Chapter (2)

The sequences of real numbers

Definition(2.1):-

Let $f: N \to R$ be a function, then $f(n) = a_n \ \forall n \in Z$, is called a sequence of real numbers which will be denoted by $\langle a_n \rangle$ or $\{a_n\}$. $\langle a_n \rangle = a_1, a_2, \dots, a_n, \dots$

Example:-
$$\langle \frac{1}{n} \rangle = 1$$
, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...
$$\langle \frac{1}{2^n} \rangle = \frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, ..., $\frac{1}{2^n}$, ...
$$\langle (-1)^n \rangle = -1, 1, -1, ..., (-1)^n, ...$$

$$\langle 3^n \rangle = 3, 9, 81, ..., 3^n, ...$$

$$\langle \frac{1}{2} \rangle = \frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{2}$, ..., $\frac{1}{2}$, ...
$$\langle \frac{n}{n+1} \rangle = \frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, ..., $\frac{n}{n+1}$, ...

Converging sequences:

Definition(2.2):-

Let $\langle a_n \rangle$ be a sequence of real numbers, we say that $\langle a_n \rangle$ is converging sequence if there exists a real number a_0 satisfies for all $\in > 0$, ($0 < \epsilon < 1$) there exist a positive integer $k = k(\epsilon)$ (depend on ϵ) such that $|a_n - a_0| < \in \forall n > k$.

<u>i.e</u> if $a_n \to a_0$, then $\lim_{n\to\infty} a_n = a_0$.

Otherwise the sequence is divergence.

roposition (2-3):-

If the sequence $\langle a_n \rangle$ is convergence sequence, then the limit point is unique.

Proof: Suppose that $\mathbf{a_n} \to \mathbf{a_0}$ and $\mathbf{a_n} \to \mathbf{b_0}$ and $\mathbf{a_0} \neq \mathbf{b_0}$, then $0 < d = |\mathbf{a_0} - \mathbf{b_0}|$.

$$a_n \rightarrow a_0$$

$$\forall \ \in >0 \text{ , in particular take } \in =\frac{d}{2} \text{ , } \exists \ k_1\left(\frac{d}{2}\right) \text{ such that }$$

$$|a_n-a_0|<\frac{d}{2} \quad \forall n>k_1.$$

$$\ : \ a_n \to b_0$$

$$\forall \quad \frac{d}{2}>0 \text{ , } \exists \ k_2\left(\frac{d}{2}\right) \text{ such that } \ |a_n-b_0|<\frac{d}{2} \qquad \forall n>k_2.$$

$$0 < d = |\mathbf{a}_0 - \mathbf{b}_0| = |\mathbf{a}_0 - a_n + a_n - \mathbf{b}_0|$$

$$\leq |a_n - a_0| + |a_n - b_0|$$

$$<\frac{d}{2} + \frac{d}{2} = d C! \ (d < d) \ , \quad \forall n > k = \max\{k_1, k_2\}.$$

Examples:-

1) Is
$$\langle \frac{1}{n} \rangle$$
 converge to 0 i.e $\lim_{n \to \infty} \frac{1}{n} = 0$

$$\langle \frac{1}{n} \rangle = 1$$
, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...

Let $\in > 0$, to find $k(\in)$ such that:

$$\left|\frac{1}{n}-0\right| < \epsilon \qquad \forall \ n > k \ .$$

Proof:
$$\left|\frac{1}{n}\right| = \frac{1}{n}$$
, since $n \in \mathbb{Z}^+$.

By Archimedean $\forall \in > 0$, $\exists k \in \mathbb{Z}^+$ s.t $\frac{1}{k} < \in$

$$\frac{1}{n} < \frac{1}{k} < \in \quad \forall n > k$$

$$\left|\frac{1}{n}-0\right|=\left|\frac{1}{n}\right|=\frac{1}{n}<\frac{1}{k}<\in\quad\forall\,n>k\;.$$

$$\therefore \left| \frac{1}{n} - 0 \right| < \epsilon \quad \forall \ n > k$$

2) Is
$$(a_n) = (3)$$
 converge to 3, $\lim_{n \to \infty} 3 = 3$ $f: N \to R$, $f(n) = a_n = 3$, $(3) = 3,3,3,...$ $\forall \in > 0$, $\exists k = 0$, $|3 - 3| = 0 < \in \forall n > 0$.

