Electric Flux density \vec{D}.

Electric flux φ originates on positive charge and terminates on negative charge. In the absence of negative charge, the flux φ terminates at infinity.

$$
\begin{aligned}
\varphi & =Q \\
\vec{D} & =\frac{d \varphi}{d s} \quad a_{n} \quad C / m^{2}
\end{aligned}
$$

Gauss law.

Total electric flux through closed surface is equal to the net charge within the surface.
$\oint \vec{D} \cdot \overrightarrow{d s}=Q \quad$ gauss law
$Q=D \int d s \quad ; \int d s=$ Integral of the circle surfaces $4 \pi r^{2}$
$Q=D\left(4 \pi r^{2}\right)$
$\therefore \vec{D}=\frac{Q}{4 \pi r^{2}}$
$\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$

$\therefore \vec{D}=\varepsilon_{0} \vec{E}$ free space; $\vec{D}=\varepsilon \vec{E}$ in general

1. Use special guassian surface to find \vec{D} due to uniform line charge $\rho_{\ell} \quad C / m$?

$$
\begin{aligned}
& \oint D \cdot d s=Q \\
& \int_{1} D \cdot d s+\int_{2} D \cdot d s+\int_{3} D \cdot d s \\
& =\int_{2} D \cdot d s=D \int d s \\
& Q=D(2 \pi r L) \\
& \therefore D=\frac{Q}{2 \pi r L} \quad ; Q=\rho_{\ell} L \\
& \therefore D=\frac{\rho_{\ell} L}{2 \pi r L}=\frac{\rho_{\ell}}{2 \pi r} a_{r} \\
& \vec{E}=\frac{\rho_{\ell}}{2 \pi \varepsilon_{0} r} \quad a_{r}
\end{aligned}
$$

2. Capacitor charge on upper plate $+\rho_{s}\left(\frac{C}{m^{2}}\right)$ and lower plate $-\rho_{s}\left(\frac{C}{m^{2}}\right)$ neglect fringing and use Gauss law to find E and D ?

$$
\begin{aligned}
\oint D \cdot d s= & \int_{\text {top }} D \cdot d s+\int_{\text {lower }} D \cdot d s \\
& +\int_{\text {bottom }} D \cdot d s
\end{aligned}
$$

$$
Q=\int_{\text {bottom }} D \cdot d s
$$

$\rho_{s} A=D \int d s \quad ; \quad \rho_{s} A=D A$
$\vec{D}=\rho_{s} \quad ; \vec{E}=\frac{\rho_{s}}{\varepsilon_{0}} a_{r}$

3. Find the charge in the volume defined by $0 \leq x \leq 1 ; 0 \leq y \leq$ $1 ; 0 \leq z \leq 1$ if $\rho=30 x^{2} y\left(\mu c / m^{3}\right)$?
$Q=\int \rho_{v} d v$
$Q=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} 30 x^{2} y d x d y d z=5 \mu c$
**
4. Find the net charge enclosed in a cube 2 m on an edge, parallel to the axes and centerd at the origin , if the charge density is $\rho=50 x^{2} \cos \left(\frac{\pi}{2} y\right)\left(\mu c / m^{3}\right) ?$ H.W
5. A closed surface S contains a finite line charge distribution $0 \leq$ $\ell \leq \pi$ with charge density $\rho_{\ell}=-\rho_{0} \sin \frac{\ell}{2}(c / m)$, what net flux crosses the surface S? H.W

Field of dipole:

1. Electric field of equatorial on dipole

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{q}+}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r^{2}+\ell^{2}}\right) \\
& \mathrm{E}_{\mathrm{q}^{-}}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r^{2}+\ell^{2}}\right)
\end{aligned}
$$

$E \sin \theta$ is in opposite direction, it is cancelled
$E \cos \theta$ is in same direction, it is add $\mathrm{E}_{\mathrm{Q}}=2 \mathrm{E} \cos \theta$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{Q}}= & 2 \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r^{2}+\ell^{2}} \cdot \frac{\ell}{\left(r^{2}+\ell^{2}\right)^{\frac{1}{2}}}\right) \\
& \text { if } r \gg ; \ell^{2} \cong 0 \\
\mathrm{E}_{\mathrm{Q}} & =2 \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q \ell}{r^{3}} ; 2 q \ell=P \quad \text { Dipole moment } \\
\overrightarrow{\mathrm{E}_{\mathrm{Q}}} & =\frac{P}{4 \pi \varepsilon_{0} r^{3}}\left(-a_{x}\right)
\end{aligned}
$$

