Dielectric Material

Polarization:

Dielectric materials become polarized in an electric field with the result that the electric flux density \mathbf{D} is greater than it would be under free space conditions with the same field intensity.

As result from the figure we can get:

$$
p=Q d
$$

p the electric dipole moment.
Polarization is defined as dipole moment per unit volume.

$$
\begin{gathered}
\vec{P}=\lim _{\Delta v \rightarrow 0} \frac{N p}{\Delta v} \quad C / m^{2} \\
D=\varepsilon_{0} E+P
\end{gathered}
$$

This equation permits \mathbf{E} and \mathbf{P} to have different directions.
In an isotropic or linear material \mathbf{E} and \mathbf{P} are parallel at each point which is expressed by:

$$
P=x_{e} \varepsilon_{0} E
$$

x_{e} electric susceptibility

$$
D=\varepsilon_{0}\left(1+x_{e}\right) E=\varepsilon_{0} \varepsilon_{r} E
$$

$\varepsilon_{r}=\left(1+x_{e}\right)$ is also a pure number. Since $D=\varepsilon E \quad \varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}}$
ε_{r} is called relative permittivity.

1) Find the magnitude of D and P for a dielectric field material in which $\mathrm{E}=0.15 \mathrm{MV} / \mathrm{m}$ and $\mathrm{x}_{\mathrm{e}}=4.25$.

$$
\begin{gathered}
\varepsilon_{r}=1+x_{e}=1+4.25=5.25 \\
D=\varepsilon_{0} \varepsilon_{r} E=\frac{10^{-9}}{36 \pi} \cdot 5.25 \cdot\left(0.15 \times 10^{6}\right)=6.96 \frac{\mu C}{m^{2}} \\
P=x_{e} \varepsilon_{0} E=4.25 \cdot \frac{10^{-9}}{36 \pi} \cdot\left(0.15 \times 10^{6}\right)=5.64 \frac{\mu C}{m^{2}}
\end{gathered}
$$

2) Find polarization in dielectric material with $\varepsilon_{r}=2.8$ if $D=3 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$.

$$
\begin{gathered}
P=x_{e} \varepsilon_{0} E \\
\varepsilon_{r}=1+x_{e} \quad x_{e}=2.8-1=1.8 \\
D=\varepsilon_{0} \varepsilon_{r} E \quad E=\frac{D}{\varepsilon_{0} \varepsilon_{r}} \\
P=1.8 \cdot \varepsilon_{0} \cdot \frac{3 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}}{\varepsilon_{0}(2.8)}=1.92 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}
\end{gathered}
$$

Boundary conditions at interface of two dielectric materials.

1)The tangential component is continues across a dielectric interface.
$E_{t 1}=E_{t 2} \quad$ and $\frac{D_{t 1}}{\varepsilon r_{1}}=\frac{D_{t 2}}{\varepsilon r_{2}}$
2)The normal component of D has discontinuity of magnitude $\left|\rho_{s}\right|$ across a dielectric interface. If the unit normal vector is chosen to point into dielectric 2 , then this condition can be written:

$$
D_{n 1}-D_{n 2}=-\rho_{s} \quad \text { and } \quad \varepsilon_{r 1} E_{n 1}-\varepsilon_{r 2} E_{n 2}=-\frac{\rho_{s}}{\varepsilon_{0}}
$$

Generally the interface will have no free charge $\rho_{s}=0$ so that,

$$
D_{n 1}=D_{n 2} \quad \varepsilon_{r 1} E_{n 1}=\varepsilon_{r 2} E_{n 2}
$$

1) Given that $E_{1}=2 a_{x}-3 a_{y}+5 a_{z} \quad V / m$ at the charge free dielectric interface of figure . Find \mathbf{D}_{2} and the angles $\theta 1$ and $\theta 2$.