3) Let (a_n) be define by:

$$a_n = \{ \begin{matrix} -2 & n > 10^7 \\ n & n \le 10^7 \end{matrix}$$

 $\langle a_n \rangle = 1, 2, 3, 4, 5, ..., 10^7, -2, -2, ...$

This sequence convergence to (-2).

$$\forall \in > 0$$
, $\exists k = 10^7$, $|a_n - (-2)| < \in \forall n > 10^7$.

4) Let $\langle a_n \rangle = \langle (-1)^n \rangle$ be a divergence sequence.

$$\langle (-1)^n \rangle = -1, 1, -1, 1, ...$$

If $a_0=-1$, then for all $\in >0$, $(-1-\in ,-1+\in)$ contain all odd terms but doesn't contain any even term and since the even terms are infinite, then $a_n \not\rightarrow -1$.

If $a_0=1$, then for all $\in>0$, $(1-\in,1+\in)$ contain all even terms but doesn't contain any odd term and since the odd terms are infinite, then $a_n \not\rightarrow 1$.

If $a_0 \neq 1$ or $a_0 \neq -1$

$$0 < d_1 = |a_0 - 1|$$
, $0 < d_2 = |a_0 - (-1)|$.

If we choose $\in \leq \min \{d_1, d_2\}$, then any open interval $(a_0 - \in$,

 $a_0+\in$) doesn't contain any term of the sequence and hence $a_n\not\to a_0$.

 $\therefore ((-1)^n)$ is a divergence sequence.

H.W: Which of the following sequence convergence or divergence.

1.
$$\langle \frac{n}{n+1} \rangle$$
.

2.
$$\langle \frac{1}{2^n} \rangle$$
.

3.
$$\langle 3^n \rangle$$
.

Bounded sequences:

pefinition(2.4):-

A sequence $\langle a_n \rangle$ of real numbers is said to be a bounded sequence, if there exists a real number M such that $|a_n| \leq M \quad \forall \ n$.

$$i.e - M \le a_n \le M$$
.

Examples:-

- 1) $a_n = \langle \frac{1}{n} \rangle$ is bounded sequence since $-1 < 0 \le \frac{1}{n} \le 1$.
- 2) $a_n = \langle 3 \rangle$ is bounded sequence since $-3 \le 3 \le 3$.

3)
$$\langle a_n \rangle = \{ \begin{array}{ll} -2 & n > 10^7 \\ n & n \le 10^7 \end{array} \}$$

$$\langle a_n \rangle = 1, 2, 3, 4, 5, ..., 10^7, -2, -2, -2, ...$$

This sequence is bounded since $-10^7 \le a_n \le 10^7$.

- 4) $\langle a_n \rangle = \langle (-1)^n \rangle = -1, 1, -1$, 1, ... is bounded sequence since $-1 \le a_n \le 1$.
- 5) $\langle 2^n \rangle = 2, 4, 8, 16, \dots, 2^n, \dots$ is not bounded sequence since $0 < 2^n < ?$. (bounded below but not bounded above).

Proposition (2-5):-

Every convergence sequence is a bounded sequence.

Proof: Let $\langle \mathbf{a_n} \rangle$ be a convergence sequence, that convergence to $\mathbf{a_0}$ i. \mathbf{e} $\mathbf{a_n} \to \mathbf{a_0}$

$$\begin{array}{ll} \forall \;\; \in \; >0 \; , \; \exists \; k = k (\in) \; \text{such that} \;\; |a_n - a_0| < \in \; <1 \qquad \forall \; n > k \; . \\ |a_n| - |a_0| \leq |a_n - a_0| < 1 \qquad \forall \; n > k \qquad . \\ \Rightarrow \;\; |a_n| - |a_0| \leq 1 \qquad \forall \; n > k \\ \therefore \;\; |a_n| \leq |a_0| + 1 \qquad \forall \; n > k \; . \\ |a_1|, |a_2|, \ldots, \;\; \underline{|a_k|, \qquad |a_{k+1}|, \qquad |a_{k+2}|, \ldots} \\ \leq |a_0| + 1 \; . \end{array}$$

ake
$$M = \{ |a_1|, |a_2|, \dots, |a_k|, \dots, |a_0| + 1 \}$$
.
 $|a_n| \le M \quad \forall n$.

Example:-

 $\langle 2^n \rangle = 2, 4, 8, \ 16, \dots, 2^n, \dots$ is not bounded sequence and by this theorem is divergence.

Remark(2.6):-

The converse of proposition (2.5) is not true in general, as the following example shows.

Example:-

 $\langle (-1)^n \rangle$ is bounded sequence which is a divergence sequence.

