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Preface

This book developed from a course given in the Campus Honors Program at the
University of Illinois Urbana-Champaign in the fall semester 2008. The aims of the
course were to introduce bright students, most of whom were freshmen, to complex
numbers in a friendly, elegant fashion and to develop reasoning skills belonging to
the realm of elementary complex geometry. In the spring semester 2010 I taught
another version of the course, in which a draft of this book was available on-line. I
therefore wish to acknowledge the Campus Honors Program at UIUC for allowing
me to teach these courses and to thank the 27 students who participated in them.

Many elementary mathematics and physics problems seem to simplify magically
when viewed from the perspective of complex analysis. My own research interests
in functions of several complex variables and CR geometry have allowed me to
witness this magic daily. I continue the preface by mentioning some of the specific
topics discussed in the book and by indicating how they fit into this theme.

Every discussion of complex analysis must spend considerable time with power
series expansions. We include enough basic analysis to study power series rigorously
and to solidify the backgrounds of the typical students in the course. In some sense
two specific power series dominate the subject: the geometric and exponential
series.

The geometric series appears all throughout mathematics and physics, and even
in basic economics. The Cauchy integral formula provides a way of deriving from
the geometric series the power series expansion of an arbitrary complex analytic
function. Applications of the geometric series appear throughout the book.

The exponential series is of course also crucial. We define the exponential
function via its power series, and we define the trigonometric functions by way of
the exponential function. This approach reveals the striking connections between
the functional equation ez+w = ezew and the profusion of trig identities. Using
the complex exponential function to simplify trigonometry is a compelling aspect
of elementary complex analysis and geometry. Students in my courses seemed to
appreciate this material to a great extent.

One of the most appealing combinations of the geometric series and the expo-
nential series appears in Chapter 4. We combine them to derive a formula for the
sums

n∑
j=1

jp,

in terms of Bernoulli numbers.
We briefly discuss ordinary and exponential generating functions, and we find

the ordinary generating function for the Fibonacci numbers. We then derive Bi-
net’s formula for the n-th Fibonacci number and show that the ratio of successive
Fibonacci numbers tends to the golden ratio 1+

√
5

2 .
Fairly early in the book (Chapter 3) we discuss hyperbolas, ellipses, and parabo-

las. Most students have seen this material in calculus or even earlier. In order to
make the material more engaging, we describe these objects by way of Hermitian
symmetric quadratic polynomials. This approach epitomizes our focus on complex
numbers rather than on pairs of real numbers.
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The geometry of the unit circle also allows us to determine the Pythagorean
triples. We identify the Pythagorean triple (a, b, c) with the complex number a

c +i bc ;
we then realize that a Pythagorean triple corresponds to a rational point (in the first
quadrant) on the unit circle. After determining the usual rational parametrization
of the unit circle, one can easily find all these triples. But one gains much more; for
example, one discovers the so-called tan( θ2 ) substitution from calculus. During the
course several students followed up this idea and tracked down how the indefinite
integral of the secant function arose in navigation.

This book is more formal than was the course itself. The list of approximately
two hundred eighty exercises in the book is also considerably longer than the list of
assigned exercises. These exercises are numbered by Chapter, whereas items such
as Theorems, Propositions, and Definitions are numbered by Section. The overall
development in the book closely parallels that of the courses, although each time
I omitted many of the harder topics. I feel cautiously optimistic that this book
can be used for similar courses. Instructors will need to make their own decisions
about which subjects can be omitted. I hope however that the book has a wider
audience including anyone who has ever been curious about complex numbers and
the striking role they play in modern mathematics and science.

Chapter 1 starts by considering various number systems and continues by de-
scribing, slowly and carefully, what it means to say that the real numbers are
a complete ordered field. We give an interesting proof that there is no rational
square root of 2, and we prove carefully (based on the completeness axiom) that
positive real numbers have square roots. The chapter ends by giving several possible
definitions of the field of complex numbers.

Chapter 2 develops the basic properties of complex numbers, with a special em-
phasis on the role of complex conjugation. The author’s own research in complex
analysis and geometry has often used polarization; this technique makes precise the
sense in which we may treat z and z as independent variables. We will view complex
analytic functions as those independent of z. In this chapter we also include pre-
cise definitions about convergence of series and related elementary analysis. Some
instructors will need to treat this material carefully, while others will wish to re-
view it quickly. Section 5 treats uniform convergence and some readers will wish
to postpone this material. The subsequent sections however return to the basics of
complex geometry. We define the exponential function by its power series and the
cosine and sine functions by way of the exponential function. We can and therefore
do discuss logarithms and trigonometry in this chapter as well.

Chapter 3 focuses on geometric aspects of complex numbers. We analyze the
zero-sets of quadratic equations from the point of view of complex rather than
real variables. For us hyperbolas, parabolas, and ellipses are zero-sets of quadratic
Hermitian symmetric polynomials. We also study linear fractional transformations
and the Riemann sphere.

Chapter 4 considers power series in general; students and instructors will find
that this material illuminates the treatment of series from calculus courses. The
chapter includes a short discussion of generating functions, Binet’s formula for the
Fibonacci numbers, and the formula for sums of p-th powers mentioned above. We
close Chapter 4 by giving a test for when a power series defines a rational function.

Chapter 5 begins by posing three possible definitions of complex analytic func-
tion. These definitions involve locally convergent power series, the Cauchy-Riemann
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equations, and the limit quotient version of complex differentiability. We postpone
the proof that these three definitions determine the same class of functions until
Chapter 6 after we have introduced integration. Chapter 5 focuses on the relation-
ship between real and complex derivatives. We define the Cauchy-Riemann equa-
tions using the ∂

∂z operator. Thus complex analytic functions are those functions
independent of z. This perspective has profoundly influenced research in complex
analysis, especially in higher dimensions, for at least fifty years. We briefly con-
sider harmonic functions and differential forms in Chapter 5; for some audiences
there might be too little discussion about these topics. It would be nice to develop
potential theory in detail and also to say more about closed and exact differential
forms, but then perhaps too many readers would drown in deep water.

Chapter 6 treats the Cauchy theory of complex analytic functions in a simplified
fashion. The main point there is to show that the three possible definitions of ana-
lytic function introduced in Chapter 5 all lead to the same class of functions. This
material forms the basis for both the theory and application of complex analysis.
In short, Chapter 5 considers derivatives and Chapter 6 considers integrals.

Chapter 7 offers many applications of the Cauchy theory to ordinary integrals.
In order to show students how to apply complex analysis to things they have seen
before, we evaluate many interesting real integrals using residues and contour inte-
gration. We also include sections on the Fourier transform on the Gamma function.

Chapter 8 introduces additional appealing topics such as the fundamental the-
orem of algebra (for which we give three proofs), winding numbers, Rouche’s theo-
rem, Pythagorean triples, conformal mappings, the quaternions, and (a brief men-
tion of) complex analysis in higher dimensions. The section on conformal mappings
includes a brief discussion of non-Euclidean geometry. The section on quaternions
includes the observation that there are many quaternionic square roots of −1, and
hence it illuminates the earliest material used in defining C. The final result proved
concerns polarization; it justifies treating z and z as independent variables, and
hence it also unifies much of the material in book.

Our bibliography includes many excellent books on complex analysis in one
variable. One naturally asks how this book differs from those. The primary differ-
ence is that this book begins at a more elementary level. We start at the logical
beginning, by discussing the natural numbers, the rational numbers, and the real
numbers. We include detailed discussion of some truly basic things, such as the ex-
istence of square roots of positive real numbers, the irrationality of

√
2, and several

different definitions of C itself. Hence most of the book can be read by a smart
freshman who has had some calculus, but not necessarily any real analysis. A
second difference arises from the desire to engage an audience of bright freshmen.
I therefore include discussion, examples, and exercises on many topics known to
this audience via real variables, but which become more transparent using complex
variables. My ninth grade math class (more than forty years ago) was tested on be-
ing able to write word-for-word the definitions of hyperbola, ellipse, and parabola.
Most current college freshmen know only vaguely what these objects are, and I
found myself reciting those definitions when I taught the course. During class I
also paused to carefully prove that .999... really equals 1. Hence the book contains
various basic topics, and as a result it enables spiral learning. Several concepts
are revisited with high multiplicity throughout the book. A third difference from
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the other books arises from the inclusion of several unusual topics, as described
throughout this preface.

I hope, with some confidence, that the text conveys my deep appreciation for
complex analysis and geometry. I hope, but with more caution, that I have purged
all errors from it. Most of all I hope that many readers enjoy reading it and solving
the exercises in it.

I began expanding the sketchy notes from the course into this book during the
spring 2009 semester, during which I was partially supported by the Kenneth D.
Schmidt Professorial Scholar award. I therefore wish to thank Dr. Kenneth Schmidt
and also the College of Arts and Sciences at UIUC for awarding me this prize. I have
received considerable research support from NSF for my work in complex analysis;
in particular I acknowledge support from NSF grant DMS-0753978. The students in
the first version of the course survived without a text; their enthusiasm and interest
merit praise. Over the years many other students have inspired me to think carefully
how to present complex analysis and geometry with elegance. Another positive
influence on the evolution from sketchy notes to this book was working through some
of the material with Bill Heiles, Professor of Piano at UIUC and one who appreciates
the art of mathematics. Jing Zou, computer science student at UIUC, prepared the
figures in the book. Tom Forgacs, who invited me to speak at Cal. State Fresno
on my experiences teaching this course, also made useful comments. My colleague
Jeremy Tyson made many valuable suggestions on both the mathematics and the
exposition. I thank Sergei Gelfand and Ed Dunne of the American Math Society
for encouraging me in this project; Ed Dunne provided me marked-up versions of
two drafts and shared with me, in a lengthy phone conversation, his insights on
how to improve and complete the project. I asked several friends to look at the
N -th draft for various large N . Bob Vanderbei, Rock Rodini, and Mike Bolt all
made many useful comments which I have incorporated. Finally I thank my wife
Annette and our four children for their love.

Preface for the student

I hope that this book reveals the beauty and usefulness of complex numbers to
you. I want you to enjoy both reading it and solving the problems in it. Perhaps you
will spot something in your own area of interest and benefit from applying complex
numbers to it. Students in my classes have found applications of ideas from this
book to physics, music, engineering, and linguistics. Several students have become
interested in historical and philosophical aspects of complex numbers. I have not
yet seen anyone get excited about the hysterical aspects of complex numbers.

At the very least you should see many places where complex numbers shed a
new light on things you have learned before. One of my favorite examples is trig
identities. I found them rather boring in high school and later I delighted in proving
them more easily using the complex exponential function. I hope you have the same
experience. A second example concerns certain definite integrals. The techniques
of complex analysis allow for stunningly easy evaluations of many calculus integrals
and seem to lie within the realm of science fiction.

This book is meant to be readable, but at the same time it is precise and rigor-
ous. Sometimes mathematicians include details that others feel are unnecessary or
obvious, but do not be alarmed. If you do many of the exercises and work through
the examples, then you should learn plenty and enjoy doing it. I cannot stress
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enough two things I have learned from years of teaching mathematics. First, stu-
dents make too few sketches. You should strive to merge geometric and algebraic
reasoning. Second, definitions are your friends. If a theorem says something about
a concept, then you should develop both an intuitive sense of the concept and the
discipline to learn the precise definition. When asked to verify something on an
exam, start by writing down the definition of the something. Often the definition
suggests exactly what you should do!

Some sections and paragraphs introduce more sophisticated terminology than
is necessary at the time, in order to prepare for later parts of the book and even
for subsequent courses. I have tried to indicate all such places and to revisit the
crucial ideas. In case you are struggling with any material in this book, remain
calm. The magician will reveal his secrets in due time.





CHAPTER 1

From the real numbers to the complex numbers

1. Introduction

Many problems throughout mathematics and physics illustrate an amazing
principle; ideas expressed within the realm of real numbers find their most ele-
gant expression through the unexpected intervention of complex numbers. Many
of these delightful interventions arise in elementary, recreational mathematics. On
the other hand most college students either never see complex numbers in action, or
they wait until the junior or senior year in college, at which time the sophisticated
courses have little time for the elementary applications. Hence too few students
witness the beauty and elegance of complex numbers. This book aims to present
a variety of elegant applications of complex analysis and geometry in an accessible
but precise fashion. We begin at the beginning, by recalling various number systems
such as the integers Z, the rational numbers Q, and the real numbers R, before
even defining the complex numbers C. We then provide three possible equivalent
definitions. Throughout we strive for as much geometric reasoning as possible.

2. Number systems

The ancients were well aware of the so-called natural numbers, written 1, 2, 3, ....
Mathematicians write N for the collection of natural numbers together with the
usual operations of addition and multiplication. Partly because subtraction is not
always possible, but also because negative numbers arise in many settings such as
financial debts, it is natural to expand the natural number system to the larger
system Z of integers. We assume that the reader has some understanding of the
integers; the set Z is equipped with two distinguished members, written 1 and 0,
and two operations, called addition (+) and multiplication (∗), satisfying familiar
laws. These operations make Z into what mathematicians call a commutative ring
with unit 1. The integer 0 is special. We note that each n in Z has an additive
inverse −n such that

(1) n+ (−n) = (−n) + n = 0.

Of course 0 is the only number whose additive inverse is itself.
Let a, b be given integers. As usual we write a−b for the sum a+(−b). Consider

the equation a + x = b for an unknown x. We learn to solve this equation at a
young age; the idea is that subtraction is the inverse operation to addition. To solve
a+ x = b for x, we first add −a to both sides and use (1). We can then substitute
b for a+ x to obtain the solution

x = 0 + x = (−a) + a+ x = (−a) + b = b+ (−a) = b− a.

11
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This simple principle becomes a little more difficult when we work with multi-
plication. It is not always possible, for example, to divide a collection of n objects
into two groups of equal size. In other words, the equation 2 ∗ a = b does not have
a solution in Z unless b is an even number. Within Z, most integers (±1 are the
only exceptions) do not have multiplicative inverses.

To allow for division we enlarge Z into the larger system Q of rational numbers.
We think of elements of Q as fractions, but the definition of Q is a bit subtle. One
reason for the subtlety is that we want 1

2 , 2
4 , and 50

100 all to represent the same
rational number, yet the expressions as fractions differ. Several approaches enable
us to make this point precise. One way is to introduce the notion of equivalence
class, and then to define a rational number to be an equivalence class of pairs of
integers. See [4] or [8] for this approach. A second way is to think of the rational
number system as known to us; we then write elements of Q as letters, x, y, u, v and
so on, without worrying that each rational number can be written as a fraction in
infinitely many ways. We will proceed in this second fashion. A third way appears
in Exercise 1.2 below. Finally we emphasize that we cannot divide by 0. Surely
the reader has seen alleged proofs that, for example, 1 = 2, where the only error is
a cleverly disguised division by 0.

Exercise 1.1. Find an invalid argument that 1 = 2 in which the only invalid
step is a division by 0. Try to obscure the division by 0.

Exercise 1.2. Show that there is a one-to-one correspondence between the set
Q of rational numbers and the following set L of lines. The set L consists of all
lines through the origin, except the vertical line x = 0, that pass through a non-zero
point (a, b) where a and b are integers. (This problem sounds sophisticated, but
one word gives the solution!)

The rational number system forms a field. A field consists of objects which can
be added and multiplied; these operations satisfy the laws we expect. We begin
our development by giving the precise definition of a field.

Definition 2.1. A field F is a mathematical system consisting of a collection
of objects and two operations, addition and multiplication, subject to the following
axioms.

1) For all x, y in F, we have x+ y = y+ x and x ∗ y = y ∗ x. (the commutative
laws for addition and multiplication)

2) For all x, y, t in F, we have (x+y)+ t = x+(y+ t) and (x∗y)∗ t = x∗ (y ∗ t).
(the associative laws for addition and multiplication)

3) There are distinct distinguished elements 0 and 1 in F such that, for all x
in F, we have 0 + x = x + 0 = x and 1 ∗ x = x ∗ 1 = x. (the existence of additive
and multiplicative identities)

4) For each x in F and each y in F such that y 6= 0, there are −x and 1
y in F

such that x+ (−x) = 0 and y ∗ 1
y = 1. (the existence of additive and multiplicative

inverses)
5) For all x, y, t in F we have t ∗ (x+ y) = (t ∗ x) + (t ∗ y) = t ∗ x+ t ∗ y. (the

distributive law)

For clarity and emphasis we repeat some of the main points. The rational
numbers provide a familiar example of a field. In any field we can add, subtract,
multiply, and divide as we expect, although we cannot divide by 0. The ability to
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divide by a nonzero number distinguishes the rational numbers from the integers.
In more general settings the ability to divide by a nonzero number distinguishes
a field from a commutative ring. Thus every field is a commutative ring but a
commutative ring need not be a field.

There are many elementary consequences of the field axioms. It is easy to prove
that each element has a unique additive inverse and that each nonzero element has
a unique multiplicative inverse, or reciprocal. The proof, left to the reader, mimics
our early argument showing that subtraction is possible in Z.

Henceforth we will stop writing ∗ for multiplication; the standard notation of
xy for x ∗ y works adequately in most contexts. We also write x2 instead of xx as
usual. Let t be an element in a field. We say that x is a square root of t if t = x2.
In a field, taking square roots is not always possible. For example, we shall soon
prove that there is no rational square root of 2, and that there is no real square
root of −1.

At the risk of boring the reader we prove a few basic facts from the field axioms;
the reader who wishes to get more quickly to geometric reasoning could omit the
proofs, although writing them out gives one some satisfaction.

Proposition 2.1. In a field the following laws hold:
1) 0 + 0 = 0.
2) For all x, we have x0 = 0x = 0.
3) (−1)2 = (−1)(−1) = 1.
4) (−1)x = −x for all x.
5) If xy = 0 in F, then either x = 0 or y = 0.

Proof. Statement 1) follows from setting x = 0 in the axiom 0 + x = x.
Statement 2) uses statement 1) and the distributive law to write 0x = (0 + 0)x =
0x + 0x. By property 4) of Definition 2.1, the object 0x has an additive inverse;
we add this inverse to both sides of the equation. Using the meaning of additive
inverse and then the associative law gives 0 = 0x. Hence x0 = 0x = 0 and 2) holds.
Statement 3) is a bit more interesting. We have 0 = 1 + (−1) by axiom 4) from
Definition 2.1. Multiplying both sides by −1 and using 2) yields

0 = (−1)0 = (−1)(1 + (−1)) = (−1)1 + (−1)2 = −1 + (−1)2.

Thus (−1)2 is an additive inverse to −1; of course 1 also is. By the uniqueness of
additive inverses, we see that (−1)2 = 1. The proof of 4) is similar. Start with
0 = 1 + (−1) and multiply by x to get 0 = x + (−1)x. Thus (−1)x is an additive
inverse of x and the result follows by uniqueness of additive inverses. Finally, to
prove 5) we assume that xy = 0. If x = 0 the conclusion holds. If x 6= 0 we can
multiply by 1

x to obtain

y = (
1
x
x)y =

1
x

(xy) =
1
x

0 = 0.

Thus, if x 6= 0, then y = 0, and the conclusion also holds. �

We note a point of language, where mathematics usage may differ with common
usage. For us, the phrase “either x = 0 or y = 0” allows the possibility that both
x = 0 and y = 0.

Example 2.1. A field with two elements. Let F2 consist of the two elements
0 and 1. We put 1 + 1 = 0, but otherwise we add and multiply as usual. Then F2

is a field.
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This example illustrates several interesting things. For example, the object 2
(namely 1 + 1), can be 0 in a field. This possibility will prevent the quadratic
formula from holding in a field for which 2 = 0. In Theorem 2.1 we will derive the
quadratic formula when it is possible to do so.

First we make a simple observation. We have shown that (−1)2 = 1. Hence,
when −1 6= 1, it follows that 1 has two square roots, namely ±1. Can an element
of a field have more than two square roots? The answer is no.

Lemma 2.1. In a field, an element t can have at most two square roots. If x is
a square root of t, then so is −x, and there are no other possibilities.

Proof. If x2 = t, then (−x)2 = t by 3) and 4) of Proposition 2.1. To prove
that there are no other possibilities, we assume that both x and y are square roots
of t. We then have

(2) 0 = t− t = x2 − y2 = (x− y)(x+ y).

By 5) of Proposition 2.1, we obtain either x − y = 0 or x + y = 0. Thus y = ±x
and the result follows. �

The difference of two squares law that x2 − y2 = (x − y)(x + y) is a gem of
elementary mathematics. For example, suppose you are asked to multiply 88 times
92 in your head. You imagine 88 ∗ 92 = (90 − 2)(90 + 2) = 8100 − 4 = 8096
and impress some audiences. One can also view this algebraic identity for positive
integers simply by removing a small square of dots from a large square of dots, and
rearranging the dots to form a rectangle. The author once used this kind of method
when doing volunteer teaching of multiplication to third graders. See Figure 1 for
a geometric interpretation of the identity in terms of area.

x + y

x− yy

x

Figure 1. Difference of two squares

We pause to make several remarks about square roots. The first remark con-
cerns a notational convention; the discussion will help motivate the notion of or-
dered field defined below. The real number system will be defined formally below,
and we will prove that positive real numbers have square roots. Suppose t > 0. We
write

√
t to denote the positive x for which x2 = t. Thus both x and −x are square



2. NUMBER SYSTEMS 15

roots of t, but the notation
√
t means the positive square root. For the complex

numbers, things will be more subtle. We will prove that each nonzero complex
number z has two square roots, say ±w, but there is no sensible way to prefer one
to the other. We emphasize that the existence of square roots depends on more
than the field axioms. Not all positive rational numbers have rational square roots,
and hence it must be proved that each positive real number has a square root. The
proof requires a limiting process. The quadratic formula, proved next, requires that
the expression b2−4ac be a square. In an arbitrary field, the expression

√
t usually

means any x for which x2 = t, but the ambiguity of signs can cause confusion. See
Exercise 1.4.

Theorem 2.1. Let F be a field. Assume that 2 6= 0 in F. For a 6= 0, and
arbitrary b, c we consider the quadratic equation

(3) ax2 + bx+ c = 0.

Then x solves (3) if and only if

(4) x =
−b±

√
b2 − 4ac

2a
.

If b2 − 4ac is not a square in F, then (3) has no solution.

Proof. The idea of the proof is to complete the square. Since both a and 2
are nonzero elements of F, they have multiplicative inverses. We therefore have

ax2 + bx+ c = a(x2 +
b

a
x) + c = a(x2 +

b

a
x+

b2

4a2
) + c− b2

4a

(5) = a(x+
b

2a
)2 +

4ac− b2

4a
.

We set (5) equal to 0 and we can easily solve for x. After dividing by a we obtain

(6) (x+
b

2a
)2 =

b2 − 4ac
4a2

.

The square roots of 4a2 are of course ±2a. Assuming that b2 − 4ac has a square
root in F, we solve (6) for x by first taking the square root of both sides. We obtain

(7) x+
b

2a
= ±
√
b2 − 4ac

2a
.

After a subtraction and simplification we obtain (4) from (7). �

The reader surely has seen the quadratic formula before. Given a quadratic
polynomial with real coefficients, the formula tells us that the polynomial will have
no real roots when b2 − 4ac < 0. For many readers the first exposure to complex
numbers arises when we introduce square roots of negative numbers in order to use
the quadratic formula.

Exercise 1.3. Show that additive and multiplicative inverses in a field are
unique.

Exercise 1.4. A subtlety. Given a field, is the following formula always valid?
√
u
√
v =
√
uv

In the proof of the quadratic formula, did we use implicitly this formula? If not,
what did we use?
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Example 2.2. One can completely analyze quadratic equations with coeffi-
cients in F2. The only such equations are x2 = 0, x2 + x = 0, x2 + 1 = 0, and
x2 + x+ 1 = 0. The first equation has only the solution 0. The second has the two
solutions 0 and 1. The third has only the solution 1. The fourth has no solutions.
We have given a complete analysis, even though Theorem 2.1 cannot be used in
this setting.

Before introducing the notion of ordered field, we give a few other examples of
fields. Several of these examples use modular (clock) arithmetic. The phrases add
modulo p and multiply modulo p have the following meaning. Fix a positive integer
p, called the modulus. Given integers m and n, we add (or multiply) them as usual
and then take the remainder upon division by p. The remainder is called the sum
(or product) modulo p. This natural notion is familiar to everyone; five hours after
nine o’clock is two o’clock; we added modulo twelve. The subsequent examples can
be skipped without loss of continuity.

Example 2.3. Fields with finitely many elements. Let p be a prime
number, and let Fp consist of the numbers 0, 1, ..., p − 1. We define addition and
multiplication modulo p. Then Fp is a field.

In Example 2.3, p needs to be a prime number. Property 5) of Proposition 2.1
fails when p is not a prime. We mention without proof that the number of elements
in a finite field must be a power of a prime number. Furthermore, for each prime
p and positive integer n, there exists a finite field with pn elements.

Exercise 1.5. True or false? Every quadratic equation in F3 has a solution.

Fields such as Fp are important in various parts of mathematics and computer
science. For us, they will serve only as examples of fields. The most important
examples of fields for us will be the real numbers and the complex numbers. To
define these fields rigorously will take a bit more effort. We end this section by
giving an example of a field built from the real numbers. We will not use this
example in the logical development.

Example 2.4. Let K denote the collection of rational functions in one variable
x with real coefficients. An element of K can be written p(x)

q(x) , where p and q are
polynomials, and we assume that q is not the zero polynomial. (We allow q(x) to
equal 0 for some x, but not for all x.) We add and multiply such rational functions
in the usual way. It is tedious but not difficult to verify the field axioms. Hence
K is a field. Furthermore, K contains R in a natural way; we identify the real
number c with the constant rational function c

1 . As with the rational numbers,
many different fractions represent the same element of K. To deal rigorously with
such situations one needs the notion of equivalence relation, discussed in Section 5.

3. Inequalities and ordered fields

Comparing the sizes of a pair of integers or of a pair of rational numbers is
both natural and useful. It does not make sense however to compare the sizes of
elements in an arbitrary ring or field. We therefore introduce a crucial property
shared by the integers Z and the rational numbers Q. For x, y in either of these
sets, it makes sense to say that x > y. Furthermore, given the pair x, y, one and
only one of three things must be true: x > y, x < y, or x = y. We need to formalize
this idea in order to define the real numbers.
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Definition 3.1. A field F is called ordered if there is a subset P ⊂ F, called
the set of positive elements of F, satisfying the following properties:

1) For all x, y in P , we have x+ y ∈ P and xy ∈ P . (closure)
2) For each x in F, one and only one of the following three statements is true:

x = 0, x ∈ P , −x ∈ P . (trichotomy)

Exercise 1.6. Let F be an ordered field. Show that 1 ∈ P .

Exercise 1.7. Show that the trichotomy property can be rewritten as follows.
For each x, y in F, one and only one of the following three statements is true: x = y,
x− y ∈ P , y − x ∈ P .

The rational number system is an ordered field; a fraction p
q is positive if and

only if p and q have the same sign. Note that q is never 0, and that a rational
number is 0 whenever its numerator is 0. It is of course elementary to check in
this case that the set P of positive rational numbers is closed under addition and
multiplication.

Once the set P of positive elements in a field has been specified, it is easier to
work with inequalities than with P . We write x > y if and only if x − y ∈ P . We
also use the symbols x ≥ y, x ≤ y, x < y as usual. The order axioms then can be
written:

1) If x > 0 and y > 0, then x+ y > 0 and xy > 0.
2) Given x ∈ F, one and only one of three things holds: x = 0, x > 0, x < 0.

Henceforth we will use inequalities throughout; we mention that these inequal-
ities will compare real numbers. The complex numbers cannot be made into an
ordered field. The following lemma about ordered fields does play an important
role in our development of the complex number field C.

Lemma 3.1. Let F be an ordered field. For each x ∈ F, we have x2 = x∗x ≥ 0.
If x 6= 0, then x2 > 0. In particular, 1 > 0.

Proof. If x = 0, then x2 = 0 by Proposition 2.1, and the conclusion holds. If
x > 0, then x2 > 0 by axiom 1) for an ordered field. If x < 0, then −x > 0, and
hence (−x)2 > 0. By 3) and 4) of Proposition 2.1 we get

(8) x2 = (−1)(−1)x2 = (−x)(−x) = (−x)2 > 0.

Thus, if x 6= 0, then x2 > 0. �

By definition (see Section 3.1), the real number system R is an ordered field.
The following simple corollary motivates the introduction of the complex number
field C.

Corollary 3.1. There is no real number x such that x2 = −1.

3.1. The completeness axiom for the real numbers. In order to finally
define the real number system R, we require the notion of completeness. This
notion is considerably more advanced than our discussion has been so far. The
field axioms allow for algebraic laws, the order axioms allow for inequalities, and
the completeness axiom allows for a good theory of limits. To introduce this axiom
we recall some basic notions from elementary real analysis. Let F be an ordered
field. Let S ⊂ F be a subset. The set S is called bounded if there are elements m
and M in F such that
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m ≤ x ≤M
for all x in S. The set S is called bounded above if there is an element M in F
such that x ≤ M for all x in S, and called bounded below if there is an element m
in F such that m ≤ x for all x in S. When these numbers exist, M is called an
upper bound for S and m is called a lower bound for S. Thus S is bounded if and
only if it is both bounded above and bounded below. The numbers m and M are
not generally in S. For example, the set of negative rational numbers is bounded
above, but the only upper bounds are 0 or positive numbers.

We can now introduce the completeness axiom for the real numbers. The
fundamental notion is that of least upper bound. If M is an upper bound for S,
then any number larger than M is of course also an upper bound. The term least
upper bound means the smallest possible upper bound; the concept juxtaposes
small and big. The least upper bound α of S is the smallest number that is greater
than or equal to any member of S. See Figure 2. One cannot prove that such a
number exists based on the ordered field axioms; for example, if we work within
the realm of rational numbers, the set of x such that x2 < 2 is bounded above, but
it has no least upper bound. Mathematicians often use the word supremum instead
of least upper bound; thus sup(S) denotes the least upper bound of S. Postulating
the existence of least upper bounds as in the next definition uniquely determines
the real numbers.

S
m1

α
m2

Figure 2. Upper bounds

Definition 3.2. An ordered field F is complete if, whenever S is a non-empty
subset of F and S is bounded above, then S has a least upper bound in F.

We could have instead decreed that each non-empty subset of F that is bounded
below has a greatest lower bound (or infimum). The two statements are equivalent
after replacing S with the set −S of additive inverses of elements of S.

In a certain precise sense, called isomorphism, there is a unique complete or-
dered field. We will assume uniqueness and get the ball rolling by making the
fundamental definition:

Definition 3.3. The real number system R is the unique complete ordered
field.

3.2. What is a natural number? We pause to briefly consider how the
natural numbers fit within the real numbers. In our approach, the real number
system is taken as the starting point for discussion. From an intuitive point of view
we can think of the natural numbers as the set {1, 1 + 1, 1 + 1 + 1, ...}. To be more
precise we proceed in the following manner.

Definition 3.4. A subset S of R is called inductive if, whenever x ∈ S, then
x+ 1 ∈ S.
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Definition 3.5. The set of natural numbers N is the intersection of all induc-
tive subsets of R that contain 1.

Thus N is a subset of R, and 1 ∈ N. Furthermore, if n ∈ N, then n is an
element of every inductive subset of R. Hence n + 1 is also an element of every
inductive subset of R, and therefore n+1 is also in N. Thus N is itself an inductive
set; we could equally well have defined N to be the smallest inductive subset of R
containing 1. As a consequence we obtain the principle of mathematical induction:

Proposition 3.1 (Mathematical Induction). Let S be an inductive subset of
N such that 1 ∈ S. Then S = N.

This proposition provides a method of proof, called induction, surely known to
many readers. For each n ∈ N, let Pn be a mathematical statement. To verify that
Pn is a true statement for each n, it suffices to show two things: first, P1 is true;
second, for all k, whenever Pk is true, then Pk+1 is true. The reason is that the set
of n for which Pn is true is then an inductive set containing 1; by Proposition 3.1
this set is N.

0 1 2 x x+ 1

Figure 3. Induction

Exercise 1.8. Apply the principle of mathematical induction to establish the
well-ordering principle: every nonempty subset of N contains a least element.

Exercise 1.9. It is of course obvious that there is no natural number between
0 and 1. Prove it!

Exercise 1.10. For a constant C put f(x) = x + C. Find a formula for the
composition of f with itself n times. Prove the formula by induction.

Exercise 1.11. For non-zero constants A and B, put f(x) = A(x + B) − B.
Find a formula for the composition of f with itself n times. Prove the formula by
induction. Find a short proof by expressing the behavior of f in simple steps.

Exercise 1.12. For constants M,C with M 6= 1 put f(x) = Mx + C. Find
a formula for the composition of f with itself n times. Suggestion: Write f in the
notation of the previous exercise.

We close this section by proving a precise statement to the effect that many
small things make a big thing. This seemingly evident but yet surprisingly subtle
property of R, as stated in Proposition 3.2, requires the completeness axiom for
its proof. The proposition does not hold in all ordered fields. In other words,
there exist ordered fields F with the following striking property: F contains the
natural numbers, but it also contains super numbers, namely elements larger than
any natural number. For the real numbers, however, things are as we believe. The
natural numbers are an unbounded subset of the real numbers.

Proposition 3.2 (Archimedean property). Given positive real numbers x and
ε, then there is a positive integer n such that nε > x. Equivalently, given y > 0,
there is an n ∈ N such that 1

n < y.
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Proof. If the first conclusion were false, then every natural number would
be bounded above by x

ε . If the second conclusion were false, then every natural
number would be bounded above by 1

y . Thus, in either case, N would be bounded
above. We prove otherwise. If N were bounded above, then by the completeness
axiom N would have a least upper bound K. But then K − 1 would not be an
upper bound, and hence we could find an integer n with K − 1 < n ≤ K. But then
K < n + 1; since n + 1 ∈ N, we contradict K being an upper bound. Thus N is
unbounded above and the Archimedean property follows. �

Exercise 1.13. Type “Non-Archimedean Ordered Field” into an internet search
engine and see what you find. Then try to understand one of the examples.

3.3. Limits. Completeness in the sense of Definition 3.2 (for Archimedean
ordered fields) is equivalent to a notion involving limits of Cauchy sequences. See
Remark 3.1. We will carefully discuss these definitions from a calculus or beginning
real analysis course. First we remind the reader of some elementary properties of
the absolute value function. We gain intuition by thinking in terms of distance.

Definition 3.6. For x ∈ R, we define |x| by |x| = x if x ≥ 0 and |x| = −x if
x < 0. Thus |x| represents the distance between x and 0. In general, we define the
distance δ(x, y) between real numbers x and y by

δ(x, y) = |x− y|.

Exercise 1.14. Show that the absolute value function on R satisfies the fol-
lowing properties:

1) |x| ≥ 0 for all x ∈ R, and |x| = 0 if and only if x = 0.
2) −|x| ≤ x ≤ |x| for all x ∈ R.
3) |x+ y| ≤ |x|+ |y| for all x, y ∈ R. (the triangle inequality)
4) |a − c| ≤ |a − b| + |b − c| for all a, b, c ∈ R. (second form of the triangle

inequality)

Exercise 1.15. Why are properties 3) and 4) of the previous exercise called
triangle inequalities?

We make several comments about Exercise 1.14. First of all, one can prove
property 3) in two rather different ways. One way starts with property 2) for x
and y and adds the results. Another way involves squaring. Property 4) is crucial
because of its interpretation in terms of distances. Mathematicians have abstracted
these properties of the absolute value function and introduced the concept of a
metric space. See Section 6.

We recall that a sequence {xn} of real numbers is a function from N to
R. The real number xn is called the n-th term of the sequence. The notation
x1, x2, ..., xn, ..., where we list the terms of the sequence in order, amounts to list-
ing the values of the function. Thus x : N → R is a function, and we write xn
instead of x(n). The intuition gained from this alteration of notation is especially
valuable when discussing limits.

Definition 3.7. Let {xn} be a sequence of real numbers. Assume L ∈ R.
• LIMIT. We say that “the limit of xn is L” or that “xn converges to L”,

and we write limn→∞xn = L, if the following statement holds: For all
ε > 0, there is an N ∈ N such that n ≥ N implies |xn − L| < ε.
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• CAUCHY. We say that {xn} is a Cauchy sequence if the following state-
ment holds: For all ε > 0, there is an N ∈ N such that m,n ≥ N implies
|xm − xn| < ε.

When there is no real number L for which {xn} converges to L, we say that
{xn} diverges.

The definition of the limit demands that the terms eventually get arbitrarily
close to a given L. The definition of a Cauchy sequence states that the terms of
the sequence eventually get arbitrarily close to each other. The most fundamental
result in real analysis is that a sequence of real numbers converges if and only if it
is a Cauchy sequence. The word complete has several similar uses in mathematics;
it often refers to a metric space in which being Cauchy is a necessary and sufficient
condition for convergence of a sequence. See Section 6. The following subtle remark
indicates a slightly different way one can define the real numbers.

Remark 3.1. Consider an ordered field F satisfying the Archimedean property.
In other words, given positive elements x and y, there is an integer n such that y
added to itself n times exceeds x. Of course we write ny for this sum. It is possible
to consider limits and Cauchy sequences in F. Suppose that each Cauchy sequence
in F has a limit in F. One can then derive the least upper bound property, and
hence F must be the real numbers R. Hence we could give the definition of the real
number system by decreeing that R is an ordered field satisfying the Archimedean
property and that R is complete in the sense of Cauchy sequences.

We return to the real numbers. A sequence {xn} of real numbers is bounded
if and only if its set of values is a bounded subset of R. A convergent sequence
must of course be bounded; with finitely many exceptions all the terms are within
distance 1 from the limit. Similarly a Cauchy sequence must be bounded; with
finitely many exceptions all the terms are with distance 1 of some particular xN .

Proving that a convergent sequence must be Cauchy uses what is called an
ε
2 argument. Here is the idea: if the terms are eventually within distance ε

2 of
some limit L, then they are eventually within distance ε of each other. Proving the
converse assertion is much more subtle; somehow one must find a candidate for the
limit just knowing that the terms are close to each other. See for example [8, 20].
The proofs rely on the notion of subsequence, which we define now, but which we
do not use meaningfully until Chapter 8. Let {xn} be a sequence of real numbers
and let k → nk be an increasing function. We write {xnk} for the subsequence of
{xn} whose k-th term is xnk . The proof that a Cauchy sequence converges amounts
to first finding a convergent subsequence, and then showing that the sequence itself
converges to the same limit.

We next prove a basic fact that often allows us to determine convergence of
a sequence without knowing the limit in advance. A sequence {xn} is called non-
decreasing if, for each n, we have xn+1 ≥ xn. It is called non-increasing if, for
each n, we have xn+1 ≤ xn. It is called monotone if it is either non-increasing
or non-decreasing. The following fundamental result, illustrated by Figure 4, will
get used occasionally in this book. It can be used also to establish that a Cauchy
sequence of real numbers has a limit.

Proposition 3.3. A bounded monotone sequence of real numbers has a limit.
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Proof. We claim that a non-decreasing sequence converges to its least upper
bound (supremum) and that a non-increasing sequence converges to its greatest
lower bound (infimum). We prove the first, leaving the second to the reader.
Suppose for all n we have

x1 ≤ ... ≤ xn ≤ xn+1 ≤ ... ≤M.

Let α be the least upper bound of the set {xn}. Then, given ε > 0, the number
α− ε is not an upper bound, and hence there is some xN with α− ε < xN ≤ α. By
the non-decreasing property, if n ≥ N then

(9) α− ε < xN ≤ xn ≤ α < α+ ε.

But (9) yields |xn − α| < ε, and hence provides us with the needed N in the
definition of the limit. Thus limn→∞(xn) = α. �

x2x1 x3 x4 M
α

Figure 4. Monotone convergence

Remark 3.2. Let {xn} be a monotone sequence of real numbers. Then {xn}
converges if and only if it is bounded. Proposition 3.3 guarantees that it converges
if it is bounded. Since a convergent sequence must be bounded, the converse holds
as well. Monotonicity is required; for example, the sequence (−1)n is bounded but
it does not converge.

The next few pages provide the basic real analysis needed as background ma-
terial. In particular the material on square roots is vital to the development.

Exercise 1.16. Finish the proof of Proposition 3.3; in other words, show that
a non-increasing bounded sequence converges to its greatest lower bound.

Exercise 1.17. If c is a constant, and {xn} converges, prove that {cxn} con-
verges. Try to arrange your proof such that the special case c = 0 need not be
considered separately. Prove that the sum and product of convergent sequences are
convergent.

Exercise 1.18. Assume {xn} converges to 0 and that {yn} is bounded. Prove
that their product converges to 0.

An extension of the notion of limit of sequence is often useful in real analysis.
We pause to introduce the idea and refer to [20] for applications and considerably
more discussion. When S is a bounded and nonempty subset of R, we write as usual
inf(S) for the greatest lower bound of S and sup(S) for the least upper bound of
S. Let now {xn} be a bounded sequence of real numbers. For each k, consider
the set Xk = {xn : n ≥ k}. Then these sets are bounded as well. Furthermore
the bounded sequence of real numbers defined by inf(Xk) is nondecreasing and the
bounded sequence of real numbers sup(Xk) is nonincreasing. By the monotone
convergence theorem these sequences necessarily have limits, called lim inf(xn) and
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lim sup(xn). These limits are equal if and only if lim(xn) exists, in which case
all three values are the same. By contrast, let xn = (−1)n. Then lim inf(xn) = −1
and lim sup(xn) = 1. Occasionally in the subsequent discussion we can replace
limit by lim sup and things still work.

Next we turn to the concept of continuity, which we also define in terms of
sequences.

Definition 3.8. Let f : R → R be a function. Then f is continuous at a if,
whenever {xn} is a sequence and limn→∞xn = a, then limn→∞f(xn) = f(a). Also,
f is continuous on a set S if it is continuous at each point of the set. When S is
R or when S is understood from the context to be the domain of f , we usually say
“f is continuous” rather than the longer phrase “f is continuous on S”.

Exercise 1.19. Prove that the sum and product of continuous functions are
continuous. If c is a constant, and f is continuous, prove that cf is continuous.

Exercise 1.20. Prove that f is continuous at a if and only if the following
holds. For each ε > 0, there is a δ > 0 such that |x−a| < δ implies |f(x)−f(a)| < ε.

We close this section by showing how the completeness axiom impacts the
existence of square roots. First we recall the standard fact that there is no rational
square root of 2, by giving a somewhat unusual proof. See Exercise 1.22 for a
compelling generalization. These proofs are based on inequalities. For example,
the order axioms yield the following: 0 < a < b implies 0 < a2 < ab < b2; we use
such inequalities without comment below.

Proposition 3.4. There is no rational number whose square is 2.

Proof. Seeking a contradiction, we suppose that there are integers m,n such
that (mn )2 = 2. We may assume that m and n are positive. Of all such representa-
tions we may assume that we have chosen the one for which n is the smallest possible
positive integer. The equality m2 = 2n2 implies the inequality 2n > m > n. Now
we compute

(10)
m

n
=
m(m− n)
n(m− n)

=
m2 −mn
n(m− n)

=
2n2 −mn
n(m− n)

=
2n−m
m− n

.

Thus 2m−n
m−n is also a square root of 2. Since 0 < m− n < n, formula (10) provides

a second way to write the fraction m
n ; the second way has a positive denominator,

smaller than n. We have therefore contradicted our choice of n. Hence there is no
rational number whose square is 2. �

Although there is no rational square root of 2, we certainly believe that a
positive real square root of 2 exists. For example, the length of the diagonal of the
unit square should be

√
2. We next prove, necessarily relying on the completeness

axiom, that each positive real number has a square root.

