Vector Algebra

Introduction

- Vectors are introduced in physics and mathematics courses in Cartesian, Spherical and Cylindrical coordinate. All three coordinate systems must be used in Electromagnetics.
- In order to distinguish vectors (quantities having magnitude and direction) from scalars (quantities having magnitude).
By use of the unit vectors $\mathrm{a}_{\mathrm{x}}, \mathrm{a}_{\mathrm{y}}, \mathrm{a}_{\mathrm{z}}$ along the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes of Cartesian coordinate system, vector A can be written as:

$$
\vec{A}=A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}
$$

The absolute value of a vectors can be defined as:

$$
|\vec{A}|=\vec{A}=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

So the unit vectors in the direction of a vector A is determined by:

$$
a=\frac{\vec{A}}{|\vec{A}|}
$$

- Vectors algebra

1. Vectors may be add and subtracted.

$$
\begin{aligned}
\vec{A} \pm \vec{B}= & \left(A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}\right) \pm\left(B_{x} a_{x}+B_{y} a_{y}+B_{z} a_{z}\right) \\
& \left(A_{x} \pm B_{x}\right)_{a x}+\left(A_{y} \pm B_{y}\right)_{a y}+\left(A_{z} \pm B_{z}\right)_{a z}
\end{aligned}
$$

2. The associative, distributive, and commutative laws apply:

$$
\begin{gathered}
\vec{A}+(\vec{B}+\vec{C})=(\vec{A}+\vec{B})+\vec{C} \\
k(\vec{A}+\vec{B})=k \vec{A}+k \vec{B} \\
\left(k_{1}+k_{2}\right) \vec{A}=k_{1} \vec{A}+k_{2} \vec{B} \\
\vec{A}+\vec{B}=\vec{B}+\vec{A}
\end{gathered}
$$

3. The dot product of two vectors is, by definition

$$
\vec{A} \cdot \vec{B}=A B \cos \theta
$$

Where θ is smaller angle between \vec{A} and \vec{B}.

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

which gives, in particular

$$
|\vec{A}|=\sqrt{\vec{A} \cdot \vec{A}}
$$

The dot product obeys the distributive and scalar multiplication laws $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C} \quad \vec{A} \cdot k \vec{B}=k(\vec{A} \cdot \vec{B})$

Example 1.1 : Using the properties of dot product prove property 3 from above.
$\vec{A} \cdot \vec{B}=\left(A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}\right) \cdot\left(B_{x} a_{x}+B_{y} a_{y}+B_{z} a_{z}\right)$
$\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Note
In Dot product $a x \cdot a x=a y \cdot a y=a z \cdot a z=1$
when $\theta=$ zero
And $a x \cdot a x=a y \cdot a y=a z \cdot a z=0$ when
4. The cross product between two vectors define as:

$$
\vec{A} \times \vec{B}=(A B \sin \theta)_{a n}
$$

Where θ is the smaller angle between A and B, and a_{n} is a unit vector normal to the plane determined by A and B when they are drawn from the common point. The unit vector which selected when A move towards B as shown in the figure this satisfy to right hand rule.

The commutative laws not apply to the cross product, so we get:

$$
\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}
$$

Note

When the two vectors are parallel the cross product $=0$ because the angle $\theta=0$

Fig 1. Right Hand Rule
Expending the cross product in component form.

$$
\begin{aligned}
\vec{A} \times \vec{B}= & \left(A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}\right) \times\left(B_{x} a_{x}+B_{y} a_{y}+B_{z} a_{z}\right) \\
\vec{A} \times \vec{B}= & \left(A_{y} B_{z}+A_{z} B_{y}\right) a_{x}+\left(A_{z} B_{x}+A_{x} B_{z}\right) a_{y} \\
& +\left(A_{x} B_{y}+A_{z} B_{x}\right) a_{z}
\end{aligned}
$$

Which is conveniently expressed as a determinant:
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}a_{x} & a_{y} & a_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$

Example 2: Given $\vec{A}=2 a_{x}+4 a_{y}-3 a_{z} \quad \vec{B}=a_{x}-a_{y}$ find $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$.