2. Electric field at a point on the axis of a dipole

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{q}+}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{(r-\ell)^{2}}\right) \\
& \mathrm{E}_{\mathrm{q}-}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{(r+\ell)^{2}}\right) \\
& \mathrm{E}_{\mathrm{P}}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{(r-\ell)^{2}}-\frac{1}{(r+\ell)^{2}}\right) \\
& \mathrm{E}_{\mathrm{P}}=\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{(r+\ell)^{2}-(r+\ell)^{2}}{\left(r^{2}-\ell^{2}\right)^{2}}\right) \\
& \mathrm{E}_{\mathrm{P}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{4 q r \ell}{\left(r^{2}-\ell^{2}\right)^{2}} \\
& \text { if } r>\ell ; \ell^{2} \cong 0 \\
& \overrightarrow{\mathrm{E}_{\mathrm{p}}}=\frac{2 P}{4 \pi \varepsilon_{0} r^{3}}\left(a_{x}\right)
\end{aligned}
$$

Energy and electric potential of charge system

A charge Q experiences a force F in an electric field E. In order to maintain the charge in equilibrium a force F_{a} must be applied in opposition.
$F=Q E ; \quad F_{a}=-Q E$

Where the work is defined as a force acting over a distance. Therefore, differential amount of work dw is done when the applied force F_{a} produces as a differential displacement dl of the charge .
$d w=F_{a} \cdot d l=-Q E \cdot d l$
Note:
When Q is positive and dl is in the direction, $d w=-Q E d l<0$ this mean the work was done by the electric field. On the other hand, when the work is positive this mean the work done against the electric field.
$* *$

1. Find the work done in moving a charge of +2 C from $(2,0,0)$ to $(0,2,0)$ along straight line as in figure if $\vec{E}=2 x a_{x}$ $4 y a_{y} \mathrm{~V} / \mathrm{m}$?
$d w=-Q E . d l$
$d w=-2\left(2 x a_{x}-4 y a_{y}\right) \cdot\left(d x a_{x}+d y a_{y}+d z a_{z}\right)$
$d w=-4 x d x+8 y d y$
$x+y=2 \quad$ path equation
$(0,2,0)$

Path 2

$$
y=2-x \quad d y=-d x
$$

$$
d w=-4 x d x+8(2-x)(-d x)
$$

$$
d w=4 x d x-16 d x
$$

$$
w=\int_{2}^{0}(4 x-16) d x=24 J
$$

For verification the result you can found $w 1$ and $w 2$, then $w=w 1+w 2$ It should be the same result.

Find $\oint E . d l$???? H.W

Electric potential between two points

The potential of point A with respect to point B is define as the work done in moving a unit positive charge Q_{u} from B to A .
$V_{A B}=\frac{W}{Q}=-\int_{B}^{A} E \cdot d l$

1. Find the potential of $\mathrm{A}(1, \emptyset, z)$ with respect to $\mathrm{B}(3, \emptyset, \grave{z})$ in cylindrical coordinate where electric field due to line charge on Z-axes is given by $\vec{E}=\frac{50}{r} a_{r} V / m$?
$V_{A B}=-\int_{B}^{A} E \cdot d l \quad ; \quad V_{A B}=-\int_{B}^{A} E_{r} \cdot d r$
$=-\int_{1}^{3} \frac{50}{r} d r=-\left.50 \ln r\right|_{1} ^{3}=-50 \ln \frac{1}{3}=54.9 \mathrm{~V}$

The work of one-point charge:

$V_{A B}=\frac{W}{Q}=-\int_{B}^{A} E \cdot d l$
$\vec{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
$V_{A B}=-\int \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d l \quad ; d l=d r$
$V_{A B}=-\frac{Q}{4 \pi \varepsilon_{0}} \int_{r_{A}}^{r_{B}} \frac{d r}{r^{2}}=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{A}}-\frac{1}{r_{B}}\right) ;$ if $r_{B}=\infty$
$V_{A B}=\frac{Q}{4 \pi \varepsilon_{0} r}$
**

1. Charge $\left(\frac{40}{3}\right) n C$ is uniformly distributed around ring of radius (2 m) Find the potential at point on axis (2 m) from the plane of ring?

$$
\begin{aligned}
& V=\frac{Q}{4 \pi \varepsilon_{0} r} \\
& V=\int \frac{\rho_{s} d s}{4 \pi \varepsilon_{0} r} \\
& \rho_{s}=\frac{Q}{A}=\frac{\frac{40}{3} \times 10^{-9}}{2 \pi r}=\frac{10^{-8}}{3 \pi} C / m \\
& d Q=\rho_{s} d s ; d s=r d r d \emptyset \\
& R=\sqrt{r^{2}+4} \\
& V=\frac{30}{\pi} \int_{0}^{2 \pi} \int_{0}^{2} \frac{r d r d \emptyset}{\sqrt{r^{2}+4}}=49.7 \mathrm{~V}
\end{aligned}
$$

$* *$
2. Given the field $E=\left(-\frac{16}{r^{2}} a_{r}\right) \frac{V}{m}$ in spherical coordinate, find the potential of point $\left(2 m, \pi, \frac{\pi}{2}\right)$ with respect to ($4 m, 0, \pi$).

$$
V_{A B}=-\int_{4}^{2}\left(-\frac{16}{r^{2}}\right) d r=-4 V
$$