Theorem 3.1. If t ∈ R and t ≥ 0, then there is an x ∈ R with x2 = t.

Proof. This proof is somewhat sophisticated and can be omitted on first read-
ing. If t = 0, then t has the square root 0. Hence we may assume that t > 0. Let S
denote the set of real numbers x such that x2 < t. This set is nonempty, because
0 ∈ S. We claim that M = max(1, t) is an upper bound for S. To check the claim,
we note first that x2 < 1 implies x < 1, because x ≥ 1 implies x2 ≥ 1. Therefore
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if t < 1, then 1 is an upper bound for S. On the other hand, if t ≥ 1, then t ≤ t2.
Therefore x2 < t implies x2 ≤ t2 and hence x ≤ t. Therefore in this case t is an
upper bound for S. In either case, S is bounded above by M and nonempty. By
the completeness axiom, S has a least upper bound α. We claim that α2 = t.

To prove the claim, we use the trichotomy property. We will rule out the cases
α2 < t and α2 > t. In each case we use the Archimedean property to find a positive
integer n whose reciprocal is sufficiently small. Then we can add or subtract 1

n to
α and obtain a contradiction. Here are the details. If α2 > t, then Proposition 3.2
guarantees that we can find an integer n such that

2α
n
< α2 − t.

We then have

(α− 1
n

)2 = α2 − 2α
n

+
1
n2

> α2 − 2α
n
> t.

Thus α − 1
n is an upper bound for S, but it is smaller than α. We obtain a

contradiction. Suppose next that α2 < t. We can find n ∈ N (Exercise 1.21) such
that

(11)
2αn+ 1
n2

< t− α2.

This time we obtain

(α+
1
n

)2 = α2 +
2α
n

+
1
n2

< t.

Since α + 1
n is bigger than α, and yet it is also an upper bound for S, again we

obtain a contradiction. By trichotomy we must therefore have α2 = t. �

The kind of argument used in the proof of Theorem 3.1 epitomizes proofs
in basic real analysis. In this setting one cannot prove an equality by algebraic
reasoning; one requires the completeness axiom and analytic reasoning.

Exercise 1.21. For t − α2 > 0, prove that there is an n ∈ N such that (11)
holds.

Exercise 1.22. Mimic the proof of Proposition 3.4 to prove the following
statement. If k is a positive integer, then the square root of k must be either an
integer or an irrational number. Suggestion: Multiply m

n by m−nq
m−nq for a suitable

integer q.

4. The complex numbers

We are finally ready to introduce the complex numbers C. The equation
x2 + 1 = 0 will have two solutions in C. Once we allow a solution to this equation,
we find via the quadratic formula and Lemma 4.1 below that we can solve all qua-
dratic polynomial equations. With deeper work, we can solve any (non-constant)
polynomial equation over C. We will prove this result, called the fundamental
theorem of algebra, in Chapter 8.

Our first definition of C arises from algebraic reasoning. As usual, we write
R2 for the set of ordered pairs (x, y) of real numbers. To think geometrically, we
identify the point (x, y) with the arrow from the origin (0, 0) to the point (x, y).
We know how to add vectors; hence we define
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(12) (x, y) + (a, b) = (x+ a, y + b).

This formula amounts to adding vectors in the usual geometric manner. See Figure
5. More subtle is our definition of multiplication

(13) (x, y) ∗ (a, b) = (xa− yb, xb+ ya).

Let us temporarily write 0 for (0, 0) and 1 for (1, 0). We claim that the opera-
tions in equations (12) and (13) turn R2 into a field.

We must first verify that both addition and multiplication are commutative
and associative. The verifications are rather trivial, especially for addition.

(x, y) + (a, b) = (x+ a, y + b) = (a+ x, b+ y) = (a, b) + (x, y).

((x, y) + (a, b)) + (s, t) = (x+ a, y + b) + (s, t) = (x+ a+ s, y + b+ t)

= (x, y) + (a+ s, b+ t) = (x, y) + ((a, b) + (s, t)) .
Here are the computations for multiplication:

(x, y) ∗ (a, b) = (xa− yb, xb+ ya) = (ax− by, ay + bx) = (a, b) ∗ (x, y).

((x, y) ∗ (a, b)) ∗ (s, t) = (xa− by, xb+ ya) ∗ (s, t)

= (xas− bys− txb− tya, xbt+ yat− (xas− bys)) = (x, y) ∗ ((a, b) ∗ (s, t)) .
We next verify that 0 and 1 have the desired properties.

(x, y) + (0, 0) = (x, y).

(x, y) ∗ (1, 0) = (x1− y0, x0 + y1) = (x, y).
The additive inverse of (x, y) is easily checked to be (−x,−y). When (x, y) 6=

(0, 0), the multiplicative inverse of (x, y) is easily checked to be

(14)
1

(x, y)
= (

x

x2 + y2
,
−y

x2 + y2
).

Checking the distributive law is not hard, but it is tedious and left to the reader in
Exercise 1.23.

These calculations provide the starting point for discussion.

Theorem 4.1. Formulas (12) and (13) make R2 into a field.

The verification of the field axioms given above is rather dull and uninspired.
We do note, however, that (−1, 0) is the additive inverse of (1, 0) = 1 and that
(0, 1) ∗ (0, 1) = (−1, 0). Hence there is a square root of −1 in this field.

The ordered pair notation for elements is a bit awkward. We wish to give two
alternative definitions of C where things are more elegant.

What have we done so far? Our first definition of C as pairs of real numbers
gave an unmotivated recipe for multiplication; it seems almost a fluke that we
obtain a field using this definition. Furthermore computations seem clumsy. A
more appealing approach begins by introducing a formal symbol i and defining C
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z = x+ iy

w = a+ ib

z + w

Figure 5. Addition of complex numbers

to be the set of expressions of the form a + ib for real numbers a, b. We add and
multiply as expected, using the distributive law; then we set i2 equal to −1. Thus

(15) (x+ iy) + (a+ ib) = (x+ a) + i(y + b)

(16) (x+ iy) ∗ (a+ ib) = xa+ i(ya+ xb) + i2(yb) = (xa− yb) + i(ya+ xb).

Equations (15) and (16) give the same results as (12) and (13). While this new
approach is more elegant, it makes some readers feel uneasy. After all, we are
assuming the existence of an object, namely 0 + i1, whose square is −1. In the
first approach we never assume the existence of such a thing, but such a thing does
exist: the square of (0, 1) is (−1, 0), which is the additive inverse of (1, 0).

The reader will be on safe logical grounds if she regards the above paragraph
as an abbreviation for the previous discussion. In the next section we will give two
additional equivalent ways of defining C.

Exercise 1.23. Prove the distributive law for addition and multiplication, as
defined in (12) and (13). Do the same using (15) and (16). Compare.

The next lemma reveals a crucial difference between R and C.

Lemma 4.1. The complex numbers do not form an ordered field.

Proof. Assume that a positive subset P exists. By Lemma 3.1, each non-zero
square is in P . Since 12 = 1 and i2 = −1, both 1 and −1 are squares and hence
must be positive, contradicting 2) of Definition 3.1. �

5. Alternative definitions of C

In this section we discuss alternative approaches to defining C. We use some
basic ideas from linear and abstract algebra that might be new to many students.
The primary purpose of this section is to assuage readers who find the rules (12)
and (13) unappealing but who find the rules (15) and (16) dubious, because we
introduced an object i whose square is −1. The first approach uses matrices of real
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numbers, and it conveys significant geometric information. The second approach
fully justifies starting with (15) and (16) and it provides a quintessential example
of what mathematicians call a quotient space.

A matrix approach to C. The matrix definition of C uses two-by-two matri-
ces of real numbers and some of the ideas are crucial to subsequent developments.
In this approach we think of C as the set of two-by-two matrices of the form (18),
thereby presaging the Cauchy-Riemann equations which will appear throughout
the book. In some sense we identify a complex number with the operation of mul-
tiplication by that complex number. This approach is especially useful in complex
geometry.

We can regard a complex number as a special kind of linear transformation
of R2. A general linear transformation (x, y) → (ax + cy, bx + dy) is given by a
two-by-two matrix M of real numbers:

(17) M =
(
a c
b d

)
.

A complex number will be a special kind of two-by-two matrix. Given a pair of
real numbers a, b and motivated by (13), we consider the mapping L : R2 → R2

defined by

L(x, y) = (ax− by, bx+ ay).

The matrix representation (in the standard basis) of this linear mapping L is the
two-by-two matrix

(18)
(
a −b
b a

)
.

We say that a two-by-two matrix of real numbers satisfies the Cauchy-Riemann
equations if it has the form (18). A real linear transformation from R2 to itself whose
matrix representation satisfies (18) corresponds to a complex linear transformation
from C to itself, namely multiplication by a+ ib.

In this approach we define a complex number to be a two-by-two matrix (of real
numbers) satisfying the Cauchy-Riemann equations. We add and multiply matrices
in the usual manner. We then have an additive identity 0, a multiplicative identity
1, an analogue of i, and inverses of non-zero elements, defined as follows:

(19) 0 =
(

0 0
0 0

)
,

(20) 1 =
(

1 0
0 1

)
,

(21) i =
(

0 −1
1 0

)
.

If a and b are not both 0, then a2 + b2 > 0. Hence in this case the matrix
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(22)
( a
a2+b2

b
a2+b2

−b
a2+b2

a
a2+b2

)
makes sense and satisfies the Cauchy-Riemann equations. Note that

(23)
(
a −b
b a

)( a
a2+b2

b
a2+b2

−b
a2+b2

a
a2+b2

)
=
(

1 0
0 1

)
= 1.

Thus (22) yields the formula a−ib
a2+b2 for the reciprocal of the non-zero complex num-

ber a+ ib, expressed instead in matrix notation.
Thus C can be defined to be the set of two-by-two matrices satisfying the

Cauchy-Riemann equations. Addition and multiplication are defined as usual for
matrices. The additive identity 0 is given by (19) and the multiplicative identity
1 is given by (20). The resulting mathematical system is a field, and the element
i defined by (21) satisfies i2 + 1 = 0. This method of defining C should appease
readers who on philosophical grounds question the existence of complex numbers.

Exercise 1.24. Show that the square of the matrix in (21) is the negative of
the matrix in (20); in other words, show that i2 = −1.

Exercise 1.25. Suppose a2 + b2 = 1 in (18). What is the geometric meaning
of multiplication by L?

Exercise 1.26. Suppose b = 0 in (18). What is the geometric meaning of
multiplication by L?

Exercise 1.27. Show that there are no real numbers x and y such that
1
x

+
1
y

=
1

x+ y
.

Show on the other hand that there are complex numbers z and w such that

(24)
1
z

+
1
w

=
1

z + w
.

Describe all pairs (z, w) satisfying (24).

Exercise 1.28. Describe all pairs A and B of two-by-two matrices of real
numbers for which A−1 and B−1 exist and

A−1 +B−1 = (A+B)−1.

Remark 5.1. Such pairs of n-by-n matrices exist if and only if n is even; the
reason is intimately connected with complex analysis.

An algebraic definition of C. We next describe C as a quotient space.
This approach allows us to regard a complex number as an expression a+ ib, where
i2 = −1, as we wish to do. We will therefore define C in terms of the polynomial ring
divided by an ideal. The reader may skip this section without loss of understanding.

First we recall the general notion of an equivalence relation. Let S be a set.
We can think of an equivalence relation on S as being defined via a symbol ∼=. We
decree that certain pairs of elements s, t ∈ S are equivalent; if so we write s ∼= t.
The following three axioms must hold:

• For all s ∈ S: s ∼= s. (Reflexivity)
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• For all s, t ∈ S: s ∼= t if and only if t ∼= s. (Symmetry)
• For all s, t, u ∈ S: s ∼= t and t ∼= u together imply s ∼= u. (Transitivity)

Given an equivalence relation ∼= on S, we partition S into equivalence classes.
All the elements in a single equivalence class are equivalent, and no other member
of S is equivalent to any of these elements. We have already seen two elementary
examples. First, fractions a

b and c
d are equivalent if and only if they represent

the same real number; that is, if and only if ad = bc. Thus a rational number
may be regarded as an equivalence class of pairs of integers. Second, when doing
arithmetic modulo p, we regard two integers as being in the same equivalence class
if their difference is divisible by p.

Exercise 1.29. The precise definition of modular arithmetic involves equiv-
alence classes; we add and multiply equivalence classes (rather than numbers).
Show that addition and multiplication modulo p are well-defined concepts. In
other words, do the following. Assume m1 and m2 are in the same equivalence
class modulo p, and that n1 and n2 are also in the same equivalence class (not
necessarily the same class m1 and m2 are in). Show that m1 + n1 and m2 + n2 are
in the same equivalence class modulo p. Do the same for multiplication.

Exercise 1.30. Let S be the set of students at a college. For s, t ∈ S, consider
the relation s ∼= t if s and t take a class together. Is this relation an equivalence
relation?

Let R[t] denote the collection of polynomials in one variable, with real coeffi-
cients. An element p of R[t] can be written

p =
d∑
j=0

ajt
j ,

where aj ∈ R. Notice that the sum is finite. Unless all the aj are 0, there is a largest
d for which aj 6= 0. This number d is called the degree of the polynomial. When all
the aj equal 0, we call the resulting polynomial the zero polynomial, and agree that
it has no degree. (In some contexts, one assigns the symbol −∞ to be the degree
of the zero polynomial.) The sum and the product of polynomials are defined as in
high school mathematics. In many ways R[t] resembles the integers Z. Each is a
commutative ring under the operations of sum and product. Unique factorization
into irreducible elements holds in both settings, and the division algorithm works
the same as well. See See [4] or [8] for more details. Given polynomials p and g, we
say that p is a multiple of g, or equivalently that g divides p, if there is a polynomial
q with p = gq.

The polynomial 1 + t2 is irreducible, in the sense that it cannot be written as a
product of two polynomials, each of lower degree, with real coefficients. The set I
of polynomials divisible by 1 + t2 is called the ideal generated by 1 + t2. Given two
polynomials p, q, we say that they are equivalent modulo I if p − q ∈ I; in other
words, if p − q is divisible by 1 + t2. We observe that the three properties of an
equivalence relation hold:

• for all p: p ∼= p.
• for all p, q: p ∼= q if and only if q ∼= p.
• If p ∼= q and q ∼= r, then p ∼= r.
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This equivalence relation partitions the set R[t] into equivalence classes; the
situation is strikingly similar to modular arithmetic. Given a polynomial p(t), we
use the division algorithm to write p(t) = q(t)(1 + t2) + r(t), where the remainder r
has degree at most one. Thus r(t) = a+bt for some a, b, and this r is the unique first
degree polynomial equivalent to p. In the case of modular arithmetic we used the
remainder upon division by the modulus; here we use the remainder upon division
by t2 + 1.

Exercise 1.31. Verify the transitivity property of equivalence modulo I.

Standard notation in algebra writes R[t]/(1 + t2) for the set of equivalence
classes. We can add and multiply in R[t]/(1 + t2). As usual, the sum (or product)
of equivalence classes P and Q is defined to be the equivalence class of the sum
p + q (or the product pq) of members; the result is independent of the choice. An
equivalence class then can be identified with a polynomial a+ bt, and the sum and
product of equivalence classes satisfies (15) and (16). In this setting we define C
as the collection of equivalence classes with this natural sum and product:

(25) C = R[t]/(1 + t2).

Definition (25) allows us to set t2 = −1 whenever we encounter a term of
degree at least two. The irreducibility of t2 + 1 matters. If we form R[t]/(p(t)) for
a reducible polynomial p, then the resulting object will not be a field. The reason
is precisely parallel to the situation with modular arithmetic. If we consider Z/(n),
then we get a field (written Fn) if and only if n is prime.

Exercise 1.32. Show that R[t]/(t3 + 1) is not a field.

Exercise 1.33. A polynomial
∑d
k=0 ckt

k in R[t] is equivalent to precisely one
polynomial of the form A+ Bt in the quotient space. What is A+ Bt in terms of
the coefficients ck?

Exercise 1.34. Prove the division algorithm in R[t]. In other words, given
polynomials p and g, with g not the zero polynomial, show that one can write
p = qg + r where either r = 0 or the degree of r is less than the degree of g. Show
that q and r are uniquely determined by p and g.

Exercise 1.35. For any polynomial p and any x0, show that there is a poly-
nomial q such that p(x) = (x− x0)q(x) + p(x0).

6. A glimpse at metric spaces

Both the real number system and the complex number system provide intuition
for the general notion of a metric space. This section can be omitted without
impacting the logical development, but it should appeal to some readers.

Definition 6.1. Let X be a set. A distance function on X is a function
δ : X ×X → R such that the following hold:

1) δ(x, y) ≥ 0 for all x, y ∈ X. (distances are non-negative)
2) δ(x, y) = 0 if and only if x = y. (distinct points have positive distance

between them; a point has 0 distance to itself.)
2) δ(x, y) = δ(y, x) for all x, y ∈ X. (the distance from x to y is the same as

the distance from y to x.)
3) δ(x,w) ≤ δ(x, y) + δ(y, w) for all x, y, w ∈ X. (the triangle inequality)
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Definition 6.2. Let X be a set, and let δ be a distance function on X. The
pair (X, δ) is called a metric space.

Mathematicians sometimes write that “the distance function δ makes the set
X into a metric space”. That statement is not completely precise. It ignores
a somewhat pedantic point: the set X is not the metric space; a metric space
consists of the set and the distance function. Many different distance functions are
possible for most sets X.

Sometimes we use the word metric on its own to mean the distance function
on a metric space. The most intuitive example is the real number system; putting
δ(x, y) = |x − y| makes R into a metric space. There are many other possibilities
for metrics on R; for example, putting δ(x, y) equal to 1 whenever x 6= y gives
another possible distance function. In Chapter 2 we formally define the absolute
value function for complex numbers. Then C becomes a metric space when we put
δ(z, w) = |z − w|. Again, many other distance functions exist. We mention these
ideas now for primarily one reason. The basic concepts involving sequences and
limits can be developed in the metric space setting. The concept of completeness
is then based upon Cauchy sequences; a metric space (X, δ) is complete if and only
if every Cauchy sequence in X has a limit in X. Given a metric space that is not
complete in this sense, it is possible to enlarge it by including all limits of Cauchy
sequences. This approach provides one method for defining the real numbers in
terms of the rational numbers. Recall that our development assumes the existence
of the real numbers and defines the rational numbers as a particular subset of the
real numbers.

In a metric space there are notions of open and closed balls. Given p ∈ X,
we write Br(p) for the set of points whose distance to p is less than r; we call
Br(p) the open ball of radius r about p. The closed ball includes also points whose
distance to p equals r. Depending on the metric δ, these sets might not resemble
our usual geometric picture of balls. A subset S of a metric space is open if, for
each p ∈ S, there is an ε > 0 such that Bε(p) ⊂ S. In most situations what counts
is the collection of open subsets of a metric space. It is possible and also appealing
to define all the basic concepts (limit, continuous function, bounded, compact,
connected, etc.) in terms of the collection of open sets. The resulting subject is
called point set topology. In order to keep this book at an elementary level, we will
not do so; instead we rely on the metric in C defined by δ(z, w) = |z − w|. The
distance between points in this metric equals the usual Euclidean distance between
them.

Occasionally we will require that an open set be connected, and hence we give
the definition here. In Definition 6.3 and a few other times in this book, the symbol
∅ denotes the empty set. The empty set is open; there are no points in ∅, and
hence the definition of open is satisfied, albeit vacuously.

Definition 6.3. Let (X, δ) be a metric space. A subset S of X is called
connected if the following holds: whenever S = A ∪ B, where A and B are open
and A ∩B = ∅, then either A = ∅ or B = ∅.

In Chapter 6 we will use the following fairly simple result without proof. In it
and in the subsequent comment we assume C is equipped with the usual metric.
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Theorem 6.1. An open subset Ω of C is connected if and only if each pair of
points z, w ∈ Ω can be joined by a polygonal path whose sides are parallel to the
axes.

Proof. (Sketch). The result holds (and is uninteresting) when Ω is the empty
set. We therefore first assume Ω is connected and non-empty. Choose z ∈ Ω.
Consider the set S of points that can be reached from z by such a polygonal path.
Then S is not empty, as z ∈ S. Also, S is open; if we can reach w, then we can also
reach points in a ball about w. On the other hand, the set T of points we cannot
reach from z is also open. By the definition of connectedness, Ω is not the union
of disjoint open subsets unless one of them is empty. Thus, as S is non-empty, T
must be empty. Hence S = Ω and the conclusion holds.

The proof of the converse statement is similar; we prove its contrapositive.
Assume Ω is not connected and nonempty. Then Ω = A ∪ B, where A and B are
open, A∩B = ∅, but neither A nor B is empty. One then checks that no polygonal
path in Ω connects points in A to points in B. Hence the contrapositive of the
converse statement holds. �

We pause to state the intuitive characterization of connected subsets of the
real line. A subset of R (in the usual metric) is connected if and only if it is
an interval. By convention, the word interval includes the entire real line, the
empty set, and semi-infinite intervals. We leave the proof as an exercise, with
the following hints. Given a bounded connected set S, let α be its greatest lower
bound and let β be its least upper bound. We claim that S must be the interval
between α and β, perhaps including one or both of these end points. To check
this assertion, suppose α < x0 < β. If x0 were not in S, then {x ∈ S : x < x0}
and {x ∈ S : x > x0} are open non-empty subsets of S violating the definition of
connectedness. The same idea works when S is unbounded below or above. The
converse (an interval is connected) proceeds by writing the interval as A∪B, where
A and B are nonemptyclosed sets. (Their complements are open.) Choosing points
in each and successively bisecting the interval between them creates two monotone
sequences with a common limit, which must then be in both sets. Hence A ∩ B is
nonempty.

Exercise 1.36. Complete the proof that a subset of R is connected if and only
if it is an interval.

Finally we mention one more concept, distinct from connectedness, but with a
similar name. Roughly speaking, an open and connected subset S of C is called
simply connected if it has no holes. Intuitively speaking, S has a hole if there is a
closed curve in S which surrounds at least one point not in S. For example, the
complement of a point is open and connected, but it is not simply connected. The
set of z for which 1 < |z| < 2 is open and connected but not simply connected. In
Chapter 8 we will define the winding number of a closed curve about a point. At
that time we give a precise definition of simple connectivity.
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Figure 6. A connected and simply connected set

Figure 7. A disconnected set

Figure 8. A connected but not simply connected set





CHAPTER 2

Complex numbers

The main point of our work in Chapter 1 was to provide a precise definition of
the complex number field, based upon the existence of the real number field. While
we will continue to work with the relationships between real numbers and complex
numbers, our perspective will evolve toward thinking of complex numbers as the
objects of interest. The reader will surely be delighted by how often this perspective
leads to simpler computations, shorter proofs, and more elegant reasoning.

1. Complex conjugation

One of the most remarkable features of complex variable theory is the role
played by complex conjugation. There are two square roots of −1, namely ±i.
When we make a choice of one of these, we create a kind of asymmetry. The
mathematics must somehow keep track of the fundamental symmetry; these ideas
lead to fascinating consequences.

Recall from Lemma 4.1 of Chapter 1 that C is not an ordered field. Therefore
all inequalities used will compare real numbers. As we note below, real numbers
are precisely those complex numbers unchanged by taking complex conjugates.
Hence the fundamental issues involving inequalities also revolve around complex
conjugation.

Definition 1.1. For x, y real, put z = x + iy. We write x = Re(z) and
y = Im(z). The complex conjugate of z, written z, is the complex number x − iy.
The absolute value (or modulus) of z, written |z|, is the non-negative real number√
x2 + y2.

We make a few comments about the concepts in this definition. First we call
x the real part and y the imaginary part of x + iy. Note that y is a real number;
the imaginary part of z is not iy.

The absolute value function is fundamental in everything we do. Note first that
|z|2 = zz. Next we naturally define the distance δ(z, w) between complex numbers
z and w by δ(z, w) = |z − w|. Then δ(z, w) equals the usual Euclidean distance
between these points in the plane. We can use the absolute value function to define
bounded set. A subset S of C is bounded if there is a real number M such that
|z| ≤ M for all z in C. Thus S is bounded if and only if S is a subset of a ball
about 0 of sufficiently large radius.

The function mapping z into its complex conjugate is called complex conjuga-
tion. Applying this function twice gets us back where we started; that is z = z.
This function satisfies many basic properties; see Lemma 1.1.

Here is a way to stretch your imagination. Imagine that you have never heard
of the real number system, but that you know of a field called C. Furthermore
in this field there is a notion of convergent sequence making C complete in the

35
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z = x+ iy

z = x− iy

Im

Re

Figure 1. Complex conjugation

sense of Cauchy sequences. Imagine also that there is a continuous function (called
conjugation) z → z satisfying properties 1), 2), and 3) from Lemma 1.1. Continuity
guarantees that the conjugate of a limit of a sequence is the limit of the conjugates
of the terms. We could then define the real numbers to be those complex numbers
z for which z = z.

For us the starting point was the real number system R, and we constructed
C from R. We return to that setting.

Lemma 1.1. The following formulas hold for all complex numbers z and w.
1) z = z.
2) z + w = z + w.
3) zw = z w.
4) |z|2 = zz.
5) Re(z) = z+z

2 .
6) Im(z) = z−z

2i .
7) A complex number z is real if and only if z = z.
8) |z| = |z|.

Proof. Left to the reader as an exercise. �

Exercise 2.1. Prove Lemma 1.1. In each case, interpret the formula using
Figure 1.

Exercise 2.2. For a subset S of C, define S∗ by z ∈ S∗ if and only if z ∈ S.
Show that S∗ is bounded if and only if S is bounded.

Exercise 2.3. Show for all complex numbers z and w that

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

Interpret geometrically.

Exercise 2.4. Suppose that |a| < 1 and that |z| ≤ 1. Prove that∣∣∣∣ z − a1− az

∣∣∣∣ ≤ 1.

Comment: This fact is important in non-Euclidean geometry.
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Exercise 2.5. Let c be real, and let a ∈ C. Describe geometrically the set of
z for which az + az = c.

Exercise 2.6. Let c be real, and let a ∈ C. Suppose |a|2 ≥ c. Describe
geometrically the set of z for which |z|2 + az + az + c = 0.

Exercise 2.7. Let a and b be non-zero complex numbers. Call them parallel
if one is a real multiple of the other. Find a simple algebraic condition for a and b
to be parallel. (Use the imaginary part of something.)

Exercise 2.8. Let a and b be non-zero complex numbers. Find an algebraic
condition for a and b to be perpendicular. (Use a similar idea as in Exercise 2.7.)

Exercise 2.9. What is the most general (defining) equation for a line in C?
(Hint: the imaginary part of something must be 0). What is the most general
(defining) equation of a circle in C?

Exercise 2.10. For z, w ∈ C, prove that |Re(z)| ≤ |z| and |z +w| ≤ |z|+ |w|.
Then verify that the function δ(z, w) = |z − w| defines a distance function making
C into a metric space. (See Definition 6.1 of Chapter 1.)

2. Existence of square roots

In this section we give an algebraic proof that we can find a square root of an
arbitrary complex number. Some subtle points arise in the choice of signs. Later
we give an easier geometric method.

Proposition 2.1. For each w ∈ C, there is a z ∈ C with z2 = w.

Proof. Given w = a+ bi with a, b real, we want to find z = x+ iy such that
z2 = w. If a = b = 0, then we put z = 0. Hence we may assume that a2 + b2 6= 0.
The equation (x+ iy)2 = w yields the system of equations x2−y2 = a and 2xy = b.
We convert this system into a pair of linear equations for x2 and y2 by writing

(1) (x2 + y2)2 = (x2 − y2)2 + 4x2y2 = a2 + b2.

The right-hand side of (1) is positive, and hence by Theorem 3.1 of Chapter 1 it
has a positive real square root, and hence two real square roots. We choose the
positive square root. We obtain the system

x2 + y2 =
√
a2 + b2.

x2 − y2 = a.

We solve these two equations by adding and subtracting, obtaining

(2) x2 =
a+
√
a2 + b2

2

(3) y2 =
−a+

√
a2 + b2

2
.

First note that the right-hand sides of (2) and (3) are non-negative, because
a2 ≤ a2 + b2, and hence ±a ≤

√
a2 + b2. Recall that we chose the positive square

root of the expression a2 + b2. Now we would like to take the square roots of
the right-hand sides of (2) and (3) to define x and y, but we are left with some
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ambiguity of signs. In general there are two possible signs for x and two possible
signs for y, leading to four candidates for the solution. Yet we know from Lemma
2.1 of Chapter 1 that only two of these can work.

We resolve this ambiguity in the following manner, consistent with our conven-
tion that

√
t denotes the positive square root of t when t > 0. First we deal with

the case b = 0. When b = 0 we put y = 0 if a > 0; we obtain the two solutions
±
√
|a|. When b = 0 we put x = 0 if a < 0; we obtain the two solutions ±i

√
|a|. In

both of these cases we use |a| for the square root of a2.
Next suppose b > 0. In taking the square roots of (2) and (3) we choose x

and y to have the same sign. Squaring now shows that these two answers satisfy
(x+ iy)2 = a+ ib. Finally suppose b < 0. In taking the square roots of (2) and (3)
we choose x and y to have opposite signs. Squaring again shows that both answers
satisfy (x+ iy)2 = a+ ib. �

In the proof of Proposition 2.1, we obtained four candidates ±x ± iy for z.
When x and y are both not 0 these four candidates are distinct. As we noted
in the proof, at most two of them can be square roots of w. Thus two of them
fail. Hence the delicate analysis involving the signs is required. Things seem too
complicated! On the other hand, the existence of square roots follows easily from
the polar representation of complex numbers in Section 6. At that time we will
develop geometric intuition clarifying the subtleties in the proof of Proposition 2.1.

Example 2.1. We solve z2 = 11 + 60i by the method of Proposition 2.1. We
have a2 + b2 = 121 + 3600 and hence

√
a2 + b2 = 61. Therefore x2 = 11+61

2 = 36
and y2 = −11+61

2 = 25. We then take x = 6 and y = 5 or x = −6 and y = −5 to
obtain the answers z = ±(6 + 5i). The other combinations of signs fail. If instead
we want the square root of 11− 60i, then we have x2 = 36 and y2 = 25 as before,
but we need to choose x and y to have opposite signs.

Exercise 2.11. Find the error in the following alleged proof that −1 = 1.

−1 = i2 =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1.

It is possible to solve cubic (third degree) and quartic (fourth degree) equa-
tions by using the quadratic formula cleverly. The history of this approach is quite
interesting and relevant for the development of modern mathematics. See for ex-
ample [9]. We limit ourselves here however to a few exercises about solving cubic
polynomial equations. Cardano’s solution of the cubic equation dates to 1545, and
provided perhaps the first compelling argument in support of complex variables.

Exercise 2.12. Let z3+Az2+Bz+C be a cubic polynomial. What substitution
reduces it to the form w3 + aw + b?

Exercise 2.13. Suppose we can solve the cubic w3 + aw + b = 0, in the sense
that we can find formulas for the roots in terms of a, b. By the previous exercise
we can then solve the general cubic. To solve w3 + aw + b = 0, we first make the
substitution w = ζ + α

ζ . If we choose α intelligently, then we get a sixth degree
equation of the form

(4) ζ6 + c3ζ
3 + c0 = 0.

What is the intelligent choice for α? Why? Since (4) is a quadratic in ζ3, one can
solve it by the quadratic formula.
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11− 60i

6− 5i

6 + 5i

11 + 60i

Figure 2. Finding square roots

Exercise 2.14. Solve z3 + 3z − 4 = 0 by the method of the previous exercise.
Also solve it by elementary means and compare what you get. Do the same for
z3 + 6z − 20 = 0.

Remark 2.1. The method of Exercises 2.12 and 2.13 gives a formula for the
solution of the general cubic equation z3 +Az2 +Bz + C = 0 in terms of A,B,C.
Unfortunately the solution will involve nested radicals. Trying to simplify these
nested radicals often leads one back to the original equation. Hence the method is
somewhat unsatisfying. A similar discussion applies to fourth degree equations. Fi-
nally, no formula for the roots of the general polynomial equation of degree five and
higher can possibly exist. See [9] for a beautiful treatment of both the mathematics
and its history.

3. Limits

A sequence of complex numbers is a function from N (or from N ∪ {0}) to C.
We usually write the function by listing its values; we use the notations {zn} or
z1, z2, z3, ... to denote a sequence of complex numbers. The crucial concept is the
limit of a sequence.

Definition 3.1. Let {zn} be a sequence of complex numbers. Assume L ∈ C.
We say “the limit of zn is L” or “zn converges to L”, and we write limn→∞zn = L,
if the following statement holds:

For all ε > 0, there is an N ∈ N such that n ≥ N implies |zn − L| < ε.
We say that {zn} is a Cauchy sequence if the following statement holds:

For all ε > 0, there is an N ∈ N such that m,n ≥ N implies |zm − zn| < ε.
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We will not repeat standard facts about limits. The proofs are virtually the
same as for limits of sequences of real numbers. We do make a few remarks and
mention a few examples.

Remark 3.1. zn converges to L if and only if Re(zn) converges to Re(L) and
Im(zn) converges to Im(L). The proof is immediate from (5):

(5) |zn − L|2 = |Re(zn)− Re(L)|2 + |Im(zn)− Im(L)|2.

Remark 3.2. A sequence of complex numbers converges if and only if it is a
Cauchy sequence; this fundamental fact follows from the previous remark and the
corresponding property of the real number system.

Exercise 2.15. Prove the two previous remarks about limits.

Exercise 2.16. (Continuity of conjugation) Assume zn converges to L. Prove
that zn converges to L.

The following lemma nicely illustrates some basic techniques in analysis and
we apply it to study the geometric series.

Lemma 3.1. For |z| < 1, we have limN→∞z
N = 0. For |z| > 1, the sequence

zN diverges.

Proof. First assume |z| < 1. By the definition of a limit (involving ε), or by
Proposition 3.1 below, it suffices to show that limN→∞|z|N = 0. Let tn = |z|n;
then (6) holds:

(6) tn+1 = |z|tn.

Since |z| < 1, the sequence {tn} is monotone (non-increasing). It is bounded below
by 0. By Proposition 3.3 of Chapter 1, the limit exists. Call it L. Letting n tend
to infinity in (6) gives L = |z|L. Since |z| 6= 1, the only possibility is L = 0.

If |z| > 1, then the sequence zN is unbounded and hence diverges. �

Example 3.1. How does the limiting behavior of zn depend on z? By Lemma
3.1, limN→∞z

N = 0 if |z| < 1. If z = 1, the limit equals 1. For other z with |z| = 1,
the limit does not exist, as the sequence bounces around. If |z| > 1 the limit does
not exist as a complex number; later we will allow infinity as a possible limit, and
zn does converge to infinity if |z| > 1.

Limits of function values rather than limits of sequences often arise. It is
possible to reduce limits of function values to limits of sequences, but it is somewhat
simpler to give the definition in terms of ε and δ. When we write limz→af(z) = L
we ignore what happens at a itself. To deal with this situation, as in calculus, we
say that limz→af(z) = L if, for every ε > 0 there is a δ > 0 such that 0 < |z−a| < δ
implies |f(z)− L| < ε. If we wanted to express this concept in terms of sequences,
then we would need to consider all sequences tending to a for which zn is never
equal to a. By comparison, the definition of continuous (Definition 3.8 of Chapter
1) does take the point a into account, and therefore all sequences tending to a get
considered.
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Complex analytic functions. As in calculus, certain particular limits play
a major role. The three most important limits are the definition of derivative,
the definition of integral, and the definition of convergent infinite series. These
three concepts are tied together in complex analysis even more closely than they
are in calculus. To prepare for further developments we make now a provisional
definition of complex analytic function. In Chapter 6 we establish that the class of
functions defined by this notion of complex differentiability is the same as the class
of functions defined locally by convergent power series.

The notion of complex differentiability requires working on an open set. We
defined open set in the metric space setting in Section 6 of Chapter 1. We formally
define open set in C in Definition 1.1 of Chapter 3. For now, we need only the
following intuitive idea: for f to be complex differentiable at p, it is necessary that
f be defined at all points near p, in order that we can take the following limit.

Definition 3.2. Let Ω be an open subset of C, and suppose f : Ω → C is a
function. We say that f is complex analytic on Ω if f is complex differentiable at
each p ∈ Ω. In other words f is complex analytic if at each p the following limit
exists:

f ′(p) = limζ→0
f(p+ ζ)− f(p)

ζ
.

The usual formal rules of calculus apply; for example, if f(z) = zn for a positive
integer n, then f is complex analytic and f ′(z) = nzn−1. The derivative of a sum
is the sum of the derivatives: f + g is complex differentiable at z and (f + g)′(z) =
f ′(z) + g′(z) if both f ′(z) and g′(z) exist. The product rule for derivatives holds.
Furthermore, if f is complex analytic and f(z) 6= 0, then 1

f is complex analytic

near z, and its derivative is −f
′(z)

f(z)2 . Therefore the quotient of two complex analytic
functions is complex analytic at all points where the denominator does not vanish.
Also, the chain rule holds. The proofs of these statements are essentially the same
as in elementary calculus and they are given as exercises in Chapter 5. By the
end of this book we will establish many beautiful results about complex analytic
functions by combining the notions of derivatives, integrals, and convergent infinite
series.

4. Convergent infinite series

We return to the basic properties of convergent infinite series. An infinite series
arises when one tries to perform infinitely many additions. Let {zn} be a sequence
in C. We want to make sense out of the infinite sum

∑∞
n=0 zn. To do so we first

introduce the partial sum SN defined by SN =
∑N
n=0 zn.

Definition 4.1. We say that
∑∞
n=0 zn = L if limN→∞SN = L. We also then

say that
∑∞
n=0 zn converges to L. If the limit of the partial sums does not exist,

then we say that
∑∞
n=0 zn diverges.

The concept of infinite series closely parallels the writing of a real number
as a decimal expansion. Some subtle ideas about power series in complex analysis
naturally generalize simple things. These ideas are easier to grasp when we compare
them with decimal expansions. See especially Section 6 of Chapter 4.

Let x be a real number with 0 ≤ x < 1. We may express x as a decimal:
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x = .a1a2a3... =
∞∑
n=1

an(
1
10

)n.

In the decimal expansion we demand that each coefficient an be an integer between
0 and 9. The convergence of the series follows from the following reasoning. Since
each term is non-negative, the sequence SN of partial sums of the expansion is
non-decreasing. By Proposition 3.3 and Remark 3.2 of Chapter 1, such a sequence
has a limit if and only if it is bounded. Note that SN ≤

∑N
n=1 9( 1

10 )n = 1− 1
10N
≤ 1

for all N . Therefore SN is bounded and the decimal expansion makes sense.
To make the previous paragraph more precise and to prepare for later discussion

we pause to mention the geometric series. We discuss it in detail in Chapter 4. The
distributive law and induction yield

(1− z)
N−1∑
n=0

zn = 1− zN ,

and therefore for z 6= 1 we have

(7)
N−1∑
n=0

zn =
1− zN

1− z
.

We call (7) the finite geometric series.
Next assume that |z| < 1. By Lemma 3.1, limN→∞z

N = 0. Combining this
limit with the finite geometric series gives the geometric series:

(8)
∞∑
n=0

zn = limN→∞

N−1∑
n=0

zn = limN→∞
1− zN

1− z
=

1
1− z

whenever |z| < 1. The geometric series appeared implicitly in the proof of the deci-
mal expansion when we noted that the decimal .999...99 (a total of N nines) equals
1− ( 1

10 )N . Definition 3.3 implies that (the infinite decimal expansion) .999... = 1;
there can be no debate about this matter, despite innumerable internet discussions
about it!

Also by Lemma 3.1, the limit as N tends to infinity of (7) does not exist if
|z| > 1. If |z| = 1 but z 6= 1, the limit also fails to exist. Since z = 1 is precluded
from the discussion, we conclude that the geometric series converges if and only if
|z| < 1.

The next several exercises follow immediately from Definition 3.3. The second
exercise provides a distributive law for convergent infinite sums; this law gets used
in one of the standard proofs that .999... = 1.

Exercise 2.17. Assume that both
∑∞
n=0 an and

∑∞
n=0 bn converge. Prove that∑∞

n=0(an + bn) converges.

Exercise 2.18. (Infinite distributive law) Assume that
∑∞
n=0 an converges and

c ∈ C. Prove that c
∑∞
n=0 an =

∑∞
n=0 can.

Exercise 2.19. Fill in the details of the following proof that .999... = 1. First
regard .999... as an infinite series. Show using Proposition 3.3 of Chapter 1 that
it converges to something, say L. Then use the infinite distributive law (Exercise
2.18) to conclude that 10 L = 9 + L. Hence L = 1.
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Exercise 2.20. Prove by induction that |
∑n

1 cj | ≤
∑n

1 |cj |.

Exercise 2.21. Consider a sports tournament with 64 teams. In the first round
all teams play. The 32 winners advance to the second round, and so on, until there
is one winner. Show in two ways that there are 63 games played in total. What
does this argument have to do with the finite geometric series?

The most fundamental tests for convergence are comparison tests. The term
comparison test is standard from calculus courses that provide recipes for deciding
the convergence of infinite series. We prove this test next, and we include with it
the simple version for sequences.

Proposition 4.1. 1) Assume cn ≥ 0 for all n and that lim(cn) = 0. If zn ∈ C
and |zn| ≤ cn for all n, then lim(zn) = 0 also.

2) Assume bn ≥ 0 for all n and that
∑∞

1 bn converges. If an ∈ C and |an| ≤ bn
for all n, then

∑
an also converges.

Proof. 1) Given ε > 0, we can choose an N such that |cn − 0| < ε whenever
n ≥ N . For the same N and n ≥ N we obtain

|zn − 0| ≤ cn = |cn − 0| < ε.

2) This proof displays the power of the Cauchy criterion for convergence. Let
TN denote the N -th partial sum of the series

∑∞
1 bn, and let SN denote the N -th

partial sum of the series
∑∞

1 an. To show that the sequence SN converges we show
that it is a Cauchy sequence. For M > N we have

(9) |SM − SN | = |
M∑

n=N+1

an| ≤
M∑

n=N+1

|an| ≤
M∑

n=N+1

bn = |TM − TN |.

The sequence TN converges and hence is Cauchy; thus we can make the right-hand
side of (9) as small as we wish by choosing N large enough. By (9), SN is also
Cauchy and therefore converges. �

We next recall from calculus one form of a test for convergence of a series called
the ratio test. In both the ratio test and the root test, the idea behind the test is
to find a quantity that plays the role r does in the geometric series

∑
rn.

Proposition 4.2. Assume an 6= 0 for all n. Suppose that the limit L =
limn→∞

|an+1|
|an| of the ratios of the absolute values of successive terms exists and that

L < 1. Then the series
∑∞
n=0 an converges. If L > 1, then the series diverges. The

test is inconclusive when L = 1.

Proof. We sketch the convergence part; the divergence part is similar and
easier and hence left to the reader as an exercise. The intuition behind both parts
is the comparison with the geometric series. Let bn = |an|. By the comparison
test, to show convergence it suffices to show that

∑
bn converges when L < 1. For

large enough n, bn+1
bn

is approximately L, which we assume is less than 1. Then

there is a number r with 0 < r < 1 and bn+1
bn

< r for all sufficiently large n, say
n ≥ N . One can then compare the tail

∑
n≥N bn with the convergent geometric

series bNrN
∑∞
j=0 r

j . Thus the series converges when L < 1. �
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Exercise 2.22. Prove the divergence part of the ratio test. Give an example
where L = 1 and the series converges. Give an example where L = 1 and the series
diverges. Formulate and prove the root test; to do so consider L = lim sup|an|

1
n .

