={x € K|z satisfies (3.25)) } .

extremal point

i

face
K "

Figure 3.1: Extremal points and faces.

Recall that the convex hull of a set E C X is denoted by conv(F) and that
its closure, the closed convex hull of F,| is denoted by ¢onv(E) whenever X
is a topological vector space (see Definition [3.19)).
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Theorem 3.46 (Krein—Milman). Let X be a locally convex Hausdorff
topological vector space and let K C X be a nonempty compact convex set.
Then K is the closed convez hull of its extremal points, i.e. K = conv(E(K)).
In particular, K admits an extremal point, i.e. E(K) # ().

Proof. The proof has five steps.
Step 1. Let
H = {K cX | K is a nonempty compact convex set}

and define the relation < on J by

F<K & ris a face of K (3.26)

for F,K € . Then (% ,<) is a partially ordered set and every nonempty
chain € C & has an infimum.

That the relation (3.26) is a partial order follows directly from the definition.
Moreover, every element K € J# is a closed set because X is Hausdorff. This
implies that every nonempty chain ¢ C J has an infimum Cj := (. C.

Step 2. If K € % and A : X — R is a continuous linear functional then
F:=KnA*'(supA) € &
K

aond F X K.
Abbreviate
¢ :=supA.
K

Since K is compact and A is continuous, the set F' = KNA~!(c) is nonempty.
Since K is closed and A is continuous, F'is a closed subset of K and hence
is compact. Since K is convex and A is linear, F' is convex. Thus F' € JZ .

To prove that F'is a face of K, fix two elements zg, ;7 € K and a real
number 0 < A < 1 such that

z:=(1—XNzo+ Ay € F.
Then (1 — A)A(zo) + AA(z1) = ¢ and hence
(1 —=X)(c—A(xg)) + Ac— A(zy)) > 0.
Since ¢ — A(xg) > 0 and ¢ — A(x1) > 0, this implies
A(zg) = A(xy) =¢
and hence xg,x; € F. Thus F is a face of K.
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Step 3. Every minimal element of # is a singleton.

Fix an element K € % which is not a singleton and choose two elements
xg, 1 € K such that xg # x;. Since X is a locally convex Hausdorff space,
there exists a convex open set U; C X such that x; € Uy and z¢ ¢ U;. Hence
it follows from Theorem [3.11] that there exists a continuous linear functional
A : X — R such that A(xy) < A(z) for all z € Uy and so

A(Io) < A(ZL‘l)

By Step 2, the set
F:=KnA(supA)
K

is a face of K and g € K \ F. Thus K is not a minimal element of J¢.
Step 4. Let K € . Then E(K) # 0.

By Step 1 and the Lemma of Zorn, there exists a minimal element F € JZ
such that F < K. By Step 3, E = {x} is a singleton. Hence = € £(K).

Step 5. Let K € . Then K =conv(E(K)).

It follows directly from the definitions that conv(£(K)) C K. Assume, by
contradiction, that there exists an element z € K \conv(E(K)). Since X is a

locally convex Hausdorff space, there exists an open convex set U C X such
that

reU, UnNnconv(E(K)) = 0.

By Theorem there is a continuous linear functional A : X — R such
that
A(z) > sup A (3.27)
conv(£(K))
By Step 2, the set
F:=KnA(supA)
K

is a face of K and
FNEK)=0.

by (3.27). By Step 3, the set F' has an extremal point xy. Then x, is also
an extremal point of K in contradiction to the fact that FNE(K) = (). This
proves Theorem [3.46| O]



3.5. THE KREIN-MILMAN THEOREM 151

Example 3.47. This example shows that the extremal set of a compact
convex set need not be compact. Let X be an infinite-dimensional reflexive
Banach space. Assume X is strictly convex, i.e. for all z,y € X,

[z +yll = 2 [zl = 2|yl = =y (3.28)

Then the closed unit ball B C X is weakly compact by Theorem and
its extremal set is the unit sphere £(B) = S (see Exercises and [3.72)).
Thus the extremal set is not weakly compact and B is the weak closure of
its extremal set by Lemma Exercise: Prove that B = conv(S).

Example 3.48 (Infinite-Dimensional Simplex). This example shows
that the convex hull of a compact set need not be compact. The infinite
product RY is a locally convex Hausdorff space with the product topology,
induced by the metric

o0

i wi =il
d(z,y) = 27—
; 1+ |2 — il
for x = (2;)ieny and y = (y;)ien in RY. The infinite-dimensional simplex

i=1

A= {Z‘ = (372')1'61\1 e RN

is a compact convex subset of RN by Tychonoff’s Theorem [B.1] Its set of
extremal points is the compact set

E(A) ={e; |1 € N} U{0}, e; = (0;5)jen-

The convex hull of £(A) is strictly contained in A and hence is not compact.
Exercise: The product topology on the infinite-dimensional simplex agrees
with the weak* topology it inherits as a subset of £! = ¢, (see Example [1.36)).

Example 3.49 (Hilbert Cube). The Hilbert Cube is the set

This is a compact convex subset of RY with respect to the product topology.
Its set of extremal points is the compact set

£(Q) = {95 = (Ti)ien € RN ‘ z; € {0, 1/2}} :
The convex hull of any finite subset of £(Q) is nowhere dense in Q). Hence
conv(€£(Q)) € @ by the Baire Category Theorem [1.55| Exercise: The
product topology on the Hilbert Cube agrees with the topology induced by
the £ norm.
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3.6 Ergodic Theory

3.6.1 Ergodic Measures

Let (M,d) be a compact metric space and let ¢ : M — M be a homeomor-
phism. Denote by B C 2™ the Borel o-algebra. Recall that the set M(¢) of
all ¢-invariant Borel probability measures on M is a nonempty weak™ com-
pact convex subset of the space M (M) = C(M)* of all signed Borel measures

on M (see Section and Corollary [3.35)).

Definition 3.50 (Ergodic Measure). A ¢-invariant Borel probability mea-
sure p: B — [0,1] is called ¢g-ergodic if, for every Borel set B C M,

¢»(B)=1B = w(B) € {0,1}. (3.29)
The homeomorphism ¢ is called p-ergodic if i is an ergodic measure for ¢.

Example 3.51. If x € M is a fixed point of ¢ then the Dirac measure y = 9,
is ergodic for ¢. If ¢ = id the Dirac measure measure at each point of M is
ergodic for ¢ and there are no other ergodic measures.

Theorem 3.52 (Ergodic Measures are Extremal). Let y: B — [0, 1] be
a ¢-invariant Borel probability measure. Then the following are equivalent.
(i) p is an ergodic measure for ¢.

(ii) p is an extremal point of M(¢).

Proof. We prove that (ii) implies (i) by an indirect argument. Assume p is
not ergodic for ¢. Then there exists a Borel set A C M such that ¢(A) = A
and 0 < u(A) < 1. Define g, 11 : B — [0, 1] by
p(B\A) pBNA)
wo(B) = , w(B) =
e 70 R Ay
for B € B. These are ¢-invariant Borel probability measures and they are
not equal because pg(A) = 0 and pi(A) = 1. Moreover, = (1 — Ao + Ay
where A := u(A). Hence p is not an extremal point of M(¢). This shows
that (ii) implies (i). The converse is proved on page [154] O
Corollary 3.53 (Existence of Ergodic Measures). Every homeomor-

phism of a compact metric space admits an ergodic measure.

Proof. The set M(¢) of ¢-invariant Borel probability measures on M is
nonempty by Lemma and is a weak* compact convex subset of M (M)

by Corollary [3.35] Hence M(¢) has an extremal point p by Theorem [3.46]
Thus 4 is an ergodic measure by (ii) = () in Theorem [3.52 O
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3.6.2 Space and Times Averages

Given an ergodic measure p : B — [0, 1] for the homeomorphism ¢, a con-
tinuous function f : M — R, and a point x € M one can ask the question
whether the average %ZZ;& f(¢*(z)) converges. A theorem of Birkhoff [9]
answers this question in the affirmative for almost every x € M. This is
Birkhoff’s Ergodic Theorem. It asserts that, if u is an ergodic measure
for ¢, then, for every continuous function f : M — R, there exists a Borel

set A C M such that

PN =A,  pA) =1, (3.30)

and »
/ fdp = lim %Zf(gbk(x)) for all z € A. (3.31)

M n—o00 om0

In other words, the time average of f agrees with the space average for
almost every orbit of the dynamical system. If ¢ is uniquely ergodic,
i.e. ¢ admits only one ergodic measure, or equivalently, only one ¢-invariant
Borel probability measure, then equation actually holds for all x € M.
Birkhoft’s Ergodic Theorem extends to p-integrable functions and asserts
that the sequence of measurable functions % ZZ;& fo@* converges pointwise
almost everywhere to the mean value of f. A particularly interesting case is
where f is the characteristic function of a Borel set B C M. Then the integral
of f is the measure of B and it follows from Birkhoff’s Ergodic Theorem that

W(B) = lim #{ke{0,....n—1}|¢¥(x) € B}

n—oo n

(3.32)

for p-almost all x € M. A weaker result is von Neumann’s Mean Ergodic

Theorem [41]. It asserts that the sequence %ZZ;& f o ¢* converges to the
mean value of f in LP(u) for 1 < p < oco. This implies pointwise almost

everywhere convergence for a suitable subsequence (see [50, Cor 4.10]).

Theorem 3.54 (Von Neumann’s Mean Ergodic Theorem). Let (M, d)
be a compact metric space, let ¢ : M — M be a homeomorphism, and let
€ M(p) be an ergodic measure for ¢. Then

117,—1 )
E;fw —/Mfdu

forall1 <p<oo and all f € LP(u).
Proof. See page [157 [

=0 (3.33)

p

lim
n—oo
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Theorem [3.54) implies Theorem [3.53 The proof has two steps.

Step 1. Let pg, 11 € M(@) be ergodic measures such that pg(A) = pi(A) for
every ¢-invariant Borel set A C M. Then pg = p.

Fix a continuous function f : M — R. Then it follows from Theorem
and [50, Cor 4.10] that there exist Borel sets By, By C M and a sequence of
integers 1 < ny < ny < ng < --- such that u;(B;) = 1 and

nj—1
1 J
fdu; = lim — f(o¥(x for x € B; and i =0, 1. 3.34
[ i = Jim T (331

For 7 = 0,1 define
A=) ¢"(By).
nez
So A; is a ¢-invariant Borel set such that u;(A;) = 1. Thus it follows from the
assumptions of Step 1 that ui(Ag) = po(Ao) = 1 and po(A1) = 1 (Ay) = 1.
This implies that the set A := Ag N A; is nonempty. Since A C By N By, it

follows from ((3.34)) that
1 nj—l
/ fdpo = lim — >~ f(¢*(x)) :/ fdu,  forallz € A.
M e 5 M

Thus the integrals of f with respect to py and u; agree for every continuous
function f : M — R. Hence iy = p; by uniqueness in the Riesz Representa-
tion Theorem (see [50, Cor 3.19]). This proves Step 1.

Step 2. Let u € M(¢) be ergodic. Then p is an extremal point of M(¢).

Let po, 1 € M(¢) and 0 < A < 1 such that g = (1 — N+ Ay If BC M
is a Borel set such that p(B) = 0, then (1—X)uo(B)+ A (B) = 0, and hence
po(B) = u1(B) = 0 because 0 < A < 1. If B C M is a Borel set such that
pu(B) =1, it follows that 0 = 1 — u(B) = (1 = A\)(1 — po(B)) + A(1 — 1 (B)),
and hence po(B) = p1(B) = 1. This shows that po(A) = 1 (A) = pu(A) for
every ¢-invariant Borel set A C M and hence o and p are ergodic measures
for ¢ that agree on all ¢-invariant Borel sets. Hence pg = p1 by Step 1 and
this proves Step 2.

Step 2 shows that (i) implies (ii) in Theorem [3.52l The converse was
proved on page (152} O
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3.6.3 An Abstract Ergodic Theorem

Theorem [3.54] translates into a theorem about the iterates of a bounded
linear operator from a Banach space to itself provided that these iterates are
uniformly bounded. For an endomorphism 7" : X — X of a vector space X
and a positive integer n denote the nth iterate of T" by T" :=To---0oT.
For n = 0 define T° := id. The ergodic theorem in functional analysis asserts
that, if T': X — X is a bounded linear operator on a reflexive Banach space
whose iterates T form a bounded sequence of bounded linear operators, then
its averages S, := %ZZ;% T* form a sequence of bounded linear operators
that converge strongly to a projection onto the kernel of the operator 1 —T'.
Here is the relevant definition.

Definition 3.55 (Projection). Let X be a normed vector space. A bounded
linear operator P : X — X is called a projection if P? = P.

Lemma 3.56. Let X be a normed vector space and let P : X — X be a
bounded linear operator. Then the following are equivalent.
(i) P is a projection.
(ii) There exist closed linear subspaces Xo, X1 C X such that
XOOXIZ{O}v XO@Xlsz

and

P(zg+ ) =21 for all xq € Xo and all 1 € X;.
Proof. If P is a projection then P? = P and hence the linear subspaces
Xo = ker(P) and X; := im(P) = ker(1 — P) satisfy the requirements of
part (ii). If P is as in (ii) then P? = P by definition and P : X — X is a
bounded linear operator by Corollary [2.16] This proves Lemma [3.56] [
Example 3.57. The direct sum of two closed linear subspaces of a Banach
space need not be closed. For example, let X := C([0, 1], R) be the Banach

space of continuous functions f : [0,1] — R, equipped with the supremum
norm. Then the linear subspaces

Vi={(fg9) € X x X[ [ =0},
Z:={(f,9) € X x X[ feC'([0,1]), ' =g}
of X x X are closed, their intersection is trivial, and their direct sum

Y& Z={(fgeXxX|feC(0,1])}

is not closed.
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Theorem 3.58 (Ergodic Theorem). Let X be a Banach space and let
T:X—X
be a bounded linear operator. Assume that there is a constant ¢ > 1 such that
IT"| <c¢  foralln eN. (3.35)

For n € N define the bounded linear operator S, : X — X by

1
= — Tk, .
Sni=— > (3.36)

Then the following holds.

(i) Let x € X. Then the sequence (S,x)nen converges if and only if it has a
weakly convergent subsequence.

(ii) The set
7 = {x eX ‘ the sequence (Spx)nen converges} (3.37)
is a closed T-invariant linear subspace of X and
Z=ker(1—-T)@®im(1—-T) (3.38)

Moreover, if X is reflexive then Z = X.

(iii) Define the bounded linear operator

S:Z—=7Z
by -
S(x+y):=x  forzeker(1-T) andy €im(1—-7T) (3.39)
Then
lim S,z =Sz (3.40)
forall z € Z and
ST =TS =S8*=38, S]] < e (3.41)

Proof. See page [158| n
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Theorem [3.58 implies Theorem [3.5]]. Let ¢ : M — M be a homeomorphism
of a compact metric space M and let 1 € M(¢) be an ergodic ¢-invariant
Borel probability measure on M. Define the operator T : LP(u) — LP(u) by

Tf:=foo for f € LP(u).
Then [|Tf[|, = If]|, for all f € LP(u), by the ¢-invariance of u, and so
1T = 1.

Thus T satisfies the requirement of Theorem [3.58 Let f € LP(u). Since
LP(u) is reflexive (Example |1.33)), Theorem asserts that the sequence

1 n—1 1 n—1
Sufi=—> Tf==% fod
k=0 k=0

converges in LP(u) to a function Sf € ker(1 — 7). It remains to prove
that Sf is equal to the constant ¢ := [ 1/ dp almost everywhere. The key to
the proof is the fact that every function in the kernel of the operator 1—T is
constant (almost everywhere). Once this is understood, it follows that there
exists a constant ¢ € R such that Sf = ¢ almost everywhere, and hence

n—1
c:/ Sfdu= lim/ Spfdy = lim lZ/(fogbk)clu:/ fdpu.

Thus it remains to prove that every function in the kernel of 1—7T is constant.
Let g € LP(u) and suppose that Tg = g. Choose a representative of the
equivalence class of g, still denoted by g € £P(u). Then g(x) = g(¢(z)) for
almost all x € M. Define

Ey:={z € M|g(x) #g(¢(x))},  E:=]"E).
kEZ
Then ¢(E) = E, p(E) = 0, and g(¢(z)) = g(x) for all z € M \ E. Let
c:= fM g dp and define the Borel sets B_, By, By C M by

By:={x e M\ E|g(z) =c}, By :={ze M\ E| £g(x)>c}.

Each of these three Borel sets is invariant under ¢ and hence has measure
either zero or one. Moreover, B_ U By U By = M \ E and this implies
u(B-) 4+ pu(By) + 1(B+) = 1. Hence one of the three sets has measure one
and the other two have measure zero. This implies that p(By) = 1, because
otherwise either fMgdu < cor fMgdu > c¢. Thus g is equal to its mean
value almost everywhere. This proves Theorem |3.54 [
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Proof of Theorem[3.58, The proof has eight steps.
Step 1. Let n € N. Then ||S,|| < ¢ and ||S,(1—=T)|| < %

By assumption and the triangle inequality

1 n—1
ISul < -S| <
k=0

for all n € N. Moreover,
1 & 1 & 1
So(I=T)==Y TFr—=-3"TF=—(1-1")
n n n
k=0 k=1

and so
1+c¢

1 mn
1Sh (=) < — (0] + 17"]) <

for all n € N. This proves Step 1.
Step 2. Let x € X such that Tx = x. Then S,x = x for alln € N and

llz]| <cllz+&—T¢| for all £ € X.

Since T'x = z it follows by induction that 7%z = x for all k € N and hence
1 n—1
x:—ZTkx:Sn:p for all n € N.

n
k=0

Moreover, lim,,_, ||S,(§ —T€)|| = 0 by Step 1 and hence
el = tim [lo + S,(¢ — TE)| = lim [[S,(z +€ T < elfo+ ¢ - T¢].
Here the inequality holds because ||.S,|| < ¢ by Step 1. This proves Step 2.

Step 3. Ifx €ker(1—T) andy € im(1 —T) then ||z|| < cl|z + y|.
Choose a sequence &, € X such that y = lim,,_, (ﬁn—Tﬁn). Then, by Step 2,

|z]| < cllz+ &, — T&|| for all n € N

Take the limit n — oo to obtain ||z|| < ¢ ||z 4 y||. This proves Step 3.
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Step 4. ker(1 —T7)Nim(1 — K) = {0} and the direct sum
Z = ker(1—T) & im(1 — T) (3.42)

s a closed linear subspace of X.

Let € ker(1 —7) Nim(1 — 7") and define y := —z. Then
[zl < cllz +yll =0

by Step 3 and hence z = 0. This shows that ker(1 —7") Nim(1 —7") = {0}.
We prove that the linear subspace Z in (3.42) is closed. Choose sequences
z, € ker(1 —T) and y, € im(1—T) such that their sum z, =z, + yn
converges to some element z € X. Then (z,),en is a Cauchy sequence and
hence (z,)nen is a Cauchy sequence by Step 3. This implies that y, = z, —x,
is a Cauchy sequence and hence z = z+y, where x := lim,,_, o z,, € ker(1-T)
and y := lim,,_, ¥, € im(1 — 7). This proves Step 4.

Step 5. If z € Z thenTz € Z.
Let z € Z. Then

z=x+vy, x € ker(1—-1T), yeim(1-T).
Choose a sequence ; € X such that y = lim; (& — T¢;). Then

Ty = lim T(& — Tg) = lim (1 = T)T¢; € im(1 - T).

1—+00
Hence Tz =Tx + Ty =z + Ty € Z and this proves Step 5.
Step 6. Ifx € ker(1—T) and y € im(1 —T) then x = lim, o Sp(x + 7).

By Step 1, the sequence |5, (1 — T)¢|| < £ [|€]| converges to zero as n tends
to infinity for every £ € X. Hence it follows from the estimate [|S,|| < ¢ in
Step 1 and the Banach-Steinhaus Theorem [2.5] that

lim S,y =0 for all y € im(1—T).

n—o0

Moreover, S,z = x for all n € N by Step 2. Hence

r = lim S,z = lim S,(x +y).
n—oo n—oo

This proves Step 6.



160 CHAPTER 3. THE WEAK AND WEAK* TOPOLOGIES

Step 7. Let x,z € X. Then the following are equivalent.
(a) Te =2 and z — 2z € im(1 - T).
(b) im0 ||Snz — || = 0.

(c) There is a sequence of integers 1 < ny; < ny < nz < --- such that
lim (z*, S,,,2) = (z*, x) for all * € X™.
71— 00

That (a) implies (b) follows immediately from Step 6 and that (b) implies (c)
is obvious. We prove that (c¢) implies (a). Thus assume (c) and fix a bounded
linear functional z* € X*. Then T*z* := x*oT : X — R is a bounded linear
functional and

(*,x —Tx) = (" = T"x", z) = lim (" — T"z", S,,,2)

1—00

= lim (2", (1 - 1T)S,,2) =

1—00
Here the last equation follows from Step 1. Hence Tz = x by the Hahn—
Banach Theorem (Corollary . Next we prove that z — 2 € im(1—T).
Assume, by contradiction, that z — 2z € X \ im(1 — 7"). Then, by the Hahn-
Banach Theorem there exists an element z* € X* such that

(2%, 2 —x) =1, (", —T¢&) =0 forall £ € X. (3.43)

This implies (z*, T*¢ — TF1¢) = 0 for all k € N and all £ € X. Hence, by
induction, (z*, &) = (z*, T*E) for every € € X and every integer k > 0. Thus

—1
(x*,Spz) = Z(x*,Tkz> = (z%, 2)
for all n € N. Hence (z*,z — z) = lim;_,o(z*, Sy,,z — ) = 0 by (c). This
contradicts (3.43)). Thus z — x € im(1 — 7) and this proves Step 7.

Step 8. We prove Theorem|3.58

The subspace Z in (3.42)) is closed by Step 4 and is T-invariant by Step 5.
Moreover, Step 7 asserts that an element z € X belongs to Z if and only if the
sequence (S,2)nen converges in the norm topology if and only if (S, 2),en has
a weakly convergent subsequence. If X is reflexive, this holds for all z € X
by Step 1 and Theorem [2.71] This proves (i) and (ii).

Define the operator S : Z — Z by (3.39). Then ||S|| < ¢ by Step 3, the
equation lim,,_,o, S,z = Sz for z € Z follows from Step 6, and S? = S by def-
inition. The equation ST = T'S = S follows from the fact that .S commutes
with 7’|z and vanishes on the image of 1—7". This proves Theorem [3.58) [

E‘
O
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) =
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3.7 Problems

Exercise 3.59. Let H be a real Hilbert space and let (z;);en be a sequence
in H that converges weakly to x € H. Assume also that

) = Jm fe]

Prove that (x;);en converges strongly to x, i.e. lim; o [|z; — z|| = 0.

Exercise 3.60. Let H be an infinite-dimensional separable real Hilbert space
and let (e,)nen be an orthonormal basis of H. Prove the following.

(a) The sequence (e, )nen converges weakly to zero.
(b) The set
A:={y/ne,|n € N}

is sequentially weakly closed, but the weak closure of A contains zero. Hint:
Let U C H be a weakly open neighborhood of the origin. Show that there
are vectors yi,...,Y, € H and a number € > 0 such that

Vi={xeH| max |(z,y:)| <e} CU.

Show that the sequence z, := max;—1__m|(en,y;)| is square summable and
deduce that V N A # (.

Exercise 3.61 (The weak topology of ('). Prove the following.
(a) The standard basis e, of ¢! does not converge weakly to zero.

(b) View ¢! as the dual space of ¢y (see Example [1.36]). Then the standard
basis converges to zero in the weak* topology.

(c) Shur’s Theorem. A sequence in (* converges (to zero) in the weak
topology if and only if it converges (to zero) in the norm topology.

Exercise 3.62. Let X be a separable normed vector space and let (x,),en
be a dense sequence in the unit ball of X. Prove that the map

d(x*,y*) == Z 27" (2" =y, x| for z*,y* € B”, (3.44)
n=1

defines a distance function on the closed unit ball B* C X*. Prove that the
topology induced by this distance function is the weak™ topology on B*.



162 CHAPTER 3. THE WEAK AND WEAK* TOPOLOGIES

Exercise 3.63 (The compact-open topology). Let X be a topological
space, let Y be a metric space, and let C'(X,Y") be the space of continuous
functions f: X — Y. The compact-open topology on C(X,Y) is the
smallest topology such that the set .7(K,V):={f € C(X,Y)|f(K)CV}
is open for every compact set K C X and every open set V C Y. Thus a
set U C C(X,Y) is open with respect to the compact-open topology if and
only if, for each f € U, there are finitely many compact sets K1, ..., K,, C X
and open sets V4,...,V,, C Y such that f € N, 7 (K;, Vi) CU.

(a) If X is compact, prove that the compact-open topology on C(X,Y)
agrees with the topology induced by the metric

d(f,g) == SU)I? dy (f(x),g(z)) for f,g € C(X,Y). (3.45)
[AS

Hint 1: Let f € C(X,Y) and suppose that K;,...,K,, C X are compact
sets and Vi, ..., V,, C Y are open sets such that f(K;) C V;fori=1,...,m.
Prove that there is a constant € > 0 such that B.(f;(z)) C V; for all x € K;
and all ¢ € {1,...,m}. Deduce that every ¢ € C(X,Y) with d(f,g) < ¢
satisfies g(K;) C V; fori=1,...,m.
Hint 2: Let f € C(X,Y) and € > 0. Find elements z1,...,x,, € X such
that X = (J", K;, where K; := {z € X |dy(f(z;), f(z)) < e/4}. Define

U={geC(X,)Y)|g(K;) CV,fori=1,...,m}, Vi := Bejo(f(25)).

Show that f € U and d(f,g) < e for all g € U.

(b) For every compact subset K C X define the seminorm pg : C(X,R) — R
by pr(f) := supg|f| for f € C(X,R). Prove that these seminorms generate
the compact-open topology, i.e. the compact-open topology on C'(X, R) is the
smallest topology such that px is continuous for every compact set K C X.
(c) Prove that C'(X,R) is a locally convex topological vector space with the
compact-open topology.

(d) Prove that a subset .# C C(X,Y) is precompact with respect to the
compact-open topology if and only if, for every compact set K C X, the set

is precompact. Hint: Let # C 2% be the collection of compact subsets.
Prove that the map C(X,Y) = [[xc, C(K,Y) : f = (f|x)xer is a home-
omorphism onto its image and use Tychonoff’s Theorem |B.1}
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(e) Prove the following variant of the Arzela—Ascoli Theorem.
Arzela—Ascoli Theorem. Let X be a topological space and let Y be a metric
space. A set F C C(X,Y) is precompact with respect to the compact-open
topology if and only if it is pointwise precompact and the set Fx C C(K,Y)
m 18 equi-continuous for every compact set K C X.

Hint: Use part (d) and Exercise [1.15]

Exercise 3.64 (The Banach—Alaoglu Theorem). Let X be a normed
vector space. Deduce the Banach-Alaoglu Theorem from the Arzela—
Ascoli Theorem in part (e) of Exercise [3.63] Hint: The closed unit ball
in X* is equi-continuous as a subset of C(X,R). Prove that the compact-
open topology on X* is finer than the weak* topology, i.e. every weak™ open
subset of X™* is also open with respect to the compact-open topology.

Exercise 3.65 (Functions vanishing at infinity). (See Exercise [3.39])
Let M be a locally compact Hausdorff space. A continuous real valued
function f: M — R is said to vanish at infinity if, for every ¢ > 0, there
exists a compact se K C M such that
sup |f(z)| <e.

zeM\K
Denote by Cy(M) the space of all continuous functions f : M — R that
vanish at infinity.
(a) Prove that Cy(M) is a Banach space with the supremum norm.
(b) The dual space Cy(M)* can be identified with the space M (M) of signed
Radon measures on M with the norm , by the Riesz Representation
Theorem (see [50, Thm 3.15 & Ex 3.35]). Here a signed Radon measure
on M is a signed Borel measure pu with the property that, for each Borel
set B C M and each € > 0, there exists a compact set K C B such that
|n(A) — (AN K)| < e for every Borel set A C B.
(c) Prove that the map ¢ : M — Cy(M)*, which assigns to each x € M the
bounded linear functional 0, : Co(M) — R given by d,(f) := f(z) for f €
Co(M), is a homeomorphism onto its image 6(M) C Cyo(M)*, equipped with
the weak™ topology. Under the identification in (b) this image is contained
in the set

P(M) :={pe MM)[p=0, ||u]| = pnM) =1}

of Radon probability measures. Determine the weak® closure of the set
S(M) C P(M).
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Exercise 3.66 (The Alaoglu-Bourbaki Theorem). Let X and Y be real
vector spaces and let

Y xX —=>R:(y,z) — (y,x) (3.47)

be a nondegenerate pairing. For A C X and B C Y define the polar sets
A°CY and B, C X by

A ={yeY|(y,a) <1lforallaec A},

3.48
B, :={r e X|(byx) <1lforallbe B}. (3.48)

Thus A° and B, are intersections of half-spaces.

(a) Suppose X is a real normed vector space, Y = X* is its dual space,
and ([3.47)) is the standard pairing. Let S C X and S* C X* denote the unit
spheres and B C X and B* C X* the closed unit balls. Verify that

S'=B, (S =8

(b) Bipolar Theorem. Equip X with the topology induced by the linear
maps X — R:xw— (y,x) fory €Y. Then

(A%)o = conv(A U {0}).

(c) Goldstine’s Theorem. If X is a normed vector space and B is the
closed unit ball then the weak™ closure of «(B) is the closed unit ball in X**.

(See also Corollary )

(d) The Alaoglu—Bourbaki Theorem. Suppose (X, %) is a locally convex
topological vector space over the reals, Y is the space of U -continuous linear
functionals A : X — R, and 15 the standard pairing. Equip Y with the
topology ¥ C 2Y induced by the linear maps Y — R : y > (y,x) forz € X.
If A C X is a % -neighborhood of the origin then A° CY is ¥ -compact.

Exercise 3.67 (The Milman—Pettis Theorem).
A normed vector space X over the reals is called uniformly convex if, for
every € > 0, there exists a constant 6 > 0 such that, for all x,y € X,

el =1yl =1, llz+yll>2-0 = lz —yll <e.

The Milman—Pettis Theorem asserts that every uniformly convex Banach
space is reflexive. This can be proved as follows.
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The proof requires the concept of a net, which generalizes the concept of
a sequence. A directed set is a nonempty set A, equipped with a reflexive
and transitive relation <, such that, for all a, 3 € A, there exists a v € A
with @ < v and 8 < 7. Anti-symmetry is not required, so a directed set
need not be partially ordered. An example of a directed set is the collection
of open neighborhoods of a point z in a topological space X, equipped with
the relation U xV «<— V C U.

A net in a space X is amap A — X : a — 1z, defined on a directed
set A. A net (z,)aeca in a topological space X is said to converge to x € X
if, for every open neighborhood U C X of x, there exists an element oy € A,
such that x, € U for all a € A with oy < a.

If X and Y are topological spaces then a map f : X — Y is continuous
if and only if, for every net (z,)aca in X that converges to x € X, the net
(f(a))aeca in Y converges to f(z).

A subnet of a net (2,)aec4 is a net of the form (x5,5))sep where h : B — A
is a monotone final map between directed sets. Here the map h: B — A is
called monotone if 3; < [ implies h(51) < h(Bs) for all fy, 2 € B, and it
is called final if, for every a € A, there exists a # € B such that h(a) < S.
With this understood, a topological space X is compact if and only if every
net in X has a convergent subnet.

A net (24)aca in a normed vector space X is called a Cauchy net if the
net ([[za — zpl) 4 pjcaxa (Product order on A x A) converges to zero. If X
is a Banach space then every Cauchy net in X converges.

(a) Let X be a uniformly convex normed vector space. Let (z4)aca be a
net in the unit sphere of X such that the net (|[za + 23l|)(, gcax 4 cOnverges

to 2. Prove that (z4)aca is a Cauchy net.

(b) Let X be a normed vector space and let z** € X** with ||z*™*| = 1.
Prove that there exists a net (z,)aca in the unit sphere of X such that the
net (4(z4))aca in X** converges to z** with respect to the weak™ topology.

(c) Let X be anormed vector space and let (x,)qac4 be anet in the unit sphere
of X such that the net (¢(z4))aca in X*™* converges to ™ with respect to the
weak™ topology, where [[z**|| = 1. Prove that the net (u(za +25)) 4 gcaxa
converges to 2z in the weak™ topology. If X is uniformly convex, use (a)

to prove that (z,)aca is a Cauchy net.

(d) Assume X is a uniformly convex Banach space, let z** € X** such
that ||z™*|| = 1, and choose a net (x,)aca as in (b). Use (c) to prove that the
net (Zq)aca converges to some element x € X. Deduce that «(z) = x**.
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Exercise 3.68 (The Banach—-Mazur Theorem). Let X be a Banach
space and let B* C X* be the closed unit ball in the dual space, equipped
with the weak™ topology.

(a) Prove that the map X — C(B*) : ¢ > f,, defined by f,(z*) := (z*, x)
for x € X and z* € B* is a linear isometric embedding.

(b) If K is a compact metric space then there exists a continuous surjective
map 7 : F' — K, defined on a closed subset F' C {0,1}" of the Cantor set.
Deduce that there exists a linear isometric embedding 7* : C'(K) — C(F).
Hint: The Cantor function defines a continuous surjection {0, 1} — [0, 1].
Use it to construct a continuous surjection {0, 1} — [0, 1]N and then find an
embedding K < [0, 1]

(c) For every closed subset F' C [0,1] of the unit interval find a linear iso-
metric embedding ¢p : C(F) — C([0,1]). Hint: The complement of F' is a
countable union of intervals.

(d) Banach—Mazur Theorem. Every separable Banach space is isometri-
cally isomorphic to a closed subspace of C(|0,1]).

Exercise 3.69 (Helly’s Theorem). (Another proof of Lemma [3.44])

(a) Let X be a normed vector space, let x3,..., 25 € X* and let ¢q,...,¢,
be scalars. Prove that there exists an element x € X such that
(], x) = ¢ fori=1,...,n. (3.49)
if and only if there is a constant M > 0 such that, for all scalars Ay, ..., \,,
> | <MD N (3.50)
i=1 i=1
Hint: Assume z7,..., 2z} are linearly independent and span the same space
as z7,...,x5. Define the map 7' : X — R™ by Tz := ((z},2),...,(z},, )

for x € X. Then T is surjective by Lemma . Use the inequality
to show that every element x € T (cy, ..., cy) satisfies (3.49).

(b) Assume and let ¢ > 0. Prove that there exists an element x € X
that satisfies and [|z|| < M+e. Hint: By (a) there exists some element
y € X such that (z},y) = ¢; for i = 1,...,n. Define Z := (._, ker(z}). If
y ¢ Z then, by Theorem there is an element 2* € X such that

|z*|| =1, ¥z =0, (z*,y) = d(y, Z) Z;gglly—zll

By Lemma the element x* is a linear combination of the z}. Use this to
deduce from (3.50) that d(y, Z) < M. Find z € Z such that ||y + z|| < M +-e.
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Exercise 3.70 (The Smulyan—James Theorem).
Let X be a normed vector space. Then the following are equivalent.

(i) X is reflexive.
(ii) Fvery bounded sequence in X has a weakly convergent subsequence.

(iii) IfCy D Cy D C5 D -+ is a nested sequence of nonempty bounded closed
convex subsets of X then their intersection is nonempty.

The implication (#44) == (i) of the Smulyan-James Theorem strengthens
the Eberlein-Smulyan Theorem [3.42|

(a) Prove that (i) implies (ii) and (ii) implies (iii).

(b) Prove that (iii) implies that X is complete.

(c) Let X be a non-reflexive Banach space. Prove that there exists a con-
stant 0 < a < 1 and an element ™ € X™ such that

a<d(@™ (X)) <= < 1. (3.51)

Hint: Use the Riesz Lemma [1.27
(d) Find sequences of unit vectors (z} )nen in X* and (2x)gen in X such that

(2 ) = { 0, ifk<n,

a, if k> n,

Hint: Argue by induction. First find unit vectors 27 € X* and x; € X such
that (z™*, z7) = a and (2], 1) = a. Now let N > 1 and assume by induction
that unit vectors z1,...,xny_1 € X and z7,...,25y_; € X* have been found
that satisfy for k,n =1,...,N —1. With M = ad(z*, (X)) < 1
we have [Noa| < M| Aoz + 0" Aee(ay)]|| for all Ao, ..., Ay_1 € R. So by
Helly’s Theorem there is a unit vector x} € X* such that (z**, z}) = a and
(%, zr) = (t(zg),xy) =0 for k=1,..., N — 1. Moreover,

N N N
Z An <x**, Z )\an> Z AnZy
n=1 n=1 n=1

for all A,..., Ax € R. Since ||z**|| < 1 it follows again from Helly’s Theorem
that there is a unit vector xy € X such that (z},xy) =aforn=1,..., N.
This completes the induction step for the proof of .

(e) Let zx, x be as in (d) and define Cy :=conv({xy |k > N}) for N € N.
Prove that (z%,2) = o and lim,, (2}, 2) = 0 for all € Cy. Deduce that
the Cy have an empty intersection.

(x*,xr) =« forall k,n eN. (3.52)

rrn

a < [l="]]
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Exercise 3.71 (The Birkhoff-von Neumann Theorem).

An n x n-matrix M = (m;;) with non-negative coefficients m;; > 0 is called
doubly stochastic if its row sums and column sums are all equal to one.
The Birkhoff-von Neumann Theorem asserts the following.

Every doubly stochastic matriz
18 a convexr combination of permutation matrices.

Thus the doubly stochastic matrices form a convex set whose extremal points
are the permutation matrices. This can be proved as follows.

Let M be a doubly stochastic matrix and denote by v(M) be the number
of positive entries. If ¥(M) > n find a permutation matrix P and a constant
0 < A < 1 such that the matrix NV := M — AP, has non-negative entries and
strictly fewer positive entries than M. Then N # 0, the matrix M; := ﬁN
is doubly stochastic with v(M;) < v(M), and M = AP, +(1—\)M;. Continue
by induction until v(My) = n and so M is a permutation matrix. Here is a
method to to find P, and A.

Hall’s Marriage Theorem. Let X andY be finite sets and let ' C X X Y.
Then the following are equivalent.

(i) There is an injective map f : X — Y whose graph is contained in T
(ii) For every A C X the set
['(A) :={y € Y| there is an x € X such that (z,y) € '}
satisfies #I'(A) > #A.

Take X =Y ={1,...,n} and I" := {(4, 7) | m;; > 0}. Use the fact that M is
doubly stochastic to verify that I" satisfies (ii). Use the injective map f in (i)
to determine the permutation matrix P, and take A := min;_ ) m;;.

Exercise 3.72 (Strict convexity and extremal points). A normed vec-
tor space is strictly convex (see Example and Exercise [2.94) if and only
if the unit sphere is equal to the set of extremal points of the closed unit ball.

Exercise 3.73 (The set of extremal points need not be closed). Let
C C R? be the convex hull of the set

S = {(1 + cos(8),sin(h),0) |6 € R} U {(0,0,1),(0,0,—1)}.

Determine the extremal points of C'.
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Exercise 3.74 (Extremal points of unit balls). Determine the extremal
points of the closed unit balls in the Banach spaces

co, ¢, C([0,1]), ¢4, 2, ¢, L'([0,1]), L*([0,1]), L>=([0,1])
for 1 < p < o0.

Exercise 3.75 (The Hilbert Cube). (See Exercise [3.49)

(a) Show that the Hilbert Cube Q := {z = (z;)ien € * 0 < 2; < 1/i} is a
compact subset of 2 with respect to the norm topology.

(b) Is the set R := {z = (2;)ien € £*]0 < z; <1/V/i} compact in (* with
respect to either the norm topology or the weak topology?

Exercise 3.76. Let X be a real normed vector space, let B* C X* be the
closed unit ball in the dual space, and let A : X* — R be a linear functional
such that the restriction Alg+ : B* — R is weak™ continuous. Then there
exists an element x € X such that A = ¢(z).

Exercise 3.77 (The Markov—Kakutani Fixed Point Theorem).

Let X be a locally convex Hausdorff topological vector space and let A be
a collection of pairwise commuting continuous linear operators A : X — X.
Let C C X be a nonempty A-invariant compact convex subset of X, so
that A(C) C C for all A€ A. Then there exists an element x € C' such
that Az = x for all A € A.

(a) For A € A and k € N define
o 1 2 k-1
Ak—k@+A+A—F + A,

Then Ai(C) is a nonempty compact convex subset of C.
(b) If A,B € Aand k,? € N then Ax(B¢(C)) C Ax(C) N By(C). Use this to

prove that the set
keN AcA

is nonempty.

(c) Prove that every element z € F' is a fixed point of A. Hint: If Az # «
find a continuous linear functional A : X — R such that A(z — Az) = 1.
Prove that, for every k € N, there exists an element y € C such that Ayy = x.
Now observe that y — A*y = k(x — Az) and deduce that the functional A is
unbounded on the compact set C' — C', contradicting continuity.
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Exercise 3.78 (The Bell-Fremlin Theorem).
The axiom of choice is equivalent to the assertion that the closed unit ball in
the dual space of every nonzero Banach space has an extremal point.

(a) Let X be any nonzero Banach space. Use the Banach—Alaoglu The-
orem [3.33] the Hahn-Banach Theorem [2.33] and the Krein-Milman Theo-
rem [3.46] to prove that the closed unit ball in X* has an extremal point.

(b) Let I be any index set and, for each i € I, let X; be a nonzero Banach
space. Define the Banach spaces

@Xi = {33 = (xi)iel

v € X; and [z, == ||zl

< oo} (3.53)

iel il
and

HX" = {x = (Ti)ier |7 € Xi and ||z = sup ||zl x, < oo} . (3.54)

icl el

Prove that [],.; X/ is isomorphic to the dual space of ), ; Xi.

(c) Let S be a nonempty set. Define ¢(S) to be the space of all functions
f S — R that satisfy # {s € S||f(s)| > €} < oo for all ¢ > 0, equipped
with the supremum norm || f||_ := sup,cg | f(s)|. Define £!(.S) to be the space
of all functions g : S — R such that ||g||, := > ,.¢|9(s)| < co. Prove that
¢*(S) is isomorphic to the dual space of ¢y(S).

(d) Let (S;)icr be a family of pairwise disjoint nonempty sets. Then the
Banach space [, ¢*(S;) is isomorphic to the dual space of @, ¢o(S;) by (b)
and (c). Suppose the closed unit ball in [, ¢*(S;) has an extremal point
g = (9i)ier- Prove that g; # 0 for all i € I. Show that, for each i € I, there
is a unique element s; € S; such that g;(s;) # 0.



Chapter 4

Fredholm Theory

The purpose of the present chapter is to give a basic introduction to Fredholm
operators and their indices including the stability theorem. A Fredholm
operator is a bounded linear operator between Banach spaces that has a
finite-dimensional kernel, a closed image, and a finite-dimensional cokernel.
Its Fredholm index is the difference of the dimensions of kernel and cokernel.
The stability theorem asserts that the Fredholm operators of any given index
form an open subset of the space of all bounded linear operators between
two Banach spaces, with respect to the topology induced by the operator
norm. It also asserts that the sum of a Fredholm operator and a compact
operator is again Fredholm and has the same index as the original operator.
Fredholm operators play an important role in many fields of mathematics,
including topology and geometry. There are many important topics that
go beyond the scope of the present manuscript. For example, the space of
Fredholm operators on an infinite-dimensional Hilbert space is a classifying
space for K-theory in that each continuous map from a topological space
into the space of Fredholm operators gives rise to a pair of vector bundles
(roughly speaking, the kernel and cokernel bundles) whose K-theory class is
a homotopy invariant [B [6] [7, 28]. Another topic not covered here is Quillen’s
determinant line bundle over the space of Fredholm operators [46], 52].

The chapter starts with an introduction to the dual of a bounded linear
operator. It includes a proof of the closed image theorem which asserts that
an operator has a closed image if and only if its dual does. It then moves
on to compact operators which map the unit ball to pre-compact subsets of
the target space, characterizes Fredholm operators in terms of invertibility
modulo compact operators, and establishes the stability theorem.

171
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4.1 The Dual Operator

4.1.1 Definition and Examples

The dual operator of a bounded linear operator between Banach spaces is the
induced operator between the dual spaces. Such a dual operator has been
implicitly used in the proof of Theorem [3.58. Here is the formal definition.

Definition 4.1 (Dual Operator). Let X and Y be real normed vector
spaces, denote their dual spaces by X* := L(X,R) and Y* := L(Y,R), and
let A: X —'Y be a bounded linear operator. The dual operator of A is the
linear operator A* : Y* — X* defined by

Ay  =y"0A: X - R fory* e Y™, (4.1)

Thus, for every bounded linear functional y* :' Y — R, the bounded linear
functional A*y* : X — R is the composition of the bounded linear operator
A: X =Y with y*, i.e.

(A*y*, z) = (y*, Ax) (4.2)
forallz € X.

Lemma 4.2. Let X and Y be real normed vector spaces and let A : X — Y

be a bounded linear operator. Then the dual operator A* : Y* — X* is
bounded and ||A*|| = ||A||.

Proof. The operator norm of A* is given by

14 = sup | *II

yevavgor vl

_ . [(Ay", o)

= up SUp
yrev\(oyeex\ioy 1Y*I 2]

s w Ity Ax)|

= p sup »
yrevafoyzex\foy [1y*]] 1zl

_ oy el

= p
zeX\{0} ]|

= |A].

Here the last but one equality follows from the Hahn—Banach Theorem in
Corollary [2.54. In particular, ||A*|| < co and this proves Lemma O
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Lemma 4.3. Let X,Y,Z be real normed vector spaces and let A : X —Y
and B 1Y — Z be bounded linear operators. Then the following holds.

(i) (BA)* = A*B* and (1x)* = lx-«.

(ii) The bidual operator A™ : X** — Y™* satisfies ty 0 A = A** ovx, where
tx : X = X*™ and vy : Y — Y™ are the embeddings of Lemma[2.08.

Proof. This follows directly from the definitions. ]

Example 4.4. Let (M,d) a compact metric space and let ¢ : M — M be
a homeomorphism. Let T': C(M) — C(M) be the operator in the proof of
Theorem [3.58] defined by T'f := f o ¢ for f € C(M) (the pullback of f un-
der ¢). Then, under the identification C'(M)* = M(M) of the dual space
of C(M) with the space of signed Borel measures on M, the dual operator
of T is the operator T* : M(M) — M(M), which assigns to every signed
Borel measure p: B — R its pushforward 7" u = ¢, under ¢. This push-
forward is given by (¢.u)(B) := u(¢~'(B)) for every Borel set B C M.

Example 4.5. A matrix A € R™*" defines a linear map L, : R” — R™.
Its dual operator corresponds to the transpose matrix under the canonical
isomorphisms ¢ : R — (RF)* ie. (La)* 0ty =ty 0o Lyr : R™ — (R")*.

Example 4.6 (Adjoint Operator). Let H be a real Hilbert space and
let A: H — H be a bounded linear operator and let Af, .4 @ H* — H*
be the dual operator of A. In this situation one can identify the Hilbert
space H with its own dual space H* via the isomorphism I : H — H* in

Theorem [1.43] The operator
Aik{ilbert = [_1 o A*Banach ol:H—H
is called the adjoint operator of A. It is characterized by the formula

<A;Ii1berty7 ‘T> = <y7 AI> (43)

for all z,y € H, where (-, -) denotes the inner product on the Hilbert space H,
rather than the pairing between H* and H as in equation ([£.2). When
working entirely in the Hilbert space setting, it is often convenient to use the
notation A* := A0 for the adjoint operator instead of the dual operator.

Example 4.7 (Self-Adjoint Operator). Let H = (? be the Hilbert space
in Example and let (a;);eny be a bounded sequence of real numbers.
Define the bounded linear operator A : ¢ — (? by Az := (a;x;)en for
r = (z;)ien € (2. This operator is equal to its own adjoint Afy,...- Such an
operator is called self-adjoint or symmetric.
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4.1.2 Duality

Theorem 4.8 (Duality). Let X and Y be real normed vector spaces and
let A: X =Y be a bounded linear operator. Then the following holds.

(i) im(A)* = ker(A*) and “im(A*) = ker(A).

(ii) A has a dense image if and only if A* is injective.

(iii) A is injective if and only if A* has a weak™ dense image.

Proof. We prove (i). First let y* € Y*. Then

4

y*€im(A)- <— (y,Az)=0foralxz e X

— (A" z)=0forallze X <— Ay =0
and this shows that im(A)* = ker(A*). Now let € X. Then
r € tim(A*) <= (A% z)=0foraly*cY”
— (y",Az)=0forally* € V" < Az =0.

The last step uses Corollary [2.54 This shows that “im(A*) = ker(A).

We prove (ii). The operator A* is injective if and only if ker(A*) = {0}.
This is equivalent to im(A)* = {0} by (i) and so to the condition that im(A)
is dense in Y by Corollary [2.56]

We prove (iii). The operator A is injective if and only if ker(A) = {0}.
This is equivalent to “im(A*) = {0} by (i) and so to the condition that im(A*)
is weak™ dense in X* by Corollary This proves Theorem [4.8| []

Example 4.9. Define the operator A : ¢ — (* by Ax = (i 'x;)sen for
T = (z;)ieny € (2. This operator is self-adjoint, injective, and has a dense
image, but is not surjective. Thus im(A) C ¢2 = * ker(A*).

Example 4.10. The term “weak* dense” in part (iii) of Theorem [4.§ cannot
be replaced by “dense”. Let X := ¢! and Y := ¢y. The inclusion 4 : ¢ — ¢,
is injective and has a dense image. Moreover, X* = (> (Example and
Y* = (' (Example [1.36), and A* : ! — (> is again the obvious inclusion.
Its image is weak* dense (Corollary but not dense.

Example 4.11. Let X be a real normed vector space, let ¥ C X be a
closed linear subspace, and let 7 : X — X/Y be the canonical projection.
Then the dual operator 7* : (X/Y)* — X* is the isometric embedding of
Corollary [2.57 whose image is the annihilator of Y. The dual operator of the
inclusion ¢ : Y — X is a surjective operator ¢* : X* — Y* with kernel Y.
It descends to the isometric isomorphism X*/Y+ — Y* in Corollary .
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The next two theorems establish a correspondence between an inclusion
for the images of two operators with the same target space and an estimate
for the dual operators, and vice versa. The main tools for establishing such a
correspondence are the Douglas Factorization Theorem (Corollary and
the Hahn-Banach Theorem (Corollary and Corollary 2.57)).

Theorem 4.12. Let X,Y,Z be real normed vector spaces and A: X —Y
and B : X — Z be bounded linear operators. The following are equivalent.

(i) im(B*) C im(A*).

(ii) There exists a constant ¢ > 0 such that
| Bz, < c||Az||y for all x € X. (4.4)

Proof. See page [176 [

Theorem 4.13. Let X,Y,Z be real Banach spaces and let A : X — Y and
B :Z =Y be bounded linear operators. Then the following holds.

(i) If im(B) C im(A) then there exists a constant ¢ > 0 such that

1By

7 < e[ AY

. forally" € Y. (4.5)

(ii) If X is reflexive and (4.5)) holds for some ¢ > 0 then im(B) C im(A).
Proof. See page [176 ]

The next exercise shows that the hypothesis that X is reflexive cannot be
removed in part (i) of Theorem [4.13] However, this hypothesis is not needed
when B is bijective (see Corollary below).

Exercise 4.14. Let X :=cy, Y := (%, Z := R, and define the operators
Ay — 12 B:R — ?
by
Az = (7 23 )ien, Bz := (i"'2)ien
for = (x;)ien € ¢o and z € R. Show that holds and im(B) ¢ im(A).

Lemma 4.15. Let X and Y be real normed vector spaces and A : X —'Y be
a bounded linear operator. Let x* € X*. The following are equivalent.

(i) z* € im(A4").
(ii) There is a constant ¢ > 0 such that |(x*,z)| < c||Az|y for all x € X.
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Proof. 1f x* = A*y* then

(2%, 2)| = (A", )| = [(y", Az)| < [ly”]|

for all z € X and so (ii) holds with ¢ := ||y*||. Conversely, suppose z*
satisfies (ii) and define the map ¢ : im(A) — R as follows. Given y € im(A)
choose an element x € X such that y = Az and define ¥ (y) := (z*, z). By (ii)
this number depends only on y, and not on the choice of x, and the resulting
map ¢ : im(A) — R is a bounded linear functional. By definition, it satisfies
the equation ¥ o A = z*. Now Corollary asserts that there exists an
element y* € Y* such that y*|im) = 9. It satisfies

AxHY

Y*

and this proves Lemma [4.15[ O

Proof of Theorems[{.13 and[4.13. We prove that (ii) implies (i) in Theo-
rem|4.12] Assume that the operators A : X — Y and B : X — Z satisfy (4.4)
and let z* € im(B*). By Lemma there exists a b > 0 such that

(2", )] < b[Bz|, < belAxlly

for all z € X. Hence 2* € im(A*) by Lemma [4.15] This shows that (ii)
implies (i) in Theorem [4.12]

We prove part (ii) of Theorem [£.13] Thus assume that X is reflexive
and the bounded linear operators A: X — Y and B: Z — Y satisfy .
Since (i) implies (i) in Theorem [1.12] (already proved) it follows that

im(B*) C im(A™).
Let z € Z and choose £** € X™* such that
A" ™ = B™uz(z) = 1y (Bz).
Since X is reflexive there exists an element x € X such that
tx(x) =2

Hence

ly (Az) = A% ux(x) = A" 2™ = 1y (Bz)
and therefore Az = Bz. This proves part (i) of Theorem [1.13]
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We prove part (i) of Theorem [4.13, Assume that X,Y,Z are Banach
spaces and that the bounded linear operators A: X =Y and B: Z — Y
satisfy im(B) C im(A). Define

X := X/ ker(A)

and let m : X — Xj be the canonical projection. Then 7* : Xj — X* is
an isometric embedding with image ker(A)* (see Corollary [2.57)). Moreover,
the operator A : X — Y descends to a bounded linear operator Ay : Xg — Y
such that Agom = A. It satisfies A* = 7% o A and hence

1A Y| x- = | Aoy" [ xz for all y* € Y. (4.6)
Since im(B) C im(A) = im(A4p) and Ay is injective, Corollary asserts
that there exists a bounded linear operator T : Z — X such that

AT = B.

Hence
. (B y", 2)
I1B*y*| 5. = sup ————
cenoy  N2llz
B
— s {y*, Bz)
cenmvoy Izll2
Ary*, T
= sup < Oy ) Z>
cenfor 2z
[A5y" [lx; T2l x,
z€Z\{0} 121l;
= TN 1A% " || -
for all y* € Y*, by (4.6). This proves part (i) of Theorem [4.13]
We prove that (i) implies (ii) in Theorem [£.12] Thus assume A: X — Y

and B : X — Z satisfy im(B*) C im(A*). Then it follows from part (i) of
Theorem (already proved) that there exists a constant ¢ > 0 such that

| B 2™ | e < || A" 2™ for all ™ € X™.

<

Y

Hence, by Lemma [2.68 and Lemma [4.3| we have
1Bzl ; = lltz(Bx)| gow = [[B™1x ()|
for all z € X. This proves Theorem [4.12 O

g < A" 1x(@)lyr = ¢l Axll,
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4.1.3 The Closed Image Theorem

The main theorem of this subsection asserts that a bounded linear operator
between two Banach spaces has a closed image if and only if its dual operator
has a closed image. A key tool in the proof will be Lemma which can be
viewed as a criterion for surjectivity of a bounded linear operator A: X — Y
between Banach spaces. The criterion is that the closure of the image of the
open unit ball in X under A contains an neighborhood of the origin in Y.

Theorem 4.16 (Closed Image Theorem). Let X andY be Banach spaces,
let A: X — Y be a bounded linear operator, and let A* : Y* — X* be its
dual operator. Then the following are equivalent.

(i) im(A) = * ker(A*).
(ii) The image of A is a closed subspace of Y.

(iii) There exists a constant ¢ > 0 such that every x € X satisfies
inf e+ €l < el (47)
Here the infimum runs over all £ € X that satisfy A = 0.
(iv) im(A*) = ker(A)*.
(v) The image of A* is a weak™ closed subspace of X*.

(vi) The image of A* is a closed subspace of X*.
(vii) There exists a constant ¢ > 0 such that every y* € Y* satisfies

- (4.8)

ye <cllATy7

: f * *
ik lly” + 0]
Here the infimum runs over all n* € Y™ that satisfy A*n* = 0.

Proof. That (i) implies (ii) follows from the fact that the pre-annihilator of
any subset of X* is a closed subspace of X.
We prove that (ii) implies (iii). Define

Xo := X/ ker(A), Yo :=im(A),

and let my : X — Xj be the projection which assigns to each element z € X
the equivalence class mo(x) = [z] := x + ker(A) of z in Xy = X/ker(A).
Since the kernel of A is closed and X is a Banach space, it follows from
Theorem that the quotient X is a Banach space with

Iy, = inf o+l forzex
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Since the image of A is closed by (ii), the subspace Yy C Y is a Banach space.
Since the value Ax € Yy C Y of an element x € X under A depends only
on the equivalence class of x in the quotient space X, there exists a unique
linear map Ag : Xo — Y such that Ag[z] = Az for all x € X. The map Ay
is bijective by definition. Moreover, |Az|ly = ||A(z 4+ &)[ly < [JA]| |z + €|«
for all x € X and all £ € ker(A), and hence

[4ol]lly, = Azl < Al inf i+ £l = AT
for all z € X. This shows that Ag : Xq — Y is a bijective bounded linear
operator. Hence Ag is open by the Open Mapping Theorem , so Ayt
is continuous, and therefore A;" is bounded by Theorem m Thus there
exists a constant ¢ > 0 such that [|A;'y|x, < c|lylly, for all y € Yy C Y.
This implies
et 7+ &l = 2l < ellAolllly, = cliAzlly

for all z € X. Thus we have proved that (ii) implies (iii).

We prove that (iii) implies (iv). The inclusion im(A*) C ker(A)* fol-
lows directly from the definitions. To prove the converse inclusion, fix an
element x* € ker(A)* so that (z*,&) = 0 for all £ € ker(A). Then

(2 2)] = [{«", 2 + O < [la"]| - [l + €]l x

for all x € X and all £ € ker(A). Take the infimum over all £ € ker(A) and
us the inequality (4.7]) in (iii) to obtain the estimate

Ax|y (4.9)

e, 2)] < el inf e + €l < ella”l.
for all x € X. It follows from and Lemma [£.15] that 2* € im(A*). This
shows that (iii) implies (iv).

That (iv) implies (v) follows from the definition of the weak™ topology.
Namely, the annihilator of any subset of X is a weak™ closed subset of X*.
(See the proof of Corollary [3.41])

That (v) implies (vi) follows directly from the fact that every weak™ closed
subset of X* is closed with respect to the strong topology induced by the
operator norm on the dual space.

That (vi) implies (vii) follows from the fact that (ii) implies (iii) (already
proved) with the operator A replaced by its dual operator A*.
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We prove that (vii) implies (i). Assume first that A satisfies (vii) and has a
dense image. Then A* is injective by Theorem and so the inequality (4.8])
in part (vii) takes the form

Y™ Iy < cllA™y"|| - for all y* € Y. (4.10)
Define 6 := ¢'. We prove that
{yeY ||yl <6} c{Az|ze X, |z, <1} (4.11)

To see this, observe that

K ={Avz € X, alx < 1}

is a closed convex subset of Y. We must show that every element y € Y\ K
has norm ||y||y, > 0. To see this fix an element yy € Y\ K. By Theorem
there exists a bounded linear functional y; : ¥ — R such that

<y(>§7 3/0> > Sup(?féa y>
yeK

This implies
[

_ * *
v = sup (A"y;, z)
reX
lleli<1

= sup (y;, Az)
zeX
llell<1

= sup(yy, ¥)
yeK

< <y87y0>
< lwolly llys]

Y*

and hence, by (4.10]),

Yoy c

%ol > >
This proves (4.11]). Hence Lemma asserts that

{yeY[lyl <o} c{Az|ze X, [lz]x <1}

Thus A is surjective and so im(A) = Y = * ker(A*) because A* is injective.
This shows that (vii) implies (i) whenever A has a dense image.
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Now suppose A satisfies (vii) and does not have a dense image. Define
Yy :=1im(A), Ay =A: X =Y,

Thus Ag is the same operator as A, but viewed as an operator with values
in the smaller target space Y;. The dual operator Af : Y, — X* satisfies

A ) = A'y* forall y* €Y (4.12)

by definition. Moreover, Theorem 4.8 asserts that ker(A*) = im(A)L = Y.
Thus the operator Aj : Y, — X* is injective and, for all y* € Y*, we have

Y+ 0"y < el A%y

19" Ivolly; = inf x= = [l Ay [yl

*cker(A*)

Here we have used equation (2.33) in Corollary [2.58| the inequality (|4.8])
in (vii), and equation (4.12). Hence it follows from the first part of the proof

(the injective case) that the operator Ay : X — Y is surjective. Thus
im(A) = im(A4y) = Yy = im(A) = ~(im(A)*) = *(ker(A4*))

by Corollary and Theorem [4.8] This shows that (vii) implies (i) and

completes the proof of Theorem [4.16| ]

Corollary 4.17. Let X and Y be Banach spaces and let A : X — Y be a
bounded linear operator. Then the following holds.

X* -

(i) The operator A is surjective if and only if A* is injective has a closed
image. FEquivalently, there exists a constant ¢ > 0 such that

v < el|A Y| - for all y* € Y. (4.13)

Iy"|

(ii) The operator A* is surjective if and only if A is injective and has a closed
image. FEquivalently, there exists a constant ¢ > 0 such that

|zl < cl||Az|ly for all x € X. (4.14)

Proof. The operator A has a dense image if and only if A* is injective by
Theorem Hence A is surjective if and only if it has a closed image and
A* is injective. Hence part (i) follows from in Theorem [£.16] Part (ii)
is the special case of Theorem [4.13| where 7 = X and B =id : X — X.
Alternatively, one can argue as in the in the proof of part (i). The operator
A* has a weak® dense image if and only if A is injective by Theorem
Hence A* is surjective if and only if it has a weak* closed image and A is
injective. Hence part (ii) follows from in Theorem [£.16] This proves

Corollary [4.17] ]
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Corollary 4.18. Let X and Y be Banach spaces and let A : X — Y be a
bounded linear operator. Then the following holds.

(i) A is bijective if and only if A* is bijective.
(ii) If A is bijective then (A*)~1 = (A71)*.

(iii) A is an isometry if and only if A* is an isometry.

Proof. We prove (i). If A is bijective then A* is injective by Theorem and
A satisfies the inequality by Theorem , so A* is surjective by Corol-
lary [4.17} Conversely, if A* is bijective then A is injective by Theorem
and A* satisfies the inequality by Theorem , so A is surjective by
Corollary [4.17]

We prove (ii). Assume A is bijective and define B := A™! : ¥V — X.
Then B is a bounded linear operator by Theorem and

AB =idy,  BA=idy.

Hence B*A* = (AB)* = (idy)* = idy~ and A*B* = (BA)* = (idx)* = idx-
by Lemma [4.3] This shows that B* = (A4*)~.

We prove (iii). Assume A and A* are bijective. Then (A*)~! = (A1)
by part (i) and hence ||A*|| = ||A|| and |[(A*)7Y|| = ||A7}|| by Lemma [4.2]
With this understood, part (iii) follows from the fact that A is an isometry
if and only if ||A|| = ||A7'|| = 1. This proves Corollary O

An example of a Banach space isometry is the pullback under a home-
omorphism ¢ : M — M of a compact metric space, acting on the space of
continuous functions on M, equipped with the supremum norm. Its dual
operator is the pushforward under ¢, acting on the space of signed Borel
measures on M (see Examples and [£.4)).

In finite dimensions orthogonal transformations of real vector spaces with
inner products and unitary transformations of complex vector spaces with
Hermitian inner products are examples of isometries. These examples carry
over to infinite-dimensional real and complex Hilbert spaces. In infinite di-
mensions orthogonal and unitary transformations have many important ap-
plications. They arise naturally in the study of certain partial differential
equations such as the wave equation and the Schrodinger equation. The
functional analytic background for the study of such equations is the the-
ory of strongly continuous semigroups of operators. This is the subject of
Chapter [7] below.
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4.2 Compact Operators

One of the most important concepts in the study of bounded linear operators
is that of a compact operator. The notion of a compact operator can be
defined in several equivalent ways. The equivalence of these conditions is the
content of the following lemma.

