Restriction Endonucleases

Restriction Enzymes

- Enzymatic Activity
- Biological Role
- Diversity
- Recognition Sequence
- Digestion Conditions
- Typical Reaction
- Double Digest
- Class Project
- Computer Analysis

Enzyme Activity

Scanning

GCACGCTAGCTGAT**GAATTC**GCATCGGATCCGAATCCGCTCTTTCAA CCTGCGATCGACTA**CTTAAG**CGTAGCCTAGGCTTAGGCGAGAAAGTT

Recognition Sequence

GGACGCTAGCTGAT**GAATTC**GGATCCGGATCCGAATCCGCTCTTTCAA CCTGCGATCGACTA**CTTAAG**CGTAGCCTAGGCTTAGGCGAGAAAGTT

Cleavage GGACGCTAGCTGATG CCTGCGATCGACTACTTAA GCGTAGCCTAGGCTTAGGCGAGAAAGTT

Biological Role of RE

- Restriction Modification System -restriction enzymes are paired with methylases.
- Methylases are enzymes that add methyl groups to specific nucleotides within the recognition sequence. The methylation prevents recognition by the restriction enzyme.
- Therefore, the restriction enzyme within a cell doesn't destroy its own DNA. However the restriction enzyme can destroy foreign DNA which enters the cell such as bacteriophage.

Diversity of Enzymes

EcoRI	Esherichia coli R	G/AATTC
BamH	Baccilu amyloliquefaciens H	G/GATCC
HindII	<i>Haemophilus influenzae</i> Rd	A/AGCCT
Pstl	Providencia stuartii	CTGCA/G
Pmel	Psuedomonas mendocina	GTTT/AAAC

Recognition Sequences

EcoRI	G/AATTC	Features
		Palindromic
BamHI	G/GATCC	Length
		4 cutters, 6 cutters etc
HindIII	A/AGCCT	Site of cleavage
		Sticky ends
Pstl	CTGCA/G	3' overhang
		5' overhang
Pmel	GTTT/AAAC	blunt end
		Compatibility
Hincll	GTY/RAC	Multiple Recognition sequences
		Isoschisomers
Funll	G/AATTC	Type II vs Type III RE

Digestion Conditions

- Xbal
 - Buffer 2: (10 mM Tris-HCl, 10 mM MgCl2, 50 mM NaCl, 1 mM DTT, pH 7.9 at 25°C.
 - 100 µg/ml BSA
 - Incubate at 37°
 - 1 Unit digest 1 µg DNA in 1 hour
 - Heat inactivate 65° for 20min

Typical RE Reaction

20 µl reaction.

10 μl DNA (~1 μg total)
7 μl water
2 μl 10X reaction buffer
1 μl RE 10units/μl

Incubate 1 hour at appropriate temperature

Note:

- 1. 10 fold excess enzyme ensures complete digestion.
- 2. Enzyme should never exceed 1/10th of reaction.
- 3. BSA is often recommended because it

Double Digest

Enzyme		Supplied NEBuffer	% in B1	% in B2	% in B3	% in B4
<u>Sacl</u>		<u>NEBuffer 1</u> + BSA	100	50	10	100
Sacll		NEBuffer 4	25	75	10	100
<u>Sall</u>		<u>NEBuffer 3</u> + BSA	0	0	100	0
<u>Sapl</u>		NEBuffer 4	75	50	0	100
Sau3AI		<u>NEBuffer 1</u> + BSA	100	50	10	100
<u>Sau96I</u>		NEBuffer 4	50	100	100	100
<u>Sbfl</u>		NEBuffer 4	75	50	0	100

Double Digest Option

- 1. Mix the enzymes in the same compatible buffers
- 2. Conduct sequential digest

Caution: some enzymes display star activity in certain buffers which causes them to digest the DNA at sites other than the standard recognition site.

Class Project

1. Digest with EcoRI to release cloned insert

pCR4

pCR4

 \checkmark

- 1. Identify internal restriction sites
 - Best internal sites will match one of the external sites
- 2. Digest with enzymes to cut internal site and external site analyze by electrophoresis

Computer Analysis

- Use TAGC program in Biology workbench to identify restriction sites within amplified region.
- Analyze full PCR product, including primer sequences.
- In initial analysis identify all restriction sites.
- In second analysis, search for these useful sites.

In pCR4 Vector cloning region EcoRI, Pmel, Pstl, Spel, Notl

Other available restriction enzymes BamHI, HindIII, SphI, Xbal