More on infinite series. We make a few comments about absolute conver-
gence. Let {an} be a sequence of complex numbers. We say that

∑∞
n=1 an converges

absolutely if
∑∞
n=1 |an| converges. When

∑∞
n=1 an converges, but

∑∞
n=1 |an| does

not, we say that
∑∞
n=1 an converges conditionally. Absolute convergence is easier

to understand than is conditional convergence. The next several exercises illustrate
this point rather well. It is particularly striking that the limit of a conditionally
convergent series depends on the order in which we add up the terms. We use the
term rearrangement for the series obtained by performing the sum in a different
order.

Exercise 2.23. Show that
∑∞
n=1

(−1)n+1

n converges conditionally. The value
of the sum is log(2), approximately .69. Show that by grouping the terms by
taking two positive terms, then one negative term, then two positive terms, then
one negative term, and so on, the series adds up to a number larger than 1. The
value of the sum therefore depends on the order in which the terms are summed.

Exercise 2.24. Express the series described in the previous exercise (after
grouping) in the form

∑∞
n=1 bn, and find a simple expression for bn. Try to find

this infinite sum.

Exercise 2.25. (Riemann’s remark) Assume that an ∈ R and that
∑∞
n=1 an

converges conditionally. Fix an arbitrary L ∈ R. Show that we can rearrange the
terms to make the sum converge to L.

Exercise 2.26. (Complex variable analogue) (Difficult) Assume that an ∈ C
and consider rearrangements of the convergent series

∑∞
n=1 an. Show that each of

the following situations is possible, and that this list includes all possibilities.
1)
∑∞
n=1 an converges absolutely and hence all rearrangements converge to the

same value.
2) The set of possible values of convergent rearrangements is all of C.
3) The set of possible values of convergent rearrangements is an arbitrary line

in C.

The book [15] is devoted almost entirely to the kind of question from Exercise
2.26 in various settings.

Exercise 2.27. Find a (necessarily conditionally convergent) series (of real or
complex numbers) such that

∑
an converges but

∑
a3
n diverges.

5. Uniform convergence and consequences

This section describes some important results in basic analysis. The main point
is Theorem 5.3, which is used to justify differentiating or integrating a power series
term by term. Many readers will wish to skip this section and return to it when
needed.

The examples we have seen indicate some of the subtleties arising when ab-
solute convergence fails. For series of functions we need a second way to improve
the notion of convergence. Note that the power series

∑∞
1 anz

n can be regarded
as summing the sequence of functions fn, where fn(z) = anz

n. Given a sequence
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or series of functions, things work best when the sequence or series converges uni-
formly, a concept defined below. As in the relationship between sequences and
series of numbers, it suffices to study various types of convergence for sequences
of functions, and to apply them to sequences of partial sums when we work with
series of functions.

Let fn be a sequence of real- or complex-valued functions defined on some set
E. We say that fn converges pointwise on E if, for each z ∈ E, fn(z) converges.
This notion is inadequate for many purposes. We introduce the crucial stronger
condition of uniform convergence.

Definition 5.1. Let E be a subset of C. Let fn : E → C be a sequence of
functions defined on E. We say that fn converges uniformly to f on E if, for all
ε > 0, there is an N such that n ≥ N implies |fn(z) − f(z)| < ε for all z ∈ E.
We say that an infinite series converges uniformly if its sequence of partial sums
converges uniformly.

The difference between pointwise convergence and uniform convergence arises
from the location of the quantifier “for all z”. In Definition 5.1, the N chosen must
work for all z in E. In the definition of pointwise convergence, for each z there is
an N , but there might be no single N that works for all z at the same time.

Exercise 2.28. Discuss the convergence and uniform convergence of the given
sequence of functions on the given set E.

1) Put fn(z) = zn. First let E be the real interval [0, 1]. Then let E = {z :
|z| ≤ R < 1}. Then let E = {z : |z| < 1}. What happens on the closed unit disk?

2) Put fn(z) = zn(1− z). Let E be the real interval [0, 1].
3) Put fn(z) = nzn(1− z). Let E be the real interval [0, 1].
4) Put fn(z) = zn(1− |z|). Let E = {z : |z| < 1}.
5) Let fn be a sequence of functions on a set E. Suppose for each n we have

|fn(z)| ≤Mn on E and assume
∑
Mn converges. Show that

∑∞
n=1 fn(z) converges

uniformly on E.

Exercise 2.29. Give several distinct examples of a sequence of (real- or complex-
valued) functions that converges pointwise on R but not uniformly. (Pictures might
be better than formulas.)

We continue this section by discussing some technical real analysis and ad-
vanced calculus. Readers who wish to jump ahead to the next section and return
to these results later are welcome to do so. Theorem 5.3 and its Corollary 5.1 play
an important role in the rigorous development of complex analysis, but they are not
necessary for many of our results. The theorem provides a circumstance in which
the derivative of a limit of a sequence of functions is the limit of the derivatives. Its
corollary allows us to differentiate or integrate a power series term by term within
its circle of convergence.

Before we discuss these result, we provide many examples which reveal why
there is something to prove. Integrals and derivatives are themselves limits. One
cannot interchange the order of limits in general, as the examples illustrate.

A function of one or several variables is called smooth if its partial derivatives
of all orders exist and are themselves continuous functions. The word smooth will
also be used in Chapter 6 to describe certain curves. In the results from calculus
used in this book, only continuous derivatives of the first order will matter. Hence
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we often use the following standard but awkward term. A function of one or several
real variables is called continuously differentiable if its first partial derivatives exist
at each point and are themselves continuous functions. This assumption arises at
various places in our development, although for complex analytic functions, the
assumption is not needed. See Corollary 4.3 of Chapter 6.

We first give an example of a differentiable function f on the real line whose
derivative is not continuous; thus f is not continuously differentiable. We continue
with examples illustrating the subtleties that can arise when we interchange the
order of limiting operations.

Example 5.1. For x 6= 0, put f(x) = x2sin( 1
x ); put f(0) = 0. We claim that

f ′(x) exists for all x. The product rule for derivatives gives for x 6= 0

f ′(x) = 2xsin(
1
x

)− cos(
1
x

),

and the definition of f ′(0) as a limit quotient gives f ′(0) = 0. Thus the function
f ′ makes sense. On the other hand, limx→0f

′(x) does not exist, and therefore f ′ is
not continuous at 0.

Example 5.2. Put fn(x) = n. Then f ′n(x) = 0 for all x, but limfn(x) does
not exist. The limit of the derivatives is not the derivative of the limit.

Example 5.3. Put fn(x) = xn+1

n+1 . For all x ∈ [−1, 1] we have limfn(x) = 0.
Also, f ′n(x) = xn for all x. The limit of f ′n(x) is zero if |x| < 1, but this limit is 1 if
x = 1 and it does not exist if x = −1. Again the limit of the derivatives is not the
derivative of the limit.

Example 5.4. Put fn(x) = n for 0 < x ≤ 1
n and fn(x) = 0 otherwise. Then∫ 1

0
fn(x)dx = 1 for all n. Also limfn(x) = 0 for all x. The limit of the integral is

not the integral of the limit.

In each of the previous three examples, a difficulty arises because two limits are
being taken. The order in which they are taken matters. The following shockingly
simple example is worth some thought.

Example 5.5. Put f(x, y) = |x||y|. Then limx→0limy→0f(x, y) = 1, whereas
limy→0limx→0f(x, y) = 0. The limit changes when we reverse the order in which the
variables go to zero. In particular there is no value of f(0, 0) making f continuous
there.

It should now be evident that we need to find hypotheses enabling us to inter-
change the order of limiting operations. The following results from analysis can be
regarded as filling that need.

Lemma 5.1. Suppose fn : E → C is continuous, and fn converges uniformly
on E to some function f . Then f is continuous on E.

Proof. The key point is an ε
3 argument. By the triangle inequality we have,

for all z, w ∈ E and for all n,

(10) |f(z)− f(w)| ≤ |f(z)− fn(z)|+ |fn(z)− fn(w)|+ |fn(w)− f(w)|.
We can make the first and third terms on the right-hand side as small as we wish
by making n large. We can make the middle term as small as we wish by making z
close to w. We prove continuity at z by the ε-δ definition. Given ε > 0, we choose
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N such that n ≥ N implies |fn(ζ)− fn(w)| < ε
3 for all ζ and w. Such an N exists

by uniform convergence. Fix an n with n ≥ N . We choose δ > 0 small enough to
guarantee that |fn(z) − fn(w)| < ε

3 when |z − w| < δ. Such a δ exists because fn
is continuous at z. Then (10) implies that |f(z)− f(w)| < ε. �

In the next two results we assume that E = [a, b] is a bounded closed interval on
R. In both proofs we use the inequality |

∫
g| ≤

∫
|g|; this simple fact is discussed

in detail in Section 1 of Chapter 6.

Lemma 5.2. Suppose fn : E → C is continuous for each n, and that fn con-
verges uniformly to f on E. Then

∫ b
a
fn converges to

∫ b
a
f .

Proof. If a = b there is nothing to prove, so assume that a < b. By Lemma
5.1, f is continuous on [a, b] and hence integrable. Given ε > 0, by uniform conver-
gence we can find an N such that n ≥ N implies, for all t ∈ [a, b],

|fn(t)− f(t)| ≤ ε

b− a
.

To show that
∫ b
a
fn converges to

∫ b
a
f , we simply note for n ≥ N that∣∣∣∣∣

∫ b

a

fn(t)dt−
∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|fn(t)− f(t)|dt ≤ (b− a)
ε

b− a
= ε.

We have verified the definition of limit for sequences. �

Theorem 5.1. Suppose fn : E → C is a sequence of continuously differentiable
functions. Thus fn and dfn

dx are continuous on [a, b]. Assume that the sequence of
numbers fn(a) converges. Finally assume that the sequence dfn

dx converges uniformly
to some function g. Then fn converges uniformly on E to a function f , the function
f is continuously differentiable, and df

dx = g. In other words,

d

dx
lim(fn) = lim

dfn
dx

.

Proof. We require the fundamental of calculus. Using it we write

(11) fn(x) =
∫ x

a

dfn
dx

(t)dt+ fn(a).

Then we let n tend to infinity in (11). The first term on the right-hand side of
(11) converges by Lemma 5.2 to

∫ x
a
g(t)dt and the second term converges to some

number. Therefore, for each x, fn(x) converges to some number we call f(x). Below
we check that the convergence is uniform. First note that

(12) f(x) =
∫ x

a

g(t)dt+ f(a).

The function g is continuous by Lemma 5.1. The fundamental theorem of calculus
therefore applies, and we obtain df

dx = g. Since g is continuous, f is continuously
differentiable. It remains to show that fn converges to f uniformly. To do so,
subtract (12) from (11) to obtain a formula for fn(x) − f(x). Taking absolute
values and using an ε

2 argument shows that it suffices to estimate∣∣∣∣∫ x

a

(
dfn
dx

(t)− g(t)
)
dt

∣∣∣∣
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uniformly in x. By using |
∫
h| ≤

∫
|h|, it suffices to show that dfn

dx converges
uniformly to g, which is one of the assumptions. �

We now turn to functions of several variables. Although the next definition
and theorem make sense in higher dimensions, we restrict our consideration to two
dimensions. Versions of the next definition and theorem appear in many calculus
books. See for example Chapter 12 of [24].

Definition 5.2. Let Ω be an open subset of R2 and suppose f : Ω→ C. We
say that f is differentiable at (x, y) if there are complex numbers a, b such

(13) f(x+ h, y + k) = f(x, y) + ah+ bk + E(h, k),

where

(14) lim(h,k)→(0,0)
E(h, k)√
h2 + k2

= 0.

This definition states that f is approximately linear at (x, y). The expression
E(h, k) in (14) is regarded as an error term, and the existence of the limit means
that E(h, k) tends to 0 faster than the length of the vector (h, k). The derivative,
or gradient vector ∇f(x, y) = (a, b), provides the linear approximation: for (h, k)
small, f(x+h, y+k) equals approximately f(x, y) plus the linear correction ah+bk.
When f is differentiable at (x, y) we have

∇f(x, y) = (
∂f

∂x
(x, y),

∂f

∂y
(x, y)).

The existence of these partial derivatives does not imply that f is differentiable.
If these partial derivatives are continuous, then the following important result from
advanced calculus does guarantee differentiability.

Theorem 5.2. Let Ω be an open subset of R2 and suppose f : Ω→ C. Suppose
that the partial derivatives ∂f

∂x and ∂f
∂y exist and are continuous on Ω. Then f is

differentiable.

Proof. The idea of the proof is quite simple. We use the mean-value theorem
from basic calculus. If g is a differentiable function of one variable, and the interval
(x0, x1) lies in the domain of g, then there is a c (depending on x1 and x2) in this
interval such that

(15) g(x2)− g(x1) = g′(c)(x2 − x1).

Of course, if g is continuously differentiable, then we may let x2 tend to x1 and
then g′(c) tends to g′(x1).

Let f satisfy the hypotheses of the theorem. Let ∇f(x, y) = (a, b). We study
f(x+ h, y + k)− f(x, y) by reducing to the one-dimensional case as follows. Since
Ω is open, there is an open rectangle about (x, y) lying within Ω. For (h, k) small
we assume that (x+ h, y + k) is in this rectangle. We then write

(16) f(x+h, y+k)−f(x, y) = f(x+h, y+k)−f(x+h, y) +f(x+h, y)−f(x, y).

The first two terms on the right-hand side of (16) involve only a change in the
vertical direction, and the last two terms involve only a change in the horizontal
direction. We use the mean value theorem on each of these pairs to get numbers c
and δ such that c is between x and x+ h, δ is between y and y + k and

(17) f(x+ h, y + k)− f(x, y) =
∂f

∂y
(x+ h, δ)k +

∂f

∂x
(c, y)h.
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Now subtract ∇f(x, y) from both sides of (17) and rearrange terms to get

f(x+ h, y + k)− f(x, y)−∇f(x, y) =

(18)
(
∂f

∂y
(x+ h, δ)− ∂f

∂y
(x, y)

)
k +

(
∂f

∂x
(c, y)− ∂f

∂x
(c, y)

)
h.

Since the partials are continuous at (x, y), the expressions multiplying h and k in
(18) go to zero as (h, k) tends to (0, 0). The factors of h and k also do of course. It
follows that the right-hand side of (18) goes to zero faster than

√
h2 + k2, and f is

differentiable. �

Now that we have sketched an entire basic analysis course, we can derive some
important consequences.

Theorem 5.3. Let Ω be an open set in C and suppose that FN : Ω → C
is a sequence of continuously differentiable functions. Assume that FN converges
pointwise to some function F on Ω. Suppose furthermore that the partial derivatives
∂FN
∂x and ∂FN

∂y converge uniformly on each closed and bounded subset of Ω. Then
the limit function F is differentiable at each point of Ω and its partial derivatives
are continuous. These partials are given by

(19)
∂F

∂x
= limN→∞

∂FN
∂x

(20)
∂F

∂y
= limN→∞

∂FN
∂y

.

Proof. The result follows by combining Theorems 5.1 and 5.2. �

A corollary of this theorem will be crucial in our development, and we therefore
state it now in anticipation. We naturally want to differentiate a power series∑
cnz

n, within its region of convergence, with respect to z. Recall that the power
series is the limit of its partial sums. Under the assumption of uniform convergence
of the derivatives with respect to x and y, Theorem 5.3 allows for the interchange
of derivatives and infinite sum (limit of the partial sums). We can express the
operations ∂

∂z and ∂
∂z in terms of ∂

∂x and ∂
∂y and vice versa. See Definition 2.1 of

Chapter 5. But a power series in z is somehow independent of z, and we can ignore
the ∂

∂z derivatives. See Chapters 4, 5, and 6 for the full story.

Corollary 5.1. Assume that
∑∞
n=0 cnz

n converges on the set {|z| < R}, and
call the sum f(z). Then f is complex differentiable on {|z| < R} and f ′(z) =∑∞
n=0 ncnz

n−1. Furthermore, the series
∑∞
n=0

cn
n+1z

n+1 also converges for |z| < R.
It represents a complex differentiable function F for which F ′(z) = f(z).

Proof. (Sketch) Assume that a power series converges on {|z| < R}. Its par-
tial sums are polynomials in z and hence complex differentiable functions. Theorem
2.1 of Chapter 4 guarantees the following precise statement on convergence: for any
r such that r < R, the series converges absolutely and uniformly for {|z| ≤ r}. We
may therefore invoke the theorems of this section to interchange both differentia-
tion and integration with infinite sum in {|z| ≤ r}. Since r is an arbitrary number
smaller than R, the results are valid in the open disk {|z| < R}. �
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6. The unit circle and trigonometry

The unit circle S1 is the set of complex numbers z at distance one from the
origin. Thus S1 = {z : |z| = 1}. Consider a point z on S1. Assuming we know
what cosine and sine are, we can also represent z by z = cos(θ) + isin(θ), where
θ is the usual polar angle. The equation cos2(θ) + sin2(θ) = 1 is simply a way of
rewriting the equation |z|2 = 1. Complex variables provide an elegant approach to
trigonometry; this beautiful viewpoint enables routine, unified proofs and it makes
one wonder why high school students are subjected to so many complicated trig
identities.

Rather than presuming any knowledge of trigonometry, we will start by defin-
ing the exponential function and go on to define sine and cosine in terms of it.
This approach might be counter-intuitive to some readers. We therefore also recall
from calculus the power series expansions for cosine and sine as a way of justify-
ing what we have done. See also Exercise 2.57 for a justification using differential
equations. The main reason for defining trig in this manner is that many com-
plicated expressions in trig simplify when they are expressed in terms of complex
exponentials.

Our formal development begins with the exponential function, written exp(z)
or ez. We define this function by its power series

(21) ez =
∞∑
n=0

zn

n!
.

This series converges for all z by the ratio test: for z 6= 0 the absolute value of
the ratio of successive terms is |z|

n+1 , which tends to 0 as n tends to infinity. Since
0 < 1, the ratio test guarantees convergence. For any closed disc {z : |z| ≤ R},
the power series for ez converges absolutely and uniformly on this closed disk. (See
Theorem 2.1 of Chapter 4 for a general statement.) Corollary 5.1 then implies that
the exponential function is complex differentiable. Furthermore, by differentiating
term by term, we see that d

dz e
z = ez. For now we do not use this information.

We note that e0 = 1 and soon we will verify the fundamental identity ez+w =
ezew. Something amazing then happens when we approach trigonometry via com-
plex geometry. The trig functions are defined in terms of the exponential function
and all trig identities become consequences of the functional equation ez+w = ezew

and the (almost obvious) identity (23) below.

Theorem 6.1. For all z, w ∈ C, we have ez+w = ezew.

Proof. The series defining the exponential function converges absolutely for
all z in C, and hence the value of the sum does not depend upon the order of
summation. The definition of the exponential function and the binomial theorem
yield

(22) ez+w =
∞∑
n=0

(z + w)n

n!
=
∞∑
n=0

1
n!

n∑
k=0

(
n

k

)
zkwn−k =

∞∑
n=0

n∑
k=0

zk

k!
wn−k

(n− k)!
.

Now set n = j + k in (22) and redetermine the limits of summation to get
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ez+w =
∞∑
j=0

∞∑
k=0

zk

k!
wj

j!
= ezew.

�

The functional equation implies

eze−z = e0 = 1;

hence ez 6= 0 and 1
ez = e−z. Note also (using the continuity of conjugation) that

(23) ez = ez.

Next we consider, for t real, the expression eit. By (23) its conjugate is e−it, which
is also its reciprocal. Hence |eit| = 1, and eit lies on the unit circle.

We make the link with trigonometry as follows. We define cosine and sine by
the formulas:

(24) cos(z) =
eiz + e−iz

2
,

(25) sin(z) =
eiz − e−iz

2i
.

When z is real, (24) expresses cos(z) as the real part of eiz and (25) expresses sin(z)
as the imaginary part of eiz. We emphasize that formulas (24) and (25) hold for
all complex z.

Exercise 2.30. Prove (23). Where is the continuity of conjugation used?

Exercise 2.31. Show that cos2(z) + sin2(z) = 1.

We discuss further why formulas (24) and (25) are plausible definitions. Assume
that we have defined cosine and sine in some other way, and we know the following
things: sin(0) = 0, the derivative of sine is cosine, and the derivative of cosine is
minus sine. By Taylor’s formula and an estimate on the remainder we obtain the
power series expansions for cosine and sine:

(26) cos(t) =
∞∑
j=0

(−1)jt2j

(2j)!

(27) sin(t) =
∞∑
j=0

(−1)jt2j+1

(2j + 1)!
.

On the other hand, for t real, consider the power series expansion of eit. We obtain

eit =
∞∑
n=0

(it)n

n!
=
∞∑
j=0

(it)2j

(2j)!
+
∞∑
k=0

(it)2k+1

(2k + 1)!

(28) =
∞∑
j=0

(−1)jt2j

(2j)!
+ i

∞∑
k=0

(−1)kt2k+1

(2k + 1)!
= cos(t) + isin(t).

For real t, we therefore have cos(t) = Re(eit) and sin(t) = Im(eit). Thus (24)
and (25) agree with what we expect when z is real; these definitions are more
general, because cosine and sine are functions defined on all of C. We define the
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other trig functions in terms of cosine and sine in the usual manner; for example
tan(z) = sin(z)

cos(z) .
The following consequence of the functional equation (Theorem 6.1), dating

back to at least 1707, is useful for proving trig identities.

Proposition 6.1 (deMoivre’s formula). For each positive integer n and each
real number θ, we have

(29) (cos(θ) + isin(θ))n = cos(nθ) + isin(nθ).

Proof. Since cos(φ) + isin(φ) = eiφ, (29) can be restated as (eiθ)n = einθ.
This restated version follows by induction: the result is trivial for n = 1 and the
induction step follows from ez+w = ezew. �

eiθ = cos(θ) + isin(θ)

θ

Figure 3. The unit circle

Using Proposition 6.1 we derive some trig identities. Put n = 2 and n = 3 in
de Moivre’s formula and equate real and imaginary parts. We obtain

cos(2θ) = cos2(θ)− sin2(θ).

sin(2θ) = 2sin(θ) cos(θ).

cos(3θ) = cos3(θ)− 3cos(θ)sin2(θ).

sin(3θ) = 3cos2(θ) sin(θ)− sin3(θ).

Exercise 2.32. Find formulas for cos(4θ) and sin(4θ).

Exercise 2.33. Simplify the expressions cos(z + w)± cos(z − w).

Exercise 2.34. Express cos2(z) and sin2(z) in terms of cos(2z).

Exercise 2.35. Express (1 + i)10 in the form x+ iy. (Do not expand!)
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Exercise 2.36. For t ∈ R, show that the point ( 1−t2
1+t2 ,

2t
1+t2 ) is on the unit

circle. Express this point in the form eiθ. What is the relationship between t and
θ?

For later use we define the hyperbolic functions cosh, sinh, and tanh by

cosh(z) =
ez + e−z

2
,

sinh(z) =
ez − e−z

2
,

tanh(z) =
ez − e−z

ez + e−z
.

The three additional functions sech(z), csch(z), and coth(z) are less important;
they are the reciprocals of the others as in the case of the trig functions.

Exercise 2.37. Find formulas for cosh and sinh in terms of cos and sin.

7. The geometry of addition and multiplication

The algebraic methods used thus far can be made much more appealing by
reasoning geometrically. We therefore return to the definitions of addition and
multiplication in C and interpret them geometrically. We have already observed
that addition is easy to understand. Given z, w ∈ C, we think of each as a vector
based at 0. Then z+w is the usual vector sum, obtained by the parallelogram law
as in Figure 5 from Chapter 1. What does zw represent?

To answer this natural question we will introduce the polar representation of
complex numbers. For z 6= 0, we will write z = |z|eiθ, and call this expression the
polar representation of z. Here |z| is the magnitude of z, namely the length of the
vector from 0 to z, and θ is the angle this vector makes with the positive x-axis. If
we also write w = |w|eiφ, then we obtain

zw = |z|eiθ|w|eiφ = |z| |w|ei(θ+φ).

Thus multiplying two complex numbers multiplies their magnitudes and adds their
angles. Two things are happening when we multiply by |w|eiφ. We are dilating, or
changing the scale, by a factor of |w|, and we are rotating through an angle of φ.

We have already defined the complex exponential; the discussion there included
some subtle points. In particular our definition of eiθ involved power series; the
reader who feels she knows what sine and cosine of an angle are might ask whether
the concept of angle is precise. Giving the definition of an angle is difficult. For
example, θ and θ+2π are not the same number, but they represent the same angle.
Furthermore, most careful definitions of angle rely on being able to compute the
length of a circular arc, but defining the length of a circular arc relies on a limiting
process.

We next indicate how to find roots of complex numbers by using the polar
representation. Even for square roots this method is far simpler than the method
from Proposition 2.1. On the other hand, the answers obtained are expressed in
the polar form rather than in the form x+ iy.

Given w 6= 0, we wish to find all its k-th roots. To do so we write w =
|w|ei(θ+2nπ) for n = 0, 1, k − 1. The k-th roots have the following values:
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zk = |w| 1k e ik (θ+2nπ).

Since n < k, the k values of the angle all lie in an interval of length less than 2π.
Hence for n = 0, 1, ..., k− 1 the zk are distinct. When n = k we start repeating the
values of the angle. We illustrate by finding the cube roots of 8i. Start with

8i = 8ei(
π
2 +2nπ).

The three cube roots are 2eiµ, where µ can be π
6 , 5π

6 , and 9π
6 . Expressing these in

the form x+ iy gives the three solutions
√

3 + i, −
√

3 + i, and −2i.
Most of the subsequent exercises illustrate the power of geometric reasoning.

Exercise 2.38. Find all complex z, written z = x+ iy, such that z3 = 1. Do
the same for z8 = 1.

Exercise 2.39. Show using the polar form that each nonzero complex number
has two distinct square roots.

Exercise 2.40. Express the complex cube roots of −1 in the form x+ iy.

Exercise 2.41. Express −
√

3 + i in the polar form |z|eiθ.

Exercise 2.42. Take a regular n-gon centered at the origin. Consider the n
different vectors from the origin to the vertices. Show that they sum to zero.

Exercise 2.43. Assume ω = a + ib and that ωm = 1. Express ωm−1 in the
form A+ iB. (No computation required!)

Exercise 2.44. Let Q be the first quadrant in C. Sketch {z ∈ Q : Im(z3) > 0}.

Exercise 2.45. For each positive integer m, describe geometrically the map-
ping z → zm.

Exercise 2.46. Suppose ωp = 1 and that no smaller power of ω equals 1. Find
a simple formula for the following expression:

1−
p−1∏
j=0

(1− tωj).

Suggestion. If you have no idea, guess the answer by trying a few small values of p.

8. Logarithms

The usefulness of complex exponentials and the polar form z = |z|eiθ sug-
gests that we attempt to introduce complex logarithms. Doing so leads to exciting
subtleties and the subject of topology.

Let us first recall some basic facts about the (real) natural logarithm function,
defined for positive real numbers t. Perhaps its most appealing definition is the
integral:

(30) log(t) =
∫ t

1

du

u
.
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From (30) it is evident that log(1) = 0 and that log is an increasing function. It
follows for s ∈ R that log(t) = s if and only if t = es, where es is defined by its
power series; see Exercise 2.52. The functional equation

(31) log(ab) = log(a) + log(b)

follows from either the functional equation for the exponential function or by chang-
ing variables in the integral (30) defining the logarithm. We prove (31) by a
method we will employ again in Chapter 8 when we study winding numbers. Put
g(x) = log(ax) − log(a) − log(x). The functional equation (31) is equivalent to
g(x) = 0 for all x. By inspection, g(1) = 0. To prove (31) it therefore suffices to
show that g is constant. To do so we check that g′ vanishes. A simple computation
using the fundamental theorem of calculus shows, for all x, that

g′(x) =
a

ax
− 1
x

= 0.

Presuming that (31) holds in general we try to define the logarithm of a non-
zero complex number as follows. Given z 6= 0, we write z = |z|eiθ and put

(32) log(z) = log|z|+ iθ.

One problem with (32) is that θ could be any value of the angle. All such values
differ by multiples of 2π. Hence sometimes we regard the logarithm as a multiple-
valued function. In other words, log(z) means the list of all such values.

Exercise 2.47. Using (32), find all values of log(e), log(i), and log(−1).

On the other hand, we would like the logarithm to be a well-defined (single-
valued) function. We therefore need some way to pick the angle θ. To do so, we
choose a branch cut. That is, we draw a half-line connecting 0 and infinity, and
decree that the logarithm is not defined on this half-line. See Figure 3 for two
typical branch cuts. Suppose that this half-line makes an angle µ with the positive
x-axis, where 0 ≤ µ < 2π. We then choose an integer n, and decree that the angle
θ satisfies µ+ 2nπ < θ < µ+ 2(n+ 1)π. For each such choice of µ and n we obtain
a different function; each such function is called a branch of the logarithm. Think
of a spiral staircase to help visualize this situation.

Exercise 2.48. Find all complex numbers z satisfying e2z = −1.

Exercise 2.49. Recall that the hyperbolic cosine is defined by the formula
cosh(z) = ez+e−z

2 . Find all values of z for which cosh(z) = 1 and all values of z for
which cosh(z) = 0. (Suggestion. Work first with the equation cosh(z) = ez+e−z

2 =
w, use the quadratic formula, and then put w = 0 and w = 1.)

Given complex numbers z and w, the definition of zw also requires great care.
Again, one approach is to define zw to be multiple-valued, via the rule

zw = ewlogz.

For n a positive integer, finding n-th roots of a complex number by using the
polar form works well. We take the usual n-th root of the modulus and obtain for
0 ≤ k < n, the n values

(33) z
1
n = |z| 1n e

iθ+2πki
n .
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−π < θ < π

0 < θ < 2π

Figure 4. Branch cuts for the logarithm

Exercise 2.50. Show, for z 6= 0, that the n-th roots in (33) are distinct.

Exercise 2.51. Use the polar form to find all fourth roots of −1.

Exercise 2.52. Prove that the real logarithm as defined by (30) is the inverse
of the real exponential function.

Strange things can happen when we take logarithms or complex powers of
complex numbers.

Exercise 2.53. What is wrong with the following reasoning suggesting that
2πi = 0?

0 = log(1) = log((−i)i) = log(−i) + log(i) =
3πi
2

+
πi

2
= 2πi.

Exercise 2.54. Define zw by the multiple-valued formula zw = ewlogz. Find
all possible values of ii and of (1− i)4i.

Exercise 2.55. Assume zw is defined by the multiple-valued formula zw =
ewlogz. Show in general that √

ζw 6=
√
ζ
√
w.

Exercise 2.56. Find formulas for sin−1, cos−1, and tan−1 using logarithms.
Be careful about the branches. Use the quadratic formula as in Exercise 2.49.

Exercise 2.57. This extended exercise outlines an alternative approach to
complex exponentials and the trig functions. In this approach we avoid power series
but we use complex differentiation as in Definition 3.2. See Chapter 5 for additional
discussion of the complex derivative. We define the exponential function f(z) to be
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the unique solution to the differential equation f ′(z) = f(z) with f(0) = 1. Note
that f is then infinitely differentiable. Consider g(z) = f(iz) and h(z) = f(−iz).
Use the chain rule to show that g′′(z) = −g(z) and h′′(z) = −h(z). Put c(z) =
g(z)+h(z)

2 and put s(z) = g(z)−h(z)
2i . Show that s is the unique solution to s′′ = −s

with s(0) = 0 and s′(0) = 1. Show that s′ = c, and that c′ = −s. Verify by taking
derivatives that c2 + s2 = 1. If z is a real number, show that c(z) and s(z) are real
numbers.





CHAPTER 3

Complex numbers and geometry

In this chapter we study familiar geometric objects in the plane, such as lines,
circles, and conic sections. We develop our intuition and results via complex num-
bers rather than via pairs of real numbers. By the end of the chapter we will follow
Riemann and think of complex numbers as points on a sphere where the north pole
is the point at infinity.

1. Lines, circles, and balls

We often describe geometric objects via equations. The algebra helps the ge-
ometry and the geometry guides the algebra. Two kinds of equations, parametric
equations and defining equations, provide different perspectives on the geometry.
Given a complex-valued function f , the set of points p for which f(p) = 0 is called
the zero-set of f . A defining function for a set S is thus a function whose zero-set
is precisely S. A parametric equation for a set S is a function whose image is the
set S. We will use parametric equations when we compute complex line integrals
in Chapter 6. Both kinds of equations arise frequently.

We first consider the Euclidean plane as R2, but we quickly change perspective
and think of the plane as C. Let L be a line in R2. We can regard L as the set of
points (x, y) satisfying an equation of the form

(1) Ax+By + C = 0,

where not both A and B are zero. Equation (1) is called a defining equation for L.
A point (x, y) lies on L if and only if (x, y) satisfies (1). A defining equation is not
unique; we could multiply (1) by a non-zero constant, or even a non-zero function,
and the set of solutions would not change. It is natural to seek the simplest possible
defining equation; for lines the defining equation should be linear. When B 6= 0 in
(1), we often solve the defining equation for y and say that the equation of the line
is y = mx + b; here m = −A

B is the slope of the line. When B = 0 we obtain the
special case of the line with infinite slope given by x equals a constant.

Alternatively we can describe L via parametric equations. Especially in higher
dimensions, the parametric approach has many advantages. A line in the plane
through the point (x0, y0) is determined by its direction vector (u, v); thus L is the
set of points (x0, y0)+t(u, v) for t ∈ R. Here the real number t is called a parameter;
it is often useful to regard t as time, and think of a particle moving along the line.
This formulation works in higher dimensions; the parametric equation γ(t) = p+tv
defines a line containing p and with direction vector v.

We next consider the same issues for circles. A circle with center at (x0, y0)
and radius R has the defining equation

(2) (x− x0)2 + (y − y0)2 −R2 = 0.

59
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We could also write the circle using parametric equations:

(3) (x(t), y(t)) = (x0 +R cos(t), y0 +R sin(t)).

Now the parameter t lives (for example) in the interval [0, 2π); if we let t vary over
a larger set then we cover points on the circle more than once. Another possible
parametrization of a circle will be derived in Chapter 8. There we show that the
unit circle can be described by the parametric equations

(4) (x(t), y(t)) =
(

1− t2

1 + t2
,

2t
1 + t2

)
,

where now −∞ < t < ∞. We get all points on the unit circle except for (−1, 0),
which we realize by allowing t to take the value infinity. Figure 1 indicates the
geometric meaning of the parameter t.

y = t(x+ 1)

θ

y

x
θ/2

Figure 1. Parametrizing the unit circle

Exercise 3.1. Show that (4) parametrizes the unit circle, except for (−1, 0).
Show in (4) that y = t(x+ 1). What is the geometric meaning of t?

Exercise 3.2. If (x(t), y(t)) = (cos(θ), sin(θ)), express the parameter t from
(4) in terms of θ. Hint: Look at Figure 1. See Chapter 8 for more information.

Things in the plane invariably simplify by using complex variables. A para-
metric equation for a line in C is given by z(t) = z0 + tv, where z0 is a point on
the line and v is any nonzero complex number. Note that t is real. The same line
has defining equation

(5) Re ((z − z0)iv) = 0.

We can derive (5) with almost no computation. First of all, by inspection, z0 lies
on the solution set to (5). Let us reason geometrically. We know that

(6) |ζ + w|2 = |ζ|2 + |w|2 + 2Re(ζw).
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Hence, if Re(ζw) = 0, then (6) says (the converse of the Pythagorean theorem!)
that ζ and w are perpendicular. Therefore (5) states that (z− z0) is perpendicular
to the vector −iv. Since multiplication by ±i is a rotation of ±90o, we conclude
that the vectors z − z0 and v point in the same direction. Thus (5) says both that
z0 is on the line and that v is the direction of the line.

We say a few words about circles and balls. A circle of radius r with center at
p is the set of z satisfying |z− p| = r. We could also write the circle parametrically
as the set of z satisfying z = p + reiθ for 0 ≤ θ < 2π. The closed ball of radius r
about p is given by the set of z satisfying |z − p| ≤ r and the open ball Br(p) is
given by the set of z satisfying |z − p| < r. Sometimes, we say disk instead of ball.
The term unit disk means {z : |z| < 1}. Open balls are important because they
lead to the more general notion of open set.

Definition 1.1. A subset Ω of C is called open if, for each z ∈ Ω, there is an
r > 0 such that Br(z) ⊂ Ω.

Exercise 3.3. Show that the complement of a closed ball is an open set.

Exercise 3.4. Show that the collection F of open subsets of C satisfies the
following properties:

1) The empty set ∅ and the whole space C are elements of F .
2) If A,B are elements of F , then so is A ∩B.
3) If Aα is any collection of elements of F , then ∪Aα is also in F .

We pause to introduce the definition of a topology. Let X be a set, and let
F be a collection of subsets of X. Then F is called a topology on X, and the
pair (X,F) is called a topological space if F satisfies the three properties from the
previous exercise. The elements of F are called open subsets. When (X, δ) is a
metric space (Section 6 of Chapter 1), we have given already the definition of open
set. The collection of open sets in a metric space does satisfy the three properties
that make (X,F) into a topological space.

There are many topologies on a typical set X. For example, we could decree
that every subset of X is open. At the other extreme we could decree that the only
open subsets of X are the empty set and X itself. The concept of topological space
allows one to give the definition and properties of continuous functions solely in
terms of the open sets.

We close this section by showing that two specific open subsets of C can be
considered the same from the point of view of complex analysis. The sense in which
they are the same is that there is a bijective complex analytic mapping between
them. In the next lemma these sets are the open unit ball and the open upper half
plane, defined as the set of z for which Im(z) > 0. See Section 4 of Chapter 8 for
these considerations in more generality. While we do not yet wish to develop these
ideas, the next lemma also anticipates our study of linear fractional transformations
and provides a simple example of conformal mapping.

Lemma 1.1. Put ζ = i 1−z
1+z . Then |z| < 1 if and only if Im(ζ) > 0.

Proof. We write Im(ζ) as ζ−ζ
2i and compute:

Im(ζ) =
ζ − ζ

2i
=

1
2i

(
i
1− z
1 + z

+ i
1− z
1 + z

)
=

1
2

(
1− z
1 + z

+
1− z
1 + z

)
.
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After clearing denominators we find that Im(ζ) > 0 if and only if

0 <
1
2

(((1− z)(1 + z) + (1− z)(1 + z))) =
1
2

(2− 2zz) = 1− |z|2,

that is, if and only if |z| < 1. �

The mapping z → i 1−z
1+z is called a linear fractional transformation. Such trans-

formations map the collection of lines and circles in C to itself. See Section 4.

2. Analytic geometry

We begin by recalling geometric definitions of hyperbolas, ellipses, and parabo-
las. We also express these objects using defining equations.

Definition 2.1. A hyperbola is the set of points in a plane defined by the
following condition. Given distinct foci p and q, the hyperbola consists of those
points for which the absolute difference in distances to these two foci is a real
non-zero constant. A defining equation is

(7) |z − p| − |z − q| = ±c.

An ellipse is the set of those points for which the sum of the distances to these
foci is a positive constant. A defining equation is

(8) |z − p|+ |z − q| = c.

A circle is the set of points in the plane whose distance to a given point is constant.
That distance is called the radius of the circle. We include the case of a single point
as a circle whose radius is 0. A circle of positive radius is the special case of an
ellipse when the foci p and q are equal. A defining equation is then |z − p| = r.

A parabola is the set of points in a plane that are equidistant from a given
point (the focus) and a given line (the directrix). If the focus is p and the line is
given by z0 + tv, then we may take

(9) (Im((z − z0)v))2 = |v|2|z − p|2

for a defining equation. See Proposition 3.2. We can simplify the equation (9)
slightly, because without loss of generality we may assume that |v| = 1.

A variant of the definition of a parabola can also be used to define ellipses and
hyperbolas. Given a focus and directrix, one considers the set of points for which
the distance to the focus is a constant positive multiple E of the distance to the
directrix. This number E is called the eccentricity. When E = 1 the set is a
parabola. When E < 1, the set is an ellipse, and when E > 1 the set is a hyperbola.
Most calculus books have lengthy discussions of this matter. See for example [24]
We will use complex variables to develop a somewhat different intuition.

We mention also that the defining property (8) of an ellipse helps explain why
whispering galleries work. In such a gallery, one stands at one focus f1 and whispers
into a wall shaped like an ellipsoid. The sound wave emanating from f1 reflects off
the wall and passes through the other focus f2. Hence someone located at f2 can
hear the whisper from f1. This property follows from the law of reflection; imagine
placing a mirror tangent to the ellipse at the point p on the ellipse hit by the sound
wave. The line segment from f1 to p and the line segment from p to the reflection
of f2 are part of the same line.
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p q

Figure 2. The geometric definition of an ellipse

The definition of a circle allows for a degenerate situation consisting of a single
point. Degenerate situations for hyperbolas can be more subtle. We pause now to
consider such a degenerate situation; Section 3 provides additional examples. Let
H± be the set of z such that |z + 1| − |z − 1| = ±2. Computation (Exercise 3.12)
shows that either equation forces z to be real. We can then check that H+ consists
of those real numbers at least 1, and H− consists of those real numbers at most
−1. We can regard these two rays as branches of a degenerate hyperbola.

3. Quadratic polynomials

In this section we develop the relationship between geometry and algebra. For
the most part we limit our discussion to quadratic polynomials and the geometry of
their zero-sets. We begin however with a few words about polynomials of arbitrary
degree in two real variables.

Let p(x, y) be a polynomial with real coefficients in the two real variables x, y.
Thus, there are real coefficients cab such that

(10) p(x, y) =
m∑
a=0

n∑
b=0

cabx
ayb.

We say that p has degree k if cab = 0 whenever a + b > k and, for some a, b with
a+ b = k, we have cab 6= 0. Let us substitute x = z+z

2 and y = z−z
2i into (10). We

obtain a polynomial Φ(z, z), defined by

(11) Φ(z, z) =
m∑
a=0

n∑
b=0

cab(
z + z

2
)a(

z − z
2i

)b =
∑

dabz
azb.

The coefficients dab are not in general real, but the values of Φ(z, z) are real. Equat-
ing coefficients in Φ = Φ shows, for all indices a, b, that the Hermitian symmetry
condition dab = dba holds. Conversely suppose we are given a polynomial of the
form Φ(z, z) =

∑
dabz

azb and the Hermitian symmetry condition is satisfied. Then
Φ(z, z) is real for all z. The following definition and proposition clarify the issues.

Definition 3.1. Let Φ(z, w) be a polynomial in the two complex variables z
and w. We say that Φ is Hermitian symmetric if, for all z and w we have

Φ(z, w) = Φ(w, z).

Proposition 3.1. Let Φ be the polynomial in two complex variables defined by

Φ(z, w) =
∑

dabz
awb.
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The following statements are equivalent:
• Φ is Hermitian symmetric.
• For all a, b we have dab = dba.
• For all z, Φ(z, z) is real.

Proof. This simple proof is left to the reader. �

To each real polynomial in x, y there corresponds a unique Hermitian sym-
metric polynomial in z, w, and conversely each Hermitian symmetric polynomial in
z, w defines a real polynomial after setting w equal to z. It therefore makes little
difference whether we study real polynomials or Hermitian symmetric polynomials.
The Hermitian symmetric perspective seems easier to understand.

Exercise 3.5. Prove Proposition 3.1.

Exercise 3.6. Prove that the correspondence going from (10) to (11) between
real and Hermitian symmetric polynomials preserves degree.

Our discussion of analytic geometry leads to quadratic polynomials, namely
those of (total) degree two. We must distinguish the total degree from the degree in
z alone. For example, the Hermitian symmetric polynomial |z|2 = zz is quadratic;
its degree is two, but it is of degree one in the z variable alone.