$$
\begin{gathered}
E_{1}=2 a_{x}-3 a_{y}+5 a_{z} \\
E_{2}=2 a_{x}-3 a_{y}+E_{z 2} a_{z} \\
D_{1}=\varepsilon_{0} \varepsilon_{r 1} E_{t}=4 \varepsilon_{0} a_{x}-6 \varepsilon_{0} a_{y}+10 \varepsilon_{0} a_{z} \\
D_{2}=D_{x 2} a_{x}-D_{y 2} a_{y}+10 \varepsilon_{0} a_{z} \\
D_{2}=\varepsilon_{0} \varepsilon_{r 2} E_{2} \\
D_{x 2} a_{x}-D_{y 2} a_{y}+10 \varepsilon_{0} a_{z} \\
=2 \varepsilon_{0} \varepsilon_{r 2} a_{x}-3 \varepsilon_{0} \varepsilon_{r 2} a_{y}+\varepsilon_{0} \varepsilon_{r 2} E_{z 2} a_{z} \\
D_{x 2}=10 \varepsilon_{0} \quad D_{y 2}=-15 \varepsilon_{0} \quad E_{z 2}=\frac{10}{\varepsilon_{r 2}}=2 \\
E_{1} \cdot a_{z}=\left|E_{1}\right| \cos (90-\theta 1) \\
5=\sqrt{38} \sin \theta 1 \\
E_{2} \cdot a_{z}=\left|E_{2}\right| \cos (90-\theta 2) \\
2=\sqrt{17} \sin \theta 2 \\
\theta 1=54.2^{\circ} \quad \theta 2=29.0^{\circ}
\end{gathered}
$$

A useful relation can be obtained from

$$
\begin{aligned}
& \tan \theta 1= \frac{E_{z 1}}{\sqrt{E_{x 1}^{2}+E_{y 1}^{2}}}=\frac{D_{z 1} / \varepsilon_{0} \varepsilon_{r 1}}{\sqrt{E_{x 1}^{2}+E_{y 1}^{2}}} \\
& \tan \theta 2= \frac{E_{z 2}}{\sqrt{E_{x 2}^{2}+E_{y 2}^{2}}}=\frac{D_{z 2} / \varepsilon_{0} \varepsilon_{r 2}}{\sqrt{E_{x 2}^{2}+E_{y 2}^{2}}} \\
& \quad \frac{\tan \theta 1}{\tan \theta 2}=\frac{\varepsilon_{r 2}}{\varepsilon_{r 1}}
\end{aligned}
$$

2) In the free space region $\mathrm{x}<0$ the electric field intensity is $E_{1}=3 a_{x}+5 a_{y}-$ $3 a_{z} V / m$. The region $\mathrm{x}>0$ is a dielectric for which $\varepsilon_{r 2}=3.6$. Find the angle $\theta 2$ that the field in the dielectric makes with $\mathrm{x}=0$ plane.

$$
E_{1} \cdot a_{x}=\left|E_{1}\right| \cos (90-\theta 1)
$$

$$
3=\sqrt{43} \sin \theta 1 \quad \theta 1=27.2^{\circ}
$$

$$
\tan \theta 2=\frac{1}{\varepsilon_{r}} \tan \theta 1=0.1428 \quad \theta 2=8.13^{\circ}
$$

3) A dielectric free space interface has the equation $3 x+2 y+$ $z=12 m$ the origin of the interface has $\varepsilon_{r 1}=3$ and $E_{1}=$ $2 a_{x}+5 a_{z} \frac{V}{m}$. Find E_{2}

$$
a_{n}=\frac{3 a_{x}+2 a_{y}+a_{z}}{\sqrt{14}}
$$

The projection of E_{1} on a_{n} is the normal component of E at the interface.

$$
\begin{gathered}
E_{1} \cdot a_{n}=\frac{11}{\sqrt{14}} \\
E_{n 1}=\frac{11}{\sqrt{14}}\left(\frac{3 a_{x}+2 a_{y}+a_{z}}{\sqrt{14}}\right)=2.36 a_{x}+1.57 a_{y}+0.79 a_{z} \\
E_{t 1}=E_{1}-E_{n 1}=-0.36 a_{x}-1.57 a_{y}+4.21 a_{z}=E_{t 2} \\
D_{n 1}=\varepsilon_{0} \varepsilon_{r 1} E_{n 1}=\varepsilon_{0}\left(7.08 a_{x}+4.71 a_{y}+2.37 a_{z}\right)=D_{n 2} \\
E_{n 2}=\frac{1}{\varepsilon_{0}} D_{n 2}=7.08 a_{x}+4.71 a_{y}+2.37 a_{z} \\
E_{2}=E_{t 2}+E_{n 2}=6.72_{x}+3.14 a_{y}+6.58 a_{z}
\end{gathered}
$$

