Energy and electric potential of charge system

A charge Q experiences a force F in an electric field E. In order to maintain the charge in equilibrium a force F_{a}
must be applied in opposition.
$F=Q E ; \quad F_{a}=-Q E$

Where the work is defined as a force acting over a distance. Therefore, differential amount of work dw is done when the applied force F_{a} produces as a differential displacement dl of the charge .
$d w=F_{a} \cdot d l=-Q E \cdot d l$
Note:
When Q is positive and dl is in the direction, $d w=-Q E d l<0$ this mean the work was done by the electric field. On the other hand, when the work is positive this mean the work done against the electric field.

[^0]1. Find the work done in moving a charge of +2 C from $(2,0,0)$ to $(0,2,0)$ along straight line as in figure if $\vec{E}=2 x a_{x}$ $4 y a_{y} \mathrm{~V} / \mathrm{m}$?
$d w=-Q E \cdot d l$
$d w=-2\left(2 x a_{x}-4 y a_{y}\right) \cdot\left(d x a_{x}+d y a_{y}+d z a_{z}\right)$
$d w=-4 x d x+8 y d y$
$x+y=2$ path equation
$(0,2,0)$

Path 2

$$
y=2-x \quad d y=-d x
$$

$$
d w=-4 x d x+8(2-x)(-d x)
$$

$$
d w=4 x d x-16 d x
$$

$$
w=\int_{2}^{0}(4 x-16) d x=24 J
$$

For verification the result you can found $w 1$ and $w 2$, then $w=w 1+w 2$ It should be the same result.

Find $\oint E . d l \quad$???? H.W

Electric potential between two points

The potential of point A with respect to point B is define as the work done in moving a unit positive charge Q_{u} from B to A .
$V_{A B}=\frac{W}{Q}=-\int_{B}^{A} E \cdot d l$

1. Find the potential of $\mathrm{A}(1, \emptyset, z)$ with respect to $\mathrm{B}(3, \emptyset, \grave{z})$ in cylindrical coordinate where electric field due to line charge on Z-axes is given by $\vec{E}=\frac{50}{r} a_{r} V / m$?
$V_{A B}=-\int_{B}^{A} E \cdot d l \quad ; \quad V_{A B}=-\int_{B}^{A} E_{r} \cdot d r$
$=-\int_{1}^{3} \frac{50}{r} d r=-\left.50 \ln r\right|_{1} ^{3}=-50 \ln \frac{1}{3}=54.9 \mathrm{~V}$

The work of one-point charge:

$V_{A B}=\frac{W}{Q}=-\int_{B}^{A} E \cdot d l$
$\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
$V_{A B}=-\int \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d l \quad ; d l=d r$
$V_{A B}=-\frac{Q}{4 \pi \varepsilon_{0}} \int_{r_{A}}^{r_{B}} \frac{d r}{r^{2}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{A}}-\frac{1}{r_{B}}\right) ;$ if $r_{B}=\infty$
$V_{A B}=\frac{Q}{4 \pi \varepsilon_{0} r}$
**

1. Charge $\left(\frac{40}{3}\right) n C$ is uniformly distributed around ring of radius (2 m) Find the potential at point on axis (2 m) from the plane of ring?

$$
\begin{aligned}
& V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& V=\int \frac{\rho_{s} d s}{4 \pi \varepsilon_{0} r} \\
& \rho_{s}=\frac{Q}{A}=\frac{\frac{40}{3} \times 10^{-9}}{2 \pi r}=\frac{10^{-8}}{3 \pi} C / m \\
& d Q=\rho_{s} d s \quad ; d s=r d r d \emptyset
\end{aligned}
$$

$R=\sqrt{r^{2}+4}$
$V=\frac{30}{\pi} \int_{0}^{2 \pi} \int_{0}^{2} \frac{r d r d \emptyset}{\sqrt{r^{2}+4}}=49.7 \mathrm{~V}$
$* *$
2. Given the field $E=\left(-\frac{16}{r^{2}} a_{r}\right) \frac{V}{m}$ in spherical coordinate, find the potential of point $\left(2 m, \pi, \frac{\pi}{2}\right)$ with respect to $(4 m, 0, \pi)$.

$$
V_{A B}=-\int_{4}^{2}\left(-\frac{16}{r^{2}}\right) d r=-4 V
$$

[^0]: ***