For hyperbolas and ellipses we start with the defining relations |z−p| = c±|z−q|
and square both sides. Then we isolate the term involving |z− q| and square again.
After simplifying, only terms of degree at most two remain. For a parabola, we
must use the formula (9), which follows from the following result:

Proposition 3.2. Let L be the line in C defined by z(t) = z0 + tv. The
(minimum) distance δ from a point z to this line L is given by

(12) δ = |1
v

Im((z − z0)v)| = | (z − z0)v − (z − z0)v
2v

|.

Proof. Consider the squared distance f(t) from z to a point on L. Thus
f(t) = |z−z0−tv|2. We expand and find the minimum of the quadratic polynomial
f by calculus. We obtain the equations:

f(t) = |z − z0|2 − 2tRe((z − z0)v) + t2|v|2

f ′(t) = −2Re((z − z0)v) + 2t|v|2.
Therefore the minimum occurs when

t =
Re((z − z0)v)

|v|2
.

Plugging in this value for t in f gives the minimum squared distance, namely

δ2 =
∣∣∣∣(z − z0)− Re((z − z0)v)

v

∣∣∣∣2 =

∣∣∣∣∣2(z − z0)v − (z − z0)v − (z − z0)v
2v

∣∣∣∣∣
2

=
∣∣∣∣1v Im((z − z0)v)

∣∣∣∣2 .
�

Exercise 3.7. Let L be the line in C defined by z(t) = z0 + tv. Verify (9) by
using Proposition 3.2.
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Exercise 3.8. Find, in terms of x and y, the equation of a parabola with focus
at (3, 0) and directrix the line x = 1.

Exercise 3.9. Find, in terms of x and y, the equation of any hyperbola with
foci at ±3i.

Exercise 3.10. What object is defined by the condition that the eccentricity
is 0? What object is defined by the condition that the eccentricity is infinite?

Viewing these objects via eccentricity enables us to conceive of hyperbolas,
parabolas, and ellipses in similar fashions. These objects, as well as points, lines,
and pairs of lines, are zero-sets for Hermitian symmetric quadratic polynomials.

Proposition 3.3. Let z0 +tv define a line in C and let p ∈ C. Define a family
of Hermitian symmetric polynomials ΨE by the formula:

ΨE = |z − p|2 − E2| (z − z0)v − (z − z0)v
2v

|2.

Then the zero-set of ΨE is an ellipse for 0 < E < 1, a parabola for E = 1, and a
hyperbola for E > 1.

Proof. The conclusion follows from (12) and the characterizations of the ob-
jects using eccentricities. Alternatively, one can derive the statement from the
subsequent discussion by computing the determinant ∆. �

Consider the most general Hermitian symmetric quadratic polynomial:

(13) Φ(z, z) = αz2 + αz2 + βz + βz + γzz + F = 0.

In (13) α and β are complex, whereas γ and F are real. We will analyze the zero-
sets of such polynomials, thereby providing a complex variables approach to conic
sections. The analysis requires many cases; we first assume α = 0 in (13). The
zero-set V of Φ must then be one of the following objects: the empty set, a line, a
point, a circle, all of C. This situation arises again in Theorem 4.1 when we study
linear fractional transformations.

• Assume α = β = γ = 0 in (13). The equation Φ = 0 becomes F = 0.
Thus V is empty if F 6= 0 and V is all of C if F = 0.

• Assume α = γ = 0 in (13) but β 6= 0. The equation Φ = 0 becomes

2Re(zβ) + F = 0.

Hence in this case V is a line.
• Assume α = 0 and γ 6= 0. We proceed analogously to the proof of the

quadratic formula. We complete the square in the equation Φ = 0 to get

(14) |z +
β

γ
|2 =

|β|2 − Fγ
γ2

.

Hence V is either empty, a point, or a circle; the answer depends on
whether the right-hand side of (14) is negative, zero, or positive.

It remains to discuss the case where α 6= 0, in which case the defining equation
must be quadratic. The expression ∆ = γ2 − 4|α|2 governs the geometry. When
∆ < 0 we get a (possibly degenerate) hyperbola; when ∆ = 0 we get a (possibly
degenerate) parabola; when ∆ > 0 we get a (possibly degenerate) ellipse. Below
we will interpret ∆ from the point of view of Hermitian symmetric polynomials.
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We first give some examples of degenerate situations arising when α 6= 0.
• The equation Re(z2) = 0, where ∆ = −1, defines two lines rather than a

hyperbola.
• The equation (z + z)2 = 0, where ∆ = 0, defines a line rather than a

parabola.
• The equation z2 + z2 + 2|z|2 − 2(z + z) = 0, where ∆ = 0, defines two

lines rather than a parabola.
• The equation |z|2 = 0, where ∆ = 1, defines a point rather than an ellipse.

Notice that two lines can be a degenerate version of either a parabola or a
hyperbola. Another interesting point is that sometimes one line should be regarded
as one line, but other times it should be regarded as two lines! The linear equation
x = 0 defines the line x = 0 once, and the zero-set should be regarded as one line.
On the other hand, the quadratic equation x2 = 0 defines the single line x = 0
twice, and the zero-set should be regarded as two lines.

To determine what kind of an object (13) defines can be a pain because of
degenerate cases. In the very degenerate case where no quadratic terms are present
(α = γ = 0) the linear terms determine whether the object is a line, the empty set,
or all of C. When the quadratic part is not identically zero, the linear terms usually
amount to translations and do not matter; the exception comes when the quadratic
part itself is degenerate and the linear terms determine whether the object is a
parabola. For example compare the equations x2− 1 = 0 and x2− y = 0. The first
defines two lines while the second defines a parabola.

We consider the pure quadratic case from the complex variable point of view.
Thus we let

(15) Φ(z, z) = αz2 + αz2 + γzz.

For a positive constant c the set Φ = c defines an ellipse whenever Φ(z, z) > 0
for z 6= 0. After dividing by |z|2 and introducing polar coordinates, we find that
the condition becomes

(16) αe2iθ + αe−2iθ + γ > 0.

The minimum value of the left-hand side of (16) occurs when αe2iθ = −|α|. Hence
the condition for being an ellipse is that γ − 2|α| > 0.

One can obtain this inequality by other methods. We can write (15) in terms
of x, y as

P (x, y) = (γ + 2Re(α))x2 − 4Im(α)xy + (γ − 2Re(α))y2,

or in terms of matrices as

M =
(
γ + 2Re(α) −2Im(α)
−2Im(α) γ − 2Re(α)

)
.

The polynomial P and the matrix M are equivalent ways of defining a quadratic
form. The behavior of this quadratic form is governed by the eigenvalues of M .
Their product is the determinant ∆, given in (17), and their sum is the trace 2γ.

(17) ∆ = γ2 − 4(Re(α))2 − 4(Re(β))2 = γ2 − 4|α|2.
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Things degenerate when ∆ = 0. When ∆ > 0 we also must have γ > ±2Re(α),
and both eigenvalues are positive. We then obtain an ellipse for the set Φ = c, for
c > 0. When ∆ < 0 we obtain a hyperbola, where we allow the possibility of two
crossing lines.

3.1. The situation using real variables. For comparative purposes we re-
call how this discussion from elementary analytic geometry proceeds when we stay
within the realm of real variables. Consider a polynomial P of degree at most
two with real coefficients in the variables x and y. Thus there are real numbers
A,B,C,D,E, F such that

(18) P (x, y) = Ax2 + 2Bxy + Cy2 +Dx+ Ey + F.

The set of points (x, y) for which P (x, y) = 0 (called the zero-set of P ) must be
one of the following geometric objects: the empty set, all of R2, a point, a line, two
lines, a circle, a parabola, a hyperbola, or an ellipse. We may regard a circle as a
special case of an ellipse. The reader should be able to solve the following exercise.

Exercise 3.11. For each of the geometric objects in the above paragraph,
give values of the constants A,B,C,D,E, F such that the zero-set of P is that
object. Show that all the above objects, except for the entire plane, are zero-sets
of polynomials of degree two. Thus even the degenerate cases of empty set, point,
line, and two lines are possible for the zero-sets of quadratic polynomials in two
real variables.

It is possible to completely analyze the possibilities for the zero-set of P ; with
the proper background this analysis is concise. Without that background things
seem messy. We recall the answer.

Again the difficulty in the analysis arises from the many degenerate cases. If
P (x, y) = F is a constant, then the zero-set is either everything or nothing (the
empty set), according to whether F = 0 or not. If P is of degree one, that is
P (x, y) = Dx+ Ey + F and at least one of D and E is not zero, then the zero-set
is a line. If P is of degree two, then things depend on the expression AC − B2.
If AC − B2 < 0, then the object is a hyperbola, with two lines a possibility. If
AC − B2 > 0, and A > 0 then the object is either empty, a single point, a circle,
or an ellipse. We may regard a single point or a circle as a kind of ellipse. We next
analyze the possibilities when AC −B2 = 0, still assuming that P has degree two.
Note then that at least one of A and C is nonzero, and they cannot have opposite
signs. After multiplying P by −1 we may assume that A and C are non-negative.
We eliminate B and write

Ax2 + 2
√
ACxy + Cy2 +Dx+ Ey + F = (

√
Ax+

√
Cy)2 +Dx+ Ey + F.

Analyzing the possible zero-sets is amusing. If D = E = 0, then we get

(
√
Ax+

√
Cy)2 + F = 0,

which gives the empty set if F > 0, a single line if F = 0, and a pair of lines if
F < 0. If at least one of A and D is nonzero, then we write u =

√
Ax +

√
Cy

and v = Dx + Ey. First assume that v is not a constant multiple of u. Then the
equation P = 0 becomes u2 +v+F = 0, which defines a parabola. If v is a multiple
of u, then the resulting object becomes two lines, one line, or the empty set.
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3.2. Back to complex variables. To complete our discussion we recall how
to rewrite everything in complex notation. We use the formulas for x and y in
terms of z and z to obtain

(19) 0 = P (x, y) =

A(
z + z

2
)2 + 2B(

z + z

2
)(
z − z

2i
) + C(

z − z
2i

)2 +D(
z + z

2
) + E(

z − z
2i

) + F.

Simplifying (19) gives, for complex numbers α, β, real number γ, and the same real
number F , our familiar formula (13).

Exercise 3.12. What kind of object does each of the following equations de-
fine?

• iz2 − iz2 = 4.
• |z|2 + z2 + z2 = 3.
• |z − 1|+ |z − 3| = 2. Also, write this equation in the form (13).
• αz2 + αz2 + |z|2 = 1. The answer depends on α.
• z2 + z2 = 0.
• |z + 1| − |z − 1| = ±2. (Be careful!)

Complex analysis offers much geometric information. Figure 3 shows that the
level sets of the real and imaginary parts of z2 form orthogonal (perpendicular)
hyperbolas; more generally we shall see that the level sets of the real and imaginary
parts of a complex analytic function form orthogonal trajectories. This fact lies at
the foundation of various applications to physics and engineering. We close this
section by posing some related exercises.

Exercise 3.13. Let f(z) = z2. What are the real and imaginary parts of f in
terms of x, y? Graph their level sets; show that one gets orthogonal hyperbolas.

Exercise 3.14. Let f(z) = z3. What are the real and imaginary parts of f in
terms of x, y? Can you prove that the corresponding level sets are orthogonal?

Exercise 3.15. What are the real and imaginary parts of 1
z ? (Assume z 6= 0.)

Show by computation that their level sets form orthogonal trajectories. Do the
same for 1

zn .

The close relationship between the trig functions and the unit circle has been
useful for us. The next exercise reveals a similar relationship between the hyperbolic
functions and the hyperbola x2 − y2 = 1.

Exercise 3.16. Show that

cosh2(z)− sinh2(z) = 1.

Find parametric equations for (a branch of) the hyperbola x2 − y2 = 1.

Exercise 3.17. Find formulas for the multi-valued functions cosh−1 and sinh−1

using logarithms. Do the same for tanh−1.
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Figure 3. Orthogonal hyperbolas

4. Linear fractional transformations

This section glimpses the interesting and important subject of conformal map-
ping by way of a natural collection of complex analytic functions. We first consider
the rational function f given by

(20) f(z) =
az + b

cz + d
,

where a, b, c, d are complex numbers. We cannot allow both c and d to be 0, or
else we are dividing by 0. There is another natural condition; we do not want this
mapping to degenerate into a constant. Such degeneration occurs if a is a multiple
of c and b is the same multiple of d; in other words if ad− bc = 0. By restricting to
the case when ad− bc 6= 0, we avoid both problems.

Definition 4.1. A linear fractional transformation is a rational function of
the form (20) where ad− bc 6= 0.

We let L denote the collection of linear fractional transformations. We will
next show that L can be regarded as the collection of two-by-two complex matrices
with determinant one.

Given a linear fractional transformation, we obtain the same function if we
multiply the numerator and denominator by the same nonzero constant. We may
therefore assume, without loss of generality, that ad − bc = 1. Assume f is as
in (20), and that ad − bc = 1. We can record the information defining f as a
two-by-two matrix

F =
(
a b
c d

)
.
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Thinking of F rather than of f has some advantages. The identity map corresponds
to the identity matrix, and composition corresponds to matrix multiplication. If
f, g ∈ L, then so is g ◦ f . Write g(z) = Az+B

Cz+D . We compute the composition

(21) g(f(z)) =
Af(z) +B

Cf(z) +D
=
Aaz+b
cz+d +B

C az+b
cz+d +D

=
(Aa+Bc)z + (Ab+Bd)
(Ca+Dc)z + (Cb+Dd)

.

We identity f and g with matrices

F =
(
a b
c d

)
G =

(
A B
C D

)
.

Then the composition g ◦ f is identified with the matrix

(22) GF =
(
Aa+Bc Ab+Bd
Ca+Dc Cb+Dd

)
=
(
A B
C D

)(
a b
c d

)
.

Note that ad − bc is the determinant of the matrix F corresponding to f and
that AD − BC is the determinant of the matrix G corresponding to g. Since the
determinant of the product of matrices is the product of the respective determi-
nants, it follows that the determinant of GF is not zero. Had we assumed each
determinant was 1, the product would also be 1. We also obtain a formula for
the inverse mapping; we take the inverse matrix. See Exercise 3.18. The natural
assumption that the determinant equals 1 enables us to compute the inverse easily:

(23)
(
a b
c d

)−1

=
(
d −b
−c a

)
.

Exercise 3.18. Put w = f(z) = az+b
cz+d , where ad − bc = 1. Solve for z as a

function of w. Check that the answer agrees with the inverse matrix from (23).

We may therefore consider L to be the group of two-by-two matrices with com-
plex entries and determinant one. In elementary linear algebra we learn Gaussian
elimination, or row operations, as a method for solving a system of linear equa-
tions. The effect of row operations is to write a matrix of coefficients as a product
of particularly simple matrices. We can do the same thing for linear fractional
transformations, and we will obtain a beautiful geometric corollary.

First we discuss the geometric interpretation of the three simplest linear frac-
tional transformations. The mapping z → z + β = Tβ(z) is a translation. For
α 6= 0, the map z → αz = Mαz is a dilation and a rotation; it changes the scale
by a factor of |α| and rotates through an angle θ if α = |α|eiθ. The mapping
z → 1

z = R(z) is an inversion (taking the reciprocal). For the moment we write
T for any translation, M for any multiplication, and R for the reciprocal. We will
show that every linear fractional transformation can be written as a composition
of these three simpler kinds.

For convenience we write the transformations as matrices:

Tβ =
(

1 β
0 1

)
.
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Mα =
(
α 0
0 1

)
.

R =
(

0 1
1 0

)
.

Let f(z) = az+b
cz+d . If c = 0, there are three possibilities for f . Since ad− bc 6= 0,

necessarily d 6= 0 and a 6= 0. In this case f(z) = a
dz + b

d . If b = 0, then f is
a multiplication. If b 6= 0, then f is an affine transformation. If a

d = 1, f is a
translation. Otherwise f is the composition of a translation and a multiplication.
Thus, when c = 0 the possibilities are f = M , f = T , and f = TM . We may
regard the identity mapping as either the translation T0 or the multiplication M1.

If c 6= 0, we will need to take an inversion. To simplify f we simply divide
cz + d into az + b, obtaining a

c with a remainder of bc−ad
c . Using the definition of

division we obtain

(24)
az + b

cz + d
=
a

c
+

bc− ad
c(cz + d)

.

We interpret (24) as a composition of mappings:

z → cz → cz + d→ 1
cz + d

→ bc− ad
c

1
cz + d

→ bc− ad
c

1
cz + d

+
a

c
=
az + b

cz + d
.

Using the above geometric language, we have written

(25) f = TMRTM,

or more specifically

(26)
az + b

cz + d
= T a

c
M bc−ad

c
RTdMc(z).

The respective translations in (26) are not needed when d = 0 or a = 0, but the
notation (25) is still valid because T0 is the identity mapping.

The next theorem summarizes these results and includes a beautiful conse-
quence. Let S denote the collection of lines and circles in C. We include the special
case of a single point (a circle of radius 0) in S, but we will not fully understand
this situation until we deal with infinity in the next section.

The statement of Theorem 4.1 means that the image of a line under a linear
fractional transformation is either a line or a circle, and the image of a circle under
a linear fractional transformation is a line or a circle. The following example, noted
earlier in Lemma 1.1, shows that the image of a circle need not be a line, and
conversely. The image of a point is a point, but we need to allow the point at
infinity.

Example 4.1. Put f(z) = i 1−z
1+z . Then |z| = 1 if and only if Im(f(z)) = 0.

Thus the image under f of the unit circle is the real axis. Then f−1 maps the real
axis to the unit circle.
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We can give a simple description of S in terms of Hermitian symmetric poly-
nomials. Let A,C be real numbers, and let B be a complex number. Consider the
Hermitian symmetric polynomial Φ(z, z) defined

(27) Φ(z, z) = A|z|2 + βz + βz + C.

Here the coefficients A and C are real and β ∈ C. We assume that not all of A, β,C
are zero. If either A or β is not zero, then Φ is non-constant, and its zero-set of
Φ is either a line or a circle, where we allow the special case of a single point. In
case A = β = 0 but C 6= 0, we will think of the zero-set of Φ as a single point at
infinity. Conversely, each line or circle is the zero-set of some such Φ.

Theorem 4.1. Each f ∈ L maps S to itself.

Proof. It is evident that each translation T and each multiplication M maps
S to itself. Thus a composition of such does the same. The conclusion therefore
holds when f = TM . We next check that the inversion (reciprocal) maps S to itself.
Assume that V is a line or a circle. Then V is the zero-set of some Φ as in (27).
Note that 0 ∈ V if and only if C = 0. Set z = 1

w in (27) and clear denominators.
We obtain a new Hermitian symmetric polynomial Φ∗(w,w) defined by

Φ∗(w,w) = |w|2Φ(
1
w
,

1
w

) = A+ βw + βw + C|w|2.
The zero-set of Φ∗ is a circle when C 6= 0, and it is a line if C = 0. The special case
when β = C = 0 must be considered. Then A 6= 0, and the zero-set of Φ∗ becomes
the point at infinity. We summarize as follows. If Φ is Hermitian symmetric, and
its zero-set is a line or circle of positive radius, then the same is true for Φ∗. If the
zero-set of Φ is a single point p not the origin, then the zero-set of Φ∗ is the single
point 1

p . If the zero-set of Φ is the origin, then the zero-set of Φ∗ is the point at
infinity. Conversely if the zero-set of Φ is the point at infinity, then the zero-set of
Φ∗ is the origin.

These remarks show that inversion maps S to itself. The same is true for trans-
lation and multiplication. Hence (25) implies that every linear fractional transfor-
mation maps S to itself. �

Exercise 3.19. Find a linear fractional transformation that maps the exterior
of a circle of radius 2 with center at 2 to the interior of the unit circle.

Exercise 3.20. Let f be a given linear fractional transformation. Determine
which lines are mapped to circles under f and which circles are mapped to lines.

Exercise 3.21. Given a line in C, describe precisely which linear fractional
transformations map this line to a circle. Given a circle in C, describe precisely
which linear fractional transformations map this circle to a line.

Exercise 3.22. Find all linear fractional transformations mapping the real line
to itself.

Exercise 3.23. Find all linear fractional transformations mapping the unit
circle to itself.

Exercise 3.24. Show that the conjugation map z → z maps S to itself. Con-
clude that the mapping z → az+b

cz+d maps S to itself.
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5. The Riemann sphere

We are ready to discuss infinity. Riemann had the idea of adding a point
to C, called the point at infinity, and then visualizing the result as a sphere. The
resulting set is called either the Riemann sphere or the extended complex plane. The
Riemann sphere provides some wonderful new perspectives on complex analysis, and
we briefly describe some of these now.

We can realize the Riemann sphere in the following way. Let U0 be a copy of
C. Let U1 consist of the set of reciprocals of elements in C, where we denote the
reciprocal of 0 by ∞. Note that the intersection of these two sets is C∗, standard
notation for the non-zero complex numbers. We let X = U0 ∪ U1. When we are
working near 0, we work in U0; when we are working near ∞, we work in U1. If
we are working somewhere, and we wish to pass between the two sets, we take a
reciprocal. This simple idea leads to the notion of a Riemann surface and more
generally to that of a complex manifold. The subject of complex geometry is based
upon the study of complex manifolds, but it is far more sophisticated than the
geometry we study in this book.

The procedure from the previous section, where we replaced a Hermitian sym-
metric polynomial Φ with Φ∗, amounts to using the map z → 1

z to pass from U0

to U1. The same idea enables us to define limits on the Riemann sphere. Infinity
behaves the same as any other point! We have already seen the definition of con-
vergent sequence on C. We recall the definition of limits on C in order to extend
the definition to the Riemann sphere.

Definition 5.1. Fix a, L ∈ C. Let S be an open set containing a. We say
that limz→af(z) = L if, for all ε > 0, there is a δ > 0 such that

(28) 0 < |z − a| < δ implies |f(z)− L| < ε.

We can extend the definition of a limit to allow both a and L to be∞. We can
also talk about neighborhoods of infinity.

Definition 5.2. Fix L ∈ C. Then limz→∞f(z) = L if and only if limz→0f( 1
z ) =

L. Also, limz→af(z) =∞ if and only if limz→a
1

f(z) = 0.

For example, if k ∈ N, then limz→∞z
k = ∞. Now that we have understood

limits, we let X denote C ∪ {∞} together with the topology determined by these
limits. We call X the Riemann sphere. By neighborhood of a point p ∈ C we mean
any subset which contains an open ball about p. As we did for limits, we define
neighborhood of infinity by taking reciprocals.

Definition 5.3. Let S be a subset of the Riemann sphere containing ∞. We
say that S is a neighborhood of ∞ if the set of reciprocals of elements of S is a
neighborhood of 0.

Exercise 3.25. Use Definition 5.2 to show that limz→∞
az+b
cz+d = a

c .

Exercise 3.26. Use Definition 5.2 to show that limz→−dc
az+b
cz+d =∞.

Once we have understood limits on the Riemann sphere X, we can introduce
open sets and make X into a topological space. The resulting space is the basic
example of a compact Riemann surface.
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The next exercise uses stereographic projection to provide a one-to-one corre-
spondence between the unit sphere and the extended complex plane.

Exercise 3.27. Consider R3 with coordinates (x1, x2, x3). Let p be a point
on the unit sphere in R3 other than the north pole (0, 0, 1). Find the line from the
north pole to p and see where that point intersects the plane defined by x3 = 0.
Call the point of intersection s(p). Define s of the north pole to be infinity. This
mapping s is called stereographic projection. Write explicit formulas for s(p) and
show that s maps the sphere bijectively onto the extended complex plane. Find a
formula for s−1.

Exercise 3.28. Find the image of the equator under stereographic projection.

Exercise 3.29. Using the notation of Exercise 3.27, assume that s(p) = z.
Find the point q for which s(q) = 1

z .

Exercise 3.30. Replacing x by 1
x is sometimes useful on the real line. For real

numbers a, b consider the integral F (a, b) given by

F (a, b) =
∫ ∞

0

1
x2 + 1

xb − xa

(1 + xa)(1 + xb)
dx.

First show that F (a, b) = 0. Then use this result to show that∫ ∞
0

1
x2 + 1

1
(1 + xa)

dx =
1
2

∫ ∞
0

1
x2 + 1

dx =
π

4
.

Exercise 3.31. (Difficult) Suppose that f is a one-to-one continuous mapping
from the Riemann sphere onto itself, and that f maps S to itself. Show that f
is either a linear fractional transformation or the conjugate of a linear fractional
transformation.



CHAPTER 4

Power series expansions

Power series play a major role in many fields of mathematics. The basic objects
of interest in complex analysis are complex analytic functions; these functions are
precisely those functions that, near each point of their domains, can be defined by
convergent power series. While power series might seem to be a difficult topic, we
gain insight by making analogies with the decimal expansion of a real number.

Each real number x in the interval (0, 1) has a decimal expansion; we write
x =

∑∞
n=1 an( 1

10 )n, where each an is an integer with 0 ≤ an ≤ 9. Power series
are analogous; we allow the an to be arbitrary complex numbers and we replace 1

10
with a variable z. The resulting series will not necessarily converge. We use the
term formal power series for objects of the form

∞∑
n=0

anz
n,

where the coefficients an are arbitrary complex numbers and hence we make no
assumption on convergence. Even formal power series will be useful for us. We can
add and multiply formal power series in the expected manner.

In this chapter we discuss the fundamental issues about convergent power series
in one complex variable and we give some striking applications. We study the
geometric series in detail, both for its own sake and in preparation for the main
developments in Chapter 6. We study the Fibonacci numbers, we give a formula
for the sum of the first N p-th powers, and we give a test for when a power series
represents a rational function.

Later in this book we will show that all complex analytic functions are given
locally by convergent power series expansions. In this chapter we have some fun.

1. Geometric series

The geometric series arises with varying levels of importance throughout math-
ematics and science; it even gets mentioned in elementary economics courses, when
one discusses the multiplier effect. In complex analysis, however, the geometric
series plays a dominant role. The basic objects of interest in complex analysis are
complex analytic, or holomorphic, functions. Such functions can be developed in
convergent power series expansions; the key theoretical step in the proof is the
Cauchy integral formula, which shows how to reduce the general case to that of the
geometric series. We therefore begin with the geometric series.

Consider first the finite geometric series:

SN (z) =
N∑
n=0

zn.

75
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In Chapter 2, we noted for z 6= 1 that

(1) SN (z) =
1− zN+1

1− z
.

By Definition 3.2 of Chapter 2 we must investigate the limit of SN as N tends to
infinity. We saw there that limN→∞SN (z) = 1

1−z whenever |z| < 1. Hence, for
|z| < 1, we have the geometric series:

(2)
∞∑
n=0

zn =
1

1− z
.

It is remarkable how many explicit series expansions can be found (either formally or
rigorously) by manipulating the geometric series. We give some examples involving
substitution and the techniques of calculus. The examples involving derivatives and
integrals can be fully justified using Corollary 5.1 of Chapter 2.

Example 1.1. By substitution, the series for 1
1+z2 is given for |z| < 1 by

(3)
1

1 + z2
=

1
1− (−z2)

=
∞∑
n=0

(−1)nz2n.

Example 1.2. We expand 1
1−z in powers of (z − p) as follows. If | z−p1−p | < 1,

then

(4)
1

1− z
=

1
1− p− (z − p)

=
1

1− p
1

1− z−p
1−p

=
1

1− p

∞∑
n=0

(
z − p
1− p

)n.

The last step in (4) follows by substitution into the geometric series. Thus, if p ∈ C
and p 6= 1, we have a series expansion centered about p. Whenever | z−p1−p | < 1,

(5)
1

1− z
=
∞∑
n=0

(
1

1− p
)n+1(z − p)n.

We mention that (5) plays a crucial role in the Cauchy theory from Chapter 6.
Below we discuss in detail where a given series converges and its radius of conver-
gence. Figure 1 indicates why the radius of convergence of (5) is |p − 1|, namely
the distance from p to the singularity at 1.

Example 1.3. Series for (a branch of) the inverse tangent function. By Corol-
lary 5.1 of Chapter 2 we can integrate a power series term by term within the circle
of convergence. Doing so to (3) for |w| < 1 yields

(6) tan−1(z) =
∫ z

0

dw

1 + w2
=
∫ z

0

∞∑
n=0

(−1)nw2ndw =
∞∑
n=0

(−1)n
z2n+1

2n+ 1
.

Example 1.4. The following identity holds for |z| < 1 and d ∈ N:

(7)
d!

(1− z)d+1
=
∞∑
n=0

(n+ d)(n+ d− 1)...(n+ 1)zn.
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p

1

Figure 1. Geometric series based at p

This result is obtained by repeatedly differentiating the geometric series, and chang-
ing the index of summation.

Example 1.4 leads to a useful general result.

Theorem 1.1. Let p(n) be a polynomial of degree d. Then
∑∞
n=0 p(n)zn is a

polynomial q in 1
1−z of degree d+ 1 with no constant term.

Proof. We induct on the degree of p. For d = 0 and thus p(n) = c 6= 0, we
have the formula:

∞∑
n=0

p(n)zn =
c

1− z
.

Hence q(w) = cw, and q has degree one, with no constant term. For the induction
step, suppose we know the result for all polynomials of degree d. Consider a poly-
nomial p of degree d+ 1; we first write p(n) = cnd+1 + rd(n), where c 6= 0 and the
degree of rd is at most d. We can also write

nd+1 = (n+ d+ 1)(n+ d)...(n+ 1)− gd(n),

where gd is of degree d. Thus, we further have

(8) p(n) = c(n+ d+ 1)(n+ d)...(n+ 1)− hd(n),

where hd is of degree at most d. By induction and (8), we have reduced the matter
to the special case when p is the polynomial (n+ d+ 1)(n+ d)...(n+ 1); we must
show that ∑

(n+ d+ 1)(n+ d)...(n+ 1)zn

is a polynomial of degree d + 2 in 1
1−z with no constant term. This conclusion

follows by differentiating the geometric series d+ 1 times as in Example 1.4. �

Example 1.5. Let p(n) = n2. First write n2 = (n+ 2)(n+ 1)− 3(n+ 1) + 1.
We then have, for |z| < 1,

∞∑
n=0

n2zn =
∞∑
n=0

(n+ 2)(n+ 1)zn −
∞∑
n=0

3(n+ 1)zn +
∞∑
n=0

zn
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=
2

(1− z)3
− 3

(1− z)2
+

1
1− z

.

Exercise 4.1. For d = 1, 3, 4, respectively, let p(n) = nd. In each case find the
corresponding polynomial q in 1

1−z from Theorem 1.1 such that

∞∑
n=0

p(n)zn = q(
1

1− z
).

Exercise 4.2. (For those who know linear algebra) The mapping p→ q from
Theorem 1.1 is an invertible linear transformation between two vector spaces of
polynomials. Find its matrix with respect to the usual bases.

Exercise 4.3. In each case find an explicit formula (as a rational function) for
the series and state where the formula is valid.

∞∑
n=0

(3 + 4i)nzn.

∞∑
n=0

(n3 − 1)zn.

2. The radius of convergence

Let
∑∞
n=0 anz

n be a given power series. By definition, this series converges at
z if the limit limN→∞SN (z) of the partial sums SN (z) =

∑N
n=0 anz

n exists. Let T
denote the set of z for which this limit exists. For z ∈ T we can define a function
f by decreeing that f(z) is the value of this limit. We saw in the previous section
that a geometric series converged inside a circle and diverged outside this circle. We
soon establish the corresponding elementary but fundamental result for arbitrary
convergent power series.

First we make a simple observation. If a series converges, then the sequence
of its individual terms must tend to zero. Since a convergent sequence is bounded,
the terms of any convergent series must be bounded. For a general series, that test
does little good. For a power series

∑
anz

n, however, boundedness of the terms
anz

n will force convergence at any ζ such that |ζ| < |z|. The next theorem makes
this point precise and shows why power series (in one variable) define nice functions
inside the circle of convergence.

Theorem 2.1. Given a power series
∑∞
n=0 anz

n, there is a non-negative real
number R (or the value infinity), called the radius of convergence of the series, such
that the following hold:

1) For |z| > R, the series diverges.
2) For each r such that 0 ≤ r < R, the series converges absolutely and uniformly

for |z| ≤ r.
3) The number R (or infinity) has the following value:

(9) R = sup{r : |an|rn is a bounded sequence}.

Proof. Define R as in (9), where sup means least upper bound. If |z| > R,
then the terms of

∑∞
n=0 anz

n are unbounded and the series diverges. Therefore 1)



2. THE RADIUS OF CONVERGENCE 79

holds. Now suppose that 0 ≤ ρ < r < R. Assume that |anrn| ≤M . We claim that∑
n |anzn| converges for |z| ≤ ρ. The proof uses the comparison test:

(10)
∑
n

|anzn| ≤
∑
n

|an|ρn =
∑
n

|an|rn(
ρ

r
)n ≤M

∑
n

(
ρ

r
)n.

The geometric series on the far right-hand side of (10) converges since |ρr | < 1.
Thus 2) and 3) also hold. �

Remark 2.1. The number R from Theorem 2.1 can also be computed by
Hadamard’s root test. The condition |anrn| ≤M can be rewritten

(11) |r| ≤ M
1
n

|an|
1
n

.

Put L = lim sup(|an|
1
n ). Let n tend to infinity in (11), and we get |r| ≤ 1

L . It
follows that 1

R equals lim sup(|an|
1
n ).

See Chapter 1 for the definition of lim sup and see [20] for more information.
For the purpose of gaining intuition, we note that the lim sup of a sequence is the
supremum of the set of its limit points. Furthermore if the limit of a sequence
exists, then the limit and the lim sup are equal.

Example 2.1. The series
∑

zn

n! converges for all z; thus R = ∞. The series∑
(1 + i)nzn converges for |z| <

√
2

2 ; thus R =
√

2
2 . The series

∑
n!zn converges

only for z = 0; thus R = 0.

We can also consider series of the form
∑
an(z− p)n. We call p the base point,

and say that such a series is based at p, or expanded about p. In this case we obtain
{z : |z − p| < R} for the region of convergence of the series.

Theorem 2.1 says nothing about what happens on the circle |z−p| = R. Other
than providing a few examples, we will leave this matter to more advanced texts.

Example 2.2. It is evident that the series
∑

(z− p)n converges for |z− p| < 1
and diverges for |z−p| > 1. Thus R = 1. The series also diverges at z for |z−p| = 1.
On the other hand, we have R = 1 also for the series

∑ (z−p)n
n2 , but now it converges

everywhere on the circle |z − p| = 1.

Exercise 4.4. Show that
∑
nzn diverges if |z| = 1.

Exercise 4.5. (Difficult) Show that
∑

zn

n diverges if z = 1, but otherwise
converges if |z| = 1.

Exercise 4.6. Find the power series expansion for ez about a general point
z0. Hint: Substitute z − z0 in the known series and use the functional equation.

Exercise 4.7. Find the power series expansion for z
z4+9 about 0. Where does

it converge?

Exercise 4.8. Where does the series for 1
1−z , expanded about the point 5i,

converge?

Exercise 4.9. Find a formula for
∑∞
n=0

zn

4n+2 .
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Exercise 4.10. Find the radius of convergence of the following series

∞∑
n=1

znnn

n!
.

∞∑
n=1

zn!

Exercise 4.11. Find the first 6 terms of the power series about 0 for z
ez−1 .

See Section 5 and the internet for more about Bernoulli numbers.

Exercise 4.12. In solving this problem, assume by Corollary 5.1 of Chapter
2 that you may integrate or differentiate a power series term by term within its
region of convergence.

1). In Example 1.3 we found the power series for tan−1(z). Use it to find a
series representation for π

6 .
2). Find the power series for log(1 + z) and determine where it is valid.

Exercise 4.13. Find the power series expansion for 1
z about a general non-zero

point p and determine where it converges.

Exercise 4.14. Expand 1
1−z in a series in negative powers of z. Where is this

series valid?

Exercise 4.15. Suppose that f(z) = c0 + c1z+ ..., where c0 6= 0 and the series
converges near 0. Find the first two terms in the series for 1

f(z) at 0.

Exercise 4.16. Expand 1
(1−z)(2−z) into a series that includes both positive and

negative powers of z. Use partial fractions. Make sure that your series converges
in 1 < |z| < 2.

Exercise 4.17. Find a simple expression for
∑∞
n=1(−1)n(n+ 1)(z − 1)n that

is valid if |z − 1| < 1.

Exercise 4.18. (Difficult) The ratio test fails when lim|an+1
an
| = 1. Prove the

following generalization dealing with that case. Suppose that the limit of

n(1− |an+1

an
|)

exists and is larger than 1. Prove that
∑
|an| converges. Intuitively, when |an+1

an
|

behaves like 1 − p
n for large n where p > 1, then the series converges. Relate this

discussion with the series
∑

1
np .

3. Generating functions

Let {an}, for n ≥ 0, be a sequence of complex numbers. When we wish to
consider the entire sequence as one entity, we can do so using generating functions.

Definition 3.1. The ordinary generating function of the sequence {an} is the
formal power series

∞∑
n=0

anz
n.
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The exponential generating function of the sequence {an} is the formal power series
∞∑
n=0

anz
n

n!
.

In some circumstances we can use generating functions to answer interesting
questions about a given sequence. For example, in Section 4 we find an explicit
formula for the generating function of the sequence of Fibonacci numbers and use
it to illuminate the golden ratio. Combinatorial analysis also offers many examples
where one can use algebraic properties of generating functions to count the number
of ways to do something interesting.

Choose a number x in (0, 1). We can regard x as the generator of a sequence; we
expand x as a decimal and consider the sequence of digits. Conversely, the sequence
of digits determines x. Generating functions generalize this correspondence. A
function with a convergent power series generates a sequence of complex numbers,
and this sequence determines the function.

Remark 3.1. We make first a simple statement and then we say something
harder. Both statements have profound consequences. Suppose we are given a
convergent power series f(z) =

∑
cnz

n, and f is expressed in some explicit fashion.
We can then recover the coefficients by differentiation; ck = f(k)(0)

k! . Corollary 4.1
of the Cauchy integral formula from Chapter 6 enables us to recover the coefficients
by integration.

We give several examples of generating functions. If an is the constant sequence
where an = A for all n, then

∑∞
n=0 anz

n = A 1
1−z as long as |z| < 1, and hence A 1

1−z
is the ordinary generating function of the constant sequence an = A. Furthermore∑∞
n=0

anz
n

n! = Aez, and hence Aez is the exponential generating function of the
same sequence. Let an = p(n), where p is a polynomial of degree d. Then the
ordinary generating function of this sequence is the polynomial q of degree d+ 1 in
the variable 1

1−z , given by Theorem 1.1.

Example 3.1. Let an = n2. For |z| < 1 we saw in Example 1.5 that

(12)
∞∑
n=0

n2zn =
∞∑
n=0

(n+ 2)(n+ 1)zn −
∞∑
n=0

3(n+ 1)zn +
∞∑
n=0

zn

=
2

(1− z)3
− 3

(1− z)2
+

1
1− z

=
z2 + z

(1− z)3
= G(z).

Hence G is the ordinary generating function for the sequence of squares.

Assume we know the exponential generating function f of a sequence {an} and
its series converges in some neighborhood of 0. By Remark 3.1 we can recover
the sequence: an = ( ∂∂z )nf(z) evaluated at z = 0. Even when the series does not
converge, we can still regard an as a formal n-th derivative of f at 0.

Exercise 4.19. A player flips a (biased) coin which lands heads with proba-
bility p. The player wins as in classical tennis scoring. In other words, the winning
possibilities are (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (7, 5), (8, 6), and so on, where
we write the number of heads first. Thus the wins are (6, k) for 0 ≤ k ≤ 4 and
(n+2, n), for n ≥ 5. Determine, as a function of p, the probability f(p) of winning.
Suggestion: First do the cases (6, k) for 0 ≤ k ≤ 4 separately. Then figure out the
probability of winning from a (5, 5) tie.
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Exercise 4.20. Consider the series for 1
cosh(z) . For |z| < π

2 it can be written
(in terms of its exponential generating function) as

∞∑
n=0

znEn
n!

.

Find En for 0 ≤ n ≤ 6.

Exercise 4.21. For each d ∈ N, show that
∑∞
n=1 n

d 1
2n is an integer.

Exercise 4.22. Suppose we want a generating function for n!. Which type
should we use? Why?

Exercise 4.23. Find the ordinary generating function for the sequence {n3}.

Exercise 4.24. Put a0 = 0 and an = 1
n for n ≥ 1. Find the ordinary generating

function for this sequence.

4. Fibonacci numbers

The Fibonacci numbers arise in many contexts in recreational mathematics.
One can prove seemingly arbitrarily many nice things about them and the journal
The Fibonacci Quarterly is devoted nearly entirely to them. These numbers are so
much fun that we spend some effort playing with them and then explaining some
of the ideas in deeper settings.

No one knows when these numbers were first noted, but they go back at least
to 1202, in the work of Leonardo Fibonacci. These numbers are defined via a
second-order recurrence relation. Put F0 = F1 = 1. For n ≥ 0, put

(13) Fn+2 = Fn+1 + Fn.

The positive integer Fn is called the n-th Fibonacci number. The first few
Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. A famous result is

limn→∞
Fn+1

Fn
=

1 +
√

5
2

= φ.

This limiting value φ is known as the golden ratio. Theorem 4.1 gives a formula for
Fn, called Binet’s formula, but which was known long before Binet (1843).

Given a sequence, we naturally consider its ordinary generating function. For
the Fibonacci numbers this generating function is the formal power series

∞∑
n=0

Fnz
n.

This series converges near 0 to the explicit rational function f given in (14).

Proposition 4.1. For |z| <
√

5−1
2 ,

(14)
∞∑
n=0

Fnz
n =

1
1− z − z2

.

Proof. Let f(z) denote the sum. We then immediately obtain

(15) f(z)− 1 =
∞∑
n=0

Fn+1z
n+1
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and therefore

(16) f(z)− 1− z =
∞∑
n=0

Fn+2z
n+2.

Using (13), (15), and (16), we obtain

(17) z2f(z) + z (f(z)− 1) =
∞∑
n=0

(Fn +Fn+1)zn+2 =
∞∑
n=0

Fn+2z
n+2 = f(z)− 1− z.

From (17) we obtain
f(z)(z2 + z − 1)− z = −1− z

from which formula (14) follows.
Where does the series converge? One can answer this question by expressing

(14) in partial fractions. Alternatively, by Theorem 4.3 of Chapter 6, the series
defined by (14) converges in the largest disk about 0 where the function is complex
analytic. Since the expression 1

1−z−z2 is rational in z, it defines a complex analytic
function away from the zero-set of the denominator. By the quadratic formula, the
two singularities are at −1±

√
5

2 . The singularity closer to 0 is −1+
√

5
2 . Hence the

series for f converges when |z| < −1+
√

5
2 . �

In order to derive Binet’s explicit formula for Fn, we introduce a standard
technique for solving constant coefficient linear recurrences. Suppose we are given
constants b0, ..., bk−1 and the first k numbersG0, G1, ..., Gk−1 of a sequence. Assume
that each subsequent term is determined by the rule

(18) Gn+k =
k−1∑
j=0

bjGn+j .

This recursive formula determines Gm for all m, and thus it defines a sequence
of complex numbers. The integer k is called the order of the recurrence relation.
The Fibonacci numbers are defined via the second-order recurrence (13). Let us
recall a technique for solving such recurrences. We make the guess that there is
a complex number λ such that Gm = λm for all m. Next we plug this guess into
(18). After assuming that λ 6= 0, and dividing by λn, we obtain an equation for λ,
called the characteristic equation:

(19) λk =
k−1∑
j=0

bjλ
j .

We can rewrite (19) as p(λ) = 0, where

p(z) = zk −
k−1∑
j=0

bjz
j .