Lemma 4.19. Let X and Y be Banach spaces and let K : X — Y be a
bounded linear operator. Then the following are equivalent.

(1) If (xn)nen is a bounded sequence in X then the sequence (Kx,)nen has a
Cauchy subsequence.

(ii) If S € X is a bounded set then the set K(S) := {Kz|x € S} has a

compact closure.

(iii) The set {Kz |z € X, |||y < 1} is a compact subset of Y.

Proof. We prove that (i) implies (ii). Thus assume K satisfies (i) and let
S C X be a bounded set. Then every sequence in K(S) has a Cauchy
subsequence by (i). Hence Corollary asserts that K (S) is a compact
subset of Y, because Y is complete.

That (ii) implies (iii) is obvious. We prove that (iii) implies (i). Let
(n)nen be a bounded sequence and choose ¢ > 0 such that ||z,| < ¢ for
all n € N. Then (¢"'Kw,)nen has a convergent subsequence (¢ 'Kz, )ien

by (iii). Hence (Kx,,)en is the required Cauchy subsequence. This proves
Lemma .19 O

Definition 4.20 (Compact Operators). Let X and Y be Banach spaces.
A bounded linear operator K : X —'Y is said to be

e compact if it satisfies the equivalent conditions of Lemma
e of finite rank if its image is a finite-dimensional subspace of Y,

e completely continuous if the image of every weakly convergent sequence
i X under K converges in the norm topology on Y .

Lemma 4.21. Let X and Y be Banach spaces. Then the following holds.
(1) Every compact operator K : X —'Y is completely continuous.

(ii) Assume X is reflexive. Then a bounded linear operator K : X — Y s
compact if and only if it is completely continuous.
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Proof. We prove part (i). Thus assume that K is a compact operator and
let (x,,)nen be a sequence in X that converges weakly to z € X. Suppose, by
contradiction, that the sequence (Kz,),en does not converge to Kx in the
norm topology. Then there is an € > 0 and a subsequence (x,,);en such that

| Kz — Kxy,|ly > € for all i € N. (4.15)

Since the sequence (z,,);eny converges weakly, it is bounded by the Uniform
Boundedness Theorem [2.1 Since K is compact, there exists a further sub-
sequence (xnik)kEN such that the sequence (K xnik)kEN converges strongly to
some element y € Y. This implies

(" y) = lim {y*, Kz, ) = lim (K'Y 2, ) = (K75 2) = (y, Kz)
for all y* € Y*. Hence y = K. Thus limy,|Kw2,, — Kzly = 0, in
contradiction to (4.15]). This proves (i).

We prove part (ii). Thus assume X is reflexive and K is completely
continuous. We prove that K is a compact operator. To see this let (z,,)nen
be a bounded sequence in X. Since X is reflexive, there exists a weakly
convergent subsequence (2, );en by Theorem Let € X be the limit of
that subsequence. Since K is completely continuous, the sequence (K, )ien
converges strongly to Kx. Thus K satisfies condition (i) in Lemma and
hence is compact. This proves (ii) and Lemma [1.21] O

Example 4.22. The hypothesis that X is reflexive cannot be removed in
part (i) of Lemma m For example a sequence in ¢! converges weakly
if and only if it converges strongly by Exercise |3.22 Hence the identity
operator id : £! — ¢! is completely continuous. However, it is not a compact
operator by Theorem [1.26]

Example 4.23. Every finite rank operator is compact.

Example 4.24. Let X := C'([0,1]) and Y := C([0,1]) and let K : X —» Y
be the obvious inclusion. Then the image of the closed unit ball is a bounded
equi-continuous subset of C'([0,1]) and hence has a compact closure by the
Arzela-Ascoli Theorem (Corollary [1.13). In this example the image of the
closed unit ball in X under K is not a closed subset of Y. Exercise: If X is
reflexive and K : X — Y is a compact operator, then the image of the closed
unit ball B € X under K is a closed subset of Y. Hint: Every sequence
in B has a weakly convergent subsequence by Theorem |3.42|
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Example 4.25. If K : X — Y is a bounded linear operator between Banach
spaces whose image is a closed infinite-dimensional subspace of Y, then K
is not compact. Namely, the image of the closed unit ball in X under K
contains an open ball in im(K’) by Theorem and hence does not have a
compact closure by Theorem [1.26]

Example 4.26. Fix a number 1 < p < oo and a bounded sequence of real
numbers A = (\;);en. For i € Nlet e; := (9;5)jen € 7. Define the bounded
linear operator K : ¢ — (P by

Kyx := (\izi)ien for x = (2;)ien € .

Then
K is compact = lim A\; = 0.
1— 00
The condition lim; .., A; = 0 is necessary for compactness because, if there
exists a constant § > 0 and a sequence 1 < n; < ny < n3 < --- such that

|An,| > ¢ for all £ € N, then the sequence Ke,, = A\, ¢€,,, k € N, in 7 has no
convergent subsequence. The condition lim; .., A\; = 0 implies compactness
because then K can be approximated by a sequence of finite rank operators
in the norm topology. (See Example and Theorem below.)

Exercise 4.27. Find a strongly convergent sequence of compact operators
whose limit operator is not compact.

The following theorem shows that the set of compact operators between
two Banach spaces is closed with respect to the norm topology.

Theorem 4.28. Let X,Y,Z be Banach spaces. Then the following holds.

(i) Let A: X =Y and B :Y — Z be bounded linear operators and assume
that A is compact or B is compact. Then BA : X — Z is a compact operator.
(ii) Let K; : X — Y be a sequence of compact operators that converges to
a bounded linear operator K : X — Y in the norm topology. Then K is
compact.

(iii) Let K : X =Y be a bounded linear operator and let K* : Y* — X* be
its dual operator. Then K is compact if and only if K* is compact.

Proof. We prove part (i). Let (x,)nen be a bounded sequence in X. If A
is compact then there exists a subsequence (z,, )reny such that the sequence
(Azy, Jken converges, and so does the subsequence (BAx,, )ren. If B is com-
pact then, since the sequence (Ax,),en is bounded, there exists a subsequence
(Azy, )ken such that the sequence (BAx,, )ren converges. This proves (i).
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We prove part (ii). Let (z,)nen be a bounded sequence in X. Then a
standard diagonal subsequence argument shows that the sequence (K, )nen
has a convergent subsequence. More precisely, since K is compact, there
exists a subsequence (2, , )ren such that the sequence (K1, , )ren converges
in Y. Since K, is compact there exists a further subsequence (Zn,,)ren
such that the sequence (ngvnQ’k)keN converges in Y. Continue by induction
and use the axiom of dependent choice to find a sequence of subsequences
(Zn, . Jken such that, for each i € N, the sequence (2, )ren is a subsequence
of (Zn, , Jken and the sequence (K;z,, , )ren converges in Y. Now consider the
diagonal subsequence

Ty, = Ty, for k € N.

Then the sequence (K;x,, )ren converges in Y for every ¢ € N. We prove that
the sequence (Kx,, )ren converges as well. To see this, choose a constant
¢ > 0 such that

|zl < c for all n € N.

Fix a constant € > 0. Then there exists a positive integer ¢ such that
€
I~ Kl < <

Since the sequence (K;x,, )ken converges, there exists a positive integer ky
such that all k, ¢ € N satisfy

k’,g > k‘o — ||lenk — KinHY < g

This implies

HKxnk - KxneHY
< ||Kxnk - KZznkHY + ||lenk - Ki$nz|lY + ||Ki$ne - K:BneHY
<K = Kill [l Ly + [ Kizn, — Kizn,lly + 1K = K| [[2n,[
< 2||K = Ki|| + ([ Kiwn, — Kizn, |y
<e€
for all pairs of integers k, ¢ > ko. Thus (Kx,, )ren is a Cauchy sequence in Y

and hence converges, because Y is complete. This shows that K is compact
and hence completes the proof of part (ii).
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We prove part (iii). Assume first that K : X — Y is a compact operator.
Then the set

M :={Kz| ||z||y <1} CY

is a compact metric space with the distance function determined by the norm
on Y. For y* € Y* consider the continuous real valued function

fr =y M — R,

Define the set .# C C(M) by
F = {f,
For each y* € Y* with ||y*|
||fy*

y e Y Iyl

<),

v+ < 1 the supremum norm of f,- is given by

=sup[(y*,y)|= sup |(y", Kz)|
yeM zeX, ||zl x <1

— s (K'Y (4.16)

zeX, x| x <1
= | K"y -

Thus || f]| < [|K*|| = | K|| for all f € .#, so.Z is a bounded subset of C(M).
Moreover, the set .# is equi-continuous because

|fy (W) = for W = vy — 0 < v

for all y* € Y* with ||y*[|» < 1 and all y,y’ € M. Since M is a compact
metric space, it follows from the Arzela—Ascoli Theorem (Corollary that
% has a compact closure. This implies that the operator K* is compact. To
see this, let (y)nen be a sequence in Y* such that ||ly}[l,. <1 for alln € N.
Then the sequence (fy:)nen in % has a uniformly convergent subsequence
( fy;;i)iEN- Hence it follows from that (K*y; )ien is a Cauchy sequence
in X* and hence converges. This shows that K* is a compact operator as
claimed.

Conversely, suppose that K* is compact. Then, by what we have just
proved, the bidual operator K** : X** — Y** is compact. This implies
that K is compact. To see this, let (x,),en be a bounded sequence in X.
Then (tx(2,))nen is a bounded sequence in X** by Lemma [2.68] Since K**
is a compact operator, there exists a subsequence (tx(x,,))ien such that the
sequence K**ux(x,,) = ty(Kx,,) converges in Y** as i tends to infinity.
Hence (Kxp,)ien is a Cauchy sequence in Y by Lemma . Hence K is
compact and this proves Theorem [4.28| O

ve ly =¥lly <lly = 9¢'lly
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It follows from part (ii) Theorem that the limit of a sequence of
finite rank operators in the norm topology is a compact operator. It is a
natural question to ask whether, conversely, every compact operator can be
approximated in the norm topology by a sequence of finite rank operators.
The answer to this question was an open problem in functional analysis
for many years. It was eventually shown that the answer depends on the
Banach space in question. Here is a reformulation of the problem due to

Grothendieck [I§].

Exercise 4.29. Let Y be a Banach space. Prove that the following are
equivalent.

(a) For every Banach space X, every compact operator K : X — Y, and
every € > 0 there is a finite rank operator 7" : X — Y such that ||K — T|| < e.

(b) For every compact subset C' C Y and every € > 0 there is a finite rank
operator T : Y — Y such that ||y — Ty|| < ¢ for all y € C.

A Banach space Y that satisfies these two equivalent conditions is said to
have the approximation property.

Exercise 4.30. Let Y be a Banach space that has a (countable) Schauder
basis (€;);en, i-. for every y € Y, there exists a unique sequence A = (\;)en
of real numbers such that the sequence > | A;e; converges and

=1 i=1

Prove that Y has the approximation property. Hint: Let I, : Y — Y be
the unique projection such that

im(I1,,) = span{ey, ..., e, }, IT,,e; =0 for all i > n.

By Exercise [2.95, the operators II, are uniformly bounded. Prove that
lim,, o0 [[I1, K — K| = 0 for every compact operator K : X — Y.

The first example of a Banach space without the approximation property
was found by Enflo [I4] in 1973. His example is separable and reflexive. It
was later shown by Szankowski in [55] that there exist closed linear sub-
spaces of 7 (with 1 < p < oo and p # 2) and of ¢y that do not have
the approximation property. Another result of Szankovski [56] asserts that
the Banach space L£(H) of all bounded linear operators from an infinite-
dimensional Hilbert space H to itself, equipped with the operator norm,
does not have the approximation property.
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4.3 Fredholm Operators

Let X and Y be real Banach spaces and let A: X — Y be a bounded linear
operator. Recall that the kernel, image, and cokernel of A are defined by

ker(A) := {z € X | Az = 0},
im(A) = {Az |z € X}, (4.17)
coker(A) :=Y/im(A).

If the image of A is a closed subspace of Y then the cokernel is a Banach
space with the norm ([1.17)).

Definition 4.31 (Fredholm Operators). Let X and Y be real Banach
spaces and let A : X —'Y bounded linear operator. A is called a Fredholm
operator if it has a closed image and its kernel and cokernel are finite-
dimensional. If A is a Fredholm operator the difference of the dimensions of
its kernel and cokernel is called the Fredholm index of A and is denoted by

index(A) := dimker(A) — dim coker(A). (4.18)

The condition that the image of A is closed is actually redundant in
Definition [4.31} It holds necessarily when the cokernel is finite-dimensional.
In other words, while any infinite-dimensional Banach space Y admits lin-
ear subspaces Z C Y that are not closed and have finite-dimensional quo-
tients Y/Z, such a subspace can never be the image of a bounded linear
operator on a Banach space with values in Y.

Lemma 4.32. Let X and Y be Banach spaces and let A : X — Y be a
bounded linear operator with a finite-dimensional cokernel. Then the image
of A is a closed subspace of Y.

Proof. Let m := dim coker(A) and choose vectors yy,...,y, € Y such that
the equivalence classes

[yl =y +m(A) € Y/im(4), i=1,....m,
form a basis of the cokernel of A. Define

X=XxR" (x5 = lzllx + [[Mgn
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forz € X and \ = Q‘l’;- s Am) € R™. Then X is a Banach space. Define
the linear operator A : X — Y by

Az, \) = Az + Z \ili-
i=1

Then A is a surjective bounded linear operator and
ker(A) = {(2,)) € X x R™| Az = 0, A = 0} = ker(A) x {0}.

Since A is surjective, it follows from Theorem that there exists a constant
¢ > 0 such that

inf AMlpm <
0 €l M < ¢

=1

Y
for all x € X and all A € R™. Take A = 0 to obtain the inequality

inf + <cllA
(ol €l < el Azl

for x € X. Hence A has a closed image by Theorem [4.16] and this proves
Lemma [4.32] O

Theorem 4.33 (Duality for Fredholm Operators). Let X and Y be
Banach spaces and let A € L(X,Y). Then the following holds.

(i) A is a Fredholm operator if and only if A* is a Fredholm operator.
(ii) If A is a Fredholm operator then

dimker(A*) = dim coker(A), dim coker(A*) = dim ker(A),
and hence index(A*) = —index(A).

Proof. By Theorem the operator A has a closed image if and only if A*
has a closed image. Thus assume A and A* have closed images. Then

im(A*) = ker(A)*, ker(A*) = im(A)*

by Theorem and Theorem [4.16 Hence it follows from Corollary
that the dual spaces of the linear subspace ker(A) C X and of the quotient
space coker(A) = Y/im(A) are isomorphic to

(ker(A))* = X*/ker(A)*t = X*/im(A*) = coker(A*)
(coker(A))* = (Y/im(A))* = im(A)* = ker(A*).
This proves Theorem 4.33 O]
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Example 4.34. If X and Y are finite-dimensional Banach spaces then every
linear operator A : X — Y is a Fredholm operator and

index(A4) = dim X — dimY.

Example 4.35. Every bijective bounded linear operator between Banach
spaces is a Fredholm operator of index zero.

Example 4.36. Consider the Banach space X = /7 with 1 < p < oo and let
k € N. Define the linear operators Ay, A_y : F — (P by

Ap = (Tp1, Ty, Thtss - - ),

= ). P
A—kx = <O7 ctt 707x17x27~r37 .. ) for v (xl)leN 6 g Y

where z7 is preceded by k zeros in the formula for A_,. These are Fredholm
operators if iindices index(A) = k and index(A_;) = —k.

Example 4.37. Let X,Y,Z be Banach spaces and let A : X — Y and
® : Z — Y be bounded linear operators. Define the bounded linear operator
AP XD Z —Y by

(A® D) (z,2) := Az + Dz.

If A is a Fredholm operator and Z is finite-dimensional, then A @ ® is a
Fredholm operator of index

index(A & @) = index(A) + dim Z.
Exercise: Prove this index formula.

The next theorem characterizes the Fredholm operators as those operators
that are invertible modulo the compact operators

Theorem 4.38 (Fredholm and Compact Operators). Let X and Y be
Banach spaces and let A : X — Y be a bounded linear operator. Then the
following are equivalent.

(i) A is a Fredholm operator.

(ii) There exists a bounded linear operator F : X — Y such that the operators
Ix —FA: X - X and Iy — AF : Y — Y are compact.

Proof. See page [194 ]
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The proof of Theorem [4.38| relies on the following lemma. This lemma
also gives a partial answer to the important question of how one can recog-
nize whether a given operator is Fredholm. It characterizes bounded linear
operators with a closed image and a finite-dimensional kernel and is a key
tool for establishing the Fredholm property for many differential operators.

Lemma 4.39 (Main Fredholm Lemma). Let X and Y be Banach spaces
and let D : X — Y be a bounded linear operator. Then the following are
equivalent.

(i) D has a finite-dimensional kernel and a closed image.

(ii) There exists a Banach space Z, a compact operator K : X — Z, and a
constant ¢ > 0 such that

||x||x < C(”Dxny + ||Kx||z) (4-19)

forallz € X.

Proof. We prove that (i) implies (ii). Thus assume D has a finite-dimensional
kernel and a closed image. Define m := dimker(D) and choose a basis
Ty, ..., Ty, of ker(D). By the Hahn-Banach Theorem (Corollary [2.35)) there

exist bounded linear functionals

xy,...,x € X*
such that o
R b
for 7,7 =1,...,m. Define the bounded linear operator
K : X — Z:=ker(D)
by

m

Kz = Z(xf, x)T;.

i=1
Then K is a compact operator (Example [4.23). Moreover, the restriction
K|ker(D) : ker(D) — Z is the identity and so is bijective. Hence the operator

X—=YxZ:xw— (Dr,Kx)

is injective and its image im(D) x Z is a closed subspace of Y x Z. Hence it
follows from Corollary that there exists a constant ¢ > 0 such that (4.19))
holds.
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We prove in two steps that (ii) implies (i).
Step 1. Every bounded sequence in ker(D) has a convergent subsequence.

Let (x,)nen be a bounded sequence in ker(D). Since K is a compact operator,

there exists a subsequence (x,,);en such that (Kxp,)ey is a Cauchy sequence
in Z. Since Dz, =0 for all i € N, it follows from (4.19) that

|Zn, — Zn;l|x < c||K2n, — Ky, || 2 for all 4,7 € N.

Hence (z,,)ien is a Cauchy sequence and therefore converges because X. The
limit z := lim; , x,, belongs to the kernel of D and this proves Step 1. It
follows from Step 1 and Theorem that dimker(D) < 0.

Step 2. There exists a constant C > 0 such that

inf |z +¢|ly < CDz|y for all z € X. (4.20)
&eker(D)
Assume, by contradiction, that there does not exist a constant C' > 0 such
that (4.20) holds. Then it follows from the axiom of countable choice that
there exists a sequence (z,)nen in X such that
inf ||z, +&|x > n||Dz,ly for all n € N. (4.21)
&€ker(D)
Multiplying each element x, by a suitable constant and adding to it an
element of the kernel of D, if necessary, we may assume without loss of
generality that

inf ||z, —1, 1<|az,)<2 forallneN. 4.22
b e+ €l < Jlan o all n € (422)

Then ||Dz,|y < 1/n by (4.21) and (4.22) and hence lim,_,. Dz, = 0.
Moreover, since the sequence (z,)nen is bounded and the operator K is

compact, there exists a subsequence (x,,);en such that (K, );ey is a Cauchy
sequence in Z. Since (Dx,,)ieny and (K, )ien are both Cauchy sequences, it

follows from (4.19) that (z,,);en is a Cauchy sequence in X. This sequence
converges because X is complete. Denote the limit by  := lim;_,, z,,,. Then

Dz = lim;_,, x,, = 0 and hence, by (4.22) and (4.19)),

1= inf ||z, + < |z, — for all + € N.
B+ €lLy < o =l

Since lim;_oo||Zpn, — z||x = 0, this is a contradiction. This proves Step 2. It
follows from Step 2 and Theorem that the operator D : X — Y has a
closed image. This proves Lemma 4.39 O
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Proof of Theorem[{.38 We prove that (i) implies (ii). Thus assume that
A: X — Y is a Fredholm operator and define
X := ker(A), Y1 :=1im(A).
Then, by Lemma [2.61] there exist closed linear subspaces
X C X, YoCY

such that
X = Xo & X, Y=Y

This implies that the bounded linear operator
A1 = A|X1 X1 =Y

is bijective. Hence A;' : Y; — X, is bounded by the Inverse Operator
Theorem Define the bounded linear operator F': Y — X by

Flyo + 1) == Ai''m for yo € Yy and y; € V3.
Then AF(yo + y1) = y1 and FA(xg + 1) = 27 and hence
(Iy —AF)(o +y1) =%,  (Ix — FA)(zo + 21) = xo

for all z¢g € Xo, 1 € X4, yo € Yy, and y; € Y;. Since X and Yj are finite-
dimentsional, the operators 1y — AF and 1y — F'A have finite rank and are
therefore compact (see Example .

We prove that (ii) implies (i). Thus assume that there exists a bounded
linear operator F': Y — X such that the operators K := 1y — FA: X — X
and L := 1y — AF : Y — Y are compact. Then

lllx = 1 FAz + Kzl < (|l Azlly + | Kzl )

for all x € X, where ¢ := max{1, ||[F||}. Hence A has a finite-dimensional
kernel and a closed image by Lemma [4.39. Moreover, L* : Y* — Y* is a
compact operator by Theorem and

Iy |y = | F*A*y" + L*y"|

y» HL*y*HY*)

for all y* € Y*. Hence A* has a finite-dimensional kernel by Lemma [4.39
Since im(A) = * ker(A*) by Theorem m, it follows from Lemma [3.14] that
A has a finite-dimensional cokernel. This proves Theorem [4.38] O

ye < (| Ay
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4.4 Composition and Stability

Theorem 4.40 (Composition of Fredholm Operators). Let X,Y, Z be
Banach spaces and let A : X — Y and B :' Y — Z be Fredholm operators.
Then BA : X — Z is a Fredholm operator and

index(BA) = index(A) + index(B).

Proof. By Theorem there exist bounded linear operators F' : ¥ — X
and G : Z — Y such that the operators 1x — FA, 1y — AF, 1y — GB, and
1z — BG are all compact. Define H := F'G : Z — X. Then the operators

Ix — HBA = F(ly — GB)A+ 1y — FA,
1; — BAH = B(ly — AF)G + 1 — BG

are compact. Hence BA is a Fredholm operator by Theorem [4.38]
To prove the index formula, define the operators

ker(BA)

O Yeer(A) — ker(B), Aplx] == Az,

and
Y im(B)

— B = |By]|.
() im(BAY olyl := [BY]
These are well defined linear operators between finite-dimensional real vec-
tor spaces. The operator Ay is injective and By is surjective by definition.

Second, im(Ap) = im(A) N ker(B) and hence
ker(B)

Boi

coker(Ao) = L A ket (B)”
Third,
ker(Bjy) {[y] € Y/im(A)| By € im(BA)}
= {[y] € Y/im(A) |3z € X such that B(y — Az) =0}
{[y] € Y/im(A) ‘ y € im(A) + ker(B)}

_ im(A) + ker(B)

B im(A)
ker(B)

im(A) N ker(B)
>~ coker(Ap).
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Hence, by Example [£.34] we have
0 = index(Ay) + index(By)
ker(BA im(B
= dim <%> — dim ker(B) + dim coker(A) — dim (11?#3/1))
= dimker(BA) — dimker(A) — dim ker(B)
+ dim coker(A) + dim coker(B) — dim coker(BA)
= index(BA) — index(A) — index(B).

This proves Theorem [

Theorem 4.41 (Stability of the Fredholm Index). Let X and Y be
Banach spaces and let D : X —Y be a Fredholm operator.

(i) If K : X — Y is a compact operator then D + K is a Fredholm operator
and index(D + K') = index(D).
(ii) There exists a constant e > 0 such that the following holds. If P : X — Y

is a bounded linear operator such that ||P|| < € then D + P is a Fredholm
operator and index(D + P) = index(D).

Proof. We prove the Fredholm property in (i). Thus let D : X — Y be a
Fredholm operator and let K : X — Y be a compact operator. By Theo-
rem there exists a bounded linear operator 7" : Y — X such that the
operators Iy — T'D and 1y — DT are compact. Hence so are the operators
Iy —T(D+ K) and 1y — (D 4 K)T by Theorem [1.28] and thus D + K is a
Fredholm operator by Theorem |4.38|

We prove the Fredholm property in (ii). Let D : X — Y be a Fredholm
operator. By Lemma there exists a compact operator K : X — Z and
a constant ¢ > 0 such that [|z||x < ¢(||Dz|ly + ||Kx||z) for all x € X. Now
let P: X — Y be a bounded linear operator with operator norm || P|| < 1/c.
Then, for all x € X, we have

lzlly < c(IDzlly + 1K)
< c(|Dz + Pally + [ Prlly + | Kz )
< (D +P)zlly + 1Kzl 7) +clIPlllz]x

and hence (1—c||P||)||z|lx < c¢(|[(D+P)z||y +|Kz| z). So D+ P has a closed
image and a finite-dimensional kernel by Lemma [£.39] The same argument
for D* 4+ P* shows that D* + P* has a finite-dimensional kernel and so D+ P
has a finite-dimensional cokernel, by Theorem [4.16]
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We prove the index formula in part (ii). As in the proof of Theorem [4.38]
define Xy := ker(A) and Y; := im(A4) and use Lemma to find closed
linear subspaces X7 C X and Yy C Y such that

X:Xo@Xl, Y:YE)@Yl

For i,j € {0,1} define P;; : X; — Y; as the composition of the restriction
Plx, + X; — Y with the projection ¥ =Y, ®Y; =Y, : yo +y1 — y;. Let
Dq; : X1 — Y] be the restriction of D to X7, understood as an operator with
values in Y] = im(D). We prove that

index(D + P) = index(Ay), (4.23)

where )
Ag 3:P00—P01(D11+P11) Py : Xo — Y.

To see this, observe that the equation
(D + P)(zo+71) =y + 41 (4.24)
can be written as
Yo = Fooro + Poizy
Y1 = Prozo + <D11 + P11)3U1

for g € Xy, 1 € X7 and yg € Yy, y1 € Y7. The operator Dy bijective, and
hence so is Dyy + Py for || Py ]| sufficiently small (see Corollary |1.51)). In this
case the equations (4.25)) can be written in the form

Aozo = yo — Por (D11 + P11)71y1,
Ty = (Dn + Pn)_l(yl — Piomo).

(4.25)

(4.26)

This shows that
xg € ker(Ay),
ro+ 21 € ker(D + P = -
° ' ( ) { Ty = —(Dn + Pn) 1Ploxo
for z; € X;. It also shows that
Yo+ Y1 € 1m(D + P) < Yo — P01 (Dll + Pll)ilyl c 1m(A0)

for y; € Y;. Hence ker(D + P) = ker(Ap) and coker(D + P) = coker(Ap) and
this proves (4.23)). Thus

index(D + P) = index(Ap) = dim X, — dim Y = index(D)

whenever || P|| is sufficently small.
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It remains to prove the index formula in part (i). Thus fix a compact
operator K : X — Y and define

I :={t € R|index(D + tK) = index(D)} .
By part (ii) (already proved) the set
Fi(X,Y):={A e L(X,Y)]|Ais a Fredholm operator and index(A) = k}

is an open subset of the Banach space £(X,Y") of bounded linear operators
from X to Y for every integer k € Z. Thus their union

F(X,Y):= U Fiu(X,Y)={A € L(X,Y)]|Ais a Fredholm operator}

kEZ

is an open subset of £L(X,Y"). Moreover, the map R — F(X,Y) : t = D+tK
is continuous and hence the pre-image of F;(X,Y’) under this map is an open
subset of R for every k € Z. In other words, the set

Iy == {t € R|index(D +tK) =k} CR

is an open for all £ € Z and R = |J,.,, Ii. Since I, = I for k = index(D) it
follows that both I and R\ I = {J, Ir are open subsets of R. Since 0 € I,
the set I C R is nonempty, open, and closed, and so I = R because R is
connected. Thus 1 € I and so index(D + K') = index(D). This proves The-
orem 4.47] O

Remark 4.42 (Fredholm Alternative). It is interesting to consider the
special case where X =Y is a Banach space and K : X — X is a compact
operator. Then Theorem [£.41] asserts that 1 — K is a Fredholm operator
of index zero. This gives rise to the so-called Fredholm alternative. It
asserts that either the inhomogeneous linear equation

r—Kr=y

has a solution x € X for every y € X, or the corresponding homogeneous
equation
r—Kx=0

has a nontrivial solution. This is simply a consequence of the fact that the
kernel and cokernel of the operator 1 — K have the same dimension, and
hence are either both trivial or both nontrivial.
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Remark 4.43 (Calkin Algebra). Let X be a Banach space, denote by
L(X) the Banach space of bounded linear operators from X to itself, de-
note by F(X) C L(X) the subset of all Fredholm operators, and denote by
K(X) C L(X) the subset of all compact operators. By part (ii) of The-
orem the linear subspace K(X) C L(X) is closed and, by part (i) of
Theorem the quotient space £(X)/K(X) is a Banach algebra, called
the Calkin Algebra. By part (ii) of Theorem [£.41] the set F(X) of Fred-
holm operators is an open subset of £(X) and, by part (i) of Theorem [4.41]
this open set is invariant under the equivalence relation. By Theorem [4.3§
the corresponding open subset F(X)/K(X) C L(X)/K(X) of the quotient
space is the group of invertible elements in the Calkin Algebra. By part (i)
of Theorem the Fredholm index gives rise to a well defined map

F(X)/K(X) — Z: [D] — index(D). (4.27)
By Theorem this map is a group homomorphism.

Remark 4.44 (Fredholm Operators and K-theory). Let H be an infi-
nite-dimensional separable Hilbert space. A theorem of Kuiper [34] asserts
that the group

Aut(H) := {A: H — H| Ais a bijective bounded linear operator }

is contractible. This can be used to prove that the the space F(H) of Fred-
holm operators from H to itself is a classifying space for K-theory. The
starting point is the observation that, if M is a compact Hausdorff space and
A: M — F(H) is a continuous map such that the operator A(p) : H — H
is surjective for all p € M, then the kernels of these operators determine a
vector bundle E over M, defined by

E:={(p,x) € M x H| A(p)z = 0}. (4.28)

More generally, any continuous map A: M — F(H), defined on a com-
pact Hausdorff space M, determines a socalled K-theory class on M (an
equivalence calls of pairs of vector bundles under the equivalence relation
(E,F) ~ (B, F) it E® F' = E & F), the K-theory classes associated to
two such maps agree if and only if the maps are homotopic, and every K-
theory class on a compact Hausdorff space can be obtained this way. This
is the Atiyah—Janich Theorem [5] [6, [7, 28]. In particular, when M is a
single point, the theorem asserts that the space Fi(H) of Fredholm operators
of index £ is nonempty and connected for all k € Z.
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Remark 4.45 (Banach Hyperplane Problem). In 1932 Banach [8] asked
the question of whether every infinite-dimensional real Banach space X is
isomorphic to X x R or, equivalently, whether every closed codimension one
subspace of X is isomorphic to X (see Exercise [4.53). This question was
answered by Gowers [17] in 1994. He constructed an infinite-dimensional real
Banach space X that is not isomorphic to any of its proper subspaces and so
every Fredholm operator on X has Fredholm index zero. This example was
later refined by Argyros and Haydon [4]. The Argyros—Haydon Space is
an infinite-dimensional real Banach space X such that every bounded linear
operator A : X — X has the form

A=)\+K,

where A is a real number and K : X — X is a compact operator. Thus every
bounded linear operator on X is either a compact operator or a Fredholm
operator of index zero, the open set F(X) = Fo(X) = L(X) \ £(X) of
Fredholm operators on X has two connected components, and the Calkin
algebra is isomorphic to the real numbers, i.e.

L(X)/K(X) =R

This shows that the Hilbert space H in the Atiyah—Janich Theorem cannot

be replaced by an arbitrary Banach space (see Remark [4.44)). The details of
the constructions of Gowers and Argyros—Haydon go far beyond the scope of
the present manuscript.

4.5 Problems

Exercise 4.46 (Injections and surjections). Let X and Y be Banach
spaces. Prove the following.

(a) The set of all surjective bounded linear operators A : X — Y is an open
subset of £(X,Y') with respect to the norm topology.

(b) The set of all injective bounded linear operators A : X — Y is not
necessarily an open subset of £(X,Y") with respect to the norm topology.

(c) The set of all injective bounded linear operators A : X — Y with closed
image is an open subset of £(X,Y") with respect to the norm topology.
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Exercise 4.47 (The image of a compact operator). Let X and Y be
Banach spaces and let
K: X—->Y
be a compact operator. Prove the following.
(a) If K has a closed image then dimim(K) < oo.
(b) The image of K is a separable subspace of Y.

(c) Assume Y is a separable Banach space. Find an example of a Banach
space X and a compact operator K : X — Y with a dense image.

Exercise 4.48 (Compact subsets of Banach spaces).
Let X be a Banach space and let C C X be a closed subset. Then the
following are equivalent.

(i) C is compact.
(ii) There exists a sequence x,, € C' such that

lim ||z,|| =0, C c conv({z, |n € N}). (4.29)
n—o0
Hint 1: To prove that (ii) implies (i) observe that

conv({z, |n € N}) = {i A | Ap >0, i)\n = 1} (4.30)

whenever lim,,_,« ||z,|| = 0.

Hint 2: To prove that (i) implies (ii), choose a sequence of compact sets
C, € X and and a sequence of finite subsets A, C C}, such that C; = C' and

20, C U By«(7), Clry1 = U ((20 N By-«(z)) — x)

:EGAk ZEGAk

for k € N. Prove that, for every ¢ € C, there is a sequence z, € Ay such that

oo
T = E 2_k.1'k.
k=1

Note that ||z| < 47 for all z € Ay, and all k € N.
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Exercise 4.49 (Continuity). Let X and Y be normed vector spaces.

(a) A linear operator A : X — Y is bounded if and only if it is continuous
with respect to the weak topologies on X and Y.

(b) A linear operator B : Y* — X* is continuous with respect to the weak*
topologies on Y* and X* if and only if there exists a bounded linear operator
A: X — Y such that B = A*.

(c) A linear operator A : X — Y is continuous with respect to the weak
topology on X and the norm topology on Y if and only if it is bounded and
has finite rank.

(d) Suppose X and Y are Banach spaces and denote by B* C Y* the closed
unit ball. Then a bounded linear operator A : X — Y is compact if and only
if A*|p«: B* — X* is continuous with respect to the weak™ topology on B*
and the norm topology on X*.

(e) Suppose X and Y are reflexive Banach spaces and denote by B C X the
closed unit ball. Then a bounded linear operator A : X — Y is compact if
and only if A|p : B — X is continuous with respect to the weak topology on
B and the norm topology on Y.

Exercise 4.50 (Gantmacher’s Theorem). Let X andY be Banach spaces
andlet A : X =Y be a bounded linear operator. The following are equivalent.

(i) A is weakly compact, i.e. if B C X is a bounded set then the weak
closure of A(B) is a weakly compact subset of Y.

(ii) If (zp)nen is a bounded sequence in X then the sequence (A(xy,))nen in
Y has a weakly convergent subsequence.

(i) A™(X*™) C iy (Y).

(iv) A* : Y* — X* is continuous with respect to the weak™® topology on Y*
and the weak topology on X*.

(v) The dual operator A* : Y* — X* is weakly compact.

Hint: To prove that (i) implies (iii) denote by B C X and B** C X** the
closed unit balls and denote by C' C Y the weak closure of A(B). If (i) holds

then vy (C) is a weak™® compact subset of Y**. Use Goldstine’s Theorem to
prove that A**(B**) C 1y (C) (see Corollary and Exercise [3.60)).
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Exercise 4.51 (Pitt’s Theorem). Let 1 < p < g < co. Then every bounded
linear operator A : {1 — (P is compact.

(a) Fix a bounded linear operator A : ¢4 — (P such that ||A|] = 1 and a
sequence (T, )nen in 7 that converges weakly to zero. It suffices to prove

lim Az, |, = 0.

Hint: Use Theorem and part (e) of Exercise [£.49]

(b) If (yn)nen is a sequence in P that converges weakly to zero then

limsup [|y + yall;, = [|lyll, + Timsup [|y.|; (4.31)

n—oo n—oo
for every y € (P. Hint: Assume first that y has finite support.
(c) Let x, be as in (a), fix a constant ¢ > 0, and choose = € 7 such that

lzl, =1, 1—e<|Az|, <1. (4.32)

Then

1/p 1/q
<||Ax|]§+)\plimsupHAang) < (||:1:||g+)\qlimsupHIn||g) (4.33)

n—o0 n—oo

for all A > 0. Hint: Use the equation (4.31) in part (b) with y, := Az,
and the inequality ||Az + AAw, ||, < [l + Az, |,

(d) There exists a constant C' > 0 such that

14+ \CP/9 — (1 — )P
limsup || Az, |7 < LY =1 7e)

(4.34)

for all A > 0 and all ¢ > 0. Hint Take C' > sup,cy |[2,]|, and use the
inequalities (4.32)) and (4.33)) in part (c).
(e) Choose \ := C~'¢'/% in ({.34) to obtain

l+ep/a—1 1—(1—¢)
lim sup [| Az, ||, < Crel-rla << +e) + (1-¢) ) (4.35)

n—00 g 13

for all € > 0. Take the limit € — 0 in (4.35)) to obtain lim,,,« || Az, = 0.
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Exercise 4.52 (Codimension one subspaces). Let X be a real Banach
space. Prove that any two closed codimension one subspaces of X are iso-
morphic to one another. Hint: If Y and Z are distinct closed codimension
one subspaces of X then each of them is isomorphic to (Y N Z) x R.

Exercise 4.53 (Index one Fredholm operators). Let X be an infinite-
dimensional real Banach space. Prove that the following are equivalent.

(i) X is isomorphic to X x R.

(ii) There exists a codimension one subspace of X that is isomorphic to X.
(iii) Every closed codimension one subspace of X is isomorphic to X.

(iv) There exists a Fredholm operator A : X — X of index one.

(v) The homomorphism is surjective.

Exercise 4.54 (Existence of Fredholm operators).
Let X and Y be Banach spaces and suppose that there exists a Fredholm
operator from X to Y. Prove the following.

(i) X is reflexive if and only if Y is reflexive.
(ii) X is separable if and only if Y is separable.

Exercise 4.55 (Existence of index zero Fredholm operators).
Let X and Y be Banach spaces and suppose that there exists an index zero
Fredholm operator from X to Y. Prove that X and Y are isomorphic.

Exercise 4.56 (Fredholm operators between (* spaces).

(a) Let 1 < p < oo. For each integer n € Z construct a Fredholm operator
AP — (P of index n.

(b) Construct a family of examples in (a) that are neither injective nor
surjective.

(c) Let 1 < p,g < oo and p # ¢q. Does there exist a Fredholm operator
from (7 to (97

Exercise 4.57 (Fredholm operators and vector bundles). Let H be a
separable infinite-dimensional Hilbert space and, for k € Z, denote by F.(H)
the space of Fredholm operators A : H — H of index k. Find a continuous
map A : S — Fi(H) such that the Fredholm operator A(z) : H — H is
surjective for all z € S*, and the vector bundle

E:={(z,§) € " x H| A(2)§ =0}

over St is a Mobius band.
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Exercise 4.58 (The Fredholm Alternative). Fix an interval I := [a, b
with a < b, let f;, g; € L2(I) for i = 1,...,n, and define

K(z,y) =) fi(x)gily)  fora<z,y<b.
i=1
For h € L*(I) consider the equation
b
u(zx) + / K(z,y)u(y) dy = h(z) fora <x <b. (4.36)

Prove that equation (4.30]) either has a unique solution u € L?(I) for every h,
or the homogeneous equation with A~ = 0 has a nonzero solution .
Exercise 4.59 (Hilbert spheres).
(a) The unit sphere

S = {:z: €| x|, = 1}

is contractible, i.e. there exists a continuous map f :[0,1] x S — S and an
element e € S such that

f0,2)=e,  f(llz)=2
forallz € S.

Hint: Let eq,es,e3,... be the standard orthonormal basis of ¢? and define
the shift operator T : £ — (2 by

T(x1, 29, 23,...) := (0,21, 29, 23,...) for = (2;)ien € (%

Then Te, = e,y for all n € N. Consider the maps g : [0,1] x ¢ — (2 and
h:[0,1] x £2 — £? defined by

g(t,x) == (1 —t)e; + tTx, h(t,z) = (1 —t)Tx + tx
for 0 <t < 1and x € (2. Use these maps to show that ¢?\ {0} is contractible

and then normalize to deduce that S is contractible.

(b) Refine the construction in (a) to obtain a map f : [0,1] x S — S that
satisfies

f(O,SL’):67 f(l,l’)iﬂ,’, f(t,E)ZG
for all z € S and all ¢ € [0,1]. This means that the singleton {e} is a
deformation retract of S.

(c) Prove that the unit sphere in any infinite-dimensional Hilbert space is
contractible.
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Exercise 4.60 (Fredholm intersection theory). Let X be a Banach space
and let X7, X5 C X be closed linear subspaces. The triple (X, X, X3) is
called a Fredholm triple if the subspace X; + X5 is closed, and the inter-
section X7 N X, and the quotient X/(X; + X5) are finite-dimensional. The
Fredholm index of a Fredhom triple (X, X;, X5) is defined by

index(X, X1, X») := dim(X; N Xy) — dim(X/(X; + X3)). (4.37)
(a) Prove that (X, X7, X5) is a Fredholm triple if and only if the operator
X x X9 — X (IL‘l,ZEQ) — 1+ To

is Fredholm. Show that the Fredholm indices agree. Hint: Corollary [2.16|

(b) Assume X; + X5 has finite codimension in X. Prove that X; + X5 is a
closed subspace of X. Hint: Lemma [1.32

(c) Assume (X, X;, X3) is a Fredholm triple. Prove that the subspaces X;
and X5 are complemented.

(d) Define the notion of a small deformation of a complemented subspace.

(e) Prove that the Fredholm property and the Fredholm index of a Fredholm
triple (X, X, X5) are stable under small deformations of the subspaces X;
and X,. Hint: Theorem [4.41]|

Exercise 4.61 (Fredholm operators and homological algebra).

(a) Exact Sequences. A finite sequence

d d d dp—
0— Vo2V -5 5. =V, 2V, —0

of vector spaces and linear maps is called exact if dy is injective, d,_; is
surjective, and ker(dy) = im(dy_1) for k = 1,...,n — 1. If the sequence
is exact and the vector spaces Vj are all finite-dimensional then its Euler
characteristic vanishes, i.e. Y (—1)"dim V}, = 0.

(b) Two linear operator A : X — Y and B : Y — Z between vector spaces
determine a natural long exact sequence

0 — ker(A) — ker(BA) — ker(B) N
N coker(A) — coker(BA) — coker(B) — 0,

where the map ¢ : ker(B) — coker(A) assigns to an element y € ker(B) the
equivalence class of y in the quotient space Y/im(A) = coker(A).
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(c) If XY, Z are Banach spaces and two out of the three operators A, B, BA
are Fredholm operators then so is the third and

index(BA) = index(A) + index(B).

(See Theorem [4.40})
(d) The Snake Lemma. Consider a commutative diagram

0 U v W 0
N
0 X Y z 0

of vector spaces and linear operators such that the horizontal rows are short
exact sequences. Then there is a natural long exact sequence

0 — ker(A) — ker(B) — ker(C) N

N coker(A) — coker(B) — coker(C') — 0,

where the boundary map 6 : ker(C') — coker(A) is defined as follows. Let
w € ker(C') and choose an element v € V' that maps to w under the surjection
V. — W; then Bv € Y belongs to the kernel of the map Y — Z; so there is
a unique element x € X that maps to Bv under the injection X — Y and
dw = [z] € X/im(A) = coker(A) is independent of the choice of v.

(e) Deduce from the Snake Lemma that, if U, V, W, XY, Z are Banach spaces
and two out of the three operator A, B, C are Fredholm operators then so is

the third and index(B) = index(A) + index(C).
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Chapter 5

Spectral Theory

The purpose of the present chapter is to study the spectrum of a bounded
linear operator on a real or complex Banach space. In linear algebra a real
matrix may have complex eigenvalues and the situation is analogous in infi-
nite dimensions. To define the eigenvalues and, more generally, the spectral
values of a bounded real linear operator on a real Banach space it will be
necessary to complexify real Banach spaces. Complex Banach spaces and the
complexifications of real Banach spaces are discussed in a first preparatory
Section [5.1} Other topics in the first section are the integral of a continuous
Banach space valued function on a compact interval and holomorphic oper-
ator valued functions. These are elementary but important tools in spectral
theory. Section introduces the spectrum of a bounded linear operator,
examines its elementary properties, shows that the spectral radius is the
supremum of the moduli of the spectral values, discusses the spectrum of a
compact operator, and establishes the holomorphic functional calculus. The
remainder of this chapter deals exclusively with operators on Hilbert spaces.
Section introduces complex Hilbert spaces and examines the spectra of
normal and self-adjoint operators. Section introduces C* algebras and
establishes the continuous functional calculus for self-adjoint operators. It
takes the form of an isomorphism from the C* algebra of complex valued
continuous functions on the spectrum to the smallest C* algebra containing
the given operator. Section introduces the Gelfand representation and
extends the continuous functional calculus to normal operators. Section
shows that every normal operator can be represented by a projection valued
measure on the spectrum. Section shows that every self-adjoint operator
is isomorphic to a direct sum of multiplication operators on L? spaces.

209
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5.1 Complex Banach Spaces

5.1.1 Definition and Examples

Definition 5.1 (Complex Banach Spaces). (i) A complex normed

vector space is a complex vector space X, equipped with a norm function
X = R:x— |z| that satisfies the azioms (N1-N3) in Definition 1.4 and

I Az]| = |\l ]|z for all x € X and all A € C.

A complex normed vector space (X, ||-||) is called a complex Banach space
if it is complete with respect to the metric (1.1)).

(ii) Let X and Y be complex Banach spaces and denote by
LXY)={A: X >Y | A is complex linear and bounded}

the space of bounded complex linear operators from X to'Y (Deﬁm’tion .
Then L(X,Y) is a complex Banach space with the operator norm @ .
In the case X =Y abbreviate L°(X) := L(X, X).

(iii) The (complex) dual space of a complex Banach space X is the space
X*:= LX,C) of bounded complex linear functionals A : X — C. If X and
Y are complex Banach spaces and A : X — Y is a bounded complex linear
operator, then the (complex) dual operator of A is the bounded complex
linear operator A* : Y* — X* defined by A*y* :==y* o A: X — C for every
bounded complex linear functional y* :'Y — C. The operator A* has the
same operator norm as A (see Lemmal].).

Remark 5.2. A complex normed vector space X can be viewed as a real
normed vector space, equipped with a linear map J : X — X such that

JP=-1 (5.1)

and
||cos(0)x + sin(8) Jx|| = ||| for all # € R and all z € X. (5.2)

If J: X — X is alinear map that satisfies and then X has a unique
structure of a complex normed vector space such that multiplication by the
complex number i is given by the linear operator J. Scalar multiplication is
then given by the formula

(s+it)r :=sx +tJx for s,t € R and z € X. (5.3)

In this notation a complex linear operator from X to itself is a real linear
operator that commutes with J.
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The reader is cautioned that for the complex dual space X* and the
complex dual operator A* the same notations are used as in the setting of
real Banach spaces although the meanings are different. It should always be
clear from the context which dual space or dual operator is used in the text.
We emphasize that the examples discussed Section all have natural
complex analogues. Here is a list.

Example 5.3. (i) The vector space X = C" of all n-tuples = = (x1,...,z,)
of complex numbers is a complex Banach space with each of the norms

(ii) For 1 < p < oo the set 7(N, C) of p-summable sequences = = (x;);en of
complex numbers is a complex Banach space with |[|z|, := (3252 |2|P) /P for
x € (P, Likewise, the space ¢>°(N, C) of bounded sequences of complex num-
bers is a complex Banach space with the supremum norm ||z||  := sup;ey|i|.

(iii) Let (M, A, 1) be a measure space, fix a constant 1 < p < oo, and denote
the space of p-integrable complex valued functions on M by £P(u,C). The
function LP(u,C) = R: f = [|f]], = (fylfIP du)l/p descends to the quo-
tient LP(u,C) := LP(u,C)/~, where f ~ g iff the function f — g vanishes
almost everywhere. This quotient is a complex Banach space.

(iv) Let (M, A, u) be a measure space and denote by £>(u,C) the space
of complex valued bounded measurable functions f: M — C. Then the
quotient space L*®(u,C) := L2(u,C)/~, where the equivalence relation is
equality almost everywhere, is a complex Banach space with the norm (|1.3]).
(v) Let M be a compact topological space. Then the space C(M,C) of
bounded continuous functions f : M — C is a complex Banach space with
the supremum norm || f[|, := sup,ep|f(p)| for f € C(M,C).

(vi) Let (M, .A) be a measurable space, i.e. M is a set and A C 2M is a
o-algebra. A complex measure on (M, A) is a function p : A — C that
satisfies p(0) = 0 and is o-additive, i.e. p(Jy, Ai) = > oo u(A;) for every
sequence of pairwise disjoint measurable sets A; € A. The space M (M, A, C)
of complex measures on (M, A) is a Banach space with the norm given by

neN, A,...,A, €A,

il :=sup § Y |u(A)| | AN A; = for i # j, (5.4)
i=1 U?:l Az = M

for p e M(M, A,C).
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The next goal is to show that every real Banach space can be complexified.
Recall first that the complexification of a real vector space is the complex

vector space
X=X xXZX®rC,

equipped with the scalar multiplication (s + it) - (z,y) := (sz — ty, tz + sy)
for A = s+it € C and z = (x,y) € X°¢ With a slight abuse of notation
we write z + iy = (z,y), v := z +i0 = (2,0), and iy := 0+ iy = (0,y)
for z,y € X. Thus we do not distinguish in notation between an element
x € X and the corresponding element (z,0) € X¢. In other words, the vector
spaces X and iX are viewed as real linear subspaces of X via the embeddings
X — X¢: 2z~ (2,0) and iX — X°:iy +— (0,y). Then X¢ = X & iX and
scalar multiplication is given by the familiar formula

(s +it)(z + iy) := (sz — ty) + i(tx + sy)

for s+it € C and x +iy € X¢ If z = z 4+ iy € X° then the vector
xr =: Re(z) € X is called the real part of z and the vector y =: Im(z) € X
is called the imaginary part of z.

Exercise 5.4. Let X be a real normed vector space and define

2] e == sup \/HRe(eiez)H%( + || Tm(ei2)]|% for z € X¢. (5.5)
feR

Prove the following.

(i) (X |||l x) is a complex normed vector space.

(ii) The natural inclusions X — X¢ and iX — X¢ are isometric embeddings.
(iii) If X is a Banach space then so is X¢. Hint: Prove that

VIR + M) < [12]ye < /2 [1Re(=)]% + 2 [|Im(=)]1%

for all z € Xe.

(iv) If Y is another real normed vector space, A : X — Y is a bounded real
linear operator, and the complexified operator A°: X¢ — Y is defined by
A(xq +1ix9) 1= Axy +1Axs for x1 +izy € X, then A€ is a bounded complex
linear operator and ||A¢|| = ||A]|.

(v) If A: X — X is a bounded linear operator then A and A° have the same
spectral radius (see Definition (1.50)).
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The norm (5.5) on the complexified Banach space X¢ is a very general
construction that applies to any real Banach space, but it is not necessarily
the most useful norm in each explicit example, as the next exercise shows.

Exercise 5.5. Let (M, d) be a nonempty compact metric space. The com-
plexification of the space C(M) of continuous real valued functions on M
is the space C'(M,C) of continuous complex valued functions on M. Show
that the supremum norm on C(M, C) does not agree with the norm in ({5.5))
unless M is a singleton. Show that both norms are equivalent.

Exercise 5.6. Let X be a real Banach space. Prove that the complezifi-
cation of the dual space, L(X,R)¢, is isomorphic to dual space of the com-
plexification, £°(X¢ C). Hint: The isomorphism assigns to each element
Ay +iAy € L(X,R)¢ the complex linear functional A¢: X¢ — C given by

A(x +1iy) == A (x) — Ao(y) +i(A2(z) + A1 (y)) for z,y € X.

Prove that the isomorphism L£(X,R)¢ — L£¢(X¢ C) is an isometry when-
ever X is a Hilbert space, but not in general.

5.1.2 Integration

It is often useful to integrate continuous functions on a compact interval with
values in a Banach space. Assuming the Riemann integral for real or complex
valued functions, the integral can be defined as follows.

Lemma 5.7 (Integral of a Continuous Function). Let X be a real or
complex Banach space, fix two real numbers a < b, and let x : [a,b] — X be
a continuous function. Then there exists a unique vector & € X such that

(x*,&) = / (", x(t)ydt  for allz* € X™. (5.6)

Proof. For n € N define ¢, € X and 9,, > 0 by

2" —1

b= X gt (a0 dm s lels) — (0]

k=0 ls—t|<27"(b—a)

Here the supremum runs over all s,t € [a,b] such that |s —¢| < 27"(b — a).
Then lim,,_,, 6,, = 0 because x is uniformly continuous. Moreover,

|€nsm — &nll < (b—a)dy, for all m,n € N.
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Hence (&,)nen is a Cauchy sequence in X. Since X is complete, this sequence
converges. Denote its limit by & := lim,, ., &,. Then

on_1 b
(2%,€) = Tim > b;ﬂ“ <xx (a+k:b2_na>> :/ (%, x(t)) dt
k=0 a

for all z* € X*, by the convergence theorem for Riemann sums. This proves
existence. Uniqueness follows from the Hahn-Banach Theorem (see Corol-
lary in the real case and Corollary in the complex case). This proves
Lemma 5.7 O

Definition 5.8 (Integral). Let X be a real or complex Banach space and
suppose that x : [a,b] — X is a continuous function on a compact interval
la,b] C R. The vector £ € X in Lemmal[5.7 is called the integral of = over
[a,b] and will be denoted by fabx(t) dt := £. Thus the integral of x over |a, b]

15 the unique element f;:z:(t) dt € X that satisfies the equation

<x*,/abx(t> dt> = /ab(x*,a:(t)>dt forallz* € X, (5.7)

With this definition in place all the main results about the one-dimen-
sional Riemann integral in first year analysis carry over to vector valued
integrals.

Lemma 5.9 (Properties of the Integral). Let X be a real or complex
Banach space, fix two real numbers a < b, and let z,y : [a,b] — X be
continuous functions. Then the following holds.

(i) The integral is a linear operator C([a,b], X) — X. In particular,
b b b
/ (z(t) + y(t)) dt = / z(t) dt +/ y(t) dt.
(ii) Ifa < c < b then

/abx(t)dt—/acx(t)dtJr/cbx(t)dt.

(iii) If Y is another (real or complex) Banach space and A : X — Y is a
bounded (real or complex) linear operator then

/ab Ax(t) dt = A/abm(t) dt.
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(iv) Assume x : [a,b] — X is continuously differentiable, i.e. the limit

i(t) = }ng(l) z(t + h})L —x(t)

exists for all t € [a,b] and the derivative i : [a,b] — X is continuous. Then

b
/ z(t) dt = x(b) — z(a).

(V) If a < B and ¢ : [, B] — |a,b] is a diffeomorphism then

/ ) dt = / " 2(6())d(s) ds.

(vi) The integral satisfies the mean value inequality

[ et < [ 1o

(vii) Let xy € X and assume

t
x(t):azo—i-/ y(s)ds fora <t <b.

Then x is continuously differentiable and ©(t) = y(t) for allt € [a,b].

Proof. Parts (i), (ii), (iii) follow directly from the definitions, the additivity
of the Riemann integral, and the Hahn—-Banach Theorem. Part (iv) follows
from the Fundamental Theorem of Calculus and the Hahn-Banach Theorem,
and part (v) follows from Change of Variables for the Riemann integral and
the Hahn-Banach Theorem. To prove part (vi), observe that

<x*,/abx(t)dt> _ /a<x ()t /|x s dt < ||2* ||/ ()] dt

for all z* € X* and hence, by Lemma [2.68]

b ‘(x*,
’/ x(t)dtH: sup - / |lx(t)]| dt.
o 2 eX*\{0} IE: H

This proves (vi). Now let x,y be as in (vii) and let a <t <t+ h <b. Then
t+h t+h

ly(6) = & S w(s)dsll < & 7 ly(8) —y(s )||d8 < suPpceerin 19(1) — y(s)]

by (vi), and hence y(t) = lim,on>0 7 ft y(s)ds = limy, h>0M

for a <t < b by (ii). Likewise, y(t) = llmh_>07h>0 (t)+ fora <t <0.
This proves (vii) and Lemma [5.9] O
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5.1.3 Holomorphic Functions

This is another preparatory subsection. It discusses holomorphic functions
on an open subset of the complex plane with values in a complex Banach
space. The most important examples in spectral theory are operator valued
holomorphic functions.

Definition 5.10 (Holomorphic Function). Let Q@ C C be an open set, let
X be a complex Banach space, and let f : Q — X be a continuous function.

(i) The function f is called holomorphic if the limit
h) —
o) i LEE D = FC)

h—0 h

exists for all z € Q and the function f':Q — X is continuous.

(ii) Let v : [a,b] — Q be a continuously differentiable function on a compact
interval [a,b] C R. The vector

/ fdoi= / SO )i(E) dt (5.8)

in X is called the integral of f over 7.

The next lemma characterizes operator valued holomorphic functions. It
shows, in particular, that every weakly holomorphic operator valued function
is continuous in the norm topology.

Lemma 5.11 (Characterization of Holomorphic Functions). Let X
and Y be complex Banach spaces and let A : Q) — LY(X,Y) be a weakly con-
tinuous function, defined on an open set 2 C C. The following are equivalent.

(i) The function A is holomorphic.
(ii) The function Q — C : z — (y*, A(z)x) is holomorphic for every x € X
and every y* € Y.

(iii) Let zp € Q and r > 0 such that B.(z0) = {z € C| |z — 20| <1} C Q.
Define the loop v : [0,1] — Q by

Y(t) == 2o + re*™ foro<t<1.

Then, for allx € X, all y* € Y*, and all w € C, we have

lw—z| <r = (¥, Aw)x)= L / ' Ak)e) dz. (5.9)

271 Z — W
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Proof. That (i) implies (ii) follows directly from the definitions and that (ii)
implies (iii) is Cauchy’s integral formula for complex valued holomorphic
functions (see [I, page 119]). That (iii) implies (i) follows by extending the
standard argument for holomorphic functions to operator valued functions.
For w € C with |w — 2| < r, define B(w) € L5(X,Y) and ¢ > 0 by

B % (Z - U))Q |z—20|=r

1 A
Blw)z := /—iﬁlw, ci= sup ||A(2)]. (5.10)
v
For h € C such that 0 < |h| < r — |w| we prove the estimate

(5.11)

Hmw+m—Am)

h
. —B(w)H < call

— (r = w])2(r = |w| = [h[)’
To see this, let © € X and y* € Y*. Then, by (5.9) and (5.10)),

<y*7 Aw + h)z — A(w)xr B(w)x>
(g ) sm
:_L/ My Alz)e)

27i ), (z —w)?(z —w — h)

The absolut value of the integral of a function over a curve is bounded above
by the supremum norm of the function times the length of the curve. In the
case at hand the length is 27r. Hence

‘<y*’A(w+h)Z_A(W)m‘B<w)x>‘ b R ey

rlhl[(y", A(z)z)]
< sup
|z—z0|=r |Z - w|2|z —w— h|

J O
L

cr|l[ly [z _
(r = Jw])?(r = |w| = |Al)

Thus the estimate follows from the Hahn—Banach Theorem [2.36]

By the function A : Q — L£(X,Y) is differentiable at each point
w € B,(z) and its derivative at w is equal to B(w). Thus A is continuous in
the norm topology and so is the function B : B,(z9) = £(X,Y) by (5.10).
Hence A is holomorphic and this proves Lemma [5.11] O]
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Exercise 5.12 (Holomorphic Functions are Smooth). Let X be a com-
plex Banach space, let 2 C C be an open subset, and let f : Q@ — X be a
holomorphic function.

(i) Prove that its derivative f’: ) — X is again holomorphic. Hint: Use
the equivalence of (i) and (ii) in Lemma [5.11] and use [I, Lemma 3, p 121]
(ii) Prove that f is smooth. Hint: Induction.

(iii) Let zp € Q and 7 > 0 such that B,(z) C Q and define v(¢) := 2z +re?™
for 0 <t < 1. Prove that the nth complex derivative of f at w € B,(z) is

given by the Cauchy integral formula
|
Wy = 2[R 5.12
[ (w) 27Ti/y<Z—UJ)n+1 “ (5.12)

Hint: Use the Hahn-Banach Theorem and the Cauchy Integral Formula
for derivatives (see [1, p 120] or [49, p 60]).

Exercise 5.13 (Power Series). Let X be a complex Banach space and let
(an)nen be a sequence in X such that

B 1

lim sup,, o {|an||

1/n>0

Prove that the powerseries

f(z) = Z anz"

n=0

converges for all z € C with |z] < p and defines a holomorphic function
f: B,(0) = X. Choose a number 0 < r < p and define (t) := re*™* for
0 <t < 1. Prove that the nth derivative of f at the origin is given by

o) == [ 1),

| n+1 '
n' v z

Hint: Use the Hahn-Banach Theorem 2.36] and the familiar results about
power series in complex analysis (see [II, page 38]).

(5.13)

The archetypal example of an operator valued holomorphic function is
given by z + (21 — A)™!, where A : X — X is a bounded complex linear
operator on a complex Banach space X. It takes values in the space L£¢(X)
of bounded complex linear endomorphisms of X and is defined on the open
set of all complex numbers z € C such that the operator z1 — A is invertible.
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5.2 The Spectrum

5.2.1 The Spectrum of a Bounded Linear Operator

Definition 5.14 (Spectrum). Let X be a complex Banach space and let
A € L9(X). The spectrum of A is the set

o(A):={reC ‘ the operator X1 — A is not bijective} (5.14)

=Po(A)URc(A) UCo(A). '
Here Po(A) is the point spectrum, Co(A) is the continuous spectrum,
and Ro(A) is the residual spectrum. These are defined by

Po(A) := {\ € C| the operator N1 — A is not injective}

the operator A1 — A is injective
and its image is not dense

Ro(A) := {)\ € C‘
(5.15)
the operator A1 — A is injective
Co(A):=< X eC ‘ and its image is dense,
but it is not surjective

The resolvent set of A is the complement of the spectrum. It is denoted by
p(A) :==C\ o(A) = {\ € C| the operator X1 — A is bijective} .  (5.16)

A complex number X\ belongs to the point spectrum Po(A) if and only if there
exists a nonzero vector v € X such that Az = \x. The elements A € Po(A)
are called eigenvalues of A and the nonzero vectors x € ker(Al — A) are
called eigenvectors. When X is a real Banach space and A € L(X) we
denote by o(A) := o(A°) the spectrum of the complezified operator A and
similarly for the point, continuous, and residual spectra.

Example 5.15. If dim X = n < oo then o(A) = Po(A) is the set of eigen-
values and #0(A) < n. If X = {0} then o(A) = 0.

Example 5.16. Let X = (? and define the operators A, B : > — (? by
Az := (x9,73,...) and Bx := (0,21,79,...) for z = (2;)ien € ¢*. Then
0(A) = o(B) = D is the closed unit disc in C and

Po(A) = int(D),  Ro(A) =0, Co(A) = S,
Po(B) = 0, Ro(B) = int(D), Co(B) = S
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Example 5.17. Let X = ¢? and let (););en be a bounded sequence of complex
numbers. Define A : (? — (? by Az := (\x;)ien for © = (2;)ien € £2. Then
o(A) = {\]ieN}, Po(A) = {\;]i € N}, and Ro(A) = (). Thus every
nonempty compact subset of C is the spectrum of a bounded linear operator
on an infinite-dimensional Hilbert space

Lemma 5.18 (Spectrum).
Let X be a complex Banach space and let A € L°(X). Denote by A* € L°(X*)
the complex dual operator. Then the following holds.