Monotonic sequences:

Definition(2.7):-

Let $\langle a_n \rangle$ be a sequence, we say that $\langle a_n \rangle$ is a non-decreasing sequence, if $a_n \leq a_{n+1} \quad \forall \ n$.

 $\langle a_n
angle$ is an increasing sequence, if $a_n < a_{n+1} \quad \forall \ n$.

 $\langle a_n
angle$ is a non-increasing sequence, if $\ a_n \geq a_{n+1} \quad \forall \ n$.

And $\langle a_n \rangle$ is a decreasing sequence, if $a_n > a_{n+1} \quad \forall \ n$.

And we say that $\langle a_n \rangle$ is a monotonic sequence, if $\langle a_n \rangle$ satisfies one of the above conditions.

Examples:-

1)
$$\langle \frac{1}{n} \rangle = 1$$
, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ... is decreasing sequence.

2)
$$\langle \frac{n}{n+1} \rangle = \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots$$
 is an increasing sequence.

3) $\langle 3 \rangle = 3, 3, 3, ..., 3, ...$ is a non-increasing sequence and a non-decreasing sequence.

 $\langle (-1)^{\rm n} \rangle = -1, 1, -1, 1, \dots$ is not monotonic sequence.

proposition (2-8):-

Every bounded monotonic sequence is convergence sequence.

Proof: Let $\langle a_n \rangle$ be a sequence in R, $\therefore \langle a_n \rangle$ is bounded sequence.

∴
$$\exists M$$
, such that $|a_n| \le M \quad \forall n$. $S = \{a_n : n \in N\}$ bounded (above and below).

(1) Suppose $\langle a_n \rangle$ is a non-decreasing sequence,

Since S is bounded above, then by completeness of real number S has a least upper bound say y.

$$y = \sup(S) = l.u.b(S)$$
 $a_n \le y$ $\forall n \in \mathbb{N}$.

Claim: $a_n \rightarrow y$

$$y - \frac{\epsilon}{2} < y$$
 : $y - \frac{\epsilon}{2}$ is not an upper bound.

$$\exists \; k \; \in \; Z^+ \; {
m such \; that} \; a_k \; > \; {
m y} - rac{\epsilon}{2}$$

$$y - \frac{\epsilon}{2} < a_k \le a_n < y + \frac{\epsilon}{2}$$

$$y - \frac{\epsilon}{2} < a_n < y + \frac{\epsilon}{2}$$
 $\forall n > k$

$$|a_n - y| < \frac{\epsilon}{2} \quad \forall n > k$$
.

(2) Suppose $\langle a_n \rangle$ is a non-increasing sequence,

i.e
$$\exists M$$
, such that $|a_n| \leq M \quad \forall n$.

Since S is bounded below, where $S = \{a_n : n \in N \} \subseteq R$, then by completeness of real number S has greatest lower bound, say a_0 .

$$a_0 = \inf(S) = g.l.b(S)$$
 $a_n \ge a_0$ $\forall n \in \mathbb{N}.$

 $a_n \to a_0 \ (\forall \in > 0 \ , \exists \ k \in Z^+ \ \text{such that} \ |a_n - a_0| < \in \forall \ n > k \).$

$$a_0 = \inf(S) = g.l.b(S)$$
 $a_n \le a_0$ $\forall n \in N ...(1)$

 $a_0+\in$ is not a lower bound (since $a_0< a_0+\in$)

$$\exists k \in Z^+ \text{ such that } a_k < a_0 + \in \dots(2).$$

Since $\langle a_n \rangle$ is not increasing sequence, then $a_n \leq a_k \dots (3)$

From (1), (2), (3)
$$a_0 - \in \langle a_n \leq a_k \langle a_0 + \in a_0 \rangle$$

$$a_0 - \epsilon \le a_n \le a_0 + \epsilon \quad \forall n > k$$

$$\Rightarrow |a_n - a_0| < \in \forall n > k$$
.

 $\therefore \langle a_n \rangle$ is converges.

Examples:-

1)
$$\langle \frac{1}{n} \rangle = 1$$
, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$, ...

$$S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$$

$$= \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}, \dots \right\}.$$

This sequence is decreasing and bounded (below, above).

$$a_n \to g. l. b(S) = \{0\}$$
.

2) Converges ⇒ monotonic.

$$\text{Let } \langle \mathbf{a_n} \rangle = \left\{ \begin{matrix} n & n \leq 10^2 \\ -1 & n > 10^2 \end{matrix} \right\}.$$

$$= 1, 2, 3, 4, 5, ..., 10^2, -1, -1, -1, ...$$

It is converges but not monotonic sequence.