In the generic situation the polynomial equation p(λ) = 0 will have k distinct
complex roots r1, ..., rk. We then put

Gn =
k∑
j=1

cjr
n
j .
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The cj are unknown coefficients, which we can find by using the given k initial values
to obtain a system of linear equations for them. One then checks easily that the
method gives a valid solution. We will carry out this procedure for the Fibonacci
numbers momentarily. We first mention that a slightly modified version of the
procedure works even when the characteristic equation has repeated roots. Students
might be familiar with the analogous issue when solving constant coefficient second-
order differential equations.

Theorem 4.1 (Binet’s formula). The n-th Fibonacci number satisfies the fol-
lowing:

Fn =
1√
5

(
1 +
√

5
2

)n+1

− 1√
5

(
1−
√

5
2

)n+1

.

Proof. We follow the procedure outlined above. Assume Fn = λn. From the
recurrence (13) we obtain the characteristic equation λ2 = λ+ 1. By the quadratic
formula, the roots of this equation are 1±

√
5

2 . For constants A,B to be determined
we put

(20) Fn = A(
1 +
√

5
2

)n +B(
1−
√

5
2

)n.

Using the two known values F0 = F1 = 1 we obtain a linear system of equations
for A and B:

(21) 1 = A+B

(22) 1 = A
1 +
√

5
2

+B
1−
√

5
2

Solving this system yields A =
√

5+1
2
√

5
and B =

√
5−1

2
√

5
. Plugging these values into

(20) and simplifying gives the desired result. �

Corollary 4.1. limn→∞
Fn+1
Fn

= 1+
√

5
2 .

Proof. Write φ = 1+
√

5
2 and ψ = 1−

√
5

2 . By Binet’s formula, we have

(23)
Fn+1

Fn
=
φn+1 − ψn+1

φn − ψn
.

Note that |ψ| < 1 and hence limn→∞ψ
n = 0. Therefore the limit of (23) as n tends

to infinity is the golden ratio φ. �

We wish to sketch two additional methods for establishing this corollary. First,
we can appeal directly to the recurrence relation. Using it we have

(24)
Fn+2

Fn+1
=
Fn+1 + Fn
Fn+1

= 1 +
Fn
Fn+1

.

Assuming that the limit of the ratios is some nonzero number L, we let n tend
to infinity in (24) to obtain the equation L = 1 + 1

L , from which we obtain the
characteristic equation L2 − L − 1 = 0. Hence, if the limit exists, then its value
is one of the roots of this equation, namely φ or ψ. But, ψ < 0, and hence the
only possible value of the limit is φ. To prove that the limit exists, Exercise 4.26
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suggests the following approach. Let Gn = Fn+1
Fn

. Then the subsequences G2n and
G2n+1 are each bounded and monotone, and hence have limits.

The second approach to the limit of the ratios involves the ratio test. We
found already that the generating function for the Fibonacci numbers is the rational
function 1

z2−z−1 . The power series therefore converges in the largest disk about the
origin on which z2 − z − 1 6= 0; thus it converges for |z| < |ψ|. On the other hand,
the ratio test for convergence shows that the limit of the ratios of successive terms,
if it exists, must be the reciprocal of this number, namely φ.

Exercise 4.25. Use partial fractions to verify (14) and to determine where the
series converges.

Exercise 4.26. Fill in the details of the above methods for proving Corollary
4.1.

Exercise 4.27. Where does the power series, based at 0, for 1
1−(a+b)z+abz2

converge?

5. An application of power series

In this section we use the exponential function in a stunning fashion to solve a
natural problem whose statement is easy but whose solution requires cleverness.

We begin with the vague notion of the shape of a positive integer. We call k a
square number if we can arrange k dots in a square; in other words, if k = n2 for
some n. For a similar geometric idea, we call m a triangular number if we can write
m as the sum of the numbers from 1 to n for some n. It is well-known that

(25) 1 + 2 + 3 + ...+ n =
n(n+ 1)

2
=

1
2
n2 +

1
2
n.

Gauss seems to have known this formula as a six-year old. Indeed one can easily
derive (25) as follows:

1 + 2 + 3 + ...+ n = S

n+ (n− 1) + ...+ 1 = S.

Adding the two equations gives

n(n+ 1) = (1 + n) + (1 + n) + ...+ (1 + n) = 2S.

In other words, n copies of n+ 1 make 2S and thus S = n(n+1)
2 .

Exercise 4.28. Draw a suggestive picture explaining why (25) holds. Next
find (with proof) the sum 1 + 3 + ...+ (2n− 1). Draw another suggestive picture!

The formulas for the sum of the squares and the sum of the cubes provide
further examples of explicit sums, usually stated and then proved by induction:

(26) 1 + 4 + 9 + ...+ n2 =
1
3
n3 +

1
2
n2 +

1
6
n.

(27) 1 + 8 + 27 + ...+ n3 =
1
4
n4 +

1
2
n3 +

1
4
n2.
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Given a positive integer p, we naturally seek a formula for the sum of the
first n p-th powers. For each p the correct formula, when given, can be verified
by induction. How can we derive the formula? Here is a straightforward but
inefficient method. First we assume that the answer is a polynomial of degree p+ 1
in n, where we treat the coefficients as unknowns. Then we find the first p + 1
values by hand. Finally we solve the resulting system of linear equations for the
unknown coefficients.

This work can be done for all p at the same time, by combining our knowledge
about the geometric and exponential series. We will find a formula for

∑N−1
j=0 jp

using only the following ideas:
• The finite geometric series.
• The power series for ez.
• The Leibniz rule (28) for the p-th derivative of a product

(28) (
d

dz
)p(fg) =

p∑
k=0

(
p

k

)
f (k)g(p−k).

This rule follows by induction on p and the product rule (fg)′ = f ′g+fg′.
See Exercise 4.30.

• The definition (29) of the Bernoulli numbers Bn:

(29)
z

ez − 1
=
∞∑
n=0

Bn
n!
zn.

Theorem 5.1.
N−1∑
j=0

jp =
p∑
k=0

(
p+ 1
k + 1

)
Bp−k

Nk+1

p+ 1
.

Proof. By the finite geometric series,

(30)
N−1∑
j=0

ejz =
eNz − 1
ez − 1

=
eNz − 1

z

z

ez − 1
= f(z)g(z).

We define f and g to be the factors in (30). We divided and multiplied by
z in order to ensure that f and g have valid series expansions near 0. Taking p
derivatives, evaluating at 0, and using the Leibniz rule, we get

(31)
N−1∑
j=0

jp = (
d

dz
)p(f(z)g(z))(0) =

p∑
k=0

(
p

k

)
f (k)(0)g(p−k)(0).

By Exercise 4.32, f (k)(0) = Nk+1

k+1 , and g(p−k)(0) = Bp−k, by definition of the
Bernoulli numbers. We conclude that

(32)
N−1∑
j=0

jp =
p∑
k=0

(
p

k

)
Bp−k

Nk+1

k + 1
=

p∑
k=0

(
p+ 1
k + 1

)
Bp−k

Nk+1

p+ 1
.

�
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For example, we can now derive formulas such as

(33)
n∑
j=1

j10 =
1
11
n11 +

1
2
n10 +

5
6
n9 − n7 + n5 − 1

2
n3 +

5
66
n.

Exercise 4.29. Verify (33).

Exercise 4.30. Verify the Leibniz rule by induction.

Exercise 4.31. The following identity was used in (32):

1
k + 1

(
p

k

)
=

1
p+ 1

(
p+ 1
k + 1

)
.

Verify it algebraically. Also give a combinatorial proof. Suggestion: Count (using
two different approaches) how many ways one can select a team of k + 1 people
from a collection of p+ 1 people and designate one of them captain.

Exercise 4.32. Verify that f (k)(0) = Nk+1

k+1 , where f(z) = eNz−1
z as above.

Exercise 4.33. Determine the first six Bernoulli numbers.

Exercise 4.34. Find
∑n
j=1 j

8 by the method of undetermined coefficients.

6. Rationality

We give a criterion for deciding whether a power series defines a rational func-
tion, after first recalling when a decimal expansion represents a rational number.

Given the decimal expansion of a real number x, it is possible to decide whether
x is rational. A necessary and sufficient condition is that the decimal expansion
eventually repeats. Let us be more precise. We may ignore the integer part of x
without loss of generality; hence we assume 0 ≤ x < 1 and write

x =
∞∑
n=1

an(
1
10

)n = .a1a2a3...

Then x is rational if and only if there are two natural numbers N and K with
the following property. For n ≥ N , and for all m, we have

an+Km = an.

In other words, the decimal expansion looks as follows:

x = .a1....aNaN+1...aN+K−1aNaN+1...aN+K−1aNaN+1...aN+K−1...

The point is that the string of K digits from aN to aN+K−1 repeats forever. The
case K = 1 is possible; it occurs when the decimal expansion is eventually constant.
A terminating expansion occurs when when aj = 0 for j ≥ N .

Exercise 4.35. Express the decimal .198198198... as a rational number. Justify
your method, using the definition of convergent infinite series.

Exercise 4.36. Do the same for the decimal .12345198198198....

Exercise 4.37. Prove both implications in the above test for rationality.
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One of the remarkable things about power series is that a similar test works for
deciding whether a power series represents a rational function. A rational function
is a function that can be expressed as the ratio of two polynomials. We state and
prove this test after introducing some notation.

Let f be a complex analytic function, defined near 0 in C. In the next chapter
we will prove that f has a convergent power series expansion near the origin. In
other words there is a positive number R such that we can write

f(z) =
∞∑
n=0

anz
n,

where the series converges for |z| < R. Conversely such a series defines a complex
analytic function in the disk determined by |z| < R. For our present purpose we
are given a convergent series, and we wish to know whether it represents a rational
function. We consider the Taylor polynomials and remainder terms for f :

(34) jk(z) =
k∑

n=0

anz
n

(35) Rk(z) = f(z)− jk(z) =
∞∑

n=k+1

anz
n.

Notice that Rk(z) is divisible by zk+1.
Let us now consider the infinite array defined as follows. The zero-th row is

f(z). For k ≥ 1, we let the k-th row be the function

f(z)− jk−1(z)
zk

=
Rk−1(z)
zk

.

For example the first three rows of the array are given in (36):

(36)



f(z)

f(z)−f(0)
z

f(z)−f(0)−f ′(0)z
z2

...

 .

If we replace each row in (36) with the corresponding list of coefficients we get
the infinite array whose j, k-entry is aj+k:

(37)


a0 a1 a2 a3 ...
a1 a2 a3 ...
a2 a3 a4 ...
...

 .

A matrix such as (37) is called a Hankel matrix.
The test for rationality, in the language of linear algebra, is that this matrix has

finite rank. In concrete terms, the test states that f is rational if and only if there
is an integer N such that, whenever n ≥ N , the n-th row is a linear combination
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of the first N rows. We naturally wish to express this condition directly in terms
of f .

Suppose for some N that

(38)
RN (z)
zN+1

=
N−1∑
k=0

ck
Rk(z)
zk+1

.

Equivalently we are supposing that the N -th row of (37) is a linear combination of
the previous rows. Clearing denominators in (38) we obtain

(39) f(z)− jN (z) = RN (z) =
N−1∑
k=0

ckRk(z)zN−k =
N−1∑
k=0

ck (f(z)− jk(z)) zN−k.

Formula (39) is an affine equation for f(z). We solve it by gathering all the f(z)
terms on one side, to get

f(z)− f(z)
N−1∑
k=0

ckz
N−k = jN (z)−

N−1∑
k=0

ckjk(z)zN−k.

Factoring out f(z) and dividing gives us an explicit formula for f as a rational
function:

(40) f(z) =
jN (z)−

∑N−1
k=0 ckjk(z)zN−k

1−
∑N−1
k=0 ckzN−k

.

This explicit formula (40) shows that the degrees of the numerator and denominator
are at most N . It follows that all subsequent rows in the Hankel matrix (37) are
linear combinations of the first N rows as well.

Conversely, suppose f is rational. Then one obtains constants ck by setting the
denominator of (40) equal to the denominator of f . One can then verify (38). We
summarize this discussion by the following result:

Theorem 6.1. Suppose
∑∞
n=0 anz

n converges near z = 0 to f(z). The follow-
ing are equivalent:

1) f is a rational function.
2) The infinite matrix (37) has finite rank.
3) There is an N such that RN (z)

zN
is a linear combination of the Rk(z)

zk
for k < N

as in (38).

Exercise 4.38. Use the proof of Theorem 6.1 to show that
∑∞
n=0 z

n defines
the rational function 1

1−z near z = 0.

Exercise 4.39. Use the proof of Theorem 6.1 to show that
∑∞
n=0 nz

n defines
a rational function near z = 0.

Exercise 4.40. If p is a polynomial, show by this method that
∑∞
n=0 p(n)zn

defines a rational function near z = 0.

Exercise 4.41. Consider a power series whose coefficients repeat the pattern
1, 1, 0,−1,−1. Thus the series starts

1 + z − z3 − z4 + z5 + z6 − z8 − z9...
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Show that this series defines a rational function f and write f explicitly in lowest
terms.

Exercise 4.42. Show that
∑
zn! does not represent a rational function.



CHAPTER 5

Complex differentiation

We have so far often clarified ideas involving two real variables by expressing
them in terms of one complex variable. Such insight will be particularly compelling
in this chapter. We gave a provisional definition of complex analytic function in
Chapter 2. We can think of a function defined on a subset of C as depending on
both x = Re(z) and y = Im(z). In some sense, a complex analytic function is a
function that depends on only the particular combination z given by z = x + iy.
It is therefore independent of z. The Cauchy-Riemann equations make everything
transparent. We begin by stating the fundamental result from elementary complex
analysis; three possible definitions of complex analytic function lead to the same
notion. We postpone the proofs of these assertions until Chapter 6, when we have
introduced complex integration and can develop the Cauchy theory.

1. Definitions of complex analytic function

Let Ω be an open subset of C and suppose f : Ω → C is a function. We give
three possible candidates for the definition of complex analytic function.

Definition 1.1. (Convergent Power Series) The function f is complex analytic
on Ω if the following holds: for all p ∈ Ω, there is a disk about p, lying in Ω, on
which f can be developed in a convergent power series:

(1) f(z) =
∞∑
n=0

an(z − p)n.

Definition 1.2. (Cauchy-Riemann equations) The function f is complex ana-
lytic on Ω if the following holds: f is continuously differentiable, and for all p ∈ Ω,

(2)
∂f

∂z
(p) = 0.

Thus f satisfies the partial differential equation ∂f
∂z = 0.

Definition 1.3. (Difference quotient) The function f is complex analytic on
Ω if the following holds: for all p ∈ Ω, f is approximately complex linear at p. In
other words, f has a complex derivative f ′(p), defined by the existence of the limit
in (3):

(3) f ′(p) = limζ→0
f(p+ ζ)− f(p)

ζ
.

91
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Definition 1.3 is appealing because it is the natural analogue for C of the
difference quotient definition of differentiability for a function on R. On the other
hand, it is much harder for a function of a complex variable to be differentiable
in the sense of (3) than it is for a function to be differentiable on the real line.
Because ζ is complex in (3), the existence of the limit turns out to be a surprisingly
restrictive assumption. For example, the infinitely smooth and immensely useful
functions z → |z|2 and z → x = z+z

2 do not satisfy (3).

Remark 1.1. The existence of the limit (3) forces f to be continuous. It also
forces the directional derivative to exist in each direction. The consequences of
(3) are subtle. Consider the following example where (3) fails. For z 6= 0, put
f(z) = Im(z2)

|z|2 and put f(0) = 0. Then f is not continuous at 0, although the

directional derivative ∂f
∂v (0) exists in every direction v.

Exercise 5.1. Show that the functions |z|2 and z + z satisfy neither (2) nor
((3). Show that zazb satisfies (2) only if b = 0.

Exercise 5.2. Verify the statements made in Remark 1.1.

Exercise 5.3. Suppose a Hermitian symmetric polynomial Φ satisfies ∂
∂z (Φ) =

0. Prove that Φ is a constant.

Definition 1.3 can be rewritten in an important manner which illustrates that
differentiability means approximate linearity. We can write

(4) f(p+ ζ) = f(p) + f ′(p)ζ + E(p, ζ),

where the function E is defined by (4). If the limit in (3) exists, then E satisfies

(5) limζ→0
E(p, ζ)
ζ

= 0.

We call E an error function. The infinitesimal behavior of f at p is multiplication by
f ′(p), and thus f ′(p) is the complex analogue of slope. Recall from Chapter 1 that
multiplication by a complex number is a special kind of linear transformation of
R2, one whose matrix satisfies the Cauchy-Riemann equations. In the next section
we will develop this idea in detail.

Definition 1.2 states informally that f is a nice function that happens to be
independent of z. Definition 1.1 seems stronger; a function satisfying (1) is infinitely
differentiable and, whatever it means to say so, surely independent of z. Definition
1.2 says that, at each point, f is infinitesimally independent of z. It then follows
that f really is a nice function and it is independent of z. Definition 1.3 makes the
weakest assumptions on f , but all three definitions turn out be be equivalent.

2. Complex differentiation

We start with an intuitive discussion of differential forms. In Section 5 we will
give a more precise treatment. For the moment, we take dx and dy as understood
objects. We define dz and dz by dz = dx + i dy and dz = dx − i dy. It follows
that dx = dz+dz

2 and that dy = dz−dz
2i . Let Ω be an open subset of C. Recall that

a function P : Ω→ C is smooth if its partial derivatives of all orders exist and are
themselves continuous. A differential one-form ω on Ω is an expression of the form
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ω = Pdx + Qdy, where P and Q are smooth functions on Ω. Since dx and dy are
linear combinations of dz and dz, we can also write ω as follows:

ω = Pdx+Qdy = (
P

2
+
Q

2i
)dz + (

P

2
− Q

2i
)dz = Adz +Bdz.

The total differential df of a smooth function provides an example of a differ-
ential one-form. Let f be a smooth function of two variables. Presuming that the
differentials dx and dy have been given a precise meaning, we put

(6) df =
∂f

∂x
dx+

∂f

∂y
dy.

Based on (6) we introduce differential operators ∂
∂z and ∂

∂z in order to write

(7) df =
∂f

∂z
dz +

∂f

∂z
dz.

Since dz = dx + idy and dz = dx − idy, we set the two expressions for df equal.
Doing so then forces the following fundamental definitions:

Definition 2.1.

(8)
∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)

(9)
∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

We also have the notion of differential two-form. In the plane, the only examples
are multiples of dx∧dy. The wedge product is a fascinating concept; we can multiply
differential forms to obtain differential forms of higher type. We discuss the wedge
product in Section 6. For now we note only the rules dx ∧ dx = 0 = dy ∧ dy and
dx ∧ dy = −dy ∧ dx. It follows that

(10) dx ∧ dy =
i

2
dz ∧ dz.

Exercise 5.4. Derive (8) and (9) by equating (6) and (7).

Exercise 5.5. Assume dz = dx + idy and dz = dx − idy. Using the rules for
wedge products, verify (10).

Exercise 5.6. Express the operator ∂2

∂x2 + ∂2

∂y2 in terms of z and z derivatives.

Speaking informally we say that f is independent of z if and only if ∂f
∂z = 0.

Definition 2.2 (The Cauchy-Riemann operator). Let g be a continuously
differentiable function on an open subset of R2. We define ∂g by

∂g =
∂g

∂z
dz.

Let ω = Pdx+Qdy be a one-form; by definition ω is continuously differentiable if
P and Q are. In this case we define ∂ω by

(11) ∂ω =
∂P

∂z
dz ∧ dx+

∂Q

∂z
dz ∧ dy.
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We express Definition 2.2 using complex derivatives. If ω = Adz + Bdz, then
we obtain the simpler formula

(12) ∂ω =
∂A

∂z
dz ∧ dz.

Exercise 5.7. Show that (11) and (12) are equivalent.

We summarize this section by stating the next result.

Proposition 2.1. Suppose Ω is open and f : Ω→ C is continuously differen-
tiable. The following are equivalent:

• f is independent of z.
• ∂f = 0 on Ω.
• df = ∂f

∂z dz on Ω.
• ∂f

∂x + i∂f∂y = 0 on Ω.

3. The Cauchy-Riemann equations

Following common practice, we will use the words Cauchy-Riemann equations
in several similar contexts. We defined in Chapter 1, and we recall below, what it
means to say that a two-by-two matrix satisfies the Cauchy-Riemann equations. We
will say that a differentiable function F : R2 → R2 satisfies the Cauchy-Riemann
equations if its derivative dF (p), regarded as a two-by-two matrix, satisfies these
equations at each point. In this case, we may write F = (u, v) or f = u + iv. We
then sometimes will say that f and/or u, v satisfy these equations. By the end of
the chapter we will say that f satisfies the Cauchy-Riemann equations if ∂f

∂z = 0.
We first recall the definition of the complex numbers using two-by-two matrices.

We identify a complex number a+ib with the linear transformation from C to itself
given by multiplication by a + ib. If we consider this mapping instead as a linear
transformation from R2 to itself, then the matrix of this linear mapping (with
respect to the usual basis) has the form

(13)
(
a −b
b a

)
.

Definition 3.1. A two-by-two matrix of real numbers satisfies the Cauchy-
Riemann equations if it has the form (13).

A real linear mapping from L : R2 → R2 defines a complex linear mapping
from C to C, namely multiplication by a+ ib, if and only if the matrix of L is of the
form (13). Thus the matrix of a real linear mapping L satisfies the Cauchy-Riemann
equations if and only if L defines a complex linear map from C to C.

Similarly, let F : R2 → R2 be a differentiable function. We write F = (u, v)
in terms of its component functions. Its derivative dF (z) at the point z is the best
linear approximation to F at z. It is a linear transformation represented by the
two-by-two matrix

(14) dF =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.
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Definition 3.2. A differentiable function satisfies the Cauchy-Riemann equa-
tions on an open set Ω if, for each z ∈ Ω, the derivative matrix dF (z) satisfies the
Cauchy-Riemann equations.

Stated in terms of its real and imaginary parts, F satisfies the Cauchy-Riemann
equations if and only if ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x at each point. Modern complex

analysis, especially in higher dimensions, has gained tremendously by writing these
equations in terms of z and z. For clarity and emphasis we repeat this key point.

Corollary 3.1. A continuously differentiable complex-valued function f =
u + iv satisfies the Cauchy-Riemann equations ∂f = 0 if and only if ∂u

∂x = ∂v
∂y and

∂u
∂y = − ∂v

∂x .

Exercise 5.8. Put F (x, y) = (x2 − y2, 2xy). Find dF (x, y) and verify that F
satisfies the Cauchy-Riemann equations. Write F (x, y) as a function of z.

Exercise 5.9. Put F (x, y) = (x3 − 3xy2, 3x2y− y3). Find dF (x, y) and verify
that F satisfies the Cauchy-Riemann equations. Write F (x, y) as a function of z.

Exercise 5.10. Put F (x, y) = (excos(y), exsin(y)). Find dF (x, y) and verify
that F satisfies the Cauchy-Riemann equations. Write F (x, y) as a function of z.

Exercise 5.11. For x, y > 0, put F (x, y) = ( 1
2 log(x2 + y2), tan−1( yx )). Find

dF (x, y) and verify that F satisfies the Cauchy-Riemann equations. Write F (x, y)
as a function of z.

We now make the needed connections between real and complex derivatives.
Let g be a differentiable complex-valued function on an open set Ω in R2. By
definition of the derivative, g is approximately linear. In other words, for each
point (x, y) ∈ Ω, and each sufficiently small vector (h, k) we can write

(15) g(x+ h, y + k) = g(x, y) +
∂g

∂x
(x, y)h+

∂g

∂y
(x, y)k + E(x, y, h, k),

where the error term E(x, y, h, k) is small in the sense that

lim(h,k)→(0,0)
E(x, y, h, k)√

h2 + k2
= 0.

The differentiable function g is called continuously differentiable if the partial
derivatives are themselves continuous functions. Formula (15) provides the first-
order Taylor approximation of g. It is especially useful to rewrite this formula using
partial derivatives with respect to z and z. We obtain the following expression:

(16) g(z + η) = g(z) +
∂g

∂z
(z)η +

∂g

∂z
(z)η + E(z, η).

To see the equivalence of (15) and taylorcomplex16, we write z = x + iy, put
η = h+ ik, and use (8) and (9):

∂g

∂z
η +

∂g

∂z
η =

1
2

(
∂g

∂x
− i∂g

∂y
)(h+ ik) +

1
2

(
∂g

∂x
+ i

∂g

∂y
)(h− ik) =

∂g

∂x
h+

∂g

∂y
k

In the notation of (16), the requirement for differentiability becomes
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(17) limη→0
E(z, η)
|η|

= 0.

The Cauchy-Riemann equations now lead to great simplification. The differen-
tiable function g satisfies them on Ω if and only if ∂g

∂z = 0 on Ω. If g satisfies these
equations, then we define g′(z) to be ∂g

∂z (z). By (16) we see that

(18) g′(z) = limζ→0
g(z + ζ)− g(z)

ζ
.

On the other hand, if the limit on the right-hand side of (18) exists, then g must
satisfy the Cauchy-Riemann equations.

We summarize these calculations as follows.

Proposition 3.1. Assume that g is continuously differentiable. Then ∂g
∂z = 0

on Ω if and only if the limit in (16) exists at each z in Ω.

We sound one warning. The Cauchy-Riemann equations ∂g
∂z = 0 can hold at

one point without the limit in (16) existing there.

Example 3.1. Put g(z) = z2

z for z 6= 0 and put g(0) = 0. Then g satisfies
the Cauchy-Riemann equations at 0, but the limit in (16) does not exist there. See
Exercise 5.12.

Exercise 5.12. Verify the statements in Example 3.1.

Exercise 5.13. Determine whether there is a function satisfying f(z + h) =
f(z) + h2 for all z and h.

Exercise 5.14. Prove some of the usual rules from calculus for derivatives in
the complex setting.

• Show using (16) that d
dz (zn) = nzn−1 for n ≥ 0.

• Show using (16) that d
dz ( 1

z ) = −1
z2 for z 6= 0.

• Assume f, g are complex differentiable. Show that fg also is, and that
(fg)′ = f ′g + fg′.

• Assume f, g are complex differentiable. Show that their composition also
is, and that (g ◦ f)′(z) = g′(f(z))f ′(z).

An interesting technical point arises when considering the limit in (16) for
complex functions. If we make no assumption about g other than that the limit in
(16) exists at all z in Ω, then it follows that g is differentiable, and even more, that g
is infinitely differentiable. Hence many authors define g to be complex analytic on Ω
when the limit in (16) exists at each point of Ω; in other words, the third definition
from Section 1 is taken as the starting point. It is then possible to establish the
main results on complex integration by using Goursat’s proof of Cauchy’s theorem.
It is also possible to begin with the second definition from Section 1. Under the
stronger assumption that a complex analytic function is continuously differentiable,
we can apply Green’s theorem directly to obtain Cauchy’s theorem and hence all
the main results. See also [1, 17,19] for more discussion about this matter.

These considerations depend strongly upon working on an open set. If the limit
in (16) exists at a single point, then we can say virtually nothing. The following
standard examples illustrate some of the difficulties arising from working at only one
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point. We emphasize that all three of our possible definitions of complex analytic
function insist that something be true at every point of an open set.

Example 3.2. Let f be an arbitrary bounded function on C. In particular f
could be discontinuous at every point. Define g : C → C by g(z) = |z|2f(z). We
claim that g is complex differentiable at the origin. To compute the limit in (16)
we observe

(19)
g(0 + ζ)− g(0)

ζ
=
|ζ|2f(ζ)

ζ
= ζf(ζ).

Since f is bounded, the limit as ζ tends to 0 in (19) exists and equals 0. On the
other hand, although g is continuous at 0, it can be discontinuous at every other
point in C.

The next example is even worse!

Example 3.3. Consider a function f on C that is defined to be 0 on the axes
but takes completely arbitrary real values elsewhere. Writing f = u+iv gives v = 0
by definition. Hence ∂v

∂x (0) = and ∂v
∂y (0) = 0. Since u is constant on the axes, we

also see that ∂u
∂x (0) = 0 and ∂u

∂y (0) = 0. Hence the real form of the Cauchy-Riemann
equations for f holds at 0, and yet f need not be continuous there.

4. Orthogonal trajectories and harmonic functions

Recall that the Euclidean dot (or inner) product of vectors α and β in R2 is
given by

α · β = 〈α, β〉 = α1β1 + α2β2.

The length ||α|| of the vector α is of course
√
α2

1 + α2
2. Assume that α and β are

based at the same point, and that the angle between them, expressed in radians, is
θ. The geometric meaning of the dot product arises from the famous relationship

〈α, β〉 = cos(θ)||α|| ||β||.
In particular, two vectors are perpendicular if and only if their dot product is zero.
Mathematicians often say orthogonal instead of perpendicular.

Let u : R2 → R be a function. The level set {u = c} is the set of (x, y) such that
u(x, y) = c. Level sets play a fundamental role in mathematics, physics, economics,
geology, meteorology. The reader should try to think of examples from each of
these subjects. The concept becomes more interesting when u is differentiable. In
that case, for each point (x, y), the gradient vector ∇u(x, y) is perpendicular to the
level set u = u(x, y). We do not prove this statement, but it is proved in many
calculus books. See for example [24].

Consider next two differentiable functions u and v on R2. Choose a point (x, y)
and consider the level sets {u = u(x, y)} and {v = v(x, y)}. They intersect at (x, y);
they are perpendicular there if and only if ∇u(x, y) and ∇v(x, y) are perpendicular.
In other words, these level sets are perpendicular at (x, y) if and only if

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= 0.

Suppose that ∇u(x, y) = (a, b). Then ∇u(x, y) is perpendicular to ∇v(x, y) if and
only if∇v(x, y) is a multiple of (−b, a). Aha! If u and v satisfy the Cauchy-Riemann
equations, then their level sets are orthogonal. We summarize these comments in
the following fundamental fact.
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Theorem 4.1. Let f = u+iv be complex analytic. At each point of intersection,
the level sets of u and v intersect orthogonally.

Example 4.1. Let f(z) = z2. The level sets of u and v are the hyperbolas given
by x2 − y2 = c1 and 2xy = c2. This family of hyperbolas intersect orthogonally.
See Figure 3 of Chapter 3.

Exercise 5.15. Regard z, w ∈ C as vectors in R2. Show that 〈z, w〉 = Re(zw).
Draw an appropriate picture.

Exercise 5.16. Sketch the level sets of the real and imaginary parts of z3.

Exercise 5.17. Let f(z) = ez. What are the real and imaginary parts of f in
terms of x, y? Graph their level sets; show that one gets orthogonal trajectories.

Exercise 5.18. Describe and graph the level sets for the functions u and v if

f(x, y) =
1
2

log(x2 + y2) + itan−1(
y

x
) = u(x, y) + iv(x, y),

for x, y > 0. Determine whether f satisfies the Cauchy-Riemann equations.

5. A glimpse at harmonic functions

Harmonic functions play a fundamental role in pure and applied mathematics.
Many equivalent definitions are possible, and we do not mention most of them.
We give two simple possible definitions. Assuming that u is twice continuously
differentiable, we say that u is harmonic if its Laplacian ∆u is 0 (Definition 4.1).
We show that u satisfies the mean-value property (Definition 4.2). Conversely if
we assume that u satisfies the mean-value property and is twice differentiable, then
we show that u is harmonic. Our proof uses Taylor’s formula in two variables. We
do not attempt to show that the mean-value property guarantees that u is twice
differentiable.

This section develops the connection between complex analytic functions and
harmonic functions. This connection lies at the basis of many applications of com-
plex analysis. The real and imaginary parts of a complex analytic function are
harmonic and their level sets form orthogonal trajectories. For this reason com-
plex analysis arises in various applications such as electrostatics and fluid flow. We
mention that Exercise 5.19 should help with the theoretical issues.

Definition 5.1. Let Ω be an open subset of C and let u : Ω → R be a twice
continuously differentiable function. Then u is harmonic if

(20) ∆(u) =
∂2u

∂x2
+
∂2u

∂y2
= 0

at all points of Ω.

Exercise 5.6 asked for a formula for ∆ in terms of derivatives with respect to z
and z. That formula is

(21) ∆ = 4
∂

∂z

∂

∂z
.

Often formula (21) clearly explains crucial properties of harmonic functions
and the connections with complex analysis. For example, (21) shows immediately
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why the real and imaginary parts of a complex analytic function are harmonic. We
prove Theorem 5.1 below using real variable techniques, but we urge the reader in
Exercise 5.19 to try to prove it using complex derivatives. The next definition gives
a more geometric definition of harmonic function.

Definition 5.2. Let Ω be an open subset of C and let u : Ω → R be a
continuous function. We say that u satisfies the mean-value property if, for all
p ∈ Ω, the value u(p) equals the average value of u on each circle centered at p and
contained in Ω. Thus, for sufficiently small r:

(22) u(p) =
1

2π

∫ 2π

0

u(p+ reiθ)dθ.

Theorem 5.1. A twice continuously differentiable function u : Ω → R is
harmonic if and only if it satisfies the mean-value property.

Proof. Fix p ∈ Ω, and consider the Taylor series expansion for u about p. We
have, for small positive r,

(23) u(p+ reiθ) = u(p) +
∂u

∂x
(p)rcos(θ) +

∂u

∂y
(p)rsin(θ)

+
1
2
∂2u

∂x2
(p)r2cos2(θ) +

1
2
∂2u

∂y2
(p)r2sin2(θ)

+
∂2u

∂x∂y
(p)r2cos(θ)sin(θ) + E(r),

where E(r) is an error term. To be more precise, we have limr→0
E(r)
r2 = 0. We

compute the average value Ap(u) of u on the circle by integrating, as in (22) , the
left-hand side of (23). Note that the integrals of cos2 and sin2 each equal π. The
other integrals involving cosine and sine are zero. We obtain

(24) Ap(u) =
1

2π

∫ 2π

0

u(p+ reiθ)dθ

= u(p) +
r2

4

(
∂2u

∂x2
(p) +

∂2u

∂y2
(p)
)

+
1

2π

∫ 2π

0

Edθ.

Since the error term tends to zero faster than r2, we see from (24) that Ap(u) = u(p)
if and only if

(25) ∆(u)(p) =
(
∂2u

∂x2
(p) +

∂2u

∂y2
(p)
)

= 0.

�

Our definition of harmonic function presumes that certain second derivatives
exist. The mean-value property provides an alternative equivalent definition that
requires no differentiability assumptions. Harmonic functions turn out to be infin-
itely differentiable. We mention that harmonic functions in higher dimensions also
arise in many scientific applications.

Exercise 5.19. Prove Theorem 5.1 using partial derivatives with respect to z
and z.



100 5. COMPLEX DIFFERENTIATION

Exercise 5.20. Working with x, y, show that the real and imaginary parts of
z, z2, and z3 are harmonic. Can you prove in this way that the real and imaginary
parts of zn are harmonic for all positive integers n? Compare with Exercise 5.6 and
solve all these problems instantly!

Exercise 5.21. Is the sum of harmonic functions harmonic? Under what
conditions is the product of harmonic functions harmonic? If f is harmonic, under
what condition is ∂f

∂x also harmonic?

Exercise 5.22. Suppose that f is complex analytic on a connected open set,
and that |f |2 is constant. Prove that f is constant. Do the same if Re(f) is constant.
There are many proofs. Try to use only ∂

∂z and ∂
∂z .

Exercise 5.23. By inspection find complex analytic functions whose real parts
u are given by u(x, y) = x2 − y2, by u(x, y) = excos(y), and by u(x, y) = y

x2+y2 .

We close this section by providing a method for solving the natural problem
from Exercise 5.23. Our method is considerably simpler than what appears in
standard texts on complex analysis; a rigorous justification of our method relies on
facts we will not prove. On the other hand, these facts are immediate for elementary
functions, and hence our method is both computationally and conceptually simpler
when u is given by a formula.

Given a harmonic function u(x, y), defined in some region, we seek a complex
analytic function f for which u = Re(f). As a consequence we also find a conjugate
harmonic function v(x, y) such that f = u+ iv is complex analytic.

Theorem 5.2. Suppose u = u(x, y) is harmonic in an open subset of R2

containing 0. Put f(z) = 2u( z2 ,
z
2i ) + c for an appropriate constant c. (In fact

c = −f(0).) Then f is complex analytic and u = Re(f).

Proof. By substituting the formulas for the real and imaginary parts, the
equation Re(f(z)) = u(x, y) can be rewritten

(26)
f(z) + f(z)

2
= Re(f(z)) = u(x, y) = u(

z + z

2
,
z − z

2i
).

Formula (26) presumes that u is a real-analytic function; hence it is valid to replace
x and y by their expressions in z and z. These substitutions are valid, but a proof is
somewhat sophisticated. See Theorem 7.1 of Chapter 8. For elementary functions
such as polynomials, however, the substitutions are clearly valid. Now comes the
key point. Formula (26) is an identity that holds for all z and z. Hence we can
treat z and z as independent variables. In (26) we substitute z = 0, while keeping
z free. We obtain

(27)
f(z) + f(0)

2
= u(x, y) = u(

z

2
,
z

2i
).

The theorem follows immediately from (27). �

In case 0 is not in the domain of u, we can still use the same method by
substituting another value for z.

Many complex variables texts provide a different method for solving this prob-
lem; the method involves both differentiating and integrating, using the Cauchy-
Riemann equations. Here is that method. Find the partial derivative ux and set
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it equal to vy. Integrate to get v(x, y) =
∫
vy(x, y)dy + φ(x) for some integration

constant φ. Then use vx = −uy to determine φ′(x) and hence to determine φ.
Finally put f = u+ iv and simplify.

The point of the next several exercises is to compare the efficiency of the meth-
ods. In two of these exercises you cannot set z equal to 0; choose another point.

Exercise 5.24. Given u(x, y) = x2 − y2, find a complex analytic f such that
u = Re(f) by using Theorem 4.2. Then find f by the standard method.

Exercise 5.25. Do the same problem for u(x, y) = x3 − 3xy2.

Exercise 5.26. Do the same problem for u(x, y) = excos(y).

Exercise 5.27. Do the same problem for u(x, y) = log(x2 + y2). Assume
x, y > 0.

Exercise 5.28. Do the same problem for u(x, y) = y
x2+y2 .

The next few exercises require a bit more effort. The purpose of the first one is
to look ahead to the Cauchy integral formula to establish the mean-value property
for the real and imaginary parts of a complex analytic function.

Exercise 5.29 (Mean-value property). Suppose that f is complex analytic on
C, and f = u + iv as usual. For each z and each positive radius, use the Cauchy
integral formula from Chapter 6 to establish the mean-value property (22) for u
and for v.

Exercise 5.30. Show, using the mean-value property, that a harmonic function
cannot achieve its maximum (or minimum) in an open set unless it is a constant.
This property is called the maximum principle and has many applications in pure
and applied mathematics.

Exercise 5.31. If ∆(u) = 0, show that the real Hessian matrix of second
derivatives of u must have a non-positive determinant.

The next two exercises show that |f | satisfies the maximum principle when f
is complex analytic.

Exercise 5.32. A smooth function u is called subharmonic if ∆(u) ≥ 0. Show
that u(p) ≤ Ap(u) for all p and all circles about p if and only if ∆(u) ≥ 0. Then
verify the maximum principle for subharmonic functions.

Exercise 5.33. Suppose that f is complex analytic. Show that |f | and |f |2 are
subharmonic. Harder: Show, assuming that f 6= 0, that log(|f |2) is subharmonic.
See pages 198-207 of [7] for related ideas.

Exercise 5.34. Find all functions f such that f is complex analytic on C and
that f(|z|) = |f(z)| for all z.

The Dirichlet problem. Several of the most profound applications of com-
plex analysis to the sciences follow from the relationship between complex analytic
functions and harmonic functions. In particular complex analysis provides an ap-
proach to the Dirichlet problem, which is one of the most important boundary value
problems in pure and applied mathematics. We discuss these matters briefly in this
section and refer to [1,10,18,23] for more information about both the mathematics
and its applications.
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Let Ω be an open connected set in C and suppose that its boundary bΩ is
a reasonably smooth object. Let g : bΩ → R be a continuous function. The
Dirichlet problem for Ω is to find a function u such u is harmonic on Ω and u = g
on bΩ. We give a simple example. Let Ω be the unit disk and let g(θ) = cos(θ).
Put u(x, y) = x = Re(z). Thus u is harmonic. On the boundary circle we have
z = eiθ = cos(θ) + i sin(θ) and hence u = g there.

The same method solves the Dirichlet problem for the unit disk when g is
cos(nθ) or sin(nθ) for any integer n, as we next indicate. More generally, for
0 ≤ j ≤ N , let cj be complex numbers and put c−j = cj . In particular c0 is
real. The function g in (28) is then real-valued and continuous. We can solve the
Dirichlet problem for the unit disk whenever g has the form

(28) g(θ) =
N∑

k=−N

cke
ikθ.

We define u(x, y) by

(29) u(x, y) = c0 +
N∑
k=1

2Re(ckzk) = 2Re

(
c0
2

+
N∑
k=1

ckz
k

)
.

Since u is the real part of a polynomial in z, u is harmonic. On the other hand,
suppose |z| = 1. Then z = eiθ and we obtain

(30) u(x, y) = c0 +
N∑
k=1

2Re(ckeikθ) = c0 +
N∑
k=1

cke
ikθ +

N∑
k=1

cke
−ikθ.

Since ck = c−k, we may replace k by −k in the second sum and obtain (28). Thus
u = g on the boundary, and hence u solves the Dirichlet problem.

The method of the previous paragraph also works by replacing g in (28) with
a convergent infinite sum of the same kind. This infinite sum is called the Fourier
series of g. When g is continuous, it has a Fourier series.

It is also possible to give an explicit integral formula, called the Poisson integral
formula, which solves the Dirichlet problem in the unit disk. We state the formula
and refer to any of [1, 10, 18, 23] for derivations. Given a continuous function g on
the unit circle, define u by the following integral. Then u is harmonic in the unit
disk and u = g on the circle:

(31) u(w) =
1

2π

∫
|z|=1

1− |w|2

|z − w|2
g(z)dθ

At first glance it might seem too special to solve the Dirichlet problem in the
unit disk. It turns out, however, that we can then solve it for any simply connected
domain with nice boundary. The details are beyond the scope of this book, but we
sketch some of the ideas here.

Let Ω be a connected open subset of C and let D denote the unit disk. Suppose
we can find a complex analytic function F : D → Ω such that F is a bijection
and F−1 is also complex analytic. Such a function F is called a conformal map
from D to Ω. Such mappings F exist in considerable generality; see the Riemann
mapping theorem (Theorem 5.1 of Chapter 8). In favorable (but still quite general)
circumstances, F extends to be continuous on the unit circle and defines a bijection
of the circle to bΩ. We can then solve the Dirichlet problem for Ω. Given g, we put
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G = g ◦ F . Then G is continuous on the unit circle. We find a harmonic U on the
unit disk with U = G on the circle. Put u = U ◦ F−1. We claim that u solves the
Dirichlet problem on Ω. On the boundary

u = G ◦ F−1 = (g ◦ F ) ◦ F−1 = g.

On the other hand, we claim that u is harmonic. Put H = F−1 to simplify notation.
The claim follows from the following simple yet often applied result.

Lemma 5.1. Let Ω1 and Ω2 be open subsets of C. Assume H : Ω2 → Ω1 is
complex analytic and U is harmonic on Ω1. Then u = U ◦H is harmonic on Ω2.