(i) The spectrum o(A) is a compact subset of C.
(ii) o(A*) = a(A).

(iii) The point, residual, and continuous spectra of A and A* are related by

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A*),

Ro(A*) C Po(A)UCo(A), Ro(A) C Po(AY),

Co(A*) C Co(A), Co(A) C Ro(A*) U Co(A").
(iv) If X is reflexive then Co(A*) = Co(A) and

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A*),

Ro(A*) C Po(A), Ro(A) C Po(A").

Proof. The complement of the spectrum is an open subset of C by Theo-
rem and this proves (i). Part (ii) follows from Corollary and the
identity (My — A)* = My — A*.

We prove part (iii). Assume first that A\ € Po(A*). Then A1 — A* is
not injective, hence A1 — A does not have a dense image by Theorem [£.§]
and hence A\ € Po(A) URo(A). Next assume A € Ro(A*). Then A1 — A* is
injective, hence A1 — A has a dense image, and hence A € Po(A) U Co(A).
Third, assume A € Co(A*). Then A1 — A* is injective and has a dense image
and therefore also has a weak™ dense image. Thus it follows from Theorem 4.8
that A1 — A is injective and has a dense image, so A € Co(A). It follows from
these three inclusions that Po(A) is disjoint from Co(A*), that Co(A) is
disjoint from Po(A*), and that Ro(A) is disjoint from Ro(A*) U Co(A").
This proves part (iii).

To prove part (iv) observe that in the reflexive case a linear subspace of
X* is weak* dense if and only if it is dense. Hence it follows from Theorem [4.§]
that Co(A) = Co(A*) whenever X is reflexive. With this understood, the
remaining assertions of part (iv) follow directly from part (iii). This proves
Lemma [5.18 O
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Lemma 5.19 (Resolvent Identity). Let X be a complex Banach space and
let A€ L9(X). Then the following holds.

(i) For A € p(A) define the resolvent operator R)(A) € L(X) by

Ry(A) == (M- A)7". (5.17)
Then R\(A) and R,(A) commute and satisfy the resolvent identity
Ry(A) = Ru(A) = (n = N)RA(A)R,.(A) (5.18)

for all A\, € p(A).
(ii) The resolvent set p(A) is an open subset of the complex plane and the
map p(A) = LY(X) : X — Ry(A) is continuous.
(iii) The map p(A) — LX) : A+ Rx(A) is holomorphic.
Proof. We prove part (i). Let A\, u € p(A). Then
(AL = A) (Rn(4) — By(A)) (1 = A) = (1 = 4) = (AL = 4) = (= M1

Multiply by Rx(A) on the left and by R,(A) on the right to obtain the
resolvent identity ([5.18]). This proves part (i).
We prove part (ii). Fix an element A € p(A) and choose u € C such that

= ALIRA(A)]| < 1.
Then Theorem [I.49] asserts that the operator
(11— A)RA(A) =1 — (A — p)RA(A)

is bijective and ((ul— A)Ry(A))™' =Y 77 (A — w)*Ry(A)*. Hence p € p(A)
and

Ry(A) =Y (A= w)* Ba(4)*+,
and hence _ | 1l (A)H2
B pw— Al || R
IRu(4) = Ra(A)l < £ 2 e

This proves part (ii).
We prove part (iii). It follows from (i) and (ii) that

R -RA) Ay
lim SN — i Ry ()R (4) = —Ra(4)

for all A € p(A). Since the map A — Ry(A)? is continuous by part (ii), this
proves part (iii) and Lemma[5.19] O
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5.2.2 The Spectral Radius

Recall from Definition that the spectral radius of a bounded linear op-
erator A : X — X on a real or complex Banach space is the real number

— inf [|A"|Y" = lim ||A™]|Y™ < ||A]l.
A }féN” | Tim (A" < A

If A is bounded linear operator on a real Banach space then its complexifi-
cation A° has the same spectral radius as A by Exercise [5.4. The reason for
the terminology spectral radius is the next theorem.

Theorem 5.20 (Spectral Radius). Let X be a nonzero complex Banach
space and let A € L9(X). Then o(A) # 0 and

ra= lim A"V = sup |- (5.19)
A€o (A)

Proof. Let A € C such that |A| > 74. Then ry-14 = [N 'ra < 1, so
the operator 1 — A\~'A is invertible by Corollary Thus the operator
Al — A = AT — X\1A) is bijective and hence \ ¢ o(A). Thus

sup || <7y (5.20)
A€o (A)

To prove the converse inequality, define the set 2 C C by
Q:={zeClz=0o0rz"' €p(A)}
and define the map R : 2 — £(X) by R(0) := 0 and by
R(z):=(z"'1—-A)! for z € Q\ {0}.

Then 2 is an open subset of C and the restriction of R to Q \ {0} is holo-
morphic by Lemma [5.19, Moreover, ) contains the open disc of radius 7
centered at the origin and it follows from Theorem that

R(z) = z(1—zA)~ Z 2L AP (5.21)
k=0

for all z € C such that 74|z| < 1. Hence R is holomorphic by Lemma [5.11]
By Exercise the nth derivative R™ : Q — £¢(X) of R is holomorphic
for every n € N.
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Now fix any real number 7 > supyc,(4)|Al, so the closed disc of radius r=4

centered at the origin, is contained in €2. Fix two elements € X and 2* € X*
and apply the Cauchy Integral Formula for higher derivatives in [1, page 120]
to the power series (z*, R(2)x) = >, (z*, A" 1z)2" and ~y(t) := r~te?™.

Then
(", R(2)x) = L,/Mdz

n+1
27 . z

1 d

* Anfl _
<x7 > n' dZn

=0
for all n € N. By the HahnfBanach Theorem for bounded complex linear
functionals (Corollary [2.36]) this implies

w_ L [RG) 1 [TAOROM) [T RO®)
A= 27ri/7 2" t2 d 27ri/0 ~(t)r+2 dt /0 y(t)r+t dt

Now use part (vi) of Lemma [5.9) and |y(¢)| = r~! to obtain

oy = [ UEGO, / 1RGO d
o
< 0 swp RG] = s H M- )|
0<t<1 IA\|=

for all n € N. Abbreviate

c:= |8;‘1_1:>||(Ml— A7

Then || A"||"™ < r(r¢)Y/™ for all n € N and hence
ra= lim A"V < lim (ro)'" = 7.

This holds for all 7 > supy,(4)|Al, 80 74 < supy,4)|A| as claimed. By (5.20),
this proves .

We prove that o(A) # (). Suppose, by contradiction, that o(A) = () and
so, in particular, A is invertible. Choose any nonzero element x € X. Then
A7tz # 0 and so, by Corollary there is an element x* € X* such that
(x*, A7lx) = —1. Define the function f : C — C by f()) := (z*, A\ 1—A)"'z)
for A € C = p(A). Then f is holomorphic by Lemma [5.19] f(0) = 1 by
definition, and
[l [ []]]

Al = [IAll

for all A € C such that |[A] > [|A||. Thus f is a nonconstant bounded
holomorphic function on C, in contradiction to Liouville’s Theorem. Hence
the spectrum of A is nonempty and this proves Theorem [5.20] O

LSOO 2 [l (AL = A)7H]| <
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5.2.3 The Spectrum of a Compact Operator

The spectral theory of compact operators is considerably simpler than the
general case. In particular, every nonzero spectral value is an eigenvalue,
the generalized eigenspaces are all finite-dimensional, and zero is the only
possible accumulation point of the spectrum (i.e. each nonzero spectral value
is an isolated point of the spectrum). All these observations are fairly direct
consequences of the results in Chapter [4]

Let X be a complex Banach space and let A € L£°(X) be a bounded
complex linear operator. Then ker(A1 — A)* C ker(A1l — A)**! for all A € C
and all k € N. Moreover, if ker(Al— A)™ = ker(A\1 — A)"™"! for some integer
m > 1, then ker(All — A)™ = ker(Al — A)™* for all k € N. The union of
these subspaces is called the generalized eigenspace of A associated to the
cigenvalue A € Po(A) and will be denoted by

By = E\(A) = fj ker(A1 — A)™. (5.22)

m=1

Theorem 5.21 (Spectrum of a Compact Operator). Let X be a non-
zero complex Banach space and let A € L°(X) be a compact operator. Then
the following holds.

(i) If X € o(A) and X # 0 then X is an eigenvalue of A and dim F)(A) < co.
In particular, there exists an m € N such that Ex(A) = ker(A1 — A)™.

(ii) Nonzero eigenvalues of A are isolated, i.e. for every A € o(A)\ {0} there
exists a constant € > 0 such that every p € C satisfies

O<|AN—pl<e — p € p(A).

Proof. We prove part (i). Fix a nonzero complex number A. Then A1 — A
is a Fredholm operator of index zero by part (i) of Theorem Hence
dimker(Al — A) = dim coker(Al — A) and so Al — A is either bijective, in
which case A ¢ o(A), or not injective, in which case A € Po(A). Assume

A € Po(A) and define
K :=)\"A, E, :=ker(1— K)" = ker(A1 — A)" for n € No.

Since K is a compact operator, it follows from Theorems and that
(1—- K)™ is a Fredholm operator and hence has a finite-dimensional kernel for
all n € N. It remains to prove that there is an m € N such that E,, = F,, 1.



5.2. THE SPECTRUM 225

Suppose, by contradiction, that this is not the case. Then E,_; C F), for
all n € N. Hence it follows from Lemma and the axiom of countable
choice that there exists a sequence (,)nen in X such that, for all n € N,

1
n € By, Al =1, inf |z, — xf| > = 5.23
x [ Lt — ] > 5 (5.23)

n—1
Fix two integers n > m > 0. Then Kx,, € £, _; and z, — Kx,, € E,_1, so

1
|\ Kz, — Kz = ||zn — (Kzp + 2, — K2y || > 3

Hence the sequence (Kx,)nen does not have a convergent subsequence, in
contradiction to the fact that the operator K is compact. This proves part (i).

We prove part (ii). Fix an eigenvalue A € Po(A) \ {0}. By part (i) there
is an m € N such that ker(All — A)™ = ker(Al — A)™** for all k& € N. Define

Xo :=ker(A1 — A)™, Xy :=im(ATl—A)™

Since (A1 — A)™ is a Fredholm operator these subspaces are both closed
and X is finite-dimensional. Moreover, these subspaces are both invariant
under A. We prove that

X =X, X;. (5.24)

If x € XogN X; then (Al — A)™z = 0 and there exists an element £ € X
such that z = (A1 — A)™¢. Hence € € ker(A1 — A)?*™ = ker(Al — A)™ and so
= (Al — A)™ = 0. Now the annihilator of X, ® X; in X* = L¢(X,C) is

(X0 @ X1)T = (ker(M — A)™) N (im(A1 — A)™)*
=im(Al — A")" Nker(A1 — A*)™ = {0}.

Here the second equation follows from Theorem and Theorem 4.16
The last equation follows from the fact that the kernels of the operators
(A1 — A)¥ and (A1 — A*)*¥ have the same dimension for all k¥ € N and there-
fore ker(A1 — A*)?™ = ker(A1 — A*)™. Now it follows from Corollary
that Xy @ X; is dense in X and therefore is equal to X. This proves .

Now the operator A\ — A : X; — X; is bijective. Hence the Open
Mapping Theorem asserts that there exists a constant £ > 0 such that
e ||z1]] < ||Az1 — Az for all z; € X;. By Theorem([1.49 this implies that the
operator ull — A : X; — X is invertible for all x4 € C such that |p — A < e.
Moreover, if u # X then pll — A : Xy — Xj is bijective because A is the
only eigenvalue of A|x,. Hence ull — A is bijective for all 4 € C such that
0 < |u— Al < e. This proves Theorem [5.21] O
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Example 5.22. Let X be the complexification of the Argyros—Haydon space
discussed in Remark Then every bounded linear operator A : X — X
has the form

A=)+ K

where A € C and K : X — X is a compact operator. By Theorem [5.21]
the spectrum of K is either a finite set or a sequence that converges to zero.
Hence the spectrum of every bounded linear operator on X is either a finite
set or a convergent sequence. This is in sharp contrast to infinite-dimensional
Hilbert spaces where every nonempty compact subset of the complex plane
is the spectrum of some bounded linear operator (see Example .

Remark 5.23 (Spectral Projection). Let X be a complex Banach space,
let A € L°(X) be a compact operator, let A € 0(A) be a nonzero eigenvalue
of A, and choose m € N such that

E) :=ker(A\l — A)™ = ker(A1 — A)™+h,

The proof of Theorem [5.21| shows that such an integer m exists, that F) is a
finite-dimensional linear subspace of X, that the operator (Al — A)™ has a
closed image, and that

X =ker(Al — A)™ @ im(A\1 — A)™.

Hence the formula

P)\<I0 + .%'1) =X
for o € ker(Al — A)™ and x; € im(A1l — A)™ defines a bounded linear
operator Py : X — X which is an A-invariant projection onto F),, i.e.

P)? = P)\, P)\A = AP)\, 1m(P,\) = E)\. (525)

The operator P, is uniquely determined by (5.25)) and is called the spectral
projecton associated to A. It can also be written in the form

1
Py=— [ (21— A) "dz. 5.26
= gy [ A7 (5.26)
Here r > 0 is chosen such that B,.(\) No(A) = {A} (see part (ii) of The-
orem [5.21)) and the loop v : [0,1] — p(A) is defined by ~(t) := A + re?™t.
Equation ([5.26)) is a special case of part (vi) of Theorem below.
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5.2.4 Holomorphic Functional Calculus

Let X be a nonzero complex Banach space and let A € L¢(X) be a bounded
complex linear operator. Then the spectrum of A is a nonempty compact sub-
set of the complex plane by Lemma and Theorem[5.20L The Holomorphic
Functional Calculus assigns a bounded linear operator f(A) € £(X) to every
holomorphic function f : U — C on an open set U C C containing o(A). The
operator f(A) is defined as the Dunford Integral of the resolvent operators
along a cycle in U \ o(A) encircling the spectrum.

Definition 5.24 (Dunford Integral). Let X be a nonzero complex Banach
space and let A € L(X). Let U C C be an open set such that c(A) C U and
let v = (71,...,7m) be a collection of smooth loops v; : R/Z — U \ o(A) with
winding numbers

dz 1, for Xeo(A),
" 2mi Z/ { 0, forAeC\U. (5.27)
(See Figure[5.1) The collection ~ is called a cycle in U\ o(A) and the

image of the cycle v is the set im(v) := |J;_; %:(R/Z). For the existence
of v see [1, pp 139] or [49, pp 90]. The operator f(A) € LX) is defined by

: /f )zl — A)tdz
27?1

27T1Z/f (21— A)~ ' dz.

(5.28)

Figure 5.1: A cycle encircling the spectrum.
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Theorem 5.25 (Holomorphic Functional Calculus). Let X be a non-
zero complex Banach space and let A € L(X). Then the following holds.
(i) The operator f(A) is independent of the choice of the cycle v in U\ o(A)
satisfying that is used to define it.

(ii) Let U C C be an open set such that o(A) C U and let f,g : U — C be
holomorphic. Then

(f+9)(A) = F(A) +9(A),  (f9)(A) = [(A)g(A). (5.29)

(iii) If p(z) = > p_, ax2® is a polynomial then p(A) = >",_, arA*.
(iv) Let U C C be an open set such that o(A) C U and let f : U — C be
holomorphic. Then

a(f(A)) = [(o(A)). (5.30)
This assertion is the Spectral Mapping Theorem.
(v) Let U,V C C be open sets such that o(A) C U and let f:U — V and
g : V — C be holomorphic functions. Then

9(f(A)) = (go [)(A). (5.31)

(vi) Let £o,31 C 0(A) be disjoint compact sets such that ¥y U L, = o(A)
and let Uy, U; C C be disjoint open sets such that ¥; C U; for i =0,1. De-
fine the function f : U := Uy UU; — C by fly, := 0 and fly, := 1, and
define P := f(A) € L9(X). Then P is a projection and commutes with A,
i.e. P2 =P and PA= AP. Thus Xy := ker(P) and X, := im(P) are closed
A-invariant subspaces of X such that X = Xo ® Xy. The spectrum of the
operator A; := Alx, : X; — X; is given by o(A;) =%; fori=0,1.

Proof. We prove part (i). Let 5 and 7 be two collections of loops in U \ o(A)
that both satisfy (5.27). Then their difference y — 8, understood as a cycle in
U\ o(A), is homologous to zero, in that its winding number about every
point in the complement of U \ 0(A) is zero. Hence the Cauchy Integral
Formula [I, Thm 14,p 141] asserts that the integral of every holomorphic
function on U \ o(A) over the cycle v — 8 must vanish. This implies

/f (21— A)” dz—/f (21— A)'a) dz

for every holomorphic function f : U — C and all x € X and all 2* € X*.
Hence it follows from the Hahn-Banach Theorem that the integrals of
the operator valued function U\ o(A4) — LX) : 2 — f(2)(z1— A)~! over 3
and 7y agree for every holomorphic function f : U — C. This proves part (i).
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%)) | Lgh

Figure 5.2: Two cycles encircling the spectrum.

We prove part (ii). The assertion about the sum follows directly from
the definition. To prove the assertion about the product, choose two cycles

B and v in U \ 0(A) that both satisfy (5.27)), have disjoint images so that

im(8) Nim(y) = 0,
and such that the image of § is encircled by 7, i.e.

W(fy, 'LU) — 1 fOI' all w € 1m<ﬁ>7

w(B3,2) =0 for all z € im(7). (5.32)

(See Figure[5.2]) Then, by the resolvent identity in Lemma

F) = 5 [ s dw% / 9(2)R.(4)d=
) B RZ(A)

B 27r127r1//f zZ—w
— /f (27”/ 9(2) fj) R, (A) dw

27?1 (2%1/10 ) A)dz
- 27r1/f (4) dw

Here the penultimate step uses ((5.32]). This proves part (ii).

dz dw
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We prove part (iii). In view of part (ii) it suffices to prove the equations
1(A) = 1y, id(A) = A, (5.33)

associated to the holomorphic functions f(z) = 1 and f(z) = z. In these
cases we can choose U = C and

2mit

(1) :=re
with 7 > ||A||. Then

f(A):%/f )(z1 — A) ' dz

— / f 7"62mt 71 727r1tA) dt

For f = 1 it follows from Corollary that the integrand converges uni-

formly to 1 and so 1(A) = 1. In the case f(z) = z we obtain
1
id(A) = — [ z(z1-A)""dz
271 ).,
1
= — | A(z1-A)tdz

27 .
= Al(A)
= A.

Here the difference of the second and third term vanishes because it is the
integral of the constant operator valued function z — 1 over a cycle in U
that is homomologus to zero by (5.27). This proves part (iii).

We prove part (iv). Fix a spectral value A € o(A). Then there exists a
holomorphic function g : U — C such that

f(z2) = fA) =(2—Ng(z) for all z € U.
By part (ii) this implies
FOVT = f(A) = (ML= A)g(A) = g(A) (AL — A).

Hence f(A)1 — f(A) cannot be bijective and so f(A) € o(f(A)). This shows
that f(o(A)) C o(f(A)).
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To prove the converse inclusion, fix an element A € C\ f(o(A)). Then
V:=U\ f~}(\) is an open neighborhood of o(A). Define gy : V — C by
1
e [E)
Then g, is holomorphic, and it follows from parts (ii) and (iii) that
gAML = f(A)) = (ML= f(A)gr(4) = 1(A) = 1.
Hence A1 — f(A) is invertible and so A € C\ o(f(A4)). This shows that
o(f(A)) C f(o(A)) and proves part (iv).

To prove part (v), note first that the operator g(f(A)) is well defined,
because o(f(A)) = f(c(A)) C V by part (iv). Choose a cycle 5 in U \ o(A)
such that w(8,A) =1 for A € 0(A) and w(5,\) =0 for A € C\ U. Then

K 1= im(8) U {w € U\ im(8) | w(8,w) # 0}

is a compact neighborhood of o(A). Then, for z € C\ f(K), the function
w — (2 — f(w))™! is holomorphic in an open neighorhood of K and so it
follows from parts (ii), (iii), and (iv) that

A=) = o [

Choose a cycle v in V' \ (f(K)) such that

st ={ o et € L) (5.5

forze V=U\f1N).

dw for z € C\ f(K). (5.34)

Then
o(FA) = = [ g)1— f(a)

27 .

= w0 (g | g )

1 1
= — (— / ﬂdz) (wl — A)_1 dw
2mi Jg \27i ), 2z — f(w)
1
S 1—A)td
s [t = )
= (9o )(A).
Here the second step uses (5.34) and the fourth step uses (5.35) and the
Cauchy Integral Formula. This proves part (v).
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We prove part (vi). Since f? = f it follows from (ii) that P? = P.
Moreover P commutes with A by definition. Define g : U — C by g(z) = =
for z € U and let ¢ € C. Then, by (ii), (iii), and (iv),

cly, ® Ay = (c(1 = f)+9f)(A),  olcly, ®Ar) ={c} U

If A € C\ Xy, it follows that the operator (A —c)lx, ® (Alx, — A;) is bijective
for ¢ # X and so A\lx, — A; is bijective. Conversely, suppose A € ;. Then
(A — o)1y, ® (Mx, — A;y) is not bijective and, for ¢ # A, this implies that
A, — A; is not bijective. Thus o(A;) = ;. The equation o(A4y) = X
follows by interchanging g and ;. This proves Theorem [5.25 O

Exercise 5.26 (Exponential Map). Let X be a nonzero complex Banach
space and let A € L£°(X) be a bounded complex linear operator. Choose a
real number r > || A|| and define 7, () := re?™i for 0 < 6 < 1. Prove that
Ak 1
et = = | ezl - A)dz
k! 2mi
k=0 T

Prove that o(e?) = {e* |\ € 0(A4)} and, for all s,¢ € R,

iem = Ae!t = A,
dt

Exercise 5.27 (Logarithm). Let X be a nonzero complex Banach space
and let T" € £°(X) be a bounded complex linear operator such that Re(A) > 0
for all A € o(T"). Choose a smooth curve v : R/Z — C\ o(T) such that
Re(y(t)) > 0 for all ¢ and w(y,\) = 1 for all A € o(T). Denote by
log : {z € C|Re(z) > 0} — C the branch of the logarithm with log(1) = 0.
Define

s+t)A 6sAetA

el = , e =1,

1
log(T) := 5 /Wlog(z)(z]l ~T) 'dz.
Prove that e°¢(T) = T and log(e?) = A for all A € £¢(X). Let n € N and
deduce that the operator S := el°e(T)/" gatisfies S™ = T.

Exercise 5.28 (Inverse). Let X be a nonzero complex Banach space and
let A € LX) be a bijective bounded complex linear operator. Choose
real numbers e and r such that 0 < ¢ < [|A7Y|7* < |JA|| < r. Show that
e < |\ <rforall X € 0(A). With ~,,7. as in Exercise [5.26, show that

-1 -1
At b / CGl=A)7 L / Cl=A" .
27 - z 27 - z

Exercise 5.29 (Spectral Projection). Verify the formula (5.26)).



5.3. OPERATORS ON HILBERT SPACES 233

5.3 Operators on Hilbert Spaces

The remainder of this chapter discusses the spectral theory of operators on
Hilbert spaces. The present section begins with an introduction to complex
Hilbert spaces (Subsection and the adjoint operator (Subsection.
It then moves on to examine the properties of the spectra of normal operators
(Subsection 5.3.3)) and self-adjoint operators (Subsection[5.3.4). The next two
sections establish the continuous functional calculus for self-adjoint operators
(Section and normal operators (Section [5.F]). Section introduces the
spectral measure of a normal operator and Section [5.7]examines cyclic vectors
of self-adjoint operators.

5.3.1 Complex Hilbert Spaces

Definition 5.30 (Hermitian Inner Product). Let H be a complex vector
space. A Hermitian inner product on H is a real bilinear map

HxH—C: (z,y) — (x,y) (5.36)

that satisfies the following three axioms.

(a) The map (5.36) is complex anti-linear in the first variable and is complex
linear in the second variable, i.e.

(Az,y) = Ma,y), (2, 2y) = Mz, y).
for all z,y € H and all X € C.
(b) (5,9) = {g,2) for all v,y € H.
(c) The map (p.36) is positive definite, i.e. (x,x) >0 for all x € H \ {0}.

It is sometimes convenient to denote the Hermitian inner product by (-, )¢,
to distinguish it from the real inner product in Definition [1.59.

Assume H is a complex vector space equipped with a Hermitian inner
product (5.36). Then the real part of the Hermitian inner product is a real
inner product as in Definition [1.41] and so the formula

H—-R:zw|z] =+ (z,2). (5.37)

defines a norm on H. The next lemma shows that Hermitian inner products
satisfy a stronger form of the Cauchy—-Schwarz inequality. It is proved by the
same argument as in Lemma [1.40]
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Lemma 5.31 (Complex Cauchy—Schwarz Inequality). Let H be a com-
plex vector space equipped with Hermaitian inner product and the asso-
ciated norm (5.37). Then the Hermitian inner product and norm satisfy the
complex Cauchy—Schwarz inequality

(2, y)] <[] |y (5.38)
forall z,y € H.

Proof. The Cauchy-Schwarz inequality is obvious when z = 0 or y = 0.
Hence assume x # 0 and y # 0 and define

&=zl e, ni=lyl Ty
Then [[{]| = |7l =1 and

and hence

0 < |l€ = Enll”

= (&&= En)
= 1-[&n).

Thus [(¢,n)| <1 and so |{(z,y)| < ||z|| ||ly||. This proves Lemma [5.31] O

Definition 5.32 (Complex Hilbert Space). A complex Hilbert space
is a complex vector space H equipped with a Hermitian inner product (5.306))
such that the norm (5.37)) is complete.

Remark 5.33. (i) Let (H, (-, )c) be a complex Hilbert space. Then H is
also a real Hilbert space with the inner product

(z,y)r = Re(z, y)c. (5.39)

Hence all results about real Hilbert spaces, such as Theorem and The-
orem |1.44] continue to hold for complex Hilbert spaces.

(ii) If H is a complex Hilbert space then the Hermitian inner product and

the real inner product (5.39) are related by the formula

(r,y)c = (v, y)r +i(ir,y)r  forall z,y € H. (5.40)
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(iii) Conversely, suppose that (H,(-,-)r) is a real Hilbert space and that
J: H — H is a linear map such that

J? = —1, |Jz|| = ||zl for all z € H.

Then H carries a unique structure of a complex Hilbert space such that mul-
tiplication by i is the operator J, and (-, -)g is the real part of the Hermitian
inner product. The scalar multiplication is defined by (s + it)z := sz + tJx
for s+it € C and x € H, and the Hermitian inner product is given by .

(iv) Let (H,(-,-)) be a real Hilbert space. Then its complexification
H¢:=H®iH
is a complex Hilbert space with the Hermitian inner product

(x4 iy, & +1in)° = (2, &) + (y,n) +i((z,n) — (,€)) (5.41)

for z,y,&,me H.

Exercise 5.34. (i) Verify parts (iii) and (iv) of Remark

(ii) Prove that ¢*(N,C) is a complex Hilbert space with the Hermitian inner
product

(z,y) = Zfzyz (5.42)

for z = (2;)ien, ¥ = (s)ien € 2(N, C). Prove that ¢*(N, C) is the complexifi-
cation of /?(N,R).

(iii) Let (M, A, ) be a measure space. Prove that L?(u,C) is a complex
Hilbert space with the Hermitian inner product

(f.9) = /M7g dyu (5.43)

for f,g € £?(uu, C). Prove that L?(u,C) is the complexification of L*(u, R).

The next theorem shows that a complex Hilbert space is isomorphic to
its complex dual space. An important caveat is that the isomorphism is
necessarily complex anti-linear. The result is a direct consequence of the
Riesz Representation Theorem [1.43
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Theorem 5.35 (Riesz). Let H be a complex Hilbert space and let
H* = L°(H,C)
be its complex dual space. Then the map v : H — H*, defined by
(@), y) e 1 = (2, y) (5.44)
for x,y € H, is a complex anti-linear isometric isomorphism.

Proof. 1t follows directly from the definitions that the map « : H — H* is
complex anti-linear, i.e.

t(Ar) = Mi(z) for all x € H and all A € C.

That it is an isometry follows from the complex Cauchy—Schwarz inequality
in Lemma [5.31] namely

ol = 22 iy = sup HE2 g
||ZU|| yeH\{0} ||y\|
for all x € H \ {0} and so
|le(2)|| = ||=|| for all z € H.

In particular, ¢ is injective. To prove that it is surjective, fix a bounded
complex linear functional A : H — C. Then ReA : H — R is a bounded
real linear functional. Hence Theorem asserts that there exists a unique
element x € H such that ReA(y) = Re(x,y) for all y € H. This implies

Aly) = ReA(y) +ilmA(y)
= ReA(y) — iReA(iy)
= Re(z,y) — iRe(z, iy)
= Re(z,y) +ilm(z,y)
= (©,9)

for all y € H. Here the last equation follows from ([5.40]). Thus ¢ is surjective
and this proves Theorem [5.35| O
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5.3.2 The Adjoint Operator

Let A : X — Y be a bounded complex linear operator between complex
Hilbert spaces. Then the dual operator of A is the bounded linear operator
Afonaen - Y — X* between the complex dual spaces, introduced in part (iii)

of Definition [5.1] In the Hilbert space setting one can use the isomorphisms
of Theorem to replace the dual operator Af, .., by an operator

Banac!
* -1 * .
AHilbert =lx © ABanach Oly: Y - X

bewteen the original Hilbert spaces which is called the adjoint operator of A.
Thus the dual operator and the adjoint operator are related by the commu-
tative diagram

Y A)‘Iililbert X

o

v Banach X+
From now on we drop the subscripts “Banach” and “Hilbert” and work ex-
clusively with the adjoint operator. Thus, throughout the remainder of this
chapter, the notation A* acquires a new meaning and will denote the adjoint
operator of a bounded complex linear operator between complex Hilbert
spaces. The dual operator of the Banach space setting will no longer be
used.

Definition 5.36 (Adjoint Operator). Let X and Y be a complex Hilbert
spaces and let A € LY(X,Y) be a bounded complez linear operator. The
adjoint operator of A is the unique operator A* :' Y — X that satisfies the
equation

(A'y,x) x = (y, Az)y
for allx € X and ally € Y. It is well-defined by Theorem [5.35

If H is a complex Hilbert space then the complex orthogonal comple-
ment of a subset S C H is denoted by

Sti={xc H|{r,y)=0forall yecS}.

Thus x € S+ if and only if both the real and the imaginary part of the
Hermitian inner product (x,y) vanish for all y € S. Thus the complex
orthogonal complement of any subset S C H is a closed complex linear sub-
space. It is isomorphic to the complex annihilator of S under the isomorphism
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t: H — H* in Theorem [5.35] and, in general, it differs from the orthogonal
complement of S with respect to the real inner product. The real and com-
plex orthogonal complements agree whenever the subset S is invariant under
multplication by i. The next two lemmas summarize the properties of the
orthogonal complement and the adjoint operator.

Lemma 5.37. Let H be a complex Hilbert space and let EC H be a complex
linear subspace. Then E = E*++ and so E is closed if and only if E = E++.

Proof. By definition the orthogonal complement of the orthogonal comple-
ment of £ agrees with the pre-annihilator of the annihilator of E. Hence
the assertion follows from the complex analogue of Corollary [2.55 (See also

Corollary [3.18]) O

Lemma 5.38. Let X,Y,Z be complex Hilbert spaces and let A € L(X,Y)
and B € LY, Z). Then the following holds.

(i) A* is a bounded complex linear operator and ||A*|| = || A]|.
(ii) (AB)* = B*A* and (A\1)* = X1 for all A € C.
(iif) A™ = A.

(iv) ker(A*) = im(A)* and im(A*) = ker(A)*.

(v) If A has a closed image then A* has a closed image.

(vi) If A is bijective then so is A* and (A*)™! = (A71)*.

(vii) If A is an isometry then so is A*.

(viii) If A is Fredholm then so is A* and index(A*) = —index(A).
(ix) Assume X =Y = H. Then o(A*) = {X|X € d(A)} and

Po(A%) € {X| X € Po(A) URa(A)},
Ro(A*) € {X|\ € Pa(A)},
Co (A7) = {X[A € Ca(A)}.

Proof. Part (i) follows from the same argument as Lemma {4.2{ and parts (ii)
and (iii) follow directly from the definitions (see also Lemma [4.3). Part (iv)
follows from Theorem and Lemma [5.37] Part (v) follows from Theo-
rem [1.16] parts (vi) and (vii) follow from Corollary [4.18, and part (viii)
follows from Theorem [1.33] Part (ix) follows from parts (iv) and (vi) and
the fact that (Al — A)* = A\ — A* by part (ii) (see also Lemma . This
proves Lemma [5.38 O
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5.3.3 The Spectrum of a Normal Operator

Definition 5.39 (Normal Operator). Let H be a complex Hilbert space.
A bounded complex linear operator A : H — H is called

e normal if A*A = AA*,
e self-adjoint if A* = A,
e unitary if A*A = AA* = 1.

Thus every self-adjoint operator and every unitary operator is normal.

Exercise 5.40. Let H be a complex Hilbert space and A = A* : H — H be
a self-adjoint operator. Prove that

A=0 = (x,Az) =0 forall z € H.

Example 5.41. Consider the complex Hilbert space H := ¢*(N, C), choose
a bounded sequence (\;);en of complex numbers. Then the operator

Ay (N,C) — *(N,C),
defined by
Ayx = (N ien for x = (2;)ien € *(N, C),
is normal and its adjoint operator is given by
Asr = (Nzi)ien for z = (z;)ien € (N, C).

Thus A, is self-adjoint if and only A; € R for all 7, and A, is unitary if and
only if | ;| =1 for all 4.
Example 5.42. Define the bounded complex linear operator
A:*(N,C) — *(N,C)
by
Az := (0,21, 29, 23, .. .) for x = (z;)ien € £3(N, C).

Then
A'x = (w9, 13,14, . ..) for x = (2;)ien € (*(N,C)

and hence A*A = 1 # AA*. Thus A is not normal. It is an isometric
embedding but is not unitary.
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Lemma 5.43 (Characterization of Normal Operators). Let H be a
complex Hilbert space and let A : H — H be a bounded complex linear oper-
ator. Then the following holds.

(i) A is unitary if and only if ||A*x|| = ||Az|| = ||z|| for all x € H.
(i) A is normal if and only if ||A*z| = ||Ax|| for all x € H.

Proof. We prove part (i). If A is unitary then
14z ||* = (Az, Ax) = (z, A" Az) = {2, 2) = ||«]|”

and, by an analogous argument, [[A*z| = ||z|| for all x € X. Conversely,
suppose that ||Az| = ||A*z| = ||z|| for all x € X. Then

1
Re(dz, Ay) = (| Az + Ay)® — || Az — Ay

1
= Z(le+yll2—llx—y||2)
= Re(z,y)

for all z,y € H. Hence Im(Ax, Ay) = Re(Aiz, Ay) = Re(iz,y) = Im(z,y)
for all z,y € H, because A is complex linear. Thus A preserves the Hermitian
inner product. This implies (z, A*Ay) = (Az, Ay) = (x,y) for all z,y € H
and hence A*A = 1. The same argument with A and A* interchanged shows
that AA* = 1. Thus A is unitary and this proves part (i).

We prove part (ii). If A is normal then

|Asl? = (Az, Az) = (z, A" Az) = (z, AA*x) = | A"
for all x € X. Conversely, suppose that ||A*z| = ||Az|| for all z € X. Then

1
Re(Ar, Ay) = (| Az -+ Ayl — | Az — Ay

= 1A%+ Ay — A% - Ay)?)
= Re(A"z, A™y)
and hence
Im(Az, Ay) = Re(Aizx, Ay) = Re(A%iz, A*y) = Im(A*z, A™y)
for all z,y € H. This implies
(z, A"Ay) = (Az, Ay) = (A"z, Ay) = (z, AA"y)
for all z,y € H and so A*A = AA*. This proves Lemma [5.43] m
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Theorem 5.44 (Spectrum of a Normal Operator). Let H be a nonzero
complex Hilbert space and let A € L°(H) be a normal operator. Then the
following holds

@) ||1A™|| = |JA||™ for all n € N.

(i) [JA[l = supxep(a)|Al-

(iii) Ro(A*) = Ro(A) = 0 and Po(A*) = {X| X € Po(A)}.

(iv) If A is unitary then o(A) C S*.

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I C N, either equal to N or

finite, an orthonormal sequence (e;)icr in H, and a map I — C\{0} : i +— )\
such that lim;_,ooc \; = 0 when I = N and

Az = Z)\i(ei,@ei for all z € H.

el
Proof. 1f x € H is a vector of norm one then, by Lemma [5.43],
|Az]|* = (Az, Az) = (z, A" Az) < ||| || A" Az = || | A%] = || A%2].

Hence || = supyyy_; [ A%] — [ 4%] < [ AJP and so 4] = A2, Hence it
follows by induction that ||A*"| = ||A]|*" for all m € N. Given any integer
n > 1, choose m € N such that n < 2, and deduce that

LA LA™ = A% ) < AR ] AP

Hence ||A]|" < ||A™]] < ||A]]" and so ||A™|| = ||A||". This proves part (i).
Part (ii) follows from part (i) and Theorem [5.20}
To prove part (iii), fix an element A € C. Then (Al — A)* = A1 — A*
by part (ii) of Lemma . Hence A1 — A is normal and so it follows from

part (iv) of Lemma and from Lemma that
im(Al — A) = (ker(A\1 — A*))* = (ker(\ — A))*.

Thus the operator Al — A is injective if and only if it has a dense image.
Hence Ro(A) = 0 by definition and so Po(A*) = Po(A) by part (ix) of
Lemma [5.38] This proves part (iii).

To prove part (iv), assume A is unitary and let A € o(A). Then |\ <1
by Theorem Moreover, A # 0 because A is invertible, and the operator
A7 — A7t = (MA)7H(A — A1) is not invertible. Hence A™! € 0(A™1) and so
IAI7* < ||A7t|| = 1. This proves part (iv).
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We prove part (v) in three steps. The first step shows that the eigenspaces
are pairwise orthogonal, the second step shows that each generalized eigen-
vector is an eigenvector, and the third step shows that the orthogonal com-
plement of the direct sum of all the eigenspaces associated to the nonzero
eigenvalues is the kernel of A.

Step 1. If \,u € o(A) such that X # p and x,y € H such that Ax = Az
and Ay = py then (x,y) = 0.

By Lemma [5.43] ker(Al — A) = ker(Al — A)* = ker(A — A*). Hence
(A = m){z,y) = Qa,y) — (@, my) = (A"z,y) — (z, Ay) =0

and this proves Step 1.

Step 2. Let A € 0(A) and n € N. Then ker(Al — A)" = ker(Al — A).

Let € ker(AMl — A)2. Then (Al — A*)(Az — Az) = 0 by Lemma m, hence
Az — Az||* = A\ — Az, z — Az) = (z, M — A)( Az — Az)) =0,

and hence x € ker(A1l — A). Thus ker(Al — A)? = ker(Al — A) and this

implies ker(Al — A)" = ker(A1 — A) for all n € N.

Step 3. Define Ey := ker(Al — A) for A € o(A) \ {0}. Then

x L Ey foraleo(A)\{0} = Az =0

forallz € H.

If © € ker(A) then = L E, for all A € g(A) \ {0} by Step 1. To prove the
converse, define Hy := {x € H |z L E, for all A € 0(A) \ {0}}. Then H, is
a closed A-invariant subspace of H and

AO = A|H0 :Hy — Hy

is a compact normal operator. Suppose, by contradiction, that Ay # 0. Then
it follows from Theorem and part (ii) that Ay has a nonzero eigenvalue.
This contradicts the definition of Hy and proves Step 3.

By Theorem the set o(A) \ {0} is either finite or is a sequence con-
verging to zero and dim F) < oo for all A € o(A4) \ {0}. Hence part (v)
follows from Step 1, Step 2, and Step 3 by choosing orthonormal bases of the
eigenspaces E) for all A € o(A) \ {0}. This proves Theorem [5.44] O
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5.3.4 The Spectrum of a Self-Adjoint Operator

Let X and Y be a real Hilbert space and let T': X — Y be a bounded linear
operator. Then

2 2 * * * 2
17" = sup, [Tz|)y = Sup (2, T"Tx) < |T*T| < T[T} = Tl

and hence
|IT||” = sup (z,T"Tz)y = |T*T]. (5.45)

lzll=1
This formula is the special case A = T*T of Theorem below. It can
sometimes be used to compute the norm of an operator (Exercise [5.99).

Theorem 5.45 (Spectrum of a Self-Adjoint Operator). Let H be a
nonzero complex Hilbert space and let A € L°(H) be a self-adjoint operator.
Then the following holds.

(i) o(A) C R.

(ii) supo(A) = supy, = (7, Az).

(iii) inf o(A) = infjz)=1 (z, Ax).

(iv) [[A]l = supjg)=y [{z, Az)].

(v) Assume A is compact. Then H admits an orthonormal basis of eigen-
vectors of A. More precisely, there exists a set I C N, either equal to N or
finite, an orthonormal sequence (e;)icr in H, and a map I — R\{0} : i — N
such that im;_,oo N\; = 0 when I = N and

Ar = Z Ai(es, z)e; for all xz € H.
iel
Proof. We prove part (i). Let A € C\ R. Then, for all z € H,

Az — Az||> = (\x— Az, Az — Ax)
= PPll2ll® = MAz, 2) = Xz, Az) + || Az|”
= [ImAP? [l2]” + ReA 2] = 2(ReA) {Az, z) + || Az||”
= [mA]? [l* + | (Red)z — Az|
[TmA]” [l]*.
This shows that Al — A is injective and has a closed image (Tkleorem .
Replace A by A to deduce that the adjoint operator A1 — A* = A1 — A is also

injective and so Al — A has a dense image by part (iv) of Lemma|5.38, Hence
Al — A is bijective and this proves (i).

v
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We prove part (ii). It suffices to assume
(x,Az) >0 for all x € H. (5.46)

(Otherwise replace A by A + all for a suitable constant @ > 0.) Under this
assumption we prove that

o(A) C[0,00),  |lA]l = sup (z, Az). (5.47)
[lz]|l=1
To see this, let € > 0. Then
ella|® = (z,e2) < (v, 62 + Az) < ||z|| [lex + Az]|

and so ¢ ||z|| < |lex + Az for all z € X. Hence €l + A is injective and has
a closed image by Theorem {4.16, Thus im(el + A) = (ker(el + A))t = H
by part (iv) of Lemma [5.38 so el + A is bijective. Hence —¢ ¢ o(A). Since
the spectrum of A is real by part (i), this proves the first assertion in ((5.47)).
Next define a := sup,—; (v, Ar). If ¥ € H satisfies [|z[| = 1 then
(@, Az) < |l || Azl < [JAIl | = 1Al
Thus a < ||A||. To prove the converse inequality observe that, for all z,y € H,
we have Re(z, Ay) = (z +y, A(z + y)) — 3(z — y, A(z — y)) and hence
1 1

—1{e =y, Ale —y)) < Re(z, Ay) < (e +y, Alz +y)).

If ||z|| = ||ly|l = 1, it follows that

a 1
—a< =7 lle—ylf < —o—y. Al —y))
1
< Re(z, Ay) < (e +y, Al +9)) < 7l +yl* < a

This implies |Re(z, Ay)| < a for all x,y € H such that ||z| = ||y|| = 1 and
hence [|All = sup =1 IRe{z, Ay)| < a. This proves (5.47). It follows

from ([5.47) that

supo(A) = sup [A] = [|A]| = sup (z, Az)
A€o (A) [[=]|=1
for every self-adjoint operator A = A* € L°(H) that satisfies and this
proves (ii).
Part (iii) follows from (ii) by replacing A with —A, part (iv) follows
from (ii), (iii), and Theorem [5.44] and part (v) follows from (i) and Theo-
rem [5.44] This proves Theorem [5.45| O
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Definition 5.46. Let X,Y be complex Hilbert spaces and T' € L°(X,Y). A
real number X\ > 0 is called a singular value of T if \*> € o(T*T).

Thus the singular values of T" are the square roots of the (nonnegative)
spectral values of the self-adjoint operator 7T : X — X. Equation (/5.45)
shows that the supremum of the singular values is the norm of T'.

Corollary 5.47. Let X,Y be complex Hilbert spaces and K € L°(X,Y).
Suppose K # 0. Then the following are equivalent.

(i) K is compact.

(ii) There exists a set I C N, either equal to N or equal to {1, ... ,n} for some

n € N, orthonormal sequences (x;)ic; in X and (y;)icr in'Y, and a sequence
(Ni)ier of positive real numbers, such that lim; oo A\; =0 when I =N and

Kz = Z i, )y, forallx € X. (5.48)
i€l

Proof. That (ii) implies (i) follows from Theorem[4.28 To prove the converse,
consider the operator A := K*K : X — X. This operator is self-adjoint by
Lemma and is compact by Theorem Hence o(K*K) \ {0} is a
discrete subset of the positive real axis (0,00) by Theorems and
Write o (K*K)\{0} = {\?|i € I}, where I = N when the spectrum is infinite
and [ = {1,...,n} otherwise, the \; are chosen positive, and

#{i € I|\; = A} = dimker(\®1 — K*K)  forall A > 0.
Choose an orthonormal sequence (z;);cr in X such that K*Kz; = )\?xi for all

i € I and define y; := A\, 'Kx;. Then <yz,yj>y = (W) Ny, K*Kxj) = 6y

for all 7, j € I. Moreover, K*Kxz =Y, ; A?(x;, x)z; and hence

|Kz||” = (z, K*Kx) Z/\2 T X
i€l
for all z € X. Since K*y; = )\wi for all ¢+ € I, this implies

HK:U—Z)\ Ti, X —HK:I:H —i—ZAQ Ti, X

i€l el

—ZZARG x;, x)(Kx yl))

el

=0.

Since K is compact, the sequence (\;);en converges to zero whenever I = N.
This proves Corollary [5.47] ]
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5.4 The Spectral Mapping Theorem

In Section we have introduced the holomorphic functional calculus for
general bounded linear operators on complex Banach spaces. In the spe-
cial case of normal operators on Hilbert spaces this functional calculus ex-
tends to arbitrary complex valued continuous functions on the spectrum.
The complex valued continuous functions on any compact Hausdorff space >
form a C* algebra C(X) as do the bounded complex linear operators on a
complex Hilbert space. The continuous functional calculus assigns to every
normal operator A € L°(H) on a complex Hilbert space H a unique C* al-
gebra homomorphism ¢4 : C(c(A)) — L(H) that preserves the norm and
satisfies ®4(1) = 1 and ®4(id) = A. We prove this below for self-adjoint op-
erators (Theorem [5.54). The Spectral Mapping Theorem asserts that the
spectrum of the image of a function f € C(0(A)) under this homomorphism
is the image of the spectrum under f.

5.4.1 C* Algebras

Recall the definition of a complex Banach algebra in Definition [1.46]

Definition 5.48. (i) A C* algebra is a complex unital Banach algebra A,
equipped with a complex anti-linear involution A — A : a — a* that reverses
the product and preserves the norm. Thus A — A : a — a* is a real linear
map that satisfies the conditions

(ab)* = b"a”, 1" =1, a*” = a, (Aa)" = Aa*, la*]| = |||l

for all a,b € A and all X € C, where a™ := (a*)*.
(ii) A C* algebra A is called commutative if ab = ba for all a,b € A.

(iii) Let A and B be C* algebras. A C* algebra homomorphism is a
bounded complex linear operator ® : A — B such that

O(1,4) = 1p, ®(aa") = ®(a)®(d’), ®(a*) = ®(a)*
for all a,a’ € A.

Example 5.49. Let M be a nonempty compact Hausdorff space. Then the
space C(M) :={f: M — C| f is continuous} of complex valued continuous
functions on M with the supremum norm is a commutative C* algebra. The
complex anti-linear involution C'(M) — C(M) : f + f is given by complex
conjugation.



5.4. THE SPECTRAL MAPPING THEOREM 247

Example 5.50. Let H be a nonzero complex Hilbert space. Then the
space L°(H) of bounded complex linear operators A : H — H with the op-
erator norm is a C* algebra. The complex anti-linear involution is the
map L°(H) — L°(H) : A~ A* which assigns to each operator A € L(H)
its adjoint operator A* (see Definition [5.36). The C* algebra £°(H) is com-
mutative if and only if H has complex dimension one.

The goal of the present section is to show that, for every self-adjoint oper-
ator A € L°(H) on a nonzero complex Hilbert space H, there exists a unique
C* algebra homomorphism ®, : C(0(A)) — L°(H) such that ®,(id) = A.
This homomorphism is an isometric embedding and its image is the smallest
C* algebra A C L°(H) that contains A. The first step is the next lemma.

Lemma 5.51. Let H be a nonzero complex Hilbert space and let A € L°(H)
be a bounded complex linear operator. For a polynomial p(z) = > }_, arz"
with complex coefficients ag, ay, ..., a, € C define

n

p(A) = a,A* € L(H).

k=0
Then the following holds for any two polynomials p,q : C — C.
(1) (p+a)(A) = p(A) + q(A) and (pg)(A) = p(A)q(A).
(ii) o(p(A)) = p(o(A)).
(iii) If A is normal then so is p(A) and
[p(A)]] = sup [p(A)]. (5.49)

A€o (A)

Proof. Assertion (i) follows directly from the definitions and assertion (ii)
follows from parts (iii) and (iv) of Theorem (see also Exercise [5.93)).
To prove (iii), consider the polynomial ¢(z) := >_;_,a@,2" and recall that
(AF)* = (A*)* and (AA)* = AA* for all k € N and all A € C by Lemma

Hence
p(A)* = (Z akAk) = @A) = q(A).
k=0 k=0

Now assume A is normal. Then p(A)q(A*) = q(A*)p(A) and therefore
p(A)'p(A) = q(A")p(A) = p(A)q(A") = p(A)p(A)*. Thus p(A) is normal and
so (5.49) follows from (ii) and Theorem [5.44] This proves Lemma[5.51] O
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5.4.2 The Stone—Weierstral3l Theorem

The second ingredient in the construction of the C* algebra homomorphism
from C(0(A)) to L°(H) is the Stone—Weierstral Theorem.

Theorem 5.52 (Stone—Weierstraf3).

Let M be a nonempty compact Hausdorff space and let A C C(M) be a
subalgebra of the algebra of complex valued continuous functions on M that
satisfies the following axioms.

(SW1) Each constant function is en element of A.

(SW2) A separates points, i.c. for all x,y € M such that x # y there
exists a function f € A such that f(x) # f(y).

(SW3) If f € A then f € A.

Then A is dense in C'(M).

Proof. The proof is taken from [I0]. The real subalgebra
.AR = .Aﬂ C(M, R)

contains the constant functions by (SW1) and separates points by (SW2)
and (SW3). We prove in six steps that Ag is dense in C(M,R). Then A is
dense in C(M) = C(M,C) by (SW1). Denote the closure of Ag with respect
to the supremum norm by Ag C C(M,R).

Step 1. Ay is a subalgebra of C(M,R) that contains the constant functions
and separates points.

This follows directly from the assumptions.

Step 2. There is a sequence of polynomials P, : [—1,1] — [0, 1] such that

lim P,(s) = |s] for all s € [—1,1] (5.50)

n—oo

and the convergence is uniform on the interval [—1,1].

The existence of such a sequence follows from the Weierstraf§ Approximation
Theorem. More explicitly, one can use the ancient Babylonian method for
constructing square roots. Define a sequence of polynomials p, : [0, 1] — [0, 1]
with real coefficients by the recursion formula

_ t+ pn,l(t)Q

5 for n € N. (5.51)

po(t) :=0, pu(t) :
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Then each p, is monotonically increasing on the interval [0, 1] and

_ pn(t)2 _pnf1(t)2
2
0t) ~ pr D)) s
2

for each integer n > 2 and each ¢t € [0,1]. This implies, by induction, that
Pns1(t) > pu(t) for all m € N and all ¢ € [0, 1]. Hence the sequence (p,,())nen
converges for all ¢ € [0,1] and it follows from the recursion formula
that the limit r := lim, o pa(t) € [0, 1] satisfies the equation 2r = t + 72
and hence (1 —r)? =1 —t. Thus

lim (1 —p,(t)) =v1—t for all ¢ € [0, 1]. (5.53)

n—oo

The formula also shows that the polynomial p, 1 —p, : [0,1] — [0, 1] is
nonotonically increasing for all n € N. Hence pp41(t) —pn(t) < pnr1(1)—pn(l)
and thus p,,(t) — pn(t) < pm(1) — p,(1) for all m > n and all t € [0, 1]. Take
the limit m — oo to obtain

Prnt1 (t) — DPn (t)

0<1T—pu(t) —V1I—t<1—p,(1) for all n € N and all ¢ € [0, 1].

This shows that the convergence in (5.53)) is uniform on the interval [0, 1].
Hence

lim (1 —p,(1—5%))=vs2=|s| forallse[-1,1] (5.54)

n—oo
and the convergence is uniform on the interval [—1, 1]. This proves Step 2.
Step 3. If f € ZR then |f| S ZR.

Fix a function f € Ag \ {0} and a constant ¢ > 0. Then the function
h:=||f|~" f € Ag takes values in the interval [—1,1]. By Step 2 there exists
a polynomial P : [—1, 1] — [0, 1] with real coefficients such that

sup [|s| — P(s)| < m

js/<1

This implies

A=W E o hll = (1A sup [[A(z)] = P(R(@))] < &

Since || f|| P o h € Ag this proves Step 3.



250 CHAPTER 5. SPECTRAL THEORY

Step 4. If f,g € Ag then max{f,g} € Az and min{f,g} € Ag.
This follows from Step 3 and the fact that

fH+g+|f -y
2 )

f+g—V—gL

min{f, g} = 5

max{f, g} =
Step 5. If f € C(M,R) and x,y € M then there exists an element g € Ag
such that g(x) = f(z) and g(y) = f(y).

This follows from the fact that Ag contains the constant functions and sep-
arates points. Namely, choose any function h € Ag such that h(x) # h(y)
and define g € Ag by

g(z) = hz) = hly) f(y) for z € M.

Step 6. Ar = C'(M,R).
Fix a function f € C'(M,R). By Step 5 and the axiom of choice, there exists
a collection of functions g¢,, € Ag, one for each pair =,y € M, such that

Gzy(z) = f(z) and g, ,(y) = f(y) for all z,y € M. Fix a constant € > 0 and,
for x,y € M, define

Upy =42 € M| gsy(2) > f(2) — ¢},

Vyim {2.€ M| gan() < () 42} (5.55)

These sets are open and {z,y} C U,,NV,, for all z,y € M. Fix an element
y € M. Then {U,,}zenm is an open cover of M. Since M is compact, there
exist finitely many elements z1,...,x,, € M such that

M:O@W

=1

Define

i=1,...,

m
gy = max gy Vyi=[ Vi
=1

Then g, € Ag by Step 4 and V, is an open neighborhood of y by definition.
Moreover, for every z € X, there exists an ¢ € {1,...,m} such that z € U, ,
and so g,(2) > s, y(2) > f(2) —e by (5.55). Also, if z € V, then z € V,,,
for all i, thus g,,,(z) < f(2) + ¢ for all i by (5.55), and so g,(z) < f(2) + €.
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To sum up, we have proved that

gy(2) > f(z) —e  forall z € M,

gy(2) < f(2) +¢ for all z € V. (5.56)

Since {V, },en is an open cover of M and M is compact, there exist finitely
many elements yq,...,y, € M such that

M:O%
j=1

Define

=1,...,

Then g € Ag by Step 4 and it follows from ([5.56) that
flz) —e<yg(z) < f(z) +¢ for all z € M.

This shows that, for all € > 0 there exists a g € Ag such that [|f — g|| < e.
Thus f € Ag for all f € C(M,R). This proves Step 6 and Theorem [5.52| [

Example 5.53 (Hardy Space). The hypothesis (SW3) cannot be removed
in Theorem [5.52 For example, let M = S' C C be the unit circle and define

o .ol is continuous and
= {fS —)C‘ fo zmktf Qﬁlt)dt_OfOI‘aHk’EN }

This is the Hardy space. A continuous function f : S — C belongs to H
if and only if its Fourier expansion has the form

27r1t Z a e27r1k:t for t € R,

where

1
ap = / e 2R £ (2Tt gt for k=0,1,2,....
0

This means that f extends to a continuous function u : D — C on the closed
unit disc D C C that is holomorphic in the interior of D. The Hardy space H
contains the constant functions and separates points because it contains the
identity map on S*. However, it is not invariant under complex conjugation

and the only real valued functions in H are the constant ones. Thus H is not
dense in C(S1).
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5.4.3 Functional Calculus for Self-Adjoint Operators

Theorem 5.54 (Continuous Functional Calculus).

Let H be a nonzero complex Hilbert space and let A : H — H be a bounded
complez linear operator. Assume A is self-adjoint and denote by ¥ := o(A) C
R the spectrum of A. Then there exists a bounded complex linear operator

O(D) — L(H) : f s f(A) (5.57)

that satisfies the following axioms.

(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € C(X).
(Conjugation) f(A) = f(A)* for all f € C(X).
(Normalization) If f(\) = X\ for all A € X then f(A) = A.

(Isometry) [|f(A)[| = suprex|f (V)] = [[f]] for all f € C(X).
(Commutative) If B € L°(H) satisfies AB = BA then f(A)B = Bf(A)
for all f € C(X).

(Image) The image A :={f(A)|f € C(X)} of the linear operator is
the smallest C* subalgebra of L°(H) that contains the operator A.
(Eigenvector) If A € ¥ and © € H satisfy Ax = Az then f(A)x = f(N)x
for all f € C(X).

(Spectrum) f(A) is normal and o(f(A)) = f(a(A)) for all f € C(X).
(Composition) If f € C(X,R) and g € C(f(X)) then (go f)(A) = g(f(A)).
The bounded complex linear operator 15 uniquely determined by the
(Product) and (Normalization) azioms. The (Product) and (Conjugation)
axioms assert that is a C* algebra homomorphism.

Proof. See page [253] [

The (Eigenvector) and (Spectrum) axioms in Theorem are called
the Spectral Mapping Theorem. Theorem [5.54] carries over verbatim
to normal operators, with the caveat that ¥ = o(A) is then an arbitrary
nonempty compact subset of the complex plane (see Example . One
approach is to replace polynomials in one real variable by polynomials p in
z and Z and show that o(p(A)) = p(c(A)) for every such polynomial. In the
simple case p(z) = z + Z this is the identity o(A+ A*) = {A+ X[ X € 0(A)}
and to verify this already requires some effort (see Exercise [5.92)). Once the
formula o(p(A)) = p(c(A)) has been established for all polynomials in z
and Z the proof proceeds essentially as in the self-adjoint case. Another
approach via Gelfand representations is explained in Section [5.5]
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Proof of Theorem |5.54 Denote the space of polynomials in one real variable
with complex coefficients by

there exists an n € N and complex
Clt] := ¢ p: R — C| numbers ag,ay,...,a, such that
p(t) =1 axt” for all t € R

Thus a polynomial p € C[t] is thought of as a continuous function from R to C
for the purpose of this proof. Since A is self-adjoint, its spectrum ¥ = o(A)
is a nonempty compact subset of the real axis by Theorem [5.45] Define the
subalgebra P(X) C C(X) by

P(X) :=A{plzlp e ClH} C C(X).

This subalgebra contains the constant functions, is invariant under conju-

gation, and separates points because it contains the identity map on X.
Hence P(X) is dense in C'(X) by the Stone-Weierstra§ Theorem [5.52 With
this understood, the proof has five steps.

Step 1. There exists a unique bounded complex linear operator
b, :C(X) = LY(H)
such that @ 4(p|s) = p(A) for all p € C[t].
The map C[t] — P(X) : p — p|s need not be injective. Its kernel
Z(%) :={p € C[t]| pls = 0}

is an ideal in C[t], which is nontrivial if and only if ¥ is a finite set. The
algebra homomorphism C[t] — P(X) : p — p|s descends to an algebra
isomorphism C[t]/Z(X) — P(Z). Given a polynomial p = > ,_, axt® with
complex coefficients consider the bounded complex linear operator

p(A) = a,A* € L(H).

This operator is normal and o(p(A)) = p(c(A)) by Lemma |5.51} Hence

Ip(A)| = sup |u|= sup |p(A)| = |]pls]] (5.58)
pea(p(A)) A€o (A)

by Theorem [5.44
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Equation shows that the kernel of the complex linear operator
Clt] = L(H) : p = p(A)
agrees with the kernel Z(X) of the surjective complex linear operator
Clt] = P(2) : p— pls.
Hence there is a unique map ®,4 : P(3) — L°(H) such that
D 4(pls) = p(A) for all p € CJt]. (5.59)

In other words, if p, ¢ € C[t] are two polynomials such that p(A) = ¢()) for all
A€ % then [[p(4) — g(A)]| = lIpls — alsll = 0 by (E55) and so p(4) = g(4).
Thus the operator p(A) € L°(A) depends only on the restriction of p to
Y, and this shows that there is a unique map ®4 : P(X) — L°(H) that
satisfies . Equation asserts that the following diagram commutes

C[t] Lo(H) .
\ P(2) /

The operator ®,4 : P(X) — L¢(H) is complex linear by definition and is an
isometric embedding by (5.58). Since P(X) is a dense subspace of C(X), it
extends uniquely to an isometric embedding of C'(X) into L¢(H), still denoted
by ®4. More precisely, fix a continuous function f : ¥ — C. By the Stone-
Weierstral Theorem there exists a sequence of polynomials p, € C[t]
such that the sequence p,|s converges uniformly to f. Then p,(A) € L(H)
is a Cauchy sequence by (5.58). Since £°(H) is complete by Theorem
the sequence p,(A) converges. Denote the limit by

Ca(f) = lim p,(A).
It is independent of the choice of the sequence of polynomials p,, € C[t] used
to define it. Namely, let ¢, € C[t] be another sequence of polynomials such
that ¢, |y converges uniformly to f. Then p,|s — ¢,|s converges uniformly to

zero, hence limy, o0 [|pn(A) = ¢u(A)|| = limys0 [|pnls — @nlsl] = 0 by (5.58),
and so limy, o pr(A) = limy, o0 gn(A). This proves Step 1.
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Step 2. The map ®4 : C(X) — L(H) in Step 1 satisfies the (Product),
(Congugation), (Normalization), (Isometry), (Commutative), (Image), and
(Eigenvector) axioms.

The map satisfies the (Normalization) and (Isometry) axioms by its definition
in Step 1. To prove the (Product) axiom, fix two functions f,¢g € C(X) and
choose two sequences of polynomials p,, g, € C[t] such that p,|s converges
uniformly to f and g,|s converges uniformly to g as n tends to infinity. Then
Pnn|s converges uniformly to fg as n tends to infinity and hence it follows
from the definition of ® 4 that

®4(fg) = lim 4(pugn) = lim Pa(pn)Palgn) = Pa(f)Palg)-

Likewise p,, converges uniformly to f and hence

a(f) = lim @4(p,) = lim ®4(pn)” = Pa(f)".

This proves the (Conjugation) axiom. The (Commutative) and (Eigenvec-
tor) axioms hold for all functions in P(X) by definition and hence the same
approximation argument as above shows that they hold for all f € C(%).

To prove the (Image) axiom, denote by A C L¢(H) the smallest C*
subalgebra containing A. Then ®4(P(X)) C A because A is a C* subalgebra
containing A. Moreover, C'(X) is the closure of P(X) and so ®4(C(X)) C A
because A is closed. Conversely, A C ®4(C(X)) because ®4(C(X)) is a C*
subalgebra of £¢(H) that contains A. This proves Step 2.

Step 3. The map ®4 in Step 1 satisfies the (Spectrum) axiom.

Fix a continuous function f : ¥ — C. Then

FIA) f(A) = FA)F(A) = IfI*(A) = F(A)F(A) = f(A) f(A)

by the (Product) and (Conjugation) axioms and hence f(A) is normal. To
prove the assertion about the spectrum we first show that o(f(A)) C f(2).
To see this, let 4 € C\ f(2) and define the function g : ¥ — C by
1
g(A) = ———— for A € 3.
W=

This function is continuous and satisfies g(u — f) = (u — f)g = 1. Hence
g(A)(pl — f(A)) = (ul— f(A))g(A) = 1 by the (Product) axiom. Thus the
operator ul — f(A) is bijective and so pu ¢ o(f(A)).
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To prove the converse inclusion f(X) C o(f(A)), fix a spectral value
A € X = o0(A) and define p := f(A). We must prove that p € o(f(A)).
Suppose, by contradiction, that u ¢ o(f(A)). Then the operator ull— f(A) is
bijective. Choose a sequence p,, € Clt] such that the sequence p, |5 converges
uniformly to f. Then the sequence of operators p,(A)1 — p,(A) converges
to pll — f(A) in the norm topology. Hence the operator p,(A)1 — p,(A)
is bijective for n sufficiently large by the Open Mapping Theorem and
Corollary [1.51] Hence p,(\) ¢ o(p,(4)) for large n, contradicting part (ii)
of Lemma [5.51] This proves Step 3.

