Capacitance:

Any two conducting bodies separated by free space or a dielectric material have a capacitance between them. $C=\frac{Q}{V}(F)$

1) Find the capacitance over two parallel plates as in

figure.

$$
\begin{aligned}
& D=\frac{Q}{A}(-a z) \quad E=\frac{Q}{\varepsilon_{0} \varepsilon_{r} A}(-a z) \\
& V=-\int_{0}^{d} \frac{Q}{\varepsilon_{0} \varepsilon_{r} A}(-a z) \cdot(d z a z)=\frac{Q d}{\varepsilon_{0} \varepsilon_{r} A} \\
& C=\frac{Q}{V}=\frac{\varepsilon_{0} \varepsilon_{r} A}{d}
\end{aligned}
$$

Multiple dielectric capacitors

When two dielectrics are present in a capacitor with the interface parallel to \mathbf{E} and D as shown in figure.

$$
\begin{aligned}
& C 1=\frac{\varepsilon_{0} \varepsilon_{r 1} A 1}{d} \quad C 2=\frac{\varepsilon_{0} \varepsilon_{r 2} A 2}{d} \\
& C_{e q}=C 1+C 2=\frac{\varepsilon_{0}}{d}\left(\varepsilon_{r 1} A 1+\varepsilon_{r 2} A 2\right)
\end{aligned}
$$

(a)

(a)

(b)

(b)
$C 1=\frac{\varepsilon_{0} \varepsilon_{r 1} A}{d 1} \quad C 2=\frac{\varepsilon_{0} \varepsilon_{r 2} A}{d 2}$
$C_{e q}=\frac{1}{C 1}+\frac{1}{C 2}=\frac{\varepsilon_{r 2} d 1+\varepsilon_{r 1} d 2}{\varepsilon_{0} \varepsilon_{r 1} \varepsilon_{r 2} A}$

Two capacitor in series with the interface normal to \mathbf{E} and \mathbf{D} as shown in figure.

Example: A parallel plate capacitor with area $0.30 \mathrm{~m}^{2}$ and separation 5.5 mm contains three dielectrics with interfaces normal E and D , as follows: $\varepsilon_{r 1}=3.0$, $d 1=1.0 \mathrm{~mm}, \varepsilon_{r 2}=4.0, d 2=2.0 \mathrm{~mm}, \varepsilon_{r 3}=6.0, d 3=2.5 \mathrm{~mm}$.

$$
C 1=\frac{\varepsilon_{0} \varepsilon_{r 1} A}{d 1}=\frac{\varepsilon_{0}(3)(0.30)}{10^{-3}}=7.96 \mathrm{nF}
$$

Similarly $C 2=5.31 \mathrm{nF}, C 3=6.37 \mathrm{nF}$

Lecture 11 Electromagnetic

$$
\frac{1}{C_{e q}}=\frac{1}{7.96 \times 10^{-9}}+\frac{1}{5.31 \times 10^{-9}}+\frac{1}{6.37 \times 10^{-9}}=2.12 \mathrm{nF}
$$