Proof. Let z denote the variable in Ω1 and let w denote the variable in Ω2.
Using (21) we compute the Laplacian 4uww where the subscripts denote partial
derivatives. Note that Hw = 0 by the Cauchy-Riemann equations. We are given
that Uzz = 0. By the chain rule we therefore get

uww = (UzHw)w = Uzz|Hw|2 = 0.
�

The importance of the Dirichlet problem in applications has led to many dif-
ferent methods in analysis. See [1] for a solution using subharmonic functions.

Exercise 5.35. Suppose h is complex analytic and h : R → R. Assume u is
harmonic. True or False? h ◦ u is harmonic. How does this situation differ from
Lemma 5.1?

Exercise 5.36. Using a linear fractional transformation that maps D bijec-
tively to the upper half plane, apply the discussion in this section to solve the
Dirichlet problem in the upper half plane.

Exercise 5.37. Verify the following identity, which arises in proving the Pois-
son integral formula.

z

z − w
+

w

z − w
=

1− |w|2

|z − w|2
.

Exercise 5.38. (Difficult) Fill in the details of the following derivation of the
Poisson integral formula. Given g, the value of u(0) is determined by the mean-value
property (22). Next, given w in the unit disk, find a linear fractional transformation
L that maps the circle to the circle and maps w to 0. A formula for such an L
appears in Exercise 2.4 and in formula (28) from Chapter 8. Given L, use the
previous discussion and Lemma 5.1 to determine u(w).

6. What is a differential form?

Students first see dx and dy in beginning calculus, but the precise meaning
of these symbols is never explained. Some students have been taught to say that
dx is an infinitesimal change; most such students get all confused when asked
to elaborate. Precise mathematics should be expressed using sets, functions, and
logical symbols. What kind of object is dx?

In a calculus course it feels misguided to define differential forms precisely.
Excessive pedantry at that time of one’s educational development serves to hinder
progress. Let us therefore introduce differential forms in a rigorous but informal
manner.
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We work in Euclidean space Rn; restricting to n = 1 and n = 2 makes it harder
rather than easier to understand. Let Ω be an open set in Rn, and let p ∈ Ω. A
tangent vector vp at p is simply an element of Rn associated with p. When p is
understood we write v instead of vp. Given such a v we use it to find directional
derivatives. Thus, if f is a differentiable function defined near p, we compute the
directional derivative

∂f

∂v
(p) = limt→0

f(p+ tv)− f(p)
t

.

This number represents the rate of change of f if we move from p in the direction v.
Note that p+ tv gives a parametric equation for the line through p with direction
v. We are doing one-variable calculus along this line.

We define the differential df by the rule

(32) df(p)(v) =
∂f

∂v
(p).

Notice the similarity between df(p) and the gradient vector ∇f(p). We can express
(32) using the gradient vector or in coordinates as:

(33) df(p)(v) = ∇f(p) · v =
n∑
j=1

∂f

∂xj
(p)vj .

Linearity follows from (33):

df(p)(v + w) = df(p)(v) + df(p)(w)

df(p)(cv) = c df(p)(v).

Thus df is a machine that assigns to each tangent vector v at p the number defined
in (32). Hence df is a function; its domain consists of pairs (p,vp). The value
of df at this pair is written df(p)(vp). Often we think of p as fixed. Then df(p)
is a linear function that assigns a number to each vp. In the language of linear
algebra, df(p) is an element of the dual space to the space Tp of tangent vectors at
p. We can add such differentials and multiply them by scalars. The more surprising
thing is that there is an interesting way to multiply them by each other, called the
exterior product or the wedge product. The wedge product sheds light on the theory
of determinants.

Let V be any finite-dimensional vector space over the real or complex numbers.
Given linearly independent vectors e1,...,ek in V we define a new object, called a
k-form, written in (34):

(34) e1 ∧ e2 ∧ ... ∧ ek.

We decree that the object in (34) gets multiplied by −1 if we switch two of the
factors. Hence, for a permutation j1, ..., jk, we have

ej1 ∧ ej2 ∧ ... ∧ ejk = ±e1 ∧ e2 ∧ ... ∧ ek,

where the sign equals the signum of the permutation.
Suppose the ej form a basis for V . Given vectors vi ∈ V , for 1 ≤ i ≤ k, then

there are unique scalars vij such that we can write
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vi =
∑
j

vijej .

We define the wedge product by

(35) v1 ∧ v2... ∧ vk = det(vij)e1 ∧ e2... ∧ ek.
We recall the basic facts about determinants. In sophisticated language, the

determinant is an alternating multilinear form. Think of the determinant as a
function of its rows. It is linear in each row if the other rows are fixed, and it changes
sign if two rows are switched. The determinant function is uniquely determined
by these properties together with the normalization that the determinant of the
identity matrix is 1.

Hence the wedge product is linear in each vi if the other vectors are fixed and
switches signs if we switch two of the vectors. The wedge product of k vectors in a
k-dimensional space is 0 if and only if the vectors are linearly dependent.

The crucial point is the geometric interpretation of determinants in terms of
volume. If we assume that the basis vectors e1,...,ek span the unit box, then the
oriented volume of the box spanned by v1,...,vk equals det(vij). This approach
allows us to regard e1 ∧ e2... ∧ ek as a volume form on k-dimensional space.

Exercise 5.39. Show by elementary math that the oriented area of the paral-
lelogram spanned by a+ bi and c+ di in C is the determinant ad− bc.

Exercise 5.40. Let ω = Pdx + Qdy. Define ∗ω by ∗ω = −Qdx + Pdy.
This operation gives a special case of the Hodge ∗ operator. If ω = du, where
u is harmonic, what is ∗ω? What does this exercise have to do with orthogonal
trajectories?

Exercise 5.41. Define the Hodge ∗ operator more generally by ∗1 = dx ∧ dy
and ∗(dx∧ dy) = 1, and extend by linearity. Thus for example ∗g = g dx∧ dy. Let
f be a smooth function. What is ∗d ∗ df?

Exercise 5.42. Let ω = Pdx + Qdy be a one form, but regard it as a vector
field L = (P,Q). Express the divergence and curl of this vector field in terms of d
and ∗.

Exercise 5.43. In real four-dimensional space put η = dx1 ∧ dx2 + dx3 ∧ dx4.
Find η ∧ η. In complex two-dimensional space, put ω = dz1 ∧ dz1 + dz2 ∧ dz2. Find
ω ∧ ω.





CHAPTER 6

Complex integration

Integrals play a crucial role in calculus, engineering, and physics. It is therefore
not unexpected that integrals will be crucial to our development of complex geom-
etry. We will use complex line integrals to prove one of the most fundamental facts
in complex analysis: a complex analytic function is given locally by a convergent
power series. In doing so we will establish that the three possible definitions of
complex analytic function given in Chapter 5 all yield the same class of functions.

Complex integration has many other applications. In particular in this chapter
we show how to find various real definite integrals by using complex integration.
Doing so allows us to glimpse such topics as Fourier transforms, the Gaussian
probability distribution, and the Γ-function.

1. Complex-valued functions

We first discuss some basic facts about derivatives and integrals of complex-
valued functions of one real variable. Most readers will blithely accept and use
these facts without much thought.

Let (a, b) be an open interval on R and suppose that g : (a, b)→ C is a function.
Write g(t) = u(t) + iv(t) for its expression in terms of real and imaginary parts.
Then g is differentiable if and only if both u and v are differentiable, and we have
g′(t) = u′(t) + iv′(t) for all t ∈ (a, b). The derivative is linear over C. In other
words, if c ∈ C and g and h are differentiable complex-valued functions on (a, b),
then cg and g + h also are, and of course we have

(cg)′(t) = cg′(t)

(g + h)′(t) = g′(t) + h′(t).

Next let [a, b] be a closed interval on R, and let g : [a, b] → C be a function.
As above, write g(t) = u(t) + iv(t) for its expression in terms of real and imaginary
parts. Note that g is continuous if and only if u and v are continuous. When g is
continuous it is natural to call its image a curve. Following common practice we
use the term curve both for the mapping g and for the image g([a, b]) as a subset of
C. We reserve the term curve for continuous mappings g. A curve is called smooth
(or continuously differentiable) if g is smooth (or continuously differentiable). A
curve is called piecewise smooth if it has finitely many smooth pieces. A piecewise
smooth curve is connected when regarded as a subset of C.

The definition of the integral of a continuous (or more generally, piecewise
continuous) function g reduces to the usual definition of a real-valued function as
follows:

107
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(1)
∫ b

a

g =
∫ b

a

g(t)dt =
∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt =
∫ b

a

u+ i

∫ b

a

v.

Said another way, the definition states

(2) Re
∫
g =

∫
Re(g)

(3) Im
∫
g =

∫
Im(g).

The definitions (2) and (3) are reasonable. The real part of a sum is the sum of
the real parts of the summands. The real part of a limit is the limit of the real
part. The same holds for the imaginary part. An integral is the limit of a sum.
Therefore we can move the operation of taking the real or imaginary part past the
integral sign.

It follows from (1) that the integral is linear over C. In other words, if c ∈ C
and g and h are continuous complex-valued functions on [a, b], then∫ b

a

cg =
∫ b

a

cg(t)dt = c

∫ b

a

g(t)dt = c

∫ b

a

g,∫ b

a

(g + h) =
∫ b

a

(g(t) + h(t))dt =
∫ b

a

g(t)dt+
∫ b

a

h(t)dt =
∫ b

a

g +
∫ b

a

h.

These formal basic facts about the linearity of derivatives and integrals hold as
we expect. We say a bit more about a crucial inequality.

First of all, integrals (in any theory of integration) are limits of sums and
therefore integrals of real-valued functions preserve inequalities. If u : [a, b] → R
is an integrable function, and 0 ≤ u, then 0 ≤

∫ b
a
u. It follows by linearity that if

u1 and u2 are integrable functions with u1 ≤ u2, then
∫ b
a
u1 ≤

∫ b
a
u2. Since both

u ≤ |u| and −u ≤ |u| always hold, we obtain both ±
∫
u ≤

∫
|u|. Hence for each

real-valued integrable function u we have

(4)

∣∣∣∣∣
∫ b

a

u

∣∣∣∣∣ ≤
∫ b

a

|u|.

This inequality also holds for complex-valued functions, but requires justification.

Lemma 1.1. Inequality (4) holds for each integrable complex-valued function g.

Proof. We write
∫ b
a
g(t)dt = reiθ. We then have

(5)

∣∣∣∣∣
∫ b

a

g(t)dt

∣∣∣∣∣ = r = e−iθ
∫ b

a

g(t)dt =
∫ b

a

e−iθg(t)dt = Re
∫ b

a

e−iθg(t)dt

=
∫ b

a

Re
(
e−iθg(t)

)
dt ≤

∫ b

a

|e−iθg(t)|dt =
∫ b

a

|g(t)|dt.

In one step in (5) we replaced an integral by its real part; that step is fine, because
|
∫
g| is real. Also, with h = e−iθg, we integrated the inequality Re(h) ≤ |h| to

obtain
∫ b
a

Re(h) ≤
∫ b
a
|h|. In the last step we used |e−iθ| = 1. �
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2. Line integrals

We begin with the notion of work in elementary physics. Imagine a force acting
at each point of the plane. We can think of this force as an arrow based at each
point; in other words, this force defines a vector field. A vector field is a function F ,
in general not complex analytic, mapping C to C. We write F = P + iQ = (P,Q)
in terms of its real components. At each point z ∈ C, we place the vector F (z).

Given a curve γ in the plane satisfying appropriate hypotheses, we ask how
much work it takes to travel along this curve against the force F . Work is the
dot product of force and distance. We approximate the curve γ by a piecewise
rectangular path whose sides are parallel to the axes. We resolve the force into
components, compute the work along these sides by the simpler formula force times
distance. Finally we add together the infinitesimal pieces, resulting in a line integral
(or path integral). Hence work should be the integral along γ of Pdx + Qdy. An
alternative notation used in physics helps clarify the picture. By definition the work
W is defined by the line integral in (6):

(6) W =
∫
γ

F · ds.

We can think of ds as the vector (dx, dy). We write ds for the length of ds.
Before giving a precise definition of the meaning of (6), we recall from calculus the
notion of arc-length. The length L = L(γ) of a smooth curve γ is defined by

(7) L = L(γ) =
∫
γ

ds =
∫ b

a

|γ′(t)|dt.

This definition arises from approximating the curve by a rectangular path as
above and using the Pythagorean Theorem. We say that the curve γ is smooth if
the function t → γ(t) is smooth. When γ is smooth the far right-hand side of (7)
has a precise meaning. We then define

∫
γ
ds by (7). When γ is piecewise smooth

we use (7) on each smooth piece and then add up the results. In this book we will
nearly always assume that our curves are piecewise smooth.

In the notation from physics, ds is the object which becomes |γ′(t)|dt after we
parametrize γ. Its vector form ds = (dx, dy) from (6) becomes γ′(t)dt after we
parametrize γ. If F = (P,Q), then (6) becomes

(8) W =
∫
γ

F · ds =
∫
γ

Pdx+Qdy.

Mathematicians prefer expressing these ideas using differentiable forms. Let
γ : [a, b] → R2 be a smooth curve, and let ω = Pdx + Qdy be smooth one-form
defined near the image of γ. We write γ(t) = (x(t), y(t)) and we define the integral
by (9):

(9)
∫
γ

ω =
∫
γ

Pdx+Qdy =
∫ b

a

(P (γ(t))x′(t) +Q(γ(t))y′(t)) dt.

Again, when γ is piecewise smooth, we use (9) on each piece and add up the results.
One technical point must be established for these definitions to make sense. We
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must show that the value of the line integral
∫
γ
Pdx + Qdy is independent of the

parametrization of γ.

Lemma 2.1. Formula (9) is unchanged if we reparametrize γ. In other words,
suppose γ : [a, b] → C is a smooth curve and φ : [a′, b′] → [a, b] is a continuously
differentiable bijection. Put η = γ ◦ φ. Then

(10)
∫
γ

Pdx+Qdy =
∫
η

Pdx+Qdy.

Proof. The proof is left to the reader, with the following hint. Write the
left-hand side of (10) using (9). Then put t = φ(τ). Use the change of variables
formula from elementary calculus to obtain the right-hand side of (10). �

We therefore consider 1-forms to be the basic objects. Formula (9) tells us how
to compute a line integral, and formula (8) interprets the integral in terms of the
work done.

Exercise 6.1. Fill in the details of the proof of Lemma 2.1.

The following inequality about length generalizes Lemma 1.1 and gets used in
some proofs.

Proposition 2.1 (ML-inequality). Let γ : [a, b] → R2 be a piecewise smooth
curve of length L. Assume that f is a function, defined and continuous on the
image of γ, with |f(z)| ≤M . Then∣∣∣∣∫

γ

f(z)dz
∣∣∣∣ ≤ML

Proof. It suffices to prove the inequality for each smooth piece of γ and add
the results. We therefore assume γ is smooth. The definition of the line integral
and Lemma 1.1 give

∣∣∣∣∫
γ

f(z)dz
∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))||γ′(t)|dt ≤M
∫ b

a

|γ′(t)|dt = ML.

�

We next discuss Green’s theorem. We prove the theorem only when γ is the
boundary of a rectangle and refer to any multi-variable calculus book for a proof
in more generality. We mention however that the proof for a rectangle is in some
sense the main point. Figures 2 and 3 suggest that the result for rectangles implies
the result for any region bounded by finitely many straight lines, each parallel to
one of the axes. As indicated by the arrows in Figure 2, a line integral over the
boundary of the large rectangle equals the sum of line integrals over the boundaries
of the four smaller rectangles, because the contributions over the interior segments
cancel in pairs. Also, a double integral over the large rectangle equals the sum
of the double integrals over the four pieces. It follows, as suggested by Figure 3,
that the conclusion of Green’s theorem then also holds for any region bounded by
a polygonal path whose sides are parallel to the axes. Finally, again suggested by
Figure 3, the theorem holds for any curve that is a limit of such polygonal paths.
This collection of limit curves includes every curve that arises in this book; in
particular piecewise smooth curves are such limits.
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Recall that a closed curve is a function γ : [a, b] → C with γ(a) = γ(b). We
say that a closed curve γ is simple if the image does not cross itself, except at the
end points. In other words, if s 6= t, then γ(s) 6= γ(t) unless s = a and t = b or
s = b and t = a. We say that a closed curve γ is positively oriented it the image
is traversed counter-clockwise as the parameter t increases from a to b. See Figure
1. (A more rigorous definition is possible, but we are content with this intuitive
definition.)

Figure 1. A positively oriented simple closed curve enclosing a region

Theorem 2.1 (Green’s theorem). Let γ be a piecewise smooth, positively ori-
ented, simple closed curve in C. Let P,Q be continuously differentiable functions
on and inside γ. Write Ω for the interior of γ. Then

(11)
∫
γ

Pdx+Qdy =
∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Proof. We assume γ is the boundary of a rectangle Ω, with vertices at
(a, b), (c, b), (c, δ), (a, δ). Since γ is positively oriented, the x variable increases from
a to c when y = b, and decreases from c to a when y = δ. Similarly the y variable
increases from b to δ when x = c and decreases from δ to b when x = a.

We integrate the right hand side of (11) over the interior Ω of this rectangle
and use the fundamental theorem of calculus. We may do the iterated integral in
either order (Fubini’s theorem); we integrate ∂Q

∂x first with respect to x, and we
integrate ∂P

∂y first with respect to y. We obtain:

(12)
∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫ d

b

∫ c

a

∂Q

∂x
dxdy −

∫ c

a

∫ d

b

∂P

∂y
dydx =∫ d

b

(Q(c, y)−Q(a, y))dy −
∫ c

a

(P (x, d)− P (x, b))dx =
∫
γ

Qdy + Pdx.

The last step follows simply by parametrizing the given line segments and keeping
track of the orientation, as in the first paragraph. �

Green’s theorem is a special case of what has become known as the modern
form of Stokes’s theorem. Although this material is a bit too advanced for this
book, at the end of this section we briefly whet the reader’s appetite for learning
about differential forms. The simplest formulation of Green’s theorem uses the
operator d, called the exterior derivative. We summarize the properties of d at the
end of this section. We next restate Green’s theorem using the exterior derivative.
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Each 1-form in the plane can be written Pdx+Qdy. We use the properties of
the exterior derivative from Proposition 2.2 at the end of this section. Assuming P
and Q are differentiable we have

d(Pdx+Qdy) =
(
∂P

∂x
dx+

∂P

∂y
dy

)
∧ dx+

(
∂Q

∂x
dx+

∂Q

∂y
dy

)
∧ dy =

∂P

∂y
dy ∧ dx+

∂Q

∂x
dx ∧ dy =

(
−∂P
∂y

+
∂Q

∂x

)
dx ∧ dy.

The formula in Green’s theorem becomes

(13)
∫
γ

Pdx+Qdy =
∫∫

Ω

d(Pdx+Qdy).

Next we investigate the use of Green’s theorem in complex analysis.

Corollary 2.1 (Easy form of Cauchy’s theorem). Let γ and Ω be as in Green’s
Theorem, and suppose f is complex analytic on a set containing the closure of Ω.
Then ∫

γ

f(z)dz = 0.

Proof. Write f = u + iv and dz = dx + idy. Then, using Green’s Theorem
and the Cauchy-Riemann equations we get∫

γ

f(z)dz =
∫
γ

(u+ iv)(dx+ idy) =
∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

=
∫∫

Ω

(
−∂v
∂x
− ∂u

∂y
)dxdy + i

∫∫
Ω

(
∂u

∂x
− ∂v

∂y
)dxdy = 0 + 0 = 0.

�

Figure 2. Breaking a rectangle into smaller rectangles

Students are sometimes careless in applying these results. We give two (related)
examples where the differentiability hypotheses fail only at a single point in the
interior of the curve, and the conclusion fails. These two examples lie at the basis
of the mathematical subject called cohomology. Cohomology makes precise the
number of and the dimension of holes in a complicated object. Similar examples in
three dimensions lie at the basis of the theory of electricity and magnetism.
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Figure 3. Approximation of a curve by a polygonal path

Example 2.1. Put ω = −y
x2+y2 dx + x

x2+y2 dy for (x, y) 6= (0, 0). Let γ be the
positively oriented unit circle. Then

∫
γ
ω = 2π. On the other hand, for (x, y) 6=

(0, 0), we have dω = 0. These statements together do not contradict Green’s
theorem. Its hypotheses do not apply because ω is not differentiable at 0.

Example 2.2. Suppose f(z) = 1
z and γ is the unit circle. Then Cauchy’s

theorem does not apply. In fact,
∫
γ
f(z)dz = 2πi 6= 0. The reason is that the

hypotheses in Green’s theorem insist that something is true everywhere in the
interior Ω of γ. If f(z) = 1

z , then f fails to be analytic at 0. In other words, one
must be careful. Simply being complex analytic near γ is not good enough!

Exercise 6.2. With ω as in Example 2.1, prove that dω = 0. Then express ω
in terms of dz and dz and prove it again.

Exercise 6.3. Evaluate the line integrals in the two previous examples.

We have often mentioned that things are easier if we work with z and z rather
than with x and y. That comment applies particularly well here. We write out the
proof of Corollary 2.1 using complex derivatives.

(14)
∫
γ

f(z)dz =
∫∫

Ω

d(f(z)dz) =
∫∫

Ω

∂f

∂z
(z)dz ∧ dz =

∫∫
Ω

0 = 0.

These ideas are closely related to physics. Consider a vector field F = (P,Q) in
the plane. This vector field F is called conservative if the work done traveling along
any path depends on only the difference in potential energy. In other words, the
line integral

∫
γ
F · ds depends on only the endpoints of γ. Mathematicians express

the same idea using differential forms. Let ω = Pdx + Qdy be a 1-form. We say
that ω is an exact 1-form if there is a smooth function g such that dg = Pdx+Qdy.
For any piecewise smooth curve γ, whether closed or not, we then have∫

γ

Pdx+Qdy =
∫
γ

dg = g(γ(b))− g(γ(a)).

Thus, if ω is exact, then F is conservative.



114 6. COMPLEX INTEGRATION

The following standard result summarizes the situation. In it we use a topo-
logical fact about connected open sets in C; its proof is sketched in Section 6 of
Chapter 1. We can connect any two points in Ω by a polygonal path whose sides
are parallel to the axes.

Theorem 2.2. Let Ω be a connected open set on which ω = Pdx + Qdy is
smooth. The line integral

∫
γ
ω depends on only the endpoints of γ if and only if

there is a smooth function g on Ω for which ω = dg.

Proof. If g exists, then as above,
∫
γ
dg = g(γ(b)) − g(γ(a)). To prove the

converse, fix a point z0 in Ω. Given z ∈ Ω, we connect z0 to z by a polygonal path
γ whose sides are parallel to the axes. We define g by g(z) =

∫
γ
ω. By assumption

the value of g is independent of the choice of path. By choosing the last part of the
polygonal path to be parallel to the x axis, and using the fundamental theorem of
calculus, we see that ∂g

∂x = P . By choosing the last part of the polygonal path to
be parallel to the y-axis, we likewise see that ∂g

∂y = Q. �

When f(z) = zn−1 for n ∈ N, we have f(z)dz = d( z
n

n ), and thus f(z)dz is
exact. When γ is a closed curve, we therefore obtain

(15)
∫
γ

zn−1dz =
∫
γ

d(
zn

n
) = 0.

By linearity and (15), for any polynomial p we obtain∫
γ

p(z)dz = 0.

It is therefore no surprise that the same result for convergent power series holds.
Let F be complex analytic; then dF = F ′(z)dz is an exact differential. Therefore∫
γ
F ′(z)dz = 0 for any closed curve γ. We obtain Cauchy’s theorem for derivatives

of complex analytic functions.

Exercise 6.4. In each case find parametric equations t → z(t) for the curve
γ. Use complex variable notation rather than real variable notation in 1) and 2).

1) γ is the unit circle, traversed counterclockwise.
2) γ is a circle of radius R with center at p, traversed counterclockwise.
3) γ is the boundary of a rectangle with vertices at (a, b), (c, b), (c, d), (a, d),

traversed counterclockwise. Four different formulas are required.
4) γ is the part of the right-hand branch of the hyperbola defined by x2−y2 = 3

from (2,−1) to (2, 1).
5) γ is the ellipse x2

a2 + y2

b2 = 1, traversed counterclockwise.

Exercise 6.5. Graph the set of points in the plane where x3 + y3 = 3xy. This
set is called the folium of Descartes. Let γ be the part of the curve forming a loop
in the first quadrant. 1) Find parametric equations for γ. Hint: Determine where
the line y = tx intersects γ to find x and y as functions of t.

2) Find the area inside the loop. Hint: First express xdy−ydx
2 in terms of t and

then integrate it around γ.

Exercise 6.6. For k ∈ N, define a curve by x2k+1 + y2k+1 = (2k + 1)xkyk.
Repeat Exercise 6.5 for these curves.
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Exercise 6.7. Let pd(x, y) be a homogeneous polynomial of degree d, and let
qd−1(x, y) be homogeneous of degree d− 1. Consider the set V of (x, y) such that
pd(x, y) = qd−1(x, y). Parametrize V by proceeding as in the previous exercises.

Exercise 6.8. Evaluate, for n ∈ Z, the integral
∫
|z|=R z

ndz.

Exercise 6.9. Use polar coordinates to evaluate, for non-negative integers
m,n, the double integral ∫

|z|≤R
zmzndz dz.

Figure 4. Folium of Descartes

Exterior derivative. As we saw above, Green’s theorem has a simple state-
ment using the exterior derivative d. We glimpse deeper waters by summarizing
this concept in n dimensions. We mention first that a smooth function can be re-
garded as a differential 0-form. For each k-form φ we define a k+ 1 form dφ called
the exterior derivative of φ. The operator d is defined via the following result:

Proposition 2.2. There is a unique function d mapping k forms to k+1 forms
and satisfying the following properties:

• d(φ+ ψ) = dφ+ dψ.
• d(φ ∧ ψ) = dφ ∧ ψ + (−1)pφ ∧ dψ, where φ is a p-form.
• d2 = 0
• If f is a function, then df is defined as in Section 6 of Chapter 5.
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We briefly mention the meaning of these properties. The fourth property says
that d of a function is its total differential. In particular d of a constant is 0. The
first property is the sum rule for derivatives; the second property generalizes the
product rule. The property d2 = 0 is a brilliant way of organizing information. For
smooth functions f we have

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
.

The alternating property of the wedge product combines with this equality of mixed
partials to give d2 = 0. It is not hard to check that these properties uniquely
determine d. More interesting is that the exterior derivative affords considerable
simplification to classical vector analysis. We give two simple examples. Various
laws from physics such as curl(∇(f)) = 0 for a function f , and div(curl(F )) = 0 for
a vector field F amount to special cases of d2 = 0. See [11] for the use of differential
forms in Physics.

Using d we reformulate Green’s theorem. Let us denote the interior of γ as Ω,
and rewrite γ as the boundary ∂Ω of Ω. Then Green’s theorem states that

(16)
∫
∂Ω

ω =
∫

Ω

dω.

In (16) ω is a 1-form, and ∂Ω is 1-dimensional. Formula (16) holds whenever ω is
a k − 1-form and ∂Ω is the k − 1-dimensional boundary of a k-dimensional object.
The result is called the general Stokes’s formula. This formulation includes the
fundamental theorem of calculus, Green’s theorem, the divergence theorem, and
the classical Stokes’s theorem all as special cases. This general formulation
also clarifies Maxwell’s equations from the theory of Electricity and Magnetism.
See [21] for a complete mathematical treatment of these ideas and see [11] for
physical interpretations.

3. Goursat’s proof

This section seems at first a bit technical and can be skipped on first reading;
on the other hand, the argument in Goursat’s proof is beautiful and elegant, and
it deserves some time and effort.

We will be integrating around rectangles. First we note a special case which
we can do directly and which arises in the proof.

Example 3.1. Let ∂R be the boundary of a closed rectangle R and α, β be
complex constants. Then

(17)
∫
∂R

(αz + β)dz = 0.

The proof is immediate; (αz + β)dz = d(α z
2

2 + βz) and hence its line integral over
any closed path must be 0.

In the proof we use the following fact about the topology of C. Consider a
sequence Rj of closed rectangular regions of diameter dj in C. Suppose for all j
that Rj+1 ⊂ Rj and also that limn→∞dj = 0. Then the intersection of the regions
consists of a single point. This result follows from a corresponding result on the
real line. Consider a sequence Ij of closed intervals in R of length Lj . Suppose
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for all j that Ij+1 ⊂ Ij and also that limn→∞Lj = 0. Then the intersection of
these intervals is a single point. This statement about the real line is a consequence
of the completeness axiom, and in fact can be taken instead of the least upper
bound property as what it means for an ordered field to be complete. See [3, 20]
for additional discussion.

In the proof of Goursat’s theorem, we create a sequence Rn of closed rectangles
which satisfy the above properties. The sequence converges to a single point.

If we take Definition 1.2 of Chapter 5 for complex analytic (in which we assume
f is continuously differentiable), then we can apply Green’s theorem to show that∫
γ
f(z)dz = 0 whenever f is complex analytic on and inside γ. Goursat discovered

that the hypothesis of continuous derivatives is redundant. In this section we will
prove the following statement. If f is complex differentiable in the sense (Definition
1.3 of Chapter 5) that the limit quotient exists at every point in a domain Ω, then∫
∂R
f(z)dz = 0 for every rectangle R contained in Ω. In the next paragraph we

elaborate a slightly confusing point; although we integrate only along ∂R, it is
required that f be complex differentiable on the full closed rectangle.

Before we state and prove the theorem of Goursat, we wish to clarify this point.
Let Ω be an open set in C with holes, such as an annular region. Then there exist
rectangles R such that the boundary ∂R lies in Ω, but R does not. In order that
the next theorem apply, it is crucial that the full rectangle lie with Ω. We write
∂R to denote the boundary of R, oriented positively (counter-clockwise).

Theorem 3.1 (Goursat’s theorem). Let Ω be an open subset of C. Assume that
f is complex differentiable in Ω. Let R be a rectangle in Ω. Then

∫
∂R
f(z)dz = 0.

Proof. Let S be a rectangle in Ω and consider I =
∫
∂S
f(z)dz. The first

step in the proof is to observe (See Figure 2) that the rectangle S can be divided
into four rectangles Sj by bisecting each of the sides of S. We call this procedure
quadrisection. We then have

(18) |I| =
∣∣∣∣∫
∂S

f(z)dz
∣∣∣∣ = |

4∑
j=1

∫
∂Sj

f(z)dz| ≤ 4max

∣∣∣∣∣
∫
∂Sj

f(z)dz

∣∣∣∣∣ .
We will keep dividing the original rectangle in this fashion, choosing at each stage
one of the four rectangles. See Figure 5. Of the four choices we choose j to make
|
∫
∂Sj

f(z)dz| as large as possible. Let us relabel. We call the original rectangle
R; we call Rn the rectangle chosen at the n-th step of quadrisection. By (18) and
induction we obtain

(19) |I| =
∣∣∣∣∫
∂S

f(z)dz
∣∣∣∣ ≤ 4n

∣∣∣∣∫
∂Rn

f(z)dz
∣∣∣∣ .

Observe also that the diameter δn of Rn is 2−n times the diameter δ of R, and that
the perimeter Ln of Rn is 2−n times the perimeter L of R.

By the basic theorem in real analysis mentioned above, the limit of these rect-
angles will be a single point z0. We then use the complex differentiability at z0 to
write (compare the discussion after Definition 1.3 of Chapter 5)

f(z) = f(z0) + (z − z0)f ′(z0) + E(z0, z − z0),
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where the error function E is small in the sense that

limz→z0
E(z0, z − z0)

(z − z0)
= 0.

Given ε > 0, we have |E(z0, z − z0)| ≤ ε|z − z0| when |z − z0| is sufficiently small.
We can make |z− z0| small by choosing n large in (19). We can therefore write, for
z near z0,

(20)
∫
∂Rj

f(z)dz =
∫
∂Rj

(f(z0) + (z − z0)f ′(z0) + E(z0, z − z0)) dz =

∫
∂Rj

f(z0)dz +
∫
∂Rj

(z − z0)f ′(z0)dz +
∫
∂Rj

E(z0, z − z0)dz =
∫
∂Rj

E(z0, z − z0)dz.

The first two integrals in the second line of (20) vanish by (17) from Example 3.1.
To finally prove the theorem we observe by (19) and (20) that

(21) |I| ≤ 4j
∣∣∣∣∣
∫
∂Rj

f(z)dz

∣∣∣∣∣ = 4j
∣∣∣∣∣
∫
∂Rj

E(z0, z − z0)dz

∣∣∣∣∣ .
We then use the ML-inequality to obtain

(22) |I| ≤ 4j
∣∣∣∣∣
∫
∂Rj

E(z0, z − z0)dz

∣∣∣∣∣ ≤ 4jε|z − z0|Lj ≤ 4jεδjLj = εδL.

Since ε is an arbitrary positive number, and δ and L are fixed, we conclude that
|I| = 0. �

Figure 5. Iterated quadrisection of a rectangle
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4. The Cauchy integral formula

Let Ω be an open subset of C. Let f : Ω → C be complex analytic on Ω. We
will show, for each point p ∈ Ω, that there is an open disk about p on which f can
be developed into a convergent power series. Furthermore, the radius of the disk
can be taken to be the distance from p to the boundary of Ω. We will establish
this fundamental fact by using integrals. First, however, we consider the region of
convergence for the function 1

1−z when we expand it around different points.
We know that

∑∞
n=0 z

n = 1
1−z whenever |z| < 1; recall its generalization (5)

from Chapter 4. For any p 6= 1 we can write, whenever | z−p1−p | < 1,

(23)
1

1− z
=

1
1− p− (z − p)

=
1

1− p
1
z−p
1−p

=
∞∑
n=0

(
1

1− p
)n+1(z − p)n.

Thus, for each p such that 1
1−z is analytic near p, there is a convergent power series

representation. The radius of convergence is precisely the distance from the point p
to the singular point 1. Cauchy’s brilliant idea uses complex integration to reduce
the general case to this particular situation. Several steps are required.

Step one is the Cauchy Theorem. This result yields
∫
γ
f(z)dz = 0 for piecewise

smooth simple closed curves γ when f is complex analytic on and inside the curve.
We do not require the most general version.

Theorem 4.1 (Cauchy’s Theorem). Let Ω be an open subset of C and let
f : Ω → C be complex differentiable on Ω. Let γ be a piecewise smooth simple
closed closed curve in Ω, and suppose that the interior of γ lies within Ω. Then∫

γ

f(z)dz = 0.

Proof. We will not give a complete proof. In Theorem 3.1 we verified the
conclusion whenever γ is the boundary of a rectangle. It follows that the result
holds whenever γ is a simple closed curve all of whose pieces consist of line segments
parallel to an axis. By taking limits, it follows that the result holds whenever γ is
a limit of such curves. Such limit curves include the piecewise smooth curves. See
Figure 3 for the geometric idea. �

We use Cauchy’s theorem to derive the crucial Cauchy integral formula. This
result uses integrals to show that a complex analytic function is not wildly different
from a geometric series.

Theorem 4.2 (Cauchy Integral Formula). Let Ω be an open set in C, and
suppose f is complex analytic on Ω. Let γ be a positively oriented piecewise smooth
simple closed curve in Ω and assume that the interior of γ is contained in Ω. For
each z ∈ Ω, the following formula holds for f :

(24) f(z) =
1

2πi

∫
γ

f(ζ)
ζ − z

dζ.

Proof. The idea of the proof is to show that the line integral on the right-
hand side of (24) equals the line integral of the same integrand over each circle of
sufficiently small radius ε about z. Then we take the limit as ε tends to 0, obtaining
f(z).
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Let µε be the circle of radius ε about z, traversed counterclockwise and let ηε
denote the curve defined by ηε = γ − µε. The definition of line integrals over the
sum of two curves yields

(25)
∫
ηε

f(ζ)
ζ − z

dζ =
∫
γ

f(ζ)
ζ − z

dζ −
∫
µε

f(ζ)
ζ − z

dζ.

We claim that the left-hand side of (25) vanishes. To see so from an intuitive
fashion, connect the curves γ and µε with a line segment ν, and then include both
ν and −ν with the curve ηε. Because of cancellation, including ν and −ν does
not affect the integral. On the other hand, (imagine an infinitesimal separation
between ±ν), the new closed curve no longer winds around the singularity at z.
Hence by Cauchy’s theorem, applied to the complex analytic function ζ → f(ζ)

ζ−z ,
the line integral is 0. See Figure 6.

In other words, the function ζ → f(ζ)
ζ−z is complex analytic on and inside ηε (the

region between the two curves). Hence the line integral is 0 by Cauchy’s theorem.
Therefore, for each sufficiently small ε we have

(26)
∫
γ

f(ζ)
ζ − z

dζ =
∫
µε

f(ζ)
ζ − z

dζ.

Parametrizing the integral on the right-hand side of (26) using ζ = z + εeiθ gives

(27)
∫
µε

f(ζ)
ζ − z

dζ =
∫ 2π

0

f(z + εeiθ)idθ.

Letting ε tend to zero, we obtain 2πif(z). See Exercise 6.7. �

Figure 6. The key to the proof of the Cauchy integral formula

We could spend many pages deriving consequences of the Cauchy integral for-
mula, but we limit ourselves to the most important basic theoretical consequences
and to the computation of residues. Perhaps the most important consequence is the
existence of the local power series expansion. Figure 1 from Chapter 4 illustrates
the region of convergence for the geometric series based at p. Figure 7 illustrates
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the region of the convergence of the power series for a general complex analytic
function; these figures capture the essence of the proof of Theorem 4.3. The equiv-
alence of the three possible definitions of complex analytic function also follows
from Theorem 4.3. The computation of residues is appealing at this stage because
of its striking application to doing calculus integrals.

P

Figure 7. Power series and the Cauchy integral formula

Theorem 4.3. Suppose f satisfies (24). Then, for each p ∈ Ω, there is a
positive ε such that f has a convergent power series expansion on {z : |z − p| < ε}.
One can choose ε equal to any positive number less than the distance from p to the
boundary of Ω.

Proof. The student should master this proof! Choose p ∈ Ω, and let r denote
the distance from p to the boundary. This number r is positive since Ω is an open
set. Choose ε with 0 < ε < r and consider the circle Cε of radius ε about p. By the
Cauchy integral formula we have

(28) f(z) =
1

2πi

∫
Cε

f(ζ)
ζ − z

dζ.

Following the technique in (23) we write

(29) f(z) =
1

2πi

∫
Cε

f(ζ)
ζ − p− (z − p)

dζ =
1

2πi

∫
Cε

f(ζ)
ζ − p

1
1− ( z−pζ−p )

dζ

=
1

2πi

∫
Cε

f(ζ)
ζ − p

∞∑
n=0

(
z − p
ζ − p

)ndζ.

The geometric series converges absolutely and uniformly for |z−p| < |ζ−p|. Since
the circle Cε and its interior lie in Ω, we have absolute and uniform convergence
for |z − p| ≤ ε. By Corollary 5.1 of Chapter 2 we can interchange integral and
summation to obtain

(30) f(z) =
∞∑
n=0

(
1

2πi

∫
Cε

f(ζ)
(ζ − p)n+1

dζ

)
(z − p)n =

∞∑
n=0

cn(z − p)n.

Thus, near p, there is a convergent power series expansion for f and even an integral
formula for the coefficients. �

The following corollaries are immediate.
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Corollary 4.1. Under the hypotheses of Theorem 4.3, we have

(31) cn =
f (n)(p)
n!

=
1

2πi

∫
Cε

f(ζ)
(ζ − p)n+1

dζ.

Proof. The formula is immediate from (30). �

Corollary 4.2 (Cauchy estimates). Let f be complex analytic on {z : |z| < ρ}
and assume R < ρ. Let MR be the maximum of |f | on the circle |z| = R. Then

|f (n)(0)| ≤ n!MR

Rn
.

Proof. Consider the circle |z| = R and apply the ML inequality to (31). Since
L = 2πR, the inequality follows. �

The Cauchy estimates reveal that the successive derivatives of a complex ana-
lytic function at a point are not arbitrary complex numbers. The resulting Taylor
series must be convergent, and hence some information on the size of the coefficients
is forced.

Corollary 4.3. A complex analytic function is infinitely differentiable.

Corollary 4.4. Suppose that all derivatives of a complex analytic function
f : Ω → C vanish at p. Then f(z) = 0 for all z near p. If in addition Ω is
connected, then f(z) = 0 for all z ∈ Ω.

In the previous corollary, we would like to say that f(z) = 0 for all z, but we
cannot do so without assuming that f is defined on a connected set. For example, if
Ω were the union of two disjoint balls, f could be 0 on the first ball and something
else on the second ball. Then all derivatives of f would vanish at points on the
first ball, but f would not be identically 0. In the next two results we assume
connectedness as a hypothesis. Although our discussion from Section 6 of Chapter
1 on connectedness was brief, the concept is intuitive and no difficulties arise. We
mention that a ball is connected; in most applications one may work in a ball. We
sketch the proof of the second statement from Corollary 4.4. Consider the subset
A of Ω consisting of points near which f vanishes identically. By the first part of
the Corollary, this set is open. On the other hand, the set B of points in Ω near
which f does not vanish identically is also open. Then we have A ∪B = Ω. If Ω is
connected, then one of these sets must be empty.

The following theorem also follows from the Cauchy integral formula. It reveals
one sense in which complex analytic functions behave like polynomials. The integer
m in this result is called the order of the zero of f at L.

Theorem 4.4. Suppose f is complex analytic in a connected open set Ω con-
taining p and f(p) = 0. Then either f(z) = 0 for all z in Ω, or there is a positive
integer m and a complex analytic function g on Ω such that

• g(p) 6= 0.
• f(z) = (z − p)mg(z) for all z in Ω.

Proof. Expand f in a power series about p. Either all the Taylor coefficients
at p are 0, in which case Corollary 4.4 yields f(z) = 0 for all z in Ω, or there is some
smallest m for which cm 6= 0. In the second case we define g by the rule g(p) = cm
and g(z) = f(z)

(z−p)m for z 6= p. Both conclusions hold. �
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Corollary 4.5. Suppose f is complex analytic on an open connected set Ω.
Let {an} be a sequence of distinct points in Ω which converges to a limit p in Ω,
and suppose f(an) = 0 for all n. Then f(z) = 0 for all z in Ω.

Proof. If f is not identically zero, then we can write f(z) = (z − p)mg(z) as
in the previous theorem. In particular g(p) 6= 0. But f(an) = 0 for all n implies
g(an) = 0 for all n, and hence by continuity g(p) = 0. The only possibility is
therefore that f is identically zero. �

In Theorem 4.4 we assumed that the an are distinct. We could have made a
weaker assumption, as long as we avoid the following problem. The conclusion fails
for example if an = p for all large n; the equation f(an) = (an− p)mg(an) does not
then allow us to conclude that g(an) = 0. The next remark is a bit more subtle.

Remark 4.1. The previous corollary requires that the limit point p lie in Ω.
Here is a counterexample without that assumption. Let Ω be the complement of
the origin, and let f(z) = sin(πz ). Then f( 1

n ) = 0 for all n but f is not identically
zero. Note that f is not complex analytic at 0.

Exercise 6.10. Assume f is continuous at z. Let µε be the positively oriented
circle of radius ε about z. Prove that

limε→0

∫
µε

f(z)
ζ − z

dζ = 2πif(z).

The next result illustrates the Cauchy integral formula, but it holds in a more
general situation. We employ it in our work on doing real integrals using complex
variables. We assume that the circle is positively oriented. The reader should pause
and understand what it means for the series in Proposition 4.1 to converge, as both
limits of summation are infinite.

Proposition 4.1. Suppose that
∑∞
n=−∞ an(z−p)n = f(z) for 0 < |z−p| < R,

where the series converges absolutely and uniformly on each closed sub-annulus
δ ≤ |z| ≤ r. Then for ε < R we have

(32)
∫
|z−p|=ε

f(z)dz = 2πia−1.