$$
\begin{aligned}
\vec{A} \cdot \vec{B} & =(2)(1)+(4)(-1)-(3)(0)=-2 \\
\vec{A} \times \vec{B} & =\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
2 & 4 & -3 \\
1 & 1 & 0
\end{array}\right|=-3 a_{x}-3 a_{x}-6 a_{z}
\end{aligned}
$$

Problems:

1. What is the angle between the two vectors $\vec{A}=3 a_{x}+a_{y}-$ $4 a_{z} \quad \vec{B}=2 a_{x}+14 a_{y}+5 a_{z}$.

$$
\begin{gathered}
\vec{A}=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \\
\vec{A}=\sqrt{3^{2}+1^{2}+\left(-4^{2}\right)}=\sqrt{26} \\
\vec{B}=\sqrt{2^{2}+14^{2}+5^{2}}=\sqrt{225} \\
\cos \theta=\frac{\vec{A} \cdot \vec{B}}{\vec{A} \vec{B}}=\frac{(3)(2)+(14)(1)+(-4)(5)}{\sqrt{26} \sqrt{225}}=0
\end{gathered}
$$

This mean $\theta=90^{\circ}$ and $A \perp B \quad(\vec{A} \cdot \vec{B})=0$
2. What is the angle between the two vectors $\vec{A}=a_{x}-a_{z} \quad \vec{B}=$ $-a_{y}+a_{z} \quad$ H.W
3. If we have $\vec{A}=-3 a_{x}+a_{y}+4 a_{z} \quad \vec{B}=a_{x}+a_{y}+a_{z}$. find the component of the vectors A towards the vector B.

$$
\vec{A} \cdot \vec{B}=B(A \cos \theta)
$$

$$
A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{B}=\frac{-3+1+4}{\sqrt{3}}=\frac{2}{\sqrt{3}}
$$

4. Find the value of X in which the vectors $\vec{A}=a_{x}-6 a_{y}$ is perpendicular of the vectors $\vec{B}=3 a_{x}+2 a_{y}$. H.W
5. Effective force of a particle is $\vec{F}=7 a_{x}+5 a_{y}$ it caused displacement $\vec{r}=3 a_{x}-4 a_{y}$ Calculate the work done by this force.

$$
\begin{aligned}
& W=\vec{F} \cdot \vec{r}=\left(7 a_{x}+5 a_{y}\right) \cdot\left(3 a_{x}-4 a_{y}\right. \\
& W=21+20=41 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

**
6. If $A=2 a_{x}+6 a_{y}-27 a_{z}$ and $B=a_{x}+3 a_{y}-\frac{27}{2} a_{z}$ Find $A \times B$.

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
2 & 6 & -27 \\
1 & 3 & \frac{-27}{2}
\end{array}\right|=0
$$

This mean $\mathrm{AB} \sin \theta=0$ and $\theta=180^{\circ}$ or $\theta=0^{\circ}$.
**
7. Find a vector that is vertical of the two vectors $\vec{A}=7 a_{x}-$ $4 a_{y}-3 a_{z} \quad \vec{B}=-a_{x}+a_{y}+a_{z}$ and how can you prove this vector is vertical?? H.W
8. Calculate the area of parallelogram if there side are $\vec{A}=3 a_{x}-$ $4 a_{y}+5 a_{z}$ and $\vec{B}=a_{x}-6 a_{z}$.

Parallelogram area $=|\vec{A} \times \vec{B}|$

$$
\begin{gathered}
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
3 & -4 & 5 \\
1 & 0 & -6
\end{array}\right|=24 a_{x}+23 a_{y}+4 a_{z} \\
|\vec{A} \times \vec{B}|=\sqrt{(24)^{2}+(23)^{2}+(4)^{2}}
\end{gathered}
$$

$$
\sqrt{1121}=33.48
$$

9. Mass of particle is 2 kg and its velocity $\vec{v}=2 a_{x}+3 a_{y}-2 a_{z}$ when the particle position is $\vec{r}=a_{x}-2 a_{y}-a_{z}$ calculate the Angular movement of the particle in the origin point. H.W
