## - Coordinate Systems

A point P is described by three coordinates, in Cartesian $(x, y, z)$, circular cylindrical $(r, \phi, z)$ and spherical $(r, \theta, \phi)$ as shown in figure.2.

(a) Cartesian

(b)


Figure 2. Coordinate Systems Definition
The order of specifying coordinate is important and should be carefully followed. The angle ( $\varnothing$ ) is the same in both cylindrical and spherical systems, but in the order coordinate $(\varnothing)$ appears in second position in cylindrical $(r, \phi, z)$ and third position in spherical $(r, \theta, \varnothing)$. Where the angle $\varnothing$ is limited to range $0 \leq \emptyset \leq 2 \pi$ and $\theta$ is limited to range $0 \leq \theta \leq \pi$. The symbol ( $r$ )is used in both cylindrical and spherical for two quite different things. In cylindrical ( $r$ ) measure the distance from the z -axis plan normal to the z -axis while in spherical measure the distance from the origin to the point.

In the Cartesian system the unit vectors have fixed directions, independent of the location of P . This is not true for the other two systems (except in the case of $\mathrm{a}_{\mathrm{z}}$ ). We notice that all these three systems are satisfy to right hand rule.

$$
a_{x} \times a_{y}=a_{z} \quad a_{r} \times a_{\emptyset}=a_{z} \quad a_{r} \times a_{\theta}=a_{\emptyset}
$$


(a) Cartesian

(b) Cylindrical

(c) Spherical

The component forms of a vector in the three system are:

$$
\begin{array}{ll}
\vec{A}=A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z} & \text { cartesian } \\
\vec{A}=A_{r} a_{r}+A_{\theta} a_{\theta}+A_{z} a_{z} & \text { cylindrical } \\
\vec{A}=A_{r} a_{r}+A_{\theta} a_{\theta}+A_{\emptyset} a_{\emptyset} & \text { spherical }
\end{array}
$$

It should be noted that be the components $A_{x}, A_{r}, A_{\varnothing}$, etc are generally not constant but are often functions of the coordinates in that particular system.

## - Differential volume, surface, and line elements.

There are relatively few problems in electromagnetics that can be solved without some sort integration - along a curve ,over a surface, throughout a volume. When the coordinate of the point P are expended to:

$$
\begin{aligned}
& x+d x, y+d y, z+d_{z} \\
& r+d r, \emptyset+d \emptyset, z+d z \\
& r+d r, \theta+d \theta, \emptyset+d \emptyset
\end{aligned}
$$

A differential volume $d v$ is formed. To the first order infinitesimal quantities the differential is, in all three coordinate systems, a rectangular box. The value of $d v$ in each system is given by

fig

(b) Cylindrical

(c) Spherical

Figure 4. Differential volume of the coordinate systems

So we find $d v$ of the three coordinate system are:

$$
\begin{array}{rr}
d v=d x d y d z & \text { Cartesian } \\
d v=r d r d \emptyset d z & \text { Cylindrical } \\
d v=r^{2} \sin \theta d r d \theta d \emptyset & \text { spherical }
\end{array}
$$

May also can be represented the area of the surface element for the coordinates is:

$$
\begin{aligned}
d s & =d x d y & & \text { Cartesian } \\
d s & =r d \emptyset d z & & \text { Cylindrical } \\
d s & =r^{2} \sin \theta d \theta d \varnothing & & \text { Spherical }
\end{aligned}
$$

The differential line element $d \ell$ is the diagonal through $\mathbf{P}$, thus:

$$
\begin{array}{cc}
d \ell^{2}=d x^{2}+d y^{2}+d z^{2} & \text { Cartesian } \\
d \ell^{2}=d r^{2}+r d \emptyset^{2}+d z^{2} & \text { Cylindrical } \\
d \ell^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \emptyset^{2} & \text { Spherical }
\end{array}
$$

## Problems:

1. Express the unit vector which is directed toward to the origin point from an arbitrary point on the plane $z=-5$

Since the problem in Cartesian coordinate so we can represent the vector R as:

$$
\begin{aligned}
\vec{R} & =-x a_{x}-y a_{y}+5 a_{z} \\
a_{R} & =\frac{-x a_{x}-y a_{y}+5 a_{z}}{\sqrt{x^{2}+y^{2}+25}}
\end{aligned}
$$

2. Express the unit vector which points from $\mathrm{z}=\mathrm{h}$ on the $\mathrm{z}-\operatorname{axis}$ toward ( $\mathrm{r}, \phi, 0$ ) in cylindrical coordinate. H.W
3. Use the spherical coordinate system to find the area of the strip $\propto \leq \theta \leq \beta$ on the spherical shell of radius $r=r_{0}$. What results when $\propto=0 \quad \beta=\pi$ ?

$$
\begin{gathered}
d s=r^{2} \sin \theta d \theta d \emptyset \\
A=\int_{0}^{2 \pi} \int_{\alpha}^{\beta} r_{0}^{2} \sin \theta d \theta d \emptyset \\
A=2 \pi r_{0}^{2}(\cos \alpha-\cos \beta) \\
\text { When } \propto=0 \quad \beta=\pi \\
A=4 \pi r_{0}^{2}
\end{gathered}
$$



This give us the area of the entire sphere
4. Use the cylindrical coordinate system to find the area of the curved surface of a right circular cylinder where $\mathrm{r}=2 \mathrm{~m} \mathrm{~h}=5 \mathrm{~m}$ and $30^{\circ} \leq \emptyset \leq 120^{\circ}$.