Proof. We can interchange the order of integral and summation. The result
then follows from the specific evaluations; for n 6= −1, we have∫

|z−p|=ε
(z − p)ndz = 0

and for n = −1 the integral is 2πi. �

Definition 4.1. Assume
∑∞
n=−∞ an(z−p)n = f(z) converges for 0 < |z−p| <

R. The number a−1, namely the coefficient of 1
z−p in the expansion, is called the

residue of f at p.

This proposition allows us to evaluate certain integrals in our heads. Given f ,
we need only find residues. Later we apply this idea to evaluate many non-trivial
definite integrals from calculus.
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5. A return to the definition of complex analytic function

This section unifies much of what we have done by proving that three possible
definitions of complex analytic function are equivalent.

Theorem 5.1. Let Ω be an open subset of C and suppose f : Ω → C. The
following three statements are equivalent:

1) For all p ∈ Ω, there is a disk about p, lying in Ω, on which f can be developed
in a convergent power series:

(33) f(z) =
∞∑
n=0

an(z − p)n.

2) The function f is continuously differentiable, and for all p ∈ Ω,

(34)
∂f

∂z
(p) = 0.

3) For all p ∈ Ω, f has a complex derivative f ′(p), defined by the existence of
the limit in (34):

(35) f ′(p) = limζ→0
f(p+ ζ)− f(p)

ζ
.

Proof. Assume 1) holds. Fix p ∈ Ω and consider a disk about p on which f
has a convergent power series expansion. By Theorem 2.1 of Chapter 4, the series
converges absolutely and uniformly on any closed subdisk, and hence defines a
continuously differentiable function. Further we may differentiate the series term
by term. But ∂

∂z ((z−p)n) = 0 for all n. Hence ∂f
∂z = 0 on Ω and therefore 2) holds.

Furthermore, if 1) holds, then we may also differentiate the series term by term
with respect to z. Since the radius of convergence of the derived series is the same
as that of the the original series, f ′(p) exists at each point of Ω. Thus 3) holds.

Assume 2) holds. Then we may apply Green’s theorem as in Section 6.2 to
conclude that Cauchy’s theorem holds. Hence the Cauchy integral formula holds.
We used the Cauchy integral formula to derive the power series expansion. Hence
2) implies 1).

It remains to prove that 3) implies either 1) or 2). Assume that 3) holds. By
Goursat’s proof, the line integral of f(z)dz over the boundary of a rectangle equals
0 for any rectangle in Ω. Therefore the line integral vanishes over more general
closed curves, Cauchy’s theorem holds, and hence the Cauchy integral formula
holds. From it we obtain 1). �

Exercise 6.11. Show directly that the Cauchy integral formula holds if and
only if ∫

γ

f(ζ)− f(z)
ζ − z

dζ = 0.

Exercise 6.12. Assume f is complex analytic for z near ζ. For z 6= ζ, define
g(z) by

g(z) =
f(z)− f(ζ)

z − ζ
.

What value must g(ζ) be in order that g be complex analytic at ζ?
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The next three exercises illustrate the usefulness of Theorem 5.1. By choosing
the right characterization one can find the most natural and direct proof.

Exercise 6.13. Assume f, g are complex analytic on Ω. Then f+g and fg are
also complex analytic on Ω. Prove both statements using each of the three possible
definitions of complex analytic function.

Exercise 6.14. Assume f is complex analytic on Ω. Then f ′ also is complex
analytic there. Prove this statement using each of the three possible definitions of
complex analytic function. Comment. The proof using convergent power series is
the only one with any subtlety.

Exercise 6.15. Suppose f(z) =
∑∞
n=0 an(z − p)n, where the series converges

for z near p. Assume a0 6= 0. Then 1
f is complex analytic near p. Prove this

statement using each of the three definitions of complex analytic.

Exercise 6.16. Suppose
∑∞
n=0 anz

n is a formal power series and a0 6= 0. Show
that there is a formal power series equal to its reciprocal.

Exercise 6.17. Let γ be a simple closed curve in the region from Figure 8 in
Chapter 1. Determine all possible values for

∫
γ

dz
z−p .





CHAPTER 7

Applications of complex integration

In this chapter we provide applications of the Cauchy integral formula to cal-
culus problems. Given a definite integral over an interval as in elementary calculus,
we create a simple closed curve γ in C including this interval as one of its pieces.
The techniques of Chapter 6 enable us to evaluate the line integral over γ, often
by inspection or easy computation. If we can understand the behavior on the ex-
tra pieces of the contour, often in a limiting case, then we can solve the original
problem. We provide many examples and several general results concerning this
technique. In this chapter we also introduce the Fourier transform, the Gaussian
probability distribution, and the Gamma function.

1. Singularities and residues

Suppose f is complex analytic in the set 0 < |z−p| < ε. What can happen at p
itself? There are three possibilities. The first, called a removable singularity, arises
when f is in fact also analytic at p, or when there is a value for f(p) making f
analytic in the set |z− p| < ε. The following two examples illustrate this situation:

(1) f(z) =
z2 − p2

z − p

(2) f(z) =
sin(z)
z

.

In (1) the complex analytic function F defined by F (z) = z+p agrees with f when
0 < |z − p|. In (2), where p is the origin, we can extend f to a complex analytic
function F , defined in all of C. Note that F (0) = 1. The function F has an explicit
power series expansion valid in all of C. Riemann’s removable singularities theorem,
which we do not require, gives a simple test for a singularity being removable: if f
is complex analytic near a singularity at p and f is bounded, then the singularity
is removable.

The second possible kind of singularity is called a pole. In this case, there is
a positive integer k such that (z − p)kf(z) has a removable singularity at p. We
say that f has a pole of order k at p. When k = 1, we sometimes say that f has a
simple pole at p. A removable singularity can be regarded as a pole of order zero.
Here are two examples of poles:

(3) f(z) =
ez

z3

(4) f(z) =
1

z2 + 1
.

127
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In (3), f has a pole of order 3 at p = 0. In (4), f has simple poles at ±i.
The third kind of singularity includes all the remaining possibilities; f has a

singularity at p, the singularity is not removable, and there is no k for which f has
a pole of order k. The resulting situation is called an essential singularity. Here
are two examples of essential singularities at 0: (see also Remark 4.1 of Chapter 6)

(5) f(z) = e
1
z2

(6) f(z) = sin(
1
z

)

We next discuss techniques for finding residues. Let us first recall why we
care. In the previous chapter we briefly considered functions f for which f(z) =∑∞
n=−∞ an(z − p)n on the annulus 0 < |z − p| < R. The series here is called a

Laurent series; it converges absolutely and uniformly on each closed sub-annulus
δ ≤ |z| ≤ r. In our applications the existence of the Laurent series is evident; hence
we do not prove a general statement. Our main concern is the following result from
Chapter 6. For ε < R we have∫

|z−p|=ε
f(z)dz = 2πia−1.

We need only find a−1 in order to evaluate the integral.
Suppose f is complex analytic in the set 0 < |z − p| < ε. In case f has a

removable singularity at p, the residue of f at p is zero. The converse assertion
fails; for example, if f(z) = 1

z2 , then f has a pole of order 2 at 0, but the residue
equals 0, because there is no 1

z term in the expansion. Suppose that f is known to
have a pole at p. We can find the residue there by the following result.

Lemma 1.1. Suppose that f has a pole of order k at p. Then the residue of f
at p has the following value:

(7) a−1 =
1

(k − 1)!
(
∂

∂z
)k−1

(
(z − p)kf(z)

)
(p).

Proof. By definition of a pole, the function g(z) = f(z)(z − p)k is complex
analytic near p and hence can be expanded in a Taylor series in powers of (z − p).
Near p we can write

g(z) =
∞∑
n=0

bn(z − p)n =
k−1∑
n=0

bn(z − p)n + h(z)(z − p)k

where h is complex analytic. Away from p we then have

(8) f(z) =
b0

(z − p)k
+ ...+

bk−1

(z − p)
+ h(z).

Thus the residue is bk−1, namely the k−1-st derivative of g at p divided by (k−1)!,
and (7) follows. �

In practice we are often given an expression where f appears in the denominator
and f has a simple zero at p. We can find the residue, with little computation, as
follows.
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Lemma 1.2. Suppose f and g are complex analytic near p, and f has a zero of
first order there. Then the residue of g

f at p equals

limz→p

(
(z − p)g(z)

f(z)

)
=

g(p)
f ′(p)

.

Proof. The two expressions are equal by L’Hospital’s rule. We verify that the
first equals the residue. If f(z) = c1(z− p) + c2(z− p)2 + ..., then f ′(p) = c1. Using
Theorem 4.4 from Chapter 6 and Exercise 6.15 we get

g(z)
f(z)

=
g(z)

(z − p)(c1 + ...)
=

g(z)
c1(z − p)

(1 + ...),

where the ... terms are divisible by z−p. The result now follows from the definition
of the residue at p. �

Example 1.1. Put f(z) = eπz

z2+1 . The residue of f at i is eiπ

2i = i
2 .

2. Evaluating real integrals using complex variables methods

The simplest sort of example involves integrals over the interval [0, 2π] involving
cosine and sine. We reduce these integrals to line integrals over the unit circle and
we evaluate the resulting line integral using residues.

Example 2.1. Consider the integral

J =
∫ 2π

0

dθ
17
4 + 2cos(θ)

.

To evaluate J , we set z = eiθ, and convert J into a line integral over |z| = 1. We
have dz = ieiθdθ = izdθ and hence we get

J =
∫
|z|=1

dz

iz( 17
4 + z + 1

z )
=

1
i

∫
|z|=1

dz

(z + 1
4 )(z + 4)

.

Now the evaluation is simple. The integrand is complex analytic except at −1
4 and

−4. Of these points, only −1
4 is inside the unit circle. The residue there is 1

−1
4 +4

.
Hence we obtain

J = 2πiRes = 2πi
1
i

4
15

=
8π
15
.

We next consider a standard sort of example where we need to introduce extra
contours to create a simple closed curve. From calculus one can evaluate

I =
∫ ∞
−∞

dx

x2 + 1

as follows. By definition of improper integral (here the limits are infinite) and by
symmetry, we have

I = limR→∞

∫ R

−R

dx

x2 + 1
= limR→∞

(
tan−1(R)− tan−1(−R)

)
=
π

2
− −π

2
= π.

We next use complex variables to provide an alternative evaluation of I.
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Example 2.2. We evaluate I. Consider the curve γR defined to be the interval
along the real axis from −R to R together with the semi-circle ηR of radius R in
the upper half plane, traversed counterclockwise, making γR into a simple closed
positively oriented curve. See Figure 1.

Assume that R > 1. To compute
∫
γR

dz
z2+1 , we first observe that the function

z → 1
z2+1 is complex analytic in all of C except for the singularities at ±i. Hence

it is analytic on and inside γR, except for the single point i. The residue at i equals
1
2i . Either by applying the Cauchy integral formula to f(z) = 1

z+i , or by applying
Proposition 4.1 of Chapter 6, we obtain∫

γR

dz

z2 + 1
=
∫
γR

dz

(z − i)(z + i)
= 2πi

1
i+ i

= π.

This result holds for all R greater than 1. We let R tend to infinity. If we can show
that the integral along the circular arc ηR tends to 0, then we obtain the result
I = π. To show that the integral JR along the circular arc ηR tends to 0 is not
difficult in this case. Put z = Reiθ and use the ML-inequality. For some constant
C we get

(9) |JR| =
∣∣∣∣∫
ηR

dz

z2 + 1

∣∣∣∣ =
∣∣∣∣∫ 2π

0

Rieiθdθ

R2e2iθ + 1

∣∣∣∣ ≤ C

R
.

It follows from (9) that JR tends to 0 as required.

Exercise 7.1. Verify the inequality in (9).

−R R

Figure 1. Contour for Theorem 2.1

The method from this example leads to the following general result, whose
proof so closely follows the example that it can be safely left to the reader.

Theorem 2.1. Let f(z) = p(z)
q(z) be a rational function where the following two

additional statements hold. First, q(z) 6= 0 on the real axis. Second, the degree of
q is at least 2 more then the degree of p. Let Σ denote the sum of the residues in
the upper half plane. Then ∫ ∞

−∞
f(x)dx = 2πiΣ.

Exercise 7.2. Prove Theorem 2.1.

Next we give a rather amazing method for evaluating certain integrals over the
positive real axis. Consider
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I =
∫ ∞

0

dx

q(x)
where q is a polynomial of degree at least two, and q(x) > 0 for x ≥ 0. If q were
even, then the value of I would be half the integral over the whole real line, and
hence could be evaluated by the method of the previous theorem. In general we
can find I by introducing logarithms.

Consider the branch of the logarithm defined by log(z) = log(|z|) + iθ, where
0 < θ < 2π. We will integrate on the positive real axis twice, using θ = 0 once and
then using θ = 2π the second time, as suggested by the contour γε,R from Figure
2. We consider the line integral

Jε,R =
∫
γε,R

log(z)dz
q(z)

.

For R sufficiently large and ε sufficiently small, the value of Jε,R is 2πi times the
sum of the residues of ( log(z)

q(z) ) in the entire complex plane. In the proof of Theorem
2.2 we show that the integrals on the circular arcs tend to 0 as ε tends to 0 and R
tends to ∞. What happens on the positive real axis? Note that log(z) = log(|z|)
on the top part, but log(z) = log(|z|) + 2πi on the bottom part. The bottom part
is traversed in the opposite direction from the top part; hence everything cancels
except for the term ∫ ε

R

2πi dz
q(z)

.

After canceling out the common factor of 2πi, and including the residues in all
of C in the sum, we find

(10) I = −
∑

residues
(

log(z)
q(z)

)
.

We state a simple generalization of this calculation as the next theorem.

|z| = R

|z| = ε

Figure 2. Contour for Theorem 2.2
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Theorem 2.2. Let f
q be a rational function, where the degree of q is at least

two more than the degree of f , and suppose that q(x) 6= 0 for x ≥ 0. Then the
integral in (11) converges and

(11)
∫ ∞

0

f(x)
q(x)

dx = −
∑

residues
(

log(z)f(z)
q(z)

)
.

The sum in (11) is taken over all roots of q in C.

Proof. (Sketch) We proceed as in the discussion above, using the contour
given in Figure 2. Let J = Jε,R denote the integral∫

γε,R

f(z)log(z)
q(z)

dz.

For sufficiently small ε and sufficiently large R we have J = 2πiΣ, where Σ is the
sum of the residues. As above, the integrals along the top and bottom parts of
the real axis cancel except for the factor 2πi

∫ 0

R
f(x)
q(x) dx. If we can show that the

integrals along the circular arcs tend to zero as ε tends to 0 and R tends to infinity,
then (11) follows. Thus the main point is to establish these limits.

For |z| = ε, the integral becomes

(12)
∫ 2π

0

q(εeiθ)
f(εeiθ)

εieiθ (log(ε) + iθ) dθ.

Note that f and q are continuous at 0, and q(0) 6= 0. Since limε→0ε log(ε) = 0, it
follows that (12) tends to zero as ε tends to 0. Next replace ε by R in (12). By
assumption, the degree of q is at least two larger than the degree of f . Hence, for
R large enough, there is a constant C such that we can estimate | f(Reiθ)

q(Reiθ)
| by C

R2 .

It follows that the entire integral can be estimated by C1+C2log(R)
R . The limit of

log(R)
R as R tends to infinity is zero. It follows that the entire integral tends to 0 as

well. Formula (11) follows. �

Example 2.3. First we compute

I =
∫ ∞

0

dx

x2 + 1

by this method. There are two singularities. Using (11) we obtain

(13) I = −
(

log(i)
2i

+
log(−i)
−2i

)
= −(

π

4
− 3π

4
) =

π

2
.

Example 2.3 can be done by Theorem 2.1, but the next example cannot.

Example 2.4. Next we consider p(x) = x2 + x+ 1. We wish to find

I =
∫ ∞

0

dx

x2 + x+ 1
.

Notice that z3 − 1 = (z − 1)(z2 + z + 1), and hence the poles are at the complex
cube roots of unity ω and ω. Note that 2ω+ 1 = i

√
3 and 2ω+ 1 = −i

√
3. By (11)

we obtain

(14) I = −
(

log(ω)
2ω + 1

+
log(ω)
2ω + 1

)
= −(

2π
3
√

3
− 4π

3
√

3
) =

2π
3
√

3
.
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Remark 2.1. The same technique can be used to evaluate integrals involving
powers of the logarithm. One includes one extra logarithm and proceeds as in the
next several exercises.

Exercise 7.3. Assume a > 0 and n is a positive integer. Choose the branch
of logarithm from Theorem 2.2. Find the residue of (log(z))n

(z+a)2 at z = −a.

Exercise 7.4. Assume a > 0. The purpose of this exercise is to evaluate

I =
∫ ∞

0

log(x)
(x+ a)2

dx.

The evaluation generalizes the method of proof from Theorem 2.2. Use the same
contour, but this time consider the integral∫

γε,R

(log(z))2

(z + a)2
dz.

On the bottom part of the real axis, we now get the term (log(z)+2πi)2. Expanding
the square shows that we now get three terms, and only the first term cancels the
term on the top part. Fill in the details to verify that I = log(a)

a . Note: The pole
at −a is of order two. Use the previous exercise to find the residue there.

Exercise 7.5. Difficult. Find

I =
∫ ∞

0

(log(x))n

(x+ 1)2
dx.

We next compute an important integral where estimation on a circular arc is
rather subtle. The technique used in this example often arises in harmonic analysis.
We start with three simple facts about the sine function.

Lemma 2.1. There is a positive constant C such that sin(θ)
θ ≥ C for 0 ≤ θ ≤ π

2 .

Proof. Define g by g(θ) = sin(θ)
θ for θ 6= 0, and g(0) = 1. Then g is continuous

on [0, π2 ] and g(θ) 6= 0. By basic analysis (Theorem 1.1 of Chapter 8), g achieves a
positive minimum value C. �

Lemma 2.2. For 0 ≤ θ ≤ π
2 there is a positive number K such that

(15)
∫ π

2

0

e−Rsin(θ)dθ ≤
∫ π

2

0

e−RCθdθ ≤ K

R
.

Proof. By Lemma 2.1 we have sin(θ) ≥ Cθ and hence Rsin(θ) ≥ RCθ. Since
multiplying by −1 switches an inequality and exponentiating preserves one, we get

(16) e−Rsin(θ) ≤ e−RCθ.

Doing the integral from the middle term of (16) now produces a constant times the
factor of 1

R . �

Lemma 2.3. ∫ π

0

e−Rsin(θ)dθ = 2
∫ π

2

0

e−Rsin(θ)dθ

Proof. Obvious! �
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Example 2.5. We evaluate the integral

I =
∫ ∞
−∞

xsin(x)
x2 + 1

dx =
π

e
.

Note that

I = Im
(∫ ∞
−∞

xeix

x2 + 1
dx

)
.

We use the usual circular contour from Theorem 2.1. The hard part is to show that
the integral over the semi-circle tends to zero as R tends to infinity. We postpone
checking that fact. Assuming it is true, we obtain

I = Im
(

(2πi)Residuei(
zeiz

z2 + 1
)
)

= Im
(

(2πi)(
ie−1

2i
)
)

=
π

e
.

Next we investigate the integral IR along the semi-circle |z| = R, where we
assume R > 1. We have

IR =
∫ π

0

ReRe
iθ

R2e2iθ + 1
Rieiθdθ =

∫ π

0

ReRicos(θ)−Rsin(θ)

R2e2iθ + 1
Rieiθdθ.

Note that |eRicos(θ)| = 1. Also note that | 1
R2e2iθ+1

| ≤ 1
R2−1 . We use the three

previous Lemmas and Lemma 1.1 of Chapter 6 to estimate the integral as follows:

IR ≤
R2

R2 − 1

∫ π

0

e−Rsin(θ)dθ ≤ 2R2

R2 − 1

∫ π
2

0

e−Rsin(θ)dθ

≤ c′
∫ π

2

0

e−RCθ ≤ c

R
.

Here c′ and c are unimportant positive constants. Hence the integral along the
semi-circle tends to 0 as R tends to infinity.

Example 2.6. We evaluate the integrals Ic =
∫∞

0
cos(x2)dx and Is =

∫∞
0

sin(x2)dx.
Each turns out to equal

√
π
8 .

We consider the integral of e−z
2

around the simple closed curve γR consisting
of three pieces: the interval [0, R] on R, the arc of the circle |z| = R for 0 ≤ θ ≤
π
4 , and the forty-five degree line segment from Re

iπ
4 to 0. By Cauchy’s theorem∫

γR
e−z

2
dz = 0. Exercise 7.6 asks you to check that the integral along the semi-

circular arc tends to 0 as R tends to infinity. We parametrize the forty-five degree
line segment by z = e

iπ
4 t for R ≥ t ≥ 0. Hence we obtain

(17)
∫ ∞

0

e−x
2
dx =

∫ ∞
0

e−it
2
e
iπ
4 dt = (

1 + i√
2

)
∫ ∞

0

e−it
2
dt.

Next we substitute e−it
2

= cos(t2) − isin(t2) into (17). By Proposition 3.1 of the
next section, the left-hand side of (17) equals

√
π

2 . Equating imaginary parts of
both sides of (17) yields Ic = Is. Equating real parts of both sides of (17) now
yields √

π

2
=

1√
2

(Ic + Is) =
2√
2
Ic,

from which the conclusion follows.
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Exercise 7.6. Fill in the details of the evaluations and estimations in Examples
2.5 and 2.6.

Exercise 7.7. Evaluate the following integrals using the techniques in this
chapter. (Some answers are given.)

1) For a > 0, show that ∫ ∞
−∞

dx

x2 + a2
=
π

a
.

2) For a, b > 0, show that∫ ∞
−∞

dx

(x2 + a2)(x2 + b2)
=

π

ab(a+ b)
.

3) For a > 0 and n ∈ N, find∫ ∞
−∞

dx

(x2 + a2)n
.

4) For k ∈ N, show that∫ 2π

0

sin2k(θ)dθ =
π

22k−1

(
2k
k

)
.

5) For j, k ∈ N, find ∫ 2π

0

cos2j(θ)sin2k(θ)dθ.

6) For a, b > 0, show that∫ 2π

0

dθ

a2cos2(θ) + b2sin2(θ)
=

2π
ab
.

7) For α > 1, show that ∫ ∞
0

dx

1 + xα
=

π
α

sin(πα )

8) Use Theorem 2.2 to show that∫ ∞
0

dx

(x2 + 1)(x+ 1)
=
π

4
.

9) For p an integer with p > 2, let Ip be defined as follows:

Ip =
∫ ∞

0

dx

1 + x+ x2 + ...+ xp−1
.

a) Find the limit of Ip as p tends to infinity. (The limit is not hard to find.)
b) Prove that

Ip =
2π
p2

p−1∑
j=1

j

(
sin(

4πj
p

)− sin(
2πj
p

)
)
.

10) Show that ∫ ∞
−∞

sin2(x)
x2

dx = π.
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3. Fourier transforms

The Fourier transform is an amazing tool in both pure and applied mathemat-
ics. One reason behind its success is that it converts differentiation (a difficult idea)
into multiplication (an easier idea). We ask the reader to ponder the following ques-
tion before reading the subsequent development: what would the half-derivative of
a function be? We will give an elegant answer.

The first item of business is the following result about integrals.

Proposition 3.1. For all real y, the value of the integral Iy in (18) is
√
π.

(18) Iy =
∫ ∞
−∞

e−(x+iy)2dx =
√
π.

Proof. First we establish the independence of the integral on y. Let γR denote
the rectangle with vertices at −R,R,R+ iy,−R+ iy. We traverse γR counterclock-
wise as usual. Since z → e−z

2
is complex analytic in all of C, Cauchy’s Theorem

yields

0 =
∫
γR

e−z
2
dz.

Breaking up this line integral into four pieces yields

(19) 0 =
∫ R

−R
e−x

2
dx+

∫ y

0

e−(R+it)2i dt+
∫ −R
R

e−(x+iy)2dx+
∫ 0

y

e−(−R+it)2i dt.

We let R tend to infinity in (19). If we can show that the limits of the second and
fourth terms are 0, we obtain

0 =
∫ ∞
−∞

e−x
2
dx−

∫ ∞
−∞

e−(x+iy)2dx,

and the independence of Iy on y then follows.
It remains to estimate the integrals on the vertical segments. They are almost

identical; we estimate one of them:

(20)
∣∣∣∣∫ y

0

e−(R+it)2dt

∣∣∣∣ ≤ ∫ y

0

|e−(R+it)2 |dt =
∫ y

0

e−R
2
et

2
dt ≤ ey

2
e−R

2
.

Since y is fixed, and limR→∞e
−R2

= 0, we obtain the needed limit.
Therefore it suffices to evaluate (18) when y = 0. The integral, whose value is√

π, cannot be done by the methods of one-variable calculus. One standard method
of evaluating it, which we generalize considerably in the next section, is to consider
its square and to use polar coordinates in the plane. Let I denote the integral,
consider I2, and note that now y is a dummy variable. We obtain

I2 =
∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy =
∫ ∞

0

∫ 2π

0

e−r
2
rdθdr =

1
2

2π = π.

�
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Definition 3.1. Let f : R → C be an integrable function. Its Fourier trans-
form, denoted by f̂ , is defined by

(21) f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)e−ixξdx.

We will consider some technical points about this definition, but our investiga-
tions will not get heavily involved in these subtleties. First of all, when we say that
f is integrable, we mean that the integral of |f | exists. Second, the integral in (21)
is improper, because both limits of integration are infinite. Therefore the integral
notation in (21) is an abbreviation for a double limit:∫ ∞

−∞
f(x)e−ixξdx = lima→−∞limb→∞

∫ b

a

f(x)e−ixξdx.

In some cases this double limit fails to exist but the limit∫ ∞
−∞

f(x)e−ixξdx = limR→∞

∫ R

−R
f(x)e−ixξdx

does exist. Another interesting point concerns extensions of the definition to more
general functions or even to generalized functions, or distributions. Once this so-
phisticated theory has been developed, it is possible to take Fourier transforms of
more general functions and distributions. Often one writes the same integral, but
a more subtle procedure has in fact been used.

Theorem 3.1. Put f(x) = e
−x2

2a2 . Then the Fourier transform f̂ is given by

(22) f̂(ξ) = ae
−ξ2a2

2 .

In particular, if g(x) = e
−x2

2 , then ĝ = g.

Proof. We must evaluate the integral

I =
1√
2π

∫ ∞
−∞

e
−x2

2a2 e−ixξdx.

First we put x = ay to get

I =
a√
2π

∫ ∞
−∞

e
−y2

2 e−iyaξdy.

Then completing the square and using Proposition 3.1 gives

I =
a√
2π

∫ ∞
−∞

e
−(y+iaξ)2

2 e
−a2ξ2

2 dy =
a√
2π

∫ ∞
−∞

e
−y2

2 dy e
−a2ξ2

2 = ae
−a2ξ2

2 .

�

The parameter a2 from (22) is called the variance of the Gaussian random
variable. When a2 is small, things are concentrated near 0, which is the mean of
the random variable. When a2 is large, things are spread out. The theorem states
that the Fourier transform of a Gaussian is also a Gaussian, but the new variance
is the reciprocal of the original variance.

Exercise 7.8. Find the Fourier transform of sin(x)
x .

Exercise 7.9. Find the Fourier transform of the function that equals 1 on the
interval (a, b) and otherwise equals 0.
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Exercise 7.10. Graph the function e
−x2

2a2 for a = 1
3 , a = 1, and a = 3.

Let us assume that f is an infinitely differentiable function on R and that
f decreases rapidly at ∞. For example, f could be any polynomial times the
Gaussian e−

x2
2 . The basic theorems of analysis then allow us to make the following

statements rigorous.
1) The Fourier inversion formula holds:

(23) f(x) =
1√
2π

∫ ∞
0

eixξ f̂(ξ)dξ.

2) For each positive integer n it is valid to differentiate (23) n times to obtain

(24) f (n)(x) = (
d

dx
)nf(x) =

1√
2π

∫ ∞
0

eixξ f̂(ξ)(iξ)ndξ.

Let us rewrite (24) more abstractly. Let D denote the differentiation operator
d
dx , and let M denote multiplication by iξ. Let F denote the operation of taking
Fourier transforms. We obtain Dnf = F−1MnF(f). In other words,

Dn = F−1MnF .

Let α be a positive real number. We define the derivative of order α by

(25) Dα = F−1MαF .

It follows that

Dα+β = DαDβ .

The abstract formula (25) gives a definition of a fractional derivative operation!
It is difficult to write down an explicit expression for a fractional derivative, and
hence we are content with (25). More generally, given a function h, we can try to
define h(D) by the formula

h(D) = F−1h(M)F .

4. The Gamma function

The Gamma function extends the factorial function to (most) complex numbers.
The reader might pause and start wondering what we could possibly mean by
something such as 3

2 ! or π!, much less z! for z ∈ C.

Definition 4.1 (The gamma function as an integral). For Re(z) > 0, we define
Γ(z) by the formula

(26) Γ(z) =
∫ ∞

0

e−ttz−1dt.

Let us discuss some technicalities concerning this definition. The integral is
improper for two reasons. First the upper limit is infinite; no problems result
because the decay of e−t at infinity compensates for the growth of tz−1 there.
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Second, when z−1 is negative, there is a singularity at 0. Again no problems result
because for α > −1, the following limit exists:

limε→0

∫ 1

ε

xαdx.

The issue of z being complex is not a problem. Put z − 1 = ζ = u + iv. What do
we mean by tζ? By definition, since t > 0,

tζ = eζlog(t) = tueivlog(t)

and hence |tζ | = tu. Therefore the imaginary part of ζ does not impact the conver-
gence of the integral.

Note that Γ(1) =
∫∞

0
e−tdt = 1. We also note, using integration by parts: if

Re(z) > 0, then Γ(z + 1) = zΓ(z). By combining these facts with induction we see
for n ∈ N that Γ(n) = (n− 1)!. It follows again by induction on n that

(27) Γ(z + n) = (z + n− 1)(z + n− 2)...(z + 1)(z)Γ(z)

whenever Re(z) > 0. The functional equation (27) can be used to extend the
definition of the Γ function. For example, if −1 < Re(z) < 0, then Γ(z + 1) is
defined. We can therefore define Γ(z) by the formula

Γ(z) =
Γ(z + 1)

z
.

Formula (27) also enables us to define Γ(z) whenever the real part of z is not a
non-negative integer. For example we use

Γ(z) =
Γ(z + n)

(z + n− 1)(z + n− 2)...(z + 1)(z)

to define Γ(z) whenever Re(z) > −n.

Remark 4.1. The Γ-function satisfies the following remarkable identity, and
hence can be defined at all complex numbers except for the negative integers and
zero (see [22]):

(28) Γ(z) = limn→∞
n!nz

z(z + 1)...(z + n)
.

The Γ-function arises throughout mathematics, statistics, physics, and engi-
neering. One explanation is simply that it generalizes the factorial. Another expla-
nation is its close connection with the Gaussian. A simple example motivates our
next result.

We will show below that Γ( 1
2 ) =

√
π. Pretending that we know this result,

consider the Gaussian integral

(29)
∫ ∞
−∞

e
−x2

2 dx.

The next definition is not as general as it could be, but it is adequate for our
present purposes.

Definition 4.2. A probability density function is a nonnegative continuous
function f : R→ R such that

∫∞
−∞ f(t)dt = 1.



140 7. APPLICATIONS OF COMPLEX INTEGRATION

Figure 3. The bell curve, or Gaussian

A probability density function defines a random variable X by the rule that
the probability that X takes a value between a and b equals

∫ b
a
f(t)dt. In order

to make e−
x2
2 into a probability density function, we must divide by a constant to

ensure that the integral equals one. Thus we must evaluate the integral (29). We
noted earlier, in a similar integral without the factor 1

2 , that the evaluation cannot
be done by the techniques of one variable calculus; there is no elementary function
whose derivative is e

−x2
2 . Consider the following approach:

(30)
∫ ∞
−∞

e
−x2

2 dx = 2
∫ ∞

0

e
−x2

2 dx = 2
∫ ∞

0

√
2

2
e−t

dt√
t

=
√

2Γ(
1
2

) =
√

2π.

In (30) we used Γ( 1
2 ) =

√
π; we verify this value by a method due to Euler. The

technique of multiplying the integrals together generalizes the standard method
used in the proof of Proposition 3.1. The far right-hand side of (31) is called the
Euler Beta function.

Theorem 4.1. For Re(a) > 0 and Re(b) > 0 the following identity holds:

(31)
Γ(a)Γ(b)
Γ(a+ b)

=
∫ 1

0

ua−1(1− u)b−1du = B(a, b).

Proof.

Γ(a)Γ(b) =
∫ ∞

0

e−ssa−1ds

∫ ∞
0

e−ttb−1dt =
∫ ∞

0

∫ ∞
0

e−s+tsa−1tb−1dsdt.

Replace s with x2 and t with y2 to obtain

Γ(a)Γ(b) = 4
∫ ∞

0

∫ ∞
0

e−(x2+y2)x2a−1y2b−1dxdy.

Next use polar coordinates to obtain

Γ(a)Γ(b) = 4
∫ ∞

0

e−r
2
r2a+2b−1

∫ 2π

0

cos2a−1(θ)sin2b−1(θ)dθ.

One more change of variables in each integral yields

Γ(a)Γ(b) =
∫ ∞

0

e−tta+b−1dt

∫ 1

0

ua−1(1−u)b−1du = Γ(a+b)
∫ 1

0

ua−1(1−u)b−1du,

as desired. �
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Theorem 4.2. For 0 < Re(z) < 1 we have

Γ(ζ)Γ(1− ζ) =
π

sin(πζ)
.

Proof. By Theorem 4.1 it suffices to evaluate B(ζ, 1 − ζ). To do so we first
change variables and then use contour integration. We must find∫ 1

0

(
u

1− u
)ζ−1 du

u
.

Putting x = u
1−u we obtain

(32)
∫ ∞

0

xζ−1

1 + x
dx.

We evaluate (32) using the keyhole γε,R shown in Figure 4. By the residue theorem
the value of the integral Iε,R is

Iε,R = 2πiRes(−1) = 2πi(−1)ζ−1 = 2πieiπ(ζ−1).

The integrals along the circular arcs tend to zero as ε→ 0 and R→∞. The integral
along the top half of the real axis tends to what we want, namely I; the integral
along the bottom half tends to −e2πi(ζ−1)I. Putting this information together gives

(33) I(1− e2πi(ζ−1)) = 2πieiπ(ζ−1).

Solving (33) for I and then using the definition of sin(πζ) finishes the proof. �

Corollary 4.1. Γ( 1
2 ) =

√
π.

Figure 4. Contour for integrals involving branch cuts

We next combine our knowledge of the Gamma function with our techniques of
contour integration to sketch the computation of two important integrals. Choose
a real number m with 0 < m < 1. Consider the real integrals:

Ic =
∫ ∞

0

cos(x)
x1−m dx
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Is =
∫ ∞

0

sin(x)
x1−m dx.

It is natural to evaluate them simultaneously by finding

(34)
∫ ∞

0

eix

x1−m dx.

To compute (34), we consider a contour γ consisting of the interval (ε, R) on the
real line, one quarter of a circle of radius R, the part of the imaginary axis from
iR to iε, and the quarter circle of radius ε. Choose a branch cut avoiding the first
quadrant to make zm−1 complex analytic there. The integral around γ is then 0 by
Cauchy’s theorem. As in many of our examples, the integrals on the circular arcs
tend to zero in the limit. The integral along the imaginary axis tends to∫ ∞

0

e−ttm−1(i)mdt,

namely (i)mΓ(m). It follows that Ic is the real part of (i)mΓ(m) and Is is the
imaginary part of (i)mΓ(m). Note that im = e

imπ
2 . Hence

Ic = Γ(m)cos(
mπ

2
)

Is = Γ(m)sin(
mπ

2
).

Exercise 7.11. Fill in the details of the above evaluations of Ic and Is.

Remark 4.2. Often in probability and in combinatorics one needs to know
approximately how large n! is for large n. The famous Stirling’s formula provides
such information. Its proof is beyond the scope of this book (See [22]) but we state
the result here as an application of the Γ-function.

limn→∞
n!

nn+ 1
2 e−n

=
√

2π.

In other words n! = Γ(n+ 1) is roughly equal to
√

2πn(ne )n for large n.

Exercise 7.12. Verify that the integrals along the circular arcs in the proof of
Theorem 4.2 tend to zero.

Exercise 7.13. For positive constants a, λ, the gamma density g = ga,λ is
defined for x > 0 by

g(x) = ga,λ(x) = c(a, λ)xa−1e−λx.

Determine the value c(a, λ) that makes g into a probability density function; in
other words we require

∫∞
0
g(x)dx = 1.

Exercise 7.14. Determine the Fourier transform of the gamma density from
the previous exercise.

Exercise 7.15. We can use Stirling’s formula to give an approximate formula
for the following natural question. For large n, flip a fair coin 2n times. Determine
approximately the probability of getting exactly n heads.



CHAPTER 8

Additional Topics

We close this book with short discussions of several additional appealing topics.
First we fill in a basic point in analysis. Next we prove the fundamental theorem
of algebra, that each nonconstant polynomial with complex coefficients has a root.
We give three proofs; the first proof could have appeared much earlier in the book,
whereas the other two rely on the Cauchy theory. We continue to develop these ideas
by introducing winding numbers and using them to give a formula for the number
of zeroes and poles of a function inside (the image of) a simple closed curve. These
ideas lead to Rouche’s theorem, which tells us how to locate (approximately) the
zeroes of a polynomial or complex analytic function.

Then we switch gears and briefly discuss several independent topics: Pythagorean
triples, elementary mappings, and functions of several complex variables. The sec-
tion on Pythagorean triples includes an application to the integration of rational
functions of cosine and sine. The section on mappings includes a glimpse of non-
Euclidean geometry. The section on several variables gives some examples of power
series and also resolves one fundamental issue from earlier; we prove that it makes
sense to treat z and z as independent variables.

1. The minimum-maximum theorem

We first recall some basic analysis. We could have included this material much
earlier in the book, but by now it is indispensable. A subset K of C is closed if
and only if its complement is open. By the definition of limit it follows that K is
closed if and only if the following holds: whenever {zn} is a sequence in K, and
{zn} converges to some ζ in C, then ζ ∈ K. Let {zn} be a sequence and let k → nk
be an increasing function. We write {znk} for the subsequence of {zn} whose k-th
term is znk . All treatments of complex analysis rely on the next result. Its proof
uses the method of quadrisection of rectangles. See Section 3 of Chapter 6 for a
related use of this technique.

Lemma 1.1. Let K be a closed bounded subset of C. Then every sequence in
K has a convergent subsequence.

Proof. First we assume that K is a closed rectangle. Assume that {zn} is a
sequence in K. We quadrisect K into four smaller closed rectangles. There must
be at least one of these four rectangles K1 such that zn ∈ K1 for infinitely many
n. Choose zn1 ∈ K1. Now quadrisect K1 into four smaller closed rectangles. Again
there must be at least one of these rectangles, call it K2, for which zn ∈ K2 for
infinitely many n. Choose n2 > n1 and such that zn2 ∈ K2. By continuing this
process, we find a nested sequence of closed rectangles

K ⊃ K1 ⊃ K2 · · · ⊃ Kn · · ·

143
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The lengths of the sides of Kn+1 are half those of Kn, and hence the sides lengths of
Kn tend to zero as n tends to infinity. Note that each Kk contains zn for infinitely
many n. At each stage we may therefore choose znk ∈ Kk such that k → nk is an
increasing function, giving us a subsequence. It follows by the completeness axiom
for the real numbers that the intersection of all these rectangles is a single point ζ.
Since znk ∈ Kk, it follows that {znk} converges to ζ.

Now suppose that K is an arbitrary closed and bounded subset of C. Let M
be a closed rectangle containing K. Let {zn} be a sequence in K, but regard it as a
sequence in M . Then there is a convergent subsequence {znk} converging to some
ζ ∈M . Since each znk ∈ K, and K is closed, ζ ∈ K as well. �

Theorem 1.1. Let K be a closed and bounded subset of C, Assume f : K → R
is continuous. Then f is bounded. Furthermore there are w and ζ in K such that

(1) f(w) ≤ f(z) ≤ f(ζ)

for all z ∈ K.

Proof. Assume that f is not bounded. Then we can find a sequence {zn}
in K such that |f(zn)| > n. Since K is bounded, there is a subsequence {znk}
converging to some L. Since K is closed, L ∈ K. Now we have lim znk = L but
lim f(znk) does not exist. Hence f cannot be continuous.

Therefore f continuous on K implies that f is bounded. Let α = inf {f(z) :
z ∈ K} and let β = sup {f(z) : z ∈ K}. We can find sequences {wn} and {ζn} such
that f(wn) converges to α and f(ζn) converges to β. Since K is bounded, both
{wn} and {ζn} are themselves bounded sequences. Hence they have convergent
subsequences, with limits w and ζ. Since wnk → w and f is continuous, we have
α = f(w). Similarly β = f(ζ). Thus (1) holds. �

2. The fundamental theorem of algebra

In this section we prove that every nonconstant polynomial has a complex root.
The proof does not rely on the Cauchy theory, and hence we could have included
it earlier. We suggest a second proof in the exercises; the second proof appears in
most texts and relies on the Cauchy theory. It passes through Liouville’s theorem,
which follows from the Cauchy integral formula. We give a third proof in Section
2.

The fundamental theorem of algebra is a bit of a misnomer. First of all, despite
its elegance and simplicity, not all algebraists regard it as the fundamental result
in the subject. Second of all, one cannot prove it using algebra alone. All proofs
of it must rely on the completeness axiom for the real number system. Our proof
uses Theorem 1.1, guaranteeing that continuous real-valued functions achieve their
minima and maxima on closed bounded sets.

Theorem 2.1 (Fundamental Theorem of Algebra). Let p be a nonconstant
polynomial. Then p has a complex root.

Proof. Seeking a contradiction we suppose that p(z) is never 0. The first step
is to find a point w such that 0 < |p(w)| ≤ |p(z)| for all z ∈ C. First we consider z
with |z| large. Note that limz→∞(p(z)) =∞. By the definitions of limits involving
infinity, there is a positive real number R such that |p(z)| > |p(0)| for |z| ≥ R. Next
we consider z inside this disk. The function z → |p(z)| is continuous. By Theorem
1.1 the minimum value of z → |p(z)| on the closed disk |z| ≤ R is achieved at some
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point w. By assumption p(w) 6= 0. Thus 0 < |p(w)| ≤ |p(z)| for |z| ≤ R, including
z = 0. But for |z| ≥ R we have |p(w)| ≤ |p(0)| < |p(z)|. Thus |p(w)| ≤ |p(z)| for all
z in C. We have completed the first step.

We may multiply p by an appropriate non-zero constant and assume therefore,
without loss of generality, that p(w) = 1. Consider the polynomial function f
given by f(ζ) = p(w + ζ). By our assumptions on p, the absolute value of f has a
minimum of 1 at ζ = 0. The second step is to obtain a contradiction; we do so by
finding a point ζ where |f(ζ)| < 1.

There is a positive integer m such that we can write f(ζ) = 1 + cζm + g(ζ),
where c 6= 0 and all terms in g are of degree larger than m. Thus the limit of
cζm+g(ζ)

ζm as ζ tends to 0 is the nonzero number c. Hence there is a δ > 0 such that
|ζ| < δ implies |g(ζ)| < 1

2 |c||ζ|
m. Intuitively, for ζ small, the term cζm dominates

g(ζ). Assuming 0 < |ζ| < δ, we write ζ = |ζ|eiθ and choose θ in order to make cζm

equal to a negative number, say −α, with 0 < α < 1. With this choice of ζ, we
have |f(ζ)| = 1− α+ β, where |β| < α

2 . The triangle inequality implies

(2) |p(w + ζ)| = |f(ζ)| = |1− α+ β| ≤ 1− α+ |β| < 1− α+
α

2
< 1.