Step 4. The map 4 in Step 1 satisfies the (Composition) axiom.
Let f € C(X,R) and let g € C(f(X)). Assume first that

9=1dlx)
for a polynomial ¢ : R — C. Choose a sequence of polynomials p, : R — R
with real coefficients such that p,|s converges uniformly to f. Then qo p,|s
converges uniformly to ¢ o f and (q o p,|s)(A4) = ¢(p,(A)) for all n € N.
Hence

(o f)(A) = lim (gop,)(A) = lim q(p.(A4)) = q(f(A)).

n—oo n—oo

Here the last step follows from the definition of ¢(B) for B € L°(H) and the
fact that p,(A) converges to f(A) in the norm topology as n tends to infinity.

Now let g : f(X) — C be any continuous function and choose a sequence
of polynomials g, : R — C such that the sequence g, | converges uniformly
to g as n tends to infinity. Then ¢, o f converges uniformly to go f as n
tends to infinity and (g, o f)(A) = ¢.(f(A)) for all n € N by what we have
proved above. Hence

(g0 f)(A) = lim (g, 0 f)(A) = lim ¢.(f(A)) = g(f(4)).

This proves Step 4.

Step 5. The map @4 in Step 1 is uniquely determined by the (Product) and
(Normalization) axioms.

Let U : C(X) — L°(H) be any bounded complex linear operator that sat-
isfies the (Product) and (Normalization) axioms. Then W(f) = ®4(f) for
all f € P(X). Since P(X) is dense in C(X) it follows from the continuity
of U and &4 that U(f) = ®4(f) for all f € C(X). This proves Step 5 and
Theorem [£.54] O
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Definition 5.55 (Positive Semi-Definite Operator). Let H be a complex
Hilbert space. A self-adjoint operator A = A* € L°(H) is called positive
semi-definite if (z, Az) > 0 for all x € H. The notation A > 0 or A =
A* > 0 signifies that A is a positive semi-definite self-adjoint operator.

Corollary 5.56 (Square Root). Let H be a complex Hilbert space, let
A= A* € L°(H) be a self-adjoint operator, and let f € C(o(A)). Then the
following holds.

(i) £(A) = F(A)* if and only if f(o(4)) C R.

(ii) Assume f(o(A)) CR. Then f(A) > 0 if and only if f > 0.

(iii) Assume A > 0. Then there exists a unique positive semi-definite self-
adjoint operator B = B* € L°(H) such that B*> = A.

Proof. Assume without loss of generality that H # {0}.

We prove part (i). Since f(A) — f(A)* = (f — f)(A) = 2i(Imf)(A) by
the (Conjugation) axiom, we have [|f(A) — f(A)*|| = 2sup,c,(a)|tmf(A)] by
the (Isometry) axiom. This proves (i).

We prove part (ii). Thus assume f(o(A)) C R. Then it follows from
Theorem and Theorem that infj,=1(z, f(A)z) = infrcoa) F(N).
This proves (ii).

We prove existence in (iii). Since A is positive semi-definite we have
o0(A) C [0,00) Theorem . Define f : 0(A) — [0,00) by f(\) := VX for
A € o(A). Then the operator B := f(A) € L°(H) is self-adjoint by part (i),
is positive semi-definite by part (ii), and B* = f(A)* = f2(A) = id(A) = A
by the (Product) and (Normalization) axioms. This proves existence.

We prove uniqueness in (iii). Assume that C' € L°(H) is any positive
semi-definite self-adjoint operator such that C* = A. Then CA = C? = AC
and hence it follows from the (Commutative) axiom that CB = BC. This
implies (B + C)(B — () = B> — C? = 0 and hence

0 = (Bx—Cx,(B+C)(Bx — Cx))
= (Bx — Cz,B(Bx — Cz)) + (Bx — Cx,C(Bx — Cx))
for all x € H. Since both summands on the right are nonnegative, we have
(Bx — Cz,B(Bx — Cz)) = (Bx — Cx,C(Bx — Cz)) =0

for all z € H. Hence (z,(B — C)3z) = 0 for all z € H. Since (B — C)3 is
self-adjoint, it follows from Theorem that 0 = ||(B—C)3|| = ||B - C|.
Here the last equation follows from part (i) of Theorem [5.44 Thus C = B
and this proves Corollary [5.56] O
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5.5 Spectral Representations

This section extends the continuous functional calculus for self-adjoint op-
erators, developed in Section [5.4] to normal operators, following the elegant
approach of Schwartz |53 p 155-161] and Yosida [61, p 294-309].

5.5.1 The Gelfand Representation

Recall the definition of a Banach algebra as a real or complex Banach space A,
equipped with an associative product A x A — A : (a,b) — ab, that satisfies
the inequality ||ab|| < ||al|||b|| for all a,b € A (Definition [1.46]).

Definition 5.57 (Ideal). Let A be a complex commutative unital Banach

algebra such that
1] = 1.

An ideal in A is a complex linear subspace J C A such that
ac A beJ — abe J.

An ideal J C A is called nontrivial if 7 # A. It is called maximal if it is
nontrivial and if it is not contained in any other nontrivial ideal. The set

Spec(A) :={J C A|J is a mazimal ideal}
is called the Gelfand spectrum of A. The Jacobson radical of A is the

ideal
R = ﬂ J.
J€Spec(A)
The Banach algebra A is called semisimple if R = {0}. The spectrum of
an element a € A is the set

o(a) :={X € C| A1 — a is not invertible} .

If M is a nonempty compact Hausdorff space, then the space A := C(M)
of continuous complex valued functions on M is a complex commutative
unital Banach algebra, the spectrum of an element f € C'(M) is its image
o(f) = f(M), every maximal ideal has the form J = {f € C(M) | f(p) = 0}
for some element p € M, and so the set Spec(.A) can be naturally identified
with M. The only maximal ideal in A := C is J = {0}. In these examples
the quotient algebra A/J is isomorphic to C for every maximal ideal J C A.
The next theorem shows that this continues to hold in general.
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Theorem 5.58 (Maximal Ideals). Let A be a complex commutative unital
Banach algebra such that |1]| = 1. Then the following holds.

(i) Every nontrivial ideal in A is contained in a mazimal ideal.

(ii) An element a € A is invertible if and only if it is not contained in any
mazximal ideal.

(iii) Every mazimal ideal is a closed linear subspace of A.
(iv) o(a) # 0 for all a € A.
(v) If J C A is a mazimal ideal then A/J is isomorphic to C and

igﬁ”k]l —al| = || for all X € C. (5.60)

Proof. We prove (i). The set
7 ={J C A|J is an ideal and J C A}

of nontrivial ideals is nonempty because {0} € # and is partially ordered
by inclusion. Let 4 C _# be a nonempty chain and define

j::UICA.

S

Then J is an ideal in A because € is a nonempty chain, and J # A because
otherwise there would exist an element Z € € containing 1, in contradiction
to the fact that Z C A. Thus J € _# and so every nonempty chain in _¢#
has a supremum. Hence part (i) follows from the Lemma of Zorn.

We prove (ii). Let ag € A and define

Jo :={aag|a € A}.

Then Jj is an ideal and every ideal J C A that contains ag also contains 7.
If ag is invertible then Jy = A and so ag is not contained in any maximal
ideal. If ag is not invertible, then 7, is a nontrivial ideal and hence there
exists a maximal ideal J containing Jy by part (i). This proves part (ii).

We prove (iii). The group G C A of invertible elements is an open subset
of A by Theorem . Let J C A be a maximal ideal and denote by J the
closure of J. Then J NG = ) by part (ii) and hence J NG = 0 because G
is open. Hence J is a nontrivial ideal and so J = J because J is maximal.
This proves part (iii).
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We prove (iv). Fix an element a € A and assume, by contradiction,
that o(a) = 0. In particular, a is invertible and, by Corollary [2.36] there
exists a bounded complex linear functional A : A — C such that A(a™!) = 1.
Since A1 — a is invertible for all A € C, the same argument as in the proof
of Lemma shows that the map C — A : A — (A1 — a)~! is holomorphic.
Moreover, by part (iii) of Theorem [1.49]

1
Al = [lal]

for all A € C with || > ||a||. Hence the function

C—C:A f(A) =AM —a)™h)

1AL —a)~' <

is holomorphic and bounded. Thus it is constant by Liouville’s theorem, and
this is impossible because limyo0|f(A)] = 0 and f(0) = 1. This contradic-
tion proves part (iv).

We prove (v). Let J C A be a maximal ideal and consider the quotient
space B := A/J with the norm

llalzll := inflla+ bl for [a]7 :=a+T € A/T.

By part (iii) and Theorem this is a Banach space and, since J is an
ideal, the product in A descends to the quotient. It satisfies the inequalities
lfablz || < [[falz | [Iog]]| for all a,b € A and [|[l}[| < [[1]] =1 by definition.
Moreover ||[1] 7|| = 1, because otherwise there would exist an element a € J
such that ||1—a| < 1, so a would invertible by Theorem [1.49] in contradiction
to part (ii). This shows that B is a complex commutative unital Banach
algebra whose unit [1] 7 has norm one. This proves (5.60).

Next we observe that every nonzero element [a] 7 € B = A/J is invertible
in B. To see this, let a € A\ J. Then the set J, := {ab+c|be A, ce T}
is an ideal such that J € 7, and so J, = A. Thus there exists an element
b € A such that ab—1 € J and hence [a] 7 is invertible in B and [a]' = [b] 7.

Now the Gelfand—Mazur Theorem asserts that every complex commu-
tative unital Banach algebra B in which every nonzero element is invertible
and whose unit has norm one is isometrically isomorphic to C. To prove
it, fix an element b € B. Then o(b) # 0 by part (iv). Choose an ele-
ment A € o(b). Then Al — b is not invertible and so b = Al. Hence the
map C — B : A+ Al is an isometric isomorphism of Banach algebras. This
proves the Gelfand-Mazur Theorem, part (v), and Theorem m ]



5.5. SPECTRAL REPRESENTATIONS 261

Definition 5.59 (Gelfand Representation). Let A be a complex commu-
tative unital Banach algebra such that ||1|| = 1. By Theorem/[5.58 there exists
a unique function

A x Spec(A) = C: (a,T) — fu(T) (5.61)
such that
fo(I)M—aeJ  foralla€ A and all J € Spec(A). (5.62)

The map a — f, is called the Gelfand representation or the Gelfand
transform. [t assigns to every element a € A a complex valued function
fa = Spec(A) — C. The Gelfand topology on Spec(A) is the weakest
topology such that f, is continuous for every element a € A.

To understand the Gelfand topology on Spec(.A) it will be convenient
to change the point of view by fixing a maximal ideal J € Spec(A) and
considering the function 4 — C : a — f,(J). Lemma below shows that
this construction gives rise to a one-to-one correspondence between maximal
ideals and unital algebra homomorphisms A : A — C.

Definition 5.60. A map A : A — C is called a unital algebra homomor-
phism if it satisfies the conditions

A(a+b) = Ala) + A(b), A(ab) = A(a)A(b), A(z1) =z
for all a,b € A and all z € C. Define

A is a unital
algebra homomorphism

(I)AZZ{AZ.A—)(C

The next lemma shows that every unital algebra homomorphism A : A — C
s a bounded linear functional of norm one. Hence ® 4 is a subset of the unit
sphere in the dual space A* = L( A, C).

Lemma 5.61. The Gelfand representation has the following properties.
(i) Fiz an element J € Spec(A) and define the map A7 : A — C by

Az(a) = fu(T) fora e A (5.63)
Then A7 is a unital algebra homomorphism and ker(A7) = J.

(ii) For every J € Spec(A) the map Ay : A — C is a bounded linear
functional of norm one.

(iii) The map Spec(A) — @4 : T — As defined by (5.63)) is bijective.
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Proof. Fix a maximal ideal J C A and two elements a,b € A and define
A= fo(J) and p:= f(J). Then A1 —a € J and pll — b € J and hence

A+w)l—(a+b)=Al—a)+ (ul—b) e J

and
Apl—ab=(A1—a)b+ A(pl—0) € J.

Hence fo14(J) = A+ p and fo(J) = Au. Since f1(J) = 1 by definition,
this shows that the map A : A — C in (5.63) is an algebra homomorphism.
Now let a € A. Then Ay(a) = f,(J) =0 if and only if a € J, by definition
of the map f, in (5.63)). This proves part (i).

To prove (ii), observe that

[Ag(a)l = fa(T)] = inf [|fo(T)1 = b]| = inflla — 0] < [la] (5.64)

for all @ € A and all J € Spec(A). Here the second equality follows
from and the third equality follows from the fact that f,(J)1—a € J.
By (5.64]), we have ||[A7]] < 1 and so ||[Az]| = 1 because A7(1) = 1. This
proves part (ii).

We prove (iii). Let A € &4 and define J := ker(A). Then J is a linear
subspace of A. Moreocer, ifa € Aand b € J then A(ab) = A(a)A(b) = 0 and
so ab € J. Thus J is an ideal of codimension one and hence is a maximal
ideal. Now let a € A and define A := f,(J). Then Al —a € J = ker(A), so

Afa) = AL = A~ A(L) = A = £,().

Thus A = As and so the map Spec(A) — &4 : J — As is surjective. To
prove that it is injective, fix two distinct maximal ideals Z, J € Spec(A) and
choose an element a € Z\ J. The Az(a) = 0 and Az(a) # 0. This proves
part (iii) and Lemma [5.61] O

Lemma 5.62. Let A be a complexr commutative unital Banach algebra such
that |1]] = 1. Then the set Spec(A) of mazimal ideals in A is a compact
Hausdorff space with respect to the Gelfand topology.

Proof. By definition, the Gelfand topology on Spec(.A) is induced by the
weak™ topology on A* under the inclusion Spec(A) — &4 C A*, defined
in Lemma [5.61, The image ® 4 of this inclusion is a weak™ closed subset
of A* by definition of a unital algebra homomorphism. Hence ® 4 is a weak™
compact subset of A* by the Banach Alaoglu Theorem [3.33. This proves
Lemma [5.62 ]
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Denote by C'(Spec(.A)) the space of complex valued continuous functions
on the compact Hausdorff space Spec(A) equipped with the Gelfand topology
of Definition [5.59, Then C(Spec(A)) is a unital Banach algebra with the
supremum norm and the unit (the constant function one) has norm one.
Lemma [5.61] asserts that the Gelfand representation

A — C(Spec(A)) :a > f, (5.65)

is a homomorphism of complex commutative unital Banach algebras and a
bounded linear operator of norm one. The next theorem summarizes some
important properties of the Gelfand representation ([5.65)).

Theorem 5.63 (Gelfand). Let A be a complex commutative unital Banach
algebra such that ||1|| = 1. Then the following holds.

(i) Every a € A satisfies
o(a) = fa(Spec(A)) (5.66)

and
lim [|a"[['/" = inf[la"||'/" = || ful] (5.67)
n—oo neN

(ii) The kernel of the Gelfand representation (5.65|) is the Jacobson radical

(| T={acAlf.=0}. (5.68)

J€Spec(A)

(iii) The set
Fa={fala € A} CC(Spec(A))

s a subalgebra that separates points and contains the constant functions.

(iv) The Gelfand representation A — C(Spec(A)) : a — f, is an isometric
embedding if and only if ||a®|| = ||al|* for all a € A.

Proof. To prove , fix an element a € A and a complex number \. If
A € o(a) then A1 — a is not invertible, hence part (i) of Theorem [5.58]
asserts that there exists a maximal ideal [J such that A\l —a € J, and
hence f,(J) = A. Conversely, suppose that A = f,(J) for some maximal
ideal J. Then A1 — a € J by definition of f,, hence A1 — a is not invertible
by part (ii) of Theorem [5.58, and hence A € o(a). This proves ([5.66).
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To prove ((5.67)), recall that

r:= lim ||a"||1/” ”||1/”
n—oo

= inf ||a
neN

by Theorem [1.49. Now the proof of Theorem [5.20| carries over verbatim to
complex unital Banach algebras with ||1|| = 1. Hence, by ((5.66]),

r= sup [A| = sup |[fo(T)|=||fdll
A€o (a) J€Spec(A)

and this proves (5.67) and part (i).
Part (ii) follows from the fact that an element a € A satisfies f, = 0 if

and only if a € J for all J € Spec(A).
Part (iii) follows from the fact that f3(J) = 1 for all J € Spec(A) and
that the map
Spec(A) = P4 : T — Ag
in Lemma [5.61] is injective.
We prove (iv). If the Gelfand representation
A — C(Spec(A)) :a— f,

is an isometric embedding then

lall = |l fall = iI&}IfNHa"HI/" forall a € A

by (5.67)) and hence

lla™]] = ||a||™ for all a € A and all n € N.
Conversely, suppose that
|a?|| = ||al? for all a € A.

Then one shows as in the proof of Theorem that ||a"|| = ||a]|™ for all
a € A and all n € N. Hence ||f,|| = ||a|]| for all a € A and so the Gelfand
representation is an isometric embedding. This proves part (iv) and Theo-
rem [5.63 O

In view of Theorem [5.63| it is a natural question to ask under which
conditions the Gelfand representation ({5.65]) is an isometric isomorphism of
unital commutative Banach algebras. For C* algebras (Definition the
next theorem gives sufficient conditions for an affirmative answer to this
question.
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Theorem 5.64 (Gelfand). Let A be a commutative C* algebra such that
la*a = ||a|” for all a € A. (5.69)

Then ||1|| = 1 and the Gelfand representation A — C(Spec(A)) : a — f,
in (5.65) is an isometric C* algebra isomorphism. In particular,

for = f, for all a € A.

Proof. See page 266 [

Lemma 5.65. Let A be a commutative C* algebra such that ||1|| = 1. Then
the following are equivalent

(i) Every mazimal ideal is invariant under the involution A — A : a > a*.
(ii) If a € A satisfies a = a* then fo(J) € R for all J € Spec(A).
(iii) for = f, for all a € A.

Proof. We prove that (i) implies (ii). Thus assume that every maximal ideal
J € Spec(A) is invariant under the involution A — A : a — a*. Fix
an element ¢ = a* € A and a maximal ideal J € Spec(A) and define
A= fo(J). Then Ml —a € J and A\l —a = Al — a* = (Ml —a)* € J and
this implies A = A € R. Thus (ii) holds.

We prove that (ii) implies (iii). Thus assume f,(Spec(A)) C R for all
a=a* € A. Fix any element a € A and define b,c € A by

1 . 1 .
b.—g(a—i-a), c.—ﬁ(a—a).
Then b = b* and ¢ = ¢* and @ = b+ ic and a* = b — ic. Hence f, and f. are
real valued functions on Spec(.A) by (b) and therefore

fa*:fb_ifc:fb+ifc:fa‘

Thus (iii) holds.

We prove that (iii) implies (i). Thus assume f,- = f, for all @ € A and
fix a maximal ideal J C A. Consider the function A : A — C defined by
A(a) == f.(T) for all a € A. By (iii) it satisfies A(a*) = A(a) for all a € A.
Since ker(A) = J this shows that J is invariant under the involution a — a*.
Thus (i) holds. This proves Lemma [5.65 O
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Proof of Theorem[5.64. Let A be a commutative C* algebra that satisfies
the condition (5.69). Following Schwartz [53, p 159-161], we prove in four
steps that the Gelfand representation is a C* algebra homomorphism.

Step 1. ||fal| = |la|| for all a € A. In particular, ||1]| = 1.
By (5.69)), every a € A satisfies
2 * * * * *
[a®]” = [[(a®)a*|| = I(a"a)*(a"a) | = la"al* = [la]|*
and so ||a?|| = ||a]|?. Hence Step 1 follows from part (iv) of Theorem [5.63|
Step 2. fuu(J) = eI for alla € A and all J € Spec(A).

This follows directly from the fact that the Gelfand representation is a con-
tinuous homomorphism of complex Banach algebras.

Step 3. If a € A satisfies a = a* then f,(J) € R for all J € Spec(A).
Let a € A such that a = a*. Then
(€9)7 el — gia" gio _ (ila—a®) _ q
and hence [[el?]|? = ||(el*)*el?|| = 1 by and Step 1. Thus
D] = | faa( )] £ ] = 1
and, likewise, |e"/«(7)| <1 for all J € Spec(A). Hence

1= |f]1(\7>| - |feia<j)fe*i“(j)| = |fei“(j)| |fe*i“(j)’ S 1
and therefore, by Step 2,

/D) = | fua (T)| = 1 for all J € Spec(A).
Hence f,(J) € R for all J € Spec(.A). This proves Step 3.

Step 4. The Gelfand representation is an isometric isomorphism.

By Step 1 and part (iv) of Theorem , the Gelfand representation is an
isometric embedding. Moreover, the set .Z4 := {f,|a € A} is a subalgebra
of C(Spec(A)) that separates points by part (iii) of Theorem [5.63 and it
is invariant under complex conjugation by Step 3 and Lemma [5.65] Hence
the set .74 satisfies the requirements of the Stone—Weierstrafi Theorem [5.52
and therefore is dense in C'(Spec(.A)). Thus the Gelfand representation is an
isometric isomorphism and this proves Theorem [5.64! O]
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5.5.2 C* Algebras of Normal Operators

The construction of the continuous functional calculus for normal operators
is based on several lemmas. Assume throughout that H is a nonzero complex
Hilbert space and that Ay € L°(H) is a normal operator. Let

Ay C ,CC(H )
be the smallest (unital) C* subalgebra that contains Ay.

Lemma 5.66. Ay is commutative and every operator A € Ay is normal.
Moreover, if B € L°(H) satisfies BAy = AyB and BAj = A{B, then B

commutes with every element of Ag.

Proof. Define
B:={Be€ L(H)|AyB = BA; and BA; = A;B}.

Then B is a closed subspace of £L°(H) that contains the identity and is in-
variant under composition. Moreover, Ay € B because Ay and Aj commute,
and B € B implies B* € B. Hence B is a C* subalgebra of L£L¢(H) that
contains Ay. Hence the set

C:={C e L(H)|BC =CB for all B € B}

is also a C* subalgebra of £(H) that contains Ag. Moreover, since Ay, A; € B
we have C C B. Hence C is commutative, so every C' € C is normal. Since C
is a C* subalgebra of L°(H) and Ay € C, we have Ay C C and this proves
Lemma [5.66] O

Lemma 5.67. Let Spec(Ap) be the set of maximal ideals in Ay. Then, for
every A € Ay, there ezists a unique function fa : Spec(Ag) — C such that

fa()M—Ae g (5.70)

for all J € Spec(Ag). Equip Spec(Ag) with the weakest topology such that
fa is continuous for every A € Ay. Then Spec(Ag) is a compact Hausdorff
space, the Gelfand representation

Ao — C(Spec(Ay)) : A fa (5.71)
is an isometric C* algebra isomorphism and

fa(Spec(Ag)) =a(4)  forall A € A,. (5.72)
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Proof. The existence and uniqueness of the functions f4 : Spec(A4y) — C
that satisfy follows from Lemma and Theorem [5.58, That the
map A — f4 is a Banach algebra homomorphism from 4, to the bounded
functions on Spec(Ay) is proved in Lemma [5.61] The resulting topology on
Spec(Ap) is compact and Hausdorff by Lemma and equation holds
by part (i) of Theorem . Moreover, each A € A, satisfies

1A All = sup (z, A" Az) = sup [|Az|* = ||A|*

llxll=1 llzll=1
by Theorem m Hence the Gelfand representation ([5.71)) is an isometric
isomorphism by Theorem [5.64] This proves Lemma [5.67] ]
Lemma 5.68. Let A € Ay. Then
A=A — fa(T) €R for all J € Spec(Ayp) (5.73)

and
A=A">0 = fa(T) >0 for all J € Spec(Ay). (5.74)

Proof. If A € Ay is self-adjoint then o(A) = fa(Spec(Ay)) C R by
and Theorem Conversely, let A € Ag such that fa(Spec(A4y)) C R.
Then o(A) C R by and the operator B := (A — A*) is self-adjoint
and satisfies o(B) = {ImA |\ € 0(A)} by Exercise [5.92, Thus o(B) = {0},
hence B = 0 by Theorem and hence A = A*. This proves .

To prove , fix an element A € Ay. If A is self-adjoint and posi-
tive semi-definite then f4(Spec(Ay)) = o(A) C [0,00) by and Theo-
rem [5.45] Conversely, assume f4(Spec(Ay)) C [0,00). Then A is self-adjoint
by (5.73) and o(A) C [0,00) by (5.72). Hence A is positive semi-definite by
Theorem [5.45, This proves Lemma [5.68 O]

Lemma 5.69. The function fa, : Spec(Ag) — o(Ap) is a homeomorphism.

Proof. By we have fa,(Spec(Ag)) = o(Ag). We prove that fa, is
injective. Assume, by contradiction, that there exist two distinct maximal
ideals Z, J € Spec(Ap) such that fa,(Z) = fa,(J) =: A\. Then A € o(Ap)
and A\l — Ay € ZN J. Define Ay := {z1+ A|2€C, A€ ZNJ}. This set
is a proper C* subalgebra of Ay that contains Ay, in contradiction to the
definition of Aq. This contradiction shows that the map

fa, : Spec(Ag) — o(Ap)

is bijective. Since f,4, is continuous, its domain is compact, and its target
space is Hausdorff, it is a homeomorphism. This proves Lemma [5.69 O
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5.5.3 Functional Calculus for Normal Operators

With these preparations in place we are ready to establish the continuous
functional calculus for normal operators on Hilbert spaces.

Theorem 5.70 (Continuous Functional Calculus).
Let H be a nonzero complex Hilbert space, let A € L°(H) be a bounded normal
operator, and let

Y:=0(A) CC
be the spectrum of A. Then there exists a bounded complex linear operator
CX)— LY(H): f— f(A) (5.75)

that satisfies the following axioms.

(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € C(X).
(Conjugation) f(A) = f(A)* for all f € C(X).

(Positive) If f € C(X,R) and f > 0 then f(A) = f(A)* > 0.
(Normalization) If f(\) = X for all A € ¥ then f(A) = A.

(Isometry) [[f(A)[| = supres|f(N)] =: [f] for all f € C(%).
(Commutative) If B € L°(H) satisfies AB = BA then

f(A)B = Bf(A) for all f € C(X).
(Image) The image

A:={f(A)|feCE)}
of the linear operator (5.75|) is the smallest C* subalgebra of L°(H) that

contains the operator A.
(Eigenvector) If A € ¥ and x € H satisfy Ax = A\x then

f(A)z = f(N)x  forall f € C(X).
(Spectrum) For every f € C(X) the operator f(A) is normal and
o(f(A)) = f(a(A)).

(Composition) If f € C(X) and g € C(f(X)) then (go f)(A) = g(f(A)).
The bounded complex linear operator 15 uniquely determined by the
(Product), (Conjugation), and (Normalization) azioms. The (Product) and
(Conjugation) axioms assert that is a C* algebra homomorphism.
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Proof. Fix a normal operator Ay € L°(H) and denote by
Ao C ﬁc(H)

the smallest C* subalgebra that contains Ay, as in Subsection [5.5.2] Denote
the spectrum of Ay by

Yo :=0(Ay) C C.
Then the Gelfand representation
Ay — C(Spec(Ap)) : A — fa, (5.76)

introduced in Definition is an isometric C* algebra isomorphism by
Lemma Moreover, the map

fa, : Spec(Ap) — X

is a homeomorphism by Lemma [5.69, These two observations give rise to an
isometric C* algebra isomorphism

C(Xo0) = Ao : f = f(Ao), (5.77)
defined as the composition of the C* algebra isomorphism
C(Xo) = C(Spec(Ao)) = f = fo fa,
with the inverse of the isomorphism . Thus

A= f(Ay) = Ja=[ofa, (5.78)

for all A € Ay and all f € C(Xy). The resulting C* algebra isomor-
phism satisfies the (Normalization) and (Image) axioms by definition,
the (Commutative) axiom by Lemma [5.66] the (Spectrum) axiom by equa-
tion in Lemma the (Positive) axiom by Lemma [5.68, and the
(Isometry) axiom because the Gelfand representation (5.76)) is an isometry.

We prove the (Eigenvector) axiom. Let A € Po(Ay) and z € H such that
Aoz = Az. Then Az = Az by Lemma . Hence p(Ag)x = p(A)x for every
polynomial p € P (%) in z and z. Thus the (Eigenvector) axiom follows from
the (Isometry) axiom because P(3) is dense in C'(Xg).

We prove that the C* algebra homomorphism is uniquely deter-
mined by the (Normalization) axiom and continuity. Denote by

P(X) C C(X0)



5.5. SPECTRAL REPRESENTATIONS 271

the space of all functions
p: 20 — (C

that can be expressed as polynomials in z and Z. Then P(%,) is a subalge-
bra of C'(Xg) that contains the constant functions, separates points because
it contains the identity map, and is invariant under complex conjugation.
Hence P (%) is a dense subspace of C'(X,) by Theorem [5.52 Moreover, the
restriction of the C* algebra homomorphism to the subspace P (%)
is uniquely determined by the (Normalization) axiom. Since P (%) is dense
in C'(Xo) and the map is continuous, it is uniquely determined by its
restriction to P(3y). This proves uniqueness of the continuous functional
calculus for normal operators.

We prove the (Composition) axiom. Fix a continuous function f : ¥y — C
and consider the map

C(f(X0)) = L(H) : g+ (g o f)(Ao).

This map is a continuous C* algebra homomorphism and it sends the identity
map g =id : f(3y) — C to the operator f(Ay) whose spectrum is

a(f(Ao)) = f(X0)

by the (Spectrum) axiom. Hence it follows from uniqueness that

(g0 f)(A) = g(f(Ao))  forall g e C(f(%0)).
This proves Theorem [5.70] O

Theorem [5.70] extends the continuous functional calculus for self-adjoint
operators in Theorem [5.54]to bounded normal operators and at the same time
gives an alternative proof of Theorem [5.54 The next goal is to extend the
continuous functional calculus further to the C* algebra of complex valued
bounded measurable functions on the spectrum. Taking the characteristic
functions of Borel sets one then obtains the spectral measure associated to a
normal operator. This is the content of Section [5.6] below.

Remark 5.71. Let H be an infinite-dimensional complex Hilbert space. It is
useful to examine the special case of Theorem [5.54| where the normal operator
A € L°(H) is compact, which we now assume.

(i) By part (v) of Theorem the Hilbert space H admits an orthonormal
basis {e; }ier of eigenvectors of A. Here I is an infinite index set, uncountable
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whenever H is not separable, and (e;, e;) = 0;; for all 4, j € I. We emphasize
that (e;,e;) denotes the Hermitian inner product and the e; are linearly
independent over the complex numbers. There exists a map I — C : 71— \;
such that Ae; = \;e; for all ¢« € I and hence

Az = Z ilei, x)e; for all z € H. (5.79)

icl

The numbers \; are the eigenvalues of A and o(A) = {\;|i € I} U{0}. Thus
we have sup;c;|A\;| < co. Moreover, the set {i € I||\;| > ¢} is finite for ev-
ery € > 0, because A is compact. If f : 0(A) — C is any continuous function
then the operator f(A) € L°(H) is given by

f(A)x = Z f(\i){es, x)e; for all x € H. (5.80)

The eigenvalues \; appear with the multiplicities
#{iel|N =)} =dimker(A\1— A) for all A € R.

Note that f(A) is compact if and only if f(0) = 0.

(ii) It is also useful to rewrite the formula (5.80) in terms of the spectral
projections. Let a(A) = {Ag, A1, A2, ...} where \; # \; for i # j and \g = 0.
For each i let P, € L°(H) be the orthogonal projection onto the eigenspace
of )\iv i.e.

P?=P =P im(P)=E;:=ker(\1—A), ker(P)=E"  (581)

)

Then P,P; = 0 for 7 # j and

r = ZBQE, Az = Z&Pﬂ?, f(A)x = Z f(\) P (5.82)

for all x € H. Here the sums may be either finite or infinite, depending on
whether or not o(A) is a finite set. If 0(A) is an infinite set, we emphasize that
the sequence of projections ) ., P; converges to the identity in the strong
operator topology, but not in the norm topology, because |1 —>"" P =1
for all n € N. However, the sequence Y, \;P; converges to A in the norm
topology because lim; ,,, A; = 0.
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5.6 Spectral Measures

Assume that H is a nonzero complex Hilbert space and A € L°(H) is a
normal operator. Then the spectrum ¥ := o(A) C C is a nonempty compact
set of complex numbers by Theorem [5.44] Let

C(E) = L(H) : fr= [(A)

be the C* algebra homomorphism introduced in Theorem [5.70} The purpose
of the present section is to assign to A a Borel measure on ¥ with values
in the space of orthogonal projections on H, called the spectral measure
of A. When A is a compact operator this measure assigns to each Borel set
) C X the spectral projection

= 2 n

AEa(A)NQ

associated to all the eigenvalues of A in ) (see Remark . The general
construction of the spectral measure is considerably more subtle and is closely
related to an extension of the homomorphism in Theorem to the C*
algebra B(3) of all bounded Borel measurable functions on 3. The starting
point for the construction of this extension and the spectral measure is the
observation that every element z € H determines a conjugation equivariant
bounded linear functional A, : C(¥X) — C via the formula

A (f) = (z, f(A)x) for f € C(X). (5.83)

Since A, (f) = A.(f) for all f € C(X), the functional A, is uniquely deter-
mined by its restriction to the subspace C(3,R) of real valued continuous
functions. This restriction takes values in R and the restricted functional

A, : C(X,R) — R is positive by Theorem [5.70} i.e. for all f € C(X,R),
f>0 = A.(f) > 0.

Hence the Riesz Representation Theorem asserts that A, can be represented
by a Borel measure. Namely, let B C 2% be the Borel o-algebra. Then, for
every x € X, there exists a unique Borel measure i, : B — [0, 00) such that

/fdux— z, f(A)x) for all f € C(X,R). (5.84)

(See [50, Cor 3.19].) These Borel measures can be used to define the desired
extension of the C* algebra homomorphism C(X) — L°(H) to B(X) as well
as the spectral measure of A.



274 CHAPTER 5. SPECTRAL THEORY

5.6.1 Projection Valued Measures

Definition 5.72 (Projection Valued Measure). Let H be a complex
Hilbert space, let ¥ C C be a nonempty closed subset, and denote by B C 2%
the Borel o-algebra. A projection valued Borel measure on Y is a map

B— LCH): Q— Py (5.85)

which assigns to every Borel set 0 C ¥ a bounded complex linear operator
Po : H— H and satisfies the following axioms.

(Projection) For every Borel set 2 C X the operator Pq is an orthogonal
projection, i.e.
P:= Py =P, (5.86)

(Normalization) The projections associated to 2 =0 and Q =X are

Py=0, Po=1 (5.87)

(Intersection) If 0,8y C X are two Borel sets then

PﬂlﬁQQ - Pﬂlpﬂg - PQQPQl' (588)

(o-Additive) If (Q)ien is a sequence of pairwise disjoint Borel sets in 3 so
that Q; N QY =0 fori#j, and Q :=J;2, Q;, then every x € H satisfies

Por = lim » " Pox. (5.89)
=1

n—00 4

For every nonempty compact Hausdorff space > define
B(X):={f:¥ — C| f is bounded and Borel measurable}

This space is a C* algebra with the supremum norm ||f|| := supey |f(A)]
for f € B(X), and with the complex anti-linear isometric involution given
by complex conjugation. The next theorem shows that, if > is a closed
subset of C and B C 2% is the Borel o-algebra, then every projection val-
ued measure B — L(H) : Q — Py gives rise to a C* algebra homomorphism
from B(X) to L(H).
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Theorem 5.73. Let H,X,B be as in Definition and fix a projection
valued measure (5.85). Denote by B(X) the C* algebra of complex valued
bounded Borel measurable functions on 3, equipped with the supremum norm.
For xz,y € H define the signed Borel measure fi,, : B — R by

.y () := Re(z, Pay) for Q € B. (5.90)
Then, for each f € B(X), there is a unique operator V(f) € L°(H) such that

Re(z, ¥(f)y) = / Ref dpiy,, + / Imfduys, foralz,yeH  (591)
) )

The resulting map V : B(¥) — L(H) is a C* algebra homomorphism and it

satisfies o(V(f)) C f(2) for all f € B(X).
Proof. See page O

Assume the situation of Theorem [5.73|and suppose, in addition, that X is
compact. Since the map ¥ : B(X) — L¢(H) is a C* algebra homomorphism,
the operator W(f) is normal for every f € B(X). Thus every projection
valued measure on ¥ determines a normal operator A := ¥(id) associated
to the identity map and the spectrum of A is contained in . Conversely,
every normal operator A € L°(H) gives rise to a unique projection valued
measure in H with support on its spectrum X := o(A). Thus there is a
one-to-one correspondence between compactly supported projection valued
measures on C and bounded normal operators on H.

Theorem 5.74 (Spectral Measure). Let H be a nonzero complex Hilbert
space, let A € L°(H) be a normal operator, let 3 := o(A) C C be its spec-
trum, and denote by B C 2% the Borel o-algebra. Then there exists a unique
projection valued Borel measure

B— L(H):Q— Py (5.92)

such that
/ ReA dpig, (N) + / ImA dp 5y (A) = Re(z, Ay) (5.93)
forall x,y € H,there the signed zorel measures [, : B — R are given by
Hzy () := Re(z, Poy) (5.94)

for x,y € H and Q2 € B. The projection valued measure (5.92)) is called the
spectral measure of A.

Proof. See page [284 [
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The proof of Theorem [5.73]is carried out in the present subsection, while
the proof of Theorem is postponed to Subsection . As in part (vi)
of Example denote by M(X) the Banach space of signed Borel measures
i B — R with the norm

el = ;g(ﬂ(ﬂ) —uE\Q)  for pe M(D).

Proof of Theorem[5.73. The proof has five steps.
Step 1. The map H x H — M(X) : (z,y) — pay is real bilinear and
symmetric and |[py || < ||z|| lyl| all z,y € H.

That the map is real bilinear and symmetric follows directly from the defi-
nition of pi,,. Moreover, PoPsyq = 0, hence ||[Po — Payofl < 1, and hence
Hay () =y (B\Q) = (2, (Pa—Pere)y) < |lz|[lyll for allz,y € H and Q € B.
Step 2. Let B € L°(H) such that PoB = BPq for all Q € B. Then
Lo By = UB*azy for all x,y € H.

This follows again directly from the definitions. Let €2 € B and z,y € H.
Then 1, 5y () = (x, PoBy) = (x, BPay) = (B*x, Poy) = [i5+44(Q2).

Step 3. For every f € B(X) there exists a unique operator V(f) € L°(H)
that satisfies (5.91). Moreover, the resulting map ¥ : B(X) — L(H) is a
bounded complex linear operator.

Let f € B(X,R) and define the real bilinear form By : H x H — R by

By(z,y) ::/Efd,ux,y

Then |By(z,y)| < [[f[llpayll < [f[[Iz[l[lyl for all 2,y € H by Step 1 and [50,
Exercise 5.35 (i)]. Hence there is a unique operator W(f) € £L(H) such that

Re(z, U(f)y) = By(z,y) for all x,y € H.

This operator is self-adjoint because By is symmetric by Step 1, and it satis-
fies || B(f)|| < ||f]|- Hence the map ¥ : B(X,R) — L(H) is a bounded linear
operator. Moreover, Bf(x,iy) = —By(iz,y) by Step 2 with B =il so

Re(z, ¥(f)iy) = By(w,iy) = —By(ir,y) = —Re(ir, U(f)y) = Re(z,iV(f)y)

for all x,y € H. Thus V(f) : H — H is complex linear. For f € B(X)
define W(f) := V(Ref) + i1V (Imf) € L°(H). Then V(f) satisfies (5.91) and
is uniquely determined by this equation. This proves Step 3.
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Step 4. Let U : B(X) — L(H) be as in Step 3. Then ¥(fg) = V(f)V(g)
for all f,g € B(X).

Since the operator ¥ : B(X) — L°(H) is complex linear it suffices to verify
the equation U(fg) = W(f)¥(g) for real valued functions f,g € B(X,R).
Assume first that g = yq for some Borel set 2 C 3. Then

raay(§Y) = Re(Pox, Poy)
Re(z, PoPoy)

= Re(z, Ponay)

= (2N Q)

= / XQ dﬂx,y

for all ' € B. By [50, Thm 1.40] this implies

/ gdply, = / gxa dplz y
Q >
= / 9 dpipozy
>

Re(Poz, V(9)y)
= Re(z, Pa¥(g)y)
= flz,0(g)y(2)

for all g € B(X,R). Apply [50, Thm 1.40] again to obtain

Re(z, U(fg)y / fgdis, = / f dbta ey = Re(z, W(F)¥(g)y)

for all f,g € B(X,R) and z,y € H. This proves Step 4.

Step 5. o(U(f)) C f(X) for all f € B(X).

Let f € B(X) and A € C\ f(X) and define the function g : ¥ — C by
g(p) := (A — f(u)) "t for p € ¥. Then g(A — f) = (A — f)g = 1 and hence
U(g)( AL — W(f)) = (A1 —U(f))¥(9) = V(1) = 1. Hence A1 — WU(f) is
invertible and so A € p(¥(f)). This proves Step 5 and Theorem [5.73 O
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5.6.2 Measurable Functional Calculus

The following theorem extends the continuous functional calculus for normal
operators, established in Theorem [5.70] to bounded measurable functions.
The new ingredients are the (Convergence) axiom, based on Lebesgue dom-
inated convergence, and the modification in the (Image) axiom.

Theorem 5.75 (Measurable Functional Calculus).
Let H be a nonzero complex Hilbert space, let A € L°(H) be a normal oper-
ator, and let X2 := o(A). Then there is a bounded complex linear opearator

B(Z) — L(H) : [ f(A) (5.95)

that satisfies the following axioms.

(Product) 1(A) =1 and (fg)(A) = f(A)g(A) for all f,g € B(X).
(Conjugation) f(A) = f(A)* for all f € B(X).

(Positive) If f € B(X,R) and f >0 then f(A) = f(A)* > 0.
(Normalization) If f(\) = X for all A\ € ¥ then f(A) = A.

(Convergence) Let f; € B(X) be a sequence such that sup,cy || fi|| < oo and
let f € B(X) such that lim;_,o fi(A) = f(X) for all X € X. Then

E}m fi(A)x = f(A)x for all x € H.

(Contraction) [|f(A)| < supyes|f(A)] = ]| for all f € B(X).
(Commutative) If B € L(H) satisfies AB = BA and A*B = BA* then
f(A)B = Bf(A) for all f € B(X).

(Image) The image of the operator (5.95)) is the smallest C* subalgebra of
L(H) that contains the operator A and is closed under strong convergence.
(Eigenvector) If A € ¥ and x € H satisfy Az = Az then f(A)z = f(\)zx
for all f € B(Y).

(Spectrum) If f € B(X) then f(A) is normal and o(f(A)) C f(X). More-
over, o(f(A)) = f(X) for all f € C(X).

(Composition) If f € C(X) and g € B(f(X)) then (go f)(A) = g(f(A)).
The bounded complex linear operator 15 uniquely determined by the
(Product), (Conjugation), (Normalization), and (Convergence) axioms. The

(Product) and (Conjugation) axioms assert that it is a C* algebra homomor-
phism.

Proof. See page [287] O
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The proofs of both Theorems and will be based on a series of
lemmas. Assume throughout that H is a nonzero complex Hilbert space and
that A € L°(H) is a normal operator with spectrum ¥ := o(A) C C. The
starting point is the Riesz Representation Theorem which asserts that, for
every positive linear functional A : C(X,R) — R, there exists a unique Borel
measure i : B — [0, 00) such that A(f) = [, fduforall f € C(X,R) (see 50,
Cor 3.19]). By Theorem [5.70] this implies that, for each z € H, there exists
a unique Borel measure p, : B — [0,00) that satisfies (5.84)), i.e.

/ fdu, = (x, f(A)z) for all f € C(X,R).
b
For z,y € H define the signed measure f,, : B —+ R by

Hay = (Nm+y - Nz—y)- (5.96)

A

The next lemma summarizes some basic properties of these signed measures.
Lemma 5.76. (i) The map

HxH— M) :(x,y) = lzy (5.97)
defined by 1s real bilinear and symmetric.

(ii) The signed measures fi,., satisfy

/2 f ditzy = Re(z, f(A)y) (5.98)

forallx,y € H and all f € C(X,R).
(iii) Let B € L°(H) such that AB = BA. Then

Mz, By = UB*z.y (599)

and, in particular, iy = —izy for all z,y € H.

(iv) The signed measures ji,, satisfy

[ty | < ]y (5.100)

all x,y € H.
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Proof. Equation follows directly from and the definition of y ,
in . It implies that the map is real bilinear and symmetric. This
proves parts (i) and (ii).

We prove part (iii). Assume B € L¢(H) commutes with A and fix two ele-
ments z,y € H. If f € C(3,R) then f(A)B = Bf(A) by the (Commutative)
axiom in Theorem [5.54 Hence it follows from part (ii) that

[ Fhainy = Rele (ABy) = Re(Ba. £(A) = [ s,
for all f € C'(X,R). This implies

Mz, By = HUB*z,y

by uniqueness in the Riesz Representation Theorem. This proves part (iii).

We prove part (iv). The Hahn Decomposition Theorem asserts that, for
every i € M(X), there is a Borel set P C ¥ such that (2N P) >0 and
pn(S2\ P) <0 for every Borel set 2 C ¥ (see [50, Thm 5.19]). The norm of u

is then given by

fdu fdp
ull = (P) — (A P) = sup T Sl
O e iy i

(See [50, Exercise 5.35 (i)].) Hence
fuldnsy . Rele.f(A)

(5.101)

[tt2yll = sup = s
U reesr) I FEC(ER) [kl
[ 1|£(A)]| [y
< sup = ||zl |yl
JEC(ER) £

for all z,y € H. Here the fist step follows from (5.101f) and the last step
follows from the identity || f(A)|| = || f]] for f € C(X,R) (see Theorem [5.54)).
This proves Lemma [5.76 [

Lemma allows us to define the map B(X) — L(H) : f — f(A) in
Theorem and the map B — L%(H) : Q — Py in Theorem [5.74] This is
the content of the Lemma[5.77| below. The task at hand will then be to verify
that these maps satisfy all the axioms in Theorems and and, finally,
to prove the uniqueness statements. A key step for verifying the properties of
these maps will be the proof of the (Product) axiom in Theorem m This
is the content of Lemma (.78 below.
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Lemma 5.77 (The Operator V). There ezists a unique bounded complex
linear operator V4 : B(X) — L°(H) such that

Re(z, WA (f /fduxy (5.102)

for all x,y € H and all f € B(X,R). The operator V4 satisfies the (Con-
jugation), (Normalization), (Positive), (Contraction), and (Commutative)
azioms in Theorem [5.75 Iis restriction to C(X) is the operator (5.75) in

Theorem [5.70.
Proof. Fix a bounded real valued Borel measurable function f: ¥ — R and

define the map By : H x H — R by By(z,y) = [, fd,uxy for z,y € H. This
map is real bilinear and symmetric by part (i ) of Lemma and

B (z, y)| < [ lsapll < IS Y] (5.103)

for all x,y € H by and part (iv) of Lemma m Hence, by Theo-
rem [1.43] there is a unique bounded real linear operator W4(f) : H — H
such that Re(z, W4(f)y) = By(x,y) = [5 f dpiay for all 2,y € H. Since By
is symmetric the operator W4(f) is self-adjoint. Moreover, [[UA(f)]] < || f]|

by ((5.103)). Since

Rela, Ua(f)ig) — /E J bty = / F dpin,
— Re(iz, Ua(f)y) = Re(, i04(f)y)

for all x,y € H by part (iii) of Lemma [5.76| the operator ¥ ,(f) is complex
linear. The resulting map W, : B(X,R) — L°(H) extends uniquely to a
bounded complex linear operator W4 : B(X) — L(H) via

UA(f) :=Va(Ref) +i¥,(Imf) for f € B(X).

This operator satisfies ((5.102)) as well as the (Conjugation), (Normalization),
(Positive), and (Contraction) axioms. If B € £L°(H) commutes with A then

Re(z, UA(f)By) = /Efd,um,By = /EdeB*m,y = Re(B"z, Wa(f)y)

for all x,y € H by part (iii) of Lemma and so W,(f)B = BU(f).
Thus W4 satisfies the (Commutative) axiom and this proves existence. That
the operator W4 : B(X) — L¢(H) is uniquely determined by is obvi-
ous and this proves Lemma O



282 CHAPTER 5. SPECTRAL THEORY

Lemma 5.78 (Product Axiom). The linear operator ¥4 : B(X) — L(H)
in Lemma satisfies the (Product) aziom in Theorem[5.73,

Proof. Assume first that f : ¥ — [0,00) is continuous and fix an element
x € H. Then it follows from the (Product) axiom in Theorem that

/2 9 djis sy = Relz, g(A) f(A)z) = Relz, (9/)(A)x) = / of i,

for all g € C(3,R). The last term on the right is the integral of g with
respect to the Borel measure

B—)[O,oo):Q»—>/Qfduz

by [50, Thm 1.40]. Hence it follows from uniqueness in the Riesz Represen-
tation Theorem that

i p(A)2 () = /Q [ dpy (5.104)

for every Borel set 2 C X. This implies
Re(e. Vag)Va($e) = [ g,
b

_ / of dus (5.105)
by

= R'e<‘r7 \I/A(gf)13>

for all g € B(X,R) and all z € H. The second equation in follows
from (5.104) and [50, Thm 1.40]. Moreover, W4(f) = f(A) commutes with
A by Theorem[5.54] and hence W 4(f) commutes with U 4(g) by Lemma [5.77]
Since both operators are self-adjoint, so is their composition as is ¥4 (gf).

Hence it follows from ([5.105)) that
Va(f)Walg) = Valg)Valf) = Valgf)

whenever f: 3 — [0, 00) is continuous and g : ¥ — R is bounded and Borel
measurable. Now take differences and multiply by i, to obtain the (Product)
axiom for all f € C(X) and all g € B(X).

Now fix any bounded measurable function f : ¥ — [0, 00) and repeat the
above argument to obtain that holds for all 2 € B and hence (5.105))
holds for all g € B(3,R). Then the (Product) axiom holds for all f, g € B(X)
by taking differences and multiplying by i. This proves Lemma [5.78] O
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Lemma 5.79 (Convergence Axiom). The operator ¥, : B(X) — L(H)
in Lemma[5.77 satisfies the (Convergence) axiom in Theorem [5.75

Proof. 1t suffices to establish the convergence axiom for real valued functions.
Thus assume that f; : ¥ — R is a sequence of bounded Borel measurable
functions that satisfies

sup || fi|| < oc.
ieN

and converges pointwise to a Borel measurable function f : ¥ — R, i.e.
lim f;(A\) = f(\) for all A € X.

1—>00

Fix an element x € H. Then it follows from equation ((5.102)) in Lemmam
and the Lebesgue Dominated Convergence Theorem [50, Thm 1.45] that

Re<y7 \IJA(f)"L‘> = /Efd,uyﬂc

= lim f’L d:uy,x
by

1—00

= lim Re(y, Va(fi)z)
71— 00
for all y € H. Replace f; by f? and use Lemma to obtain

1Ta()z|> = (Va(f)z, Talf)z)
= (2, Ta(f*)z)

= lim [[Wa(fi)a]|”.
1—00

Thus the sequence (W 4(f;)x);en converges weakly to W4 (f)x and their norms
converge to the norm of W4 (f)z. Hence

lim [ 24 (f) — Wa(f)al] = 0

by Exercise |3.59] This proves Lemma [5.79 ]
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Proof of Theorem |5.74. Denote the characteristic function of Q2 C X by

1, for A € Q,
xXa: 2 — R, XQ()‘)::{O for A e ¥\ Q.

Let W, : B(X) — L°(H) be the bounded complex linear operator introduced
in Lemma and define the map B — L¢(H) : Q — Py by

Po := Y a(xa) for Q € B. (5.106)

Since xq is real valued the operator Pq is self-adjoint and since x4 = yq it
follows from Lemma that P, is a projection. Moreover

Py = Va(xp) = Va(0) =0, Py = Wa(xs) = Uu(l) =1,
and it follows again from Lemma that
PoPor =V a(xa)Valxe) = Yalxaxe) = Yalxana) = Poner

for all Q2,9 € B. Now let (£;);eny be a sequence of pairwise disjoint Borel
subsets of ¥ and define  := [ J:2, €;. Then

fn::ZXQi:E—ﬂR

=1

is a sequence of bounded Borel measurable functions that satisfies || f,|| <1
for all n and that converges pointwise to f := xqo. Hence, by Lemma [5.79

Poz = ¥(xa)a = lim U(f,)z = lim Z_; U(xo,)r = ,}5&; Pox

for all z € H. This shows that the map satisfies all the axioms in Def-
inition [5.72| and hence is a projection valued Borel measure on ¥. Moreover,
if g, : B — [0,00) is the unique Borel measure on ¥ that satisfies ,
then, for all x € H and all Q2 € B,

(0. Pa) = (2. Wala)e) = | xodis = a(6)

Thus the map ((5.106) satisfies (5.93)) and (5.94)). This proves existence.
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To prove uniqueness, let C(X) — L9(H) : f — f(A) be the C* alge-
bra homomorphism associated to A in Theorem [5.70| and, for every x € H,
let p, : B — [0,00) be the unique Borel measure on ¥ that satisfies

/ fdus = (z, f(A)z)  forall f € C(5,R).

Now let B — L°(H) : Q + P by any projection valued measure that
satisfies with the signed Borel measures fi,, : B — R given by (5.94).
Let U : B(X) — L¢(H) be the C* algebra homomorphism associated to this
projection valued measure as in Theorem [5.73| and denote by

b = \I[|C(E) : C’(Z) — EC(H)
its restriction to the space of continuous functions. Then it follows from (5.91))

and ((5.93) that
®(id) = ¥(id) = A.

Now fix a Borel set Q2 C ¥ and two vectors x,y € H. Then the vectors Poy
and Py\oy are orthogonal to each other and hence, by (5.94), we have

Pay(2) — pey(X\ Q) = Re(z, Poy — Poay)
< lz|| || Pay — Pooy|
= ||lz|| || Pay + Po\ey|
= [lz| |yl -

This implies
[yl < 2|yl forall z,y € H.

Hence the restricted C* algebra homomorphism ¢ : C'(X) — L°(H) is con-
tinuous and thus ®(f) = f(A) for all f € C(X) by the uniqueness statement
in Theorem [5.70} By (5.91)) this implies

/E f dpte = (2, 0(f)z) = (, B(f)z) = (. f(A)z) = / fdus

for all f € C(3,R). Hence p,, = p, by the uniqueness statement in the
Riesz Representation Theorem (see [50, Cor 3.19]) and this implies

for every x € H and every Borel set {2 C X. This proves the uniqueness
statement in Theorem [5.74 O
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The next lemma is useful in preparation for the proof of Theorem [5.75]

Lemma 5.80. Let X be a nonempty compact Hausdorff space such that every
open subset of ¥ is o-compact. Let B(X) be the Banach space of bounded
Borel measurable complex valued functions on ¥ equipped with the supremum
norm. Let F C B(X) be a subset that satisfies the following conditions.

(a) F is a complez subalgebra of B(X).
(b) Every continuous function f : 3 — C is an element of F.
(c) If (fi)ien is a sequence in F and f € B(X) such that sup,cy || fil| < oo
and lim;_,o. fi(A\) = f(X) for all X € X then f € F.
Then F = B(Y).
Proof. Let B C 2* be the Borel o-algebra and define
Br ={QeB|xq€F}.

We prove that Bz is a o-algebra. First, ), ¥ € Br by (b) because the charac-
teristic functions xyy = 0 and ysx = 1 are continuous. Second, if 2, € B
then xo,\0, = xao. (1 — xa,) € F by (a) and so ; \ Qy € Br. Third, if ; is
a pairwise disjoint sequence of Borel sets in B and Q := [ J;°, ©; then the
sequence of bounded measurable functions )" | xo, belongs to F by (a) and
converges pointwise to xq. Hence xq € F by (c¢) and so §2 € Bx. This shows
that Br is a o-algebra.

We prove that every open subset of ¥ is an element of Br. To see this,
let U C ¥ be an open set. Since U is o-compact, there exists a sequence
of compact sets K; C ¥ such that U = |J;2, K;. By Urysohn’s Lemma and
the axiom of countable choice there exists a sequence of continuous functions
fi : ¥ — [0, 1] such that

1, forall z € K;,
fid) = { 0, forallz e X\U.

This sequence converges pointwise to the characteristic function xy of U.
Since f; € F for all ¢ by (b), it follows that xy € F by (c¢) and so U € Bg.
This shows that B C B is a g-algebra that contains all open sets, so B = B.
Thus we have proved that yqo € F for all Q2 € B.

Now let f : ¥ — C be any bounded Borel measurable function. Then
there exists a sequence of Borel measurable step functions f; : ¥ — C (whose
images are finite sets) such that f; converges pointwise to f and || fi|| < || f]|
for all i (see [50, Thm 1.26]). Hence it follows from (c) that f € F. This
proves Lemma [5.80] O
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Proof of Theorem[5.75, Let W, : B(X) — L°(H) be the bounded complex
linear operator introduced in Lemma [5.77] It satisfies the (Conjugation),
(Normalization), (Positive), (Contraction), and (Commutative) axioms by
Lemma [5.77 the (Product) axiom by Lemma [5.78] and the (Convergence)
axiom by Lemma [5.79

We prove that U4 satisfies the (Image) axiom. Denote by A C L¢(H) the
smallest C* subalgebra that contains A and is closed under strong conver-
gence (i.e. if A; is a sequence in A and A € L°(H) such that Az = lim; o, A;x
then A € A). Since the image of the operator ¥, : B(X) — L(H) is such
a C* subalgebra of L°(H), by the (Product), (Conjugation), (Normaliza-
tion), and (Convergence) axioms, it must contain A. To prove the converse
inclusion, consider the set

F={feBE)|Vaf) € A}. (5.107)

This is a complex subalgebra of B(X) because A C L(H) is a complex sub-
algebra and the map U4 : B(X) — L°(H) is an algebra homomorphism. Sec-
ond, W4 satisfies the (Normalization) axiom by definition and the (Product)
axiom by Lemma [5.78] Hence it follows from Theorem that F contains
the continuous functions. Third, F is closed under pointwise convergence of
bounded sequences by Lemma [5.79 Hence F satisfies the requirements of
Lemma and so F = B(X). Thus ¥, satisfies the (Image) axiom.

We prove that U4 satisfies the (Eigenvector) axiom. Fix a real number
A € Po(A) C ¥ and vector x € H such that Az = Az. Define the set

F={feBE)|[Va(f)r = f(N)z}.

This set is a complex subalgebra of B(3) and contains the continuous func-
tions by Theorem [5.54 Moreover, if f; € F is a bounded sequence that
converges pointwise to a function f : ¥ — C then f € F by Lemma [5.79
Hence F = B(X) by Lemma [5.80] This shows that W, satisfies the (Eigen-
vector) axiom.

We prove that W satisfies the (Spectrum) axiom. Let f € B(X) and let
e C\ f(X). Define the function g : ¥ — C by g(A\) := (u — f(A\))™! for
A € 3. Then g is measurable and bounded. Moreover g(u—f) = (u—f)g =1
and hence U 4(g) (ul — U a(f)) = (pl — W4(f)) ¥a(g) = 1 by Lemma [5.78|
Thus the operator pll — W 4(f) is bijective and so pu & (W 4(f)). This shows
that the spectrum of the operator W 4(f) is contained in the closure of f(X).
This proves the (Spectrum) axiom.
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We prove uniqueness. Thus assume that
U: B(X) = LY(H)

is any bounded complex linear operator that satisfies the (Product), (Nor-
malization), and (Convergence) axioms. Then V(f) = W(f) for every con-
tinuous function f : 3 — C by Theorem [5.54] Define the set

Fo={feBE)|V(f)=Talf)}-

This set is a complex subalgebra of B(3) and contains the continuous func-
tions by Theorem [5.54 Moreover, if f; € F is a bounded sequence that
converges pointwise to a function f : ¥ — C, then

U(f)e = lim U(f;)z = lim Ua(fi)e =Va(f)x for all x € H,

1—00

by the (Convergence) axiom for ¥ and by Lemmafor U4, and so f € F.
Thus the set F satisfies the requirements of Lemma and so F = B(X).
This proves uniqueness.

We prove the (Composition) axiom. Fix a continuous function f : 3 — R
and define the set

G:={9€B(f(E)[(gef)A)=9g(f(A))}-

This set is a complex subalgebra of B(f(X)) because the maps
B(f(¥)) = L(H) : g = (g f)(A)

and
B(f(X)) = L(H) : g = g(f(A))

are both C* algebra homomorphisms. Second,
C(fX) cg

by the (Composition) axiom in Theorem [5.54l Third, the subspace G is closed
under pointwise convergence of bounded sequences by the (Convergence)
axiom. Hence G = B(f(X)) by Lemma[5.80f This proves Theorem [5.75 [
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The final theorem of this subsection establishes some useful additional
properties of the spectral measure and the measurable functional calculus of
a normal operator.

Theorem 5.81 (Spectral Projections for Normal Operators).
Let H be a nonzero complex Hilbert space and let A € L°(H) be a normal
operator. Denote its spectrum by ¥ := o(A) C C.

(i) Let Q C X be a nonempty Borel set and let xq : ¥ — {0,1} be the
characteristic function of Q. Then Pq := xq(A) is an orthogonal projection,
its image Fq :=1m(Pq) is an A-invariant subspace of H, and

S\ E\QCo(dlg,) C (5.108)
(ii) Let f € B(X) and let A € . If f is continuous at A then
FN) € a(f(A)).
(iii) Let A € ¥ and define Py := Ppy € L9(H). Then
P\ = P} = P;, im(Py) = ker(A\1 — A). (5.109)

Proof. We prove (i). When Q = ¥ or Q = () there is nothing to prove.
(The zero operator on the zero vector space has an empty spectrum.) Thus
assume Q # 3 and Q # (). Since yo = Y4 = Xq, the operator Py is an or-
thogonal projection. It commutes with A and hence its image Eq := im(FPp)
is invariant under A.

For ¢ € C define f.: 0(A) — C by

A, for A € Q,
fe(A) = { ¢, forAeo(A)\Q.

Then f, = xaid + cXo(ano, hence f.(A) = APy + ¢(1 — Py), and hence
0(APqy +c(1— Py)) C QU {c}. for all ¢ € C,

by the (Spectrum) axiom in Theorem . If A € C\Q and ¢ # ) then
the operator A1 — f.(A) = (Al — A)Py + (A — ¢)(1 — Py) is invertible and
hence, so is the operator A1 — Alg, : Eq — Eq. Thus o(A|g,) C Q. Now
let A€ 2\ Z\ Q. Then X\ ¢ 0(Alpg,) = 0(A|gs) by what we have just
proved and hence \ € 0(A|g,). This proves part (i).
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We prove (ii). Suppose, by contradiction, that f(A)1— f(A) is invertible
and define € := ||(f(A\)1 — f(A))™Y[|~". Then Theorem [1.49| asserts that the
operator ull — f(A) is invertible for every pu € C such that |p — f(N)]| < e.
Hence

o(f(A) N B(f(A) = 0. (5.110)
Now choose 0 > 0 such that, for all X € C,

A=XN|<0 — [f(A) = F(N)] < (5.111)

DN ™

Define
0= Bg(}\) N
and let Py := xq(A) and Eq := lm(PQ) as in (i) so the operator Ag := Al|g,
satisfies Q C 0(Aq) C Q by (5.108). Since Q # @ this implies Eq # {0}.
For g € B(X) define
ga -— g|O'(AQ)’
Then the operator Py = xq(A) commutes with g(A) and so the subspace Fq
is invariant under g(A) for all g € B(X). We claim that

go(Aq) = 9(A)|g, : Ea = Eq for all g € B(X). (5.112)

This formula clearly holds when ¢ is a polynomial in z and Z, hence it holds
for every continuous function g : > — C by the Stone-Weierstrafl Theo-
rem and hence it holds for all g € B(X) by Lemmal[5.80} In particular,
equation holds for our fixed function g = f.

