Energy stored in static electric field :

We suppose three charge in free region with $\mathrm{E}=0$, the total work of these charges is :
$W_{E}=W_{1}+W_{2}+W_{3}$
$W_{E}=0+Q_{2} V_{2,1}+\left(Q_{3} V_{3,1}+Q_{3} V_{3,2}\right)$
Where W_{E} is the energy stored in the

electric field of the charge distribition.
Now if the three charge were brought into place in revers order, the total work would be
$W_{E}=W_{3}+W_{2}+W_{1}$
$W_{E}=0+Q_{2} V_{2,3}+\left(Q_{1} V_{1,2}+Q_{1} V_{1,3}\right)$
When the tow result above added, we obtained the twice of stored energy.
$2 W_{E}=Q_{1}\left(V_{1,2}+V_{1,3}\right)+Q_{2}\left(V_{2,1}+V_{2,3}\right)+Q_{3}\left(V_{3,1}+V_{3,2}\right)$
The term $Q_{1}\left(V_{1,3}+V_{1,2}\right)$ was the work done aganist the electric fields of Q_{2} and Q_{3} so $\left(V_{1,2}+V_{1,3}\right)=V_{1}$ the potential at position 1 then : $2 W_{E}=Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}$
$W_{E}=\frac{1}{2} \sum_{m=1}^{n} Q_{m} V_{m} \quad$ For a region containing n point charge
$W_{E}=\frac{1}{2} \int \rho V d v \quad$ For a region with a charge density $\rho\left(\frac{C}{m^{3}}\right)$
$W_{E}=\frac{1}{2} \int D \cdot E d v \quad W_{E}=\frac{1}{2} \int \varepsilon E^{2} d v \quad W_{E}=\frac{1}{2} \int \frac{D^{2}}{\varepsilon} d v$ Other forms
In an electric circuit the energy stored in the field of a capacitor is given by :
$W_{E}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}$

1. What energy stored in system of two point charges $Q_{1}=$ $3 n C ; Q_{1}=-3 n C$ separated by $d=0.2 \mathrm{~m}$?
$2 W_{E}=Q_{1} V_{1}+Q_{2} V_{2}$
$2 W_{E}=Q_{1}\left(\frac{Q_{2}}{4 \pi \varepsilon_{0} d}\right)+Q_{2}\left(\frac{Q_{1}}{4 \pi \varepsilon_{0} d}\right)$
$2 W_{E}=\frac{2 Q_{1} Q_{2}}{4 \pi \varepsilon_{0} d}=\frac{\left(-3 \times 10^{-9}\right) \times\left(3 \times 10^{-9}\right)}{4 \pi\left(\frac{10^{-9}}{36 \pi}\right)(0.2)}=-405 \mathrm{~nJ}$
**
2. What energy stored of four point charges 4 nC seperated by $\mathrm{d}=1$ m ?

$$
\begin{aligned}
& 2 W_{E}=Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}+Q_{4} V_{4} \\
& 2 W_{E}=4 Q_{1} V_{1} \\
& 2 W_{E}=4 Q_{1}\left(\frac{Q}{4 \pi \varepsilon_{0}}\right)\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

$W_{E}=\left(\frac{8 \times 10^{-9} \times 4 \times 10^{-9}}{4 \pi\left(\frac{10^{-9}}{36 \pi}\right)}\right)\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{\sqrt{2}}\right)$
$W_{E}=780 \mathrm{~nJ}$

3. A parallel plate capacitor, for which $C=\frac{\varepsilon A}{d}$ has a constant voltageV applied acrosse the plates. Find the stored energy in the electric field .
$E=(V / d)_{a_{n}}$ between the plates and $\mathrm{E}=0$ elsewhere.
$W_{E}=\frac{1}{2} \int \varepsilon E^{2} d v$

$W_{E}=\frac{\varepsilon}{2}\left(\frac{V}{d}\right)^{2} \int d v$
$W_{E}=\frac{\varepsilon}{2} \frac{A V^{2}}{d}$
$W_{E}=\frac{1}{2} C V^{2}$

Current, Current density and Conductors

Electric current is the rate of transport of electric charge past a specified point or across specific surface..
$I=\frac{Q}{t} \frac{C}{s e c}=$ Ampere

Charges in Motion

Consider the force on positively charged particle in an electric field in vacuum, as shown in figure. This force $F=+Q E$ is unopposed and results in constant acceleration. Thus the charge moves in the direction of E with a velosity U that increases as long as the particle in the E field.
$U=\mu E$ The most elementary expression of Ohm's law
μ mobility has unit $\mathrm{m}^{2} / \mathrm{V}$.s and U

(a) Vacuum

(b) Liquid or gas drift velosity.

In terms of the basic properties of the right-cylindrical currentcarrying metallic ohmic conductor, where the charge-carriers are electrons, this expression can be rewritten as:

$$
U=\frac{m \sigma \Delta V}{\rho e f l}
$$

- U is again the drift velocity of the electrons, in $\mathrm{m} \cdot \mathrm{s}^{-1}$
- m is the molecular mass of the metal, in kg
- σ is the electric conductivity of the medium at the temperature considered, in S / m.
- ΔV is the voltage applied across the conductor, in V
- ρ is the density (mass per unit volume) of the conductor, in $\mathrm{kg} \cdot \mathrm{m}^{-3}$
- e is the elementary charge, in C

Convection current density J

If we have particle with density charge ρ in a volume v as in figure. As this charge configuration passes a surface S it constitutes a convection current with density.

$$
J=\rho U\left(\frac{A}{m^{2}}\right)
$$

Conduction current density J

The conduction current density that occurs in the presence of an electric field within a conductor of fixed cross section.