We have found a z for which |p(z)| < 1, a contradiction. It must therefore be true
that p is 0 somewhere. �

The intuitive ideas behind this proof are simpler than the details. First of all,
|p(z)| is large when |z| is large. Hence we can find an R such that the minimum
of |p| on all of C happens on the disk |z| ≤ R. By Theorem 1.1 this minimum is
guaranteed to exist on a closed disk. Assume it occurs at w. If we assume that this
minimum is not 0, then after dividing by a constant we may assume that p(w) = 1.
We obtain a contradiction by finding a direction ζ such that moving from w in
the ζ direction decreases |p|. To find this direction we need only solve the simpler
polynomial equation cζm = −α.

We now turn to some simple consequences of the fundamental theorem of alge-
bra. Once we know that a polynomial has a root at a, we can divide by (z−a) and
the quotient is also a polynomial. This fact is much more elementary than is the
fundamental theorem of algebra. In fact, in Exercise 1.35 you were asked to prove
a stronger statement in the context of real polynomials. The proof suggested there
relies on the division algorithm for real polynomials and would also work here. We
give next a direct different proof that the quotient is a polynomial. After doing so
we combine the result with the existence of one root to show that a polynomial of
degree d has d roots, as long as we take multiplicity into account.

Proposition 2.1. Let p be a polynomial of degree d ≥ 1. Suppose p(a) = 0.
Then there is a polynomial q of degree d− 1 such that p(z) = (z − a)q(z).

Proof. First we consider the special case where p(z) = zn − an. In this case
we can divide explicitly to get

(3)
zn − an

z − a
= zn−1 + zn−2a+ zn−3a2 + ...+ an−1 = hn−1(z),

where hn−1 is of degree n − 1. Notice that we have not indicated its dependence
on a. Let now p be an arbitrary polynomial of degree d. Since the constant term
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drops out when we subtract, we can write

(4) p(z) = p(z)− p(a) =
d∑

n=0

cn(zn − an) =
d∑

n=1

cn(zn − an).

By combining (3) and (4) we find an explicit polynomial q for which

(5) p(z) =
d∑

n=1

cn(z − a)hn−1(z) = (z − a)
d∑

n=1

cnhn−1(z) = (z − a)q(z).

�

Corollary 2.1. Let p be a polynomial of degree d. With multiplicity counted,
p has d roots in C.

Proof. By the fundamental theorem of algebra, p has at least one root a. By
Proposition 1.1, we can write p(z) = (z − a)q(z), where the degree of q is d − 1.
The result therefore follows by induction on d. �

Exercise 8.1. Suppose p and q are polynomials of degree at most d, and they
agree at d+ 1 values. Show that p = q.

Exercise 8.2. Put p(z) = z3 + 2z2 + 2z − 5. Note that p(1) = 0. Find the
quotient p(z)

z−1 both by long division and by the method from Proposition 1.1.

An alternative proof of the fundamental theorem of algebra is based on Liou-
ville’s theorem, which we derive from the Cauchy integral formula. We use the
standard term entire analytic function for a function which is complex analytic on
all of C.

Theorem 2.2 (Liouville’s theorem). A bounded entire analytic function must
be a constant.

Proof. Assume that |f(z)| ≤ M for all z. Fix a point z. Start with the
Cauchy integral formula for f(z), where the integral is taken over a circle of radius
R about z. As in Corollary 4.1 from Chapter 6, differentiate once to find a formula
for f ′(z):

f ′(z) =
1

2πi

∫
|ζ−z|=R

f(ζ)dζ
(ζ − z)2

.

Estimate |f ′(z)| using the ML-inequality and the bound for |f | (as in the Cauchy
estimates) to get |f ′(z)| ≤ M

R . Let R tend to infinity and conclude that f ′(z) = 0.
Since z is arbitrary, f is a constant. �

Exercise 8.3. Derive the fundamental theorem of algebra from Liouville’s
theorem. Hint: If p were never zero, then 1

p would be an entire analytic function.

Exercise 8.4. Suppose f is an entire analytic function and |f(z)| ≥ 1. Prove
that f is a constant.

Exercise 8.5. Give an example of a nonconstant entire analytic function f
such that f(z) 6= 0 for all z.

Remark 2.1. The conclusion of Liouville’s theorem holds under much weaker
hypotheses than boundedness. Picard’s theorem states that an entire analytic func-
tion that misses two values must be a constant. See [1].
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Exercise 8.6. Let f be an entire analytic function satisfying the inequality

|f(z)| ≤ c|z|m

for some positive integer m, some positive constant c, and for |z| sufficiently large.
What can you conclude about f? Hint: Follow the proof of Liouville’s theorem.
Use Corollary 4.2 from Chapter 6, but differentiate m+ 1 times.

Exercise 8.7. Prove that a bounded entire harmonic function is a constant.

3. Winding numbers, zeroes, and poles

In this section we develop a method for counting the number of zeroes and poles
of a function in a region. A third proof of the fundamental theorem of algebra will
result. Even better we will prove Rouche’s theorem, which gives a good way to
locate approximately where the zeroes of a polynomial actually are.

The functions to be considered will be complex analytic, on and inside a simple
closed curve γ, with the possible exception of a finite number of points in the interior
of the curve, at which the functions may have poles. To get started, consider the
most naive example. Suppose f(z) = zn, where n ∈ Z. If n > 0, then f has a zero
of order n at 0. If n < 0, then f has a pole of order n there. Let γ be the unit
circle, traversed once with positive orientation. We can determine the exponent n
by doing a line integral:

(6)
1

2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi

∫
γ

n

z
dz = n.

Formula (6) applies even when n = 0. For n > 0, the value of the integral on
the left-hand side of (6) equals the number of zeroes of f inside with multiplicity
counted. For n = 0, the same is true. For n < 0, we get the same result if we
regard a pole of order n as a zero of order −n. When f has a pole of order m at c,
we say that f has m poles, with multiplicity counted, there.

The same idea works in more generality. First consider a function of the fol-
lowing form:

f(z) =

∏m
j=1(z − aj)∏n
k=1(z − bk)

.

We allow repetitions among the aj or among the bk, but we may assume that
aj 6= bk for all j, k, because we can cancel common factors. We compute f ′

f , either
by the rules of calculus or by logarithmic differentiation, to get

(7)
f ′(z)
f(z)

=
m∑
j=1

1
z − aj

−
n∑
k=1

1
z − bk

.

Let us integrate (7) around a curve (satisfying the usual hypotheses) enclosing
all the aj and bk. Each aj contributes a factor of 2πi and each bk contributes a
factor of −2πi. Thus we recover the number of zeroes minus the number of poles
(both with multiplicity counted) by integrating (7). We have the following general
result:

Theorem 3.1. Let γ be a simple closed positively oriented curve surrounding
the region Ω. Suppose that h is complex analytic on and inside γ, except for a finite
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set of points bj ∈ Ω at which h has poles. Assume also that h 6= 0 on γ. Let Z(h)
be the number of zeroes of h inside γ with multiplicity counted, and let P (h) be the
number of poles of h inside γ again with multiplicity counted. Then

(8) Z(h)− P (h) =
1

2πi

∫
γ

h′(z)
h(z)

dz.

Proof. Suppose first that H is complex analytic on and inside γ, and not zero
on γ. We first verify that (8) holds for H, where P (H) = 0. By Corollary 4.5 of
the Cauchy integral formula, H has at most finitely many zeroes a1, ..., aN1 inside.
Then by Theorem 4.4 we have

(9) H(z) =
N1∏
j=1

(z − aj) u(z),

where u(z) 6= 0. Taking derivatives gives

(10)
H ′(z)
H(z)

=
N1∑
j=1

1
z − aj

+
u′(z)
u(z)

.

Integrate both sides of (10) around γ. Since u(z) 6= 0, the function u′

u is complex
analytic. By Cauchy’s theorem,

∫
γ
u′(z)
u(z) dz = 0. Therefore, integrating (10) gives

(11)
1

2πi

∫
γ

H ′(z)
H(z)

dz =
1

2πi

N1∑
j=1

∫
γ

1
z − aj

dz = N1 = Z(H).

Next suppose that h has poles. We assume these poles are at c1, ...ck. If the
order of the pole at cj is mj , then we list it m times as some of the bj . In this way
assume that the poles are at bj for j = 1, ..., N2 and P (h) = N2. Define H by

H(z) =
N2∏
j=1

(z − bj)h(z).

Then H has the same zeroes as h but no poles. Thus Z(h) = Z(H) and P (H) = 0.
We may apply (11) to H. Taking derivatives yields

(12)
H ′(z)
H(z)

=
N2∑
j=1

1
z − bj

+
h′(z)
h(z)

.

Now integrating (12) and using (11) shows that

(13) Z(h) = Z(H) = N2 +
1

2πi

∫
γ

h′(z)
h(z)

dz = P (h) +
1

2πi

∫
γ

h′(z)
h(z)

dz.

Hence formula (8) holds for h. �

We next discuss winding numbers and the argument principle. These ideas
make the previous result geometric. The expression h′

h is the logarithmic derivative
of h. In a sense we will make precise, the integral in (8) is computing the winding
number of the image curve h(γ) about the origin. Each zero that occurs forces
the image curve to wind around zero in a counterclockwise fashion, and each pole
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forces the image curve to wind around zero in a clockwise fashion. In Figure 1 we
illustrate this principle with a simple example. The word argument refers to the
polar angle. The argument principle says that the line integral (8) measures the
total change in the argument as we traverse γ.

Example 3.1. Put f(z) = z(2z− 1)(3z− 2) and let γ be the unit circle. Then
f has three zeroes inside γ. Furthermore, as indicated in Figure 1, the image of γ
under f winds around zero a total of three times.

Figure 1. Winding number from Example 2.1

The following crucial result uses integrals to make the notion of winding number
precise. We will prove it under the weaker assumption that the curve γ is smooth.
See [1, 19] for the general case.

Theorem 3.2. Let γ be a continuous closed curve (not assumed positively ori-
ented or simple) in C, and suppose p does not lie on (the image of) γ. The value
of the following integral is an integer, called the winding number of γ about p:

n(γ, p) =
1

2πi

∫
γ

dz

z − p

Proof. As mentioned above, we prove the result only when γ is a smooth
curve. Suppose γ : [0, 1] → C. The proof amounts to using the idea of the
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logarithm without actually using logarithms. We will show that e2πin(γ,p) = 1.
Since γ is smooth, the winding number is given by

n(γ, p) =
1

2πi

∫ 1

0

γ′(u)
γ(u)− p

du.

Consider the function φ defined by

φ(t) =
1

2πi

∫ t

0

γ′(u)
γ(u)− p

du.

By the fundamental theorem of calculus, φ is differentiable and

(14) φ′(t) =
1

2πi
γ′(t)

γ(t)− p
.

Thinking heuristically, we expect that 2πiφ(t) should satisfy

2πiφ(t) = log(γ(t)− p)− log(γ(0)− p) = log(
γ(t)− p
γ(0)− p

),

and hence we should have

(15) e2πiφ(t) =
γ(t)− p
γ(0)− p

.

Recall that γ is closed and hence γ(1) = γ(0). If (15) holds, then we obtain

e2πiφ(1) =
γ(1)− p
γ(0)− p

= 1,

and hence n(γ, p) = φ(1) is an integer.
We establish (15) by differentiation. Consider

g(t) = e−2πiφ(t) γ(t)− p
γ(0)− p

.

Then g(0) = 1. If we show g is a constant, then we are done. But, differentiating
and using (14) we get

g′(t) = e−2πiφ(t)

(
(−2πiφ′(t))(

γ(t)− p
γ(0)− p

) +
γ′(t)

γ(0)− p

)
= 0.

�

The reader should contemplate the several ways in which this proof exhibits the
same spirit as the proof we gave in Chapter 3 of the identity log(ab) = log(a)+log(b)
for positive a and b.

The notion of winding number extends to finite sums of closed curves. If
γ = γ1 + γ2, and ω is a differential one form, then we put

∫
γ
ω =

∫
γ1
ω +

∫
γ2
ω.

When ω = 1
2πi

dz
z−p we obtain the winding number n(γ, p) of γ about p.

We can now make precise the notion that an open connected set have no holes.
Somehow the vague concept of hole, the winding number, and the multi-valued
aspects of the logarithm function all describe the same phenomenon.

Definition 3.1. An open connected subset Ω is called simply connected if
n(γ, p) = 0 for all sums γ of closed curves in Ω and all points p not in Ω.
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The idea of winding number enables us to interpret the formula for zeroes and
poles. Suppose that h is complex analytic on and inside a simple closed curve γ,
except possibly for finitely many poles inside. Then Z(h)−P (h) equals the number
of times h(γ) winds around the origin. To verify this fact, we change variables in
the integral from (8), setting w = h(z). Then dw

w = h′(z)
h(z) dz. Thus the integral in

(8) is the same as 1
2πi

∫
h(γ)

dw
w = n(h(γ), 0); in other words, the integral represents

how many times h(γ) winds around the origin.
These ideas yield a third proof of the fundamental theorem of algebra. The

intuition behind this particular proof is beautiful. For n ≥ 1, consider the polyno-
mial zn + a(z), where the degree of a(z) is less than n. For large z the polynomial
zn + a(z) behaves much like zn. Since we can recover the values of a complex
analytic function inside of a circle by knowing its values on the circle, it is at least
plausible that the polynomial a(z) serves as a minor perturbation of zn. Hence,
while a impacts the location of the zeroes, it does not impact their existence. Let
us make this argument precise. In the next theorem we think of g as a small
perturbation of f .

Theorem 3.3 (Rouche’s theorem). Assume that f and g are complex analytic
on and inside a smooth simple closed curve γ, and that |f(z)− g(z)| < |f(z)| on γ.
Then f and g have the same number of zeroes inside γ.

Proof. By using (8), we see that f and g have the same number of zeroes
inside γ if

(16)
∫
γ

f ′(z)
f(z)

dz =
∫
γ

g′(z)
g(z)

dz.

Put h = g
f . By the quotient rule for derivatives we have

(17)
h′

h
=
fg′ − gf ′

fg
=
g′

g
− f ′

f
.

The equality in (16) yields the following condition. The complex analytic functions
f and g have the same number of zeroes inside γ if the function h has the same
number of zeroes as poles. The inequality |f(z)−g(z)| < |f(z)| on γ guarantees this
conclusion, for the following reason. This inequality is equivalent to |1− h(z)| < 1
for z ∈ γ. Hence the image curve is contained in a disk of radius one about 1. In
particular the image curve does not wind around zero. Therefore

∫
γ
h′(z)
h(z) dz = 0,

and hence Z(f) = Z(g). �

Remark 3.1. The inequality |f − g| < |f | on γ can be weakened to |f − g| <
|f |+ |g|, but we do not need this refinement.

Corollary 3.1 (The fundamental theorem of algebra). For n ≥ 1 a polyno-
mial of degree n has (with multiplicity counted) n complex roots.

Proof. We may assume that p(z) = zn+a(z) where the degree of a is at most
n−1. Then limz→∞

a(z)
zn = 0 and we have, for large R, |a(z)| < |z|n for |z| = R. By

Rouche’s theorem, the number of zeroes of p and of zn inside |z| = R are equal. �

Exercise 8.8. How many roots of z3 − 20z + 5 lie inside |z| = 5? How many
lie in the annulus 1 < |z| < 4?
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Exercise 8.9. How many roots of z5 − 20z + 2 lie inside |z| < 3? How many
lie inside |z| < 1?

Exercise 8.10. How many roots of z5 + 2z3 + 7z + 1 lie inside |z| = 2? How
many lie inside |z| < 1? How many roots of this polynomial are real? (Suggestion:
look at the derivative.)

Exercise 8.11. Suppose g is complex analytic on and inside γ, and h is above.
Evaluate the integral

1
2πi

∫
γ

h′(z)
h(z)

g(z) dz

in terms of the zeroes and poles of h inside γ. (Comment. This idea arises in one
proof of the Weierstrass Preparation Theorem from several complex variables. See
Page 21 of [6].)

Exercise 8.12. Find all polynomials p such that |p(z)| = 1 on |z| = 1.

Exercise 8.13. Suppose a polynomial p has real coefficients and is of odd
degree. What can you say about the number of its real roots?

Exercise 8.14. Use Rouche’s theorem to give a simple criterion for a complex
analytic function to have precisely one fixed point in the unit disk. (A fixed point
is a solution to f(z) = z.)

Exercise 8.15. Show that the annulus defined by r1 < |z| < r2 is not simply
connected.

4. Pythagorean triples

Recall that a triple (a, b, c) of non-negative integers is called a Pythagorean
triple if a2 + b2 = c2. Equivalently we have

(18) (
a

c
)2 + (

b

c
)2 = 1.

Based on (18) we start by thinking about the unit circle. Assume (a, b, c) is a
Pythagorean triple. Consider the complex number z = a+ib

c . By (18) z lies on the
unit circle, and both its real and imaginary parts are rational numbers. We call z a
rational point on the circle. In order to find Pythagorean triples we study rational
points on the circle.

The starting point involves parametrizing the unit circle in a different fashion
from the usual cosine and sine, and also distinct from the complex exponential. See
(4) of Chapter 3. Consider the line with slope t through the point −1; its equation
is y = t(x+1). By geometric considerations, this line intersects the circle in exactly
one other point. We can find that point by solving the system of equations

(19) y = t(x+ 1)

(20) x2 + y2 = 1

for x and y as functions of t. We obtain x2 + t2(x + 1)2 = 1 from which we get
x = −1 or x = 1−t2

1+t2 . We disregard the value x = −1 because that value gives us
back the point −1. Using y = t(x+ 1) we obtain, for −∞ < t <∞,
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(21) z(t) = x(t) + iy(t) =
1− t2

1 + t2
+ i

2t
1 + t2

=
(1 + it)2

|1 + it|2
=

1 + it

1− it
.

The formula in (21) parametrizes the unit circle except for the point z = −1, which
we recover by setting t equal to infinity. The mapping t→ z(t) is called a birational
isomorphism from the extended real line to the unit circle. If t is rational, then z(t)
has rational coordinates, and if z(t) has rational coordinates, then t is rational.

In a moment we will use (21) to find all Pythagorean triples. First we give
an application to basic calculus. We do not give a precise definition of elementary
function. Roughly speaking we mean a function that can be expressed as a formula
involving polynomials, trig functions, the exponential function, and their inverses.

Proposition 4.1. Let R(x, y) be a rational function (the quotient of polyno-
mials). Then the indefinite integral

I =
∫
R(cos(θ), sin(θ))dθ

is an elementary function.

Proof. To evaluate I we substitute t = tan( θ2 ). Thus θ = 2tan−1(t) and

(22) dθ =
2dt

1 + t2
.

The equations in (19) and (20) give the formulas:

(23) cos(θ) =
1− t2

1 + t2

(24) sin(θ) =
2t

1 + t2
.

The indicated change of variables in (22) involves only rational functions and it
results in the integral of a rational function in t times dt. The integral of a rational
function can always be done in terms of elementary functions via partial fractions.
Substituting back for θ in terms of t finishes the proof of the proposition. �

Exercise 8.16. Evaluate
∫

sec(θ)dθ using Proposition 2.1.

Exercise 8.17. Find a rational parametrization for the curve defined by |z|4 =
Re(z2). Graph the curve.

We use the mapping defined by (21) to find all Pythagorean triples. In writing
the triple (a, b, c) we always assume that a, b, c are positive numbers. We say that
a triple is primitive if a, b, c have no common integer factors larger than 1.

First suppose t = p
q is rational; then z(t), as defined in (21), lies on the unit

circle and has rational coordinates q2−p2
p2+q2 and 2pq

p2+q2 . If also q > p, that is 0 < t < 1,
then the triple (q2 − p2, 2pq, q2 + p2) is a Pythagorean triple. Conversely, suppose
that (a, b, c) is a Pythagorean triple. Then we have

(25)
a

c
=

1− t2

1 + t2

(26)
b

c
=

2t
1 + t2

.
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By (25), we have t2 = c−a
a+c . Plugging this value into (26) gives t = b

a+c . Finally, if
we put p = b and q = a + c, then the triple (q2 − p2, 2pq, q2 + p2) becomes (after
some simplification) 2(a+ c)(a, b, c).

We summarize these computations as follows.

Theorem 4.1. Let t = p
q be rational with 0 < t < 1. Then (q2−p2, 2pq, q2 +p2)

is a Pythagorean triple. Let (a, b, c) be a Pythagorean triple. Put t = b
a+c = p

q . Then
(q2 − p2, 2pq, q2 + p2) is a multiple of (a, b, c).

Corollary 4.1. All Pythagorean triples are of the form
1
n

(q2 − p2, 2pq, q2 + p2)

for integers p, q, n, where p and q have no common factors.

We make some additional remarks. Let (a, b, c) be a primitive Pythagorean
triple. Then c is odd, and precisely one of a or b is odd. See Exercise 8.18. Assume
that a is odd; since a > 1 we can write a = uv for odd numbers u, v with u > v ≥ 1.
Put q = u+v

2 and p = u−v
2 . We then obtain the alternative form

(27) (a, b, c) = (uv,
u2 − v2

2
,
u2 + v2

2
).

The formula (27) shows that we can always take the integer n from Corollary (4.1)
equal to either 1 or 2.

Let us discuss briefly some issues arising because rational numbers need not be
in lowest terms. Given a triple (a, b, c) and a positive integer n, of course (na, nb, nc)
is also a triple. These two triples determine the same t, because nb

na+nc = b
a+c . On

the other hand, given a rational number t expressed in lowest terms p
q , the resulting

triple
(a, b, c) = (q2 − p2, 2pq, q2 + p2)

need not be primitive.
One also needs to be a bit careful about the order. For example, for the triple

(3, 4, 5) we have t = 1
2 , whereas for the triple (4, 3, 5) we have t = 1

3 . One annoying
point in this development is that the expression (q2 − p2, 2pq, q2 + p2) might be a
multiple of a triple; for example the triple (4, 3, 5) appears as (8, 6, 10). If we solve
the equations

(q2 − p2, 2pq, q2 + p2) = (4, 3, 5),
for p and q, then we get q = 3√

2
and p = 1√

2
.

We end by listing the triples corresponding to various rational numbers t = p
q .

The list includes some redundancies in order to illustrate some of the above ideas.
For example, note that (8, 6, 10) arises instead of (4, 3, 5).

(q, p) = (2, 1)→ (3, 4, 5)
(q, p) = (3, 1)→ (8, 6, 10)
(q, p) = (3, 2)→ (5, 12, 13)
(q, p) = (4, 1)→ (15, 8, 17)
(q, p) = (4, 2)→ (12, 16, 20)
(q, p) = (4, 3)→ (7, 24, 25)
(q, p) = (5, 1)→ (24, 10, 26)
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(q, p) = (5, 2)→ (21, 20, 29)

(q, p) = (5, 3)→ (16, 30, 34)

(q, p) = (5, 4)→ (9, 40, 41)

(q, p) = (n, 1)→ (n2 − 1, 2n, n2 + 1)

(q, p) = (2k + 1, 2)→ (4k2 + 4k − 3, 8k + 4, 4k2 + 4k + 5).

Exercise 8.18. Suppose (a, b, c) is a Pythagorean triple. Show by elementary
means that both a and b cannot be odd. (Work modulo 4.) If (a, b, c) is primitive,
show that c must be odd, and exactly one of a or b is odd.

Exercise 8.19. Show that (1, b, c) cannot be a Pythagorean triple.

Exercise 8.20. Find all Pythagorean triples of the form (a, b, b+ 1)

Exercise 8.21. Suppose s, t are rational and consider the corresponding ra-
tional points on the circle z(s) = 1+is

|1+is| and z(t) = 1+it
|1+it| . Then z(s)z(t) is also

a rational point on the unit circle. What does this fact say about Pythagorean
triples?

Exercise 8.22. Put z = q+ ip. Show that the triple (q2− p2, 2pq, q2 + p2) can
be written

(Re(z2), Im(z2), |z|2).

Exercise 8.23. Let a, b, c, d be integers. Show that (a2 + b2)(c2 + d2) is a sum
of two squares. (Suggestion: consider a+ ib and c+ id.)

5. Elementary mappings

This section consists primarily of a few exercises of the following sort. Given
domains Ω1 and Ω2 in C with simple geometry, we seek a complex analytic function
f : Ω1 → Ω2. We want f to be a bijection; it follows that the inverse function is
also complex analytic. In this situation we say that Ω1 and Ω2 are conformally
equivalent or biholomorphically equivalent.

The subject is well-developed, and important in physics and engineering, but
it is beyond the scope of this book. We say annoyingly little about it! We do state
the Riemann mapping theorem. We describe the conformal mappings of the unit
disk, and we mention their connection to non-Euclidean geometry.

Exercise 8.24. Fix some non-zero complex number w. Define f : C → C by
f(z) = wz. Show that f preserves angles, in the following sense: if u and v are
vectors based at z, and f(u) and f(v) are the vectors based at f(z), show that the
angle between u and v equals the angle between f(u) and f(v). What happens if,
instead, f(z) = z?

Assume that f is complex analytic on an open set Ω. For each z ∈ Ω and
sufficiently small ζ we can write

f(z + ζ) = f(z) + f ′(z)ζ + E(z, ζ),
where the error term E(z, ζ) is small in the sense that

limζ→0
E(z, ζ)
ζ

= 0.
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Infinitesimally f is just multiplication by the number f ′(z). By the previous
exercise, it follows when f ′(z) 6= 0 that, infinitesimally, f is a conformal mapping.
The standard definition of conformality follows:

Definition 5.1. Suppose f : Ω1 → Ω2. Then f is conformal if f is complex
analytic and one-to-one.

Exercise 8.25. Find a linear fractional transformation that maps the interior
of a circle of radius 2 with center at 2 to the exterior of a circle of radius 1 centered
at i.

Exercise 8.26. Consider the region bounded by the four hyperbolas x2−y2=1,
x2 − y2 = 2, xy = 1, xy = 2. Find a conformal mapping from this region to the
interior of a rectangle.

Exercise 8.27. Consider the region inside of a circle passing through the origin
and otherwise lying in the right half plane. Find a conformal mapping from it to
the upper half plane.

Exercise 8.28. Consider the infinite strip given by 0 < Im(z) < π. Find a
(conformal) mapping that sends this strip to the upper half plane.

Exercise 8.29. Consider the semi-infinite strip given by −π2 < Re(z) < π
2 and

Im(z) > 0. Find the image of this strip under the mapping w = sin(z).

Exercise 8.30. Consider the region Ω given by x > 0, y > 0 , and xy < 1.
Graph Ω. Find the image of Ω under the mapping given by w = z2. Then find a
formula for a conformal mapping f from Ω to the upper half plane.

Exercise 8.31. Let f(z) = z + 1
z . Find the image of the top half of the unit

disk under f .

We next state the famous Riemann mapping theorem. See [1, 10, 19] for more
details and the proof. A domain in C is an open connected set. A domain is called
simply connected if it has no holes. Rather than trying to be precise, we simply
note that the region between concentric circles is not simply connected and that
the interior of a simple closed curve is simply connected. We let B denote the open
unit disk.

Theorem 5.1 (Riemann mapping theorem). Let Ω be a simply connected do-
main in C; assume that Ω is not all of C. Then there is a bijective complex analytic
mapping f : Ω→ B.

The derivative f ′ of a bijective complex analytic mapping f is not zero; hence
f is conformal. In Lemma 1.1 of Chapter 3 we wrote down an explicit conformal
mapping from the upper half plane to the unit disk. See [1, 10] for many explicit
examples of conformal mappings. Both the theorem itself and the many explicit
examples serve useful purposes in applied mathematics.

5.1. non-Euclidean geometry. We next discuss the group G of conformal
mappings from the unit disk B to itself and apply the ideas to non-Euclidean
geometry. This group plays the same role in the hyperbolic geometry of B as the
rigid motions do in the Euclidean plane R2.

The group G is transitive. In this context, transitivity means the following:
given any two points w1 and w2 in B, we can find a conformal map of B mapping
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w1 to w2. To show that doing so is possible, we need only show that we can map 0
to an arbitrary point a. Then the inverse map takes a to 0. By composing a map
taking w1 to 0 with a map taking 0 to w2 we get a map taking w1 to w2 as desired.

The map taking a to 0 has appeared already in Exercise 2.4. There we showed,
for |a| < 1 and |z| < 1, that

(28)
∣∣∣∣ z − a1− az

∣∣∣∣ < 1.

Put φa(z) = a−z
1−az . By (28) φa maps B to itself. Also φa(a) = 0 and φa(0) = a. The

linear fractional transformation φa is invertible. One way to see the invertibility
is to use the formula for the inverse of such a transformation given in Chapter
3. In this case, however, it is easier simply to compose φa with itself. A routine
computation gives φa(φa(z)) = z, and hence φa is its own inverse. It follows that
φa is a conformal map of B to itself. One can also check directly that the derivative
φa does not vanish on B.

Exercise 8.32. Verify that φa is its own inverse.

The group G of conformal mappings on B includes also the rotations z → eiθz.

Theorem 5.2. Let f be a conformal map from B to itself. Then there is a
point a ∈ B and a point eiθ ∈ S1 such that

f(z) = eiθφa(z).

Perhaps the most remarkable thing about G is its connection to non-Euclidean
geometry. We define a geodesic in B to be a line or an arc of a circle that intersects
the boundary circle at right angles. Each such geodesic is the image of the line
segment (−1, 1) under an element of G. Then all of Euclid’s postulates for geometry
hold except the parallel postulate. Given a point p not on a geodesic L, there is more
than one geodesic through p and not intersecting (parallel to) L. This situation
gives perhaps the most convincing example of a non-Euclidean geometry, called
hyperbolic geometry. In the next exercise you are asked to show that there are
infinitely many such geodesics.

Exercise 8.33. Consider the circle defined by x2 +(y−b)2 = r2. Choose b and
r such that b− r > 0 and this circle intersects the unit circle at right angles. Then
this circle defines a geodesic L in B. Show that there are infinitely many geodesics
passing through 0 that do not intersect L. Hint: Draw a picture!

We list Euclid’s postulates in Definition 5.2. See [12] for an excellent succinct
treatment of this material. Euclid’s fifth postulate is stated in terms of angles,
but it is equivalent to the parallel postulate. We use the terms line, line segment,
right angle, and congruent as usual in elementary geometry. In this language, the
parallel postulate states the following: given a line L and a point p not on L, there
is precisely one line through p and parallel to L.

Definition 5.2. Euclid’s postulates
• Each pair of distinct points can be joined by a unique line segment.
• Each line segment is a subset of exactly one line.
• Given a point p and a positive radius r, there is a unique circle of radius
r centered at p.
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• Any two right angles are congruent.
• Consider three lines l1, l2, and L. Suppose that l1 and l2 intersect L at

distinct points. Suppose that the interior angles on one side of L add up
to less than 180 degrees. Then l1 and l2 intersect on that side of L.

The interested reader should reinterpret these postulates in the hyperbolic ge-
ometry of B and verify that the first four hold. In this setting line becomes geodesic,
line segment becomes arc of a geodesic, and so on. Be careful about the definition
of a hyperbolic circle. A Euclidean circle C centered at the origin is a hyperbolic
circle, but a Euclidean circle centered at another point is not. Given C, its image
under φa will be a hyperbolic circle centered at a. Exercise 8.34 asks you to figure
out what it is. Conversely each hyperbolic circle can be moved such that its center
goes to the origin and its image is an ordinary circle. Recall that the group G of
conformal mappings of the unit disk is the hyperbolic analogue of the group of rigid
motions of the plane, and hence G is used to define the word congruent.

Exercise 8.34. What is the image of a (Euclidean) circle in B about 0 under
the map φa?

6. Quaternions

In Chapter 1 we saw that a complex number can be regarded as a point in the
plane. In particular the ability to multiply complex numbers enables us to multiply
vectors in the plane. Within C we can divide by any non-zero number, and hence we
can divide by nonzero vectors in the plane. In the 1840’s William Rowan Hamilton
attempted to find a method for multiplying and dividing non-zero vectors in three-
dimensional space. Eventually, by introducing a fourth dimension, he stumbled
upon the quaternions. See [25] for fascinating discussion about Hamilton’s discovery
of the quaternions H. See [5] for some of their uses in geometry and see [2] to glimpse
their role in physics. These last two references are quite advanced. In this section
we describe the quaternions from a naive perspective, aiming primarily to make
connections with simple things we have seen already about C.

First let us recall some simple facts about C. Consider the four complex num-
bers 1, i,−1,−i. They form a group under multiplication. We can abbreviate the
information by the partial multiplication table

( 1 i

1 1 i
i i −1

)
.

Our first definition of a quaternion is simply a point in real four-dimensional
space R4. Thus v = (a, b, c, d), where a, b, c, d are real numbers. We write

v = (a, b, c, d) = a1 + bi + cj + dk,
where 1 stands for (1, 0, 0, 0), i stands for (0, 1, 0, 0), and so on.

Let H denote R4 with the following operations of addition and multiplication.
We add vectors as usual:

(29) (a, b, c, d) + (A,B,C,D) = (a+A, b+B, c+ C, d+D).

We multiply vectors in a manner similar to how we multiply complex numbers, but
things are more complicated. First we set
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(30) i2 = j2 = k2 = ijk = −1.

If we multiply the relation ijk = −1 on the right by k, and then divide by −1, we
obtain ij = k. Similarly we obtain jk = i. We also get ki = j. If we perform these
multiplications in the opposite order, however, then minus signs arise. For example
ik = −j. Thus the commutative law for multiplication fails.

We can remember these rules via the table

(31)


1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1


Now we can define multiplication by an arbitrary pair of quaternions. We

multiply (a, b, c, d) by (A,B,C,D) by writing

(32) (a1 + bi + cj + dk) ∗ (A1 +Bi + Cj +Dk),

expanding by the distributive law, and using (30). Doing so yields a complicated
formula:

(33) (a, b, c, d) ∗ (A,B,C,D) =

(aA− bB− cC − dD, aB+ bA+ cD− dC, aC− bD+ cA+ dB, aD+ bC − cB+ dA).

We can express (33) using matrices. The transformation taking (a, b, c, d) into
(33) has matrix

(34) M =


A −B −C −D
B A D −C
C −D A B
D C −B A

 .

Notice that the four columns of M are orthogonal vectors in R4.
This multiplication law almost makes R4 into a field. The additive identity

0 is of course given by 0 = (0, 0, 0, 0), and the additive inverse is given by multi-
plying each component by −1. The multiplicative identity 1 is (1, 0, 0, 0). All the
properties of a field hold except the commutative law: in general

vw 6= wv.

We have noted already for example that ij = k, but ji = −k. Sometimes the
quaternions are called a skew field or a non-commutative field; we must remember
however that H is not a field because the commutative law fails. Below we will see
one striking difference when we consider square roots of −1.

Just as with complex numbers, the easiest path to multiplicative inverses in-
volves conjugation. We will see that many of the formal properties of complex
numbers, often after subtle adjustments, hold for the quaternions. For example, we
define conjugation by
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(35) (a1 + bi + cj + dk)∗ = a1− bi− cj− dk.

We then have

(36) v∗v = ||v||2 = a2 + b2 + c2 + d2.

We must be careful about the order of multiplication. One checks that

(37) (vw)∗ = w∗v∗.

Suppose that v 6= 0. Then v has a multiplicative inverse, namely v∗

||v||2 . The
parallel with C is striking. Furthermore we even have

(38) ||vw||2 = ||v||2||w||2.

We saw in Chapter 1 that an element of a field can have at most two square
roots. In particular, in C there are two square roots of −1. In the quaternions
there are infinitely many square roots of −1. Thus eliminating commutivity of
multiplication significantly changes things!

Proposition 6.1. A quaternion v satisfies v2 = −1 if and only if v = bi +
cj + dk where b2 + c2 + d2 = 1.

Corollary 6.1. In H there is a one-to-one correspondence between square
roots of −1 and points on the three-dimensional unit sphere.

This corollary gives some insight into why quaternions are important in geom-
etry. We refer to [5] and its references for more information.

Exercise 8.35. Prove (33) given (30)

Exercise 8.36. Verify (36), (37), and (38).

Exercise 8.37. Find the determinant of M in (34) and interpret the result.

Exercise 8.38. Prove Proposition 6.1.

Exercise 8.39. Prove that the product of two numbers, each of which is a sum
of squares of four integers, is also a sum of squares of four integers. Suggestion:
Use (36) and (38)

Exercise 8.40. The eight quaternions ±1,±i,±j,±k form a group under mul-
tiplication. Write out the multiplication table.

Exercise 8.41. Express formula (33) for quaternionic multiplication in terms
of cross products and dot products. Comment: first write v as a pair (a, v) where
v ∈ R3. Do the same for V = (A, V ). Then express vw using v × V and v · V .

7. Higher dimensional complex analysis

In this final section we ask what an analytic function of several complex vari-
ables might be. Three definitions are plausible, and again they turn out to be
equivalent. We start with complex Euclidean space Cn, consisting of n-tuples
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z = (z1, ..., zn) of complex numbers. The norm |z| is defined as follows; its square
is given by

|z|2 =
n∑
j=1

|zj |2.

Then |z − w| denotes the distance between points z, w in Cn.
Let Ω be an open set in Cn, and let f : Ω → C. We mimic Section 1 from

Chapter 6 in giving possible definitions of complex analytic function. The first pos-
sible definition of complex analytic is that, near each point p in Ω, f is given by
a convergent power series. The second possible definition is that f is continuously
differentiable, and ∂f

∂zj
= 0 for j = 1, ..., n. The third definition is that f is com-

plex differentiable in each coordinate direction; thus f is complex analytic in each
variable when the other variables are held fixed. These definitions turn out to be
equivalent. The proofs are again based upon analogues of the Cauchy integral for-
mula in several variables. A difficult result of Hartogs states that analyticity in each
variable separately implies joint continuity, enabling one to verify the other defini-
tions via the several variables analogue of the Cauchy integral formula. See [13] for
details.

We want to illustrate one difference in the subjects. In one dimension, the
region of convergence of a power series is a disk. We give some examples, all based
on the geometric series, to show that such a result cannot hold in higher dimensions.
See [13] for a precise result describing the possible domains of convergence of a power
series in several complex variables.

Example 7.1. For (z, w) ∈ C2, put f(z, w) = 1
1−zw . Then we have, for

|zw| < 1, the geometric series

f(z, w) =
∞∑
n=0

(zw)n.

The region of convergence is the unbounded set defined by the inequality |zw| < 1.

Example 7.2. Replace z by za and w by wb in the previous example and we
get the region of convergence to be the region determined by |zawb| < 1.

Example 7.3. Put f(z, w) = 1
(1−z)(1−w) . The region of convergence of the

series is then the set (called a polydisk) defined by the pair of inequalities |z| < 1
and |w| < 1.

One major difference between complex analysis in several variables from anal-
ysis in one variable is that the Riemann mapping theorem fails completely in di-
mension two or more. We say that domains are inequivalent if there is no bijective
complex analytic mapping between them. In dimension two or higher, most (in
a sense that can be made precise) domains topologically identically to a ball are
inequivalent to a ball. Also polydisks and balls are inequivalent. It follows that the
geometry of the boundary of a domain in higher dimensions matters. Hence com-
plex analysis in several variables is even more geometric than it is in one dimension.

A second major difference arises from the zero-sets of complex analytic func-
tions. We saw in Chapter 6 that the zero-set of a complex analytic function is a
discrete set of points, unless the function vanishes identically (on a connected set).
The zero-set of a complex analytic function f of n variables is an example of a
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complex analytic variety; if the function is not identically zero then this variety has
complex dimension n− 1. In particular, if it is not empty, the set of points where
1
f has a singularity is a variety of positive dimension. These ideas lead to the Har-
togs’s extension theorem; we state a simplified version. Assume n ≥ 2. Take a ball
Ω, and remove a closed and bounded subset K such that what is left is connected.
Assume that f is complex analytic on the complement of K in Ω. Then there is
a complex analytic function F , defined on all of Ω, that agrees with f where f is
defined. We say that F extends f . In one dimension such a result is false. Remove
a single point p from C; the function 1

z−p is then analytic except at p but cannot
be extended to be analytic in all of C.

Despite the differences we have described, a unified theory of complex analysis
exists. The ideas required in higher dimensions often borrow from the ideas used
in one dimension, and on occasion the theory of several variables repays the debt
by changing the way we think about one complex variable. The way we have in
this book regarded analytic functions as independent of z provides a good example.
See [6, 13, 14, 16] and their references for more information on complex analysis in
several variables.

We close this section by discussing polarization. At various times in this book
we considered polynomials in z and z, and we treated these variables as independent.
Doing so makes some readers feel uneasy. The procedure is justified by the following
result, whose proof relies on functions of two complex variables. For simplicity we
give a much less general statement than is possible. See Chapter 1 of [6] for more
information.

Theorem 7.1. Let H be complex analytic on C2. Assume for all z ∈ C that
H(z, z) = 0. Then H(z, w) = 0 for all z and w.

Proof. By elementary facts in several variables, H has a convergent power
series expansion:

(39) H(z, w) =
∞∑

a,b=0

cabz
awb.

We will show that the coefficients cab in (39) all vanish. Put z = |z|eiθ in (39).
Since H(z, z) = 0 we obtain

(40) 0 =
∞∑

a,b=0

cab|z|a+bei(a−b)θ.

Set a− b = n in (40) to get, where n ∈ Z,

(41) 0 =
∑
n,b

c(n+b)b|z|n+2beinθ.

For each k ∈ Z we integrate e−ikθ times the expression in (41) around a circle of
radius R centered at 0. It follows for all n that

(42)
∑
b

c(n+b)bR
2b = 0.

The sum in (42) is a power series in R and identically zero as a function of R; hence
its coefficients all vanish. Thus cab = 0 for all a, b and H is identically zero. �
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The reader who knows Fourier series will note from (41) that we are expressing
0 as a Fourier series

∑
dne

inθ and concluding that each dn is zero.
Theorem 7.1 extends to functions complex analytic on Cn. We give one example

of polarization from linear algebra. A linear transformation U : Cn → Cn is unitary
if it preserves inner products. Thus, for all z, w we have

(43) 〈Uz, Uw〉 = 〈z, w〉.
A linear transformation U preserves distances if

(44) ||Uz||2 = ||z||2.
If U is unitary it obviously preserves distances; in fact the two conditions are
equivalent by polarization. Suppose U preserves distances. We express (44) in
terms of coordinates and replace zm by wm. We obtain∑

j,k,l,m

ujkzkulmwm =
∑
j,l

zjwl

and conclude that U is unitary.

Further reading

The books [1, 17, 19, 23] are all fantastic treatments of complex analysis in one
variable. Each of them is masterfully written and covers far more than we do here.
On the other hand we spend much more time on basic material and we provide
many elementary examples and applications, thereby providing a solid introduction
to any of these books. The book [22] is an eccentric yet brilliant treatment of
complex analysis. The book [10] is a standard text on complex analysis and it
includes more exercises and applications than the above books. The accessible
book [18] includes many applications, many exercises, and even some color pictures
of fractals. The elementary texts [3,4,8,20] provide all the prerequisite algebra and
analysis used here. The books [6,9] are more specialized but accessible and each can
be studied after reading this book. The book [13] on complex analysis in several
variables is sophisticated, but its Chapter 1 provides a compelling treatment of
one complex variable from the perspective needed for studying complex analysis in
higher dimensions. Material on several complex variables also appears in [6,14,16].
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