It follows from (5.111), (5.112), and the (Spectrum) axiom in Theo-
rem [5.75] that

o(f(A)lpa) = 0(fa(Aq)) C f(o(Aq)) C f() B(f(A)-

Thus o(f(A)|g,) C o(f(A)) N B(f(A) =0 by (5.110), in contradiction to
the fact that Eq # {0}. This proves part (ii).

We prove (iii). Write x» := xqx}. If z € H satisfies Az = Az then

Py =x\(A)z = xax( Nz ==

by the (Eigenvector) axiom in Theorem [5.75 Thus ker(Al — A) C im(Py).
Conversely, let = € im(P)y) and consider the map g :=id : ¥ — X C C.
Then x = Pyx and gy, = A\x, and hence

Az = APz = g(A)xa(A)z = (gx2)(A)z = Axa(A)x = AP\z = Az.

This shows that im(Py) C ker(Al — A) and hence im(Py) = ker(A\1l — A).
This proves part (iii) and Theorem m ]
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5.7 Cyclic Vectors

The spectral measure can be used to identify a self-adjoint operator on a real
or complex Hilbert space with a multiplication operator. This is the content
of the next theorem, as formulated in [48, p 227].

Theorem 5.82 (Spectral Theorem). Let H be a nonzero complex Hilbert
space and let A = A* € L°(H) be a self-adjoint complex linear operator.
Then there ezists a collection of compact sets ¥; C o(A), each equipped with
a Borel measure p;, indexed by v € I, and an isomorphism

Vi € L2(Si, ) for alli € 1 }
and Zie[ H@Dz‘Hi?(ziw) < 0

U:H— @LZ(EiaNi) = {1/} = (Vi)ier

i€l

such that the operator UAU™' sends a tuple ¢ = (¢;)ier € @,ep L2 (55, 1)
to the tuple

UAU = (VAU 9):)ier € D L* (S, 1)
i€l
given by
(UAU 1) (N) = Mpi(N) foriel and A € 3.
Moreover, p;(2) >0 for all i € I and all nonempty relatively open subsets
Q C X;. If H is separable then the index set I can be chosen countable.
Proof. See page [295 ]

Theorem [5.82| can be viewed as a diagonalization of the operator A, ex-
tending the notion of diagonalization of a symmetric matrix. The proof is
based on the notion of a cyclic vector.

Definition 5.83 (Cyclic Vector). Let H be a nonzero complex Hilbert space
and let A = A* € L°(H) be a self-adjoint complex linear operator. A vector
x € H 1is called cyclic for A if

H =span{A"x|n=0,1,2,...}.

If such a cyclic vector exists, the Hilbert space H is necessarily separable.
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Theorem 5.84 (Cyclic Vectors and Multiplication Operators).

Let H be a nonzero complex Hilbert space, let A= A* € L(H) be a self-
adjoint complex linear operator, let ¥ := o(A) C R be the spectrum of A,
and let B C 2% be the Borel o-algebra. Let x € H be a cyclic vector for A,
let pi, : B —[0,00) be the unique Borel measure that satisfies (5.84)), and
denote by L*(X, ps) be the complex L* space of pi,. Then the following holds.

(i) There is a unique Hilbert space isometry U : H — L*(3, uy) such that
Ulf=f(Az  foral feCO). (5.113)
(ii) Let f : 3 — C be a bounded Borel measurable function. Then
UF(AU = fi (5.114)

for all ¢ € L*(2, ).
(iii) The operator U in part (i) satisfies

(UAU ) (N) = Mp(N) (5.115)

for all € L*(3, p) and all X € X.
(iv) If Q C X is a nonempty (relatively) open subset then u,(S2) > 0.

Proof. We prove part (i). Define the map T': C(X) — H by
Tf:=f(Azx for f € C(%). (5.116)

Here f(A) € L°(H) is the operator in Theorem [5.54 The operator T is
complex linear and it satisfies

(
) (5.117)

2
=[£Iz

for all f € C(X). Here the penultimate step follows from the definition of
the Borel measure p, on X in (5.84). Equation (5.117) shows the opera-
tor T: C'(X) — H is an isometric embedding with respect to the L? norm
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on C(X). By a standard result in measure theory, C'(X) is a dense subset
of L*(%, ug) (see for example [50, Thm 4.15]). More precisely, the obvious
map from C(X) to L*(3, 1) has a dense image. Hence the usual approxima-
tion argument shows that 7" extends to an isometric embedding of L?(3, u)
into H which will still be denoted by

T:L*(S, ug) — H. (5.118)

(Given f € L*(%, i), choose a sequence f,, € C(X) that L? converges to f;
then (T'f,)nen is a Cauchy sequence in H by (5.117); so (T;,)nen converges;
the limit is independent of the choice of the sequence f,, that L? converges
to f and is by definition the image T'f := lim,, o, T'f,, of f under T'.) Since
the extended operator is an isometric embedding it is, in particular,
injective and has a closed image.

We prove that it is surjective. To see this, consider the sequence of
continuous functions f,, : ¥ — R defined by f,(\) := A" for n € N and
A € ¥. Then f,(A) = A" by the (Normalization) and (Product) axioms
in Theorem m By definition of T in this implies that the vector
Arz = f,(A)x = Tf, belongs to the image of T" for all n € N. Since T is
complex linear it follows that span{z, Az, A%z,---} C im(T'). Since x a cyclic
vector for A, this implies H = span{z, Az, A%z, ---} C im(T) = im(7T").

Thus the extended operator T : L*(%, u,) — H is an isometric isomor-
phism by (5.117). Its inverse U := T~ : H — L*(3, j1,) satisfies equa-
tion by definition and is uniquely determined by this condition in
view of the above extension argument. This proves part (i).

We prove part (ii). Since C'(X) is dense in L*(%, p,), it suffices to prove
the identity for ¢p € C(¥). Fix a function ¢ € C(X). Assume first
that f € C(X). Then it follows from (5.113)) and the (Product) axiom in
Theorem that f(A)U ' = f(A)Y(A)x = (f)(A)x = U"L(f) and
hence U f(A)U =1 = f1i). Thus holds for all f € C(X). Define

Fi={f € BE)|UFAU = fu}.

This set is a complex linear subspace of B(X) by definition and C'(3) C F by
what we have just proved. Moreover, F is closed under pointwise convergence
of bounded functions by the (Convergence) axiom in Theorem m Hence
F = B(X) by Lemma and this proves part (ii).

Part (iii) follows from part (ii) by taking f =id : ¥ — ¥ C C.
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We prove part (iv). Let Q@ C ¥ be a nonempty relatively open subset
and suppose, by contradiction, that u,(2) = 0. Fix an element A\g € Q and
define the functions f,g: 3 — C by

1, for A€ X\ 1, for A e ¥\
- Ao—A? ’ o ’ )
f) = { O? for A € €, 9(\) = { 0, for A € Q.
Then f is a bounded measurable function because Q is open, and g “ 1

because p,(§2) = 0. Moreover, f(Ag —id) = (A —id)f = ¢ and hence it
follows from parts (ii) and (iii) that
U (ANl = AV = (U (Aol = A)f(AU)
= (U gAY

= W=
for all v» € L%(Z, p,). Thus the operator A\gll — A is bijective and therefore
Mo € X\ 0(A), a contradiction. This proves Theorem [5.84] O

The essential hypothesis in Theorem [5.84]is the existence of a cyclic vector
and not every self-adjoint operator admits a cyclic vector. However, given a
self-adjoint operator A = A* € L°(H) and any nonzero vector x € H one can
restrict A to the smallest closed A-invariant subspace of H that contains x
and apply Theorem to the restriction of A to this subspace.

Corollary 5.85. Let H be a complex Hilbert space, let A = A* € L(H),
and let x € H\ {0}. Then

H, :=span{z, Az, A%x,...} (5.119)

is the smallest closed A-invariant linear subspace of H that contains x. De-
fine Ay := Alg, : Hy — Hy, let ¥, = 0(A,), let B, C 2% be the Borel o-
algebra, and let p, : B, — [0,00) be the unique Borel measure that satis-
fies forall f € C(X,). Then there exists a unique Hilbert space isom-
etry Uy, : Hy, — L*(3,, pe) such that

Utf = f(A)x for all f € C(X,). (5.120)
This operator satisfies
Uaf (Aa)U, "0 = fo) (5.121)

for all f € B(3,) and all v € L*(X,, ps). Moreover, p,(S2) > 0 for every
nonempty relatively open subset  C X,.

Proof. This follows directly from Theorem [5.84] O
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Proof of Theorem [5.83. Here is a reformulation of the assertion.
Let H be a complex Hilbert space and let

A=A" e LH).

Assume H is nontrivial, i.e. H contains a nonzero vector. Then there exists
a nonempty collection of nontrivial pairwise orthogonal closed A-invariant
complex linear subspaces H; C H for i € I such that

admits a cyclic vector for each i € I and

H:@Hi.

iel

Thus there is a collection of nonempty compact subsets ¥; C o(A), Borel
measures f; on >;, and Hilbert space isometries

Ui H — LQ(Eia,Ui)

fori € I, such that p;(2) > 0 for all i € I and all nonempty relatively open
subsets Q2 C X; and

(UiAiUi_lwi)(A) = A%’()\) (5-122)

foralli eI, all; € L*(X;, p;), and all X € X;.
Call a subset S € H A-orthonormal if it satisfies the condition

k| Lifx=yand k=0,
(x, A y)-{ 0ifz 4y, for all z,y € S and k € Ny. (5.123)

The collection .77 := {S C H | S satisfies (5.123))} of all A-orthonormal sub-
sets of H is nonempty because {z} € . for every unit vector x € H. More-
over, . is partially ordered by inclusion and every nonempty chain in .&
has a supremum. Hence it follows from the Lemma of Zorn that .# contains
a maximal element S € .. If S € .% is a maximal element, then Corol-

lary implies that the collection {H, },cs defined by (5.119) satisfies the
requirements of Theorem [5.82| as formulated above. ]
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Exercise 5.86. Let X C R be a nonempty compact set and let ;1 be a Borel
measure on X such that every nonempty relatively open subset of ¥ has
positive measure. Define the operator A : L?(X, u) — L*(X, u) by

(AY)(N) == Mp(N) for ¢» € L*(3, 1) and A € X. (5.124)

Prove that A is self-adjoint and o(A) = . Theorem shows that every
self-adjoint operator on a complex Hilbert space is a direct sum of operators
of the form ([5.124]).

Exercise 5.87. Let H be a nonzero complex Hilbert space and let A = A*
be a compact self-adjoint operator on H. Prove that A admits a cyclic vector

if and only if A is injective and E) := ker(Al — A) has dimension one for
every A € Po(A).

Exercise 5.88. Let A = A* € C"*" be a Hermitian matrix and eq,...,e,
be an orthonormal basis of eigenvectors, so Ae; = \e; for i = 1,...,n with

Ai € R, Thus ¥ :=0(A) = {\1,..., A\, }. Assume \; # A, for @ # j.

(i) Prove that f(A)z =>"", f(\)(ei,z)e; for x € C" and f: ¥ — C.

(ii) Prove that = := )" | e; is a cyclic vector and that p, = >, 0y, is the
sum of the Dirac measures, so [, fdu, =Y, f(N;) for f: ¥ — C.

(iii) Let U : C" — L*(, y1,) be the isometry in Theorem [5.84, Prove that
(Uz)(\;) = (e, ) for z € C* and U~ = Y7 h(N)e; for o € LA(X, ).
Exercise 5.89. Let H be an infinite-dimensional separable complex Hilbert
space and let A = A* € L°(H) be a self-adjoint operator. Assume that (e;);en
is an orthonormal basis of eigenvectors of A so that Ae; = \;e; for all i € N,
where \; € R. Thus sup;cy |[Ni| < oo and ¥ = {);|i € N}. Assume \; # \;
for i # j.

(i) Prove that f(A)x = > .o f(N){e;, x)e; for every x € H and every
bounded function f: ¥ — C.

(ii) Choose a sequence &; > 0 such that Y ;- €7 < co. Prove that the vector
x =Yy 2 eie; s cyclic for A and that p, = > o2, €70,

(iii) Prove that the map ¥ — (¥()\;))ien defines an isomorphism

e e
251‘2‘77"‘2 < oo}.

i=1

L2(5, ) {n — (), e C

Prove that the operator U : H — L*(3, ji,) in Theorem is given by
(U) = 302 eib(N\)ei. Prove that the operator A := UAU " on L*(X, )
corresponds to 1 — (Ai7;)ien-
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Exercise 5.90. Here is an example with a rather different flavour. Consider
the Hilbert space

H :=(*(7,C) = {x = (Tn)nez € C* Z 2 |* < OO}

n=—oo

and define the operator A : H — H by
Az = (Tp_1 + Tpi1)nez for v = (z)nez € H.

Thus A = L+ L*, where the operator L : H — H is given by Lz = (41 )nez-
The vectors e; = (i )nez for ¢ € Z form an orthonormal basis of H.

(i) Consider the vectors a® := ey and a®d :=e; — e_;. Prove that

H® :=span{A*a®v |k =0,1,2,...}
={r=(xp)nez € H|x, —x_,, =0forall n € Z},
H°Y = span{Akaedd |k = 0,1,2,...}
={r=(2p)nez € H|xp+2_, =0for alln € Z},
H — H* @ [odd.

(ii) Define the map ® : H — L*([0,1]) by (Pz)(t) = Y,z €™ a,, for
x € H and t € [0,1]. Prove that ® is an isometric isomorphism and

(@A f)(t) = 2cos(2nt) f (1) for f € L*([0,1]) and 0 < ¢ < 1.

Find a formula for ®g(A)®~! for every continuous function g : [-2,2] — C.
(iii) Prove that Po(A) =0 and ¥ := o(A) = [-2,2].

(iv) Let u®, respectively p°d4) be the Borel measure on [—2, 2] determined
by equation (5.84) with x replaced by a®", respectively a®d. Prove that

ev 1 odd_V4_/\2d)\

Rt .

Hint: Use parts (ii) and (iii) with (®a®)(t) = 1 and (®a°3?)(t) = 2isin(27t).
(v) Show that there is a unique isomorphism U : H® — L*([-2,2], u)
such that U f(A)a® = f for all f € C([-2,2]). Show that it satisfies
(U A(US)10)(A) = Mb(N) for o € L2([~2,2], p) and A € [~2,2)].

(vi) Show that there is a unique isomorphism U°4d : Fodd — [2([—2, 2], podd)
such that U°df(A)a*dd = f for all f € C([—2,2]). Show that it satisfies
(UCdd AU =) (X)) = Mp(N) for ¢ € L2([—2,2], u°4d) and X € [-2,2].
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5.8 Problems

Exercise 5.91. Let H be a complex Hilbert space, let A € L°(H), and let
E C H be a closed complex linear subspace of H. The subspace E is called
invariant under A or A-invariant if, for all x € H,

rel — Ax € E.

Prove that E is invariant under A if and only if E+ is invariant under A*.

Exercise 5.92. Let H be a nonzero complex Hilbert space and A € L(H)
be a normal operator.

(i) Prove that
ReA >0 forall A € 0(A) <= Re(x,Az) >0 forallz € H. (5.125)

Hint: If Re(z, Az) > 0 for all z € H use the Cauchy—Schwarz inequality
for Re(z, Az — Az) with ReA < 0. If ReA > 0 for all A\ € o(A) prove that
le=|| < 1 for all t > 0 and differentiate the function ¢ — ||e~*4z]|2.

(ii) Prove that

sup Re(z, Ar) = sup Re),
zl=1 A€o (A)

(5.126)
inf Re(z, Az) = inf ReA.
[J]|=1 A€o (A)
(iii) Prove that
a(A)NiR =0 = A+ A* s bijective. (5.127)

Hint 1: If A + A* is bijective use the Open Mapping Theorem and
Lemma to deduce that A is bijective. Then replace A with A + i\1.
Hint 2: If 6(A) NiR = (), use Theorem to find an A-invariant direct
sum decomposition H = H~ @ H* such that =ReX > 0 for all A € o(A|y=).
Prove that H* is invariant under A* and use part (ii) for A|g=.

(iv) Prove that B
c(A+A) ={A+X[xeo(A)}. (5.128)
Hint: Apply part (iii) to the operator A — ul for u € R.

(v) Prove that the hypothesis that A is normal cannot be removed in (i-iv).
Hint: Find A € R**? and = € R? such that o(A) = {0} and (z, Az) > 0.
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Exercise 5.93. Let X be a nonzero complex Banach space, let A € L°(X),
and let p(z) = >_}_, arz* be a polynomial with complex coefficients. Prove
directly, without using Theorem @, that the operator p(A) := >}, arAF
satisfies

a(p(A)) = p(a(A)). (5.129)
Hint: To prove that p(c(A)) C o(p(A)) fix an element A € o(A) and use
the fact that there exists a polynomial ¢ with complex coefficients such that
p(z) — p(A) = (2 — A)g(z) for all z € C. To prove the converse inclusion,
assume a := a, # 0, fix an element p € o(p(A)), and let Ay,..., A, be the
zeros of the polynomial p — p so that p(z) —p = a[[;_,(z—\;) for all z € C.
Show that A — \;1 is not bijective for some .

Exercise 5.94 (Stone—Weierstral Theorem (real)). Here is another
proof of the Stone-Weierstrafl Theorem for real valued functions.

Let M be a compact Hausdorff space and let A C C(M) be a subalgebra of the
algebra of real valued continuous functions on M. Assume that A contains
the constant functions and separates points (i.e. for all x,y € M there ezists

an f € A such that f(x) # f(y)). Then A is dense in C(M).

(a) The proof is by contradiction. Assume A is not dense in C(M) and
choose an element f € C(M) such that d(f, A) :=infyea||f —g] = 1.

(b) For a closed subset K C M define ||g||,; := sup,cx|g(x)| for g € C(M)
and di(f, A) == infyea ||f — g|| ;. Prove that there exists a smallest closed
subset K C M such that dg(f, A) = 1. Hint: The Lemma of Zorn.

(c) Prove that K contains more than one point. Deduce that there exist a
function A € A such that ming h = 0 and maxx h = 1.

(d) Define
Ky :={z € K|h(zx) <2/3}, Ky :={x € K|h(z) >1/3}.

Find functions go, g1 € A such that || f — goll, <1 and ||f — gi1llg, < 1.
(e) For n € N define h,, := (1 — h")*" € A. Prove that

1 = hngo — (1 = hn)gnllc <1

for n sufficiently large and this contradicts the definition of K.

Hint: Use Bernoulli’s inequality (1 + ¢)" > 1+ nt for t > —1 and the
inequality (1 —¢) < (1+¢)~! for 0 < ¢ < 1 to show that h, converges
uniformly to one on K; \ K7 and converges uniformly to zero on K; \ K.
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Exercise 5.95 (Stone-Weierstrafl Theorem (complex)).

Let M be a compact Hausdorff space and let A C C(M,C) be a complex sub-
algebra of the algebra of complex valued continuous functions on M. Assume
that A contains the constant functions, separates points, and is invariant
under complex conjugation. Then A is dense in C(M,C).

(a) Deduce the complex Stone-Weierstral Theorem from the real Stone-
Weierstra3 Theorem.

(b) Find an example which shows that the hypothesis that A is invariant un-
der complex conjugation cannot be removed in the complex Stone—-Weierstrafl
Theorem. Hint: See Example [5.53]

Exercise 5.96 (Trigonometric Polynomials). Trigonometric polynomi-
als are the elements of the smallest algebra A C C'(R/27Z) that contains the
functions sin and cos.

(a) Every element p € A has the form

n

p(t) = Z(ak cos(kt) + by sin(kt)) for t € R,
k=0
where ay, b, € R.
(b) The trigonometric polynomials form a dense subalgebra of the space
C(R/27Z) of continuous 27-periodic real valued functions on R.

(c) Why does this not contradict the fact that there exist continuous real
valued 27-periodic functions on the real axis whose Fourier series do not
converge uniformly? (See Exercise [2.88])

Exercise 5.97 (The spectrum in a Banach algebra). Let A be a com-
plex unital Banach algebra. Define the spectrum of an element a € A
by

o(a) := {\ € C| Al — a is not invertible}

Prove the following.

(a) The spectrum o(a) is a nonempty compact subset of C for every a € A.
(b) The Gelfand—Mazur Theorem. If every nonzero element of A is
invertible then A is isomorphic to C. Hint: See the proof of Theorem [5.58]

(c) Every nonzero quaternion is invertible. Why does the Gelfand—Mazur
Theorem not apply?

(d) o(ab) U {0} = o(ba) U {0} for all a,b € A.
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Exercise 5.98 (Cayley—Hamilton). Let A be a complex n X n-matrix with
spectral radius 74. Prove the Cauchy integral formula

p(A) = = p(2) (21— A)~dz (5.130)

2mi |z|=r

for every r > r4 and every polynomial p(z) € C[z]. Deduce that ps(A) = 0,
where

pa(z) = det(z1— A)

is the characteristic polynomial of A.

Exercise 5.99 (Volterra Operator). Let H := L*([0,1]) and define the
operator T': H — H by

(TF)(t) = / £(s) ds

for f € L*(]0,1]).
(a) Verify the formula

(T f)(t) = / (t — )" f(s)ds

(n—1)!

forneN,0<t<1,and f € L*]0,1]).

(b) Determine the spectrum and the spectral radius of T

(c) Prove that T is compact and injective. Hint: Arzela—Ascoli.
(d) Compute the adjoint operator 7.

(e) Is T self-adjoint? Is T normal?

(f) Prove that the operator P := T + T™* is an orthogonal projection, i.e. it
satisfies P? = P = P*. What is its image?

(g) Compute the eigenvalues and eigenvectors, the spectral radius, and the
norm of the operator T*T. Hint: Differentiate T*T f = \f twice.

(h) Prove that

2
17 =~
™

Hint: Compute the largest eigenvalue of T*T and use equation (5.45)).
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Exercise 5.100 (Exponential function and logarithm). Let A be a
unital Banach algebra.

(a) For a € A define

(o] an
exp(a) == Z ol
n=0
If a,b € A commute, prove that exp(a + b) exp(a) exp(b). Prove that exp(a)
is invertible for every a € A.
(b) Let a € A and suppose that the spectrum of a is contained in the open
unit disc in C. Show that the element

log(a) := — Z @

n=1

is a well defined element of A and satisfies exp(log(a)) = a.
(c) Show that exp(.A) contains an open neighborhood of the unit 1.

(d) Let G C A denote the group of invertible elements of A. Recall that
G is an open subset of A and denote by Gy the identity component of G.
Show that Gy is an open and closed normal subgroup of G. Show that Gy is
the smallest subgroup of G that contains the set exp(.A). Show that every
element of Gy is a composition of finitely many elements of exp(.A4).

(e) Suppose A is commutative. Prove that
Go = exp(A).

Deduce that G/ is torsion free. Hint: Let g € G and assume g" € exp(A).
Choose an element a € A with ¢g" = exp(a) and define h := gexp(—a/n).
Then h™ = 1. Use this to prove that {A € C|(1 — X\)1+ Ah ¢ G} is a finite
set. Deduce that h € Gy and so g € Gy.

Exercise 5.101 (The Gelfand spectrum). This exercise expands the dis-
cussion in Subsection with an emphasis on the complex valued unital
algebra homomorphisms rather than the maximal ideals. Let A be a complex
commutative unital Banach algebra.

(a) Every maximal ideal J C A is closed and satisfies A/J = C. Every
non-invertible element of A is contained in a maximal ideal of A.

(b) Let ¢ : A — C be a unital algebra homomorphism, i.e. it is linear and
satisfies A(ab) = A(a)A(b) for all a,b € A and A(1) = 1. Then A is surjective
and ||A| = 1.
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(c) Every unital algebra homomorphism A : A — C

(d) The set of surjective algebra homomorphisms A : A — R is a weak*
closed subset ® 4 C A* of the unit ball in the complex dual space A* of A*.
There is a one-to-one corrspondence between the elements A € ® 4 and the
maximal ideals J = ker(A) C A. Thus the set ® 4 can be identified with the
Gelfand spectrum of A (the set of maximal ideals of A).

(e) Let A := C([0,1],C). Show that there is a homeomorphism
ev:[0,1] = Dy

which assigns to every element x € [0, 1] the evaluation map at z.

(f) The Gelfand transform is the map I' : A — C(® 4, C) that assigns to
every element a € A the evaluation map I';, : &4 — C given by

Lo(A) := A(a) for A € O 4.

(g) In the case A = C([0,1]) the Gelfand transform is an isometric isomor-
phism.
(h) More generally, the Gelfand transform is an isometric isomorphism when-

ever A admits the structure of a C* algebra such that [la*a| = [|a||* for all
a € A (see Theorem [5.64)).
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Chapter 6

Unbounded Operators

This chapter is devoted to the spectral theory of unbounded operators on a
Banach space X. The domain of an unbounded operator is a linear subspace
dom(A) C X. In most of the relevant examples this subspace is dense and the
linear operator A : dom(A) — X has a closed graph. Section examines
the basic definition, discusses several examples, and examines the spectrum
of an unbounded operator. Section [6.2] introduces the dual of an unbounded
operator. Section deals with unbounded operators on Hilbert spaces. It
introduces the adjoint of an unbounded operator and examines the spectra
of unbounded normal and self-adjoint operators. Sections [6.4] and [6.5] extend
the functional calculus and the spectral measure to unbounded self-adjoint
operators.

6.1 Unbounded Operators on Banach Spaces

6.1.1 Definition and Examples

Definition 6.1 (Unbounded Operator). Let X and Y be real or com-
plex Banach spaces. An unbounded (complex) linear operator from
X to Y is a pair (A,dom(A)), where dom(A) C X is a (complex) lin-
ear subspace and A : dom(A) — Y is a (complex) linear map. An un-
bounded operator A : dom(A) — Y is called densely defined if its do-
main is a dense subspace of X. It is called closed if its graph, defined by
graph(A) = {(z, Ax) |x € dom(A)}, is a closed linear subspace of X x'Y
with respect to the product topology.

305
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We have already encountered unbounded operators in Definition [2.1§
Recall that the domain of an unbounded operator A : dom(A) — Y is a
normed vector space with the graph norm of A, defined in (2.14) by

2]l 4 = llzllx + [|Az]ly,  for z € dom(A).

Thus an unbounded operator can also be viewed as a bounded operator
from its domain, equipped with the graph norm, to its target space. By
Exercise an unbounded operator A : dom(A) — Y has a closed graph
if and only if its domain is a Banach space with respect to the graph norm.
By Lemma an unbounded operator A : dom(A) — Y is closeable, i.e. it
extends to an unbounded operator with a closed graph, if and only if every
sequence (z,)nen in dom(A) such that lim,, o |2, ||y = 0 and (Az,)nen is a
Cauchy sequence in Y satisfies lim,,_, ||Az,||y- = 0. We emphasize that the
case dom(A) = X is not excluded in Definition[6.1] Thus bounded operators
are examples of unbounded operators. The Closed Graph Theorem [2.20
asserts in the case dom(A) = X that A has a closed graph if and only if A
is bounded. The emphasis in the present chapter is on unbounded operators
A : dom(A) — Y whose domains are a proper linear subspaces of X and
whose graphs are closed.

Example 6.2. Let X := ([0, 1]) be the Banach space of continuous real
valued functions on [0, 1] with the supremum norm. Then the formula

dom(A) := C*([0,1]), Af == f, (6.1)

defines an unbounded operator on C(]0, 1]) with a dense domain and a closed
graph. The graph norm of A is the standard C' norm on dom(A) = C*([0, 1]).

(See Example and equation ([2.15).)

Example 6.3. Let H be a separable complex Hilbert space, let (e;);en be a
complex orthonormal basis, and let (\;);en be a sequence of complex numbers.
Define the operator A, : dom(A,) — H by

> iles,2)P < oo},
=1

Az = Z Ailei, xye; for x € dom(A).
i=1

dom(A,) = {x eH

(6.2)

This is an unbounded operator with a dense domain and a closed graph. It
is bounded if and only if the sequence (\;);en is bounded.
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Example 6.4 (Vector Fields). Here is an example for readers who are
familiar with some basic notions of differential topology (smooth manifolds,
tangent bundles, and vector fields). Let M be a compact smooth manifold
and let v: M — TM be a smooth vector field. Consider the Banach space
X := C(M) of continuous functions f : M — R equipped with the supremum
norm. Define the operator D, : dom(D,) — C(M) by

the partial derivative of f

in the direction v(p)

exists for every p € M

and depends continuously on p

FG®), viR= M, A0 =p, 1(0) = ().

dom(D,) =< f € C(M) ‘
(6.3)

d

Here v : R — M is chosen as any smooth curve in M that passes through p
at t = 0 and whose derivative at t = 0 is the tangent vector v(p) € T,M.
The operator D, has a dense domain and a closed graph. Example is the
special case M = [0,1] and v = 0/0t.

Example 6.5 (Derivative). Fix a constant 1 < p < oo and consider the
Banach space X := LP(R,C). Define the operator A : dom(A) — X by

dom(A) := W'?(R,C)
f is absolutely continuous
o P
o {fEL (R’C)' and £ € IP(R,C) ’
df

Af = for fe WP(R,C).
S

(6.4)

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [50, Thm 6.19]). The opera-
tor has a closed graph and, for 1 < p < 0o, it has a dense domain. For
p = oo its domain is the space W1°°(R, C) of globally Lipschitz continuous
functions f : R — C. These are the absolutely continuous functions with
bounded derivative and do not form a dense subspace of L>(R, C). The clo-
sure of WH(R, C) in L*>°(R, C) is the space of bounded uniformly continuous
functions f: R — C.
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Example 6.6 (Schrédinger Operator). Define the unbounded linear op-
erator A on the Hilbert space H := L*(R,C) by

f is absolutely continuous,
dom(A) := {f c L*(R,C) ‘ % is absolutely continuous, },
and 24 € [*(R,C) (6.5)
Af = ihd2—f for f € W**(R,C).
dx? ’

Here h is a positive real number and z is the variable in R. Another variant
of the Schrodinger operator on L?(R, C) is given by

f is absolutely continuous and
dom(A) := { f € L*R,C) % is absolutely continuous and }’
ffoool—h”;%c + 22 f|? dr < o0 (6.6)
LA f a? 2,2
(Af)(x) := 15@(@ + Ef(x) for f € W=*(R,C) and x € R.

The operators (6.5 and are both densely defined and closed.

Example 6.7 (Multiplication Operator). Let (M, A, 1) be a measure
space and let g : M — R be a measurable function. Fix a constant 1 < p < oo
and define the operator A, : dom(A,) — LP(u) by

dom(Ay) :={f € L?(n) | fg € L"(w)}, 6.7)
A,f :=fg  for f € dom(4,). '
This operator has a dense domain and a closed graph.

Example 6.8 (Laplace Operator). Fix an integer n € N and a real number
1 < p < o0. Consider the Laplace operator

n 2
;;2 : W2P(R™) — LP(R™). (6.8)

Its domain is the Sobolev space W?P(R™) of all L” functions on R™ whose
distributional derivatives up to order two can be represented by L” functions.
This subspace contains the compactly supported smooth functions and so is
dense in LP(R™). The proof that this operator has a closed graph requires
elliptic regularity and the Calderén—Zygmund Inequality (see [50, Thm 7.43])
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There are many other interesting examples of unbounded operators that
play important roles in differential geometry and topology and other fields of
mathematics. Their study goes beyond the scope of the present book, whose
purpose is merely to provide the necessary functional analytic background.

6.1.2 The Spectrum of an Unbounded Operator

The following definition is the natural analogue of the definition of the spec-
turm of a bounded complex linear operator in Definition [5.14]

Definition 6.9 (Spectrum). Let X be a complex Banach space and let
A :dom(A) — X be an unbounded complex linear operator. The spectrum
of A is the set

o(A) = {A eC ‘
=Po(A)URo(A)UCo(A).

the operator A\l — A : dom(A) - X
does not have a bounded inverse (6.9)

Here Po(A) is the point spectrum, Co(A) is the continuous spectrum,
and Ro(A) is the residual spectrum. These are defined by

Po(A) := {\ € C| the operator X1 — A is not injective}

Ro(A):={\eC the operqtor Aﬂ — A is injective
and its image s not dense

(6.10)
the operator \1 — A is injective

Co(A):=< \€e C‘ and its image is dense, but it
does not have a bounded inverse

The resolvent set of A is the complement of the spectrum. It is denoted by

and has a bounded inverse

p(A):=C\o(A) = {)\ eC

the operator N1 — A is bijective } . (6.11)

For \ € p(A) the linear operator Ry(A) := (A — A)™' : X — X is bounded
and called the resolvent operator of A associated to \. A complex num-
ber A belongs to the point spectrum Po(A) if and only if there exists a nonzero
vector x € dom(A) such that Az = \x. The elements A € Pa(A) are called
eigenvalues of A and the nonzero vectors x € ker(Al— A) are called eigen-
vectors.
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The first observation about the spectrum of an unbounded operator is
that the resolvent set is empty unless the operator has a closed graph (see
Exercise . Actually, the resolvent set may also be empty for operators
with closed graphs or it may be the entire complex plane as we will see below.
The second observation is that the resolvent set of an unbounded complex
linear operator A : dom(A) — X is an open subset of C and that the map

p(A) = LX) : A= Ry(A) := (M — A)~!
is holomorphic. This is the content of the next lemma.

Lemma 6.10 (Resolvent Operator). Let X be a complex Banach space
and let A : dom(A) — X be an unbounded complex linear operator with a
closed graph. Let p € p(A) and let A € C such that

A=l el — 4) Y < 1. (6.12)
Then X\ € p(A) and
AL—A)" = (= Af(ul— A)~* (6.13)
k=0

Proof. Define the bounded linear operator Ty € L(X) by
D=2 — (u—\)(ul — A)~

for x € X. By (6.12) and Corollary this operator is bijective and

[e.9]

T => (= N(p1—A)*

k=0
Moreover, for all z € dom(A),
Tn(pl—A)x=(pul—A)x — (p— Nz =(A1- A)z.

Hence the operator AT — A : dom(A) — X is bijective and

o0

A= A) ™" = (pl— AT =D (= N (pl — A) !

k=0

This proves (6.13) and Lemma [6.10] O
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The third observation is that the resolvent identity of Lemma [5.19| con-
tinues to hold for unbounded operators.

Lemma 6.11 (Resolvent Identity). Let X be a complex Banach space,
let A:dom(A) — X be an unbounded complex linear operator with a closed
graph, and let X\, ;i € p(A). Then the resolvent operators Ry(A) := (A\1—A)~!
and R,(A) :== (1l — A)~ commute and

B\(A) = Bu(A) = (p = N RA(A) Ru(A). (6.14)
Proof. Let x € X. Then
(A= ) (Ra(A)z — Ru(A)z) = 2 — (1] = A)Ru(A)z + (1 — N Bp(A)
= (1= AR, (A)z
and hence Ry(A)z — R,(A)xz = (u — A\)Ry(A)R,(A)z. This proves (6.14).

Interchange the roles of A and p to obtain that Ry(A) and R,(A) commute.
This proves Lemma [6.11] O]

The fourth observation is that the spectrum of an unbounded operator
with a nonempty resolvent set is related to the spectrum of its resolvent
operators as follows.

Lemma 6.12 (Spectrum and Resolvent Operator). Let X be a com-
plex Banach space and let A : dom(A) — X be an unbounded complex linear
operator with a closed graph such that dom(A) C X. Let p € p(A). Then

Po(R,(A)) = {M—; A e Pa(A)} 7
Ra(R, () (0} = {1 [ A Rot) ],
Co(Ru(A)\ {0} = {ﬁ N e CJ(A)} | (6.15)
o) = {5 [re st fu o),
R = {25 X € )\ (.

Moreover, if X € Po(A) then ker((u — \)7'1 — R,(A))* = ker(A\1 — A)* for
all k € N and if X € p(A) \ {u} then

Ry (Ru(A)) = (1= N)(ul = AR (). (6.16)
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Proof. First observe that 0 € Ro(R,(A)) U Co(R,(A)) because R,(A) is
injective and im(R,(A)) = dom(A) C X. Second, if A € C\ {u} then

1 1 .
T Ruld) = S AL AR (4) € LX), (6.17)

The left hand side is injective if and only if A1 — A is injective, has a dense
image if and only if A1 — A has a dense image, and is surjective if and only if

A — A is surjective. This proves (6.15)) and (6.16). Now let A € Po(A) and
k € N and consider the linear subspace
Ej, == ker(Al — A)* = {z € dom(A%®) | (A1 — A)*z =0} .

This subspace is invariant under the operator R, (A) and hence under R, (A)*.

Thus it follows from (6.17)) that
By Cker (11— A)""1— Ry (A)".
To prove the converse inclusion, we proceed by induction on k. Suppose first
that = € ker ((p — A\)"'1 — R,(A4)). Then z = (u— N\)R,(A)z € dom(A) and
Ax = (n— NAR,(A)x
= (=N (uRu(A)z — x)
= p(p = AR (A)x + (A — p)x
= A\x.
This implies x € E;. Now let £ > 2, assume
Eiy = ker((p— \) 71 = Ry(A)F,
and fix an element
x € ker ((p—A)"'1 - Ru(A))k.

Then z — (u — AN)R,(A)zr € Ej—1 C dom(A>) by the induction hypothesis.
This implies z € dom(A) and R,(A)(A\x — Az) =z — (u — N R, (A)x € By
by . Hence A\x — Az € Fj_1, because Ej_; is invariant under ull — A,
and hence x € Fj. This proves Lemma [6.12] O]

Lemma allows us to carry over the results about the spectra of
bounded linear operators to unbounded operators. An important special
case concerns operators with compact resolvent.
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Definition 6.13 (Operator with Compact Resolvent). An unbounded
operator A : dom(A) — X on a complex Banach space X with dom(A) C X
is said to have a compact resolvent if p(A) # () and the resolvent operator

Ry(A) = (A1 — A)~t € £4(X) is compact for all X € p(A).

Exercise 6.14. Let A : dom(A) — X be an unbounded operator on a
complex Banach space X with domain dom(A) C X.

(i) Prove that Ry(A) is compact for some A € p(A) if and only if it is compact
for all A € p(A).

(ii) Let A € Po(A) and define E; := ker(A\l — A)* for k € N. Assume
E,, = E,, ;1. Prove that F,, = F}, for every integer k > m.

Theorem 6.15 (Spectrum and Compact Resolvent). Let X be a com-
plex Banach space and let A : dom(A) — X be an unbounded complex linear
operator on X with compact resolvent. Then

o(A) =Po(A)
is a discrete subset of C and the subspace

Ey = | ker(A — A)*

k=1
is finite-dimensional for all X\ € Po(A).

Proof. Fix an element p1 € p(A). Then zero is not an eigenvalue of R, (A).
Since the operator R,(A) is compact, it follows from Theorem that

(R, (A)) \ {0} = Po(R,(A))

is a discrete subset of C\ {0} and that the generalized eigenspace of R, (A)
associated to every eigenvalue z = (u — A)~! is finite-dimensional. Hence
Lemma [6.12] asserts that

o) = {n-1
1

-

= Po(A)

2 € o(Ru(A))\ {0}}

z € Pa(R”(A))}

is a discrete subset of C and that dim E) < oo for all A € o(A). This proves
Theorem [6.15] O
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Example 6.16. Consider the complex Hilbert space H := (*(N,C) (see
part (ii) of Exercise[5.34)). Let (););en be a sequence of complex numbers and
define the unbounded operator A, : dom(AA) — H by

|2 < oo, Z\)\ xi? < oo}

dom(A,) = {x = (2)sen € CV

and

Az = (Nii)ien for z = (2;)ien € dom(Ay).
This operator has a dense domain and a closed graph by Example and
its spectrum is given by Ro(A,) = ) and

Po(Ay) = {\]i €N},  o(Ay) = {n]|i €N}

Here the overline denotes the closure (and not complex conjugation). Thus
the resolvent set p(A,) is empty if and only if the sequence (\;);en is dense
in C. The operator A, has a compact resolvent if and only if lim; .| \;| = oo

Example [6.16| shows that the spectrum of an unbounded densely defined
closed operator on a separable Hilbert space can be any nonempty closed
subset of the complex plane. The next example shows that the spectrum can
also be empty.

Example 6.17. Consider the complex Hilbert space H := L*([0,1],C) (see
part (iii) of Exercise [5.34]). Define the operator Dy : dom(Dy) — H by

dom(Dy) := {u c L*([0,1],C)

u is absolutely continuous and
4 ¢ 12([0,1],C) and w(0) =0
and Dou := % for u € dom(Dy). Here t denotes the variable in the unit
interval [0,1]. Let f € L*([0,1],C) and v € W'?(]0,1],C) and X € C. Then
u € dom(Dy) and Au — Dou = f if and only if

d

d?—/\u—f u(0) = 0.
This equation has a unique solution u € dom(Dy) given by

t
u(t) = —/ AN f(s) ds for 0 <t < 1.
0

Hence the operator A1 — Dy : dom(Dy) — H is invertible for all A € C
and so p(Dy) = C. If the boundary condition on u is removed we obtain an
operator D = 4 : W'2([0,1],C) — L*([0,1],C) with ¢(D) = Po(D) = C
and p(D) = ().
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6.1.3 Spectral Projections

The holomorphic functional calculus in Section does not carry over to
unbounded operators unless one imposes rather stringent conditions on the
asymptotic behaviour of the holomorphic functions in question. However,
the basic construction can be used to define certain spectral projections.

Definition 6.18 (Dunford Integral). Let A : dom(A) — X be an un-
bounded complex linear operator with a closed graph on a complex Banach
space X and let ¥ C o(A) be a compact set. Call ¥ isolated if o(A) \ ¥ is
a closed subset of C. Call an open set U C C an isolating neighborhood
of X if o(A)NU = X. Assume U is an isolating neighborhood of ¥ and let
v be a cycle in U\ ¥ such that

1 dz [ 1, for A€ X,
WW’)\)'_%/V;;—)\_{O, for xe C\ U. (6.18)
(See Figure[5.1) The operator ®x, a(f) € L(X) is defined by
1
Py A(f) = Q—/f(z)(zll — A)tdz. (6.19)
T J,

Theorem 6.19 (Spectral Projection). Let X, A, ¥, U be as in Defini-
tion[0.18 Then the following holds.

(i) The operator ® 4 x(f) is independent of the choice of the cycle vy in U\ X
satisfying that is used to define it.

(ii) Let f,g : U — C be holomorphic. Then ®4x(f+g) = Pas(f)+Pax(g)
and P4 x(fg) = Pax(f)Pax(g).

(iii) Let f : U — C be holomorphic. Then o(®4x(f)) = f(X).

(iv) Let V..C C be an open sets and let f : U — V and g : V. — C be
holomorphic functions. Then g(®Pax(f)) = Pax(go f).

(v) Let v be a cycle in U\ X satisfying (6.18) and define
1
Py i=0,5(1)=— [ (21— A)"dz. 2

5= () = g (1A (6.20)
Then Ps is a projection, its image Xy := im(Ps) C dom(A) is A-invariant,
the operator Ay, := A|x,, : Xy — Xy is bounded, its spectrum is o(Ayx) = 3,
and the unbounded operator Alygndom(a) : Yy Ndom(A) — Yy = ker(Px) has
the spectrum o(A) \ .

Proof. The proof of Theorem is verbatim the same as that of Theo-
rem [5.25 and will be omitted. O
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6.2 The Dual of an Unbounded Operator

Definition 6.20 (Dual Operator). Let X andY be real or complex Banach
spaces and let A : dom(A) — Y be an unbounded operator with a dense
domain dom(A) C X. The dual operator of A is the linear operator

A" dom(A") — X7, dom(A*) C Y™,
defined as follows. Its domain is the linear subspace

there exists a constant ¢ > 0 such that
|(y*, Az)| < c||z|| for all x € dom(A)

and, for y* € dom(A*), the element A*y* € X* is the unique bounded linear
functional on X that satisfies

(A*y*, z) = (y*, Ax) for all x € dom(A).

dom(A*) := {y* ey”

Thus the graph of the linear operator A* is the linear subspace of Y* x X*
that is characterized by the condition

y* € dom(A*)
and r* = A*y*

for (y*,2*) € Y* x X*.

(2%, 7) = (y", Az)

— for all x € dom(A)

(6.21)

The next theorem summarizes some fundamental correspondences be-
tween the domains, kernels, and images of an unbounded linear operator and
its dual. It is the analogue of Theorem [4.§| for unbounded operators.

Theorem 6.21 (Duality). Let X and Y be Banach spaces and suppose
that A : dom(A) — Y is a linear operator with a dense domain dom(A) C X.
Then the following holds.

(i) The dual operator A* : dom(A*) — X* is closed.
(ii) Let v € X andy €Y. Then

(z,y) € graph(A) = for all y* € dom(A*).

(iii) A is closeable if and only if dom(A*) is weak™ dense in Y*.
(iv) im(A)* = ker(A*) and, if A has a closed graph, then “im(A*) = ker(A).
(v) The operator A has a dense image if and only if A* is injective.

(vi) Assume A has a closed graph. Then A is injective if and only if A* has
a weak* dense image.
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Proof. Part (i) follows directly from (/6.21]).
To prove part (ii), fix two elements x € X and y € Y. By Corollary [2.56
we have (z,y) € graph(A) if and only if, for all (z*,y*) € X* x Y*,

(*,8) + (y*, A¢) =0 for all £ € dom(4) = (2", 2)+ (y*",y) =0.

By the equation (z*, &) + (y*, AS) = 0 holds for all £ € dom(A) if and
only if y* € dom(A*) and A*y* = —x*. Thus (z,y) € graph(A) if and only if
(y*,y) = (A*y*, z) for all y* € dom(A*). This proves part (ii).

To prove part (iii), fix an element y € Y. Then it follows from in
part (ii) that (0,y) € graph(A) if and only if (y*,y) = 0 for all y* € dom(A*),
and this means that y € ~(dom(A*)). Thus

y € H(dom(A4")) = (0,y) € graph(A). (6.23)

Lemma [2.26| asserts that the operator A is closeable if and only if the pro-
jection graph(A) — X is injective, i.e. for all y € Y,

(0,y) € graph(A) = y=0.
By (6.23) this shows that A is closeable if and only if
*(dom(A")) = {0},

and, by Corollary [3.26 this condition holds if and only if the subspace
dom(A*) is weak™ dense in Y*. This proves part (iii).
To prove part (iv), note that

y* €ker(A*) &= y" o A=0 < y* €im(A)*

and, if A is closed, then

r € Him(A*) <= (A*y* z) =0 for all y* € dom(A)
<= z € dom(A) and Az = 0.

Here the last step follows from part (ii) with y = 0 because A has a closed
graph. This proves part (iv).

Part (v) follows from part (iv) and Corollary and part (vi) follows
from part (iv) and Corollary . This proves Theorem m [

The next result extends the Closed Image Theorem to unbounded
operators. In this form it was proved by Stefan Banach in 1932.
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Theorem 6.22 (Closed Image Theorem). Let X,Y be Banach spaces and
let A:dom(A) =Y be a linear operator with a dense domain dom(A) C X
and a closed graph. Then the following are equivalent.

(i) im(A) = *ker(A*).
(ii) The image of A is a closed subspace of Y.
(iii) There exists a constant ¢ > 0 such that

j?jo |z +¢l[x < clAzly for all z € dom(A). (6.24)

Here the infimum runs over all £ € dom(A) that satisfy A = 0.
(iv) im(A*) = ker(A)*.

(v) The image of A* is a weak™ closed subspace of X*.

(vi) The image of A* is a closed subspace of X*.

(vii) There exists a constant ¢ > 0 such

v <l A Y| - for all y* € dom(A™). (6.25)

ik lly” 7]
Here the infimum runs over all n* € dom(A*) that satisfy A*n* = 0.
Proof. We prove that (i), (ii) and (iii) are equivalent. By Corollary
and part (iv) of Theorem , we have im(A4) = “(im(A)1) = L ker(4*).
Hence (i) is equivalent to (ii). That (ii) is equivalent to (iii) follows from
the corresponding statement in Theorem because dom(A) is a Banach
space with respect to the graph norm of A by Exercise [2.19 and so A is also
a bounded linear operator between Banach spaces.
We prove that (iii) implies (iv) by the same argument as in the proof
of Theorem [4.16, The inclusion im(A*) C ker(A)* follows directly from

the definition of the dual operator. To prove the converse inclusion, fix an
element z* € ker(A)* so that (z*,£) = 0 for all £ € ker(A). Then

(2%, 2)| = [(=%, 2 + O < [la" |5 |z + €l x
for all x € dom(A) and all £ € ker(A). Take the infimum over all £ to obtain
[(z", x)| < ||z"] Azl for all z € dom(A).

X j?:fo 2+ ¢l < el x

Here the second step follows from . This inequality implies that there
is a bounded linear functional A on im(A) C Y such that Ao A = z*. The
functional A extends to an element y* € Y* by the Hahn—Banach Theorem
(Corollaries and [2.36). The extended functional satisfies y* o A = x*.
Hence y* € dom(A*) and z* = A*y* by definition of the dual operator.
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That (iv) implies (v) and (v) implies (vi) follows directly from the defini-
tion of the weak™ topology. That (vi) is equivalent to (vii) follows from the
fact that (ii) is equivalent to (iii) (already proved).

We prove that (vi) implies (ii), following [61, p 205/206]. Assume A* has
a closed image. Consider the product space X x Y with the norm

1@ )l xy = ll2llx +llylly  for (z,y) € X XY
The dual space of X x Y is the product space X* x Y* with the norm
(=", y")]

The graph of A is the closed subspace

oy = max{||x*| o ] Y*} for (z*,5") € X* x Y™,

.= {(x,y) GXXY‘:UEdom(A),y:Ax} CXxY
and the projection B : ' — Y onto the second factor is given by
B(z,y):=y= Az  for (z,y) € T.

This is a bounded linear operator with im(B) = im(A). We prove in four
steps that A has a closed image.

Step 1. The annihilator of I" is given by

rt = {(a:*,y*) € X" x Y

y* € dom(A*), 2" = —A*y*}.

Thus T+ C im(A*) x Y*.

Let (z*,y*) € X*xY*. Then (z*,y*) € ['t if and only if (z*, z) +(y*, Az) = 0
for all x € dom(A) and this is equivalent to the conditions y* € dom(A*)
and z* = —A*y* by (6.21). This proves Step 1.

Step 2. Define the map X* x Y* — I'* : (%, y*) — Ay by
Ay (2, Az) == (2%, ) + (y*, Ax) for x € dom(A).
This map induces an isometric isomorphism from X* x Y* /Tt to T'* and so

| Age 4

— : f { *_A* * ., *_'_ * *}
oinfmax{le = Ayl

for all (z*,y*) € X* x Y*.
This follows from Step 1 and Corollary respectively Corollary [2.69]
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Step 3. The image of the dual operator B* : Y* — I'* is given by

im(B%) = {A,-,

¥ €im(A"),y* € Y*}.

If y* € Y* then B*y* = y*oB = A(gy). Conversely, let (z*,y*) € im(A*)xY™*
and choose n* € dom(A*) such that A*n* = z*. Then A_,«,» = 0 by Step 1
and so Ay« v = N yr e = B*(y* +1*) € im(B*). This proves Step 3.

Step 4. B* has a closed image.

Let A; € im(B*) C I'* be a sequence that converges to A € I'* in the norm
topology. Choose (z*,y*) € X* x Y* such that A = A+« and, by Step 3,
choose a sequence (z},y;) € X* x Y* such that

A = Apr g, x; € im(A") for all i € N.

Then, by Step 2, there exists a sequence n; € dom(A*) such that

mac{ |2 — 7 = A0 |, " = 97+ lly- | < A= Al + 27

for all 7 and so

lim ||z* — 2] — A™n}|

=0.
1—00 X*

Thus
= grilo(xf + A™n) € im(A")
because A* has a closed image by assumption. Hence A = Ay« € im(B%)
by Step 3 and this proves Step 4.
It follows from Step 4 and Theorem that B has a closed image.
Hence so does A because im(A) = im(B). This shows that (vi) implies (ii)
and completes the proof of Theorem [6.22 O

Corollary 6.23. Let X and Y be Banach spaces and let A : dom(A) — Y
be a linear operator with a dense domain dom(A) C X and a closed graph.
Then A is bijective if and only if A* is bijective. If these equivalent conditions
are satisfied then A™' 1Y — X is a bounded linear operator and

(A*)—l — (A—l)*.
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Proof. Assume A is bijective and recall that dom(A) is a Banach space
with the graph norm because A has a closed graph (Exercise . Thus
A:dom(A) — Y is a bijective bounded linear operator between Banach
spaces. Hence A™!:Y — dom(A) is bounded by the Open Mapping Theo-
rem and so is A7 : Y — X (same notation, different target space). Now
let z* € X* and y* € Y*. We prove that

y* € dom(A*)
By (6.21), y* € dom(A*) and A*y* = z* if and only if (z*, z) = (y*, Az) for all
x € dom(A), and this is equivalent to the condition (z*, A~ly) = (y*,y) for
all y € Y, because A is bijective. This in turn is equivalent to (A~!)*z* = y*,

and this proves ([6.26)). By (6.26]), we have im(A~!)* = dom(A*) and
A(ATY =id: X" = X* (AH)*A" =id : dom(A*) — dom(A*).
Thus A* is bijective and (A*)™' = (A71)*. Conversely, if A* is bijective,
it follows directly from part (v), (vi), and (vii) of Theorem that A is
bijective. This proves Corollary [6.23] O

Example 6.24. This example shows that the domain of the dual operator
of a closed densely defined operator need not be dense (see part (iii) of
Theorem . Consider the real Banach space X = /¢! and define the
unbounded operator A : dom(A) — ¢! by

dom(A) := {x = (7;)jen € 0 ‘ iz|x,| < oo},
i=1

Az = (ix;)ien for x = (2;);en € dom(A).

= (A~ Y™ = y*. (6.26)

This operator has a dense domain. Moreover, it is bijective and has a
bounded inverse, given by A7y = (i 'y;)ien for y = (yi)ien € ¢'. Hence
A has a closed graph. Identify the dual space X* with ¢ in the canonical
way. Then the dual operator A* : dom(A*) — ¢* is given by

dom(4") i= {y = (yi)ien € €

A*y = (19;)ien for y = (y;)ien € dom(A™).
This operator is again bijective (see Corollary [6.23]). However, its domain is
contained in the proper closed subspace ¢y C ¢*° of sequences of real numbers
that converge to zero and hence is not a dense subspace of X* = />, It
contains all finite sequences and is therefore weak* dense in ¢°°.

supi|y;| < OO},
€N
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The next lemma shows that the relation between the spectrum of a
bounded linear operator and that of the dual operator in Lemma [5.18| carries
over verbatim to densely defined unbounded operators with closed graphs.

Lemma 6.25 (Spectrum of A and A*). Let X be a complex Banach space,
let A :dom(A) — X be an unbounded complex linear operator with a closed
graph and a dense domain dom(A) C X, and denote by A* : dom(A*) — X*
the dual operator. Then the following holds.

(i) o(A7) = a(A).

(ii) The point, residual, and continuous spectra of A and A* are related by

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URe(A*),
Ro(A*) C Po(A) U Co(A), Ro(A) C Po(A*),
Co(A*) C Co(A), Co(A) C Ro(A*) U Ca(A").

(iii) If X is reflexive then Co(A*) = Co(A) and

Po(A*) C Po(A) URo(A), Po(A) C Po(A*) URo(A*),
Ro(A*) C Po(A), Ro(A) C Po(A").

Proof. Part (i) follows from the identity
My — A)* = Ay — A

and Corollary [6.23]
Part (ii) follows from the same arguments as part (iii) of Lemma [5.18]

with Theorem [4.§ replaced by Theorem [6.21] If A\ € Po(A*) then A1 — A* is
not injective, hence A1 — A does not have a dense image by part (v) of The-
orem [6.21] and therefore A € Po(A) URo(A). If A € Ro(A*), then A\ — A*
is injective, hence A1 — A has a dense image, and so A € Po(A) U Co(A).
Third, if A € Co(A*) then A1 — A* is injective and has a dense image and
therefore also has a weak™ dense image, thus it follows from parts (v) and (vi)
of Theorem that A\l — A is injective and has a dense image, and there-
fore A € Co(A). This proves part (ii).
Part (iii) follows from part (ii) and the fact that

Co(A) = Co(A™)

in the reflexive case, again by parts (v) and (vi) of Theorem|[6.21| This proves
Lemma [0.25) [



6.3. UNBOUNDED OPERATORS ON HILBERT SPACES 323

6.3 Unbounded Operators on Hilbert Spaces

The dual operator of an unbounded operator between Banach spaces was
introduced in Definition [6.20] For Hilbert spaces this leads to the notion of
the adjoint of an unbounded densely defined operator which we explain next.

6.3.1 The Adjoint of an Unbounded Operator

Definition 6.26 (Adjoint Operator). Let X and Y be complex Hilbert
spaces and let
A:dom(A) =Y, dom(A) C X,

be a densely defined unbounded operator. The adjoint operator
A" dom(AY) — X, dom(A*) C Y,
of A is defined as follows. Its domain is the linear subspace

) >
dom(A*) = {y cy ‘ there exists a constant ¢ > 0 such that }

[{y, A&)y | < cll€llx for all € € dom(A)

and, for y € dom(A*), the element A*y € X is the unique element of X that
satisfies the equation

(A*y, &) ¢ = (v, AE)y for all £ € dom(A).

Thus the graph of the adjoint operator is characterized by the condition

and © = A*y — for all §X€ dom(A).Y (6.27)

The operator A is called self-adjoint if X =Y and A = A*.

The next lemma summarizes the basic properties of the adjoint operator.
Recall that in the Hilbert space setting the notation

St ={yec H|(x,y) =0forall zcS}

refers to the (complex) orthogonal complement of a subset S C H.
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Lemma 6.27 (Properties of the Adjoint Operator). Let X and Y be
complex Hilbert spaces and A : dom(A) — Y be a linear operator with a dense
domain dom(A) C X. Then the following holds.

(i) If P € LYX,Y) and A € C, then (A+ P)* = A* + P* and (\A)* = \A*.
(ii) A is closeable if and only if dom(A*) is a dense subspace of Y.

(iii) If A is closed then A*™ = A.

(iv) im(A)t = ker(A*) and, if A is closed, then ker(A) = im(A*)*L.

(v) A has a dense image if and only if A* is injective.

(vi) Assume A is closed. Then A has a closed image if only if A* has a
closed image if and only if im(A*) = ker(A)*.

(vii) If A is bijective then so is A* and (A71)* = (A*)~L.

(viii) If X =Y = H and A is closed, then o(A*) = {X|X € 0(A)} and

Po(A") € {X|X € Po(A) URa(A)},
Ro(A*) € {X|A € Po(A)},
Co(A*) ={A|Xe Ca(A)}.

Proof. These assertions are proved by carrying over Theorem [6.21) Theo-

rem [6.22] Corollary [6.23] and Lemma to the Hilbert space setting. The
details are left to the reader. O]

6.3.2 Unbounded Self-Adjoint Operators

By definition, every self-adjoint operator on a Hilbert space H = X =Y
is symmetric, i.e. it satisfies (z, Ay) = (Az,y) for all x,y € dom(A). How-
ever, the converse does not hold, even for operators with dense domains and
closed graphs. (By Example every symmetric operator is closeable.)
Exercise below illustrates the difference between symmetric and self-
adjoint operators and shows how one can construct self-adjoint extensions of
symmetric operators.

A skew-symmetric bilinear form w : V' x V' — R on a real vector space is
called symplectic if it is nondegenerate, i.e. for every nonzero vector v € V
there exists a vector u € V such that w(u,v) # 0. Assume w: V x V — R
is a symplectic form. A linear subspace A C V is called a Lagrangian
subspace if w(u,v) = 0 for all u,v € A and if, for every v € V' \ A, there
exists a vector u € A such that w(u,v) # 0.
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Exercise 6.28 (Gelfand-Robbin Quotient). Let H be a real Hilbert
space and let A : dom(A) — H be a densely defined symmetric operator.

(i) Prove that dom(A) C dom(A*) and A*|gom(a) = A.
(ii) Let V := dom(A*)/dom(A) and define the map w: V x V — R by

w(u,v) = (A*x,y) — (x, A™y) (6.28)

for x,y € dom(A*), where u := [z] € V and v := [y|] € V. Prove that w is a
well-defined skew-symmetric bilinear form. Prove that w is nondegenerate if
and only if the operator A has a closed graph.

(iii) Assume A has a closed graph. For a subspace A C V' define the operator
Ay :dom(Ay) — H by
dom(A,) := {zr € dom(A") | [z] € A}, Ap = A% dom(a,)- (6.29)

Prove that A, is self-adjoint if and only if A is a Lagrangian subspace of V.

(iv) Prove that A admits a self-adjoint extension. Hint: The Lemma of
Zorn.

(v) Prove that Ay := (ker(A*) + dom(A))/dom(A) is a Lagrangian subspace
of V whenever A has a closed graph and a closed image.
Exercise 6.29. This example illustrates how the Gelfand—Robbin quotient

gives rise to symplectic forms on the spaces of boundary data for symmetric
differential operators. Let n € N and consider the matrix

o 0 —1 2nx2n
P (9 E) e

Define the operator A on the Hilbert space H := L?([0, 1], R*") by
dom(A) := {u € WH([0,1],R*") | u(0) = u(1) = 0}, Au = Ja.

Here W'2([0, 1], R?") denotes the space of all absolutely continuous functions
u : [0,1] — R?*" with square integrable derivatives. Prove the following.

(i) A is a symmetric operator with a closed graph.

(ii) dom(A*) = W'2([0,1], R*") and A*u = Ja.

(iii) The map u — (u(0),u(1)) descends to an isomorphism from the quotient
space V = dom(A*)/dom(A) to R?" x R?". The resulting symplectic form
determined by on R?" x R?" is given by

w((ug, 1), (vo,v1)) = (Juy,v1) — (Jug, vo)

for (Uo,'LL1>, (’UQ,Ul) € RQn X RQn‘
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Exercise 6.30. Let H be a separable complex Hilbert space, let (e;);en be
a complex orthonormal basis, let (\;);eny be a sequence of complex numbers,
and let Ay : dom(Ay) — H be the operator in Example [6.3] Prove that its

adjoint operator is the operator A} = Ay associated to the sequence (\;)ien.
Deduce that A, is self-adjoint if and only if \; € R for all 4.

Exercise 6.31. Prove that the operator A, in Example is self-adjoint for
p = 2 and every measurable function g : M — R.

Another example of an unbounded self-adjoint operator is the Laplace
operator on A : W2*%(R",C) — L*(R",C) in Example [6.8] However, the
proof that this operator is self-adjoint requires elliptic regularity and goes
beyond the scope of this book.

The next theorem explains how every closed densely defined unbounded
operator gives rise to a self-adjoint operator by composition with its ad-
joint. The composition of two unbounded operators A : dom(A) — Y with
dom(A4) € X and B : dom(B) — Z with dom(B) C Y is the operator BA
defined by

dom(BA) := {z € dom(A) | Az € dom(B)},
BAz := B(Ax) for x € dom(BA).

The domain of BA can be trivial even if A and B are densely defined.

Theorem 6.32 (The Operator D*D). Let X and Y be Hilbert spaces and
let D:dom(D) —Y be a closed unbounded operator with a dense domain
dom(D) C X. Then the operator D*D : dom(D*D) — X is self-adjoint and
its domain is dense in dom(D) with respect to the graph norm.

(6.30)

Proof. The proof has seven steps.
Step 1. The operator D*D s symmetric.