The differential surface element is

$$
d s=r d \emptyset d z
$$

then

$$
\begin{gathered}
A=\int_{0}^{5} \int_{\frac{\pi}{6}}^{\frac{2 \pi}{3}} 2 d \emptyset d z \\
A=5 \pi m^{2}
\end{gathered}
$$


5. Transform the vector $\vec{A}=y a_{x}+x a_{y}+\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} a_{z}$ from Cartesian to Cylindrical coordinate.

$$
\begin{aligned}
& x=r \cos \emptyset \quad y=r \sin \emptyset \quad r=\sqrt{x^{2}+y^{2}} \\
& \vec{A}=r \sin \emptyset a_{x}+r \cos \emptyset a_{y}+r \cos ^{2} \emptyset a_{z}
\end{aligned}
$$

Now the projection of the Cartesian unit vector on $a_{r}, a_{\varnothing}$ and $a_{z}$ are obtained:

$$
\begin{array}{lll}
a_{x} \cdot a_{r}=\cos \emptyset & a_{x} \cdot a_{\emptyset}=-\sin \emptyset & \\
a_{y} \cdot a_{r}=\sin \emptyset & a_{y} \cdot a_{\varnothing}=0 \\
a_{z} \cdot a_{r}=0 & a_{z} \cdot a_{\emptyset}=0 & a_{y} \cdot a_{z}=0 \\
& a_{z} \cdot a_{z}=1
\end{array}
$$

Therefor:

$$
\begin{aligned}
& a_{x}=\cos \emptyset a_{r}-\sin \emptyset a_{\emptyset} \\
& a_{y}=\sin \emptyset a_{r}+\cos \emptyset a_{\emptyset} \\
& a_{z}=a_{z}
\end{aligned}
$$

And $\vec{A}=2 r \sin \emptyset \cos \emptyset a_{r}+\left(r \cos ^{2} \emptyset-r \sin ^{2} \emptyset\right) a_{\emptyset}+r \cos ^{2} \emptyset a_{z}$
6. Transform the same vector in point 5 to the spherical coordinate. H.W
7. Given point $\mathrm{P}(-2,6,3)$ and vector $\mathrm{A}=\mathrm{ya}_{\mathrm{x}}+(\mathrm{x}+\mathrm{z}) \mathrm{a}_{\mathrm{y}}$, express P and A in cylindrical and spherical coordinates.
At point P
$x=-2 \quad y=6 \quad z=3$
$r=\sqrt{x^{2}+y^{2}} \quad \sqrt{4+36}=6.32$
$\emptyset=\tan ^{-1} \frac{y}{x}=\frac{6}{-2}=108.43^{\circ}$
$z=3$
$r=\sqrt{x^{2}+y^{2}+z^{2}} \quad \sqrt{4+36+9}=7$
$\theta=\tan ^{-1} \frac{\sqrt{x^{2}+y^{2}}}{z}=\frac{6.32}{3}=64.62^{\circ}$

Thus,
$P(x, y, z)=(-2,6,3)$
$\mathrm{P}(\mathrm{r}, \theta, \mathrm{z})=\left(6.32,108.43^{\circ}, 3\right)$
$\mathrm{P}(\mathrm{r}, \theta, \emptyset)=\left(7,64.62^{\circ}, 108.43^{\circ}\right)$
In the Cartesian system, A at P is:
$\vec{A}=6 a_{x}+a_{y}$
$A x=y, A y=x+z, A z=0$.
Hence, in the cylindrical system

$$
\begin{aligned}
& A r=y \cos \emptyset+(x+z) \sin \emptyset \\
& A \emptyset=-y \sin \emptyset+(x+z) \cos \emptyset \\
& A z=0
\end{aligned}
$$

But $\mathrm{x}=\mathrm{r} \cos \emptyset, \mathrm{y}=\mathrm{r} \sin \emptyset$ we substituted these in equations we get:

$$
\left[\begin{array}{c}
A r \\
A \emptyset \\
A z
\end{array}\right]=\left[\begin{array}{ccc}
\cos \emptyset & \sin \emptyset & 0 \\
-\sin \emptyset & \cos \emptyset & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
y \\
x+z \\
0
\end{array}\right]
$$

or

$$
\begin{aligned}
\vec{A}=(A r, & A \emptyset, A z) \\
& =(r \sin \emptyset \cos \emptyset+(r \cos \emptyset+z) \sin \emptyset) a_{r} \\
& +\left(-r \sin ^{2} \emptyset+(r \cos \emptyset+z) \cos \emptyset\right) a_{\emptyset}
\end{aligned}
$$

At P

$$
\begin{gathered}
r=\sqrt{40} \quad \tan \emptyset=\frac{6}{-2} \quad \cos \emptyset=\frac{-2}{\sqrt{40}} \quad \sin \emptyset=\frac{6}{\sqrt{40}} \\
\vec{A}=\left[\sqrt{40} \cdot \frac{-2}{\sqrt{40}} \cdot \frac{6}{\sqrt{40}}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{6}{\sqrt{40}}\right] a_{r} \\
+\left[-\sqrt{40} \cdot \frac{36}{40}+\left(\sqrt{40} \cdot \frac{-2}{\sqrt{40}}+3\right) \cdot \frac{-2}{\sqrt{40}}\right] a_{\emptyset} \\
\vec{A}=\frac{-6}{\sqrt{40}} a_{r}-\frac{38}{\sqrt{40}} a_{\emptyset}=-0.9487 a_{r}-6.008 a_{\emptyset}
\end{gathered}
$$