From $J=\rho U \quad$ and $\quad U=\mu E$
$J=\rho \mu E$
$J=\sigma E$

$\sigma=\rho \mu \quad S / m$ is the conductivity of the material.
**

Conductivity σ :

Gas or liquid

$$
\sigma=\rho^{-} \mu^{-}+\rho^{+} \boldsymbol{\mu}^{+} \quad \sigma=\boldsymbol{\rho}_{\boldsymbol{e}} \boldsymbol{\mu}_{\boldsymbol{\epsilon}}
$$

Semiconductor

$$
\sigma=\rho_{e} \mu_{e}+\rho_{h} \mu_{\boldsymbol{h}}
$$

Current I :

If the current density J crosses a surface S , as in figure, the current I obtained by the integration the dot product of J and ds.

$$
d I=J . d s \quad I=\int_{S} J . d s
$$

**

1. What electric field intensity and current density correspond to drift velosity of $6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ in a silver conductor? for silver

$$
\begin{aligned}
& \sigma=61.7 \frac{M S}{m} \text { and } \mu=5.6 \times 10^{-3} \frac{\mathrm{~m}^{2}}{\mathrm{~V} . \mathrm{s}} \\
& \qquad E=\frac{U}{\mu}=\frac{6 \times 10^{-4}}{5.6 \times 10^{-3}}=1.07 \times 10^{-1} \mathrm{~V} / \mathrm{m} \\
& J=\sigma E=61.7 \times 10^{6} \times 1.07 \times 10^{-1}=6.61 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

2. Find the current in the circular wire as in figure if the current density is $\mathrm{J}=15\left(1-\mathrm{e}^{-1000}\right) \mathrm{a}_{\mathrm{z}}\left(\mathrm{A} / \mathrm{m}^{2}\right)$. The radius of the wire is 2 mm .

$$
\begin{aligned}
& d I=J \cdot d s \\
& d I=15\left(1-\mathrm{e}^{-1000}\right) a_{z} \cdot r d r d \emptyset a_{z} \\
& I=\int_{0}^{2 \pi} \int_{0}^{0.002} 15\left(1-\mathrm{e}^{-1000}\right) r d r d \emptyset \\
& I=1.33 \times 10^{-4} A=0.133 A
\end{aligned}
$$

3. Find the current crossing the portion of the $\mathrm{x}=0$ plane defined by $-\frac{\pi}{4} \leq y \leq \frac{\pi}{4} \quad,-0.01 \leq z \leq 0.01 m$ if $J=100 \cos 2 y a_{x} A /$ m^{2} ?
$I=\int J . d s$
$I=\int_{-0.01}^{0.01} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 100 \cos 2 y a_{x} \cdot d y d z a_{x}=2 A$
**

Resistance \mathbf{R}

If a conductor of uniform crosse sectional area A and length L as in figure has a voltage difference V between its ends then

$$
E=\frac{V}{L} \quad \text { and } \quad J=\frac{\sigma V}{L}
$$

Assuming that the current is uniformly distributed
 over the area A . The total current is then

$$
I=J A=\frac{\sigma A V}{L}
$$

Since Ohm's law states that V=IR, the resistance is

$$
R=\frac{L}{\sigma A} \quad \Omega
$$

For nonuniform current distributions the resistance is given by :
$R=\frac{V}{\int J \cdot d s}=\frac{V}{\int \sigma E \cdot d s}$
$R=\frac{\int E \cdot d l}{\int \sigma E \cdot d s}$

Continuity of current

$$
\begin{aligned}
& \oint J \cdot d s=I=\frac{-d Q}{d t}=\frac{-\partial}{\partial t} \int \rho d v \\
& \frac{\oint J \cdot d s}{\Delta v}=\frac{-\partial}{\partial t} \int \frac{\rho d v}{\Delta v} \\
& \vec{\nabla} \cdot \vec{J}=\frac{-\partial \rho}{\partial t} \\
& \rightarrow \overrightarrow{ }
\end{aligned}
$$

$\vec{\nabla} \cdot \vec{J}=0 \quad$ Kirchhoff Current Law

Conductor dielectric boundary conditions.
Under static condition all the net charge outer surface of conductor and both E and D are therefore zero within the conductor.
Because the electric fiel dis conservative
 $\oint E \cdot d \boldsymbol{l}=0$

$$
\oint_{1}^{2} E \cdot d l+\oint_{2}^{3} E \cdot d l+\oint_{3}^{4} E \cdot d l+\oint_{4}^{1} E \cdot d l
$$

$$
\oint_{1}^{2} E \cdot d l=0 \quad E_{t}=D_{t}=0
$$

$$
\oint D \cdot d s=Q
$$

$$
\int_{t o p} D \cdot d s+\int_{b o t t o m} D \cdot d s+\int_{s l i d e} D \cdot d s
$$

$$
=\int_{A} \rho_{s} \cdot d s
$$

$$
D_{t}=\rho_{s} \quad E_{t}=\frac{\rho_{s}}{\varepsilon}
$$

Exemple : Find the resistance between the inner and the outer curved surfaces of the block as in figure where the material is silver for which $\sigma=6.17 \times 10^{7} \mathrm{~S} / \mathrm{m}$?

$$
\begin{aligned}
J & =\frac{k}{r} a_{r} \text { and } \quad E=\frac{k}{\sigma r} a_{r} \\
R & =\frac{\int_{0.2}^{0.3} \frac{k}{\sigma r} a_{r} \cdot d r a_{r}}{\int_{0}^{0.05} \int_{0}^{0.0873} \frac{k}{r} a_{r} \cdot r d \emptyset d z a_{r}} \\
R & =\frac{\ln 15}{\sigma(0.05)(0.0873)}=1.01 \times 10^{-5} \Omega=10.1 \mu \Omega
\end{aligned}
$$