Let z,& € dom(D*D). Then z,{ € dom(D) and Dx, D¢ € dom(D*) and
hence

(D*Da,&)x = (Da, DE)y — {z, D" DE) .
This proves Step 1.
Step 2. Every x € dom(D*D) satisfies | Dx||} < i (||lz||% + [|D* Dz|%).
If x € dom(D*D) then, by the Cauchy—Schwarz inequality,
|D|fy = {(z, D*Da)x < |l2|| [|D* Dz < 3 (ll2ll% + |D*Da|%) -
This proves Step 2.
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Step 3. The operator D*D is closed.
Let z; € dom(D*D) be a sequence such that the limits

r = lim xz;, z = lim D*Dux;
1—00 1—00

exist in X. Then (z;);eny and (D*Dx;);en are Cauchy sequences in X. Hence

(Dx;)ien is a Cauchy sequence in Y by Step 2 and so it converges. Denote
its limit by y := lim;_,o, Dx;. Since D and D* are closed, we have

z € dom(D), y = Dz € dom(D"), D'y = z.
Thus z € dom(D*D) and D*Dz = D*y = z. This proves Step 3.
Step 4. The operator 1x + D*D : dom(D*D) — X 1is bijective.
If z € dom(D*D) and x + D*Dz = 0 then

|21 + |1Dz[ly. = (2,2 + D*Dx)x =0

and so x = 0. Thus the operator lx + D*D is injective.
To prove that the operator 1y + D*D is surjective, fix an element z € X,
and define the linear functional A, on dom(D) by

A (x) = (z,2) for x € dom(D). (6.31)

This linear functional is bounded with respect to the graph norm

el p == \/HJCH§( + Dzl for z € dom(D). (6.32)
The associated (Hermitian) inner product (-, ) on dom(D) is given by
(,6)p = (2,&) x + (Dx, DE)y for x,¢ € dom(D). (6.33)

It renders dom(D) into a Hilbert space, because D has a closed graph. Hence
it follows from Theorem |1.43| respectively Theorem [5.35| that there exists a
unique element x € dom(D) such that

(,€)x + (Dz,DE)y = (2,6) for all £ € dom(D). (6.34)

Since |(Dz, DE)y| = |{z — 2,€)| < |12 — all €]l for all ¢ € dom(D), it
follows that Dz € dom(D*) and so x € dom(D*D). Moreover,

<ZE + D*DI7§>X = <x7§>X + <DI7D£>Y = <Z7§>X

for all £ € dom(D) by (6.34). Hence xz + D*Dx = z, because dom(D) is
dense in X, and this proves Step 4.
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Step 5. The subspace dom(D*D) C dom(D) is dense in dom(D) with respect
to the graph norm of D.

Consider the domain of D as a Hilbert space in its own right with the inner
product ([6.33). Then the obvious inclusion ¢ : dom(D) — X is an injective
bounded linear operator with a dense image. Hence the adjoint operator
X — dom(D) is also injective and has a dense image by part (v) of

Lemma Moreover, by Step 4 and (6.33)),
(2,8 x = ((Ix + D*D)7'2,€)

for all z € X and all £ € dom(D), and so t* = (1x+D*D)™! : X — dom(D).
Thus dom(D*D) is the image of the operator ¢* : X — dom(D) and hence
is a dense subspace of dom(D). This proves Step 5.

Step 6. Let x € X and suppose that there is a constant ¢ > 0 such that

(@, D*DE) | < erJllEl% + IDEIE for all € € dom(D*D).  (6.35)

Then x € dom(D).

Since dom(D*D) is dense in dom(D) by Step 5, the inequality as-
serts that the linear functional & — (z,£{ + D*D¢)y on dom(D*D) extends
uniquely to a bounded linear functional on dom(D) with respect to the graph
norm in (6.32)). Hence, by Theorem or Theorem , there exists a
unique element 2’ € dom(D) such that

(z,6+ D*D£>X = <$,:§>X + (D, D€>Y

for all £ € dom(D). Thus (z — 2/, + D*DE) =0 for all £ € dom(D*D).
Since the operator 1y + D*D : dom(D*D) — X is surjective by Step 4, we
find that z = 2’ € dom(D), and this proves Step 6.

Step 7. The operator D*D is self-adjoint.
Let z, 2z € X such that

(x,D*DE) = (2,&) % for all £ € dom(D*D).

Then x € dom(D) by Step 6, so (Dx, D)y = (z,&) y for all £ € dom(D*D).
This equation continues to hold for all £ € dom(D) by Step 5. Hence we
obtain that Dx € dom(D*) and D*Dx = z. This proves Step 7 and Theo-
rem [0.52) [
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Remark 6.33 (Gelfand Triples). The proof of Theorem carries over
to the following more general setting. Let H be a real Hilbert space and
let V' C H be a dense subspace. Suppose V' is a Hilbert space in its own right,
equipped with an inner product (-,-),,. Identify H with its dual space H*
via the isomorphism of Theorem [I.43] however, do not identify V' with its
own dual space. Thus

VCHCVY (6.36)

where the inclusion H = H* — V* assigns to each u € H the bounded
linear functional V' — R : v + (u,v),. This is the dual operator of the
inclusion V' — H and so is injective and has a dense image by Theorem
Now let B : V xV — R be a symmetric bilinear form and suppose that there
exist positive constants d, ¢, and C such that

S|vllF —clvll? < Blv,v) < Cv|)? for all v € V. (6.37)

Define the operator A : dom(A) — H by

B
ap B o]

vev vl
(Au,v) g := B(u,v) forallv € V.

dom(A) := {u eV

(6.38)

Then the same argument as in Theorem [6.32] shows that A is self-adjoint.
The key observation is that the operator cly+A : dom(A) — H is surjective.
This is proved as in Step 4 of the proof of Theorem [6.32] The bilinear form

VxV —=R:(u,v)— c(u,v)g + B(u,v)

is an inner product on V. Hence, for every f € H, there exists a unique
element u € V such that

c(u,v)y + B(u,v) = (f,v)y forallveV. (6.39)

This element u € V' belongs to the domain of A and satisfies cu + Au = f.
That dom(A) is dense in V' follows then from the observation that the opera-
tor cly + A : dom(A) — H extends to an isomorphism from V' to V* which
sends dom(A) to H. Since H is dense in V* it follows that dom(A) is dense
in V. This is the underlying idea behind the proof of Step 5 in Theorem |6.32
Theorem corresponds to the Gelfand triple with H = X, V = dom(D),
and B(z,§) = (Dz, D),. Exercise: Prove that the operator is self-
adjoint by following the above outline.
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Example 6.34 (Dirichlet Problem). The archetypal example of the situ-
ation in Theorem [6.32 is the operator
0 0 1,2 2
V=|(=—,....,— | : W;7(Q) — L (2,R").
(g ) W@ > 2R
Here Q2 C R" is a bounded open set with smooth boundary and I/VO1 2(Q) is the

completion of the space C§°(2) of smooth real valued functions u : 2 — R
with compact support with respect to the norm

n 2
g = | [ 3 do = \/ [ Ivu@ s
Q5 Q

The Poincaré inequality asserts that this norm controls the L? norm of u.
This example corresponds to the Gelfand triple with H = X = L?(2) and
V = dom(D) = W,*(R2), and the bilinear form

ou
" (z)

B: W 2 (Q) x W2 () = R
is given by

B(u,v) := /Q(Vu(x), Vou(x)) dx for u,v € W,*(Q).

The operator D = V takes values in the Hilbert space Y = L*(©2,R"), and
A = D*D is the Laplace operator

o £ W2(Q) NWGR(Q) — L¥(Q). (6.40)

The proof that dom(D*D) = W22(Q) N W, *(Q) requires elliptic regularity
and goes beyond the scope of this book. By Theorem the operator ((6.40))
is self-adjoint. It is actually bijective, so the Dirichlet problem

Au=f inQ,

A1
u=0 on o (6-41)

has a unique solution u € W22(Q) N Wy *(Q) for every f € L*(Q).
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6.3.3 Unbounded Normal Operators
The next theorem introduces unbounded normal operators on Hilbert spaces.

Theorem 6.35. Let H be a complex Hilbert space and A : dom(A) — H be a
closed unbounded complex linear operator with a dense domain dom(A) C H.
Then the following are equivalent.

(i) AA* = A*A.

(ii) dom(A) = dom(A*) and ||Azx|| = ||A*x|| for all x € dom(A).

(iii) There exist complex linear self-adjoint operators A; : dom(A;) — H for
i =1,2 such that dom(A) = dom(A*) = dom(A4;) Ndom(Ay) and

Ar = Ao + 1A, Az = Ay —idox, ||Az|)? = || Az + || Aoz
for all x € dom(A).

Definition 6.36 (Unbounded Normal Operator). A closed densely de-
fined unbounded complex linear operator A on a Hilbert space H is called
normal if it satisfies the equivalent conditions of Theorem [6.35,

Proof of Theorem[6.35 We prove that (i) implies (ii). Assume AA* = A*A.
Then every x € dom(A*A) = dom(AA*) satisfies x € dom(A) N dom(A*) as
well as Az € dom(A*) and A*x € dom(A), and hence

|Az||* = (Az, Az) = (z, A*Az) = (€, AA*z) = (A*z, A*z) = || A"z

Now fix an element z € dom(A). Then Theorem asserts that there
exists a sequence x; € dom(A*A) such that

lim ||z — x| =0, lim ||Az — Az;|| = 0.
1—00 1—00

Thus (Az;);en is a Cauchy sequence and so is the sequence (A*z;);en because
|A*x; — A*z,|| = ||Az; — Axy|| for all i,j. Hence the sequence (A*z;)ien
converges to some element y := lim; ,,, A*z;. Since the sequence (x;);en
converges to x and the sequence (A*z;);en converges to y and A* has a
closed graph it follows that x € dom(A*) and A*x = y. Hence

A% = 1yl = lim [ A°] = lin [ Az = [ As]
This shows that dom(A) C dom(A*) and ||A*z|| = ||Az|| for all z € dom(A).

The converse inclusion dom(A*) C dom(A) follows by interchanging the roles
of A and A*. This shows that (i) implies (ii).
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We prove that (ii) implies (i). Assume dom(A) = dom(A*) and
|Az|| = [|A" ]| for all x € dom(A).
Then the same argument as in the proof of Lemma [5.43| shows that
(Az, Ay) = (A%, A™y) for all z,y € dom(A). (6.42)
Now let € dom(A*A). Then z € dom(A) and Az € dom(A*) and
(A%, A76)] = (A, A€)| = (A" Az, £)] < | A" Az €] for all € € dom(A").

This implies A*z € dom(A) and hence z € dom(AA*). Thus we have
proved that dom(A*A) C dom(AA*). The same argument, with the roles
of A and A* reversed, shows that dom(A*A) = dom(AA*). Now fix an ele-
ment = € dom(A*A) = dom(AA*). Then, by (6.42), we have

(A*Ax, &) = (Ax, AE) = (A"x, A*E) = (AA™x,§) for all £ € dom(A*A).

for all ¢ € dom(A) = dom(A*). Since dom(A) is dense in H, this im-
plies A*Ax = AA*z. Thus we have proved that (ii) implies (i).
We prove that (ii) implies (iii). Assume dom(A) = dom(A*) and

|Az|| = ||A" ]| for all x € dom(A).

Define the operators By, By : dom(A) — H by
1 1
Bz = é(Ax + A*x), Box = 2—(Ax — A*x)
i

for x € dom(A). These operators are closeable by Example and hence
admit self-adjoint extensions A4; : dom(4;) — H for i = 1,2 by Exercise[6.2§
By definition, we have dom(A) C dom(A;) N dom(Az) and every element
x € dom(A) = dom(A*) satisfies

Ar = Ajx + iAsz, A'x = Ajx — iAoz,
and
el = 2 (lAz] + ]| A%]?)
_ }l(||Ax+A*x||2+||A*x—A*x||2>
= [lAuz])* + || sz |*.
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Now let € dom(A;) Ndom(Asy). Then,

[(z, AG)| = [{z, A€ +14x8)]
= [{Auz, &) + (Aga, i8) |

< (1Al + [l 4zall) lie]

for every £ € dom(A) and hence x € dom(A*) = dom(A). This shows
that (ii) implies (iii).

We prove that (iii) implies (ii). Assume A; : dom(A;) — H for i = 1,2
are self-adjoint operators that satisfy the following four conditions.
(a) dom(A;) Ndom(As) is a dense subspace of H.
(b) ||Arz + idsz||” = ||Ayz| + || Aoz||? for all 2 € dom(A;) N dom(A,).
(c) Let y € H and ¢ > 0 such that |(y, Ajx +idsx)| < c||z|| for every
element x € dom(A4;) Ndom(As). Then y € dom(A;) Ndom(As,).

(d) Let x € H and ¢ > 0 such that |(z, Ajy —iAsy)| < c|ly|| for every
element y € dom(A;) Ndom(As). Then x € dom(A;) Ndom(As,).

Define the operator A : dom(A) — H by
dom(A) := dom(A;) N dom(A,),

6.43
Az = Ayz + iAoz for x € dom(A;) N dom(Ay). (6.43)

Its domain is dense by (a). We prove that its adjoint operator is given by
dom(A*) = dom(A;) Ndom(As),
A*y = Ayy — iAyy for y € dom(A;) Ndom(As).

Let y € dom(A*). Then (y, Ax) = (A*y,z) for all + € dom(A) and this
implies y € dom(A;) Ndom(As) by (c). Hence

<A*y7 l’> = <y7 141'r + 1A2$> = <A1y - iA2y7 ZE)
for all € dom(A;) Ndom(A,), and hence
ATy = Ay —iAgy

by (a). The converse inclusion dom(A;) N dom(As) C dom(A*) follows di-
rectly from the assumptions. This shows that is the adjoint operator
of and vice versa by the same argument, using (d) instead of (c).
In particular, A has a closed graph. Moreover, it follows from (b) that
||Az| = ||A*z|| for all z € dom(A) = dom(A*). This shows that (iii) im-
plies (ii) and completes the proof of Theorem [6.35] O

(6.44)
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Let H be a separable complex Hilbert space, equipped with an orthonor-
mal basis (€;);en. Then the operator A, : dom(A,) — H in Example
is normal for every sequence of complex numbers (););en. The operator A,
is bounded if and only if the sequence (\;);en is bounded, it is self-adjoint
if and only if \; € R for all i (Example , it is compact if and only
if lim; 00| A;| = 0 (Example [4.26), and it has a compact resolvent if and only
if lim; | A;| = 0co. This example shows that the domains of the self-adjoint
operators A; = Agey and Ay = Ay, in Theorem [6.35| may differ dramati-
cally from the domain of A = A,. It also shows that every nonempty closed
subset of the complex plane can be the spectrum of an unbounded normal
operator (Example . In particular, the resolvent set can be empty. The
next theorem shows that every normal operator has a nonempty spectrum.

Theorem 6.37 (Spectrum of an Unbounded Normal Operator).
Let H be a nonzero complex Hilbert space and let A : dom(A) — H be an
unbounded normal operator with dom(A) C H. Then the following holds.
(i) If A € C then A1 — A is normal and, if A € p(A), then the resolvent
operator Ry(A) = (A1 — A)~! is normal.
(ii) o(A) # 0.
(iii) Ro(A) = 0 and Po(A*) = {X| X € Po(A)}.
(iv) If A has a compact resolvent then the spectrum o(A) = Po(A) is
discrete, for each N € Pa(A) the eigenspace Ey := ker(Al — A) is finite-
dimensional, and A admits an orthonormal basis of eigenvectors.
(v) If A is self-adjoint, then o(A) C R and
sup o (A) = sup {(z, Az) |z € dom(A), ||lz|| =1},
inf 0(A) = inf {(z, Az) | 2 € dom(A), ||lz]| = 1}.
Proof. We prove part (i). Let A € C. Then (A1l — A)* = A\l — A* and hence

(6.45)

Az — Az||® = AP |lz]? + 2(\z, Az) + || Az]|?
= [N |l=]® + 2(4*z, Xz) + || A*=||
= HX%’ — A%z |2

for all € dom(A) = dom(A1— A) = dom(A1— A)*. Thus A\ — A is normal.
If A is invertible then

A—I(A—l)* — A—I(A*)—l — (A*A)—l — (AA*)—I — (A*)—IA—I — (A—l)*A—l
by part (vii) of Lemma [6.27 and hence A~! is normal. This proves part (i).
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We prove part (ii). If p(A) = 0 then o(A) = C # 0. If p(A) # 0 and
p € p(A), then R,(A) is normal by part (i), hence
sup |z] = [[R,(A)] >0
z€o(Ru(A))
by Theorem [5.44) and hence o(A) = {u— 27! |z € o(R,(A)) \ {0}} # 0 by
Lemma [6.12] This proves part (ii).

We prove part (iii). Fix an element A € C\ (Po(A4) U Co(A)). Then
Al — A is normal by part (i) and is injective because A ¢ Po(A). Hence the
adjoint operator (Al — A)* = A1 — A* is injective by definition of a normal
operator in Theorem [6.35] Thus Al — A has a dense image by part (v) of
Lemma and so A\l — A is surjective because A ¢ Co(A). Thus A € p(A)
and this proves part (iii).

We prove part (iv). By assumption p(A) # () and the resolvent opera-
tor R,(A) is compact for all p € p(A). Fix an element p € p(A). Then
Theorem asserts that o(R,(A)) \ {0} = Po(R,(A)), that the spec-
trum of R (A) can only accumulate at the origin, and that the eigenspaces
of R, (A) are all finite dimensional. Moreover, Theorem asserts that the
operator R, (A) admits an orthonormal basis of eigenvectors. Hence part (iv)
follows from Lemma [6.121

We prove part (v). Assume A is self-adjoint and let A € C\ R. Then

Az — Az* = (ImA)? [|z]]* + [[(Red)z — Az[|” > (ImA)? |l

for all z € dom(A) as in the proof of Theorem[5.45] Hence A1— A is injective
and has a closed image by Theorem m Replace A by X to deduce that
the adjoint operator Al — A* = A1 — A is also injective, hence A1 — A has a
dense image by part (iv) of Lemma [6.27, so A1 — A is bijective and A € p(A).
Now let A € R and assume A > SUp,cqom(a), |z =1 (> A7) =: ¢. Then

|z||[| Az — Az| > (z, Az — Az) > (A —¢)|z|? for all x € dom(A).

Hence A1 — A is injective and has a closed image by Theorem and so is
bijective by Lemma [6.27, This shows that o(A4) C (—o0,d].

Conversely, assume ¢ := sup o(A) < co. We must prove that (z, Az) < ¢
for all x € dom(A) with ||z|| = 1. Suppose, by contradiction, that there exists
an element z € dom(A) such that ||z|| = 1 and (z, Az) > ¢. Choose a real
number p such that ¢ < p < (x, Az) and define £ := ux— Ax. Then p € p(A)
by assumption and (§, R,(A)§) = (ur — Az, x) = pp — (Az, z) < 0. However,
by Lemmam we have 0(R,(A)) ={(p =N |Ae€a(A)}u{0} C[0,0)
in contradiction to Theorem |5.45, This proves Theorem [6.37] O



336 CHAPTER 6. UNBOUNDED OPERATORS

6.4 Functional Calculus

For a topological space ¥ let B(X) be the C* algebra of bounded Borel mea-
surable functions f : ¥ — C with the supremum norm || f|| := sup,cx|f(A)].
Denote by Cy(X) C B(X) the C* subalgebra of complex valued bounded con-
tinuous functions on ¥. The next theorem extends the functional calculus of
Theorem to unbounded self-adjoint operators.

Theorem 6.38 (Functional Calculus). Let H be a nonzero complex Hil-
bert space, let A : dom(A) — H be an unbounded self-adjoint operator, and
let ¥ := o(A) C R. Then there exists a C* algebra homomorphism

B(S) = L(H) : f > f(A) = Wa(f) (6.46)

that satisfies the following axioms.

(Normalization) Let f; € B(X) be a sequence such that sup,cy | fi(A)] < |A|
and lim; o fi(A\) = X for all A € ¥. Then

lim f;(A)r = Ax for all x € dom(A).
1—00

(Convergence) Let f; € B(X) be a sequence such that sup,cy || fi|| < oo and
let f € B(X) such that lim;_,o fi(A) = f(X) for all A € X. Then

zlggo fi(A)x = f(A)x for all x € H.

(Positive) If f € B(X,R) and f > 0 then f(A) = f(A)* > 0.
(Contraction) ||f(A)|| < [f]| for all f € B(X) and |[f(A)|| = [[fI| for all
fe Cb(2>

(Commutative) If B € L(H) satisfies AB = BA then f(A)B = Bf(A)
for all f € B(Y).

(Eigenvector) If A € ¥ and x € dom(A) satisfy Ax = Az then

flA)x = f(N)zx for all f € B(Y).
(Spectrum) If f € B(X) then f(A) is normal and o(f(A)) C f(2). More-

over, o(f(A)) = f(X2) for all f € Cy(X). L
(Composition) If f € Cy(X) and g € B(f(X)) then (go f)(A) = g(f(A)).
The C* algebra homomorphism is uniquely determined by the (Nor-

malization) and (Convergence) azioms.

Proof. See page [339] O



6.4. FUNCTIONAL CALCULUS 337

Theorem 6.39 (Cayley Transform). Let H be a complex Hilbert space.
(i) Let A :dom(A) — H be a self-adjoint operator. Then the operator

U= (A—-il)(A+il)':H - H (6.47)
18 unitary, the operator 1 —U : H — H 1s injective, and
dom(A) =im(1—-U), A=i1+U)(1-U)"" (6.48)

The operator U is called the Cayley transform of A.

(ii) Let U € L°(H) be a unitary operator such that 1 — U is injective. Then
the operator A := i(1+U)(1-U)~! : dom(A) — H with dom(A) := im(1-U)
is self-adjoint and U is the Cayley transform of A.

(iii) Let A : dom(A) — H be a self-adjoint operator and let U € L(H) be
its Cayley transform. Define the Mobius transformation ¢ : R — ST\ {1} by

A—i 1ty

o) =17 ¢”W%—H_u (6.49)
for € R and p € ST\ {1}. Then
o(U)\{1} = o(a(4)),  Po(U) = ¢(Pa(A)), (6.50)
and
ker(Al — A) = ker(¢p(A\)1 —U) (6.51)
for all A € R.

Proof. We prove (i). The operators A £+ il : dom(A) — H are bijective and
have bounded inverses by part (v) of Theorem and they are normal by
part (i) of Theorem [6.37] Hence

|Az —iz|| = || Az + ix|| for all z € dom(A)

and so the Cayley transform U := (A — ill)(A +il)~! in (6.47) is a unitary
operator on H (see Lemma [5.43)). The operator U satisfies

1-U=2i(A+il) ", 1+U =2A(A+il)™".

Thus 1— U is injective, im(1—U) = dom(A), and i 'A(1—-U) = 1+ U, and
hence A and U satisfy (6.48)). This proves part (i).
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We prove (ii). Assume U € L¢(H) is a unitary operator such that 1 — U
is injective. Then 1 € C\ Po(U) and hence the operator 1 — U has a dense
image by Theorem [5.44] Define the operator A : dom(A4) — H by (6.43).
We prove that A is self-adjoint. Thus let z € dom(A*) and y := A*z. Then

(y,¢) = (2, AQ) = (2, i(1+ U)(A - U)7'()
for all ¢ € dom(A) = im(1 — U) and hence (y,& — U¢) = (x,i(§ + UE)) for
all ¢ € H. This implies U*y — y = i(U*x + z) and hence
y—Uy=i(z+Ux). (6.52)
Thus

Tr =

(x—Uzx)+ 3(z+Uz) = i(1 - U)(z — iy) € im(1 — U) = dom(A),

1
2
hence (1 — U)™'z = i (z — iy), and therefore
Az =i1+U)1-U) 2 =1+ U)(iz +y) = y.

Here the last equation follows from (6.52)). This shows that A is self-adjoint.
Moreover, A + ill = 2i(1 — U)~! and A — il = 2iU(1 — U)~! and hence
U= (A—il)(A+il)"! is the Cayley transform of A. This proves part (ii).

We prove (iii). Fix a real number A. Then, by (6.47)) and (6.49),

A+1) (N1 —-U)(Ax +ix) = (A—1i)(Az+iz) — (A +1)(Az — iz)
= 2i(\z — Ax)

for all x € dom(A). Since the operator A + il : dom(A) — H is surjective,
this implies that AT — A : dom(A) — H is bijective if and only if ¢(\)1 — U
is bijective. Moreover, if z € dom(A) satisfies Az = Az then
A +i)(pN)r —Uz) = A+i) (o)1 —U)(A\x +iz)

= A+1)(6(N)1—-U)(Azx + ix)

= 2i(\x — Ax)

= 0.
Conversely, let x € H such that Uz = ¢(A)z. Then (1 — ¢(N)z = x — Uz
and so x € im(1—U) = dom(A). Moreover, £ := (1-U) "'z = (1—¢(\)) 'z
and so

: e+ Uz 1+ ()
Ar =i+ U¢) =1 =i

R O =—Tey
This proves part (iii) and Theorem m ]

= \x.
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With these preparations we are now ready to establish the functional
calculus for general unbounded self-adjoint operators. We give a proof of
Theorem [6.38 which reduces the result to the functional calculus for bounded
normal operators in Theorem [5.75| via the Cayley transform.

Proof of Theorem[6.38 Let A : dom(A) — H be a self-adjoint operator with
domain dom(A) € H (so A is not bounded) and spectrum

Y:=0(A) CR

Let U := (A—il)(A+il)~! € L(H) be the Cayley transform of A. Then U
is a unitary operator and 1 — U is injective and not surjective, because
im(1—U) =dom(A) # H, and so 1 € o(U). Hence it follows from part (iii)
of Theorem that the spectrum of U is the (compact) set

o(U) =¢(B)u {1} c S". (6.53)

Now denote by
B(o(U)) = L(H) : g — g(U)

the C* algebra homomorphism in Theorem and define the map
B(X) = L(H) : f = f(A)

by
f(A):=(fop )(U) for f e B(X). (6.54)

Here the bounded measurable function f o ¢! : S'\ {1} — C is extended
to all of S* by setting (f o #7!)(1) := 0. We prove in seven steps that the
map (6.54)) satisfies the requirements of Theorem [6.38

Step 1. The map (6.54) is a C* algebra homomorphism. In particular, it
satisfies 1(A) = 1.

Define gy : o(U) — C by go(1) := 1 and go(2) := 0 for z € o(U) \ {1}.
Then the operator go(U) is the orthogonal projection onto the kernel of the
operator 11 — U by part (iii) of Theorem [5.81] and so go(U) = 0 because 1 — U
is injective. This implies 1(A) = (1o ¢ ')(U) = (1 — go)(U) = 1. That the
map is linear and preserves multiplication follows directly from the
definition. This proves Step 1.
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Step 2. The map (6.54) satisfies the (Normalization) aziom.

Let f; : X — C be a sequence of bounded measurable functions such that

sup|f;(N)| < |A, lim f;(A) = A for all A € X.
ieN 1—00

For i € N define the function h; : 0(U) — C by
hi(p) = (fio ™)) (1 —p)  for peo(U),
so h; : 0(U) — C is a bounded measurable function and
hi(U) = f;(A)(1-U). (6.55)
Moreover, ¢! (1) = i(1 + p)(1 — p)~* for p € o(U) \ {1} and hence

|hi(p)| =

d+p
fi(lm>’|1—/~6|§|1+ﬂ|§2

for all p € o(U) \ {1}. Since h;(1) = 0 for all ¢, this implies

supl|h;(p)| < 2, lim h;(p) = i(1 + p) forall p € o(U).  (6.56)
ieN 1—00

Now let z € dom(A) = im(1 — U) and define
E:=1-U)"a.

Then it follows from (6.48]), (6.55)), (6.56), and the (Convergence) axiom in
Theorem .75 that

lim fi(A)z = lim f(A)(€ —U€) = lim hi(U)¢ = i(€ + UE) = Ax.

This proves Step 2.

Step 3. The map (6.54) satisfies the (Convergence), (Positive), (Commuta-
tie), and (Figenvector) azioms.

The (Convergence) and (Positive) axioms follows directly from the definition
and the corresponding axioms in Theorem [5.75] The (Commutative) axiom
follows from the (Commutative) axiom in Theorem and the fact that
an operator B € L°(H) commutes with A if and only if it commutes with U
(and hence also with U* = U~!). The (Eigenvector) axiom follows from
equation and the (Eigenvector) axiom in Theorem m
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Step 4. The map (6.54) satisfies the (Spectrum) azioms.

Let f € B(X) and p € C\ f(X), and define the function g : ¥ — C by

1
Then g is bounded and measurable and satisfies g(u — f) = (u — f)g = 1.
Hence g(A)(ell — £(A)) = (ul — F(A))g(A) = 1 by Step 1, so 1l — f(4) is
invertible and thus p € p(f(A)). This shows that o(f(A4)) C f(¥).
Let f € Cp(2) and define the function g : o(U) — C by

_ J [(67(2)), forze€a(U)\{1},
9(2) '_{ 0, for z = 1.

Then g is continuous at every point z € o(U) \ {1} and f(A) = ¢g(U). Hence

fA) = g(e(V) € a(g(U)) = o(f(A))  forallxeX

by part (ii) of Theorem m Hence f(X) C o(f(A)) because the spectrum
of f(A) is a closed subset of C. This proves Step 4.

Step 5. The map (6.54) satisfies the (Contraction) azxiom.

This follows from Step 4 and the formula || f(A)[| = sup,e, (|l in part (ii)
of Theorem [£.44]

Step 6. The map (6.54) satisfies the (Composition) axiom.

Fix a function f € C,(X) and define Ay := f(A). Then X :=o(Ay) = f(¥)
by Step 4. Consider the map B(X¢) — L(H) : g — g(Ay) := (g o f)(A).
This map is a continuous C* algebra homomorphism by Step 1, it satisfies
the (Normalization) axiom id(Af) = Ay by definition, and it satisfies the

(Convergence) axiom by Step 3. Hence Step 6 follows from uniqueness in
Theorem (.75

Step 7. The map (6.54)) is uniquely determined by the (Normalization) and

(Convergence) axioms.

Let B(X) — L(H) : f — f(A) be any bounded C* algebra homomor-
phism that satisfies the (Normalization) and (Convergence) axioms and de-
fine U := ¢(A). Then U(A+il) = A—il by the (Normalization) axiom, so U
is the Cayley transform of A. Define the map B(o(U)) — L(H) : g — g(U)
by g(U) := (gop)(A) for g € B(c(U)). By definition, this map is a continuous
C* algebra homomorphism that satisfies the (Convergence) axiom. Moreover,
id(U) = ¢(A) = U. Hence the map g — ¢(U) agrees with the functional
calculus in Theorem [5.75] This proves Step 7 and Theorem [6.38 O
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6.5 Spectral Measures

Let B C 2% be the Borel o-algebra. Theorem allows us to assign to every
unbounded self-adjoint operator on a complex Hilbert space a projection
valued measure (see Definition |5.72)).

Definition 6.40 (Spectral Measure). Let H be a nonzero complex Hilbert
space and let A : dom(A) — H be an unbounded self-adjoint operator with
spectrum X = o0(A) C R, and let V4 : B(X) — LY(H) be the C* algebra
homomorphism of Theorem [6.38. For every Borel set Q@ C R define the
operator Po € L°(H) by

Po =V 4(xzno) (6.57)

By Theorem [6.38 these operators are orthogonal projections and the map
B— LCH):Q— Py (6.58)
is a projection valued measure. It is called the spectral measure of A.

Conversely, every projection valued measure (6.57) on the real axis gives
rise to a family of self-adjoint operators Ay : dom(A;) — H, one for every
Borel measurable function f : R — R. If f is bounded, then this operator
is bounded, so dom(Ay) = H, and it is given by the formula Ay := W(f) in
Theorem For unbounded functions f the operator Ay will in general
be unbounded.

Theorem 6.41 (Projection Valued Measures Determine Self-Adjoint
Operators). Let H be a nonzero complex Hilbert space and fix any projection
valued measure B — L(H) : Q — Py on the real axis. Define the signed
Borel measures i, , : B— R by

ty.2(2) := Re(y, Pox) forz,y € H and Q € B. (6.59)

Let f: R — R be a Borel measurable function. Then the formula
dom(Ay) := {x € H’ /f2 TS oo},
R (6.60)
Re(y, Afx) := / fdiy . for x € dom(Ay) andy € H.
R

defines a self-adjoint operator Ay : dom(Ay) — H. This operator satisfies
the equation || Apz||” = [; f2djs. for all x € dom(Ay).



6.5. SPECTRAL MEASURES 343

Proof. Fix a Borel measurable function f : R — R. For x,y € H the function
ly - B — R is a signed Borel measure. The total variation of this signed
measure is the Borel measure |y, .| : B — [0,00), defined by

|Ny,w|(Q) ‘= Ssup {Ny,ﬂc(Q/) - Myyx(Q \ Q/) ‘ QeB O cC Q} (6-61)

for every Borel set 2 C R (see [50, Thm 5.12]). By definition, the total varia-
tion satisfies |1y »(Q)| < |py,2|(2) for all @ € B. The positive and negative
parts of i, , are the Borel measures i, : B — [0, 00), defined by

Q) + Q
() = W E) LD g (6.62)

They satisfy iy, =, — py, and [py.| = pf, +py, I f: R — Ris a
measurable function such that [ |f]d|s,.| < oo then [i|f|du:, < oo, and
in this case the integral of f with respect to p, , is defined by

/R f iy, = /R Fut, - /R F iy (6.63)

We prove in ten steps that the operator Ay is well defined and self-adjoint
and satisfies || Ayz||> = [, f?dps, for all 2 € dom(Ay).

Step 1. The signed Borel measures i, , in (6.59)) satisfy the inequality

113,21(€2) < 3 b0 ()4 1, () (6.64)

for all x,y € H and all Q € B.
Fix two elements x,y € H. If 21,y € B are disjoint and €2 U €2y =: ) then

Hpﬂlez + Hpﬂlxl‘z = <x7P91x> + <l‘, P92x> = <$7 PQ:E> = N%I(Q)'
By the Cauchy—Schwarz inequality, this implies

fy2 () = 11y, (2 \ ) = Re(Pavy, Pow) — Re(Poyary, Poyarz)
< |[Por|| || Paryll + || Porer ]| || Paverw|

< VIPaal? + || Povor |\ 11 Pyl + | Ponery]

= 1o () 1()

for every pair of Borel sets €' C 2 C R. Fix a Borel set 2 C R and take the
supremum over all Borel sets €' C ) to obtain (6.64)). This proves Step 1.
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Step 2. Let f: R — R be a Borel measurable function. Then

[Ufl el <loly| [ Fdnee foratteyen 6o
R R

For every finite collection of pairwise disjoint Borel sets €2¢,...,€, C R and
every finite collection of positive real numbers aq, ..., a,, we have

n

n 2 o, 1/2
D il ] () < (Z a?ux,x(ﬁi)> (Zﬂyvy(ﬁi)>

i=1

by Step 1 and the Cauchy—Schwarz inequality. Moreover,

Zﬂy,y(Qi) = Hyy (U Qz) < ||?JH2
i=1 i=1

This proves for the Borel measurable step function f := """  a;xq,-
Since every Borel measurable function f : R — [0,00) can be approxi-
mated pointwise from below by a sequence of Borel measurable step functions
(see [50, Thm 1.26]), this proves Step 2 for positive Borel measurable func-
tions and hence for all real valued Borel measurable functions on R.

Step 3. The operator Ay : dom(Ay) — H in is well defined.

Fix an element z € dom(Ay) and define ¢ := ([, f*dps.)"/? < 0o. Then
Step 2 asserts that [ |f|d|uy.| < c||ly|| < oo and so the integral [, fdpu, , is
well-defined for all y € H. Define the map A, : H — R by

A (y) = /Rfd,uy@ for y € H.

This map is real linear and satisfies the inequality

1/2
IMMMSAUMwAS(Aﬁme Iyl =yl

for all y € H by Step 2. Hence, by Theorem [1.43] there exists a unique
element Ajxr € H such that

Re(y, Asx) = / [y . for all y € H.
R

This proves Step 3.
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Step 4. The set dom(Ay) C H is a complex linear subspace and the operator
Af : dOHl(Af) — H

mn 18 complex linear and symmetric.
Let z,2" € dom(Ay). Then

,Ua:+z/,:t+x/(9) = <$ + x/7 Pﬂm + PQx/>
= ||Poz|® + 2Re(Pox’, Poz) + || Pox’|)”
< 2| Poz|* + 2| P’
= 23 (02) + 2400 2 ()
for all Q € B and this implies x + 2’ € dom(Ay). Moreover, pxzae = |tz
so Az € dom(Ay) for all A € C. Thus dom(Ay) is a complex subspace of H.
Since phy girar = fyz + Hyor A0 fly xg = Ay, for all 2,2" € dom(Ay) and all
A € R, the operator Ay is real linear. To prove that it is complex linear, fix

an element z € dom(Ay) and an element y € H. Then i, = — iy, and
hence

Re(y, Asiz) = / fdpy i =— / fdpsy . = —Re(iy, Apz) = Re(y,iAsx).
R R

This shows that Ay is complex linear. Moreover, Ay is symmetric because
the bilinear map dom(Ay) x dom(Ay) = M(R) : (z,y) — fiy, is symmetric.
This proves Step 4.

Step 5. The operator Ay : dom(Ay) — H in has a dense domain.
For n € N define the Borel set
Q, ={XeR||f(N)]| <n}.

Then R =77, ©2,,. Hence it follows from the (0-Additive) and (Normaliza-
tion) axioms in Definition that

lim Po,x =2 for all z € H.

n—oo

Now let © € H and define z,, := Py, . Then g, 4, () = p (2 N Q) for
all € B by the (Intersection) axiom in Definition [5.72] Hence

/f2 dptz,, 2, :/ f2 dptge < n2||x||2
R Qn

and so x,, € dom(Ay) for all n € N. This proves Step 5.
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Step 6. Let x € dom(Ay). Then Pox € dom(Ay) and
AfPQ;C = PQAfI
for all Q € B.

The estimate
/f2 d,uPQm,PQx - / f2 dﬂz,:p < o0
R Q

shows that Poz € dom(Ay). Moreover,

Re(y, AfPoz) = / fdpy pox = / f dppgy . = Re(Poy, Agr)
R R

for all y € H and this proves Step 6.

Step 7. Let x € dom(Ay) andy € H. Let g : R — R be a Borel measurable
function that is integrable with respect to the Borel measure |fiy .| Then g f
is integrable with respect to the Borel measure |, .| and

/gfdru'y,z:/gd,uy,/lfr-
R R

/XQ’ dpipoy e = HPayz(SY) = Re(Ponay, ) = / X XQdlly o
R

R
by (6.59)). This implies

/thPQy,x :/hXQd,uy,ac
R R

for every Borel measurable step function A : R — R. By an approximation
argument, this equation continuous to hold for every Borel measurable func-
tion A : R — R that is integrable with respect to jip,, .. In particular, it
holds for h = f by Step 2. Hence

If Q,Q € B then

fry,a,0(2) = Re(Poy, Ayr) = / Jdppay . = / Xafdity . (6.66)
R R

for every Borel set 2 C R. Now let g : R — R be a Borel measurable function
that is integrable with respect to the Borel measure |p, 4,.|. Then it follows
from and [50, Thm 1.40] that gf is integrable with respect to the Borel
measure |y .| and [, gf dpty e = [ g dpiy ;2. This proves Step 7.
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Step 8. Let x,y € dom(Ay). Then f is integrable with respect to the Borel
measure |y Ao, f* is integrable with respect to |, .|, and

/ f? dpty » = / [y a0 = Re(Apy, Agz). (6.67)
R R

By Step 2, we have [o|f]d|py,a,q| < Azl (fg 2 diyy)"? < o0, and so f is
integrable with respect to the Borel measure |p, 4,.|. Hence it follows from
Step 7 with g = f that f? is integrable with respect to the Borel measure |p, .|
and that the first equality in (6.67)) is satisfied. The second equality in (6.67))
follows from Step 3 and Step 4. This proves Step 8.

Step 9. Let x € dom(Aff) and y € H. Then f is integrable with respect to
the Borel measure |, a,|, f* is integrable with respect to |py, 4|, and

/f2 dﬂy,m = / fd,uy,Afm- (668)
R R

Since Ajx € dom(Ay) it follows from Step 2 that f is integrable with respect
to the Borel measure |, 4,.|. Hence Step 9 follows from Step 7 with g = f.

Step 10. The operator Ay : dom(Ay) — H in is self-adjoint.
Let z € dom(A}) and define y := Ajz. Then

[ faoe = Rela, Agg) = Relj, ) =Rety &) (6.60

for all £ € dom(Ay). Choose xz,, := Py, x as in the proof of Step 5. Then

/f Dptas = hm/ 12 dpty = hm/f Do,

by the Lebesgue Monotone Convergence Theorem. Moreover, it follows from
Step 6 that Asx,, = AsPqg, x, = Po,Afz, € dom(Ay). Hence

/ P, — / Fditon,e, =Rely, Agy) = / Fdityan <yl / P
R R R R

Here the first step uses Step 9, the second step follows from equation
with & := Az, € dom(Ay), the third step uses the definition of Ay, and the
last step follows from Step 2 because fiy, 4, = Hz .z, This implies

[ 7=l [ P, <ol
R n—oo R
and hence € dom(Ay). This proves Step 10 and Theorem m ]



348 CHAPTER 6. UNBOUNDED OPERATORS

Remark 6.42. (i) Theorem can be used to extend the functional cal-
culus for self-adjoint operators to unbounded functions f : R — R, starting
from a projection valued measure as in Theorem [5.73. This functional cal-
culus can then be used to prove that the operator Ay + il is invertible and
thus gives rise to an alternative proof that Ay is self-adjoint. This approach
is used in Kato [29, p 355]. Steps 6 and 7 in the above proof of Theorem [6.41]
can be understood as a special case of this functional calculus, using one
unbounded function f and the bounded functions xq for 2 € B.

(ii) There is an entirely different approach to the measurable functional cal-
culus for unbounded self-adjoint operators. One can start by assigning to
an unbounded self-adjoint operator A its spectral measure and use Theo-
rem to construct the C* algebra homomorphism W, : B(X) — L(H).
For the construction of the spectral measure one can proceed as follows.
First show that every self-adjoint operator A : dom(A) — H can be written
as a difference A = AT — A~ of two positive semi-definite self-adjoint oper-
ators A* : dom(A*) — H with dom(A*") N dom(A~) = dom(A). Then the
operators 1 + A* are invertible by Theorem and one can use the spectral
measures of their inverses in Theorem to find the spectral measure for A.
This approach is taken in Kato [29, pp 353-361]. It is perhaps slightly more
straight forward than the approach taken above in that it does not require
the functional calculus for normal operators in Section [5.5]

(iii) Suppose the projection valued measure is supported on a closed sub-
set X C R. Then the functional calculus for unbounded functions can be
used as in Step 5 of the proof of Theorem to show that o(Ay) C f(X).

The next theorem shows that the formulas (6.58)), (6.59)), (6.60) give rise
to a one-to-one correspondence between projection valued measures on the
real axis with values in £°(H) and unbounded self-adjoint operators on H.

Theorem 6.43. Let H be a nonzero complex Hilbert space.

(i) Let A : dom(A) — H be a self adjoint operator and let {Po}aep be the
spectral measure of A in Definition [6.40. Then A = Aiq is the operator in
Theorem with f =id : R — R.

(ii) Let B — L(H) : Q — Py be a projection valued measure and let Aq be
the operator in Theorem with f =1id : R — R. Then {Pq}aes is the
spectral measure of Aiq in Definition [6.40,

Proof. See page [349] O
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Corollary 6.44 (Characterization of the Spectral Measure).

Let A : dom(A) — H be a self-adjoint operator on a nonzero complex Hilbert
space H. Then there exists a unique projection valued measure {Pqo}aes on
the real axis such that

dom(A) = {x e H‘ /RA? dptaa(N) < oo} |

(6.70)
Re(y, Ax) = / Adjty (M) for z € dom(A) and y € H,
R

where {fty 4}z yen ts the collection of signed Borel measures on the real azis
defined by pu, () := Re (y, Pox) for all x,y € H and all Borel sets 0 C R.
It agrees with the spectral measure of Definition [6.40,

Proof. Existence follows from Theorem and part (i) of Theorem [6.43]
Uniqueness follows from part (ii) of Theorem [6.43] O

Proof of Theorem[0.43 We prove part (i). Let A : dom(A) — H be an un-
bounded self-adjoint operator with spectrum X := o(A) and take {Pqg}qes
to be the projection valued measure in Definition [6.40) associated to the C*
algebra homomorphism W4 : B(X) — £°(H) in Theorem [6.38, For i € N
define the function f; : R — R by

N AN <,
iA) '_{ 0, if [\ >i.

Then the (Normalization) axiom in Theorem asserts that

lim Ua(fi|s)r = Az for all x € dom(A). (6.71)
1—00

Moreover, by definition of Pq in (6.57)) and of i, , in (6.59), we have
fyx(2) = Re(y, Por) = Re(y, Va(xzna)T)
for all z,y € H and all 2 € B. Hence the (Convergence) axiom implies

/R f dptye = Rely, Ua(f]s)a)

for all x,y € H and all bounded Borel measurable functions f : R — R. In
particular,

/ fi ity = Re(y, (fi])z), / P, = [U(fls)e]®  (6.72)
R R

forall i € Nand all z,y € H.
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Now let x € dom(A). Then, by equations (6.71)) and (6.72) and the
Lebesgue Monotone Convergence Theorem, we have

/ N dpy.(\) = lim [ f2du,, = lim Re(z, U(fi|s)z) = (v, Ax).
R 1—00 R 11— 00

This implies © € dom(A;jq) and hence, by equations (6.71)) and (6.72)) and
the Lebesgue Dominated Convergence Theorem,

Re<y>Aid$> = / )‘dﬂy,x
R

= lim Ji d,uy,ac
R

1—00
= lim Re(y, U(fils)z)
= Re(y,AZC>

for all y € H. Thus dom(A) C dom(Aiq) and Aiq|dom(a) = A. Hence Ajqg = A
by Exercise [6.49} This proves part (i).

We prove part (ii). Thus let B — L(H) : Q — Pq be a projection valued
measure on the real axis, let A := A;jyq be the operator in Theorem with
f =1id, and let ¥ : B(R) — L°(H) be the C* algebra homomorphism in
Theorem associated to {Po}aes. Then U satisfies the (Convergence)
axiom in Theorem by definition. We prove that

PR\E = 0, 2= O'(Aid). (673)

Suppose, by contradiction, that Pr\x # 0, choose a vector + € X such
that Pr\wo # 0, and consider the Borel measure ju, : B — [0,00) defined
by pz(2) := (z, Pox) for Q € B. Then u,(R\ X) > 0 and so, since every
Borel measure on R is inner regular by [50, Thm 3.18], there exists a compact
set K C R\ ¥ such that u,(K) > 0. Hence Pk # 0 and so Ex := im(Pk)
is a nonzero closed subspace of H. Since the function f = id : R — R
is bounded on K, it follows from the definition of A = Ajq in that
Ex C dom(A) and Ek is invariant under A. Since Ex # {0} and the
operator Ax = Alg, : Fx — Ef is self-adjoint, its spectrum is nonempty.
Moreover, by definition

Re(y, Axx) = / Adpy (N € K for all z,y € Ek,
K

and so 0(Ag) C K by Theorem [5.73] Thus @) # o(Ax) C o(A)NK =0, a
contradiction. This proves (6.73]).
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Since Pr\y = 0, the C* algebra homomorphism ¥ of Theorem de-
scends to B(X). We prove that it satisfies the (Normalization) axiom in
Theorem [6.38] with A = Ajq. To see this, choose a sequence of bounded
Borel measurable functions f; : R — R that satisfy

sup|fi(AN)] < [A, lim f;(\) = A for all A € R.
ieN 1—00

Fix an element x € dom(A;q). Then the identity function id : R — R is
square integrable with respect to the Borel probability measure p, ., and is
integrable with respect to the Borel measure |u,, .| for every y € H. Hence it
follows from the Lebesgue Dominated Convergence Theorem and the Hahn
Decomposition Theorem that

%AWﬁZAAWwQ)

i—oo Jp

= lim (y, ¥(fi]s)2)

for all y € H and
sl = [ 3 dia)
R

= hm fi2 d:ux,x
R

1—r 00
= lim || W(fi|z)|*.
1— 00
Hence the sequence V( f;|s;)x converges weakly to Ajqz and its norm converges
to that of Agx. By Exercise this implies
I [[Aiqz = W (fils)z]| = 0.
Thus the reduced C* algebra homomorphism ¥ : B(X) — L¢(H) satisfies

the (Normalization) axiom in Theorem with A = Ajq. Hence it follows
from uniqueness in Theorem that

W =Wy,

is the functional calculus associated to the self-adjoint operator A;q and so
the projection valued measure {Pn}qep is the spectral measure of A4 as
introduced in Definition m This proves part (ii) and Theorem m ]
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Example 6.45. Let A : dom(A) — H be a self-adjoint operator on a nonzero
complex Hilbert space H.

(i) Consider the operator family
R— L(H):t— U(t)

associated to the functions A — e via the functional calculus of Theo-

rem In terms of the spectral measure the operators U(t) are determined
by the formula

(y, U(t)x) = / e d(y, Pax) for all x,y € H and all t € R.
Here the expression [, f(A) d(y, Pxz) denotes the integral of a Borel measur-
able function f : R — C with respect to the complex valued Borel measure

B—C:Q~— (y, Pox)

on the real axis. The operator family R — L¢(H) : t — U(t) is strongly
continuous, by the (Convergence) axiom, and satisfies

Us+t)=U(s)U®),  UO0)=1

for all s,¢ € R. This means that U is a strongly continuous group of (unitary)
operators. Such groups play an important role in quantum mechanics. For
example, they appear as solutions of the Schrodinger equation.

(ii) Assume, in addition, that
(x,Az) <0 for all x € dom(A).
Then o(A) C (—o0,0] and a similar construction leads to an operator family
[0,00) = L(H) : t — S(t)

associated to the functions A — e on the negative real axis. In terms of the
spectral measure the operators S(t) are determined by the formula
0
(y,S(t)z) = / e d(y, Par) for all x,y € H and all t > 0.

The restriction ¢ > 0 is needed to obtain bounded functions on the negative
real axis and bounded linear operators S(t). These operators form a strongly
continuous semigroup of operators on H. For example, the solutions of the
heat equation on R™ can be expressed in this form with A the Laplace oper-
ator. The study of strongly continuous semigroups is the subject of the next
and final chapter of this book.
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6.6 Problems

Exercise 6.46 (Unbounded operators and their inverses).
Let X and Y be Banach spaces and let A : dom(A) — Y be an unbounded
operator with a dense domain dom(A) C X. Assume A is injective and let

Al idom(ATH = X
be its inverse with domain

dom(A™1) :=im(A) = {Az |2 € dom(A)} C Y.

(a) Assume A is surjective. Prove that A= is bounded if and only if A has
a closed graph.

(b) Assume A is surjective and dom(A) is a dense subspace of X. If A~1 is
a compact operator then X is separable (see Exercise [4.47]).

(c) Assume Y = X. Prove that
o(AT)N{0} = {ATT A e a(A)\ {0} }.

(d) Assume X =Y. Then 0 ¢ o(A) Ua(A™Y) if and only if dom(A4) = X
and A : X — X is bijective and bounded.

(e) Find an example of an injective unbounded operator A : dom(A) — X
such that 0 € o(A) Na(A™1).

Exercise 6.47 (Closed graphs and inverses). Let X be a complex Ba-
nach space and let A : dom(A) — X be an unbounded complex linear opera-
tor. Let A € C and suppose that A1 — A is bijective. Prove that the following
are equivalent.

(i) The operator (A\1—A)~!: X — X is bounded, i.e. there exists a constant
¢ > 0 such that ||[(A1 — A)7tz|| < cfjz]| for all z € X.

(ii) A has a closed graph.

Hint: Show that A1 — A has a closed graph if and only if A has a closed
graph. Use Exercise and the Open Mapping Theorem [2.8]

By Exercise every unbounded operator A : dom(A) — X on a Ba-
nach space X with a nonempty resolvent set has a closed graph. The converse
does not hold by Example [6.16, even when X is a Hilbert space.
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Exercise 6.48 (Symmetric and surjective implies self-adjoint).

Let H be a complex Hilbert space and let A : dom(A) — H be an unbounded
symmetric complex linear operator with a dense domain. Prove that the
following are equivalent.

(i) There exists a A € C such that A\1 — A : dom(A) — H is surjective.

(ii) A is self-adjoint.

Exercise 6.49 (Uniqueness of self-adjoint operators).

Let H be a complex Hilbert space and let A, B be unbounded self-adjoint op-
erators on H such that dom(A) C dom(B) and B|gom(a) = A. Then B = A.
Exercise 6.50 (The unbounded open mapping theorem).

(a) Let X and Y be Banach spaces and let A : dom(A) — Y be a closed
unbounded operator with a dense domain dom(A) C X. Fix a real number
0 > 0 and assume

{y € Y| llyl| < (5} C {Aa: ‘ z € dom(A), |lz]y < 1}. (6.74)
Prove that
{yeY ||yl <6} c {Az|z € dom(A), ||z]|y <1}. (6.75)

Hint: The proof of Lemma [2.10| carries over almost verbatim to operators
with dense domains and closed graphs.

(b) Prove that (vii) implies (i) in Theorem by carrying over the proof
of the corresponding statement in Theorem to unbounded operators.
Hint: Use part (a).

Exercise 6.51 (Spectral projection). Let A : dom(A) — X be an opera-
tor on a complex Banach space X with a compact resolvent and let A\ € o(A).
Define the linear operator Py € £°(X) by (6.20) with 3 := {\}, i.e.

1
P,i=— 1—A)td 6.76
= g [ (1= At (6.76)
where (t) := A+ re?™ for 0 <t < 1 and r > 0 sufficiently small.
(i) If dom(A) = X prove that dim X < oo.

(ii) Prove that P, is the unique projection that commutes with A and whose
image is the generalized eigenspace

im(Py) = Ey = G ker(A1 — A)*. (6.77)

k=1
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Exercise 6.52 (Square root). Let H be a complex Hilbert space.

(a) Call an unbounded self-adjoint operator A : dom(A) — H positive
semi-definite if it satisfies

(x,Az) >0 for all z € dom(A).

Assume A : dom(A) — H is a positive semi-definite operator. Prove that
there exists a unique self-adjoint operator B : dom(B) — H such that

B* = A, (x,Bx) >0 for all x € dom(B).
The operator B is called the square root of A and is denoted by
B= VA=AV

Hint: Theorem with f(\) :== V/A.

(b) Let A : dom(A) — H be an unbounded self-adjoint operator. Prove that
the positive semi-definite operator |A| := v/ A? has the same domain as A
and satisfies

0 < [(z, Az)| < (z, |Alx) for all z € dom(A).

Let A* be the self-adjoint extension of the operator 1 (|A|£A). Show that A*
are positive semi-definite and satisfy dom(A) = dom(A™) N dom(A~) and

A=A~ A~ |A|= AT+ A"
Hint: Theorem with f(A\) = |l

Exercise 6.53 (Densely defined operators and their adjoints).

Let X and Y be real Hilbert spaces and let A : dom(A) — Y be an un-
bounded operator with a dense domain dom(A) C X.

(a) The graph of the adjoint operator A* : dom(A*) — X is the orthog-
onal complement of the subspace {(y,z) € Y x X |z € dom(A), y = —Ax}.
Thus A* has a closed graph.

(b) The operator A is closeable if and only if dom(A*) is a dense subspace
of Y. Hint: Carry over the proof of part (iii) of Theorem to the Hilbert
space setting.

(c) If A is closed then A*™* = A. Hint: Use (a).
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Exercise 6.54 (Symplectic vector spaces). Let (V,w) be a symplectic
vector space, i.e V is a real vector space and w : V x V — R is nondegen-
erate skew-symmetric bilinear form, so for every nonzero vector v € V| there
is a vector w € V such that w(v,w) # 0. The symplectic complement of
a linear subspace W C V' is the linear subspace

W :={veV|w,w)=0forall we W}.

A linear subspace W C V is called w-reflexive if W** = W. An w-reflexive
subspace W C V is called isotropic if W C W%, coistropic if W C W, and
Lagrangian if W = W*“. A complex structure on V is a linear operator
J :V = V such that J? = —1. A complex structure is called compatible
with w if the formula

(u, vy = w(u, Jv) for u,v €V (6.78)

defines an inner product on V.

(a) Let J be an w compatible complex structure on V and let W C V be
a linear subspace. Prove that the orthogonal and symplectic complements
of W are related by W« = JW+ and W = W'+, Deduce that W is
w-reflexive if and only if it closed with respect to the inner product (6.78)).

(b) Let W C V be an isotropic subspace and define V' := W« /W. Prove
that the formula w([u], [v]) := w(u,v) for u,v € W* defines a symplectic
form on V. This construction is called symplectic reduction.

(c) Let H be a real Hilbert space. Show that the formulas

w(Za C) = <x777>H - <y7§>H7 J(ZE,y) = <_y7x>

for z = (z,y), ¢ = (§,n) € H x H define a symplectic form w and an w-
compatible complex structure J on the Hilbert space H x H that induce the
standard inner product.

(d) Let H be a real Hilbert space and A : dom(A) — H be a densely defined
unbounded operator on H. Define graph(A) := {(Az,z) |z € dom(A)}.
Show that graph(A*) = graph(A)“. Deduce that A is closed if and only
if its graph is an w-reflexive subspace of H x H, and that A is self-adjoint if
and only if its graph is a Lagrangian subspace. If A is closed and symmetric,
show that the reduced space graph(A*)/graph(A) in (b) is naturally isomor-
phic to the Gelfand-Robbin quotient dom(A*)/dom(A) in Exercise [6.28]
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Exercise 6.55 (The Gelfand—Robbin quotient). The purpose of this
exercise is to introduce a natural inner product on the Gelfand—Robbin quo-
tient and to examine its properties. Assume throughout that H is a real
Hilbert space and that A : dom(A) — H is a densely defined symmetric
operator with a closed graph.

(a) Prove that the domain of A* is a Hilbert space with the inner product
(v, 9)as == (2, y)u + (A'w, A"y)y  for z,y € dom(A") (6.79)

and that dom(A) is a closed subspace of dom(A*). Let V' C dom(A*) be the
orthogonal complement of dom(A). Prove that

V ={x € dom(A") | A"z € dom(A"), A*A*x +z = 0}. (6.80)

Thus V' is canonically isomorphic to the Gelfand—Robbin quotient in Exer-
cise and the inner product (6.79) renders V into a Hilbert space.

(b) Prove that the linear map A*|y : V' — V is a complex structure on V'
and that it is compatible with the symplectic form

w(z,y) = (A"z,y)g — (v, A"yY) g for z,y € V. (6.81)

Prove that w(x, A*y) = (z,y) a- for all x,y € V. Prove that every Lagrangian
subspace of V is closed.

(c) Assume A has a closed image. Prove that
Ay ={zeV]|Arcim(A)} (6.82)

is a Lagrangian subspace of V.

Hint 1: If 2,y € Ag and £, n € dom(A) satisfy that A, = A*x and Anp = A*y
then (A"z,y) = (€, A*y) = (€, An) = (A&, n) = (A"z,n) = (z, A%y).

Hint 2: Let x € V such that w(z,y) = 0 for all y € Ag. Prove that

(A*z,y) =0  for all y € ker(A")

and so A*x € im(A) by Lemma [6.27] To see this, let y € ker(A*) and choose
n € dom(A) such that (y — n,&) 4 = 0 for all £ € dom(A). Deduce that
An € dom(A*) and A*An =y — n. This implies y — n € Ay and hence

0= (A"z,y —n)a- = (A"z,y).
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(d) Assume A has a closed image. Prove that the orthogonal complement
of Ay with respect to the inner product (6.79) is the Lagrangian subspace

Ay = A*Ag =V Nim(A). (6.83)
Hint: The first equation is a general fact about symplectic vector spaces

with compatible complex structures (see part (a) of Exercise [6.54)).

(e) Assume A has a closed image and let Ay C V be as in (6.82)). Prove that
dom(A) & Ag = dom(A) + ker(A"), im(A) ® Ag =im(A*).  (6.84)

Hint: To prove the inclusion ker(A*) C dom(A) & Ay use the argument in

Hint 2 for part (c). That im(A) N Ay = {0} follows from ([6.83]). To prove
the inclusion im(A*) C im(A) @ Ay use the fact that, by (6.83),
dom(A*) = dom(A) & Ay & (V Nim(A))
= (dom(A) + ker(A*)) & (V Nim(A)).
This implies that, for every y € im(A*), there exist elements & € dom(A)
and z € V Nim(A) such that y = A{ + A*z. Thus we have A*z € V
and A*A*r = —z € im(A), and so A*z € A,.
(f) Assume A* is surjective and let A C V be a Lagrangian subspace of V.
Denote by
Ap s dom(Ay) = dom(A) A — H
the corresponding self-adjoint extension as in part (iii) of Exercise[6.28. Prove
that A, is a Fredholm operator if and only if (V, Ag, A) is a Fredholm triple
with respect to the inner product (6.79) (see Exercise [4.60)).
Hint: The domain of A, is a closed subspace of the domain of A* with

respect to the graph norm and A, : dom(A,) — H is a bounded linear
operator with respect to the graph norm of A* on its domain. Moroever,

im(A,) = im(A) + A*A. (6.85)
Use this to prove that

H =1im(Ay) & (AgNA). (6.86)
First, let y € im(Ax)NA¢NA and € € dom(A), x € A such that y = A+ A*x.
Then A € VNim(A) = A*Ag, hence y € A*(Ag+A)NAyNA, and so y = 0.
Second, let y € H and use (6.84) to find & € dom(A), yo € Ay N A, 21 € A
such that y; := A*zy € Ag N A*A and y = AE + yo + y1 = Ax(E + x1) + vo-

If (V,Ao,A) is a Fredholm triple then dim coker(A,) < oo by (6.86), and
hence Aj has a closed image by Lemma [4.32]



Chapter 7

Semigroups of Operators

Stongly continuous semigroups play an important role in the study of many
linear partial differential equations such as the heat equation, the wave
equation, and the Schrodinger equation. The finite-dimensional model of
a strongly continuous semigroup is the exponential matrix associated to a
first order linear ordinary differential equation. The concept of the exponen-
tial operator carries over naturally to infinite-dimensional Banach spaces X
and can be used to find a solution of the Cauchy Problem

T = Az, z(0) = zg

for every bounded linear operator A € £(X) and every initial value o € X.
The unique solution z : R — X of this equation is given by

o0

tk
z(t) = ey = EAk:L‘O for t € R.

k=0

(See Example |5.26]) The aforementioned partial differential equations can
be expressed in the same form, however, with the caveat that the operator A
is unbounded with a dense domain and that the solutions may only exist
in forward time. In such situations it is convenient to use the solutions,
rather than the equation, as the starting point. This leads to the notion
of a strongly continuous semigroup, introduced in Section along with
several examples. That section also derives some of their basic properties and
discusses the infinitesimal generator. The main result is the Hille-Yosida—
Phillips Theorem in Section which characterizes infinitesimal generators
of strongly continuous semigroups. The dual semigroup is the subject of
Section and analytic semigroups are discussed in Section [7.4]

359
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7.1 Strongly Continuous Semigroups

7.1.1 Definition and Examples

The existence and uniqueness theorem for solutions of a time-independent
ordinary differential equation implies that the solutions define a flow. This
means that the value of the solution with initial condition zy at time s + ¢
agrees with the value at time s of the solution whose initial condition is
taken to be the value of the original solution at time ¢. For linear differential
equations on Banach spaces this translates into a semigroup condition on
the family of bounded linear operators, parametrized by a nonnegative real
variable ¢, that assign to a given initial condition the solution of the respective
linear differential equation at time t.

Definition 7.1 (Strongly Continuous Semigroup). Let X be a real Ba-
nach space. A one parameter semigroup (of operators on X) is a map
S :[0,00) = L(X) that satisfies

S(0)=1,  S(s+1t)=S(s)S(t) (7.1)

for all s,t > 0. A one parameter group (of operators on X) is a map
SR — L(X) that satisfies (7.1)) for all s,t € R. A strongly continu-
ous semigroup (of operators on X) is a map S : [0,00) — L(X) that

satisfies (7.1) for all s,t > 0 and satisfies

Pn(l)HS(t)x—xH =0 (7.2)

for all x € X. A strongly continuous group (of operators on X) is a
map S : R — L(X) that satisfies (7.1)) for all s,t € R and satisfies (7.2)) for
allz € X.

Example 7.2 (Groups Generated by Bounded Operators). Let X be
a real Banach space and let A : X — X be a bounded linear operator. Then
the operators
=tk Ak
S(t) = e = Z (7.3)

k!
k=0

for t € R form a strongly continuous group of operators on X. In this
example the map R — L(X) : ¢+ S(t) is continuous with respect to the
norm topology on L(X) (see Exercise [5.26)).
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Example 7.3 (Semigroups on Complex Hilbert Spaces). Let H be a
separable complex Hilbert space, let (e;);en be a complex orthonormal basis,
and let (\;);en be a sequence of complex numbers such that sup,.y ReA; < oo.
Define the map S : [0,00) — L¢(H) by

S(t)x = Z eit{e;, x)e; (7.4)

for x € H and t > 0. Exercise: Show that this is a strongly continuous
semigroup of operators on H. Show that it extends to a strongly continuous
group S : R — £°(H) if and only if sup,.y |ReA:| < oo.

Example 7.4 (Shift Semigroups). Fix a constant 1 < p < oo and let
X = LP(]0,00)) be the Banach space of real valued LP-functions on [0, c0)
with respect to the Lebesgue measure.

(i) Define the map L : [0,00) — L(X) by

(L) f)(s) = f(s +1) (7.5)

for f € LP([0,00)) and s,t > 0. Exercise: Show that this is a strongly
continuous semigroup of operators. Show that this example extends to the
space of continuous functions on [0, 00) that converge to zero at infinity.
Show that strong continuity fails when LP([0, 00)) is replaced by L*([0, o))
or by the space of bounded continuous real valued functions on [0, c0). Show
that the formula defines a group on LP(R) for 1 < p < occ.

(ii) Define the map R : [0,00) — L(X) by

CONICES S (7.6

for f € LP([0,00)) and s,t > 0. Exercise: Show that this is a strongly con-
tinuous semigroup of isometric embeddings. Show that this example extends
to the space of continuous functions f : [0,00) — R that vanish at the origin
and converge to zero at infinity.

(iii) Define the map S : [0,00) — L(LP([0, 1])) by

(S()f)(s) :z{ f<5+t()): giiﬁi‘ (7.7)

for f € LP([0,1]), s € [0,1], and ¢ > 0. Exercise: Show this is a strongly
continuous semigroup of operators such that S(t) = 0 for ¢ > 1.
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Example 7.5 (Flows). Let (M, d) be a compact metric space and suppose
that the map R x M — M : (t,p) — ¢(p) is a continuous flow, i.e. it is
continuous and satisfies

¢o = 1d, Ps+t = s © Py
for all s, € R. Let X := C(M) be the Banach space of continuous real
valued functions on M equipped with the supremum norm. Define

St)f:=fo¢: forteRand f e C(M). (7.8)
Then S: R — L(C(M)) is a strongly continuous group of operators.

Example 7.6 (Heat Equation). Fix a positive integer n and a constant
1 < p < 00. Define the heat kernel K; : R® — R by

1 e .
Ky(x) == (47Tt)”/2€ "/t for € R" and ¢t > 0. (7.9)

Here |z| := /> 2 denotes the Euclidean norm of x = (xq,...,1,) € R™

1= 1 T
These functions are nonnegative and Lebesgue integrable and satisfy

Kt(g) df = 17 Ks+t = KS * Kt (710)
RTL
for all s,t > 0, where (fx*g)(z) == [g. f( g(&) d¢ denotes the convolutlon
of two Lebesgue integrable functlons f g: ]R" — R. Equation ([7.10]) implies
that the operators S(t) : LP(R™) — LP(R"), defined by

| Kix f, fort>0,
S f = { F fort =0 (7.11)
define a semigroup of operators. Since lim; o supy,s; Ki(z) = 0 for all § > 0
and fRn K; = 1for all t > 0, the functions S(¢)f = K;* f converge uniformly
to f for every continuous function f : R" — R with compact support. The
convergence is actually in LP(R™). Since C.(R") is dense in LP(R™) by [50,
Thm 4.15] and ||S(¢)|| < 1 for all ¢ > 0 by Young’s inequality, it follows from
Theorem [2.5] that limy;_,o [|S(¢)f — f||,» = 0 for all f € LP(R™). Thus the
semigroup is strongly continuous. Moreover, for each f € LP(R™), the
function u : (0, 00) x R" — R, defined by u(t,z) := (K; * f)(x) for t > 0 and
x € R™, is smooth and satisfies the heat equation

ou
- Py —
5 8262’ %g%/ lu(t,z) — f(x)|P dx = 0. (7.12)

Exercise: Fill in the details.
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7.1.2 Basic Properties

Lemma 7.7. Let X be a real Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup. Then the following holds.

(i) supg<icr [|[S(t)|| < 00 for all T > 0.
(ii) The function [0,00) — X : t — S(t)z is continuous for all v € X .

(iii) The function t='log ||S(t)|| converges to a number in R U {—oo} ast
tends to infinity and

. 71 s 71 .
lim " log]|S()]] = inf " log[S(t) | = wo. (7.13)

(iv) Let wy be as in (iii) and fix a real number w > wy. Then there ezists a
constant M > 1 such that

1S(#)]] < Me! for allt > 0. (7.14)

Proof. To prove (i) we show first that there exist constants § > 0 and M > 1
such that, for all ¢t € R,

0<t<d = S| < M. (7.15)

Suppose by contradiction that there do not exist such constants. Then
SUPg<i<s ||[S(t)|| = oo for all 6 > 0. Hence there exists a sequence of real
numbers t,, > 0 such that lim, ,o.t, = 0 and the sequence ||S(t,)| is un-
bounded. By the Uniform Boundedness Theorem [2.1] this implies that there
exists an element z € X such that the sequence ||S(¢,)x| is unbounded.
This contradicts the fact that lim, . ||S(t,)z — x| = 0. Thus we have
proved .

Now fix a number 7" > 0 and choose N € N such that N6 > T. Fix an
element ¢ € [0, T]. Then there exists a unique integer k£ € {0,1,..., N — 1}
such that k0 <t < (k+ 1) and hence

IS = [|S©)*S(t — k)| < ISO)F 1St — k)| < MM < MY

This proves part (i).
Part (ii) follows from part (i) and the inequalities

15t + h)x = S(E)z]| < [S@S(h)z — |

and

|S(t —h)z — S@)z|| < ||S(E = R)|| |lz — S(h)z||
for0 < h <t.
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We prove part (iii). Equation ((7.13) holds obviously with wy = —o0
whenever S(t) = 0 for some ¢ > 0. Hence assume S(t) # 0 for all £ > 0 and
define the function ¢ : [0,00) — R by

g(t) :=log ||S(t)]] for t > 0.
Then it follows from the semigroup property and part (i) that

9(0)=0,  g(s+t)<g(s)+g(t), M():= Sup g < 0

for all s, > 0. Fix a real number ty > 0 and let ¢ > 0 be any positive real
number. Then there exists an integer £ > 0 and a real number s such that

t=ktg+s, 0<s<t,.

Hence
g(t) _ kglto) +9(s) _ gto) | Mito)
t = t = 4 t
and this implies
limsupM < g(to)‘
t—o0 tO
Since this holds for all t5 > 0, we have
lim sup 9(t) < inf 9(t)
t—o0 t t>0 t

and this proves part (iii).
We prove part (iv). Fix a real number w > wy. By part (iii) there exists
a constant 7" > 0 such that

log S

; <w forallt > T.

Thus log [|S(t)|| < wt and so ||S(¢)|| < e** for all t > T. Define

M := sup ||S(t)| e "

0<t<T

Then ||S(t)|| < Me*! for all ¢ > 0 and this proves Lemma [7.7] O
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Lemma 7.8. Let X be a real Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup. Then the following holds.

(i) The operator S(t) is injective for some t > 0 if and only if it is injective
for allt > 0.

(ii) The operator S(t) is surjective for somet > 0 if and only if it is surjective
for allt > 0.

(iii) The operator S(t) has a dense image for some t > 0 if and only if it
has a dense image for all t > 0.

(iv) Assume S(t) is injective for allt > 0. Then S(t) has a closed image for
some t > 0 if and only if it has a closed image for all t > 0.

Proof. We prove part (i). Assume that there exists a real number ¢, > 0
such that S(ty) is injective. Let t > 0 and choose an integer k& > 0 such
that kto > t. If x € X satisfies S(t)z = 0 then

S(to)*x = S(kty — t)S(t)x =0

and hence x = 0. Thus S(t) is injective for all ¢ > 0.

We prove part (ii). Assume that there exists a real number t; > 0
such that S(tg) is surjective. Let ¢t > 0 and choose an integer & > 0 such
that kto > t. Then S(kto) = S(to)* is surjective and so

im(S(t)) O im(S(£)S(kty — t)) = im(S(kto)) = X.

Thus S(t) is surjective for all ¢t > 0.

We prove part (iii). Assume that there exists a real number ¢, > 0
such that S(ty) has a dense image. Let ¢ > 0 and choose an integer k& > 0
such that kty > t. Then the operator S(kty) = S(fp)* has a dense image.
Since im(S(t)) D im(S(t)S(kto — t)) = im(S(kty)) this implies that S(t) has
a dense image.

We prove part (iv). Thus assume S(t) is injective for all ¢ > 0 and
that there exists a real number ¢, > 0 such that S(¢y) has a closed im-
age. Then it follows from part (ii) of Corollary that there exists a
constant § > 0 such that § ||z|| < || S(to)z|| for all z € X. By induction this
implies 6% ||z]| < [|S(kto)z| for all z € X and all k € N. Let ¢ > 0 and choose
an integer k > 0 such that ktqg > t. Then

1S(kto — D) |S (Bl = S (kto)all = 6" |l

and so ||S(t)z|| > ||S(kto — t)||" 6% ||z|| for all € X. Hence S(t) has a
closed image by Theorem [£.16] and this proves Lemma O
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Example 7.9. This example shows that the hypothesis that S(t) is injective
for all £ > 0 cannot be removed in part (iv) of Lemma(7.8] Consider the real
Banach space

X = {f € £7([0,1]) | f is continuous on [0, 1] and f(0) = 0}/~ .

Here the equivalence relation is defined by f ~ ¢ if and only if f — ¢g vanishes
almost everywhere on the interval [%, 1], and the norm is defined by

1

Il = sup |F(s)]+ / F(s)?ds

O§s§§ 2
for f € X. Then the formula

(SH)(s) = { Jom ez

for f € X,t>0,and 0 < s <1 defines a strongly continuous semigroup
on X. The operator S(t) has a nontrivial kernel for all ¢ > 0, does not have
a closed image for 0 <t < 1, and vanishes for all £ > 1.

7.1.3 The Infinitesimal Generator

The starting point of the present section was to introduce strongly continuous
semigroups of operators as a generalization of the space of solutions of a linear
differential equation. Given such a space of “solutions” it is then a natural
question to ask whether there is actually a linear differential equation that
a given strongly continuous semigroup provides the solutions of. The quest
for such an equation leads to the following definition.

Definition 7.10. Let X be a Banach space and let S : [0,00) — L(X)
be a strongly continuous semigroup. The infinitesimal generator of S is
the linear operator A : dom(A) — X, whose domain is the linear subspace

dom(A) C X defined by

dom(A) := {x eX ’ the limit lim Sth)z —x exists} , (7.16)
h—0 h
and which is given by
Az = lim Stz —z for x € dom(A), (7.17)

h—0 h
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Example 7.11. Let H be a separable complex Hilbert space, let (e;)en
be a complex orthonormal basis, and let (\;);eny be a sequence of complex
numbers such that sup, .y ReA; < oco. Let S : [0, 00) — L(H) be the strongly
continuous semigroup in Example [7.3] i.e.

o0

S(t)x = Z eMtle;, x)e;

=1

for x € H and t > 0. Then the infinitesimal generator of S is the linear
operator A : dom(A) — H in Example , given by

dom(A) = {x €eH f: |Niles, z)|* < oo} (7.18)

and

Az = Z Ai(e;, x)e; for x € dom(A). (7.19)
i=1

Exercise: Prove this.

Lemma 7.12. Let X be a Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup with infinitesimal generator A : dom(A) — X.
Let x € X. Then the following are equivalent.

(i) = € dom(A).
(ii) The function [0,00) — X : t +— S(t)z is continuously differentiable,
takes values in the domain of A, and satisfies the differential equation

%S(t)x = AS(t)xr = S(t)Ax for allt > 0. (7.20)
Proof. That (ii) implies (i) follows directly from the definitions. To prove

the converse, fix an element © € dom(A). Then, for ¢t > 0, we have

S(t)Az = lim S(t)M _ iy St Rz — S@)x
h—0 h h—0 h
h>0 h>0
and, for t > 0,
S(h)x — = S(t—h)x — S(t)x

S(t)Az = lim S(t—h)

h>0 h>0
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This shows that the function [0,00) — X : ¢t — S(t)z is continuously differ-
entiable and that its derivative at ¢ > 0 is S(t) Az. Moreover,

_S(h)St)x — S(t)r . S(h)x —x
Lli% - = 1}5}% S(t)T

h>0 h>0

Thus S(t)x € dom(A) and AS(t)x = S(t)Az. This proves Lemma[7.12] O

= S(t)Ax.

Lemma 7.13 (Variation of Constants). Let X be a Banach space and let
S :[0,00) = L(X) be a strongly continuous semigroup with infinitesimal gen-
erator A : dom(A) — X. Let f :[0,00) — X be a continuously differentiable
function and define the function  : [0,00) — X by

x(t) == /0 S(t—s)f(s)ds fort>0. (7.21)

Then x is continuously differentiable, x(t) € dom(A) for all t > 0, and

(t) = Ax(t) + f(t) = S £(0) + /O t S(t—s)f(s)ds  (7.22)

for allt > 0.
Proof. Fix a constant ¢ > 0 and let h > 0. Then

S(h)x(iz —z(t) _ S(h)— ]1/0 S(s)f(t—s)ds

(s+h)f(t—s)ds—%/o S(s)f(t — 5)ds

S >

f<t+h—s>ds—1/t5( VE(E— ) ds

ft+h—2s) ds——/S f(t+h—s)ds

(s)
flt+h—s)—f(t—ys)
(5 )

Take the limit 2~ — 0 to obtain z(¢) € dom(A) and

S
S(s
s

ds.

[
/
-+
/0 s

Az(t) = S(t)f(0) — f(t) + /Ot S(t—s)f(s)ds. (7.23)

This proves the second equation in ([7.22)) and shows that Az is continuous.
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Next observe that
. . t+h t
(t+h})L (t) :%/O S(t_‘_h_s)f(g)ds—%/o S(t — 5)f(s) ds
_ S(h)x(lz —a(t) | %/t S(t+h— s)f(s) ds.

for h > 0. Take the limit A — 0 to obtain that z is right differentiable and
has the derivative -%-x(t) = Ax(t) + f(t). Third, observe that

x(t)—z(t—h):%/o S<t_8)f(3)d3_%/o_ S(t—h—s)f(s)ds

_E/o S(t_s)f(s)ds—%/h S(t— 8)f(s — h)ds
:%/O S(t—s)f(s)der/h st - LR

for 0 < h < t. Take the limit A — 0 to obtain that z is left differentiable and
has the derivative

%x(t) = S(t)£(0) + /0 S(t — ) f(s)ds = Ax(t) + f(t).

Here the last equation follows from (7.23)). This proves Lemma [7.13] O
Example 7.14. Let x € X and take f(t) = z in Lemma Then

t
/ S(s)xds € dom(A)
0
and .
A/ S(s)xds = S(t)r —x
0
for all t > 0.

Lemma 7.15. Let X be a Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup with infinitesimal generator A : dom(A) — X.
For n € N define the linear subspaces dom(A™) C X recursively by

dom(A") := dom(A) dom(A") := {z € dom(A)| Az € dom(A" ")}

for n. > 2. Then the linear subspace dom(A>) := (1, oy dom(A") is dense
in X and A has a closed graph.
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Proof. The proof has three steps.

Step 1. Let x € X and let ¢ : R — X be a smooth function with compact
support contained in the interval [5,671] for some constant 0 < 6 < 1. Then

I~ o(t)S(t)x dt € dom(A™) and
a [Tows@ea=ay [To0wswea jorainen

For n = 1 this follows from Lemma by choosing ¢t > 6~ and taking
f(s) :=¢(t — s)x for s > 0. For n > 2 the assertion follows by induction.

Step 2. dom(A™) is dense in X.

Let x € X and choose a smooth function ¢ : R — [0,00), with compact
support in the interval [1/2, 1], such that fol ¢(t)dt = 1. Define

Ty 1= n/ ¢(nt)S(t)xdt  for n € N.
0

Then z,, € dom(A>) by Step 1 and

< sup [S(t)a —al.

0<t<1/n

[0 — 2|l =

1/n
n/o o(nt)(S(t)xr — ) dt

Hence lim,, ||z, — z|| = 0 and this proves Step 2.
Step 3. A has a closed graph.

Choose a sequence z;,, € dom(A) and z,y € X such that lim,, ||z, —x| =0
and lim,, || Az, — y|| = 0. Then, by Lemma [7.12]
t

St)r —x = lim (S(t)z, —x,) = lim [ S(s)Az,ds = /Ot S(s)yds

n—o0 n—o0 0

for all ¢ > 0. Hence y = limy ot *(S(t)x — x) and so z € dom(A) and
Ax = y. This proves Step 3 and Lemma [7.15] O]

Recall from Exercise that the domain of a closed densely defined
operator A : dom(A) — X is a Banach space with the graph norm

)4 = llzllx + [l Azl for z € dom(A).

Moreover, the operator A can be viewed as a bounded operator from dom(A)
to X rather than as an unbounded densely defined operator from X to itself.
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Lemma 7.16. Let X be a Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup. Let A :dom(A) — X be a linear operator
with a dense domain dom(A) C X and a closed graph. Then the following
are equivalent.

(i) The operator A is the infinitesimal generator of the semigroup S.

(ii) Let x € dom(A) and t > 0. Then S(t)xz € dom(A), AS(t)x = S(t)Ax,
and S(t)x —x = fot S(s)Ax ds.

(iii) Let xy € dom(A). Then the function [0,00) — X :t — x(t) := S(t)xo
is continuously differentiable, takes values in dom(A), and satisfies the dif-
ferential equation ©(t) = Az(t) for all t > 0.

Proof. That (i) implies (ii) follows directly from Lemma That (ii)
implies (iii) follows directly from part (vii) of Lemma [5.9] We prove in three
steps that (iii) implies (i). Assume A satisfies (iii).

Step 1. Let x € dom(A) and t > 0. Then
¢ ¢
/ S(s)xds € dom(A), A/ S(s)xds = S(t)xr — . (7.24)
0 0

By part (iii) the function & : [0,¢] — X defined by £(s) := S(s)z for 0 < s <t
takes values in dom(A) and the function A¢ = ¢ : [0,¢] — X is continuous.
Hence the function ¢ : [0, ] — dom(A) is continuous with respect to the graph
norm. Thus it follows from part (iii) of Lemma that fot £(s)ds € dom(A)
and A [} €(s)ds = [5 A&(s)ds = £(t) — £(0) = S(t)x — x. This proves Step 1.
Step 2. If x € X andt > 0 then holds.

Let x € X and t > 0. Choose a sequence z; € dom(A) that converges
to . Then &; := fot S(s)x;ds € dom(A) and A& = S(t)x; — x; by Step 1.
Since A has a closed graph, &; converges to | t S(s)zds, and AE; converges
to S(t)x — x, it follows that x and ¢ satisfy . This proves Step 2.

Step 3. Let x,y € X. Then

lim Stz —x =y = r € dom(A), Azr=y. (7.25)
h—0 h
If x € dom(A) and y = Az then limj, o h~*(S(h)x — z) = y by part (iii).
Conversely, suppose that limj, oA~ (S(h)z — x) = y. For h > 0 define
xp = h! foh S(s)xzds. Then limy_,oz, = = and, by Step 2, x;, € dom(A)
and Az, = h™'(S(h)x — z). Hence limj,_,o Az;, = y. Since A has a closed
graph, this implies z € dom(A) and Az = y. This proves Lemma[7.16, O
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Lemma 7.17. Let X be a Banach space and let S : [0,00) — L(X) be a
strongly continuous semigroup with infinitesimal generator A : dom(A) — X.
Then the following are equivalent.

(i) dom(A) = X.

(ii) A is bounded.

(iii) The semigroup S is continuous in the norm topology on L(X).

Proof. The Closed Graph Theorem asserts that (i) and (ii) are equiv-
alent. That (ii) implies (iii) follows from Exercise and Corollary
below. We prove that (iii) implies (i), following the argument in [13, p 615].
Assume that the semigroup S : [0,00) — £(X) is continuous with respect to
the norm topology on £(X). Then lim; ¢ ||.S(¢) — 1|| = 0. Hence there exists
a constant 6 > 0 such that

sup [|S(t) — 1 < 1.

0<t<d

For 0 <t < ¢ define

B(t) =Y (_12;_1 (S(t) - 1)"

Then the following holds.

(I) The function B : [0,6] — £(X) is norm-continuous.

(IT) eB® = S(t) for 0 <t < 6.

(IIT) If k e Nand 0 <t < J/k then B(kt) = kB(t).

Part (IT) uses the fact that the power series f(z) :=> o (=1)" (2 —1)"/n

n=1

satisfies exp(f(z)) = z for all z € C with |z — 1| < 1. Part (III) follows from
the fact that f(z*) = kf(2) whenever |2/ — 1| <1 for j =1,2,... k.

By (III), B(d) = ¢B(6/¢) and so B(kdé/l) = kB(6/t) = (k/¢)B() for all
integers 0 < k < /. Since B is continuous by (I), this implies

B(t)=t6'B(5) for0<t<o.
(Approximate 6! by a sequence of rational numbers in [0, 1].) Define
A= 6""B(5) € L(X).

Then by (II) we have S(t) = eB® = ¢4 for 0 <t < §. Hence S(t) = e for
all ¢ > 0 and this proves Lemma [7.17] O
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7.2 The Hille-Yosida—Phillips Theorem

7.2.1 Well-Posed Cauchy Problems

Let us now change the point of view and suppose that A : dom(A) — X is
a linear operator on a Banach space X whose domain is a linear subspace
dom(A) C X. Consider the Cauchy Problem

T = Az, z(0) = zo. (7.26)

Definition 7.18. (i) Let I C [0,00) be a closed interval with 0 € I. A
continuously differentiable function x : I — X is called a solution of
if it takes values in dom(A) and x(0) = x¢ and ©(t) = Ax(t) for allt € I.

(ii) The Cauchy Problem is called well-posed if it satisfies the fol-

lowing axioms.

(Existence) For each xy € dom(A) there is a solution of on [0, 00).
(Uniqueness) Let zyp € dom(A) and T' > 0. Ifz,y : [0,T] — X are solu-
tions of then x(t) = y(t) for all t € [0,T).

(Continuous Dependence) Define the map ¢ : [0,00) x dom(A) — X by
o(t,zo) = x(t) fort > 0 and xy € dom(A), where z : [0,00) — X is the
unique solution of . Then, for every T' > 0, there is an M > 1 such
that ||o(t, xo)|| < M||xo|| for allt € [0,T] and all zg € dom(A).

The next theorem characterizes well-posed Cauchy Problems and was
proved by Ralph S. Phillips [44] in 1954.

Theorem 7.19 (Phillips). Let A : dom(A) — X be a linear operator with a
dense domain dom(A) C X and a closed graph. The following are equivalent.

(1) A is the infinitesimal generator of a strongly continuous semigroup.

(ii) The Cauchy Problem (7.26)) is well-posed.

Proof. We prove that (i) implies (ii). Thus assume that A is the infinitesimal
generator of a strongly continuous semigroup S : [0,00) — £(X) and fix an
element zg € dom(A). Then the function [0,00) — X : ¢t +— S(t)z is a
solution of equation by Lemma E To prove uniqueness, assume
that « : [0, 00) = X is any solution of (7.26). Fix a constant ¢ > 0. We will
prove that the function [0,¢] — X : s — S(t — s)x(s) is contant. So see this,
note that z(s) € dom(A) and so

lim S(t—s—h)x(s)— S(t—s)x(s)
h—0 —h

= S(t —s)Ax(s) for 0 < s <t
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This implies
S(t—s—h)x(s+h)— St —s)x(s)

lim

h—0 h

= fl}g}) S(t—s—h) (x(s i hli —2(s) _ Ax(s))
N }lng(l) (S(t —5— h)x(s})b —S(t—s)xz(s) LSt - s)Ax(s))
+ }lliir(l)(S(t — s —h)Az(s) — S(t — s)Axz(s))

=0

Hence the function [0,¢] — X : s — S(t — s)xz(s) is everywhere differentiable
and its derivative vanishes. Thus it is constant and hence z(t) = S(t)xo.
Since t > 0 was chosen arbitrary this proves uniqueness. Continuous depen-
dence follows from the estimate ||S(¢)|| < Me“* in Lemma [7.7 This shows
that (i) implies (ii).

We prove that (i) implies (i). Assume the Cauchy Problem is
well-posed and let

¢ :[0,00) x dom(A) — dom(A)

be the map that assigns to each element xq € dom(A) the unique solution
[0,00) = X 1t — ¢(t, z0) of (7.26). We claim that, for each t > 0, there is
a unique bounded linear operator S(t) : X — X such that

S(t)xy = ¢(t, zo) for all zyp € dom(A). (7.27)

To see this, note first that the space of solutions z : [0,00) — X of
is a linear subspace of the space of all functions from [0, 00) to X. Hence
it follows from uniqueness that the map dom(A) — X : zg — &(t, z) is lin-
ear. Second, it follows from continuous dependence, that the linear operator
dom(A) — X : g — ¢(t, x9) is bounded. Since dom(A) is a dense linear sub-
space of X it follows that this operator extends uniquely to a bounded linear
operator S(t) € L(X). (Namely, fix an element € X. Then there exists a
sequence x, € dom(A) that converges to z. Hence (x,)nen is a Cauchy se-
quence in X and so is the sequence (¢(t, z,))nen by continuous dependence.
Hence it converges and the limit S(¢)z := lim,_, ¢(t, ) is independent of
the choice of the sequence z, € dom(A) used to define it.) This proves the
existence of a bounded linear operator S(t) that satisfies (7.27).
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We prove that these operators form a one parameter semigroup. Fix a
real numbers ¢ > 0 and an element zy € dom(A). Then

S(t)xg = ¢(t, zo) € dom(A)

and the function [0,00) — X : s — S(s+t)zg = ¢(s + t,x0) is a solution
of the Cauchy Problem with zo replaced by S(t)xy = ¢(t,zo). Hence
S(s+t,z0) = ¢(s,S(t)xg) = S(s)S(t)xo. Since this holds for all zy € dom(A),
the set dom(A) is dense in X, and the operators S(s + t) and S(s)S(t) are
both continuous, it follows that S(s+t) = S(s)S(t) for all s > 0. This shows
that S : [0,00) — L£(X) is a one parameter semigroup.

We prove that S'is strongly continuous. To see this, fix an element z € X
and a constant ¢ > (. By continuous dependence there exists an M > 1
such that supge,<;||@(t, x0)|| < M ||zo]| for all xy € dom(A). This shows
that supy<,<1[|S(t)|| < M. Choose an element y € dom(A) such that

9
oyl < —

Next choose a constant 0 < § < 1 such that, for all £ € R,
€
o<t<s = oty vl <

Fix a real number 0 < ¢ < §. Then
1Sz —zl < Sz =Syl +[SEy —yll + lly — ||

3 3
< (M+1) o —yl+I6(ty) — 9l < S+ 5

=ec.
This shows that S is strongly continuous.

We prove that A is the infinitesimal generator of S. Let zq € dom(A)
and define the function = : [0,00) — X by z(t) := S(t)zo = ¢(t,z0). It is
continuously differentiable, takes values in dom(A), and satisfies #(t) = Az (t)
for all ¢ > 0. Thus A and S satisfy condition (iii) in Lemma(7.16] so A is the

infinitesimal generator of S. This proves Theorem [7.19| O

Corollary 7.20 (Uniqueness). A linear operator on a Banach space is the
infinitesimal generator of at most one strongly continuous semigroup.

Proof. Let A be the infinitesimal generator of two strongly continuous semi-
groups S, T : [0,00) — L(X). Let xy € dom(A). Then the functions
x(t) := S(t)xy and y(t) := T(t)zo both satisfy and hence agree by
Theorem [7.19] Since dom(A) is dense in X by Lemma it follows that
S(t)x = T(t)x for all z € X and all t > 0. O
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Theorem 7.21 (Strongly Continuous Groups). Let X be a real Banach
space, let S : [0,00) — L(X) be a strongly continuous semigroup, and let
A :dom(A) — X be the infinitesimal generator of S. Then the following are
equivalent.

(i) The semigroup S extends to a strongly continuous group S : R — L(X).
(ii) —A is the infinitesimal generator of a strongly continuous semigroup.

(iii) The operator S(t) is bijective for allt > 0.

Proof. We prove that (i) implies (ii). Thus assume that S extends to a
strongly continuous group S : R — £(X). Then S(t)S(—t) = S(—t)S(t) =1
for all ¢ > 0 by definition of a one parameter group of operators. This
implies that S(¢) is bijective and S(¢)~! = S(—t) for all ¢ > 0. Define the
map 7" : [0,00) — L(X) by

T(t):=S(—t) =St fort>0.

Then T is a strongly continuous semigroup by definition. Denote its infini-
tesimal generator by B :dom(B) — X. We must prove that B = —A. To
see this, choose a constant M > 1 such that

ISHI <M and |T@®)| <M  for0<t<1.

Now let € dom(A). Then

HW +Az| < HT(h) (% +Ax) ‘+ | Az — T(h) Az
< M %w& Az — T(h) Az

for 0 < h < 1. Since the right hand side converges to zero it follows that
r € dom(B) and Bx = —Axz. Thus dom(A) C dom(B) and B|goma) = —A.
Interchange the roles of S and T to obtain dom(B) = dom(A) and B = —A.

We prove that (ii) implies (iii). Let 7" : [0,00) — L£(X) be the strongly
continuous semigroup generated by —A. We prove that S(t) is bijective and
T(t) = S(t)~! for all t > 0. To see this, fix an element z € dom(A) and a
real number ¢ > 0. Define the functions y, z : [0,t] - X by

y(s) =St —s)x 2(s) =Tt — s)x for 0 < s <t.
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Then y and z are continuously differentiable, take values in the domain of A,
and satisfy the Cauchy Problems

y(s) = —Ay(s) for 0 <s<t, y(0) = S(t)x,

and
Z(s) = Az(s) for 0 <s <t, 2(0) =T(t)x.

By Theorem this implies
y(s) =T(s)S(t)z, z(s) = S(s)T'(t)x for 0 < s <t.

Take s = t to obtain T(t)S(t)xr = y(t) = « and S(t)T(t)xr = 2(t) = «x.
Thus we have proved that S(¢)T(t)z = T(t)S(t)r = x for all t > 0 and all
x € dom(A). Since the domain of A is dense in X this implies

SHT) =T#)S(t) =1  forallt > 0.

Hence S(t) is bijective for all £ > 0. This shows that (ii) implies (iii).

We prove that (iii) implies (i). Thus assume that S(t) is bijective for all
t > 0. Then S(¢t)~' : X — X is a bounded linear operator for every ¢ > 0 by
the Open Mapping Theorem 2.8 Define

S(—t):=St)"t  fort>0.

We prove that the extended function S : R — £(X) is a one parameter group.
The formula S(t + s) = S(¢)S(s) holds by definition whenever s,t > 0 or
s,t < 0. Moreover, if 0 < s < t then S(t — 5)S(s) = S(t) and hence

S(t—s)=S(t)S(s)' = S5(t)S(—s).
This implies that, for 0 <t < s, we have S(s —t) = S(s)S(—t) and hence
S(t—s)=9S(s—t)"'=8(—t)"'S(s)"t = S(t)S(—s).

This shows that S is a one parameter group. Strong continuity at t = 0
follows from the equation

S(—h)x —x = S(h) " (z — S(h)z)
for h > 0. Strong continuity at —t < 0 follows from the equation
S(—t+h)x — S(=t)z = S(t)"' (S(h)z — )
for h € R. This proves Theorem [7.21} ]
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7.2.2 The Hille-Yosida—Phillips Theorem

The following theorem is the main result of this chapter. For the special case
M =1 it was discovered by Hille [20] and Yosida [60] independently in 1948.
It was extended to the case M > 1 by Phillips [43] in 1953.

Theorem 7.22 (Hille-Yosida—Phillips). Let X be a real Banach space
and A : dom(A) — X be a linear operator with a dense domain dom(A) C X.
Fiz real numbers w and M > 1. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L(X) that satisfies

1S(#)]| < Me** for allt > 0. (7.28)

(ii) For every real number X\ > w the operator A\ — A : dom(A) — X is
invertible and

M
[(A1—A)™F| < OoF for all X > w and all k € N. (7.29)
Proof. See page [381] O

The necessity of the condition is a rather straight forward conse-
quence of Lemma below which expresses the resolvent operator (A1 —
A)~7! in terms of the semigroup. At this point it is convenient to allow
for A to be a complex number and therefore to extend the discussion to
complex Banach spaces. When X is a real Banach space we will tacitly

assume that X has been complexified so as to make sense of the operator
M — A : dom(A) — X for complex numbers A (see Exercise [5.4).

Lemma 7.23 (Resolvent Identity for Semigroups). Let X be a complex
Banach space and let A : dom(A) — X be the infinitesimal generator of a
strongly continuous semigroup S : [0,00) — L¢(X). Let X\ € C such that

1 t
ReA > wyg := tlim —ong( )H (7.30)
—00

Then A € p(A) and

(A1 — A) "z = ! / tF e MS () x dt (7.31)

(k=1 Jo
for all x € X and all k € N.
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Proof. We first prove the assertion for £ = 1. Fix a complex number A € C
such that ReX > wy and choose a real number w such that wyg < w < ReA.
By Lemma 7.7, there exists a constant M > 1 such that ||S(¢)|] < Me*! for
all t > 0. Hence |le*S(t)z| < Me@ RNz for all z € X and all ¢ > 0.
This implies that the formula

T

Ryx = / e MS(t)xdt = lim e MS(txdt forx € X
0

T—o0 0

defines a bounded linear operator Ry € L°(X). We prove the following.
Claim 1. Ifz € X and T > 0 then &p = fOT e MS(t)x dt € dom(A) and

T
Ap = e MS(T)x — o + )\/ e MS(t)xdt =: ny.
0

Claim 2. Ifz € dom(A) and T > 0 then fOT e MS(t) Az ds = np.
(t

Claim 1 follows from Lemma with t = T and f(t) := e 27z, Claim 2
follows from integration by parts with 45(t)z = S(t)Az. Now

A&t = nr, lim & = Ryx, lim nyr = ARyz —
T—o00 T—o0
by Claim 1. Since A has a closed graph this implies
Ryx € dom(A), ARyx = ARyx — = for all z € X.

If x € dom(A) it follows from Claim 2 that

T
R)yAz = lim e MS(t) Az dt = ARyx — .

T—o00 0

Thus (Al—A)Ryz = z for allz € X and Ry(A1—A)x = z for all x € dom(A).
Hence A1 — A is bijective and (A\1— A)~! = Ry. This proves for k = 1.

To prove the equation for k > 2 observe that the function A — (A1—A) "'z
is holomorphic by Lemma [6.10| and satisfies

i, (_1)k—1 dk—l 3
AN — Az = = 1)!CMH(A11—A) Ly
B (_1)k—1 dk—l /oo Y
R e MS(t)xdt

_ ﬁ / 1o MGtz dt
i/,

for all z € X and all A € C with ReX > wy. This proves Lemma ]
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It follows from Lemma [7.23] that

log||S(#)]l

sup Rel <wg = hm (7.32)

Ao (A)

for every strongly continuous semigroup S with infinitesimal generator A.
The following example by Einar Hille shows that the inequality in ([7.32)) can
be strict.

Example 7.24. Fix a real number w > 0 and consider the Banach space

X::{f:[O,oo)—>C and [ ¢ f(s)] ds < oo

fis continuous and bounded }

equipped with the norm
I$i=sup )]+ [ eIf(s)ds  tor fe X
§2 0
The formula

(S f)(s):= f(s+1) for f € X and s,t >0

defines a strongly continuous semigroup on X and its infinitesimal generator
is the operator A : dom(A) — X given by

dom(A) = {u:[O,oo) —C and u.q € X

u is continuously differentiable }

Au = 1.
The operator S(t) satisfies ||S(¢)]| = 1 for all ¢ > 0 and so wy = 0 in ([7.32)).
Now let A € C with ReA > —w and let f € X. Then, for u € dom(A),
Au— Au = f — = u— f.

This equation has a unique solution u € dom(A) given by
u(s) = / ATV () dt for s > 0.

Thus the operator A1 — A is bijective for all A € C with Re\ > —w. It has a
one-dimensional kernel for all A € C with ReA < —w. Thus

1
sup Red = —w < 0= lim Og”f( )

Aea(A) t—o0

Exercise: For t > 0 the spectrum of S(t) is the closed unit disc and the
point spectrum of S(t) is the open disc of radius e " centered at the origin.
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Proof of Theorem[7.23. We prove that (i) implies (ii). Thus assume that
A : dom(A) — X is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L£(X) that satisfies (7.2§). Fix a real number A > w
and a positive integer k. Then

(M — A)Fg =

1 o
C 1)'/ thle=MS () dt
—1y

for all z € X by Lemma [7.23] and hence

_ 1 1
< (]]1:4||$1|)|‘/00tk16(,\w)tdt
_ '"Jo
M |||
(A —w)*

Hence the operator A satisfies (ii).

We prove that (ii) implies (i). Thus assume that A : dom(A4) — X is
a linear operator with a dense domain such that A1 — A : dom(A) — X is
bijective and satisfies the estimate for A > w. We prove in five steps
that A is the infinitesimal generator of a strongly continuous semigroup that

satisfies the estimate ([7.28)).
Step 1. x = limy ;0o AN — A)a for all v € X.
If z € dom(A) then
MM —A) e —2 =AM - A) e = (A1 - A) Az
for all A > w and so it follows from ([7.29)) that

_ M

Thus 2 = limy 0, A(A1 — A) "'z for all x € dom(A). Moreover
M
[AAL—A)7| < A—A <2M  forall A > 2w.
—w

Hence Step 1 follows from Theorem [2.5]
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Step 2. For A > w and t > 0 define

=tk Ak
Ay = M0 - A Sy(t) == et = k;‘)\'
k=0
Then ||Sx(t)]] < Mer=s for all X > w and all t > 0.
The operator A, can be written as
Ay =01 - A - AL
Hence
||S>\(t)|| — M 615)\2()\]1—14)*1
e tk/\Qk
-2 —k
< e tkz k! HO‘H_A) H
=0
P AR M
- k! (A —w)k
A2t Awt

= Me Mer—w = Mer-w
for all A > w and all ¢t > 0. This proves Step 2.
Step 3. Fix real numbers A > pu > w. Then
IS5 = S, (t)all < M=t A — Ayal
forall x € X and all t > 0.
Since A)\A, = A, A\, we have A)S,(t) = S,(t)A, and so
S\(B)z = Su(t)r = /Ot d%Su(t _ $)Sy(s)x ds

t
= / Su(t —5)9\(s)(Axe — Ayx) ds
0
for all x € X and all ¢ > 0. Hence
t
IS\ — Sl < / 1S(t — ) I1x(s)] ds [ Are — Ayl

pwt

t
< MQeu—w/ e_ifze%dSHA,\x—AuxH
0

2 pwt
< Mer=—wt||Aye — Ay
Here the last step uses the inequality /\’\T”w < lfT“’w This proves Step 3.
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Step 4. The limit
S(t)x == )\lim Sx(t)x (7.33)

exists for all x € X and all t > 0. The resulting map S : [0,00) — L(X) is
a strongly continuous semigroup that satisfies (|7.28]).

Assume first that © € dom(A). Then limy ., Axz = Ax by Step 1. Hence
the limit exists for all ¢ > 0 by Step 3 and the convergence is uniform
on every compact intervall [0, 7]. Since the operator family {S\(t)}r>2w is
bounded by Step 2 it follows from Theorem that the limit exists
for all x € X and that S(t) € £(X) for all ¢ > 0. Apply Theorem to
the operator family X — C([0,7], X) : z — S\(-)z to deduce that the map
[0,7] = X : t — S(t)z is continuous for all x € X and all T > 0. Moreover

S(s)S(t)r = /\h_)nolo Sa(s)S\(t)x = )\h_)rgo Sax(s+t)x=S(s+t)x

for all s,t > 0 and all z € X and S(0)x = limy o, S\(t)z = z for all z € X.
Thus S is a strongly continuous semigroup. By Step 2 it satisfies the estimate

I1S@#)al| = Jim [[Sa(t)zll < lim Mex™s ||z = Me* ||z
A—00 A—00

and this proves Step 4.

Step 5. The operator A is the infinitesimal generator of S.

Let B be the infinitesimal generator of S and let z € dom(A). Then
[Sx(t)Axz — S()Az|| < [[Sa(B)] | Axz — Azl + [[Sx(t) Az — S(t) Ax]]

for all ¢ > 0. Hence, by Step 1 and Step 2, the functions S)(-)Ayz : [0, h] = X
converge uniformly to S(-)Az as A tends to infinity. This implies

h h
/ S(t)Axdt = )\lim Sa(t)Ayz dt = )\lim Sx(h)x —x = S(h)xr —x
0 —00 0 —00
for all A > 0 and so
— 1 [
lim Sth)z —z =lim— | S(t)Axdt = Ax.
h—0 h h—0 0

This shows that dom(A) C dom(B) and Blqom(a) = A. Now let y € dom(B)
and A > w. Define z := (A1 — A)~'(\y — By). Then z € dom(A) C dom(B)
and \x — Bx = Az — Ax = Ay — By. Since Al — B : dom(B) — X is injec-
tive by Lemma [7.23] this implies y = € dom(A). Thus dom(B) C dom(A)
and so dom(B) = dom(A). This proves Step 5 and Theorem [7.22] O
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Corollary 7.25. Let X be a complex Banach space and A : dom(A) — X
be a complex linear operator with a dense domain dom(A) C X. Fiz two real
numbers M > 1 and w. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L¢(X) that satisfies the estimate (7.28)).

(ii) For every real number X > w the operator A\1 — A : dom(A) — X s
bijective and satisfies the estimate ((7.29)).

(iii) For every A € C with ReX > w the operator A\1 — A : dom(A) — X is
bijective and satisfies the estimate

Jo1= 7 <+ - for all k € N. (7.34)

ReA —w)F¥
Proof. That (i) implies (iii) follows from Lemma|7.23) by the same argument
that was used in the proof of Theorem [7.22] That (iii) implies (ii) is obvious
and that (ii) implies (i) follows from Theorem and the fact that the
operators S\ (t) in the proof of Theorem are complex linear whenever A
is complex linear. This proves Corollary O

7.2.3 Contraction Semigroups

The archetypal example of a contraction semigroup is the heat flow in Ex-
ample [7.6] Here is the general definition.

Definition 7.26 (Contraction Semigroups). Let X be a real Banach
space. A contraction semigroup on X is a strongly continuous semigroup
S :[0,00) = L(X) that satisfies the inequality

ISOII<1  forallt>0. (7.35)

Definition 7.27 (Dissipative Operators). Let X be a complex Banach
space. A complex linear operator A : dom(A) — X with a dense domain
dom(A) C X is called dissipative if, for every x € dom(A), there exists an
element x* € X* such that

2| = ll[|* = (2", z),  Re(a", Az) <0. (7.36)

When X = H is a complex Hilbert space, a linear operator A : dom(A) — H
with a dense domain dom(A) C H is dissipative if and only if

Re(z, Az) <0 for all x € dom(A). (7.37)
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The next theorem characterizes contraction semigroups. It was proved by
Lumer—Phillips [37] in 1961. They also introduced the notion of a dissipative
operator.

Theorem 7.28 (Lumer—Phillips/Contraction Semingroups). Let X be
a complex Banach space and let A : dom(A) — X be a complex linear oper-
ator with a dense domain dom(A) C X. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a contraction semigroup.

(ii) For every real number X > 0 the operator A\ — A : dom(A) — X is
bijective and satisfies the estimate

[(A1=A)7H| < (7.38)

> =

(iii) For every A € C with ReX > 0 the operator \1 — A : dom(A) — X s
bijective and satisfies the estimate

1
-1
(AT —A)7H] < Ren (7.39)

(iv) The operator A is dissipative and there exists a A > 0 such that the
operator A\ — A : dom(A) — X has a dense image.

Proof. The equivalence of (i), (ii), and (iii) follows from Corollary with

M =1 and w = 0. We prove the remaining implications in three steps.

Step 1. If A is dissipative then
| Az — Az|| > ReA ||z|| (7.40)

for all x € dom(A) and all A € C with ReX > 0.

Let z € dom(A) and A € C such that ReA > 0. Since A is dissipative, there
exists an element z* € X* such that (7.36]) holds. This implies

[l [[Ax — Azl = [[a"[| Az — Ax]]

> Re(z", \x — Ax)
ReX{z*, z) — Re(z", Ax)
> Rel |z’

Hence || Az — Az|| > Re)||z|| and this proves Step 1.
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Step 2. We prove that (iv) implies (iii).
Assume A satisfies (iv) and define the set

Q={X € C|ReX >0 and A1l — A has a dense image} .

This set is nonempty by (iv). Moreover, it follows from Step 1 that the
operator A\ — A : dom(A) — X is injective and has a closed image for every
A € C with ReA > 0. Hence Q2 C p(A) and

[(A1—A)7| < % for all A € Q C p(A). (7.41)
If A € Qand | — A < ReX then Rep > 0 and | — A|||(A1— A)7Y < 1,
hence y € p(A) by Lemma[6.10} and hence p € . Thus

A€ Qand | — A < ReA = p e S (7.42)
Fix an element A € Q2. Then it follows from that

{p € C|Imp =ImA, 0 < Repr < 2ReA} C 2
Thus an induction argument shows that
{p € C|Imp = ImA, Reu > 0} C Q.

Hence it follows from that Bre, (i) C 2 for every p € C such that

Imp = ImA and Rep > 0. The union of these open discs is the entire positive
half-plane in C. Thus {z € C|Rez > 0} = Q C p(A) and hence it follows
from (7.41)) that A satisfies (iii). This proves Step 2.

Step 3. We prove that (i) implies (iv).

Assume that A : dom(A) — X is the infinitesimal generator of a contraction
semigroup S : [0,00) — L9(X). Let x € dom(A). By the Hahn-Banach
Theorem there exists an element z* € X* such that

l*]* = [|l=]|* = (2", 2).
Since S is a contraction semigroup this implies
Re(z", S(h)z — x) < ||2"||[|S(R)z|| — ||=[]* < 0
for all h > 0 and hence

<0.

Re(s*, Az) — }llin% Re(z ,S}(Lh)x — )

This proves Step 3 and Theorem [7.28| O
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7.3 Semigroups and Duality

When S : [0,00) — L(X) is a strongly continuous semigroup on a real
Banach space X the dual operators define a semigroup S* : [0, 00) — L(X*),
called the dual semigroup. One might expect that the dual semigroup is
again strongly continuous, however, the following elementary example shows
that this need not always be the case.

Example 7.29. Let X := L'(R) and, for ¢t € R, define the linear operator
S(t): LY(R) — L'(R) for t € R by

(S@)f)(s) == f(s+1) for f € L'(R) and s,t € R.
Then X* = L*°(R) and under this identification the dual group is given by
(S*(t)g)(s) :==g(s —1) for g € L(R) and s,t € R.

For a general element g € L®(R) the function R — L>®(R) : t — S*(t)g is
weak™® continuous but not continuous. In this example the domain of A* is
weak™ dense in X* but not dense.

The failure of strong continuity of the dual semigroup is related to the
fact that the Banach space X in Example is not reflexive. On a reflexive
Banach space it turns out that the dual semigroup is always strongly con-
tinuous and this is the content of Theorem below. The proof requires
some preparation. It is based on the theory of (Borel) measurable functions
with values in a Banach space. This theory is of some interest in its own
right and will be developed in the following preparatory subsection.

7.3.1 Banach Space Valued Measurable Functions

Definition 7.30. Let X be a real Banach space and let I C R be an interval.
A function f I — X s called

e weakly continuous if the function (x*, f) : I — R is continuous for all
r* e X*,

e weakly measurable if the function (x*, f) : [ — R is Borel measurable
for all z* € X7,

e measurable if f~'(B) C I is a Borel set for every Borel set B C X,

e o measurable step function if it is measurable and f(I) is a finite set,

e strongly measurable if there exists a sequence of measurable step func-
tions f, : I — X such that lim,,_, fn(t) = f(t) for almost allt € I.
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It follows directly from the definition that the image of a strongly mea-
surable function f : I — X is contained in a separable subspace of X. Ex-
ample below shows that weakly measurable functions need not satisfy
this condition.

Theorem 7.31 (Pettis). Let X be a real Banach space. Fix two numbers
a < b and a function f : |a,b] — X.

(i) If X is separable and f is weakly measurable then f is strongly measurable.
(ii) If f is weakly continuous then f is strongly measurable.

(iii) If f is strongly measurable then the function [a,b] — R :t — || f(t)|| is
Borel measurable.

Proof. We prove part (i). Thus assume X is separable. Abbreviate I := [a, b]
and let f: I — X be a weakly measurable function. We prove in three steps
that f is strongly measurable.

Step 1. If K C X is a closed convex set then f~1(K) is a Borel subset of I.

Assume without loss of generality that K and X \ K are nonempty. Since X
is separable and K is closed, there exist sequences x,, € X and &, > 0 such
that X \ K = {J.~, B.,(x,). Since K is convex, Theorem asserts that
there exists a sequence z; € X* such that

Cn i=sup(z’,y) < (z¥,2) for all n € N and all z € B;, (z,).
yeK

This implies K =, {y € X | (z},y) <c,}. Hence

FUE) = (Y {t eI, f() < e}

is a Borel set. This proves Step 1.
Step 2. f is measurable.

Let U C X be an open set. Since X is separable, there exists a sequence
x, € X and a sequence of real numbers ¢, > 0 such that

U= G Be, (z,).
n=1

Hence f~Y(U) = U2, f'(B-,(x,)) is a Borel subset of I by Step 1. This
shows that f is Borel measurable by [50, Thm 1.20].
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Step 3. f is strongly measurable.

Since X is separable there exists a dense sequence z, € X. For k,n € N
define the set

._ | f(t) — x| < 1/n and
P 1= {te ! 1£(2) —fo >1/nfori=1,...,k—1 } (7.43)

This is a Borel subset of I by Step 2. Moreover Xy, N %, = () for k # ¢ and
UZ’; Ykn = 1. Hence, for each n € N, there is an V,, € N such that

,u( U zkvn) <27 (7.44)
k=Nn+1

Here p denotes the restriction of the Lebesgue measure to the Borel o-algebra
of I. Define the functions f, : I — X by

xp, forte X, and k=1,...,N,,

fu(t) = { 0. forte Sy ) Sin (7.45)

These are measurable step functions. Define

0o 00 00 co oo Ny
Q = m U U Ek,ny I \ Q = U m U Ek,n
m=1n=m k=N, +1 m=1n=m k=1

Then 1©(Q2) = 0 by and [|f,(t) — f@)|| < 1/n for all t € Up", Yin
by and (7.45). If t € I\ Q then there exists an m € N such that
t e N2, U Sk and hence ||f,(t) — f(1)]| < 1/n for all n > m. Thus
lim,, o0 fr(t) = f(t) for all t € I\ 2. This proves Step 3 and part (i).

We prove part (ii). Assume f : [ — X is weakly continuous and define
Xo :=span{f(t)|[t € INQ}. If t € T and z* € X then (z*, f(¢)) = 0 by
weak continuity. Hence f(I) C X, by Corollary Since X is separable
by definition, it follows from (i) that f is strongly measurable.

We prove part (iii). Assume f : I — X is strongly measurable and
choose a sequence of measurable step functions f,, : I — X that converges
almost everywhere to f. Then the sequence || f,|| : I — R of measurable step

functions converges almost everywhere to || f|| : I — R and hence the function
| f]l : I — R is measurable. This proves part (iii) and Theorem [7.31] O
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The next example shows that the hypothesis that X is separable cannot
be removed in part (i) of Theorem [7.31]

Example 7.32. (i) Let H be a non-separable real Hilbert space, equipped
with an uncountable orthonormal basis {e;}o<i<1. Thus the vectors e, € H
are parametrized by the elements of the unit interval [0,1] C R and satisfy
(€s,e0) = 0 for s # ¢ and ||e;]] = 1 for all t. The function f : [0,1] — H
defined by f(t) := e; is not strongly measurable because every Borel set
Q2 C [0, 1] of measure zero has an uncountable complement, so f([0,1] \ 2) is
not contained in a separable subspace of H. However, f is weakly measurable
because each x € H has the form z =) .2, \e,, for a sequence \; € R such
that Y 2, A\? < oo and a sequence of pairwise distinct elements s; € [0, 1];

thus (x, f(t)) = \; for t = s; and (x, f(¢t)) =0 for t ¢ {s; |i € N}.
(ii) Let X := L>([0,1]) and define the function f : [0,1] — L>([0,1]) by

1, if0o<x<t

10 = sy = { o EIE

This function satisfies || f(s) — f(¢)||; = 1 for all s # ¢ and the same argu-
ment as in part (i) shows that f is not strongly measurable. However, when
the same function is considered with values in the Banach space LP(]0,1])
for 1 < p < o0, it is continuous and hence strongly measurable.

Theorem 7.33. Let X be a Banach space. Fix real numbers 1 < p < oo and
a < b and a function f: I :=[a,b] = X. The following are equivalent.

(i) f is strongly measurable and f; If@)]F dt < oo.

(ii) For every e > 0 there ezists a measurable step function g : I — X such
that the function I — R :t — || f(t) — g(t)|| is Borel measurable and

/||f Ol dt < e.

(iii) For every e > 0 there exists a continuous function g : I — X such that
the function I — R : t +— || f(t) — g(t)|| is Borel measurable and

[ 15w o ar < e
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Proof. We prove that (i) implies (ii). Choose a sequence of measurable step
functions g, : I — X that converges almost everywhere to f. For n € N
define the function f,, : I — X by

[ a®. fn@] < 1L
f"(““{o, it a0l = 1 F0)l +1,  Prterl

Then f, is a measurable step function for every n € N by part (iii) of Theo-
rem [7.31} Moreover, lim,,_,« || f.(t) — f(¢)||” = 0 for almost all ¢ € I and

1£(8) = fuOIP < IFON+1)" < 47 [LFON7 + 2
for all t € I and all n € N. The function on the right is integrable by (i).
Hence lim,, o f; lf (&) — fu(®)]|” dt = 0 by the Lebesgue Dominated Con-
vergence Theorem. This shows that (i) implies (ii).

We prove that (ii) implies (i). Choose a sequence of measurable step
functions f, : I — X such that the function ||f — f,|| : I — R is Borel
measurable and lim,, fab I f(t) = fu(®)]|” dt = 0. Then there exists a sub-
sequence f,, such that lim; . || f(t) — fn,(t)|| = O for almost every t € I
by [50, Cor 4.10]. Hence f is strongly measurable. Now choose an integer n
such that fab lf (&) — fu(®)]|P dt < 1. Then, by Holder’s inequality,

([wora)” < ([inora) e

Hence (ii) implies (i) and the same argument shows that (iii) implies (i).

We prove that (i) implies (iii). For this it suffices to assume that f is a
measurable step function with precisely one nonzero value. Thus let B C [
be a Borel set and let € X \ {0} and assume f = ypz. Fix a constant
e > 0. Since the Lebesgue measure is regular by [50, Thm 2.13], there exists
a compact set K C I and an open set U C [ such that

£
KcBcU, w(U\ K) < T

By Urysohn’s Lemma there exists a continuous function ¢ : I — [0, 1] such
that ¢(t) = 1 for t € K and ¢(t) = 0 for t € I \ U. Define the function
g:1 — X by g:=1x. Then [t — xp| < xv\k and hence

b
/ 1 (t) = g(®)II” dt S/ [ z]|”dt = p(U\ K)||lz||” <e.
a U\K

This proves Theorem [7.33] O
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The next lemma is a direct consequence of Theorem [7.33| It will play a
central role in the proof of the main result about the dual semigroup in this
section.

Lemma 7.34. Let X be a Banach space and fix real numbers 1 < p < oo
and a < b. Let f : ]a,b] = X be a strongly measurable function such that

b
/ 1O dt < oo,

Then, for every e > 0, there exists a 6 > 0 such that, for all h € R,

b—h
O<hes  — / If(t+ 1) — FOIP dt < <.

Proof. Exercise. Hint: Prove this first when f is continuous and then use
Theorem [7.33] O

7.3.2 The Banach Space L?(I, X)

This subsection is a brief interlude and discusses the Banach space of Banach
space valued LP functions on an interval. This is an important topic with
many applications. However, it is not used elsewhere in this book.

Let X be a real Banach space, fix real numbers 1 < p < oo and a < b,
and abbreviate I := [a, b]. Define

LP(I,X) :=LP(I,X)/~,

where

(7.46)

LP(I,X) = {f T X‘ [ is strongly measurable }

and [V f(1)|]P dt < o0

and the equivalence relation is equality almost everywhere. It is often conve-
nient to abuse notation and use f to denote an equivalence class in LP(I, X)
as well as a representative of this class in £?(I, X). For f € £P(I, X) define

= ([ 0P ar) " (.47

By the Minkowski inequality L”(I, X) is a normed vector space.
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Theorem 7.35. (i) LP(I,X) is a Banach space and the subspace C(I, X)
of continuous functions f : I — X is a dense subset of LP(I, X).

(ii) There exists a unique linear functional LP(I, X) — X : f — fabf(t) dt,
called the integral, such that

<x*, / ’ £(1) dt> - / b(x*, Fb)dt (7.48)

for all f € £7(1,X) and all z* € X*.

Proof. Let f, € LP(I,X) be a Cauchy sequence. Choose a subsequence f,,
such that that

1 fo: = Frmal|p <277 forallieN.

Then the same argument as in [50, p 118] shows that f,, converges almost
everywhere to a function f : I — X. Moreover, by Theorem there exists
a sequence of measurable step functions g; : I — X such that

gi — fullpy <27%  forallieN.

Passing to a further subsequence we may assume that the sequence

converges to zero almost everywhere by [50, Cor 4.10]. Then g; converges
to f almost everywhere, so f is strongly measurable. Thus f € £P(I, X) and

Tim [ = fallp =0

by the argument in [50, p 119]. This shows that LP(I, X) is a Banach space.
That C(I,X) is dense in LP(I, X) follows directly from Theorem [7.33] This
proves part (i).

To prove part (ii), observe that the functional

I —- R

b
(J([,X)—>X:fn—>/ f(t)dt

in Lemmal.7]is bounded with respect to the L? norm on C(I, X) by part (vi)
of Lemma 5.9/ and the Holder inequality. Since C'(I, X) is dense in LP(I, X)
by part (i) the integral extends uniquely to a bounded linear functional on
LP(I,X). Since a linear functional satisfying is necessarily bounded,
this proves Theorem [7.33 O
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7.3.3 The Dual Semigroup
Weak and Strong Continuity

In this section we prove that the dual semigroup of a strongly continuous
semigroup is again strongly continuous whenever the original Banach space
is reflexive. The key step in the proof is the next theorem which shows that,
even in a non-reflexive Banach space, a one-parameter semigroup is strongly
continuous if and only if it is weakly continuous.

Theorem 7.36. Let X be a real Banach space and let S : [0,00) — L(X) be
a one parameter semigroup. Then the following are equivalent.

(i) The function [0,00) — X : t — S(t)z is continuous for all x € X .

(ii) The function [0,00) — X : t — S(t)z is weakly continuous for allx € X.
Proof. That (i) implies (ii) is obvious. To prove the converse, fix an element

r € X and assume that the function [0,00) — X : ¢ — S(t)z is weakly
continuous. We prove in four steps that lim; o ||S(t)x — z|| = 0.

Step 1. Fiz a real number T' > 0. Then

sup [|S(t)]| < oo.
0<t<T

By assumption supgy<,<p (%, S(t)€)] < oo for all £ € X and all z* € X*.
Hence supy<,<r ||S(t)¢]| < oo for all £ € X by Lemma and the Uniform
Boundedness Theorem Hence supg<;<7 [[S(t)|| < oo by the Uniform
Boundedness Theorem. This proves Step 1.
Step 2. Fiz a real numbers T' > 0. Then
T—h
lim |S(t+ h)x — S(t)x|| dt = 0.

h—0
h>0

The function [0, 7] — X : t — S(t)z is strongly measurable by Theorem
and is bounded by Step 1. Hence Step 2 follows from Lemma [7.34]
Step 3. The function [0,00) — X : t — S(t)z is continuous fort > 0.
Let t > 0, choose € > 0 such that 2 < ¢, and define M := sup, .. [|S(s)]| .
Let h,s € R such that |h| < ¢ and 0 < s < e. Then
1S(t+ h)x — St)z|| = [|S(s)(S(t+h—s)z—S(t—s)z)
< M||S({t+h—s)x—S(t—s)x].
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Hence, for all h € R with |h| < ¢,

ISt +1e = sl < = [ IS(+h— )z — (- s)a]| ds
M t
_ E:LJwg+mx—a@wd&

The right hand side converges to zero as h tends to zero by Step 2. This
proves Step 3.

Step 4. lim; ||S(t)x — x| = 0.
Define the linear subspace Z C X by

Z :=span{S(t)z|0 <t <1}

Then limy o ||S(t)z — z|| = 0 for all z € Z by Step 3. Moreover,

neN,0<tj<1,>\je]R}.

ezt = (@ Sta)for0<t<l = (a5, 1)=0.
Hence = € Z by Corollary 2.55, Now let € > 0, choose z € Z such that

9
M := sup [[S@)],

r—z|| < ——r,
| “ 2(M +1) 0<t<1

and choose a constant 0 < § < 1 such that, for all t € R,
0<t<s = |W@V—z”<%

Fix a real number ¢t such that 0 < ¢ < ¢§. Then

1Sz —z| < Stz —SE)=[ +[[SE)z — 2| + ||z — =
< (M+1) llz — 2|+ IS®)z — =]l
< Eif L,
2 2 ’

This proves Step 4 and Theorem [7.36| O
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The Infinitesimal Generator of the Dual Semigroup
The next theorem is the main result of the present section. Example [7.29
shows that it does not extend to non-reflexive Banach spaces.

Theorem 7.37 (Dual Semigroup). Let X be a real reflexive Banach space
and let [0,00) = L(X) : t — S(t) be a strongly continuous semigroup with
infinitesimal generator A : dom(A) — X. Then the map

[0,00) = L(X™") : t— S*(t) := S(t)"
15 a strongly continuous semigroup and its infinitesimal generator is the dual
operator A* : dom(A*) — X*.
Proof. The proof has four steps.
Step 1. The map S* : [0,00) — L(X*) is a strongly continuous semigroup.

It follows directly from Lemma [£.3] that S* is a one parameter semigroup.
Moreover, the function

[0,00) = R : (S*(t)z", x) = («", 5(t))
is continuous for all x € X and all z* € X*. Since X is reflexive, this implies
that the function [0,00) — X* : t — S*(t)z* is weakly continuous for all
x* € X*. Hence it is continuous by Theorem [7.36] This proves Step 1.

Step 2. If x € X* andt > 0 then
¢ t
/ S*(s)x™ ds € dom(A*), A*/ S*(s)x*ds = S*(t)x* —z*.  (7.49)
0 0
Let 2* € X* and t > 0. Then, for all z € dom(A) we have that
(S*(t)z* —x",x) = (z*, S(t)x — z)

(o / st Am>
[t st i

/ (S*(s)z*, Az) ds

0

-(/ 5 (s)ar s, de).

Here the second step follows from Lemma and the third and last steps
follow from Lemma 5.9 This proves (7.49) and Step 2.
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Step 3. Let y* € dom(A*). Then
S*(t)y* € dom(A"), A*S*(t)yy* = S*(t)A*y” (7.50)

for allt > 0.
If x € dom(A) then S(t)z € dom(A) and S(t)Ax = AS(t)x by Lemma
and hence

(5" ()A™y" 2) =

for all t > 0. This proves Step 3.
Step 4. Let y* € dom(A*). Then

t
/ §*(s)Ay" ds = S*(8)y" — y"
0

for allt > 0.
By Step 3, we have

S*(t)y* € dom(A*),  A*S*(t)y* = S*(t)A'y*

for all ¢ > 0. Hence, by Step 1, the function [0,00) — dom(A*) : t — S*(¢)y*
is continuous with respect to the graph norm of A*. By Theorem [6.21] and
Exercise [2.19] the domain of A* is a Banach space with the graph norm.
Hence it follows from part (iii) of Lemma [5.9| that

t t
/ S*(s)A*y*ds = / A*S*(s)y* ds
0 0
t
= A*/ S*(s)y* ds
0
= STty -y
for all £ > 0. Here the last equation follows from Step 2. This proves Step 4.
It follows from Step 3 and Step 4 that S* and A* satisfy condition (ii) in

Lemma [7.16] Hence A* is the infinitesimal generator of S* and this proves
Theorem [7.371 O
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7.3.4 Semigroups on Hilbert Spaces
Self-Adjoint Semigroups

The next theorem characterizes the infinitesimal generators of self-adjoint
semigroups.

Theorem 7.38 (Self-Adjoint Semigroups). Let H be a real Hilbert space
and let A : dom(A) — H be a linear operator with a dense domain dom(A) C
H. Then the following are equivalent.

(i) The operator A is the infinitesimal generator of a strongly continuous
semigroup S : [0,00) — L(H) such that S(t) = S(t)* for allt > 0.

(ii) The operator A is self-adjoint and SUD ,eqom(an {0} ||| 72 (z, Az) < oo

If these equivalent conditions are satisfied then

g Sl _ (e Az)

for all t > 0. (7.51)
t vedom(4) |||
z#0
Proof. We prove that (i) implies (ii) and
A 1 t 1
sup (. 2x> < ogll S®)l = lim logl| S(s)l] forallt > 0. (7.52)
xE(i(;ng(A) IE4] t 8§00 s

For Hilbert spaces Theorem asserts that the adjoint A* of the infinitesi-
mal generator A of a semigroup S'is the infinitesimal generator of the adjoint
semigroup S*. Since S(t)* = S(¢) for all ¢ > 0 in the case at hand, it follows
that the infinitesimal generator A is self-adjoint. Moreover,

1SN = I1S@)" 17" = 1S (nt)|V"
by part (i) of Theorem and hence

log|l S|l _ logllSMmtIl ¢ 1t > 0 and all n € N.

t B nt
Take the limit n — oo and use Lemma [7.7 to obtain
log|[ SOOI _ i, LosllS(s)ll for all £ > 0.
t 5—00 S

This implies log||S(t)|| = twg and so [|S(¢)|| = e™° for all ¢ > 0. Thus
(z,S(t)z) < 0|z for all x € H and all £ > 0.

Differentiate this inequality at ¢ = 0 to obtain (x, Az) < wy||x||* for every
x € dom(A). This shows that (i) implies (ii) and ([7.52]).
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We prove that (ii) implies (i). Thus assume A is self-adjoint and

w:i= sup (z, Az)

2
z€dom(A) ||LC||
x#0

< Q.

We prove in five steps that A generates a self-adjoint semigroup.
Step 1. If A > w and x € dom(A) then | \x — Azx| > wlz].
Let © € dom(A) and A > w. Then

][z — Az|| > (2, Az — Az) > (A = w)||z||*

and this proves Step 1.
Step 2. If A > w then A1 — A is injective and has a closed image.

Let A > w. Assume z,, is a sequence in dom(A) such that y, := Az, — Ax,
converges to y. Then z,, is a Cauchy sequence by Step 1 and so converges to
some element x € H. Hence Az, = Az, —y, converges to Ax —y. Since A has
a closed graph by Theorem this implies = € dom(A) and Az = \x — y.
Thus y = Az — Az € im(A1 — A), and so Al — A has a closed image. That it
is injective follows directly from the estimate in Step 1. This proves Step 2.

Step 3. If A > w then A1 — A is surjective.

Let A > w and suppose y € H is orthogonal to the image of AT — A. Then
(y, \xy = (y, Azx) for all x € dom(A). Hence y € dom(A*) = dom(A) and
Ay = A*y = \y. Thus y = 0 by Step 2. This shows that A1 — A has a dense
image. Hence it is surjective by Step 2. This proves Step 3.

Step 4. The operator A is the infinitesimal generator of a strongly continu-
ous semigroup S : [0,00) — L(H) such that ||S(t)|| < e** for all t > 0.

Let A > w. Then A1 — A : dom(A) — H is bijective by Step 2 and Step 3
and [[(AT — A)7|| < (A —w)~! by Step 1. Hence Step 4 follows from the
Hille-Yosida—Phillips Theorem [7.22| with M = 1.

Step 5. The semigroup S in Step 4 is self-adjoint and satisfies (7.51).

The operator A = A* is the infinitesimal generator of S by Step 4 and of
the adjoint semigroup S* by Theorem [7.37. Hence Corollary asserts
that S(¢) = S*(¢) for all ¢ > 0. This implies that A and S satisfies (7.52).
Since ||S(t)|| < e*! for all t > 0 by Step 4, equality holds in (7.52)). This
proves ([7.51)) and Theorem m ]
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Unitary Groups

On complex Hilbert spaces it is interesting to examine the infinitesimal gen-

erators of strongly continuous unitary groups. This is the content of Theo-
rem below which was proved by M.H. Stone [58] in 1932.

Definition 7.39. Let H be a complex Hilbert space. A strongly continuous
group S : R — L(H) is called unitary if ||S(t)z|| = ||z|| for allt € R and
all z € H or, equivalently, S*(t) = S(t)™' = S(—t) for all t € R, where
S*(t) = S(t)* denotes the adjoint operator of S(t).

Theorem 7.40 (Stone/Unitary Groups). Let H be a complex Hilbert
space and suppose that A : dom(A) — H is a linear operator with a dense
domain dom(A) C H. Then the following are equivalent.

(i) A is a the infinitesimal generator of a unitary group.
(ii) The operator iA : dom(A) — H is self-adjoint.

Proof. We prove that (i) implies (ii). Thus assume that A is the infinitesimal
generator of a unitary group S : R — L°(H). Then

N
*
—
~
S——
I
N
~
~
S——
N
Il

S(—t) for all t € R.

The operator —A : dom(A) — H is the infinitesimal generator of the group
R — L(H) : t — S(—t) by Theorem and A* : dom(A*) — H is the
infinitesimal generator of the group R — L°(H) : t — S*(t) by Theorem|[7.37]
Hence A* = —A and so (iA)* = —iA* = iA. Thus iA is self-adjoint.

We prove that (ii) implies (i). Suppose that

A=iB,

where B : dom(B) — H is a complex linear self-adjoint operator. Then A
has a dense domain dom(A) = dom(B) and a closed graph. Moreover,

A* = (iB)" = —iB* = —iB = —A.
This implies

(z,Ax) + (Az,z) (z,(A+ A")x)

Re(z, Az) = =

=0 (7.53)

for all x € dom(A).
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We prove that the operator 1 — A : dom(A) — H has a dense image.
Assume that y € H is orthogonal to the image of 1 — A. Then

0= (y, o — Azx) = (y,z) — (y, Az) for all € dom(A).
Hence it follows from the definition of the adjoint operator that
y € dom(A*) = dom(A), y= A"y = —Ay.

This implies ||y||? = —(y, Ay) = —(A*y,y) = —||y||* and so y = 0. Hence the
operator 1 — A has a dense image by the Hahn-Banach Theorem [2.36]
Since 1 — A has a dense image it follows from and the Lumer—
Phillips Theorem that A is the infinitesimal generator of a contraction
semigroup S : [0,00) — L(H). The adjoint semigroup S* : [0,00) — L(H)
is also a contraction semigroup and is generated by the operator A* by The-
orem [7.37, Hence —A = A* is the infinitesimal generator of the semigroup
S* and so S extends to a strongly continuous group S : R — L¢(H) by
Theorem [7.21} Since S* is the group generated by —A = A* it follows that
S(t)~t = S(—t) = S*(t) for all t € R and this proves Theorem [7.40] O

Example 7.41 (Shift Group). Consider the Hilbert space H := L*(R,C)
and define the operator A : dom(A) — H by

dom(A) := WH*(R,C)

. 2 f is absolutely continuous
o {f €LRO)| ond 4 ¢ I*(R,C) } (7.54)
d
Af = d—‘]; for f € W (R, C).

Here s is the variable in R. Recall that an absolutely continuous function is
almost everywhere differentiable, that its derivative is locally integrable, and
that it can be written as the integral of its derivative, i.e. the fundamental
theorem of calculus holds in this setting (see [50, Thm 6.19]). The operator

A= idi WI2(R,C) - I4(R,C)
S

is self adjoint and hence A generates a unitary group U : R — £L¢(L*(R, C)).
This group is in fact the shift group in Example [7.4] given by
U))(s) = f(s+1) for f € L*(R,C) and s,t € R.

(See also Example and Exercise ) Exercise: Verify the details.
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Example 7.42 (Schrédinger Equation). (i) Define the unbounded linear
operator A on the Hilbert space H := L*(R,C) by

dom(A) := W?*(R,C)
f is absolutely continuous,
={ fe L*R,C)| % is absolutely continuous,

dz ’ 7.55
and g% € L*(R,C) (7.55)
. de 2,2
Af = lhﬁ for f e W= (R, (C)

(See Example [6.6]) Here £ is a positive real number (Planck’s constant)
and x is the variable in R. The operator

d2
da?
is self adjoint and hence A generates a unitary group U : R — £L¢(L?*(R, C)).

If f:R — Cis a smooth function with compact support and u : R? — C is
defined by u(t, ) := (U(t) f)(z), then u satisfies the Schrédinger equation

.. Ou 0%u

with the initial condition u(0, -) = f. Exercise: Prove that iA is self-adjoint.

iA = : W22(R,C) — LX(R,C)

(ii) Another variant of the Schrédinger equation is associated to the operator

A :dom(A) — L*(R,C), defined by

f is absolutely continuous and

dom(A) :={ f € L*(R,C) % is absolutely continuous and 3 |

[ =R 4 2 f 2 de < oo (7.57)
A s d*f a? 2,2
(Af)(z) := 1hw(x) + Ef(m) for f € W**(R,C) and x € R.

The operator iA is again self-adjoint and hence A generates a unitary group
U:R — LY(L*R,C)). If f: R — C is a smooth function with compact
support and u : R? — C is defined by u(t,x) := (U(¢)f)(x), then u satisfies
the Schrodinger equation with quadratic potential

ou 0%u

T (t,x) = —hQ@(t, x) + ?u(t, r) (7.58)

for all (¢,2) € R?. Exercise: Prove that i4 is self-adjoint.

ih
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7.4 Analytic Semigroups

7.4.1 Properties of Analytic Semigroups
For a strongly continuous semigroup
S :[0,00) = LYX)

on a complex Banach space X an important question is whether the function
t — S(t)xr extends to a holomorphic function on a neighborhood of the
positive real axis for all x € X. A necessary condition for the existence of
such an extension is instant regularity, i.e. the image of the operator S(t)
must be contained in the domain of the infinitesimal generator for all ¢ > 0.
The formal definition involves the sectors

Us = {z € C\ {0} | |arg(2)] < 0} (7.59)
={ré’|r>0and -0 <0 <6}

for 0 <0 <m/2.

Definition 7.43 (Analytic Semigroups). Let X be a complex Banach
space. A strongly continuous semigroup S : [0,00) — L¢(X) is called ana-
lytic if there exists a number 0 < § < /2 and an extension of S to Us, still
denoted by S : Us — L(X), such that, for every v € X, the function

Us = X : 2+ 8(2)x
is continuous and its restriction to the interior Us C C is holomorphic.

The next theorem summarizes the basic properties of analytic semigroups.
In particular, it shows that the map Sy : [0,00) — L(X), defined by

Sp(t) := S(te?) for t > 0, (7.60)

is a strongly continuous semigroup for —¢ < 6 < 4, and that its infinitesimal
generator is the operator Ay : dom(A) — X defined by

Agz = ¥ Ax for x € dom(A). (7.61)

It also shows that the semigroups Sy satisfy an exponential estimate of the
form ||Sp(t)|| < Me**, where the constants w € R and M > 1 can be chosen
independent of #. This implies that the spectrum of A is contained in the
sector {w —re!? |r >0, |6] <6 —m/2} (see Figure .
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/2—9
\ 5
o(A) / o, 0 U;

Figure 7.1: The spectrum of the generator of an analytic semigroup.

Theorem 7.44 (Analytic Semi_groups). Let X be a complex Banach
space, let 0 < 6 < /2, let S : Us — LX) be an analytic semigroup,
and let A be its infinitesimal generator. Then the following holds.
(i) S(t+ 2) = S(t)S(2) for all t,z € Us.
(ii) If z € Us then im(S(z)) C dom(A), AS(z) € LX), and
lim S(z+h)—S(z)
h—0 h
heC\{0}

— AS(z)

(7.62)

Moreover, the function Us — LX) : z +— AS(z) is holomorphic.

(iii) If v € dom(A) and z € Us then S(z)z € dom(A) and AS(z)x = S(2)Az.
(iv) If z € Us then im(S(z)) C dom(A>).

(v) For each w > wy := inf,oor~'sup{log||S(z)|||z € Us, |2| = r} there
exists a constant M > 1 such that ||S(2)| < Me“? for all z € Us.

(vi) Let x € X and zy € Us. Choose r > 0 such that B.(z9) C Us. Then

i A”S (z0)x  for all z € B,(z) (7.63)

k=0
The power series in ((1.63)) converges absolutely and uniformly on every com-
pact subset of B.(2).

(vii) For —6 < 0 < § the map Sy in ([7.60)) is a strongly continuous semigroup
whose infinitesimal generator is the operator Ay in ([7.61).

(viii) If wy is as in (v) then o(A) C {wo+1e? |r >0, 7/2 -0 <|0] < 7}
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Proof. We prove part (i). Fix a real number ¢ > 0 and two elements z € X
and x* € X*. Define functions u,v,w : Us — C by

u(z) = (z*, S(t + 2)z),
v(z) == (z*, S(2)S(t)x),
w(z) = (z", S(t)S(2)x) = (S(t)*z", S(2)x)

for z € Us. By assumption these functions are holomorphic and agree on
the positive real axis. Hence they agree on all of Us by unique continuation.
This shows that S(t +2) = S(2)S(t) = S(t)S(z) for all t > 0 and all 2z € Us.
Repeat the argument with ¢ € Us; to obtain S(t + z) = S(t)S(z) for all
t,z € Us. This proves part (i).

We prove part (ii). Let z € X and define f: Us — X by f(z) := S(2)z
for z € Us. This function is holomorphic by assumption and

flz+h) = f(z) _ S(h)S(z)z — S(z)x

- - - forall h >0

by part (i). The difference quotient on the the left converges to f'(z) as h
tends to zero because f is holomorphic. Hence it follows from the definition
of the infinitesimal generator that S(z)x € dom(A) and AS(z)z = f'(2)
for all z € Us. Since f’ is holomorphic by Exercise [5.12] and every weakly
holomorphic operator valued function is holomorphic by Lemma [5.11] this
proves part (ii).

We prove part (iii). Let € dom(A) and define f,g: Us — X by

f(z) :==S(z)Ax, g(z) = AS(2)x for z € Us.

Then f is holomorphic by assumption and g is holomorphic by part (ii).
Moreover, the functions agree on the positive real axis by Lemmal[7.12] Hence
they agree on all of Us by unique continuation. This proves part (iii) for
2z € Us. Now let z € Uy and choose a sequence z, € Us that converges to z.
Then it follows from the strong continuity of the map S : Us — £(X) and
from what we have just proved that

lim S(z,)z = S(2)x, lim AS(z,)x = lim S(z,)Az = S(z)Az.

n—oo n—oo n—oo

Since A is closed, it follows that S(z)z € dom(A) and AS(z)x = S(z)Ax.
This proves part (iii).
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We prove part (iv). We prove by induction on n that S(z)z € dom(A")
for all z € Us and all x € X. For n = 1 this was established in part (ii).
Assume by induction that S(z)z € dom(A") for all z € Us and all z € X.
Fix two elements z € X and z € Us. Then it follows from parts (i), (ii), (iii)
and the induction hypothesis that

AS(z)x = AS(2/2)S(2/2)x = S(2/2)AS(2/2)x € dom(A")

and hence S(z)z € dom(A™™!). This completes the induction argument and
the proof of part (iv)

We prove part (v). The function Us — [0,00) : z = ||S(2)z]| is bounded
on every compact subset of Us and for every x € X by strong continuity.
Hence it follows from the Uniform Boundedness Theorem [2.1] that

M(r):= sup [S(z)]| < o0 for all » > 0. (7.64)

2€Us, |Z‘§T

Thus M(0) =1 and M(r) > 1 for all » > 0. Define

. Lw(r) _
wo 1= 712%7, w(r) := sup {logHS(z)H ’ z€Us, |z| = r} , (7.65)

and define the function g : Us; — R by
g(z) :=log||S(2)]] for 2 € Us.

Then it follows from part (i) that g(t + z) < g(t) +g(z) for all t, z € Us. Fix
a real number r > 0 and let z € Us \ {0}. Then there exists an integer k > 0
and a number 0 < s < r such that |z| = kr + s. Define ¢ := |z|7'2. Then

g(z) _ glkrC+s¢)  kg(r¢) +9(s¢) _w(r)  log M(r)
2] =l '

2] r E

Now fix a constant w > wy, choose r > 0 such that 7~ 'w(r) < w, and then
choose R >0 such that r~w(r) + R~'log M(r) <w. Then each z € Us
with |z| > R satisfies |2|7'g(z) < w and hence ||S(z)|| = e9*) < e¥l#l. This
proves part (v) with M = sup,cz, |.j<r e~ (2)].

We prove part (vi). Let z € X and z* € X* and define f : Us — C
by f(z) := (z*,S(2)x). By parts (ii), (iii), and (iv) the derivatives of f are
given by f™(z) = (2%, A"S(z)z) for n € N and z € Us. Hence part (vi)
follows by carrying over the familiar result in complex analysis about the
convergence of power series (e.g. [IL p 179] or [49, Thm 3.43]) to operator
valued holomorphic functions. (See also Exercises[5.12]and[5.13]) This proves
part (vi).
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We prove part (vii). Fix a real number —6 < 0 < §. That Sy is strongly
continuous follows directly from the definition and that it is a semigroup
follows from part (i). We must prove that its infinitesimal generator is the
operator Ay = €A : dom(A) — X in (7.61). To see this, fix an element
xo € dom(A) and define the function

z:[0,00) = X
by ‘
z(t) == Sy(t)wo = S(te'?) g for t > 0.

This function is continuous by assumption and takes values in dom(Ay) =
dom(A) by part (ii). Moreover, it follows from part (ii) that x is differentiable
and

d . S(te? + he)z — S(tel’)x
g oe = lim h
= e?AS(te")r
Sg(t)Ag.%‘.

for all ¢ > 0. Here the last equality follows from part (iii). Thus x is
continuously differentiable and satisfies the differential equation

T = Ag.l’.

Hence Sy and Ay satisfy condition (iii) in Lemma and so Ay is the
infinitesimal generator of Sp. This proves part (vii)
We prove part (viii). Recall the definition of the spectrum of an un-

bounded operator in (6.9). Let A € o0(A). Then
N € o(As), e N e o(As).
Let w > wp. Then part (v) asserts that there is a constant M > 1 such that
1SLs()|| < Me*?! for all ¢ > 0.
By Theorem this implies that
Re(eii‘s)\) < w.
Since w > wy was chosen arbitrary, it follows that
Re(e*)) < wy.

This proves part (viii) and Theorem [7.44} O
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7.4.2 Generators of Analytic Semigroups

The next theorem is the main result of this section. It characterizes the
infinitesimal generators of analytic semigroups.

Theorem 7.45 (Generators of Analytic Semigroups). Let X be a com-
plex Banach space and let A : dom(A) — X be a complex linear operator
with a dense domain and a closed graph. Fiz a real number wy. Then the
following are equivalent.

(i) There exists a number 0 < § < m/2 such that A generates an analytic
semigroup S : Us — LX) that satisfies

Lo gl logll S

t—00 t t>0 t

< w. (7.66)

(ii) For each w > wy there exists a constant M > 1 such that

M
A=l

(A1 — A7 < for all A € C with ReX > w. (7.67)

If these equivalent conditions are satisfied then im(S(t)) C dom(A) for all
t >0 and, for each w > wy, there exists a constant M > 1 such that

M
|AS(t)x| < Te“’t||a:|| for allt >0 and all v € X. (7.68)

Proof. We prove that (i) implies the last assertion. Thus assume part (i).
Then im(S(t)) C dom(A) for all ¢ > 0 by Theorem [7.44 Now fix a con-

stant w > wy and assume w; := inf,~g sup{log”TM]z cUs |2| =1} < w.
(Shrink ¢ if necessary.) Let r > 0 such that
- w w
B,.(1) C Us, < —, < .
(1) ° 1 147 1 1—r

(Note that w might be negative.) Let ¢ > 0 and define ~; : [0,1] — Us by
Y:(s) =t + rte?™ for 0 < s < 1. Fix an element z € X. Then AS(t)x is
the derivative at z = t of the holomorphic function Us — X : z — S(z)z by
Theorem [7.44. Hence the Cauchy Integral Formula asserts that

1 S(2)x I
= — D) z = —
2mi J,, (2 — 1) rt Jo

AS(t)x e IS (t 4 rte*™ )z ds.
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w

Iz —
- for z € Us.

Choose M > 1 such that [|S(2)] < Met and ||S(2)]| < Me
Since (1 — r)t < |t + rte*™ | < (1 + )t this implies

1 27is M wt
|AS(t)x| < Esslellg |5t + rte*™)z|| < s ||

This shows that that (i) implies (7.68).

We prove that (i) implies (ii). Thus assume part (i). Let w > wy and as-
sume wy = inf,~¢ S.up{logurM | 2 € Us, |2] =7} < w. (Shrink § if necessary.)
Choose 0 < 6 < ¢ such that w’ := cos(f)w > w;. By part (v) of Theorem [7.44]

there exists a constant M’ > 1 such that
IS(2)]| < M'e”

Since the operator A_g = e A in ((7.61]) is the infinitesimal generator of the
semigroup S_g in ((7.60)), it follows from Corollary that every complex
number X € C with ReX > w’ belongs to the resolvent set of A_4 and

2l for all z € Us.

. M’
||()\/]1 — €_19A)_1H S m for all )\/ c C with Re)\/ > (JJ/. (769)
Define
M = cM’ c= ! + ! : (7.70)
’ sin?(9)  cos?(0)

Let A € C such that ReA > w and Im\ > 0. Define X := ¢ \. Then
Re) — w' = cos(f)(ReX — w) + sin(f)ImA > 0,
hence Rel —w < cos(0) ' (ReN —w’) and Im\ < sin(6) ™' (ReX —w’), and so
A —w| <c(ReX — ). (7.71)
Since Re)\ > ', the operator A1 — A = (V1 — ¢7A) is invertible and,
by (7.69)), (7.70), and (7.71)), it satisfies the estimate
=) = n— e a7

.M M

~ ReXN —w'  c(ReN — )

- M

A —w|

This shows that A satisfies (7.67)) whenever ImA > 0. When Im\ < 0 repeat
this argument with A_y replaced by Ay and )\ := e\ to obtain that A
satisfies ([7.67)). This shows that (i) implies (ii).
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We prove that (ii) implies (i). Thus assume part (ii). We prove in eight
steps that A generates an analytic semigroup satisfying ([7.66]).

Step 1. Let w > wy and choose M > 1 such that (7.67) holds. Choose the
real number 0 < g9 < /2 such that sin(eg) = 1/M and define

M= M cos(e)

= Tsuq(g) fOT’ O<e< 0. (772)

Then o(A) C{w+re? [r >0, 1/2 4+ < |0] <7} and, if 0 < € < &g, then

(AT —A4)71] < |Aj%w| (7.73)
for all X = w+rel? withr >0 and |0] < 7/2 + €.
We prove first that, for all A € C,
ReA>w, A £Aw = [[A1-A4)7"< |A]\_4w|. (7.74)

If ReA > w, this holds by assumption. Thus assume A = w+it for t € R\ {0}
and define \s := w + s + it for s > 0. Then [[(A\1 — A)7!|] < M/|t] for all
s > 0. With 0 < s < |[t|/M this implies |A — X¢|[|(As1 — A)7H| < sM/Jt] < 1
and so it follows from Lemma [6.10[that A € p(A) and [[(A1—A)7!|| < W%
Take the limit s — 0 to obtain the estimate (7.74).

Now let 0 < € < gy and let A = w + riet? with » > 0 and 0 < 6 < ¢.
Consider the number p = w % ir/ cos(6). It satisfies |A\ — p| = rtan(f) and

M Mcos(f) < M cos(e)
w—w| T - r

(= A)7H| <

by (7.74]). Hence

M cos(6)

A=l — )7 < 22

A — p| = Msin(f) < M sin(e) < 1.
Thus A € p(A) and A1—A)~' =377 ((u—A)F(pl—A)~*! by Lemmam.
Hence

M cos(e)/r M,

i 1-4)
1= A= T G = T = T 2@~ e

and this proves Step 1.
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Figure 7.2: Integration along 7.

Step 2. Let w > wy and 0 < e < g9 < w/2 be as in Step 1. Forr > 0 define
the curve v, = v, : R —= C by

w+ %ei’"t(%“), for —1/r <t<1/r

Ye(t) = wH+ite fort < —1/r, (7.75)
w + ite®, fort>1/r.
(see Figure . Then the formula
1
=— [ *((1-A4)"'d .
S(z)i= 5 [ e(C1- Ay (7.76)

¥
for z € U. defines a holomorphic map S : U, — L(X).

Step 1 asserts that w + ite’® € p(A) and w — ite™ € p(A) for t > 0 and

| (wEite™)1— A)7H| < MT for all £ > 0.

Let z = |z|e!’ € U. with |f] < . Then Re(zie*¥) = —|z|sin(e + ) < 0 and
Re(—zie ) = —|z|sin(e — #) < 0. Hence
+ie e . |z|w cos(0) ,—t|z|sin(e10)
6_62;(w:|:1tei )((wj:ite:tle)ﬂ_ A)—l < M.e €
2m - 2m t
for all t > 1/r. This shows that the integrals
eiie o stotie 5
SE(2) = / AWEET) (W + iteE) 1 — A) " at
27 1/r

converge in £°(X). That the map S : U. — L°(X) is holomorphic follows
from the definition and the convergence of the integrals. This proves Step 2.
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Step 3. Let € and S be as in Step 2 and let 0 < § < €. Then there exists a
constant Ms. > 1 such that ||S(2)|| < Ms.e*! for all z € Us \ {0}.

Let z € Us \ {0} and choose r := |z| in (7.75)). Then z = re¥? with 0] < 4.
Hence, by Step 2,

1 1 o
5@ =5 [ U= e = o [ e Os 0001 - 4)
271 )., 2m1 J_ o
1r e -1
_ T+ 2e / ez(w+%e‘”(§+s>)6irt(%+z—:) <(w + leirt(gﬁs)) 1— A> dt
)y r
e7ie [Ur ite—ic ;
+ 5 / @) (y fite )1 — A)~Ldt
™ —00
ele [ iteic ;
+ o W) () 4 itel) 1 — A) L dt
™ J1/r

= S%2) 4+ S (2) + ST(2).
By Step 1, ||((w +r~ 151 — A)~!| < M.r and hence

15°)|| < %?GWAMJ < Mg+,

Now use the fact that Re(+zie**¥) = —rsin(e + 6) < 0 to obtain

M_e¥r 0o ,—trsin(e+0)
sl < e | it
2 1/r t
- Meewr /OO eftrsin(sfé) "
2 1/r t
_ M_e*" /oo efssin(sfﬁ) ds
2t )y
M_e®"

< —.
~ 2msin(e — 9)
Since |z| = r, the last two estimates imply

1

ISl <. (e +

> k! for all z € Us \ {0}.

This proves Step 3.
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Step 4. Let 0 < § < e < /2 and let z € Us. Choose a real number r > 0
and let v, = Y. : R — C be given by (7.75) as in Step 2. Then

1 e*¢
— dC = e**.
27ri/%g—w< ‘

The loop obtained from 7,|_77] by joining the endpoints with a straight line
encircles the number w with winding number one for " > 1/r. Moreover,
the straight line

ﬁT : [—1, 1] —C
joining the endpoints (from top to bottom) is given by

Br(s) :=w — Tsin(e) — isT cos(e)

1 %
L / ¢ dc‘
271'1 Br C— w

and so

—T cos(e) /1 o (w=Tsin(e)—isT cos(e)) ]
s

2 1 —T'sin(e) — isT cos(e)
< Cos(g)GWRez efTsin(s)Rez+Tcos(5)\Imz|
sin(e)m '

Since z € Ug, the last factor is bounded above by e~ #17sn(=%) and so con-
verges exponentially to zero as T tends to infinity. This proves Step 4.

Step 5. For 0 <6 <& < g the map S : Us\{0} — L(X) in Step 2 satisfies
7lml_r>r(1)sup{HS(Z)QC —all|z€Us, |z|=r} =0

forallz e X.

Assume first that 2 € dom(A). Let z € Us \ {0}, define  := |2|, and let
v : R — C be given by equation ([7.75). Then, by Step 2 and Step 4,

S(z)x —er = = e ((C1—A) 'z — (C—w)'z) &

27 -~

1 e*¢ _
_ Q_Wi/wc_w(gn_A) Az — wr) dC

1 > "y'r t GZ'YT(t) _
" 2mi 7((15))——W(VT<t>]l — A) Az — war) dt.
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Since [|(7,(0)1 — A)7Y| < M./]v.(t) — w| by Step 1 and |v,.(t) —w| > 1/r
by (7.75)), it follows that

M. [* |%(t)‘eRe(zw(t))

27 J_ooo () — wl?

M o0

2—6 / |f'yr(t)|eRe(Z7T(t)) dt ||[Ax — wex|| r.
7T —Oo

|1S(2)x — eZz|] < dt [|[Ax — wa||

IN

Now
1 irt($+e) 1
V() —w = =™z for |t| < =
r r
and
- 1
Y(t) — w = tel5+9) for t > —
-
and
- 1
Y(t) —w = —te G fort < —=
r
Hence

00 1/7" . - oo o
/ eRe(Z’yr(t)) dt = ewRez / ﬂ_eRe(femf(f'*'E)) dt—|—2/ eRe(tze'(72+5)) dt
—00 —l/r 1/7‘
< ewRez (% ) /Oo ot sin(e—9¢) dt)
r 1/r

< puRez 2me n 2
- r rsinfe—9) /)’

Combine these inequalities to obtain

M oo
IS el < 32 [T 0l ® de ) Ar - wa) 5
< M Ar — wRez
< o (e oot ) e -l e

for all z € Us\ {0}. This proves Step 5 in the case x € dom(A). The general
case follows from the special case by Step 3 and Theorem [2.5]
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Step 6. Let 0 < e < g9 and S be as in Step 2 and let 0 < 6 < e. Extend
the map S : Us \ {0} — LX) to all of Us by setting S(0) := 1. Then
S:Us — LX) is strongly continuous and satisfies

S(z+ h)x — S(2)x
h

for all x € dom(A) and all z,h € Us.

Strong continuity follows from Step 5. To prove equation, let z € dom(A)
and z, h € Us. Assume first that z # 0. Choose any real number r > |w| and
define v, =7, : R — C by (7.75)) as in Step 2. Then

_ / (s + th) Av di (7.77)

1 1
/ S(z+th)Ardt = i / / eFHS(C — A) L Az dC dt
0 2m J, -~
1
- L / / eFHC q(¢l — A) LAz dC¢
21 ), Jo
1 e(z+h)(_€zC
= — [ ——(1-4)7'4
omi ), K (1= A" Avd
1 e(z-‘rh)(_ezg“ T
= — | —— (-4 - =
| T (@7
S(z+h)x — S(z)z
- .

Here the last assertion follows from the fact that
1 d
ezC—C =

27/, ¢

1

whenever 7 > |w| and z € Us. This proves Step 6 in the case z # 0. The
case z = 0 then follows from strong continuity.

Step 7. The map S : Us — L(X) in Step 2 and Step 6 satisfies
S(w+z) = S(w)S(z) (7.78)
for all z,w € U..

By strong continuity it suffices to prove equation for z,w € Us. Fix
two elements w, z € Us. Choose two numbers 0 < p < r, define the curve
v =7 : R — C by equation as in Step 2, and define § : R — C by
the same formula with € replaces by ¢ and r replaced by p.
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With this notation in place, the argument in the proof of Step 4 yields

e*n e*
= dn = *PB) de =
/777—5(8)?7 © /55_7(t)§ !

for all s,t € R. Hence
1

SES@) = gz [ e = A7 Sw)dy
= % e (1 —A)"" (% /ﬁ et (E1—A)" df) dn
_ % 7 <%/ﬁewﬁ+m (1 — A)~" (€1 — A)! d§) d
- L (% / S (-t —@- ) ic) dy
ml (% / w&? (€1 A)" de
= [k en -y
= S(w+2).

This proves Step 7.

Step 8. The map S : Us — L£5(X) is an analytic semigroup. It satis-
fies (7.66) and its infinitesimal generator is the operator A.

That S is an analytic semigroup follows from Step 6 and Step 7, and the
estimate (7.66) follows from Step 3 by taking the limit w — wy. Now
let z € dom(A) and ¢ > 0. Then the integral S(t)z = 5 fw e (C1—A) 1z dC
in ([7.76)) converges in the Banach space dom(A) with the graph norm. Hence
S(t)r € dom(A) and

1

AS(t)x = 2— et<(C]l — A TAxd¢ = S(t)Ax.

i
Moreover, S(t)z — x = f s)Ax ds by Step 6. Hence A and S satisfy
condition (11) in Lemma and so A is the infinitesimal generator of S.
This proves Step 8 and Theorem 7.45| O
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7.4.3 Examples of Analytic Semigroups

By Theorem an analytic semigroup S : [0,00) — £(X) on a complex
Banach space X with infinitesimal generator A : dom(A) — X satisfies
im(S(t)) € dom(A) for all t > 0. Hence a group of operators S : R — L°(X)
cannot be analytic unless its infinitesimal generator is a bounded operator

(see Lemma and Theorem [7.21)).

Example 7.46. Let H be a separable complex Hilbert space, let (e;);en be
a complex orthonormal basis of H, and let ()\;);eny be a sequence of complex
numbers. Define the linear operator A, : dom(A,) — C by

D NiPlen 2) < OO},
i=1

Az = Z Ai(es, z)e; for = € dom(A,).
i=1

dom(A,) = {x €eH

(7.79)

By Example this operator generates a strongly continuous semigroup if
and only if sup,cy Re\; < co. In this case the semigroup is given by

Sx(t)x = Z eMit{e;, x)e; fort >0 and z € H. (7.80)
i=1
(See Example[7.3]) The semigroup (7.80) is analytic if and only if
Im\;
Szlelg w|—m—Re‘)\i < 00 for w > wpy := Sllélg Re);. (7.81)

This condition holds for some w > wy if and only if it holds for all w > wy.
Assume , fix a real number w > wy, choose a constant 0 < & < 7/2
such that sin(e)|Im\;| < cos(e)(w — Re);) for all 4, and define M := 1/sin(e).
Then, for all u € C,

1 M
Rep > =47 = = '
enzw = |l = A7 = sup g <

Moreover, the spectrum of A, is the set
oA ) ={\ieN}Cc{w+re?|r>0,1/24+e<|0| <7} =:C..

This example shows that every closed subset of a sector of the form C.
with 0 < & < /2 is the spectrum of the infinitesimal generator of an analytic
semigroup on a complex Hilbert space. Exercise: Verify the details.
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Example 7.47 (Self-Adjoint Semigroups). Let H be a complex Hilbert
space and let A : dom(A) — H be a self-adjoint operator such that

A
W 1= sup (7, Az)

— < 0.
zedom(A)\{0} HQ?HQ

By Theorem the operator A is the infinitesimal generator of a strongly
continuous self-adjoint semigroup S : [0,00) — L¢(H). Moreover, if A € C
satisfies ReA > wy, then A € p(A) and

A —wol [|l2]1* = [Mzl* = wollz[I?] < [M)l* = (z, Az)| < [[z]|| A — Az]|
for all x € X. This implies

1
|A — wol

Hence it follows from Theorem that S is an analytic semigroup. In fact,
the proof of Theorem with M = 1 and gy = /2 shows that S extends
to a holomorphic function S : {z € C|Rez > wy} — L°(H) on an open half-
space and that the spectrum of A is contained in the half-axis (—oo, wy].

A1 — A7 < for all A € C with ReA > wy.

Example 7.48 (Heat Equation). The solutions of the heat equation

O =~NAu, A=) prt (7.82)
i=1 O
determine a contraction semigroup on L*(R"), given by
1 —|T
S(t)f = Kt * f, Kt(l') = W@ | |2/4t, (783)

for t > 0 and f € L?(R") (see Example [7.6). The semigroup S is a self-
adjoint and hence is analytic by Example [7.47 Its infinitesimal generator
is the Laplace operator A : W22(R") — L?(R") in Example [6.8] Here the
domain is the Sobolev space W?22(R") of all L? functions on R™ whose dis-
tributional derivatives up to order two can be represented by L? functions
on R™. The proof that this operator is self-adjoint requires elliptic regularity
and goes beyond the scope of this book. For 1 < p < oo the formula
also defines an analytic semigroup on the Banach space LP(R"™) whose in-
finitesimal generator is the Laplace operator A : W*P(R") — LP(R"). The
proof that this operator has a closed graph requires the Calderén—Zygmund
Inequality (see [50, Thm 7.43]).



7.5. PROBLEMS 419

7.5 Problems

Exercise 7.49. Let X be a complex Banach space. Then X is also a real
Banach space. Assume A : dom(A) — X is the infinitesimal generator of a
strongly continuous semigroup S : [0, 00) — L£(X). Suppose dom(A) is a com-
plex subspace of X and that A is complex linear. Prove that S(t) € £(X)
for all £ > 0. Hint: Define the operator T'(t) € L(X) by T(t)z := —iS(t)ix
for x € X and ¢t > 0. Show that 7' is a strongly continuous semigroup with
infinitesimal generator A and use Corollary

Exercise 7.50. Let X be a complex Banach space and let A : dom(A) — X
be a complex linear operator with a dense domain dom(A) C X. Consider
the following conditions

(i) A generates a contraction semigroup.

(ii) A has a closed graph and both A and A* are dissipative.

Prove that (ii) implies (i). If X is reflexive prove that (i) is equivalent to (ii).
Find an example of an operator on a non-reflexive Banach space that satis-
fies (i) but not (ii).

Exercise 7.51. Prove that the domain of the infinitesimal generator A of
the group on L'(R) in Example is the space of absolutely continuous real
valued functions on R with integrable derivative. Prove that the domain of
the dual operator A* on L*(R) is the space of bounded Lipschitz continuous
functions from R to itself. Prove that the spectrum of A, and that of A*, is the
imaginary axis. Prove that the operator A* does not satisfy the requirements
of the Hille-Yosida—Phillips Theorem because its domain is not dense.
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Appendix A

The Lemma of Zorn

The purpose of this appendix is to prove the equivalence of the Axiom of
Choice and the Lemma of Zorn. The proof follows the exposition by Imre
Leader [36] and is based on the Bourbaki-Witt fixed point theorem. We
begin with some basic definitions.

Definition A.1. A relation < on a set P is called a partial order if it is
reflexive, anti-symmetric, and transitive, i.e. if it satisfies the conditions
°*p=Xp,

® ifp<qandq=<pthenp=yq,

e ifp<qgandqg=<rthenp<r

for all p,q,r € P. A partially ordered set is a pair (P, <) consisting of a
set P and a partial order < on P.

Definition A.2. Let (P, <) be a partially ordered set.

(i) An element m € P is called maximal if every p € P satisfies
mxp — m =p.

(ii) A chain in P is a totally ordered subset C' C P, i.e. any two distinct
elements p,q € C satisfy either p < q or q X p.

(iii) Let C C P be a nonempty chain. An element a € P is called an upper
bound of C' if every element p € C' satisfies p <X a. It is called a supremum
of C' if it is an upper bound of C' and, in addition, every upper bound b € P
of C satisfies a <X b. The supremum, if it exists, is unique and will be denoted
by sup C.

421
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THE LEMMA OF ZORN. Let (P, <) be a partially ordered set such that
every nonempty chain C' C P admits an upper bound. Letp € P. Then there
exists a mazximal element m € P such that p < m.

THE AXIOM OF CHOICE. Let I and X be two nonempty sets and, for

each element i € I, let X; C X be a nonempty subset. Then there exists a
map g : I — X such that every i € I satisfies g(i) € X;.

Theorem A.3. The Aziom of Choice is equivalent to the Lemma of Zorn.
Proof. See page [424] O

Theorem A.4 (Bourbaki—Witt). Let (P,<) be a nonempty partially or-
dered set such that every nonempty chain C' C P admits a supremum and
let f: P — P be a map such that every p € P satisfies p X f(p). Then there
exists an element p € P such that f(p) = p.

Proof. Fix any element py € P. Let A C 27 be the set of all subsets A C P
that satisfy the following three conditions.

(I) po € A.
(IT) If p € A then f(p) € A.

(III) If C' C A is a nonempty chain then sup C' € A.
Then A is nonempty because P € A. Now let
E:=()AcP
AcA

be the intersection of all subsets A € A. Then the set E also satisfies
the conditions (I), (II), and (III) and hence is itself an element of A. In
particular, ' is nonempty. We prove in five steps that F is a chain.

Step 1. Every element p € E satisfies pg < p.

The set Py := {p € P|po < p} satisfies the conditions (I), (II), and (III), and
hence is an element of A. Thus E C P, and this proves Step 1.

Step 2. Let F' C E be the subset

F::{qGE

Then py € F.
By Step 1 there is no element p € E'\ {po} with p < po. Hence py € F.

every element p € E \ {q} (A1)
with p < q also satisfies f(p) < q |- '
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Step 3. Letp € F and g € F. Then p < q or f(q) < p.

Fix an element ¢ € F' and consider the set

E,={peE|psqiU{pe E|f(q) < p}.

We will prove that £, € A. Since ¢ € FF' C E we have py < ¢ by Step 1.
Since py € E, this implies py € E, and so E, satisfies condition (I).

We prove that E, satisfies (II). Fix an element p € E,. Then f(p) € £
because E satisfies (II). If p < ¢ and p # ¢ then f(p) < ¢, because ¢ is an
element of F, und this implies f(p) € E,. If p = g then f(q) < f(p) and this
implies f(p) € E,. If p £ ¢ then we must have f(q) < p, because p € E,, and
this implies again f(q¢) < f(p) and therefore f(p) € E,. This shows that E,
satisfies condition (II).

We prove that E, satisfies (III). Thus let C' C E, be a nonempty chain
and s :=supC. Then s € F because F satisfies (III). If p < ¢ for all p € C
then s < ¢ und therefore s € E,. Otherwise there exists an element p € C
with p £ ¢. Since p € E,, we must have f(q) < p < s and therefore s € E,.
This shows that E, satisfies condition (III).

Thus we have F, € A and so &/ C E,. This proves Step 3.

Step 4. F = F.

We prove that F' € A. By Step 2 we have py € F' and so F satisfies (I).

We prove that F' satisfies (II). Fix an element ¢ € F'. We must prove
that f(q) € F. To see this, note first that f(q) € E because E satisfies (II).
Now let p € E\ {f(¢)} with p < f(¢). Under these assumptions we must
show that f(p) < f(q). Since f(q) £ p, we have p < ¢ by Step 3. If p # ¢
then it follows from the definition of the F' that f(p) < ¢ =< f(q). lf p=gq
then we also have f(p) < f(q). Thus we have shown that f(p) < f(q) for
every element p € E\ {f(q)} with p < f(q). Hence f(q) € F and this shows
that F' satisfies condition (II).

We prove that F satisfies (III). Let C' C F' be a nonempty chain and de-
fine s := sup C'. W must prove that s € F'. To see this, note first that s € F
because E satisfies (III). Now let p € E\ {s} with p<s. Under these
assumptions we must show that f(p) < s. Since s# p, we have s % p.
Thus there exists an element g € C' with ¢ £ p, and hence also f(q) % p.
Since ¢ € C' C F, this implies p < ¢ by Step 3. Since p # g and ¢ € F, this
implies f(p) < ¢. Since ¢ € C' and s = sup C, this implies f(p) < s. Thus we
have proved that s € F' and so F' satisfies condition (III).

Thus we have F € A, hence E C F, and so = F. This proves Step 4.
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Step 5. E is a chain.

Let p,q € E. Then q € F by Step 4, and so p < ¢ or f(q) < p by Step 3.
Thus p < g or ¢ < p and this proves Step 5.

By Step 5, the set E has a supremum s := sup F/ € P. Since E sat-
isfies condition (III) we have s € E. Since E also satisfies (II), this im-
plies f(s) € E and hence f(s) < s. Since s < f(s) by assumption, we
have f(s) = s and this proves Theorem |A .4 O

We remark that the Lemma of Zorn implies the existence of a maximal
element m € P under the assumptions of Theorem and that any such
maximal element must be a fixed point of f. However, the above proof of the
Bourbaki-Witt Theorem does not use the Lemma of Zorn (nor does it use
the Axiom of Choice) and so the result can be used to show that the Axiom
of Choice implies the Lemma of Zorn.

Proof of Theorem[A.3. First assume the Lemma of Zorn. Let I and X be
nonempty sets and, for each ¢ € I, let X; C X be a nonempty subset, as in
the assumptions of the Axiom of Choice. Define

P ={(Jg)|0#JCI g:J— X, g(i)e X;foralliecJ}.

This set is partially ordered by the relation

(J,9) < (K, h) LN JCK and hl;=g.
for (J,9), (K,h) € &. It is nonempty, because each pair (ig, xg) with ig € T
and z € X;, determines a pair (Joy, go) € & with Jy := {ip} and go(ip) := xo.
Moreover, each nonempty chain ¢ C & has a supremum (K, h) = sup @
given by

K = U J, h(i) :=g(i) for (J,g) € € and i € J.
(J.9)€€

Hence it follows from the Lemma of Zorn that there exists a maximal el-
ement (J,g) € &. This element must satisfy J = I. Otherwise J C I,
hence there exists an element iy € I\ J and an element z € X;,, and then
the pair (K,h) € & with K := J U {io}, hl; := g, and h(iy) := z( satis-
fies (J,9) < (K, h) and (J,g) # (K, h), in contradiction to maximality. This
shows that there exists a map g : [ — X that satisfies g(i) € X, for all i € I,
and so the Axiom of Choice holds.
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Conversely, assume the Axiom of Choice. Under this assumption we prove
the Lemma of Zorn in two steps.

Step 1. Let (P,<) be a nonempty partially ordered set such that every
nonempty chain C' C P has a supremum. Then P has a maximal element.

Assume, by contradiction, that P does not have a maximal element. Then
the set

Sp):={eePlp<sqp#atCP
is nonempty for every element p € P. Hence the Axiom of Choice asserts
that there exists a map f : P — P such that f(p) € S(p) for every p € P.
This map f satisfies the condition

= f(p) forallp e P

but does not have a fixed point, in contradiction to Theorem [A.4 This
contradiction shows that our assumption, that P does not have a maximal
element, must have been wrong. This proves Step 1.

Step 2. Let (P,<) be a partially ordered set such that every nonempty
chain C' C P admits an upper bound. Letp € P. Then there exists a maximal
element m € P with p < m.

Let 22 C 2P be the set of all chains C' C P that contain the point p. Then &2
is a nonempty set, partially ordered by inclusion. Now let € C & be a
nonempty chain in & and define the set

s=JcC

ce?

This set contains the point p and we claim that it is a chain in P. To see this,
let po,p1 € S and choose chains Cy, C; € € such that pg € Cy and p; € C4.
Since € is a chain we have Cy C C} or C; C Cy. Hence C :=CyuU(C, €€
is a chain in P that contains both py and p;, and thus py < p1 or p1 < po.
This shows that S is an element of &2 and therefore is the supremum of the
chain of chains ¥ C &. Thus we have proved that every nonempty chain
in & has a supremum. Hence Step 1 asserts that there exists a maximal
chain M C P that contains the point p. Let m € P be an upper bound of M.
Then p < m. Moreover, m is a maximal element of P, because othwerwise
there would exist an element ¢ € P with m < g and m # ¢, so ¢ ¢ M, and
then M’ := M U {q} would be a larger chain containing p, in contradiction
to the maximality of M. This proves Step 2 and Theorem [A.3] ]
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Appendix B

Tychonoff’s Theorem

The purpose of this appendix is to state and prove Tychonoft’s Theorem. It
plays a central role in the proof of the Banach—Alaoglu Theorem for non-
separable Banach spaces (Theorem |3.33)).

Theorem B.1 (Tychonoff). Let I be any set and, for each i € I, let K; be
a compact topological space. Then the product

K::HKZ-: {x: (xi)iej‘xiEKi for allie[}

el

is compact with respect to the product topology (i.e. the weakest topology on K
such that the obvious projection m; : K — K; is continuous for every i € I).

Proof. See page [428 [

The proof of Theorem [B.I] uses the characterization of compactness in
terms of the finite intersection property in part (i) of Remark below.

Definition B.2. Let K be a set. A collection A C 2K of subsets of K is
said to have the finite intersection property if A # () and

A collection A C 25 with the finite intersection property is called maxi-
mal if every collection B C 2K that has the finite intersection property and
contains A is equal to A.

The significance of this definition rests on the following three observations.

427



428 APPENDIX B. TYCHONOFF’S THEOREM

Remark B.3. (i) A topological space K is compact if and only if every
collection A C 2% of closed subsets of K with the finite intersection property
has a nonempty intersection, i.e. there is an element x € K such that x € A

for all A € A.

(ii) Let K be any set and let A C 2% be a collection of subsets of K that
has the finite intersection property. Then, by the Lemma of Zorn, there
exists a maximal collection B C 2% with the finite intersection property that
contains A.

(iii) Let B C 2% be a maximal collection with the finite intersection property.
Then

neN, B,...,B,eB = Bin---NB,eB
and, for every subset C' C K,

CNB#(forall BeB = CeB.

Proof of Theorem[B.1] Let

K=]]x

iel
be a product of compact topological spaces and denote the canonical pro-

jections by m; : K — K; for i € I. Let A C 2K be a collection of closed
subsets of K that has the finite intersection property. Then, by part (ii) of
Remark there exists a maximal collection B C 2% of subsets of K that
has the finite intersection property and contains A. We prove that there
exists an element # € X such that 2 € B for all B € B. To see this define

B;:= {W‘BGB}C%

for = € I. Then B; is a collection of closed subsets of K, that has the
finite intersection property. Since K; is compact, it follows from part (i) of

Remark [B.3] that
() m:(B) # 0

BeB

for all 7« € I. Hence it follows from the axiom of choice that there exists an
element x = (z;);c; € K such that

x; € m(B) for all7 € I and all B € B.
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We claim that @ € B for every B € B. To see this, let U C K be an open
set containing x. Then, by definition of the product topology, there exists a
finite set J C I and a collection of open sets U; C K for j € J such that

T € ﬂ m ' (U;) C U.
jeJ

Hence

z; =mj(x) € U; Nmj(B) for all j € J and all B € B.
Since Uj; is open, this implies U; N 7;(B) # (0 and hence
i (U;)NB#0  forall jeJandal BebB.
By part (iii) of Remark this implies
m'(U;)eB  forall jeJ

Use part (iii) of Remark again to deduce that

(= '(U;) € B,

jeJ

and hence

ﬂyrj_l(Uj)ﬂByé(i) for all B € B

jed
This shows that U N B # () for every B € B and every open set U C K con-
taining . Thus z € B for all B € B and therefore x € A for all A € A.
Hence K is compact, by part (i) of Remark [B.3] and this proves Theo-
rem [B.1] O
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Notation

2% set of all subsets of a set X, @

A, Banach algebra,

A*, dual operator, [L72] (real), (complex), [316] (unbounded)

A*, adjoint operator, [L73] (real), (complex), [323] (unbounded)
B C 2 Borel o-algebra,

co, space of sequences converging to zero,

C(M), space of continuous functions,

C(X,Y), space of continuous maps,

coker(A), cokernel of an operator, [189]

conv(.S), convex hull,

conv(S), closed convex hull,

dom(A), domain of an unbounded operator, [67]

graph(A), graph of an operator,

G C A, group of invertible elements in a unital Banach algebra,
H, Hilbert space, [39| (real), [234] (complex)

im(A), image of an operator, 23]

index(A), Fredholm index, [L89]
ker(A), kernel of an operator, [23]

L(X,Y), space of bounded linear operators,

L(X) = L(X,X), space of bounded linear endomorphisms,

L(X,Y), space of bounded complex linear operators, m

LX) = L(X, X), space of bounded complex linear endomorphisms,
7 space of p-summable sequences, [7]

(>, space of bounded sequences,

LP(u) = LP(u)/~, Banach space of p-integrable functions,

L>(u) = L£>°(u)/~, Banach space of bounded measurable functions,
(M, A, 1), measure space,

M (M, A), space of signed measures, [J]
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M(M), space of signed Borel measures,
M(¢), set of ¢-invariant Borel probability measures,

p(A), resolvent set, 219]
Ry(A) = (M1 — A)~!, resolvent operator,
o(A), spectrum of an operator, 219]

Spec(A), spectrum of a commutative unital Banach algebra, m
S(t), strongly continuous semigroup, [360

S+, orthogonal complement, [237]

S+, annihilator,

LT, pre-annihilator, m

% (X,d), topology of a metric space, [f]

% (X,]]]), topology of a normed vector space, [7]
X¢, complexification of a real vector space, 212]
(X, d), metric space, [0]

(X, |]]]), normed vector space, [7| (real), (complex)

X* = L(X,R), dual space,

X* = LX,C), complex dual space, m

X = L(X* R), bidual space,

(x*, ), pairing of a normed vector space with its dual space,




Index

adjoint operator, [173 quotient, [30]
complex, reflexive,
unbounded, separable,
affine hyperplane, strictly convex, (151
Alaoglu-Bourbaki Theorem, [164] Banach—Alaoglu Theorem
almost everywhere, general case,
annihilator, separable case, [132
left, Banach—Dieudonné Theorem, [138
approximation property, [I8§ Banach—Mazur Theorem, (166,
Argyros-Haydon Space, 200] Banach-Steinhaus Theorem,
Arzela—Ascoli Theorem, basis
10, orthonormal,
Atiyah—Janich Theorem, [199 Schauder, [T07} [[T5]
axiom of choice, Bell-Fremlin Theorem,
Bell-Fremlin Theorem, bidual
axiom of countable choice, operator, [[73]
axiom of dependent choice, space,
Babylonian method bilinear form
for square roots, 248 continuous, [61]
Baire Category Theorem, positive definite,
Banach algebra, symmetric, [3§
ideal, symplectic,
semisimple, 25 Birkhoff’s Ergodic Theorem, [153
Banach Hyperplane Problem, Birkhoff-von Neumann Theorem, [168
Banach limit, Borel o-algebra,
Banach space, [7] Borel measurable operator,
approximation property, [I8§] bounded
complex, [108§] bilinear map,
complexified, linear operator,
product, invertible,
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pointwise, [5§]
Bourbaki-Witt Theorem,

C* algebra, [246]
Calkin Algebra, [199]
Cantor function, (166
category

in the sense of Baire, [47]
Cauchy integral formula, 218

Cauchy Problem,

well-posed,
Cauchy sequence, [7]

Cauchy—Schwarz inequality,
complex, 234]

Cayley transform, [337

Cayley—Hamilton Theorem, [301

chain,

closeable linear operator,
closed convex hull,

Closed Graph Theorem,
Closed Image Theorem, [I78|
closed linear operator, [67]
cokernel,

comeagre, [A7]
compact

subset of a topological space, [I0]
finite intersection property, 428

operator, [I83HI87]

pointwise, [I7]

subset of a Banach space, [201

subset of a metric space, |§|
compact-open topology, [L62
complemented subspace,
complete

metric space, [7]

subset of a metric space, |§|
completely continuous operator, [I83]
completion of a metric space,

INDEX

complexification
of a linear operator, 212
of a norm, [212
of a vector space, [212
of the dual space, 213
continuous function
vanishing at infinity, [137]
weakly,
contraction semigroup, [384]
convergence
in measure, [I19]
weak, 122
weak™,
convex hull,

convex set
absorbing, [113]
closure and interior,
extremal point,
face,
separation, [78] [124] [13]]

cyclic vector, [291

deformation retract,

dense
linear subspace,
subset, [16]

direct sum,

Dirichlet Problem, [330
dissipative operator, |384
doubly stochastic matrix, [L68

dual operator,
complex,

dual space,
complex,
of (',
of P,

of C(M),[37
of Co,
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of LP(p),

of a Hilbert space,

of a quotient,

of a subspace,
Dunford Integral,

Eberlein-Smulyan Theorem, 142
eigenspace
generalized,
eigenvalue, [219] [309)
eigenvector, 219] 309
equi-continuous, [I7} 21]
equivalent norms,
ergodic
measure, [I52]
theorem, [156
Birkhoff, 153
von Neumann, [I53]
uniquely, [153
exact sequence, [200]
Euler characteristic, [206]

extremal point,

Fejér’s Theorem,
finite intersection property,
first category,
flow, [362
formal adjoint
of a differential operator,

Fourier series, [87] [I11]

Fredholm
alternative,
index, [189

operator, [I89
Stability Theorem, [196

triple, [206]
functional calculus

bounded measurable,
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continuous, 252} 269
holomorphic,
normal,
self-adjoint, 252]
unbounded,

Gantmacher’s Theorem,
Gelfand representation, [261
Gelfand spectrum,

Gelfand transform, 261}, [303]
Gelfand triple, [329

Gelfand-Mazur Theorem,
Gelfand-Robbin quotient,
graph norm, [67]

Hahn—Banach Theorem,
closure of a subspace,
for bounded linear functionals,

for convex sets,

for positive linear functionals, [76]
Hardy space,
heat

equation, [362] 41§

kernel,
Hellinger—Toeplitz Theorem,

Helly’s Theorem, [143],
Hermitian inner product, [233

on (*(N,C),

on L?*(u, C), 235

on L*(R/Z,C), 87
Hilbert Cube,
Hilbert space,

complex, [234!

complexification, [235

dual space,
orthonormal basis,

separable,
unit sphere contractible, 205]
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Hille-Yosida—Phillips, [378 K-Theory, [199
Holder inequality, kernel, 23]
holomorphic Krein—Milman Theorem, [149
function, [216 Kronecker symbol,
functional calculus, 232 Kuiper’s Theorem, [199
hyperplane
v aﬂli)n@ Lagrangian subspace, [324]
linear functional
image, 23] bounded,
infinitesimal generator, [360] positive, [70]
of a contraction semigroup, linear operator
of a group, adjoint,
of a self-adjoint semigroup, [398 bidual,
of a shift group, 401 bounded,
of a unitary group, 400 closeable,
of an analytic semigroup, closed, [67]
of the dual semigroup, |396 cokernel,
of the heat semigroup, compact, [I83] 245
Schrodinger operator, [402 completely continuous, [183
uniqueness of the semigroup, complexified,
well-posed Cauchy Problem, cyclic vector, 291
inner product, dissipative, [384]
Hermitian, [87], 233 dual,
on L*(p), exponential map, 232
integral finite rank,
Banach space valued, Fredholm,
mean value inequality, [215 image, [189
over a curve, 216] inverse, (46|
invariant measure, [I33] kernel,
ergodjcj m logarithm, m
inverse in a Banach algebra, normal,
inverse operator, [46] positive semi-definite,
Inverse Operator Theorem, projection, [86}, [I55]
right inverse,
Jacobson radical, self-adjoint, [173]
James’ space, singular value, 245
James’ Theorem, (142 spectrum, 219]

joint kernel, [128 square root, [232] [257]
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symmetric, [69] [71]

unitary, 239

weakly compact,
linear subspace

closure,
complemented,
dense,
dual of,
invariant, [29§
orthogonal complement,
weak® closed,
weak™® dense, (130
weakly closed,
long exact sequence, 206
Lumer—Phillips Theorem, [385

Markov—Kakutani
Fixed Point Theorem, (169
maximal ideal,
meagre, (7]
Mean Ergodic Theorem, (153
measurable function
Banach space valued,
strongly,
weakly,

measure

complex, 211]
ergodic, [152]
invariant, [I133]
probability, [133]
projection valued,
pushforward,
signed, [9]
spectral,
metric space, [0]
compact, [
complete, [7]
completion,

Milman—Pettis Theorem, [164
Minkowski functional,

nonmeagre, [A7]

norm, [7]
equivalent,
operator, [22]

normal operator, 239
spectrum, [247]
unbounded,

normed vector space, [7]
dual space,

weak™ topology, [122

product,

quotient, [29]
strictly convex,

uniformly convex,
weak topology, [122
nowhere dense,

open
ball, []
half-space,
map, [62]

set in a metric space, [0]
Open Mapping Theorem,

for unbounded operators,
operator norm, [27]
ordered vector space,
orthogonal complement

complex,
orthonormal basis,

partial order,
Pettis’ Lemma,

Pettis” Theorem, [388
Phillips” Lemma, [109
Pitt’s Theorem, [203
pointwise
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bounded,

compact, [I7]

precompact, [17]
positive cone, [70]

positive linear functional, [76]
pre-annihilator, (128
precompact
pointwise, [I7]
subset of a metric space, [J]
subset of a topological space,
probability measure, [133
product space,

product topology, [TT8, [T21}
projection, [86], [[55]

quasi-seminorm, [73]
quotient space, 29

dual of,

Radon measure, (163
reflexive Banach space, [88H02]
residual, [47]
resolvent
identity, 221],
for semigroups, [378
operator, 221, [309]

set, 219} [309)
Riesz Lemma, 28|

Ruston’s Theorem, [114]

Schatten’s tensor product,
Schauder basis,
Schrodinger equation,
Schrodinger operator, 308
second category,
self-adjoint operator, [173),

spectrum, 243
unbounded,

semigroup

INDEX

strongly continuous, [360
seminorm, [73]
separable

Banach space,

Hilbert space,

topological space,
Shur’s Theorem,
signed measure, [9]

total variation, [343]
simplex

infinite-dimensional,
singular value, [245
Smulyan-James Theorem,
Snake Lemma,

spectral

measure, 275 [342]
projection, 226}, [315]
radius, [44]

Spectral Mapping Theorem
bounded linear operators, [228
normal operators,
self-adjoint operators,
unbounded operators,

Spectral Theorem, 291

spectrum, 219]

continuous, 219 [309

in a unital Banach algebra, 25§
of a commutative algebra, 258
of a compact operator, [224

of a normal operator, [241]
of a self-adjoint operator, [243
of a unitary operator, [241

of an unbounded operator, [309
point, 219] 309

residual,

square root, 257 [355]
Babylonian method,

Stone’s Theorem, 400
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Stone—Weierstrafl

Theorem, 248]
strictly convex,

strong convergence, [60)
strongly continuous semigroup, [360
analytic, 418
contraction, [384]
dual semigroup, [396
extension to a group, [370]
heat kernel, 362]
Hille—Yosida—Phillips, [378
infinitesimal generator, [366
on a Hilbert space, [361
Schrédinger equation, [402
self-adjoint,
shift operators,
unitary group, 00|
well-posed Cauchy Problem, 373
symmetric linear operator,
symplectic
form, [324],
reduction, [356

vector space, [324] [356]

tensor product,
topological vector space,
locally convex, [I18|
topology, [6]
compact-open, [[62]
of a metric space, [f]
of a normed vector space, [7]

product,
strong, [[T§} [[22

strong operator, (60
uniform operator,

weak,
weak*, [122]

total variation
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of a signed measure, [343
totally bounded, [9]
triangle inequality, [0]
trigonometric polynomial,
Tychonoff’s Theorem,

unbounded operator, |305
densely defined,

normal,

self-adjoint,

spectral projection, [315

spectrum, [309] [334]

with compact resolvent,
Uniform Boundedness Theorem,
unitary operator, 239

spectrum, [247]

vector space
complex normed,
complexificatioon, [212
normed, [7]

ordered, [76]
topological,
Volterra operator, [301

von Neumann’s
Mean Ergodic Theorem, [153

weak

compactness, [[42HI47]
continuity, [387]
convergence, [122]
measurability,
topology,

weak™
compactness, [[34] [I35]
convergence, [122]
sequential closedness, [135
sequential compactness,
topology, [122} [I30HL31] [[38H14T]
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